

1550 Pond Road Suite 120 Allentown, PA 18104 (610) 435-1151 FAX (610) 435-8459

April 30, 2020

VIA Electronic Mail

Kyle Forster Division of Environmental Remediation Remedial Bureau B New York State DEC 625 Broadway, 12th Floor Albany, New York, 12233-7016

Reference:#C241089 - Review Avenue Development I Site (RAD I)Long Island City, Queens, New YorkPeriod Review Report #3 - April 1, 2019 through March 31, 2020

Dear Mr. Grathwol:

Attached please find the Periodic Review Report (PRR) and IC/EC Certification Submittal for the Review Avenue Development Site I (RAD I) Site #C241089. This is the fourth PRR submitted for the Site and covers the operating period of April 2019 through March 2020. As requested, all submittals are being provided in electronic format.

Should you have any questions or comments regarding this submittal or any other aspect of this project, please do not hesitate to contact me at (610) 435-1151.

Sincerely,

de maximis, inc.

R. Craig Coslett Project Coordinator

Attachment CC: Patrick Foster, NYSDEC Stephanie Selmer, New York State Department of Health Brent O'Dell, Wood Group Alan Dern, Review Holdings LLC

> Albany, NY · Allentown, PA · Clinton, NJ · Greensboro, GA · Houston, TX · Irvine, CA Knoxville, TN · San Diego, CA · Sarasota, FL · Waltham, MA · Windsor, CT

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

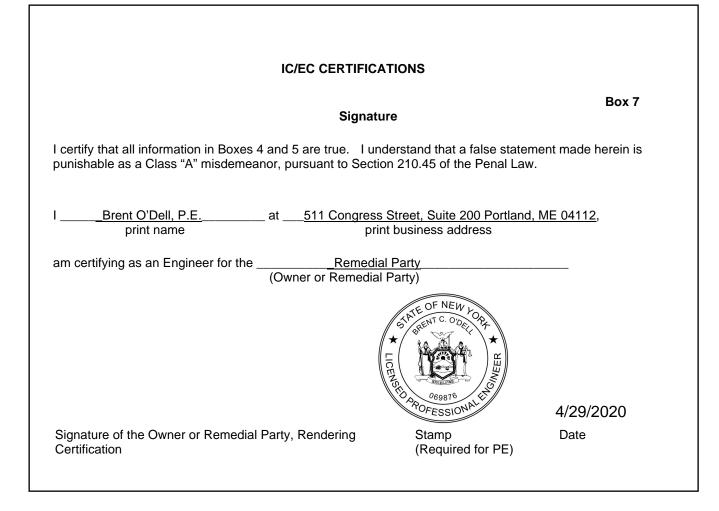
Sit	e No.C241089	Box 1			
Sit	e Name Review Avenue Development I				
Cit Co Site	Site Address: 37-30 Review Avenue Zip Code: 11101 City/Town: Long Island City County: Queens County Site Acreage: 2.733				
	porting Period: April 1 2019 to March 31, 2020	YES	NO		
1.	Is the information above correct?	x			
	If NO, include handwritten above or on a separate sheet.				
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?	x			
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		x		
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	x			
	If you answered YES to questions 2 thru 4, include documentation or evidence				
	that documentation has been previously submitted with this certification form.				
5.			x		
5.	that documentation has been previously submitted with this certification form.	Box 2	x		
5.	that documentation has been previously submitted with this certification form.	Box 2 YES	x NO		
5.	that documentation has been previously submitted with this certification form.				
	that documentation has been previously submitted with this certification form. Is the site currently undergoing development?	YES			
6.	that documentation has been previously submitted with this certification form. Is the site currently undergoing development?	YES X			
6. 7.	that documentation has been previously submitted with this certification form. Is the site currently undergoing development? Is the current site use consistent with the use(s) listed below? Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and	YES X X			

SITE NO. C241089

Description of Institutional Controls

- The RAD I Site may only be used for restricted use as specified by the SMP;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Queens County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC.
- Groundwater monitoring must be performed as defined in the SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the RAD I Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 2, and any potential impacts that are identified must be monitored or mitigated.

Description of Engineering Controls


- 1. A cover system consisting of asphalt pavement
- 2. A LNAPL Recovery System consisting of:
 - a. A Vacuum Enhanced/Total Fluids (VER/TF) LNAPL recovery system
 - b. A single-phase LNAPL recovery system
- 3. A packaged SVE, groundwater treatment, LNAPL Storage and Control system (located on the RAD II property).

Periodic Review Report (PRR) Certification Statements		
1. I certify by checking "YES" below that:		
 a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the certification; 	on of, ar	nd
 b) to the best of my knowledge and belief, the work and conclusions described in t are in accordance with the requirements of the site remedial program, and generally engineering practices; and the information presented is accurate and compete. 		
	YES	NO
	х	
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for e or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true: 		
 (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchange Control was put in-place, or was last approved by the Department; 	ed since	the date that the
(b) nothing has occurred that would impair the ability of such Control, to protect public heal the environment;	th and	
(c) access to the site will continue to be provided to the Department, to evaluate the remed evaluate the continued maintenance of this Control;	ly, incluc	ling access to
(d) nothing has occurred that would constitute a violation or failure to comply with the Site N Control; and	Vanage	ment Plan for this
(e) if a financial assurance mechanism is required by the oversight document for the site, the and sufficient for its intended purpose established in the document.	he mech	anism remains valid
	YES	NO
	x	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address these issues.		

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. C241089	
	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a fall statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of Penal Law.	
IR. Craig Coslettat1550 Pond Road, Suite 120, Allentown, PA 18104, print name print business address	
am certifying asOwner's Representative(Owner or Re	medial Party)
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	20

REVIEW AVENUE DEVELOPMENT (RAD) I QUEENS COUNTY LONG ISLAND CITY, NEW YORK

PERIODIC REVIEW REPORT No. 4 (APRIL 1, 2019 – MARCH 31, 2020)

NYSDEC Site Number: RAD I – BCP #C241089

Prepared by:

MACTEC Engineering and Geology, P.C.

7 Southside Drive - Suite 201 Clifton Park, NY 12065

and

Wood Environment & Infrastructure Solutions, Inc.

200 American Metro Boulevard – Suite 113 Hamilton, New Jersey 08619

APRIL 2020

TABLE OF CONTENTS

List of Tablesi
List of Figuresi
List of Appendicesi
Glossary of Acronyms and Abbreviationsii
Executive Summary1-
1.0 Site Overview1-2
1.1 Introduction
1.2 Site History and Description1-4
1.3 Physical Setting1-
1.3.1 Geology1-
1.3.2 Hydrogeology1-0
1.4 Cleanup Goals and Remedial Progress1-
2.0 Evaluation of Remedy Performance, Effectiveness and Protectiveness2-
2.1 Site Management Status
2.2 Institutional Controls
2.3 Engineering Controls
2.3.1 Asphalt Cover System2-2
2.3.2 LNAPL Recovery System2-
2.3.3 Groundwater Treatment System
2.3.4 SVE System
2.3.5 System Operational Challenges and Actions2-7
2.4 Additional Activities
2.4.1 LNAPL Gauging
2.4.2 High PCB LNAPL Management
2.4.3 LNAPL Disposal Summary
2.4.4 Groundwater Monitoring
3.0 IC/EC Plan Compliance

3.1	IC/H	EC Requirements and Compliance	3-1
3	.1.1	IC/EC Requirements Summary	3-1
3	.1.2	Status of IC/ECs	3-3
3	.1.3	Corrective Measures	3-3
3	.1.4	Conclusions and Recommendations for Changes	3-3
3	.1.5	IC/EC Certification	3-3
4.0	Conclu	usions and Recommendations	4-1
4.1	Inst	itutional Controls	4-1
4.2	Eng	ineering Controls	4-1
4.3	Oth	er Site-Related Activities	4-1
5.0	Refere	ences	5-1

LIST OF TABLES

Tables

1	Summary of PCB Analytical Data – LNAPL Storage Tanks
2	Summary of PCB Analytical Data – Baseline Samples
3	Summary of PCB Analytical Data – Recovery Well Samples
4	Summary of Offsite LNAPL Disposal Quantities

LIST OF FIGURES

Figure

1	Site Location Map
2	Site Plan

LIST OF APPENDICES

Appendix

А	Monthly Monitoring Reports
В	Annual Inspection Report
С	Treated Effluent Discharge Compliance Sampling Correspondence

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

BCA	Brownfield Cleanup Agreement	O&M	Operations and Maintenance
ВСР	Brownfield Cleanup Program	OM&M	Operations, Maintenance and Monitoring
DOT	Department of Transportation		
EC	Engineering Control	PCB	Polychlorinated Biphenyl
EOR	Engineer of Record	POTW	Publicly-Owned Treatment Works
FER	Final Engineering Report	PRR	Periodic Review Report
IC	Institutional Control	RAD	Review Avenue Development
		RAWP	Remedial Action Work Plan
LEL	Lower Explosive Limit	RI	Remedial Investigation
LGAC	Liquid Granular Activated Carbon		-
LNAPL	Light Non-Aqueous Phase Liquid	ROD	Record of Decision
LRGTB	LNAPL Recovery and	SCGs	Standards, Criteria Goals
LICTD	Groundwater Treatment Building	SMP	Site Management Plan
MSL	Mean Sea Level	SVE	Soil-Vapor Extraction
ND	Not Detected	TSCA	Toxic Substances Control Act
NYSDEC	New York State Department of	TF	Total Fluids
	Environmental Conservation	UST	Underground Storage Tank
NYSDOH	New York State Department of Health	VER	Vacuum-Enhanced Recovery

EXECUTIVE SUMMARY

Cresswood Environmental Consultants, LLC retained Golder Associates, Inc. (Golder) to prepare a Remedial Action Work Plan (RAWP) to satisfy the requirements of the New York State Department of Environmental Conservation (NYSDEC) for the Review Avenue Development (RAD) I and RAD II properties located on Review Avenue in Long Island City, New York, dated February 9, 2007. The RAWP was prepared in accordance with the DER-10 Technical Guidance for Site Investigation and Remediation (DER-10) (NYSDEC, 2010) and Subpart 375.3 Brownfield Cleanup Program (BCP) Regulations (NYSDEC, 2006a) and submitted in November 2011. DMJ Associates, LLC, Review Railroad, LLC and Cresswood Environmental Consultants, LLC (collectively referred to as the Volunteer) entered into Brownfield Cleanup Agreement (BCA) #C241089 dated October 2005 with the NYSDEC to participate in the Brownfield's Cleanup Program for the RAD I. An Amendment to Substitute the current Owner of the RAD I property, Review Holdings LLC and Review Properties LLC to be the sole Volunteers under the BCA is pending with the NYSDEC

The RAD I Site and the RAD II Site are located adjacent to each other and have the same physical setting. The RAD Sites have been investigated concurrently since the early 1980's,but were entered into separate BCA and assigned different BCP numbers. A Decision Document was issued by the NYSDEC for the RAD I Site in December 2015 and a separate Final Engineering Report (FER) was provided to address the requirements of that Decision Document. The remedy selected by the NYSDEC for the RAD II Site is in the Record of Decision (ROD) issued by the NYSDEC in February 2007.

The RAD I Site is identified as Block 312 and Lot 41 on the Long Island City Tax Map and includes Preston Street, which runs from Review Avenue to the Long Island Railroad, along the property border with RAD II. To the northeast is Review Avenue and the Calvary Cemetery and to the southwest is the Long Island Railroad and the South Capasso property and the Waste Management Property. The boundaries of the RAD I Site are shown on Figure 1 and with more detail provided on Figure 2.

The RAD Sites are being remediated via LNAPL extraction. LNAPL is extracted using a combination of skimmer (product only) pumps and dual phase extraction (total fluids) pumps. LNAPL extracted by the skimmer pumps is conveyed through underground piping to a storage tank location on the RAD II Property. Liquid (water and LNAPL) extracted through dual phase extraction is conveyed through underground piping to the treatment system located on the RAD II property. Liquids are then processed through an oil water separator, bag and carbon filters to separate LNAPL from water. The collected LNAPL is pumped to a dedicated storage tank and the treated water is discharged to the sewer system. Construction of the remediation system was

deemed complete on November 15, 2015 and NYSDEC approved the start of the operation and maintenance (O&M) period on November 16, 2015.

A Site Management Plan (SMP) was prepared by MACTEC Engineering and Consulting, P.C. (MACTEC) and Amec Foster Wheeler Environment and Infrastructure, Inc. (Amec Foster Wheeler), on behalf of Cresswood Environmental Consultants, LLC and Review Ave. System, LLC, in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated February 2013, and the guidelines provided by the NYSDEC. An Environmental Easement granted to NYSDEC and recorded with the County Clerk of Queens County requires compliance with the SMP and all ECs and ICs placed on the Site. The SMP addresses the means for implementing the ICs and ECs that are required by the Environmental Easement for the RAD I Site and outlines the controls established to meet the ROD requirements. Section 3.0 summarizes the EC and IC requirements and compliance. IC/EC Certification has been bound to the front end of this report. The SMP was approved by NYSDEC on August 30, 2016.

This is the fourth Periodic Review Report (PRR) for the RAD I Property. The 1st PRR was submitted to the NYSDEC in April 2017 and resubmitted on June 10, 2017 following comments received on the initial submittal. Approval of the 1st PRR was provided by the NYSDEC in a letter dated September 8, 2017. The 2nd PRR was submitted to the NYSDEC on April 27, 2018 and approval was provided by the NYSDEC on February 28, 2019. The 3rd PRR was submitted to the NYSDEC on September 11, 2019.

1.0 SITE OVERVIEW

1.1 INTRODUCTION

The RAD I Site is being remediated in accordance with the remedy selected by the NYSDEC in the Decision Document issued December 2, 2015 and the ROD for the RAD II Site, dated February 9, 2007.

Portions of the RAD I Site were remediated under an IRM. This included the removal and offsite disposal of four underground storage tanks (USTs), a concrete trench, and a sump in May 2006. RAD I is paved and contains two buildings (Building 1 and Building 2). The components of the remedy proposed in the draft Decision Document include: the preparation of an Environmental Easement and periodic submittals, which are components addressed in the SMP. The remedy selected for the RAD I Site are listed below by media:

<u>LNAPL</u>

The remedy for light non-aqueous phase liquid (LNAPL) beneath the RAD I Site was recovery using single-phase skimmer pumps and vacuum enhanced (VER) recovery methods at locations where higher viscosity LNAPL is present. A long-term monitoring program to monitor the effectiveness of the LNAPL recovery system was implemented.

Soil

The remedy for the soil at the RAD I Site was to re-cover excavation areas using a paving system that was consistent with existing cover and consistent with the development of the RAD I Site. The Site Management Plan identifies restoration requirements of future development activities.

Groundwater

The remedy for groundwater was the establishment of an institutional control that restricts the use of untreated groundwater beneath the RAD I Site as a source of potable water.

Soil Vapor

The results of soil vapor investigations on the RAD I Site did not identify a threat for migration of soil vapor laterally from the limits of the LNAPL beneath the RAD I Site. Building #1 is a slab on grade structure used as a mechanics shop and open warehousing. The upper levels of building #2 are used as office space with the lower level used for maintenance and warehousing. Occupancy of both buildings remains consistent with occupancy during investigations. NYSDEC and NYSDOH will be notified of occupancy changes per the conditional approval of the soil vapor investigations performed at the RAD I Site.

Listed below are the primary elements of the selected remedy:

- Operation of the LNAPL recovery system;
- Establishment of an institutional control that restricts the use of untreated groundwater beneath the RAD I Site as a source of potable water;
- The execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the RAD I Site;
- Development and implementation of a SMP for long-term management of remaining contamination as required by the Environmental Easement, which includes plans for the following: (1) ECs and ICs, (2) monitoring, (3) operation and maintenance, and (4) reporting; and
- Periodic certification of the ECs and ICs listed above.

This is the fourth Periodic Review Report (PRR) for the RAD I Property. The 1st PRR was submitted to the NYSDEC in April 2017 and resubmitted on June 10, 2017 following comments received on the initial submittal. Approval of the 1st PRR was provided by the NYSDEC in a letter dated September 8, 2017. The second PRR was submitted to the NYSDEC on April 27, 2018 and approval was provided by the NYSDEC on February 28, 2019. The third PRR was submitted to the NYSDEC on September 11, 2019 . This Periodic Review Report (PRR) covers the period of performance from April 1, 2019 to March 31, 2020 and includes:

- Required institutional control/engineering control (IC/EC) certification;
- Summary and documentation of site-related data to support IC/EC certification;
- A description of the LNAPL Recovery System performance; and
- Discharge monitoring data for the certification period.

1.2 SITE HISTORY AND DESCRIPTION

The RAD I Site is approximately 2.7 acres in size and located in a highly industrialized part of Long Island City, County of Queens, New York. The RAD I Site is identified as Block 312 and Lot 41 on the Long Island City Tax Map and includes Preston Street that borders the RAD II property and runs from Review Avenue to the Long Island Railroad. The address of the RAD I Site is 37–30 Review Avenue. Figure 1 presents a Site Location Map. Zoning in this area is designated as heavy manufacturing.

The RAD I Site was previously used for a variety of commercial and industrial purposes between at least 1898 and the present, including more recently, commercial vehicle and heavy equipment maintenance, office space, warehousing, and commercial parking. The RAD I Site is bounded by Review Avenue to the northeast, the Southern Line of the Long Island Railroad to the southwest, and the RAD II Site to the southeast (see Figure 2). To the northeast of Review Avenue is the Calvary Cemetery and to the southwest of the Long Island Railroad is the South Capasso property and the Waste Management Property.

During the fourth reporting period, the RAD I property went under new ownership. An application to amend the BCA to substitute the new RAD I property owner, Review Holdings LLC and Review Properties LLC as the Volunteer is currently pending before the NYSDEC. Various companies currently lease portions of the RAD I Site for office space, storage, as well as parking of equipment and vehicles. This includes both buildings and the parking lots. The RAD I Site has one five-story building, (Building No. 1) and one three-story building (Building No. 2). The majority of the RAD I Site is paved and used for parking and equipment storage. Figure 2 presents a Site Layout Map for the RAD I Site. Building No. 1 is primarily used for garage/storage and warehousing. Building No. 2 is primarily used for office space on the street level and second floors. The basement level of Building No. 2 (which is below grade along Review Avenue but at ground level in the back of the property) is primarily used for warehouse and maintenance services.

1.3 PHYSICAL SETTING

The RAD I Site and the RAD II Site are adjacent to each other and have the same physical setting. A description of the geology and hydrogeology beneath the RAD I Site is provided below.

1.3.1 Geology

The stratigraphy of the RAD I Site and the adjacent properties consists of urban fill overlying glacial deposits, which in turn overlies a clay layer that has been identified as the lower Cretaceous Raritan Formation. The urban fill generally consists of heterogeneous soil ranging from sub angular, loose and compact, silty, fine sand and gravel. Intermixed with the urban fill are debris such as brick fragments, asphalt, wire, and plastic. Soil borings indicate that the urban fill ranges in thickness from 3 feet to 16 feet. The glacial deposits consist of two units distinguishable in color, but not in hydraulic characteristics. The upper section of the glacial deposits is gray to dark gray fine-to-coarse sand and fine-to-coarse gravel. There are local horizontal units of silt interbedded in the upper section of the glacial deposit. The upper section extends to approximately 30 feet below mean sea level (MSL).

The lower section of the glacial deposits is comprised of yellowish-brown, fine to coarse sand and gravel. This unit extends to 71 to 85 feet below MSL. Underlying the coarse sand and gravel is a clay unit referred to as the Lower Clay Unit. The Lower Clay Unit was identified as the Raritan Clay. The Raritan Clay or Lower Clay Unit has been described as a dark gray, finely laminated-to-thin bedded silty clay, silt and clay layer, and white to light gray clay. The clay unit appears to be laterally continuous beneath the Site and adjacent surrounding area.

1.3.2 Hydrogeology

The RAD I Site is located between a local topographic high to the northeast and Newtown Creek, which is a tidally influenced regional groundwater discharge area. Monitoring wells screened in the upper section of the glacial deposits (where LNAPL occurs) and monitoring wells screened in the lower section of the glacial deposits (and cased off from the upper section) have been installed on the RAD I Site and offsite (including the RAD II Site). The locations of the wells are depicted on Figure 2.

The depth to groundwater beneath the RAD I Site has ranged from approximately 15 feet bgs to 20 feet bgs. Groundwater contour maps prepared from the groundwater levels measured in groundwater wells installed in the upper and lower sections of the glacial deposits have indicated a general groundwater flow direction to the south - southwest towards Newtown Creek. A localized groundwater mound, presumably a result of the discontinuous silt and clay layers in the upper section of the glacial deposits, has also been observed to the southwest of the Site between the LIRR tracks and Newtown Creek. The mounding does not appear to influence the direction of groundwater flow at the RAD I site. Groundwater fluctuations of approximately 0.05 to 0.1 feet have been observed beneath the Site as a result of tidal influence in Newtown Creek. During the initial portion of this reporting period (2nd and 3td quarters of 2019), following the significant groundwater level increase observed during the third reporting period, groundwater levels further increased (with additional precipitation) and maintained a significantly higher level than those observed during the first two reporting periods. Groundwater levels, however, then peaked in September 2019 followed by a sharp drop of over 2 ft by the end of February 2020 to levels not observed since the fall of 2018. This drop coincided with lower than normal precipitation in the area. Despite the drop in groundwater levels, they are still over 1 ft higher than baseline groundwater elevations observed during reporting periods 1 and 2.

Overall, the horizontal hydraulic gradient beneath the Site can be described as flat, at approximately 0.0015. Vertical gradients are minimal and localized. Slug test data indicates a range of hydraulic conductivity values for the glacial deposits above the Lower Clay Unit of 62.5 feet per day (ft/d) to 0.5 ft/d. A viscous LNAPL is present on the groundwater table across most of the RAD I and RAD II properties (Golder 2005a).

1.4 CLEANUP GOALS AND REMEDIAL PROGRESS

The remediation goals for the RAD I Site, as stipulated by the November 2011 RAWP (Golder 2011) are to eliminate or reduce to the extent practicable:

- The presence of LNAPL as a potential source of soil, groundwater and soil gas contamination;
- Potential further migration of LNAPL that could result in soil, groundwater or soil gas contamination;
- Exposures of persons at or around the site to VOCs or exceedances of the lower explosive level (LEL) in soil vapor;
- The potential for ingestion/direct contact with contaminated soil; and
- The release of contaminants from the urban soil and LNAPL into groundwater that may create exceedances of groundwater quality standards over time.

In addition, the remediation goals for the RAD I Site are to meet to the extent practicable:

- Ambient groundwater quality standards; and
- Standards, Criteria Goals (SCGs) for soil to the extent practicable.

The remedies selected for the RAD II site are listed below by media:

<u>LNAPL</u>

The remedy for LNAPL beneath the RAD I Site in areas of lower viscosity product is recovery using single-phase skimmer pumps installed in 23 recovery wells on the RAD I Site, or a total of 38 recovery wells on the combined RAD I and RAD II Sites. The remedy for higher viscosity LNAPL product is recovery using a Vacuum Enhanced Recovery/Total Fluids (VER/TF) technology at 10 recovery wells installed on the RAD I Site, or a total of 30 recovery wells on the combined RAD I and RAD II Sites. A long-term monitoring program to monitor the effectiveness of the LNAPL recovery system has been implemented.

<u>Soil</u>

Since the majority of the RAD I Site is paved, installation of a cover on the RAD I Site as a remedy was not needed, although restoration of any disturbances to the existing asphalt pavement on the RAD I Site, as required for system installation, was part of the remedial activities and consisted of installing new asphalt pavement to match existing.

Groundwater

The remedy for groundwater is the establishment of an institutional control that restricts the use of untreated groundwater beneath the RAD I Site as a source of potable water. Groundwater is monitored pursuant to requirements outlined in the Site Management Plan.

Soil Vapor

The results of soil vapor investigations on the RAD I Site have not identified a threat for migration of soil vapor laterally from the limits of the LNAPL beneath the RAD I Site. As such, no specific soil vapor remedy is being implemented other than the benefit of the existing site pavement system and recovery of LNAPL from the site.

Remedial Progress is summarized as follows:

- The LNAPL Recovery System, consisting of both the single-phase skimming and VER/TF recovery technologies, has been implemented and operational for over 52-1/2 months. The LNAPL Recovery System has recovered 426,849 gallons of LNAPL as of March 31, 2020 after the first 52-1/2 months of operation (for both RAD I and RAD II). The volume is based on the amount of liquids disposed and includes LNAPL but also includes degraded product and water.
- All areas of existing asphalt pavement disturbance due to the LNAPL recovery system installation have been restored.
- The Institutional Controls established for the RAD I site have been maintained per the SMP and FER.

2.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

This section describes the required activities under the Site Management Plan, including ICs and ECs, the ongoing monitoring program and the implementation of the Site Operations, Maintenance and Monitoring (OM&M) Plan. A comprehensive SMP has been developed for the Site and includes plans for ICs/ECs, operations and maintenance (O&M), long term monitoring, and associated reporting (MACTEC, 2015).

2.1 SITE MANAGEMENT STATUS

During this reporting period, MACTEC performed O&M for the LNAPL recovery and groundwater treatment system, performed quarterly treated water discharge sampling and reporting, prepared monthly O&M monitoring reports and an Annual Inspection Report. The monthly monitoring reports, which include a summary of site activities for both the RAD I and RAD II sites, are included as Appendix A. The Annual Inspection Report is included in Appendix B and the treated water quarterly compliance sampling reports have been provided in Appendix C. This PRR was completed using site-specific documentation including the Site's ROD (NYSDEC, 2015), annual site inspection and monthly monitoring reports, and the SMP. This review was conducted to confirm that established controls according to the SMP are operational and effective, that the SMP is being implemented and conducted accordingly, and that the remedy remains protective of the environment and/or public health. A summary of Site Management activities completed during this reporting period and an evaluation of the performance, protectiveness, and effectiveness of the remedy is provided below.

2.2 INSTITUTIONAL CONTROLS

A series of ICs are required to: (1) implement, maintain and monitor EC systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the Site to Track 4 restricted uses only. Adherence to these ICs on the RAD I Site is required by the Environmental Easement and is implemented under the SMP. These ICs are as follows:

- The RAD I Site may only be used for restricted use as specified by the SMP;
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Queens County Department of

Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC.

- Groundwater monitoring must be performed as defined in the SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the RAD I Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 2, and any potential impacts that are identified must be monitored or mitigated.

2.3 ENGINEERING CONTROLS

The following ECs have been implemented at the RAD I Site:

- 1. A cover system consisting of asphalt pavement
- 2. A LNAPL Recovery System consisting of:
 - a. A Vacuum Enhanced/Total Fluids (VER/TF) LNAPL recovery system
 - b. A single-phase LNAPL recovery system
- 3. A packaged VER, groundwater treatment, LNAPL Storage and Control system.

2.3.1 Asphalt Cover System

The majority of the RAD I Site was paved with asphalt prior to implementing the remedy. During installation of the components of the extraction system, disturbed areas of asphalt were restored and new asphalt was installed in areas that were not previously asphalt to serve as a cover system to prevent exposure to possible near surface remaining contamination in urban fill/soil. The extent of the cover system is documented in the as-built drawing included as Figure 2 of the SMP (MACTEC, 2015). The cover system was observed during the reporting period to be intact and continuing to function as a cover system but requires repairs at three locations in order to ensure ongoing function. On RAD I, several potholes needed repair and some areas have settled

differentially and required repair as well. An area of the cover system has also been disturbed due to removal of a fence in the CAC area (adjacent to Building 1) and a slope which requires preparation and paving. Pavement repairs were performed during the spring of 2019and consisted of replacing asphalt pavement at three damaged locations as well as paving a berm area in the southwest corner of RAD I.

2.3.2 LNAPL Recovery System

LNAPL recovery on the RAD I property is being conducted via single-phase skimmer pump recovery wells and VER/TF recovery well subsystems. The primary purposes of using the skimmer pump and VER subsystems is to recover LNAPL to the extent practical and support the achievement of the remediation goals for the Site. The LNAPL recovery system has recovered and disposed of 426,849 gallons of LNAPL (LNAPL, degraded product, and water), or an average of 267 gallons per calendar day, (from both RAD I and RAD II) through March 31, 2020 or 52-1/2 months of operation. A total of 48,965 gallons of LNAPL, or an average of 134 gallons per calendar day, has been recovered and disposed of for the current 12-month reporting period. The current 134 gallon per calendar day average production rate represents a 62% decrease from the 355 gallon per calendar day average production rate realized during the first 16-1/2 month reporting period. When taking into account system uptime and normalizing the production per equivalent system run-day, the LNAPL recovery system averaged 162 gallons per run-day for the current period which represents a 73% decrease from the 604 gallon per run-day average realized during the first 16-1/2 month reporting period. This reduction in production rate is attributed to significant depletion of remaining recoverable LNAPL volume and associated decreasing LNAPL transmissivity as evidenced by the substantial decrease in apparent product thickness (see paragraph 2.4.1 for more detail).

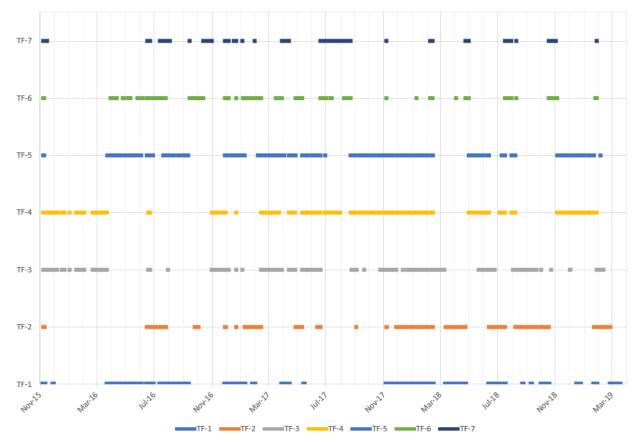
Peak LNAPL recovery rates have exceeded 700 gallons per day during the first reporting period, 500 gallons per day during the second reporting period, 400 gallons during the third reporting period, and 300 gallons per day during the current reporting period within the VER/TF Zones 4 and 5 only. Using a representative specific gravity of 0.90, according to data provided in the RAWP, this represents a total recovered LNAPL mass of 3,203,929 pounds after the first 52-1/2 months of operation or an average of 2,006 pounds per day.

During the first reporting period (16-1/2 months of operation), the specific energy consumption of the product recovery operation averaged approximately 1.0 kWh/Gal of product recovered. During reporting period 2, when VER operations were implemented, specific energy consumption rose to 2.6 kWh/Gal. Specific energy consumption further increased to 2.9 kWh/Gal during reporting period 3 as product recovery production continued to decrease with continued VER

operation. Specific energy consumption increased to 3.4 kWh/Gal during reporting period 4. As such, a commensurate increase in specific greenhouse gas emissions has also occurred (lbs/Gal) associated with generated grid energy utilized to power the system (i.e. 4.04 lbs CO2/Gal of product recovered for reporting period 4).

Monthly monitoring reports are prepared and have been included in Appendix A. A summary of offsite LNAPL disposal is included in Table 4.

2.3.2.1 Single-Phase Skimming


Twenty-three (23) single-phase skimmer pump wells are installed on RAD I and fifteen (15) single-phase skimmer pump wells are installed on the RAD II Site. Single-phase skimming wells are located in areas with lower viscosity LNAPL. Of the total recovered and disposed of LNAPL volume, 102,484 gallons have been recovered by the single-phase skimming system to date and 19,678 gallons for the reporting period. The skimming system had a monthly average production rate of 54 gallons per calendar day which represents a 41% decrease from the 91 gallons per calendar day average production rate realized during the first 16-1/2 month reporting period. During the reporting period, the skimmer system produced an average monthly peak average of 120 gallons per day and a minimum monthly average of 0 gallons per day. The skimming system has been operating a total of 25,384 run hours to date and 2,928 hours for the reporting period. For the reporting period, the skimmer system has been programmed to operate at 8 hours per day, rather than continuous, in an effort to maintain maximum product recovery while minimizing unnecessary equipment wear and energy consumption. Actual system uptime averaged 100% for the reporting period under these operational parameters.

2.3.2.2 <u>VER/TF Recovery</u>

Ten (10) VER/TF wells are installed on RAD I and twenty (20) VER/TF wells are installed on the RAD II Site. VER applies a vacuum at the extraction well head, creating a pneumatic gradient causing air flow and enhanced product flow through the formation towards the extraction well. TF pumping creates a hydraulic cone of depression to further enhance the recovery of LNAPL, along with the VER, in areas where higher viscosity LNAPL present. Thirty (30) VER wells were installed and associated control systems on RAD I and RAD II. Of the total recovered and disposed of LNAPL volume, 324,365 gallons were recovered by the VER/TF recovery system to date and 29,287 gallons for the reporting period. The VER/TF system had a monthly average production of 87 gallons per calendar day with a peak monthly average of 235 gallons per calendar day and a

minimum monthly average of 8 gallons per calendar day for the reporting period. When taking into account system uptime and normalizing the production per equivalent system run-day, the VER/TF recovery system averaged 110 gallons per run-day which represents a 80% decrease from the 549 gallon per run-day average production rate realized during the first 16-1/2 month reporting period. The VER/TF recovery system had a total of 29,144 run hours to date and 7,242 hours for the reporting period. Actual system uptime averaged 88.96% for the year ranged from a low of 77.3% to a high of 100%. System uptime increased significantly from the 68.02% average realized during the first 16-1/2 months of operation. This uptime improvement is largely a result of upgrading the Oil/Water separation system with the addition of a Tube Skimmer and changing the type of Biocide injected which does not impact the performance of the Sequestering Agent. The following table provides a graphic summary of extraction zone operations during the reporting period.

2.3.3 Groundwater Treatment System

Groundwater and LNAPL pumped from RAD I (and RAD II) flows through the LNAPL Recovery and Groundwater Treatment Building (LRGTB) located on RAD II. The LNAPL is collected and stored in one of two 6,000-gallon steel aboveground storage tanks located in a secondary containment dikes outside of the LRGTB on RAD II. One storage tank is configured to receive LNAPL recovered from the VER/TF System and the second storage tank is configured to receive LNAPL recovered from the Skimmer System. Since LNAPL Recovery System startup on November 16, 2015, the groundwater treatment system has processed and discharged 11,835,986 gallons of process water (extracted by the VER/TF System) or an average of 6,754 gallons per calendar day. The peak process water treatment/discharge rate exceeded 10,000 gallons per day. The treated groundwater is sampled in accordance with the site discharge permit and discharged to the New York City Bowery Bay Publicly Owned Treatment Works (POTW). Quarterly discharge compliance sampling results have been provided in Appendix C.

The extracted groundwater/LNAPL mixture, or Total Fluids (TF) influent, produced by the VER/TF System during the current 12-month reporting period (April 1, 2019 through March 31, 2020) had an average extracted oil/water ratio of 1.28% which is less than the 4.18% average oil/water ratio observed during the first 16-1/2 months of operation (first reporting period). This represents a 69% reduction in extracted oil/water ratio between the first and fourth reporting periods despite the addition of full time VER operation. Furthermore, the peak monthly average oil/water ratio ranged from less than 0.5% to over 3.5% for a brief period of time in TF/VER zones 4 & 5. The variability in monthly oil/water ratios is largely due to rotating TF/VER operations between various extraction zones which have different amounts of product present on the groundwater and differences in the types of product present (viscosity, slight changes in specific gravity, amount of iron bacteria, etc.).

Recovered LNAPL, stored in both T-1401 (single-phase skimmer wells) and T-801 (VER/TF wells) is analyzed approximately once every 2 - 3 months for PCB concentrations. PCB concentrations in LNAPL recovered from the single-phase skimming wells remained at ND for this reporting period, while PCB concentrations in LNAPL recovered from the VER/TF system have varied between 7.42 and 9.94 ppm during this reporting period. See Table 1 for a summary of recovered LNAPL PCB concentrations.

2.3.4 SVE System

The SVE system is used to employ VER technology along with hydraulic enhancement to further increase radius of influence and recoverability of higher viscosity LNAPL. The SVE system, or VER enhancement, was operated full time throughout the reporting period to counter diminishing

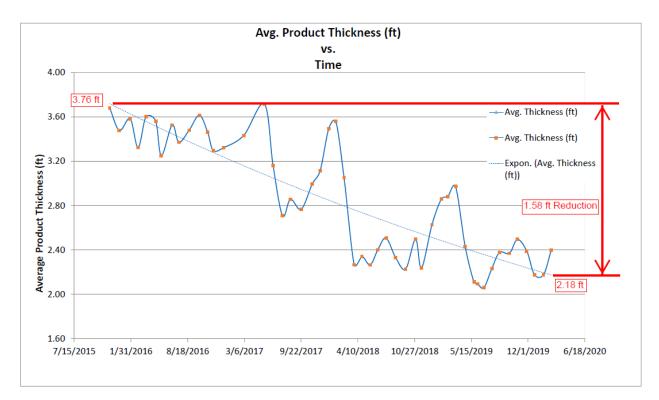
product recovery rates from each of the six (6) TF Zones. The VER enhancement, however, was shut off during the early Summer through the mid Fall of 2019 due to elevated groundwater levels. The elevated groundwater level caused blinding of the recovery well screens, loss of vacuum and entry of water and product into the VER piping network. The VER blower inlet filter also became completely saturated with oil. Despite this period of down-time, the VER enhancement system has operated for a total of 4,559 hours during the reporting period through March 2020. With lower groundwater levels, VER enhancement is anticipated to be operated on a full-time basis going forward into the fifth year of operation as well.

2.3.5 System Operational Challenges and Actions

- Phased out the use of emulsion breaker since installing the tube skimmer (December 2016) as part of our Oil/Water Separation process. Periodic QC testing indicates that we generally meet sewer discharge compliance for SGT-HEM (< or = 50 ppm SGT-HEM) upstream of our liquid phase carbon treatment.
- Increased VER activity to enhance TF product recovery have switched to full time VER operation since mid-September 2017. Aside from summer through fall 2019 (as reported above), VER enhancement has been operated continuously during the fourth reporting period (2019 and early 2020).
- Installed additional auto air relief vents in the skimmer system header network at key high point locations (S-4A, S-5A and 5B) during 2017 in order to eliminate air lock and improve product flow through the skimmer system process lines.
- The recovery pumps within two of the TF wells (TF-7A and B) were determined to be stuck and un-removable with heavy duty hoist equipment. In addition, a significant amount of coarse sand is delivered to the GWTS when these pumps are operated. As such, we have concluded that the screens have failed in these wells. Re-drilling operations were not conducted in 2019.
- *High iron in groundwater* Shortly after commencement of VER/TF system operations, the presence of >20ppm Total Iron was detected in the influent to the groundwater treatment system. Prior to the injection of sequestering agent (Redux 330) during the first year of operation, the high iron concentrations caused rapid fouling of the bag filters, LGAC treatment units and strainers which resulted in reduced system uptime. Since implementing, sequestering agent chemical injection has successfully controlled high iron concentrations and maintained high system uptime by allowing for iron mass transfer and minimizing pre-mature fouling of the bag filters and carbon filtration units. The sequestering agent injection has continued to be effective during this reporting period.
- *Biological growth/Grey Matter* Iron related bacteria growth is rapid during warm weather operation and is controlled adequately with the use of biocide. Without biocide, fouling of the

bag filters, the LGAC treatment units and the strainers cause significantly reduced run-time. During cooler weather operations, the biocide has not been needed. A new biocide (Redux 620) was employed during the Spring of 2017 (replacing the Verox 8 Biocide) and is designed to limit negative impact to the sequestering agent effectiveness. The new biocide has proven to work effectively during the warmer weather months of 2017, 2018, and 2019 with no significant grey matter formation and impact to the iron sequestration process. As such, the biological growth was successfully controlled and high system up-time was maintained throughout the warmer months of 2017 and 2018. During the Fall of 2017, 2018, and 2019 we once again ceased injection of the biocide with no adverse effects to system up-time.

- Variable LNAPL characteristics Different product characteristics and associated separation • difficulties were resolved in late 2016 with the addition of a tube skimmer in the primary separation tank of the two-stage oil water separation process. The addition of the tube skimmer has allowed for excellent oil/water separation at varied flow rates and LNAPL consistencies and has continued to operate extremely well through this reporting period. Operational uptime for the VER/TF and groundwater treatment system has improved to >95% uptime since installing and optimizing the tube skimmer on December 22, 2016. In addition, product recovered from the TF Zones during 2017 has begun to change from a mostly dark colored, medium viscosity product to a mostly light brown colored product with significantly higher viscosity. Viscosity has increased to a level near and above typical petroleum industry pumpability standards based on laboratory and field viscosity testing. We believe this is an indication that most of the more mobile (darker, less viscous) product has been recovered and more of the less mobile (light brown, more viscous) product is now being recovered with the help of the VER. Since August of 2018 we have noticed that a significantly greater portion of the recovered product appears to be a highly degraded with a smaller portion of pure product. The degraded product also has a high water content which then phases out into the product storage tank (T-801) and has to be pumped out and back into the treatment system. This phenomenon has been ongoing to the end of the third reporting period since August 2019.
- *Recovery Well LNAPL PCB Sampling* All four (4) identified TSCA PCB impacted recovery wells (TF-3D, 4D, 5D and 6D) were managed separately by pumping and collecting the high PCB product (>50 PPM) independently from the automated Total Fluids system via a Specific Gravity Skimmer Pump into a 55-gallon DOT shippable drum. This process continued at each of the four recovery wells until PCB concentrations in the recovered product was reduced to < 50 PPM for three consecutive rounds of pumping and sampling. The process of managing this LNAPL separate from the rest of the recovery system was approved in the SMP and completed including disposal in February 2018.
- *High Groundwater Levels* As described above, a period of extremely high groundwater elevations necessitated a temporary shut-down of the VER system (early Summer through the


mid Fall of 2019) in order to prevent damage to the VER blower and flooding of the VER extraction piping network. Groundwater elevations have significantly fallen from their peak levels, and VER operation was restored in the late Fall of 2019.

2.4 ADDITIONAL ACTIVITIES

In addition to system operation activities, other SMP required activities are also underway to monitor remediation progress and effectiveness as outlined below.

2.4.1 LNAPL Gauging

Site wide LNAPL gauging events at thirty-three (33) LNAPL monitoring wells on RAD I and RAD II provide evidence that average LNAPL thickness is trending downwards across the site and has decreased by approximately 1.58 feet (on average) at the end of February 2020 as illustrated in the figure below (the March 2020 gauging event was canceled due to COVID 19 safety concerns). This average thickness decrease is significantly greater than the 0.17 feet average decrease presented approximately three (3) years earlier at the end of March 2017, 0.68 feet average decrease presented two (2) years earlier at the end of March 2018 and the 1.44 feet average decrease presented one (1) year earlier at the end of March 2019.

2.4.2 High PCB LNAPL Management

LNAPL was sampled from each recovery well and analyzed for PCBs prior to system start-up. Wells with LNAPL PCB concentrations > 25 ppm were re-sampled during the first year of operation. Of the > 25 ppm well locations that were re-sampled, 4 wells contained LNAPL PCB concentrations >=50 ppm and were not plumbed into the collection system such that high PCB LNAPL (>/=50 ppm) would not be mixed with other recovered LNAPL with concentrations below 50 ppm. These four (4) recovery wells were TF-3D, TF-4D, TF-5D and TF-6D of which all but TF-6D are located on RAD II. Per the SMP, product was recovered from these wells independently from the balance of the system and the high PCB concentration LNAPL was managed and disposed of separately as TSCA regulated Waste. Product was recovered from these wells with a manually controlled single-phase skimmer pump configured to discharge into a DOT-shippable 55-gallon drum until three (3) consecutive rounds of LNAPL PCB sampling indicated that concentrations dropped below 50 ppm. All four (4) high PCB wells successfully followed this process after recovery and disposal of approximately 128 gallons of LNAPL. The TSCA regulated LNAPL was disposed of in three shipments which occurred in August 2016, August 2017 and February 2018. All four (4) of these wells were re-plumbed into the automated Total Fluids collection system as reported in the 2nd PRR. Refer to Figure 2 for locations and Tables 2 and 3, which summarize the results of baseline and years 1, 2 and 3 sampling as well as results of PCB sampling from product recovered from each of these wells.

2.4.3 LNAPL Disposal Summary

The total volume of RCRA Nonhazardous LNAPL with PCBs <50 ppm disposed offsite from RAD I and RAD II combined was 426,849 gallons through March 31, 2020. This waste stream was transported by Cycle Chem, Inc. to their facility in Elizabeth, NJ for solidification then was transported by Cycle Chem, Inc. to Conestoga Landfill in New Morgan Borough, Pennsylvania for disposal. The total volume of LNAPL with PCBs >/=50 ppm disposed offsite from RAD II was approximately 78 gallons all of which was recovered and disposed of during the second reporting period. This waste stream was transported by Cycle Chem, Inc. to Veolia ES in Flanders, New Jersey and Port Arthur, Texas for incineration.

2.4.4 Groundwater Monitoring

The sixth and sixth groundwater monitoring sampling events occurred on July 10th through 11th and December 16th through 19th, 2019. The results of the fourth and fifth sampling events were found to be consistent with historic results and were submitted under separate cover in advance of this report.

3.0 **IC/EC PLAN COMPLIANCE**

IC/EC REQUIREMENTS AND COMPLIANCE 3.1

3.1.1 IC/EC Requirements Summary

A summary of the ICs and ECs implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by the Site Management Plan are outlined below.

Site Identification:	RAD I - BCP #C241089, Long Island City, Queens, NY	
Institutional Controls:	The property may be used for commercial use;	
Institutional Controls:	 The property may be used for commercial use; The RAD I Site may only be used for restricted use. All EC's must be operated and maintained as specified in the SMP. All EC's must be inspected at a frequency and in a manner defined in the SMP. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Queens County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC. This IC is outlined in the deed restriction recorded on 10/21/15 paragraph 2.A.(4). Groundwater monitoring must be performed as defined in the SMP. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in the SMP. All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP. Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP. Access to the RAD I Site must be provided to agents, 	
	employees or other representatives of the State of New York	

Site Identification:	RAD I - BCP #C241089, Long Isla	and City, Queens, NY
	 with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement. This IC is outlined in the above referenced deed restriction paragraph 2.A.(10). The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 2, and any potential impacts that are identified must be monitored or mitigated. All ECs must be inspected at a frequency and in a manner defined in the SMP. 	
Engineering Controls:	Cover system – 6-inch asphalt pav	ing system
	LNAPL Recovery and Treatment	System
	 Two 6,000 gallon LNAPL Storage Tanks Two 8' x 40' Equipment Enclosures 38 Skimmer well pumps and piping 30 VER Well pumps, SVE blower air treatment and p liquid treatment equipment and discharge piping. 	
Inspections:		Frequency
Cover inspection		Annually
Treatment System and Equipment Inspections per OM&M Manual		Monthly, Quarterly and Semi- Annual Per OM&M Manual
Monitoring:		
Presence and Absence of LNAPL in Wells Identified on Table 3 of SMP for RAD I		Monthly, Quarterly and Semi- Annual as indicated on Table 3 of SMP for RAD I
Groundwater Monitoring/Sampling of Monitoring Wells Identified on Table 3 of the SMP for RAD I		Semi-Annual as indicated on Table 3 of SMP for RAD I
Maintenance:		
Equipment maintenanc	e per Table of SMP	Per Table 4 of SMP

Site Identification. <u>KAD 1 - BCP #C241089, Long Island City, Queens, N1</u>		
Reporting:		
LNAPL Monitoring	Per Table 3 of SMP	
Treated Water Discharge Sampling and Reporting	Quarterly	
Periodic Review Report	Annually	

Site Identification: RAD I - BCP #C241089, Long Island City, Queens, NY

3.1.2 Status of IC/ECs

All ICs and ECs have been implemented and are being monitored and maintained in accordance with the SMP. The LNAPL Recovery and Treatment system will continue to be operated, monitored and maintained until such time that the remedial objectives as outlined in the SMP have been achieved. Treated Water quarterly compliance sampling reports are provided in Appendix C. As described above in section 2.4.1, monthly LNAPL gauging events indicate that the LNAPL Recovery System is effective.

3.1.3 Corrective Measures

• *Cap/Pavement system on RAD 1* – A significant portion of the asphalt pavement was replaced by the site owner during the Spring of 2019 in areas of greatest traffic which had degraded to an unacceptable state.

3.1.4 Conclusions and Recommendations for Changes

- Section 4.3 outlines several identified recommended actions in order to ensure ongoing effective protection for site occupants as well as to enhance, optimize and minimize the duration of the remedy.
- The addition of concrete barriers has improved the fence integrity with fewer repairs needed in the treatment compound since installation. the integrity of fence in other areas of the site needs attention and repairs.
- TF/VER Recovery well integrity is questionable in certain areas of RAD I and II which may be the cause of TF pump discharge line fouling and clogging. A program of well redevelopment is being evaluated.
- Bailing or redevelopment of monitoring wells associated with the long term LNAPL Monitoring plan is also being evaluated to confirm apparent product thickness measurements..

3.1.5 IC/EC Certification

The NYSDEC Site Management PRR IC/EC Certification Form has been completed and provided and attached at the front this report.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on this review, the remedy continues to be protective of the public health and the environment and is compliant with the Site Management Plan.

4.1 INSTITUTIONAL CONTROLS

The current ICs are adequate to achieve the objective for protection of human health and the environment based on current site use.

4.2 ENGINEERING CONTROLS

The current ECs are adequate to achieve the objectives for protection of human health and the environment based on current site use..

4.3 OTHER SITE-RELATED ACTIVITIES

Based on the information presented in this PRR, the following activities are recommended to be completed within the next annual reporting period in efforts to maintain the asphalt cover system, optimize LNAPL recovery system operations and accelerate the timeframe to site delisting.

- CAC area cap repair/completion.
- Continue to optimize production by adjusting the duration and rotation of active VER/TF system zones to maximize product recovery rates while minimizing groundwater discharge to sewer and energy consumption.
- A program of well re-development is being evaluated.
- Bailing or redevelopment of monitoring wells associated with the long term LNAPL Monitoring plan is being evaluated.
- A discussion with the DEC was held in early December 2019 regarding progress to date and criteria needed to progress to toward transitioning to a shutdown of the VER/TF LNAPL recovery technology and a transition to an expansion of the ongoing skimming technology. This skimming plan is focused on the downgradient site boundary as well as the areas of the site with the most remaining recoverable product such that prevention of downgradient product migration is effectively maintained while still recovering source area LNAPL in a more energy efficient manner.

5.0 **REFERENCES**

Golder Associates, Inc. (Golder), 2005. Remedial Investigation Report, Quanta Resources Site, Long Island City, New York, June 2005

Golder Associates, Inc. (Golder), 2011. Remedial Action Work Plan, Review Avenue Development, Long Island City, Queens, New York, November, 2011

MACTEC Engineering and Consulting, P.C. (MACTEC), 2015. Site Management Plan, Review Avenue Development (RAD) I, Queens County, Long Island City, New York, December, 2015.

New York State Department of Environmental Conservation (NYSDEC), 2007. Declaration Statement – Record of Decision, Quanta Resources Inactive Hazardous Waste Disposal Site (a.k.a. Review Avenue Development II), Long Island City, Queens, New York, Site No. 2-41-005, February 2007. TABLES

Table 1Summary of PCB Analytical Data - LNAPL Storage TanksReview Avenue Development Sites, NYCDEP File # C-5652Long Island City, Queens, New York

Field Sample ID: Sample Date: Lab Sample ID:	Unit	T-801-0116 1/25/2016 460-108101-8		T-1401-0116 1/25/2016 460-108101-7		T-801 3/7/2016 JC15542-1		T-1401 3/7/2016 JC15542-2		T-801-0416 4/5/2016 JC17676-2		T-1401-0416 4/5/2016 JC17676-3															
														Aroclor 1016	mg/kg	0.5	U										
														Aroclor 1221	mg/kg	0.5	U										
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U														
Aroclor 1242	mg/kg	15		5.2		12.7		0.5	U	0.5	U	0.5	U														
Aroclor 1248	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	9.35		2.03															
Aroclor 1254	mg/kg	4.9		0.5	U	0.5	U	0.5	U	5.11		0.5	U														
Aroclor 1260	mg/kg	0.5	U	3.3		0.5	U	0.5	U	5.22		0.5	U														
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U														
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U														
Total PCBs	mg/kg	19.9		8.5		12.7		0.5	U	19.68		2.03															

Field Sample ID:		T-801-05	2716	T-1401-0	52716	T-801-07	1116	T-1401-07	71116	T-801-08	3016	T-1401-08	3016
Sample Date:	Unit	5/27/20	16	5/27/20	016	7/11/20	16	7/11/20	016	8/30/20	16	8/30/20	16
Lab Sample ID:		JC2123	8-1	JC2123	8-2	JC2384	4-1	JC2384	4-2	JC2678	4-1	JC2678	4-2
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	4.37		1.24	
Aroclor 1248	mg/kg	6.87		0.5	U	4.32		0.5	U	0.5	U	0.5	U
Aroclor 1254	mg/kg	0.5	U	0.5	U	7.28		0.5	U	0.5	U	0.5	U
Aroclor 1260	mg/kg	5.99		0.5	U	6.23		0.5	U	5.29		2.87	
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	12.86		0.5	U	17.83		0.5	U	9.66		4.11	
						w/ Permang	anate	w/ Permang	ganate	w/ Permang	anate	w/ Permang	anate

Cleanup Procedure (1)

w/ Permanganate Cleanup Procedure (1)

Cleanup Procedure (1) Cleanup Procedure (1)

Field Sample ID:		RA-T801-1	02116	T-801-01	0617	T-1401-01	0617	T-801-03	1717	T-801P-04	41017	T-1401-04	2517
Sample Date:	Unit	10/21/2	016	1/6/20	17	1/6/201	17	3/17/20	17	4/10/20	17	4/25/20	17
Lab Sample ID:		JC3028	9-2	JC3506	9-2	JC3506	9-3	JC3923	1-2	JC4085	8-1	JC4201	0-1
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	0.5	U	2.86		0.976		3.37		0.5	U	0.5	U
Aroclor 1248	mg/kg	2.85		0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1254	mg/kg	0.5	U	4.16		3.96		0.5	U	0.5	U	0.5	U
Aroclor 1260	mg/kg	4.01		2.22		2.08		0.5	U	0.5	U	0.5	U
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	6.86		9.24		7.016		3.37		0.5	U	0.5	U
	-	w/ Permang Cleanup Proc		w/ Permang Cleanup Proc	-	w/ Permang Cleanup Proce		w/ Permang Cleanup Proc	·	w/ Permang Cleanup Proc		w/ Permang Cleanup Proc	

Field Sample ID:		T-801-05	0917	T-801-07	0317	T-801-10	1017	T-1401-10	01017	T-801-0	118	T-1401-0	118
Sample Date:	Unit	5/9/20	17	7/3/20	17	10/10/20	017	10/10/2	017	1/3/20	18	1/3/20	18
Lab Sample ID:		JC4299	0-1	JC3506	9-3	JC5279	5-4	JC5279	5-5	JC5835	3-1	JC5835	3-2
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	0.5	U	1.08		0.5	U	0.5	U	2.23		0.5	U
Aroclor 1248	mg/kg	0.5	U	0.5	U	20.4		0.5	U	0.5	U	0.5	U
Aroclor 1254	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	7.27		0.5	U
Aroclor 1260	mg/kg	0.5	U	2.18		10.4		0.5	U	0.5	U	0.5	U
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	0.5	U	3.26		30.8		0.5	U	9.5		0.5	U
		w/ Permang Cleanup Proc	·	w/ Permang Cleanup Proc	·	w/ Permang Cleanup Proc		w/ Permang Cleanup Proc	-	w/ Permang Cleanup Proc		w/ Permang Cleanup Proc	

Field Sample ID:		T-801-03	1318	T-1401-0	31318	T-801-050	0118	T-1401-0	50118	T-801-0	618	T-1401-0	0618
Sample Date:	Unit	3/13/20	18	3/13/20	018	5/1/201	8	5/1/20	18	6/5/20	18	6/5/20	18
Lab Sample ID:		JC6227	7-1	JC6227	7-2	JC6525 [,]	1-1	JC6525	1-2	JC6747	8-1	JC6747	8-2
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.2	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.2	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.13	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	0.5	U	0.5	U	0.08	U	0.5	U	0.5	U	0.5	U
Aroclor 1248	mg/kg	2.89		4.04	U	7.01		0.5	U	0.5	U	0.5	U
Aroclor 1254	mg/kg	0.5	U	0.5	U	0.12	U	0.5	U	0.5	U	0.5	U
Aroclor 1260	mg/kg	1.95		2.71	U	6.53		0.5	U	0.5	U	0.5	U
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.074	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.038	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	4.84		4.04	U	13.54		0.5	U	0.5	U	0.5	U
	-	w/ Permang Cleanup Proc	•	w/ Permano Cleanup Proc	·	w/ Permang Cleanup Proce		w/ Permang Cleanup Proc	-	w/ Permang Cleanup Proc		w/ Permang Cleanup Proc	

Field Sample ID:		T-801-0	918	T-1401-0	918	T-801-0	119	T-1401-0	0119	T-801-0	319	T-1401-0	0319	T-80	1-G
Sample Date:	Unit	9/5/20	18	9/5/20 ⁻	18	1/2/20	19	1/2/20	19	3/14/20	19	3/14/20)19	8/13/	2019
Lab Sample ID:		JC7314	0-1	JC7314	0-2	JC8074	1-1	JC8074	1-2	JC8456	4-1	JC8456	4-2	JC93	220-1
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	9.7		0.5	U	11.9		0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1248	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	3.65	
Aroclor 1254	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.22	
Aroclor 1260	mg/kg	10.2		0.5	U	0.5	U	0.5	U	10.7		0.5	U	4.07	
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	19.9		0.5	U	11.9		0.5	U	10.7		0.5	U	9.94	
		w/ Permang Cleanup Proc		w/ Permang Cleanup Proc		w/ Permang Cleanup Proc	-	w/ Permang Cleanup Proc		w/ Permang Cleanup Proc		w/ Permang Cleanup Proc	-	w/ Permanga Proced	•

Field Sample ID:		T-14	01-G	PCB 80)1 2-13	PCB 14	01 2-13
Sample Date:	Unit	8/13/	2019	2/13/:	2020	2/13/	2020
Lab Sample ID:		JC93	220-2	JD34	64-2	JD34	64-1
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	0.5	U	7.42		0.5	U
Aroclor 1248	mg/kg	0.5	U	0.5	U	0.5	U
Aroclor 1254	mg/kg	0.5	U	0.5	U	0.5	U
Aroclor 1260	mg/kg	0.5	U	0.5	U	0.5	U
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	0.5	U	7.42		0.5	U
		w/ Permanga Procee	nate Cleanup dure ⁽¹⁾	w/ Permanga Procec	•	w/ Permanga Proced	

Notes:

Bold = PCB Concentration > 50 mg/kg

Definitions:

mg/kg = milligrams per kilogram PCB = Polychlorinated Biphenyl RL = Reporting Limit

Data Qualifiers:

J = Indicates an estimated value U = Not detected at the indicated Reporting Limit

Footnotes:

(1) Samples analyzed using SW-846 EPA Test Method 3665A Sulfuric Acid/Permanganate Cleanup

Field Sample ID:		TF-1A	4	TF-1E	3	TF-10	C	TF-1I	C	TF-2/	4	TF-2E	3	TF-20	2
Sample Date:	Unit	12/23/20	014	3/25/20	15	3/25/20	15	12/23/2	014	12/23/20	014	3/25/20	15	12/23/20	014
Lab Sample ID:		460-8836	7-14	460-922	07-2	460-922	07-1	460-8836	67-13	460-8836	7-10	460-922	07-3	460-8836	7-11
Aroclor 1016	mg/kg	0.33	U	0.16	U	0.16	U	0.33	U	0.33	U	0.16	U	0.33	U
Aroclor 1221	mg/kg	0.43	U	0.21	U	0.21	U	0.43	U	0.43	U	0.21	U	0.43	U
Aroclor 1232	mg/kg	0.51	U	0.25	U	0.25	U	0.51	U	0.51	U	0.25	U	0.51	U
Aroclor 1242	mg/kg	0.33	U	0.16	U	0.16	U	9.9		0.33	U	0.16	U	0.33	U
Aroclor 1248	mg/kg	0.33	U	0.16	U	0.16	U	0.33	U	0.33	U	0.16	U	0.33	U
Aroclor 1254	mg/kg	0.33	U	0.16	U	0.16	U	0.33	U	0.33	U	0.16	U	0.33	U
Aroclor 1260	mg/kg	0.33	U	0.16	U *	0.16	U *	9.6		0.33	U	5.1	*	17	
Aroclor 1268	mg/kg	0.56	U	0.27	U	0.27	U	0.56	U	0.56	U	0.27	U	0.56	U
Aroclor 1262	mg/kg	0.56	U	0.27	U	0.27	U	0.56	U	0.56	U	0.27	U	0.56	U
Total PCBs	mg/kg	0.56	U	0.27	U *	0.27	U *	19.5		0.56	U	5.1	*	17	

Field Sample ID:		TF-20)	TF-3/	A	TF-3E	3	TF-30	C	TF-3[)	TF-4	4	TF-4E	3
Sample Date:	Unit	12/23/20	014	4/27/20)15	12/23/20	014	12/23/20	014	4/30/20	15	12/23/20	014	12/23/20)14
Lab Sample ID:		460-8836	7-12	460-938	82-2	460-8836	67-9	460-883	67-8	460-9409	94-1	460-883	67-4	460-8836	37-5
Aroclor 1016	mg/kg	0.33	U	0.16	U *	0.34	U	0.33	U	0.17	U	0.33	U	0.33	U
Aroclor 1221	mg/kg	0.43	U	0.21	U	0.43	U	0.43	U	0.22	U	0.43	U	0.43	U
Aroclor 1232	mg/kg	0.51	U	0.25	U	0.51	U	0.51	U	0.26	U	0.51	U	0.51	U
Aroclor 1242	mg/kg	18		0.16	U	8.9		18		21		0.33	U	5.3	
Aroclor 1248	mg/kg	0.33	U	0.16	U	0.34	U	0.33	U	0.17	U	0.33	U	0.33	U
Aroclor 1254	mg/kg	0.33	U	0.16	U	0.34	U	0.33	U	0.17	U	0.33	U	0.33	U
Aroclor 1260	mg/kg	14		0.16	U *	2		4.9		16		0.33	U	5.8	
Aroclor 1268	mg/kg	0.56	U	0.27	U	0.56	U	0.56	U	0.28	U	0.56	U	0.56	U
Aroclor 1262	mg/kg	0.56	U	0.27	U	0.56	U	0.56	U	0.28	U	0.56	U	0.56	U
Total PCBs	mg/kg	32		0.27	U	10.9		22.9		37		0.56	U	11.1	

Field Sample ID:		TF-40	;	TF-4[)	TF-5A	4	TF-5E	3	TF-50	2	TF-51	C	TF-6A	4
Sample Date:	Unit	12/23/20	014	12/23/20	014	12/23/20	014	12/23/20	014	12/23/20	014	12/23/2	014	1/23/20	15
Lab Sample ID:	7 [460-8836	67-6	460-883	67-7	460-8836	67-3	460-883	67-2	460-883	67-1	460-8836	67-24	460-8964	14-1
Aroclor 1016	mg/kg	0.33	U	0.33	U	0.33	U	0.34	U	0.34	U	0.33	U	0.17	U
Aroclor 1221	mg/kg	0.43	U	0.43	U	0.43	U	0.43	U	0.43	U	0.43	U	0.22	U
Aroclor 1232	mg/kg	0.51	U	0.51	U	0.51	U	0.51	U	0.51	U	0.51	U	0.26	U
Aroclor 1242	mg/kg	29		30		0.33	U	0.34	U	27		30		9.2	
Aroclor 1248	mg/kg	0.33	U	0.33	U	0.33	U	0.34	U	0.34	U	0.33	U	0.17	U
Aroclor 1254	mg/kg	0.33	U	0.33	U	0.33	U	0.34	U	0.34	U	0.33	U	0.17	U
Aroclor 1260	mg/kg	7.7		15		0.33	U	1.5	J	15		14		11	
Aroclor 1268	mg/kg	0.56	U	0.56	U	0.56	U	0.57	U	0.56	U	0.56	U	0.28	U
Aroclor 1262	mg/kg	0.56	U	0.56	U	0.56	U	0.57	U	0.56	U	0.56	U	0.28	U
Total PCBs	mg/kg	36.7		45		0.56	U	1.5		42		44		20.2	

Field Sample ID:		TF-6E	3	TF-60	•	TF-6D)	TF-74	4	TF-7E	3	TF-70	2	TF-70)
Sample Date:	Unit	1/23/20	15	1/23/20	15	1/23/20	15	1/23/20	15	1/23/20	15	4/27/20	15	1/23/20	15
Lab Sample ID:	7 [460-8964	44-3	460-8964	14-5	460-8964	14-7	460-8964	44-2	460-8964	44-4	460-938	32-1	460-8964	44-6
Aroclor 1016	mg/kg	0.16	U	0.17	U	0.33	U	0.17	U	0.17	U	0.16	U *	0.17	U
Aroclor 1221	mg/kg	0.21	U	0.22	U	0.43	U	0.22	U	0.22	U	0.21	U	0.22	U
Aroclor 1232	mg/kg	0.25	U	0.26	U	0.51	U	0.26	U	0.26	U	0.25	U	0.26	U
Aroclor 1242	mg/kg	17		9.1		30		3.4		8		0.16	U	11	
Aroclor 1248	mg/kg	0.16	U	0.17	U	0.33	U	0.17	U	0.17	U	0.16	U	0.17	U
Aroclor 1254	mg/kg	0.16	U	0.17	U	0.33	U	0.17	U	0.17	U	0.16	U	0.17	U
Aroclor 1260	mg/kg	13		11		22		4.4		12		0.16	U *	13	
Aroclor 1268	mg/kg	0.27	U	0.28	U	0.56	U	0.28	U	0.28	U	0.27	U	0.28	U
Aroclor 1262	mg/kg	0.27	U	0.28	U	0.56	U	0.28	U	0.28	U	0.27	U	0.28	U
Total PCBs	mg/kg	30		20.1		52		7.8		20		0.27	U	24	

Field Sample ID:		TF-7E	Ξ	TF-7F	-	S-1B		S-1C	;	S-2A		S-2E	6	S-2C	
Sample Date:	Unit	1/23/20	15	1/30/20	15	12/23/20	014	12/23/20	014	12/23/20	014	12/23/2	014	12/23/20)14
Lab Sample ID:	7 [460-8964	44-8	460-8987	73-1	460-8836	7-20	460-8836	67-19	460-8836	7-21	460-8836	67-23	460-8836	7-22
Aroclor 1016	mg/kg	0.17	U	0.33	U	0.33	U	0.34	U	0.33	U	0.17	U	0.17	U
Aroclor 1221	mg/kg	0.21	U	0.42	U	0.43	U	0.43	U	0.43	U	0.22	U	0.22	U
Aroclor 1232	mg/kg	0.25	U	0.5	U	0.51	U	0.51	U	0.51	U	0.26	U	0.26	U
Aroclor 1242	mg/kg	20		27		0.33	U	0.34	U	0.33	U	0.17	U	0.17	U
Aroclor 1248	mg/kg	0.17	U	0.33	U	0.33	U	0.34	U	0.33	U	0.17	U	0.17	U
Aroclor 1254	mg/kg	0.17	U	0.33	U	0.33	U	0.34	U	0.33	U	0.17	U	0.17	U
Aroclor 1260	mg/kg	17		9.8		0.33	U	0.34	U	0.33	U	0.17	U	6.3	
Aroclor 1268	mg/kg	0.28	U	0.55	U	0.56	U	0.57	U	0.56	U	0.28	U	0.28	U
Aroclor 1262	mg/kg	0.28	U	0.55	U	0.56	U	0.57	U	0.56	U	0.28	U	0.28	U
Total PCBs	mg/kg	37		36.8		0.56	U	0.57	U	0.56	U	0.28	U	6.3	

Field Sample ID:		S-3A		S-3B	3	S-3C	:	S-3E	
Sample Date:	Unit	12/23/20	014	12/23/20	014	12/23/20	014	12/23/20	014
Lab Sample ID:		460-8836	7-18	460-8836	67-15	460-8836	7-16	460-8836	7-17
Aroclor 1016	mg/kg	0.33	U	0.33	U	0.34	U	0.33	U
Aroclor 1221	mg/kg	0.43	U	0.43	U	0.43	U	0.43	U
Aroclor 1232	mg/kg	0.51	U	0.51	U	0.51	U	0.51	U
Aroclor 1242	mg/kg	0.33	U	0.33	U	0.34	U	0.33	U
Aroclor 1248	mg/kg	0.33	U	0.33	U	0.34	U	0.33	U
Aroclor 1254	mg/kg	0.33	U	0.33	U	0.34	U	0.33	U
Aroclor 1260	mg/kg	0.33	U	0.33	U	0.34	U	0.33	U
Aroclor 1268	mg/kg	0.56	U	0.56	U	0.57	U	0.56	U
Aroclor 1262	mg/kg	0.56	U	0.56	U	0.57	U	0.56	U
Total PCBs	mg/kg	0.56	U	0.56	U	0.57	U	0.56	U

Notes:

Bold = PCB Concentration > 50 mg/kg

Definitions:

mg/kg = milligrams per kilogram PCB = Polychlorinated Biphenyl RL = Reporting Limit

Data Qualifiers:

J = Indicates an estimated value

U = Not detected at the indicated Reporting Limit

* = Recovery or RPD exceeds control limits

Field Sample ID:		TF-2D-08	3016	TF-3D-06	1516	TF-3D-06	1516	TF-3D-09	0116	TF-3D-0	82517	TF-:	3D	TF-3	3D
Sample Date:	Unit	8/30/20	16	6/15/20	16	6/15/20	16	9/1/20 ⁻	16	8/25/2	017	10/25/2	2017	11/14/2	2017
Lab Sample ID:		JC2678	3-5	JC2233	4-1	JC22334	I-1R	JC2692	5-1	JC496	84-2				
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	12.3		25.3		21.9		3.03		11.5		0.5	U	9.33	
Aroclor 1248	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	28.7		0.5	U
Aroclor 1254	mg/kg	9.58		26.7		18		0.5	U	20.4		16.7		11	
Aroclor 1260	mg/kg	10.0		0.5	U	14.1		3.2		0.5	U	0.5	U	0.5	U
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	31.88		52		54		6.18		31.9		45.4		20.33	
		w/ Permang	anate			w/ Permang	janate	w/ Permang	janate	w/ Permangan	ate Cleanup	w/ Permangan	ate Cleanup	w/ Permangan	ate Cleanup

Cleanup Procedure (1)

Cleanup Procedure ⁽¹⁾

ooduro ⁽¹⁾ Cleanun Br

Cleanup Procedure⁽¹⁾

Procedure ⁽¹⁾ Procedure ⁽¹⁾

Procedure (1)

Field Sample ID:		TF-4C-06	1516	TF-4C-06	1516	TF-4C-08	3016	TF-4D-06	1516	TF-4D-06	1516	TF-4D-07	0517	TF-4D-07	71417
Sample Date:	Unit	6/15/20	16	6/15/20	16	8/30/20	16	6/15/20)16	6/15/20	16	7/3/201	17	7/14/20	017
Lab Sample ID:		JC2233	4-2	JC22334	-2R	JC2678	3-6	JC2233	4-3	JC22334	I-3R	JC4638	6-2	JC4704	48-1
Aroclor 1016	mg/kg	0.5	U												
Aroclor 1221	mg/kg	0.5	U												
Aroclor 1232	mg/kg	0.5	U												
Aroclor 1242	mg/kg	26.4		17.6		18.6		43.2		25.1		13.2		0.5	
Aroclor 1248	mg/kg	0.5	U	13.7	U										
Aroclor 1254	mg/kg	18.2		9.28		0.5	U	50		20.9		0.5	U	18	
Aroclor 1260	mg/kg	0.5	U	8.0		8.1		0.5	U	18.1		9.04		0.5	U
Aroclor 1268	mg/kg	0.5	U												
Aroclor 1262	mg/kg	0.5	U												
Total PCBs	mg/kg	44.6		34.9		26.7		93.2		64.1		22.24		18.5	

w/ Permanganate w/ Permanganate

Cleanup Procedure ⁽¹⁾ Cleanup

w/ Permanganate w/ P

w/ Permanganate Cleanup Procedure ⁽¹⁾ C

w/ Permanganate Cleanup Procedure⁽¹⁾

Cleanup Procedure⁽¹⁾

Cleanup Procedure (1)

Field Sample ID:		TF-4D-07	2017	TF-5C-06	1516	TF-5C-06 ²	1516	TF-5C-08	3016	TF-5D-06	1516	TF-5D-06	1516	TF-5D-08	3016
Sample Date:	Unit	7/20/20	017	6/15/20	16	6/15/20	16	8/30/20	16	6/15/20	16	6/15/20	16	8/30/20	16
Lab Sample ID:		JC4741	6-1	JC2233	4-4	JC22334	-4R	JC2678	3-7	JC2233	4-5	JC22334	-5R	JC2678	3-1
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	13.6		15.9		10.9		22.2		36.7		22.1		29.2	
Aroclor 1248	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1254	mg/kg	0.5	U	19.6		10.9		12.9		21.1		16.9		20.5	
Aroclor 1260	mg/kg	9.91		0.5	U	8.4		14.2		0.5	U	11.8		11.8	
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	23.51		35.5		30.16		49.3		57.8		50.8		61.5	
		w/ Permang	ganate			w/ Permang	anate	w/ Permang	anate			w/ Permang	anate	w/ Permang	anate

Cleanup Procedure (1)

Cleanup Procedure (1)

Cleanup Procedure (1)

Cleanup Procedure (1)

Field Sample ID:		TF-5D-01	0617	TF-5D-02	0717	TF-5D-03	0617	TF-5D-03	3017	TF-5D-	041417	TF-5D-04	42817	TF-6B-08	3016
Sample Date:	Unit	1/6/201	17	2/7/201	17	3/6/201	17	3/30/20)17	4/14/	2017	4/28/2	017	8/30/20	16
Lab Sample ID:		JC35069-1		JC3701	4-1	JC3843	3-1	JC4013	3-1	JC41	331-1	JC425	94-1	JC2678	3-4
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	32.6		57.6		34.3		10.3		13.3		0.5	U	8.45	
Aroclor 1248	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	27		0.5	U
Aroclor 1254	mg/kg	14.2		23.5		0.5	U	7.73		0.5	U	13		0.5	U
Aroclor 1260	mg/kg	9.8		14.7		16.8		5.5		0.5	U	8.68		5.3	
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	56.56		95.8		51.1		23.51		13.3		48.68		13.72	
		w/ Permang Cleanup Proce		w/ Permang Cleanup Proc		w/ Permang Cleanup Proc		w/ Permang Cleanup Proc	-	w/ Perma Cleanup Pi	-	w/ Perman Cleanup Pro	-	w/ Permang Cleanup Proce	

Field Sample ID:		TF-6D-0	416	TF-6D-04	1316	TF-6D-04	2616	TF-6D-05	0516	TF-6D-05	1216	TF-6D-05	2716	TF-6D-05	3116
Sample Date:	Unit	4/5/20 ⁻	16	4/13/20	16	4/26/20	16	5/5/20	16	5/12/20	16	5/27/20	16	5/31/20	16
Lab Sample ID:	7 [JC1761	6-1	JC1830	3-1	JC1912	9-1	JC1978	37-1	JC2018	8-1	JC2123	7-1	JC2132	9-1
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	0.5	U	0.5	U	0.5	U	23.9		22.4		0.5	U	21.4	
Aroclor 1248	mg/kg	31.4		21.6		17.9		0.5	U	0.5	U	17.9		0.5	U
Aroclor 1254	mg/kg	16		0.5	U	14.5		18.1		0.5	U	5	U	21.2	
Aroclor 1260	mg/kg	0.5	U	12.5		14.3		12.5		15.0		15.3		12.7	
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	47.4		34.1		46.7		54.5		37.4		33.2		55.3	

Field Sample ID:		TF-6D-05	3116	TF-6D-06	1616	TF-6D-06	1616	TF-6D-06	2216	TF-6D-06	3016	TF-6D-07	0716	TF-6D-07	1116
Sample Date:	Unit	6/7/201	16	6/16/20	16	6/16/20	16	6/22/20	16	6/30/20	16	7/7/201	16	7/11/20	16
Lab Sample ID:		JC2132	9-1	JC2233	4-8	JC22334	-8R	JC2282	8-1	JC2343	8-1	JC2372	4-2	JC2384	4-3
Aroclor 1016	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1221	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1232	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1242	mg/kg	21.2		18.2		7.78		0.5	U	10.7		8.47		9.32	
Aroclor 1248	mg/kg	5	U	0.5	U	0.5	U	23.6		0.5	U	0.5	U	0.5	U
Aroclor 1254	mg/kg	13.4		21.4		8.05		25.7		9.49		9.86		11.4	
Aroclor 1260	mg/kg	11.7		100.0	U	3.9		8.2		8.0		5.6		6.3	
Aroclor 1268	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Aroclor 1262	mg/kg	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Total PCBs	mg/kg	46.3		39.6		19.73		57.5		28.17		23.92		27.06	
						w/ Permang	anate	w/ Permang	anate	w/ Permang	janate	w/ Permang	anate	w/ Permang	anate

Cleanup Procedure (1)

nga Cleanup Procedure (1)

Cleanup Procedure (1)

Cleanup Procedure (1)

ıg

Cleanup Procedure (1)

Field Sample ID:		TF-7E-06	1516	TF-7E-06	1516	TF-7E-07	3016	TF-7F-06	1516	TF-7F-06	1516	TF-7F-08	3016
Sample Date:	Unit	6/15/20	16	6/15/20)16	8/30/20	16	6/15/20	16	6/15/20	16	8/30/20	16
Lab Sample ID:		JC2233	4-6	JC22334	4-6R	JC2678	3-3	JC2233	4-7	JC22334	I-7R	JC2678	3-2
Aroclor 1016	mg/kg	0.5	U										
Aroclor 1221	mg/kg	0.5	U										
Aroclor 1232	mg/kg	0.5	U										
Aroclor 1242	mg/kg	17.1		16		7.59		35.2		13.9		15.6	
Aroclor 1248	mg/kg	0.5	U										
Aroclor 1254	mg/kg	26.1		16.3		12.9		27.7		15.9		20.3	
Aroclor 1260	mg/kg	0.5	U	0.5	U	5.3		15.6		13.4		7.5	
Aroclor 1268	mg/kg	0.5	U										
Aroclor 1262	mg/kg	0.5	U										
Total PCBs	mg/kg	43.2		32.3		25.74		78.5		43.2		43.41	

w/ Permanganate

te w/ Permanganate

w/ Permanganate

w/ Permanganate

Cleanup Procedure (1)

Cleanup Procedure⁽¹⁾

Cleanup Procedure (1)

Cleanup Procedure ⁽¹⁾

Table 3 - TF Well PCB Data.xlsx

Notes:

Bold = PCB Concentration > 50 mg/kg after Permanganate Cleanup

Definitions:

mg/kg = milligrams per kilogram PCB = Polychlorinated Biphenyl RL = Reporting Limit

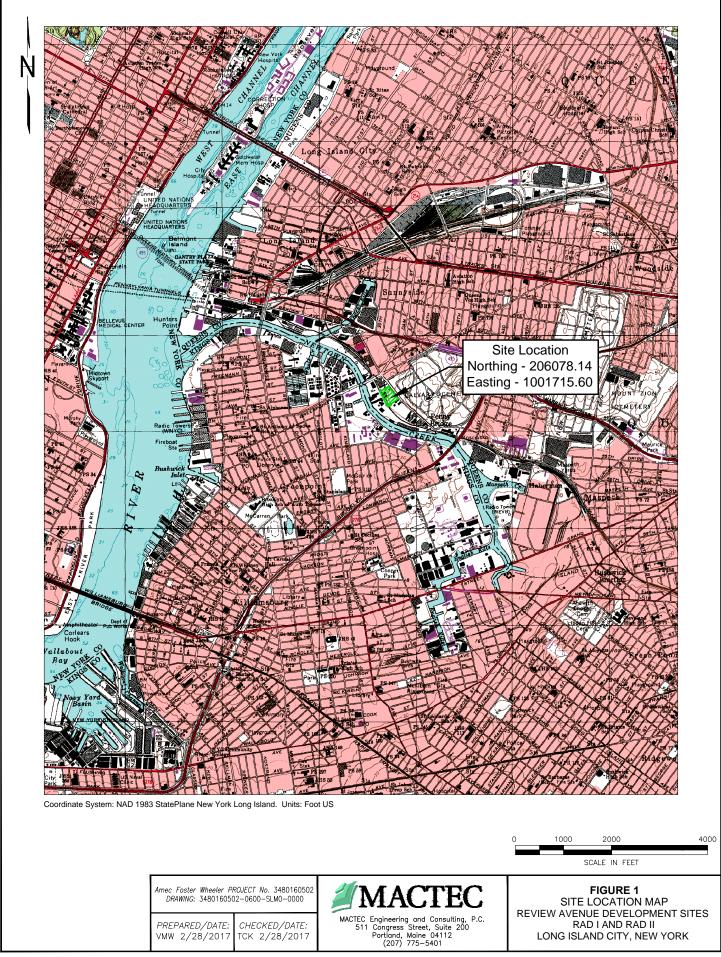
Data Qualifiers:

J = Indicates an estimated value U = Not detected at the indicated Reporting Limit

Footnotes:

(1) Samples analyzed using SW-846 EPA Test Method 3665A Sulfuric Acid/Permanganate Cleanup

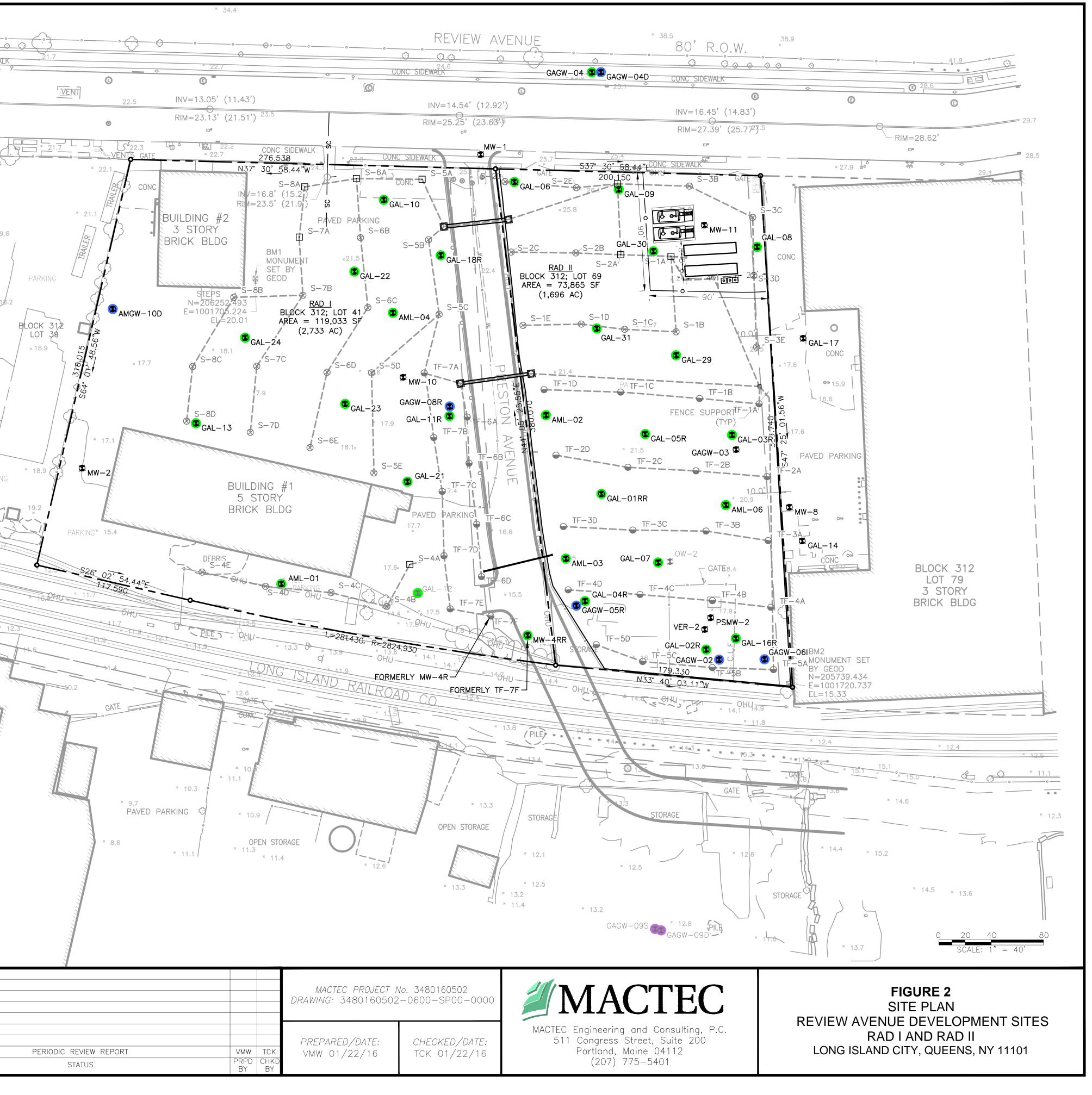
Table 4 Summary of Offsite LNAPL Disposal Quantities Review Avenue Development Sites, NYCDEP File # C-5652 Long Island City, Queens, New York


LNAPL Waste Oil Disposal Summary (<50 ppm PCBs):</th> Date BOL Number T-801 T-1401 Total

LNAPL Waste Oil Disposal Summary (>/= 50 ppm PCBs):

Date	Manifest Number	TF-3D	TF-4D	TF-5D	TF-6D	Total
08/30/16	016113060 JJK	0 gal	0 gal	0 gal	50 gal	50 gal
08/08/17	015633471 JJK	0 gal	20 gal	35 gal	0 gal	55 gal
02/06/18	017955324 JJK	23 gal	0 gal	0 gal	0 gal	23 gal
	TOTALS:	23 gal	20 gal	35 gal	50 gal	128 gal

Date	BOL Number	T-801	T-1401	Total
12/18/15	0277706	5,000 gal	-	5,000 gal
01/11/16	0277790	-	4,767 gal	4,767 gal
02/02/16	0277924	5,032 gal	-	5,032 gal
02/04/16	0277942	-	4,900 gal	4,900 gal
03/02/16	278269	2,703 gal	2,592 gal	5,295 gal
03/17/16	0278392	4,613 gal	2,002 gui	4,613 gal
03/31/16	278518	5,000 gal		5,000 gal
04/13/16	278574	5,000 gal	_	5,000 gal
04/27/16	278823	4,880 gal	-	4,880 gal
05/05/16	278889	4,000 gai	5,000 gal	5,000 gal
05/12/16	278941	- 5,000 gal	3,000 yai	5,000 gal
05/26/16	279054	4,998 gal		4,998 gal
05/31/16	099965	4,990 yai	3,103 gal	3,103 gal
06/07/16	279111	- 4,810 gal	3, 103 yai	
07/01/16	283085			4,810 gal 5,026 gal
07/18/16	283124	5,026 gal 4,900 gal		
07/26/16	283125	4,900 gai	5,000 gal	4,900 gal 5,000 gal
08/09/16	283446	4,800 gal	5,000 gai	4,800 gal
08/31/16	283592	5,052 gal		5,052 gal
09/01/16	283600	3,032 yai	4,280 gal	4,280 gal
09/22/16	283745	4,950 gal	4,200 yai	4,950 gal
10/07/16	180754	4,950 gal		4,950 gal
10/17/16	180744	4,904 yai	4,800 gal	4,904 gal
11/04/16	104535	5,500 gal	4,000 yai	
11/29/16	104535	5,300 gal		5,500 gal 5,300 gal
12/01/16	258577	3,300 gai	4 565 gol	4,565 gal
12/01/16	258731	4,869 gal	4,565 gal	4,565 gal
01/06/17	258823	4,900 gal		4,009 gal
01/06/17	258823	4,900 gai 4,875 gal		4,900 gai 4,875 gal
01/16/17	258693	4,875 gal		4,875 gal
01/25/17 02/07/17	259005			
02/07/17 02/14/17	259108	4,900 gal	1 000 ccl	4,900 gal 4,900 gal
02/14/17 02/16/17	259137 259170	4,860 gal	4,900 gal	
03/01/17	259170	4,860 gai 4,960 gai		4,860 gal 4,960 gal
03/17/17	280224	4,960 gai 4,837 gal		4,960 gai 4,837 gal
03/30/17	280327	4,960 gal		4,960 gal
04/10/17	280370	3,436 gal		3,436 gal
04/25/17	280486	5, 4 50 gai	5,000 gal	5,000 gal
04/28/17	280485	5,000 gal	0,000 gai	5,000 gal
05/12/17	280663	4,081 gal		4,081 gal
05/30/17	280874	4,964 gal		4,964 gal
06/23/17	238017	4,936 gal		4,936 gal
07/14/17	238326	.,	4,884 gal	4,884 gal
07/20/17	238302	4,964 gal	1,001 gui	4,964 gal
08/25/17	179863	4,936 gal		4,936 gal
09/05/17	179864	4,195 gal		4,195 gal
09/15/17	179956		4,859 gal	4,859 gal
09/26/17	180208	4,936 gal		4,936 gal
10/12/17	284001	4,838 gal		4,838 gal
10/27/17	284113	4,892 gal		4,892 gal
11/15/17	284446	4,857 gal		4,857 gal
12/06/17	256622	4,636 gal		4,636 gal
01/03/18	256810	4,633 gal		4,633 gal
01/22/18	257014	5,032 gal		5,032 gal
02/08/18	257162	4,936 gal		4,936 gal
02/23/18	257266	4,936 gal		4,936 gal
03/09/18	257369		4,964 gal	4,964 gal
03/13/18	257409	4,857 gal		4,857 gal
03/30/18	276735	4,857 gal		4,857 gal
04/18/18	276899	4,645 gal		4,645 gal
05/10/18	ACV002088	4,810 gal		4,810 gal
05/29/18	ACV002204	4,969 gal		4,969 gal
06/08/18	ACV002257	5,068 gal		5,068 gal
06/19/18	ACV002312	4,857 gal		4,857 gal
06/25/18	ACV002336		5,068 gal	5,068 gal
07/13/18	ACV002428	4,946 gal		4,946 gal
08/14/18	ACV002699	4,998 gal		4,998 gal
08/29/18	ACV002794		4,657 gal	4,657 gal
08/31/18	ACV002809	4,857 gal		4,857 gal
09/25/18	ACV002977	4,998 gal		4,998 gal
10/12/18	ACV022156	5,000 gal		5,000 gal
11/12/18	ACV033513	5,028 gal		5,028 gal
12/07/18	ACV023259	4,964 gal		4,964 gal
01/04/19	ACV023419 ACV0234756	4,964 gal	1 007	4,964 gal
01/10/19 02/08/19	ACV0234756 ACV022841	1 000 col	4,837 gal	4,837 gal 4,900 gal
02/08/19	ACV022841 ACV022896	4,900 gal	4 630 col	4,900 gal
03/20/19	ACV022896 ACV045063	4,613 gal	4,630 gal	4,630 gai 4,613 gal
03/20/19	ACV045063 ACV045150	H,UIJ Yai	4,692 gal	4,613 gal
07/16/19	ACV045150 ACV044897	5,170 gal	-,002 yai	5,170 gal
08/13/19	ACV044897 ACV045767	4,964 gal		4,964 gal
08/29/19	ACV059072	.,001 gui	4,964 gal	4,964 gal
09/30/19	ACV059303	4,857 gal	.,	4,857 gal
10/09/19	ACV059356	,	5,068 gal	5,068 gal
10/17/19	ACV059387	4,964 gal		4,964 gal
11/27/19	ACV041988	4,406 gal		4,406 gal
01/29/20	ACV058282		4,954 gal	4,954 gal
02/20/20	ACV058282	4,926 gal		4,926 gal
	TOTAL	224 225	100 101	400.040
	TOTALS:	324,365 gal	102,484 gal	426,849 gal


FIGURES

IN THE CONTEXT AND FOR THE EXPRESS PURPOSE FOR WHICH IT HAS ANY THIRD PARTY IS AT THAT PARTY'S SOLE RISK AND RESPONSIBILITY.						× 30.9
WHICH	LEGEND		LINE LEGEND		<u>×</u> 30.7	0
E FOR AND R	FIRE HYDRANT	8	RAIL ROAD TRACKS			
RISK	UNKNOWN VALVE	0 U	PROPERTY LINE		× 20.8	CONC SIDEWAL
ESS PI	LIGHT POLE	6	ADJOINER PROPERTY LINE			\mathbf{O}
EXPR	UTILITY POLE	-0-	CURBING			21.5
THAT	CATCHBASIN		EASEMENT LINE			
AND FC	ROUND CATCHBASIN	CB	REMEDIATION SYSTEM PROCESS PIPING			
PARTY	MONITORING WELL (INCLUDED IN LNAPL MONITORING	AML-01	CHAIN LINK FENCE		CONC SIDEWALK	21.3
E CON	PROGRAM)	V	OVERHEAD WIRES			22.0 * 0 * 21.4
	MONITORING WELL	GAGW-02	OVERTIEND WITCES	OHU		
CLIENT INT BY	(INCLUDED IN GROUNDWATER MONITORING PROGRAM)	•			3	1
THE	MONITORING WELL		PRESTON AVE		× 19.2	
ED BY	(INCLUDED IN GROUNDWATER MONITORING PROGRAM IF ACCESSABLE)	GAGW-09S		(7
	MONITORING WELL					× 19.
ONLY	(NOT INCLUDED IN THESE LNAPL OR	GAL-24	\ \			
DR MAY	GROUNDWATER MONITORING PROGRAMS)					IN
COPIED OR DISCLOSED; AND (II) THIS DOCUMENT MAY ONLY BE USED BY THE CLENT BEEN DELIVERED. ANY OTHER USE OR RELIANCE ON THIS DOCUMENT BY	EXISTING MONITORING WELL (STATUS UNKNOWN)	GAL-20	NADO	^{R.96} N. _V		
HIS DC	PROTECTIVE POST			⁶ 96 ₁ ,		× 14
D. ANY	LARGE TREE			, , , , , , , , , , , , , , , , , , ,		
D; AND	SMALL TREE	¢		× · · 310g		× 17/2 7
CLOSEI EEN DE	GAS VALVE	G				
DIS DIS	WATER VALVE	∟ ⊙W			4	\sim
PIED (U □ W				
BECC	WATER BOX				1	× 17.7
Y NOT BE	ELECTRIC MANHOLE	E				
AND MAY	RAILROAD Elec. VAULT					×17.3
A	RAILROAD SIGNAL				1	
	SANITARY MANHOLE	S			3	177 × 18.2
	WATER MANHOLE					17.7 * 10.2 DARKING
	TELEPHONE MANHOLE			15.5		
	UNKNOWN MANHOLE	S ^{−1B}			CONC	19.9
	SKIMMER WELL	S-14		0-	× 15	
	SKIMMER WELL WITH CONTROLLER	⊡ ^{S−1A}				
	TOTAL FLUIDS WELL	$\mathbf{\Theta}^{TF-1A}$			0	
				* 10.6	Они	
Z,					9	× 11.6
E PLAN					× ++ 7	
t: SITE						
Layout:						
				× 10.3	STORAGE // PILE	
9:30am vincent.whelan					Γ^{4}	IE.
incent				L	· _ × 16.3	
> WD						× 10.4
9:30				Parking 🤇		
17 -						
ır 2017					1	STORAGE
16 Mar				₿ 9.2	× 9.6	× 10.4
					1	Ĕ
- gwb						
.0000	MONITORING WELL NOTES:					E State
-00	1) Suffixes:					E E
00-S	 Where a well is designated w that well is a replacement for that location. 	or a previous well	at			E .
2-06	 Where a well is designated w that well is a replacement for 	vith the suffix "RR' or a previous	, ,			E State
6050	replacement well at that loco	ation.				E
34801	 MW-# are monitoring wells that to the Remedial Investigation. 	were installed prio	r <u>NOTES:</u>			Ĕ
ue\working drawings\3480160502-0600-SP00-0000.dwg Thu,	 The designation GAGW-# indicate monitoring well was originally loc 	es a groundwater	1) This drawing re	ferences the "Topographic Plan -		E
drawi	Golder Associates. The one exc which is screened across the LN	eption is GAGW-04	Block 312 Lots Avenue", dated	41, 69 & 79 - 37-80 Review 12/22/2014, prepared by GEOD		E
rking	4) The designation GAL $-\#$ indicates	a LNAPL monitorir	07435.	Kanouse Rd., Newfoundland, NJ		E
e / wo	well that was screened across the table.	ne top of the wate	2) Recovery well h	ocations (except where noted) are per s named "Property Survey, Block 312		
Avenu	5) Well GAGW-061 is a smear zone	monitoring well.	Lot 41, 37-80 Block 312 Lot	Review Avenue" and "Property Survey, 69, 37-80 Review Avenue", by GEOD		
view	 The designation AMGW-# represe well that was located and install 	ents a GW monitorr ed by AMEC.	ng Corporation, da TF—3A and TF-	ted January 29, 2015. Recovery Wells -7C were located via field measurement		
TA∖R∈	7) The designation AML- $\#$ is a LNA	PL monitoring well	methods.	m is North American Datum of 1983		
:\CADD\QUANTA\Review Aven	located and installed by Amec F		(NAD83 New Yo	m is North American Datum of 1985 ork State Plane coordinates, Long Island ertical datum is North American Vertical		
	8) GAL-04R, GAL-TTR, GAL-T8R, G GAGW-08R were installed by Was	ste Management.	Datum of 1988		1 03/15/17	
\geq					REV. DATE	

× 30.9

REV. DATE

APPENDIX A

Monthly Reports

Review Ave. LNAPL Recovery System Monthly Summary April 2019

Work completed in April 2019:

<u>Week of Mon 4/1 – Sat 4/6</u>

- O&M site visits on 4/2 and 4/5
- Product load-out from T-1401 on 4/5
 - 4,692 GAL product removed (offsite) according to Bill of Lading
- Chemical delivery on 4/5
 - Two 55-gallon drums of Redux-330

Week of Sun 4/7 – Sat 4/13

• O&M site visit on 4/10

Week of Sun 4/14 – Sat 4/20

- O&M site visit on 4/17
- Product load-out from T-801 on 3/20
- 4,613 GAL product removed (offsite) according to Bill of Lading
- Monthly LNAPL monitoring well gauging event on 3/20
- Chemical delivery on 3/20
 - Two 55-gallon drums of Redux-330

Week of Sun 4/21 – Tue 4/30

• O&M site visit on 4/24

O&M Activities:

Week of Mon 4/1 - Sat 4/6

- Operating on TF Zone 6
 - SVE active
- Changed bag filters and cleaned basket strainer on 4/2
- Water removal from T-1401 on 4/2
- Rebooted NAS on 4/2
- Cleaned strainers on 4/5
- Backwashed carbon on 4/5
- Transferred chemicals to drums on 4/5
- Water removal from T-1401 on 4/5

Week of Sun 4/7 – Sat 4/13

- Operating on TF Zone 6
 - SVE active
- Changed bag filters and cleaned strainers on 4/10
- Transferred chemicals to drums on 4/10
- Backwashed carbon on 4/10
- Water removal from T-1401 on 4/10

Week of Sun 4/14 - Sat 4/20

- Operating on TF Zone 1, switched to TF Zone 6 on 3/19

 SVE active
- Changed bag filters and cleaned basket strainer on 3/19
- Water removal from T-801 and T-1401 on 3/19
- Well vault inspections on 3/19
- Product load-out from T-801 on 3/20
- Water removal from T-1401 on 3/20

Review Ave. LNAPL Recovery System Monthly Summary April 2019

- Skimmer maintenance on 3/21
- Water removal from T-1401 on 3/22
- Skimmer maintenance on 3/22

Week of Sun 4/21 - Tue 4/30

- Operating on TF Zone 6
 - SVE active
- Changed bag filters and cleaned basket strainer on 3/27
- Backwash carbon on 3/27
- Water removal from T-1401 on 3/27
- Processed water from totes on 3/27
- Transferred chemicals to drums on 3/27

VER/TF System Production Results:

- TF System uptime for April was 707.47 Actual Run Hours out of 731.77 Available Hours, or 96.68%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
- Approximately 2,075 GAL Product Recovered in April from Zones 1 and 6
 - Average TF Product recovery rate for April was 66.9 GPD (calendar days), or 70.4 GPD (run days) accounting for system downtime.
- Approximately 293,226 GAL Product Recovered Total since system start-up.
- 4,613 GAL Product from T-801 disposed of offsite in April.
 - 295,078 GAL Product from T-801 disposed of Total since start-up.
- Approximately 261,253 GAL Effluent discharged in April
 - Average 8,428 GPD or 8,863 GPD considering downtime.
- 9,367,089 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 0.79%

Skimmer System Production Results:

- Skimmer System uptime for April was 248 Actual Run Hours out of 248 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 2,522 GAL Product Recovered in April.
 - Average Skimmer Product recovery rate for April was 81.3 GPD (calendar days), or 81.3 GPD (run days) accounting for system downtime.
- Approximately 88,797 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in April.
 - 82,806 GAL Product from T-1401 disposed of Total since start-up.

Total Product Recovery System Results:

- 4,597 GAL Product recovered in April.
 - Average Product recovery rate for April was 148 GPD.
- 382,023 GAL Product Recovered Total since system start-up.
- 4,613 GAL Product shipped off-site for disposal in April (see attached summary table)
- 377,884 GAL Product shipped off-site for disposal since system start-up as of the end of April 2019 (see attached summary table)
- 768,286 kWh Energy Consumption Total from system start-up through April 2019

Review Ave. LNAPL Recovery System Monthly Summary April 2019

- 22,988 kWh Energy Consumption for April
- 8.441 kWh/GAL Average Energy Consumed per GAL of Product Recovered for April

Review Ave. LNAPL Recovery System Monthly Summary May 2019

Work completed in May 2019:

Week of Wed 5/1 - Sat 5/4

- O&M site visit on 5/2
- Installed permanent compressed air line for bag filter blowout
- Transfer pump hose line replaced

Week of Sun 5/5 - Sat 5/11

• O&M site visit on 5/8

Week of Sun 5/12 - Sat 5/18

- O&M site visits on 5/13, 5/14 and 5/15
- Carbon change-out completed by Carbon Filtration Systems, Inc. on 5/14
- Replaced two bag filter housing units (line 1) on 5/15
- OWS cleanout by ACV Environment on 5/15
 - Disposal of 1,500 GAL of Non-Haz / Non-TSCA water from cleanout
- 2Q 2019 Effluent Discharge Compliance Sampling completed 5/16

Week of Sun 5/19 – Sat 5/25

- O&M site visit on 5/20
- Monthly LNAPL monitoring well gauging event on 5/24

Week of Sun 5/26 - Fri 5/31

• O&M site visit on 5/29

O&M Activities:

Week of Wed 5/1 - Sat 5/4

- Operating on TF Zone 5
 - SVE inactive
- Changed bag filters and cleaned y-strainer on 5/2
 Bag filter housing failure (on line 1)
- Water removal from T-801 and T-1401 on 5/2
- Backwashed carbon on 5/2
- TF Zone 5 inspections on 5/2
 - Identified leaks in TF-5A & 5C vacuum lines
- Processed water from totes on 5/2

Week of Sun 5/5 – Sat 5/11

- Operating on TF Zone 5
 - SVE active
- TF Zone 4 & 5 inspections on 5/8
- Sealed leaks in vacuum lines
- Water removal from T-801 and T-1401 on 5/8
- Backwashed carbon on 5/8
- Repair backwash meter and product pump on 5/8
- Changed bag filters and cleaned y-strainer on 5/8
 - Bag filter housing failure (line 2)
 - Attempt to repair

Week of Sun 5/12 - Sat 5/18

- Operating on TF Zone 5
 - SVE active

Review Ave. LNAPL Recovery System Monthly Summary May 2019

- Blow down carbon vessels on 5/13
- Disconnect & remove bag filter housings on 5/13 & 5/14
- Carbon changeout (both vessels) on 5/14
- Flushed TF product line to the separator on 5/14
- Sealed TF-3C & 4C riser pipes on 5/14
- Pick up four bag filter replacement housing units on 5/14
- Clean effluent flow meter on 5/14
- OWS cleanout on 5/15
- Replace bag filter housing units on 5/15
- Piping adjustments on 5/15
- Troubleshoot Magmeter issue on 5/15
- Repair hoses on 5/15

Week of Sun 5/19 - Sat 5/25

- Operating on TF Zone 5
 - SVE active
- Changed bag filters and cleaned strainers on 5/20
- Water removal from T-801 and T-1401 on 5/20
- Backwash carbon on 5/20
 - o LGAC-1101 & 1102 running in parallel
- Processed water from totes on 5/20
- Disposed of two 55-gal bags of MSW (non-haz) waste on 5/20

Week of Sun 5/26 – Fri 5/31

- Operating on TF Zone 5, switched to TF Zone 4 on 5/29
 - SVE active
- Water removal from T-801 and T-1401 on 5/29
- Backwashed carbon on 5/29
 - Switch active vessel to LGAC-1101 only
- Changed bag filters and cleaned strainers on 5/29
- Processed water from totes on 5/29

VER/TF System Production Results:

- TF System uptime for May was 558.67 Actual Run Hours out of 694.12 Available Hours, or 80.49%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 5/8 due to bag filter housing unit failure; restarted on 5/15 after OWS cleanout, carbon changeout and housing unit replacement.
- Approximately 431 GAL Product Recovered in May from Zone 5 (some Zone 4)
 - Average TF Product recovery rate for May was 13.9 GPD (calendar days), or 18.5 GPD (run days) accounting for system downtime.
 - Product recovery low due to high water recovery/removal
- Approximately 294,639 GAL Product Recovered Total since system start-up.
- 0 GAL Product from T-801 disposed of offsite in May.
 - 295,078 GAL Product from T-801 disposed of Total since start-up.
- Approximately 118,990 GAL Effluent discharged in May
 - Average 3,838 GPD at a rate of 5,112 GPD considering allowable downtime.
- 9,794,656 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 0.36%

<u>Review Ave. LNAPL Recovery System Monthly Summary</u> <u>May 2019</u>

Skimmer System Production Results:

- Skimmer System uptime for May was 248 Actual Run Hours out of 248 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately -273 GAL Product Recovered in May.
 - Average Skimmer Product recovery rate for May was -8.8 GPD (calendar days), or -8.8 GPD (run days) accounting for system downtime.
 - Negative product recovery due to high water recovery and subsequent removal from tanks
- Approximately 90,265 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in May.
 - 87,498 GAL Product from T-1401 disposed of Total since start-up.

Total Product Recovery System Results:

- 158 GAL Product recovered in May.
 - Average Product recovery rate for May was 5.1 GPD.
- 384,904 GAL Product Recovered Total since system start-up.
- 0 GAL Product shipped off-site for disposal in May (see attached summary table)
- 382,576 GAL Product shipped off-site for disposal since system start-up as of the end of May 2019 (see attached summary table)
- 780,280 kWh Energy Consumption Total from system start-up through May 2019
- 11,994 kWh Energy Consumption for May
- 76.042 kWh/GAL Average Energy Consumed per GAL of Product Recovered for May

Review Ave. LNAPL Recovery System Monthly Summary June 2019

Work completed in June 2019:

Week of Sat 6/1 - Sat 6/8

- O&M site visit on 6/5
- Eight 55-gal drums of spent bag filters & PPE disposed of on 6/5
- Additional LNAPL monitoring well gauging event on 6/6

<u>Week of Sun 6/9 – Sat 6/15</u>

• O&M site visit on 6/12

Week of Sun 6/16 – Sat 6/22

- O&M site visits on 6/17, 6/19 and 6/20
- Two bag filter housing units replaced by Aarco on 6/19 & 6/20

Week of Sun 6/23 - Sun 6/30

- O&M site visits on 6/25 and 6/27
- Monthly LNAPL monitoring well gauging event on 6/28

O&M Activities:

Week of Sat 6/1 - Sat 6/8

- Operating on TF Zone 4
 - SVE inactive
- Transferred chemicals to drums on 6/5
- Changed bag filters and cleaned y-strainer on 6/5
- Water removal from T-801 and T-1401 on 6/5
- Backwashed carbon on 6/5
- Processed water from totes on 6/5
- Refilled eyewash stations on 6/5

Week of Sun 6/9 - Sat 6/15

- Operating on TF Zone 3 & 4
 - SVE inactive
- Backwashed carbon on 6/12
- Processed water from totes on 6/12
- Belt skimmer maintenance on 6/12
- Diaphragm (product transfer) pump maintenance on 6/12
- Changed bag filters and cleaned y-strainer on 6/12

Week of Sun 6/16 - Sat 6/22

- Operating on TF Zones 3 & 4 until 6/20
- Switched to TF Zones 4 & 5 on 6/20
- Changed bag filters on 6/17
- Backwashed carbon on 6/17
- Water removal from T-801 and T-1401 on 6/19
- Replaced FIT-701 influent flow meter on 6/19
- Replaced diaphragm (product transfer) pump on 6/19
- Cleaned TF pumps 3B, 3C, 4A, 4B and 5C on 6/19
- Replaced bag filter units and lines on 6/19 and 6/20
- Setup biocide pump on 6/20
- Installed new TF pumps on 6/20

Review Ave. LNAPL Recovery System Monthly Summary June 2019

Week of Sun 6/23 – Sun 6/30

- Operating on TF Zones 4 & 5
 - Added Zone 1 on 6/28
- Continued cleaning, installing and testing new TF pumps on 6/25
- Repair system flowmeter on 6/25
- SVE duct repair on 6/25
- Troubleshoot and repair belt skimmer on 6/25
- Repaired product transfer pump on 6/27
- Flush and repair line to product pump on 6/27
- Remove, clean and repair injection quill on 6/27

VER/TF System Production Results:

- TF System uptime for June was 576.03 Actual Run Hours out of 659.26 Available Hours, or 87.38%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 6/12 due to clogged bag filters; restarted on same day after carbon backwash and bag filter changeout
 - System shut down on 6/15 due to clogged bag filters; restarted on 6/17 after carbon backwash and bag filter changeout
 - System shut down on 6/18 due to high water level in T-801. System down for extended maintenance until 6/20.
 - System shut down on 6/27 due to high water level alarm in OWS and restarted same day following product transfer pump repairs.
- Approximately 1,446 GAL Product Recovered in June from Zones 3, 4, 5 (and some Zone 1)
 - Average TF Product recovery rate for June was 48.2 GPD (calendar days), or 60.2 GPD (run days) accounting for system downtime.
- Approximately 296,085 GAL Product Recovered Total since system start-up.
- 0 GAL Product from T-801 disposed of offsite in June.
 - 295,078 GAL Product from T-801 disposed of Total since start-up.
- Approximately 246,270 GAL Effluent discharged in June
 - Average 8,209 GPD at a rate of 10,260 GPD considering allowable downtime.
- 10,040,927 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 0.59%

Skimmer System Production Results:

- Skimmer System uptime for June was 240 Actual Run Hours out of 240 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 1,246 GAL Product Recovered in June.
 - Average Skimmer Product recovery rate for June was 41.5 GPD (calendar days), or 41.5 GPD (run days) accounting for system downtime.
- Approximately 91,512 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in June.
 - 87,498 GAL Product from T-1401 disposed of Total since start-up.

Total Product Recovery System Results:

• 2,692 GAL Product recovered in June.

Review Ave. LNAPL Recovery System Monthly Summary June 2019

- Average Product recovery rate for June was 89.7 GPD.
- 387,597 GAL Product Recovered Total since system start-up.
- 0 GAL Product shipped off-site for disposal in June (see attached summary table)
- 382,576 GAL Product shipped off-site for disposal since system start-up as of the end of June 2019 (see attached summary table)
- 789,331 kWh Energy Consumption Total from system start-up through June 2019
- 9,051 kWh Energy Consumption for June
- 3.362 kWh/GAL Average Energy Consumed per GAL of Product Recovered for June

Review Ave. LNAPL Recovery System Monthly Summary July 2019

Work completed in July 2019:

<u>Week of Mon 7/1 – Sat 7/6</u>

- O&M site visit on 7/2
- Reinstalled belt skimmer on OWS on 7/2

<u>Week of Sun 7/7 – Sat 7/13</u>

- O&M site visits on 7/8 and 7/11
- Sampled T-801 and T-1401 for PCB analysis on 7/8
 - 41 mg/kg Total PCBs in T-801
 - o 6.6 mg/kg Total PCBs in T-1401
- Semi-annual groundwater sampling event on 7/10
- LNAPL monitoring well gauging event on 7/11

Week of Sun 7/14 – Sat 7/20

- O&M site visits on 7/14, 7/16 and 7/17
- Product load-out from T-801 on 7/16
 - o 5,170 GAL product removed (offsite) according to Bill of Landing

Week of Sun 7/21 – Sat 7/27

- O&M site visit on 7/24
- Monthly LNAPL monitoring well gauging event on 7/26

Week of Sun 7/28 – Wed 7/31

• O&M site visit on 7/31

O&M Activities:

Week of Mon 7/1 - Sat 7/6

- Operating on TF Zone 4 & 5
 - SVE inactive
- Changed bag filters and cleaned basket strainer on 7/2
- Water removal from T-801 and T-1401 on 7/2
- Backwashed carbon on 7/2
- Chemical delivery on 7/2
- Cleaned TF pumps on 7/2

Week of Sun 7/7 - Sat 7/13

- Operating on TF Zone 4 & 5
 - SVE inactive
- Sampled LNAPL tanks for PCB analysis on 7/8
- Backwashed carbon on 7/8
- Clean check valves on transfer pump on 7/8
- Processed water from totes on 7/8
- Changed bag filters and cleaned basket strainer on 7/8
- Organized control room on 7/8
- Switched active carbon vessel to LGAC-1102 on 7/9

Week of Sun 7/14 - Sat 7/20

- Operating on TF Zones 4 & 5
 - SVE inactive
- Onsite to restore communications with system on 7/14 due to blackouts previous day

Review Ave. LNAPL Recovery System Monthly Summary July 2019

- Onsite for product load-out from T-801 on 7/16
- Cut up washed chemical drums and loaded into dumpster with other site trash on 7/16
- Changed bag filters and cleaned basket strainer on 7/17
- Backwashed carbon on 7/17
- Processed water from totes on 7/17
- Installed and testing TF pumps on 7/17

Week of Sun 7/21 – Sat 7/27

- Operating on TF Zones 4 & 5 until 7/24
- Switched to TF Zones 1 & 2 on 7/24
- Continued cleaning, installing and testing TF pumps on 7/24
- Changed bag filters and cleaned basket strainer on 7/24
- Backwashed carbon on 7/24
- Transferred chemicals to drums on 7/24

Week of Sun 7/28 – Wed 7/31

- Operating on TF Zones 1 & 2 until 7/30
- Switched to TF Zones 2 & 3 on 7/30
- Continued cleaning, installing and testing new TF pumps on 7/31
- Changed bag filters and cleaned basket strainer on 7/31
- Backwashed carbon on 7/31
- Water removal from T-1401 on 7/31

- TF System uptime for July was 679.88 Actual Run Hours out of 720.13 Available Hours, or 94.41%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 7/1 due to clogged product pump strainer; restarted on 7/2 following pump maintenance
 - System down on 7/8 for routine maintenance, on 7/16 for loadout and on 7/17 for routine maintenance
 - System shut down on 7/30 due clogged basket strainer; restarted 7/31 following maintenance.
- Approximately 3,365 GAL Product Recovered in July from Zones 4 & 5 (some from TF Zones 1, 2 & 3)
 - Average TF Product recovery rate for July was 108.6 GPD (calendar days), or 118.8 GPD (run days) accounting for system downtime.
- Approximately 299,450 GAL Product Recovered Total since system start-up.
- 5,170 GAL Product from T-801 disposed of offsite in July.
 - 300,248 GAL Product from T-801 disposed of Total since start-up.
- Approximately 254,873 GAL Effluent discharged in July
 - Average 8,222 GPD at an avg rate of 8,997 GPD considering allowable downtime.
- 10,295,800 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 1.32%

Review Ave. LNAPL Recovery System Monthly Summary July 2019

Skimmer System Production Results:

- Skimmer System uptime for July was 248 Actual Run Hours out of 248 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 579 GAL Product Recovered in July.
 - Average Skimmer Product recovery rate for July was 18.7 GPD (calendar days), or 18.7 GPD (run days) accounting for system downtime.
 - Low product recovery due to high water recovery/removal
- Approximately 92,901 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in July.
 - 87,498 GAL Product from T-1401 disposed of Total since start-up.

- 3,945 GAL Product recovered in July.
- Average Product recovery rate for July was 127.2 GPD.
- 391,541 GAL Product Recovered Total since system start-up.
- 5,170 GAL Product shipped off-site for disposal in July (see attached summary table)
- 387,746 GAL Product shipped off-site for disposal since system start-up as of the end of July 2019 (see attached summary table)
- 798,127 kWh Energy Consumption Total from system start-up through July 2019
- 8,796 kWh Energy Consumption for July
- 2.230 kWh/GAL Average Energy Consumed per GAL of Product Recovered for July

Review Ave. LNAPL Recovery System Monthly Summary August 2019

Work completed in August 2019:

Week of Thu 8/1 – Sat 8/3

• O&M site visit on 8/2

Week of Sun 8/4 - Sat 8/10

- O&M site visits on 8/5, 8/6 and 8/7
- Carbon change-out completed by Carbon Filtration Systems, Inc. on 8/6
- OWS cleanout by Allstate Power Vac, Inc on 8/7

<u>Week of Sun 8/11 – Sat 8/17</u>

- O&M site visits on 8/13, 8/14 and 8/16
- Product load-out from T-801 on 8/13
 - 4,964 GAL product removed (offsite) according to Bill of Lading
- Sampled T-801 and T-1401 for PCB analysis on 8/13
 - 9.94 mg/kg Total PCBs in T-801
 - No PCBs detected in T-1401
- 3Q 2019 Effluent Discharge Compliance Sampling completed 8/14

Week of Sun 8/18 - Sat 8/24

- O&M site visit on 8/19 and 8/21
- Monthly LNAPL monitoring well gauging event on 8/22

Week of Sun 8/25 - Sat 8/31

- O&M site visit on 8/29
- Product load-out from T-1401 on 8/29
 - 4,964 GAL product removed (offsite) according to Bill of Lading

O&M Activities:

Week of Thu 8/1 - Sat 8/3

- Operating on TF Zones 2 & 3 until 8/2
 - SVE inactive
 - Switched to TF Zones 1 & 2 on 8/2
- Cleaned basket strainer on 8/2
- Blow down carbon vessel LGAC-1101 on 8/2

<u>Week of Sun 8/4 – Sat 8/10</u>

- Operating on TF Zones 1 & 2
 - SVE inactive
- Processed water from totes on 8/5
- Blow down carbon vessel LGAC-1102 on 8/5
- Carbon change-out completed on 8/6
- OWS cleaning completed on 8/7
- Replaced product transfer pump on 8/7
- Cleaned effluent flow meter and replaced metering cartridge on 8/7
- Measured and reinstalled belt skimmer on 8/7
- Switched active carbon vessel to LGAC-1101 on 8/7
- Changed bag filters and cleaned strainers on 8/7

<u>Week of Sun 8/11 – Sat 8/17</u>

- Operating on TF Zones 1 & 2
 - SVE inactive

Review Ave. LNAPL Recovery System Monthly Summary August 2019

- Sampled LNAPL tanks for PCBs on 8/13
- Water removal from T-801 & T-1401 on 8/13
- Product load-out from T-801 on 8/13
- Replaced failed product transfer pump with old pump on 8/13
- Changed bag filters and cleaned strainers on 8/13
- Quarterly Effluent Compliance Sampling completed on 8/14
- Cleaned and replaced TF pumps on 8/14
- Switched active carbon vessel to LGAC-1102 on 8/14
- Replaced failed product transfer pump with another old pump on 8/16

Week of Sun 8/18 - Sat 8/24

- Operating on TF Zones 1 & 2
 - SVE inactive
- Water removal from T-801 & T-1401 on 8/19
- Replaced failed product transfer pump with new pump from Grainger on 8/19
- Pump installed on 8/19 failed the same day, replaced with new pump on 8/21
- Well gauging complete on 8/22

Week of Sun 8/25 – Sat 8/31

- Operating on TF Zones 1 & 2 until 8/28
 - SVE inactive
 - Switched to TF Zones 4 & 5 on 8/28
 - Switched to TF Zones 3, then 4 & 5 on 8/31
- Water removal from T-801 & T-1401 on 8/29
- Product load-out from T-1401 on 8/29
- Changed bag filters and cleaned strainers on 8/29
- Backwashed carbon on 8/29
- Replaced NAS hard drive #2 on 8/29

- TF System uptime for August was 489.12 Actual Run Hours out of 633.11 Available Hours, or 77.26%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 8/2 due to clogged basket strainer; restarted same day following cleanout and LGAC blowdown.
 - System down from 8/5 to 8/7 for carbon changeout (8/6) and OWS cleaning (8/7)
 - System shut down on 8/11 due to high level alarm in LNAPL Tank T-801; restarted 8/13 following product loadout from T-801.
 - System shut down on 8/15 via high product level alarm in OWS due to failed product transfer pump; restarted on 8/16 after replacing the product transfer pump. System shut down again on 8/16 due to high product level alarm in OWS day tank; restarted on 8/19 after replacing product transfer pump. New pump failed on 8/19 and the system was restarted on 8/21 after replacing with another new pump.
- Approximately 5,132 GAL Product Recovered in August from Zones 1 & 2 (some from TF Zones 3, 4 & 5)
 - Average TF Product recovery rate for August was 165.6 GPD (calendar days), or 251.8 GPD (run days) accounting for system downtime.
- Approximately 304,582 GAL Product Recovered Total since system start-up.
- 4,964 GAL Product from T-801 disposed of offsite in August.
 - 305,212 GAL Product from T-801 disposed of Total since start-up.

Review Ave. LNAPL Recovery System Monthly Summary August 2019

- Approximately 215,043 GAL Effluent discharged in August
 - Average 6,937 GPD at an avg rate of 10,552 GPD considering allowable downtime.
- 10,510,843 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 2.39%

Skimmer System Production Results:

- Skimmer System uptime for August was 248 Actual Run Hours out of 248 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 1,959 GAL Product Recovered in August.
 - Average Skimmer Product recovery rate for August was 63.2 GPD (calendar days), or 63.2 GPD (run days) accounting for system downtime.
- Approximately 94,050 GAL Product Recovered Total since start-up.
- 4,964 GAL Product from T-1401 disposed of offsite in August.
 - 92,462 GAL Product from T-1401 disposed of Total since start-up.

- 7,091 GAL Product recovered in August.
 - Average Product recovery rate for August was 228.7 GPD.
- 398,632 GAL Product Recovered Total since system start-up.
- 9,928 GAL Product shipped off-site for disposal in August (see attached summary table)
- 397,674 GAL Product shipped off-site for disposal since system start-up as of the end of August 2019 (see attached summary table)
- 806,661 kWh Energy Consumption Total from system start-up through August 2019
- 8,534 kWh Energy Consumption for August
- 1.204 kWh/GAL Average Energy Consumed per GAL of Product Recovered for August

Review Ave. LNAPL Recovery System Monthly Summary September 2019

Work completed in September 2019:

Week of Sun 9/1 - Sat 9/7

• O&M site visit on 9/4

Week of Sun 9/8 - Sat 9/14

• O&M site visit on 9/11

Week of Sun 9/15 – Sat 9/21

• O&M site visit on 9/18

Week of Sun 9/22 - Sat 9/28

- O&M site visits on 9/24, 9/25 and 9/27
- Monthly LNAPL monitoring well gauging event on 9/24, 9/25 and 9/27

<u>Week of Sun 9/29 – Mon 9/30</u>

- O&M site visit on 9/30
- Product load-out from T-801 on 9/30
 - o 4,857 GAL product removed (offsite) according to Bill of Lading

O&M Activities:

Week of Sun 9/1 – Sat 9/7

- Operating on TF Zones 1 & 2, 3 & 7, and 4 & 5
 - Zones 1 & 2 for 10 hrs/day
 - Zone 3 for 3.5 hrs/day, Zone 7 for 3.5 hrs/day beginning 9/4
 - Zones 4 & 5 for 10 hrs/day
- Replaced product transfer pump on 9/4
- Reset modem and camera on 9/4
- Changed bag filters and cleaned basket strainer on 9/4
- Backwashed carbon on 9/4
- TF Zone 7 vault/pump inspections on 9/4
- Processed water from totes on 9/4
- Chemical delivery on 9/4
- Transferred chemicals to drums on 9/4

Week of Sun 9/8 - Sat 9/14

- Operating on TF Zones 1 & 2, 3 & 7, and 4 & 5
 - Zones 1 & 2 for 10 hrs/day
 - o Zones 3 & 7 for 3.5 hrs/day
 - Zones 4 & 5 for 10 hrs/day
- Repaired TF-7F vault leak on 9/11
- Skimmer vault/pump inspections on 9/11
- Changed bag filters and cleaned basket strainer on 9/11
- Switched active carbon vessel to LGAC-1102 on 9/11

Week of Sun 9/15 – Sat 9/21

- Operating on TF Zones 1 & 2, 3 & 7, and 4 & 5
 - Zones 1 & 2 for 10 hrs/day
 - Zones 3 & 7 for 3.5 hrs/day
 - Zones 4 & 5 for 10 hrs/day
- Skimmer vault/pump inspections & cleaning on 9/18
- Backwashed carbon on 9/18

Review Ave. LNAPL Recovery System Monthly Summary September 2019

- Changed bag filters and cleaned basket strainer on 9/18
- Housekeeping in office enclosure completed on 9/18
- Processed water from totes on 9/18

Week of Sun 9/22 - Sat 9/28

- Operating on TF Zones 1 & 2, 3 & 7, and 4 & 5
 - Zones 1 & 2 for 10 hrs/day
 - Zones 3 & 7 for 3.5 hrs/day, Zone 7 off after 9/25
 - Zones 4 & 5 for 10 hrs/day
- Monthly well gauging on 9/24
- Backwashed carbon on 9/24
- Labeled site equipment & storage areas on 9/24
- TF vault/pump inspections & cleaning on 9/24 and 9/25
- General site and enclosure housekeeping performed on 9/24 and 9/25
- Monthly well gauging continued on 9/25
- Skimmer vault/pump inspections & cleaning on 9/25
- Water removal from T-801 on 9/25
- Processed water from totes on 9/25
- Cleaned basket strainer on 9/25
- Patched fractured asphalt next to SVE container on 9/25
- Viscosity testing of product in OWS day tank completed on 9/25
- Monthly well gauging completed on 9/27

<u>Week of Sun 9/29 – Mon 9/30</u>

- Operating on TF Zones 1 & 2, 3, and 4 & 5
 - Zones 1 & 2 for 10 hrs/day
 - Zone 3 for 3.5 hrs/day
 - Zones 4 & 5 for 10 hrs/day
- Product load-out from T-801 on 9/30

- TF System uptime for September was 612.27 Actual Run Hours out of 654.91 Available Hours, or 93.49%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System timers set to run 23.5 hrs/day (12:30 am to midnight)
 - System shut down on 9/23 due to low air pressure alarm; restarted on 9/24.
- Approximately 3,289 GAL Product Recovered in September from Zones 1, 2, 3, 4, 5 and 7
 - Average TF Product recovery rate for September was 109.6 GPD (calendar days), or 128.9 GPD (run days) accounting for system downtime.
- Approximately 307,871 GAL Product Recovered Total since system start-up.
- 4,857 GAL Product from T-801 disposed of offsite in September.
 - 310,069 GAL Product from T-801 disposed of Total since start-up.
- Approximately 235,569 GAL Effluent discharged in September
 - Average 7,852 GPD at an avg rate of 9,234 GPD considering downtime.
- 10,746,412 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 1.40%

Review Ave. LNAPL Recovery System Monthly Summary September 2019

Skimmer System Production Results:

- Skimmer System uptime for September was 240 Actual Run Hours out of 240 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 3,605 GAL Product Recovered in September.
 - Average Skimmer Product recovery rate for September was 120.2 GPD (calendar days), or 120.2 GPD (run days) accounting for system downtime.
- Approximately 97,654 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in September.
 - 92,462 GAL Product from T-1401 disposed of Total since start-up.

- 6,893 GAL Product recovered in September.
 - Average Product recovery rate for September was 229.8 GPD.
- 405,526 GAL Product Recovered Total since system start-up.
- 4,857 GAL Product shipped off-site for disposal in September (see attached summary table)
- 402,531 GAL Product shipped off-site for disposal since system start-up as of the end of September 2019 (see attached summary table)
- 817,120 kWh Energy Consumption Total from system start-up through September 2019
- 10,459 kWh Energy Consumption for September
- 1.517 kWh/GAL Average Energy Consumed per GAL of Product Recovered for September

Review Ave. LNAPL Recovery System Monthly Summary October 2019

Work completed in October 2019:

Week of Tue 10/1 - Sat 10/5

- O&M site visit on 10/3
- PRP Group site visit on 10/4

Week of Sun 10/6 - Sat 10/12

- O&M site visit on 10/9
- Product load-out from T-1401 on 10/9
 - 5,068 GAL product removed (offsite) according to Bill of Lading

Week of Sun 10/13 - Sat 10/19

- O&M site visits on 10/15, 10/17 and 10/18
- Product load-out from T-801 on 10/17
 - o 4,964 GAL product removed (offsite) according to Bill of Lading

Week of Sun 10/20 - Sat 10/26

- O&M site visits on 10/21, 10/23 and 10/24
- Monthly LNAPL monitoring well gauging event on 10/24
- LNAPL interface tension sampling on 10/24

Week of Sun 10/27 - Thu 10/31

• O&M site visits on 10/29 and 10/30

O&M Activities:

<u>Week of Tue 10/1 – Sat 10/5</u>

- Operating on TF Zones 1 & 2, 3, 4 & 5 and 7
 - Zones 1 & 2 for 10 hrs/day
 - Zone 3 for 3.5 hrs/day
 - Zones 4 & 5 for 10 hrs/day
 - Zone 7 intermittently
 - $\circ \quad \text{SVE active} \quad$
- Changed bag filters and cleaned basket strainer on 10/3
- Replaced bag filter unit lids on 10/3
- Viscosity testing of product in OWS day tank on 10/3
- Backwashed carbon on 10/3
- Labeled site facilities, equipment and storage areas on 10/3
- Processed water from totes on 10/3
- Removed garbage from site on 10/3

Week of Sun 10/6 - Sat 10/12

- Operating on TF Zones 1 & 2, 3, 4 & 5 and 7
 - Zones 1 & 2 for 10 hrs/day
 - Zone 3 for 3.5 hrs/day
 - Zones 4 & 5 for 10 hrs/day
 - Zone 7 continuously beginning on 10/9
 - o SVE active
- Product load-out from T-1401 on 10/9
- Skimmer pump maintenance on 10/9
- Changed bag filters and cleaned basket strainer on 10/9
- Backwashed carbon on 10/9

Review Ave. LNAPL Recovery System Monthly Summary October 2019

- Processed water from totes on 10/9
- Re-set tube skimmer in OWS on 10/9
- Viscosity testing of product in OWS day tank on 10/9

Week of Sun 10/13 - Sat 10/19

- Operating on TF Zones 1 & 2, 3, 4 & 5 and 7
 - Zones 1 & 2 for 10 hrs/day
 - Zone 3 for 3.5 hrs/day
 - Zones 4 & 5 for 10 hrs/day
 - \circ Zone 7 continuously
 - o SVE active
- Changed bag filters and cleaned basket strainer on 10/15
- Replaced o-ring on LGAC influent hose on 10/15
- Skimmer pump maintenance on 10/15
- Backwashed carbon on 10/15
- Processed water from totes on 10/15
- Viscosity testing of product in OWS day tank on 10/15
- Water removal from T-801 on 10/15
- Product load-out from T-801 on 10/17
- TF pump cleaning on 10/17
- Cleaned basket strainer on 10/18
- Repaired leaking skimmer pump air release valve on 10/18

Week of Sun 10/20 - Sat 10/26

- Operating on TF Zone 5 until 10/23
 - Switched to TF Zone 3 on 10/23
 - o SVE active
- Changed bag filters and cleaned basket strainer on 10/23
- Backwashed carbon on 10/23
- Processed water from totes on 10/23
- Viscosity testing of product in OWS day tank on 10/23
- Cleaned effluent tank T-703 float switch on 10/23
- TF vault inspections / maintenance on 10/23
- Monthly well gauging on 10/24

Week of Sun 10/27 – Thu 10/31

- Operating on TF Zone 3 until 10/29
 - Switched to Zones 4 & 5 on 10/30
 - Switched to Zone 3 on 10/31
- TF vault / pump inspections & maintenance on 10/29
- Changed bag filters and cleaned basket strainer on 10/30
- Drained LGAC-1101 on 10/30
- Backwashed LGAC-1102 on 10/30
- Viscosity testing of product in OWS day tank on 10/30

- TF System uptime for October was 551.25 Actual Run Hours out of 693.94 Available Hours, or 79.44%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System timers set to run 23.5 hrs/day until 10/10, then 24 hrs/day

Review Ave. LNAPL Recovery System Monthly Summary October 2019

- System shut down on 10/13 due to high level alarm in T-801; restarted on 10/15 after water removal from T-801.
- System shut down on 10/15 due to high level alarm in T-801; restarted on 10/17 after product load-out from T-801.
- System shut down on 10/18 due to high level alarm in OWS, restarted same day after cleaning basket strainer.
- System shut down on 10/19 due to high level alarm in OWS, restarted 10/21 after resolving.
- Approximately 7,273 GAL Product Recovered in October from Zones 1, 2, 3, 4, 5 and 7
 - Average TF Product recovery rate for October was 234.6 GPD (calendar days), or 316.6 GPD (run days) accounting for system downtime.
- Approximately 315,144 GAL Product Recovered Total since system start-up.
- 4,964 GAL Product from T-801 disposed of offsite in October.
- 315,033 GAL Product from T-801 disposed of Total since start-up.
- Approximately 201,640 GAL Effluent discharged in October
 - Average 6,505 GPD at an avg rate of 8,779 GPD considering downtime.
- 10,948,052 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 3.61%

Skimmer System Production Results:

- Skimmer System uptime for October was 248 Actual Run Hours out of 248 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 2,341 GAL Product Recovered in October.
 - Average Skimmer Product recovery rate for October was 75.5 GPD (calendar days), or 75.5 GPD (run days) accounting for system downtime.
- Approximately 99,995 GAL Product Recovered Total since start-up.
- 5,068 GAL Product from T-1401 disposed of offsite in October.
 - 97,530 GAL Product from T-1401 disposed of Total since start-up.

General Skimmer System Comments:

- 9,613 GAL Product recovered in October.
 - Average Product recovery rate for October was 310.1 GPD.
- 415,139 GAL Product Recovered Total since system start-up.
- 10,032 GAL Product shipped off-site for disposal in October (see attached summary table)
- 412,563 GAL Product shipped off-site for disposal since system start-up as of the end of October 2019 (see attached summary table)
- 833,663 kWh Energy Consumption Total from system start-up through October 2019
- 16,543 kWh Energy Consumption for October
- 1.721 kWh/GAL Average Energy Consumed per GAL of Product Recovered for October

Review Ave. LNAPL Recovery System Monthly Summary November 2019

Work completed in November 2019:

Week of Fri 11/1 – Sat 11/9

- O&M site visit on 11/6, 11/7 and 11/8
- VGAC change-out by Carbon Filtration Systems, Inc. on 11/7
- OWS cleanout by Allstate Power Vac on 11/8

Week of Sun 11/10 – Sat 11/16

- O&M site visits on 11/11 and 11/14
- 4Q 2019 Effluent Discharge Compliance Sampling completed 11/14

Week of Sun 11/17 - Sat 11/23

• O&M site visits on 11/20 and 11/22

Week of Sun 11/24 – Sat 11/30

- O&M site visits on 11/26 and 11/27
- Monthly LNAPL monitoring well gauging event on 11/26
- Product load-out from T-801 on 11/27
 - 4,406 GAL product removed (offsite) according to Bill of Lading

O&M Activities:

Week of Fri 11/1 – Sat 11/9

- Operating on TF Zone 3 until 11/8
 - Switched to TF Zones 4 & 5 on 11/8
- ARV oil cleanup on 11/6
- Change bag filters on 11/6
- TF pump repairs on 11/6
- Blow down VGAC unit on 11/6
- Prep for OWS cleanout on 11/6
- VGAC change-out on 11/7
- Reconnect and repair hoses on 11/7
- Service blowers and filters on 11/7
- OWS cleanout on 11/8
- Cleaned basket strainer on 11/8
- Drained line from ARV connected to T-701 on 11/8
- T-801 product composition testing on 11/8
- Water removal from T-801 on 11/8

Week of Sun 11/10 - Sat 11/16

- Operating on TF Zones 4 & 5 until 11/14
 - Switched to TF Zones 2, 3 & 5 on 11/14
- Inspect & reinstall flow meter on 11/11
- 4Q 2019 Effluent Discharge Compliance Sampling on 11/14
- TF vault inspections on 11/14
- Changed bag filters on 11/14
- Backwashed carbon on 11/14
 - Active carbon vessel switched to LGAC-1102
- Processed water from totes on 11/14
- Viscosity testing of product in OWS day tank on 11/14
- T-801 product composition testing on 11/14
- Set up belt skimmer timer on 11/14

Review Ave. LNAPL Recovery System Monthly Summary November 2019

Week of Sun 11/17 – Sat 11/23

- Operating on TF Zones 2, 3 & 5 until 11/22
- Switched to TF Zones 3 & 5 on 11/22
- Onsite on 11/20 for O&M
- Water removal from T-801 on 11/22
- Cleaned basket strainer on 11/22

Week of Sun 11/24 – Sat 11/30

•

- Operating on TF Zones 3 & 5 until 11/26
 - Operating on TF Zones 3, 4 & 5 on 11/26
 - Switched to TF Zone 4 on 11/27
 - Monthly well gauging on 11/26
- Changed bag filters and cleaned basket strainer on 11/26
- Backwashed carbon on 11/26
- Water removal from T-801 on 11/26
- Product load-out from T-801 on 11/27
- Replaced NAS drive #2 on 11/27

VER/TF System Production Results:

- TF System uptime for November was 610.87 Actual Run Hours out of 642.74 Available Hours, or 95.04%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 11/6 in preparation for OWS cleanout; restarted on 11/8 following OWS cleanout.
 - System shut down on 11/21 due to high level alarm in T-801; restarted on 11/22 after water removal from T-801.
 - System shut down on 11/26 (AM) due to high level alarm in T-801; restarted same day after water removal from T-801.
 - System shut down on 11/26 (PM) due to high level alarm in T-801; restarted on 11/27 after product load-out from T-801.
- Approximately 3,738 GAL Product Recovered in November from Zones 2, 3, 4, and 5
 - Average TF Product recovery rate for November was 124.6 GPD (calendar days), or 146.9 GPD (run days) accounting for system downtime.
- Approximately 318,882 GAL Product Recovered Total since system start-up.
- 4,406 GAL Product from T-801 disposed of offsite in November.
 - 319,439 GAL Product from T-801 disposed of Total since start-up.
 - Approximately 123,764 GAL Effluent discharged in November
 - Average 4,126 GPD at an avg rate of 4,863 GPD considering downtime.
- 11,071,816 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 3.02%

Skimmer System Production Results:

- Skimmer System uptime for November was 240 Actual Run Hours out of 240 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 2,485 GAL Product Recovered in November.
 - Average Skimmer Product recovery rate for November was 82.8 GPD (calendar days), or 82.8 GPD (run days) accounting for system downtime.

Review Ave. LNAPL Recovery System Monthly Summary November 2019

- Approximately 102,479 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in November.
 - 97,530 GAL Product from T-1401 disposed of Total since start-up.

- 6,222 GAL Product recovered in November.
 - Average Product recovery rate for November was 207.4 GPD.
- 421,361 GAL Product Recovered Total since system start-up.
- 4,406 GAL Product shipped off-site for disposal in November (see attached summary table)
- 416,969 GAL Product shipped off-site for disposal since system start-up as of the end of November 2019 (see attached summary table)
- 843,589 kWh Energy Consumption Total from system start-up through November 2019
- 9,926 kWh Energy Consumption for November
- 1.595 kWh/GAL Average Energy Consumed per GAL of Product Recovered for November

Review Ave. LNAPL Recovery System Monthly Summary December 2019

Work completed in December 2019:

Week of Sun 12/1 - Sat 12/7

• O&M site visit on 12/4

Week of Sun 12/8 – Sat 12/14

• O&M site visit on 12/11

Week of Sun 12/15 - Sat 12/21

- Semi-annual groundwater sampling event on 12/16 through 12/19
- O&M site visit on 12/20

Week of Sun 12/22 - Tue 12/31

- O&M site visits on 12/23 and 12/27
- Monthly LNAPL monitoring well gauging event on 12/23

O&M Activities:

Week of Sun 12/1 - Sat 12/7

- Operating on TF Zone 4 until 12/4
 - Switched to TF Zone 5 on 12/4
- Viscosity testing of product in OWS day tank on 12/4
- Water removal from T-1401 on 12/4
- Change bag filters and cleaned basket strainer on 12/4
- Backwashed carbon on 12/4
- Chemical delivery on 12/4
- Transferred chemicals to drums on 12/4

Week of Sun 12/8 - Sat 12/14

- Operating on TF Zone 5 until 12/11
 - Switched to TF Zones 3, 4 & 5 on 12/11
- Cleaned transfers pipes between T-701 and OWS-701 and flushed with water on 12/11
- Change bag filters and cleaned basket strainer on 12/11
- Backwashed carbon on 12/11
- Processed water from totes on 12/11
- Water removal from T-801 & T-1401 on 12/11

Week of Sun 12/15 - Sat 12/21

- Operating on TF Zones 3, 4 & 5 until 12/17
 - Switched to TF Zone 4 on 12/17
 - Switched to TF Zones 4 & 5 on 12/19
 - Switched to TF Zones 3 & 6 on 12/20
 - Groundwater sampling 12/16 through 12/19
- O&M on 12/20

Week of Sun 12/22 – Tue 12/31

- Operating on TF Zones 3 & 6
- O&M on 12/23
- Water removal from T-1401 on 12/23
- Monthly well gauging on 12/23
- Changed bag filters and cleaned basket strainer on 12/27
- Repair belt skimmer on 12/27

Review Ave. LNAPL Recovery System Monthly Summary December 2019

• Backwashed carbon on 12/27

VER/TF System Production Results:

- TF System uptime for December was 685.22 Actual Run Hours out of 723.63 Available Hours, or 94.69%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 12/3 due to high product alarm in OWS; restarted on 12/4 after water removal from OWS day tank.
 - System shut down on 12/17 due to high water level alarm in OWS; restarted on same day.
 - System shut down on 12/19 due to low air pressure alarm; restarted same day.
 - System shut down on 12/20 due to low air pressure alarm; restarted same day.
- Approximately 1,549 GAL Product Recovered in December from Zones 3, 4, 5 and 6.
 - Average TF Product recovery rate for December was 50 GPD (calendar days), or 54.3 GPD (run days) accounting for system downtime.
- Approximately 320,431 GAL Product Recovered Total since system start-up.
- 0 GAL Product from T-801 disposed of offsite in December.
 - 319,439 GAL Product from T-801 disposed of Total since start-up.
- Approximately 153,829 GAL Effluent discharged in December
 Average 4,962 GPD at an avg rate of 5,388 GPD considering downtime.
- 11,225,645 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 1.01%

Skimmer System Production Results:

- Skimmer System uptime for December was 248 Actual Run Hours out of 248 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 703 GAL Product Recovered in December.
 - Average Skimmer Product recovery rate for December was 22.7 GPD (calendar days), or 22.7 GPD (run days) accounting for system downtime.
- Approximately 103,183 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in December.
 - 97,530 GAL Product from T-1401 disposed of Total since start-up.

- 2,253 GAL Product recovered in December.
 - Average Product recovery rate for December was 72.7 GPD.
- 423,614 GAL Product Recovered Total since system start-up.
- 0 GAL Product shipped off-site for disposal in December (see attached summary table)
- 416,969 GAL Product shipped off-site for disposal since system start-up as of the end of December 2019 (see attached summary table)
- 856,300 kWh Energy Consumption Total from system start-up through December 2019
- 12,711 kWh Energy Consumption for December
- 5.643 kWh/GAL Average Energy Consumed per GAL of Product Recovered for December

Review Ave. LNAPL Recovery System Monthly Summary January 2020

Work completed in January 2020:

Week of Wed 1/1 - Sat 1/4

• O&M site visit on 1/3

Week of Sun 1/5 - Sat 1/11

• O&M site visit on 1/8

Week of Sun 1/12 – Sat 1/18

• O&M site visit on 1/15

Week of Sun 1/19 – Sat 1/25

- O&M site visit on 1/22
- Air compressor refrigerated dryer inspection on 1/22 by Murlynn Air Compressor Corp.
- Monthly LNAPL monitoring well gauging event on 1/24

<u>Week of Sun 1/26 – Fri 1/31</u>

- O&M site visit on 1/29
- Product load-out from T-1401 on 1/29
 - o 4,954 GAL product removed (offsite) according to Bill of Landing

O&M Activities:

<u>Week of Wed 1/1 – Sat 1/4</u>

- Operating on TF Zones 3 & 6 until 1/3
 - Switched to TF Zones 1, 2 & 3 on 1/3
- Water removal from T-1401 on 1/3
- Changed bag filters and cleaned basket strainer on 1/3
- Backwashed carbon on 1/3
- Processed water from totes on 1/3

Week of Sun 1/5 - Sat 1/11

- Operating on TF Zones 1, 2 & 3 until 1/8
 - Switched to TF Zones 1, 2 & 4 on 1/8
- Changed bag filters and cleaned basket strainer on 1/8
- Changed active carbon vessel to LGAC-1101 on 1/8
- Processed water from totes on 1/8
- TF-4 lines inspection on 1/8
- Viscosity testing of product in OWS day tank on 1/8

Week of Sun 1/12 - Sat 1/18

- Operating on TF Zones 1, 2 & 4
- Changed bag filters and cleaned basket strainer on 1/15
- Backwashed carbon on 1/15
- Viscosity testing of product in OWS day tank on 1/15
- Water removal from T-801 & T-1401 on 1/15
- Adjusted skimmer pipe in OWS tank to capture product on 1/15
- Transferred chemicals to drums on 1/15

Week of Sun 1/19 – Sat 1/25

- Operating on TF Zones 4 & 5 until 1/24
 - Switched to TF Zones 3, 4, 5 & 6 on 1/24
- Water removal from T-801 on 1/22

Review Ave. LNAPL Recovery System Monthly Summary January 2020

- Changed bag filters and cleaned basket strainer on 1/22
- OWS 703 high float shaft cleaned on 1/22
- Viscosity testing of product in OWS day tank on 1/22
- Processed water from totes on 1/22
- Air compressor refrigerated dryer inspection on 1/22
- Monthly well gauging on 1/24

Week of Sun 1/26 – Fri 1/31

- Operating on TF Zones 3, 4, 5 & 6 until 1/29
 - Switched to TF Zones 2, 3, 4 & 5 on 1/29
- Product load-out from T-1401 on 1/29
- Water removal from T-801 on 1/29
- Changed bag filters and cleaned basket strainer on 1/29
- Viscosity testing of product in OWS day tank on 1/29
- Processed water from totes on 1/29
- Transferred chemicals to drums on 1/29

VER/TF System Production Results:

- TF System uptime for January was 567.13 Actual Run Hours out of 729.69 Available Hours, or 77.72%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 1/15 due to high water alarm in OWS; restarted on 1/22 after water removal from OWS day tank.
- Approximately 254 GAL Product Recovered in January from Zones 1 through 6.
 - Average TF Product recovery rate for January was 8.2 GPD (calendar days), or 10.8 GPD (run days) accounting for system downtime.
 - Low recovery due to high water recovery, system downtime and belt skimmer failure
- Approximately 320,685 GAL Product Recovered Total since system start-up.
- 0 GAL Product from T-801 disposed of offsite in January.
 - 319,439 GAL Product from T-801 disposed of Total since start-up.
- Approximately 225,311 GAL Effluent discharged in January.
 - Average 7,268 GPD at an avg rate of 9,535 GPD considering downtime.
- 11,450,956 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 0.11%

Skimmer System Production Results:

- Skimmer System uptime for January was 248 Actual Run Hours out of 248 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 902 GAL Product Recovered in January.
 - Average Skimmer Product recovery rate for January was 29.1 GPD (calendar days), or 29.1 GPD (run days) accounting for system downtime.
- Approximately 104,084 GAL Product Recovered Total since start-up.
- 4,954 GAL Product from T-1401 disposed of offsite in January.
 - 102,484 GAL Product from T-1401 disposed of Total since start-up.

Review Ave. LNAPL Recovery System Monthly Summary January 2020

- 1,156 GAL Product recovered in January.
 - Average Product recovery rate for January was 37.3 GPD.
- 424,770 GAL Product Recovered Total since system start-up.
- 4,954 GAL Product shipped off-site for disposal in January (see attached summary table)
- 421,923 GAL Product shipped off-site for disposal since system start-up as of the end of January 2020 (see attached summary table)
- 868,547 kWh Energy Consumption Total from system start-up through January 2020
- 12,247 kWh Energy Consumption for January
- 10.595 kWh/GAL Average Energy Consumed per GAL of Product Recovered for January

Review Ave. LNAPL Recovery System Monthly Summary February 2020

Work completed in February 2020:

Week of Sat 2/1 - Sat 2/8

O&M site visit on 2/6

Week of Sun 2/9 - Sat 2/15

- O&M site visit on 2/11, 2/12 & 2/13
- OWS cleanout by Allstate Power Vac, Inc on 2/12
- Carbon change-out completed by Carbon Filtration Systems, Inc. on 2/13
- Sampled T-801 and T-1401 for PCB analysis on 2/13
 - o 7.42 mg/kg Total PCBs in T-801
 - No PCBs detected in T-1401

Week of Sun 2/16 – Sat 2/22

- O&M site visits on 2/19 & 2/20
- 1Q 2020 Effluent Discharge Compliance Sampling completed 2/20
- Monthly LNAPL monitoring well gauging event on 2/20
- Product load-out from T-801 on 2/20
 - 4,926 GAL product removed (offsite) according to Bill of Landing
- Non-hazardous drum disposal on 2/20
 - 7 drums of spent bag filters, PPE, etc. disposed

Week of Sun 2/23 – Sat 2/29

• O&M site visit on 2/26

O&M Activities:

Week of Sat 2/1 - Sat 2/8

- Operating on TF Zones 2, 3, 4 & 5
- Changed bag filters and cleaned basket strainer on 2/6
- Adjusted tube skimmer in OWS on 2/6
- Viscosity testing of product in OWS day tank on 2/6
- Backwashed carbon on 2/6
- Blow down LGAC-1102 on 2/6 in preparation for LGAC change-out
- Removed belt from belt skimmer on 2/6 in preparation for OWS cleanout
- Processed water from totes on 2/6

Week of Sun 2/9 - Sat 2/15

- Operating on TF Zones 2, 3, 4 & 5
- Blow down LGAC-1101 on 2/11
- Tested air lines on 2/11
- Prep for OWS cleanout on 2/11
- OWS cleanout on 2/12
- Processed water from totes on 2/12
- LGAC change-out on 2/13
- Changed bag filters and cleaned basket strainer on 2/13
- Backwashed carbon on 2/13
- Repaired and installed new belt on belt skimmer on 2/13
- Repaired tube skimmer mounting brackets on 2/13
- Restart HMI on 2/13
- Replaced product transfer pump P-801 on 2/13
- Collected samples from T-801 and T-1401 for PCB analysis on 2/13

Review Ave. LNAPL Recovery System Monthly Summary February 2020

Week of Sun 2/16 – Sat 2/22

- Operating on TF Zones 2, 3, 4 & 5 until 2/20
 - Switched to TF Zones 1, 2, 3, 4 & 5 on 2/20
 - SVE active beginning on 2/20
- Changed bag filters and cleaned basket strainer on 2/19
- Backwashed carbon on 2/19
- Place LGAC-1101 and 1102 in series on 2/19
- Cleaned/washed container on 2/19
- Water removal from T-801 on 2/19
- Cleared clogged inlet line to OWS day tank on 2/20
- Chemicals delivered and transferred to drums on 2/20
- Quarterly compliance sampling completed on 2/20
 - PCB samples collected 2/13 sent to lab on 2/20
- Switch active carbon vessel to LGAC-1101 on 2/20 after collecting samples
- Product load-out from T-801 on 2/20
- Non-haz drum disposal on 2/20
- Monthly well gauging on 2/20

Week of Sun 2/23 – Sat 2/29

- Operating on TF Zones 1, 2, 3, 4 & 5
 - SVE active
- Cleaned, tested and reinstalled influent flow meter on 2/26
- Tested high level spill detection float switch on 2/26
- Replaced product transfer pump hose on 2/26
- Altered/installed influent piping vent elbow on 2/26
- Changed bag filters and cleaned basket strainer on 2/26
- Backwashed carbon on 2/26
- Viscosity testing of product in OWS day tank on 2/26
- Processed water from totes on 2/26
- General site housekeeping on 2/26
- Tested IP camera and replaced network switch on 2/26

- TF System uptime for February was 521.64 Actual Run Hours out of 563.69 Available Hours, or 92.54%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 2/5 via high product level alarm in OWS; restarted on 2/6.
 - System down from 2/11 to 2/13 for OWS cleanout and carbon changeout.
 - System shut down on 2/16 due to high product level in T-801; restarted on 2/20 following product load-out.
 - System shut down on 2/25 via high water level alarm in OWS; restarted on 2/26 after cleaning float switch.
- Approximately 2,521 GAL Product Recovered in February from Zones 1 through 5.
 - Average TF Product recovery rate for February was 86.9 GPD (calendar days), or 116 GPD (run days) accounting for system downtime.
- Approximately 323,207 GAL Product Recovered Total since system start-up.
- 4,926 GAL Product from T-801 disposed of offsite in February.
 - 324,365 GAL Product from T-801 disposed of Total since start-up.

Review Ave. LNAPL Recovery System Monthly Summary February 2020

- Approximately 191,731 GAL Effluent discharged in February.
 - Average 6,611 GPD at an avg rate of 8,821 GPD considering downtime.
- 11,642,686 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 1.31%

Skimmer System Production Results:

- Skimmer System uptime for February was 232 Actual Run Hours out of 232 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 498 GAL Product Recovered in February.
 - Average Skimmer Product recovery rate for February was 17.2 GPD (calendar days), or 17.2 GPD (run days) accounting for system downtime.
- Approximately 104,583 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in February.
 - 102,484 GAL Product from T-1401 disposed of Total since start-up.

- 3,019 GAL Product recovered in February.
 - Average Product recovery rate for February was 104.1 GPD.
- 427,789 GAL Product Recovered Total since system start-up.
- 4,926 GAL Product shipped off-site for disposal in February (see attached summary table)
- 426,849 GAL Product shipped off-site for disposal since system start-up as of the end of February 2020 (see attached summary table)
- 888,750 kWh Energy Consumption Total from system start-up through February 2020
- 20,203 kWh Energy Consumption for February
- 6.691 kWh/GAL Average Energy Consumed per GAL of Product Recovered for February

Review Ave. LNAPL Recovery System Monthly Summary March 2020

Work completed in March 2020:

Week of Sun 3/1 – Sat 3/7

• O&M site visits on 3/4 & 3/5

Week of Sun 3/8 - Sat 3/14

- O&M site visits on 3/9, 3/10, 3/11 & 3/12
- Vault maintenance and pump cleaning on 3/10, 3/11 & 3/12
 - Vault maintenance by K.L Fulford Associates, Inc.
- Air compressor serviced by D&D Electric Motors and Compressors on 3/11 & 3/12

Week of Sun 3/15 - Sat 3/21

- O&M site visits on 3/18 & 3/20
- Vault maintenance and pump cleaning on 3/18
 - Vault maintenance by K.L Fulford Associates, Inc.

Week of Sun 3/22 - Sat 3/28

• O&M site visit on 3/24

Week of Sun 3/29 - Tue 3/31

- O&M site visit on 3/31
- Monthly LNAPL monitoring well gauging event originally scheduled for 3/30 cancelled due to COVID-19 pandemic

O&M Activities:

Week of Sun 3/1 – Sat 3/7

- Operating on TF Zones 1, 2, 3, 4 & 5 until 3/5
 Switched to TF Zones 3, 4 & 5 on 3/5
- Changed bag filters and cleaned basket strainer on 3/4
- Backwashed carbon on 3/4
- Processed water from totes on 3/4
- Replaced influent flow meter on 3/4
- Viscosity testing of product in OWS day tank on 3/4
- Water removal from T-801 on 3/5

Week of Sun 3/8 - Sat 3/14

- Operating on TF Zones 3, 4 & 5 until 3/12
 - Switch to TF Zones 4 & 5 on 3/12, then TF Zone 5 on 3/13
 - o SVE active
- Site cleanup / housekeeping on 3/9
- Water removal from T-801 on 3/9
- Troubleshoot and replace influent flow meter on 3/10
- Vault inspections/maintenance & pump cleaning on 3/10, 3/11 & 3/12
 - Serviced, cleaned and reset pumps
 - Replaced pump hoses
 - Squared off well casings
 - Adjusted/repaired/replaced well seals
 - Repaired SVE caps
 - Removed/replaced couplings
 - Air compressor serviced on 3/11 & 3/12
 - Replaced oil/air separator, oil & air filters

Review Ave. LNAPL Recovery System Monthly Summary March 2020

- Replaced belt
- Checked dryers
- Changed oil
- Changed bag filters and cleaned basket strainer on 3/12
- Backwashed carbon on 3/12
- Opened SVE dilution valve completely on 3/12
- Adjusted SVE system on 3/13

Week of Sun 3/15 - Sat 3/21

- Operating on TF Zone 5 until 3/18
 - Switched to TF Zone 4 on 3/18
 - o SVE active
- Continued vault maintenance and pump cleaning on 3/18
- Changed bag filters and cleaned basket strainer on 3/18
- Backwashed carbon on 3/18
- Inspected and dampened SVE filter on 3/18
- Transferred chemicals to drums on 3/18
- Adjusted chemical feed pumps on 3/18
- Adjusted SVE vacuum at well heads on TF-4 lines on 3/18
- Replaced influent flowmeter transducer on 3/18 and reset k-factor on new transducer
- Troubleshoot HMI and camera on 3/18
 - Reboot & reset IP on HMI/PLC
 - Reboot & reset camera
- Water removal from T-801 on 3/18 & 3/20

Week of Sun 3/22 – Sat 3/28

- Operating on TF Zone 4 until 3/26
 - Switch to TF Zone 5 on 3/26
- Changed bag filters and cleaned basket strainer on 3/24
- Backwashed carbon on 3/24
- Water removal from T-801 on 3/24
- Processed water from totes on 3/24

Week of Sun 3/29 - Tue 3/31

- Operating on TF Zone 5
- Removed, cleaned and replaced SVE filters on 3/31
- Took inventory of spare parts, PPE and chemicals on 3/31
- Adjusted packing on product transfer pump on 3/31
- Backup HMI & PLC then replaced HMI, network switch and power supplies on 3/31
 Tested alarms and shutdowns on new HMI
- Replaced IP camera on 3/31
- Troubleshoot and test influent flow sensor & meter on 3/31

- TF System uptime for March was 683.20 Actual Run Hours out of 713.46 Available Hours, or 95.76%
 - Available Hours = Scheduled Daily Operating Hours scheduled maintenance time product removal time force majeure time (power outage, weather, etc.).
 - System shut down on 3/3 via high water level alarm in OWS; restarted on 3/4.
 - System shut down on 3/5 via high level alarm in T-801; restarted later that night after water removal from T-801

Review Ave. LNAPL Recovery System Monthly Summary March 2020

- System shut down on 3/9 via high water level alarm in OWS; restarted same day.
- Approximately 1,717 GAL Product Recovered in March from Zones 1 through 5.
 - Average TF Product recovery rate for March was 55.4 GPD (calendar days), or 60.3 GPD (run days) accounting for system downtime.
- Approximately 324,924 GAL Product Recovered Total since system start-up.
- 0 GAL Product from T-801 disposed of offsite in March.
- 324,365 GAL Product from T-801 disposed of Total since start-up.
- Approximately 193,300 GAL Effluent discharged in March.
 - Average 6,236 GPD at an avg rate of 6,790 GPD considering downtime.
- 11,835,986 GAL Effluent discharged Total since start-up.
- Recovered Oil/Extracted Groundwater Ratio = 0.89%

Skimmer System Production Results:

- Skimmer System uptime for March was 248 Actual Run Hours out of 248 Available Hours, or 100%
 - Skimmer system running @ 8 hrs/day schedule (7AM 3PM)
- Approximately 443 GAL Product Recovered in March.
 - Average Skimmer Product recovery rate for March was 14.3 GPD (calendar days), or 14.3 GPD (run days) accounting for system downtime.
- Approximately 105,026 GAL Product Recovered Total since start-up.
- 0 GAL Product from T-1401 disposed of offsite in March.
 - 102,484 GAL Product from T-1401 disposed of Total since start-up.

- 2,160 GAL Product recovered in March.
 - Average Product recovery rate for March was 69.7 GPD.
- 429,950 GAL Product Recovered Total since system start-up.
- 0 GAL Product shipped off-site for disposal in March (see attached summary table).
- 426,849 GAL Product shipped off-site for disposal since system start-up as of the end of March 2020 (see attached summary table).
- 913,494 kWh Energy Consumption Total from system start-up through March 2020.
- 24,744 kWh Energy Consumption for March.
- 11.453 kWh/GAL Average Energy Consumed per GAL of Product Recovered for March.

APPENDIX B

Annual Inspection Report

I. Site Information									
Site Name:	Review Avenue Development Site I (RAD I)								
NYSDEC Site Number:	BCP #C241089								
Site Address:	37-30 Review Avenue, Long Island City, NY								
Block/Lot:	Block 312; Lot 41								
Date of Inspection:	12/16/19								
Type of Inspection:	Regular 🗵	Emergency							
Inspected By:	Brent O'Dell								

II. General Information								
Current Site Use: (Warehouse, Parking Lot, Vacant, etc.):	Commercial							
Summary of Previous Inspections: See Attached								
Repairs to triangular area were needed, ongo still required, some pavement repairs or rehat	ing required. Repaving or concrete patching was pilitation was needed.							

III. Weather Conditions										
Time	Temperature	Condition (Sunny, Overcast, Precipitation, etc.)	Wind (Light, Moderate, Heavy, etc.)							
	30s	Partly Cloudy	Light							

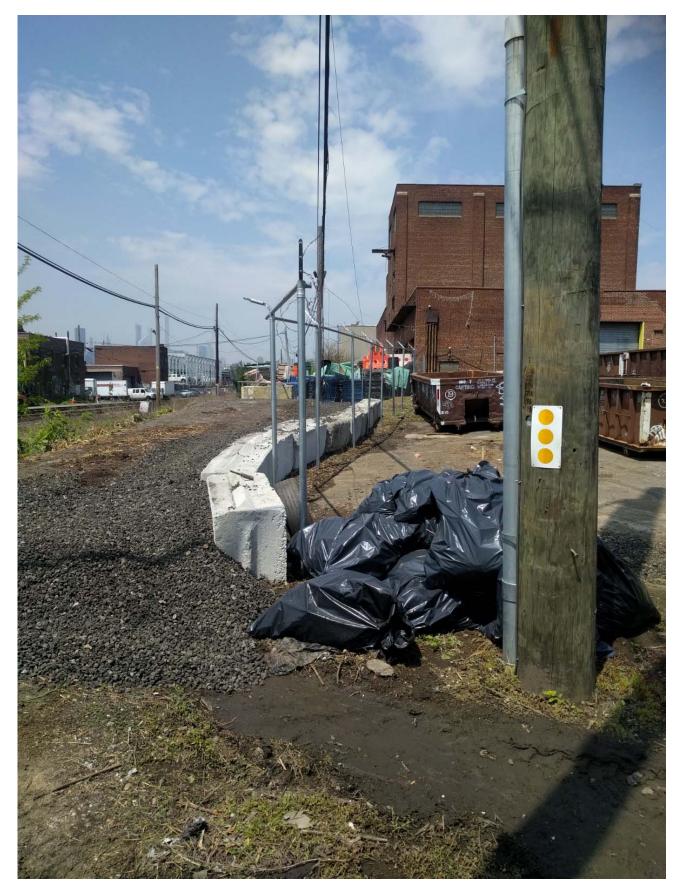
IV. On-Site	Documents	& Records	(Stored at	RAD II)
Description	Readily available	Up to date	N/A	Remarks
O&M Documents: on RAD II				
O&M Manual	Х	yes		
As-built drawings	Х	yes		
Maintenance logs	Х	yes		
Site Health & Safety Plan: on	RAD II			-
Contingency Plan/Emergency response plan	Х	yes		
O&M and OSHA Training Rec	ords: on RA	DII		
O&M and OSHA Training Records	Х	yes		
Permits and Service Agreeme	ents: on RAD		-	
NYSDEC Air Permit Exemption	Х	yes		
NYSDEC Petroleum Bulk Storage Certification	Х	yes		
NYSDEC Erosion and Sediment Control Exemption		yes		
NYSDEC Tidal Wetlands Jurisdiction Determination Letter	Х	yes		N/A
NYCDEP Groundwater Discharge LOA		yes		Being renewed
NYCDEP Air Permit Informational Notice	Х	yes		
NYCDEP Dewatering Scheme and Indemnity Agreement		yes		Being renewed
NYCDEP Bureau of Customer Service Groundwater Discharge Permit		yes		
NYCDOB Certificates of Occupancy	Х	yes		
Other:				

	V. Site Conditions											
			nspecte	d	Comments, Field Observations and							
	Description	Yes	No	N/A	Measurements (Dimensions and Depth of Disturbance of Cap), Reference Photo #							
Eng	Engineering Control: Pavement Cover System											
a.	Asphalt Condition (Check for cracking, spalling, and potholes)	Х			Identified areas in need of repair.							

b.	Differential Settlement (Check for settlement or subsidence)		Х		
C.	Disturbance (Check for disturbance e.g. construction or utility repair, etc.)		X		
Eng	jineering Control: LNAPL R	ecovery	/ Systei	m	
а.	Recovery Well Vaults and Pumps (Check for leaks, operation, vault security, etc.)	Х			Check list and photo's on file
Oth	er:	-	-	-	
a.	Monitoring Wells (Check if secured, inspect condition of well, well cap, etc.)	Х			Check list of photos on file
b.	Security (Check fence, gates, locks, etc.)	Х			Fence line is fine.
C.	Site Use	Х			Same. No.

VI. Institutional Controls Status of Institutional Controls:										
Site conditions imply Institutional Controls not properly implemented		Х								
Site conditions imply Institutional Controls not being fully enforced		Х								
Permits and records are onsite and up-to-date	Х									
Violations (if any) have been reported		Х								
Previous suggested correction(s) have been made	Х			Being worked on. New Pavement installed. Maint.						
Other problems or suggestions:			-							

	VII. Groundwater and LNAPL Elevations											
Monthly LNAPL Thickness Measurements: SEE ATTACHED												
Well ID	Date	Time	-	h from TO	C to	Measured	Remarks: Calibration data found on					
Location	Date	Time	Product (ft)	Water (ft)	Bottom (ft)	by:	Instrument Calibration Record					
AML-01												
AML-04												
GAL-10												
GAL-11R												
GAL-12												
GAL-13R												
GAL-18R												
GAL-21												
GAL-22												
GAL-23												
GAL-24												
GAL-32												
MW-2												
MW-4R												


	VII. Groundwater and LNAPL Elevations (Continued)											
Semi-Annual	Groundwa	ater Elev	vation Me	easur	ements	6:						
Well ID Location	Date	Time	Depth fr Water	Во	ttom	Measured by:	Sampled? (Y/N)	Remarks: Calibration data found on Instrument Calibration				
			(ft)					Record				
GAGW-02	7/11/19	8:30a	11.67		2.4	JL&EV	Y	YSI calibrated on 7/10 & 7/11				
GAGW-02	12/19/19	1:15p	13.44	7	2.4	EP&EV	Y	YSI calibrated on 12/16/19				
GAGW-04D	7/11/19	12:00p	20.56	6	69.6	JL&EV	Y	YSI calibrated on 7/10 & 7/11				
GAGW-04D	12/16/19	10:50a	22.34	6	69.6	EP&EV	Y	YSI calibrated on 12/16/19				
GAGW-05R	7/10/19	2:01p	12.66	7	'4.5	JL&EV	Y	YSI calibrated on 7/10 & 7/11				
GAGW-05R	12/18/19	2:40p	14.14	7	4.5	EP&EV	Y	YSI calibrated on 12/16/19				
GAGW-6I	7/11/19	9:40a	11.77	3	88.9	JL&EV	Y	YSI calibrated on 7/10 & 7/11				
GAGW-6I	12/19/19	12:00p	13.75	3	88.9	EP&EV	Y	YSI calibrated on 12/16/19				
GAGW-08R	7/10/19	12:00p	13.55	7	2.4	JL&EV	Y	YSI calibrated on 7/10 & 7/11				
GAGW-08R	12/18/19	11:50a	15.22	7	'2.4	EP&EV	Y	YSI calibrated on 12/16/19				
AMGW-10D	7/10/19	10:20a	12.43	7	'1.5	JL&EV	Y	YSI calibrated on 7/10 & 7/11				
AMGW-10D	12/18/19	10:30a	15.25	7	' 1.5	EP&EV	Y	YSI calibrated on 12/16/19				
Semi-Annual (12 TF LNAPL						:						
Well ID	_			Dept	h from 1	FOC to	Measured	Remarks: Calibration data found on				
Location	Date	Time	Prod (ft		Water (ft)	Bottom (ft)	by:	Instrument Calibration Record				
TF3A	3/12/20	8:04am	n 15.4	43	15.45	26.85	PH					
TF3B	3/12/20	8:12am	n 17. ⁻	15	17.26	25.32	PH					
TF3C	3/12/20	8:20am	n 17.0	04	17.25	27.05	PH					
TF3D	3/12/20	8:36am	n 16.2	20	17.95	26.45	PH					
TF4A	3/12/20	8:43am	n 14.	50	14.65	24.30	PH					
TF4B	3/12/20	8:56am	n 14.:	32	17.30	23.20	PH					
TF4C	3/12/20	9:06am	n 14.0	61	14.62	25.00	PH					
TF4D	3/12/20	9:12am	n 13.8	82	15.85	26.30	PH					
TF5A	3/12/20	9:33am	n 12.	55	12.60	20.71	PH					
TF5B	3/12/20	9:40am	ו 12.4	47	12.73	21.50	PH					
TF5C	3/12/20	9:55am	n 12.3	32	12.50	20.05	PH					
TF5D	3/12/20	10:02a	12.8	80	12.85	21.62	PH					

IX. Overall Observations on Remedy Implementation & Site Conditions

Cap Repairs referenced in previous inspections were completed. Triangular area repairs were completed, however ongoing and continued maintenance is necessary. Cap in middle of site around concrete needs to be tied in better.

Site Inspection Form – RAD I

Review Avenue LNAPL Recovery System Well Gauging Data - April 2019 Through February 2020 (March 2020 Gauging Event Cancelled Due To COVID-19)

		4/23/2019			5/24/2019			6/6/2019			7/26/2019			8/22/2019			9/26/2019		
Well ID	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness	
AML-01	11.14	13.59	2.45	10.12	12.97	2.85	10.54	12.71	2.17	10.65	13.20	2.55	10.96	12.60	1.64	11.28	13.14	1.86	
AML-04	13.97	15.42	1.45	15.16	16.24	1.08	15.09	16.12	1.03	15.18	16.22	1.04	15.41	16.70	1.29	15.72	17.35	1.63	
GAL-10	18.54	19.32	0.78	18.04	19.24	1.20	18.31	18.97	0.66	18.35	19.15	0.80	18.55	19.09	0.54	18.85	19.93	1.08	
GAL-11R	13.52	15.56	2.04	13.24	15.72	2.48	13.19	15.63	2.44	13.30	15.2	1.90	13.45	15.82	2.37	13.82	16.4	2.58	
GAL-13	13.32	14.57	1.25	12.52	14.33	1.81	12.87	14.02	1.15	13	14.7	1.70	13.34	14.41	1.07	13.57	15.53	1.96	
GAL-18R	16.67	18.23	1.56	16.43	17.87	1.44	16.33	17.77	1.44	16.82	18.14	1.32	16.66	18.91	2.25	16.99	18.82	1.83	
GAL-21	13.02	16.59	3.57	12.55	15.29	2.74	12.68	14.73	2.05	12.70	15.55	2.85	12.73	16.01	3.28	13.27	16.46	3.19	
GAL-22	15.40	16.83	1.43	16.25	16.96	0.71	16.04	16.81	0.77	16.30	17.22	0.92	16.50	17.35	0.85	16.84	18.12	1.28	
GAL-23	13.24	15.02	1.78	12.88	14.18	1.30	12.74	14.78	2.04	12.83	14.42	1.59	13.02	14.99	1.97	13.34	15.54	2.20	
GAL-24	13.52	14.92	1.40	13.05	14.06	1.01	13.34	13.85	0.51	13.15	14.23	1.08	13.22	13.85	0.63	13.66	15.07	1.41	
MW-4RR	9.62	12.95	3.33	9.22	12.12	2.90	9.15	11.88	2.73	9.85	13.90	4.05	9.56	22.09	12.53	9.81	13.24	3.43	
GAGW-04	19.92	21.94	2.02	20.08	21.75	1.67	20.44	21.81	1.37	20.59	21.66	1.07	20.79	21.66	0.87	21.02	23.53	2.51	
AML-02	16.90	19.28	2.38	15.79	18.29	2.50	-	-	-	-	-	-	16.05	19.71	3.66	-	-	-	
AML-03	14.27	17.72	3.45	13.78	19.82	6.04	13.48	17.38	3.90	13.90	17.20	3.30	-	-	-	14.62	18.26	3.64	
AML-06	16.64	19.24	2.60	15.67	20.33	4.66	16.24	18.11	1.87	16.40	19.11	2.71	16.61	20.60	3.99	16.94	20.26	3.32	
GAL-01RR	16.98	20.12	3.14	16.5	19.51	3.01	16.58	17.81	1.23	16.71	21.01	4.30	16.90	21.29	4.39	17.28	20.40	3.12	
GAL-02R	11.94	16.69	4.75	8.17	15.13	6.96	11.53	15.53	4.00	10.67	13.90	3.23	11.85	14.90	3.05	12.23	16.04	3.81	
GAL-03R	18.48	21.19	2.71	14.96	21.27	6.31	18.04	21.74	3.70	18.25	21.55	3.30	18.46	22.29	3.83	18.77	22.21	3.44	
GAL-04R	12.79	15.74	2.95	12.48	15.59	3.11	-	-	-	12.55	17.20	4.65	12.78	16.55	3.77	13.1	16.90	3.80	
GAL-05R	19.06	21.49	2.43	18.67	21.14	2.47	18.69	21.23	2.54	18.25	21.55	3.30	19.06	22.10	3.04	19.42	22.32	2.90	
GAL-06	Dry	Dry	Dry	20.69	22.09	1.40	20.83	-	-	20.75	21.92	1.17	20.95	21.20	0.25	21.27	21.90	0.63	
GAL-07	14.86	17.06	2.20	14.49	17.05	2.56	14.49	16.67	2.18	14.76	16.63	1.87	14.91	16.90	1.99	15.28	17.84	2.56	
GAL-08	15.43	18.05	2.62	14.13	15.09	0.96	14.93	16.12	1.19	14.7	15.10	0.40	15.40	16.30	0.90	16.75	15.96	-0.79	
GAL-09	21.36	22.74	1.38	11.21	22.65	11.44	21.07	23.12	2.05	21.10	22.67	1.57	21.32	22.85	1.53	21.67	23.6	1.93	
GAL-16R	11.93	15.67	3.74	11.62	17.78	6.16	11.67	15.53	3.86	11.67	15.73	4.06	11.91	16.26	4.35	12.24	16.81	4.57	
GAL-29	21.43	23.44	2.01	19.66	23.42	3.76	21.09	23.90	2.81	21.22	22.97	1.75	21.41	23.50	2.09	-	-	-	
GAL-30	21.98	24.37	2.39	21.45	24.49	3.04	21.59	23.85	2.26	21.73	24.09	2.36	21.93	24.95	3.02	22.27	24.74	2.47	
GAL-31	19.53	21.88	2.35	19.04	21.47	2.43	19.11	20.81	1.70	19.21	21.63	2.42	19.45	21.7	2.25	19.84	22.46	2.62	
VER-2	18.59	22.46	3.87	12.20	22.47	10.27	12.22	15.02	2.80	12.35	15.23	2.88	12.52	15.90	3.38	12.88	16.89	4.01	
GAL-12																			
MW-4R										9.85	13.9	4.05							
MW-11																1			
MW-2										l I						1			
PSMW-2																1			

Review Avenue LNAPL Recovery System Well Gauging Data - April 2019 Through February 2020 (March 2020 Gauging Event Cancelled Due To COVID-19)

		10/24/2019			11/26/2019			12/23/2019			1/24/2020		2/20/2020		
Well ID	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness	Depth to top of product	Depth to top of water	Product Thickness
AML-01	11.71	14.11	2.40	12.13	14.04	1.91	12.10	13.44	1.34	12.26	13.79	1.53	12.43	14.45	2.02
AML-04	16.15	17.85	1.70	16.52	18.36	1.84	16.61	18.15	1.54	16.64	18.21	1.57	16.44	18.90	2.46
GAL-10	19.32	20.25	0.93	19.62	20.88	1.26	19.81	20.88	1.07	19.80	20.85	1.05	19.93	21.14	1.21
GAL-11R	14.22	17.47	3.25	14.55	17.73	3.18	14.72	17.29	2.57	-	-	-	14.93	17.55	2.62
GAL-13	14.08	15.94	1.86	14.32	15.35	1.03	14.42	16.15	1.73	14.5	16.13	1.63	14.95	16.54	1.59
GAL-18R	17.43	19.54	2.11	17.74	19.83	2.09	17.87	19.57	1.70	17.93	19.72	1.79	-	-	-
GAL-21	13.75	16.00	2.25	14.12	16.93	2.81	14.17	17.27	3.10	14.53	17.21	2.68	14.41	17.23	2.82
GAL-22	17.25	18.49	1.24	17.63	18.92	1.29	17.71	19.02	1.31	17.73	19.00	1.27	17.83	19.33	1.50
GAL-23	13.69	16.24	2.55	14.11	16.32	2.21	14.24	16.46	2.22	14.34	16.71	2.37	14.54	16.92	2.38
GAL-24	14.05	15.34	1.29	14.40	15.88	1.48	14.54	15.76	1.22	14.58	15.84	1.26	14.75	16.04	1.29
MW-4RR	10.08	13.86	3.78	10.62	13.84	3.22	10.77	13.80	3.03	11.08	14.53	3.45	11.03	13.84	2.81
GAGW-04	21.45	23.44	1.99	21.72	24.03	2.31	21.92	23.95	2.03	21.89	23.61	1.72	22.1	23.40	1.30
AML-02	16.95	20.10	3.15	-	-	-	17.42	19.26	1.84	-	-	-	17.59	20.08	2.49
AML-03	Dry	Dry	Dry	15.50	18.45	2.95	-	-	-	15.43	18.18	2.75	-	-	-
AML-06	17.31	20.76	3.45	17.67	21.20	3.53	17.73	20.35	2.62	18.83	21.47	2.64	18.02	21.40	3.38
GAL-01RR	17.89	21.30	3.41	18.10	21.08	2.98	18.07	21.38	3.31	18.34	21.83	3.49	18.42	21.65	3.23
GAL-02R	12.59	16.05	3.46	12.13	14.49	2.36	13.20	15.19	1.99	13.32	16.64	3.32	13.41	16.54	3.13
GAL-03R	19.15	22.19	3.04	19.63	22.70	3.07	19.59	22.13	2.54	-	-	-	19.9	23.08	3.18
GAL-04R	13.78	16.83	3.05	13.87	17.47	3.60	13.94	17.43	3.49	14.45	16.92	2.47	14.25	17.60	3.35
GAL-05R	19.11	21.97	2.86	20.21	23.20	2.99	20.27	22.95	2.68	14.42	14.42	0.00	20.53	23.44	2.91
GAL-06	22.73	-	-	22.1	22.10	0.00	22.31	22.31	0.00	Dry	Dry	Dry	Dry	Dry	Dry
GAL-07	15.73	18.21	2.48	15.96	18.54	2.58	15.99	18.29	2.30	16.24	19.22	2.98	16.34	19.07	2.73
GAL-08	16.13	16.46	0.33	16.68	16.90	0.22	15.31	15.88	0.57	16.39	16.75	0.36	16.68	17.15	0.47
GAL-09	22.17	24.32	2.15	22.47	25.02	2.55	22.81	23.97	1.16	22.56	24.44	1.88	22.73	24.7	1.97
GAL-16R	12.68	16.52	3.84	13.06	16.95	3.89	13.08	17.20	4.12	13.10	17.04	3.94	13.32	17.21	3.89
GAL-29	Dry	Dry	Dry	22.47	25.18	2.71	-	-	-	22.54	24.96	2.42	22.82	25.30	2.48
GAL-30	22.98	25.93	2.95	23.18	25.76	2.58	23.21	24.83	1.62	23.2	25.54	2.34	23.38	25.80	2.42
GAL-31	20.53	22.47	1.94	20.64	23.32	2.68	20.63	22.71	2.08	20.68	22.85	2.17	20.90	23.18	2.28
VER-2	13.33	16.74	3.41	13.53	17.11	3.58	13.69	17.10	3.41	14.23	17.41	3.18	-	-	-
GAL-12															
MW-4R															
MW-11															
MW-2															
PSMW-2															

APPENDIX C

Discharge Compliance Reports

1550 Pond Road Suite 120 Allentown, PA 18104 (610) 435-1151 (610) 435-8459 FAX

June 20, 2019

Via U.S. Mail

Mr. Sean H. Hulbert Assistant Chemical Engineer NYCDEP, Bureau of Wastewater Treatment 96-05 Horace Harding Expressway, 1st Floor Corona, New York 11368

RE: Review Avenue Development Sites - 37-30 and 37-80 Review Avenue File # C-5652 2nd Quarter 2019 Effluent Discharge Compliance Report

Dear Mr. Hulbert:

Enclosed is the 2nd Quarter 2019 - Effluent Discharge Compliance Report for the Review Avenue Development Sites. This report is being submitted on behalf of the Review Avenue System LLC administering the Review Avenue Development Site Brownfield Projects identified as RAD I and RAD II.

I would like to call to your attention the following, relative to discharge for the 2nd Quarter 2019:

- Approximately 696,640 gallons of water have been discharged to the sewer system since the last reporting period March 2019.
- No constituents were reported above discharge criteria.

Please contact me with any questions at (610) 435-1151.

Sincerely,

de maximis, inc.

R. Craig ¢oslett Project Coordinator for RADI and RAD II

PAPER

_____ de maximis

Mr. Sean H. Hulbert June 20, 2019 Page 2

Enclosures: Compliance Monitoring Report for 2nd Quarter 2019 CC: John Grathwol, NYDEC (electronic mail only) Tim Kessler, Wood Group (electronic mail only) Brent O'Dell, Wood Group (electronic mail only)

File: 3216 / 2nd Qrt Compliance Report 2019

June 19, 2019

Mr. Sean H. Hulbert - Assistant Chemical Engineer NYCDEP, Bureau of Wastewater Treatment 96-05 Horace Harding Expressway, 1st Floor Corona, NY 11368

Subject: 2nd Quarter 2019 Effluent Discharge Compliance Review Avenue Development Sites 37-30 and 37-80 Review Avenue Long Island City, Queens, New York, File # C-5652

Dear Mr. Hulbert:

Wood Environment and Infrastructure Solutions, Inc. (Wood), on behalf of Review Avenue System LLC, submits the effluent laboratory analysis data in connection with the letter of approval (LOA) for groundwater discharge to sanitary or combined sewer for the Review Avenue Development (RAD) Sites and LOA Extension dated October 12, 2018.

Wood collected the 2nd Quarter 2010 discharge compliance samples on May 16th, 2019. Analytical results indicate no exceedances of the daily discharge limits for all parameters and no exceedances of the monthly discharge limits for all parameters, and therefore the discharge is in compliance with our LOA requirements. The analytical results collected for the 2nd quarter 2019 compliance sampling are summarized on Table 1 attached. The total volume of groundwater discharged to the sanitary or combined sewer, since system start-up was 9,548,370 gallons as of the May 16th sampling event and 696,640 gallons since the last quarterly sampling event on February 19'th.

If you have any questions, please contact either of the undersigned at (609) 689-2829.

Sincerely,

Wood Environment & Infrastructure Solutions, Inc.

Brent C. O'Dell, P.E. Principal Engineer – Civil

Timothy C. Kessler Senior Associate Engineer/PM

Attachments: Table 1 – Summary of Groundwater Analytical Results

cc: R. Craig Coslett – Review Avenue System LLC

200 American Metro Blvd Suite 113 Hamilton, NJ 08619 609-689-2829 woodplc.com

Table 1 Summary of Analytical Results - Groundwater Treatment System Review Avenue Development Sites, NYCDEP File # C-5652 Long Island City, Queens, New York

Field Sample ID:				RA-EFF-	G	RA-EFF-	C
Compliance Period:		NYCDEP	NYCDEP	2Q 201	9	2Q 201	9
Sample Date:	Unit	Daily Limit	Monthly Limit	5/16/20	19	5/16/2019	
Lab Sample ID:				JC88255	8-1	JC88255	8-2
Non-polar material ¹	mg/L	50	NL	5.0	U	-	
pH ²	SUs	5 - 12	NL	7.44		-	
Temperature ²	°F	150	NL	62.74		_	
Flash Point ³	°F	> 140	NL	> 200		-	
Cadmium (Instantaneous)	mg/L	2	NL	0.003	U	-	
Cadmium (Composite)	mg/L	0.69	NL	-		0.003	U
Chromium (VI)	mg/L	5	NL	0.01	U	_	
Copper	mg/L	5	NL	0.01	U	_	
Lead	mg/L	2	NL	0.003	U	_	
Mercury	mg/L	0.05	NL	0.0002	U	-	
Nickel	mg/L	3	NL	0.018		_	
Zinc	mg/L	5	NL	0.02	U	_	
Benzene	µg/L	134	57	0.34	U	-	
Carbon Tetrachloride	µg/L	NL	NL	-		0.55	U
Chloroform	µg/L	NL	NL	-		0.50	U
1,4-Dichlorobenzene	µg/L	NL	NL	0.63	U	-	
Ethylbenzene	µg/L	380	142	0.30	U	-	
MTBE (Methyl-Tert-Butyl-Ether)	µg/L	50	NL	0.87	U	-	
Napthalene	µg/L	47	19	-		0.26	U
Phenol	µg/L	NL	NL	-		0.44	U
Tetrachloroethylene (Perc)	µg/L	20	NL	0.9	U	-	
Toluene	µg/L	74	28	0.36	U	-	
1,2,4-Trichlorobenzene	µg/L	NL	NL	-		0.28	U
1,1,1-Trichloroethane	µg/L	NL	NL	-		0.54	U
Xylenes (Total)	µg/L	74	28	0.35	U	-	
PCBs (Total)	µg/L	1	NL	-		0.037	
Total Suspended Solids (TSS)	mg/L	350	NL	4.0	U	-	
CBOD	mg/L	NL	NL	-		5.0	U
Chloride	mg/L	NL	NL	95.4		_	
Total Nitrogen	mg/L	NL	NL	-		2.2	
Total Solids	mg/L	NL	NL	957		_	

 Table 1

 Summary of Analytical Results - Groundwater Treatment System

 Review Avenue Development Sites, NYCDEP File # C-5652

 Long Island City, Queens, New York

Notes:

RA-EFF-G: Instantaneous (Grab) Sample RA-EFF-C: 4-Hour Flow Weighted Composite Sample

Bold/Shaded: Concentration exceeds daily limit

<u>Underline:</u> Concentration exceeds monthly limit

1. Non-polar Material reported by lab as "Silica Gel Treated n-Hexane Extractable Material (SGT-HEM)"

2. pH and Temperature measured in field

3. Flash Point reported by lab as Ignitability

Definitions:

MDL: Method Detection Limit RL: Reporting Limit NL: No Limit

Data Qualifiers:

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U: Indicates the analyte was not detected at the indicated RL.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

06/10/19 *e-Hardcopy* 2.0

Automated Report

Technical Report for

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY

C012700305/3480160502

SGS Job Number: JC88255

Sampling Date: 05/16/19

Report to:

Wood Environment & Infrastructure Soln. 200 American Metro Boulevard Suite 113 Hamilton, NJ 08619 Timothy.Kessler@amecfw.com; Vincent.Whelan@amecfw.com

ATTN: Tim Kessler

Total number of pages in report: 26

MATT

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable. Brian McGuire General Manager

Client Service contact: Kelly Ramos 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 26

Table of Contents

-

N

ω

4

-1-

Section 1: Sample Summary 3	\$
Section 2: Summary of Hits 4	ŀ
Section 3: Sample Results 5	5
3.1: JC88255-1: RA-EFF-G	;)
3.2: JC88255-1R: RA-EFF-G)
3.3: JC88255-2: RA-EFF-C	0
3.4: JC88255-2R: RA-EFF-C	4
Section 4: Misc. Forms 1	5
4.1: Certification Exceptions	6
4.2: Chain of Custody	7
4.3: Sample Tracking Chronicle	2
4.4: Internal Chain of Custody 2	23

Sample Summary

Wood Environment & Infrastructure Solut.

Job No: JC88255

Review Avenue, Long Island City, NY Project No: C012700305/3480160502

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JC88255-1	05/16/19	11:55 NDF	05/16/19	AQ	Effluent	RA-EFF-G
JC88255-1R	05/16/19	11:55 NDF	05/16/19	AQ	Effluent	RA-EFF-G
JC88255-2	05/16/19	11:45 NDF	05/16/19	AQ	Effluent	RA-EFF-C
JC88255-2R	05/16/19	11:45 NDF	05/16/19	AQ	Effluent	RA-EFF-C

Summary of Hits

Job Number:	JC88255
Account:	Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY
Collected:	05/16/19

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JC88255-1	RA-EFF-G					
Nickel Chloride Ignitability (Flas Solids, Total	hpoint)	18.2 95.4 > 200 957	10 2.0 10		ug/l mg/l Deg. F mg/l	EPA 200.7 EPA 300/SW846 9056A SW846 1010A/ASTM D93 SM2540 B-11
JC88255-1R	RA-EFF-G					
No hits reported	in this sample.					
JC88255-2	RA-EFF-C					
Nitrogen, Total ² Nitrogen, Total I		2.2 2.2	0.30 0.20		mg/l mg/l	SM4500 A-11 EPA 351.2/LACHAT
JC88255-2R	RA-EFF-C					
Aroclor 1248		0.037 J	0.050	0.025	ug/l	EPA 608

(a) Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

N

Dayton, NJ

ω Section 3

Sample Results

Report of Analysis

108-88-3

100-41-4

1330-20-7

1634-04-4

106-46-7

127-18-4

CAS No.

17060-07-0

2037-26-5

460-00-4

1868-53-7

Toluene

Ethylbenzene

Xylenes (total)

Methyl Tert Butyl Ether

1,4-Dichlorobenzene

Surrogate Recoveries

Toluene-D8 (SUR)

1,2-Dichloroethane-D4 (SUR) 105%

4-Bromofluorobenzene (SUR)

Dibromofluoromethane (S)

Tetrachloroethene

			1		J			ε
Client San Lab Samp Matrix: Method: Project:	le ID: JC88 AQ - EPA	EFF-G 3255-1 • Effluent 624.1 ew Avenue,	Long Island City, N	IY		Date	e Sampled: Received: ent Solids:	
Run #1 Run #2	File ID T238356.D	DF 1	Analyzed 05/28/19 14:15	By CSF	Prep D n/a	ate	Prep Bato n/a	Analytical Batch VT9833
Run #1 Run #2	Purge Volun 5.0 ml	ıe						
Purgeable	Aromatics, M	TBE						
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2	Benzene		ND	1.0	0.34	ug/l		

1.0

1.0

1.0

1.0

1.0

1.0

Run# 2

0.36

0.30

0.35

0.87

0.63

0.90

Limits

76-122%

80-120%

80-120%

80-120%

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

ND

ND

89%

100%

95%

Run#1

Report of Analysis

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

ω -

Page 1 of 1

JC88255

Client Sample ID: Lab Sample ID:	RA-EFF-G JC88255-1	Date Sampled:	05/16/19
Matrix:	AQ - Effluent	Date Received:	05/16/19
Project:	Review Avenue, Long Island City, NY	Percent Solids:	n/a

Report of Analysis

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	< 3.0	3.0	ug/l	1	05/22/19	05/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴
Copper	< 10	10	ug/l	1	05/22/19	05/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴
Lead	< 3.0	3.0	ug/l	1	05/22/19	05/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴
Mercury	< 0.20	0.20	ug/l	1	05/22/19	05/22/19 EAL	EPA 245.1 ¹	EPA 245.1 ⁵
Nickel	18.2	10	ug/l	1	05/22/19	05/23/19 ND	EPA 200.7 ³	EPA 200.7 ⁴
Zinc	< 20	20	ug/l	1	05/22/19	05/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴

(1) Instrument QC Batch: MA46770

(2) Instrument QC Batch: MA46773

(3) Instrument QC Batch: MA46782

(4) Prep QC Batch: MP15225

(5) Prep QC Batch: MP15239

Page 1 of 1

01 1

<u>ω</u>

ω

SGS North America Inc.

Client Sample ID:	RA-EFF-G		
Lab Sample ID:	JC88255-1	Date Sampled:	05/16/19
Matrix:	AQ - Effluent	Date Received:	05/16/19
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		
]

Report of Analysis

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chloride Chromium, Hexavalent	95.4 < 0.010	2.0 0.010	mg/l mg/l	1	05/25/19 05:32	- · ·	EPA 300/SW846 9056A SM3500CR B-11
Ignitability (Flashpoint)	> 200	0.010	Deg. F	1	05/30/19 18:58	EB	SW846 1010A/ASTM D93
Solids, Total Solids, Total Suspended	957 < 4.0	10 4.0	mg/l mg/l	1 1	05/21/19 10:55 05/21/19 11:07		SM2540 B-11 SM2540 D-11

<u>ω</u>

ω

SGS North America Inc.

		Repo	rt of An	alysis			Page 1 of 1
Client Sample ID:	RA-EFF-G						
Lab Sample ID:	JC88255-1R				Date Sampled	: 05	5/16/19
Matrix:	AQ - Effluent				Date Received	l: 05	5/16/19
					Percent Solids	s: n/a	a
Project:	Review Avenue, Long	g Island Cit	y, NY				
General Chemistry	,						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
HEM Petroleum Hy	drocarbons < 5.0	5.0	mg/l	1	06/02/19 20:35	TM	EPA 1664A

3.2 3

		Кероге	rage 1 01 1										
Client Samj Lab Sample Matrix: Method: Project:	D: JC88255-2 AQ - Effluent EPA 624.1	JC88255-2Date Sampled:0AQ - EffluentDate Received:0											
Run #1 Run #2		.nalyzed 5/29/19 19:40	By CSF	Prep Da n/a	ate	Prep Batc n/a	h Analytical Batch VT9834						
Run #1 Run #2	Purge Volume 5.0 ml												
CAS No.	Compound	Result	RL	MDL	Units	Q							
56-23-5 67-66-3 71-55-6	Carbon tetrachloride Chloroform 1,1,1-Trichloroethane	ND ND ND	1.0 1.0 1.0	0.55 0.50 0.54	ug/l ug/l ug/l								
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts								
17060-07-0 2037-26-5 460-00-4 1868-53-7	1,2-Dichloroethane-D4 (SUR) Toluene-D8 (SUR) 4-Bromofluorobenzene (SUR) Dibromofluoromethane (S)	88%		76-12 80-12 80-12 80-12									

Report of Analysis

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

ယ သ

ω

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	le ID: JC8825 AQ - E EPA 62	5-2 ffluent 25.1 EPA 6	625 ong Island City, N	JY		Dat	e Received:	05/16/19 05/16/19 n/a
	File ID	DF	Analyzed	By	Prep Da	ate	Prep Batch	Analytical Batch
Run #1	Z137789.D	1	05/23/19 07:52	CS	05/20/1	9 12:45	OP20481	EZ6785
Run #2 ^a	5P60475.D	1	06/07/19 17:54	CC	06/06/1	9 04:00	OP20852	E5P2846
Run #3 ^b	5P60129.D	2	05/31/19 15:00	CC	05/20/1	9 12:45	OP20481	E5P2835
	Initial Volume	Final Vol	lume					
Run #1	900 ml	1.0 ml						
Run #2	1050 ml	1.0 ml						
Run #3	900 ml	1.0 ml						
ABN Speci	al List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
108-95-2	Phenol		ND	2.2	0.44	ug/l		
91-20-3	Naphthalene		ND	1.1	0.26	ug/l		
120-82-1	1,2,4-Trichloro	obenzene	ND	1.1	0.28	ug/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Run	#3	Limits	
367-12-4	2-Fluoropheno	l	24%	31%	12%		10-110%	
4165-62-2	Phenol-d5		27%	21%	17%		10-110%	

67%

95%

71%

48%

(a) Sample extracted outside the holding time. Confirmation run.

(b) Confirmation run for surrogate recoveries.

2,4,6-Tribromophenol

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

118-79-6

321-60-8

1718-51-0

4165-60-0

(c) Outside in house control limits biased low. The results confirmed by re-extraction outside the holding time.

30% c

84%

73%

61%

J = Indicates an estimated value

11% c

70%

64%

61%

35-147%

32-132%

40-117%

33-126%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

SGS North America Inc.

			Rep	ort of A	nalysis		Page 1 of 1
							05/16/10
						-	05/16/19
AQ -	Effluent						
Revie	w Avenu	e, Long Is	land C	City, NY		rercent Solids:	n/a
Analysis							
Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
< 3.0	3.0	ug/l	1	05/22/19	05/22/19 ND	EPA 200.7 ¹	EPA 200.7 ²
	D: JC882 AQ - Revie Analysis Result	D: JC88255-2 AQ - Effluent Review Avenu Analysis Result RL	D: JC88255-2 AQ - Effluent Review Avenue, Long Is Analysis Result RL Units	ID: RA-EFF-C D: JC88255-2 AQ - Effluent Review Avenue, Long Island C Analysis Result RL Units DF	TID: RA-EFF-C D: JC88255-2 AQ - Effluent Review Avenue, Long Island City, NY Analysis Result RL Units DF Prep	D: JC88255-2 AQ - Effluent Review Avenue, Long Island City, NY Analysis Result RL Units DF Prep Analyzed By	ID: RA-EFF-C Date Sampled: D: JC88255-2 Date Received: AQ - Effluent Date Received: Review Avenue, Long Island City, NY Percent Solids: Analysis Result RL Units DF Prep Analyzed By Method

(1) Instrument QC Batch: MA46773
 (2) Prep QC Batch: MP15225

ω

<u>အ</u> အ

SGS North America Inc.

Client Sample ID: Lab Sample ID:	RA-EFF-C JC88255-2	Date Sampled:	05/16/19
Matrix:	AQ - Effluent	Date Received:	05/16/19
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		

Report of Analysis

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Carbonaceous Bod, 5 Day	< 5.0	5.0	mg/l	1	05/16/19 22:29	MO	SM5210 B-11
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	05/30/19 16:19	KI	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	05/30/19 16:19	KI	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	05/16/19 21:38	MO	SM4500NO2 B-11
Nitrogen, Total ^b	2.2	0.30	mg/l	1	05/30/19 16:19	KI	SM4500 A-11
Nitrogen, Total Kjeldahl	2.2	0.20	mg/l	1	05/23/19 17:04	KI	EPA 351.2/LACHAT

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

Page 1 of 1

ω

ယ ပ

Report	of	Analysis
M CPOIL	UI	1 1 1 1 1 1 1 1 1 1

Client Sam Lab Sampl Matrix: Method: Project:	AQ - Et EPA 60	5-2R filuent 8 EPA (508 Long Island City, N	Y	Date	Sampled: (Received: (ent Solids: r					
Run #1 Run #2	File ID XX2435715.D	DF 1	Analyzed 05/29/19 12:35	By TR	Prep Date 05/28/19 06:25	Prep Batch OP20656	Analytical Batch GXX6700				
Run #1	Initial Volume 1000 ml	Final V 1.0 ml	olume								

Run #2

1.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND 0.037 ND ND	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ \end{array}$	0.034 0.029 0.020 0.027 0.025 0.034 0.027	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	64% 65% 58% 71%		10-1 10-1 10-1 10-1	56% 43%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.4

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

Parameter Certification Exceptions

Г

Job Number:	JC88255
Account:	HLANJPR Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY

The following parameters included in this report are exceptions to NELAC certification. The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status
Ignitability (Flashpoint) Nitrogen, Total		SW846 1010A/ASTM D93 SM4500 A-11	AQ AQ	SGS is not certified for this parameter. ^a SGS is not certified for this parameter. ^b

(a) Lab cert for analyte/method not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

(b) Lab cert for analyte not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

Certification exceptions shown are based on the New Jersey DEP certifications. Applicability in other states may vary. Please contact your laboratory representative if additional information is required for a specific regulatory program.

																									E
	ACCUTEST.	62		CHAI	N O	F C	CUST	O]	D¥	(PA	GE	1 0)F 2	PN
-				2235 TEL. 732-3	29-0200	0, Daytor FAX 7 accutest c		0 99/348	0					FED-EX Tracking # Accutest Quote # DK4_2016_911							AK AK	8 10			
CHC INCOM	Client / Reporting Information	The state	Broking a rult	Project			om Herrig	I.	¥	2	100		a sure	48	Rec	ueste	d Anal	vala (see Ti	ESTC	ODE s	heet)	20	- 2 (Matrix Codes
Company	Name	Project Name:	Contraction of the second																Γ						
	Amec Foster Wheeler	Review Ave,	Long Island Cit	y, Queens													A 30		÷		eue				DW - Drinking Water GW - Ground Water
Street Ad		Street				1.1961-1999	who is	÷.	1.1	x	1921 Y	-1013	0 <u>0</u>	- ∢			EP	-	VMS+14DCB)		1,2,4-Trichlorobenzene			608	WW - Water SW - Surface Water
	200 American Metro BLVD #113 State Zip	37-30 &	37-80 Review	Avenue			on (if diffe	rent fr	rom R	aport	to)		_	5	200.7;		ide	5	+14	E.	2c		5	EPA	SO - Soil
City	- 1			State	Compan	iy Name								46.1	A 2		hor	540	WS	8	ch	ļ.	20		SL-Sludge SED-Sediment
Project C	Hamilton, NJ 08619	Project #	land City, Quee	ans, NY	Street A	ddress		47.73						- 8	Zn) - EPA	-	0	SM2	Į.	1350	Ē		PA	(P608PCBLL)	OI - Oil LIQ - Other Liquid
	Vincent.Whelan@amecfw.com		3480160502											- S-	Zu)	SGT	E.	10	P4	SN (SN	1,2,4		-	BPC	AIR - Air SOL - Other Solid
Phone #	Fax #	Client Purchase			City			State Zip Vill Vill							644	40	olid	WS	5	e,	11	1 E	P60	WP - Wipe	
	815-6175, D: 609-689-2832, F: 609-689-2		C012700305											itab	Pb,	16	M25	N D	Ň.	E	ale	10 8	Ē	el (FB-Field Blank EB-Equipment Blank
) Name(s) Phone	Project Manager	Tim Kessler	Collection	Attention	1: T		T	Num	ber of p	Valena	ed Bottle	*5	Flashpoint (Ignitability) - SW846 1010A	Metals (Cd, Cu, Pb, Mercury (Hg) - EPA	M - EPA 1664A	Total Solids (SM2540 B-11); Chloride (EPA 300.0 1 SM4500 CI-C)	Total Suspended Solids - SM2640 D-11	(V624BTXM, VMS+PCE, 624	Hexavalent Chromium (SM3500 Cr B)	Naphthalene, S	CBOD5 - SM5210 B-11	Metals (Cadmium Only) - EPA 200.7	ow Level	RB- Rinse Blank TB-Trip Blank
1					1	1		h		T_1	1	11		- A	als (1 2	450	al St	S 24	ava	nol,	006	als	PCBs, Low	
Accutest Sample #	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	Ţ	HN03	H2SO4	NONE	MEOH	ENCORE	Flas	Met	SGT HEM	Tota / SN	Tota	VOC	Hex	Phenol, N EPA 625	B	Met	DC	LAB USE ONLY
1	RA-EFF-G		5-14-19	1155	NOF	GW	11	5	1	Ħ	5			X	X	н	X	X	X	X					E64
2	RA-EFF-C		5-16-19	1145	NDF	GW	11	3	1	1	6										X	X	X	н	AZ6
	RA-VOC-C1	-	5-16-19	002	NOF	GW	3	ŕ	+	11	-	+	H	+	+	1	-	-	-	1	1				M9
$ \land h$	BA VOC-C2 III		210-11	end	D		7	+	+	+	+	+	\vdash	-	+				+	-			-	+	VIIES
2	BAVOC CS	_			F	GW	-	++	-	+	-	+	\vdash	-	+		-		-	-	-	-	-	-	01185
· 1						GW			-				\square	_	-	-	-	-	-	-	-	_	<u> </u>	-	
<u> </u>	RA-VOC-C4					GW								2											LZD
AA	ul.a											-													A26
	(ale-							П					17	Ø		12							1 2		
			100 DC 17 17	-	<u> </u>	-	IN	IT I	ALTA	SE	SSN	NEN	P	P 17	X						-	1	-		<u> </u>
								BE			-	10		-	1	1						-			
								P	L VI		4	1 10	N+	-	+									1	
-					1	+		+	+	+		+	++	+	+	-	-	-	-	-		1	-		
<u>-</u>	Turnaround Time (Business days)	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	I VI NAKADAN	1901	1856.5		Data	Deliv	arahl	e Info	mati			- L	11421365	102.55	98-439		Com	ments	/ Speci	al Instru	ctions		100 m
	Tornaroono Tano (boancaa oaya)	Approved By (Acc	utest PM): / Date:	in the second second		Commen	cial "A" (L				_		P Cate	gory A		T			1 0011	internet	, open	or motive	otto no	1	Sector
	Std. 10 Business Days						cial "B" (L		2)	i		NYASE	P Cate	gory B		C	OMPO	SITE	RA-VO	C-C1	to RA-	VOC-C	4 IN L	AB TO	BE USED FOR
	5 Day RUSH	-					(Level 3+	4)				State F													
	3 Day EMERGENCY 2 Day EMERGENCY					NJ Redu Commer						EDD F		CDEP		-	RA-EF	F-C V	OC AN	ALYS	IS. HC	DLD SC	il-HE	M&P	CB SAMPLES
	1 Day EMERGENCY					Commer	Commerc	ial "A"	= Res			Other .	. <u>NY</u>	CDEP		н	EX CH	ROM	E TEST	MET	HOD	NLY	LLOV	VS 24	IR HOLD TIME
Ē	other						Commerc	ial "B"	= Res	sults +	QC S														
Emerg	ency & Rush T/A data available VIA Lablink	le Custody must be	desumented by	low each t'	1	e ober-	NJ Redu							Rawd	ata			1.000		1 139		100-100		12.95	N
Reling	inegio Sampley Date Tin		Received By:	IOW each time	sample	s chang	posses		quishe		cours	et del					Date Ti	me:		Receiv	red By:	11. 1997	190.000		
MA	1544 5-1		1 10	Mib /	why			2										S. 605		2	0.0000000				
	ished by Sampler: Date Tin	ne: /	Received By:					Relin	quishe	nd By:							Date TI	me:		Receiv	red By:				
3 Relingu	ished by: Date Tin	HE:	3 Received By:				100	4 Cueb	ody Se	al #	-	-	C	Intac		Prese	ved when	e applic	able	4	-	On la	./	Cook	1 Temp. 7 70
5		-	5							258	300			Not in								On k	/		249
									3	25	802	-											0	7,7	So F

JC88255: Chain of Custody Page 1 of 5

SGS

4.2

4

CHAIN OF CUSTODY

PAGE 2 OF 2

	LABORATORI	2235 Route 130, Dayton, NJ 08810										ſ	FED-EX Tracking #					E	Bottle Order Control # AK - 051319-28 1 Accutest Job # JC 88255							
					TEL. 732-3	29-0200		2-329-349		0					Accutest	Quote #		DK4_	2016_	911	Accutest .	Job #		JC	88	255
12130	Client / Reporting Information	6.460.4	e	572 	Project			an in the			1				1	Req	uested	Analy	sis (s	ee TE	STCC	DDE sl	heet)		- 20	Matrix Codes
Compan		F	Project Name:																	Τ	T					
1	Amec Foster Wheeler	F	Review Ave, L	ong Island City	y, Queens										No		-		1							DW - Drinking Water GW - Ground Water
Street A	ddress	s	Street			S. 17.	32182	2.42.52			÷.				8		10									WW - Water SW - Surface Water
	200 American Metro BLVD #113			37-80 Review A	State	Billing In Company		n (if differ	erent from Report to)						Ň		VMS+TCA)									SO - Soil
City		Zip (City								- s				1	1						SL- Sludge SED-Sediment				
Project (Hamilton, NJ 08619	E-mail F	Long Ist Project #	and City, Quee	ns, NY	Street Ad	drage							_	õ	6	5									OI - Oil LIQ - Other Liquid
Project C	Vincent.Whelan@amecfw.com	C-mans	riojeci #	3480160502		Officer Au	areaa								20	Ratio	VMS+CTC,									AIR - Air SOL - Other Solid
Phone #		Fax# (Client Purchase C			City			8	State			Zip	\neg	ž	2	۶ ۲									WP - Wipe
M: 609	-815-6175, D: 609-689-2832, F: 609-	-689-2838		C012700305											¥	3	(V624CHLFRM, V 624									FB-Field Blank EB-Equipment Blank
Sampler	(s) Name(s) XCL4 FAVE	Phone #	Project Manager			Attention									eu	ğ	Ŧ									RB- Rinse Blank TB-Trip Blank
No	Xelly PAVE			Tim Kessler	Collection					b loom bo		eserved	Detties	_	frog	ite	1 240					1	1			
					Collection	1			ŀΤ	NUMB	LÍ	eserved Te	Boules	Į I	ž.	öd	62 S						l			
Accutest Sample #	Field ID / Point of Collection		MEOH/DI Vial #	MAX	Time	Sampled by	Matrix	# of bottles	Ŷ	NaOH HNO3	H2SO4	DI Wat	MEOH		Total Nitrogen (TKN, NO2/NO3) - SM18 4500N	Composite VOCs (4:1 Ratio)	VOC EPA									LAB USE ONLY
	RA-EFE-G CAR		(5-16-19	1155	NDE	- 6W	-#																		
	RA-EFF-C			5-16-19	1145	NDF	GW	11	3	t	11	6			Х		X									
	RA-VOC-C1			5-16-19	0835	NDF	GW	3	3							Х										
	RA-VOC-C2			5-16-19	0935	NOF	GW	3	3							X										
Z	RA-VOC-C3			5-16-19	1035	NDF	GW	3	3							Х										
	RA-VOC-C4			5-16-19	1135	NDF	GW	3	3							X										
	`								Π		П															
									П		Π	Т	Π													
									П		П		Π	Π												
									П		П		П				1									
									Ħ		П		Π													
						1			Ħ		Ħ	-	IT													
	Turnaround Time (Business days)				Anna an ta			Data	Deliv	verable	Infor	matior	1		(2)(W)	8.C.V.	14 - A.A.	计和前	1 2	Com	ments	/ Specia	al Instru	ctions		
			Approved By (Accu	itest PM): / Date:				ial "A" (L			[Catego	-							- 04 \		4.011		
	X Std. 10 Business Days	-						ial "B" (L Level 3+4		2)	Ę		YASP (Catego	ry B		- <u>cc</u>	MPO	SILER	4-V00	U-01 t	0 KA-1	VUC-C	4 IN L	AB IU	BE USED FOR
	5 Day RUSH 3 Day EMERGENCY	-					FULLT1 (NJ Reduc		•)		Ļ		DD Fo				F	RA-EF	F-C VO	C AN	ALYSI	IS. HO	DLD SC	T-HE	M & P	CB SAMPLES
	2 Day EMERGENCY	-					Commerc				Ē	X o			DEP				_							
	1 Day EMERGENCY	-						Commerc				-					н	EX CH	ROME	TEST	METH	HODC	DNLY	ALLOV	VS 24	HR HOLD TIME
Eme	rgency & Rush T/A data available VIA Lablink	-		Commerce NJ Reduc						Partial F	Raw data	•														
- 3252			stody must be	documented be	ow each time	sample:	s change	possess				ourier	deli				•									
	te Atto	Date Time: 5161							Relinquished By: 2						Date Time:				Received By: 2							
Relig	uished by Sampler:	Date Time:	Received By:					Relin 4	quished	l By:							Date Ti	me:		Receive	ed By:					
-	quished by:	Date Time:	Received By:					Cust	ody Sea	125	800			Intact Not inta	ct	Preser	ved when	e applica	ble			On k		Cool	ar Temp.	
0				10					1		~/				-401 11 (18)										_	

25802

JC88255: Chain of Custody Page 2 of 5

۰.

SGS Sample Receipt Summary

Job Number: JC88255	Client: WOOD E	ENVIRONMENT &	INFRASTRUCT	Project: REVIEW AVENUE	, LONG ISLAND CITY, NY
Date / Time Received: 5/16/2019 3:2	6:00 PM Delivery	Method:	Client	Airbill #'s:	
Cooler Temps (Raw Measured) °C: C Cooler Temps (Corrected) °C: C					
Cooler Security Y or N 1. Custody Seals Present: Image: Custody Seals Intact: 2. Custody Seals Intact: Image: Custody Seals Intact: Cooler Temperature Y or N 1. Temp criteria achieved: Image: Custody Seals Intact:	3. COC Present: 4. Smpl Dates/Time Of <u>- N</u>	<u>Y or N</u> ✓ □ ズ ✓ □	 Sample labels Container labe Sample contain 	ner label / COC agree:	Y or N V U V U Y or N
2. Cooler temp verification: 3. Cooler media: IC 4. No. Coolers: IC	Gun (Bag) 2		Sample Integri 1. Sample recvd 2. All containers a 3. Condition of sa	within HT: accounted for:	
Quality Control Preservation Y 1. Trip Blank present / cooler:	<u>vr N N/A</u> v □ v □ □ □		 Analysis require Bottles receive Sufficient volu 	ed for unspecified tests me recvd for analysis: nstructions clear:	Y or N N/A Image: Constraint of the state of the st
Test Strip Lot #s: pH 1-12:	s as "RA-EFF-C" but also			Other: (Specify) C-C1 thru -C4 which is done in lat C1 thru C4. Please verify.	b per history. Vials that client

JC88255: Chain of Custody Page 3 of 5

JC88255

4.2

4

yes, the composite sample produced from samples RA-VOC-C1 through C4 should then become RA-EFF-C and analyzed for VOC's method EPA 624 as listed.

JC88255: Chain of Custody Page 4 of 5

	Job Chai	Job Change Order:	JC88255
Requested Date:	5/22/2019	Received Date:	5/16/2019
Account Name:	Wood Environment & Infrastructur	Due Date:	5/30/2019
Project Description:	1: Review Avenue, Long Island City, NY	Deliverable:	NYASPA
C/O Initiated By: AK	iy: AK PM: KR	TAT (Days):	14
Sample #: JC88			
Dept:	Relog for PHC1664		
TAT : 14			
RA-EFF-G			
Sample #: JC88			
Dept:	relog for P608PCBLL		
TAT : 14			
RA-EFF-C			

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

Date/Time: 5/22/2019 8:54:45 AM

Page 1 of 1

JC88255: Chain of Custody Page 5 of 5

Above Changes Per: Tim Kessler

Internal Sample Tracking Chronicle

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY Project No: C012700305/3480160502

Sample Number	Method	Analyzed	By	Prepped	By	Test Codes
JC88255-1 RA-EFF-G	Collected: 16-MAY-19	11:55 By: NDF	Receiv	ved: 16-MAY	-19 B	y: AS
JC88255-1 JC88255-1 JC88255-1 JC88255-1 JC88255-1 JC88255-1 JC88255-1 JC88255-1	SM3500CR B-11 SM2540 B-11 SM2540 D-11 EPA 245.1 EPA 200.7 EPA 200.7 EPA 300/SW846 90564 EPA 624.1 SW846 1010A/ASTM 1	28-MAY-19 14:15	RC RC EAL ND ND NV CSF	22-MAY-19 22-MAY-19 22-MAY-19 24-MAY-19	TG TG	XCRSM TS TSS HG CD,CU,PB,ZN NI CHL V624BTXM IGN
JC88255-2 RA-EFF-C	Collected: 16-MAY-19	11:45 By: NDF	Receiv	ved: 16-MAY	-19 B	y: AS
JC88255-2 JC88255-2 JC88255-2 JC88255-2 JC88255-2 JC88255-2 JC88255-2 JC88255-2 JC88255-2 JC88255-2	SM4500 A-11 EPA353.2/SM4500NO2 EPA 353.2/LACHAT EPA 625.1 EPA 625.1	29-MAY-19 19:40 30-MAY-19 16:19 2 B 0-MAY-19 16:19 30-MAY-19 16:19 31-MAY-19 15:00 07-JUN-19 17:54	MO ND CS KI CSF KI KI KI CC CC	16-MAY-19 22-MAY-19 20-MAY-19 21-MAY-19 30-MAY-19 20-MAY-19 06-JUN-19	9 TG 9 JF 9 EB 9 KI 9 JF BJ	NO2 CBOD5 CD AB625SL2 TKN V624CHLFRM, VMS+ CTC, VM TNIT NO30 NO32 AB625SL2 AB625SL2
JC88255-1F RA-EFF-G	Collected: 16-MAY-19	11:55 By: NDF	Receiv	ved: 16-MAY	-19 B <u>y</u>	y: AS
JC88255-1F	REPA 1664A	02-JUN-19 20:35	ТМ	02-JUN-19	ТМ	PHC1664
JC88255-2F RA-EFF-C	Collected: 16-MAY-19	11:45 By: NDF	Receiv	ved: 16-MAY	-19 By	y: AS
JC88255-2F	REPA 608	29-MAY-19 12:35	TR	28-MAY-19	Bl	P608PCBLL

Job No:

JC88255

JC88255
HLANJPR Wood Environment & Infrastructure Solut.
Review Avenue, Long Island City, NY
05/16/19

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JC88255-1.1	Secured Storage	Sahara Feliciano		Retrieve from Storage
JC88255-1.1	Sahara Feliciano	Secured Staging Area		Return to Storage
JC88255-1.1	Secured Staging Area	Tharun Murali		Retrieve from Storage
JC88255-1.1	Tharun Murali		06/02/19 20:43	Depleted
JC88255-1.1.1	Tharun Murali	TCLP	06/02/19 08:50	Leachate from JC88255-1.1
JC88255-1.3	Secured Storage	Matthew Robbins		Retrieve from Storage
JC88255-1.3	Matthew Robbins	Secured Staging Area	05/17/19 17:31	Return to Storage
JC88255-1.3	Secured Staging Area	Taylor Gorman	05/18/19 05:01	Retrieve from Storage
JC88255-1.3	Taylor Gorman	Secured Storage	05/18/19 05:49	Return to Storage
JC88255-1.3	Secured Storage	Sahara Feliciano		Retrieve from Storage
JC88255-1.3	Sahara Feliciano	Secured Staging Area		Return to Storage
JC88255-1.3	Secured Staging Area	Lindsey Lee		Retrieve from Storage
JC88255-1.3	Lindsey Lee	Secured Storage		Return to Storage
JC88255-1.3	Secured Storage	Benjamin Gaines		Retrieve from Storage
JC88255-1.3	Benjamin Gaines	Secured Staging Area		Return to Storage
JC88255-1.3	Secured Staging Area	Taylor Gorman		Retrieve from Storage
JC88255-1.3	Taylor Gorman	Secured Storage		Return to Storage
JC88255-1.3.1	Taylor Gorman	Metals Digestion	05/18/19 05:48	Digestate from JC88255-1.
JC88255-1.3.1	Metals Digestion	Taylor Gorman		Digestate from JC88255-1.
JC88255-1.3.1	Taylor Gorman	Metals Digestate Storage		Return to Storage
JC88255-1.3.2	Taylor Gorman	Metals Digestion	05/22/19 06:44	Digestate from JC88255-1.
JC88255-1.3.2	Metals Digestion	Taylor Gorman		Digestate from JC88255-1.
JC88255-1.3.2	Taylor Gorman	Metals Digestate Storage		Return to Storage
JC88255-1.5	Secured Storage	Todd Shoemaker	05/21/19 08:47	Retrieve from Storage
JC88255-1.5	Todd Shoemaker	Secured Staging Area		Return to Storage
JC88255-1.5	Secured Staging Area	Ruchitaben Chauhan		Retrieve from Storage
JC88255-1.5	Ruchitaben Chauhan	Secured Storage		Return to Storage
JC88255-1.6	Secured Storage	Todd Shoemaker	05/21/19 08:47	Retrieve from Storage
JC88255-1.6	Todd Shoemaker	Secured Staging Area		Return to Storage
JC88255-1.6	Secured Staging Area	Ruchitaben Chauhan		Retrieve from Storage
JC88255-1.6	Ruchitaben Chauhan	Secured Storage		Return to Storage
JC88255-1.7	Secured Storage	Sahara Feliciano	05/16/19 17:29	Retrieve from Storage
JC88255-1.7	Sahara Feliciano	Secured Staging Area		Return to Storage
JC88255-1.7	Secured Staging Area	Michael Olcott		Retrieve from Storage
JC88255-1.7	Michael Olcott	Secured Storage		Return to Storage
JC88255-1.7	Secured Storage	Sahara Feliciano		Retrieve from Storage
	Secured Storage	Summer i chommo	55,25,17 21.17	reale to nom blorage

JC88255
HLANJPR Wood Environment & Infrastructure Solut.
Review Avenue, Long Island City, NY
05/16/19

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JC88255-1.7	Secured Staging Area	Natasha Verma	05/24/19 12:33	Retrieve from Storage
JC88255-1.7	Natasha Verma	Secured Storage	05/24/19 15:18	Return to Storage
JC88255-1.8	Secured Storage	Todd Shoemaker		Retrieve from Storage
JC88255-1.8	Todd Shoemaker	Secured Staging Area		Return to Storage
JC88255-1.8	Secured Staging Area	Elaine Banting		Retrieve from Storage
JC88255-1.8	Elaine Banting	Secured Storage		Return to Storage
JC88255-1.8	Secured Staging Area	Dwayne Johnson	05/30/19 10:36	Retrieve from Storage
•	custody update error.			_
JC88255-1.8	Dwayne Johnson	Secured Staging Area		Return to Storage
JC88255-1.8	Secured Staging Area	Todd Shoemaker		Retrieve from Storage
JC88255-1.8	Todd Shoemaker	Secured Storage	05/30/19 14:45	Return to Storage
JC88255-1.9	Secured Storage	Chelsea San Filippo		Retrieve from Storage
JC88255-1.9	Chelsea San Filippo	GCMSN		Load on Instrument
JC88255-1.9	GCMSN	Chelsea San Filippo	05/29/19 13:44	Unload from Instrument
JC88255-1.9	Chelsea San Filippo	Secured Storage	05/29/19 13:44	Return to Storage
JC88255-2.1	Secured Storage	Sahara Feliciano	05/26/19 10:08	Retrieve from Storage
JC88255-2.1	Sahara Feliciano	Secured Staging Area	05/26/19 10:08	Return to Storage
JC88255-2.1	Secured Staging Area	Brian Johnson	05/28/19 05:42	Retrieve from Storage
JC88255-2.1	Brian Johnson		05/28/19 14:24	Depleted
JC88255-2.1.1	Brian Johnson	Organics Prep	05/28/19 05:43	Extract from JC88255-2.1
JC88255-2.1.1	Organics Prep	Brian Johnson	05/28/19 14:20	Extract from JC88255-2.1
JC88255-2.1.1	Brian Johnson	Extract Storage	05/28/19 14:20	Return to Storage
JC88255-2.1.1	Extract Storage	Tianwei Ruan	05/28/19 16:32	Retrieve from Storage
JC88255-2.1.1	Tianwei Ruan	GCXX	05/28/19 16:32	Load on Instrument
JC88255-2.2	Secured Storage	Dwayne Johnson	05/20/19 09:31	Retrieve from Storage
JC88255-2.2	Dwayne Johnson	Secured Staging Area		Return to Storage
JC88255-2.2	Secured Staging Area	Brian Johnson	05/20/19 13:24	Retrieve from Storage
JC88255-2.2	Brian Johnson		05/20/19 15:07	Depleted
JC88255-2.2.1	Brian Johnson	Organics Prep	05/20/19 13:24	Extract from JC88255-2.2
JC88255-2.2.1	Organics Prep	Jonathon Ford	05/20/19 21:20	Extract from JC88255-2.2
JC88255-2.2.1	Jonathon Ford	Extract Storage		Return to Storage
JC88255-2.2.1	Extract Storage	Christopher Sowa		Retrieve from Storage
JC88255-2.2.1	Christopher Sowa	GCMSZ		Load on Instrument
JC88255-2.2.1	GCMSZ	Angela Rastelli	06/03/19 12:05	Unload from Instrument
JC88255-2.2.1	Angela Rastelli	Extract Freezer	06/03/19 12:05	Return to Storage
JC88255-2.4	Secured Storage	Sahara Feliciano	06/05/19 15:13	Retrieve from Storage
JC88255-2.4	Sahara Feliciano	Secured Staging Area	06/05/19 15:13	Return to Storage

4.4 4

JC88255
HLANJPR Wood Environment & Infrastructure Solut.
Review Avenue, Long Island City, NY
05/16/19

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JC88255-2.4	Secured Staging Area	Brian Johnson		Retrieve from Storage
JC88255-2.4	Brian Johnson		06/06/19 10:57	Depleted
JC88255-2.4.1	Brian Johnson	Organics Prep	06/06/19 01:59	Extract from JC88255-2.4
JC88255-2.4.1	Organics Prep	Brian Johnson	06/06/19 10:52	Extract from JC88255-2.4
JC88255-2.4.1	Brian Johnson	Extract Storage	06/06/19 10:52	Return to Storage
JC88255-2.4.1	Extract Storage	Christine Change	06/07/19 15:25	Retrieve from Storage
JC88255-2.4.1	Christine Change	GCMS5P	06/07/19 15:25	Load on Instrument
JC88255-2.5	Secured Storage	Matthew Robbins	05/17/19 17:30	Retrieve from Storage
JC88255-2.5	Matthew Robbins	Secured Staging Area		Return to Storage
JC88255-2.5	Secured Staging Area	Taylor Gorman		Retrieve from Storage
JC88255-2.5	Taylor Gorman	Secured Storage		Return to Storage
JC88255-2.5	Secured Storage	Benjamin Gaines		Retrieve from Storage
JC88255-2.5	Benjamin Gaines	Secured Staging Area		Return to Storage
JC88255-2.5	Secured Staging Area	Taylor Gorman		Retrieve from Storage
JC88255-2.5	Taylor Gorman	Secured Storage		Return to Storage
JC88255-2.5.1	Taylor Gorman	Metals Digestion	05/18/19 05:48	Digestate from JC88255-2.
JC88255-2.5.1	Metals Digestion	Taylor Gorman		Digestate from JC88255-2.
JC88255-2.5.1	Taylor Gorman	Metals Digestate Storage		Return to Storage
JC88255-2.5.2	Taylor Gorman	Metals Digestion	05/22/19 06:44	Digestate from JC88255-2.
JC88255-2.5.2	Metals Digestion	Taylor Gorman		Digestate from JC88255-2.
JC88255-2.5.2	Taylor Gorman	Metals Digestate Storage		Return to Storage
JC88255-2.6	Secured Storage	Todd Shoemaker	05/21/19 16:27	Retrieve from Storage
JC88255-2.6	Todd Shoemaker	Secured Staging Area		Return to Storage
JC88255-2.6	Secured Staging Area	Elaine Banting		Retrieve from Storage
JC88255-2.6	Elaine Banting	Secured Storage		Return to Storage
JC88255-2.6	Secured Storage	Todd Shoemaker		Retrieve from Storage
JC88255-2.6	Todd Shoemaker	Secured Staging Area		Return to Storage
JC88255-2.6	Secured Staging Area	Kimberly Ignace		Retrieve from Storage
JC88255-2.6	Kimberly Ignace	Secured Storage		Return to Storage
JC88255-2.7	Secured Storage	Sahara Feliciano	05/16/19 17·29	Retrieve from Storage
JC88255-2.7	Sahara Feliciano	Secured Staging Area		Return to Storage
JC88255-2.7	Secured Staging Area	Michael Olcott		Retrieve from Storage
JC88255-2.7	Michael Olcott	Secured Storage		Return to Storage
JC88255-2.8	Secured Storage	Sahara Feliciano	05/16/19 17·29	Retrieve from Storage
JC88255-2.8	Sahara Feliciano	Secured Staging Area		Return to Storage
JC88255-2.8	Secured Staging Area	Michael Olcott		Retrieve from Storage
JC88255-2.8	Michael Olcott	Secured Storage		Return to Storage

4.4

4

25 of 26 JC88255

SGS

Job Number:	JC88255
Account:	HLANJPR Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY
Received:	05/16/19

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JC88255-2.11	Secured Storage	Chelsea San Filippo	05/29/19 16:32	Retrieve from Storage
JC88255-2.11	Chelsea San Filippo	GCMST	05/29/19 16:32	Load on Instrument
JC88255-2.11	GCMST	Chelsea San Filippo	05/30/19 11:24	Unload from Instrument
JC88255-2.11	Chelsea San Filippo	Secured Storage	05/30/19 11:24	Return to Storage
JC88255-2.12	Secured Storage	Chelsea San Filippo	05/29/19 16:14	Retrieve from Storage
JC88255-2.12	Chelsea San Filippo		05/29/19 16:14	÷

Page 4 of 4

4.4

4

1550 Pond Road Suite 120 Allentown, PA 18104 (610) 435-1151 FAX (610) 435-8459

September 18, 2019

Via U.S. Mail

Mr. Sean H. Hulbert Assistant Chemical Engineer NYCDEP, Bureau of Wastewater Treatment 96-05 Horace Harding Expressway, 1st Floor Corona, New York 11368

RE: Review Avenue Development Sites - 37-30 and 37-80 Review Avenue File # C-5652 3rd Quarter 2019 Effluent Discharge Compliance Report

Dear Mr. Hulbert:

Enclosed is the 3rd Quarter 2019 - Effluent Discharge Compliance Report for the Review Avenue Development Sites. This report is being submitted on behalf of the Review Avenue System LLC administering the Review Avenue Development Site Brownfield Projects identified as RAD I and RAD II.

I would like to call to your attention the following, relative to discharge for the 3rd Quarter 2019:

- Approximately 670,930 gallons of water have been discharged to the sewer system since the last reporting period May 2019.
- No constituents were reported above discharge criteria.

Please contact me with any questions at (610) 435-1151.

Sincerely,

de maximis, inc.

R. Craig Coslett Project Coordinator for RADI and RAD II

Enclosures: Compliance Monitoring Report for 3rd Quarter 2019 CC: John Grathwol, NYDEC (Electronic Mail Only) Tim Kessler, Wood Group (Electronic Mail Only) Brent O'Dell, Wood Group (Electronic Mail Only)

File: 3216 / 3rd Q Compliance Report 2019

September 23, 2019

Mr. Sean H. Hulbert - Assistant Chemical Engineer NYCDEP, Bureau of Wastewater Treatment 96-05 Horace Harding Expressway, 1st Floor Corona, NY 11368

Subject: 3rd Quarter 2019 Effluent Discharge Compliance Review Avenue Development Sites 37-30 and 37-80 Review Avenue Long Island City, Queens, New York, File # C-5652

Dear Mr. Hulbert:

Wood Environment and Infrastructure Solutions, Inc. (Wood), on behalf of Review Avenue System LLC, submits the effluent laboratory analysis data in connection with the letter of approval (LOA) for groundwater discharge to sanitary or combined sewer for the Review Avenue Development (RAD) Sites and LOA Extension dated October 12, 2018.

Wood collected the 3rd Quarter 2019 discharge compliance samples on August 14, 2019. Analytical results indicate no exceedances of the daily discharge limits for all parameters and no exceedances of the monthly discharge limits for all parameters, and therefore the discharge is in compliance with our LOA requirements. The analytical results collected for the 3rd quarter 2019 compliance sampling are summarized on Table 1 attached. The total volume of groundwater discharged to the sanitary or combined sewer, since system start-up was 10,219,300 gallons as of the August 14th sampling event and 670,930 gallons since the last quarterly sampling event on May 16th.

If you have any questions, please contact either of the undersigned at (609) 689-2829.

Sincerely,

Wood Environment & Infrastructure Solutions, Inc.

Brent C. O'Dell, P.E. Principal Engineer – Civil

Timothy C. Kessler Senior Associate Engineer/PM

Attachments: Table 1 - Summary of Groundwater Analytical Results

cc: R. Craig Coslett – Review Avenue System LLC

200 American Metro Blvd Suite 113 Hamilton, NJ 08619 609-689-2829 woodplc.com

Table 1 Summary of Analytical Results - Groundwater Treatment System Review Avenue Development Sites, NYCDEP File # C-5652 Long Island City, Queens, New York

Field Sample ID:				RA-EFF-	G	RA-EFF-	С
Compliance Period:	11	NYCDEP	NYCDEP	3Q 201	9	3Q 201	9
Sample Date:	Unit	Daily Limit	Monthly Limit	8/14/201	9	8/14/201	19
Lab Sample ID:		-		JC93215-1		JC93215-2	
Non-polar material ¹	mg/L	50	NL	5.6		-	
pH ²	SUs	5 - 12	NL	7.36		_	
Temperature ²	°F	150	NL	65.00		-	
Flash Point ³	٩F	> 140	NL	> 200		-	
Cadmium (Instantaneous)	mg/L	2	NL	< 0.003	U	-	
Cadmium (Composite)	mg/L	0.69	NL	-		< 0.003	U
Chromium (VI)	mg/L	5	NL	<0.010	U	-	
Copper	mg/L	5	NL	<0.010	U	-	
Lead	mg/L	2	NL	<0.003	U	-	
Mercury	mg/L	0.05	NL	<0.0002	U	-	
Nickel	mg/L	3	NL	<0.01	U	-	
Zinc	mg/L	5	NL	0.085		-	
Benzene	µg/L	134	57	0.34	U	-	
Carbon Tetrachloride	µg/L	NL	NL	-		0.55	U
Chloroform	µg/L	NL	NL	-		0.50	U
1,4-Dichlorobenzene	µg/L	NL	NL	0.63	U	-	
Ethylbenzene	µg/L	380	142	0.30	U	-	
MTBE (Methyl-Tert-Butyl-Ether)	µg/L	50	NL	0.87	U	-	
Napthalene	µg/L	47	19	-		0.23	U
Phenol	µg/L	NL	NL	-		0.38	U
Tetrachloroethylene (Perc)	µg/L	20	NL	0.9	U	-	
Toluene	µg/L	74	28	0.36	U	-	
1,2,4-Trichlorobenzene	µg/L	NL	NL	-		0.25	U
1,1,1-Trichloroethane	µg/L	NL	NL	-		0.54	U
Xylenes (Total)	µg/L	74	28	0.35	U	-	
PCBs (Total)	µg/L	1	NL	-		0.034	U
Total Suspended Solids (TSS)	mg/L	350	NL	16.6		-	
CBOD	mg/L	NL	NL	-		<10	U
Chloride	mg/L	NL	NL	109			
Total Nitrogen	mg/L	NL	NL	-		2.0	
Total Solids	mg/L	NL	NL	973		-	

 Table 1

 Summary of Analytical Results - Groundwater Treatment System

 Review Avenue Development Sites, NYCDEP File # C-5652

 Long Island City, Queens, New York

Notes:

RA-EFF-G: Instantaneous (Grab) Sample

RA-EFF-C: 4-Hour Flow Weighted Composite Sample

Bold/Shaded: Concentration exceeds daily limit

- <u>Underline:</u> Concentration exceeds monthly limit
- 1. Non-polar Material reported by lab as "Silica Gel Treated n-Hexane Extractable Material (SGT-HEM)"
- 2. pH and Temperature measured in field
- 3. Flash Point reported by lab as Ignitability
- 4. Temperature was estimated

Definitions:

MDL: Method Detection Limit RL: Reporting Limit NL: No Limit

Data Qualifiers:

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U: Indicates the analyte was not detected at the indicated MDL.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

09/11/19

Technical Report for

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY

3480160502 PO#C01270035

SGS Job Number: JC93215

Sampling Date: 08/14/19

Report to:

Wood Environment & Infrastructure Solut.

bianca.abrera@woodplc.com

ATTN: Bianca Abrera

Total number of pages in report: 24

Henry

Mike Earp General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Kelly Ramos 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 24

Table of Contents

-

N

ω

4

(J)

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	7
Section 4: Sample Results	8
4.1: JC93215-1: RA-EFF-G	9
4.2: JC93215-1R: RA-EFF-G	12
4.3: JC93215-2: RA-EFF-C	13
4.4: JC93215-2R: RA-EFF-C	17
Section 5: Misc. Forms	18
5.1: Certification Exceptions	19
5.2: Chain of Custody	20

Sample Summary

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY Project No: 3480160502 PO#C01270035

Sample Number	Collected Date	Time By	Mata Received Code		Client Sample ID
This report co Organics ND		<u> </u>	s ND = Not dete ed above the MD	ected. The following app L	plies:
JC93215-1	08/14/19	11:00 ЛL	08/14/19 AQ	Effluent	RA-EFF-G
JC93215-1R	08/14/19	11:00 JL	08/14/19 AQ	Effluent	RA-EFF-G
JC93215-2	08/14/19	10:45 JL	08/14/19 AQ	Effluent	RA-EFF-C
JC93215-2R	08/14/19	10:45 JL	08/14/19 AQ	Effluent	RA-EFF-C

Job No: JC93215

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Wood Environment & Infrastructure Solut.	Job No	JC93215
Site:	Review Avenue, Long Island City, NY	Report Date	8/30/2019 12:04:44 P

On 08/14/2019, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 3.5 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JC93215 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Please refer to certification exceptions summary for additional certification information.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method EPA 624.1

Matrix: AQ	Batch ID: V2E6907	

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JC93807-1MS, JC93807-1MSD were used as the QC samples indicated.

MS Semi-volatiles By Method EPA 625.1

Matrix: AQ	Batch ID:	OP22123

All samples were extracted within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method EPA 608

	Matrix: AQ	Batch ID: OP22271	
. 1			

All samples were extracted within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Metals Analysis By Method EPA 200.7

Matrix: AQ Batch ID: MP16849

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC93153-1MS, JC93153-1MSD, JC93153-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Copper, Nickel are outside control limits. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- MP16849-SD1 for Zinc: Serial dilution indicates possible matrix interference. Results confirmed with analysis of second dilution.

Metals Analysis By Method EPA 245.1

Matrix: AQ Batch ID: MP16910

All samples were digested within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JC93195-3MS, JC93195-3MSD were used as the QC samples for metals.

Page 1 of 3

General Chemistry By Method EPA 1664A

Matrix:	AQ Batch ID:	GP23342
---------	--------------	---------

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC93426-1DUP, JC93426-1MS were used as the QC samples for HEM Petroleum Hydrocarbons.

General Chemistry By Method EPA 300/SW846 9056A

Matrix: AQ	Batch ID: GP23067
------------	-------------------

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC93233-1DUP, JC93233-1MS were used as the QC samples for Chloride.
- Matrix Spike Recovery(s) for Chloride are outside control limits. Probable cause due to matrix interference.

General Chemistry By Method EPA 351.2/LACHAT

		Matrix: AQ	Batch ID:	GP23072
--	--	------------	-----------	---------

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC93357-1DUP, JC93357-1MS were used as the QC samples for Nitrogen, Total Kjeldahl.
- Matrix Spike Recovery(s) for Nitrogen, Total Kjeldahl are outside control limits. Spike recovery indicates possible matrix interference.

General Chemistry By Method EPA 353.2/LACHAT

	Matrix: AQ	Batch ID:	GP23262
_	A 11		d halding time

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC93177-2DUP, JC93215-2MS were used as the QC samples for Nitrogen, Nitrate + Nitrite.

General Chemistry By Method EPA353.2/SM4500NO2B

	Matrix: AQ	Batch ID:	R180547
-	The data for EPA353.2/SM4500	NO2B meets quality cont	rol requirements.

JC93215-2 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

General Chemistry By Method SM2540 B-11

Matrix: AQ	Batch ID:	GN98700
	,	

All samples were analyzed within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JC93215-1DUP were used as the QC samples for Solids, Total.

General Chemistry By Method SM2540 D-11

Matrix: AQ	Batch ID: GN98760	

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC93213-1DUP were used as the QC samples for Solids, Total Suspended.

General Chemistry By Method SM3500CR B-11

Matrix: AQ Batch ID: GN98711	
------------------------------	--

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JC93215-1DUP, JC93215-1MS were used as the QC samples for Chromium, Hexavalent.

General Chemistry By Method SM4500 A-11

Matrix: AQ	Batch ID:	R180546
 TI 1.4.6 CM4500 A 11		

The data for SM4500 A-11 meets quality control requirements.

JC93215-2 for Nitrogen, Total: Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

General Chemistry By Method SM4500NO2 B-11

Matrix: AQ	Batch ID:	GN98687

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JC93179-3DUP, JC93179-3MS were used as the QC samples for Nitrogen, Nitrite.

General Chemistry By Method SM5210 B-11

	Matrix: AQ	Batch ID:	GP23011
-	All samples were prepared within	the recommended metho	d holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JC93178-1ADUP were used as the QC samples for Carbonaceous Bod, 5 Day.

General Chemistry By Method SW846 1010A/ASTM D93

Γ	Matrix: AQ	Batch ID:	GN99104

Sample(s) JC93215-1DUP were used as the QC samples for Ignitability (Flashpoint).

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

gt 5 01 5

Summary of Hits

Job Number:	JC93215
Account:	Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY
Collected:	08/14/19

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JC93215-1 RA-EFF-G					
Zinc Chloride Ignitability (Flashpoint) Solids, Total Solids, Total Suspended	85.0 109 > 200 973 16.6	20 2.0 10 4.0		ug/l mg/l Deg. F mg/l mg/l	EPA 200.7 EPA 300/SW846 9056A SW846 1010A/ASTM D93 SM2540 B-11 SM2540 D-11
JC93215-1RRA-EFF-GHEM Petroleum HydrocarbonsJC93215-2RA-EFF-C	5.6	5.0		mg/l	EPA 1664A
Nitrogen, Total ^a Nitrogen, Total Kjeldahl	2.0 2.0	0.30 0.20		mg/l mg/l	SM4500 A-11 EPA 351.2/LACHAT

JC93215-2R RA-EFF-C

No hits reported in this sample.

(a) Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

Page 1 of 1

Dayton, NJ

Section 4

Sample Results

Report of Analysis

4

			Inchord		ruge r or r		
Client Sar Lab Samp Matrix: Method: Project:	ple ID: JC932 AQ - H EPA 6	15-1 Effluent 524.1	Long Island City, N	IY		Date Sampled: Date Received: Percent Solids:	08/14/19 08/14/19 n/a
Run #1 Run #2	File ID 2E155406.D	DF 1	Analyzed 08/27/19 18:28	By CSF	Prep Date n/a	Prep Batc n/a	h Analytical Batch V2E6907
Run #1 Run #2	Purge Volume 5.0 ml						
Purgeable	e Aromatics, MT	BE					
CAS No.	Compound		Result	RL	MDL U	Inits Q	

CAS No.	Compound	Result	RL	MDL	Units	
71-43-2 108-88-3	Benzene Toluene	ND ND	$1.0 \\ 1.0$	0.34 0.36	ug/l ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7 1634-04-4	Xylenes (total) Methyl Tert Butyl Ether	ND ND	1.0 1.0	0.35 0.87	ug/l ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.63	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4 (SUR)	102%		76-12	22%	
2037-26-5	Toluene-D8 (SUR)	105%	80-120%			
460-00-4	4-Bromofluorobenzene (SUR)	101%	80-120%			
1868-53-7	Dibromofluoromethane (S)	104%	80-120%			

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

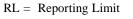
Page 1 of 1

Client Sample ID:	RA-EFF-G		
Lab Sample ID:	JC93215-1	Date Sampled:	08/14/19
Matrix:	AQ - Effluent	Date Received:	08/14/19
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	< 3.0	3.0	ug/l	1	08/15/19	08/16/19 ND	EPA 200.7 ¹	EPA 200.7 ³
Copper	< 10	10	ug/l	1	08/15/19	08/16/19 ND	EPA 200.7 ¹	EPA 200.7 ³
Lead	< 3.0	3.0	ug/l	1	08/15/19	08/16/19 ND	EPA 200.7 ¹	EPA 200.7 ³
Mercury	< 0.20	0.20	ug/l	1	08/20/19	08/21/19 LL	EPA 245.1 ²	EPA 245.1 ⁴
Nickel	< 10	10	ug/l	1	08/15/19	08/16/19 ND	EPA 200.7 ¹	EPA 200.7 ³
Zinc	85.0	20	ug/l	1	08/15/19	08/16/19 ND	EPA 200.7 ¹	EPA 200.7 ³

(1) Instrument QC Batch: MA47297


(2) Instrument QC Batch: MA47314

(3) Prep QC Batch: MP16849

(4) Prep QC Batch: MP16910

Page 1 of 1

4-1 4

Client Sample ID:	RA-EFF-G		
Lab Sample ID:	JC93215-1	Date Sampled:	08/14/19
Matrix:	AQ - Effluent	Date Received:	08/14/19
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chloride	109	2.0	mg/l	1	08/16/19 17:20	NV	EPA 300/SW846 9056A
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	08/15/19 09:55	JOO	SM3500CR B-11
Ignitability (Flashpoint)	> 200		Deg. F	1	08/24/19 17:39	JOO	SW846 1010A/ASTM D93
Solids, Total	973	10	mg/l	1	08/16/19 13:10	RC	SM2540 B-11
Solids, Total Suspended	16.6	4.0	mg/l	1	08/16/19 09:40	RC	SM2540 D-11

Page 1 of 1

4.1

4

Client Sample ID: Lab Sample ID: Matrix: Project:	JC93215-1 AQ - Efflu	IR	g Island Cit	y, NY		Date Sampled:08/14/19Date Received:08/14/19Percent Solids:n/a			
General Chemistry									
Analyte		Result	RL	Units	DF	Analyzed	By	Method	
HEM Petroleum Hy	drocarbons	5.6	5.0	mg/l	1	08/29/19 13:00	JOO	EPA 1664A	

Page 1 of 1

4.2

		Report					
Client Samj Lab Sample Matrix: Method: Project:		Island City, 1	١Y		Date	I I	/14/19 /14/19 a
Run #1 Run #2		nalyzed 8/27/19 18:58	By CSF	Prep Da n/a	ate	Prep Batch n/a	Analytical Batch V2E6907
Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
56-23-5 67-66-3 71-55-6	Carbon tetrachloride Chloroform 1,1,1-Trichloroethane	ND ND ND	1.0 1.0 1.0	0.55 0.50 0.54	ug/l ug/l ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
17060-07-0 2037-26-5 460-00-4 1868-53-7	1,2-Dichloroethane-D4 (SUR) Toluene-D8 (SUR) 4-Bromofluorobenzene (SUR) Dibromofluoromethane (S)	105%		76-12 80-12 80-12 80-12	20% 20%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

	Report of Analysis										
Client Sa Lab Sam Matrix: Method: Project:	AQ - E EPA 62	5-2 ffluent 25.1 EP.	A 625 Long Island City, N	Y	Date	Sampled: (Received: (ent Solids: 1					
Run #1 Run #2	File ID F186631.D	DF 1	Analyzed 08/17/19 02:29	By CB	Prep Date 08/15/19 07:00	Prep Batch OP22123	Analytical Batch EF8034				
Run #1 Run #2	Initial Volume 1020 ml	Final V 1.0 ml	olume								

ABN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
108-95-2 91-20-3 120-82-1	Phenol Naphthalene 1,2,4-Trichlorobenzene	ND ND ND	2.0 0.98 0.98	0.38 0.23 0.25	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4 4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	26% 19% 92% 78% 72% 80%		10-1 10-1 35-1 32-1 40-1 33-1	10% 47% 32% 17%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

14 of 24 SGS

JC93215

4.3

Client Sample ID: RA-EFF-C Lab Sample ID: JC93215-2 Matrix: AQ - Effluent Project: Review Avenue, Long Island City, NY								
	alysis Result	RL	Units	DF	Prep	Analyzed By	v Method	Prep Method
2	< 3.0	3.0	ug/l	1	•	08/16/19 NI	1	EPA 200.7 ²

Page 1 of 1

(1) Instrument QC Batch: MA47297

(2) Prep QC Batch: MP16849

Client Sample ID:	RA-EFF-C		
Lab Sample ID:	JC93215-2	Date Sampled:	08/14/19
Matrix:	AQ - Effluent	Date Received:	08/14/19
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Carbonaceous Bod, 5 Day	< 10	10	mg/l	1	08/14/19 22:10	EB	SM5210 B-11
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	08/26/19 16:17	KI	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	08/26/19 16:17	KI	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	08/15/19 00:25	СМ	SM4500NO2 B-11
Nitrogen, Total ^b	2.0	0.30	mg/l	1	08/26/19 16:17	KI	SM4500 A-11
Nitrogen, Total Kjeldahl	2.0	0.20	mg/l	1	08/20/19 09:51	KI	EPA 351.2/LACHAT

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

			Report	of Ai	nalysis		Page 1 of 1
Client Sa Lab Sam Matrix: Method: Project:	ple ID: JC9321 AQ - E: EPA 60	5-2R ffluent 8 EPA	608 Long Island City, N	Y	Date	Sampled: 08 Received: 08 ent Solids: n/	
Run #1 Run #2	File ID XX2439019.D	DF 1	Analyzed 08/24/19 13:41	By RK	Prep Date 08/23/19 07:00	Prep Batch OP22271	Analytical Batch GXX6785
Run #1	Initial Volume 1000 ml	Final V 1.0 ml	Volume				

Run #2 PCB List

CAS No. Compound RL Result MDL Units 12674-11-2 Aroclor 1016 ND 0.050 0.034 ug/l Aroclor 1221 11104-28-2 ND 0.050 0.029 ug/l 11141-16-5 Aroclor 1232 ND 0.050 0.020 ug/l 53469-21-9 Aroclor 1242 ND 0.050 0.027 ug/l 12672-29-6 Aroclor 1248 ND 0.050 0.025 ug/l 11097-69-1 Aroclor 1254 ND 0.050 0.034 ug/l 11096-82-5 Aroclor 1260 ND 0.050 0.027 ug/l Run# 2 CAS No. **Surrogate Recoveries** Run#1 Limits 877-09-8 Tetrachloro-m-xylene 103% 10-156% 877-09-8 Tetrachloro-m-xylene 109% 10-156% 2051-24-3 Decachlorobiphenyl 96% 10-143% 2051-24-3 Decachlorobiphenyl 128% 10-143%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Q

JC93215

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody

Parameter Certification Exceptions

Г

Job Number:	JC93215
Account:	HLANJPR Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY

The following parameters included in this report are exceptions to NELAC certification. The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status	
Ignitability (Flashpoint) Nitrogen, Total		SW846 1010A/ASTM D93 SM4500 A-11	AQ AQ	SGS is not certified for this parameter. ^a SGS is not certified for this parameter. ^b	

(a) Lab cert for analyte/method not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

(b) Lab cert for analyte not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

Certification exceptions shown are based on the New Jersey DEP certifications. Applicability in other states may vary. Please contact your laboratory representative if additional information is required for a specific regulatory program.

C)

SGS	C, W				S	AIN 35 Nor 2235 Roi 732-329- w	th Am Ite 130	erica l), Dayto	nc D n, NJ 0 32-329-	ayto 8810	'n					FED-E	< Tracking #					SGS Job	der Coptr K	2 - (10	9-10	20	PA (OM
Client / Reporting Information					Projec	t Inform	ation											·		Reque	sted An	alysis	r		— —		Matrix Codes	
Company Name:	Project Name: Review Ave		~												I				-		<		×				DW - Drinking Water	
Wood E&IS Street Address	Street	enue	GW			· · · · · ·										4			300.01	ſ	- EPA		- EPA				GW - Ground Water WW - Water	
200 American Metro Blvd #113	Review Ave	enue				Billion			erent from	Bees						1			32		(B)		eres				SW - Surface Water SO - Soil	
City State Zip	City				State	Company	/ Name	on (a ann	Nett ITON	Repo	1 10)					- ≼	2.		ide (E	5	40	8	- Height			A 608	SL- Sludge SED-Sediment	
Hamilton, NJ 8619	Long Island	d City	/		NY											101	A 20		Chlorid	2540 D	-SM	в ъ	plot		200.7	Щ.	01 - 01	
Project Contact E-mail vincent.whelen@wocduc.com	Project # 3480160502	,				Street Ad	dress									846	Ni, Zn) - EPA 200.7 245.1	⊢	≥∓	N 25	> 	200	1,2,4-Trichlorober		EPA 2	EL)	LIQ - Other Liquid AIR - Air	
Phone #	Client Purchas		er#			City	·	· · · · · ·			State			Zig		- No	ភិភ្	SGT	Ê	⇒ 05	D4+	EWS	1.2,4		Ξ.	D'	SOL - Other Solid WP - Wipe	
609-689-2832		C012		35												ĮĮ,	N 24	1664A	2540	Solids	Ŵ	ŝ		8-1	- (Nul) -	(P608PCBLL) - EPA	FB - Field Blank EB-Equipment Blank	
	Project Manag					Attention	;									itati	(Cd, Cu, Pb, 1 y (Hg) - EPA :	EPA 16	W2		(V624BTXM, VMS+PCE, VMS+14DCB)	Chromium (SM3500 Cr	Naphthalene,	SM5210 B-11	E.	Level (RB - Rinse Blank TB - Trip Blank	
Jazmin Logan (347) 836-4445	Tim Kessie	r														15	10 6	μü L	10°.	Suspended	HH I	Ċ F	apr.	SM5	(Cadmium	w Le	TB - Thp Blank	
		┣			Collectio	<u></u>	1	1		\vdash	Nurr	iber of	presen	ad Botti		-l m	liny (h	HEM -	Solids, (SM: 500 CI-C)		(V62	Hexavalent			ls (C	s, Low	<u>├</u>	
sgs sampte≠ Field ID / Point of Collection	MEOH/DI Vial #		Dete		Time	Sampled	Grab (G) Comp (C	Metrix	# of bottle	₽	NaOH	NH ONH	NONE	DI Wat	ENCOR	Flashpoint (Ignitability) - SW846 1010A	Metals ((Mercury	SGT	Total Solic SM4500 (Total	VOC	Hexa	Phenol, 625	CBOD5	Metals	PCBs,	LAB USE ONLY	
RA-EFF-G		8	H	19	1100	JL	ĥ	GW	11	5		1	5			X	x	н	x	х	x	X			1		E9	
Z RA-EFF-C		Ň	4	14	1N4K	di	Ċ	GW	11-10	3		1 .	1 6		11	1		1	1				X	X	X	н	A30	
RA-VOC-C1		X	41	Ā	0745	a.	6	GW	3	3					$^{++}$	1		1					1				C18	
RA-VOC-C2	1	X	4	9	EN84	n	6	GW	3	3		1	\uparrow		$^{++}$	-	1					1					U718	
RA-VOC-C3	1	3	H	A	0945	n.	6	GW	3	3		+	+		+		1	1			1		T		1		LOMP	
RA-VOC-C4		8	14	19	10415	1 or	G	GW	3	3		+			\square	\top												
		1	•••	-											T									_			122	
													Τ		П												A30	
		1													\mathbf{T}		-											
		-					1			+			+-		Ħ	1	-	1							1			
	1	-								+		-	+		$^{++}$			<u> </u>						1	1	1		
	+	-					-			+		-	+	\vdash	+	+	-				+		-	+	+			1
Turn Around Time (Bu	isiness Davs)							1	1			Deli	verat						J	<u> </u>			Com	ments	/ Spe	cial Ins	tructions	1
	Approved By (S): / Da	nte:] Com	mercial "A	A" (Level	1)				SP Cate	igory /				-Q8M5									1
10 Business Days				~	in 0	1 2] Com	merciai "E	3" (Level :	2)	i	х	NYAS	P Cate	gory E			-		Com	posite H	(A-VU			C anal		to be used for RA-	1
5 Business Days	ASESSM	-		B	H.] NJR	educed (L	evel 3}					ICP Cr	_													1
3 Business Days" INITIAL	ASCOUNT							lier 1 (Lev				_		CP Cr								Hold	d SGT	HEM	+ PCB	Samp	les.	1
2 Business Days*	VERIFICA	TIC	N_				-	merciai "(; "					Forms						•	lex Chr	ome Te	est Me	thod O	niy Ali	lows 24	HR Hold Time	
1 Business Day LABEL	<u>VC</u>						ם נא [_			_	SDEC	_											
X Other Standard Ali data available via Labšink * Ap	proval needed f	or 1-3	Busi	ness	Day TAT		1	Com	mercial "/ Commerci	a" = Ri al "C"	sults o Resu	anity; C gits + C	Commo QC Su	ercial " mmary	+ Parti	asulus + d aj Raw di	ita Ita	ary					http://v	ww.sc	gs.com	v/en/te	ms-and-conditions	1
	_	1	Samp	ų.ee	ustody m	ust be do	cupren			mie s	mple	s ch)						er della			(k) X	Receiv	ad Day					ľ
Relinguished by: 1 dg 7 m Leng 8/14	T.a 1/52	Recei	ved B	y:	V	V	_//	-		Relin	quintie	6-6y:		1/	1	1			Date /	116	100	2	ed By:				`	
Refinquished by: Date / Ti	<u> '_1_ '</u> ne:	<u> '</u>	wed B		\rightarrow		X C	<u> </u>		Relig	Ž.	d By:	D	<u> </u>	X	5			Dete / T	ime:		Receiv	ed By:			~		1
3		3		<u> </u>	ノ	(/			K	_			<i>\</i>	Ζ_			-		al-11- 1		4		On			ler Temp. "C	1
Relinquished by: Date / Tir	ne:	1 Recei	ved B	y:						Cust	ody Sea				L	Intact		Presen	ored where	pplicat				C				1

Standard COC.xisx

JC93215: Chain of Custody Page 1 of 5

I.

5.2

U

1

	000				СН	AIN	OF	CL	JSTO)D,	Y												Pag	ge <u>7</u>	_ of	2	2
	SGS								Inc Da		n					FED-EX	Tracking					Bottle Ord	er Contro	#			
						732-329-	0200		32-329-3		480					SGS QL	iote #					SGS Job I	•		50	9	3215
	Client / Reporting Information				Proje	t Inform	-												I	Reques	ted An	alysis					Matrix Codes
Company		Project N	lame:																							- I.	DW - Orinking Water
	od E&IS		Aven	ue GWN														EPA									GW - Ground Water
Street At		Street														- g	1	Ś									WW - Water SW - Surface Water
City	American Metro Bivd #113 State	Review Zip City	Aven	ue	State	Billing I	nformati	on (if diff	erent from	Report	to)		_			18		15								1	SO - Soil SL- Sludge
Ham	litton, NJ 8	619 Long Is		City	NY											- SM18 4500N		, VMS+TCA) -									SED-Sediment OI - Oil
Project C	Contact E-mail ent.wheian@wocdpic.com	Project # 348016				Street Ac	dress									8		Ę									LIQ - Other Liquid AIR - Air
Phone #		Client Pu		Order #		City					State			Z	0	- 8	Catio	*SM								1	SOL - Other Solid WP - Wipe
	689-2832			0127003	5	1.0								_	-	ž	1 <u>1</u>	2									FB - Field Blank EB-Equipment Blank
Sampler	(s) Name(s)	Phone # Project N	Aanager			Attention										Ē	ŝ	R.									RB - Rinse Blank
Jazr	nin Logan (347) 836-4445	Tim Ke	ssier													- Se	Ş	Ŧ									TB - Trip Blank
			F		Collection	1	1	-			Num	ber of p	reserv	ed Bott	les I u 1	- i	osite	8								ł	
SGS Sample #	Field ID / Point of Collection	MEOH/DI	Vial #	Date	Time	Sampled	Grab (G) Comp (C)	Metrix	# of bottles	Ŧ	NaOH	°08H	NONE	DI Water	ENCOR	Total Nitrogen (TKN, NO2/NO3) -	Composite VOCs (4:1 Ratio)	VOC (V624CHLFRM, VMS+CTC, ' 624									LAB USE ONLY
	RA-EFF-G		\$	sh41	9 1100	a	6	GW	11	5		1	5		T	+											
	RA-EFF-C		8	141	9 1045	3	C	GW	8			1 1	6	Τ		X		X									
	RA-VOC-C1		2	144	1074:	か	6	GW	3	3		Т					X										
2	RA-VOC-C2		٩	814	908015	n	G	GW	3	3							X										
	RA-VOC-C3		4	814	19/09/19	tr	G	GW	3	3							X										
	RA-VOC-C4		(814	191045	1a	6	GW	3	3							х										
				· ·		Ľ															ļ		1				
												_			\square	_				I				L			
					_		1								\square				ļ	ļ	ļ		ļ	L			
$ \vdash \downarrow$												_			\downarrow	_	_						ļ				
\vdash			_			ļ	ļ					-	-		++				<u> </u>				-				
	Tue Around Ti	ma (Dusinana D						L								1		1	I		L		Com	mente	Specia	al Inst	ructions
		me (Business D		PM): / Date			1 0		A" (Level 1			Deliv			egory /				-QSM5								
ſ	10 Business Days	Арргочна	BY (5G9	PM): 7 Dane			-		B" (Level 2)		ľ				egory E		L.		-20110	Com	oosite F	A-VOC		C VOC			to be used for RA-
	5 Business Days						-	educed (I			ì				riteria_												
Ē	3 Business Days*						Full 1	lier i (Le	rel 4)		Č	5	CT R	P Ci	iteria_							Hold	I SGT-	HEM +	PCBS	Sample	es.
[2 Business Days*] Com	merciai "(5 "		Ū	Ξ,	State	Form						l F	lex Chr	ome Te	st Mei	thod Or	hiy Allo	ws 24	HR Hold Time
	1 Business Day] NJ D	КОР			[X	EDD I	orma	۲N	SDEC											
	X Other Standard All data available via Lablink	· Approval nee	ded for	1-3 Busine	as Day TAT		,		mercial "A Commercia									ary				ł	nttp://w	ww.sg	s.com/e	en/terr	ms-and-conditions
						ust be do	cumen		w each tir	ne sa	mple	s cha						ier delh			(n)						
Reling	ulehed by:	Daty Time	€ U Re	eceived By:	\checkmark	K	1			Relief	ulshed	1 By:		1	Z	Λ	_		Date/L	115 (they	Receive	ed By:			~	,
- Referred	ulfied by:	Date / Time:	1 Re 2	eceived By:	ð	- 7	9			2 Reling	uister	Ð	-	1	7				Date / 1	ime:		Receive	ed By:	_	_	1	
Relinq 5	uished by:	Date / Time:	Re	eceived By:		<u>-</u>				4 Custo	dy Sea		0	7		Intect		Preser	red where	applicab	le Therm			On i		Cool	er Temp. "C
<u> </u>			19								ţ	IJ	1	b				A05800									5.6

Standard COC.xisx

JC93215: Chain of Custody Page 2 of 5

5.2

G

SGS Sample Receipt Summary

Job Number:	JC93218	5	Clien		VIRON	MENT 8		Project: REVIEW AVEN	UE, LONG IS	SLAND CI	TY, NY
Date / Time Received:	8/14/201	19 5:02:	:00 PM	Delivery I	Method:	Ac	ccutest Courier	Airbill #'s:			
Cooler Temps (Raw Mea Cooler Temps (Cor	,										
Cooler Security	<u>Y</u> or	<u>r N</u>			Yo	<u>r N</u>	Sample Integrit	y - Documentation	Y	or N	
 Custody Seals Present: Custody Seals Intact: Cooler Temperature 	V	□ □ Y or	4. Smpl Da	Present: ites/Time OK	V		2. Container labe	present on bottles: lling complete: ner label / COC agree:	V V		
Temp criteria achieved: Cooler temp verification: Cooler media: No. Coolers:	-	IR G	Gun Bag)	_			Sample Integri 1. Sample recvd 2. All containers 3. Condition of sa	within HT: accounted for:	V	or N	
Quality Control Preserv	ation	Y or	rNN/	<u>A</u>			Sample Integri	ty - Instructions	Y	or N	N/A
 Trip Blank present / coo Trip Blank listed on COO Samples preserved prop):			-			1. Analysis requ 2. Bottles receiv	-			
4. VOCs headspace free:				1				nstructions clear:			\checkmark
							5. Filtering instru	uctions clear:			
Test Strip Lot #s:	pH 1-1	12:	229517		рH	12+: _	208717	Other: (Specify)			
								C-C1 thru -C4 which is done in -C1 thru C4. Please verify.	lab per histor	y. Vials tha	at client

SM089-02 Rev. Date 12/1/16

JC93215: Chain of Custody Page 3 of 5

5.2

G

Should only use the vials for C1 through C4 for VOA composite. Keep RA-EFF-C on hold.

JC93215: Chain of Custody Page 4 of 5

December 30, 2019

Mr. Sean H. Hulbert - Assistant Chemical Engineer NYCDEP, Bureau of Wastewater Treatment 96-05 Horace Harding Expressway, 1st Floor Corona, NY 11368

Subject: 4th Quarter 2019 Effluent Discharge Compliance Review Avenue Development Sites 37-30 and 37-80 Review Avenue Long Island City, Queens, New York, File # C-5652

Dear Mr. Hulbert:

Wood Environment and Infrastructure Solutions, Inc. (Wood), on behalf of Review Avenue System LLC, submits the effluent laboratory analysis data in connection with the letter of approval (LOA) for groundwater discharge to sanitary or combined sewer for the Review Avenue Development (RAD) Sites and LOA Extension dated October 12, 2018.

Wood collected the 4th Quarter 2019 discharge compliance samples on November 14, 2019. Analytical results indicate no exceedances of the daily discharge limits for all parameters and no exceedances of the monthly discharge limits for all parameters, and therefore the discharge is in compliance with our LOA requirements. The analytical results collected for the 4th quarter 2019 compliance sampling are summarized on Table 1 attached. The total volume of groundwater discharged to the sanitary or combined sewer, since system start-up was 10,847,450 gallons as of the November 14th sampling event and 628,150 gallons since the last quarterly sampling event on August 14th.

If you have any questions, please contact either of the undersigned at (609) 689-2829.

Sincerely,

Wood Environment & Infrastructure Solutions, Inc.

Brent C. O'Dell, P.E. Principal Engineer – Civil

Timothy C. Kessler Senior Associate Engineer/PM

Attachments: Table 1 – Summary of Groundwater Analytical Results

cc: R. Craig Coslett – Review Avenue System LLC

200 American Metro Blvd Suite 113 Hamilton, NJ 08619 609-689-2829 woodplc.com

Table 1 Summary of Analytical Results - Groundwater Treatment System Review Avenue Development Sites, NYCDEP File # C-5652 Long Island City, Queens, New York

Field Sample ID:				RA-EFF-	G	RA-EFF-	С
Compliance Period:	Unit	NYCDEP	NYCDEP	4Q 201	9	4Q 201	9
Sample Date:	Unit	Daily Limit	Monthly Limit	11/14/20)19	11/14/20	19
Lab Sample ID:				JC98570	D-1	JC98570)-2
Non-polar material ¹	mg/L	50	NL	5.0	U	-	
pH ²	SUs	5 - 12	NL	7.06		-	
Temperature ²	°F	150	NL	65.00		_	
Flash Point ³	°F	> 140	NL	> 200		-	
Cadmium (Instantaneous)	mg/L	2	NL	0.003	U	-	
Cadmium (Composite)	mg/L	0.69	NL	-		<0.003	U
Chromium (VI)	mg/L	5	NL	0.01	U	-	
Copper	mg/L	5	NL	0.01	U	-	
Lead	mg/L	2	NL	0.003	U	-	
Mercury	mg/L	0.05	NL	0.0002	U	-	
Nickel	mg/L	3	NL	0.01	U	-	
Zinc	mg/L	5	NL	0.02	U	-	
Benzene	µg/L	134	57	0.34	U	-	
Carbon Tetrachloride	µg/L	NL	NL	-		0.55	U
Chloroform	µg/L	NL	NL	-		0.50	U
1,4-Dichlorobenzene	µg/L	NL	NL	0.63	U	-	
Ethylbenzene	µg/L	380	142	0.30	U	-	
MTBE (Methyl-Tert-Butyl-Ether)	µg/L	50	NL	0.87	U	-	
Napthalene	µg/L	47	19	-		0.22	U
Phenol	µg/L	NL	NL	-		0.37	U
Tetrachloroethylene (Perc)	µg/L	20	NL	0.9	U	-	
Toluene	µg/L	74	28	0.36	U	-	
1,2,4-Trichlorobenzene	µg/L	NL	NL	-		0.24	U
1,1,1-Trichloroethane	µg/L	NL	NL	-		0.54	U
Xylenes (Total)	µg/L	74	28	0.35	U	-	
PCBs (Total)	µg/L	1	NL	-		0.034	U
Total Suspended Solids (TSS)	mg/L	350	NL	4.0	U	-	
CBOD	mg/L	NL	NL	-		1.6	
Chloride	mg/L	NL	NL	50.3		-	
Total Nitrogen	mg/L	NL	NL	-		9.5	
Total Solids	mg/L	NL	NL	727		-	

 Table 1

 Summary of Analytical Results - Groundwater Treatment System

 Review Avenue Development Sites, NYCDEP File # C-5652

 Long Island City, Queens, New York

Notes:

RA-EFF-G: Instantaneous (Grab) Sample

RA-EFF-C: 4-Hour Flow Weighted Composite Sample

Bold/Shaded: Concentration exceeds daily limit

- Underline: Concentration exceeds monthly limit
- 1. Non-polar Material reported by lab as "Silica Gel Treated n-Hexane Extractable Material (SGT-HEM)"
- 2. pH and Temperature measured in field
- 3. Flash Point reported by lab as Ignitability
- 4. Temperature was estimated

Definitions:

MDL: Method Detection Limit RL: Reporting Limit NL: No Limit

Data Qualifiers:

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U: Indicates the analyte was not detected at the indicated MDL.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

12/02/19

e-Hardcopy 2.0 Automated Report

Technical Report for

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY

3480160502 PO#C01270035

SGS Job Number: JC98570

Sampling Date: 11/14/19

Report to:

Wood Environment & Infrastructure Soln. 200 American Metro Boulevard Suite 113 Hamilton, NJ 08619 Timothy.Kessler@woodplc.com; Vincent.Whelan@woodplc.com

ATTN: Tim Kessler

Total number of pages in report: 22

Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Kelly Ramos 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 22 JC98570

Table of Contents

-

N

ω

4

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	5
3.1: JC98570-1: RA-EFF-G	6
3.2: JC98570-1R: RA-EFF-G	9
3.3: JC98570-2: RA-EFF-C	10
3.4: JC98570-2R: RA-EFF-C	14
Section 4: Misc. Forms	15
4.1: Certification Exceptions	16
4.2: Chain of Custody	17
4.3: Sample Tracking Chronicle	19
4.4: Internal Chain of Custody	20

Sample Summary

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY Project No: 3480160502 PO#C01270035

Sample Number	Collected Date	l Time By	Mat Received Code		Client Sample ID
This report co Organics ND			s ND = Not dete ed above the MD	ected. The following app L	plies:
JC98570-1	11/14/19	11:00 JL	11/14/19 AQ	Effluent	RA-EFF-G
JC98570-1R	11/14/19	11:00 JL	11/14/19 AQ	Effluent	RA-EFF-G
JC98570-2	11/14/19	10:45 JL	11/14/19 AQ	Effluent	RA-EFF-C
JC98570-2R	11/14/19	10:45 JL	11/14/19 AQ	Effluent	RA-EFF-C

JC98570

Job No:

Summary of Hits

Job Number:	JC98570
Account:	Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY
Collected:	11/14/19

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JC98570-1	RA-EFF-G					
Chloride Ignitability (Flash Solids, Total	point)	50.3 > 200 727	2.0 10		mg/l Deg. F mg/l	EPA 300/SW846 9056A SW846 1010A/ASTM D93 SM2540 B-11
JC98570-1R	RA-EFF-G					
No hits reported i	n this sample.					
JC98570-2	RA-EFF-C					
Carbonaceous Boo Nitrogen, Total ^b Nitrogen, Total K	•	1.6 9.5 9.5	1.0 0.70 0.60		mg/l mg/l mg/l	SM5210 B-11 SM4500 A-11 EPA 351.2/LACHAT

JC98570-2R RA-EFF-C

No hits reported in this sample.

(a) Sample set up with 3 separate dilutions, but DO difference is less than 2 on all of the dilutions. Results reported are from the lowest dilution.

(b) Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

N

Dayton, NJ

ω Section 3

Sample Results

Report of Analysis

108-88-3

100-41-4

1330-20-7

1634-04-4

106-46-7

127-18-4

CAS No.

17060-07-0

2037-26-5

460-00-4

1868-53-7

Toluene

Ethylbenzene

Xylenes (total)

Methyl Tert Butyl Ether

1,4-Dichlorobenzene

Surrogate Recoveries

Toluene-D8 (SUR)

1,2-Dichloroethane-D4 (SUR) 100%

4-Bromofluorobenzene (SUR)

Dibromofluoromethane (S)

Tetrachloroethene

			Report		ary 515			I age I OI
Client San Lab Samp Matrix: Method: Project:	le ID: JC985 AQ - EPA	570-1 Effluent 624.1	Long Island City, N	ΙY		Date	e Sampled: 11 e Received: 11 ent Solids: n/	
Run #1 Run #2	File ID T241803.D	DF 1	Analyzed 11/26/19 16:02	By CSF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VT9986
Run #1 Run #2	Purge Volum 5.0 ml	e						
Purgeable	Aromatics, MT	ſBE						
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2	Benzene		ND	1.0	0.34	ug/l		

1.0

1.0

1.0

1.0

1.0

1.0

Run# 2

0.36

0.30

0.35

0.87

0.63

0.90

Limits

76-122%

80-120%

80-120%

80-120%

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

ND

ND

97%

100%

102%

Run#1

Report of Analysis

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

<u>ω</u>

SGS

Client Sample ID:	RA-EFF-G		
Lab Sample ID:	JC98570-1	Date Sampled:	11/14/19
Matrix:	AQ - Effluent	Date Received:	11/14/19
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	< 3.0	3.0	ug/l	1	11/22/19	11/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴
Copper	< 10	10	ug/l	1	11/22/19	11/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴
Lead	< 3.0	3.0	ug/l	1	11/22/19	11/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴
Mercury	< 0.20	0.20	ug/l	1	11/18/19	11/18/19 ll	EPA 245.1 ¹	EPA 245.1 ³
Nickel	< 10	10	ug/l	1	11/22/19	11/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴
Zinc	< 20	20	ug/l	1	11/22/19	11/22/19 ND	EPA 200.7 ²	EPA 200.7 ⁴

(1) Instrument QC Batch: MA47824

(2) Instrument QC Batch: MA47858

(3) Prep QC Batch: MP18464

(4) Prep QC Batch: MP18525

ω

<u>ω</u>

SGS North America Inc.

Project:	Review Avenue, Long Island City, NY		
		Percent Solids:	n/a
Matrix:	AQ - Effluent	Date Received:	11/14/19
Lab Sample ID:	JC98570-1	Date Sampled:	11/14/19
Client Sample ID:	RA-EFF-G		

Report of Analysis

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chloride Chromium, Hexavalent Ignitability (Flashpoint) Solids, Total Solids, Total Suspended	50.3 < 0.010 > 200 727 < 4.0	2.0 0.010 10 4.0	mg/l mg/l Deg. F mg/l mg/l	1 1 1 1	11/16/19 09:16 11/14/19 22:18 11/30/19 14:00 11/18/19 11:53 11/18/19 10:08	EB JOO RC	EPA 300/SW846 9056A SM3500CR B-11 SW846 1010A/ASTM D93 SM2540 B-11 SM2540 D-11

ω

<u>ω</u>

SGS North America Inc.

Report of Analysis Page 1 of 1							
Client Sample ID:	RA-EFF-G						
Lab Sample ID:	JC98570-1R				Date Sampled	: 11	/14/19
Matrix:	AQ - Effluent				Date Received	l: 11	/14/19
					Percent Solids	s: n/a	a
Project:	Review Avenue, Long	g Island Cit	y, NY				
General Chemistry	,						
Analyte	Result	RL	Units	DF	Analyzed	By	Method
HEM Petroleum Hy	drocarbons < 5.0	5.0	mg/l	1	12/01/19 14:30	ТМ	EPA 1664A

ω

3.2

				Report	of An	alysis				Page 1 of 1
Client Samp Lab Sample Matrix: Method: Project:		RA-EF JC9857 AQ - E EPA 62 Review	0-2 ffluent	Island City, N	١Y		Date	e Sampled e Received ent Solids	l: 11	/14/19 /14/19 a
Run #1 Run #2	File ID T241804	4.D		.nalyzed 1/26/19 16:32	By CSF	Prep D n/a	ate	Prep Ba n/a	atch	Analytical Batch VT9986
Run #1 Run #2	Purge V 5.0 ml	Volume								
CAS No.	Compo	ound		Result	RL	MDL	Units	Q		
56-23-5 67-66-3 71-55-6	Chloro	n tetrach form Frichlore		ND ND ND	1.0 1.0 1.0	0.55 0.50 0.54	ug/l ug/l ug/l			
CAS No.	Surrog	gate Rec	coveries	Run# 1	Run# 2	Lim	its			
17060-07-0 2037-26-5 460-00-4 1868-53-7	Toluen 4-Bron	e-D8 (S nofluoro	hane-D4 (SUR) UR) benzene (SUR) omethane (S)	96%		76-1 80-1 80-1 80-1	20% 20%			

MDL = Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ သ

	Report of Analysis								
Client San Lab Samj Matrix: Method: Project:	ple ID: JC985' AQ - E EPA 6	70-2 Effluent 25.1 EPA	A 625 Long Island City, N	IY	Date	Sampled: 1 Received: 1 ent Solids: n/			
Run #1 Run #2	File ID 2P91446.D	DF 1	Analyzed 11/20/19 04:48	By CS	Prep Date 11/19/19 04:00	Prep Batch OP24064	Analytical Batch E2P4045		
Run #1 Run #2	Initial Volume 1050 ml	Final V 1.0 ml	⁷ olume						

ABN Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
108-95-2 91-20-3 120-82-1	Phenol Naphthalene 1,2,4-Trichlorobenzene	ND ND ND	1.9 0.95 0.95	0.37 0.22 0.24	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4 4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	35% 22% 93% 74% 71% 94%			32% 17%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ယ ယ

SGS North America Inc.

Report of Analysis Page 1 of 1								
Client Sample Lab Sample I Matrix:	D: JC985						Date Sampled: Date Received: Percent Solids:	
Project: Total Metals		w Avenu	e, Long Is	land C	City, NY		Tercent Sonus.	iv a
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	< 3.0	3.0	ug/l	1	11/22/19	11/22/19 ND	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: MA47858
 (2) Prep QC Batch: MP18525

3.3 3

SGS North America Inc.

Client Sample ID:	RA-EFF-C		
Lab Sample ID:	JC98570-2	Date Sampled:	11/14/19
Matrix:	AQ - Effluent	Date Received:	11/14/19
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		
General Chemistry	,		

Report of Analysis

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Carbonaceous Bod, 5 Day ^a	1.6	1.0	mg/l	1	11/14/19 21:50	EB	SM5210 B-11
Nitrogen, Nitrate ^b	< 0.11	0.11	mg/l	1	11/25/19 16:15	KI	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	< 0.10	0.10	mg/l	1	11/25/19 16:15	KI	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	11/14/19 21:53	EB	SM4500NO2 B-11
Nitrogen, Total ^c	9.5	0.70	mg/l	1	11/25/19 16:15	KI	SM4500 A-11
Nitrogen, Total Kjeldahl	9.5	0.60	mg/l	3	11/20/19 12:08	BM	EPA 351.2/LACHAT

(a) Sample set up with 3 separate dilutions, but DO difference is less than 2 on all of the dilutions. Results reported are from the lowest dilution.

(b) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(c) Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

သ သ

ω

13 of 22 JC98570

			Report	of Ai	nalysis		Page 1 of 1
Client Sa Lab Sam Matrix: Method: Project:	aple ID: JC A E	A-EFF-C C98570-2R Q - Effluent PA 608 EPA 6 eview Avenue,	508 Long Island City, N	ΙY	Date	Sampled: Received: ent Solids:	
Run #1 Run #2	File ID 2G187504	DF .D 1	Analyzed 11/27/19 13:19	By TR	Prep Date 11/27/19 06:40	Prep Batch OP24258	Analytical Batch G2G4835

	Initial Volume	Final Volume
Run #1	1000 ml	1.0 ml
Run #2		

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	$\begin{array}{c} 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ 0.050\\ \end{array}$	0.034 0.029 0.020 0.027 0.025 0.034 0.027	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No. 877-09-8	Surrogate Recoveries Tetrachloro-m-xylene	Run# 1 121%	Run# 2	Lim 10-1	its	
877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	97% 130% 81%		10-1 10-1 10-1	43%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

1

ω

3.4

SGS

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

Parameter Certification Exceptions

Г

Job Number:	JC98570
Account:	HLANJPR Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY

The following parameters included in this report are exceptions to NELAC certification. The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status
Ignitability (Flashpoint) Nitrogen, Total		SW846 1010A/ASTM D93 SM4500 A-11	AQ AQ	SGS is not certified for this parameter. ^a SGS is not certified for this parameter. ^b

(a) Lab cert for analyte/method not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

(b) Lab cert for analyte not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

Certification exceptions shown are based on the New Jersey DEP certifications. Applicability in other states may vary. Please contact your laboratory representative if additional information is required for a specific regulatory program.


	~~~	CHAIN OF CUSTODY Page 2-of 2-							2																	
							Inc D		n					FED-EX	Tracking					Bottie O	rder Cont				-	
	UUU							on, NJ 01 32-329-3		3480					SGS Qu						SGS Jol					
						ww.sgs									303 20						598 30			ΣC	98	570
	Client / Reporting information			Projec	t inform	ation													Reques	sted A	nalysis	;				Matrix Codes
Compan		Project Nam												F												1
	d E&IS	1	venue GWM														E D									DW - Drinking Water GW - Ground Water
Street A		Street Review A											_		4500N	ļ	VMS+TCA) - EPA									WW - Water SW - Surface Water
City	American Metro Bivd #113 State Zio		Venue	State	Billing la		n (lf diffi	erent from	Repor	t to)					- 52		Ę									SO - Soll
	liton, NJ 861		nd City	NY	(Company										SM18	ł	MN									SL- Sludge SED-Sediment
Project C	Contect E-mail	Project #			Street Ad	dress											Ρ́									OI - Oil LIQ - Other Liquid
	ant.whelan@woodpic.com	34801605													N	ĝ	VMS+CTC,									AIR - Air SOL - Other Solid
Phone #		Client Purch	ase Order # C01270035		City					State			Zip		Ň	1 Ra	8							WP - Wipe		
	(s) Name(s) 212Min 09 1 Ph	none # Project Man			Attention						- · · ·				ž	4	RM						i i			FB - Field Blank EB-Equipment Blank
	I Puccio (347) 836-4445	Tim Kess			- alonaon											Į	17									RB - Rinse Blank TB - Trip Blank
				Collection	L			1		Num	per of p	eserves	Bottle		ğ	xte /	624									
SGS					Sampled					Ŧ	a d	w i	Ŧ	ENCORE	Total Nitrogen (TKN, NO2/NO3)	Composite VOCs (4:1 Ratio)	VOC (V824CHLFRM, 524					1				
Semple #	Field ID / Point of Collection	MEOH/DI Via	# Date	Time	by	Greb (G) Comp (C)	Metrix	# of bottles	Ŧ	Р.	SH SH	NONE	MEOH	S.	1 1	ð	88			1		1				LAB USE ONLY
1	RA-EFF-G		1114/19	1100	11	6	GW	11	5		1	5														
	RA-EFF-C		White	1045	a	C	GW	8			1 1	6	T		X		X									
T	RA-VOC-C1		11/14/14	0145	JL	6	GW	3	3							X										
21	RA-VOC-C2		1114 10	OSLAS	a	6	GW	3	3			$\square$		T		X										
	RA-VOC-C3		11/14/9	0145	n	6	GW	3	3			Π				X										
	RA-VOC-C4		1111419	1045	n	6	GW	3	3			Π				X						T				
			1.1.1.	10.12		<b>,</b> ,				-1	+	Ħ				<u> </u>						<u>†                                    </u>				
			-	1				<u> </u>		+	+	H				<u> </u>	+					+	-			
											+	$\mathbb{H}$	+		+						+	1-				
									$\square$	-	+	$\vdash$			-					<u> </u>		<b> </b>				
L			+					ļ		_	$\perp$	$\square$	+		I											
										I							T									
	Turn Around Tim	e (Business Day	s)								Delive	rable							1	•		Comr	nents /	Specia	i Instr	uctions
1		Approved By	(SGS PM): / Date:			-		A" (Level 1		[	_	IYASP					000-0	SM5	Comp	osite R	A-VOC	-C1 to	RA-VC	C-C4 i	n lab I	to be used for RA
	10 Business Days					-		B" (Level 2)	)	Ę		YASP	-					Composite RA-VOC-C1 to RA-VOC-C4 in lab to be used for I EFF-C VOC analysis.								
1	5 Business Days						duced (L			Ļ		IA MC									Hold	SGT		PCB S	amnia	
3 Business Days*     2 Business Days*				-	er I (Lev erclai "(			Ļ		T RCF		ortil														
2 Business Days     1 Business Day				-				5				NVC	DEC				Hex Chrome Test Method Only Allows 24HR Hold Time				IR Hold Time					
X Other Standard			NJ DKQP X EDD Format NYS Commercial "A" = Results only; Commercial "B" = Res					_																		
All data available via Lablink Approval needed for 1-3 Business Day TAT				Commercial "C" = Results + QC Summary - Partial Commercial "C" = Results + QC Summary - Partial ist berdocumented below each time sampler change possession/jie					Raw data http://www.sgs.com/en/terms-and-condition					s-and-conditions												
Relin	guished by: 1 Dat	te / Time:		Custody mu	ist berdo	cumente	d belo	w each tir		mpier	el : I			sion)i	nciudin	g court			me:		Receive	d Rv:				
1	delider 1	11419 12:4	11 C	luis	Za	ς ζ.			2	1	$\mathcal{X}$	Wì	_`	Ra	M Date / Time: 11 14 14 14 (7: 3) 2											
	quished by: Dat	te / Time:	Received By:						Relinc	uished	8y:							Date / Ti	me:		Receive	d By:	_			
3 3 Relinquished by: Date / Time: Received By:								4 Custo	dy Sea	•				Intact Not inter		Preserved	where	applicable	Therm i	14		On lo	,	Cooler	r Temp. *C	

Standard COC.xisx

JC98570: Chain of Custody Page 1 of 2



17 of 22

4.2

#### SGS Sample Receipt Summary

Job Number: JC98570 Client: WOOD ENVIRONMENT	& INFRASTRUCT Project: REVIEW AVENUE, LONG ISLAND CITY, NY
Date / Time Received: 11/14/2019 5:30:00 PM Delivery Method:	Airbill #'s:
Cooler Temps (Raw Measured) °C: Cooler 1: (2.2); Cooler 2: (2.6); Cooler Temps (Corrected) °C: Cooler 1: (2.0); Cooler 2: (2.4);	
Cooler Security       Y or N       Y or N         1. Custody Seals Present:       ✓       3. COC Present:       ✓       □         2. Custody Seals Intact:       ✓       4. Smpl Dates/Time OK       ✓       □         2. Custody Seals Intact:       ✓       ✓       □       4. Smpl Dates/Time OK       ✓       □         1. Temp criteria achieved:       ✓       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       <	Sample Integrity - Documentation       Y or N         1. Sample labels present on bottles:       Image: Container labeling complete:       Image: Container label / COC agree:         2. Container label / COC agree:       Image: Container label / COC agree:       Image: Container label / COC agree:         3. Sample container label / COC agree:       Image: Container label / COC agree:       Image: Container label / COC agree:         Sample Integrity - Condition       Y or N       Image: Condition         1. Sample recvd within HT:       Image: Condition       Image: Condition         2. All containers accounted for:       Image: Condition       Image: Condition         3. Condition of sample:       Image: Condition       Image: Condition         3. Condition of sample:       Image: Condition       Image: Condition         1. Analysis requested is clear:       Image: Condition       Image: Condition         2. Bottles received for unspecified tests       Image: Condition       Image: Condition         3. Sufficient volume recvd for analysis:       Image: Condition       Image: Condition         4. Compositing instructions clear:       Image: Condition       Image: Condition
	5. Filtering instructions clear:
Test Strip Lot #s: pH 1-12: 229517 pH 12+:	Other: (Specify)
Comments	

SM089-03 Rev. Date 12/7/17

> JC98570: Chain of Custody Page 2 of 2

4.2

# **Internal Sample Tracking Chronicle**

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY Project No: 3480160502 PO#C01270035

Sample Number	Method	Analyzed	By	Prepped	By	Test Codes
JC98570-1 RA-EFF-G	Collected: 14-NOV-19	11:00 By: JL	Receiv	red: 14-NOV	-19 By	: AS
JC98570-1 JC98570-1 JC98570-1 JC98570-1 JC98570-1 JC98570-1	EPA 245.1 EPA 200.7 EPA 624.1	18-NOV-19 10:08 18-NOV-19 11:53 18-NOV-19 13:40 22-NOV-19 17:18 26-NOV-19 16:02	NV RC RC LL ND CSF	15-NOV-19 18-NOV-19 22-NOV-19	LL	XCRSM CHL TSS TS HG CD,CU,NI,PB,ZN V624BTXM
	SW846 1010A/ASTM I Collected: 14-NOV-19			red: 14-NOV	-19 By	IGN : AS
JC98570-2 JC98570-2 JC98570-2 JC98570-2 JC98570-2 JC98570-2 JC98570-2	SM4500NO2 B-11 EPA 625.1 EPA 351.2/LACHAT EPA 200.7 SM4500 A-11 EPA353.2/SM4500NO2 EPA 353.2/LACHAT	22-NOV-19 17:28 25-NOV-19 16:15 2 <b>B</b> 5-NOV-19 16:15	EB CS BM ND KI KI KI	14-NOV-19 19-NOV-19 19-NOV-19 22-NOV-19 25-NOV-19	BJ MP TG	CBOD5 NO2 AB625SL2 TKN CD TNIT NO3O NO32 V624CHLFRM,VMS+ CTC,VM
JC98570-1R RA-EFF-G	Collected: 14-NOV-19	11:00 By: JL	Receiv	ed: 14-NOV	-19 By	: AS
JC98570-1R JC98570-2R RA-EFF-C	EPA 1664A Collected: 14-NOV-19	01-DEC-19 14:30 10:45 By: JL		29-NOV-19 ved: 14-NOV		
JC98570-2R	EPA 608	27-NOV-19 13:19	TR	27-NOV-19	BJ	P608PCBLL

Job No:

4.3



# SGS Internal Chain of Custody

R Wood Environment & Infrastructure Solut.
venue, Long Island City, NY

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JC98570-1.1	Secured Storage	Jared O. Onindo	11/29/19 17:33	Retrieve from Storage
JC98570-1.1	Jared O. Onindo		11/29/19 17:47	Depleted
JC98570-1.3	Secured Storage	Benjamin Gaines		Retrieve from Storage
JC98570-1.3	Benjamin Gaines	Secured Staging Area		Return to Storage
JC98570-1.3	Secured Staging Area	Lindsey Lee		Retrieve from Storage
JC98570-1.3	Lindsey Lee	Secured Storage		Return to Storage
JC98570-1.3	Secured Storage	Taylor Gorman		Retrieve from Storage
JC98570-1.3	Taylor Gorman	Secured Storage		Return to Storage
JC98570-1.3	Secured Storage	Matthew Robbins	11/21/19 18:04	Retrieve from Storage
JC98570-1.3	Matthew Robbins	Secured Staging Area	11/21/19 18:04	Return to Storage
JC98570-1.3	Secured Staging Area	Taylor Gorman		Retrieve from Storage
JC98570-1.3	Taylor Gorman	Secured Storage	11/22/19 13:14	Return to Storage
JC98570-1.3.1	Taylor Gorman	Metals Digestion	11/22/19 12:13	Digestate from JC98570-1.3
JC98570-1.3.1	Metals Digestion	Taylor Gorman	11/22/19 12:13	Digestate from JC98570-1.3
JC98570-1.3.1	Taylor Gorman	Metals Digestate Storage	11/22/19 12:13	Return to Storage
JC98570-1.4	Secured Storage	Benjamin Gaines	11/18/19 08:40	Retrieve from Storage
JC98570-1.4	Benjamin Gaines	Secured Staging Area		Return to Storage
JC98570-1.4	Secured Staging Area	Ruchitaben Chauhan	11/18/19 08:59	Retrieve from Storage
JC98570-1.4	Ruchitaben Chauhan		11/18/19 14:29	Depleted
JC98570-1.6	Secured Storage	Todd Shoemaker	11/15/19 15:05	Retrieve from Storage
JC98570-1.6	Todd Shoemaker	Secured Staging Area	11/15/19 15:05	Return to Storage
JC98570-1.6	Secured Staging Area	Natasha Verma	11/15/19 16:32	Retrieve from Storage
JC98570-1.6	Natasha Verma	Secured Storage	11/15/19 16:54	Return to Storage
JC98570-1.6	Secured Storage	Benjamin Gaines	11/18/19 08:40	Retrieve from Storage
JC98570-1.6	Benjamin Gaines	Secured Staging Area	11/18/19 08:40	Return to Storage
JC98570-1.6	Secured Staging Area	Ruchitaben Chauhan	11/18/19 08:59	Retrieve from Storage
JC98570-1.6	Ruchitaben Chauhan	Secured Storage	11/18/19 17:00	Return to Storage
JC98570-1.8	Secured Storage	Dave Hunkele	11/27/19 13:15	Retrieve from Storage
JC98570-1.8	Dave Hunkele	Secured Staging Area	11/27/19 13:15	Return to Storage
JC98570-1.8	Secured Staging Area	Jared O. Onindo	11/30/19 14:25	Retrieve from Storage
JC98570-1.8	Jared O. Onindo	Secured Storage	12/01/19 14:59	Return to Storage
JC98570-1.9	Secured Storage	Chelsea San Filippo	11/25/19 17:25	Retrieve from Storage
JC98570-1.9	Chelsea San Filippo	GCMST	11/25/19 17:25	Load on Instrument
JC98570-1.9	GCMST	Chelsea San Filippo	11/26/19 10:19	Unload from Instrument
JC98570-1.9	Chelsea San Filippo	Secured Storage	11/26/19 10:19	Return to Storage
JC98570-1.9	Secured Storage	Chelsea San Filippo		Retrieve from Storage
JC98570-1.9	Chelsea San Filippo	GCMST		Load on Instrument
JC98570-1.9	GCMST	Chelsea San Filippo	11/27/19 15:29	Unload from Instrument

4.4





# SGS Internal Chain of Custody

Job Number:	JC98570
Account:	HLANJPR Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY
<b>Received:</b>	11/14/19
0	

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JC98570-1.9	Chelsea San Filippo	Secured Storage	11/27/19 15:29	Return to Storage
JC98570-2.1 JC98570-2.1	Secured Storage Matthew Robbins	Matthew Robbins Secured Staging Area		Retrieve from Storage Return to Storage
JC98570-2.2 JC98570-2.2	Secured Storage Brian Johnson	Brian Johnson	11/27/19 04:37 11/27/19 10:18	Retrieve from Storage Depleted
JC98570-2.2.1 JC98570-2.2.1 JC98570-2.2.1 JC98570-2.2.1 JC98570-2.2.1	Brian Johnson Organics Prep Brian Johnson Extract Storage Tianwei Ruan	Organics Prep Brian Johnson Extract Storage Tianwei Ruan GC2G	11/27/19 11:32 11/27/19 11:32 11/27/19 12:18	Extract from JC98570-2.2 Extract from JC98570-2.2 Return to Storage Retrieve from Storage Load on Instrument
JC98570-2.3 JC98570-2.3 JC98570-2.3 JC98570-2.3	Secured Storage Benjamin Gaines Secured Staging Area Vikas Parikh	Benjamin Gaines Secured Staging Area Vikas Parikh	11/20/19 16:31	Retrieve from Storage Return to Storage Retrieve from Storage Depleted
JC98570-2.3.1 JC98570-2.3.1 JC98570-2.3.1 JC98570-2.3.1 JC98570-2.3.1	Vikas Parikh Organics Prep Vikas Parikh Extract Storage Tianwei Ruan	Organics Prep Vikas Parikh Extract Storage Tianwei Ruan GCXX	11/21/19 10:18 11/21/19 10:18 11/22/19 17:45	Extract from JC98570-2.3 Extract from JC98570-2.3 Return to Storage Retrieve from Storage Load on Instrument
JC98570-2.4 JC98570-2.4 JC98570-2.4 JC98570-2.4	Secured Storage Matthew Robbins Secured Staging Area Lionel (Tiger) Thomas	Matthew Robbins Secured Staging Area Lionel (Tiger) Thomas	11/18/19 18:51	Retrieve from Storage Return to Storage Retrieve from Storage Depleted
JC98570-2.4.1 JC98570-2.4.1 JC98570-2.4.1 JC98570-2.4.1 JC98570-2.4.1 JC98570-2.4.1 JC98570-2.4.1	Lionel (Tiger) Thomas Brian Johnson Organics Prep Extract Storage Christopher Sowa GCMS2P James Canas	Organics Prep Extract Storage Brian Johnson Christopher Sowa GCMS2P James Canas Extract Freezer	11/19/19 09:51 11/19/19 09:51 11/20/19 04:22 11/20/19 04:23 11/22/19 10:00	Extract from JC98570-2.4 Return to Storage Extract from JC98570-2.4 Retrieve from Storage Load on Instrument Unload from Instrument Return to Storage
JC98570-2.5 JC98570-2.5 JC98570-2.5 JC98570-2.5 JC98570-2.5.1	Secured Storage Matthew Robbins Secured Staging Area Taylor Gorman Taylor Gorman	Matthew Robbins Secured Staging Area Taylor Gorman Secured Storage Metals Digestion	11/21/19 18:04 11/22/19 07:55 11/22/19 13:14	Retrieve from Storage Return to Storage Retrieve from Storage Return to Storage Digestate from JC98570-2.5



# SGS Internal Chain of Custody

JC98570
HLANJPR Wood Environment & Infrastructure Solut.
Review Avenue, Long Island City, NY
11/14/19

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JC98570-2.5.1	Metals Digestion	Taylor Gorman	11/22/19 12:13	Digestate from JC98570-2.5
JC98570-2.5.1	Taylor Gorman	Metals Digestate Storage	11/22/19 12:13	Return to Storage
JC98570-2.6	Secured Storage	Matthew Robbins	11/18/19 21:29	Retrieve from Storage
JC98570-2.6	Matthew Robbins	Secured Staging Area		Return to Storage
JC98570-2.6	Secured Staging Area	Mahendra Patel	11/19/19 08:23	Retrieve from Storage
JC98570-2.6	Mahendra Patel	Secured Storage	11/19/19 17:32	Return to Storage
JC98570-2.6	Secured Storage	Dwayne Johnson	11/21/19 11:56	Retrieve from Storage
JC98570-2.6	Dwayne Johnson	Secured Staging Area	11/21/19 11:56	Return to Storage
JC98570-2.6	Secured Staging Area	Kimberly Ignace	11/22/19 10:28	Retrieve from Storage
JC98570-2.6	Kimberly Ignace	Secured Storage	11/22/19 16:53	Return to Storage
JC98570-2.6	Secured Storage	Benjamin Gaines	11/25/19 11:42	Retrieve from Storage
JC98570-2.6	Benjamin Gaines	Secured Staging Area	11/25/19 11:42	Return to Storage
JC98570-2.6	Secured Staging Area	Kimberly Ignace	11/25/19 11:54	Retrieve from Storage
JC98570-2.6	Kimberly Ignace	Secured Storage	11/25/19 17:36	Return to Storage
JC98570-2.7	Secured Storage	Elaine Banting	11/16/19 00:32	Retrieve from Storage
JC98570-2.7	Elaine Banting		11/16/19 00:33	Depleted
JC98570-2.9	Secured Storage	Chelsea San Filippo	11/25/19 17:25	Retrieve from Storage
JC98570-2.9	Chelsea San Filippo	GCMST		Load on Instrument
JC98570-2.9	GCMST	Chelsea San Filippo	11/26/19 10:19	Unload from Instrument
JC98570-2.9	Chelsea San Filippo	Secured Storage	11/26/19 10:19	Return to Storage
JC98570-2.9	Secured Storage	Chelsea San Filippo	11/26/19 15:30	Retrieve from Storage
JC98570-2.9	Chelsea San Filippo	GCMST	11/26/19 15:30	Load on Instrument
JC98570-2.9	GCMST	Chelsea San Filippo	11/27/19 15:29	Unload from Instrument
JC98570-2.9	Chelsea San Filippo	Secured Storage	11/27/19 15:29	Return to Storage
JC98570-2.12	Secured Storage	Chelsea San Filippo	11/25/19 17:33	Retrieve from Storage
JC98570-2.12	Chelsea San Filippo	GCMST		Load on Instrument
JC98570-2.12	GCMST	Chelsea San Filippo	11/25/19 17:34	Unload from Instrument
JC98570-2.12	Chelsea San Filippo	**	11/25/19 17:34	Depleted





4.4





March 24, 2020

Mr. Sean H. Hulbert - Assistant Chemical Engineer NYCDEP, Bureau of Wastewater Treatment 96-05 Horace Harding Expressway, 1st Floor Corona, NY 11368

#### Subject: 1st Quarter 2020 Effluent Discharge Compliance Review Avenue Development Sites 37-30 and 37-80 Review Avenue Long Island City, Queens, New York, File # C-5652

Dear Mr. Hulbert:

Wood Environment and Infrastructure Solutions, Inc. (Wood), on behalf of Review Avenue System LLC, submits the effluent laboratory analysis data in connection with the letter of approval (LOA) for groundwater discharge to sanitary or combined sewer for the Review Avenue Development (RAD) Sites and LOA Extension dated September 30, 2019.

Wood collected the 1st Quarter 2020 discharge compliance samples on February 20, 2020. Analytical results indicate no exceedances of the daily discharge limits for all parameters and no exceedances of the monthly discharge limits for all parameters, and therefore the discharge is in compliance with our LOA requirements. The analytical results collected for the 1st quarter 2020 compliance sampling are summarized on Table 1 attached. The total volume of groundwater discharged to the sanitary or combined sewer, since system start-up was 11,379,930 gallons as of the February 20th sampling event and 532,480 gallons since the last quarterly sampling event on November 14th.

If you have any questions, please contact either of the undersigned at (609) 689-2829.

Sincerely,

Wood Environment & Infrastructure Solutions, Inc.

Brent C. O'Dell, P.E. Principal Engineer – Civil

Timothy C. Kessler Senior Associate Engineer/PM

Attachments: Table 1 - Summary of Groundwater Analytical Results

cc: R. Craig Coslett - Review Avenue System LLC

200 American Metro Blvd Suite 113 Hamilton, NJ 08619 609-689-2829 woodplc.com

# Table 1 Summary of Analytical Results - Groundwater Treatment System Review Avenue Development Sites, NYCDEP File # C-5652 Long Island City, Queens, New York

Field Sample ID:				RA-EFF-	G	RA-EFF-	С	
Compliance Period:	Unit	NYCDEP	NYCDEP	1Q 202	0	1Q 202	0	
Sample Date:		Daily Limit	Monthly Limit	2/20/202	20	2/20/2020		
Lab Sample ID:				JD3466	-1	JD3466-2		
Non-polar material ¹	mg/L	50	NL	5.0	U	-		
pH ²	SUs	5 - 12	NL	7.21		-		
Temperature ²	°F	150	NL	48.74		-		
Flash Point ³	°F	> 140	NL	> 200		-		
Cadmium (Instantaneous)	mg/L	2	NL	0.003	U	_		
Cadmium (Composite)	mg/L	0.69	NL	-		<0.003	U	
Chromium (VI)	mg/L	5	NL	0.01	U	-		
Copper	mg/L	5	NL	0.0164		_		
Lead	mg/L	2	NL	0.003	U	_		
Mercury	mg/L	0.05	NL	0.0002	U	-		
Nickel	mg/L	3	NL	0.01	U	-		
Zinc	mg/L	5	NL	0.02	U	_		
Benzene	µg/L	134	57	0.34	U	-		
Carbon Tetrachloride	µg/L	NL	NL	-		0.55	U	
Chloroform	µg/L	NL	NL	-		0.50	U	
1,4-Dichlorobenzene	µg/L	NL	NL	0.63	U	-		
Ethylbenzene	µg/L	380	142	0.30	U	-		
MTBE (Methyl-Tert-Butyl-Ether)	μg/L	50	NL	0.87	U	-		
Napthalene	µg/L	47	19	-		0.22	U	
Phenol	µg/L	NL	NL	-		0.37	U	
Tetrachloroethylene (Perc)	µg/L	20	NL	0.9	U	-		
Toluene	µg/L	74	28	0.36	U	-		
1,2,4-Trichlorobenzene	µg/L	NL	NL	-		0.24	U	
1,1,1-Trichloroethane	µg/L	NL	NL	-		0.54	U	
Xylenes (Total)	µg/L	74	28	0.35	U	-		
PCBs (Total)	µg/L	1	NL	-		0.033	U	
Total Suspended Solids (TSS)	mg/L	350	NL	5.0		-		
CBOD	mg/L	NL	NL	-		2.0	U	
Chloride	mg/L	NL	NL	90.7				
Total Nitrogen	mg/L	NL	NL	-		2.5		
Total Solids	mg/L	NL	NL	802		-		

 Table 1

 Summary of Analytical Results - Groundwater Treatment System

 Review Avenue Development Sites, NYCDEP File # C-5652

 Long Island City, Queens, New York

#### Notes:

RA-EFF-G: Instantaneous (Grab) Sample

RA-EFF-C: 4-Hour Flow Weighted Composite Sample

Bold/Shaded: Concentration exceeds daily limit

- Underline: Concentration exceeds monthly limit
- 1. Non-polar Material reported by lab as "Silica Gel Treated n-Hexane Extractable Material (SGT-HEM)"
- 2. pH and Temperature measured in field
- 3. Flash Point reported by lab as Ignitability
- 4. Temperature was estimated

#### **Definitions:**

MDL: Method Detection Limit RL: Reporting Limit NL: No Limit

#### Data Qualifiers:

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U: Indicates the analyte was not detected at the indicated MDL.



## Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

05/01/20 e-Hardcopy 2.0

Automated Report

Technical Report for

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY

3480160502

SGS Job Number: JD3466



Sampling Date: 02/20/20

Report to:

Wood Environment & Infrastructure Solut.

vincent.whelan@amecfw.com

ATTN: Vincent Whelan

Total number of pages in report: 24



Laura Degenhardt General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Kelly Ramos 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com



# **Table of Contents**

-

N

ω

4

(J)

#### -1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	8
Section 4: Sample Results	9
<b>4.1:</b> JD3466-1: RA-EFF-G	10
<b>4.2:</b> JD3466-1R: RA-EFF-G	13
<b>4.3:</b> JD3466-2: RA-EFF-C	14
<b>4.4:</b> JD3466-2R: RA-EFF-C	18
Section 5: Misc. Forms	19
5.1: Certification Exceptions	20
5.2: Chain of Custody	21



# **Sample Summary**

Wood Environment & Infrastructure Solut.

Review Avenue, Long Island City, NY Project No: 3480160502

Sample Number	Collected Date	Time By	Mat Received Cod		Client Sample ID
This report co Organics ND			s ND = Not dete ed above the MD	ected. The following app DL	plies:
JD3466-1	02/20/20	10:00 EP	02/20/20 AQ	Effluent	RA-EFF-G
JD3466-1R	02/20/20	10:00 EP	02/20/20 AQ	Effluent	RA-EFF-G
JD3466-2	02/20/20	13:00 EP	02/20/20 AQ	Effluent	RA-EFF-C
JD3466-2R	02/20/20	13:00 EP	02/20/20 AQ	Effluent	RA-EFF-C

```
Job No:
           JD3466
```







## CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Wood Environment & Infrastructure Solut.	Job No	JD3466
Site:	Review Avenue, Long Island City, NY	Report Date	3/6/2020 11:13:13 AM

On 02/20/2020, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 3 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD3466 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

#### MS Volatiles By Method EPA 624.1

	Matrix:	AQ	Batch ID: VT10062	
1				

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

- Sample(s) JD3493-1MS, JD3493-1MSD were used as the QC samples indicated.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Benzene, Ethylbenzene, Toluene, Xylenes (total) are outside control limits. Outside control limits due to high level in sample relative to spike amount.

#### MS Semi-volatiles By Method EPA 625.1

Matrix: AQ Batch ID: OP26000
------------------------------

All samples were extracted within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

#### GC/LC Semi-volatiles By Method EPA 608.3

Matrix: AQ	Batch ID:	OP26102

All samples were extracted within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- OP26102-MB1 for Decachlorobiphenyl: High percent recoveries and no positive found in the QC batch.
- OP26102-BSD for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- OP26102-MB1 for Tetrachloro-m-xylene: High percent recoveries and no positive found in the QC batch.
- OP26102-BS1 for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.

#### Metals Analysis By Method EPA 200.7

- Matrix: AQ Batch ID: MP19919
- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD3466-1MS, JD3466-1MSD, JD3466-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Cadmium, Lead, Zinc are outside control limits for sample MP19919-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- MP19919-MB2 for Copper: Lab filtered.
- MP19919-MB2 for Nickel: Lab filtered.
- MP19919-MB2 for Lead: Lab filtered.
- MP19919-MB2 for Cadmium: Lab filtered.
- MP19919-MB2 for Zinc: Lab filtered.

#### Metals Analysis By Method EPA 245.1

Matrix: AQ	Batch ID: MP19954	
<ul> <li>All samples were digested within</li> </ul>	recommended method holding time.	

- All method blanks for this batch meet method specific criteria.
- Sample(s) JD3528-1MS, JD3528-1MSD were used as the QC samples for metals.

#### **General Chemistry By Method EPA 1664A**

Matrix: AQ	Batch ID:	GP26986

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD3685-1MS, JD3940-2DUP were used as the QC samples for HEM Petroleum Hydrocarbons.

#### General Chemistry By Method EPA 300/SW846 9056A

	Matrix: AQ	Batch ID:	GP26955
-	All samples were prepared with	in the recommended metho	od holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JD3612-1DUP, JD3612-1MS were used as the QC samples for Chloride.

#### General Chemistry By Method EPA 351.2/LACHAT

_			
	Matrix: AQ	Batch ID: (	GP26775
_	All complex wore prepared with	in the recommended method	holding time

All samples were prepared within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

- Sample(s) JD3466-2DUP, JD3466-2MS were used as the QC samples for Nitrogen, Total Kjeldahl.
- Matrix Spike Recovery(s) for Nitrogen, Total Kjeldahl are outside control limits. Spike recovery indicates possible matrix interference.

#### General Chemistry By Method EPA 353.2/LACHAT

Matrix: AQ	Batch ID:	GP26930

All samples were prepared within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD3463-2DUP, JD3463-2MS were used as the QC samples for Nitrogen, Nitrate + Nitrite.

#### Friday, March 06, 2020

Page 2 of 4

#### General Chemistry By Method EPA353.2/SM4500NO2B

Matrix: AQ	Batch ID: R184110
------------	-------------------

The data for EPA353.2/SM4500NO2B meets quality control requirements.

JD3466-2 for Nitrogen, Nitrate: Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

#### General Chemistry By Method SM2540 B-11

|--|

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD3466-1DUP were used as the QC samples for Solids, Total.

#### General Chemistry By Method SM2540 D-11

|--|

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD3463-2DUP were used as the QC samples for Solids, Total Suspended.

#### General Chemistry By Method SM3500CR B-11

Γ	Matrix: AQ	Batch ID:	GN5518
	All samples were analyzed within	n the recommended metho	od holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD3466-1DUP, JD3466-1MS were used as the QC samples for Chromium, Hexavalent.

#### General Chemistry By Method SM4500 A-11

Matrix: AQ	Batch ID:	R184111
The data for SM4500 A-11 mee	ts quality control requirem	ments.

JD3466-2 for Nitrogen, Total: Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

#### General Chemistry By Method SM4500NO2 B-11

Matrix: AQ	Batch ID: GN5530

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD3463-2MS, JD3463-2MSD were used as the QC samples for Nitrogen, Nitrite.

#### General Chemistry By Method SM5210 B-11

Γ	Matrix: AQ	Batch ID:	GP26752
	A 11 1 1 1 1 1 1 1 1 1 1 1 1 1	a <u>11</u> a	

All samples were prepared within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JD3435-1ADUP were used as the QC samples for Carbonaceous Bod, 5 Day.

#### General Chemistry By Method SW846 1010A/ASTM D93

Matrix: AQ	Batch ID:	GN5963
------------	-----------	--------

Sample(s) JD3466-1DUP were used as the QC samples for Ignitability (Flashpoint).



SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

Page 4 of 4



# **Summary of Hits**

Job Number:	JD3466
Account:	Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY
Collected:	02/20/20

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD3466-1 RA-EFF-G					
Copper Chloride Ignitability (Flashpoint) Solids, Total Solids, Total Suspended	16.4 90.7 > 200 802 5.0	10 2.0 10 4.0		ug/l mg/l Deg. F mg/l mg/l	EPA 200.7 EPA 300/SW846 9056A SW846 1010A/ASTM D93 SM2540 B-11 SM2540 D-11
JD3466-1R RA-EFF-G					
No hits reported in this sample.					
JD3466-2 RA-EFF-C					
Nitrogen, Nitrate ^a Nitrogen, Nitrate + Nitrite Nitrogen, Total ^b Nitrogen, Total Kjeldahl	0.21 0.21 2.5 2.3	0.11 0.10 0.30 0.20		mg/l mg/l mg/l mg/l	EPA353.2/SM4500NO2B EPA 353.2/LACHAT SM4500 A-11 EPA 351.2/LACHAT

#### JD3466-2R RA-EFF-C

No hits reported in this sample.

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)

ω



Dayton, NJ

Section 4

Sample Results

Report of Analysis



			Report	of An	nalysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID:	RA-EFF-G JD3466-1 AQ - Effluent EPA 624.1 Review Avenu	e, Long Island City, N	ſΥ		Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	<b>File ID</b> T243436	<b>DF</b> 5.D 1	<b>Analyzed</b> 02/26/20 18:42	By CSF	<b>Prep Date</b> n/a	<b>Prep Batc</b> n/a	h Analytical Batch VT10062
Run #1 Run #2	Purge V 5.0 ml	olume					
Purgeable CAS No.	Aromatic Compo	,	Result	RL	MDL U	Jnits Q	

CAS NO.	Compound	Kesuit	KL	MDL	Omts	`
71-43-2	Benzene	ND	1.0	0.34	ug/l	
108-88-3	Toluene	ND	1.0	0.36	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
1330-20-7	Xylenes (total)	ND	1.0	0.35	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.87	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.63	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4 (SUR)	101%		76-12	22%	
2037-26-5	Toluene-D8 (SUR)	92%		80-12	20%	
460-00-4	4-Bromofluorobenzene (SUR)	100%	80-120%			
1868-53-7	Dibromofluoromethane (S)	97%		80-12	20%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



10 of 24 JD3466

SGS

4.1

Client Sample ID:	RA-EFF-G		
Lab Sample ID:	JD3466-1	Date Sampled:	02/20/20
Matrix:	AQ - Effluent	Date Received:	02/20/20
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		

**Total Metals Analysis** 

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Copper Lead Mercury Nickel Zinc	< 3.0 16.4 < 3.0 < 0.20 < 10 < 20	3.0 10 3.0 0.20 10 20	ug/l ug/l ug/l ug/l ug/l	1 1 1 1 1	02/24/20 02/24/20 02/25/20 02/24/20	02/25/20 ND 02/25/20 ND 02/25/20 ND 02/25/20 LL 02/25/20 ND 02/25/20 ND	EPA 200.7 ¹ EPA 200.7 ¹ EPA 200.7 ¹ EPA 245.1 ² EPA 200.7 ¹ EPA 200.7 ¹	EPA 200.7 ³ EPA 200.7 ³ EPA 200.7 ³ EPA 245.1 ⁴ EPA 200.7 ³

(1) Instrument QC Batch: MA48300

(2) Instrument QC Batch: MA48305

(3) Prep QC Batch: MP19919

(4) Prep QC Batch: MP19954







Client Sample ID:	RA-EFF-G		
Lab Sample ID:	JD3466-1	Date Sampled:	02/20/20
Matrix:	AQ - Effluent	Date Received:	02/20/20
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		

**General Chemistry** 

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chloride	90.7	2.0	mg/l	1	03/05/20 10:27	JW	EPA 300/SW846 9056A
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	02/20/20 17:09	HP	SM3500CR B-11
Ignitability (Flashpoint)	> 200		Deg. F	1	03/05/20	TM	SW846 1010A/ASTM D93
Solids, Total	802	10	mg/l	1	02/25/20 16:13	BM	SM2540 B-11
Solids, Total Suspended	5.0	4.0	mg/l	1	02/25/20 14:44	BM	SM2540 D-11

Page 1 of 1

4:1 4



Client Sample ID: Lab Sample ID: Matrix: Project:	RA-EFF-G JD3466-1R AQ - Effluent Review Avenue, Long	ID3466-1R					Date Sampled:02/20/20Date Received:02/20/20Percent Solids:n/a			
General Chemistry										
Analyte	Result	RL	Units	DF	Analyzed	By	Method			
HEM Petroleum Hy	drocarbons < 5.0	5.0	mg/l	1	03/05/20 15:00	LX	EPA 1664A			

Page 1 of 1

4.2 4



		Report	UI III	urybrb			1 age 1 01 1
Client Samj Lab Sample Matrix: Method: Project:		Island City, 1	٩Y		Date	L	2/20/20 2/20/20 a
Run #1 Run #2		<b>analyzed</b> 2/26/20 19:13	By CSF	<b>Prep Da</b> n/a	ate	<b>Prep Batch</b> n/a	Analytical Batch VT10062
Run #1 Run #2	<b>Purge Volume</b> 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
56-23-5 67-66-3 71-55-6	Carbon tetrachloride Chloroform 1,1,1-Trichloroethane	ND ND ND	1.0 1.0 1.0	0.55 0.50 0.54	ug/l ug/l ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
17060-07-0 2037-26-5 460-00-4 1868-53-7	1,2-Dichloroethane-D4 (SUR) Toluene-D8 (SUR) 4-Bromofluorobenzene (SUR) Dibromofluoromethane (S)	92%		76-12 80-12 80-12 80-12	20% 20%		

ND = Not detected MDL = Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



14 of 24

	<b>Report of Analysis</b> Pa									
Client Sa Lab Sam Matrix: Method: Project:	ple ID: JD3 AQ EPA	EFF-C 466-2 - Effluent A 625.1 EPA iew Avenue,	A 625 Long Island City, N	Y	Date	I	02/20/20 02/20/20 n/a			
Run #1 Run #2	<b>File ID</b> P134976.D	<b>DF</b> 1	<b>Analyzed</b> 02/25/20 05:54	By CS	<b>Prep Date</b> 02/24/20 07:10	Prep Batch OP26000	Analytical Batch EP6132			
Run #1 Run #2	<b>Initial Volu</b> 1050 ml	me Final V 1.0 ml	olume							

#### **ABN Special List**

CAS No.	Compound	Result	RL	MDL	Units	Q
108-95-2 91-20-3 120-82-1	Phenol Naphthalene 1,2,4-Trichlorobenzene	ND ND ND	1.9 0.95 0.95	0.37 0.22 0.24	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4 4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	30% 20% 91% 74% 82% 75%			32% 17%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





Client Sample Lab Sample I Matrix: Project: Total Metals	D: JD34 AQ - Revie	Effluent	e, Long Is	land C	ity, NY		Date Sampled: Date Received: Percent Solids:	0 = 1 = 01 = 0
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	< 3.0	3.0	ug/l	1	02/24/20	02/25/20 ND	EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: MA48300

(2) Prep QC Batch: MP19919





JD3466

Client Sample ID:	RA-EFF-C		
Lab Sample ID:	JD3466-2	Date Sampled:	02/20/20
Matrix:	AQ - Effluent	Date Received:	02/20/20
		Percent Solids:	n/a
Project:	Review Avenue, Long Island City, NY		

**General Chemistry** 

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Carbonaceous Bod, 5 Day	< 2.0	2.0	mg/l	1	02/20/20 21:20	EB	SM5210 B-11
Nitrogen, Nitrate ^a	0.21	0.11	mg/l	1	03/03/20 10:49	KI	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	0.21	0.10	mg/l	1	03/03/20 10:49	KI	EPA 353.2/LACHAT
Nitrogen, Nitrite	< 0.010	0.010	mg/l	1	02/20/20 22:50	EB	SM4500NO2 B-11
Nitrogen, Total ^b	2.5	0.30	mg/l	1	03/03/20 10:49	KI	SM4500 A-11
Nitrogen, Total Kjeldahl	2.3	0.20	mg/l	1	02/24/20 11:32	KI	EPA 351.2/LACHAT

(a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

(b) Calculated as: (Nitrogen, Total Kjeldahl) + (Nitrogen, Nitrate + Nitrite)





	<b>Report of Analysis</b> P								
Client San Lab Samp Matrix: Method: Project:	ole ID:		-2R fluent 8.3 EPA	A 608 Long Island City, N	ſΥ	Date	e Sampled: e Received: cent Solids:		
Run #1 Run #2	File ID XX24468	821.D	<b>DF</b> 1	<b>Analyzed</b> 02/27/20 10:44	<b>By</b> TR	<b>Prep Date</b> 02/26/20 12:30	Prep Bate OP26102	<b>Analytical Batch</b> GXX6944	
Run #1 Run #2	<b>Initial V</b> 1040 ml	olume	<b>Final V</b> 1.0 ml	olume					

#### **PCB List**

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	0.048 0.048 0.048 0.048 0.048 0.048 0.048	0.033 0.028 0.019 0.026 0.024 0.033 0.026	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No. 877-09-8 877-09-8 2051-24-3 2051-24-3	Surrogate Recoveries Tetrachloro-m-xylene Tetrachlorobiphenyl Decachlorobiphenyl	ND           Run# 1           72%           89%           74%           94%	0.048 Run# 2	Lim 10-1 10-1 10-1	ug/l its 56% 56% 43% 43%	

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound



18 of 24





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody



## **Parameter Certification Exceptions**

Г

Job Number:	JD3466
Account:	HLANJPR Wood Environment & Infrastructure Solut.
Project:	Review Avenue, Long Island City, NY

The following parameters included in this report are exceptions to NELAC certification. The certification status of each is indicated below.

Parameter	CAS#	Method	Mat	Certification Status	
Ignitability (Flashpoint) Nitrogen, Total		SW846 1010A/ASTM D93 SM4500 A-11	3 AQ AQ	SGS is not certified for this parameter. ^a SGS is not certified for this parameter. ^b	

(a) Lab cert for analyte/method not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

(b) Lab cert for analyte not supported by NJDEP, OQA. Only methods/analytes required for reporting by the State of NJ can be certified in NJ. Use of this analyte for compliance must be verified through the appropriate regulatory office.

Certification exceptions shown are based on the New Jersey DEP certifications. Applicability in other states may vary. Please contact your laboratory representative if additional information is required for a specific regulatory program.

(JT



	000	С	γW		СН						-													ge _				É
	SGS								nc D n, NJ 0		n					FED-EX	Tracking #					Bottle Or	der Contr	"K	R-0	71	320-168	COMP
	<u> </u>				TEL. 7			FAX: 7 .com/e	32-329-3	3499/	3480					SGS Qu	ote #					SGS Job	*		TI	02	466	-
	Client / Reporting Information	n			Project	t inform			13434											Reque	sted Ar	alysis			2.3		Matrix Codes	
Compar	y Name:	Proje	ect Name:																1									
	d E&IS			nue GWM															0.0		EPA		EPA				DW - Drinking Water GW - Ground Water	
Street A 200	^{ddress} American Metro Bivd #113	Street Revi	t lew Aver	nue		Billing k	nformatic	n (if diffe	erent from	Repor	t to)								EPA 30				- eues			608	WW - Water SW - Surface Water SO - Soil	
City Han	State nHton, NJ C	Zip City 28619 Long	g Island	City	State NY	Company										Flashpoint (Ignitability) - SW846 1010A	, Ni, Zn) - EPA 200.7 (245.1		Total Solids, (SM 2540 B-11); Chloride (EPA 300.0 / SM4500 CI-C)	Suspended Solids - SM 2540 D-11	VMS+14DCB)	(B)	1,2,4-Trichlorober		0.7	EPA 60	SL- Sludge SED-Sediment OI - OII	
Project		Proje				Street Ad	dress									1.64	EPA		5	1254		8	臣		A 200.		LIQ - Other Liquid	
Vinc Phone #	ent.whelan@woodpic.com		0160502			City					State			Zip		Š	ភិក	SGT	Ē	-Sv	-PC	SM3	24		- EPA	PCBI	AIR - Air SOL - Other Solid	
	689-2832	Citer		C01270035		City								zψ		- (A)	245 245	1664A	540	spilo	VMS+PCE,	E S		Ē	(Aluc	(P608PCBLL)	WP - Wipe FB - Field Blank	
	(s) Name(s)	Phone # Proje				Attention										itabil	66	A16	SM 2	S R	Ŵ	ū	halar	210	Ę	Level (F	EB-Equipment Blank RB - Rinse Blank	
Emi	Il Puccio (347) 836-4445	Tim	Kessler	•	Collection					<del></del>		er of ore				E.	Ŭ P P	Ш -	19. (0)	bed	(V624BTXM,	с, ч	Naphthalene,	SM5210 B-11	(Cadmium Only) -	w Lev	TB - Trip Blank	
			ŀ		Conection	<u> </u>						ΤÍ		T	¥	- jõ	Metals (Cd, Cu, Mercury (Hg) - E	SGT HEM - EPA	200 Soli	Sus	(V62	Hexavalent Chromium (SM3500 Cr B)	N N	CBOD5 - 8	ls (C	s, Low		
SGS Sample #	Field ID / Point of Collection	MEOH	H/DI Viel #	Date	Time	Sampled by	Grab (G) Comp (C)	Matrix	# of bottles	Ę	HOP	Nosi H	NONE DI With	MEOH	ENCO	Flas	Meta	SGT	Total SM4	Total	VOC -	Неха	Phenol, 1 625	CBO	Metals	PCBs,	LAB USE ONLY	
1	RA-EFF-G			2/20/2020	1000	) EP	G	GW	11	5		1	5			X	Х	н	X	X	х	х					ESS	
2	RA-EFF-C			2/20/2020	1300	EP	С	GW	11	3		1 1	6										х	X	х	н	AI8	
	RA-VOC-C1			2/20/2020	1000	EP	G	GW	3	3																	632	
	RA-VOC-C2			2/20/2020	1000	EP	G	GW	3	3																	V1064	
	RA-VOC-C3			2/20/2020	1200	EP	G	GW	3	3																	BIS	
	RA-VOC-C4			2/20/2020	1300	EP	G	GW	3	3																		
									1																			
	Turn Around	Time (Business										Delive											Comn	nents /	Specia	Instru	uctions	
	10 Business Days	Appro	oved By (SG	38 PM): / Date:	11		-		A" (Level 3" (Level 2					Catego Catego				] DOD-	QSM5	Comp	osite R/	A-VOC					o be used for RA-	
ļ	5 Business Days	INITIA		SSMENT	- 211	∥ ⊨	-	iduced (L		4	ſ			P Crite									EFF-C	voc	analysi	is.		
	3 Business Days"				<u> </u>	₩-Ξ	] Full T	ier I (Lev	ret 4)		Č	∃ ¢	T RCP	Crite	rta							Hold	SGT-F	IEM +	PCB S	ample	5.	
	2 Business Days*	LABEL	VERI	FICATION	1		Comr	nercial "C	<b>;</b> "		Ę	si	late Fo	orms						н	ex Chro	me Tes	t Meth	od Onl	v Allow	/s 24H	R Hold Time	
	1 Business Day					+- C	N J DI							rmat _			-					۰H	n	al.	vn -	. 7	21 01 9.2	20
	X Other Standard All data available via Lablink	Approval	needed fo	or 1-3 Business	Day TAT				mercial "A Commercia									Ŋ		ti	eld	γn h	tp://ww	ww.sgs.	com/er	· /•	21 a+ 9	
				Sample C	Custody mu	ust be do	cument											er delive					_					
1	L. Puccin	Date / Time: 2/20/20	1400	Received By:	$\mathcal{W}$	XI.	nh			Reline 2	P	21	1						2/201	50	15:54	Received 2	By:			~	~	
Relir	quished by:	Date / Time:		Received By:	4.0		~~~			Reitne	inispeq	By:	w	•					Date / Ti	-		Received	By:	·		t	(	Bzkstz
	quished by:	Date / Time:		3 Received By:						Custo	dy Sea	•				intact			id where a	pplicable		-		On ice		Cooler	remp. "C 3.20	
5				9						J					10	Not inter	al	Absent			Therm. ID		_	A			2 41	0
																											3,3	C-P

COCs

JD3466: Chain of Custody Page 1 of 4 5.2

G

	SGS			SG	S Nor	th Am	erica I	JST( Inc D m, NJ 0	ayton	-					FED-EX	Tracking						der Contro				2
					32-329-	0200	FAX: 7	32-329-3		480					SGS Que	ote #					SGS Job			TI	1.21	166
	Client / Reporting Information	T		Projec	Inform		.com/e	nsusa											Reques	ted Ar	alvsis			<u></u>	<u></u>	Matrix Codes
ompan	y Name:	Project Name														Γ					ulysis					
	d E&IS	Review Av	nue GWM														EPA									DW - Drinking Water GW - Ground Water
reet A 200	^{idress} American Metro Bivd #113	Street Review Av	-												NOO		- (V)									WW - Water SW - Surface Water
ity	State Zip	City		State	Billing in Company		on (if diffe	erent from	Report	to)					SM18 4500N		VMS+TCA)									SO - Soil SL- Sludge
	iliton, NJ Ø8619	Long Islan	1 City	NY													W Y						I			SED-Sediment OI - Oil
-	contact E-mail ent.whelan@woodplc.com	Project # 348016050	2		Street Ad	dress									NO2/NO3)	-	VMS+CTC,						1			LIQ - Other Liquid AIR - Air
none #		Client Purcha	se Order #		City				s	tate		·	Zip		021	Ratio)	-WS+									SOL - Other Solid WP - Wipe
	689-2832	1	C01270035	_											(TKN, N	1										FB - Field Blank EB-Equipment Blank
•	(s) Name(s) Phone Il Puccio (347) 836-4445	# Project Manag			Attention											vocs	E F									RB - Rinse Blank TB - Trip Blank
	· · ·	+		Collection						Number	of pres	served i	Bottles		Nitrogen	site V	(V624CHLFRM,									
sgs					Sampled	Grab (G)			_[	HINO,	g I	Mater	MEOH	CORE	Total N	Composite	VOC (V 624									
emple #	Field ID / Point of Collection	MEOH/DI Viel #	Date	Time	by	Comp (C)	Metrix	# of bottlee	$\rightarrow$	FIND THOU		NONE DI Weet	¥	3	۲Ľ	ŏ	28 2							$\square$	$\square$	LAB USE ONLY
۱	RA-EFF-G		2/20/2020	1000	EP	G	GW	11	5	1		5	$\square$	+				L						$\square$		L
2	RA-EFF-C		2/20/2020	1300	EP	G	GW	11	3	1	1	6	$\square$	_	X		X									
	RA-VOC-C1		2/20/2020	1100	EP	G	GW	3	3					$\perp$		X										
	RA-VOC-C2		2/20/2020	1100	EP	G	GW	3	3							х										
	RA-VOC-C3		2/20/2020	1200	EP	G	GW	3	3							X										
$\mathcal{L}$	RA-VOC-C4		2/20/2020	1300	EP	G	GW	3	3							X										
														Τ												
												Т	Π	T												
														T												
												1	П													
												+	11	+												
	Turn Around Time (I	Business Days)						L		De	liver		1		L		· ·					Comm	ents /	Specia	al Instr	uctions
,	10 Business Days	Approved By (S	GS PM): / Date:			•		A" (Level 1					Catego				000-0	28M5	Compo	site R/	A-VOC-	-C1 to F	₹A-VC	)C-C4	in lab	to be used for RA-
	5 Business Days					-	nercial "E iduced (L	3" (Level 2) evel 3)					Criter									EFF-C	voc	analys	lis.	
i	3 Business Days*						ieri (Lev			E			Criter	_							Hold	SGT-H	EM + '	PCB S	ample	15.
	2 Business Days*	a					nercial "C	<b>;</b> "				te For	ms						Не	x Chro	me Tes	t Metho	od On'	ly Allov	ws 24ł	R Hold Time
	] 1 Business Day X Other Standard	<u> </u>				) NJ DH			_					_	DEC											
	All data available via Lablink	pproval needed f					c	mercial "A Commercia	I "C" = F	Results	QC 8	Summ	ary + F	Partial	Raw data						ht	tp://ww	w.sgs	.com/e	en/term	ns-and-conditions
Relln	uished by:Date /	ime:	Sample C	ustody mu	st be do	cument	ed belov	w each th	ne sam	ples c	hang	e pos	8088	lon, li	ncluding	courte										
Ē	al Puccio 21	20/20 1400	1 22	Shi	h				2	29	ملأ	h						2/20	120 1	5.54	2	by:	_			· <
Relin	juished by: Date / 1	'ime:	Received By:						Relinqu	ished By	:							Date / Ti			Received	By:			~	
Relin	uished by: Date /	'ime:	Received By:						4 Custody	Seal #	••••••			0	Intect		Preserver	d where 4	pplicable		*		On lot		Coole	r Temp. *C

T

COCs

JD3466: Chain of Custody Page 2 of 4



SGS

5.2

U

#### SGS Sample Receipt Summary

Job Number:	JD3466	Client:	WOOD ENVIRONMENT	& INFRASTRUCT	Project: REVIEW AVENU	E, LONG ISL	AND CI	ΓΥ, ΝΥ
Date / Time Received:	2/20/2020 3	:54:00 PM	Delivery Method:		Airbill #'s:			
Cooler Temps (Raw Mea Cooler Temps (Cor								
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification 3. Cooler media: 4. No. Coolers: Quality Control Present 1. Trip Blank present / cool 2. Trip Blank listed on COO 3. Samples preserved prop 4. VOCs headspace free:	.: I I /ationY ler: □ C: □	] 3. COC P	S/Time OK ☑	<ol> <li>Sample labels</li> <li>Container lab</li> <li>Sample conta</li> <li>Sample Integu</li> <li>Sample Integu</li> <li>Sample recvo</li> <li>All containers</li> <li>Condition of s</li> <li>Sample Integu</li> <li>Analysis requ</li> <li>Bottles receir</li> <li>Sufficient vol</li> </ol>	iner label / COC agree: <b>ity - Condition</b> I within HT: accounted for: ample: <b>ity - Instructions</b> Justed is clear: ved for unspecified tests ume recvd for analysis: instructions clear:	<u>Y</u> or ✓ <u>Y</u> or ✓ <u>Y</u> or ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	r N	 N/A ⊻
Test Strip Lot #s:	pH 1-12:	229517	pH 12+:	208717	Other: (Specify)			
Comments								

SM089-03 Rev. Date 12/7/17

JD3466: Chain of Custody Page 3 of 4



5.2

G



SGS

			Job Change Order:	rder:	JD3466
Requested Date:	ite:	2/25/2020		Received Date:	2/20/2020
Account Name: Proised Description:	e: intion:	Wood Environment & Infrastructur	Wood Environment & Infrastructur Beview Avenue 1 and Island City NIV	Due Date: Deliverable:	3/5/2020 NVASDR
C/O Initiat	ted By:	C/O Initiated By: MICHELLD	PM: KR	TAT (Days):	4
Samnle #-	ID3466-1		Samula #· ID3466.1 Chance.		
		-	Relog for PHC1664		
TAT:	14				
RA-EFF-G					
Sample #:	JD3466-2	-2	Change:		
Dept:			Relog for P608PCBLL		
TAT:	14				
RA-EFF-C					

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative. Date/Time: 2/25/2020 1:26:28 PM Above Changes Per: Timothy Kessler

Page 1 of 1

JD3466: Chain of Custody Page 4 of 4



5.2

