### FORMER UNIFORMS FOR INDUSTRY SITE

**QUEENS, NEW YORK** 

## Site Management Plan

**NYSDEC Site Number: C-241103** 

### **Prepared for:**

Union Jamaica LLC 15 Verbena Avenue, Suite #100 Floral Park, NY 11001-2711

### Prepared by:

BC

ENVIRONMENTAL BUSINESS CONSULTANTS

1808 Middle Country Road Ridge, NY 11961

### **Revisions to Final Approved Site Management Plan:**

| Revision # | Submitted Date | Summary of Revision                                                       | DEC Approval Date |
|------------|----------------|---------------------------------------------------------------------------|-------------------|
| 1          | 11-21-12       | Editorial changes, further clarification SSDS notification for down time. |                   |
| 2          | 12-20-12       | Minor editorial changes.                                                  |                   |
|            |                |                                                                           |                   |
|            |                |                                                                           |                   |

### TABLE OF CONTENTS SITE MANAGE MENT PLAN FORMER UNIFORMS FOR INDUSTRY SITE

| 1.0 | INT          | RODU    | CTION AND DESCRIPTION OF REMEDIAL PROGRAM                                | 1  |
|-----|--------------|---------|--------------------------------------------------------------------------|----|
|     | 1.1          | Intro   | luction                                                                  | 1  |
|     |              | 1.1.1   | General                                                                  | 1  |
|     |              | 1.1.2   | Purpose                                                                  | 2  |
|     |              | 1.1.3   | Revisions                                                                | 3  |
|     | 1.2          | Site B  | ackground                                                                | 3  |
|     |              | 1.2.1   | Site Location and Description                                            |    |
|     |              | 1.2.2   | Site History                                                             |    |
|     |              | 1.2.3   | Geological Conditions                                                    | 4  |
|     | 1.3          | Sumn    | nary of Remedial Investigation Findings                                  | 5  |
|     |              | 1.3.1   | Soil                                                                     |    |
|     |              | 1.3.2   | Groundwater                                                              | 6  |
|     |              | 1.3.3   | Soil Vapor                                                               |    |
|     |              | 1.3.4   | Underground Storage Tanks                                                |    |
|     | 1.4          |         | nary of Remedial Actions                                                 |    |
|     |              | 1.4.1   | Leaching Pool Remediation and Removal                                    |    |
|     |              | 1.4.2   | Underground Storage Tank Removal                                         |    |
|     |              | 1.4.3   | Removal of Contaminated Materials from the Site                          |    |
|     |              | 1.4.4   | Import of Backfill                                                       |    |
|     |              | 1.4.5   | Site Related Treatment Systems                                           |    |
|     |              | 1.4.6   | Remaining Contamination                                                  |    |
| • 0 | <b>E 1</b> 1 | ~**     |                                                                          |    |
| 2.0 |              |         | RING AND INSTITUTIONAL CONTROL PLAN                                      |    |
|     | 2.1          |         | luction                                                                  |    |
|     |              | 2.1.1   | General                                                                  |    |
|     |              | 2.1.2   | Purpose                                                                  |    |
|     | 2.2          | _       | neering Control Components                                               |    |
|     |              | 2.2.1   | Engineering Control Systems                                              |    |
|     |              |         | 2.2.1.1Soil Cover / Cap                                                  |    |
|     |              |         | 2.2.1.2 Sub-slab Depressurization System                                 |    |
|     |              | 2.2.2   | Criteria for Completion of Remediation / Termination of Remedial Systems |    |
|     |              |         | 2.2.2.1 Composite Cover System                                           | 20 |
|     |              |         | 2.2.2.2 Sub-slab Depressurization System                                 | 20 |
|     | 2.3          | Institu | utional Controls                                                         |    |
|     |              | 2.3.1   | Excavation Work Plan                                                     | 22 |
|     | 2.4          | Inspe   | ctions and Notifications                                                 | 22 |
|     |              | 2.4.1   | Inspections                                                              | 22 |
|     |              | 2.4.2   | Notifications                                                            | 23 |
|     | 2.5          | Conti   | ngency Plan                                                              | 24 |
|     |              | 2.5.1   | Emergency Telephone Numbers                                              | 24 |
|     |              | 2.5.2   | Map and Directions to Nearest Health Facility                            |    |
|     |              | 2.5.3   | Response Procedures                                                      | 27 |

### TABLE OF CONTENTS SITE MANAGE MENT PLAN FORMER UNIFORMS FOR INDUSTRY SITE

| 3.0        | SIT        | E MONITORING PLAN                                                 | 29 |
|------------|------------|-------------------------------------------------------------------|----|
|            | 3.1        | Introduction                                                      | 29 |
|            |            | 3.1.1 General                                                     | 29 |
|            |            | 3.1.2 Purpose and Schedule                                        |    |
|            | 3.2        | Soil Cover System Monitoring                                      |    |
|            | 3.3        | Media Monitoring Program                                          |    |
|            |            | 3.3.1 Groundwater Monitoring                                      |    |
|            |            | 3.3.1.1 Sampling Protocol                                         |    |
|            |            | 3.3.1.2 Monitoring Well Repairs, Replacement and Decommissioning  |    |
|            | 3.4        | Site-Wide Inspection                                              |    |
|            | 3.5        | Monitoring Quality Assurance/Quality Control                      |    |
|            | 3.6        | Monitoring Reporting Requirements                                 |    |
| 4.0        | OPI        | ERATION AND MAINTENANCE PLAN                                      | 39 |
| •••        | 4.1        | Introduction                                                      |    |
|            | 4.2        | Engineering Control System Operation and Maintenance – SSD System |    |
|            |            | 4.2.1 SSD System Scope                                            |    |
|            |            | 4.2.2 SSD System Start-Up and Testing.                            |    |
|            |            | 4.2.5 SSD System Operation: Non-Routine Equipment Maintenance     |    |
|            | 4.3        | Engineering Control System Performance Monitoring – SSD System    |    |
|            |            | 4.3.1 SSDS System Monitoring Schedule                             |    |
|            |            | 4.3.2 SSDS System General Equipment Monitoring                    |    |
|            |            | 4.3.3 SSDS System Monitoring Devises and Alarms                   |    |
|            |            | 4.3.4 SSDS System Sampling Event Protocol                         |    |
|            | 4.4        | Maintenance and Performance Monitoring Reporting Requirements     |    |
|            | 7.7        | 4.4.1 Routine Maintenance Reports                                 |    |
|            |            | 4.4.2 Non-Routine Maintenance Reports                             |    |
|            |            | •                                                                 |    |
| <b>5.0</b> | INS        | PECTIONS, REPORTING AND CERTIFICATIONS                            | 44 |
|            | <b>5.1</b> | Site Inspections                                                  | 44 |
|            |            | 5.1.1 Inspection Frequency                                        | 44 |
|            |            | 5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports    | 44 |
|            |            | 5.1.3 Evaluation of Records and Reporting                         | 44 |
|            | <b>5.2</b> | Certification of Engineering and Institutional Controls           |    |
|            | <b>5.3</b> | Periodic Review Report                                            | 47 |
|            | 5.4        | Corrective Measures Plan                                          | 48 |

# TABLE OF CONTENTS SITE MANAGE MENT PLAN FORMER UNIFORMS FOR INDUSTRY SITE

### **TABLES**

| Table 1 | Soil Cleanup Objectives for the Site                                                     |
|---------|------------------------------------------------------------------------------------------|
| Table 2 | Summary of Remaining Soil Contamination Above Unrestricted / Restricted Residential SCOs |
| Table 3 | Summary of Groundwater Contamination above Standards                                     |

### **FIGURES**

| Figure 1  | Site Location Map                                                                          |
|-----------|--------------------------------------------------------------------------------------------|
| Figure 2  | Site Plan                                                                                  |
| Figure 3  | Geologic Cross-section                                                                     |
| Figure 4  | Groundwater Flow Map                                                                       |
| Figure 5  | Soil Excavation Areas and Hot Spot Locations                                               |
| Figure 6  | Injection Well Locations                                                                   |
| Figure 7  | Spider Map – Remaining Soil Contamination Above Unrestricted / Restricted Residential SCOs |
| Figure 8  | Location of Cover System Types                                                             |
| Figure 9  | Spider Map - Groundwater Contamination Above Water Quality Standards                       |
| Figure 10 | Groundwater Monitoring Well Network                                                        |
| Figure 11 | SSD System Vacuum Monitoring Locations                                                     |

### **ATTACHMENTS**

| Attachment A | RI Summary Tables                              |
|--------------|------------------------------------------------|
| Attachment B | Excavation Work Plan                           |
| Attachment C | SSD System Details                             |
| Attachment D | Health and Safety Plan                         |
| Attachment E | Well Construction Logs                         |
| Attachment F | Groundwater Sampling Logs                      |
| Attachment G | Site Inspection Checklist and Inspection Forms |
| Attachment H | Quality Assurance Project Plan                 |
| Attachment I | Metes & Bounds Description                     |



# SITE MANAGE MENT PLAN FORMER UNIFORMS FOR INDUSTRY SITE

### LIST OF ACRONYMS

| Acronym | Definition                                              |  |
|---------|---------------------------------------------------------|--|
| AMC     | AMC Engineering                                         |  |
| AWQS    | Ambient Water Quality Standards                         |  |
| BCA     | Brownfield Cleanup Agreement                            |  |
| ВСР     | Brownfield Cleanup Program                              |  |
| BTEX    | Benzene, Toluene, Ethylbenzene and Xylene               |  |
| CQMP    | Construction Quality Management Plan                    |  |
| DUSR    | Data Usability Statement Report                         |  |
| EBC     | Environmental Business Consultants                      |  |
| FER     | Final Engineering Report                                |  |
| HDPE    | High Density Polyethylene                               |  |
| IRM     | Interim Remedial Measure                                |  |
| NYC     | New York City                                           |  |
| NYCDEP  | New York City Department of Environmental Protection    |  |
| NYSDEC  | New York State Department of Environmental Conservation |  |
| NYSDOH  | New York State Department of Health                     |  |
| PS      | Public School                                           |  |
| PVC     | Polyvinyl Chloride                                      |  |
| RAO     | Remedial Action Objectives                              |  |
| RAWP    | Remedial Action Work Plan                               |  |
| RI      | Remedial Investigation                                  |  |
| RSCOs   | Recommended Site Cleanup Objectives                     |  |
| SCG     | Standards, Criteria, and Guidelines                     |  |
| SMMP    | Soil/Materials Management Plan                          |  |
| SSDS    | Sub-slab Depressurization System                        |  |
| SWPPP   | Stormwater Pollution Prevention Plan                    |  |
| SVOCs   | Semi-Volatile Organic Compounds                         |  |
| USEPA   | United States Environmental Protection Agency           |  |
| UST     | Underground Storage Tank                                |  |
| VOCs    | Volatile Organic Compounds                              |  |

Site Management Plan

### SITE MANAGEMENT PLAN

#### 1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

#### 1.1 INTRODUCTION

This document is required as an element of the remedial program at the Uniforms for Industry Site (hereinafter referred to as the "Site") under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by New York State Department of Environmental Conservation (NYSDEC). The site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index # A2-0585-0307, which was executed on June 13, 2007 and last amended on January 24, 2011.

#### 1.1.1 General

Union Jamaica LLC entered into a BCA with the NYSDEC to remediate a 1.72 acre property located in Richmond Hill, Queens, New York. This BCA required the Remedial Party, Union Jamaica LLC to investigate and remediate contaminated media at the site. A figure showing the site location and boundaries of this 1.72-acre "site" is provided in **Figure 1**. The boundaries of the site are more fully described in the metes and bounds site description that is part of the Environmental Easement.

After completion of the remedial work described in the Remedial Action Work Plan, some contamination was left in the subsurface at this site, which is hereafter referred to as 'remaining contamination." This Site Management Plan (SMP) was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

This SMP was prepared by Environmental Business Consultants, on behalf of Union Jamaica LLC, in accordance with the requirements in NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated May 2010, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the site.

#### **Purpose** 1.1.2

The site contains contamination left after completion of the remedial action. Engineering Controls have been incorporated into the site remedy to control exposure to remaining contamination during the use of the site to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Queens County Clerk, will require compliance with this SMP and all ECs and ICs placed on the site. The ICs place restrictions on site use, and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs. This SMP specifies the methods necessary ensure compliance with all ECs and ICs required by the Environmental Easement for contamination that remains at the site. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the site after completion of the Remedial Action, including: (1) implementation and management of all Engineering and Institutional Controls; (2) media monitoring; (3) operation and maintenance of all treatment, collection, containment, or recovery systems; (4) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports; and (5) defining criteria for termination of treatment system operations.

To address these needs, this SMP includes three plans: (1) an Engineering and Institutional Control Plan for implementation and management of EC/ICs; (2) a Monitoring Plan for implementation of Site Monitoring; (3) an Operation and Maintenance Plan for implementation of remedial collection, containment, treatment, and recovery systems (including, where appropriate, preparation of an Operation and Maintenance Manual for complex systems).

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that:

This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the

environmental easement, which is grounds for revocation of the Certificate of Completion (COC);

Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the BCA Site # C-241103 for the site, and thereby subject to applicable penalties.

### 1.1.3 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

#### 1.2 SITE BACKGROUND

#### 1.2.1 **Site Location and Description**

The Site is located in the County of the Queens, New York, and is identified as Block 9281, and Lot 44 on the Queens Borough Tax Map (see Figure 1 - Location Map). The Site is situated on an approximate 75,230 square foot (1.72-acre) area bounded by residential properties and 127<sup>th</sup> Street to the west, a residential lot to the north, Jamaica Avenue to the south and the Long Island Railroad-Ronkonkoma Line to the east (**Figure 2**).

#### 1.2.2 **Site History**

Sanborn Maps dating back to 1901 show the property to be developed with a 2-story residential building in the south-central portion of the site. By 1911, three 1-story commercial buildings are shown in the western area of the property and are labeled as stores. The 1925 map shows the addition of two 1-story and one 2-story residential buildings in the southeastern portion of the site. In 1929, the main building was constructed in the central portion of the site and operated as a commercial laundry. By 1942, only the 2-story residence remains. A small 1-story building labeled as a store is now present east of the residence and a larger 1-story building labeled "auto collision" is shown north of the residences. Four gasoline tanks are shown near the store in the southeast corner of the property.

According to the Phase I prepared by GCE (10/04), UFI has occupied the Site since at least 1957. By 1963, the 2-story residential building is being utilized as a filling station. By 1981, the filling station

Site Management Plan

building is labeled as an office building. The auto collision building, 2-story office building, and the commercial laundry building remain unchanged through 1988. In the 1990 map the auto collision building and office building are gone and a large addition is added to the laundry building in the southeast area of the site. According to the GCE Phase I, UFI ceased operations at the Site in 2002.

Previous environmental reports indicate that fuel oil, mop oil, mineral spirits, Stoddard solvent, and Varsol solvent have been historically stored on the Site. According to the Remedial Investigation Report prepared by Environmental Liability Management, LLC (12/09), UFI used tetrachloroethene (PCE) in a dry cleaning machine from 1992 and 1997.

According to the NYSDEC Spills Database, two spill numbers are associated with the Site. Spill No. 91-01477 (reported on May 6, 1991), was related to the tank test failure of a 3,000 gallon underground storage tank. The database indicates that the spill was closed on March 7, 2003, as a result of no new information. The spill file references a second spill, No. 02-08119. The second spill is related to a tank test failure of a 6,000 gallon fuel oil underground storage tank. Contaminated soil was later discovered around the fill lines of a mineral oil underground storage tank and a diesel underground storage tank. This spill remains open.

### 1.2.3 Geologic Conditions

Based upon the results of previous investigations conducted at the site and upon recent soil borings advanced at the site for geotechnical analysis and during the Supplemental Investigation, subsurface materials at the site are as follows:

Historic fill materials in the upper 6 inches to 2 feet of the soil column. Historic fill contains fragments of asphalt, brick and wood, with some ash materials in a silty-sand matrix.

Non-native backfill materials to a depth of 15 feet within the former UST area in the western parking area and to a depth of 20 feet within the former UST area in the east central part of the Site. Non-native backfill consists of poorly sorted sand and silt with fine gravel and small to large cobbles. Native soils are present directly beneath the historic fill layer. Native soils are composed of fine to coarse sand with varying amounts of fine to coarse gravel and cobbles. According to the RIR, cobbles and boulders appear to be more commonly encountered between 19 and 25 feet below the surface.

Site Management Plan

The RIR also describes soils below approximately 42 to 45 feet as fine to coarse sand, with small amounts of fine gravel present to approximately 50 feet. These sands generally become finer and better sorted with depth, and extend to a depth of approximately 115 feet. The RIR reports a clay layer from 115 to at least 120 feet.

Groundwater at the Site is present at a depth of 38 to 40 feet below the surface and generally flows in a southwesterly direction. A geologic section is shown in **Figure 3**. A groundwater flow figure is shown in **Figure 4**.

#### 1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the site. The results of the RI are described in detail in the following reports:

The Remedial Investigation (RI) of the Site was performed by Environmental Liability Management, LLC (ELM) on behalf of the former property owner, UFI. The field work portion of the RI was performed from November 2008 through February, 2009. ELM documented the results of the RI in a Remedial Investigation Report (RIR) dated April 16, 2010 (revised August 13, 2010). The RIR was accepted and approved by the NYSDEC in a letter dated August 30, 2010.

The purpose of RI was to gather additional data to evaluate the presence and extent of chlorinated hydrocarbons, (identified as the primary compounds of concern in the subsurface), delineate the vertical and horizontal extent of petroleum constituents in soil and groundwater (identified as secondary compounds of concern), and assess the exposure risk of contaminants released into the environment. The RI performed by ELM, and as described in the RIR, was "designed to characterize the nature and extent of on-site and off-site related impacts to media of concern and support an analysis of remedial alternatives and selection of a remedy in conjunction with a construction specific remedial objective."

The RI performed by ELM included the following tasks:

Performance of a geophysical survey to identify subsurface structures such as drainage pools and phantom USTs, identify drainage and utility lines and to identify previously excavated (disturbed) areas of the Site;

- Sampling of all existing monitoring wells and analysis of groundwater samples for VOCs;
- The installation and sampling of 12 soil vapor probes to evaluate soil gas concentrations of VOCs;
- The installation of seven soil borings ranging in total depth from 64 to 119 feet;
- The collection of groundwater samples from multiple levels within the soil borings;
- The installation and sampling of three additional permanent monitoring wells;
- The analysis of soil and groundwater samples using a field portable gas chromatograph and a fixed base laboratory.

#### 1.3.1 Soil

The soil boring program did not identify primary (PCE and TCE) compounds of concern (COCs) in vadose zone or saturated zone soils above Part 375 Restricted Residential Soil Cleanup Objectives (RRSCOs) during the investigation. Primary COCs were detected in vadose zone above unrestricted objectives in a single boring (B13) at a depth of 18 feet below surface. Primary COCs were not detected in saturated soils during the investigation.

Secondary (petroleum-VOC) Petroleum VOCs were detected above Restricted Residential SCOs in saturated zone soils in the former north-central UST area and in the northeastern portions of the site. The VOCs detected above RRSCOs were limited to 1,2,4-Trimethylbenzene in three borings (B13, B15, B19) within the former UST area and 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene in one boring (B16) in the vicinity of the former DW4 drywell in the northern part of the Site. Summary tables of soil results from the Remedial Investigation are provided in **Attachment A**.

#### Groundwater 1.3.2

The sampling of existing monitoring wells identified groundwater VOC concentrations in both on-site and off-site wells above NYSDEC Technical and Operational Guidance Series Ambient Water Quality Standards for groundwater (AWQS). Two of the on-site wells, MW8 and MW11, contained liquid phase hydrocarbons (LPH) at the time of the sampling event and, as such, groundwater samples were not obtained from these locations. Primary COCs were detected above standards in all 10 of the wells sampled. Total primary COC concentrations ranged from 9 µg/L in MW7 in the northern corner of the site to 1,474 µg/L in MW1 within the former central UST area. Secondary COCs were reported above

standards in 7 of the 10 wells sampled with total concentrations ranging from 12 µg/L in MW4 near the southwest property line to 2,381 µg/L in MW1.

Secondary COCs above standards were also reported in the temporary vertical profile borings at a depth of 67 feet in the northeastern area of the site, with concentrations dropping vertically with depth, yet still exceeding standards at a depth of 78 feet. Summary tables of groundwater results from the Remedial Investigation are provided in **Attachment A**.

### 1.3.3 Soil Vapor

The soil vapor sampling program included the collection of 4 sub-slab samples within the building and 8 soil gas samples collected around the building exterior within the east and west parking areas and near the north loading dock area. Sub-slab samples were collected directly beneath the slab while exterior soil gas samples were collected from implants installed to a depth of 5 feet below the surface. Chlorinated VOCs (CVOCs) were detected in all 4 subslab samples and in all 8 soil gas samples. Petroleum VOCs (PVOCs) were not detected in any of the samples. CVOC concentrations ranged from 115.9 in the southwest corner of the property to a high of 5,290,000 in the vicinity of the former central area USTs. Elevated CVOC concentrations were also reported in the vicinity of the drainage structures in the eastern parking area, beneath the building slab in the southeastern corner of the building, and in the northern corner of the site.

ELM concluded that the elevated soil vapor concentrations underneath the southern portion of the building and in the northern corner of the property appear to mainly be the artifacts of former incidental releases and site operations over the extended operating history of the facility. Summary tables of soil vapor results from the Remedial Investigation are provided in **Attachment A**.

### **Underground Storage Tanks**

The property is identified in the NYSDEC Petroleum Bulk Storage database as Facility Site No. 2-248541. The facility status is listed as unregulated. The database lists thirteen tanks registered for the Uniforms for Industry facility. The tanks listed include: two 6,300 gallon underground storage tank (UST) (one fuel oil, one "other"), one 7,500 gallon UST (fuel oil), three 2,000 gallon UST ("other"), three 3,000 gallon USTs (2 "other", 1 "invalid material"), one 6,000 gallon UST ("empty") and three

631.924.2870

FAX

1,500 gallon USTs ("empty"). Eleven of the thirteen tanks are listed as closed - removed. Two of the 3,000 gallon tanks are listed as "closed prior to 3/1991".

#### 1.4 SUMMARY OF REMEDIAL ACTIONS

The Site was remediated in accordance with the remedy selected by the NYSDEC in the RAWP dated December 2010 and RAWP amendment dated January 26, 2011.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

- 1. Excavation of the upper 15 to 20 ft of soil exceeding Restricted Residential SCOs in three identified CVOC hot-spot areas.
- 2. Additional horizontal excavation of the three identified CVOC hot-spot areas to remove all PVOC/CVOC impacted soil above Restricted Residential SCOs in the upper 15 ft of the soil column. Additional excavation of CVOC impacted soil below Restricted Residential SCOs to reduce CVOC's in soil gas. Segregation and classification for off-Site disposal of residual petroleum, PVOC or CVOC affected soil encountered during excavation of the basement areas.
- 3. Additional excavation if post-excavation soil sampling demonstrates that Restricted Residential SCOs have not been met.
- 4. Excavation and off-Site disposal of historic fill materials above Restricted Residential SCOs within the top 2 feet of soil, if removed during construction excavation/site grading or if present in planned landscaped/exposed soil areas.
- 5. Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during all intrusive Site work.
- 6. Site Monitoring of airborne VOCs and particulates in accordance with a NYSDEC and NYSDOH approved CAMP and HASP during all intrusive and soil handling activities.
- 7. Implementation of proper dust and odor suppression techniques during all intrusive and soil handling activities. Appropriate off-Site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal.

FAX

- 8. Import of materials to be used for backfill and cover in compliance with: (1) the Sub-part 375-6.7(d), (2) all Federal, State and local rules and regulations for handling and transport of material.
- 9. Collection and analysis of confirmation soil samples to evaluate the performance of the remedy with respect to attainment of Restricted Residential SCOs (**Table 1**).
- 10. Investigation and removal of drainage structures, surface drains and related piping and proper closure in accordance with the USEPA UIC regulations.
- 11. The injection of a chemical oxidant solution to remediate the contaminated groundwater beneath the Site. Chemical oxidants will be injected through pvc injection points installed into the water table. Oxidant injection wells to be registered with the USEPA.
- 12. The collection and analysis of additional information as needed to finalize the design of the chemical oxidant injection program.
- 13. Installation of a vapor barrier and SSDS beneath all basement areas which will not be required to have continuous mechanical ventilation.
- 14. Post-remediation groundwater monitoring for a minimum of two years.
- 15. Post-remediation evaluation of potential soil vapor intrusion concerns.
- 16. Recording of an Environmental Easement, including Institutional Controls, to prevent future exposure to any residual contamination remaining at the Site.
- 17. Publication of a Site Management Plan for long term management of residual contamination as required by the Environmental Easement, including plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting.
- 18. All responsibilities associated with the Remedial Action, including permitting requirements and pretreatment requirements, will be addressed in accordance with all applicable Federal, State and local rules and regulations.
- 19. Remedial activities will be performed at the Site in accordance with the NYSDEC-approved RAWP.

Remedial activities including the excavation and removal of drainage structures, underground storage tanks, hot-spot areas and historic fill were completed at the site in October 2011. Installation of the vapor barrier and venting system was completed in November 2012. Installation of the monitoring network and chemical oxidant injection points were completed in December 2012. Oxidant injections and groundwater monitoring are expected to continue for a two year period.

### **Leaching Pool Remediation and Removal**

EBC submitted a Class V Drywell Closure Plan to the USEPA Region 2 office for approval prior to commencement of leaching pool remediation and removal activities. The USEPA approved the work plan by letter dated February 23, 2011. Leaching pool remediation and removal was performed by American Environmental Assessment Corp., (a remediation contractor) in accordance with the USEPA approved Class V Drywell Closure Plan.

Work commenced by removing the pre-cast concrete slab covering each leaching pool. The storm water contained within each of the leaching pools was then removed with a vacuum tanker truck. The laboratory results of the liquid samples collected from the leaching pools as part of the Supplemental Investigation performed to prepare the Remedial Action Work Plan (EBC, December 2011) indicated the storm water was suitable for disposal at a municipal waste water treatment plant. A total of approximately 14,000 gallons of storm water was removed and transported to a wastewater treatment plant (WWTP) for proper disposal by A&L Cesspool Service.

Soil/sediment was then removed from the base of each of the leaching pools by American Environmental Assessment, Corp. utilizing both a Guzzler truck and backhoe. Soil/sediment was removed from the base of each of the leaching pools until visibly clean soil was encountered. A total of approximately 243.1 tons of sludge/sediment was removed from the base of the leaching pools and transported to the 110 Sand Company landfill located on Bethpage-Spagnoli Road in Melville, New York.

Each of the pre-cast concrete rings and any lids, footings or bases (if present) were removed from the ground and broken into pieces small enough to load into 10-wheel dump trucks. The concrete was later transported along with concrete and brick remnants of the former onsite buildings to to T.M. Maintenance, Inc. of 451 Spencer Street, Staten Island, NY. T.M. Maintenance, Inc. is a NYSDEC Registered Active Construction and Demolition Debris Processing Facility permitted to accept uncontaminated concrete, brick and soil.

A total of approximately 359 tons of virgin mined sand was imported to the site from 110 Sand Company to backfill the excavations left by removing the leaching pools on the east side of the site. The leaching pool excavations on the west side of the site were not backfilled because the area required

excavation for installation of the new building and would require re-excavation at a later date. Prior to import of the virgin mined sand to the site, a letter was obtained from 110 Sand Company that certified the material as a virgin material that at no time came in contact with other materials that may not meet the definition of virgin material.

#### 1.4.2 **Underground Storage Tank Removal**

On May 12, 2011, during site excavation for the installation of shoring along the southern property line, four 550-gallon underground storage tanks (USTs) were found in Grid Section G7. Each of the four 550-gallon USTs were found to contain only water, but a slight gasoline odor was observed. The four 550-gallon USTs are believed to be the same four gasoline tanks noted on the 1951 Sanborn map. One additional 275-gallon UST was found on May 13, 2011, in Grid Section D5 while excavating for the new building. The 275-gallon UST contained no liquid, but was partially filled with No. 2 fuel oil sludge.

On May 17, 2011, American Environmental Assessment Corp. was onsite to cut, clean and remove each of the USTs. American Environmental Assessment Corp. utilized a pump truck to remove the water from the four 550-gallon USTs. A total of 1,867 gallons of water was removed from the four 550-gallon USTs and transported to Clean Water of New York, of 3249 Richmond Terrace, Staten Island, NY, 10303, for proper offsite disposal. All 5 USTs were then removed from the ground, cut open, cleaned and loaded into a 10-wheel dump truck for disposal. One 55-gallon drum steel drum of tank sludge, speedy dry and oil absorbent pads was generated by cleaning the interior of the USTs. The 55-gallon drum was transported to Chemical Pollution Control of 120 South 4<sup>th</sup> Street, Bayshore, NY, 11706 for proper offsite disposal.

EBC field screened the soil beneath each of the four 550-gallon USTs for evidence of contamination. No soil staining, odor or PID values above background concentrations were observed. EBC collected one endpoint soil sample from immediately below each of the four 550-gallon USTs. In addition, EBC collected 6 soil samples from the sidewalls of the excavation. No VOCs or SVOCs were detected above unrestricted Soil Cleanup Objectives (SCOs) in any of the endpoint soil samples.

Evidence of petroleum contaminated soil was noted around the 275-gallon UST removed from Grid Section D5. The soil contamination appeared to be limited to approximately 4 or 5 feet below the

Site Management Plan

bottom of the tank and was excavated removed. EBC collected two endpoint soil samples following excavation of the area for the basement foundation walls. Since the area to the north, south and east were already excavated to 15 feet below grade, EBC collected one endpoint soil sample from the base of the excavation and one sidewall soil sample. No VOCs or SVOCs were detected above their corresponding unrestricted SCOs in any of the endpoint soil samples.

The five USTs removed by American Environmental Assessment Corp. were not registered for the Uniforms for Industry, Inc. site (NYSDEC PBS Number 2-248541). Therefore, all five USTs were registered and deregistered under the same PBS number, by filing a NYSDEC PBS Application and noting "Closed-Removed" for the tank status for each tank. In accordance with New York City regulations, American Environmental Assessment Corp. filed a tank removal affidavit with the New York City Fire Department (NYCFD).

### 1.4.3 Removal of Contaminated Materials from the Site

### Hot Spot PCE and Petroleum Contaminated Soil Excavation and Disposal

Three CVOC "Hot-Spot" areas were identified at the Site. The three areas included two adjacent areas along a subsurface drainage pipe located in the east parking area. The first "Hot-Spot" was identified below a repair in the subsurface drainage line which ran from a distribution box to leaching pool DW1. The second "Hot-Spot" was identified as the distribution box, which connected leaching pool DW1, roof drains from the rear of the building and the building converge. The third was located adjacent to the central tank area and extended under the former building.

During the course of excavation for the foundation of the new building, EBC identified a fourth and fifth "Hot-Spot". The fourth "Hot-Spot" was identified after removing stockpiled material along the east side of the property and the fifth hot spot area was identified while excavating for the east foundation footings.

The concentrations of tetrachloroethylene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene within the waste characterization soil samples collected from each of the hotspot locations were below the soil "contained in" action level and the Land Disposal Restriction concentration. The NYSDEC issued Contained-In Determination letters for this material stating that it did not have to be managed as

hazardous waste and could be transported off-site to the New Jersey Middlesex County Utilities Authority Subtitle "D" Landfill (MCUA Landfill) at 53 Edgeboro Road, East Brunswick, NJ 08816.

As previously noted, each of the four separate soil piles generated by excavating Hot-Spot 1, Hot-Spot 2, and Hot-Spot 3, as well as the soil piles generated by excavating Hot-Spots 4 and 5 were issued a "Contained-In" Determination by the NYSDEC, permitting transport of the soil to the MCUA Landfill. The laboratory results of each of the soil piles were forwarded to Soil Safe, Inc. to obtain soil disposal approval at the MCUA Landfill. The total quantity of soil transported to the MCUA Landfill from Hot-Spot 1, Hot-Spot 2, Hot-Spot 3 and Hot-Spot 4 was approximately 4,654.87 tons. Due to elevated levels of TPH DRO, the MCUA Landfill could not accept soil from Hot Spot 5 at the facility. Approximately 241.5 tons of non-hazardous soil from Hot-Spot 5 was therefore shipped to the Clean Earth of North Jersey facility in Kearny, NJ.

### Historic Fill Excavation and Disposal

Soil characterized by EBC personnel as Historic Fill during excavation of the site for construction of the new building was found throughout the site from varying depths, ranging from slightly below grade to fifteen feet below grade. EBC personnel characterized historic hill as soil that contained materials such as brick, concrete, glass or ceramics, cinder, etc. In addition, all soil that exhibited evidence of petroleum impact (staining, odor, elevated PID values), whether encountered within the historic fill layer or within the native soil layer, was characterized as historic fill. As soil was excavated, EBC assigned a classification to the soil (historic fill or clean native soil), and the excavation contractor (Maxx Construction), stockpiled the soil according to the classification in soil piles approximately 800 cubic yards. Each historic fill pile was stockpiled on poly sheeting to await waste characterization soil sampling and soil disposal approval.

Historic fill soil was characterized as non-hazardous and disposed of at the Clean Earth of Carteret facility in Carteret, NJ. A total of 13,808.72 tons of non-hazardous soil from the historic fill piles was transported to the Clean Earth of Carteret facility for proper offsite disposal.

Due to the presence of a slightly elevated PCE concentration (2,700 µg/kg) within one of the Stockpiles (No. 11), the soil was deemed unsuitable for soil recycling and transport to the Clean Earth of Carteret facility. The NYSDEC issued a "Contained-In" Determination for stockpile No. 11 this

Site Management Plan

material was transported to the MCUA Landfill located at 53 Edgeboro Road, East Brunswick, NJ 08816.

A list of the soil cleanup objectives (SCOs) for the primary contaminants of concern (COCs) and

applicable land use for this site is provided in **Table 1**. A figure showing areas where excavation was

performed is shown in **Figure 5**.

Clean Native Soil Removal

Clean native soil was evaluated by EBC personnel based upon field screening results, which included

visual and olfactory inspection, and the collection of multiple PID readings. Clean native soil was

encountered throughout the site beneath the layer of soil characterized as Historic Fill at depths as low

as 3 below grade, and extended to the final excavation depth required for each area. As soil was

excavated, EBC assigned a classification to the soil (historic fill or clean native soil), and the

excavation contractor (Maxx Construction), stockpiled the soil according to the classification in soil

piles approximately 800 cubic yards. Each Clean Native Soil Pile was stockpiled on poly sheeting to

await waste characterization soil sampling and soil disposal or onsite reuse approval.

A total of 359 loads of clean native soil and concrete were transported to T.M. Maintenance, Inc. and

All City Recycling.

1.4.4 Import of Backfill

Approximately 735 cubic yards of recycled concrete aggregate (RCA) was imported to the Site for

backfill and underlayment. This material was obtained from South Island Industries located on Rason

Road in Inwood, NY. South Island Industries is a C&D processing facility registered with the

NYSDEC.

In addition, approximately 950 cubic yards of virgin mined sand and 300 cy of certified clean topsoil

was imparted to the Site for green areas. The virgin mined sand was obtained from Roanoke industries

on Patchogue-Mid Island Road in Middle Island, NY. Top soil was obtained from Demo Busters

located on Mill Road in Yaphank, NY.

Environmental Business Consultants

14

#### 1.4.5 **Site-Related Treatment Systems**

### In-situ Chemical Oxidant Injection Program

The remedial plan for the Site includes the injection of a chemical oxidant solution to address affected groundwater and residual petroleum VOC contamination in soil at the water table. Chemical oxidant injection is intended to significantly reduce the CVOCs and PVOCs in the high concentration areas, and thereby accelerate improvements in groundwater quality. The area of injection is within, and upgradient of, the former central UST area which was the primary source of PVOC contamination at the Site. Injections at this location will deliver oxidant through residual soil contamination in this area, allowing it to flow southwest with groundwater treating both the CVOC and PVOC plume. A second injection area is located approximately 150 ft southwest of the central tank area and is designed to treat the downgradient portion of the plume. Both injection areas are located outside of the new buildings allowing injections to proceed during and after building construction as necessary.

Twenty-two injection points installed upgradient of the primary source areas and in the downgradient plume area as shown on **Figure 6** Injection points were constructed of 2 inch pvc with a 10 ft 0.050inch slot screened section installed 8 ft below the water table, and 2 ft above the water table. A No. 2 morie gravel back was placed around the screen to a depth of approximately 1 ft above the screen followed by a 1 ft hydrated bentonite pellet seal. The injection wells were then finished at grade with an 8-inch bolt down manhole to protect the wells. Injection wells were registered with the USEPA by filing form 7520-6 with the USEPA Region 2 office.

The oxidant selected for this project is high pH-activated sodium persulfate. Sodium persulfate is a robust oxidant which has a long residence time (anion lifetime) in the subsurface. Persulfate activation through high pH provides fast contaminant reaction kinetics capable of destroying a wide range of organics including the PVOCs and CVOCs present at the Site.

Sodium persulfate will be delivered to the site as a dry powder which will be mixed with water on-site to provide a 20% solution. Sodium hydroxide (NaOH) will be delivered to the site as a 25% solution and added to the persulfate solution at a rate of 0.4 gallons of 25% NaOH solution per gallon of 20% persulfate solution.

FAX

Site Management Plan

The initial injection consisted of approximately 100 gallons of activated persulfate solution per injection point. The need for subsequent injections and the number and location of injection points to be utilized for subsequent injections will be determined following the collection and analysis of performance monitoring samples.

Chemical oxidant treatment will continue as needed to achieve further significant reduction of VOCs in groundwater at the site. The decision to perform subsequent oxidant applications will be based on performance sampling results and will be made in concurrence with the NYSDEC project manager.

#### 1.4.6 **Remaining Contamination**

This Section describes remaining contamination at the Site beneath the impervious cover and/or the demarcation barrier in pervious areas, to serve as a guide to environmental conditions that may be encountered during potential future excavation activities at the Site.

The results of the RI and end point soil samples collected after the removal of hot-spot soils, confirms that that no contamination remains in soil beneath the property to a depth of 15 feet below the surface and that all soil above 15 meet meets restricted residential SCOs.

The remaining contamination at the Site above restricted residential SCOs consists of 1,2,4 and 1,3,5trimethylbenzene within the former central UST area and in the rear area of the property at depths of 35 to 52 feet below the surface. Additional petroleum VOCs were also reported in both areas above unrestricted criteria.

PCE above restricted residential SCOs also remains within hot spot 5 at a depth of 18 feet below the surface. Table 2 and Figure 7 summarizes RI and endpoint soil sample analytical results which represent remaining soil exceeding unrestricted and restricted residential SCOs following the excavation. All soil at the site which remains above unrestricted SCOs is either capped with the concrete building slab, concrete sidewalks, asphalt roadway / parking areas or two feet of certified clean fill / topsoil.

#### 2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

#### 2.1 INTRODUCTION

#### 2.1.1 General

Since remaining contaminated soil, groundwater and soil vapor exists beneath the site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. This Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

A summary of the remedial strategies and EC/ICs implemented at the Site are as follows:

- Excavation of soils exceeding Track 2 Restricted Residential SCOs within the top 15 feet of soil at the site;
- Installation of an engineered cap / cover system consisting of concrete building slabs and sidewalks, asphalt paving of roadways and parking areas and 24 inches of certified clean fill / topsoil with the exposed soil areas (landscaped areas, recreation areas) of the Site.
- Treatment of groundwater with chemical oxidant injections;
- Installation of a vapor barrier and operation of a sub-slab depressurization system beneath the Phase I building;
- Implementation of a Site Management Plan; and
- Registration of an Environmental Easement, including Institutional Controls, to prevent future exposure to any contamination remaining at the Site

### 2.1.2 Purpose

This plan provides:

- A description of all EC/ICs on the site;
- The basic implementation and intended role of each EC/IC;
- A description of the key components of the ICs set forth in the Environmental Easement;

- A description of the features to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of EC/ICs, such as the implementation of the Excavation Work Plan for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the site remedy, as determined by the NYSDEC.

#### 2.2 ENGINEERING CONTROLS

#### 2.2.1 **Engineering Control Systems**

### 2.2.1.1 Soil Cover / Cap

Exposure to remaining contamination in soil/fill at the site is prevented by a soil cover system placed over the site. This cover system is comprised of a minimum of 24 inches of clean soil and demarcation barrier within the exposed soil areas of the Site, asphalt pavement, concrete-covered sidewalks, and concrete building slabs (see Figure 8). The Excavation Work Plan that appears in Attachment B outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in Section 4 of this SMP.

### 2.2.1.2 Sub-slab Depressurization System

An SSDS and vapor barrier were designed and incorporated into the new building plans for the Phase I building. This building has full basement level which extends under the entire footprint of the building. The basement level houses the mechanical room, and tenant's storage rooms and will not be used for residential apartments.

Site Management Plan

An SSDS is not required beneath the Phase II building since the basement level of this building will be used as a parking garage which must be ventilated to remove vehicle fumes in accordance with the NYC Mechanical Code.

The SSDS beneath the Phase I basement level consists of three separate venting zones. Each zone provides coverage of between 3,600 to 4,000 sf of slab area. The horizontal vent line is constructed of a continuous loop of perforated 4-inch HDPE pipe. In each zone the horizontal pipe extends to an adjacent utility chase-way where it is piped individually to the roof via a 6-inch schedule 40 pvc line. Fill material around the horizontal vent piping is virgin-mined, ½ inch to ¾ inch gravel.

A high density polyethylene vapor barrier liner (HPDE) was installed beneath both buildings prior to pouring the concrete slab. The vapor barrier consists of a 20 mil HDPE geomembrane liner manufactured by GSE Lining Technologies of North America. The vapor barrier extends throughout the area occupied by the footprint of each of the new buildings. In addition, a minimum of 15 mil liquid membrane consisting of Procor 75 as supplied by Grace Waterproofing Products was installed on all vertical foundation walls with the exception of the foundation wall along Jamaica Avenue in which a 15 mil HDPE membrane was installed. All seams and perforations in the vapor barrier were sealed using tape as supplied by the manufacturer and a liquid membrane sealer.

Procedures for operating and maintaining the SSD system are documented in the Operation and Maintenance Plan (Section 4 of this SMP). Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of this SMP). The Monitoring Plan also addresses severe condition inspections in the event that a severe condition, which may affect controls at the site, occurs.

Detailed specifications of the SSD system are provided **Attachment C**.

### Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

FAX

### 2.2.2.1 Composite Cover System

The composite cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

### 2.2.2.2 Sub-slab Depressurization System (SSDS)]

The active SSD system will not be discontinued unless prior written approval is granted by the NYSDEC. In the event that monitoring data indicates that the SSD system is no longer required, a proposal to discontinue the SSD system will be submitted by the property owner to the NYSDEC and NYSDOH.

### 2.3 Institutional Controls

A series of Institutional Controls is required by the RAWP to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to restricted residential uses only. Adherence to these Institutional Controls on the site is required by the Environmental Easement and will be implemented under this Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement by the Grantor and the Grantor's successors and assigns with all elements of this SMP;
- All Engineering Controls must be operated and maintained as specified in this SMP;
- A composite cover system consisting of asphalt covered roads, concrete covered sidewalks, and concrete building slabs must be inspected, certified and maintained as required in this SMP;
- A soil vapor mitigation system consisting of a sub-slab depressurization system / vapor barrier under the occupied area of the building must be inspected, certified, operated and maintained as required in this SMP;
- All Engineering Controls on the Controlled Property must be inspected and certified at a frequency and in a manner defied in the SMP.
- Groundwater, soil vapor, and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to Site Management for the Controlled Property must be

reported at the frequency and in a manner defined in this SMP;

- On-Site environmental monitoring devices, including but not limited to, groundwater monitor wells and soil vapor probes, must be protected and replaced as necessary to ensure the devices function in the manner specified in this SMP.
- Engineering Controls may not be discontinued without an amendment or the extinguishment of this Environmental Easement.

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for restricted residential use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it suitable for intended use;
- Vegetable gardens and farming on the property are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This

certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

### 2.3.1 Excavation Work Plan

The site has been remediated for restricted residential use. Any future intrusive work that will penetrate the soil cover or cap, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system will be performed in compliance with the Excavation Work Plan (EWP) that is attached as **Attachment B** to this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the site. A sample HASP is attached as **Attachment D** to this SMP that is in current compliance with DER-10, and 29 CFR 1910, 29 CFR 1926, and all other applicable Federal, State and local regulations. Based on future changes to State and federal health and safety requirements, and specific methods employed by future contractors, the HASP and CAMP will be updated and re-submitted with the notification provided in Section A-1 of the EWP. Any intrusive construction work will be performed in compliance with the EWP, HASP and CAMP, and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (See Section 5).

The site owner and associated parties preparing the remedial documents submitted to the State, and parties performing this work, are completely responsible for the safe performance of all intrusive work, the structural integrity of excavations, proper disposal of excavation de-water, control of runoff from open excavations into remaining contamination, and for structures that may be affected by excavations (such as building foundations and bridge footings). The site owner will ensure that site development activities will not interfere with, or otherwise impair or compromise, the engineering controls described in this SMP.

#### 2.4 INSPECTIONS AND NOTIFICATIONS

#### 2.4.1 **Inspections**

Inspections of all remedial components installed at the site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive site-wide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether Engineering Controls continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria;
- Sampling and analysis of appropriate media during monitoring events;
- If site records are complete and up to date; and
- Changes, or needed changes, to the remedial or monitoring system;

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

### 2.4.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

- 60-day advance notice of any proposed changes in site use that are required under the terms of the Brownfield Cleanup Agreement (BCA),.
- 7-day advance notice of any proposed ground-intrusive activities pursuant to the Excavation Work Plan.
- Notice within 48-hours of any damage or defect to the foundations structures that reduces or
  has the potential to reduce the effectiveness of other Engineering Controls and likewise any
  action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of Engineering Controls

in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

Follow-up status reports on actions taken to respond to any emergency event requiring ongoing
responsive action shall be submitted to the NYSDEC within 45 days and shall describe and
document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of the Brownfield Cleanup Agreement (BCA), and all approved work plans and reports, including this SMP
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing.

### 2.5 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

### 2.5.1 Emergency Telephone Numbers

In the event of any environmentally related situation or unplanned occurrence requiring assistance the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to a qualified environmental professional. These emergency contact lists must be maintained in an easily accessible location at the site.

**Emergency Contact Numbers** 

| Medical, Fire, and Police:           | 911                                                           |  |
|--------------------------------------|---------------------------------------------------------------|--|
| One Call Center:                     | (800) 272-4480<br>(3 day notice required for utility markout) |  |
| Poison Control Center:               | (800) 222-1222                                                |  |
| Pollution Toxic Chemical Oil Spills: | (800) 424-8802                                                |  |
| NYSDEC Spills Hotline                | (800) 457-7362                                                |  |

### **Site Contact Numbers**

| Building Superintendant: To be Determined | (516) 313-8400 |  |
|-------------------------------------------|----------------|--|
| Owner Contact: Alex Arker                 | (516) 313-8400 |  |
| Environmental Consultant: EBC             | (631) 504-6000 |  |

<sup>\*</sup> Note: Contact numbers subject to change and should be updated as necessary

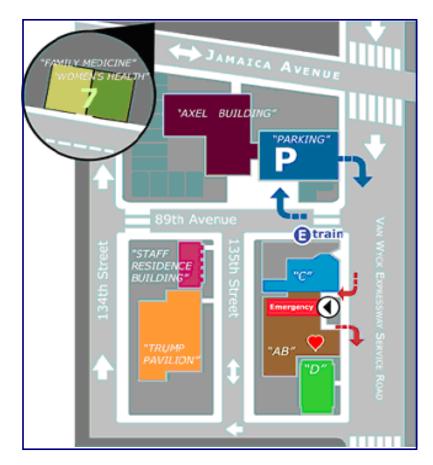
### **Map and Directions to Nearest Health Facility**

**Site Location:** 129-09 Jamaica Avenue, Richmond Hill, NY

**Nearest Hospital Name:** Jamaica Hospital Medical Center

**Hospital Location:** 8900 Van Wyck Expressway, Jamaica (Queens), New York 11418

**Hospital Telephone:** (718) 206-6000


### **Directions to the Hospital:**

- 1. Head east on Jamaica Avenue for approximately 0.3 miles
- **2.** Turn right heading south on the Van Wyck Expressway
- **3.** Continue on Van Wyck Expressway 0.1 miles, hospital is on the right.

### TOTAL DISTANCE: 0.4 MILES, ABOUT 5 MINUTES

### MAP SHOWING ROUTE FROM THE SITE TO THE HOSPITAL:





### 2.5.3 Response Procedures

As appropriate, the fire department and other emergency response group will be notified immediately by telephone of the emergency. The emergency telephone number list is found at the beginning of this Contingency Plan. The list will also posted prominently at the site and made readily available to all personnel at all times.

All environmental releases shall be contained as close to the source as possible. Whenever possible, the MSDS will be consulted to assist in determining the best means of containment and cleanup. For small spills, sorbent materials such as sand, sawdust or commercial sorbents should be placed directly on the substance to contain the spill and aid recovery. Any acid spills should be diluted or neutralized carefully prior to attempting recovery. Berms of earthen or sorbent materials can be used to contain the leading edge of the spills. Drains or drainage areas should be blocked. All spill containment materials will be properly disposed. An exclusion zone of 50 to 100 feet around the spill area should be established depending on the size of the spill. The following steps should be taken by the Emergency Coordinator:

- Determine the nature, identity and amounts of major spill components;
- If a flammable liquid, gas or vapor is involved, remove all ignition sources and use nonsparking and/or explosive proof equipment to contain or clean up the spill (diesel only vehicles, air operated pumps, etc.);
- Make sure all unnecessary persons are removed from the spill area;
- Take action to stop or minimize the spill; such as shutting down equipment,
- Notify appropriate response teams and authorities;
- Use proper PPE in handling of the spill;
- If possible, try to stop the leak with appropriate material; and,
- Remove all surrounding materials that can react or compound with the spill.
- Ensure spilled material, containment material and PPE are contained for proper disposal.

In order to mobilize the manpower resources and equipment necessary to cope with a fire or other emergency, a clear chain of authority should be established. The local fire department will take charge of all emergency response activities and dictate the procedures that will be followed for the duration of

the emergency. The fire department will report immediately to the scene of the emergency, assess the seriousness of the situation, and direct whatever efforts are necessary until the emergency response units arrive. All project personnel will be instructed on proper emergency response procedures and locations of emergency telephone numbers. If an emergency occurs, including but not limited to fire, explosion or significant release of fuel, all heavy equipment will be shut down and all personnel will evacuate the work areas and assemble at an evacuation meeting point.

The emergency responders will give directions for implementing whatever actions are necessary. If traffic control is necessary, as in the event of a fire or explosion, a project team member, who has been trained in these procedures and designated at the Site safety meeting, will take over these duties until local police and fire fighters arrive. Any future amendments to the Contingency Plan will be included in this section.

#### 3.0 MONITORING PLAN

#### 3.1 INTRODUCTION

#### 3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media identified below. Monitoring of other Engineering Controls is described in Chapter 4, Operation, Monitoring and Maintenance Plan. This Monitoring Plan may only be revised with the approval of NYSDEC.

#### 3.1.2 **Purpose and Schedule**

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards and Part 375 SCOs for soil;
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.



Quarterly monitoring of the performance of the chemical oxidant treatment program through groundwater sampling will be conducted while chemical oxidant treatment continues and for up to eight additional quarters after the treatment program has been completed. The frequency thereafter will be determined by NYSDEC. Trends in contaminant levels in air, soil, and/or groundwater in the affected areas, will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring programs are summarized in below and outlined in detail in Sections 3.2 and 3.3 below.

### Monitoring/Inspection Schedule

| Monitoring                               |                                        |             |                                                            |
|------------------------------------------|----------------------------------------|-------------|------------------------------------------------------------|
| Program                                  | Frequency*                             | Matrix      | Analysis                                                   |
| SSDS                                     | at system start-up and system re-start | air         | pressure/vacuum<br>readings                                |
| SSDS                                     | Annual                                 | air         | Inspection of system components and test alarm function    |
| Composite<br>Cover                       | Annual                                 | Soil        | Visual Inspection of concrete, asphalt caps and soil cover |
| Groundwater<br>Performance<br>Monitoring | Quarterly                              | Groundwater | VOCs (EPA Method 8260), persulfate & pH                    |
| Monitoring<br>Well<br>Condition          | Quarterly                              | Groundwater | Visual Inspection                                          |

<sup>\*</sup> The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

### 3.2 SOIL COVER SYSTEM MONITORING

The composite cover system, including the concrete building slab and sidewalks, asphalt roadway / parking area and certified clean soil cap in green areas will be monitored to document existing conditions and ensure that no penetrations or damage has occurred which will affect cap / cover system integrity. The cover system is in place to prevent human exposure to remaining soil/fill above unrestricted objectives at Site. The cover system consists of impervious surfaces such as the concrete building slab and walkways and asphalt paved roadway and parking area. It also includes a soil cap within the landscaped / green areas which consist of a demarcation layer (orange plastic construction fencing) below a minimum of two feet of certified clean soil /fill.

The cover system will be inspected at a minimum, once a year. The status, including the existing condition and evidence of breaching will be observed and recorded. The location of the various types of cover systems is illustrated in **Figure 8**.

#### 3.3 MEDIA MONITORING PROGRAM

### 3.3.1 Groundwater Monitoring

Groundwater monitoring will be performed on a periodic basis to assess the performance of the remedy. The network of monitoring wells has been installed to monitor both up-gradient and downgradient groundwater conditions at the site. The network of on-site wells has been designed based on the following criteria:

- The pattern of groundwater flow from the northeast area of the site to the southwest. (See Figure 4);
- Provide downgradient coverage of the chemical injection well network;
- Provide downgradient coverage of the former location of identified source areas (i.e. central USY and hotspot areas);
- The concentration distribution of VOCs in groundwater across the site (**Figure 9**); and
- To provide coverage of upgradient areas, downgradient areas and former source areas as previously defined.

The monitoring well network consists of nine wells including three upgradient wells located along the northeast property line, four interior area wells downgradient of the source area to monitor the performance of the chemical injections and two wells located at the downgradient property line along Jamaica avenue and 129<sup>th</sup> Street.

All monitoring wells were constructed of 2-inch pvc with a 15-foot 0.010 screened section set with approximately 5 feet above and 10 feet below the water table. A No. 00 morie gravel pack was placed around the screen to a depth of approximately 1 foot above the screen followed by a 1 foot hydrated bentonite pellet seal. The wells are completed at the surface with a locking compression-style cap and an 8-inch bolt down manhole cover.

The locations of the monitoring wells are shown in **Figure 10**. Well construction logs are included in Attachment E.

Groundwater samples will be collected from the nine monitoring wells on a quarterly basis. Changes in the sampling frequency or number and location of wells included in the program will not be made without written approval from NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC. Deliverables for the groundwater-monitoring program are specified in Section 3.6 below.

The sampling frequency may be modified with the approval NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC. Deliverables for the groundwater monitoring program are specified in Section 3.6 below.

## 3.3.1.1 Sampling Protocol

All well sampling activities will be recorded in a field book and a groundwater-sampling log presented in **Attachment F**. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network. This should include a description of:

- Well gauging;
- Well purging;
- Sampling methodology;
- Analytical methodology:
  - Lab certification;
  - Analytical methods;
  - Analytes.

Groundwater samples will be collected using a peristaltic pump or check valve and oscillation method and dedicated polyethylene tubing in accordance with the following:

• Record pump make & model on sampling form.

- Wear appropriate health and safety equipment as outlined in the Health and Safety Plan
- Inspect each well for any damage or evidence of tampering and note condition in field logbook.
- Remove the well cap.
- Lay out plastic sheeting and place the monitoring, purging and sampling equipment on the sheeting.
- To avoid cross-contamination, do not let any downhole equipment touch the ground.
- Measure well headspace with a PID or FID and record the reading in the field logbook.
- A synoptic water level measurement round should be performed (in the shortest possible time) before any purging and sampling activities begin. Measure and record the depth to water using a water level meter or interface probe to the nearest 0.01 ft. Record the measurement in the field logbook. Do not measure the depth to the bottom of the well at this time (to avoid disturbing any sediment that may have accumulated). Obtain depth to bottom information from installation information in the field logbook or soil boring logs.
- Collect samples in order from wells with lowest contaminant concentration to highest concentration.
- Fit the polyethylene tubing with a check valve, connect the tubing to the peristaltic pump and lower the tubing into the well to approximately the middle of the screen. Tubing should be a minimum of 2 feet above the bottom of the well as this may cause mobilization of any sediment present in the bottom of the well.
- Start the pump at its lowest speed setting and slowly increase the speed until discharge occurs. Check water level. Adjust pump speed until there is little or no water level drawdown (less than 0.3 feet). If the minimal drawdown that can be achieved exceeds 0.3 feet but remains stable, continue purging until indicator field parameters stabilize.
- There should be at least 1 foot of water over the end of the tubing so there is no risk of entrapment of air in the sample. Pumping rates should, if needed, and reduced to the minimum capabilities of the pump to avoid purging the well dry. However, if the recharge rate of the well is very low and the well is purged dry, then wait until the well has recharged to a sufficient level and collect the appropriate volume of sample. During well purging, monitor indicator field parameters (turbidity, temperature and pH) every three to five minutes until the parameters stabilize.
- VOC samples should be collected first and directly into pre-preserved sample containers. Fill all

sample containers by allowing the pump discharge to flow gently down the inside of the container with minimal turbulence.

- Use pre-preserved 40 ml glass vials and non-acidified 100 ml nalgene bottles as provided by the contract laboratory. Fill the VOA vials first, and then fill the remaining containers for persulfate and ferrous iron analysis. Fill each container with sample to just overflowing so that no air bubbles are entrapped inside. Fill all sample bottles by allowing the pump discharge to flow gently down the inside of the bottle with minimal turbulence. Cap each bottle as it is filled.
- Label the samples, and record them on the chain of custody form. Place immediately into a cooler for shipment and maintain at 4°C.
- Remove the tubing from the well. The polyethylene tubing must either be dedicated to each well or discarded. If dedicated the tubing should be placed in a large plastic garbage bag, sealed, and labeled with the appropriate well identification number.
- Close and lock the well.
- Decontaminate pump either by changing the surgical pump tubing between wells or as follows:
  - Flush the equipment/pump with potable water.
  - Flush with non-phosphate detergent solution. If the solution is recycled, the solution must be changed periodically.
  - Flush with potable or distilled/deionized water to remove all of the detergent solution. If the water is recycled, the water must be changed periodically.
  - Flush with isopropyl alcohol (pesticide grade). If equipment blank data from the previous sampling event show that the level of contaminants is insignificant, then this step may be skipped.
  - Flush with distilled/deionized water. The final water rinse must not be recycled.

Samples will be collected in pre-cleaned laboratory supplied glassware, stored in a cooler with ice and submitted to Phoenix Environmental Laboratories, Inc., a New York State ELAP certified environmental laboratory (NY Lab ID # 11.01). All purging and sampling data will be recorded on dedicated well sampling forms.

## 3.3.1.2 Monitoring Well Repairs, Replacement and Decommissioning

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

#### 3.4 SITE-WIDE INSPECTION

Site-wide inspections will be performed on a regular schedule at a minimum of once a year. Site-wide inspections will also be performed after all severe weather conditions that may affect Engineering Controls or monitoring devices. During these inspections, an inspection form will be completed (Attachment G). The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;
- Compliance with permits and schedules included in the Operation and Maintenance Plan; and
- Confirm that site records are up to date.



#### 3.5 Monitoring Quality Assurance/Quality Control

All sampling and analyses will be performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) prepared for the site (Attachment H). Main Components of the OAPP include:

- QA/QC Objectives for Data Measurement;
- Sampling Program:
  - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
  - Sample holding times will be in accordance with the NYSDEC ASP requirements.
  - Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected as necessary.
- Sample Tracking and Custody;
- Calibration Procedures:
  - All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.
  - The laboratory will follow all calibration procedures and schedules as specified in USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures;
- Preparation of a Data Usability Summary Report (DUSR), which will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.
- Internal QC and Checks;
- QA Performance and System Audits;
- Preventative Maintenance Procedures and Schedules:
- Corrective Action Measures.

Collected samples will be appropriately packaged, placed in coolers and shipped via overnight courier or delivered directly to the analytical laboratory by field personnel. Samples will be containerized in appropriate laboratory provided glassware and shipped in plastic coolers. Samples will be preserved through the use of ice or "cold-paks" to maintain a temperature of 4oC.

Dedicated disposable sampling materials will be used for both soil and groundwater samples, eliminating the need to prepare field equipment (rinsate) blanks. However, if non-disposable equipment is used, (stainless steel scoop, etc.) field rinsate blanks will be prepared at the rate of 1 for every eight samples collected.

Decontamination of non-dedicated sampling equipment will consist of the following:

- o Flush the equipment/pump with potable water.
- Flush with non-phosphate detergent solution. If the solution is recycled, the solution must be changed periodically.
- Flush with potable or distilled/deionized water to remove all of the detergent solution. If the water is recycled, the water must be changed periodically.
- o Flush with isopropyl alcohol (pesticide grade). If equipment blank data from the previous sampling event show that the level of contaminants is insignificant, then this step may be skipped.
- o Flush with distilled/deionized water. The final water rinse must not be recycled.

Field blanks, if used, will be prepared by poring distilled or deionized water over decontaminated equipment and collecting the water in laboratory provided containers. Trip blanks will accompany samples each time they are transported to the laboratory. Matrix spike and matrix spike duplicates (MS/MSD) will be collected at the rate of one per 20 samples submitted to the laboratory. Laboratory reports will be upgradeable to ASP category B deliverables for use in the preparation of a data usability report (DUSR). In accordance with DER-10, the final round of confirmatory (post remediation) samples will include Category B laboratory data deliverables and a Data Usability Summary Report will be prepared by a party independent from the laboratory performing the analysis.

## **3.6** Monitoring Reporting Requirements

Forms and any other information generated during regular monitoring events and inspections will be kept on file on-site. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

All monitoring results will be reported to NYSDEC on a periodic basis in the Periodic Review Report. A letter report will also be prepared subsequent to each quarterly groundwater sampling sampling event.

The report (or letter) will include, at a minimum:

- Date of event:
- Personnel conducting sampling;
- Description of the activities performed;
- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air, etc);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (o be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether groundwater conditions have changed since the last reporting event.

Data will be reported in hard copy or digital format as determined by NYSDEC. A summary of the monitoring program deliverables are summarized below.

## **Schedule of Monitoring/Inspection Reports**

| Task                    | Reporting Frequency* |
|-------------------------|----------------------|
| SSDS Inspection         | Annual               |
| Cover System Inspection | Annual               |
| Groundwater Sampling    | Quarterly            |

<sup>\*</sup> The frequency of events will be conducted as specified until otherwise approved by NYSDEC

#### 4.0 OPERATION AND MAINTENANCE PLAN

#### 4.1 INTRODUCTION

This Operation and Maintenance Plan describes the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the site. This Operation and Maintenance Plan:

- Includes the steps necessary to allow individuals unfamiliar with the site to operate and maintain the SSD system;
- Includes an operation and maintenance contingency plan; and,
- Will be updated periodically to reflect changes in site conditions or the manner in which the SSD systems are operated and maintained.

Information on non-mechanical Engineering Controls (i.e. soil cover system) is provided in Section 3 -Engineering and Institutional Control Plan. A copy of this Operation and Maintenance Plan, along with the complete SMP, will be kept at the site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of the SMP.

#### 4.2 ENGINEERING CONTROL SYSTEM OPERATION AND MAINTENANCE

## 4.2.1 SSD System Scope

The SSD systems at the site will operate 24/7 with no maintenance requirements. Periodic annual inspections will be performed to assure that the system is continuing to operate properly. Each fan will be fitted with a pressure switch which will activate a visual and audible alarm if the fan stops operating.

#### 4.2.2 **SSD System Start-Up and Testing**

The start-up test procedure will first consist of a visual inspection to make sure all of the system components are installed properly. Following this, each system will be started individually and checked for leaks and adequate pressure at the discharge stack. Power to each blower will then be cut in sequence to verify that each warning alarm is functioning properly. Negative pressure readings will be taken at several locations within the center of the slab with a digital manometer. The system testing

631.924.2870

described above will be conducted if, in the course of the SSD system lifetime, significant changes are made to the system, and the system restarted. The results of the start-up testing will be submitted to the NYDEC and documented in the Periodic Review Report.

## 4.2.3 SSD System Operation: Non-Routine Equipment Maintenance

The SSD systems are maintenance free. The fans should only stop operating in the event of a power outage or a severe blockage. The visual / audible alarm is triggered when negative pressure is not maintained in the vertical vent system piping. In the event that one of the system alarms trips, the owner, owner's representative or Environmental Business Consultants should be contacted for repairs. If the system cannot be returned to immediate operation or if the system has or will remain off for more than 48 hours, the DEC project manager will be notified to determine if further actions are necessary to evaluate impacts to indoor air. Details regarding the extent of repairs, system downtime and subsequent testing will be submitted to the NYDEC and documented in the Periodic Review Report.

#### 4.3 ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING

An SSD system has been installed to mitigate possible soil vapor intrusion into occupied areas of the new building. System designs are described in the Engineering and Institutional Control Plan, and asbuilt drawings are located in **Attachment C** 

## **SSDS Monitoring Schedule**

The components of the SSDS system will be inspected by a qualified environmental professional on a annual basis to assure that the system is functioning properly.

Inspection frequency is subject to change by NYSDEC and NYSDOH. Unscheduled inspections and/or sampling may take place when a suspected failure of the SSD system has been reported or an emergency occurs that is deemed likely to affect the operation of the system. Monitoring deliverables for the SSD system are specified later in this Plan.

631.924.2870

FAX

## 4.3.2 SSDS General Equipment Monitoring

A visual inspection of the complete system will be conducted during the monitoring event. SSD system components to be monitored include, but are not limited to, the following:

- o Vacuum blower; and,
- o General system piping.
- o Vacuum gauges.
- o Control switches and system alarms.

A complete list of components to be checked is provided in the Inspection Checklist, presented in **Attachment G**. If any equipment readings are not within their typical range, any equipment is observed to be malfunctioning, or the system is not performing within specifications, maintenance and repair as per the Operation and Maintenance Plan are required immediately, and the SSD system restarted.

## **4.3.3** SSDS System Monitoring Devices and Alarms

The SSD system has a warning device to indicate that the system is not operating properly. This device will be located in the electric panel control room within the retail area of the building or other utility room frequented by the building superintendent. In the event that the warning device is activated, applicable maintenance and repairs will be conducted, as specified in the Operation and Maintenance Plan, and the SSD system restarted. Operational problems will be noted in the quarterly monitoring report and in the annual Site Management Report.

## 4.3.4 SSDS Sampling Event Protocol

Sub-slab vacuum readings will be collected from at least 3 locations (SS1-SS3 shown on **Figure 11**) upon system start up (or re-start) in accordance with USEPA and NYSDOH guidance.

Vacuum sampling locations can be as simple as a hole drilled through the slab to allow access to a 1/4 to 3/8 inch sampling tube which is sealed to the slab. The tube is then connected to a digital manometer to demonstrate negative pressure. Once the reading is taken, sampling ports should be permanently sealed to prevent preferential pathway for vapor intrusion. If the system defaults and is required to be re-started, the sampling ports will be re-installed, sampled and sealed in the same manner.

## 4.4 MAINTENANCE AND PERFORMANCE MONITORING REPORTING REQUIREMENTS

Maintenance reports and any other information generated during regular operations at the site will be kept on-file on-site. All reports, forms, and other relevant information generated will be available upon request to the NYSDEC and submitted as part of the Periodic Review Report, as specified in the Section 5 of this SMP.

#### 4.4.1 **Routine Maintenance Reports**

Checklists or forms (see Attachment G) will be completed during each routine maintenance event. Checklists/forms will include, but not be limited to the following information:

- Date;
- Name, company, and position of person(s) conducting maintenance activities;
- Maintenance activities conducted;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and,
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

#### 4.4.2 **Non-Routine Maintenance Reports**

During each non-routine maintenance event, a form will be completed which will include, but not be limited to, the following information:

- Date;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Presence of leaks;
- Date of leak repair;
- Other repairs or adjustments made to the system;



- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and,
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

#### INSPECTIONS, REPORTING AND CERTIFICATIONS 5.0

#### 5.1 SITE INSPECTIONS

#### 5.1.1 **Inspection Frequency**

All inspections will be conducted at the frequency specified in the schedules provided in Section 3 Monitoring Plan and Section 4 Operation and Maintenance Plan of this SMP. At a minimum, a sitewide inspection will be conducted annually. Inspections of remedial components will also be conducted when a breakdown of any treatment system component has occurred or whenever a severe condition has taken place, such as an erosion or flooding event that may affect the ECs.

## **Inspection Forms, Sampling Data, and Maintenance Reports**

All inspections and monitoring events will be recorded on the appropriate forms which are contained in **Attachment G**. Additionally, a general site-wide inspection form will be completed during the sitewide inspection (see **Attachment G**). These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

## 5.1.3 Evaluation of Records and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented;
- Operation and maintenance activities are being conducted properly; and, based on the above items,
- The site remedy continues to be protective of public health and the environment and is performing as designed in the RAWP and FER.

631.924.2870

#### 5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

After the last inspection of the reporting period, a qualified environmental professional or Professional Engineer licensed to practice in New York State (depending on the need to evaluate engineering systems) will prepare the following certification:

- For each institutional or engineering control identified for the site, I certify that all of the following statements are true:
- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program; and The information presented in this report is accurate and complete.
- I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative] (and if the site consists of multiple properties): [I have been authorized and designated by all site owners to sign this certification] for the site. The signed certification will be included in the Periodic Review Report described below.

For each institutional identified for the site, I certify that all of the following statements are true:

- The institutional control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement.
- The information presented in this report is accurate and complete.
- I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative] (and if the site consists of multiple properties): [and I have been authorized and designated by all site owners to sign this certification] for the site.
- No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and

Every five years the following certification will be added:

• The assumptions made in the qualitative exposure assessment remain valid.

The signed certification will be included in the Periodic Review Report described below.

#### 5.3 PERIODIC REVIEW REPORT

A Periodic Review Report will be submitted to the Department every year, beginning eighteen months after the Certificate of Completion is issued. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Attachment I (Metes and Bounds). The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. Media sampling results will also incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the site; Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the site during the reporting period in electronic format;
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends;
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A site evaluation, which includes the following:
  - The compliance of the remedy with the requirements of the site-specific RAWP, ROD or Decision Document:
  - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;

631.924.2870

- o Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
- Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
- The overall performance and effectiveness of the remedy.
- A performance summary for oxidant injections performed at the site during the calendar year, including information such as:
  - The dates and amounts of oxidant added
  - Comments, conclusions, and recommendations based on data evaluation.

The Periodic Review Report will be submitted, in hard-copy format, to the NYSDEC Central Office and Regional Office in which the site is located, and in electronic format to NYSDEC Central Office, Regional Office and the NYSDOH Bureau of Environmental Exposure Investigation.

#### 5.4 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

631.924.2870

# **TABLES**

TABLE 1 Soil Cleanup Objectives

|                           |                   |                 | Protection of    | <b>Public Health</b> |                 | Protection of     | Protection        |
|---------------------------|-------------------|-----------------|------------------|----------------------|-----------------|-------------------|-------------------|
|                           |                   |                 | Restricted-      |                      |                 | Ecological        | of Ground-        |
| Contaminant               | <b>CAS Number</b> | Residential     | Residential      | Commercial           | Industrial      | Resources         | water             |
|                           |                   |                 | METAL            | S                    |                 |                   |                   |
| Arsenic                   | 7440-38 -2        | 16 <sub>f</sub> | 16 <sub>f</sub>  | 16 <sub>f</sub>      | 16 <sub>f</sub> | 13 <sub>f</sub>   | 16 <sub>f</sub>   |
| Barium                    | 7440-39 -3        | 350f            | 400              | 400                  | 10,000 d        | 433               | 820               |
| Beryllium                 | 7440-41 -7        | 14              | 72               | 590                  | 2,700           | 10                | 47                |
| Cadmium                   | 7440-43 -9        | 2.5f            | 4.3              | 9.3                  | 60              | 4                 | 7.5               |
| Chromium, hexavalent h    | 18540-29-9        | 22              | 110              | 400                  | 800             | 1e                | 19                |
| Chromium, trivalenth      | 16065-83-1        | 36              | 180              | 1,500                | 6,800           | 41                | NS                |
| Copper                    | 7440-50 -8        | 270             | 270              | 270                  | 10,000 d        | 50                | 1,720             |
| Total Cyanide h           |                   | 27              | 27               | 27                   | 10,000 d        | NS                | 40                |
| Lead                      | 7439-92 -1        | 400             | 400              | 1,000                | 3,900           | 63 <sub>f</sub>   | 450               |
| Manganese                 | 7439-96 -5        | 2,000f          | 2,000f           | 10,000 d             | 10,000 d        | 1600f             | 2,000f            |
| Total Mercury             |                   | 0.81j           | 0.81j            | 2.8 <sub>j</sub>     | 5.7j            | 0.18 <sub>f</sub> | 0.73              |
| Nickel                    | 7440-02 -0        | 140             | 310              | 310                  | 10,000 d        | 30                | 130               |
| Selenium                  | 7782-49 -2        | 36              | 180              | 1,500                | 6,800           | 3.9f              | 4f                |
| Silver                    | 7440-22 -4        | 36              | 180              | 1,500                | 6,800           | 2                 | 8.3               |
| Zinc                      | 7440-66 -6        | 2200            | 10,000 d         | 10,000 d             | 10,000 d        | 109 <sub>f</sub>  | 2,480             |
|                           |                   | 1               | PESTICIDES       |                      | 1               |                   |                   |
| 2,4,5-TP Acid (Silvex)    | 93-72-1           | 58              | 100a             | 500ь                 | 1,000c          | NS                | 3.8               |
| 4,4'-DDE                  | 72-55-9           | 1.8             | 8.9              | 62                   | 120             | 0.0033 e          | 17                |
| 4,4'-DDT                  | 50-29-3           | 1.7             | 7.9              | 47                   | 94              | 0.0033 e          | 136               |
| 4,4'-DDD                  | 72-54-8           | 2.6             | 13               | 92                   | 180             | 0.0033 е          | 14                |
| Aldrin                    | 309-00-2          | 0.019           | 0.097            | 0.68                 | 1.4             | 0.14              | 0.19              |
| alpha-BHC                 | 319-84-6          | 0.097           | 0.48             | 3.4                  | 6.8             | 0.04g             | 0.02              |
| beta-BHC                  | 319-85-7          | 0.072           | 0.36             | 3                    | 14              | 0.6               | 0.09              |
| Chlordane (alpha)         | 5103-71 -9        | 0.91            | 4.2              | 24                   | 47              | 1.3               | 2.9               |
| delta-BHC                 | 319-86-8          | 100a            | 100a             | 500ь                 | 1,000c          | 0.04g             | 0.25              |
| Dibenzofuran              | 132-64-9          | 14              | 59               | 350                  | 1,000c          | NS                | 210               |
| Dieldrin                  | 60-57-1           | 0.039           | 0.2              | 1.4                  | 2.8             | 0.006             | 0.1               |
| Endosulfan I              | 959-98-8          | 4.8i            | 24i              | 200i                 | 920i            | NS                | 102               |
| Endosulfan II             | 33213-65-9        | 4.8i            | 24i              | 200i                 | 920i            | NS                | 102               |
| Endosulfan sulfate        | 1031-07 -8        | 4.8i            | 24i              | 200i                 | 920i            | NS                | 1,000c            |
| Endrin                    | 72-20-8           | 2.2             | 11               | 89                   | 410             | 0.014             | 0.06              |
| Heptachlor                | 76-44-8           | 0.42            | 2.1              | 15                   | 29              | 0.14              | 0.38              |
| Lindane                   | 58-89-9           | 0.28            | 1.3              | 9.2                  | 23              | 6                 | 0.1               |
| Polychlorinated biphenyls | 1336-36 -3        | 1               | 1                | 1                    | 25              | 1                 | 3.2               |
|                           | -                 | -               | SEMI-VOLA        | TILES                |                 |                   |                   |
| Acenaphthene              | 83-32-9           | 100a            | 100a             | 500ь                 | 1,000∊          | 20                | 98                |
| Acenapthylene             | 208-96-8          | 100a            | 100a             | 500ь                 | 1,000∊          | NS                | 107               |
| Anthracene                | 120-12-7          | 100a            | 100a             | 500ь                 | 1,000c          | NS                | 1,000c            |
| Benz(a)anthracene         | 56-55-3           | 1 <sub>f</sub>  | 1 <sub>f</sub>   | 5.6                  | 11              | NS                | 1f                |
| Benzo(a)pyrene            | 50-32-8           | 1 <sub>f</sub>  | 1 <sub>f</sub>   | 1 <sub>f</sub>       | 1.1             | 2.6               | 22                |
| Benzo(b) fluoranthene     | 205-99-2          | 1 <sub>f</sub>  | 1 <sub>f</sub>   | 5.6                  | 11              | NS                | 1.7               |
| Benzo(g,h,i) perylene     | 191-24-2          | 100a            | 100a             | 500ь                 | 1,000c          | NS                | 1,000c            |
| Benzo(k) fluoranthene     | 207-08-9          | 1               | 3.9              | 56                   | 110             | NS                | 1.7               |
| Chrysene                  | 218-01-9          | 1 <sub>f</sub>  | 3.9              | 56                   | 110             | NS                | 1f                |
| Dibenz(a,h) anthracene    | 53-70-3           | 0.33e           | 0.33e            | 0.56                 | 1.1             | NS                | 1,000c            |
| Fluoranthene              | 206-44-0          | 100a            | 100a             | 500ь                 | 1,000c          | NS                | 1,000c            |
| Fluorene                  | 86-73-7           | 100a            | 100a             | 500ь                 | 1,000c          | 30                | 386               |
| Indeno(1,2,3-cd) pyrene   | 193-39-5          | 0.5f            | 0.5 <sub>f</sub> | 5.6                  | 11              | NS                | 8.2               |
| m-Cresol                  | 108-39-4          | 100a            | 100a             | 500ь                 | 1,000c          | NS                | 0.33e             |
| Naphthalene               | 91-20-3           | 100a            | 100a             | 500ь                 | 1,000c          | NS                | 12                |
| o-Cresol                  | 95-48-7           | 100a            | 100a             | 500ь                 | 1,000c          | NS                | 0.33 <sub>e</sub> |
| p-Cresol                  | 106-44-5          | 34              | 100a             | 500ь                 | 1,000c          | NS                | 0.33 <sub>e</sub> |
| Pentachlorophenol         | 87-86-5           | 2.4             | 6.7              | 6.7                  | 55              | 0.8e              | 0.8 <sub>e</sub>  |
| Phenanthrene              | 85-01-8           | 100a            | 100a             | 500ь                 | 1,000c          | NS                | 1,000c            |
| Phenol                    | 108-95-2          | 100a            | 100a             | 500ь                 | 1,000€          | 30                | 0.33e             |
| Pyrene                    | 129-00-0          | 100a            | 100a             | 500b                 | 1,000∊          | NS                | 1,000c            |

## TABLE 1 Soil Cleanup Objectives

|                          |                   |             | Protection of | Protection |            |                  |            |  |  |  |  |
|--------------------------|-------------------|-------------|---------------|------------|------------|------------------|------------|--|--|--|--|
|                          |                   |             | Restricted-   |            |            | Ecological       | of Ground- |  |  |  |  |
| Contaminant              | <b>CAS Number</b> | Residential | Residential   | Commercial | Industrial | Resources        | water      |  |  |  |  |
|                          | VOLATILES         |             |               |            |            |                  |            |  |  |  |  |
| 1,1,1-Trichloroethane    | 71-55-6           | 100a        | 100a          | 500ь       | 1,000c     | NS               | 0.68       |  |  |  |  |
| 1,1-Dichloroethane       | 75-34-3           | 19          | 26            | 240        | 480        | NS               | 0.27       |  |  |  |  |
| 1,1-Dichloroethene       | 75-35-4           | 100a        | 100a          | 500ь       | 1,000c     | NS               | 0.33       |  |  |  |  |
| 1,2-Dichlorobenzene      | 95-50-1           | 100a        | 100a          | 500ь       | 1,000c     | NS               | 1.1        |  |  |  |  |
| 1,2-Dichloroethane       | 107-06-2          | 2.3         | 3.1           | 30         | 60         | 10               | 0.02f      |  |  |  |  |
| cis-1,2-Dichloroethene   | 156-59-2          | 59          | 100a          | 500ь       | 1,000c     | NS               | 0.25       |  |  |  |  |
| trans-1,2-Dichloroethene | 156-60-5          | 100a        | 100a          | 500ь       | 1,000c     | NS               | 0.19       |  |  |  |  |
| 1,3-Dichlorobenzene      | 541-73-1          | 17          | 49            | 280        | 560        | NS               | 2.4        |  |  |  |  |
| 1,4-Dichlorobenzene      | 106-46-7          | 9.8         | 13            | 130        | 250        | 20               | 1.8        |  |  |  |  |
| 1,4-Dioxane              | 123-91-1          | 9.8         | 13            | 130        | 250        | 0.1 <sub>e</sub> | 0.1e       |  |  |  |  |
| Acetone                  | 67-64-1           | 100a        | 100ь          | 500ь       | 1,000c     | 2.2              | 0.05       |  |  |  |  |
| Benzene                  | 71-43-2           | 2.9         | 4.8           | 44         | 89         | 70               | 0.06       |  |  |  |  |
| Butylbenzene             | 104-51-8          | 100a        | 100a          | 500ь       | 1,000c     | NS               | 12         |  |  |  |  |
| Carbon tetrachloride     | 56-23-5           | 1.4         | 2.4           | 22         | 44         | NS               | 0.76       |  |  |  |  |
| Chlorobenzene            | 108-90-7          | 100a        | 100a          | 500b       | 1,000c     | 40               | 1.1        |  |  |  |  |
| Chloroform               | 67-66-3           | 10          | 49            | 350        | 700        | 12               | 0.37       |  |  |  |  |
| Ethylbenzene             | 100-41-4          | 30          | 41            | 390        | 780        | NS               | 1          |  |  |  |  |
| Hexachlorobenzene        | 118-74-1          | 0.33e       | 1.2           | 6          | 12         | NS               | 3.2        |  |  |  |  |
| Methyl ethyl ketone      | 78-93-3           | 100a        | 100a          | 500ь       | 1,000c     | 100a             | 0.12       |  |  |  |  |
| Methyl tert-butyl ether  | 1634-04 -4        | 62          | 100a          | 500b       | 1,000c     | NS               | 0.93       |  |  |  |  |
| Methylene chloride       | 75-09-2           | 51          | 100a          | 500ь       | 1,000c     | 12               | 0.05       |  |  |  |  |
| n-Propylbenzene          | 103-65-1          | 100a        | 100a          | 500b       | 1,000c     | NS               | 3.9        |  |  |  |  |
| sec-Butylbenzene         | 135-98-8          | 100a        | 100a          | 500ь       | 1,000c     | NS               | 11         |  |  |  |  |
| tert-Butylbenzene        | 98-06-6           | 100a        | 100a          | 500ь       | 1,000c     | NS               | 5.9        |  |  |  |  |
| Tetrachloroethene        | 127-18-4          | 5.5         | 19            | 150        | 300        | 2                | 1.3        |  |  |  |  |
| Toluene                  | 108-88-3          | 100a        | 100a          | 500ь       | 1,000c     | 36               | 0.7        |  |  |  |  |
| Trichloroethene          | 79-01-6           | 10          | 21            | 200        | 400        | 2                | 0.47       |  |  |  |  |
| 1,2,4-Trimethylbenzene   | 95-63-6           | 47          | 52            | 190        | 380        | NS               | 3.6        |  |  |  |  |
| 1,3,5-Trimethylbenzene   | 108-67-8          | 47          | 52            | 190        | 380        | NS               | 8.4        |  |  |  |  |
| Vinyl chloride           | 75-01-4           | 0.21        | 0.9           | 13         | 27         | NS               | 0.02       |  |  |  |  |
| Xylene (mixed)           | 1330-20 -7        | 100a        | 100a          | 500ь       | 1,000c     | 0.26             | 1.6        |  |  |  |  |

All soil cleanup objectives (SCOs) are in parts per million (ppm). NS=Not specified. See Technical Support Document (TSD). Footnotes

- a The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3.
- b The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.
- c The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3.
- d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.
- e For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.

### TABLE 2

## Former Uniforms For Industry Site

### 129-09 Jamaica Avenue, Richmond Hill, NY

### Contamination Remaining in Soil Above Unrestricted / Restricted Residential Soil Cleanup Objectives

Vertex and GCE Samples

| COMPOUND                  | Track 1<br>Unrestricted<br>Cleanup<br>Objectives | Restricted<br>Residential<br>Cleanup<br>Objectives | Mop Oil Room<br>(30-32FT) | Filter Room<br>(32-34FT) | MW1<br>(30-31.5FT) | MW1<br>(45FT) | B1 (30<br>32FT) | B2 (35<br>37FT) |
|---------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------|--------------------------|--------------------|---------------|-----------------|-----------------|
| Sample Results in μg/kg   | ug/kg                                            | ug/kg                                              | ug/kg                     | ug/kg                    | ug/kg              | ug/kg         | ug/kg           | ug/kg           |
| 1,2,4-trimethylbenzene    | 3,600                                            | 52,000                                             | ND                        | ND                       | 10,000             | 2,600         | 4,800           | 83,000          |
| 1,3,5-trimethylbenzene    | 8,400                                            | 52,000                                             | ND                        | ND                       | ND                 | ND            | ND              | 21,000          |
| Acetone                   | 50                                               | 100,000                                            | ND                        | ND                       | 460                | 470           | 290             | 7,600           |
| Cis-DCE                   | 250                                              | 59,000                                             | ND                        | ND                       | ND                 | ND            | ND              | ND              |
| Ethylbenzene              | 1,000                                            | 41,000                                             | 1,460                     | 1,560                    | ND                 | ND            | ND              | 3,600           |
| m/p-Xylenes               | 260                                              | 100,000                                            | 2,750                     | 9,190                    | ND                 | ND            | 470             | 11,000          |
| Napthalene                | 12,000                                           | NS                                                 | ND                        | ND                       | ND                 | ND            | ND              | ND              |
| n-butylbenzene            | 3,900                                            | 100,000                                            | ND                        | 8,010                    | ND                 | ND            | ND              | 14,000          |
| n-propylbenzene           | 12,000                                           | 100,000                                            | ND                        | ND                       | ND                 | ND            | ND              | ND              |
| o-Xylene                  | 260                                              | 100,000                                            | 2,270                     | ND                       | ND                 | ND            | 310             | 8,300           |
| sec-butylbenzene          | 11,000                                           | 100,000                                            | ND                        | ND                       | ND                 | ND            | ND              | ND              |
| Tetrachloroethylene (PCE) | 1,300                                            | 19,000                                             | ND                        | ND                       | ND                 | ND            | ND              | ND              |
| Toluene                   | 700                                              | 100,000                                            | ND                        | ND                       | ND                 | ND            | ND              | ND              |
| 4,4-DDD                   | 3.3                                              | 13,000.0                                           | ND                        | ND                       | ND                 | ND            | ND              | ND              |

BOLD

Exceedence of Track 1 Unrestricted Residential Cleanup Objective Exceedence of Restricted Residential Cleanup Objective

ELM Samples

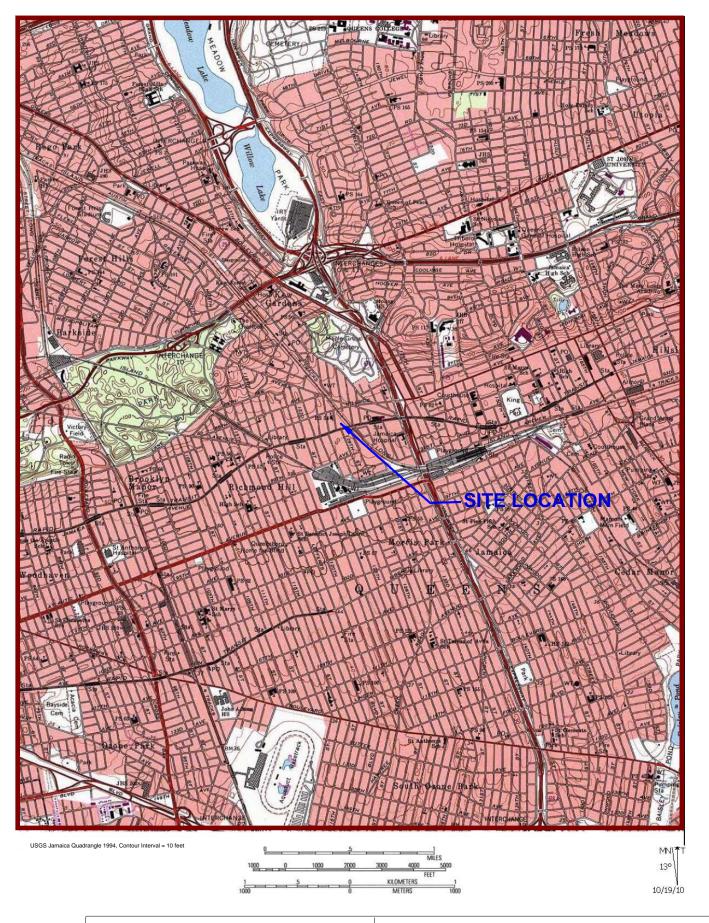
| ELM Samples               |                                                  |                                                    |                |                |                |                |                  |                  |                  |                |                  |                |
|---------------------------|--------------------------------------------------|----------------------------------------------------|----------------|----------------|----------------|----------------|------------------|------------------|------------------|----------------|------------------|----------------|
| COMPOUND                  | Track 1<br>Unrestricted<br>Cleanup<br>Objectives | Restricted<br>Residential<br>Cleanup<br>Objectives | B13<br>(18 ft) | B13<br>(42 ft) | B13<br>(63 ft) | B15<br>(38 ft) | B15<br>(52.5 ft) | B15<br>(67.5 ft) | B16<br>(52.5 ft) | B19<br>(44 ft) | B19<br>(64.5 ft) | B19<br>(74 ft) |
| Sample Results in µg/kg   | ug/kg                                            | ug/kg                                              | ug/kg          | ug/kg          | ug/kg          | ug/kg          | ug/kg            | ug/kg            | ug/kg            | ug/kg          | ug/kg            | ug/kg          |
| 1,2,4-trimethylbenzene    | 3,600                                            | 52,000                                             | 4,600          | 140,000        | 52,000         | 8,900          | 140,000          | 26,000           | 170,000          | 110,000        | 7,500            | ND             |
| 1,3,5-trimethylbenzene    | 8,400                                            | 52,000                                             | ND             | 53,000         | ND             | ND             | 46,000           | ND               | 56,000           | 34,000         | ND               | ND             |
| Acetone                   | 50                                               | 100,000                                            | ND             | ND             | ND             | ND             | ND               | ND               | ND               | ND             | ND               | ND             |
| Cis-DCE                   | 250                                              | 59,000                                             | ND             | ND             | ND             | ND             | ND               | ND               | ND               | ND             | ND               | ND             |
| Ethylbenzene              | 1,000                                            | 41,000                                             | ND             | ND             | ND             | ND             | ND               | ND               | ND               | 13,000         | 6,700            | 2,000          |
| m/p-Xylenes               | 260                                              | 100,000                                            | ND             | 13,000         | 1,200          | ND             | 2,100            | ND               | ND               | 20,000         | ND               | ND             |
| Napthalene                | 12,000                                           | NS                                                 | ND             | 17,000         |                | ND             | 1,300            | ND               | ND               | 48,000         | 19,000           | 19,000         |
| n-butylbenzene            | 3,900                                            | 100,000                                            | ND             | 28,000         | 22,000         | ND             | 41,000           | 11,000           | 54,000           | 27,000         | 11,000           | 5,600          |
| n-propylbenzene           | 12,000                                           | 100,000                                            | ND             | 17,000         | ND             | ND             | 19,000           | ND               | 25,000           | ND             | ND               | ND             |
| o-Xylene                  | 260                                              | 100,000                                            | ND             | ND             | ND             | ND             | ND               | ND               | ND               | 8,700          | ND               | ND             |
| sec-butylbenzene          | 11,000                                           | 100,000                                            | ND             | 13,000         | 11,000         | ND             | 19,000           | ND               | 29,000           | 24,000         | ND               | ND             |
| Tetrachloroethylene (PCE) | 1,300                                            | 19,000                                             | 6,300          | ND             | ND             | ND             | ND               | ND               | ND               | ND             | ND               | ND             |
| Toluene                   | 700                                              | 100,000                                            | ND             | ND             | ND             | ND             | ND               | ND               | ND               | ND             | ND               | ND             |
| 4,4-DDD                   | 3.3                                              | 13,000.0                                           | ND             | ND             | 4.9            | 17             | 7.5              | ND               | ND               | ND             | ND               | ND             |

BOLD

Exceedence of Track 1 Unrestricted Residential Cleanup Objective Exceedence of Restricted Residential Cleanup Objective

EBC Samples Supplemental Investigation 9/2010 and Endpoint Samples 9/201

| COMPOUND                  | Track 1<br>Unrestricted<br>Cleanup<br>Objectives | Restricted<br>Residential<br>Cleanup<br>Objectives | 10B-02<br>(15-20 ft) | 10B-03<br>(15-20 ft) | Hotspot 5<br>Bottom<br>Endpoint (18 ft) |
|---------------------------|--------------------------------------------------|----------------------------------------------------|----------------------|----------------------|-----------------------------------------|
| Sample Results in µg/kg   | ug/kg                                            | ug/kg                                              | ug/kg                | ug/kg                | ug/kg                                   |
| 1,2,4-trimethylbenzene    | 3,600                                            | 52,000                                             | 7,600                | 8,200                | ND                                      |
| 1,3,5-trimethylbenzene    | 8,400                                            | 52,000                                             | ND                   | ND                   | ND                                      |
| Acetone                   | 50                                               | 100,000                                            | ND                   | ND                   | ND                                      |
| Cis-DCE                   | 250                                              | 59,000                                             | ND                   | ND                   | ND                                      |
| Ethylbenzene              | 1,000                                            | 41,000                                             | ND                   | ND                   | ND                                      |
| m/p-Xylenes               | 260                                              | 100,000                                            | 430                  | 330                  | ND                                      |
| Napthalene                | 12,000                                           | NS                                                 | ND                   | ND                   | ND                                      |
| n-butylbenzene            | 3,900                                            | 100,000                                            | ND                   | ND                   | ND                                      |
| n-propylbenzene           | 12,000                                           | 100,000                                            | ND                   | ND                   | ND                                      |
| o-Xylene                  | 260                                              | 100,000                                            | 460                  | 370                  | ND                                      |
| sec-butylbenzene          | 11,000                                           | 100,000                                            | ND                   | ND                   | ND                                      |
| Tetrachloroethylene (PCE) | 1,300                                            | 19,000                                             | ND                   | ND                   | 25,000                                  |
| Toluene                   | 700                                              | 100,000                                            | ND                   | ND                   | ND                                      |
| Trichloroethene (TCE)     | 470                                              | 21,000                                             | ND                   | ND                   | ND                                      |
| 4,4-DDD                   | 3.3                                              | 13,000                                             | ND                   | ND                   | ND                                      |


BOLD

Exceedence of Track 1 Unrestricted Residential Cleanup Objective Exceedence of Restricted Residential Cleanup Objective

TABLE 3
Former Uniforms for Industry Site
129-09 Jamaica Avenue, Richmond Hill, NY
Groundwater Contamination Above Standards

|                        | NYSDEC Ambient<br>Water Quality |           |            |           |           |            |           |           |
|------------------------|---------------------------------|-----------|------------|-----------|-----------|------------|-----------|-----------|
| Parameter              | Standards                       | MW1       | MW1        | MW3       | MW4       | MW4        | MW5       | MW6       |
| ug/L                   | ug/L                            | 9/20/2010 | 11/30/2010 | 9/20/2010 | 9/20/2010 | 11/30/2010 | 9/20/2010 | 9/20/2010 |
| 1,2,4-trimethylbenzene | 5                               | 1900      | 1900       |           |           |            | 5.1       |           |
| 1,3,5-trimethylbenzene | 5                               | 530       | 530        |           |           |            |           |           |
| 1-1 Dichloroethene     | 5                               |           |            |           |           |            |           |           |
| 2-Butanone             | 50                              |           |            |           |           |            |           |           |
| 2-Hexanone             | 50                              |           |            |           |           |            |           |           |
| 4-Isopropyltoluene     | -                               |           |            |           |           |            |           |           |
| 4-Methyl 2-Pentanone   |                                 |           |            |           |           |            |           |           |
| Acetone                | 50                              |           |            |           |           |            |           |           |
| Benzene                | 1                               |           |            |           |           |            |           |           |
| Chloroethane           | 5                               |           |            |           |           |            |           |           |
| Cis 1-2 DCE            | 5                               | 1400      | 93         |           | 140       | 93         | 210       | 76        |
| Ethylbenzene           | 5                               | 62        |            |           |           |            |           |           |
| Isopropylbenzene       | 5                               | 64        |            |           |           |            |           |           |
| m/p - xylene           | 5                               |           |            |           |           |            |           |           |
| Methylene Chloride     | 5                               | 6.1       | 5.3        |           |           | 5.3        |           |           |
| MTBE                   | 10                              |           |            |           |           |            |           |           |
| Napthalene             | 5                               | 250       |            |           |           |            |           |           |
| n-butylbenzene         | 5                               | 120       |            |           |           |            |           |           |
| n-propylbenzene        | 5                               | 140       |            |           |           |            |           |           |
| o-xylenes              | 5                               |           |            |           |           |            |           |           |
| p-diethylbenzene       |                                 |           |            |           |           |            |           |           |
| p-ethyltoluene         |                                 |           |            |           |           |            |           |           |
| p-isopropyltoluene     |                                 | 90        | 7.7        |           |           |            |           |           |
| sec-butylbenzene       |                                 | 74        |            |           | 7.4       | 7.7        |           |           |
| tert-butylbenzene      |                                 |           | 11         |           |           |            |           |           |
| tetrachloroethene      | 5                               |           |            | 6.4       | 19        | 11         | 32        | 100       |
| toluene                | 5                               | 45        |            |           |           |            |           |           |
| Trans 1-2 DCE          | 5                               |           |            |           |           |            |           |           |
| trichloroethene        | 5                               |           | 21         |           | 5.7       |            | 24        | 7.6       |
| vinyl chloride         | 2                               | 74        | 74         |           | 7.6       | 21         | 12        | 11        |
| Xylenes (total)        |                                 | 410       | 410        |           |           |            |           |           |

## **FIGURES**



Phone 631.504.6000 Fax 631.924.2870
ENVIRONMENTAL BUSINESS CONSULTANTS

FORMER UNIFORMS FOR INDUSTRY SITE 129-09 JAMAICA AVENUE, RICHMOND HILL, NY

FIGURE 1

SITE LOCATION MAP

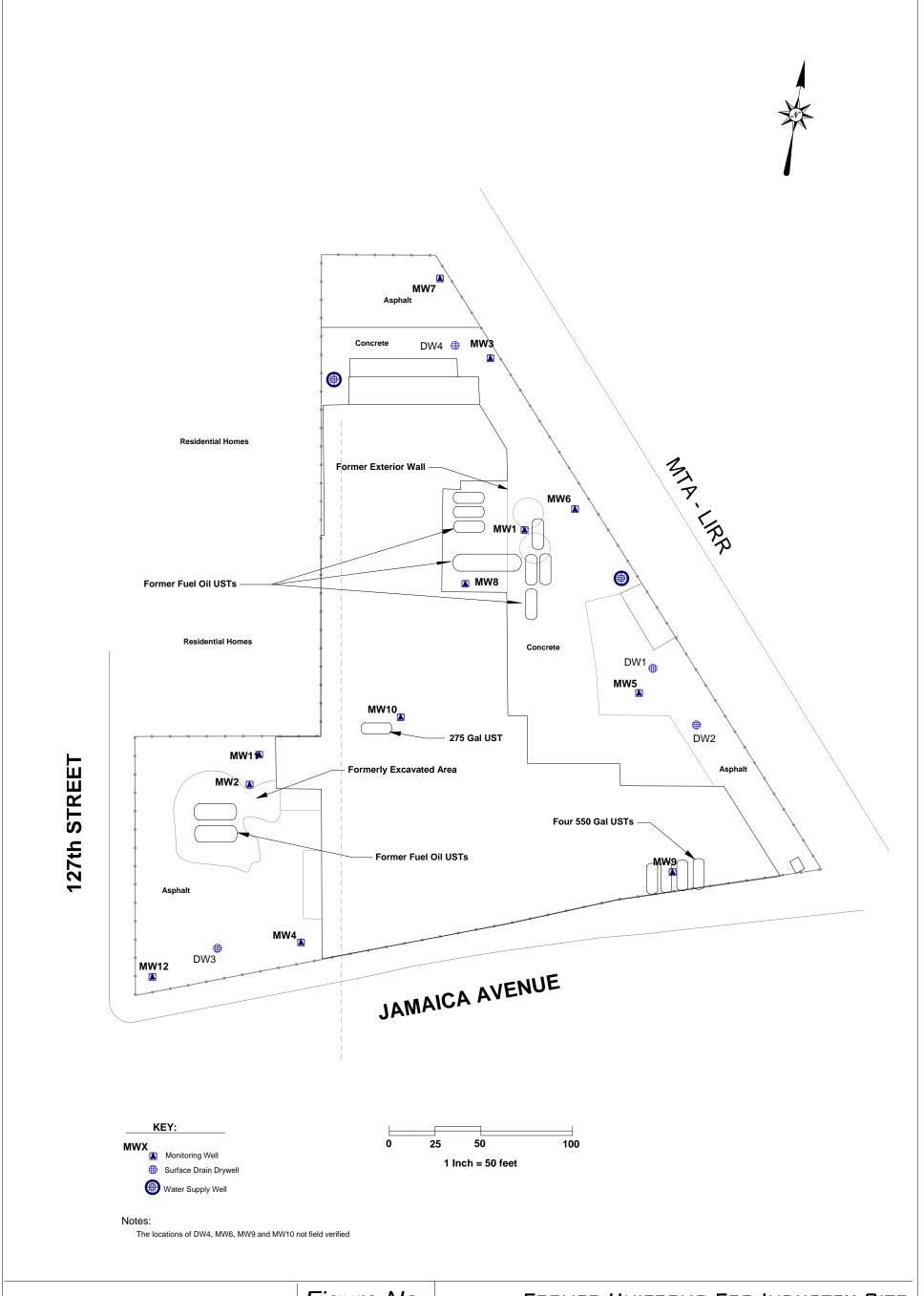
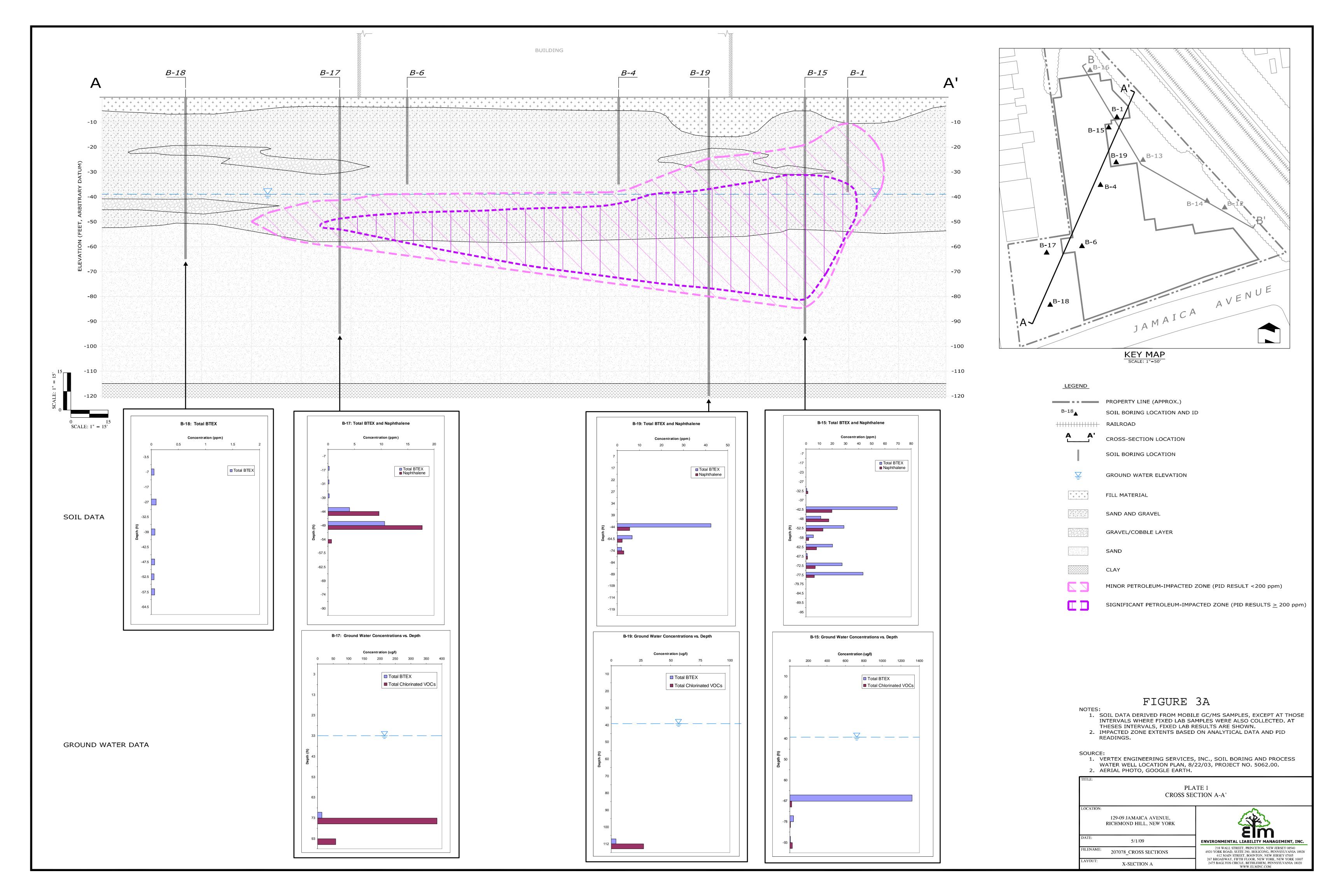
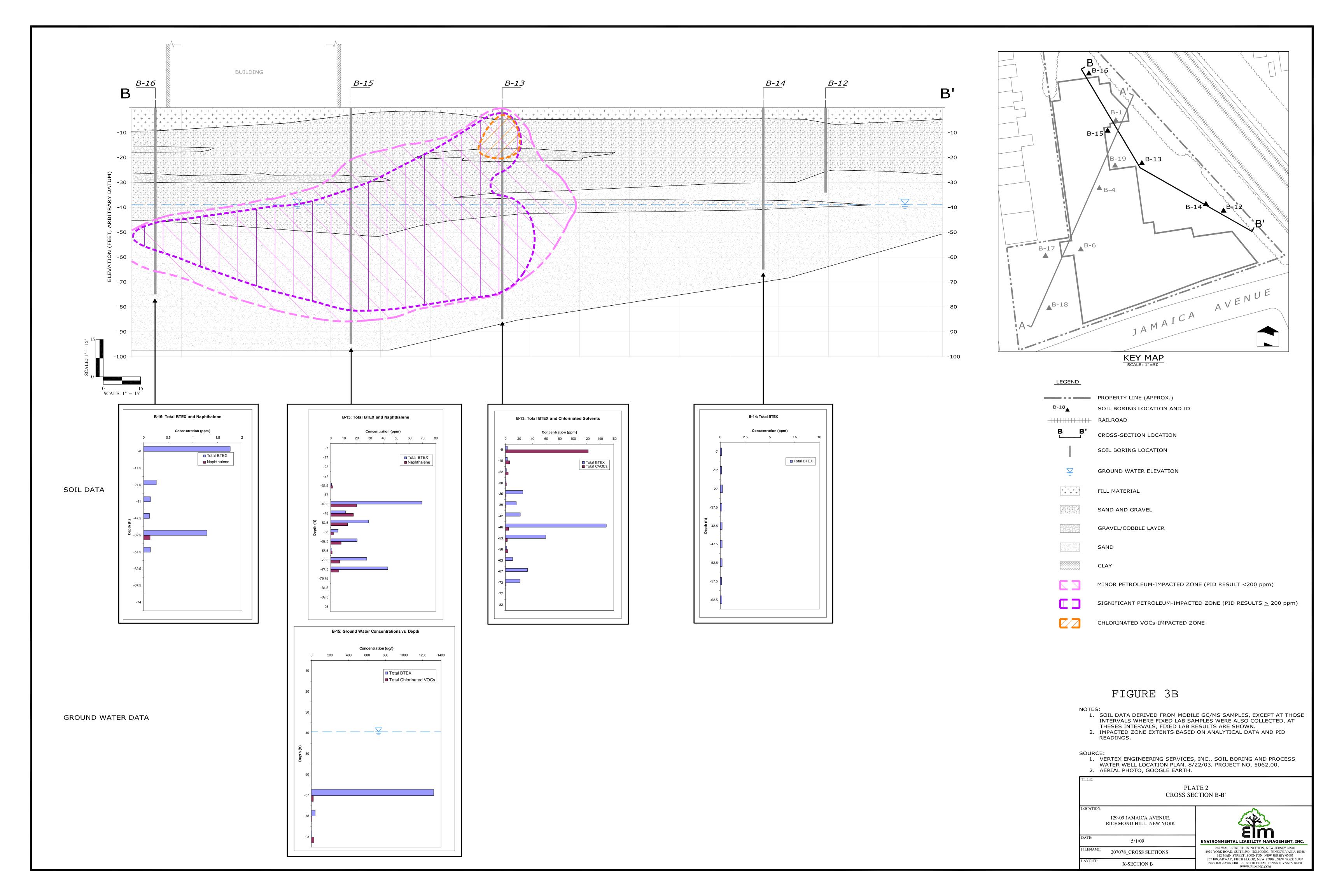




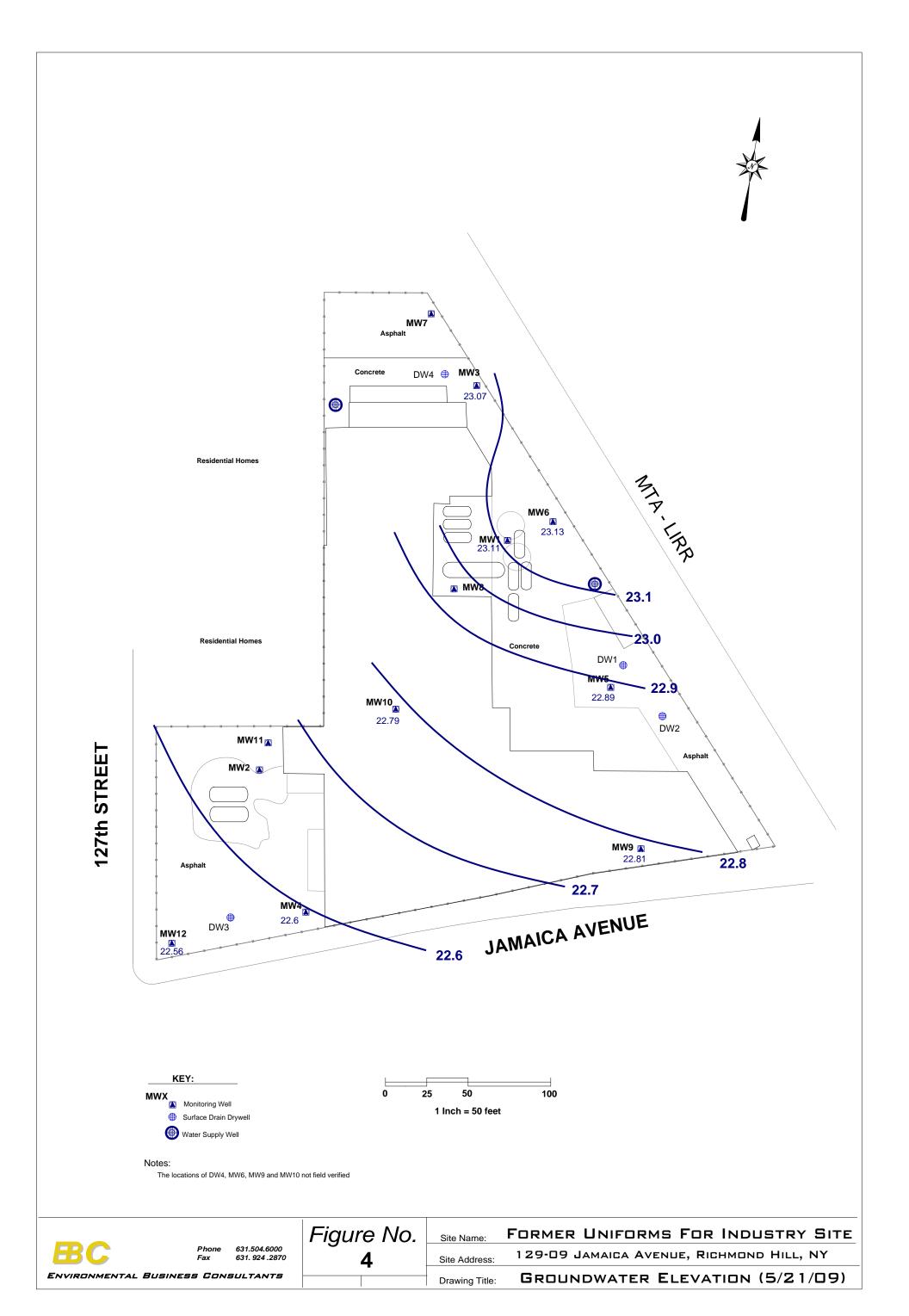

Figure No. Site Name: FORMER UNIFORMS FOR INDUSTRY SITE

Site Address: 129-09 JAMAICA AVENUE, RICHMOND HILL, NY

Drawing Title: SITE PLAN







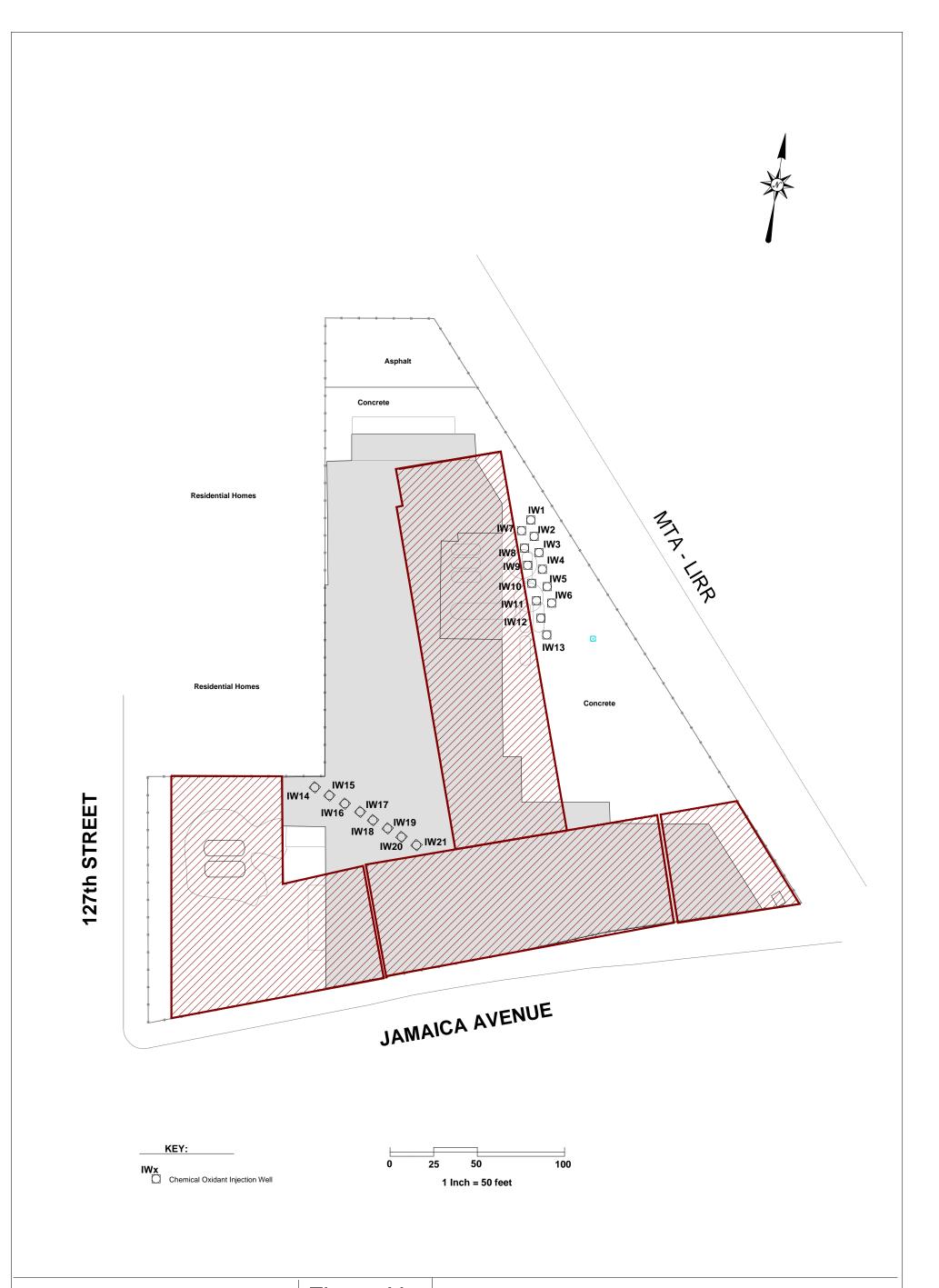




Figure No.

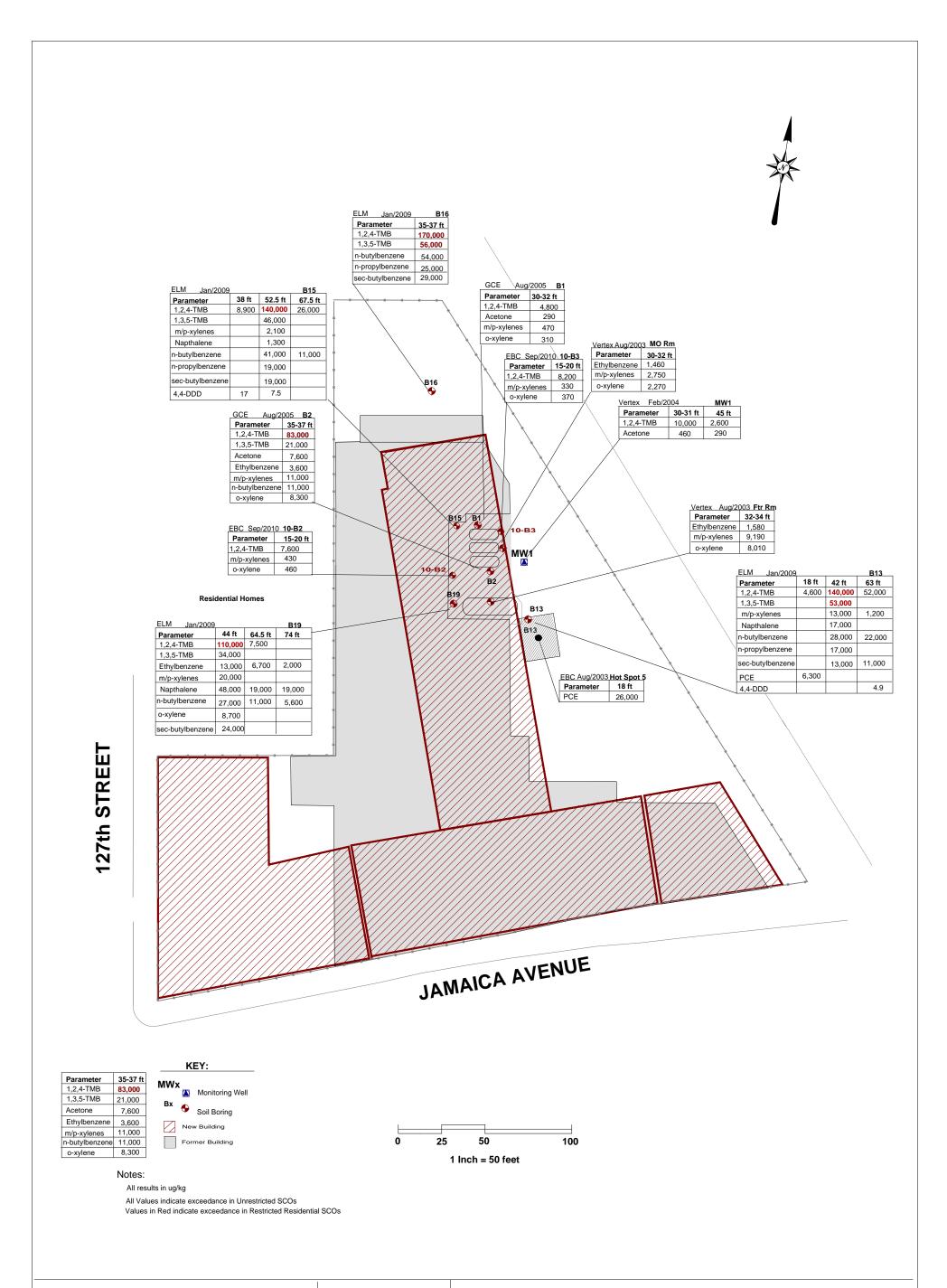
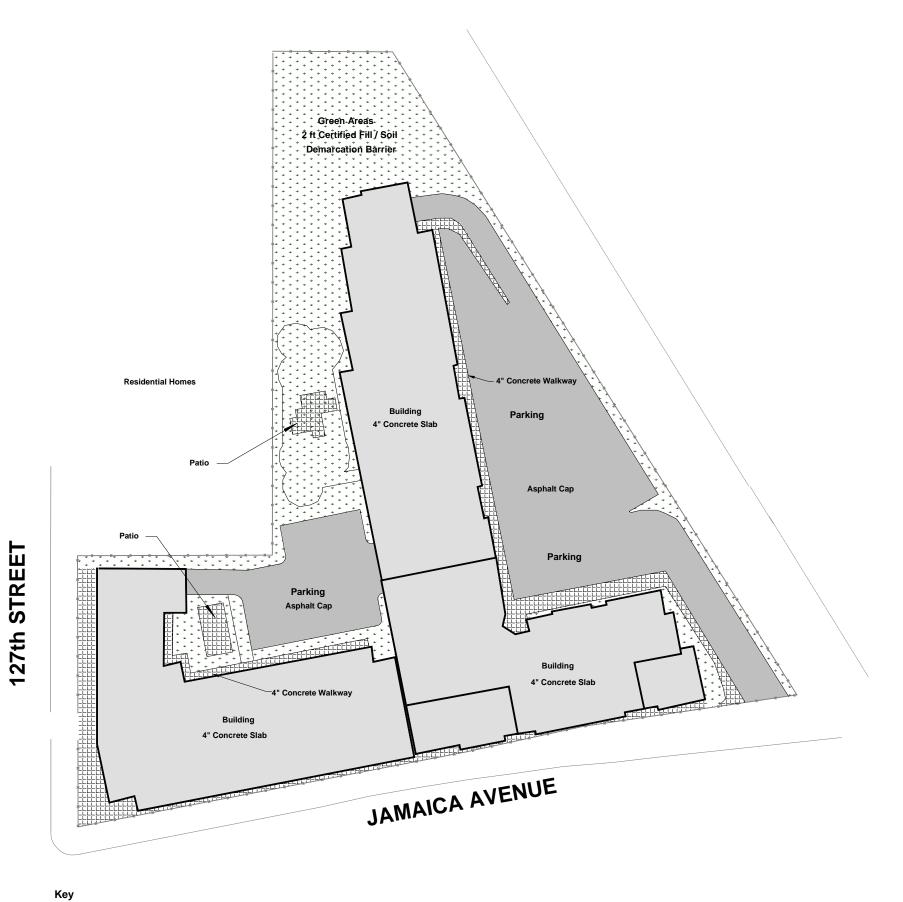
Site Name: FORMER UNIFORMS FOR INDUSTRY SITE

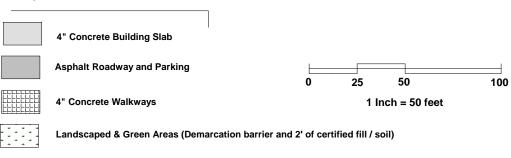
Site Address: 129-09 Jamaica Avenue, Richmond Hill, NY

Drawing Title: SOIL EXCAVATION & HOT SPOT LOCATIONS



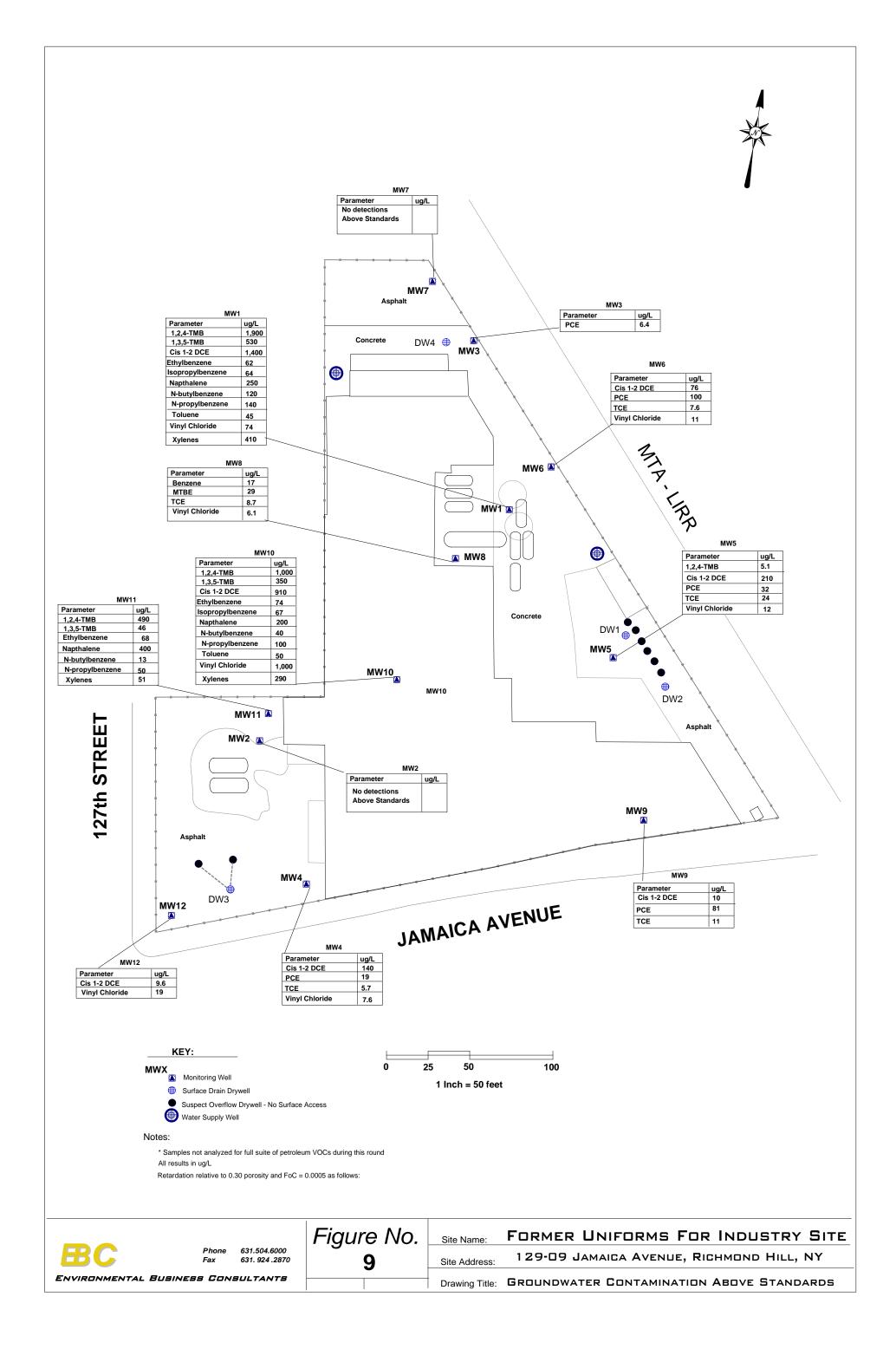
|                  |              |                                | Figure No. | Site Name:     | FORMER UNIFORMS FOR INDUSTRY SITE         |
|------------------|--------------|--------------------------------|------------|----------------|-------------------------------------------|
| BC               | Phone<br>Fax | 631.504.6000<br>631. 924 .2870 | 6          | Site Address:  | 129-09 JAMAICA AVENUE, RICHMOND HILL, NY  |
| ENVIRONMENTAL BU | ISINESS CON  | SULTANTS                       |            | Drawing Title: | CHEMICAL OXIDANT INJECTION WELL LOCATIONS |

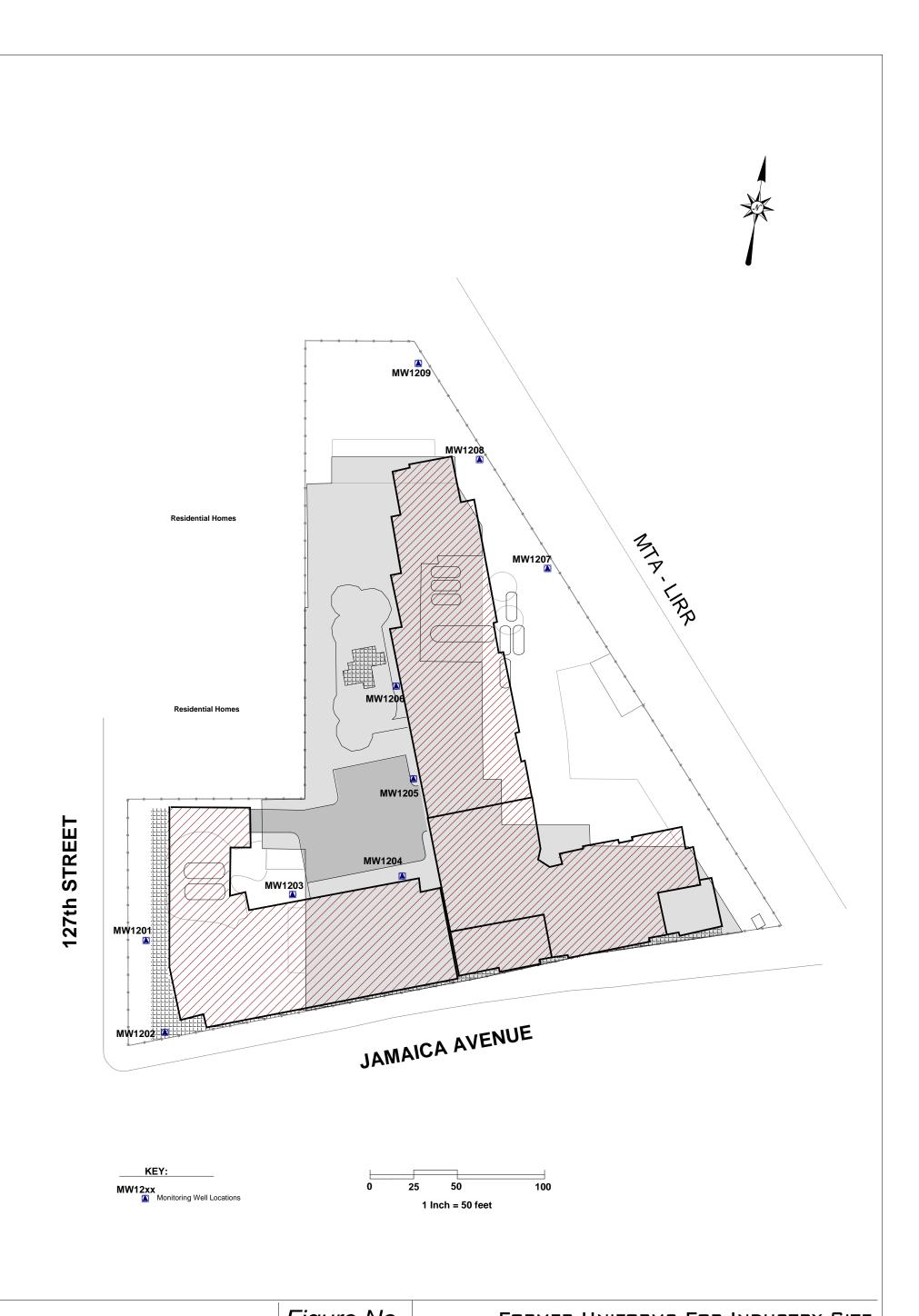





Figure No. Site Name: FORMER UNIFORMS FOR INDUSTRY SITE

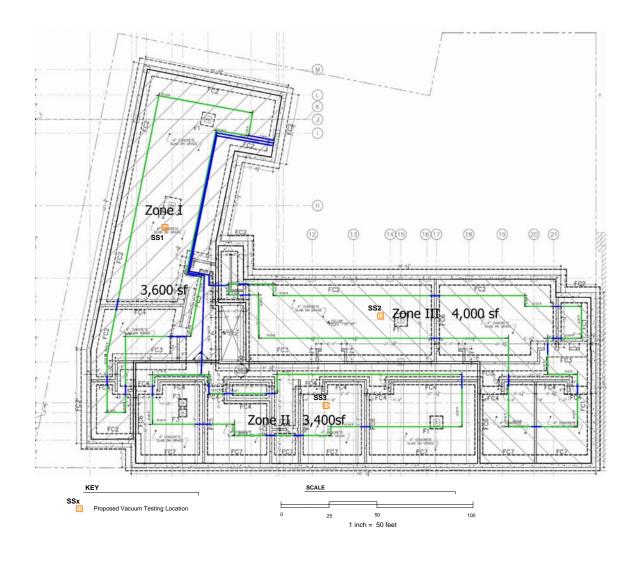
Site Address: 129-09 JAMAICA AVENUE, RICHMOND HILL, NY

Drawing Title: REMAINING SOIL ABOVE F TRACK 1 & TRACK 4 SCOS







| BC                   | Phone<br>Fax | 631.504.6000<br>631. 924 .2870 |
|----------------------|--------------|--------------------------------|
| ENVIRONMENTAL BUSINE | ss Con       | SULTANTS                       |

| Figure No. | Site Name:     | FORMER UNIFORMS FOR INDUSTRY SITE        |
|------------|----------------|------------------------------------------|
| 8          | Site Address:  | 129-09 JAMAICA AVENUE, RICHMOND HILL, NY |
|            | Drawing Title: | LOCATION OF COVER SYSTEM TYPES           |





|                   |              |                                | Figure No. | Site Name:     | FORMER UNIFORMS FOR INDUSTRY SITE        |
|-------------------|--------------|--------------------------------|------------|----------------|------------------------------------------|
| BC                | Phone<br>Fax | 631.504.6000<br>631. 924 .2870 | 10         | Site Address:  | 129-09 JAMAICA AVENUE, RICHMOND HILL, NY |
| ENVIRONMENTAL BUS | INESS CON    | SULTANTS                       |            | Drawing Title: | ROUNDWATER MONITORING WELL NETWORK       |
|                   |              |                                |            |                |                                          |





Environmental Business Consultants

1808 MIDDLE COUNTRY ROAD, RIDGE, NY 11961

Phone: 631.504.6000 Fax: 631.924.2780 FORMER UNIFORMS FOR INDUSTRY SITE
129-09 JAMAICA AVENUE, RICHMOND HILL, NY

FIGURE 11

SUBSLAB VACUUM TESTING LOCATIONS

# <u>ATTACHMENT A</u> Remedial Investigation Summary Tables

| SAMPLE<br>NAME | SAMPLE<br>DATE           | ANALYTE                              | CAS NUMBER          | RESULTS ppbv | REPORTING LIM ppbv |
|----------------|--------------------------|--------------------------------------|---------------------|--------------|--------------------|
| SV-1           | 11/11/2008               | 1,1,1,2-Tetrachloroethane            | 630-20-6            | ND           | 0.72               |
| SV-1           | 11/11/2008               | 1,1,1-Trichloroethane                | 71-55-6             | ND           | 0.91               |
| SV-1           | 11/11/2008               | 1,1,2,2-Tetrachloroethane            | 79-34-5             | ND           | 0.72               |
| SV-1           | 11/11/2008               | 1,1,2-Trichloroethane                | 79-00-5             | ND           | 0.91               |
| SV-1           | 11/11/2008               | 1.1.2-Trichlorotrifluoroethane       | 76-13-1             | ND           | 1.3                |
| SV-1           | 11/11/2008               | 1,1-Dichloroethane                   | 75-34-3             | ND           | 1.2                |
| SV-1           | 11/11/2008               | 1,1-Dichloroethene                   | 75-35-4             | ND           | 1.2                |
| SV-1           | 11/11/2008               | 1,2,4-Trichlorobenzene               | 120-82-1            | ND           | 1.3                |
| SV-1           | 11/11/2008               | 1,2,4-Trichlorobenzene               | 95-63-6             | ND ND        | 1.0                |
|                |                          |                                      |                     |              |                    |
| SV-1           | 11/11/2008               | 1,2-Dibromoethane (EDB)              | 106-93-4            | ND ND        | 0.64               |
| SV-1           | 11/11/2008               | 1,2-Dichlorobenzene                  | 95-50-1             | ND           | 1.6                |
| SV-1           | 11/11/2008               | 1,2-Dichloroethane                   | 107-06-2            | ND           | 1.2                |
| SV-1           | 11/11/2008               | 1,2-Dichloroethane-d4                | 17060-07-0          | 28.2         | 2.3                |
| SV-1           | 11/11/2008               | 1,2-Dichloropropane                  | 78-87-5             | ND           | 1.1                |
| SV-1           | 11/11/2008               | 1,3,5-Trimethylbenzene               | 108-67-8            | ND           | 1.0                |
| SV-1           | 11/11/2008               | 1,3-Butadiene                        | 106-99-0            | ND           | 2.2                |
| SV-1           | 11/11/2008               | 1,3-Dichlorobenzene                  | 541-73-1            | ND           | 1.6                |
| SV-1           | 11/11/2008               | 1,4-Dichlorobenzene                  | 106-46-7            | ND           | 1.6                |
| SV-1           | 11/11/2008               | 1,4-Dioxane                          | 123-91-1            | ND           | 1.4                |
| SV-1           | 11/11/2008               | 2-Butanone                           | 78-93-3             | ND           | 1.7                |
| SV-1           | 11/11/2008               | 2-Hexanone                           | 591-78-6            | ND           | 2.4                |
| SV-1           | 11/11/2008               | 4-Bromofluorobenzene                 | 460-00-4            | 23.1         | 1.4                |
|                | 11/11/2008               |                                      |                     |              |                    |
| SV-1           |                          | 4-Ethyltoluene                       | 622-96-8            | ND           | 1.0                |
| SV-1           | 11/11/2008               | 4-Methyl-2-pentanone                 | 108-10-1            | ND           | 1.2                |
| SV-1           | 11/11/2008               | Acetone                              | 67-64-1             | 9.9          | 8.3                |
| SV-1           | 11/11/2008               | Benzene                              | 71-43-2             | ND           | 1.5                |
| SV-1           | 11/11/2008               | Benzyl chloride                      | 100-44-7            | ND           | 0.96               |
| SV-1           | 11/11/2008               | Bromodichloromethane                 | 75-27-4             | ND           | 0.74               |
| SV-1           | 11/11/2008               | Bromoform                            | 75-25-2             | ND           | 1.9                |
| SV-1           | 11/11/2008               | Bromomethane                         | 74-83-9             | ND           | 1.3                |
| SV-1           | 11/11/2008               | Carbon disulfide                     | 75-15-0             | ND           | 1.6                |
| SV-1           | 11/11/2008               | Carbon tetrachloride                 | 56-23-5             | ND           | 0.78               |
| SV-1           | 11/11/2008               | Chlorobenzene                        | 108-90-7            | ND           | 1.1                |
| SV-1           | 11/11/2008               | Chloroethane                         | 75-00-3             | ND           | 1.9                |
| SV-1           | 11/11/2008               | Chloroform                           | 67-66-3             | ND ND        | 1.0                |
| SV-1           | 11/11/2008               | Chloromethane                        | 74-87-3             | ND<br>ND     | 2.4                |
|                |                          |                                      |                     |              |                    |
| SV-1           | 11/11/2008               | cis-1,2-Dichloroethene               | 156-59-2            | ND           | 1.2                |
| SV-1           | 11/11/2008               | cis-1,3-Dichloropropene              | 10061-01-5          | ND           | 1.1                |
| SV-1           | 11/11/2008               | Cyclohexane                          | 110-82-7            | ND           | 2.9                |
| SV-1           | 11/11/2008               | Dibromochloromethane                 | 124-48-1            | ND           | 0.58               |
| SV-1           | 11/11/2008               | Dichlorodifluoromethane              | 75-71-8             | ND           | 2.0                |
| SV-1           | 11/11/2008               | Dichlorotetrafluoroethane            | 76-14-2             | ND           | 1.4                |
| SV-1           | 11/11/2008               | Ethyl acetate                        | 141-78-6            | ND           | 1.4                |
| SV-1           | 11/11/2008               | Ethylbenzene                         | 100-41-4            | ND           | 1.1                |
| SV-1           | 11/11/2008               | Hexachlorobutadiene                  | 87-68-3             | ND           | 0.92               |
| SV-1           | 11/11/2008               | m,p-Xylene                           | 136777-61-2         | ND           | 1.1                |
| SV-1           | 11/11/2008               | Methyl tert-butyl ether              | 1634-04-4           | ND           | 1.4                |
| SV-1           | 11/11/2008               | Methylene chloride                   | 75-09-2             | ND           | 2.8                |
| SV-1           | 11/11/2008               | ,                                    | 142-82-5            | ND<br>ND     |                    |
| SV-1           |                          | n-Heptane                            |                     | ND<br>ND     | 1.2<br>1.4         |
|                | 11/11/2008               | n-Hexane                             | 110-54-3            |              | _                  |
| SV-1           | 11/11/2008               | o-Xylene                             | 95-47-6             | ND           | 1.1                |
| SV-1           | 11/11/2008               | Propene                              | 115-07-1            | 6.9          | 5.7                |
| SV-1           | 11/11/2008               | Styrene                              | 100-42-5            | ND           | 1.2                |
| SV-1           | 11/11/2008               | Tetrachloroethene                    | 127-18-4            | 23           | 0.73               |
| SV-1           | 11/11/2008               | Tetrahydrofuran                      | 109-99-9            | ND           | 1.7                |
| SV-1           | 11/11/2008               | Toluene                              | 108-88-3            | 2.5          | 1.3                |
| SV-1           | 11/11/2008               | Toluene-d8                           | 2037-26-5           | 22.8         | 2.4                |
| SV-1           | 11/11/2008               | trans-1,2-Dichloroethene             | 156-60-5            | ND ND        | 1.2                |
| SV-1           | 11/11/2008               | trans-1,3-Dichloropropene            | 10061-02-6          | ND           | 1.1                |
|                |                          | Trichloroethene                      | 79-01-6             |              | 0.92               |
| SV-1           | 11/11/2008               |                                      |                     | ND           | _                  |
| SV-1<br>SV-1   | 11/11/2008<br>11/11/2008 | Trichlorofluoromethane Vinyl acetate | 75-69-4<br>108-05-4 | ND<br>ND     | 0.88<br>2.8        |
|                |                          |                                      |                     |              |                    |

| SAMPLE<br>NAME | SAMPLE<br>DATE | ANALYTE                        | CAS NUMBER  | RESULTS ppbv | REPORTING LIM ppbv |
|----------------|----------------|--------------------------------|-------------|--------------|--------------------|
| SV-2           | 11/11/2008     | 1,1,1,2-Tetrachloroethane      | 630-20-6    | ND           | 0.72               |
| SV-2           | 11/11/2008     | 1,1,1-Trichloroethane          | 71-55-6     | ND           | 0.91               |
| SV-2           | 11/11/2008     | 1,1,2,2-Tetrachloroethane      | 79-34-5     | ND           | 0.72               |
| SV-2           | 11/11/2008     | 1.1.2-Trichloroethane          | 79-00-5     | ND           | 0.91               |
| SV-2           | 11/11/2008     | 1,1,2-Trichlorotrifluoroethane | 76-13-1     | ND           | 1.3                |
|                |                |                                |             |              |                    |
| SV-2           | 11/11/2008     | 1,1-Dichloroethane             | 75-34-3     | ND           | 1.2                |
| SV-2           | 11/11/2008     | 1,1-Dichloroethene             | 75-35-4     | ND           | 1.2                |
| SV-2           | 11/11/2008     | 1,2,4-Trichlorobenzene         | 120-82-1    | ND           | 1.3                |
| SV-2           | 11/11/2008     | 1,2,4-Trimethylbenzene         | 95-63-6     | ND           | 1.0                |
| SV-2           | 11/11/2008     | 1,2-Dibromoethane (EDB)        | 106-93-4    | ND           | 0.64               |
| SV-2           | 11/11/2008     | 1,2-Dichlorobenzene            | 95-50-1     | ND           | 1.6                |
| SV-2           | 11/11/2008     | 1,2-Dichloroethane             | 107-06-2    | ND           | 1.2                |
| SV-2           | 11/11/2008     |                                |             | 22.6         | 2.3                |
|                |                | 1,2-Dichloroethane-d4          | 17060-07-0  |              |                    |
| SV-2           | 11/11/2008     | 1,2-Dichloropropane            | 78-87-5     | ND           | 1.1                |
| SV-2           | 11/11/2008     | 1,3,5-Trimethylbenzene         | 108-67-8    | ND           | 1.0                |
| SV-2           | 11/11/2008     | 1,3-Butadiene                  | 106-99-0    | ND           | 2.2                |
| SV-2           | 11/11/2008     | 1,3-Dichlorobenzene            | 541-73-1    | ND           | 1.6                |
| SV-2           | 11/11/2008     | 1,4-Dichlorobenzene            | 106-46-7    | ND           | 1.6                |
| SV-2           | 11/11/2008     | 1.4-Dioxane                    | 123-91-1    | ND ND        | 1.4                |
|                | 11/11/2008     | ,                              |             |              |                    |
| SV-2           |                | 2-Butanone                     | 78-93-3     | 2.2          | 1.7                |
| SV-2           | 11/11/2008     | 2-Hexanone                     | 591-78-6    | ND           | 2.4                |
| SV-2           | 11/11/2008     | 4-Bromofluorobenzene           | 460-00-4    | 23.2         | 1.4                |
| SV-2           | 11/11/2008     | 4-Ethyltoluene                 | 622-96-8    | ND           | 1.0                |
| SV-2           | 11/11/2008     | 4-Methyl-2-pentanone           | 108-10-1    | ND           | 1.2                |
| SV-2           | 11/11/2008     | Acetone                        | 67-64-1     | 15           | 8.3                |
|                |                | Benzene                        |             | ND           |                    |
| SV-2           | 11/11/2008     |                                | 71-43-2     |              | 1.5                |
| SV-2           | 11/11/2008     | Benzyl chloride                | 100-44-7    | ND           | 0.96               |
| SV-2           | 11/11/2008     | Bromodichloromethane           | 75-27-4     | ND           | 0.74               |
| SV-2           | 11/11/2008     | Bromoform                      | 75-25-2     | ND           | 1.9                |
| SV-2           | 11/11/2008     | Bromomethane                   | 74-83-9     | ND           | 1.3                |
| SV-2           | 11/11/2008     | Carbon disulfide               | 75-15-0     | ND           | 1.6                |
| SV-2           | 11/11/2008     | Carbon tetrachloride           | 56-23-5     | ND           | 0.78               |
|                |                |                                |             |              | _                  |
| SV-2           | 11/11/2008     | Chlorobenzene                  | 108-90-7    | ND           | 1.1                |
| SV-2           | 11/11/2008     | Chloroethane                   | 75-00-3     | ND           | 1.9                |
| SV-2           | 11/11/2008     | Chloroform                     | 67-66-3     | ND           | 1.0                |
| SV-2           | 11/11/2008     | Chloromethane                  | 74-87-3     | ND           | 2.4                |
| SV-2           | 11/11/2008     | cis-1,2-Dichloroethene         | 156-59-2    | 1.5          | 1.2                |
| SV-2           | 11/11/2008     | cis-1,3-Dichloropropene        | 10061-01-5  | ND           | 1.1                |
| SV-2           |                |                                | 110-82-7    | ND ND        | 2.9                |
|                | 11/11/2008     | Cyclohexane                    |             |              |                    |
| SV-2           | 11/11/2008     | Dibromochloromethane           | 124-48-1    | ND           | 0.58               |
| SV-2           | 11/11/2008     | Dichlorodifluoromethane        | 75-71-8     | ND           | 2.0                |
| SV-2           | 11/11/2008     | Dichlorotetrafluoroethane      | 76-14-2     | ND           | 1.4                |
| SV-2           | 11/11/2008     | Ethyl acetate                  | 141-78-6    | ND           | 1.4                |
| SV-2           | 11/11/2008     | Ethylbenzene                   | 100-41-4    | ND           | 1.1                |
| SV-2           | 11/11/2008     | Hexachlorobutadiene            | 87-68-3     | ND           | 0.92               |
|                |                |                                |             |              | _                  |
| SV-2           | 11/11/2008     | m,p-Xylene                     | 136777-61-2 | 1.6          | 1.1                |
| SV-2           | 11/11/2008     | Methyl tert-butyl ether        | 1634-04-4   | ND           | 1.4                |
| SV-2           | 11/11/2008     | Methylene chloride             | 75-09-2     | ND           | 2.8                |
| SV-2           | 11/11/2008     | n-Heptane                      | 142-82-5    | ND           | 1.2                |
| SV-2           | 11/11/2008     | n-Hexane                       | 110-54-3    | ND           | 1.4                |
| SV-2           | 11/11/2008     | o-Xylene                       | 95-47-6     | ND           | 1.1                |
| SV-2           | 11/11/2008     | Propene                        | 115-07-1    | 24           | 5.7                |
| SV-2           | 11/11/2008     | Styrene                        | 100-42-5    | ND           | 1.2                |
|                |                | ,                              |             |              | _                  |
| SV-2           | 11/11/2008     | Tetrachloroethene              | 127-18-4    | 16           | 0.73               |
| SV-2           | 11/11/2008     | Tetrahydrofuran                | 109-99-9    | ND           | 1.7                |
| SV-2           | 11/11/2008     | Toluene                        | 108-88-3    | 4.6          | 1.3                |
| SV-2           | 11/11/2008     | Toluene-d8                     | 2037-26-5   | 23.5         | 2.4                |
| SV-2           | 11/11/2008     | trans-1,2-Dichloroethene       | 156-60-5    | ND           | 1.2                |
| SV-2           |                |                                | 10061-02-6  | ND           | 1.1                |
|                | 11/11/2008     | trans-1,3-Dichloropropene      |             |              |                    |
| SV-2           | 11/11/2008     | Trichloroethene                | 79-01-6     | ND           | 0.92               |
| SV-2           | 11/11/2008     | Trichlorofluoromethane         | 75-69-4     | ND           | 0.88               |
| SV-2           | 11/11/2008     | Vinyl acetate                  | 108-05-4    | ND           | 2.8                |
| SV-2           | 11/11/2008     | Vinyl chloride                 | 75-01-4     | ND           | 1.9                |

| SAMPLE<br>NAME | SAMPLE<br>DATE | ANALYTE                        | CAS NUMBER  | RESULTS ppbv | REPORTING LIM ppbv |
|----------------|----------------|--------------------------------|-------------|--------------|--------------------|
| SV-3           | 11/11/2008     | 1,1,1,2-Tetrachloroethane      | 630-20-6    | ND           | 0.72               |
| SV-3           | 11/11/2008     | 1,1,1-Trichloroethane          | 71-55-6     | ND           | 0.91               |
| SV-3           | 11/11/2008     | 1,1,2,2-Tetrachloroethane      | 79-34-5     | ND           | 0.72               |
| SV-3           | 11/11/2008     | 1,1,2-Trichloroethane          | 79-00-5     | ND           | 0.91               |
| SV-3           | 11/11/2008     | 1,1,2-Trichlorotrifluoroethane | 76-13-1     | ND           | 1.3                |
| SV-3           | 11/11/2008     | 1,1-Dichloroethane             | 75-34-3     | ND           | 1.2                |
| SV-3           | 11/11/2008     | 1,1-Dichloroethene             | 75-35-4     | ND           | 1.2                |
| SV-3           | 11/11/2008     | 1,2,4-Trichlorobenzene         | 120-82-1    | ND           | 1.3                |
| SV-3           | 11/11/2008     | 1,2,4-Trimethylbenzene         | 95-63-6     | ND           | 1.0                |
| SV-3           | 11/11/2008     | 1,2-Dibromoethane (EDB)        | 106-93-4    | ND           | 0.64               |
| SV-3           | 11/11/2008     | 1,2-Dichlorobenzene            | 95-50-1     | ND           | 1.6                |
| SV-3           | 11/11/2008     | 1,2-Dichloroethane             | 107-06-2    | ND           | 1.2                |
| SV-3           | 11/11/2008     | 1,2-Dichloroethane-d4          | 17060-07-0  | 28.5         | 2.3                |
| SV-3           | 11/11/2008     | 1,2-Dichloropropane            | 78-87-5     | ND ND        | 1.1                |
| SV-3           | 11/11/2008     | 1,3,5-Trimethylbenzene         | 108-67-8    | ND           | 1.0                |
| SV-3           | 11/11/2008     | 1,3-Butadiene                  | 106-99-0    | ND           | 2.2                |
| SV-3           | 11/11/2008     | 1,3-Dichlorobenzene            | 541-73-1    | ND           | 1.6                |
| SV-3           |                |                                |             | ND<br>ND     |                    |
|                | 11/11/2008     | 1,4-Dichlorobenzene            | 106-46-7    |              | 1.6                |
| SV-3           | 11/11/2008     | 1,4-Dioxane                    | 123-91-1    | ND ND        | 1.4                |
| SV-3           | 11/11/2008     | 2-Butanone                     | 78-93-3     | ND           | 1.7                |
| SV-3           | 11/11/2008     | 2-Hexanone                     | 591-78-6    | ND           | 2.4                |
| SV-3           | 11/11/2008     | 4-Bromofluorobenzene           | 460-00-4    | 23.8         | 1.4                |
| SV-3           | 11/11/2008     | 4-Ethyltoluene                 | 622-96-8    | ND           | 1.0                |
| SV-3           | 11/11/2008     | 4-Methyl-2-pentanone           | 108-10-1    | ND           | 1.2                |
| SV-3           | 11/11/2008     | Acetone                        | 67-64-1     | 11           | 8.3                |
| SV-3           | 11/11/2008     | Benzene                        | 71-43-2     | 1.8          | 1.5                |
| SV-3           | 11/11/2008     | Benzyl chloride                | 100-44-7    | ND           | 0.96               |
| SV-3           | 11/11/2008     | Bromodichloromethane           | 75-27-4     | ND           | 0.74               |
| SV-3           | 11/11/2008     | Bromoform                      | 75-25-2     | ND           | 1.9                |
| SV-3           | 11/11/2008     | Bromomethane                   | 74-83-9     | ND           | 1.3                |
| SV-3           | 11/11/2008     | Carbon disulfide               | 75-15-0     | 2.5          | 1.6                |
| SV-3           | 11/11/2008     | Carbon tetrachloride           | 56-23-5     | ND           | 0.78               |
| SV-3           | 11/11/2008     | Chlorobenzene                  | 108-90-7    | ND           | 1.1                |
| SV-3           | 11/11/2008     | Chloroethane                   | 75-00-3     | ND           | 1.9                |
| SV-3           | 11/11/2008     | Chloroform                     | 67-66-3     | 170          | 1.0                |
| SV-3           | 11/11/2008     | Chloromethane                  | 74-87-3     | ND           | 2.4                |
| SV-3           | 11/11/2008     | cis-1,2-Dichloroethene         | 156-59-2    | ND           | 1.2                |
| SV-3           | 11/11/2008     | cis-1,3-Dichloropropene        | 10061-01-5  | ND           | 1.1                |
| SV-3           | 11/11/2008     | Cyclohexane                    | 110-82-7    | ND ND        | 2.9                |
| SV-3           | 11/11/2008     | Dibromochloromethane           | 124-48-1    | ND<br>ND     | 0.58               |
|                |                |                                |             |              |                    |
| SV-3           | 11/11/2008     | Dichlorodifluoromethane        | 75-71-8     | ND           | 2.0                |
| SV-3           | 11/11/2008     | Dichlorotetrafluoroethane      | 76-14-2     | ND           | 1.4                |
| SV-3           | 11/11/2008     | Ethyl acetate                  | 141-78-6    | ND           | 1.4                |
| SV-3           | 11/11/2008     | Ethylbenzene                   | 100-41-4    | ND           | 1.1                |
| SV-3           | 11/11/2008     | Hexachlorobutadiene            | 87-68-3     | ND           | 0.92               |
| SV-3           | 11/11/2008     | m,p-Xylene                     | 136777-61-2 | 1.7          | 1.1                |
| SV-3           | 11/11/2008     | Methyl tert-butyl ether        | 1634-04-4   | ND           | 1.4                |
| SV-3           | 11/11/2008     | Methylene chloride             | 75-09-2     | ND           | 2.8                |
| SV-3           | 11/11/2008     | n-Heptane                      | 142-82-5    | ND           | 1.2                |
| SV-3           | 11/11/2008     | n-Hexane                       | 110-54-3    | ND           | 1.4                |
| SV-3           | 11/11/2008     | o-Xylene                       | 95-47-6     | ND           | 1.1                |
| SV-3           | 11/11/2008     | Propene                        | 115-07-1    | 87           | 5.7                |
| SV-3           | 11/11/2008     | Styrene                        | 100-42-5    | ND           | 1.2                |
| SV-3           | 11/11/2008     | Tetrachloroethene              | 127-18-4    | 110          | 0.73               |
| SV-3           | 11/11/2008     | Tetrahydrofuran                | 109-99-9    | ND           | 1.7                |
| SV-3           | 11/11/2008     | Toluene                        | 108-88-3    | 3.8          | 1.3                |
| SV-3           | 11/11/2008     | Toluene-d8                     | 2037-26-5   | 23.2         | 2.4                |
| SV-3           | 11/11/2008     | trans-1,2-Dichloroethene       | 156-60-5    | ND           | 1.2                |
| SV-3           | 11/11/2008     | trans-1,3-Dichloropropene      | 10061-02-6  | ND           | 1.1                |
| SV-3           | 11/11/2008     | Trichloroethene                | 79-01-6     | 2.3          | 0.92               |
| SV-3           | 11/11/2008     | Trichlorofluoromethane         | 75-69-4     | 0.92         | 0.92               |
|                | 11/11/2008     | monioronuoromethane            | 75-09-4     | 0.92         | 0.00               |
| SV-3           | 11/11/2008     | Vinyl acetate                  | 108-05-4    | ND           | 2.8                |

| SAMPLE<br>NAME                                               | SAMPLE<br>DATE                                                                                               | ANALYTE                                                                                                                 | CAS NUMBER                                                                         | RESULTS ppbv                                          | REPORTING LIMI ppbv                        |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|
| SV-4                                                         | 11/11/2008                                                                                                   | 1,1,1,2-Tetrachloroethane                                                                                               | 630-20-6                                                                           | ND                                                    | 720                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,1,1-Trichloroethane                                                                                                   | 71-55-6                                                                            | ND                                                    | 910                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,1,2,2-Tetrachloroethane                                                                                               | 79-34-5                                                                            | ND                                                    | 720                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,1,2-Trichloroethane                                                                                                   | 79-00-5                                                                            | ND                                                    | 910                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,1,2-Trichlorotrifluoroethane                                                                                          | 76-13-1                                                                            | ND                                                    | 1300                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,1-Dichloroethane                                                                                                      | 75-34-3                                                                            | ND                                                    | 1200                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,1-Dichloroethene                                                                                                      | 75-35-4                                                                            | ND                                                    | 1200                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,2,4-Trichlorobenzene                                                                                                  | 120-82-1                                                                           | ND                                                    | 1300                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,2,4-Trimethylbenzene                                                                                                  | 95-63-6                                                                            | ND                                                    | 1000                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,2-Dibromoethane (EDB)                                                                                                 | 106-93-4                                                                           | ND                                                    | 640                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,2-Dichlorobenzene                                                                                                     | 95-50-1                                                                            | ND                                                    | 1600                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,2-Dichloroethane                                                                                                      | 107-06-2                                                                           | ND                                                    | 1200                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,2-Dichloroethane-d4                                                                                                   | 17060-07-0                                                                         | 21.0                                                  | 2.3                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,2-Dichloropropane                                                                                                     | 78-87-5                                                                            | ND                                                    | 1100                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,3,5-Trimethylbenzene                                                                                                  | 108-67-8                                                                           | ND                                                    | 1000                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,3-Butadiene                                                                                                           | 106-99-0                                                                           | ND                                                    | 2200                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,3-Dichlorobenzene                                                                                                     | 541-73-1                                                                           | ND                                                    | 1600                                       |
| SV-4                                                         |                                                                                                              |                                                                                                                         |                                                                                    | ND<br>ND                                              | 1600                                       |
|                                                              | 11/11/2008                                                                                                   | 1,4-Dichlorobenzene                                                                                                     | 106-46-7                                                                           |                                                       |                                            |
| SV-4                                                         | 11/11/2008                                                                                                   | 1,4-Dioxane                                                                                                             | 123-91-1                                                                           | ND                                                    | 1400                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 2-Butanone                                                                                                              | 78-93-3                                                                            | ND                                                    | 1700                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 2-Hexanone                                                                                                              | 591-78-6                                                                           | ND<br>20.7                                            | 2400                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 4-Bromofluorobenzene                                                                                                    | 460-00-4                                                                           | 22.7                                                  | 1.4                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | 4-Ethyltoluene                                                                                                          | 622-96-8                                                                           | ND                                                    | 1000                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | 4-Methyl-2-pentanone                                                                                                    | 108-10-1                                                                           | ND                                                    | 1200                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Acetone                                                                                                                 | 67-64-1                                                                            | ND                                                    | 8300                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Benzene                                                                                                                 | 71-43-2                                                                            | ND                                                    | 1500                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Benzyl chloride                                                                                                         | 100-44-7                                                                           | ND                                                    | 960                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | Bromodichloromethane                                                                                                    | 75-27-4                                                                            | ND                                                    | 740                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | Bromoform                                                                                                               | 75-25-2                                                                            | ND                                                    | 1900                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Bromomethane                                                                                                            | 74-83-9                                                                            | ND                                                    | 1300                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Carbon disulfide                                                                                                        | 75-15-0                                                                            | ND                                                    | 1600                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Carbon tetrachloride                                                                                                    | 56-23-5                                                                            | ND                                                    | 780                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | Chlorobenzene                                                                                                           | 108-90-7                                                                           | ND                                                    | 1100                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Chloroethane                                                                                                            | 75-00-3                                                                            | ND                                                    | 1900                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Chloroform                                                                                                              | 67-66-3                                                                            | ND                                                    | 1000                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Chloromethane                                                                                                           | 74-87-3                                                                            | ND                                                    | 2400                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | cis-1,2-Dichloroethene                                                                                                  | 156-59-2                                                                           | 55000                                                 | 1200                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | cis-1,3-Dichloropropene                                                                                                 | 10061-01-5                                                                         | ND                                                    | 1100                                       |
| SV-4                                                         | 11/11/2008                                                                                                   |                                                                                                                         | 110-82-7                                                                           | ND<br>ND                                              | 2900                                       |
| SV-4                                                         |                                                                                                              | Cyclohexane                                                                                                             |                                                                                    | ND<br>ND                                              | 580                                        |
|                                                              | 11/11/2008                                                                                                   | Dibromochloromethane                                                                                                    | 124-48-1                                                                           |                                                       |                                            |
| SV-4                                                         | 11/11/2008                                                                                                   | Dichlorodifluoromethane                                                                                                 | 75-71-8                                                                            | ND                                                    | 2000                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Dichlorotetrafluoroethane                                                                                               | 76-14-2                                                                            | ND                                                    | 1400                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Ethyl acetate                                                                                                           | 141-78-6                                                                           | ND                                                    | 1400                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Ethylbenzene                                                                                                            | 100-41-4                                                                           | ND                                                    | 1100                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Hexachlorobutadiene                                                                                                     | 87-68-3                                                                            | ND                                                    | 920                                        |
| SV-4                                                         | 11/11/2008                                                                                                   | m,p-Xylene                                                                                                              | 136777-61-2                                                                        | ND                                                    | 1100                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Methyl tert-butyl ether                                                                                                 | 1634-04-4                                                                          | ND                                                    | 1400                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | Methylene chloride                                                                                                      | 75-09-2                                                                            | ND                                                    | 2800                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | n-Heptane                                                                                                               | 142-82-5                                                                           | ND                                                    | 1200                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | n-Hexane                                                                                                                | 110-54-3                                                                           | ND                                                    | 1400                                       |
| SV-4                                                         | 11/11/2008                                                                                                   | o-Xylene                                                                                                                | 95-47-6                                                                            | ND                                                    | 1100                                       |
| 3V- <del>4</del>                                             | 11/11/2008                                                                                                   | Propene                                                                                                                 | 115-07-1                                                                           | ND                                                    | 5700                                       |
| SV-4                                                         | 11111112000                                                                                                  |                                                                                                                         | 100-42-5                                                                           | ND                                                    | 1200                                       |
|                                                              | 11/11/2008                                                                                                   | Styrene                                                                                                                 | 100-42-5                                                                           | ND                                                    | 1200                                       |
| SV-4                                                         |                                                                                                              | Styrene<br>Tetrachloroethene                                                                                            | 127-18-4                                                                           | 130000                                                | 730                                        |
| SV-4<br>SV-4                                                 | 11/11/2008                                                                                                   | ,                                                                                                                       |                                                                                    |                                                       |                                            |
| SV-4<br>SV-4<br>SV-4<br>SV-4                                 | 11/11/2008<br>11/11/2008<br>11/11/2008                                                                       | Tetrachloroethene<br>Tetrahydrofuran                                                                                    | 127-18-4<br>109-99-9                                                               | 130000<br>ND                                          | 730<br>1700                                |
| SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4                         | 11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008                                                         | Tetrachloroethene Tetrahydrofuran Toluene                                                                               | 127-18-4<br>109-99-9<br>108-88-3                                                   | 130000<br>ND<br>ND                                    | 730<br>1700<br>1300                        |
| SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4                 | 11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008                                           | Tetrachloroethene Tetrahydrofuran Toluene Toluene-d8                                                                    | 127-18-4<br>109-99-9<br>108-88-3<br>2037-26-5                                      | 130000<br>ND<br>ND<br>24.9                            | 730<br>1700<br>1300<br>2.4                 |
| SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4         | 11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008                             | Tetrachloroethene Tetrahydrofuran Toluene Toluene-d8 trans-1,2-Dichloroethene                                           | 127-18-4<br>109-99-9<br>108-88-3<br>2037-26-5<br>156-60-5                          | 130000<br>ND<br>ND<br>ND<br>24.9<br>ND                | 730<br>1700<br>1300<br>2.4<br>1200         |
| SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4 | 11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008               | Tetrachloroethene Tetrahydrofuran Toluene Toluene-d8 trans-1,2-Dichloroethene trans-1,3-Dichloropropene                 | 127-18-4<br>109-99-9<br>108-88-3<br>2037-26-5<br>156-60-5<br>10061-02-6            | 130000<br>ND<br>ND<br>24.9<br>ND<br>ND                | 730<br>1700<br>1300<br>2.4<br>1200<br>1100 |
| SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4 | 11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008 | Tetrachloroethene Tetrahydrofuran Toluene Toluene-d8 trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene | 127-18-4<br>109-99-9<br>108-88-3<br>2037-26-5<br>156-60-5<br>10061-02-6<br>79-01-6 | 130000<br>ND<br>ND<br>24.9<br>ND<br>ND<br>ND<br>16000 | 730<br>1700<br>1300<br>2.4<br>1200<br>1100 |
| SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4<br>SV-4 | 11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008<br>11/11/2008               | Tetrachloroethene Tetrahydrofuran Toluene Toluene-d8 trans-1,2-Dichloroethene trans-1,3-Dichloropropene                 | 127-18-4<br>109-99-9<br>108-88-3<br>2037-26-5<br>156-60-5<br>10061-02-6            | 130000<br>ND<br>ND<br>24.9<br>ND<br>ND                | 730<br>1700<br>1300<br>2.4<br>1200<br>1100 |

| SAMPLE<br>NAME | SAMPLE<br>DATE           | ANALYTE                        | CAS NUMBER         | RESULTS ppbv | REPORTING LIMI ppbv |
|----------------|--------------------------|--------------------------------|--------------------|--------------|---------------------|
| SV-5           | 11/11/2008               | 1,1,1,2-Tetrachloroethane      | 630-20-6           | ND           | 1800                |
| SV-5           | 11/11/2008               | 1,1,1-Trichloroethane          | 71-55-6            | ND           | 2300                |
| SV-5           | 11/11/2008               | 1,1,2,2-Tetrachloroethane      | 79-34-5            | ND           | 1800                |
| SV-5           | 11/11/2008               | 1,1,2-Trichloroethane          | 79-00-5            | ND           | 2300                |
| SV-5           | 11/11/2008               | 1,1,2-Trichlorotrifluoroethane | 76-13-1            | ND           | 3200                |
| SV-5           | 11/11/2008               | 1,1-Dichloroethane             | 75-34-3            | ND           | 3000                |
| SV-5           | 11/11/2008               | 1,1-Dichloroethene             | 75-35-4            | ND           | 3100                |
| SV-5           | 11/11/2008               | 1,2,4-Trichlorobenzene         | 120-82-1           | ND           | 3300                |
| SV-5           | 11/11/2008               | 1,2,4-Trimethylbenzene         | 95-63-6            | ND           | 2500                |
| SV-5           | 11/11/2008               | 1,2-Dibromoethane (EDB)        | 106-93-4           | ND           | 1600                |
| SV-5           | 11/11/2008               | 1,2-Dichlorobenzene            | 95-50-1            | ND           | 4100                |
| SV-5           | 11/11/2008               | 1,2-Dichloroethane             | 107-06-2           | ND           | 3000                |
| SV-5           | 11/11/2008               | 1,2-Dichloroethane-d4          | 17060-07-0         | 20.5         | 2.3                 |
| SV-5           | 11/11/2008               | 1,2-Dichloropropane            | 78-87-5            | ND           | 2700                |
| SV-5           | 11/11/2008               | 1,3,5-Trimethylbenzene         | 108-67-8           | ND           | 2500                |
| SV-5           | 11/11/2008               | 1,3-Butadiene                  | 106-99-0           | ND           | 5600                |
| SV-5           | 11/11/2008               | 1,3-Dichlorobenzene            | 541-73-1           | ND           | 4100                |
| SV-5           | 11/11/2008               | 1,4-Dichlorobenzene            | 106-46-7           | ND           | 4100                |
| SV-5           | 11/11/2008               | 1,4-Dioxane                    | 123-91-1           | ND           | 3400                |
| SV-5           | 11/11/2008               | 2-Butanone                     | 78-93-3            | ND           | 4200                |
| SV-5           | 11/11/2008               | 2-Hexanone                     | 591-78-6           | ND           | 6000                |
| SV-5           | 11/11/2008               | 4-Bromofluorobenzene           | 460-00-4           | 22.4         | 1.4                 |
| SV-5           | 11/11/2008               | 4-Ethyltoluene                 | 622-96-8           | ND           | 2500                |
| SV-5           | 11/11/2008               | 4-Methyl-2-pentanone           | 108-10-1           | ND           | 3000                |
| SV-5           | 11/11/2008               | Acetone                        | 67-64-1            | ND           | 21000               |
| SV-5           | 11/11/2008               | Benzene                        | 71-43-2            | ND<br>ND     | 3900                |
| SV-5           | 11/11/2008               | Benzyl chloride                | 100-44-7           | ND<br>ND     | 2400                |
| SV-5           | 11/11/2008               | Bromodichloromethane           | 75-27-4            | ND ND        | 1800                |
| SV-5           |                          | Bromoform                      |                    | ND<br>ND     | 4800                |
| SV-5<br>SV-5   | 11/11/2008<br>11/11/2008 | Bromomethane                   | 75-25-2<br>74-83-9 | ND<br>ND     | 3200                |
| SV-5<br>SV-5   |                          | Carbon disulfide               |                    | ND<br>ND     | 4000                |
| SV-5<br>SV-5   | 11/11/2008               |                                | 75-15-0            |              | 2000                |
|                | 11/11/2008               | Carbon tetrachloride           | 56-23-5            | ND           |                     |
| SV-5           | 11/11/2008               | Chlorobenzene                  | 108-90-7           | ND ND        | 2700                |
| SV-5           | 11/11/2008               | Chloroethane                   | 75-00-3            | ND ND        | 4700                |
| SV-5           | 11/11/2008               | Chloroform                     | 67-66-3            | ND           | 2500                |
| SV-5           | 11/11/2008               | Chloromethane                  | 74-87-3            | ND           | 6000                |
| SV-5           | 11/11/2008               | cis-1,2-Dichloroethene         | 156-59-2           | 220000       | 3100                |
| SV-5           | 11/11/2008               | cis-1,3-Dichloropropene        | 10061-01-5         | ND           | 2700                |
| SV-5           | 11/11/2008               | Cyclohexane                    | 110-82-7           | ND           | 7200                |
| SV-5           | 11/11/2008               | Dibromochloromethane           | 124-48-1           | ND           | 1400                |
| SV-5           | 11/11/2008               | Dichlorodifluoromethane        | 75-71-8            | ND           | 5000                |
| SV-5           | 11/11/2008               | Dichlorotetrafluoroethane      | 76-14-2            | ND           | 3500                |
| SV-5           | 11/11/2008               | Ethyl acetate                  | 141-78-6           | ND           | 3400                |
| SV-5           | 11/11/2008               | Ethylbenzene                   | 100-41-4           | ND           | 2800                |
| SV-5           | 11/11/2008               | Hexachlorobutadiene            | 87-68-3            | ND           | 2300                |
| SV-5           | 11/11/2008               | m,p-Xylene                     | 136777-61-2        | ND           | 2800                |
| SV-5           | 11/11/2008               | Methyl tert-butyl ether        | 1634-04-4          | ND           | 3400                |
| SV-5           | 11/11/2008               | Methylene chloride             | 75-09-2            | ND           | 7100                |
| SV-5           | 11/11/2008               | n-Heptane                      | 142-82-5           | ND           | 3000                |
| SV-5           | 11/11/2008               | n-Hexane                       | 110-54-3           | ND           | 3500                |
| SV-5           | 11/11/2008               | o-Xylene                       | 95-47-6            | ND           | 2800                |
| SV-5           | 11/11/2008               | Propene                        | 115-07-1           | ND           | 14000               |
| SV-5           | 11/11/2008               | Styrene                        | 100-42-5           | ND           | 2900                |
| SV-5           | 11/11/2008               | Tetrachloroethene              | 127-18-4           | 620000       | 1800                |
| SV-5           | 11/11/2008               | Tetrahydrofuran                | 109-99-9           | ND           | 4200                |
| SV-5           | 11/11/2008               | Toluene                        | 108-88-3           | ND           | 3300                |
| SV-5           | 11/11/2008               | Toluene-d8                     | 2037-26-5          | 26.0         | 2.4                 |
| SV-5           | 11/11/2008               | trans-1,2-Dichloroethene       | 156-60-5           | ND           | 3100                |
| SV-5           | 11/11/2008               | trans-1,3-Dichloropropene      | 10061-02-6         | ND           | 2700                |
| SV-5           | 11/11/2008               | Trichloroethene                | 79-01-6            | 41000        | 2300                |
| SV-5           | 11/11/2008               | Trichlorofluoromethane         | 75-69-4            | ND           | 2200                |
| SV-5           | 11/11/2008               | Vinyl acetate                  | 108-05-4           | ND           | 7000                |
|                |                          |                                |                    |              |                     |

| SAMPLE<br>NAME       | SAMPLE<br>DATE | ANALYTE                                              | CAS NUMBER                     | RESULTS ppbv      | REPORTING LIMIT      |
|----------------------|----------------|------------------------------------------------------|--------------------------------|-------------------|----------------------|
| SV-5 DUP             | 11/11/2008     | 1,1,1,2-Tetrachloroethane                            | 630-20-6                       | ND                | 1800                 |
| SV-5 DUP             | 11/11/2008     | 1,1,1-Trichloroethane                                | 71-55-6                        | ND                | 2300                 |
| SV-5 DUP             | 11/11/2008     | 1,1,2,2-Tetrachloroethane                            | 79-34-5                        | ND                | 1800                 |
| SV-5 DUP             | 11/11/2008     | 1,1,2-Trichloroethane                                | 79-00-5                        | ND                | 2300                 |
| SV-5 DUP             | 11/11/2008     | 1,1,2-Trichlorotrifluoroethane                       | 76-13-1                        | ND                | 3200                 |
| SV-5 DUP             | 11/11/2008     | 1,1-Dichloroethane                                   | 75-34-3                        | ND                | 3000                 |
| SV-5 DUP             | 11/11/2008     | 1,1-Dichloroethene                                   | 75-35-4                        | ND                | 3100                 |
| SV-5 DUP             | 11/11/2008     | 1,2,4-Trichlorobenzene                               | 120-82-1                       | ND                | 3300                 |
| SV-5 DUP             | 11/11/2008     | 1,2,4-Trichloroberizerie                             | 95-63-6                        | ND                | 2500                 |
| SV-5 DUP             | 11/11/2008     | 1,2-Dibromoethane (EDB)                              | 106-93-4                       | ND<br>ND          | 1600                 |
| SV-5 DUP             | 11/11/2008     | 1,2-Dichlorobenzene                                  | 95-50-1                        | ND                | 4100                 |
| SV-5 DUP             | 11/11/2008     | 1,2-Dichloroethane                                   | 107-06-2                       | ND                | 3000                 |
| SV-5 DUP             | 11/11/2008     | 1.2-Dichloroethane-d4                                | 17060-07-0                     | 19.5              | 2.3                  |
| SV-5 DUP             | 11/11/2008     | 1,2-Dichloropropane                                  | 78-87-5                        | ND                | 2700                 |
| SV-5 DUP             | 11/11/2008     |                                                      | 108-67-8                       | ND<br>ND          | 2500                 |
|                      |                | 1,3,5-Trimethylbenzene                               |                                | ND<br>ND          |                      |
| SV-5 DUP             | 11/11/2008     | 1,3-Butadiene                                        | 106-99-0                       |                   | 5600                 |
| SV-5 DUP             | 11/11/2008     | 1,3-Dichlorobenzene                                  | 541-73-1                       | ND                | 4100                 |
| SV-5 DUP             | 11/11/2008     | 1,4-Dichlorobenzene                                  | 106-46-7                       | ND                | 4100                 |
| SV-5 DUP             | 11/11/2008     | 1,4-Dioxane                                          | 123-91-1                       | ND                | 3400                 |
| SV-5 DUP             | 11/11/2008     | 2-Butanone                                           | 78-93-3                        | ND                | 4200                 |
| SV-5 DUP             | 11/11/2008     | 2-Hexanone                                           | 591-78-6                       | ND OIL O          | 6000                 |
| SV-5 DUP             | 11/11/2008     | 4-Bromofluorobenzene                                 | 460-00-4                       | 21.6              | 1.4                  |
| SV-5 DUP             | 11/11/2008     | 4-Ethyltoluene                                       | 622-96-8                       | ND                | 2500                 |
| SV-5 DUP             | 11/11/2008     | 4-Methyl-2-pentanone                                 | 108-10-1                       | ND                | 3000                 |
| SV-5 DUP             | 11/11/2008     | Acetone                                              | 67-64-1                        | ND                | 21000                |
| SV-5 DUP             | 11/11/2008     | Benzene                                              | 71-43-2                        | ND                | 3900                 |
| SV-5 DUP             | 11/11/2008     | Benzyl chloride                                      | 100-44-7                       | ND                | 2400                 |
| SV-5 DUP             | 11/11/2008     | Bromodichloromethane                                 | 75-27-4                        | ND                | 1800                 |
| SV-5 DUP             | 11/11/2008     | Bromoform                                            | 75-25-2                        | ND                | 4800                 |
| SV-5 DUP             | 11/11/2008     | Bromomethane                                         | 74-83-9                        | ND                | 3200                 |
| SV-5 DUP             | 11/11/2008     | Carbon disulfide                                     | 75-15-0                        | ND                | 4000                 |
| SV-5 DUP             | 11/11/2008     | Carbon tetrachloride                                 | 56-23-5                        | ND                | 2000                 |
| SV-5 DUP             | 11/11/2008     | Chlorobenzene                                        | 108-90-7                       | ND                | 2700                 |
| SV-5 DUP             | 11/11/2008     | Chloroethane                                         | 75-00-3                        | ND                | 4700                 |
| SV-5 DUP             | 11/11/2008     | Chloroform                                           | 67-66-3                        | ND                | 2500                 |
| SV-5 DUP             | 11/11/2008     | Chloromethane                                        | 74-87-3                        | ND                | 6000                 |
| SV-5 DUP             | 11/11/2008     | cis-1,2-Dichloroethene                               | 156-59-2                       | 230000            | 3100                 |
| SV-5 DUP             | 11/11/2008     | cis-1,3-Dichloropropene                              | 10061-01-5                     | ND                | 2700                 |
| SV-5 DUP             | 11/11/2008     | Cyclohexane                                          | 110-82-7                       | ND                | 7200                 |
| SV-5 DUP             | 11/11/2008     | Dibromochloromethane                                 | 124-48-1                       | ND                | 1400                 |
| SV-5 DUP             | 11/11/2008     | Dichlorodifluoromethane                              | 75-71-8                        | ND                | 5000                 |
| SV-5 DUP             | 11/11/2008     | Dichlorotetrafluoroethane                            | 76-14-2                        | ND                | 3500                 |
| SV-5 DUP             | 11/11/2008     | Ethyl acetate                                        | 141-78-6                       | ND                | 3400                 |
| SV-5 DUP             | 11/11/2008     | Ethylbenzene                                         | 100-41-4                       | ND                | 2800                 |
| SV-5 DUP             | 11/11/2008     | Hexachlorobutadiene                                  | 87-68-3                        | ND                | 2300                 |
| SV-5 DUP             | 11/11/2008     | m,p-Xylene                                           | 136777-61-2                    | ND                | 2800                 |
| SV-5 DUP             | 11/11/2008     | Methyl tert-butyl ether                              | 1634-04-4                      | ND                | 3400                 |
| SV-5 DUP             | 11/11/2008     | Methylene chloride                                   | 75-09-2                        | ND                | 7100                 |
| SV-5 DUP             | 11/11/2008     | n-Heptane                                            | 142-82-5                       | ND                | 3000                 |
| SV-5 DUP             | 11/11/2008     | n-Hexane                                             | 110-54-3                       | ND                | 3500                 |
| SV-5 DUP             | 11/11/2008     | o-Xylene                                             | 95-47-6                        | ND                | 2800                 |
| SV-5 DUP             | 11/11/2008     | Propene                                              | 115-07-1                       | ND                | 14000                |
| SV-5 DUP             | 11/11/2008     | Styrene                                              | 100-42-5                       | ND                | 2900                 |
| SV-5 DUP             | 11/11/2008     | Tetrachloroethene                                    | 127-18-4                       | 780000            | 1800                 |
| SV-5 DUP             | 11/11/2008     | Tetrahydrofuran                                      | 109-99-9                       | ND                | 4200                 |
| SV-5 DUP             | 11/11/2008     | Toluene                                              | 108-88-3                       | ND                | 3300                 |
| SV-5 DUP             | 11/11/2008     | Toluene-d8                                           | 2037-26-5                      | 26.1              | 2.4                  |
|                      | 11/11/2008     | trans-1,2-Dichloroethene                             | 156-60-5                       | ND                | 3100                 |
| SV-5 DHD             | 11/11/2008     | trans-1,3-Dichloropropene                            | 10061-02-6                     | ND<br>ND          | 2700                 |
| SV-5 DUP             | 11/11/2000     | mans-1,3-Dichiolopropene                             |                                |                   |                      |
| SV-5 DUP             |                | Trichloroothoro                                      | 70.04.6                        | 46000             | 2200                 |
| SV-5 DUP<br>SV-5 DUP | 11/11/2008     | Trichloroethene Trichloroefluoromethene              | 79-01-6                        | 46000             | 2300                 |
| SV-5 DUP             |                | Trichloroethene Trichlorofluoromethane Vinyl acetate | 79-01-6<br>75-69-4<br>108-05-4 | 46000<br>ND<br>ND | 2300<br>2200<br>7000 |

| SAMPLE<br>NAME | SAMPLE<br>DATE | ANALYTE                        | CAS NUMBER  | RESULTS ppbv | REPORTING LIM ppbv |
|----------------|----------------|--------------------------------|-------------|--------------|--------------------|
| SV-6           | 11/11/2008     | 1,1,1,2-Tetrachloroethane      | 630-20-6    | ND           | 14                 |
| SV-6           | 11/11/2008     | 1,1,1-Trichloroethane          | 71-55-6     | ND           | 18                 |
| SV-6           | 11/11/2008     | 1.1.2.2-Tetrachloroethane      | 79-34-5     | ND           | 14                 |
| SV-6           | 11/11/2008     | 1,1,2-Trichloroethane          | 79-00-5     | ND           | 18                 |
| SV-6           | 11/11/2008     | 1.1.2-Trichlorotrifluoroethane | 76-13-1     | ND           | 26                 |
| SV-6           | 11/11/2008     | 1,1-Dichloroethane             | 75-34-3     | ND           | 24                 |
| SV-6           | 11/11/2008     | 1,1-Dichloroethene             | 75-35-4     | ND           | 25                 |
| SV-6           | 11/11/2008     | 1,2,4-Trichlorobenzene         | 120-82-1    | ND<br>ND     | 27                 |
|                | 11/11/2008     |                                |             | ND<br>ND     |                    |
| SV-6           |                | 1,2,4-Trimethylbenzene         | 95-63-6     |              | 20                 |
| SV-6           | 11/11/2008     | 1,2-Dibromoethane (EDB)        | 106-93-4    | ND           | 13                 |
| SV-6           | 11/11/2008     | 1,2-Dichlorobenzene            | 95-50-1     | ND           | 33                 |
| SV-6           | 11/11/2008     | 1,2-Dichloroethane             | 107-06-2    | ND           | 24                 |
| SV-6           | 11/11/2008     | 1,2-Dichloroethane-d4          | 17060-07-0  | 19.5         | 2.3                |
| SV-6           | 11/11/2008     | 1,2-Dichloropropane            | 78-87-5     | ND           | 21                 |
| SV-6           | 11/11/2008     | 1,3,5-Trimethylbenzene         | 108-67-8    | ND           | 20                 |
| SV-6           | 11/11/2008     | 1,3-Butadiene                  | 106-99-0    | ND           | 45                 |
| SV-6           | 11/11/2008     | 1,3-Dichlorobenzene            | 541-73-1    | ND           | 33                 |
| SV-6           | 11/11/2008     | 1,4-Dichlorobenzene            | 106-46-7    | ND           | 33                 |
| SV-6           | 11/11/2008     | 1,4-Dioxane                    | 123-91-1    | ND           | 27                 |
| SV-6           |                | ,                              |             | ND<br>ND     | 33                 |
|                | 11/11/2008     | 2-Butanone                     | 78-93-3     |              |                    |
| SV-6           | 11/11/2008     | 2-Hexanone                     | 591-78-6    | ND           | 48                 |
| SV-6           | 11/11/2008     | 4-Bromofluorobenzene           | 460-00-4    | 23.7         | 1.4                |
| SV-6           | 11/11/2008     | 4-Ethyltoluene                 | 622-96-8    | ND           | 20                 |
| SV-6           | 11/11/2008     | 4-Methyl-2-pentanone           | 108-10-1    | ND           | 24                 |
| SV-6           | 11/11/2008     | Acetone                        | 67-64-1     | ND           | 170                |
| SV-6           | 11/11/2008     | Benzene                        | 71-43-2     | ND           | 31                 |
| SV-6           | 11/11/2008     | Benzyl chloride                | 100-44-7    | ND           | 19                 |
| SV-6           | 11/11/2008     | Bromodichloromethane           | 75-27-4     | ND           | 15                 |
| SV-6           | 11/11/2008     | Bromoform                      | 75-25-2     | ND           | 38                 |
| SV-6           | 11/11/2008     | Bromomethane                   | 74-83-9     | ND           | 25                 |
| SV-6           | 11/11/2008     | Carbon disulfide               | 75-15-0     | ND<br>ND     | 32                 |
|                |                |                                |             |              |                    |
| SV-6           | 11/11/2008     | Carbon tetrachloride           | 56-23-5     | ND           | 16                 |
| SV-6           | 11/11/2008     | Chlorobenzene                  | 108-90-7    | ND           | 21                 |
| SV-6           | 11/11/2008     | Chloroethane                   | 75-00-3     | ND           | 37                 |
| SV-6           | 11/11/2008     | Chloroform                     | 67-66-3     | ND           | 20                 |
| SV-6           | 11/11/2008     | Chloromethane                  | 74-87-3     | ND           | 48                 |
| SV-6           | 11/11/2008     | cis-1,2-Dichloroethene         | 156-59-2    | ND           | 25                 |
| SV-6           | 11/11/2008     | cis-1,3-Dichloropropene        | 10061-01-5  | ND           | 22                 |
| SV-6           | 11/11/2008     | Cyclohexane                    | 110-82-7    | ND           | 57                 |
| SV-6           | 11/11/2008     | Dibromochloromethane           | 124-48-1    | ND           | 12                 |
| SV-6           | 11/11/2008     | Dichlorodifluoromethane        | 75-71-8     | ND           | 40                 |
| SV-6           | 11/11/2008     | Dichlorotetrafluoroethane      | 76-14-2     | ND           | 28                 |
| SV-6           | 11/11/2008     | Ethyl acetate                  | 141-78-6    | ND           | 27                 |
| SV-6           |                | -                              | 100-41-4    | ND ND        | 23                 |
|                | 11/11/2008     | Ethylbenzene                   |             |              |                    |
| SV-6           | 11/11/2008     | Hexachlorobutadiene            | 87-68-3     | ND           | 18                 |
| SV-6           | 11/11/2008     | m,p-Xylene                     | 136777-61-2 | ND           | 23                 |
| SV-6           | 11/11/2008     | Methyl tert-butyl ether        | 1634-04-4   | ND           | 27                 |
| SV-6           | 11/11/2008     | Methylene chloride             | 75-09-2     | ND           | 57                 |
| SV-6           | 11/11/2008     | n-Heptane                      | 142-82-5    | ND           | 24                 |
| SV-6           | 11/11/2008     | n-Hexane                       | 110-54-3    | ND           | 28                 |
| SV-6           | 11/11/2008     | o-Xylene                       | 95-47-6     | ND           | 23                 |
| SV-6           | 11/11/2008     | Propene                        | 115-07-1    | ND           | 110                |
| SV-6           | 11/11/2008     | Styrene                        | 100-42-5    | ND           | 23                 |
| SV-6           | 11/11/2008     | Tetrachloroethene              | 127-18-4    | 350          | 15                 |
| SV-6           | 11/11/2008     | Tetrahydrofuran                | 109-99-9    | ND           | 33                 |
|                |                | ,                              |             |              |                    |
| SV-6           | 11/11/2008     | Toluene                        | 108-88-3    | ND<br>07.4   | 26                 |
| SV-6           | 11/11/2008     | Toluene-d8                     | 2037-26-5   | 27.1         | 2.4                |
| SV-6           | 11/11/2008     | trans-1,2-Dichloroethene       | 156-60-5    | ND           | 25                 |
| SV-6           | 11/11/2008     | trans-1,3-Dichloropropene      | 10061-02-6  | ND           | 22                 |
| SV-6           | 11/11/2008     | Trichloroethene                | 79-01-6     | ND           | 18                 |
| SV-6           | 11/11/2008     | Vinyl acetate                  | 108-05-4    | ND           | 56                 |
|                |                |                                | 75-01-4     |              |                    |

| SAMPLE<br>NAME | SAMPLE<br>DATE | ANALYTE                        | CAS NUMBER  | RESULTS ppbv | REPORTING LIM ppbv |
|----------------|----------------|--------------------------------|-------------|--------------|--------------------|
| SV-7           | 11/11/2008     | 1,1,1,2-Tetrachloroethane      | 630-20-6    | ND           | 36                 |
| SV-7           | 11/11/2008     | 1,1,1-Trichloroethane          | 71-55-6     | ND           | 45                 |
| SV-7           | 11/11/2008     | 1,1,2,2-Tetrachloroethane      | 79-34-5     | ND           | 36                 |
| SV-7           | 11/11/2008     | 1,1,2-Trichloroethane          | 79-00-5     | ND           | 45                 |
| SV-7           | 11/11/2008     | 1,1,2-Trichlorotrifluoroethane | 76-13-1     | ND           | 65                 |
| SV-7           | 11/11/2008     | 1,1-Dichloroethane             | 75-34-3     | ND           | 61                 |
| SV-7           | 11/11/2008     | 1,1-Dichloroethene             | 75-35-4     | ND           | 62                 |
| SV-7           | 11/11/2008     | 1,2,4-Trichlorobenzene         | 120-82-1    | ND           | 66                 |
| SV-7           | 11/11/2008     | 1,2,4-Trichloroberizerie       | 95-63-6     | ND           | 50                 |
| SV-7           | 11/11/2008     | 1,2-Dibromoethane (EDB)        | 106-93-4    | ND           | 32                 |
| SV-7           | 11/11/2008     | 1.2-Dichlorobenzene            | 95-50-1     | ND<br>ND     | 82                 |
|                |                | ,                              |             |              |                    |
| SV-7           | 11/11/2008     | 1,2-Dichloroethane             | 107-06-2    | ND<br>05.4   | 61                 |
| SV-7           | 11/11/2008     | 1,2-Dichloroethane-d4          | 17060-07-0  | 25.1         | 2.3                |
| SV-7           | 11/11/2008     | 1,2-Dichloropropane            | 78-87-5     | ND           | 53                 |
| SV-7           | 11/11/2008     | 1,3,5-Trimethylbenzene         | 108-67-8    | ND           | 50                 |
| SV-7           | 11/11/2008     | 1,3-Butadiene                  | 106-99-0    | ND           | 110                |
| SV-7           | 11/11/2008     | 1,3-Dichlorobenzene            | 541-73-1    | ND           | 82                 |
| SV-7           | 11/11/2008     | 1,4-Dichlorobenzene            | 106-46-7    | ND           | 82                 |
| SV-7           | 11/11/2008     | 1,4-Dioxane                    | 123-91-1    | ND           | 68                 |
| SV-7           | 11/11/2008     | 2-Butanone                     | 78-93-3     | ND           | 84                 |
| SV-7           | 11/11/2008     | 2-Hexanone                     | 591-78-6    | ND           | 120                |
| SV-7           | 11/11/2008     | 4-Bromofluorobenzene           | 460-00-4    | 20.6         | 1.4                |
| SV-7           | 11/11/2008     | 4-Ethyltoluene                 | 622-96-8    | ND           | 50                 |
| SV-7           |                |                                | 108-10-1    | ND<br>ND     | 60                 |
|                | 11/11/2008     | 4-Methyl-2-pentanone           |             |              |                    |
| SV-7           | 11/11/2008     | Acetone                        | 67-64-1     | ND           | 420                |
| SV-7           | 11/11/2008     | Benzene                        | 71-43-2     | ND           | 77                 |
| SV-7           | 11/11/2008     | Benzyl chloride                | 100-44-7    | ND           | 48                 |
| SV-7           | 11/11/2008     | Bromodichloromethane           | 75-27-4     | ND           | 37                 |
| SV-7           | 11/11/2008     | Bromoform                      | 75-25-2     | ND           | 95                 |
| SV-7           | 11/11/2008     | Bromomethane                   | 74-83-9     | ND           | 64                 |
| SV-7           | 11/11/2008     | Carbon disulfide               | 75-15-0     | ND           | 79                 |
| SV-7           | 11/11/2008     | Carbon tetrachloride           | 56-23-5     | ND           | 39                 |
| SV-7           | 11/11/2008     | Chlorobenzene                  | 108-90-7    | ND           | 54                 |
| SV-7           | 11/11/2008     | Chloroethane                   | 75-00-3     | ND           | 93                 |
| SV-7           | 11/11/2008     | Chloroform                     | 67-66-3     | ND           | 50                 |
| SV-7           | 11/11/2008     | Chloromethane                  | 74-87-3     | ND           | 120                |
| SV-7           | 11/11/2008     | cis-1,2-Dichloroethene         | 156-59-2    | 4500         | 62                 |
| SV-7           | 11/11/2008     | cis-1,3-Dichloropropene        | 10061-01-5  | ND           | 54                 |
| SV-7           |                |                                |             | ND<br>ND     | 140                |
|                | 11/11/2008     | Cyclohexane                    | 110-82-7    |              |                    |
| SV-7           | 11/11/2008     | Dibromochloromethane           | 124-48-1    | ND           | 29                 |
| SV-7           | 11/11/2008     | Dichlorodifluoromethane        | 75-71-8     | ND           | 100                |
| SV-7           | 11/11/2008     | Dichlorotetrafluoroethane      | 76-14-2     | ND           | 71                 |
| SV-7           | 11/11/2008     | Ethyl acetate                  | 141-78-6    | ND           | 68                 |
| SV-7           | 11/11/2008     | Ethylbenzene                   | 100-41-4    | ND           | 57                 |
| SV-7           | 11/11/2008     | Hexachlorobutadiene            | 87-68-3     | ND           | 46                 |
| SV-7           | 11/11/2008     | m,p-Xylene                     | 136777-61-2 | ND           | 57                 |
| SV-7           | 11/11/2008     | Methyl tert-butyl ether        | 1634-04-4   | ND           | 68                 |
| SV-7           | 11/11/2008     | Methylene chloride             | 75-09-2     | ND           | 140                |
| SV-7           | 11/11/2008     | n-Heptane                      | 142-82-5    | ND           | 60                 |
| SV-7           | 11/11/2008     | n-Hexane                       | 110-54-3    | ND           | 70                 |
| SV-7           | 11/11/2008     | o-Xylene                       | 95-47-6     | ND           | 57                 |
| SV-7           | 11/11/2008     | Propene                        | 115-07-1    | ND           | 290                |
| SV-7           | 11/11/2008     | Styrene                        | 100-42-5    | ND ND        | 58                 |
|                |                | ,                              |             |              |                    |
| SV-7           | 11/11/2008     | Tetrachloroethene              | 127-18-4    | 6000         | 360                |
| SV-7           | 11/11/2008     | Tetrahydrofuran                | 109-99-9    | ND           | 84                 |
| SV-7           | 11/11/2008     | Toluene                        | 108-88-3    | ND           | 65                 |
| SV-7           | 11/11/2008     | Toluene-d8                     | 2037-26-5   | 24.4         | 2.4                |
| SV-7           | 11/11/2008     | trans-1,2-Dichloroethene       | 156-60-5    | ND           | 62                 |
| SV-7           | 11/11/2008     | trans-1,3-Dichloropropene      | 10061-02-6  | ND           | 54                 |
| SV-7           | 11/11/2008     | Trichloroethene                | 79-01-6     | 1500         | 46                 |
| SV-7           | 11/11/2008     | Trichlorofluoromethane         | 75-69-4     | ND           | 44                 |
| SV-7           | 11/11/2008     | Vinyl acetate                  | 108-05-4    | ND           | 140                |
|                | 11/11/2008     | Vinyl chloride                 | 75-01-4     | ND           | 97                 |

| SAMPLE<br>NAME | SAMPLE<br>DATE | ANALYTE                        | CAS NUMBER  | RESULTS ppbv | REPORTING LIMI ppbv |
|----------------|----------------|--------------------------------|-------------|--------------|---------------------|
| SV-8           | 11/11/2008     | 1,1,1,2-Tetrachloroethane      | 630-20-6    | ND           | 1.4                 |
| SV-8           | 11/11/2008     | 1,1,1-Trichloroethane          | 71-55-6     | ND           | 1.8                 |
| SV-8           | 11/11/2008     | 1,1,2,2-Tetrachloroethane      | 79-34-5     | ND           | 1.4                 |
| SV-8           | 11/11/2008     | 1,1,2-Trichloroethane          | 79-00-5     | ND           | 1.8                 |
| SV-8           | 11/11/2008     | 1,1,2-Trichlorotrifluoroethane | 76-13-1     | ND           | 2.6                 |
| SV-8           | 11/11/2008     | 1,1-Dichloroethane             | 75-34-3     | ND           | 2.4                 |
| SV-8           | 11/11/2008     | 1,1-Dichloroethene             | 75-35-4     | ND           | 2.5                 |
| SV-8           | 11/11/2008     | 1,2,4-Trichlorobenzene         | 120-82-1    | ND           | 2.7                 |
| SV-8           | 11/11/2008     | 1,2,4-Trimethylbenzene         | 95-63-6     | ND           | 2.0                 |
| SV-8           | 11/11/2008     | 1,2-Dibromoethane (EDB)        | 106-93-4    | ND           | 1.3                 |
| SV-8           | 11/11/2008     | 1,2-Dichlorobenzene            | 95-50-1     | ND           | 3.3                 |
| SV-8           | 11/11/2008     | 1,2-Dichloroethane             | 107-06-2    | ND           | 2.4                 |
| SV-8           | 11/11/2008     | 1.2-Dichloroethane-d4          | 17060-07-0  | 20.6         | 2.3                 |
| SV-8           | 11/11/2008     | 1,2-Dichloropropane            | 78-87-5     | ND           | 2.1                 |
| SV-8           | 11/11/2008     | 1,3,5-Trimethylbenzene         | 108-67-8    | ND           | 2.0                 |
| SV-8           | 11/11/2008     | 1,3-Butadiene                  | 106-99-0    | ND           | 4.5                 |
| SV-8           | 11/11/2008     | 1,3-Dichlorobenzene            | 541-73-1    | ND           | 3.3                 |
| SV-8           |                |                                |             | ND<br>ND     |                     |
|                | 11/11/2008     | 1,4-Dichlorobenzene            | 106-46-7    |              | 3.3                 |
| SV-8           | 11/11/2008     | 1,4-Dioxane                    | 123-91-1    | ND           | 2.7                 |
| SV-8           | 11/11/2008     | 2-Butanone                     | 78-93-3     | ND           | 3.3                 |
| SV-8           | 11/11/2008     | 2-Hexanone                     | 591-78-6    | ND           | 4.8                 |
| SV-8           | 11/11/2008     | 4-Bromofluorobenzene           | 460-00-4    | 24.4         | 1.4                 |
| SV-8           | 11/11/2008     | 4-Ethyltoluene                 | 622-96-8    | ND           | 2.0                 |
| SV-8           | 11/11/2008     | 4-Methyl-2-pentanone           | 108-10-1    | ND           | 2.4                 |
| SV-8           | 11/11/2008     | Acetone                        | 67-64-1     | ND           | 17                  |
| SV-8           | 11/11/2008     | Benzene                        | 71-43-2     | ND           | 3.1                 |
| SV-8           | 11/11/2008     | Benzyl chloride                | 100-44-7    | ND           | 1.9                 |
| SV-8           | 11/11/2008     | Bromodichloromethane           | 75-27-4     | ND           | 1.5                 |
| SV-8           | 11/11/2008     | Bromoform                      | 75-25-2     | ND           | 3.8                 |
| SV-8           | 11/11/2008     | Bromomethane                   | 74-83-9     | ND           | 2.5                 |
| SV-8           | 11/11/2008     | Carbon disulfide               | 75-15-0     | ND           | 3.2                 |
| SV-8           | 11/11/2008     | Carbon tetrachloride           | 56-23-5     | ND           | 1.6                 |
| SV-8           | 11/11/2008     | Chlorobenzene                  | 108-90-7    | ND           | 2.1                 |
| SV-8           | 11/11/2008     | Chloroethane                   | 75-00-3     | ND           | 3.7                 |
| SV-8           | 11/11/2008     | Chloroform                     | 67-66-3     | ND           | 2.0                 |
| SV-8           | 11/11/2008     | Chloromethane                  | 74-87-3     | ND           | 4.8                 |
| SV-8           | 11/11/2008     | cis-1,2-Dichloroethene         | 156-59-2    | 3.1          | 2.5                 |
| SV-8           |                |                                |             | ND           | 2.2                 |
|                | 11/11/2008     | cis-1,3-Dichloropropene        | 10061-01-5  |              |                     |
| SV-8           | 11/11/2008     | Cyclohexane                    | 110-82-7    | ND           | 5.7                 |
| SV-8           | 11/11/2008     | Dibromochloromethane           | 124-48-1    | ND           | 1.2                 |
| SV-8           | 11/11/2008     | Dichlorodifluoromethane        | 75-71-8     | ND           | 4.0                 |
| SV-8           | 11/11/2008     | Dichlorotetrafluoroethane      | 76-14-2     | ND           | 2.8                 |
| SV-8           | 11/11/2008     | Ethyl acetate                  | 141-78-6    | ND           | 2.7                 |
| SV-8           | 11/11/2008     | Ethylbenzene                   | 100-41-4    | ND           | 2.3                 |
| SV-8           | 11/11/2008     | Hexachlorobutadiene            | 87-68-3     | ND           | 1.8                 |
| SV-8           | 11/11/2008     | m,p-Xylene                     | 136777-61-2 | ND           | 2.3                 |
| SV-8           | 11/11/2008     | Methyl tert-butyl ether        | 1634-04-4   | ND           | 2.7                 |
| SV-8           | 11/11/2008     | Methylene chloride             | 75-09-2     | ND           | 5.7                 |
| SV-8           | 11/11/2008     | n-Heptane                      | 142-82-5    | ND           | 2.4                 |
| SV-8           | 11/11/2008     | n-Hexane                       | 110-54-3    | ND           | 2.8                 |
| SV-8           | 11/11/2008     | o-Xylene                       | 95-47-6     | ND           | 2.3                 |
| SV-8           | 11/11/2008     | Propene                        | 115-07-1    | ND           | 11                  |
| SV-8           | 11/11/2008     | Styrene                        | 100-42-5    | ND           | 2.3                 |
| SV-8           | 11/11/2008     | Tetrachloroethene              | 127-18-4    | 45           | 1.5                 |
| SV-8           | 11/11/2008     | Tetrahydrofuran                | 109-99-9    | ND           | 3.3                 |
| SV-8           | 11/11/2008     | Toluene                        | 108-88-3    | 2.9          | 2.6                 |
| SV-8           | 11/11/2008     | Toluene-d8                     | 2037-26-5   | 25.8         | 2.4                 |
| SV-8           | 11/11/2008     | trans-1,2-Dichloroethene       | 156-60-5    | ND           | 2.5                 |
|                |                |                                |             |              |                     |
| SV-8           | 11/11/2008     | trans-1,3-Dichloropropene      | 10061-02-6  | ND           | 2.2                 |
| SV-8           | 11/11/2008     | Trichloroethene                | 79-01-6     | ND           | 1.8                 |
| SV-8           | 11/11/2008     | Trichlorofluoromethane         | 75-69-4     | ND           | 1.8                 |
| SV-8           | 11/11/2008     | Vinyl acetate                  | 108-05-4    | ND           | 5.6                 |
| SV-8           | 11/11/2008     | Vinyl chloride                 | 75-01-4     | ND           | 3.9                 |

| SAMPLE<br>NAME | SAMPLE<br>DATE           | ANALYTE                        | CAS NUMBER         | RESULTS ppbv | REPORTING LIMI ppbv |
|----------------|--------------------------|--------------------------------|--------------------|--------------|---------------------|
| SV-9           | 11/11/2008               | 1,1,1,2-Tetrachloroethane      | 630-20-6           | ND           | 36                  |
| SV-9           | 11/11/2008               | 1,1,1-Trichloroethane          | 71-55-6            | ND           | 45                  |
| SV-9           | 11/11/2008               | 1,1,2,2-Tetrachloroethane      | 79-34-5            | ND           | 36                  |
| SV-9           | 11/11/2008               | 1,1,2-Trichloroethane          | 79-00-5            | ND           | 45                  |
| SV-9           | 11/11/2008               | 1,1,2-Trichlorotrifluoroethane | 76-13-1            | ND           | 65                  |
| SV-9           | 11/11/2008               | 1,1-Dichloroethane             | 75-34-3            | ND           | 61                  |
| SV-9           | 11/11/2008               | 1,1-Dichloroethene             | 75-35-4            | ND           | 62                  |
| SV-9           | 11/11/2008               | 1,2,4-Trichlorobenzene         | 120-82-1           | ND           | 66                  |
| SV-9           | 11/11/2008               | 1,2,4-Trimethylbenzene         | 95-63-6            | ND           | 50                  |
| SV-9           | 11/11/2008               | 1,2-Dibromoethane (EDB)        | 106-93-4           | ND           | 32                  |
| SV-9           | 11/11/2008               | 1,2-Dichlorobenzene            | 95-50-1            | ND           | 82                  |
| SV-9           | 11/11/2008               | 1,2-Dichloroethane             | 107-06-2           | ND           | 61                  |
| SV-9           | 11/11/2008               | 1,2-Dichloroethane-d4          | 17060-07-0         | 20.2         | 2.3                 |
| SV-9           | 11/11/2008               | 1,2-Dichloropropane            | 78-87-5            | ND           | 53                  |
| SV-9           | 11/11/2008               | 1,3,5-Trimethylbenzene         | 108-67-8           | ND           | 50                  |
| SV-9           | 11/11/2008               | 1,3-Butadiene                  | 106-99-0           | ND           | 110                 |
| SV-9           | 11/11/2008               | 1,3-Dichlorobenzene            | 541-73-1           | ND           | 82                  |
| SV-9           | 11/11/2008               | 1,4-Dichlorobenzene            | 106-46-7           | ND           | 82                  |
| SV-9           | 11/11/2008               | 1,4-Dioxane                    | 123-91-1           | ND           | 68                  |
| SV-9           | 11/11/2008               | 2-Butanone                     | 78-93-3            | ND           | 84                  |
| SV-9           | 11/11/2008               | 2-Hexanone                     | 591-78-6           | ND           | 120                 |
| SV-9           | 11/11/2008               | 4-Bromofluorobenzene           | 460-00-4           | 21.8         | 1.4                 |
| SV-9           | 11/11/2008               | 4-Ethyltoluene                 | 622-96-8           | ND ND        | 50                  |
| SV-9           | 11/11/2008               | 4-Methyl-2-pentanone           | 108-10-1           | ND           | 60                  |
| SV-9           | 11/11/2008               | Acetone                        | 67-64-1            | ND           | 420                 |
| SV-9           | 11/11/2008               | Benzene                        | 71-43-2            | ND ND        | 77                  |
| SV-9           | 11/11/2008               | Benzyl chloride                | 100-44-7           | ND ND        | 48                  |
| SV-9           | 11/11/2008               | Bromodichloromethane           | 75-27-4            | ND<br>ND     | 37                  |
| SV-9           | 11/11/2008               | Bromoform                      | 75-25-2            | ND<br>ND     | 95                  |
| SV-9           |                          | Bromomethane                   | 74-83-9            | ND<br>ND     | 64                  |
| SV-9<br>SV-9   | 11/11/2008<br>11/11/2008 | Carbon disulfide               | 74-63-9<br>75-15-0 | ND<br>ND     | 79                  |
|                |                          |                                |                    |              |                     |
| SV-9           | 11/11/2008               | Carbon tetrachloride           | 56-23-5            | ND           | 39                  |
| SV-9           | 11/11/2008               | Chlorobenzene                  | 108-90-7           | ND ND        | 54                  |
| SV-9           | 11/11/2008               | Chloroethane                   | 75-00-3            | ND ND        | 93                  |
| SV-9           | 11/11/2008               | Chloroform                     | 67-66-3            | ND           | 50                  |
| SV-9           | 11/11/2008               | Chloromethane                  | 74-87-3            | ND           | 120                 |
| SV-9           | 11/11/2008               | cis-1,2-Dichloroethene         | 156-59-2           | 2900         | 62                  |
| SV-9           | 11/11/2008               | cis-1,3-Dichloropropene        | 10061-01-5         | ND           | 54                  |
| SV-9           | 11/11/2008               | Cyclohexane                    | 110-82-7           | ND           | 140                 |
| SV-9           | 11/11/2008               | Dibromochloromethane           | 124-48-1           | ND           | 29                  |
| SV-9           | 11/11/2008               | Dichlorodifluoromethane        | 75-71-8            | ND           | 100                 |
| SV-9           | 11/11/2008               | Dichlorotetrafluoroethane      | 76-14-2            | ND           | 71                  |
| SV-9           | 11/11/2008               | Ethyl acetate                  | 141-78-6           | ND           | 68                  |
| SV-9           | 11/11/2008               | Ethylbenzene                   | 100-41-4           | ND           | 57                  |
| SV-9           | 11/11/2008               | Hexachlorobutadiene            | 87-68-3            | ND           | 46                  |
| SV-9           | 11/11/2008               | m,p-Xylene                     | 136777-61-2        | ND           | 57                  |
| SV-9           | 11/11/2008               | Methyl tert-butyl ether        | 1634-04-4          | ND           | 68                  |
| SV-9           | 11/11/2008               | Methylene chloride             | 75-09-2            | ND           | 140                 |
| SV-9           | 11/11/2008               | n-Heptane                      | 142-82-5           | ND           | 60                  |
| SV-9           | 11/11/2008               | n-Hexane                       | 110-54-3           | ND           | 70                  |
| SV-9           | 11/11/2008               | o-Xylene                       | 95-47-6            | ND           | 57                  |
| SV-9           | 11/11/2008               | Propene                        | 115-07-1           | ND           | 290                 |
| SV-9           | 11/11/2008               | Styrene                        | 100-42-5           | ND           | 58                  |
| SV-9           | 11/11/2008               | Tetrachloroethene              | 127-18-4           | 9900         | 730                 |
| SV-9           | 11/11/2008               | Tetrahydrofuran                | 109-99-9           | ND           | 84                  |
| SV-9           | 11/11/2008               | Toluene                        | 108-88-3           | ND           | 65                  |
| SV-9           | 11/11/2008               | Toluene-d8                     | 2037-26-5          | 23.9         | 2.4                 |
| SV-9           | 11/11/2008               | trans-1,2-Dichloroethene       | 156-60-5           | ND           | 62                  |
| SV-9           | 11/11/2008               | trans-1,3-Dichloropropene      | 10061-02-6         | ND           | 54                  |
| SV-9           | 11/11/2008               | Trichloroethene                | 79-01-6            | 980          | 46                  |
|                | 11/11/2008               | Trichlorofluoromethane         | 75-69-4            | ND           | 44                  |
| SV-9           |                          |                                | 1 U UU-T           | 140          | 77                  |
| SV-9<br>SV-9   | 11/11/2008               | Vinyl acetate                  | 108-05-4           | ND           | 140                 |

| SAMPLE<br>NAME | SAMPLE<br>DATE | ANALYTE                        | CAS NUMBER  | RESULTS ppbv | REPORTING LIMI ppbv |
|----------------|----------------|--------------------------------|-------------|--------------|---------------------|
| SV-10          | 11/11/2008     | 1,1,1,2-Tetrachloroethane      | 630-20-6    | ND           | 7.2                 |
| SV-10          | 11/11/2008     | 1,1,1-Trichloroethane          | 71-55-6     | ND           | 9.1                 |
| SV-10          | 11/11/2008     | 1,1,2,2-Tetrachloroethane      | 79-34-5     | ND           | 7.2                 |
| SV-10          | 11/11/2008     | 1,1,2-Trichloroethane          | 79-00-5     | ND           | 9.1                 |
| SV-10          | 11/11/2008     | 1,1,2-Trichlorotrifluoroethane | 76-13-1     | ND           | 13                  |
| SV-10          | 11/11/2008     | 1,1-Dichloroethane             | 75-34-3     | ND           | 12                  |
| SV-10          | 11/11/2008     | 1,1-Dichloroethene             | 75-35-4     | ND           | 12                  |
| SV-10          | 11/11/2008     | 1,2,4-Trichlorobenzene         | 120-82-1    | ND           | 13                  |
| SV-10          | 11/11/2008     | 1,2,4-Trimethylbenzene         | 95-63-6     | ND           | 10                  |
| SV-10          | 11/11/2008     | 1,2-Dibromoethane (EDB)        | 106-93-4    | ND           | 6.4                 |
| SV-10          | 11/11/2008     | 1,2-Dichlorobenzene            | 95-50-1     | ND           | 16                  |
| SV-10          | 11/11/2008     | 1,2-Dichloroethane             | 107-06-2    | ND           | 12                  |
| SV-10          | 11/11/2008     | 1,2-Dichloroethane-d4          | 17060-07-0  | 28.2         | 2.3                 |
| SV-10          | 11/11/2008     | 1,2-Dichloropropane            | 78-87-5     | ND           | 11                  |
| SV-10          | 11/11/2008     | 1,3,5-Trimethylbenzene         | 108-67-8    | ND           | 10                  |
| SV-10          | 11/11/2008     | 1,3-Butadiene                  | 106-99-0    | ND           | 22                  |
| SV-10          | 11/11/2008     | 1,3-Dichlorobenzene            | 541-73-1    | ND           | 16                  |
| SV-10          | 11/11/2008     | 1,4-Dichlorobenzene            | 106-46-7    | ND           | 16                  |
| SV-10          | 11/11/2008     | 1.4-Dioxane                    | 123-91-1    | ND           | 14                  |
| SV-10          | 11/11/2008     | 2-Butanone                     | 78-93-3     | ND ND        | 17                  |
| SV-10          | 11/11/2008     | 2-Hexanone                     | 591-78-6    | ND           | 24                  |
| SV-10          | 11/11/2008     | 4-Bromofluorobenzene           | 460-00-4    | 22.1         | 1.4                 |
| SV-10          | 11/11/2008     | 4-Ethyltoluene                 | 622-96-8    | ND           | 10                  |
| SV-10          | 11/11/2008     |                                | 108-10-1    | ND<br>ND     | 12                  |
|                |                | 4-Methyl-2-pentanone           |             |              |                     |
| SV-10          | 11/11/2008     | Acetone                        | 67-64-1     | ND           | 83                  |
| SV-10          | 11/11/2008     | Benzene                        | 71-43-2     | ND           | 15                  |
| SV-10          | 11/11/2008     | Benzyl chloride                | 100-44-7    | ND           | 9.6                 |
| SV-10          | 11/11/2008     | Bromodichloromethane           | 75-27-4     | ND           | 7.4                 |
| SV-10          | 11/11/2008     | Bromoform                      | 75-25-2     | ND           | 19                  |
| SV-10          | 11/11/2008     | Bromomethane                   | 74-83-9     | ND           | 13                  |
| SV-10          | 11/11/2008     | Carbon disulfide               | 75-15-0     | ND           | 16                  |
| SV-10          | 11/11/2008     | Carbon tetrachloride           | 56-23-5     | ND           | 7.8                 |
| SV-10          | 11/11/2008     | Chlorobenzene                  | 108-90-7    | ND           | 11                  |
| SV-10          | 11/11/2008     | Chloroethane                   | 75-00-3     | ND           | 19                  |
| SV-10          | 11/11/2008     | Chloroform                     | 67-66-3     | ND           | 10                  |
| SV-10          | 11/11/2008     | Chloromethane                  | 74-87-3     | ND           | 24                  |
| SV-10          | 11/11/2008     | cis-1,2-Dichloroethene         | 156-59-2    | 69           | 12                  |
| SV-10          | 11/11/2008     | cis-1,3-Dichloropropene        | 10061-01-5  | ND           | 11                  |
| SV-10          | 11/11/2008     | Cyclohexane                    | 110-82-7    | ND           | 29                  |
| SV-10          | 11/11/2008     | Dibromochloromethane           | 124-48-1    | ND           | 5.8                 |
| SV-10          | 11/11/2008     | Dichlorodifluoromethane        | 75-71-8     | ND           | 20                  |
| SV-10          | 11/11/2008     | Dichlorotetrafluoroethane      | 76-14-2     | ND           | 14                  |
| SV-10          | 11/11/2008     | Ethyl acetate                  | 141-78-6    | ND           | 14                  |
| SV-10          | 11/11/2008     | Ethylbenzene                   | 100-41-4    | ND           | 11                  |
| SV-10          | 11/11/2008     | Hexachlorobutadiene            | 87-68-3     | ND           | 9.2                 |
| SV-10          | 11/11/2008     | m,p-Xylene                     | 136777-61-2 | ND           | 11                  |
| SV-10          | 11/11/2008     | Methyl tert-butyl ether        | 1634-04-4   | ND           | 14                  |
| SV-10          | 11/11/2008     | Methylene chloride             | 75-09-2     | ND           | 28                  |
| SV-10          | 11/11/2008     | n-Heptane                      | 142-82-5    | ND           | 12                  |
| SV-10          | 11/11/2008     | n-Hexane                       | 110-54-3    | ND           | 14                  |
| SV-10          | 11/11/2008     | o-Xylene                       | 95-47-6     | ND           | 11                  |
| SV-10          | 11/11/2008     | Propene                        | 115-07-1    | ND           | 57                  |
| SV-10          | 11/11/2008     | Styrene                        | 100-42-5    | ND           | 12                  |
| SV-10          | 11/11/2008     | Tetrachloroethene              | 127-18-4    | 2600         | 7.3                 |
| SV-10          | 11/11/2008     | Tetrahydrofuran                | 109-99-9    | ND           | 17                  |
|                |                | -                              | 109-99-9    | ND<br>ND     | 13                  |
| SV-10          | 11/11/2008     | Toluene                        |             |              |                     |
| SV-10          | 11/11/2008     | Toluene-d8                     | 2037-26-5   | 24.3         | 2.4                 |
| SV-10          | 11/11/2008     | trans-1,2-Dichloroethene       | 156-60-5    | ND           | 12                  |
| SV-10          | 11/11/2008     | trans-1,3-Dichloropropene      | 10061-02-6  | ND           | 11                  |
| SV-10          | 11/11/2008     | Trichloroethene                | 79-01-6     | 110          | 9.2                 |
| SV-10          | 11/11/2008     | Trichlorofluoromethane         | 75-69-4     | ND           | 8.8                 |
| SV-10          | 11/11/2008     | Vinyl acetate                  | 108-05-4    | ND           | 28                  |
| SV-10          | 11/11/2008     | Vinyl chloride                 | 75-01-4     | ND           | 19                  |

| SAMPLE<br>NAME | SAMPLE<br>DATE | ANALYTE                        | CAS NUMBER          | RESULTS ppbv | REPORTING LIMI ppbv |
|----------------|----------------|--------------------------------|---------------------|--------------|---------------------|
| SV-11          | 11/11/2008     | 1,1,1,2-Tetrachloroethane      | 630-20-6            | ND           | 0.72                |
| SV-11          | 11/11/2008     | 1,1,1-Trichloroethane          | 71-55-6             | ND           | 0.91                |
| SV-11          | 11/11/2008     | 1,1,2,2-Tetrachloroethane      | 79-34-5             | ND           | 0.72                |
| SV-11          | 11/11/2008     | 1,1,2-Trichloroethane          | 79-00-5             | ND           | 0.91                |
| SV-11          | 11/11/2008     | 1,1,2-Trichlorotrifluoroethane | 76-13-1             | ND           | 1.3                 |
| SV-11          | 11/11/2008     | 1,1-Dichloroethane             | 75-34-3             | ND           | 1.2                 |
| SV-11          | 11/11/2008     | 1,1-Dichloroethene             | 75-35-4             | ND           | 1.2                 |
| SV-11          | 11/11/2008     | 1,2,4-Trichlorobenzene         | 120-82-1            | ND           | 1.3                 |
| SV-11          | 11/11/2008     | 1,2,4-Trimethylbenzene         | 95-63-6             | 1.2          | 1.0                 |
| SV-11          | 11/11/2008     | 1,2-Dibromoethane (EDB)        | 106-93-4            | ND           | 0.64                |
| SV-11          | 11/11/2008     | 1,2-Dichlorobenzene            | 95-50-1             | ND           | 1.6                 |
| SV-11          | 11/11/2008     | 1,2-Dichloroethane             | 107-06-2            | ND           | 1.2                 |
| SV-11          | 11/11/2008     | 1,2-Dichloroethane-d4          | 17060-07-0          | 27.4         | 2.3                 |
| SV-11          | 11/11/2008     | 1,2-Dichloropropane            | 78-87-5             | ND           | 1.1                 |
| SV-11          | 11/11/2008     | 1,3,5-Trimethylbenzene         | 108-67-8            | ND           | 1.0                 |
| SV-11          | 11/11/2008     | 1,3-Butadiene                  | 106-99-0            | ND           | 2.2                 |
| SV-11          | 11/11/2008     | 1,3-Dichlorobenzene            | 541-73-1            | ND           | 1.6                 |
| SV-11          | 11/11/2008     | 1,4-Dichlorobenzene            | 106-46-7            | ND           | 1.6                 |
| SV-11          | 11/11/2008     | 1,4-Dioxane                    | 123-91-1            | ND           | 1.4                 |
| SV-11          | 11/11/2008     | 2-Butanone                     | 78-93-3             | ND<br>ND     | 1.7                 |
| SV-11          | 11/11/2008     | 2-Hexanone                     | 591-78-6            | ND           | 2.4                 |
| SV-11          | 11/11/2008     | 4-Bromofluorobenzene           | 460-00-4            | 24.1         | 1.4                 |
| SV-11          |                |                                |                     | 24.1<br>ND   |                     |
|                | 11/11/2008     | 4-Ethyltoluene                 | 622-96-8            |              | 1.0                 |
| SV-11          | 11/11/2008     | 4-Methyl-2-pentanone           | 108-10-1            | ND<br>10     | 1.2                 |
| SV-11          | 11/11/2008     | Acetone                        | 67-64-1             | 13           | 8.3                 |
| SV-11          | 11/11/2008     | Benzene                        | 71-43-2             | ND           | 1.5                 |
| SV-11          | 11/11/2008     | Benzyl chloride                | 100-44-7            | ND           | 0.96                |
| SV-11          | 11/11/2008     | Bromodichloromethane           | 75-27-4             | ND           | 0.74                |
| SV-11          | 11/11/2008     | Bromoform                      | 75-25-2             | ND           | 1.9                 |
| SV-11          | 11/11/2008     | Bromomethane                   | 74-83-9             | ND           | 1.3                 |
| SV-11          | 11/11/2008     | Carbon disulfide               | 75-15-0             | 2.7          | 1.6                 |
| SV-11          | 11/11/2008     | Carbon tetrachloride           | 56-23-5             | 1.2          | 0.78                |
| SV-11          | 11/11/2008     | Chlorobenzene                  | 108-90-7            | ND           | 1.1                 |
| SV-11          | 11/11/2008     | Chloroethane                   | 75-00-3             | ND           | 1.9                 |
| SV-11          | 11/11/2008     | Chloroform                     | 67-66-3             | 79           | 1.0                 |
| SV-11          | 11/11/2008     | Chloromethane                  | 74-87-3             | ND           | 2.4                 |
| SV-11          | 11/11/2008     | cis-1,2-Dichloroethene         | 156-59-2            | 2.0          | 1.2                 |
| SV-11          | 11/11/2008     | cis-1,3-Dichloropropene        | 10061-01-5          | ND           | 1.1                 |
| SV-11          | 11/11/2008     | Cyclohexane                    | 110-82-7            | ND           | 2.9                 |
| SV-11          | 11/11/2008     | Dibromochloromethane           | 124-48-1            | ND           | 0.58                |
| SV-11          | 11/11/2008     | Dichlorodifluoromethane        | 75-71-8             | ND           | 2.0                 |
| SV-11          | 11/11/2008     | Dichlorotetrafluoroethane      | 76-14-2             | ND           | 1.4                 |
| SV-11          | 11/11/2008     | Ethyl acetate                  | 141-78-6            | ND           | 1.4                 |
| SV-11          | 11/11/2008     | Ethylbenzene                   | 100-41-4            | ND           | 1.1                 |
| SV-11          | 11/11/2008     | Hexachlorobutadiene            | 87-68-3             | ND           | 0.92                |
| SV-11          | 11/11/2008     | m,p-Xylene                     | 136777-61-2         | 1.9          | 1.1                 |
| SV-11          | 11/11/2008     | Methyl tert-butyl ether        | 1634-04-4           | ND           | 1.4                 |
| SV-11          | 11/11/2008     | Methylene chloride             | 75-09-2             | ND<br>ND     | 2.8                 |
| SV-11          | 11/11/2008     | n-Heptane                      | 142-82-5            | ND<br>ND     | 1.2                 |
| SV-11          | 11/11/2008     | n-Hexane                       | 110-54-3            | ND<br>ND     | 1.4                 |
| SV-11          | 11/11/2008     | o-Xylene                       | 95-47-6             | ND<br>ND     | 1.4                 |
|                |                | -                              | 95-47-6<br>115-07-1 |              |                     |
| SV-11          | 11/11/2008     | Propene                        |                     | ND           | 5.7                 |
| SV-11          | 11/11/2008     | Styrene                        | 100-42-5            | ND<br>130    | 1.2                 |
| SV-11          | 11/11/2008     | Tetrachloroethene              | 127-18-4            | 130          | 0.73                |
| SV-11          | 11/11/2008     | Tetrahydrofuran                | 109-99-9            | ND<br>5.0    | 1.7                 |
| SV-11          | 11/11/2008     | Toluene                        | 108-88-3            | 5.3          | 1.3                 |
| SV-11          | 11/11/2008     | Toluene-d8                     | 2037-26-5           | 25.7         | 2.4                 |
| SV-11          | 11/11/2008     | trans-1,2-Dichloroethene       | 156-60-5            | ND           | 1.2                 |
| SV-11          | 11/11/2008     | trans-1,3-Dichloropropene      | 10061-02-6          | ND           | 1.1                 |
| SV-11          | 11/11/2008     | Trichloroethene                | 79-01-6             | 11           | 0.92                |
| SV-11          | 11/11/2008     | Trichlorofluoromethane         | 75-69-4             | ND           | 0.88                |
| SV-11          | 11/11/2008     | Vinyl acetate                  | 108-05-4            | ND           | 2.8                 |
| SV-11          | 11/11/2008     | Vinyl chloride                 | 75-01-4             | ND           | 1.9                 |

| SAMPLE<br>NAME                            | SAMPLE<br>DATE                         | ANALYTE                                                                  | CAS NUMBER            | RESULTS ppbv | REPORTING LIMI ppbv |
|-------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|-----------------------|--------------|---------------------|
| SV-12                                     | 11/11/2008                             | 1,1,1,2-Tetrachloroethane                                                | 630-20-6              | ND           | 0.72                |
| SV-12                                     | 11/11/2008                             | 1,1,1-Trichloroethane                                                    | 71-55-6               | ND           | 0.91                |
| SV-12                                     | 11/11/2008                             | 1,1,2,2-Tetrachloroethane                                                | 79-34-5               | ND           | 0.72                |
| SV-12                                     | 11/11/2008                             | 1,1,2-Trichloroethane                                                    | 79-00-5               | ND           | 0.91                |
| SV-12                                     | 11/11/2008                             | 1,1,2-Trichlorotrifluoroethane                                           | 76-13-1               | ND           | 1.3                 |
| SV-12                                     | 11/11/2008                             | 1,1-Dichloroethane                                                       | 75-34-3               | ND           | 1.2                 |
| SV-12                                     | 11/11/2008                             | 1,1-Dichloroethene                                                       | 75-35-4               | ND           | 1.2                 |
| SV-12                                     | 11/11/2008                             | 1,2,4-Trichlorobenzene                                                   | 120-82-1              | ND           | 1.3                 |
| SV-12                                     | 11/11/2008                             | 1,2,4-Trimethylbenzene                                                   | 95-63-6               | ND           | 1.0                 |
| SV-12                                     | 11/11/2008                             | 1,2-Dibromoethane (EDB)                                                  | 106-93-4              | ND           | 0.64                |
| SV-12                                     | 11/11/2008                             | 1,2-Dichlorobenzene                                                      | 95-50-1               | ND           | 1.6                 |
| SV-12                                     | 11/11/2008                             | 1,2-Dichloroethane                                                       | 107-06-2              | ND           | 1.2                 |
| SV-12                                     | 11/11/2008                             | 1,2-Dichloroethane-d4                                                    | 17060-07-0            | 23.2         | 2.3                 |
| SV-12                                     | 11/11/2008                             | 1,2-Dichloropropane                                                      | 78-87-5               | ND           | 1.1                 |
| SV-12                                     | 11/11/2008                             | 1,3,5-Trimethylbenzene                                                   | 108-67-8              | ND           | 1.0                 |
| SV-12                                     | 11/11/2008                             | 1,3-Butadiene                                                            | 106-99-0              | ND           | 2.2                 |
| SV-12                                     | 11/11/2008                             | 1,3-Dichlorobenzene                                                      | 541-73-1              | ND           | 1.6                 |
| SV-12                                     | 11/11/2008                             | 1,4-Dichlorobenzene                                                      | 106-46-7              | ND           | 1.6                 |
| SV-12                                     | 11/11/2008                             | 1,4-Dioxane                                                              | 123-91-1              | ND           | 1.4                 |
| SV-12                                     | 11/11/2008                             | 2-Butanone                                                               | 78-93-3               | 5.6          | 1.7                 |
| SV-12                                     | 11/11/2008                             | 2-Hexanone                                                               | 591-78-6              | ND           | 2.4                 |
| SV-12                                     | 11/11/2008                             | 4-Bromofluorobenzene                                                     | 460-00-4              | 25.5         | 1.4                 |
| SV-12                                     | 11/11/2008                             | 4-Ethyltoluene                                                           | 622-96-8              | ND           | 1.0                 |
| SV-12                                     | 11/11/2008                             | 4-Methyl-2-pentanone                                                     | 108-10-1              | ND           | 1.2                 |
| SV-12                                     | 11/11/2008                             | Acetone                                                                  | 67-64-1               | 44           | 8.3                 |
| SV-12                                     | 11/11/2008                             | Benzene                                                                  | 71-43-2               | ND           | 1.5                 |
| SV-12                                     | 11/11/2008                             | Benzyl chloride                                                          | 100-44-7              | ND           | 0.96                |
| SV-12                                     | 11/11/2008                             | Bromodichloromethane                                                     | 75-27-4               | ND           | 0.74                |
| SV-12                                     | 11/11/2008                             | Bromoform                                                                | 75-25-2               | ND           | 1.9                 |
| SV-12                                     | 11/11/2008                             | Bromomethane                                                             | 74-83-9               | ND           | 1.3                 |
| SV-12                                     | 11/11/2008                             | Carbon disulfide                                                         | 75-15-0               | 1.9          | 1.6                 |
| SV-12                                     | 11/11/2008                             | Carbon tetrachloride                                                     | 56-23-5               | ND           | 0.78                |
| SV-12                                     | 11/11/2008                             | Chlorobenzene                                                            | 108-90-7              | ND           | 1.1                 |
| SV-12                                     | 11/11/2008                             | Chloroethane                                                             | 75-00-3               | ND           | 1.9                 |
| SV-12                                     | 11/11/2008                             | Chloroform                                                               | 67-66-3               | ND           | 1.0                 |
| SV-12                                     | 11/11/2008                             | Chloromethane                                                            | 74-87-3               | ND           | 2.4                 |
| SV-12                                     | 11/11/2008                             | cis-1,2-Dichloroethene                                                   | 156-59-2              | 1.8          | 1.2                 |
| SV-12                                     | 11/11/2008                             | cis-1,3-Dichloropropene                                                  | 10061-01-5            | ND           | 1.1                 |
| SV-12                                     | 11/11/2008                             | Cyclohexane                                                              | 110-82-7              | ND           | 2.9                 |
| SV-12                                     | 11/11/2008                             | Dibromochloromethane                                                     | 124-48-1              | ND           | 0.58                |
| SV-12                                     | 11/11/2008                             | Dichlorodifluoromethane                                                  | 75-71-8               | ND           | 2.0                 |
| SV-12                                     | 11/11/2008                             | Dichlorotetrafluoroethane                                                | 76-14-2               | ND           | 1.4                 |
| SV-12                                     | 11/11/2008                             | Ethyl acetate                                                            | 141-78-6              | ND           | 1.4                 |
| SV-12                                     | 11/11/2008                             | Ethylbenzene                                                             | 100-41-4              | ND           | 1.1                 |
| SV-12                                     | 11/11/2008                             | Hexachlorobutadiene                                                      | 87-68-3               | ND           | 0.92                |
| SV-12                                     | 11/11/2008                             | m,p-Xylene                                                               | 136777-61-2           | 1.2          | 1.1                 |
| SV-12                                     | 11/11/2008                             | Methyl tert-butyl ether                                                  | 1634-04-4             | ND           | 1.4                 |
| SV-12                                     | 11/11/2008                             | Methylene chloride                                                       | 75-09-2               | ND<br>ND     | 2.8                 |
| SV-12                                     | 11/11/2008                             | n-Heptane                                                                | 142-82-5              | ND           | 1.2                 |
| SV-12                                     | 11/11/2008                             | n-Hexane                                                                 | 110-54-3              | ND           | 1.4                 |
| SV-12                                     | 11/11/2008                             | o-Xylene                                                                 | 95-47-6               | ND           | 1.1                 |
| SV-12                                     | 11/11/2008                             | Propene                                                                  | 115-07-1              | ND<br>ND     | 5.7                 |
| SV-12                                     | 11/11/2008                             | Styrene                                                                  | 100-42-5              | ND<br>ND     | 1.2                 |
| SV-12                                     | 11/11/2008                             | Tetrachloroethene                                                        | 127-18-4              | 17           | 0.73                |
|                                           | 11/11/2008                             | Tetrahydrofuran                                                          | 109-99-9              | ND           | 1.7                 |
|                                           | 11/11/2008                             | Toluene                                                                  | 108-88-3              | 3.4          | 1.7                 |
| SV-12                                     | 11/11/2000                             | Toluene-d8                                                               |                       |              |                     |
| SV-12                                     | 11/11/0000                             |                                                                          | 2037-26-5             | 22.8         | 2.4                 |
| SV-12<br>SV-12                            | 11/11/2008                             |                                                                          | 1EC CO E              | NID.         |                     |
| SV-12<br>SV-12<br>SV-12                   | 11/11/2008                             | trans-1,2-Dichloroethene                                                 | 156-60-5              | ND           | 1.2                 |
| SV-12<br>SV-12<br>SV-12<br>SV-12          | 11/11/2008<br>11/11/2008               | trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene                    | 10061-02-6            | ND           | 1.1                 |
| SV-12<br>SV-12<br>SV-12<br>SV-12<br>SV-12 | 11/11/2008<br>11/11/2008<br>11/11/2008 | trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene<br>Trichloroethene | 10061-02-6<br>79-01-6 | ND<br>1.1    | 1.1<br>0.92         |
| SV-12<br>SV-12<br>SV-12<br>SV-12          | 11/11/2008<br>11/11/2008               | trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene                    | 10061-02-6            | ND           | 1.1                 |

Table 2 Historical Groundwater Data Summary 129-09 Jamaica Avenue, Queens, NY

|               |                |            |                |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         | Trichloroethene | cis-1,2-<br>Dichloroethene | Vinyl<br>Chloride |             |
|---------------|----------------|------------|----------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|-----------------|----------------------------|-------------------|-------------|
| Sampling Date | Well ID        | Total BTEX | Total Chl-VOCs | Benzene | Toluene | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Xylenes | Tetrachloroethene (PCE) | (TCE)           | (DCE)                      | (VC)              | Naphthalene |
|               | Units          | ug/IL      | ug/IL          | ug/IL   | ug/IL   | ug/IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/IL         | ug/IL                   | ug/IL           | ug/IL                      | ug/IL             | ug/L        |
| Aug-05        | MW-1           | 911        | 6760           | 0       | 0       | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 720           | 0                       | 0               | 6600                       | 160               | 160         |
| Jan-07        | MW-1           | NS         | NS             | NS      | NS      | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS            | NS                      | NS              | NS                         | NS.               |             |
| Nov-08        | MW-1           | 716        | 1268           | 0       | 77      | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 550           | 7                       | 1               | 1000                       | 260               |             |
| Aug-05        | MW-2           | 238.8      | 286            | 15      | 21      | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.8         | 0                       | 0               | 6                          | 280               | 430         |
| Jan-07        | MW-2           | NS         | NS             | NS      | NS      | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS            | NS                      | NS              | NS                         | NS                | NS NS       |
| Nov-08        | MW-2           | NS         | NS             | NS      | NS      | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS            | NS                      | NS              | NS                         | NS                | NS NS       |
| Aug-05        | MW-3           | 9.3        | 4160           | 0       | 1.4     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.9           | 190                     | 38              | 3900                       | 32                | 9.9         |
| Jan-07        | MW-3           | 0          | 46.8           | 0       | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0             | 28                      | 3.8             | 15                         | (                 | ) NS        |
| Nov-08        | MW-3           | 0          | 504            | 0       | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0             | 74                      | 15              | 390                        | 25                | 5 (         |
| Aug-05        | MW-4           | 0.84       | 1264           | 0       | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.84          | 81                      | 23              | 970                        | 190               | ) (         |
| Jan-07        |                | 0          | 1387           | 0       | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         | 15              |                            | 740               | ) NS        |
| Nov-08        | MW-4           | 2.5        | 716            | 0       | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5           | 11                      | 5               | 230                        | 470               | 470         |
| Aug-05        |                | 0          |                | 0       |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         | 110             |                            |                   |             |
| Jan-07        |                | 0          |                | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         | 60              |                            |                   |             |
| Nov-08        |                | 8.9        |                | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         |                 |                            |                   |             |
| Aug-05        |                | 119        | 3712.5         | 0       | 11      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87            | 36                      | 6.5             | 3500                       | 170               | ) 17        |
| Jan-07        |                | 110        |                | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         |                 |                            |                   |             |
| Nov-08        |                | 9.3        |                | 0       |         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1           |                         | 4               |                            |                   |             |
| Aug-05        |                | 0          |                | 0       |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | -                       | 13              |                            |                   |             |
| Jan-07        |                | 0          |                | 0       |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         | 2.5             |                            |                   |             |
| Nov-08        |                | 0          |                | 0       |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             |                         | 1.7             |                            |                   |             |
| Aug-05        |                | 66600      |                | 0       |         | 27000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35000         |                         |                 |                            |                   |             |
| Jan-07        |                | NS         |                | NS      |         | NS<br>NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS            |                         | NS              |                            |                   |             |
| Nov-08        |                | NS         |                | NS      |         | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS<br>NS      |                         | NS              |                            |                   |             |
| Aug-05        |                | 0          |                | 0       |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         | 16              |                            |                   |             |
| Jan-07        |                | 0          |                | 0       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |                         | 20              |                            |                   |             |
| Nov-08        |                | 19.6       |                | 0       |         | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -             |                         | 10              |                            |                   |             |
|               | MW-10          | 453.6      |                | 3.6     | _       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                         | 18              |                            |                   |             |
|               | MW-10          | 421        | 184.4          | 11      |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         |                 |                            |                   |             |
|               | MW-10          | 530.5      | 103.9          | 7.5     |         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                         | 4.4             |                            |                   |             |
| Aug-05        |                | 030.5      |                |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         | •               |                            |                   |             |
|               |                | NS         |                | NS      |         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         | NS              |                            |                   |             |
|               | MW-11<br>MW-11 | 134.1      | 18             |         |         | NS<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                         |                 |                            |                   |             |
|               |                |            |                |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         |                 | _                          |                   |             |
|               | MW-12          | 0          |                | 0       |         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         |                 |                            |                   |             |
|               | MW-12<br>MW-12 | 0          |                | 0       |         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         | 0               |                            |                   |             |
|               |                |            |                |         | _       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             |                         | -               |                            |                   |             |
|               | OSW-1          | NS         |                | NS      |         | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS            |                         | NS              |                            |                   |             |
|               | OSW-1          | 0          |                | 0       |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         | 3.6             |                            |                   |             |
|               | OSW-1          | 0          |                | 0       | _       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _             |                         |                 |                            |                   |             |
|               | OSW-2          | NS         |                | NS      |         | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS            |                         | NS              |                            |                   |             |
|               | OSW-2          | 0          |                |         |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                         |                 |                            |                   | ) NS        |
|               | OSW-2          | 0          | _              |         | _       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ             |                         | 1.3             |                            |                   |             |
|               | OSW-3          | NS         |                | NS      |         | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS            |                         | NS              |                            |                   |             |
|               | OSW-3          | 0          |                |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         |                 |                            |                   |             |
|               | OSW-3          | 0          |                | 0       |         | , and the second |               |                         |                 |                            |                   |             |
|               | OSW-4          | NS         |                | NS      |         | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                         | NS              |                            |                   |             |
|               | OSW-4          | 0          |                |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                         |                 |                            |                   |             |
| Nov-08        | OSW-4          | 0          | 2.8            | 0       | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0             | 2.8                     | 0               | 0                          |                   | ) (         |

Hist\_GW\_data\_sum\_021808.xls

Table 3 Groundwater Geochemical Summary 129-09 Jamaica Avenue, Queens, NY

| Date     | Field ID         | ID      | Depth<br>(ft)<br>(BGS) | Temp<br>(deg C) | SpCond<br>(mS/cm) | TDS<br>(g/L) | Salinity<br>(ppt) | DO (%) | DO Conc<br>(mg/L) | рН   | ORP<br>(mV) | Turbidity<br>(NTU) |
|----------|------------------|---------|------------------------|-----------------|-------------------|--------------|-------------------|--------|-------------------|------|-------------|--------------------|
| 02/02/09 | MW-J-10_6-35_67' | GW-B-14 | -67                    | 11.35           | 0.67              | 0.44         | 0.33              | 3.20   | 0.35              | 6.59 | -594.57     | 31.96              |
|          | MW-G-25_4-35_92' | GW-B-15 | -92                    | 11.11           | 0.74              | 0.48         | 0.36              | 2.50   | 0.27              | 7.28 | -502.71     | 34.81              |
| 02/11/09 | MW-E-45_8-5_93'  | GW-B-17 | -93                    | 14.79           | 0.42              | 0.27         | 0.20              | 19.14  | 1.94              | 7.74 | -443.40     | 23.97              |

## **Table 4**Rapid Assessment Soil Data Summary 129-09 Jamaica Avenue, Queens, NY

|                                            |              | Total BTEX                       | Total BTEX          | Total Chi-VOCs        | Total Chi-VOCs Benzene | Benzene              | Toluene              | Toluene            | Ethylbenzene                                     | Ethylbenzene         | Total Xylenes        | Total Xylenes      | Tetrachloroethene  | Tetrachloroethene | Trichloroethene      | Trichloroethene  | cis-1,2-<br>Dichloroethene | cis-1,2-<br>Dichloroethene | Vinyl Chloride         | Vinyl Chloride   | Naphthalene            | Naphthalene      |
|--------------------------------------------|--------------|----------------------------------|---------------------|-----------------------|------------------------|----------------------|----------------------|--------------------|--------------------------------------------------|----------------------|----------------------|--------------------|--------------------|-------------------|----------------------|------------------|----------------------------|----------------------------|------------------------|------------------|------------------------|------------------|
| Sample Name                                | Boring ID D  | Pepth (Mobile)                   | (Fixed)             | (Mobile)              | (Fixed) (Mobile)       | (Fixed)              | (Mobile)             | (Fixed)            | (Mobile)                                         | (Fixed)              | (Mobile)             | (Fixed)            | (PCE) (Mobile)     | (PCE) (Fixed)     | (TCE) (Mobile)       | (TCE) (Fixed)    | (DCE) (Mobile)             | (DCE) (Fixed)              | (VC) (Mobile)          | (VC) (Fixed)     | (Mobile)               | (Fixed)          |
| NIVOREO Rest 075 Restricted                | (1           | ft) (ug/Kg)                      | (ug/Kg)             | (ug/Kg)               | (ug/Kg) (ug/Kg)        | (ug/Kg)              | (ug/Kg)              | (ug/Kg)            | (ug/Kg)                                          | (ug/Kg)              | (ug/Kg)              | (ug/Kg)            | (ug/Kg)            | (ug/Kg)           | (ug/Kg)              | (ug/Kg)          | (ug/Kg)                    | (ug/Kg)                    | (ug/Kg)                | (ug/Kg)          | (ug/Kg)                | (ug/Kg)          |
| NYSDEC Part 375 Restricted<br>Residential  |              |                                  |                     |                       | 4800                   | 4800                 | 100000               | 100000             | 41000                                            | 41000                | 100000               | 100000             | 19000              | 19000             | 21000                | 21000            | 100000                     | 100000                     | 900                    | 900              | 100000                 | 100000           |
| NYSDEC Part 375<br>Unresidential SCO's     |              |                                  |                     |                       | 60                     | 60                   | 700                  | 700                | 1000                                             | 1000                 | 260                  | 260                | 1300               | 1300              | 470                  | 470              | 250                        | 250                        | 20                     | 20               | 12000                  | 12000            |
| H-25-5-30/9'                               | B-13         | -9 2611.62                       |                     | 122424.99             | 113                    | .11 J                | 1344.47              | 700                | 182.05                                           | J                    | 971.99               | 200                | 118392.55          | 1300              | 2897.89              | 470              | 1134.55                    |                            | 200.00 L               | J                | 12769.01               | 12000            |
|                                            | B-13         | -18 2593.20                      | 5.50 J              | 73390.48<br>4249.79   | 6309.60 200            |                      |                      | 6.80 L             | 283.99<br>153.04                                 | 1.50 J               | 1212.13              |                    |                    | 6300.00           | 3253.73<br>2045.80   | 5.00             |                            |                            | 200.00 L<br>200.00 L   | 6.80             |                        | J 250.00 J       |
|                                            | B-13<br>B-13 | -22 1598.82<br>-30 1052.80       |                     | 1382.65               |                        | .00 U                | 782.57<br>398.08     | + +                | 68.16                                            | J                    | 663.21<br>586.56     |                    | 852.18<br>275.93   |                   | 976.07               |                  | 1351.81<br>130.65          |                            | 200.00 L               | )                | 200.00 t               |                  |
|                                            | B-13         | -36 25863.21                     |                     | 1077.29               |                        | .00 U                | 903.71               |                    | 3659.91                                          |                      | 21299.59             |                    | 90.59              | J                 | 986.70               |                  | 200.00                     |                            | 200.00 L               | J                | 17304.75               |                  |
|                                            | B-13<br>B-13 | -39 16197.63<br>-42 21820.01     | 15903.20            | 963.89<br>1334.64     | 21.00 200              |                      | 494.58<br>U 263.29   | 3.20 J             | 2969.49<br>2497.34                               | 2900.00 J            | 12733.56<br>19059.38 |                    | 200.00             | U 21.00           | 963.89<br>981.98     | 12.00            | 200.00<br>U 352.66         |                            | 200.00 L<br>J 200.00 L | J 12.00          | 13002.21<br>U 14144.53 | 17000.00 L       |
| H-25-5-30/46'                              | B-13         | -46 148880.32                    | 10000.20            | 4745.60               | 200                    | .00 U                | 967.11               | 0.20               | 12544.10                                         | 2000.000             | 135369.11            |                    | 2012.60            | 21.00             | 200.00               |                  | 2733.00                    |                            | 200.00 L               | J 12.00          | 44254.78               | 17 000.00        |
|                                            | B-13<br>B-13 | -53 59458.27<br>-56 1860.93      |                     | 2966.88<br>3805.14    | 200                    |                      | 483.96<br>584.09     | -                  | 7430.45<br>325.29                                |                      | 51543.86<br>951.55   |                    | 406.50<br>1917.62  |                   | 2018.89<br>1887.52   |                  | 541.49<br>200.00           |                            | 200.00 L               | J                | 28731.59<br>13104.92   | -                |
|                                            | B-13         | -63 10363.37                     | 4100.00             | 243.75                |                        | .00 U 290.00         |                      | 290.00 L           |                                                  | 2900.00              | 4584.17              |                    |                    | 290.00            |                      |                  |                            |                            |                        | J 290.00         |                        | 3000.00          |
|                                            | B-13         | -67 32452.92                     |                     | 436.39                | 200                    |                      | 396.61               |                    | 22866.98                                         |                      | 9189.33              |                    | 436.39             |                   | 200.00 (             | U                | 200.00                     |                            | 200.00 L               | J                | 16424.35               |                  |
|                                            | B-13<br>B-13 | -73 21404.90<br>-77 169.74 J     | 5.80 L              | 997.88<br>J 200.00 l  | J 5.80 U 200           |                      | 344.66<br>U 45.05 J  | 5.80 L             | 20006.48<br>17.80                                | J 5.80 U             | 1053.76<br>106.89    |                    | 62.03<br>U 200.00  |                   | 935.85<br>U 200.00 l | U 5.80           | 200.00<br>U 200.00         | ++                         | 200.00 L<br>J 200.00 L | J 5.80           | 13451.12<br>U 129.46   | J 5.80 L         |
|                                            | B-13         | -82 177.94 J                     | 4.90 L              |                       |                        |                      |                      | 4.90 L             | 17.56                                            | J 4.90 U             | 112.31               | J 4.90             | U 200.00           | U 4.90            |                      |                  |                            |                            | J 200.00 L             | 4.90             | U 127.54               | J 4.90 L         |
|                                            | B-14<br>B-14 | -7 134.97 J<br>-17 128.20 J      | 5.20 L              | 59.23 c<br>56.00 c    | J 1.10 J 200<br>J 200  |                      | U 41.91 J<br>35.84 J | 5.20 L             | 11.08<br>10.50                                   |                      | 81.98<br>81.86       |                    | U 40.16            |                   | J 19.07 18.93        |                  | U 200.00<br>200.00         |                            | 200.00 L<br>200.00 L   | 5.20             | U 127.95 c             | J 5.20 L         |
|                                            | B-14         | -17 128.20 J                     |                     | 34.97                 |                        |                      | 58.49 J              |                    | 17.60                                            |                      | 138.34               |                    | 13.65              |                   | 21.32                |                  | 200.00                     |                            | 200.00 L               | )                | 2.36                   |                  |
| J-10_6-35/37.5'                            |              | -37.5 169.95 J                   |                     | 19.80                 | J 200                  | .00 U                | 45.39 J              |                    | 13.89                                            |                      | 110.67               |                    | 200.00             |                   | 19.80                | J                | 200.00                     | U                          | 200.00 L               | ]                | 200.00 l               | J                |
|                                            |              | -42.5 191.08 J<br>-47.5 200.75 J | 5.00 L              | J 20.16 .<br>18.78 .  | J 5.00 U 200<br>J 200  |                      | U 50.91 J<br>54.58 J | 5.00 L             | 15.55<br>16.61                                   |                      | 124.62<br>129.56     |                    | U 200.00<br>200.00 |                   | U 20.16 .<br>18.78 . |                  | U 200.00<br>200.00         |                            | 200.00 L<br>200.00 L   | 5.00             | U 200.00 U<br>2.50 J   |                  |
| J-10_6-35/52.5'                            | B-14         | -52.5 190.55 J                   | 6.10 L              | J 19.69               | J 6.10 U 200           | .00 U 6.10           | U 49.51 J            | 6.10 L             | 15.30                                            | J 6.10 U             | 125.74               | J 6.10             | U 200.00           | U 6.10            | U 19.69              | J 6.10           | U 200.00                   | 0 U 6.10 U                 | J 200.00 L             | 6.10             | U 2.37                 | 6.10 L           |
| J-10_6-35/57.5'<br>J-10_6-35/62.5'         |              | -57.5 141.56 J<br>-62.5 155.84 J | 5.70 L              | 19.65<br>J 19.72      | J 200<br>J 5.70 U 200  |                      | 37.92 J<br>U 43.02 J | 5.70 L             | 12.61<br>13.53                                   |                      | 91.03<br>99.29       |                    | 200.00<br>U 200.00 | U 5.70            | 19.65 U              |                  | 200.00<br>U 200.00         |                            | 200.00 L<br>J 200.00 L | J 5.70           | 2.15 U 200.00 U        |                  |
|                                            | B-14<br>B-15 | -62.5 155.84 J<br>-7 219.34 J    | 3.70                | 21.46                 |                        | .00 U 5.70           | 61.95 J              | 3.70               | 18.67                                            |                      | 138.72               |                    | 21.46              |                   | 200.00               |                  | 200.00                     |                            | 200.00 L               | J 5.70           | 200.00                 | J 1.30 J         |
| G25-4-35/17'                               | B-15         | -17 74.28 J                      |                     | 200.00 l              | J 200                  | .00 U                | 28.89 J              |                    | 200.00                                           | U                    | 45.39                | J                  | 200.00             |                   | 200.00               | U                | 200.00                     | U                          | 200.00 L               | J                | 1.99                   |                  |
|                                            | B-15<br>B-15 | -23 208.90 J<br>-27 119.19 J     | -                   | 200.00 t              | J 200<br>J 200         |                      | 62.07 J<br>63.50 J   | +                  | 200.00                                           |                      | 146.83<br>55.69      |                    | 200.00             | UI UI             | 200.00               |                  | 200.00                     |                            | 200.00 L<br>200.00 L   | )<br>            | 200.00 (               | J I              |
| G25-4-35/32.5'                             | B-15         | -32.5 623.02                     |                     | 200.00 l              | J 200                  | .00 U                | 74.27 J              |                    | 78.72                                            | J                    | 470.03               |                    | 200.00             | U                 | 200.00               | U                | 200.00                     | U                          | 200.00 L               | j                | 1312.55                | _                |
|                                            | B-15<br>B-15 | -37 2468.74                      | 71.00               | 200.46                | 5.10 U 200             |                      | U 92.17 J<br>64.34 J | 5.10 L             | 631.64                                           | 18.00                | 1744.93              |                    | 200.00             | U 5.10            |                      |                  |                            |                            | 200.00 L<br>200.00 L   | 5.10             |                        | 120.00           |
|                                            | B-15<br>B-15 | -42.5 69404.94<br>-48 11309.75   |                     | 386.57<br>218.34      | J 200<br>200           |                      | 407.13               |                    | 6533.76<br>3082.06                               | +                    | 62806.84<br>7820.56  |                    | 200.00             | U                 | 193.80<br>218.34     |                  | 192.77<br>200.00           |                            | 200.00 L               | )                | 19747.97<br>17458.45   |                  |
|                                            |              | -52.5 40505.06                   | 28900.00            | 198.05                | J 3200.00 U 200        | .00 U 3200.00        |                      | J 3200.00 L        | 6797.29                                          | 7900.00              | 33707.77             |                    | 200.00             |                   | U 198.05             | J 3200.00        | U 200.00                   | 0 U 3200.00 U              | J 200.00 L             | 3200.00          |                        | 13000.00         |
|                                            | B-15<br>B-15 | -58 5613.84<br>-62.5 20138.87    |                     | 200.00 t              |                        |                      | 67.64 J<br>67.50 J   |                    | 1770.30<br>9500.03                               |                      | 3775.90<br>10571.34  |                    | 200.00             |                   | 200.00               |                  | 200.00                     |                            | 200.00 L               | )                | 2112.53<br>7875.58     |                  |
| G25-4-35/67.5'                             | B-15         | -67.5 20890.10                   | 1000.00             | 200.00 l              | J 228.00 200           | .00 U 57.00          | U 13237.00           | 57.00 L            | 2187.56                                          | 390.00               | 5465.54              | 610.00             | 200.00             | U 57.00           | U 200.00 l           | U 57.00          | U 200.00                   | 0 U 57.00 U                | J 200.00 L             | 57.00            | U 1994.50              | 1200.00          |
|                                            |              | -72.5 27423.42<br>-77.5 43353.80 |                     | 40.15 J               |                        | .00 U                | 262.05<br>95.48 J    |                    | 7663.08<br>10294.32                              |                      | 19498.29<br>32964.00 |                    | 40.15<br>200.00    | J                 | 200.00               |                  | 200.00                     |                            | 200.00 L<br>200.00 L   | J                | 6926.36<br>6255.44     |                  |
|                                            |              | -79.75 346.85 J                  |                     | 200.00 (              |                        | .00 U                | 59.00 J              |                    | 89.46                                            | J                    | 198.39               |                    | 200.00             | U                 | 200.00               |                  | 200.00                     |                            | 200.00 L               | j l              | 94.21                  | J                |
|                                            |              | -84.5 156.08 J                   |                     | 200.00 (              |                        | .00 U                | 200.00 L             | J                  | 18.00                                            |                      | 138.08               |                    | 200.00             | U                 | 200.00               |                  | 200.00                     |                            | 200.00 L               | )                | 200.00 (               | J                |
|                                            | B-15<br>B-15 | -89.5 230.23 J<br>-95 189.51 J   | 5.90 L<br>6.20 L    |                       |                        | .00 U 5.90           |                      | 5.90 L<br>6.20 L   | 21.63<br>16.56                                   |                      | 154.50<br>123.47     |                    |                    |                   |                      |                  |                            |                            |                        |                  |                        |                  |
| G-5_3-13/8'                                | B-16         | -8 1758.51                       |                     | 868.11                | 200                    | .00 U                | 618.07               |                    | 145.66                                           | J                    | 994.78               |                    | 868.11             |                   | 200.00               | U                | 200.00                     | U                          | 200.00 L               | J                | 200.00 l               | J                |
|                                            |              | -17.5 131.62 J<br>-27.5 255.99 J | 5.30 L              | 7.88<br>8.46          |                        | .00 U 5.30           | U 46.69 J<br>71.93 J | 5.30 L             | 200.00                                           |                      | 84.93<br>162.96      |                    | U 7.88             |                   | 200.00               |                  | U 200.00<br>200.00         |                            | 200.00 L<br>200.00 L   | 5.30             | U 200.00 I             | J 1.70 J         |
|                                            | B-16         | -41 139.03 J                     |                     | 200.00                |                        |                      | 37.23 J              |                    | 200.00                                           |                      | 101.80               |                    | 200.00             |                   | 200.00               |                  | 200.00                     |                            | 200.00 L               | j l              | 200.00                 | J                |
|                                            |              | -47.5 120.32 J                   | 4000.00             | 219.51                |                        | .00 U                | 49.81 J<br>U 71.86 J | 57.00              | 200.00                                           | U 470.00             | 70.51                |                    | 219.51             |                   | 200.00 (             |                  | 200.00                     |                            | 200.00 L               | J 57.00          | 200.00 (               | J 400.00         |
|                                            |              | -52.5 3255.74<br>-57.5 139.08 J  | 1290.00             | 200.00 t              |                        | .00 U 57.00<br>.00 U | 139.08 J             | 57.00 L            | 770.96<br>200.00                                 | 470.00<br>U          | 2412.92<br>200.00    |                    | 200.00<br>130.89   | U 57.00<br>J      | 200.00               |                  | U 200.00<br>200.00         |                            | 200.00 L<br>200.00 L   | J 57.00          | U 5022.86<br>200.00 t  | 130.00           |
| G-5_3-13/62.5'                             | B-16         | -62.5 200.00 U                   |                     | 200.00 l              | J 200                  | .00 U                | 200.00 L             | J                  | 200.00                                           | U                    | 200.00               | U                  | 200.00             | U                 | 200.00               | U                | 200.00                     | U                          | 200.00 L               | J                | 200.00 l               | J                |
|                                            | B-16<br>B-16 | -67.5 237.77 J<br>-74 215.39 J   | 5.70 l<br>6.40 l    |                       |                        | .00 U 5.70           |                      |                    | 200.00<br>18.41                                  |                      | 177.28<br>133.36     |                    |                    |                   |                      |                  |                            |                            |                        |                  |                        |                  |
| E-45_8-5/7'                                | B-17         | -7 171.25 J                      | 5.40 L              | J 200.00 l            | J 5.40 U 200           | .00 U 5.40           | U 37.56 J            | 5.40 L             | 15.05                                            | J 5.40 U             | 118.64               | J 5.40             | U 200.00           | U 5.40            | U 200.00 I           | U 5.40           | U 200.00                   | 5.40 U                     | J 200.00 L             | 5.40             | U 200.00 I             | J 5.40 L         |
|                                            | B-17<br>B-17 | -17 217.96 J<br>-31 166.41 J     |                     | 200.00 (              |                        | .00 U                | 59.80 J<br>51.45 J   |                    | 16.96<br>14.02                                   |                      | 141.20               |                    | 200.00             |                   | 200.00               |                  | 200.00                     |                            | 200.00 L               |                  | 200.00                 |                  |
|                                            | B-17<br>B-17 | -31 166.41 J<br>-39 221.45 J     |                     | 200.00 t              |                        | .00 U<br>.00 U       | 51.45 J<br>87.33 J   |                    | 200.00                                           |                      | 100.94<br>134.12     |                    | 200.00<br>200.00   |                   | 200.00               |                  | 200.00                     |                            | 200.00 L<br>200.00 L   |                  | 200.00                 |                  |
| E-45_8-5/44'                               | B-17         | -44 4020.99                      |                     | 200.00 (              | J 200                  | .00 U                | 52.30 J              |                    | 703.67                                           |                      | 3265.02              |                    | 200.00             | U                 | 200.00               | U                | 200.00                     | U                          | 200.00 L               | J                | 9606.93                |                  |
|                                            | B-17<br>B-17 | -49 10694.85<br>-54 200.00 U     |                     | 200.00 (              |                        | .00 U                | 120.83 J<br>200.00 L |                    | 2961.60<br>200.00                                |                      | 7612.42<br>200.00    |                    | 200.00<br>200.00   |                   | 200.00               |                  | 200.00                     |                            | 200.00 L<br>200.00 L   |                  | 17756.07<br>665.66     | + +              |
| E-45_8-5/57.5'                             | B-17         | -57.5 49.76 J                    |                     | 48.04                 | 200                    | .00 U                | 49.76 J              |                    | 200.00                                           | U                    | 200.00               | U                  | 200.00             | U                 | 200.00               | U                | 48.04                      | 4 J                        | 200.00 L               | J                | 200.00 (               |                  |
|                                            | B-17<br>B-17 | -62.5 57.07 J<br>-69 51.10 J     | 6.00 L              | 200.00 U<br>J 32.78 U |                        | .00 U 6.00           | 57.07 J<br>U 51.10 J | 1 6.00 L           | 200.00<br>200.00                                 |                      | 200.00               |                    | 200.00<br>U 200.00 |                   | 200.00 U 200.00 U    |                  | 200.00<br>U 32.78          |                            | 200.00 L<br>J 200.00 L | +                | 200.00 U<br>200.00 U   |                  |
| E-45_8-5/74'                               | B-17         | -74 62.83 J                      | 5.70 l              | J 200.00 l            | J 5.70 U 200           | .00 U 5.70           | U 200.00 L           | J 5.70 L           | 200.00                                           | U 5.70 L             | 62.83                | J 5.70             | U 200.00           | U 5.70            | U 200.00 l           | U 5.70           | U 200.00                   | 0 U 5.70 U                 | J 200.00 L             | 5.70             | U 200.00 l             | J 5.70 L         |
|                                            | B-17         | -90                              | 5.40 L              |                       | 5.40 U                 | 5.40                 |                      | 5.40 L             | 000.00                                           | 5.40 U               |                      | 5.40               |                    | 5.40              |                      | 5.40             |                            | 5.40 U                     |                        | 5.40             |                        | 1.30 J           |
|                                            | B-18<br>B-18 | -3.5 70.38 J<br>-7 52.85 J       | 5.00 L              | J 54.01 C             |                        | .00 U 5.00<br>.00 U  | U 70.38 J<br>52.85 J | 5.00 L             | 200.00                                           |                      | 200.00               |                    | U 54.01<br>200.00  |                   | 200.00 0             |                  | U 200.00<br>200.00         |                            | 200.00 L<br>200.00 L   | J 5.00<br>J      | 200.00 t               |                  |
| F-0_9-25/17'                               | B-18         | -17 200.00 U                     |                     | 200.00 (              | J 200                  | .00 U                | 200.00 L             | J                  | 200.00                                           | U                    | 200.00               | U                  | 200.00             | U                 | 200.00 (             | U                | 200.00                     | U                          | 200.00 L               | J                | 200.00 l               | J                |
|                                            | B-18<br>B-18 | -27 89.04 J<br>-32.5 200.00 U    |                     | 53.88 J               |                        | .00 U                | 89.04 J<br>200.00 L  |                    | 200.00                                           |                      | 200.00<br>200.00     |                    | 53.88<br>200.00    |                   | 200.00 t             |                  | 200.00                     |                            | 200.00 L               | J                | 200.00 t               |                  |
|                                            | B-18         | -32.5 200.00 U                   |                     | 200.00 (              |                        | .00 U                | 200.00 L             | <del>il l</del>    | 200.00                                           |                      | 69.30                |                    | 200.00             |                   | 200.00 (             |                  | 200.00                     |                            | 200.00 L               |                  | 200.00 (               |                  |
|                                            |              | -42.5 117.49 J                   | 5.00 L              |                       |                        |                      |                      | 5.00 L             | 200.00                                           |                      |                      |                    |                    |                   |                      |                  |                            |                            |                        |                  |                        |                  |
|                                            |              | -47.5 64.59 J<br>-52.5 53.88 J   |                     | 200.00 t              |                        | .00 U<br>.00 U       | 64.59 J<br>200.00 L  |                    | 200.00                                           |                      | 200.00<br>53.88      |                    | 200.00             |                   | 200.00               |                  | 200.00                     |                            | 200.00 L<br>200.00 L   |                  | 200.00 t               |                  |
| F-0_9-25/57.5'                             | B-18         | -57.5 60.24 J                    |                     | 200.00 l              | J 200                  | .00 U                | 200.00 L             | J                  | 200.00                                           | U                    | 60.24                | J                  | 200.00             | U                 | 200.00               | U                | 200.00                     | U                          | 200.00 L               | J                | 200.00 l               | J                |
|                                            | B-18<br>B-19 | -64.5 69.10 J                    | 5.90 L              | J 50.79               |                        | .00 U 5.90           |                      |                    | 200.00                                           | U 5.90 U<br>13000.00 | 200.00               | U 5.90<br>29000.00 |                    | J 5.90<br>270.00  |                      | U 5.90<br>270.00 |                            |                            |                        |                  |                        | 5700.00          |
| FixedG-40_5-35/44'<br>FixedG-40_5-35/64.5' |              | -44<br>-64.5                     | 42460.00<br>6700.00 | +                     | 270.00 U<br>300.00 U   | 270.00<br>300.00     |                      | 460.00<br>300.00 L | <del>                                     </del> | 13000.00<br>6700.00  | <del> </del>         | 300.00             |                    | 300.00            |                      | 300.00           |                            | 270.00 U<br>300.00 U       |                        | 270.00<br>300.00 |                        | 2300.00          |
| FixedG-40_5-35/74'                         | B-19         | -74                              | 2000.00             |                       | 320.00 U               | 320.00               | U                    | 320.00 L           |                                                  | 2000.00              |                      | 320.00             | U                  | 320.00            | U                    | 320.00           | U                          | 320.00 U                   | J                      | 320.00           | U                      | 3000.00          |
|                                            | B-19<br>B-19 | -84<br>-89                       | 5.70 L<br>5.50 L    | JI I                  | 5.70 U<br>5.50 U       | 5.70<br>5.50         |                      | 5.70 L<br>5.50 L   |                                                  | 5.70 U<br>5.50 U     |                      | 5.70<br>5.50       |                    | 5.70<br>5.50      |                      | 5.70<br>5.50     |                            | 5.70 U<br>5.50 U           |                        | 5.70<br>5.50     |                        | 5.70 t<br>5.50 t |
| FixedG-40_5-35/109'                        | B-19         | -109                             | 5.60 L              | J                     | 5.60 U                 | 5.60                 | U                    | 5.60 L             |                                                  | 5.60 U               |                      | 5.60               | U                  | 5.60              | U                    | 5.60             | U                          | 5.60 U                     | J                      | 5.60             | U                      | 5.60 l           |
| FixedG-40 5-35/114'                        |              | -114                             | 5.70 L              | 1                     | 5.70 U                 | 5.70                 |                      | 5.70 L             |                                                  | 5.70 U               |                      | 5.70               |                    | 5.70              |                      | 5.70             |                            | 5.70 U                     |                        | 5.70             |                        | 5.70 (           |
| FixedG-40_5-35/119                         | B-19         | -119                             | 6.30 L              | J                     | 6.30 U                 | 6.30                 | U                    | 6.30 L             |                                                  | 6.30 U               | 1                    | 6.30               | υ                  | 6.30              | υĮ                   | 6.30             | υĮ                         | 6.30 U                     | וי                     | 6.30             | U                      | 6.30 l           |

U- Not detected above indicated level

J- Indicates estimated value

## Table 5

Rapid Assessment Groundwater Summary 129-09 Jamaica Avenue, Queens, NY

|                      |           |      |              |          |              |             |          |         |          |         |              |              | Total    | Total   |                   |                   |                 |                 | cis-1,2-       | cis-1,2-       | Vinyl<br>Chloride | Vinyl<br>Chloride |             |             |          |          |
|----------------------|-----------|------|--------------|----------|--------------|-------------|----------|---------|----------|---------|--------------|--------------|----------|---------|-------------------|-------------------|-----------------|-----------------|----------------|----------------|-------------------|-------------------|-------------|-------------|----------|----------|
|                      |           |      | Total        |          | Total Chl-   | Total Chl-  | Benzene  | Benzene | Toluene  | Toluene | Ethylbenzene | Ethylbenzene | Xylenes  | Xylenes | Tetrachloroethene | Tetrachloroethene | Trichloroethene | Trichloroethene | Dichloroethene | Dichloroethene | (VC)              | (VC)              | Naphthalene | Naphthalene | MTBE     | MTBE     |
| Field ID/Sample Name | Boring ID |      | BTEX(Mobile) |          | VOCs(Mobile) | VOCs(Fixed) |          | (Fixed) |          | (Fixed) | (Mobile)     | (Fixed)      | (Mobile) | (Fixed) | (PCE) (Mobile)    | (PCE) (Fixed)     | (TCE) (Mobile)  | (TCE) (Fixed)   | (DCE) (Mobile) | (DCE) (Fixed)  |                   | (Fixed)           |             | (Fixed)     | (Mobile) | (Fixed)  |
|                      |           | (ft) | (ug/L)       | (ug/L)   | (ug/L)       | (ug/L)      | (ug/L)   | (ug/L)  | (ug/L)   | (ug/L)  | (ug/L)       | (ug/L)       | (ug/L)   | (ug/L)  | (ug/L)            | (ug/L)            | (ug/L)          | (ug/L)          | (ug/L)         | (ug/L)         | (ug/L)            | (ug/L)            | (ug/L)      | (ug/L)      | (ug/L)   | (ug/L)   |
| J-10_6-35/67'        | GW-B-14   | 67   | 6.79         | 5.00 U   | 4.38         | 5.00        | U 1.00 L | 5.00    | J 3.29   | 5.00 L  | J 1.00 U     | 5.00 (       | J 3.50   | 5.00 l  | J 4.38            | 5.00 L            | J 1.00          | 5.00            | J 1.00 L       | 5.00           | U 1.00 U          | 5.00 U            | 10.00 L     | J 5.00 U    | ا 1.00   | U 5.00 U |
| G-25_4-35/67'        | GW-B-15   | 67   | 1969.51      | 1321.20  | 15.22        | 20.00       | 1.00 L   | 5.00    | U 11.33  | 1.20 J  | 661.63       | 620.00       | 1296.55  | 700.00  | 15.22             | 5.00 L            | J 1.00          | 5.00            | J 1.00 L       | 5.00           | U 1.00 U          | 5.00 U            | 233.16      | 130.00      | 9.84     | 4.00 J   |
| G-25_4-35/78'        | GW-B-15   | 78   | 88.14        | 39.80    | 1.00         | U 5.00      | U 1.00 L | 5.00    | U 1.00 U |         |              | 30.00        | 49.58    | 9.80    | 1.00              |                   |                 | 5.00            |                |                | U 1.00 U          | 5.00 U            |             |             | 1.00     | U 5.00 U |
| G-25_4-35/93'        | GW-B-15   | 93   | 16.20        | 7.60 J   | 13.32        | 26.20       | 1.00 L   | 5.00    | U 1.00 U | 5.00 L  | 3.83         | 3.70         | 7.70     | 3.90    | 1.00              | U 5.00 L          | J 13.32         | 15.00           | 1.00 L         | 5.00           | U 1.00 U          | 1.20 J            | 10.00 L     | J 5.40 J    | J 68.65  | 69.00    |
| G-5_3-13/73'         | GW-B-16   | 73   | 17.54        | 5.00 U   | 1.00         | U 5.00      | U 1.00 L | 5.00    | U 4.77   | 5.00 L  | 1.95         | 5.00 \       | J 10.82  | 5.00 l  | 1.00              | U 5.00 L          | J 1.00          | J 5.00 l        | J 1.00 L       | 5.00           | U 1.00 U          | 5.00 U            | 10.00 L     | J 5.00 U    | ا 1.00   | U 5.00 U |
| E-45_8-05/73'        | GW-B-17   | 73   | 7.43         | 13.70    | 259.61       | 384.00      | 1.56     | 2.50    | J 1.74   | 3.10 J  | 1.00 U       | 1.10         | 4.13     | 7.00    | 1.00              | U 5.00 L          | J 1.00          |                 | J 230.02       | 320.00         | 29.59             | 64.00             | 5.44        |             | 1.00     | U 5.00 U |
| FixedE-45_8-05/93'   | GW-B-17   | 93   |              | 5.00 U   |              | 58.40       |          | 5.00    | U        | 5.00 L  | J            | 5.00 l       | J        | 5.00 l  | J                 | 1.40 J            | J               | 57.00           |                | 5.00           | U                 | 5.00 U            |             | 2.20 J      | j        | 1.70 J   |
| F-0_9-25/73'         | GW-B-18   | 73   | 2.00         | U 5.00 U | 3.10         | 13.10       | 1.00 L   | 5.00    | U 1.00 U | 5.00 L  | J 1.00 U     | 5.00 (       | J 2.00 U | 5.00 l  | 1.00              | U 5.00 L          | J 1.94          | 5.00            | 1.05           | 1.60           | J 1.00 U          | 1.50 J            | 10.00 L     | J 5.00 U    | J 1.00 L | U 0.82 J |
| FixedG-40_5-35/112   | GW-B-19   | 112  |              | 4.00 J   |              | 27.20       |          | 5.00    | U        | 5.00 L  | J            | 4.00         | J        | 5.00 l  | J                 | 5.20              |                 | 22.00           |                | 5.00           | U                 | 5.00 U            |             | 3.40 J      | J        | 44.00    |

#### Notes:

U- Not detected above indicated level

J- Indicates estimated value

RAP\_GW\_Summary\_030309.xls

## Table 6 Summary of Soil Sampling Results for VOC Analysis 129-09 Jamaica Avenue, Queens, NY

| Field Sample ID                                         | NYSDEC          | NYSDEC        | H-25-5-30-18   | H-25-5-30-42     | H-25-5-30-77   | H-25-5-30-82   | J-10-6-35-7    | J-10-6-35-42.5 | J-10-6-35-52.5 | J-10-6-35-62.5  | G-25-4-35-38   | G-25-4-35-67.5 | G-25-4-35-90   | G-25-4-35-95   | G-5-3-13-17.5  | G-5-3-13-52.5  | G-5-3-13-67.5  | G-5-3-13-74    | H-25-5-30-18   | H-25-5-30-42     | H-25-5-30-63    | H-25-5-30-63D     | L G-25-4-35-38   | G-25-4-35-52.5   | G-25-4-35-52.5   | G-25-4-35-67.5   | G-5-3-13-52.5    |
|---------------------------------------------------------|-----------------|---------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|-----------------|-------------------|------------------|------------------|------------------|------------------|------------------|
| Boring ID                                               | Table 375       | Table 375     | B-13           | B-13             | B-13           | B-13           | B-14           | B-14           | B-14           | B-14            | B-15           | B-15           | B-15           | B-15           | B-16           | B-16           | B-16           | B-16           | B-13           | B-13             | B-13            | B-13              | B-15             | B-15             | B-15             | B-15             | B-16             |
| Lab Sample Number                                       | Restricted      | Unrestricted  | H0144-01B      | H0144-02B        |                |                |                | H0144-07B      | H0144-08B      | H0144-09B       | H0144-11B      | H0144-13B      | H0144-14B      |                | H0144-16B      | H0144-17B      | H0144-18B      |                | H0144-01B      | H0144-02B        | H0144-03B       |                   | H0144-11B        |                  | H0144-12BDL      | H0144-13B        | H0144-17B        |
| Sampling Date                                           | Residential     | SCO's         | 01/26/2009     | 01/26/2009       | 01/27/2009     | 01/27/2009     | 01/28/2009     | 01/28/2009     | 01/28/2009     | 01/28/2009      | 01/29/2009     | 01/29/2009     | 01/30/2009     | 01/30/2009     | 02/01/2009     | 02/01/2009     | 02/03/2009     | 02/03/2009     |                | 01/26/2009       | 01/27/2009      | 01/27/2009        | 01/29/2009       | 01/29/2009       | 01/29/2009       | 01/29/2009       | 02/01/2009       |
| Sample Depth (feet) Percent Solids                      |                 |               | 18<br>92       | 42<br>92         | 77<br>85       | 82<br>87       | 96             | 42.5<br>94     | 52.5<br>81     | 62.5<br>88      | 38<br>93       | 67.5<br>88     | 90<br>85       | 95<br>79       | 17.5<br>90     | 52.5<br>87     | 67.5<br>85     | 74<br>78       | 18<br>92       | 42<br>92         | 63<br>91        | 63<br>91          | 38<br>93         | 52.5<br>88       | 52.5<br>88       | 67.5<br>88       | 52.5<br>87       |
| Dilution Factor                                         |                 |               | 1              | 1                | 1              | 1              | 1              | 1              | 1              | 1               | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 12               | 1               | 5                 | 1                | 10               | 20               | 4                | 20               |
| Matrix                                                  |                 |               | Solid          | Solid            | Solid          | Solid          | Solid          | Solid          | Solid          | Solid           | Solid          | Solid          | Solid          | Solid          | Solid          | Solid          | Solid          | Solid          | Solid          | Solid            | Solid           | Solid             | Solid            | Solid            | Solid            | Solid            | Solid            |
| Units                                                   | ug/Kg           | ug/Kg         | ug/Kg          | ug/Kg            | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg           | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg          | ug/Kg            | ug/Kg           | ug/Kg             | ug/Kg            | ug/Kg            | ug/Kg            | ug/Kg            | ug/Kg            |
| Volatile Organic Compounds<br>1,1,1,2-Tetrachloroethane | 100000          | 50            | 6.8IU          | 12 <b>I</b> U    | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          | 290 U          | 3400 U           | 290 U           | 1500 U            | 290 U            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| 1,1,1-Trichloroethane                                   | 100000          | 680           | 6.8 U          | 12 U             | 5.8 U          |                | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| 1,1,2,2-Tetrachloroethane                               | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          |                | 5.2 U          |                | 6.1 U          |                 | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          |                | 5.7 U          | 6.4 U          | 290 U          | 3400 U           | 290 U           |                   |                  |                  | 6400 U           | 1300 U           | 6500 U           |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane             | NS<br>26000     | NS<br>270     | 6.8 U          | 12 U             | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U<br>5.2 U | 5.0 U<br>5.0 U | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U<br>5.1 U | 57 U<br>57 U   | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U<br>5.3 U | 57 U<br>57 U   | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U | 290 U<br>290 U | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U            | 290 U            | 6400 U<br>6400 U | 6400 U<br>6400 U | 1300 U<br>1300 U | 6500 U<br>6500 U |
| 1,1-Dichloroethane                                      | 100000          | 330           | 6.8 U          | 12 U             | 5.8 U          |                | 5.2 U          |                | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            | 290 U            |                  |                  | 1300 U           | 6500 U           |
| 1,1-Dichloropropene                                     | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          | 290 U          | 3400 U           | 290 U           | 1500 U            | 290 U            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| 1,2,3-Trichlorobenzene                                  | NS              | NS            | 6.8 U          | 12 U             |                |                | 5.2 U          |                | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  |                  |                  | 1300 U           | 6500 U           |
| 1,2,3-Trichloropropane<br>1,2,4-Trichlorobenzene        | NS<br>NS        | NS<br>NS      | 6.8 U<br>6.8 U | 12 U<br>12 U     | 5.8 U<br>5.8 U |                | 5.2 U<br>5.2 U |                | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U<br>5.1 U | 57 U<br>57 U   | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U<br>5.3 U | 57 U<br>57 U   | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U |                | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U<br>1500 U  |                  |                  | 6400 U<br>6400 U | 1300 U<br>1300 U | 6500 U<br>6500 U |
| 1,2,4-Trimethylbenzene                                  | 52000           | 3600          | 360 E          | 10000 E          | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 1800 E         | 9100 EB        | 4.9 J          | 4.4 J          | 1.6 BJ         | 33000 EB       | 5.7 U          | 6.4 U          |                | 140000           | 32000 E         | 52000 D           |                  | 140000           | 140000           | 26000            | 170000           |
| 1,2-Dibromo-3-chloropropane                             | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          |                | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U<br>5.9 U | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          | 290 U          | 3400 U           | 290 U<br>290 U  | 1500 U            | 290 U            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| 1,2-Dibromoethane                                       | NS<br>100000    | NS<br>1100    | 6.8 U<br>6.8 U | 12 U             | 5.8 U          |                | 5.2 U<br>5.2 U | 5.0 U          | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U<br>5.1 U | 57 U<br>57 U   | 5.9 U          | 6.2 U          | 5.3 U<br>5.3 U | 57 U<br>57 U   |                | 6.4 U          | 290 U          | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U<br>1500 U  |                  | 0400 0           | 6400 U<br>6400 U | 1300 U<br>1300 U | 6500 U<br>6500 U |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane               | 100000<br>3100  | 1100          | 6.8 U          |                  |                |                | 5.2 U          |                | 6.1 U<br>6.1 U |                 | 5.1 U<br>5.1 U | 57 U<br>57 U   | 5.9 U          | 6.2 U<br>6.2 U | 5.3 U<br>5.3 U | 57 U           |                | 6.4 U          |                | 3400 U           |                 | 1500 U            |                  |                  | 6400 U           | 1300 U           | 6500 U           |
| 1,2-Dichloropropane                                     | 26000           | 270           | 6.8 U          |                  |                |                | 5.2 U          |                | 6.1 U          |                 | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            | 290 U            |                  | 6400 U           | 1300 U           | 6500 U           |
| 1,3,5-Trimethylbenzene                                  | 52000           | 8400          | 6.8 U          | 6400 E           | 5.8 U          |                | 5.2 U          |                | 6.1 U          |                 | 490 E          | 3400 E         | 1.4 J          | 6.2 U          |                | 17000 E        | 5.7 U          | 6.4 U          |                | 53000            | 5000            | 4600 D            |                  | 46000            | 46000            | 7900             | 56000            |
| 1,3-Dichlorobenzene<br>1,3-Dichloropropane              | 49000<br>NS     | 2400<br>NS    | 6.8 U<br>6.8 U | 12 U             | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U<br>5.2 U | 5.0 U<br>5.0 U | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U          | 57 U<br>57 U   | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U          | 57 U           | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U | 290 U<br>290 U | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U            | 290 U            | 6400 U<br>6400 U | 6400 U<br>6400 U | 1300 U<br>1300 U | 6500 U<br>6500 U |
| 1,4-Dichlorobenzene                                     | 13000           | 1800          | 6.8 U          | 12 U             |                |                | 5.2 U          |                | 6.1 U          |                 | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           |                | 6.4 U          |                | 3400 U           |                 | 1500 U            | 290 U            |                  | 6400 U           | 1300 U           |                  |
| 2,2-Dichloropropane                                     | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            | 200 0            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| 2-Butanone                                              | 41000           | 1000          | 7.5            | 12 U             |                |                | 5.2 U          |                | 6.1 U          |                 | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  |                  |                  | 1300 U           | 6500 U<br>6500 U |
| 2-Chlorotoluene<br>2-Hexanone                           | NS<br>NS        | NS<br>NS      | 6.8 U<br>6.8 U |                  | 5.8 U          |                | 5.2 U<br>5.2 U | 5.0 U<br>5.0 U | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U          | 57 U<br>57 U   | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U<br>5.3 U | 57 U           | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U |                | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U            |                  | 6400 U<br>6400 U | 6400 U           | 1300 U<br>1300 U | 6500 U           |
| 4-Chlorotoluene                                         | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| 4-Isopropyltoluene                                      | NS              | NS            | 13             | 1400 E           | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 450 E          | 2000           | 5.9 U          | 6.2 U          | 5.3 U          | 8600 E         | 5.7 U          | 6.4 U          |                | 12000            | 1700            | 11000 D           |                  | 20000            | 20000            | 4200             | 31000            |
| 4-Methyl-2-pentanone<br>Acetone                         | 19000<br>100000 | 1300<br>50    | 6.8 U<br>58    | 12 U<br>59       | 5.8 U          | 4.9 U<br>29    | 5.2 U<br>11    | 5.0 U<br>36    | 6.1 U<br>38    | 5.7 U<br>24     | 5.1 U<br>14    | 57 U<br>57 U   | 5.9 U<br>6.0   | 6.2 U<br>6.2 U | 5.3 U<br>5.3 U | 57 U<br>57 U   | 5.7 U<br>5.7 U | 6.4 U          |                | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U<br>1500 U  |                  |                  | 6400 U<br>6400 U | 1300 U<br>1300 U | 6500 U<br>6500 U |
| Benzene                                                 | 4800            | 60            | 6.8 U          | 12 U             |                |                | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           |                | 6.4 U          |                | 3400 U           |                 | 1500 U            |                  |                  | 6400 U           | 1300 U           |                  |
| Bromobenzene                                            | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          |                | 5.2 U          | 5.0 U          | 6.1 U          |                 | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          | 290 U          | 3400 U           |                 |                   |                  |                  |                  | 1300 U           | 6500 U           |
| Bromochloromethane                                      | NS<br>21000     | NS<br>470     | 6.8 U          | 12 U             |                | 4.9 U<br>4.9 U | 5.2 U          | 5.0 U<br>5.0 U | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U<br>5.1 U | 57 U<br>57 U   | 5.9 U          | 6.2 U          | 5.3 U          | 57 U<br>57 U   | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U |                | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U<br>1500 U  |                  | 6400 U<br>6400 U | 6400 U<br>6400 U | 1300 U<br>1300 U | 6500 U<br>6500 U |
| Bromodichloromethane<br>Bromoform                       | 900             | 20            | 6.8 U<br>6.8 U | 12 U             | 5.8 U<br>5.8 U | 4.9 U          | 5.2 U<br>5.2 U | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Bromomethane                                            | 100000          | 260           | 6.8 U          | 12 U             |                | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          |                | 57 U           | 5.7 U          | 6.4 U          | 290 U          | 3400 U           | 290 U           |                   | 200 0            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Carbon disulfide                                        | 100000          | 50            | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            | 200 0            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Carbon tetrachloride<br>Chlorobenzene                   | 2400<br>100000  | 760<br>1100   | 6.8 U          | 12 U<br>12 U     |                |                | 5.2 U<br>5.2 U | 5.0 U<br>5.0 U | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U<br>5.1 U | 57 U<br>57 U   | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U<br>5.3 U | 57 U<br>57 U   | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U |                | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U<br>1500 U  |                  |                  | 6400 U<br>6400 U | 1300 U<br>1300 U |                  |
| Chloroethane                                            | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Chloroform                                              | 49000           | 370           | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            | 290 U            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Chloromethane<br>cis-1 2-Dichloroethene                 | NS<br>100000    | 120<br>250    | 6.8 U          | 12 U             | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U          | 5.0 U<br>5.0 U | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U<br>5.1 U | 57 U<br>57 U   | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U          | 57 U           | 5.7 U<br>5.7 U | 6.4 U          | 290 U<br>290 U | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U            | 290 U            | 6400 U<br>6400 U | 6400 U<br>6400 U | 1300 U<br>1300 U | 6500 U<br>6500 U |
| cis-1,2-Dichloropropene                                 | 2400            | 2400          | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           |                 | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Dibromochloromethane                                    | 100000          | 1100          | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          |                | 6.1 U          |                 | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           |                | 6.4 U          |                | 3400 U           |                 | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           |                  |
| Dibromomethane                                          | NS<br>NC        | NS            | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          |                | 6.1 U          |                 | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U<br>57 U   | 5.7 U          | 6.4 U          |                | 3400 U           |                 | 1500 U<br>1500 U  |                  | 6400 U<br>6400 U | 6400 U<br>6400 U | 1300 U<br>1300 U |                  |
| Dichlorodifluoromethane<br>Ethylbenzene                 | NS<br>41000     | NS<br>1000    | 6.8 U<br>1.5 J | 12 U<br>1100 E   | 5.8 U<br>5.8 U | 4.9 U<br>4.9 U | 5.2 U<br>5.2 U | 5.0 U<br>5.0 U | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 5.1 U<br>18    | 57 U<br>390    | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U          | 470            | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U |                | 3400 U<br>2900 J | 290 U<br>2900   | 2400 D            |                  | 7900             | 7900             | 1300 U           | 6500 U<br>6500 U |
| Hexachlorobutadiene                                     | NS              | 330           | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          | 290 U          | 3400 U           | 290 U           | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| lodomethane                                             | NS<br>NS        | NS<br>NS      | 6.8 U          | 12 U<br>1600 F   | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U<br>5.2 U | 5.0 U<br>5.0 U | 6.1 J          |                 | 5.1 U<br>150   | 57 U           | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U          | 57 U<br>5900 F | 5.7 U<br>5.7 U | 6.4 U          |                | 3400 U<br>8800   |                 |                   |                  | 6400 U<br>10000  | 6400 U<br>10000  | 1300 U<br>1000 J | 6500 U<br>11000  |
| Isopropylbenzene<br>m,p-Xylene                          | NS<br>100000    | NS<br>260     | 2.2 J          | 1600 E<br>3600 E | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U          | 5.0 U          | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 150            | 650<br>610     | 5.9 U<br>5.9 U | 6.2 U          | 5.3 U          | 5900 E<br>610  | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U |                | 13000            | 6000<br>1200    | 5400 D<br>1000 DJ |                  | 21000            | 21000            | 760 J            | 11000<br>6500 U  |
| Methyl tert-butyl ether                                 | 100000          | 930           | 6.8 U          | 12 U             | 5.8 U          |                | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          |                | 57 U           | 5.7 U          | 6.4 U          | 290 U          | 3400 U           | 290 U           | 1500 U            | 290 U            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Methylene chloride                                      | 100000          | 50            | 13             | 14               | 6.2            | 15             | 1.2 J          | 6.3            | 25             | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 1.8 J          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Naphthalene<br>n-Butylbenzene                           | NS<br>100000    | 12000<br>3900 | 25 B           | 330 B<br>2100 ■  | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U          | 5.0 U          | 6.1 U<br>6.1 U | 1.3 BJ<br>5.7 U | 120<br>660 F   | 1200<br>4800 E | 5.9 U          | 6.2 U<br>6.2 U | 1.7 J          | 130<br>9500 E  | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U |                | 17000<br>28000   | 3000<br>16000 E | 3200 D<br>22000 D | 1200<br>3800     | 13000<br>41000   | 13000<br>41000   | 1800<br>11000    | 3100 J<br>54000  |
| n-Propylbenzene                                         | 100000          | 12000         | 29             | 4800 E           | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          |                 | 360 E          | 1400           | 5.9 U          | 6.2 U          | 5.3 U          |                | 5.7 U          | 6.4 U          |                | 17000            |                 | 11000 D           | 860              | 19000            | 19000            | 2600             | 25000            |
| o-Xylene                                                | 100000          | 260           | 1.8 J          | 21               | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 J           | 31             | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 210            | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            | 200 0            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| sec-Butylbenzene<br>Styrene                             | 100000<br>NS    | 11000<br>NS   | 51<br>6.8 U    | 1600 E           | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U<br>5.2 U |                | 6.1 U          |                 | 320 E<br>5.1 U | 1500           | 5.9 U          | 6.2 J          | 5.3 U          | 8200 E<br>57 U | 5.7 U          | 6.4 U          |                | 13000<br>3400 U  | 11000           | 12000 D<br>1500 U |                  | 19000<br>6400 U  | 19000<br>6400 U  | 3600<br>1300 U   | 29000<br>6500 U  |
| tert-Butvlbenzene                                       | 100000          | 5900          | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U<br>5.0 U | 6.1 U<br>6.1 U | 5.7 U<br>5.7 U  | 30             | 57 U<br>67     | 5.9 U<br>5.9 U | 6.2 U<br>6.2 J | 5.3 U          | 480            | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U |                | 3400 U           | 290 U<br>490    | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Tetrachloroethene                                       | 19000           | 1300          | 1300 E         | 21               | 5.8 U          | 4.9 U          | 1.1 J          | 5.0 U          | 6.1 U          | 5.7 U           | 5.1 U          | 57 U           | 5.9 U          | 6.2 U          | 5.3 U          | 57 U           | 5711           | 6.4 U          | 6300           | 3400 U           | 290 U           | 1500 U            | 290 U            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Toluene                                                 | 100000          | 700           | 6.8 U          | 3.2 J            | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 U          | 5.7 J           | 5.1 U          | 57 J           | 5.9 J          | 6.2 J          | 5.3 U          | 57 J           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  | 6400 U           | 6400 U           | 1300 J           | 6500 U           |
| trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene   | 100000<br>NS    | 190<br>NS     | 6.8 U          | 12 U             | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U<br>5.2 U | 5.0 U<br>5.0 U | 6.1 J<br>6.1 J | 5.7 U<br>5.7 J  | 5.1 U<br>5.1 U | 57 U<br>57 U   | 5.9 J<br>5.9 J | 6.2 U<br>6.2 U | 5.3 J          | 57 U           | 5.7 U<br>5.7 U | 6.4 J<br>6.4 J |                | 3400 U<br>3400 U | 290 U<br>290 U  | 1500 U<br>1500 U  | 290 U<br>290 U   | 6400 U<br>6400 U | 6400 U<br>6400 U | 1300 U<br>1300 U | 6500 U<br>6500 U |
| Trichloroethene                                         | 21000           | 470           | 5.0 J          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 J          | 5.7 J           | 5.1 U          | 57 U           | 5.9 U          | 6.2 0          | 5.3 U          | 57 U           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 U           | 1500 U            |                  | 6400 U           | 6400 U           | 1300 U           |                  |
| Trichlorofluoromethane                                  | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 J          | 5.7 J           | 5.1 J          | 57 J           | 5.9 J          | 6.2 J          | 5.3 U          | 57 J           | 5.7 U          | 6.4 J          | 290 J          | 3400 J           | 290 J           | 1500 U            | 290 U            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Vinyl acetate                                           | NS              | NS            | 6.8 U          | 12 U             | 5.8 U          | 4.9 U          | 5.2 U          | 5.0 U          | 6.1 J          | 5.7 J           | 5.1 J          | 57 J           | 5.9 J          | 6.2 J          | 5.3 U          | 57 J           | 5.7 U          | 6.4 U          |                | 3400 U           | 290 J           | 1500 U            | 290 U            | 6400 U           | 6400 U           | 1300 U           | 6500 U           |
| Vinyl chloride<br>Xvlene (Total)                        | 900<br>10000 0  | 20<br>260     | 6.8 U<br>4.0 J | 12 U             | 5.8 U          | 4.9 U<br>4.9 U | 5.2 U<br>5.2 U | 5.0 U<br>5.0 U | 6.1 U          | 5.7 J<br>5.7 U  | 5.1 U          | 57 J           | 5.9 U<br>5.9 U | 6.2 U<br>6.2 U | 5.3 U<br>5.3 U | 57 U<br>820    | 5.7 U<br>5.7 U | 6.4 U          | 290 U<br>290 U | 3400 U<br>13000  | 290 U<br>1200   | 1500 U<br>1000 D. | 290 U<br>J 290 U | 6400 J<br>21000  | 6400 J<br>21000  | 1300 U           | 6500 U<br>6500 U |
| Aylone (Total)                                          | 10000           | 200           | 7.00           | 3000 E           | 5.50           | 4.50           | 3.20           | 5.00           | 0.10           | 3.7 0           | 33             | 010            | 5.90           | 0.20           | 3.3 0          | 020            | 3.7 0          | 0.40           | 250 0          | 13000            | 1200            | 1000 D            | 2300             | 21000            | 21000            | 7000             | 0300             |

Notes:
U-Not detected above indicated level
J-indicates estimated value
B-indicates detected in lab blank
D-compound concentration was obtained from a diluted analysis
E-compound concentration exceeded calibration range

## Table 6 Summary of Soil Sampling Results for VOC Analysis 129-09 Jamaica Avenue, Queens, NY

| Field Sample ID                                  | NYSDEC          | NYSDEC        | E-45-8-5-7     | E-45-8-5-69    | E-45-8-5-74    | F-0-9-25-42.5  | F-0-9-25-64    | E45-8-5(90)    | F-0-9-25-3.5   | G-40-5-35-84   | G-40-5-35-89   | G-40-5-35-109  | G-40-5-35-114  | G-40-5-35-119RE | G_40_5_35_110  | G-40-5-35-44D      | G-40-5-35-44     | L40-5-35-64 5F    | G-40-5-35-64 5   | 5-40-5-35-740     | G-40-5-35-74   |
|--------------------------------------------------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|--------------------|------------------|-------------------|------------------|-------------------|----------------|
| Boring ID                                        | Table 375       | Table 375     | B-17           | B-17           | B-17           | B-18           | B-18           | B-17           | B-18           | B-19           | B-19           | B-19           | B-19           | B-19            | B-19           | B-19               | B-19             | B-19              | B-19             | B-19              | B-19           |
| Lab Sample Number                                | Restricted      | Unrestricted  | H0176-01B      | H0176-03B      | H0176-04B      | H0176-05B      | H0176-07B      | H0176-11B      | H0176-12B      | H0176-16B      | H0176-17B      | H0176-18B      | H0176-19B      | H0176-20BRE     | H0176-20B      | H0176-13BDL        | H0176-13B        | H0176-14BDL       | H0176-14B        | H0176-15BDL       | H0176-15B      |
| Sampling Date                                    | Residential     | SCO's         | 02/03/2009     | 02/04/2009     | 02/04/2009     | 02/05/2009     | 02/05/2009     | 02/09/2009     | 02/09/2009     | 02/10/2009     | 02/10/2009     | 02/11/2009     | 02/11/2009     | 02/11/2009      | 02/11/2009     | 02/10/2009         | 02/10/2009       | 02/10/2009        | 02/10/2009       | 02/10/2009        | 02/10/2009     |
| Sample Depth (feet)                              |                 |               | 7              | 69             | 74             | 42.5           | 64             | 90             | 3.5            | 84             | 89             | 109            | 114            | 119             | 119            | 44                 | 44               | 64.5              | 64.5             | 74                | 74             |
| Percent Solids                                   |                 |               | 93             | 82             | 87             | 95             | 83             | 88             | 89             | 81             | 83             | 82             | 81             | 74              | 74             | 92                 | 92               | 89                | 89               | 85                | 85             |
| Dilution Factor                                  |                 |               | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1               | 1              | 16                 | 1                | 5                 | 1                | 5                 | 1              |
| Matrix<br>Units                                  | ug/Kg           | ug/Kg         | Solid<br>ug/Kg  | Solid<br>ug/Kg | Solid<br>ug/Kg     | Solid<br>ug/Kg   | Solid<br>ug/Kg    | Solid<br>ug/Kg   | Solid<br>ug/Kg    | Solid<br>ug/Kg |
| Volatile Organic Compounds                       | ug/Ng           | ug/rtg        | ug/Ng          | ug/itg         | ug/itg         | ug/itg         | ug/itg         | ug/Ng          | ug/Ng          | ug/Ng          | ug/Ng          | ug/itg         | ug/Ng          | ug/Ng           | ug/Ng          | ug/rtg             | ug/itg           | ug/itg            | ug/itg           | ug/Ng             | ug/Ng          |
| 1,1,1,2-Tetrachloroethane                        | 100000          | 50            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,1,1-Trichloroethane                            | 100000          | 680           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,1,2,2-Tetrachloroethane                        | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,1,2-Trichloroethane<br>1,1-Dichloroethane      | NS<br>26000     | NS<br>270     | 5.4 U<br>5.4 U | 6.0 U<br>6.0 U | 5.7 U<br>5.7 U | 5.0 U<br>5.0 U | 5.9 U<br>5.9 U | 5.4 U<br>5.4 U | 5.0 U<br>5.0 U | 5.7 U<br>5.7 U | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U  | 6.3 U<br>6.3 U | 4400 U<br>4400 U   | 270 U<br>270 U   | 1500 U<br>1500 U  | 300 U<br>300 U   | 1600 U<br>1600 U  | 320 U<br>320 U |
| 1,1-Dichloroethene                               | 100000          | 330           | 5.4 U          |                | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            |                   | 300 U            | 1600 U            | 320 U          |
| 1,1-Dichloropropene                              | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,2,3-Trichlorobenzene                           | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,2,3-Trichloropropane<br>1,2,4-Trichlorobenzene | NS<br>NS        | NS<br>NS      | 5.4 U<br>5.4 U | 6.0 U<br>6.0 U | 5.7 U<br>5.7 U | 5.0 U<br>5.0 U | 5.9 U<br>5.9 U | 5.4 U<br>5.4 U | 5.0 U<br>5.0 U | 5.7 U<br>5.7 U | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U  | 6.3 U<br>6.3 U | 4400 U<br>4400 U   | 270 U<br>270 U   | 1500 U<br>1500 U  | 300 U<br>300 U   | 1600 U<br>1600 U  | 320 U<br>320 U |
| 1,2,4-Tricniorobenzene<br>1,2,4-Trimethylbenzene | 52000           | 3600          | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U<br>2.1 J | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 110000 D           | 37000 E          | 8400 D            | 7500             | 2500 D            | 320 U          |
| 1,2-Dibromo-3-chloropropane                      | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,2-Dibromoethane                                | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,2-Dichlorobenzene                              | 100000          | 1100          | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,2-Dichloroethane                               | 3100<br>26000   | 20            | 5.4 U          | 6.0 U          | 5.7 U<br>5.7 U | 5.0 U          | 5.9 U<br>5.9 U | 5.4 U<br>5.4 U | 5.0 U<br>5.0 U | 5.7 U          | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U  | 6.3 U<br>6.3 U | 4400 U<br>4400 U   | 270 U<br>270 U   | 1500 U            | 300 U<br>300 U   | 1600 U<br>1600 U  | 320 U<br>320 U |
| 1,2-Dichloropropane<br>1,3,5-Trimethylbenzene    | 52000<br>52000  | 270<br>8400   | 5.4 U<br>5.4 U | 6.0 U<br>6.0 U | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          |                | 6.4 U           | 6.3 U          |                    | 25000 F          | 1500 U            | 6200 U           | 1600 U            | 320 U<br>220 J |
| 1,3-Dichlorobenzene                              | 49000           | 2400          | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 1,3-Dichloropropane                              | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            |                   | 300 U            | 1600 U            | 320 U          |
| 1,4-Dichlorobenzene                              | 13000           | 1800          | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 2,2-Dichloropropane 2-Butanone                   | NS<br>41000     | NS<br>1000    | 5.4 U<br>5.4 U | 6.0 U<br>6.0 U | 5.7 U<br>5.7 U | 5.0 U<br>5.0 U | 5.9 U<br>5.9 U | 5.4 U<br>5.4 U | 5.0 U<br>5.0 U | 5.7 U<br>5.7 U | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>7.6    | 6.3 U          | 4400 U<br>4400 U   | 270 U<br>270 U   | 1500 U<br>1500 U  | 300 U<br>300 U   | 1600 U<br>1600 U  | 320 U<br>320 U |
| 2-Butanone<br>2-Chlorotoluene                    | 41000<br>NS     | 1000<br>NS    | 5.4 U<br>5.4 U | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 7.6<br>6.4 U    | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 2-Hexanone                                       | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 4-Chlorotoluene                                  | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| 4-Isopropyltoluene                               | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            |                   | 13000 E          | 1600 U            | 2300           |
| 4-Methyl-2-pentanone<br>Acetone                  | 19000<br>100000 | 1300<br>50    | 5.4 U<br>5.6   | 6.0 U          | 5.7 U<br>12    | 5.0 U<br>6.2   | 5.9 U<br>6.5   | 5.4 U<br>5.4 U | 5.0 U<br>5.0 U | 5.7 U<br>5.7 J | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>46     | 6.3 U<br>39    | 4400 U<br>4400 U   | 270 U<br>270 U   | 1500 U<br>1500 U  | 300 U<br>300 U   | 1600 U            | 320 U<br>320 U |
| Benzene                                          | 4800            | 60            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| Bromobenzene                                     | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| Bromochloromethane                               | NS              | NS            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          |                | 6.4 U           | 6.3 U          |                    | 270 U            |                   | 300 U            | 1600 U            | 320 U          |
| Bromodichloromethane<br>Bromoform                | 21000<br>900    | 470<br>20     | 5.4 U<br>5.4 U | 6.0 U<br>6.0 U | 5.7 U<br>5.7 U | 5.0 U<br>5.0 U | 5.9 U<br>5.9 U | 5.4 U<br>5.4 U | 5.0 U<br>5.0 U | 5.7 U<br>5.7 U | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U  | 6.3 U<br>6.3 U | 4400 U<br>4400 U   | 270 U<br>270 U   | 1500 U<br>1500 U  | 300 U<br>300 U   | 1600 U<br>1600 U  | 320 U<br>320 U |
| Bromomethane                                     | 100000          | 260           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| Carbon disulfide                                 | 100000          | 50            | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| Carbon tetrachloride                             | 2400            | 760           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| Chlorobenzene<br>Chloroethane                    | 100000<br>NS    | 1100<br>NS    | 5.4 U<br>5.4 U | 6.0 U<br>6.0 U | 5.7 U<br>5.7 U | 5.0 U<br>5.0 U | 5.9 U<br>5.9 U | 5.4 U<br>5.4 U | 5.0 U<br>5.0 U | 5.7 U<br>5.7 U | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U  | 6.3 U<br>6.3 U | 1100 0             | 270 U<br>270 U   | 1500 U<br>1500 U  | 300 U<br>300 U   | 1600 U<br>1600 U  | 320 U<br>320 U |
| Chloroform                                       | 49000           | 370           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| Chloromethane                                    | NS              | 120           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| cis-1,2-Dichloroethene                           | 100000          | 250           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| cis-1,3-Dichloropropene                          | 2400            | 2400          | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 U            | 300 U            | 1600 U            | 320 U          |
| Dibromochloromethane Dibromomethane              | 100000<br>NS    | 1100<br>NS    | 5.4 U<br>5.4 U | 6.0 U          | 5.7 U<br>5.7 U | 5.0 U          | 5.9 U<br>5.9 U | 5.4 U<br>5.4 U | 5.0 U          | 5.7 U<br>5.7 U | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U  | 6.3 U<br>6.3 U | 4400 J             | 270 U<br>270 U   | 1500 U            | 300 U            | 1600 U            | 320 U<br>320 U |
| Dichlorodifluoromethane                          | NS<br>NS        | NS<br>NS      | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 J            | 300 U            | 1600 U            | 320 U          |
| Ethylbenzene                                     | 41000           | 1000          | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 13000 D            | 18000 E          | 6200 D            | 6700             | 1300 DJ           | 2000           |
| Hexachlorobutadiene                              | NS              | 330           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          |                    | 270 U            | 1500 U            | 300 U            | 1600 J            | 320 U          |
| lodomethane<br>Isopropylbenzene                  | NS<br>NS        | NS<br>NS      | 5.4 U<br>5.4 U | 6.0 U<br>6.0 U | 5.7 U<br>5.7 U | 5.0 U<br>5.0 U | 5.9 U<br>5.9 U | 5.4 U<br>5.4 U | 5.0 U<br>5.0 U | 5.7 U<br>5.7 U | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U  | 6.3 U<br>6.3 U | 4400 U<br>21000 D  | 270 U<br>28000 E | 1500 J<br>8300 D  | 300 U<br>9100    | 1600 J<br>2400 D  | 320 U<br>3800  |
| m.p-Xvlene                                       | 100000          | 260           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 13000 D            | 20000 E          | 1500 J            | 300 U            | 1600 J            | 320 U          |
| Methyl tert-butyl ether                          | 100000          | 930           | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 U          | 5.9 J          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 4400 U             | 270 U            | 1500 J            | 300 U            | 1600 J            | 320 J          |
| Methylene chloride                               | 100000          | 50            | 5.4 J          | 6.0 U          | 5.7 U          | 5.0 U          | 2.1 J          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 11              | 14             | 4400 U             | 270 U            | 1500 J            | 300 U            | 1600 J            | 320 J          |
| Naphthalene                                      | NS<br>100000    | 12000         | 5.4 U          | 6.0 U          | 5.7 U          | 5.0 J<br>5.0 J | 5.9 U          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 U          | 48000 D<br>27000 D | 19000 E          | 38000 D           | 18000 E<br>11000 | 19000 D<br>4800 D | 26000 E        |
| n-Butylbenzene<br>n-Propylbenzene                | 100000          | 3900<br>12000 | 5.4 J<br>5.4 J | 6.0 U          | 5.7 U<br>5.7 U | 5.0 U          | 5.9 U<br>5.9 U | 5.4 U<br>1.3 J | 5.0 U<br>5.0 U | 5.7 U<br>5.7 U | 5.5 U<br>5.5 U | 5.6 U<br>5.6 U | 5.7 U<br>5.7 U | 6.4 U<br>6.4 U  | 6.3 U          | 17000 D            | 28000 E<br>5700  | 13000 D<br>4500 D | 2300             | 4800 D            | 5600<br>3000   |
| o-Xylene                                         | 100000          | 260           | 5.4 J          | 6.0 J          | 5.7 J          | 5.0 J          | 5.9 J          | 5.4 U          | 5.0 U          | 5.7 U          | 5.5 U          | 5.6 U          | 5.7 U          | 6.4 J           | 6.3 U          | 6500 D             | 8700             | 1500 J            | 300 J            | 1600 J            | 320 J          |
| sec-Butylbenzene                                 | 100000          | 11000         | 5.4 J          | 6.0 J          | 5.7 J          | 5.0 J          | 5.9 J          | 5.4 J          | 5.0 J          | 5.7 J          | 5.5 U          | 5.6 J          | 5.7 J          | 6.4 J           | 6.3 J          | 24000 D            | 19000 E          | 15000 D           | 13000 E          | 7200 D            | 11000          |
| Styrene                                          | NS              | NS            | 5.4 J          | 6.0 J          | 5.7 J          | 5.0 J          | 5.9 J          | 5.4 J          | 5.0 J          | 5.7 J          | 5.5 J          | 5.6 U          | 5.7 U          | 6.4 U           | 6.3 J          | 4400 J             | 270 U            | 1500 J            | 300 J            | 1600 J            | 320 J          |
| tert-Butylbenzene<br>Tetrachloroethene           | 100000<br>19000 | 5900<br>1300  | 5.4 J<br>5.4 J | 6.0 J<br>6.0 J | 5.7 J<br>5.7 J | 5.0 J<br>5.0 J | 5.9 J<br>5.9 J | 5.4 J<br>5.4 J | 5.0 J<br>5.0 J | 5.7 J<br>5.7 J | 5.5 J<br>5.5 J | 5.6 J<br>5.6 J | 5.7 J<br>5.7 J | 6.4 J<br>6.4 J  | 6.3 U          | 4400 J<br>4400 J   | 270 J<br>270 J   | 1500 J<br>1500 J  | 480<br>300 J     | 1600 J<br>1600 J  | 320 J<br>320 J |
| Toluene                                          | 100000          | 700           | 5.4 J          | 6.0 J          | 5.7 J          | 5.0 U          | 5.9 J          | 5.4 U          | 5.0 U          | 5.7 J          | 5.5 U          | 5.6 J          | 5.7 U          | 6.4 J           | 6.3 U          | 4400 J             | 460              | 1500 J            | 300 U            | 1600 J            | 320 U          |
| trans-1,2-Dichloroethene                         | 100000          | 190           | 5.4 J          | 6.0 J          | 5.7 J          | 5.0 J          | 5.9 J          | 5.4 J          | 5.0 J          | 5.7 J          | 5.5 J          | 5.6 U          | 5.7 J          | 6.4 J           | 6.3 J          | 4400 J             | 270 J            | 1500 J            | 300 J            | 1600 J            | 320 J          |
| trans-1,3-Dichloropropene                        | NS              | NS            | 5.4 J          | 6.0 J          | 5.7 J          | 5.0 J          | 5.9 J          | 5.4 J          | 5.0 J          | 5.7 J          | 5.5 J          | 5.6 J          | 5.7 J          | 6.4 J           | 6.3 J          | 4400 J             | 270 J            | 1500 J            | 300 J            | 1600 J            | 320 J          |
| Trichloroethene                                  | 21000           | 470           | 5.4 J          | 6.0 J          | 5.7 J          | 5.0 J          | 5.9 J          | 5.4 J          | 5.0 J          | 5.7 J          | 5.5 J          | 5.6 J          | 5.7 J          | 6.4 J           | 6.3 J          | 4400 J             | 270 J            | 1500 J            | 300 J            | 1600 J            | 320 J          |
| Trichlorofluoromethane                           | NS<br>NE        | NS<br>NS      | 5.4 J          | 6.0 J          | 5.7 J          | 5.0 J<br>5.0 J | 5.9 J          | 5.4 J          | 5.0 J          | 5.7 J<br>5.7 J | 5.5 J<br>5.5 J | 5.6 J<br>5.6 J | 5.7 J          | 6.4 J           | 6.3 J          | 4400 J<br>4400 J   | 270 J            | 1500 J<br>1500 J  | 300 J<br>300 J   | 1600 U            | 320 J          |
| Vinyl acetate Vinyl chloride                     | NS<br>900       | NS<br>20      | 5.4 J<br>5.4 J | 6.0 J<br>6.0 J | 5.7 J          | 5.0 J<br>5.0 J | 5.9 J<br>5.9 J | 5.4 J          | 5.0 J<br>5.0 J | 5.7 J          | 5.5 J<br>5.5 J | 5.6 J          | 5.7 J          | 6.4 J<br>6.4 J  | 6.3 J          | 4400 J<br>4400 J   | 270 J<br>270 J   | 1500 U            | 300 J            | 1600 U            | 320 J<br>320 J |
| Xylene (Total)                                   | 100000          | 260           | 5.4 J          | 6.0 U          | 5.7 J          | 5.0 J          | 5.9 U          | 5.4 U          | 5.0 D          | 5.7 J          | 5.5 J          | 5.6 J          | 5.7 J          | 6.4 J           | 6.3 U          | 19000 D            | 29000            | 1500 U            | 300 D            | 1600 U            | 320 U          |
| , ()                                             |                 |               | J P            | , o.o p        | J., P          | 0.0 p          | 0.0 p          | U P            | 0.0 P          | U P            | 0.0 0          | 0.00           | J., J          | J P             | 5.5 p          |                    |                  |                   | P                |                   |                |

Notes:
U-Not detected above indicated level
J-indicates estimated value
B-indicates detected in lab blank
D-compound concentration was obtained from a diluted analysis
E-compound concentration exceeded calibration range

## Table 7 Summary of Ground Water Sampling Results for VOC Analysis 129-09 Jamaica Avenue, Queens, NY

| Program   Prog   | Field Sample ID                   | NYSDEC | MW-J-1 | 10-6-35 | 5 G-25-4 | -35-67   | G-25-4-3 | 35-67DL | G-25-4 | 1-35-78  | G-25-4 | -35-93 | G-5-  | 3-13     | TRIP E | BLANK | MW-E-4   | 15-8-5-73DL | MW-E-45-8- | 5-73 M | W-F-0-9 | -25-73 | TB02  | 0509  | E-45-8 | 8-5-93  | G-40-5-3 | 35-112 | TB021109   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|--------|---------|----------|----------|----------|---------|--------|----------|--------|--------|-------|----------|--------|-------|----------|-------------|------------|--------|---------|--------|-------|-------|--------|---------|----------|--------|------------|
| at Assertate    Political Conference   Politi | Boring ID                         |        |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Semble   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975    | Depth (-Ft)                       |        |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| STATES NAMES STATES AS A STATE | Lab Sample Number                 |        |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| INTERPRETABLE SECTION 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1 |                                   |        | 01/29/ | /2009   | 01/30/   | /2009    |          |         | 01/30  | /2009    | 02/03  | /2009  | 02/03 | /2009    | 02/03  | /2009 | 02/      |             | 02/04/200  | )9     | 02/05/2 | 009    | 02/05 | /2009 | 02/11  | /2009   | 02/11/2  | 2009   | 02/11/2009 |
| Seminary Composition   |                                   |        | Liqu   | uid     | Lig      | uid      |          |         | Lio    | ı ı id   | Lia    | uid    | Lia   | uid      | Lia    | uid   | <u> </u> |             | Liquid     |        | Liqui   | d      | Lia   | uid   | Lio    | uid     | Liqu     | iid    | Liquid     |
| Fig. 1. Control of the control of th | Units                             | ua/L   |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| 1. Trendentement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volatile Organic Compounds        |        | 1      | ,       | 1        |          |          |         |        | ,        |        |        | 0     |          |        |       |          | · U         |            |        |         |        |       |       |        |         |          |        |            |
| 12.5   Temperature   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1,1,2-Tetrachloroethane         | 5      | 5.0    | U       |          | U        |          |         |        | U        | 5.0    | U      |       | U        |        | U     |          | U           | 5.0        |        |         | U      |       | U     |        | U       |          | U      |            |
| 12   Telephophe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1,1-Trichloroethane             |        |        |         |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Applications   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |        |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Controlled   MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |        |        | _       |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Observation   Section   Column   Colu   | 1,1-Dichloroethane                |        |        | _       |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            | _      |         |        |       |       |        |         |          |        |            |
| 2.2 Infectorement 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-Dichloropropene               |        |        |         |          |          |          |         |        | U        |        | U      |       | U        |        |       |          | U           |            |        |         |        |       |       |        | U       |          | U      |            |
| 2.4 Internetwere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2,3-Trichlorobenzene            |        |        | U       |          | U        |          |         |        | U        | 5.0    | U      |       | U        |        | U     |          |             | 5.0        | U      | 5.0     |        |       |       |        | U       | 5.0      | U      |            |
| 2.4. Trendphonomen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |        |        | _       |          | _        |          |         |        |          |        |        |       | _        |        |       |          |             |            | _      |         |        |       |       |        |         |          |        |            |
| Section of Control Programs   Control   Control Programs   Control P   |                                   | -      |        | _       |          | _        |          |         |        | U        |        | U      |       | U        |        |       |          |             |            |        |         | -      |       |       |        |         |          | U      |            |
| 2-beroenderment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |        |        |         |          |          |          |         |        | ш        |        | П      |       | J<br>II  |        |       |          |             |            |        |         |        |       |       |        |         |          | Ш      |            |
| 2-04-bit confidence   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 0.04   |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          | _      |            |
| September   Sept   | 1,2-Dichlorobenzene               | 3      |        | _       |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            | _      |         |        |       |       |        |         |          |        |            |
| 3.5-Printerplesteres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,2-Dichloroethane                |        |        |         |          | _        | 80       |         | 5.0    |          |        |        | 5.0   |          | 5.0    |       | 20       |             | 5.0        | U      | 5.0     |        |       |       | 5.0    |         | 5.0      |        | 5.0 U      |
| Sections   Section   Sec   | 1,2-Dichloropropane               |        |        | _       |          |          |          |         |        | U        |        | U      |       |          |        |       |          |             |            | _      |         | -      |       |       |        |         |          |        |            |
| 3-Discriptogrammen   S   SO   U   SO    | 1,3,5-Trimethylbenzene            |        |        |         |          |          |          |         |        | - 11     |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| 4. Abchronomeremen 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |        |        | _       |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            | _      |         |        |       |       |        |         |          |        |            |
| Secretar properties   Secretar    |                                   |        |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          | _           |            |        |         |        |       |       |        |         |          | -      |            |
| Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2-Dichloropropane               |        |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Selection   NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-Butanone                        | 50     |        | U       |          |          |          |         |        | Ü        |        | Ü      |       | U        |        |       |          | U           |            |        |         | U      |       |       |        | U       |          | U      |            |
| Chierotoblane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Chlorotoluene                   |        |        | _       |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| -Insperigning with the property of the propert |                                   |        |        | _       |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            | _      |         |        |       |       |        |         |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |        |        |         |          | U        |          |         |        | U        |        |        |       |          |        |       |          |             |            |        |         | _      |       |       |        |         |          |        |            |
| selene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | 5      |        |         |          | Ш        |          |         |        | ш        |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Selection   Sele   | Acetone                           | 50     |        | _       |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            | _      |         |        |       |       |        |         |          |        |            |
| Information   S   S   S   U   S   S   U   S   S   U   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benzene                           |        |        |         |          | U        |          |         |        | U        |        |        |       |          |        |       |          | U           |            |        |         |        |       |       |        |         |          | U      |            |
| Nonconference   50   50   U   16   U   80   U   30   U   50   U    | Bromobenzene                      | 5      | 5.0    | U       | 5.0      | U        | 80       | U       |        | U        | 5.0    | U      |       | U        |        | U     | 20       | U           | 5.0        | U      | 5.0     | U      |       | U     |        | U       | 5.0      | U      |            |
| Noncommonth   So   So   U      | Bromochloromethane                |        |        |         |          |          |          |         |        |          |        |        |       | U        |        |       |          |             |            |        |         | U      |       |       |        |         |          |        |            |
| Informermentance   S   SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |        |        | _       |          | _        |          |         |        |          |        |        |       | J        |        |       |          |             |            |        |         | J      |       |       |        |         |          |        |            |
| Tarbon etasefuldred  5 50 U 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |        |        | _       |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Semon tetrachoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |        |        | _       |          |          |          |         |        |          |        |        |       | _        |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Discription   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbon tetrachloride              |        |        | _       |          | _        |          |         |        |          |        |        |       | Ü        |        |       |          | Ü           |            | _      |         | U      |       |       |        |         |          |        |            |
| Production   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chlorobenzene                     | 5      | 5.0    | U       | 5.0      | U        | 80       | U       |        | U        | 5.0    | U      |       | U        | 5.0    | U     | 20       | U           | 5.0        | U      | 5.0     | U      |       | U     |        | U       | 5.0      | U      |            |
| Collection   NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloroethane                      | -      |        | U       |          |          |          |         |        | J        |        |        |       | U        |        |       |          |             |            |        |         | U      |       |       |        | U       |          | U      |            |
| Is-12-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chloroform                        |        |        |         |          |          |          |         |        | L        |        |        |       | <b>!</b> |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Section   Sect   |                                   |        |        | _       |          | J<br>II  |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         | U      |       |       |        |         |          |        |            |
| Decomposition   So   So   U    |                                   |        |        | _       |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         | U      |       |       |        |         |          |        |            |
| Discommendame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dibromochloromethane              |        |        |         |          |          |          |         |        | Ü        |        |        |       | Ü        |        |       |          | Ü           |            |        |         |        |       |       |        |         |          | Ü      |            |
| Strybenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dibromomethane                    | 5      | 5.0    | U       | 5.0      | U        |          | U       | 5.0    | U        | 5.0    | U      | 5.0   | U        | 5.0    | U     | 20       | U           | 5.0        | U      | 5.0     | U      | 5.0   | U     | 5.0    | U       | 5.0      | U      | 5.0 U      |
| Rexacthorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dichlorodifluoromethane           |        |        |         |          |          |          |         |        | U        |        | U      |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Description   Section      | Ethylbenzene                      |        |        |         |          |          |          |         |        | - 11     |        | J      |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          | ·      |            |
| Septemble   Sept   |                                   | 0.5    |        |         |          | _        |          |         |        |          |        |        |       | _        |        |       |          |             |            | _      |         |        |       |       |        |         |          |        |            |
| Tup-Xylene 5 5.0 U 590 E 700 D 9.8 3.9 J 5.0 U 5.0 U 20 U 1.0 J 5.0 U 5. |                                   | 5      |        |         |          | -        |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Methylene chloride 5 5.0 U 5.0 | m,p-Xylene                        |        |        | _       |          | E        |          |         |        |          |        | j      |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Rephthalene   10   5.0   U   150   130   D   10   5.4   5.0   U   5.0   U   20   U   8.6   5.0   U   5.0   U   2.2   J   3.4   J   5.0   U   5.0   | Methyl tert-butyl ether           |        |        | _       |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         | -      |       |       |        |         |          |        |            |
| Butylbenzene 5 5.0 U 140 170 D 98 8.8 5.0 U 5.0 U 20 U 3.9 J 5.0 U 5.0 U 5.0 U 2.6 J 5.0 U 5.0 U 5.0 V 5.0 U 5.0 V 5.0 U | Methylene chloride                |        |        |         |          | U        |          |         |        | U        |        | U      |       |          |        |       |          |             |            | _      |         |        |       |       |        |         |          |        |            |
| -Propylbenzene 5 5.0 U 250 E 210 D 68 5.8 5.0 U  | Naphthalene                       |        |        |         |          | <u> </u> |          |         |        |          |        |        |       |          |        |       |          | _           |            |        |         |        |       |       |        |         |          |        |            |
| -Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n-Butylbenzene<br>n-Propylbenzene |        |        |         |          | F        |          |         |        | 1        |        |        |       | U<br>II  |        |       |          |             |            |        |         |        |       |       |        | U<br>II |          | J.     |            |
| ec-Bulylbenzene 5 5.0 U 82 71 DJ 59 6.9 5.0 U 5.0 U 6.6 DJ 11 1.1 J 5.0 U 5.0 U 1.7 J 5.0 U 5.0  | o-Xylene                          |        |        | _       |          |          |          |         |        | U        |        | U      |       | Ü        |        | •     |          |             | 0.1        | •      | 0.0     | •      |       | •     |        | Ü       | J.Z      | Ü      | 0.0        |
| Styrene 5 5.0 U 5.0 U 8.0 U 5.0 U 5. | sec-Butylbenzene                  |        |        |         |          | Ť        |          |         |        | t –      |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Tetrachioroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Styrene                           | 5      |        |         | 5.0      |          | 80       | U       | 5.0    | U        | 5.0    |        | 5.0   | U        | 5.0    | U     | 20       | U           | 5.0        |        |         | U      | 5.0   | U     | 5.0    | U       | 5.0      |        | 5.0 U      |
| Solid   Soli   | tert-Butylbenzene                 |        |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          | U      |            |
| rans-1,2-Dichloroethene 5 5.0 U 5.0 U 80 U 5.0 U | Tetrachloroethene                 |        |        |         |          | _        |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Firsh 1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene                           |        |        |         |          |          |          |         |        |          |        |        |       | _        |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Frichloroethene 5 5.0 U 5.0 U 8.0 U 5.0 U 8.0 U 5.0 U  |                                   |        |        |         |          |          |          |         |        |          |        |        |       |          |        |       |          |             |            |        |         |        |       |       |        |         |          |        |            |
| Trichlorofluoromethane 5 5.0 U 5.0 U 8.0 U 5.0 U | Trichloroethene                   |        |        | _       |          |          |          |         |        |          |        | J      |       |          |        |       |          |             |            | _      |         |        |       |       |        |         |          | Ŭ      |            |
| Tinyl acetate 5.0 U 5.0 U 8.0 U 5.0  | Trichlorofluoromethane            |        |        |         |          |          |          |         |        |          |        | U      |       |          |        |       |          |             |            |        |         |        |       |       |        | U       |          | U      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vinyl acetate                     |        | 5.0    |         | 5.0      |          |          |         | 5.0    | U        |        | U      |       |          |        |       |          | U           |            |        |         |        |       |       |        |         |          | U      |            |
| (ylene (Total)   5   5.0   U   <b>590</b>     <b>700</b>   D   <b>9.8</b>     3.9   J   5.0   U   5.0   U   20   U   <b>7.0</b>     5.0   U   5.0   U   5.0   U   5.0   U   5.0   U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vinyl chloride                    |        |        |         |          | U        |          |         |        | U        |        |        |       |          |        |       |          |             |            |        |         | _      |       |       |        |         |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xylene (Total)                    | 5      | 5.0    | U       | 590      | <u> </u> | 700      | D       | 9.8    | <u> </u> | 3.9    | J      | 5.0   | U        | 5.0    | U     | 20       | U           | 7.0        |        | 5.0     | U      | 5.0   | U     | 5.0    | U       | 5.0      | U      | 5.0 U      |

- Notes:
  U-Not detected above indicated level
  J-indicates estimated value
  B-indicates detected in lab blank
  D-compound concentration was obtained from a diluted analysis
  E-compound concentration exceeded calibration range

# ATTACHMENT B Excavation Work Plan

## **EXCAVATION WORK PLAN**

## **A-1 NOTIFICATION**

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination (excavation 15 or more below the surface), the site owner or their representative will notify the Department. Currently, this notification will be made to:

Jane O'Connell NYSDEC Region 2

47-40 21st Street

Long Island City, NY 11101

## This notification will include:

- A detailed description of the work to be performed, including the location and areal
  extent, plans for site re-grading, intrusive elements or utilities to be installed below the
  soil cover, estimated volumes of contaminated soil to be excavated and any work that
  may impact an engineering control,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,
- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix D of this document,
- Identification of disposal facilities for potential waste streams,
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

Site Management Plan

**A-2 SOIL SCREENING METHODS** 

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental

professional during all remedial and development excavations into known or potentially contaminated

material (remaining contamination). Soil screening will be performed regardless of when the invasive

work is done and will include all excavation and invasive work performed during development, such as

excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that

requires off-site disposal, material that requires testing, material that can be returned to the subsurface,

and material that can be used as cover soil.

A-3 STOCKPILE METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as

needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be

routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of

inspections will be recorded in a logbook and maintained at the site and available for inspection by

NYSDEC.

A-4 MATERIALS EXCAVATION AND LOAD OUT

A qualified environmental professional or person under their supervision will oversee all invasive

work and the excavation and load-out of all excavated material.

The owner of the property and its contractors are solely responsible for safe execution of all invasive

and other work performed under this Plan.

ENVIRONMENTAL BUSINESS CONSULTANTS

2

Site Management Plan

The presence of utilities and easements on the site will be investigated by the qualified environmental

professional. It will be determined whether a risk or impediment to the planned work under this SMP is

posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and

placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all

other applicable transportation requirements).

The qualified environmental professional will be responsible for ensuring that all outbound trucks will

be cleaned as needed before leaving the site until the activities performed under this section are

complete. Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-

site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for

truck and equipment transport from the site are clean of dirt and other materials derived from the site

during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to

maintain a clean condition with respect to site-derived materials.

A-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local,

State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed

and trucks properly placarded.

Material transported by trucks exiting the site will be secured with covers. If loads contain wet material

capable of producing free liquid, truck liners will be used. All trucks will be inspected prior to leaving

the site. Trucks will be dry brushed when possible to remove collected soil.

Truck transport routes are as follows: Head east on Jamaica Avenue to the Van Wyck Expressway. All

trucks loaded with site materials will exit the vicinity of the site using only these approved truck

routes. This is the most appropriate route and takes into account: (a) limiting transport through

residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site

Environmental Business Consultants

3

Site Management Plan

queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting

safety in access to highways; and (f) overall safety in transport; [(g) community input [where

necessary]]

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other

materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing

will be prohibited.

A-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and

regulated material and will be transported and disposed in accordance with all local, State (including

6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this site is proposed for

unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with

an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from

this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification.

This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e.

hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling

facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC

in the Periodic Review Report. This documentation will include: waste profiles, test results, facility

acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a

Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted

SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16

Registration Facility).

Environmental Business Consultants

1808 MIDDLE COUNTRY ROAD PHONE 631.504.6000 631.924.2870 FAX

Site Management Plan

A-7 MATERIALS REUSE ON-SITE

Chemical criteria for on-site reuse of material have been approved by NYSDEC and are listed in Table

1. The qualified environmental professional will ensure that procedures defined for materials reuse in

this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site

material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be

placed below the demarcation layer or impervious surface, and will not be reused within a cover soil

layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be

reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be

performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid

waste derived from clearing and grubbing of the site will not be reused on-site.

A-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring

well purge and development waters, will be handled, transported and disposed in accordance with

applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be

recharged back to the land surface or subsurface of the site, but will be managed off-site.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local

pond, stream or river) will be performed under a SPDES permit.

A-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored

in a manner that complies with the RAWP. The demarcation layer, consisting of orange snow fencing

material or equivalent material will be replaced to provide a visual reference to the top of the

'Remaining Contamination Zone', the zone that requires adherence to special conditions for

disturbance of remaining contaminated soils defined in this Site Management Plan. If the type of cover

system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt),

as shown on Figure 8, this will constitute a modification of the cover element of the remedy and the

Environmental Business Consultants

Site Management Plan

upper surface of the 'Remaining Contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the Site Management Plan.

A-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are listed in Table 1. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Fill and stone materials which can be certified as virgin mined material will not require testing assuming adequate documentation is obtained and submitted to the NYSDEC for approval. Under no circumstances will fill materials be imported to the site without prior approval from the NYSDEC Project Manager. If sufficient documentation is not obtained, fill materials will be tested at the in accordance with NYSDEC CP51 recommended frequency. Sample analysis will include TCL VOCs, TCL SVOCs, PCBs, Pesticides and TAL metals. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this Site, will not be imported onto the Site without prior approval by NYSDEC.

Trucks entering the site with imported soils will be securely covered with covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

ENVIRONMENTAL BUSINESS CONSULTANTS

Site Management Plan

A-11 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event.

Results of inspections will be recorded in a logbook and maintained at the site and available for

inspection by NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate

backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to

weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are

operating correctly. Where discharge locations or points are accessible, they shall be inspected to

ascertain whether erosion control measures are effective in preventing significant impacts to receiving

waters

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

A-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-

remedial subsurface excavations or development related construction, excavation activities will be

suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine

the nature of the material and proper disposal method. Chemical analysis will be performed for full a

full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless

the site history and previous sampling results provide a sufficient justification to limit the list of

analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to

sampling.

ENVIRONMENTAL BUSINESS CONSULTANTS

7

Site Management Plan

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

A-13 COMMUNITY AIR MONITORING PLAN

The CAMP provides measures for protection for the downwind community (i.e., off-site receptors including residences, businesses, and on-site workers not directly involved in the remedial work) from potential airborne contaminant releases resulting from remedial activities at construction sites.

The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that the remedial work did not spread contamination off-site through the air. The primary concerns for this site are nuisance odors and dust particulates.

Exceedances observed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers and included in the Daily Report. The complete CAMP developed for this site is included in **Attachment D** of the project RAWP.

A-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors off-site and on-site. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the property owner's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous

ENVIRONMENTAL BUSINESS CONSULTANTS

Site Management Plan

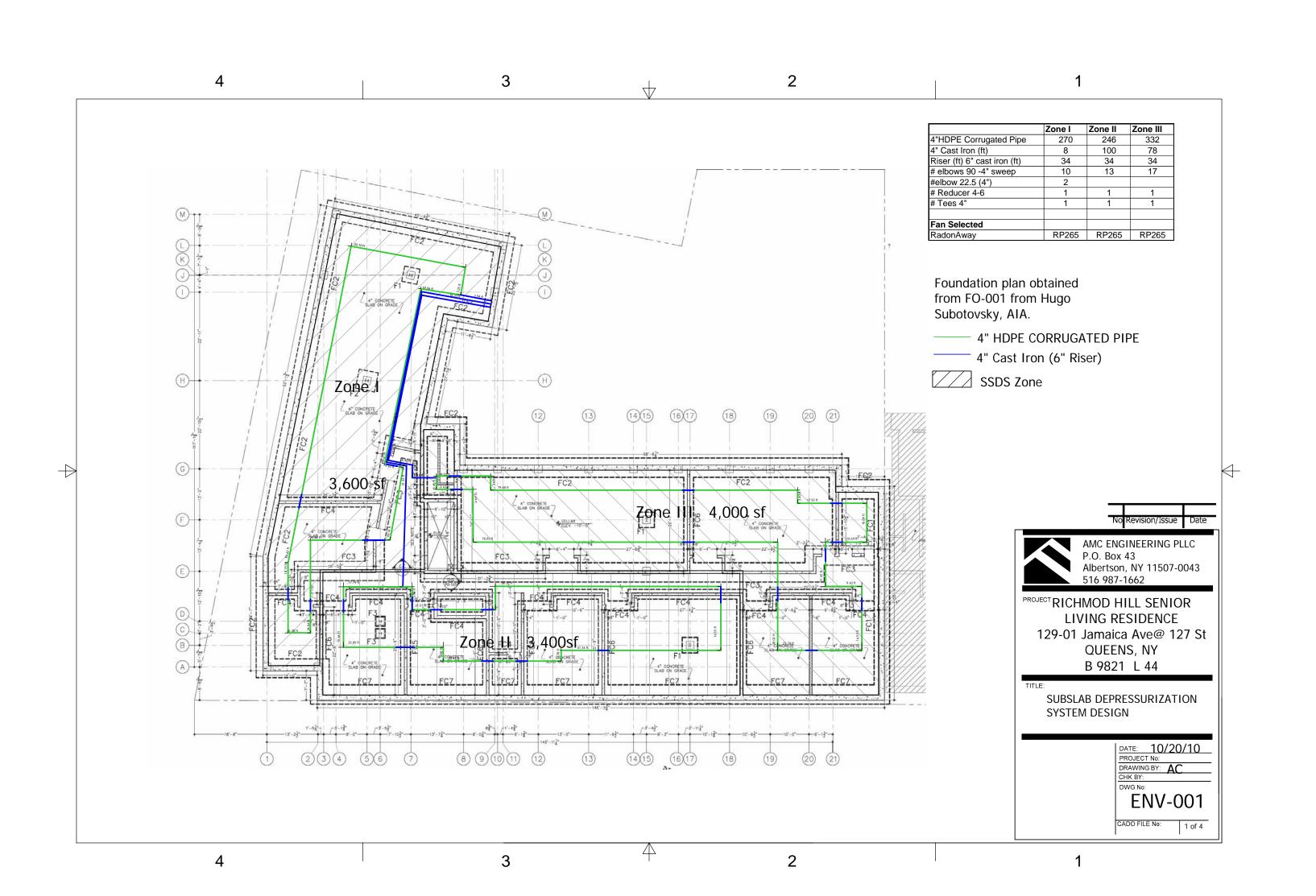
soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

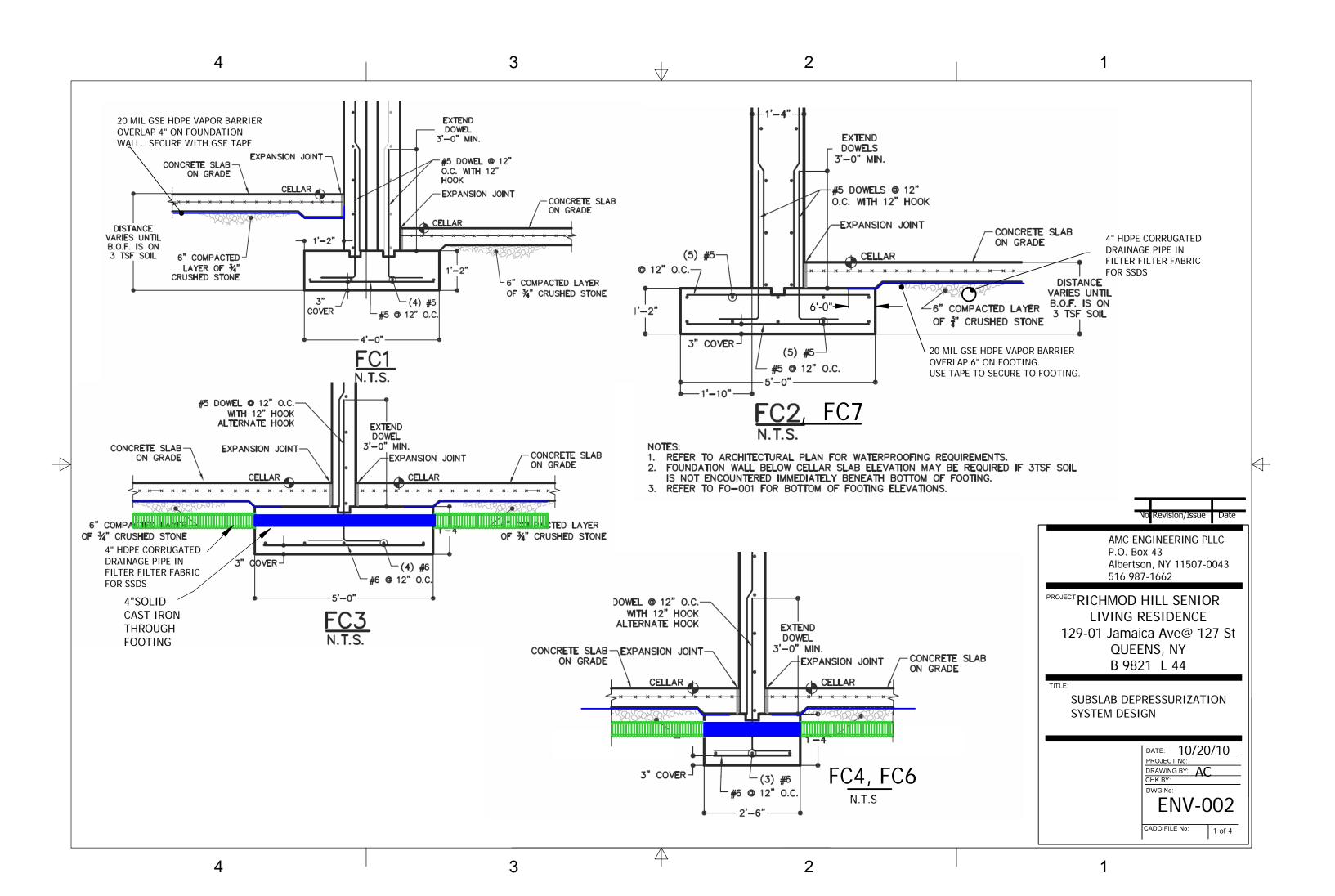
If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

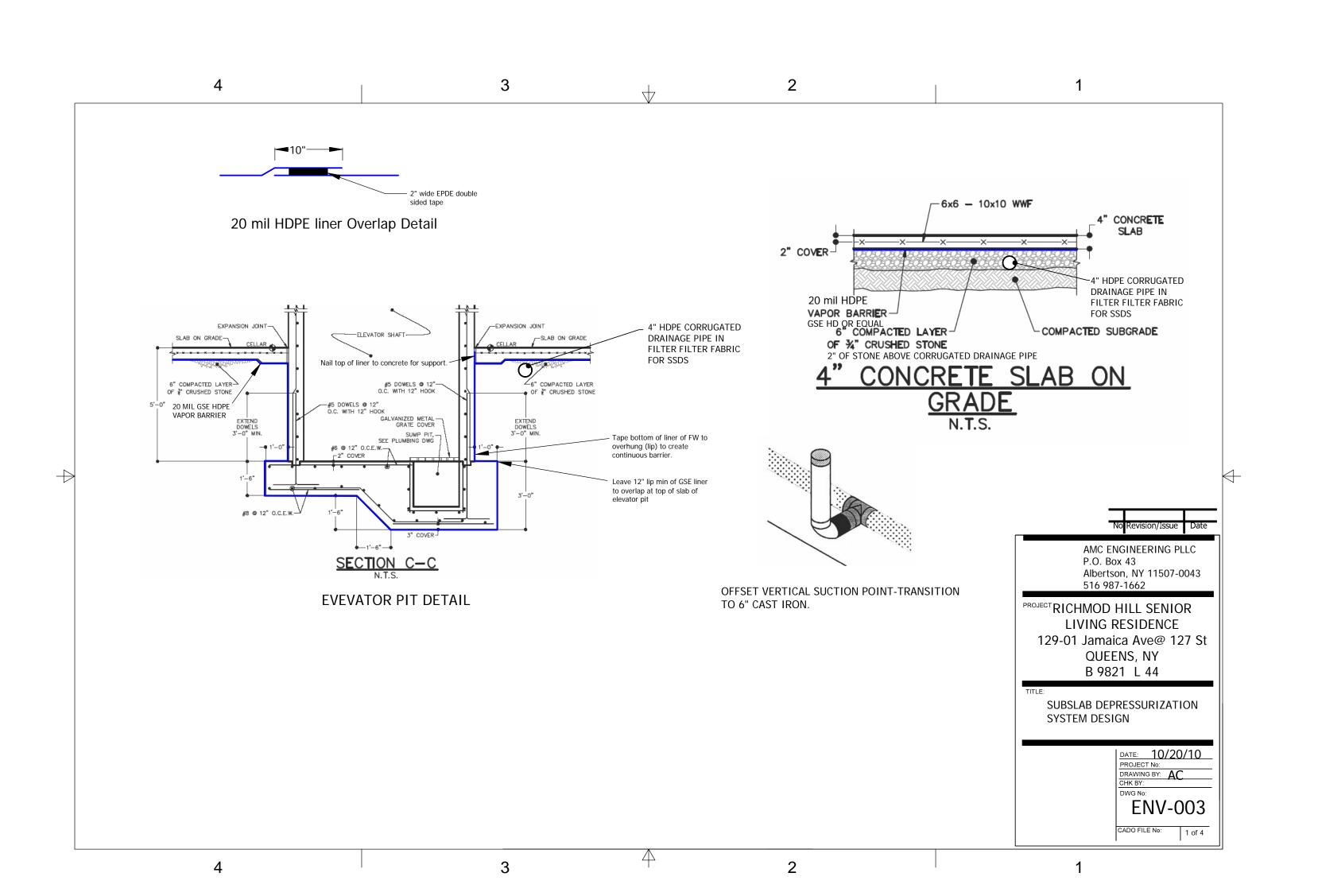
## A-15 DUST CONTROL PLAN

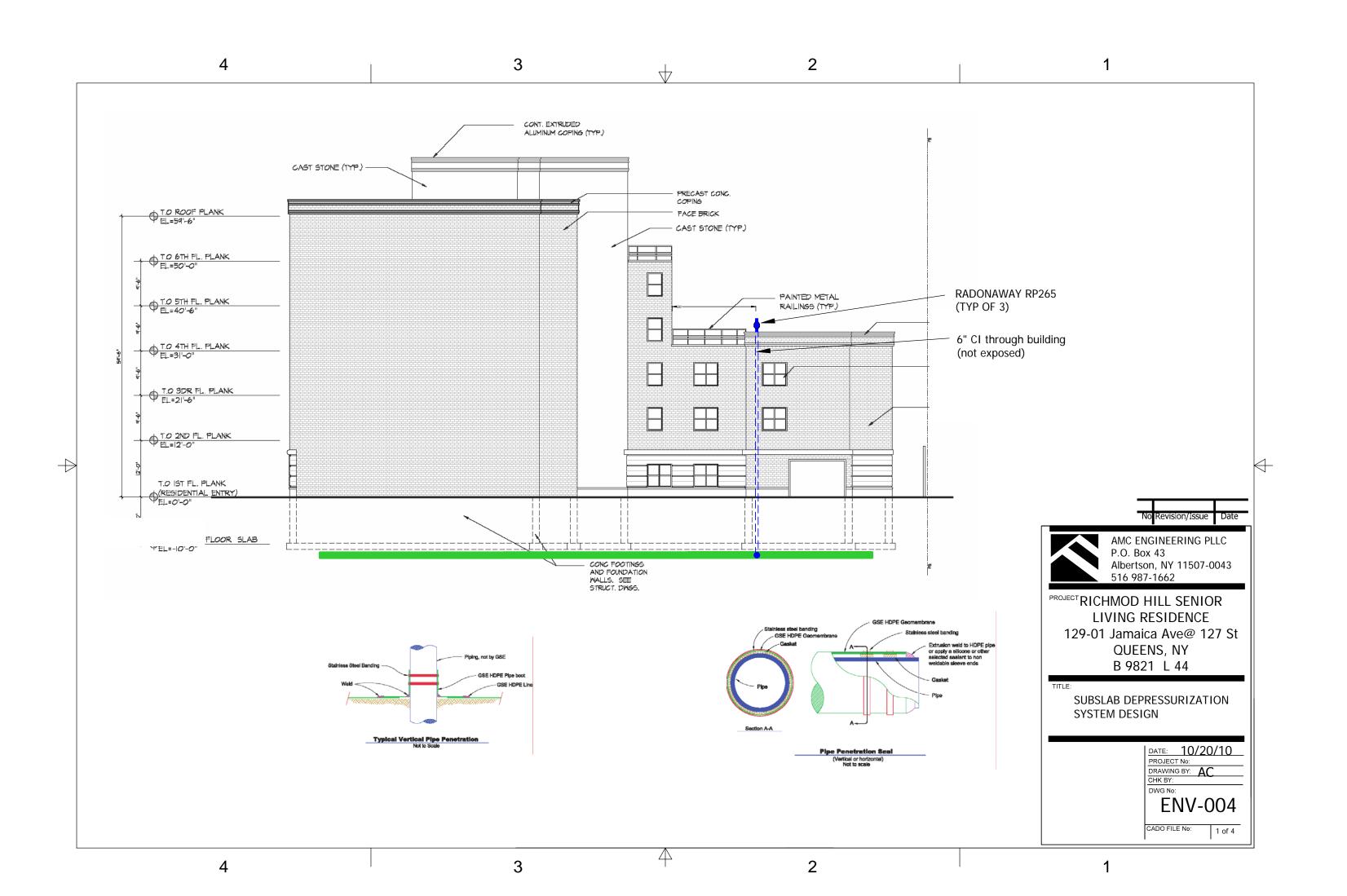
A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved though the use of a dedicated on-site water truck
  for road wetting. The truck will be equipped with a water cannon capable of
  spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.


## A-16 OTHER NUISANCES


A plan for rodent control will be developed and utilized by the contractor prior to and during site clearing and site grubbing, and during all remedial work.


A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.


ENVIRONMENTAL BUSINESS CONSULTANTS

## ATTACHMENT C SSD System Details









## ATTACHMENT D Health and Safety Plan

# FORMER UNIFORMS FOR INDUSTRY SITE

129-09 JAMAICA AVENUE RICHMOND HILL, NEW YORK Block 1948 Lots 30 and 35 Site No. C-241103

# **HEALTH AND SAFETY PLAN**



New York State Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau B-12thFloor
625Broadway
Albany, New York 12233

October 2010

Program Volunteer:
Union Jamaica LLC
15 Verbena Avenue
Suite #100
Floral Park, NY 11001-2711

Prepared By:



ENVIRONMENTAL BUSINESS CONSULTANTS

1808 Middle Country Road Ridge, NY 11961

# **HEALTH AND SAFETY PLAN**

Site: Former Uniforms for Industry Site

Location: 129-09 Jamaica Avenue, Richmond Hill, New York

Prepared By: ENVIRONMENTAL BUSINESS CONSULTANTS

Date Prepared: OCTOBER - 2010

Version: 1

Revision: 0

Project Description: **REMEDIAL ACTION WORK PLAN** 

Waste types: Solid, Liquid

Characteristics: Volatile Organic Compounds – Gasoline related hydrocarbons

Volatile Organic Compounds – Chlorinated Hydrocarbons Semi-Volatile Organic Compounds – Varsol, mineral spirits

Metals - Lead

Overall Hazard: Low to Moderate

ENVIRONMENTAL BUSINESS CONSULTANTS (EBC) AND EBC'S SUBCONTRACTORS DO NOT GUARANTEE THE HEALTH OR SAFETY OF ANY PERSON ENTERING THIS SITE. DUE TO THE NATURE OF THIS SITE AND THE ACTIVITY OCCURRING THEREON, IT IS NOT POSSIBLE TO DISCOVER, EVALUATE, AND PROVIDE PROTECTION FOR ALL POSSIBLE HAZARDS WHICH MAY BE ENCOUNTERED. STRICT ADHERENCE TO THE HEALTH AND SAFETY GUIDELINES SET FORTH HEREIN WILL REDUCE, BUT NOT ELIMINATE, THE POTENTIAL FOR INJURY AT THIS SITE. THE HEALTH AND SAFETY GUIDELINES IN THIS PLAN WERE PREPARED SPECIFICALLY FOR THIS SITE AND SHOULD NOT BE USED ON ANY OTHER SITE WITHOUT PRIOR RESEARCH AND EVALUATION.

# HEALTH AND SAFETY PLAN Table of Contents

| STATE | MENT OF COMMITMENT                                             | SC-1 |
|-------|----------------------------------------------------------------|------|
| 1.0   | INTRODUCTION AND SITE ENTRY REQUIREMENTS                       | 1    |
| 1.0   | 1.1 Scope                                                      |      |
|       | 1.2 Application                                                |      |
|       | 1.3 Site Safety Plan Acceptance, Acknowledgment and Amendments |      |
|       | 1.4 Key Personnel - Roles and Responsibilities                 |      |
|       | 1.4 Key reisonner - Roles and Responsionnes                    | 2    |
| 2.0   | SITE BACKGROUND AND SCOPE OF WORK                              | 4    |
| 3.0   | HAZARD ASSESSMENT                                              | 6    |
|       | 3.1 Physical Hazards                                           | 6    |
|       | 3.1.1 Tripping Hazards                                         |      |
|       | 3.1.2 Climbing Hazards                                         |      |
|       | 3.1.3 Cuts and Lacerations                                     |      |
|       | 3.1.4 Lifting Hazards                                          |      |
|       | 3.1.5 Utility Hazards                                          |      |
|       | 3.1.6 Traffic Hazards                                          |      |
|       | 3.2 Work in Extreme Temperatures                               |      |
|       | 3.2.1 Heat Stress                                              |      |
|       | 3.2.2 Cold Exposure                                            |      |
|       | 3.3 Chemical Hazards                                           |      |
|       | 3.3.1 Respirable Dust                                          |      |
|       |                                                                |      |
|       | 3.3.2 Dust Control and Monitoring during Earthwork             |      |
|       | 5.5.5 Organic vapors                                           | 9    |
| 4.0   | PERSONAL PROTECTIVE EQUIPMENT                                  |      |
|       | 4.1 Level D                                                    | 10   |
|       | 4.2 Level C                                                    | 10   |
|       | 4.3 Activity-Specific Levels of Personal Protection            | 11   |
| 5.0   | AIR MONITORING AND ACTION LEVELS                               | 12   |
|       | 5.1 Air Monitoring Requirements                                | 12   |
|       | 5.2 Work Stoppage Responses                                    |      |
|       | 5.3 Action Levels During Excavation Activities                 |      |
| 6.0   | SITE CONTROL                                                   | 14   |
|       | 6.1 Work Zones                                                 |      |
| 7.0   | CONTINGENCY PLAN/EMERGENCY RESPONSE PLAN                       | 15   |
|       | 7.1 Emergency Equipment On-site                                |      |
|       | 7.2 Emergency Telephone Numbers                                |      |
|       | 7.3 Personnel Responsibilities During an Emergency             |      |
|       | 7.4 Medical Emergencies                                        |      |
|       | 7.5 Fire or Explosion                                          |      |
|       | 7.6 Evacuation Routes                                          |      |
|       | 7.7 Spill Control Procedures                                   |      |
|       | 7.8 Vapor Release Plan                                         |      |
|       | 7.0 1 upor recouse 1 um                                        | 1 /  |



# **Table of Contents (Continued)**

# **FIGURES**

Figure 1 Route to Hospital (Appendix D)

# **APPENDICES**

| APPENDIX A | SITE SAFETY ACKNOWLEDGMENT FORM                     |
|------------|-----------------------------------------------------|
| APPENDIX B | SITE SAFETY PLAN AMENDMENTS                         |
| APPENDIX C | CHEMICAL HAZARDS                                    |
| APPENDIX D | HOSPITAL INFORMATION, MAP AND FIELD ACCIDENT REPORT |



iii

## STATEMENT OF COMMITMENT

This Health and Safety Plan (HASP) has been prepared to ensure that workers are not exposed to risks from hazardous materials during the Remedial Action planned for 129-09 Jamaica Avenue, Richmond Hill, New York.

This HASP, which applies to persons present at the site actually or potentially exposed to hazardous materials, describes emergency response procedures for actual and potential chemical hazards. This HASP is also intended to inform and guide personnel entering the work area or exclusion zone. Persons are to acknowledge that they understand the potential hazards and the contents of this Health and Safety policy by signing off on receipt of their individual copy of the document. Contractors and suppliers are retained as independent contractors and are responsible for ensuring the health and safety of their own employees.



#### 1.0 INTRODUCTION

This document describes the health and safety guidelines developed by Environmental Business Consultants (EBC) for implementation of Remedial Action at the site located 129-09 Jamaica Avenue, Richmond Hill, NY, to protect on-site personnel, visitors, and the public from physical harm and exposure to hazardous materials or wastes during subsurface investigation activities. In accordance with the Occupational Safety and Health Administration (OSHA) 29 CFR Part 1910.120 Hazardous Waste Operations and Emergency Response Final rule, this HASP, including the attachments, addresses safety and health hazards related to subsurface sample collection activities and is based on the best information available. The HASP may be revised by EBC at the request of The Arker Companies, ("the owner") and/or the New York State Department of Environmental Conservation (NYSDEC) or New York State Department of Health (NYSDOH) upon receipt of new information regarding site conditions. Changes will be documented by written amendments signed by EBC's project manager, site safety officer and/or the EBC health and safety consultant.

#### 1.1 Scope

This HASP addresses the potential hazards related to the site Remedial Action (RA). The RA activities include three distinct stages as described below:

- 1) Site mobilization of Demolition Subcontractor (DS);
  - a) Demolition, removal and disposal of former Uniforms for Industry buildings
  - b) Site demobilization of DS
- 2) Site mobilization of 40HR HAZWOPER trained Environmental Remediation Subcontractor (EnvRS).
  - a) Excavate, load and transport for disposal, soil contaminated with chlorinated hydrocarbons by EnvRS. Areas that require handling by ERS only, and requires excavation and disposal prior to site access by general site workers are fully described within Remedial Action Plan.
  - b) Expose, remove and remediate onsite drywells and overflow pools.
  - c) Demobilization of EnvRS
- 3) Site mobilization of General Subcontractor for excavation of non-chlorinated hydrocarbon impacted soil for construction of buildings' foundations.
- 4) Application of liquid sodium persulfate solution.

#### 1.2 **Application**

The HASP applies to all personnel involved in the above tasks who wish to gain access to active work areas, including but not limited to:

- EBC employees and subcontractors;
- Client representatives; and
- Federal, state or local representatives.

#### 1.3 Site Safety Plan Acceptance, Acknowledgment and Amendments

The project superintendent and the site safety officer are responsible for informing personnel



1

(EBC employees and/or owner or owners representatives) entering the work area of the contents of this plan and ensuring that each person signs the safety plan acknowledging the on-site hazards and procedures required to minimize exposure to adverse effects of these hazards. A copy of the Acknowledgement Form is included in **Appendix A**.

Site conditions may warrant an amendment to the HASP. Amendments to the HASP are acknowledged by completing forms included in **Appendix B**.

#### 1.4 **Key Personnel - Roles and Responsibilities**

Personnel responsible for implementing this Construction Health and Safety Plan are:

| Name              | Title                      | Address                                     | Contact Numbers     |
|-------------------|----------------------------|---------------------------------------------|---------------------|
| Mr. Charles B.    | EBC                        | 1808 Middle Country Road                    | (631) 504-6000      |
| Sosik             | Principal                  | Ridge, NY 11961                             | Cell (631) 357-4927 |
| Mr. Richard       | The Arker Companies        | 930 Broadway                                | (516) 374-3336      |
| Powers            | Construction Supervisor    | Woodmere, NY 11598                          | Cell (516) 250-5343 |
| Mr. Kevin Brussee | EBC                        | 1808 Middle Country Road                    | (631) 504-6000      |
|                   | Project Manager            | Ridge, NY 11961                             | Cell (631) 338-1749 |
| Mr. Kevin Waters  | EBC<br>Site Safety Officer | 1808 Middle Country Road<br>Ridge, NY 11961 | (631) 504-6000      |

The project manager is responsible for overall project administration and, with guidance from the site safety officer, for supervising the implementation of this HASP. The site safety officer will conduct daily (tail gate or tool box) safety meetings at the project site and oversee daily safety issues. Each subcontractor and supplier (defined as an OSHA employer) is also responsible for the health and safety of its employees. If there is any dispute about health and safety or project activities, on-site personnel will attempt to resolve the issue. If the issue cannot be resolved at the site, then the project manager will be consulted.

The site safety officer is also responsible for coordinating health and safety activities related to hazardous material exposure on-site. The site safety officer is responsible for the following:

- 1. Educating personnel about information in this HASP and other safety requirements to be observed during site operations, including, but not limited to, decontamination procedures, designation of work zones and levels of protection, air monitoring, fit testing, and emergency procedures dealing with fire and first aid.
- 2. Coordinating site safety decisions with the project manager.
- 3. Designating exclusion, decontamination and support zones on a daily basis.
- 4. Monitoring the condition and status of known on-site hazards and maintaining and implementing the air quality monitoring program specified in this HASP.
- 5. Maintaining the work zone entry/exit log and site entry/exit log.



Environmental Business Consultants

PHONE

FAX

631.504.6000

631.924.2870

6. Maintaining records of safety problems, corrective measures and documentation of chemical exposures or physical injuries (the site safety officer will document these conditions in a bound notebook and maintain a copy of the notebook on-site).

The person who observes safety concerns and potential hazards that have not been addressed in the daily safety meetings should immediately report their observations/concerns to the site safety officer or appropriate key personnel.



#### 2.0 SITE BACKGROUND AND SCOPE OF WORK

The Site is located in the County of the Queens, New York and is identified as Block 9281, and Lot 44 on the Queens Borough Tax Map. The Site is situated on an approximately 73,038 square foot (1.68-acre) area bounded by residential properties and 127th Street to the west, a residential lot to the north, Jamaica Avenue to the south and the Long Island Railroad-Ronkonkoma Line to the east. The Site is improved with a one story masonry building constructed in 1929 with a large 2 story masonry addition constructed in the 1990's. The combined area of the building and addition totals 55,626 sq. ft. The buildings have been vacant since November 2002 when Uniforms for Industry (UFI), a commercial laundry operation, vacated the premises. UFI has owned the property and operated its commercial laundry at the Site since the 1950's. Prior to UFI's occupancy, the Ideal Vortex Laundry Company operated a commercial laundry on the property from the 1929 to 1957.

Previous environmental reports indicate that fuel oil, mop oil, mineral spirits, Stoddard solvent, and Varsol solvent have been historically stored on the Site. According to the Remedial Investigation Report prepared by Environmental Liability Management, LLC (12/09) UFI used tetrachloroethene (PCE) in a dry cleaning machine from 1992 and 1997.

According to the NYSDEC Spills Database, two spill numbers are associated with the Site. Spill No. 91-01477, which was reported on May 6, 1991, was related to the tank test failure of a 3,000 gallon underground storage tank. The database indicates that the spill was closed on March 7, 2003 as a result of no new information. The spill file references a second spill, No. 02-08119. The second spill is related to a tank test failure of a 6,000 gallon fuel oil tank. Upon further investigation under this spill no. contaminated soil was discovered around the fill lines of a mineral oil tank and a diesel tank. This spill remains open.

The property is identified in the NYSDEC Petroleum Bulk Storage database as Facility Site No. 2-248541. The facility status is listed as unregulated. The database lists thirteen tanks registered under Uniforms for Industry. The tanks listed include: two 6,300 gallon underground storage tank (UST) (one fuel oil, one "other"), one 7,500 gallon UST (fuel oil), three 2,000 gallon UST ("other"), three 3,000 gallon USTs (2 "other", 1 "invalid material"), one 6,000 gallon UST ("empty") and three 1,500 gallon USTs ("empty"). Eleven of the thirteen tanks are listed as closed removed. Two of the 3,000 gallon tanks are listed as "closed prior to 3/1991".

#### 2.1 **Redevelopment Plans**

Environmental Business Consultants

A residential use is proposed for the property. The Site will be redeveloped through the construction of two new apartment buildings which are identified in the Architectural Plans as Phase I and Phase II. The Phase I component is a 6-story, 65 unit senior housing building which will be built in the western portion of the site at the intersection of Jamaica Avenue and 127<sup>th</sup> Street. The entire 12,090 sq. ft area (footprint) of this building will have a full depth (10ft) cellar level. The cellar will be used for tenant storage cubicles, bicycle storage, a laundry room a trash compactor room and mechanical/meter rooms. The exterior grounds will feature a surface parking lot, recreation area and landscaped area.

The Phase II component includes a 7-story building with 117 units set aside for low-income housing. A full depth (10 ft) cellar level will extend beneath the entire 21,302 sq. ft area (footprint) of the building. The cellar level will be used for parking (35 spaces), bicycle storage and mechanical/meter rooms. The exterior grounds around the Phase II building will include parking for 35 cars, access ramps for the cellar level parking garage and landscaped areas.

# 2.2 Description of Remedial Action

Site activities included within the Remedial Action that are included within the scope of this HASP include the following:

- 1. Excavation of the upper 15 to 20 feet of soil in three identified CVOC hot Spot areas with additional excavation as required for the building's basement level.
- 2. Excavate any additional petroleum VOC or CVOC impacted soil encountered in the hot spot areas above restricted residential criteria in the upper 15 feet of the soil column. Petroleum VOC or CVOC affected soil encountered during excavation of the basement areas will be segregated and classified for off-site disposal.
- 3. Excavation and off-site disposal of historic fill materials removed during construction / site grading or if present in planned landscaped/exposed soil areas.
- 4. Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during all intrusive Site work.
- 5. Site Monitoring of airborne VOCs and particulates in accordance with a NYSDEC and NYSDOH approved Community Air Monitoring Plan (CAMP) and Health and Safety Plan during all intrusive and soil handling activities.
- 6. Implementation of proper dust and odor suppression techniques during all intrusive and soil handling activities.
- 7. Import of materials to be used for backfill and cover.
- 8. Collection of end-point soil samples.
- 9. Investigation and removal of drainage structures, surface drains and related piping.
- 10. The injection of a chemical oxidant solution to remediate the contaminated groundwater beneath the site. Chemical oxidants will be injected through pvc injection points installed into the water table.
- 11. Installation of a vapor barrier and sub-slab depressurization system beneath all basement areas which will not be required to have continuous mechanical ventilation.



# 3.0 HAZARD ASSESSMENT

This section identifies the hazards associated with the proposed scope of work, general physical hazards that can be expected at most sites; and presents a summary of documented or potential chemical hazards at the site. Every effort must be made to reduce or eliminate these hazards. Those that cannot be eliminated must be guarded against using engineering controls and/or personal protective equipment.

# 3.1 Physical Hazards

# 3.1.1 Tripping Hazards

An area of risk associated with on-site activities are presented by uneven ground, concrete, curbstones or equipment which may be present at the site thereby creating a potential tripping hazard. During intrusive work, care should be taken to mark or remove any obstacles within the exclusion zone.

# 3.1.2 Climbing Hazards

During site activities, workers may have to work on excavating equipment by climbing. The excavating contractor will conform with any applicable NIOSH and OSHA requirements or climbing activities.

## 3.1.3 Cuts and Lacerations

Field activities that involve excavating activities usually involve contact with various types of machinery. A first aid kit approved by the American Red Cross will be available during all intrusive activities.

# 3.1.4 Lifting Hazards

Improper lifting by workers is one of the leading causes of industrial injuries. Field workers in the excavation program may be required to lift heavy objects. Therefore, all members of the field crew should be trained in the proper methods of lifting heavy objects. All workers should be cautioned against lifting objects too heavy for one person.

## 3.1.5 Utility Hazards

Before conducting any excavation, the excavation contractor will be responsible for locating and verifying all existing utilities at each excavation.

## 3.1.6 Traffic Hazards

All traffic, vehicular and pedestrian, shall be maintained and protected at all times consistent with local, state and federal agency regulations regarding such traffic and in accordance with NYCDOT guidelines. The excavation contractor shall carry on his operations without undue interference or delays to traffic. The excavation contractor shall furnish all labor, materials, guards, barricades, signs, lights, and anything else necessary to maintain traffic and to protect his work and the public, during operations.

# **3.2** Work in Extreme Temperatures

Work under extremely hot or cold weather conditions requires special protocols to minimize the chance that employees will be affected by heat or cold stress.



631.504.6000

631.924.2870

## 3.2.1 Heat Stress

The combination of high ambient temperature, high humidity, physical exertion, and personal protective apparel, which limits the dissipation of body heat and moisture, can cause heat stress.

The following prevention, recognition and treatment strategies will be implemented to protect personnel from heat stress. Personnel will be trained to recognize the symptoms of heat stress and to apply the appropriate treatment.

## 1. Prevention

- a. Provide plenty of fluids. Available in the support zone will be a 50% solution of fruit punch and water or plain water.
- b. Work in Pairs. Individuals should avoid undertaking any activity alone.
- c. Provide cooling devices. A spray hose and a source of water will be provided to reduce body temperature, cool protective clothing and/or act as a quick-drench shower in case of an exposure incident.
- d. Adjustment of the work schedule. As is practical, the most labor-intensive tasks should be carried out during the coolest part of the day.

# 2. Recognition and Treatment

Heat Rash (or prickly heat):

Cause: Continuous exposure to hot and humid air, aggravated by chafing

clothing.

Eruption of red pimples around sweat ducts accompanied by Symptoms:

intense itching and tingling.

Remove source or irritation and cool skin with water or wet cloths. Treatment:

b. Heat Cramps (or heat prostration)

Cause: Profuse perspiration accompanied by inadequate replenishment of

body water and electrolytes.

Muscular weakness, staggering gait, nausea, dizziness, shallow Symptoms:

breathing, pale and clammy skin, approximately normal body

temperature.

Treatment: Perform the following while making arrangement for transport to a

> medical facility. Remove the worker to a contamination reduction zone. Remove protective clothing. Lie worker down on back in a cool place and raise feet 6 to 12 inches. Keep warm, but loosen all clothing. If conscious, provide sips of salt-water solution, using one teaspoon of salt in 12 ounces of water. Transport to a medical

facility.

c. Heat Stroke

Cause: Same as heat exhaustion. This is also an extremely serious

condition.

Dry hot skin, dry mouth, dizziness, nausea, headache, rapid pulse. Symptoms:

Treatment: Cool worker immediately by immersing or spraying with cool water or sponge bare skin after removing protective clothing.

Transport to hospital.

#### 3.2.2 Cold Exposure

Exposure to cold weather, wet conditions and extreme wind-chill factors may result in excessive

631.504.6000

631.924.2870

PHONE

FAX

loss of body heat (hypothermia) and /or frostbite. To guard against cold exposure and to prevent cold injuries, appropriate warm clothing should be worn, warm shelter must be readily available, rest periods should be adjusted as needed, and the physical conditions of on-site field personnel should be closely monitored. Personnel and supervisors working on-site will be made aware of the signs and symptoms of frost bite and hypothermia such as shivering, reduced blood pressure, reduced coordination, drowsiness, impaired judgment, fatigue, pupils dilated but reactive to light and numbing of the toes and fingers.

## 3.3 Chemical Hazards

Soil, groundwater and soil gas samples collected from the site as part of several subsurface investigations performed at the site have revealed significant concentrations of volatile organic compounds associated with both petroleum volatile organic compounds (PVOCs) and chlorinated organic compounds (CVOCs), as well as elevated levels of semi-volatile organic compounds (SVOCs) and metals.

Volatile organic compounds reported to be present in soil, soil gas and/or groundwater include the following:

| Benzene                   | Toluene               | Ethylbenzene      | Xylenes        |
|---------------------------|-----------------------|-------------------|----------------|
| 1,2,4-Trimethylbenzene    | Cis-Dichloroethylene  | Isopropylbenzene  | n-Butylbenzene |
| 1,3,5-Trimethylbenzene    | p-Isopropyltoluene    | n-Propylbenzene   | Acetone        |
| cis-1,2-Dichloroethene    | 2,2-Dichloropropane   | sec-Butylbenzene  | Napthalene     |
| Trichloroethene (TCE)     | 1,1,1-Trichloroethane | tert-Butylbenzene | Vinyl Chloride |
| Tetrachloroethylene (PCE) |                       |                   |                |

Semi-Volatile organic compounds reported to be present soil, soil gas and/or groundwater include the following:

| Benzo(a)anthracene Phenanthrene |              | Benzo(b)fluoranthene       | Acenaphthylene |
|---------------------------------|--------------|----------------------------|----------------|
| Benzo(g,h,i)perylene            | Pyrene       | Indeno(1,2,3-cd)pyrene     | Benzo(a)pyrene |
| Benzo(k)fluoranthene            | Chrysene     | Dibenzo(a,h)anthracene     |                |
| Dibenzo(a,h)anthracene          | Fluoranthene | Bis(2-ethylhexyl)phthalate |                |

Metals reported to be present soil, and/or groundwater include the following

| Chromium | Copper | Lead   | Nickel  |
|----------|--------|--------|---------|
| Selenium | Zinc   | Barium | Arsenic |

The VOCs and SVOCs detected within the soil, soil gas and/or groundwater are associated with the former drycleaning operations conducted at the site. Chlorinated solvents such as PCE were utilized in the 1990's within a dry cleaning machine, and petroleum based VOCs and SVOCs were utilized in #2 and #6 heating oil, mop oil, and mineral spirits contained in underground storage tanks at the site.

Chlorinated hydrocarbon (PCE, TCE, DCE, vinyl chloride) contamination of groundwater has been determined to be site wide. However, very few of the soil samples collected from the site contained these chlorinated compounds. The areas of affected soil based upon previous studies are limited to several hotspot source areas that will be targeted for excavation. These hot spot areas are located near the former central UST area and at the east parking lot drainage system

631.504.6000

631.924.2870

PHONE

FAX

distribution box and line repair area.

distribution box and fine repair area

PVOC contamination of soil corresponds with several of the CVOC hotspot areas, but maybe encountered in additional areas as well. SVOC contaminated areas include the former underground storage tank farm area on the eastern side of the UFI building, as well as historic fill that may be encountered in shallow areas at the site (approximately 6" to 2 feet).

The primary routes of exposure to identified contaminants in soil, soil gas and groundwater to on-site investigation and remediation workers is through inhalation, ingestion and absorption.

**Appendix** C includes information sheets for the known and suspected chemicals that may be encountered at the site.

# 3.3.1 Respirable Dust

Dust may be generated from vehicular traffic and/or excavation activities. If visible observation detects elevated levels of dust, a program of wetting will be employed by the site safety officer. If elevated dust levels persist, the site safety office will employ dust monitoring using a particulate monitor (Miniram or equivalent). If monitoring detects concentrations greater than  $150~\mu g/m3$  over daily background, the site safety officer will take corrective actions as defined herein, including the use of water for dust suppression and if this is not effective, requiring workers to wear APRs with efficiency particulate air (HEPA) cartridges.

Absorption pathways for dust and direct contact with soils or groundwater will be mitigated with the implementation of latex gloves, hand washing and decontamination exercises when necessary.

# 3.3.2 Dust Control and Monitoring During Earthwork

Dust generated during excavation activities or other earthwork may contain contaminants identified in soils at the site. Dust will be controlled by wetting the working surface with water. Calcium chloride may be used if the problem cannot be controlled with water. Air monitoring and dust control techniques are specified in a site specific Dust Control Plan (if applicable). Site workers will not be required to wear APR's unless dust concentrations are consistently over 150  $\mu$ g/m3 over site-specific background in the breathing zone as measured by a dust monitor unless the site safety officer directs workers to wear APRs. The site safety officer will use visible dust as an indicator to implement the dust control plan.

## 3.3.3 Organic Vapors

Elevated levels of VOCs were detected in both soil and groundwater samples collected during previous investigations at the site. Therefore, excavation activities may cause the release of organic vapors to the atmosphere. The site safety officer will periodically monitor organic vapors with a Photoionization Detector (PID) during excavation activities to determine whether organic vapor concentrations exceed action levels shown in Section 5 and/or the Community Air Monitoring Plan.



631.504.6000

631.924.2870

# 4.0 PERSONAL PROTECTIVE EQUIPMENT

Personal protective equipment (PPE) shall be selected in accordance with the site air monitoring program, OSHA 29 CFR 1910.120(c), (g), and 1910.132. Protective equipment shall be NIOSH approved and respiratory protection shall conform to OSHA 29 CFR Part 1910.133 and 1910.134 specifications; head protection shall conform to 1910.135; eye and face protection shall conform to 1910.133; and foot protection shall conform to 1910.136. The only true difference among the levels of protection from D thru B is the addition of the type of respiratory protection. It is anticipated that work will be performed in Level D PPE.

## 4.1 Level D

Level D PPE shall be donned when the atmosphere contains no known hazards and work functions preclude splashes, immersion, or the potential for inhalation of, or contact with, hazardous concentrations of harmful chemicals. Level D PPE consists of:

- standard work clothes, coveralls, or tyvek, as needed;
- steel toe and steel shank work boots;
- hard hat;
- gloves, as needed;
- safety glasses;
- hearing protection;
- equipment replacements are available as needed.

## 4.2 Level C

Level C PPE shall be donned when sustained concentrations of measured total organic vapors in the breathing zone exceed background concentrations (using a portable OVA, or equivalent), by more than 5 ppm. The specifications on the APR filters used must be appropriate for contaminants identified or expected to be encountered. Level C PPE shall be donned when the identified contaminants have adequate warning properties and criteria for using APR have been met. Level C PPE consists of:

- chemical resistant or coated tyvek coveralls;
- steel-toe and steel-shank workboots;
- chemical resistant overboots or disposable boot covers;
- disposable inner gloves (surgical gloves);
- disposable outer gloves;
- full face APR fitted with organic vapor/dust and mist filters or filters appropriate for the identified or expected contaminants;
- hard hat;
- splash shield, as needed; and,
- ankles/wrists taped with duct tape.

The site safety officer will verify if Level C is appropriate by checking organic vapor concentrations using compound and/or class-specific detector tubes.

The exact PPE ensemble is decided on a site-by-site basis by the Site Safety Officer with the intent to provide the most protective and efficient worker PPE.



PHONE

FAX

631.504.6000

631.924.2870

# 4.3 Activity-Specific Levels of Personal Protection

The required level of PPE is activity-specific and is based on air monitoring results (Section 4.0) and properties of identified or expected contaminants. It is expected that site work will be performed in Level D. If air monitoring results indicate the necessity to upgrade the level of protection, engineering controls (i.e. Facing equipment away from the wind and placing site personnel upwind of excavations, active venting, etc.) will be implemented before requiring the use of respiratory protection.



#### 5.0 AIR MONITORING AND ACTION LEVELS

29 CFR 1910.120(h) specifies that monitoring shall be performed where there may be a question of employee exposure to hazardous concentrations of hazardous substances in order to assure proper selection of engineering controls, work practices and personal protective equipment so that employees are not exposed to levels which exceed permissible exposure limits, or published exposure levels if there are no permissible exposure limits, for hazardous substances.

#### 5.1 **Air Monitoring Requirements**

If excavation work is performed, air will be monitored for VOCs with a portable ION Science 3000EX photoionization detector, or the equivalent. If necessary, Lower Explosive Limit (LEL) and oxygen will be monitored with a Combustible Gas Indicator (CGI). If appropriate, fugitive dust will be monitored using a MiniRam Model PDM-3 aerosol monitor. Air will be monitored when any of the following conditions apply:

- initial site entry;
- during any work where a potential IDLH condition or flammable atmosphere could develop;
- excavation work begins on another portion of the site;
- contaminants, other than those previously identified, have been discovered;
- each time a different task or activity is initiated;
- during trenching and/or excavation work.

The designated site safety officer will record air monitoring data and ensure that air monitoring instruments are calibrated and maintained in accordance with manufacturer's specifications. Instruments will be zeroed daily and checked for accuracy. Monitoring results will be recorded in a field notebook and will be transferred to instrument reading logs.

#### 5.2 **Work Stoppage Responses**

The following responses will be initiated whenever one or more of the action levels necessitating a work stoppage are exceeded:

- The SSO will be consulted immediately 1
- 2 All personnel (except as necessary for continued monitoring and contaminant migration, if applicable) will be cleared from the work area (eg from the exclusion
- 3 Monitoring will be continued until intrusive work resumes.

#### 5.3 **Action Levels During Excavation Activities**

Environmental Business Consultants

Instrument readings will be taken in the breathing zone above the excavation pit unless otherwise noted. Each action level is independent of all other action levels in determining responses.

| Organic Vapors (PID)      | LEL % | Responses                              |  |
|---------------------------|-------|----------------------------------------|--|
| 0-1 ppm above background  | 0%    | Continue excavating                    |  |
|                           |       | • Level D protection                   |  |
|                           |       | • Continue monitoring every 10 minutes |  |
| 1-5 ppm Above Background, | 1-10% | Continue excavating                    |  |
| Sustained Reading         |       | • Go to Level C protection or employ   |  |



|                                                  |        | <ul><li>engineering controls</li><li>Continue monitoring every 10 minutes</li></ul>                                                                                                                                                                                       |
|--------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5-25 ppm Above Background,<br>Sustaineed Reading | 10-20% | <ul> <li>Discontinue excavating, unless PID is only action level exceeded.</li> <li>Level C protection or employ engineering controls</li> <li>Continue monitoring for organic vapors 200 ft downwind</li> <li>Continuous monitoring for LEL at excavation pit</li> </ul> |
| >25 ppm Above Background,<br>Sustained Reading   | >20%   | <ul> <li>Discontinue excavating</li> <li>Withdraw from area, shut off all engine ignition sources.</li> <li>Allow pit to vent</li> <li>Continuous monitoring for organic vapors 200 ft downwind.</li> </ul>                                                               |

Notes: Air monitoring will occur in the breathing zone 30 inches above the excavation pit. Readings may also be taken in the excavation pit but will not be used for action levels.

If action levels for any one of the monitoring parameters are exceeded, the appropriate responses listed in the right hand column should be taken. If instrument readings do not return to acceptable levels after the excavation pit has been vented for a period of greater than one-half hour, a decision will then be made whether or not to seal the pit with suppressant foam.

If, during excavation activities, downwind monitoring PID readings are greater than 5 ppm above background for more than one-half hour, excavation will stop until sustained levels are less then 5 ppm (see Community Air Monitoring Plan).

13

#### 6.0 SITE CONTROL

#### 6.1 **Work Zones**

The primary purpose of site controls is to establish the perimeter of a hazardous area, to reduce the migration of contaminants into clean areas, and to prevent access or exposure to hazardous materials by unauthorized persons. When operations are to take place involving hazardous materials, the site safety officer will establish an exclusion zone, a decontamination zone, and a support zone. These zones "float" (move around the site) depending on the tasks being performed on any given day. The site safety officer will outline these locations before work begins and when zones change. The site safety officer records this information in the site log book.

It is expected that an exclusion zone, decontamination zone, and support zone will only be established during the remedial work required to excavate the CVOC hotspot areas. A licensed Environmental Contractor with relative hazardous material handling experience and training is required to perform any soil disturbing activities within the hotspots identified within the Remedial Action Work Plan. All onsite workers must provide evidence of OSHA 40-hour Hazardous Waste Operations and Emergency Response Operations training to conduct work within the exclusion zone established by the site safety officer. The exclusion zone is defined by the site safety officer but will typically be a 50-foot area around work activities. Gross decontamination (as determined by the site Health and Safety Officer) is conducted in the exclusion zone; all other decontamination is performed in the decontamination zone or trailer.

Protective equipment is removed in the decontamination zone. Disposable protective equipment is stored in receptacles staged in the decontamination zone, and non-disposable equipment is decontaminated. All personnel and equipment exit the exclusion zone through the decontamination zone. If a decontamination trailer is provided the first aid equipment, an eye wash unit, and drinking water are kept in the decontamination trailer.

The support zone is used for vehicle parking, daily safety meetings, and supply storage. Eating, drinking, and smoking are permitted only in the support zone. When a decontamination trailer is not provided, the eye wash unit, first aid equipment, and drinking water are kept at a central location designated by the site safety officer.

#### 6.1 **General Site Work**

Upon completion of CVOC hotspot remedial activities by an Environmental Contractor, a general excavation contractor may continue with site excavation/grading as needed for basement excavation, shoring, other building requirements, or as necessary to excavate petroleum related VOC contaminated soil as deemed necessary by the Remedial Action Work Plan and/or Project All onsite employees must have obtained OSHA 24-hour Hazardous Waste Operations and Emergency Response Operations training prior to performing soil disturbing activities.



PHONE

FAX

631.504.6000

631.924.2870

#### 7.0 CONTINGENCY PLAN/EMERGENCY RESPONSE PLAN

Site personnel must be prepared in the event of an emergency. Emergencies can take many forms: illnesses, injuries, chemical exposure, fires, explosions, spills, leaks, releases of harmful contaminants, or sudden changes in the weather.

Emergency telephone numbers and a map to the hospital will be posted in the command post. Site personnel should be familiar with the emergency procedures, and the locations of site safety, first aid, and communication equipment.

#### 7.1 **Emergency Equipment On-site**

Private telephones: Site personnel.

Two-way radios: Site personnel where necessary.

Emergency Alarms: On-site vehicle horns\*.

First aid kits: On-site, in vehicles or office.

Fire extinguisher: On-site, in office or on equipment.

#### 7.2 **Emergency Telephone Numbers**

| General Emergencies             | 911            |
|---------------------------------|----------------|
| Suffolk County Police           | 911            |
| NYC Fire Department             | 911            |
| Jamaica Hospital Medical Center | (718) 206-6000 |
| NYSDEC Spills Hotline           | 1-800-457-7362 |
| NYSDEC Project Manager          | (718) 482-4909 |
| NYC Department of Health        | (212) 676-2400 |
| National Response Center        | 1-800-424-8802 |
| Poison Control                  | 1-800-222-1222 |
| Project Manager                 | 1-631-504-6000 |
| Site Safety Officer             | 1-631-504-6000 |
|                                 |                |

# **Personnel Responsibilities During an Emergency**

The project manager is primarily responsible for responding to and correcting any emergency situations. However, in the absence of the project manager, the site safety officer shall act as the project manager's on-site designee and perform the following tasks:

- Take appropriate measures to protect personnel including: withdrawal from the exclusion zone, evacuate and secure the site, or upgrade/downgrade the level of protective clothing and respiratory protection;
- Ensure that appropriate federal, state, and local agencies are informed and emergency response plans are coordinated. In the event of fire or explosion, the local fire department should be summoned immediately. If toxic materials are released to the air, the local authorities should be informed in order to assess the need for evacuation;



<sup>\*</sup> Horns: Air horns will be supplied to personnel at the discretion of the project superintendent or site safety officer.

129-09 Jamaica Avenue Richmond Hill. NY

- Ensure appropriate decontamination, treatment, or testing for exposed or injured personnel;
- Determine the cause of incidents and make recommendations to prevent recurrence; and,
- Ensure that all required reports have been prepared.

The following key personnel are planned for this project:

Project Manager
 Construction Superintendent
 Site Safety Officer
 Mr. Kevin Brussee (631) 504-6000
 Mr. Richard Powers (516) 374-3336
 Mr. Kevin Waters (631) 504-6000

# 7.4 Medical Emergencies

A person who becomes ill or injured in the exclusion zone will be decontaminated to the maximum extent possible. If the injury or illness is minor, full decontamination will be completed and first aid administered prior to transport. First aid will be administered while waiting for an ambulance or paramedics. A Field Accident Report (**Appendix D**) must be filled out for any injury.

A person transporting an injured/exposed person to a clinic or hospital for treatment will take the directions to the hospital (**Appendix D**).and information on the chemical(s) to which they may have been exposed (**Appendix C**).

## 7.5 Fire or Explosion

In the event of a fire or explosion, the local fire department will be summoned immediately. The site safety officer or his designated alternate will advise the fire commander of the location, nature and identification of the hazardous materials on-site. If it is safe to do so, site personnel may:

- use fire fighting equipment available on site; or,
- remove or isolate flammable or other hazardous materials that may contribute to the fire.

## 7.6 Evacuation Routes

Evacuation routes established by work area locations for each site will be reviewed prior to commencing site operations. As the work areas change, the evacuation routes will be altered accordingly, and the new route will be reviewed.

Under extreme emergency conditions, evacuation is to be immediate without regard for equipment. The evacuation signal will be a continuous blast of a vehicle horn, if possible, and/or by verbal/radio communication. When evacuating the site, personnel will follow these instructions:

- Keep upwind of smoke, vapors, or spill location.
- Exit through the decontamination corridor if possible.



129-09 Jamaica Avenue Richmond Hill, NY

- If evacuation through the decontamination corridor is not possible, personnel should remove contaminated clothing once they are in a safe location and leave it near the exclusion zone or in a safe place.
- The site safety officer will conduct a head count to ensure that all personnel have been evacuated safely. The head count will be correlated to the site and/or exclusion zone entry/exit log.
- If emergency site evacuation is necessary, all personnel are to escape the emergency situation and decontaminate to the maximum extent practical.

#### 7.7 **Spill Control Procedures**

Spills associated with site activities may be attributed to project equipment and include gasoline, diesel and hydraulic oil. In the event of a leak or a release, site personnel will inform their supervisor immediately, locate the source of spillage and stop the flow if it can be done safely. A spill containment kit including absorbent pads, booms and/or granulated speedy dry absorbent material will be available to site personnel to facilitate the immediate recovery of the spilled material. Daily inspections of site equipment components including hydraulic lines, fuel tanks, etc. will be performed by their respective operators as a preventative measure for equipment leaks and to ensure equipment soundness. In the event of a spill, site personnel will immediately notify the NYSDEC (1-800-457-7362), and a spill number will be generated.

#### 7.8 Vapor Release Plan

If work zone organic vapor (excluding methane) exceeds 5 ppm, then a downwind reading will be made either 200 feet from the work zone or at the property line, whichever is closer. If readings at this location exceed 5 ppm over background, the work will be stopped.

If 5 ppm of VOCs are recorded over background on a PID at the property line, then an off-site reading will be taken within 20 feet of the nearest residential or commercial property, whichever is closer. If efforts to mitigate the emission source are unsuccessful for 30 minutes, then the designated site safety officer will:

- contact the local police;
- continue to monitor air every 30 minutes, 20 feet from the closest off-site property. If two successive readings are below 5 ppm (non-methane), off-site air monitoring will be halted.
- All property line and off site air monitoring locations and results associated with vapor releases will be recorded in the site safety log book.



# APPENDIX A SITE SAFETY ACKNOWLEDGEMENT FORM

# **DAILY BREIFING SIGN-IN SHEET**

| Date:                                  | Person Conducting Briefing:                                                     |  |  |
|----------------------------------------|---------------------------------------------------------------------------------|--|--|
| roject Name and Location:              |                                                                                 |  |  |
| 1. AWARENESS (topics discussed, specia | . AWARENESS (topics discussed, special safety concerns, recent incidents, etc): |  |  |
|                                        |                                                                                 |  |  |
|                                        |                                                                                 |  |  |
|                                        |                                                                                 |  |  |
| 2. OTHER ISSUES (HASP changes, attend  | lee comments, etc):                                                             |  |  |
|                                        |                                                                                 |  |  |
|                                        |                                                                                 |  |  |
| 3. ATTENDEES (Print Name):             |                                                                                 |  |  |
| 1.                                     | 11.                                                                             |  |  |
| 2.                                     | 12.                                                                             |  |  |
| 3.                                     | 13.                                                                             |  |  |
| 4.                                     | 14.                                                                             |  |  |
| 5.                                     | 15.                                                                             |  |  |
| 6.                                     | 16.                                                                             |  |  |
| 7.                                     | 17.                                                                             |  |  |
| 8.                                     | 18.                                                                             |  |  |
| 9.                                     | 19.                                                                             |  |  |

# APPENDIX B SITE SAFETY PLAN AMENDMENTS

# SITE SAFETY PLAN AMENDMENT FORM

| Site Safety Plan Amendment #:            |      |  |
|------------------------------------------|------|--|
| Site Name:                               |      |  |
| Reason for Amendment:                    |      |  |
|                                          |      |  |
|                                          |      |  |
|                                          |      |  |
| Alternative Procedures:                  |      |  |
|                                          |      |  |
|                                          |      |  |
|                                          |      |  |
| Required Changes in PPE:                 |      |  |
|                                          |      |  |
|                                          |      |  |
|                                          |      |  |
|                                          |      |  |
|                                          |      |  |
| Project Superintendent (signature)       | Date |  |
|                                          |      |  |
| Health and Safety Consultant (signature) | Date |  |
| mealth and Salety Consultant (signature) | Date |  |

# APPENDIX C CHEMICAL HAZARDS

# **CHEMICAL HAZARDS**

The attached International Chemical Safety Cards are provided for contaminants of concern that have been identified in soils and/or groundwater at the site.

ACETONE ICSC: 0087











2-Propanone Dimethyl ketone Methyl ketone C<sub>3</sub>H<sub>6</sub>O / CH<sub>3</sub>COCH<sub>3</sub> Molecular mass: 58.1

ICSC # 0087 CAS # 67-64-1 RTECS # <u>AL3150000</u>

UN # 1090

EC # 606-001-00-8 April 22, 1994 Validated Fi, review at IHE: 10/09/89



| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS                                                             | PREVENTION                                                                                                                              | FIRST AID/<br>FIRE FIGHTING                                                                                             |  |  |
|---------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| FIRE                            | Highly flammable.                                                                      | NO open flames, NO sparks, and No smoking.                                                                                              | O Powder, alcohol-resistant foam, water in large amounts, carbon dioxide.                                               |  |  |
| EXPLOSION                       | Vapour/air mixtures are explosive.                                                     | Closed system, ventilation, explosion proof electrical equipment and light Do NOT use compressed air for fill discharging, or handling. | ting. by spraying with water.                                                                                           |  |  |
| EXPOSURE                        |                                                                                        |                                                                                                                                         |                                                                                                                         |  |  |
| •INHALATION                     | Sore throat. Cough. Confusion.<br>Headache. Dizziness. Drowsiness.<br>Unconsciousness. | Ventilation, local exhaust, or breath protection.                                                                                       | Fresh air, rest. Refer for medical attention.                                                                           |  |  |
| •SKIN                           | Dry skin.                                                                              | Protective gloves.                                                                                                                      | Remove contaminated clothes. Rinse skin with plenty of water or shower.                                                 |  |  |
| •EYES                           | Redness. Pain. Blurred vision. Possible corneal damage.                                | Safety spectacles or face shield . Contact lenses should not be worn.                                                                   | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |  |  |
| •INGESTION                      | Nausea. Vomiting. (Further see Inhalation).                                            | Do not eat, drink, or smoke during work.                                                                                                | Rinse mouth. Refer for medical attention.                                                                               |  |  |
| CDII I A CI                     | DIGDOGAL                                                                               | CITIOD A CITI                                                                                                                           | DACIZACINIC O LABELLING                                                                                                 |  |  |

| SPILLAGE DISPOSAL                                                                                                                                                                                                                                                   | STORAGE | PACKAGING & LABELLING                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------|
| Personal protection: self-contained breathing apparatus. Ventilation. Collect leaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT wash away into sewer. Then wash away with plenty of water. |         | F symbol Xi symbol R: 11-36-66-67 S: 2-9-16-26 UN Hazard Class: 3 |
|                                                                                                                                                                                                                                                                     |         | UN Packing Group: II                                              |

# SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

ACETONE ICSC: 0087

| I                                                                                                                                                                        | PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID, WITH CHARACTERISTIC                                                                        | ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation and through the skin.                                                                                                                                                           |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| M                                                                                                                                                                        | ODOUR.                                                                                                                                    | and through the skin.                                                                                                                                                                                                                                         |  |  |  |
| P                                                                                                                                                                        | PHYSICAL DANGERS: The vapour is heavier than air and may travel along the ground; distant ignition possible.                              | <b>INHALATION RISK:</b> A harmful contamination of the air can be reached rather quickly on evaporation of this substance at 20°C; on                                                                                                                         |  |  |  |
| О                                                                                                                                                                        |                                                                                                                                           | spraying or dispersing, however, much faster.                                                                                                                                                                                                                 |  |  |  |
| R                                                                                                                                                                        | CHEMICAL DANGERS: The substance can form explosive peroxides on contact                                                                   | EFFECTS OF SHORT-TERM EXPOSURE:                                                                                                                                                                                                                               |  |  |  |
| Т                                                                                                                                                                        | with strong oxidants such as acetic acid, nitric acid, hydrogen peroxide. Reacts with chloroform and                                      | The vapour irritates the eyes and the respiratory tract. The substance may cause effects on the central nervous system,                                                                                                                                       |  |  |  |
| A                                                                                                                                                                        | bromoform under basic conditions, causing fire and explosion hazard. Attacks plastic.                                                     | liver, kidneys and gastrointestinal tract.                                                                                                                                                                                                                    |  |  |  |
| N                                                                                                                                                                        | OCCUPATIONAL EXPOSURE LIMITS:                                                                                                             | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:                                                                                                                                                                                                                    |  |  |  |
| Т                                                                                                                                                                        | TLV: 500 ppm as TWA, 750 ppm as STEL; A4 (not classifiable as a human carcinogen); BEI issued; (ACGIH 2004).                              | Repeated or prolonged contact with skin may cause dermatitis. The substance may have effects on the blood and bone marrow .                                                                                                                                   |  |  |  |
| D                                                                                                                                                                        | MAK: 500 ppm 1200 mg/m³ Peak limitation category: I(2); Pregnancy risk group: D;                                                          |                                                                                                                                                                                                                                                               |  |  |  |
| A                                                                                                                                                                        | (DFG 2006).<br>OSHA PEL <u>†</u> : TWA 1000 ppm (2400 mg/m <sup>3</sup> )                                                                 |                                                                                                                                                                                                                                                               |  |  |  |
| Т                                                                                                                                                                        | NIOSH REL: TWA 250 ppm (590 mg/m <sup>3</sup> )<br>NIOSH IDLH: 2500 ppm 10%LEL See: 67641                                                 |                                                                                                                                                                                                                                                               |  |  |  |
| A                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                                                                                               |  |  |  |
| PHYSICAL<br>PROPERTIES                                                                                                                                                   | Boiling point: 56°C Melting point: -95°C Relative density (water = 1): 0.8 Solubility in water: miscible Vapour pressure, kPa at 20°C: 24 | Relative vapour density (air = 1): 2.0 Relative density of the vapour/air-mixture at 20°C (air = 1): 1.2 Flash point: -18°C c.c. Auto-ignition temperature: 465°C Explosive limits, vol% in air: 2.2-13 Octanol/water partition coefficient as log Pow: -0.24 |  |  |  |
| ENVIRONMENTAL<br>DATA                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                          | NOTES                                                                                                                                     |                                                                                                                                                                                                                                                               |  |  |  |
| Use of alcoholic bevera                                                                                                                                                  | Use of alcoholic beverages enhances the harmful effect.                                                                                   |                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                          |                                                                                                                                           | Transport Emergency Card: TEC (R)-30S1090                                                                                                                                                                                                                     |  |  |  |
| NFPA Code: H 1; F 3; R 0; Card has been partially updated in July 2007: see Occupational Exposure Limits.  Card has been partially updated in January 2008: see Storage. |                                                                                                                                           |                                                                                                                                                                                                                                                               |  |  |  |

ICSC: 0087 ACETONE

ADDITIONAL INFORMATION

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# **TETRACHLOROETHYLENE**











**ICSC: 0076** 

1,1,2,2-Tetrachloroethylene Perchloroethylene Tetrachloroethene  $C_2Cl_4$  /  $Cl_2C=CCl_2$ Molecular mass: 165.8

ICSC # 0076 CAS # 127-18-4 RTECS # <u>KX3850000</u> UN # 1897

EC # 602-028-00-4 April 13, 2000 Validated



| April 13, 2000 vanuateu         |                                                                        |       |                                                      |                                                                           |                                                                                                                         |
|---------------------------------|------------------------------------------------------------------------|-------|------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZ<br>SYMPTO                                                    |       | PREVENTION                                           |                                                                           | FIRST AID/<br>FIRE FIGHTING                                                                                             |
| FIRE                            | Not combustible. Gives toxic fumes (or gases) in                       |       |                                                      |                                                                           | In case of fire in the surroundings: use appropriate extinguishing media.                                               |
| EXPLOSION                       |                                                                        |       |                                                      |                                                                           |                                                                                                                         |
| EXPOSURE                        |                                                                        |       | STRICT HYGIENE! PREVENT<br>GENERATION OF MISTS!      | Γ                                                                         |                                                                                                                         |
| •INHALATION                     | Dizziness. Drowsiness. Headache.<br>Nausea. Weakness. Unconsciousness. |       | Ventilation, local exhaust, or breathing protection. |                                                                           | Fresh air, rest. Artificial respiration may be needed. Refer for medical attention.                                     |
| •SKIN                           | Dry skin. Redness.                                                     |       | Protective gloves. Protective clo                    | othing.                                                                   | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                           | Redness. Pain.                                                         |       | Safety goggles , face shield .                       |                                                                           | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      | Abdominal pain. (Furthe Inhalation).                                   | work. |                                                      | Rinse mouth. Do NOT induce vomiting. Give plenty of water to drink. Rest. |                                                                                                                         |
| SPILLAG                         | SPILLAGE DISPOSAL STOI                                                 |       | STORAGE                                              | PA                                                                        | CKAGING & LABELLING                                                                                                     |
|                                 | · · · · · · · · · · · · · · · · · · ·                                  |       | -                                                    |                                                                           | transport with food and feedstuffs.                                                                                     |

| SPILLAGE DISPOSAL                                  | STORAGE                                      | PACKAGING & LABELLING                      |
|----------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Ventilation. Collect leaking and spilled liquid    | Separated from metals ,( see Chemical        | Do not transport with food and feedstuffs. |
| in sealable containers as far as possible.         | Dangers ), food and feedstuffs . Keep in the | Marine pollutant.                          |
| Absorb remaining liquid in sand or inert           | dark. Ventilation along the floor.           | Xn symbol                                  |
| absorbent and remove to safe place. Do NOT         |                                              | N symbol                                   |
| let this chemical enter the environment.           |                                              | R: 40-51/53                                |
| Personal protection: filter respirator for organic |                                              | S: (2-)23-36/37-61                         |
| gases and vapours.                                 |                                              | UN Hazard Class: 6.1                       |
|                                                    |                                              | UN Packing Group: III                      |

### SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# **International Chemical Safety Cards**

# **TETRACHLOROETHYLENE**

PHYSICAL STATE; APPEARANCE: **ROUTES OF EXPOSURE:** The substance can be absorbed into the body by inhalation COLOURLESS LIQUID, WITH CHARACTERISTIC Ι ODOUR. and by ingestion. M PHYSICAL DANGERS: INHALATION RISK: A harmful contamination of the air will be reached rather The vapour is heavier than air. P slowly on evaporation of this substance at 20°C. CHEMICAL DANGERS: 0 On contact with hot surfaces or flames this substance **EFFECTS OF SHORT-TERM EXPOSURE:** decomposes forming toxic and corrosive fumes (hydrogen The substance is irritating to the eyes, the skin and the R chloride, phosgene, chlorine). The substance decomposes respiratory tract. If this liquid is swallowed, aspiration into slowly on contact with moisture producing trichloroacetic the lungs may result in chemical pneumonitis. The Т acid and hydrochloric acid. Reacts with metals such as substance may cause effects on the central nervous system. aluminium, lithium, barium, beryllium. Exposure at high levels may result in unconsciousness. OCCUPATIONAL EXPOSURE LIMITS: EFFECTS OF LONG-TERM OR REPEATED TLV: 25 ppm as TWA, 100 ppm as STEL; A3 (confirmed **EXPOSURE:** animal carcinogen with unknown relevance to humans); Repeated or prolonged contact with skin may cause T BEI issued; (ACGIH 2004). dermatitis. The substance may have effects on the liver and MAK: skin absorption (H): kidneys. This substance is probably carcinogenic to Carcinogen category: 3B; humans. D (DFG 2004). OSHA PEL†: TWA 100 ppm C 200 ppm 300 ppm (5minute maximum peak in any 3-hours) NIOSH REL: Ca Minimize workplace exposure concentrations. See Appendix A NIOSH IDLH: Ca 150 ppm See: <u>127184</u> Boiling point: 121°C Vapour pressure, kPa at 20°C: 1.9 Melting point: -22°C Relative vapour density (air = 1): 5.8 PHYSICAL Relative density (water = 1): 1.6 Relative density of the vapour/air-mixture at 20°C (air = **PROPERTIES** Solubility in water, g/100 ml at 20°C: 0.015 Octanol/water partition coefficient as log Pow: 2.9 The substance is toxic to aquatic organisms. The substance may cause long-term effects in the aquatic **ENVIRONMENTAL** environment. **DATA** NOTES Depending on the degree of exposure, periodic medical examination is suggested. The odour warning when the exposure limit value is exceeded is insufficient. Do NOT use in the vicinity of a fire or a hot surface, or during welding. An added stabilizer or inhibitor can influence the toxicological properties of this substance, consult an expert. Card has been partly updated in April 2005. See section Occupational Exposure Limits. Transport Emergency Card: TEC (R)-61S1897

NFPA Code: H2; F0; R0;

# ADDITIONAL INFORMATION

ICSC: 0076 **TETRACHLOROETHYLENE** (C) IPCS, CEC, 1994

**IMPORTANT** LEGAL **NOTICE:** 

Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# 1,2-DICHLOROETHYLENE











1,2-Dichloroethene Acetylene dichloride symmetrical Dichloroethylene C<sub>2</sub>H<sub>2</sub>Cl<sub>2</sub> / ClCH=CHCl Molecular mass: 96.95

ICSC # 0436 CAS # 540-59-0 RTECS # <u>KV9360000</u> UN # 1150

EC # 602-026-00-3 July 05, 2003 Validated



**ICSC: 0436** 

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS                                                                | PREVENTION                                                                                                                                       | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Highly flammable. Gives off irritat or toxic fumes (or gases) in a fire.                  | NO open flames, NO sparks, and NO smoking.                                                                                                       | Powder, water spray, foam, carbon dioxide.                                                                              |
| EXPLOSION                       | Vapour/air mixtures are explosive.                                                        | Closed system, ventilation, explosion-proof electrical equipment and lighting.  Do NOT use compressed air for filling, discharging, or handling. |                                                                                                                         |
| EXPOSURE                        |                                                                                           | STRICT HYGIENE!                                                                                                                                  |                                                                                                                         |
| •INHALATION                     | Cough. Sore throat. Dizziness. Nau<br>Drowsiness. Weakness.<br>Unconsciousness. Vomiting. | sea. Ventilation, local exhaust, or breathing protection.                                                                                        | Fresh air, rest. Refer for medical attention.                                                                           |
| •SKIN                           | Dry skin.                                                                                 | Protective gloves.                                                                                                                               | Remove contaminated clothes. Rinse skin with plenty of water or shower.                                                 |
| •EYES                           | Redness. Pain.                                                                            | Safety spectacles.                                                                                                                               | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      | Abdominal pain. (Further see Inhalation).                                                 | Do not eat, drink, or smoke during work.                                                                                                         | Rinse mouth. Give plenty of water to drink. Refer for medical attention.                                                |
| SPILL ACE                       | EDISPOSAL                                                                                 | STORAGE P                                                                                                                                        | ACKACING & LARFILING                                                                                                    |

| SPILLAGE DISPOSAL                               | STORAGE                                       | PACKAGING & LABELLING |
|-------------------------------------------------|-----------------------------------------------|-----------------------|
| Remove all ignition sources. Ventilation.       | Fireproof. Well closed. See Chemical Dangers. |                       |
| Collect leaking and spilled liquid in sealable  |                                               | Note: C               |
| containers as far as possible. Absorb remaining |                                               | F symbol              |
| liquid in dry sand or inert absorbent and       |                                               | Xn symbol             |
| remove to safe place. Do NOT wash away into     |                                               | R: 11-20-52/53        |
| sewer. (Extra personal protection: complete     |                                               | S: 2-7-16-29-61       |
| protective clothing including self-contained    |                                               | UN Hazard Class: 3    |
| breathing apparatus.)                           |                                               | UN Packing Group: II  |

## SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# **International Chemical Safety Cards**

# 1,2-DICHLOROETHYLENE

PHYSICAL STATE; APPEARANCE: **ROUTES OF EXPOSURE:** COLOURLESS LIQUID, WITH CHARACTERISTIC The substance can be absorbed into the body by inhalation ODOUR. of its vapour and by ingestion. M PHYSICAL DANGERS: INHALATION RISK: P The vapour is heavier than air and may travel along the A harmful contamination of the air will be reached quickly ground; distant ignition possible. on evaporation of this substance at 20°C; on spraying or 0 dispersing, however, much faster. CHEMICAL DANGERS: The substance decomposes on heating or under the EFFECTS OF SHORT-TERM EXPOSURE: influence of air, light and moisture producing toxic and The substance is irritating to the eyes and the respiratory corrosive fumes including hydrogen chloride. Reacts with tract. The substance may cause effects on the central strong oxidants. Reacts with copper or copper alloys, and nervous system at high levels, resulting in lowering of bases to produce toxic chloroacetylene which is consciousness. spontaneously flammable in contact with air. Attacks plastic. EFFECTS OF LONG-TERM OR REPEATED **EXPOSURE:** OCCUPATIONAL EXPOSURE LIMITS: The liquid defats the skin. The substance may have effects TLV: 200 ppm as TWA; (ACGIH 2003). on the liver. MAK: 200 ppm, 800 mg/m<sup>3</sup>; Peak limitation category: II(2): (DFG 2002). OSHA PEL: TWA 200 ppm (790 mg/m<sup>3</sup>) NIOSH REL: TWA 200 ppm (790 mg/m<sup>3</sup>) T NIOSH IDLH: 1000 ppm See: 540590 Boiling point: 55°C Flash point: 2°C c.c. **PHYSICAL** Relative density (water = 1): 1.28 Auto-ignition temperature: 460°C Explosive limits, vol% in air: 9.7-12.8 **PROPERTIES** Solubility in water: poor Relative vapour density (air = 1): 3.34Octanol/water partition coefficient as log Pow: 2 **ENVIRONMENTAL DATA** 

## NOTES

This compound has two isomers, cis and trans.Data for the isomers: cis-isomer (CAS 156-59-2), trans isomer (CAS 156-60-5), other boiling point 60.3, melting point -81.5°C (cis), -49.4°C (trans); flash point c.c. 6°C (cis), 2-4°C (trans); relative density (water = 1) 1.28 (cis), 1.26 (trans); vapour pressure 24.0 kPa (cis), 35.3 kPa (trans) at 20°C; relative density of the vapour/air-mixture at 20°C (air = 1): 1.6 (cis), 1.8 (trans); octanol/water partition coefficient as log Pow: 1.86 (cis), 2.09 (trans). Depending on the degree of exposure, periodic medical examination is suggested.

Transport Emergency Card: TEC (R)-30GF1-I+II

NFPA Code: H2; F3; R2;

## ADDITIONAL INFORMATION

ICSC: 0436 1,2-DICHLOROETHYLENE

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# **TRICHLOROETHYLENE**











ICSC: 0081

1,1,2-Trichloroethylene Trichloroethene Ethylene trichloride Acetylene trichloride C<sub>2</sub>HCl<sub>3</sub> / ClCH=CCl<sub>2</sub> Molecular mass: 131.4

ICSC # 0081 CAS # 79-01-6

RTECS # <u>KX4550000</u>

UN # 1710

EC # 602-027-00-9 April 10, 2000 Validated



| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZ<br>SYMPTO                                |                 | PREVENTION                                                          |         | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|----------------------------------------------------|-----------------|---------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Combustible under speci<br>See Notes.              | fic conditions. |                                                                     |         | In case of fire in the surroundings: all extinguishing agents allowed.                                                  |
| EXPLOSION                       |                                                    |                 | Prevent build-up of electrostatic charges (e.g., by grounding).     |         | In case of fire: keep drums, etc., cool by spraying with water.                                                         |
| EXPOSURE                        |                                                    |                 | PREVENT GENERATION OF<br>MISTS! STRICT HYGIENE!                     |         |                                                                                                                         |
| •INHALATION                     | Dizziness. Drowsiness. I<br>Weakness. Nausea. Unco |                 | Ventilation, local exhaust, or bre protection.                      |         | Fresh air, rest. Artificial respiration may be needed. Refer for medical attention.                                     |
| •SKIN                           | Dry skin. Redness.                                 |                 | Protective gloves.                                                  |         | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                           | Redness. Pain.                                     |                 | Safety spectacles, or eye protecti combination with breathing prote | ection. | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      | Abdominal pain. (Furthe Inhalation).               | r see           | work.                                                               |         | Rinse mouth. Do NOT induce vomiting. Give plenty of water to drink. Rest.                                               |
| SPILLAGI                        | E DISPOSAL                                         |                 | STORAGE                                                             | PA      | CKAGING & LABELLING                                                                                                     |

| SPILLAGE DISPOSAL                               | STURAGE                                       | PACKAGING & LABELLING                      |
|-------------------------------------------------|-----------------------------------------------|--------------------------------------------|
| Ventilation. Collect leaking and spilled liquid | Separated from metals ( see Chemical          | Do not transport with food and feedstuffs. |
| in sealable containers as far as possible.      | Dangers ), strong bases, food and feedstuffs. | Marine pollutant.                          |
| Absorb remaining liquid in sand or inert        | Dry. Keep in the dark. Ventilation along the  | T symbol                                   |
| absorbent and remove to safe place. Personal    | floor.                                        | R: 45-36/38-52/53-67                       |
| protection: filter respirator for organic gases |                                               | S: 53-45-61                                |
| and vapours. Do NOT let this chemical enter     |                                               | UN Hazard Class: 6.1                       |
| the environment.                                |                                               | UN Packing Group: III                      |

### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0081

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

ICSC: 0081

TRICHLOROETHYLENE

# **TRICHLOROETHYLENE**

| I                                                                              | PHYSICAL STATE; APPEARANCE:<br>COLOURLESS LIQUID, WITH CHARACTERISTIC<br>ODOUR.                                                                                                                                                                                                                       | <b>ROUTES OF EXPOSURE:</b> The substance can be absorbed into the body by inhalation and by ingestion.                                                                                                                                       |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| M<br>P                                                                         | PHYSICAL DANGERS: The vapour is heavier than air. As a result of flow, agitation, etc., electrostatic charges can be generated.                                                                                                                                                                       | INHALATION RISK: A harmful contamination of the air can be reached rather quickly on evaporation of this substance at 20°C.                                                                                                                  |  |  |  |
| 0                                                                              | CHEMICAL DANGERS: On contact with hot surfaces or flames this substance                                                                                                                                                                                                                               | EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes and the skin.                                                                                                                                                        |  |  |  |
| R                                                                              | decomposes forming toxic and corrosive fumes (phosgene, hydrogen chloride). The substance                                                                                                                                                                                                             | Swallowing the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis. The substance may                                                                                                                           |  |  |  |
| Т                                                                              | decomposes on contact with strong alkali producing dichloroacetylene, which increases fire hazard. Reacts                                                                                                                                                                                             | cause effects on the central nervous system, resulting in respiratory failure. Exposure could cause lowering of consciousness.                                                                                                               |  |  |  |
| A                                                                              | violently with metal powders such as magnesium,<br>aluminium, titanium, and barium. Slowly decomposed by<br>light in presence of moisture, with formation of corrosive                                                                                                                                | EFFECTS OF LONG-TERM OR REPEATED                                                                                                                                                                                                             |  |  |  |
| N                                                                              | hydrochloric acid.                                                                                                                                                                                                                                                                                    | EXPOSURE: Repeated or prolonged contact with skin may cause                                                                                                                                                                                  |  |  |  |
| T                                                                              | OCCUPATIONAL EXPOSURE LIMITS: TLV: 50 ppm as TWA; 100 ppm as STEL; A5; BEI                                                                                                                                                                                                                            | dermatitis. The substance may have effects on the central nervous system, resulting in loss of memory. The                                                                                                                                   |  |  |  |
| D                                                                              | issued; (ACGIH 2004). MAK: Carcinogen category: 1; Germ cell mutagen group: 3B;                                                                                                                                                                                                                       | substance may have effects on the liver and kidneys (see Notes). This substance is probably carcinogenic to humans.                                                                                                                          |  |  |  |
| A                                                                              | (DFG 2004).<br>OSHA PEL±: TWA 100 ppm C 200 ppm 300 ppm (5-                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                              |  |  |  |
| T                                                                              | minute maximum peak in any 2 hours) NIOSH REL: Ca See Appendix A See Appendix C                                                                                                                                                                                                                       |                                                                                                                                                                                                                                              |  |  |  |
| A                                                                              | NIOSH IDLH: Ca 1000 ppm See: <u>79016</u>                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                              |  |  |  |
| PHYSICAL<br>PROPERTIES                                                         | Boiling point: 87°C Melting point: -73°C Relative density (water = 1): 1.5 Solubility in water, g/100 ml at 20°C: 0.1 Vapour pressure, kPa at 20°C: 7.8 Relative vapour density (air = 1): 4.5                                                                                                        | Relative density of the vapour/air-mixture at 20°C (air = 1): 1.3 Auto-ignition temperature: 410°C Explosive limits, vol% in air: 8-10.5 Octanol/water partition coefficient as log Pow: 2.42 Electrical conductivity (NOT on card): 800pS/m |  |  |  |
| ENVIRONMENTAL<br>DATA                                                          | The substance is harmful to aquatic organisms. The substar environment.                                                                                                                                                                                                                               | nce may cause long-term effects in the aquatic                                                                                                                                                                                               |  |  |  |
|                                                                                | NOTES                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |  |  |  |
| harmful effect. Depend<br>value is exceeded is ins<br>influence the toxicologi | mixtures difficult to ignite, may be developed under certaining on the degree of exposure, periodic medical examination ufficient. Do NOT use in the vicinity of a fire or a hot surfactical properties of this substance, consult an expert. Card has Limits, EU classification, Emergency Response. | n is suggested. The odour warning when the exposure limit ce, or during welding. An added stabilizer or inhibitor can been partly updated in October 2004. See sections                                                                      |  |  |  |
|                                                                                |                                                                                                                                                                                                                                                                                                       | Transport Emergency Card: TEC (R)-61S1710  NFPA Code: H2; F1; R0;                                                                                                                                                                            |  |  |  |
|                                                                                | ADDITIONAL INFORMA                                                                                                                                                                                                                                                                                    | TION                                                                                                                                                                                                                                         |  |  |  |
|                                                                                |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                              |  |  |  |

IMPORTANT

ICSC: 0081

Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review

(C) IPCS, CEC, 1994

# VINYL CHLORIDE











Chloroethene Chloroethylene VCM C<sub>2</sub>H<sub>3</sub>Cl / H<sub>2</sub>C=CHCl Molecular mass: 62.5 (cylinder)

ICSC # 0082 CAS # 75-01-4 RTECS # <u>KU9625000</u> UN # 1086 (stabilized)

EC # 602-023-00-7 April 13, 2000 Validated



ICSC: 0082

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS                           | PREVENTION                                                                                                        | FIRST AID/<br>FIRE FIGHTING                                                                                                                        |
|---------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| FIRE                            |                                                      | NO open flames, NO sparks, and NO smoking.                                                                        | Shut off supply; if not possible and no risk to surroundings, let the fire burn itself out; in other cases extinguish with powder, carbon dioxide. |
| EXPLOSION                       |                                                      | Closed system, ventilation, explosion-<br>proof electrical equipment and<br>lighting. Use non-sparking handtools. | In case of fire: keep cylinder cool by spraying with water. Combat fire from a sheltered position.                                                 |
| EXPOSURE                        |                                                      | AVOID ALL CONTACT!                                                                                                | IN ALL CASES CONSULT A DOCTOR!                                                                                                                     |
| •INHALATION                     | Dizziness. Drowsiness. Headache.<br>Unconsciousness. | Ventilation, local exhaust, or breathing protection.                                                              | Fresh air, rest. Refer for medical attention.                                                                                                      |
| •SKIN                           | ON CONTACT WITH LIQUID:<br>FROSTBITE.                | Protective gloves. Cold-insulating gloves. Protective clothing.                                                   | ON FROSTBITE: rinse with plenty of water, do NOT remove clothes.                                                                                   |
| •EYES                           | Redness. Pain.                                       | Safety goggles or eye protection in combination with breathing protection.                                        | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.                            |
| •INGESTION                      |                                                      | Do not eat, drink, or smoke during work.                                                                          |                                                                                                                                                    |

| SPILLAGE DISPOSAL                                                                                                                                                                  | STORAGE                                                                                                     | PACKAGING & LABELLING                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Evacuate danger area! Consult an expert! Ventilation. Remove all ignition sources. Personal protection: complete protective clothing including self-contained breathing apparatus. | Fireproof. Separated from incompatible materials .( See Chemical Dangers. ) Cool. Store only if stabilized. | Note: D<br>F+ symbol<br>T symbol<br>R: 45-12<br>S: 53-45<br>UN Hazard Class: 2.1 |

### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0082

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

**ROUTES OF EXPOSURE:** 

ICSC: 0082

NFPA Code: H 2; F 4; R 2;

### **VINYL CHLORIDE**

PHYSICAL STATE; APPEARANCE:

|                                                                                                                                                                                                                                                                                                             | PHYSICAL STATE; APPEARANCE:<br>COLOURLESS COMPRESSED LIQUEFIED GAS,                                               | The substance can be absorbed into the body by                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                             | WITH CHARACTERISTIC ODOUR.                                                                                        | inhalation.                                                                                                      |  |
| I                                                                                                                                                                                                                                                                                                           | PHYSICAL DANGERS:                                                                                                 | INHALATION RISK:                                                                                                 |  |
| M                                                                                                                                                                                                                                                                                                           | The gas is heavier than air, and may travel along the ground; distant ignition possible. Vinyl chloride monomer   | A harmful concentration of this gas in the air will be reached very quickly on loss of containment.              |  |
| P                                                                                                                                                                                                                                                                                                           | vapours are uninhibited and may form polymers in vents or flame arresters of storage tanks, resulting in blockage | EFFECTS OF SHORT-TERM EXPOSURE:                                                                                  |  |
| О                                                                                                                                                                                                                                                                                                           | of vents.                                                                                                         | The substance is irritating to the eyes . The liquid may cause frostbite. The substance may cause effects on the |  |
| R                                                                                                                                                                                                                                                                                                           | CHEMICAL DANGERS: The substance can under specific circumstances form                                             | central nervous system . Exposure could cause lowering of consciousness. Medical observation is indicated.       |  |
| T                                                                                                                                                                                                                                                                                                           | peroxides, initiating explosive polymerization. The substance will polymerize readily due to heating and          | EFFECTS OF LONG-TERM OR REPEATED                                                                                 |  |
| A                                                                                                                                                                                                                                                                                                           | under the influence of air, light and on contact with a catalyst, strong oxidizing agents and metals such as      | EXPOSURE: The substance may have effects on the liver, spleen, blood                                             |  |
| N                                                                                                                                                                                                                                                                                                           | copper and aluminium, with fire or explosion hazard. The substance decomposes on burning producing toxic and      | andperipheral blood vessels, and tissue and bones of the fingers. This substance is carcinogenic to humans.      |  |
| Т                                                                                                                                                                                                                                                                                                           | corrosive fumes ( hydrogen chloride , phosgene ). Attacks                                                         | Thigers. This substance is carchiogenic to numans.                                                               |  |
| 1                                                                                                                                                                                                                                                                                                           | iron and steel in the presence of moisture.                                                                       |                                                                                                                  |  |
| D                                                                                                                                                                                                                                                                                                           | OCCUPATIONAL EXPOSURE LIMITS:                                                                                     |                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                             | TLV: 1 ppm as TWA; A1 (confirmed human carcinogen); (ACGIH 2004).                                                 |                                                                                                                  |  |
| A                                                                                                                                                                                                                                                                                                           | MAK:                                                                                                              |                                                                                                                  |  |
| T                                                                                                                                                                                                                                                                                                           | Carcinogen category: 1; (DFG 2004).                                                                               |                                                                                                                  |  |
| A                                                                                                                                                                                                                                                                                                           | OSHA PEL: 1910.1017 TWA 1 ppm C 5 ppm 15-minute                                                                   |                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                             | NIOSH REL: Ca <u>See Appendix A</u><br>NIOSH IDLH: Ca N.D. See: <u>IDLH INDEX</u>                                 |                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                   |                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                             | Boiling point: -13°C<br>Melting point: -154°C                                                                     | Relative vapour density (air = 1): $2.2$                                                                         |  |
| PHYSICAL                                                                                                                                                                                                                                                                                                    | Relative density (water = 1): 0.9 (liquid)                                                                        | Flash point:                                                                                                     |  |
| PROPERTIES                                                                                                                                                                                                                                                                                                  | Density: 8 (vapour) at 15°C g/l                                                                                   | -78°C c.c.<br>Auto-ignition temperature: 472°C                                                                   |  |
|                                                                                                                                                                                                                                                                                                             | Solubility in water:                                                                                              | Explosive limits, vol% in air: 3.6-33                                                                            |  |
|                                                                                                                                                                                                                                                                                                             | none                                                                                                              | Octanol/water partition coefficient as log Pow: 0.6                                                              |  |
| ENVIRONMENTAL                                                                                                                                                                                                                                                                                               | This substance may be hazardous to the environment; speci                                                         | al attention should be given to ground water                                                                     |  |
| DATA                                                                                                                                                                                                                                                                                                        | contamination.                                                                                                    |                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                             | NOTES                                                                                                             |                                                                                                                  |  |
| Depending on the degree                                                                                                                                                                                                                                                                                     | ee of exposure, periodic medical examination is suggested. T                                                      | The odour warning when the exposure limit value is                                                               |  |
| exceeded is insufficient. Do NOT use in the vicinity of a fire or a hot surface, or during welding. An added stabilizer or inhibitor can influence the toxicological properties of this substance, consult an expert. Card has been partly updated in April 2005. See section Occupational Exposure Limits. |                                                                                                                   |                                                                                                                  |  |
| Exposure Linns.                                                                                                                                                                                                                                                                                             |                                                                                                                   | Transport Emergency Card: TEC (R)-20S1086                                                                        |  |

ADDITIONAL INFORMATION

ICSC: 0082 VINYL CHLORIDE

### 1,2,4-TRIMETHYLBENZENE











 $\begin{array}{c} \text{Pseudocumene} \\ \text{C}_9 \text{H}_{12} \end{array}$ 

Molecular mass: 120,2

ICSC # 1433 CAS # 95-63-6 RTECS # DC3325000

UN # 1993

EC# 601-043-00-3

March 06, 2002 Peer reviewed



**ICSC: 1433** 

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS                                                      | PREVENTION                                                                                                                                             | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Flammable.                                                                      | NO open flames, NO sparks, and NO smoking.                                                                                                             | Alcohol-resistant foam, dry powder, carbon dioxide.                                                                     |
| EXPLOSION                       | Above 44°C explosive vapour/air mixtures may be formed.                         | Above 44°C use a closed system, ventilation, and explosion-proof electrical equipment. Prevent build-up of electrostatic charges (e.g., by grounding). | In case of fire: keep drums, etc., cool by spraying with water.                                                         |
| EXPOSURE                        |                                                                                 | PREVENT GENERATION OF MISTS!                                                                                                                           |                                                                                                                         |
| •INHALATION                     | Confusion. Cough. Dizziness.<br>Drowsiness. Headache. Sore throat.<br>Vomiting. | Ventilation, local exhaust, or breathing protection.                                                                                                   | Fresh air, rest. Refer for medical attention.                                                                           |
| •SKIN                           | Redness. Dry skin.                                                              | Protective gloves.                                                                                                                                     | Rinse skin with plenty of water or shower.                                                                              |
| •EYES                           | Redness. Pain.                                                                  | Safety spectacles.                                                                                                                                     | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      | (See Inhalation).                                                               | Do not eat, drink, or smoke during work.                                                                                                               | Rinse mouth. Do NOT induce vomiting. Refer for medical attention.                                                       |
| ADT                             | - D-COD O C + F                                                                 | CELOD L CE                                                                                                                                             | ~                                                                                                                       |

| SPILLAGE DISPOSAL | STORAGE | PACKAGING & LABELLING                                                                                         |
|-------------------|---------|---------------------------------------------------------------------------------------------------------------|
|                   |         | Xn symbol<br>N symbol<br>R: 10-20-36/37/38-51/53<br>S: 2-26-61<br>UN Hazard Class: 3<br>UN Packing Group: III |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 1433

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

### 1,2,4-TRIMETHYLBENZENE

| I                      | PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID, WITH CHARACTERISTIC                                                                                 | <b>ROUTES OF EXPOSURE:</b> The substance can be absorbed into the body by                                                                                                                                             |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| M                      | ODOUR.                                                                                                                                             | inhalation.                                                                                                                                                                                                           |  |
| P                      | PHYSICAL DANGERS:                                                                                                                                  | INHALATION RISK:                                                                                                                                                                                                      |  |
| О                      |                                                                                                                                                    | A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C;                                                                                                            |  |
| R                      | CHEMICAL DANGERS: The substance decomposes on burning producing toxic                                                                              | on spraying or dispersing, however, much faster.                                                                                                                                                                      |  |
| Т                      | and irritating fumes Reacts violently with strong oxidants causing fire and explosion hazard.                                                      | EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes the skin and the respiratory tract If this liquid is swallowed, aspiration                                                                    |  |
| A                      | OCCUPATIONAL EXPOSURE LIMITS:                                                                                                                      | into the lungs may result in chemical pneumonitis. The substance may cause effects on the central nervous                                                                                                             |  |
| N                      | TLV: (as mixed isomers) 25 ppm as TWA (ACGIH 2004).                                                                                                | system                                                                                                                                                                                                                |  |
| T                      | MAK: (as mixed isomers) 20 ppm 100 mg/m³ Peak limitation category: II(2) Pregnancy risk group: C (DFG 2004).                                       | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:                                                                                                                                                                            |  |
| D                      | OSHA PEL±: none<br>NIOSH REL: TWA 25 ppm (125 mg/m³)                                                                                               | The liquid defats the skin. Lungs may be affected by repeated or prolonged exposure, resulting in chronic                                                                                                             |  |
| A                      | NIOSH IDLH: N.D. See: <u>IDLH INDEX</u>                                                                                                            | bronchitis The substance may have effects on the central nervous system blood See Notes.                                                                                                                              |  |
| T                      |                                                                                                                                                    |                                                                                                                                                                                                                       |  |
| A                      |                                                                                                                                                    |                                                                                                                                                                                                                       |  |
| PHYSICAL<br>PROPERTIES | Boiling point: 169°C Melting point: -44°C Relative density (water = 1): 0.88 Solubility in water: very poor Relative vapour density (air = 1): 4.1 | Relative density of the vapour/air-mixture at 20°C (air = 1): 1.01 Flash point: 44°C c.c. Auto-ignition temperature: 500°C Explosive limits, vol% in air: 0.9-6.4 Octanol/water partition coefficient as log Pow: 3.8 |  |
| ENVIRONMENTAL          | The substance is toxic to aquatic organisms. Bioaccumulation of this chemical may occur in fish.                                                   |                                                                                                                                                                                                                       |  |

ENVIRONMENTAI DATA



**ICSC: 1433** 

#### NOTES

Use of alcoholic beverages enhances the harmful effect. Depending on the degree of exposure, periodic medical examination is suggested. See also ICSC 1155 1,3,5-Trimethylbenzene (Mesitylene), ICSC 1362 1,2,3-Trimethylbenzene (Hemimellitene), ICSC 1389 Trimethylbenzene (mixed isomers). 1,3,5-Trimethylbenzene (Mesitylene) is classified as a marine pollutant.

Transport Emergency Card: TEC (R)-30GF1-III NFPA Code: H0; F2; R0;

#### ADDITIONAL INFORMATION

ICSC: 1433 1,2,4-TRIMETHYLBENZENE

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

### 1,3,5-TRIMETHYLBENZENE











Molecular mass: 120.2

ICSC # 1155 CAS # 108-67-8 RTECS # <u>OX6825000</u>

UN # 2325

EC# 601-025-00-5

March 06, 2002 Peer reviewed



**ICSC: 1155** 

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZA<br>SYMPTOM                                            | PREVENTION                                                                                                                                          |    | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Flammable.                                                       | NO open flames, NO sparks, and smoking.                                                                                                             |    | Alcohol-resistant foam, dry powder, carbon dioxide.                                                                     |
| EXPLOSION                       | Above 50°C explosive va mixtures may be formed.                  | Above 50°C use a closed system, ventilation, and explosion-proof electrical equipment. Prevent built of electrostatic charges (e.g., by grounding). |    | In case of fire: keep drums, etc., cool by spraying with water.                                                         |
| EXPOSURE                        |                                                                  | PREVENT GENERATION OF MISTS!                                                                                                                        |    |                                                                                                                         |
| •INHALATION                     | Confusion. Cough. Dizzin<br>Drowsiness. Headache. S<br>Vomiting. | Ventilation, local exhaust, or breathing protection.                                                                                                |    | Fresh air, rest. Refer for medical attention.                                                                           |
| •SKIN                           | Redness. Dry skin.                                               | Protective gloves.                                                                                                                                  |    | Remove contaminated clothes. Rinse skin with plenty of water or shower.                                                 |
| •EYES                           | Redness. Pain.                                                   | Safety spectacles.                                                                                                                                  |    | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      | (See Inhalation).                                                | Do not eat, drink, or smoke durin work.                                                                                                             | g  | Rinse mouth. Do NOT induce vomiting. Refer for medical attention.                                                       |
| CDILI A CI                      | E DISDOSAT                                                       | STODACE                                                                                                                                             | DA | CKACING & LADELLING                                                                                                     |

| SPILLAGE DISPOSAL                               | STORAGE                                      | PACKAGING & LABELLING |
|-------------------------------------------------|----------------------------------------------|-----------------------|
| Collect leaking and spilled liquid in sealable  | Fireproof. Separated from strong oxidants.   |                       |
| containers as far as possible. Absorb           | Well closed. Keep in a well-ventilated room. | Marine pollutant.     |
| remaining liquid in sand or inert absorbent     |                                              | Xi symbol             |
| and remove to safe place. Do NOT wash           |                                              | N symbol              |
| away into sewer. Do NOT let this chemical       |                                              | R: 10-37-51/53        |
| enter the environment. (Extra personal          |                                              | S: 2-61               |
| protection: filter respirator for organic gases |                                              | UN Hazard Class: 3    |
| and vapours.)                                   |                                              | UN Packing Group: III |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 1155

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

### 1,3,5-TRIMETHYLBENZENE

| I             | PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID, WITH CHARACTERISTIC                                 | <b>ROUTES OF EXPOSURE:</b> The substance can be absorbed into the body by                                                                          |  |
|---------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| M             | ODOUR.                                                                                             | inhalation.                                                                                                                                        |  |
| P             | PHYSICAL DANGERS:                                                                                  | INHALATION RISK:                                                                                                                                   |  |
| О             |                                                                                                    | A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C;                                         |  |
| R             | CHEMICAL DANGERS: The substance decomposes on burning producing toxic                              | on spraying or dispersing, however, much faster.                                                                                                   |  |
| Т             | and irritating fumes. Reacts violently with strong oxidants causing fire and explosion hazard.     | EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes the skin and the respiratory tract If this liquid is swallowed, aspiration |  |
| A             | OCCUPATIONAL EXPOSURE LIMITS:<br>TLV (as mixed isomers): 25 ppm; (ACGIH 2001).                     | into the lungs may result in chemical pneumonitis. The substance may cause effects on the central nervous                                          |  |
| N             | MAK (all isomers): 20 ppm; 100 mg/m <sup>3</sup> ; class II 1 ©                                    | system.                                                                                                                                            |  |
| Т             | (2001)<br>OSHA PEL <u>†</u> : none                                                                 | EFFECTS OF LONG-TERM OR REPEATED                                                                                                                   |  |
| D             | NIOSH REL: TWA 25 ppm (125 mg/m <sup>3</sup> )<br>NIOSH IDLH: N.D. See: <u>IDLH INDEX</u>          | EXPOSURE: The liquid defats the skin. Lungs may be affected by                                                                                     |  |
|               |                                                                                                    | repeated or prolonged exposure, resulting in chronic bronchitis. The substance may have effects on the                                             |  |
| A             |                                                                                                    | central nervous system blood See Notes.                                                                                                            |  |
| T             |                                                                                                    |                                                                                                                                                    |  |
| A             |                                                                                                    |                                                                                                                                                    |  |
| PHYSICAL      | Boiling point: 165°C<br>Melting point: -45°C<br>Relative density (water = 1): 0.86                 | Relative vapour density (air = 1): 4.1<br>Relative density of the vapour/air-mixture at 20°C (air = 1): 1.01                                       |  |
| PROPERTIES    | Solubility in water:                                                                               | Flash point: 50°C (c.c.)                                                                                                                           |  |
|               | very poor<br>Vapour pressure, kPa at 20°C: 0.25                                                    | Auto-ignition temperature: 550°C Octanol/water partition coefficient as log Pow: 3.42                                                              |  |
| ENVIRONMENTAL | The substance is harmful to aquatic organisms. Bioaccumulation of this chemical may occur in fish. |                                                                                                                                                    |  |

ENVIRONMENTAL DATA



**ICSC: 1155** 

#### NOTES

Use of alcoholic beverages enhances the harmful effect. Depending on the degree of exposure, periodic medical examination is indicated. See ICSC 1433 1,2,4-Trimethylbenzene (Pseudocumene), ICSC 1362 1,2,3-Trimethylbenzene (Hemimellitene), ICSC 1389 Trimethylbenzene (mixed isomers).

Transport Emergency Card: TEC (R)-30S2325

NFPA Code: H0; F2; R0

#### ADDITIONAL INFORMATION

ICSC: 1155 1,3,5-TRIMETHYLBENZENE

(C) IPCS, CEC, 1994

#### IMPORTANT LEGAL NOTICE:

### **ETHYLBENZENE**











Ethylbenzol Phenylethane EB  $C_8H_{10}$  /  $C_6H_5C_2H_5$  Molecular mass: 106.2

ICSC # 0268 CAS # 100-41-4 RTECS # <u>DA0700000</u>

UN # 1175

EC # 601-023-00-4 March 13, 1995 Validated



ICSC: 0268

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS                 | PREVENTION                                                              | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|--------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Highly flammable.                          | NO open flames, NO sparks, and NO smoking.                              | Powder, AFFF, foam, carbon dioxide.                                                                                     |
| EXPLOSION                       | Vapour/air mixtures are explosive.         |                                                                         | In case of fire: keep drums, etc., cool by spraying with water.                                                         |
| EXPOSURE                        |                                            | PREVENT GENERATION OF MISTS!                                            |                                                                                                                         |
| •INHALATION                     | Cough. Dizziness. Drowsiness.<br>Headache. | Ventilation, local exhaust, or breathing protection.                    | Fresh air, rest. Refer for medical attention.                                                                           |
| •SKIN                           | Dry skin. Redness.                         | Protective gloves.                                                      | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                           | Redness. Pain. Blurred vision.             | Face shield or eye protection in combination with breathing protection. | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      | (Further see Inhalation).                  | Do not eat, drink, or smoke during work.                                | Rinse mouth. Give a slurry of activated charcoal in water to drink. Refer for medical attention.                        |

| SPILLAGE DISPOSAL                                                                                                                                                                                                                            | STORAGE | PACKAGING & LABELLING                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------|
| Ventilation. Collect leaking liquid in covered containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT wash away into sewer. Personal protection: A filter respirator for organic gases and vapours. |         | F symbol<br>Xn symbol<br>R: 11-20<br>S: 2-16-24/25-29<br>UN Hazard Class: 3<br>UN Packing Group: II |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0268

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

ETHYLBENZENE ICSC: 0268

| M                                                                                                                                      | PHYSICAL STATE; APPEARANCE:<br>COLOURLESS LIQUID , WITH AROMATIC<br>ODOUR.                                                                                                                                       | ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation of its vapour, through the skin and by ingestion.                                                                                                   |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                        | <b>PHYSICAL DANGERS:</b> The vapour mixes well with air, explosive mixtures are easily formed.                                                                                                                   | INHALATION RISK: A harmful contamination of the air will be reached                                                                                                                                                               |  |  |
| $\ $ R                                                                                                                                 | CHEMICAL DANGERS:                                                                                                                                                                                                | rather slowly on evaporation of this substance at 20°C.                                                                                                                                                                           |  |  |
| T                                                                                                                                      | Reacts with strong oxidants. Attacks plastic and rubber.                                                                                                                                                         | <b>EFFECTS OF SHORT-TERM EXPOSURE:</b> The substance is irritating to the eyes the skin and the                                                                                                                                   |  |  |
| <b>A</b>                                                                                                                               | OCCUPATIONAL EXPOSURE LIMITS:<br>TLV: 100 ppm as TWA 125 ppm as STEL A3<br>(confirmed animal carcinogen with unknown relevance                                                                                   | respiratory tract Swallowing the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis. The substance may cause effects on the                                                                         |  |  |
| N                                                                                                                                      | to humans); BEI issued (ACGIH 2005).                                                                                                                                                                             | central nervous system Exposure far above the OEL                                                                                                                                                                                 |  |  |
| T                                                                                                                                      | MAK: skin absorption (H);<br>Carcinogen category: 3A;<br>(DFG 2004).                                                                                                                                             | could cause lowering of consciousness.  EFFECTS OF LONG-TERM OR REPEATED                                                                                                                                                          |  |  |
| D                                                                                                                                      | OSHA PEL±: TWA 100 ppm (435 mg/m³)<br>NIOSH REL: TWA 100 ppm (435 mg/m³) ST 125 ppm                                                                                                                              | EXPOSURE: Repeated or prolonged contact with skin may cause dermatitis.                                                                                                                                                           |  |  |
|                                                                                                                                        | (545 mg/m <sup>3</sup> )<br>NIOSH IDLH: 800 ppm 10%LEL See: <u>100414</u>                                                                                                                                        | definations.                                                                                                                                                                                                                      |  |  |
| T                                                                                                                                      |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |  |  |
| A                                                                                                                                      |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |  |  |
| PHYSICAL<br>PROPERTIES                                                                                                                 | Boiling point: 136°C<br>Melting point: -95°C<br>Relative density (water = 1): 0.9<br>Solubility in water, g/100 ml at 20°C: 0.015<br>Vapour pressure, kPa at 20°C: 0.9<br>Relative vapour density (air = 1): 3.7 | Relative density of the vapour/air-mixture at 20°C (air = 1): 1.02<br>Flash point: 18°C c.c.<br>Auto-ignition temperature: 432°C<br>Explosive limits, vol% in air: 1.0-6.7<br>Octanol/water partition coefficient as log Pow: 3.2 |  |  |
| ENVIRONMENTAL DATA                                                                                                                     | The substance is harmful to aquatic organisms.                                                                                                                                                                   |                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                        | NOTES                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |  |  |
| The odour warning when the exposure limit value is exceeded is insufficient.  Transport Emergency Card: TEC (R)-30S1175 or 30GE1.I+II. |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |  |  |

Transport Emergency Card: TEC (R)-30S1175 or 30GF1-I+II

NFPA Code: H2; F3; R0

#### ADDITIONAL INFORMATION

ICSC: 0268 ETHYLBENZENE

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

m-XYLENE ICSC: 0085











meta-Xylene 1,3-Dimethylbenzene m-Xylol  $C_6H_4(CH_3)_2/C_8H_{10}$ Molecular mass: 106.2

ICSC # 0085 CAS # 108-38-3 RTECS # <u>ZE2275000</u> UN # 1307

EC # 601-022-00-9 August 03, 2002 Validated



| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS                                  | PREVENTION                                                                                                                                             | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Flammable.                                                  | NO open flames, NO sparks, and NO smoking.                                                                                                             | Powder, water spray, foam, carbon dioxide.                                                                              |
| EXPLOSION                       | Above 27°C explosive vapour/air mixtures may be formed.     | Above 27°C use a closed system, ventilation, and explosion-proof electrical equipment. Prevent build-up of electrostatic charges (e.g., by grounding). | In case of fire: keep drums, etc., cool by spraying with water.                                                         |
| EXPOSURE                        |                                                             | STRICT HYGIENE!                                                                                                                                        |                                                                                                                         |
| •INHALATION                     | Dizziness. Drowsiness. Headache.<br>Nausea.                 | Ventilation, local exhaust, or breathing protection.                                                                                                   | Fresh air, rest. Refer for medical attention.                                                                           |
| •SKIN                           | Dry skin. Redness.                                          | Protective gloves.                                                                                                                                     | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                           | Redness. Pain.                                              | Safety spectacles.                                                                                                                                     | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      | Burning sensation. Abdominal pain (Further see Inhalation). | Do not eat, drink, or smoke during work.                                                                                                               | Rinse mouth. Do NOT induce vomiting. Refer for medical attention.                                                       |

| SPILLAGE DISPOSAL | STORAGE | PACKAGING & LABELLING                                                                            |
|-------------------|---------|--------------------------------------------------------------------------------------------------|
|                   |         | Note: C<br>Xn symbol<br>R: 10-20/21-38<br>S: 2-25<br>UN Hazard Class: 3<br>UN Packing Group: III |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0085

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

TOLUENE ICSC: 0078











 $\begin{array}{c} \text{Methylbenzene} \\ \text{Toluol} \\ \text{Phenylmethane} \\ \text{C}_6\text{H}_5\text{CH}_3 \, / \, \text{C}_7\text{H}_8 \end{array}$ 

Molecular mass: 92.1

ICSC # 0078 CAS # 108-88-3 RTECS # <u>XS5250000</u>

UN # 1294

EC # 601-021-00-3

October 10, 2002 Peer reviewed



| TYPES OF<br>HAZARD/<br>EXPOSURE                                                                                                                                                                                                                                                                                                                                                   | ACUTE HAZARDS/<br>SYMPTOMS                                                    |                | PREVENTION                                                                                                                                                                                                                                  |                  | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                                                                                                                                                                                                                                                                                                                                                                              | Highly flammable.                                                             |                | NO open flames, NO sparks, and NO smoking.                                                                                                                                                                                                  |                  | Powder, AFFF, foam, carbon dioxide.                                                                                     |
| EXPLOSION                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                | Closed system, ventilation, explosion-proof electrical equipment and lighting. Prevent build-up of electrostatic charges (e.g., by grounding). Do NOT use compressed air for filling, discharging, or handling. Use non-sparking handtools. |                  | In case of fire: keep drums, etc., cool by spraying with water.                                                         |
| EXPOSURE                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                | STRICT HYGIENE! AVOID<br>EXPOSURE OF (PREGNANT)<br>WOMEN!                                                                                                                                                                                   |                  |                                                                                                                         |
| •INHALATION                                                                                                                                                                                                                                                                                                                                                                       | Cough. Sore throat. Dizziness. Drowsiness. Headache. Nausea. Unconsciousness. |                | Ventilation, local exhaust, or breathing protection.                                                                                                                                                                                        |                  | Fresh air, rest. Refer for medical attention.                                                                           |
| •SKIN                                                                                                                                                                                                                                                                                                                                                                             | Dry skin. Redness.                                                            |                | Protective gloves.                                                                                                                                                                                                                          |                  | Remove contaminated clothes. Rinse and then wash skin with water and soap. Refer for medical attention.                 |
| •EYES                                                                                                                                                                                                                                                                                                                                                                             | Redness. Pain.                                                                |                | Safety goggles.                                                                                                                                                                                                                             |                  | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                                                                                                                                                                                                                                                                                                                                                                        | Burning sensation. Abd (Further see Inhalation)                               |                | Do not eat, drink, or smoke during work.                                                                                                                                                                                                    |                  | Rinse mouth. Do NOT induce vomiting. Refer for medical attention.                                                       |
| SPILLAGE DISPOSAL                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |                | STORAGE PA                                                                                                                                                                                                                                  |                  | CKAGING & LABELLING                                                                                                     |
| Evacuate danger area in large spill! Consult an expert in large spill! Remove all ignition sources. Ventilation. Collect leaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT wash away into sewer. Do NOT let this chemical enter the environment. Personal protection: self-contained breathing apparatus |                                                                               | Fireproof. Sep | parated from strong oxidants.                                                                                                                                                                                                               | S: 2-30<br>UN Ha |                                                                                                                         |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0078

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# **International Chemical Safety Cards**

TOLUENE ICSC: 0078

| I                      | PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID, WITH CHARACTERISTIC                                                                                                              | ROUTES OF EXPOSURE: The substance can be absorbed into the body by                                                                                                                                                    |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M                      | ODOUR.                                                                                                                                                                          | inhalation, through the skin and by ingestion.                                                                                                                                                                        |
| P                      | PHYSICAL DANGERS: The vapour mixes well with air, explosive mixtures are                                                                                                        | INHALATION RISK: A harmful contamination of the air can be reached rather                                                                                                                                             |
| О                      | formed easily. As a result of flow, agitation, etc., electrostatic charges can be generated.                                                                                    | quickly on evaporation of this substance at 20°C.                                                                                                                                                                     |
| R                      | CHEMICAL DANGERS:                                                                                                                                                               | <b>EFFECTS OF SHORT-TERM EXPOSURE:</b> The substance is irritating to the eyes and the respiratory                                                                                                                    |
| T                      | Reacts violently with strong oxidants causing fire and explosion hazard.                                                                                                        | tract The substance may cause effects on the central nervous system If this liquid is swallowed, aspiration                                                                                                           |
| A                      | OCCUPATIONAL EXPOSURE LIMITS:                                                                                                                                                   | into the lungs may result in chemical pneumonitis.  Exposure at high levels may result in cardiac                                                                                                                     |
| N                      | TLV: 50 ppm as TWA (skin) A4 BEI issued (ACGIH 2004).                                                                                                                           | dysrhythmiaandunconsciousness.                                                                                                                                                                                        |
| T                      | MAK: 50 ppm 190 mg/m³ H Peak limitation category: II(4) Pregnancy risk group: C                                                                                                 | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:                                                                                                                                                                            |
| D                      | (DFG 2004).<br>OSHA PEL±: TWA 200 ppm C 300 ppm 500 ppm (10-minute maximum peak)                                                                                                | The liquid defats the skin. The substance may have effects on the central nervous system Exposure to the substance may enhance hearing damage caused by                                                               |
| A                      | NIOSH REL: TWA 100 ppm (375 mg/m <sup>3</sup> ) ST 150 ppm                                                                                                                      | exposure to noise. Animal tests show that this substance possibly causes toxicity to human reproduction or                                                                                                            |
| Т                      | (560 mg/m <sup>3</sup> )<br>NIOSH IDLH: 500 ppm See: <u>108883</u>                                                                                                              | development.                                                                                                                                                                                                          |
| A                      |                                                                                                                                                                                 |                                                                                                                                                                                                                       |
| PHYSICAL<br>PROPERTIES | Boiling point: 111°C Melting point: -95°C Relative density (water = 1): 0.87 Solubility in water: none Vapour pressure, kPa at 25°C: 3.8 Relative vapour density (air = 1): 3.1 | Relative density of the vapour/air-mixture at 20°C (air = 1): 1.01 Flash point: 4°C c.c. Auto-ignition temperature: 480°C Explosive limits, vol% in air: 1.1-7.1 Octanol/water partition coefficient as log Pow: 2.69 |
| ENVIRONMENTAL<br>DATA  | The substance is toxic to aquatic organisms.                                                                                                                                    |                                                                                                                                                                                                                       |

#### NOTES

Depending on the degree of exposure, periodic medical examination is suggested. Use of alcoholic beverages enhances the harmful effect.

Transport Emergency Card: TEC (R)-30S1294

NFPA Code: H 2; F 3; R 0;

#### ADDITIONAL INFORMATION

ICSC: 0078 TOLUENE

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

m-XYLENE ICSC: 0085

| I                                                                                                                                                                                                                                                                   | PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID, WITH CHARACTERISTIC ODOUR.                                                                | ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation, through the skin and by ingestion.                                                                                                                                             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| M                                                                                                                                                                                                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                               |  |  |  |
| P                                                                                                                                                                                                                                                                   | PHYSICAL DANGERS: As a result of flow, agitation, etc., electrostatic charges can be generated.                                          | <b>INHALATION RISK:</b> A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C.                                                                                                                            |  |  |  |
| 0                                                                                                                                                                                                                                                                   |                                                                                                                                          | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                         |  |  |  |
| R                                                                                                                                                                                                                                                                   | CHEMICAL DANGERS: Reacts with strong acids strong oxidants                                                                               | EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes and the skin The substance may cause effects on the central nervous                                                                                                                   |  |  |  |
| Т                                                                                                                                                                                                                                                                   | OCCUPATIONAL EXPOSURE LIMITS:<br>TLV: 100 ppm as TWA 150 ppm as STEL A4 (ACGIH                                                           | system If this liquid is swallowed, aspiration into the                                                                                                                                                                                                       |  |  |  |
| A                                                                                                                                                                                                                                                                   | 2001). BEI (ACGIH 2001).<br>MAK: 100 ppm 440 mg/m <sup>3</sup>                                                                           | EFFECTS OF LONG-TERM OR REPEATED                                                                                                                                                                                                                              |  |  |  |
| N                                                                                                                                                                                                                                                                   | Peak limitation category: II(2)                                                                                                          | EXPOSURE:                                                                                                                                                                                                                                                     |  |  |  |
| Т                                                                                                                                                                                                                                                                   | skin absorption (H); Pregnancy risk group: D (DFG 2005).                                                                                 | The liquid defats the skin. The substance may have effects on the central nervous system Animal tests show that this substance possibly causes toxicity to human                                                                                              |  |  |  |
| D                                                                                                                                                                                                                                                                   | EU OEL: 50 ppm as TWA 100 ppm as STEL (skin) (EU 2000).                                                                                  | J reproduction or development.                                                                                                                                                                                                                                |  |  |  |
| A                                                                                                                                                                                                                                                                   | OSHA PEL±: TWA 100 ppm (435 mg/m³)<br>NIOSH REL: TWA 100 ppm (435 mg/m³) ST 150 ppm                                                      |                                                                                                                                                                                                                                                               |  |  |  |
| Т                                                                                                                                                                                                                                                                   | (655 mg/m <sup>3</sup> )<br>NIOSH IDLH: 900 ppm See: <u>95476</u>                                                                        |                                                                                                                                                                                                                                                               |  |  |  |
| A                                                                                                                                                                                                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                               |  |  |  |
| PHYSICAL<br>PROPERTIES                                                                                                                                                                                                                                              | Boiling point: 139°C Melting point: -48°C Relative density (water = 1): 0.86 Solubility in water: none Vapour pressure, kPa at 20°C: 0.8 | Relative vapour density (air = 1): 3.7 Relative density of the vapour/air-mixture at 20°C (air = 1): 1.02 Flash point: 27°C c.c. Auto-ignition temperature: 527°C Explosive limits, vol% in air: 1.1-7.0 Octanol/water partition coefficient as log Pow: 3.20 |  |  |  |
| ENVIRONMENTAL<br>DATA                                                                                                                                                                                                                                               | The substance is toxic to aquatic organisms.                                                                                             |                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                     | NOTES                                                                                                                                    |                                                                                                                                                                                                                                                               |  |  |  |
| Depending on the degree of exposure, periodic medical examination is indicated. The recommendations on this Card also apply to technical xylene. See ICSC 0084 o-Xylene and 0086 p-Xylene.  NFPA Code: H 2; F 3; R 0; Transport Emergency Card: TEC (R)-30S1307-III |                                                                                                                                          |                                                                                                                                                                                                                                                               |  |  |  |
| ADDITIONAL INFORMATION                                                                                                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                          |                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                     |                                                                                                                                          |                                                                                                                                                                                                                                                               |  |  |  |

ICSC: 0085 m-XYLENE

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

### **BENZ(a)ANTHRACENE**











1,2-Benzoanthracene Benzo(a)anthracene 2,3-Benzphenanthrene Naphthanthracene  $C_{18}H_{12}$ 

Molecular mass: 228.3





ICSC: 0385

ICSC# 0385 CAS# 56-55-3 RTECS # CV9275000 601-033-00-9 EC# October 23, 1995 Validated

| TYPES OF<br>HAZARD/<br>EXPOSURE                                                                                                                                                                                                                             | ACUTE HAZ                                           |              | PREVENTION                                                                                 |                                       | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|--------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                                                                                                                                                                                                                                                        | Combustible.                                        |              |                                                                                            |                                       | Water spray, powder. In case of fire in the surroundings: use appropriate extinguishing media.                          |
| EXPLOSION                                                                                                                                                                                                                                                   | Finely dispersed particle explosive mixtures in air |              | Prevent deposition of dust; close system, dust explosion-proof ele equipment and lighting. |                                       |                                                                                                                         |
| EXPOSURE                                                                                                                                                                                                                                                    |                                                     |              | AVOID ALL CONTACT!                                                                         |                                       |                                                                                                                         |
| •INHALATION                                                                                                                                                                                                                                                 |                                                     |              | Local exhaust or breathing prote                                                           | ction.                                | Fresh air, rest.                                                                                                        |
| •SKIN                                                                                                                                                                                                                                                       |                                                     |              | Protective gloves. Protective clo                                                          |                                       | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                                                                                                                                                                                                                                                       |                                                     |              | Safety goggles face shield or eye protection in combination with breathing protection.     |                                       | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                                                                                                                                                                                                                                                  |                                                     |              | Do not eat, drink, or smoke during work. Wash hands before eating                          | _                                     | Rinse mouth.                                                                                                            |
| SPILLAGE DISPOSAL                                                                                                                                                                                                                                           |                                                     |              | STORAGE PA                                                                                 |                                       | CKAGING & LABELLING                                                                                                     |
| Sweep spilled substance into sealable containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder, then remove to safe place. Personal protection: complete protective clothing including self-contained breathing apparatus. |                                                     | Well closed. |                                                                                            | T syml<br>N sym<br>R: 45-:<br>S: 53-4 | bol                                                                                                                     |
| SEE IMPORTANT INFORMATION ON BACK                                                                                                                                                                                                                           |                                                     |              |                                                                                            |                                       |                                                                                                                         |

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European ICSC: 0385 Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# **International Chemical Safety Cards**

ICSC: 0385

### **BENZ(a)ANTHRACENE**

PHYSICAL STATE; APPEARANCE:

I

| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FLAKES OR POWDER.                                                                                           | through the skin and by ingestion.                                                            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| P<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHYSICAL DANGERS: Dust explosion possible if in powder or granular form,                                    | INHALATION RISK:<br>Evaporation at 20°C is negligible; a harmful concentration                |  |  |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mixed with air.                                                                                             | of airborne particles can, however, be reached quickly.                                       |  |  |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHEMICAL DANGERS:                                                                                           | EFFECTS OF SHORT-TERM EXPOSURE:                                                               |  |  |
| Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                               |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OCCUPATIONAL EXPOSURE LIMITS:<br>TLV: A2 (suspected human carcinogen); (ACGIH 2004).<br>MAK:                | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: This substance is probably carcinogenic to humans. |  |  |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carcinogen category: 2 (as pyrolysis product of organic                                                     | This substance is probably careinogenic to numans.                                            |  |  |
| Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | materials) (DFG 2005).                                                                                      |                                                                                               |  |  |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                               |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                               |  |  |
| Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                               |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                               |  |  |
| PHYSICAL<br>PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sublimation point: 435°C Melting point: 162°C Relative density (water = 1): 1.274 Solubility in water: none | Vapour pressure, Pa at 20°C: 292<br>Octanol/water partition coefficient as log Pow: 5.61      |  |  |
| ENVIRONMENTAL<br>DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bioaccumulation of this chemical may occur in seafood.                                                      |                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NOTES                                                                                                       |                                                                                               |  |  |
| This substance is one of many polycyclic aromatic hydrocarbons - standards are usually established for them as mixtures, e.g., coal tar pitch volatiles. However, it may be encountered as a laboratory chemical in its pure form. Insufficient data are available on the effect of this substance on human health, therefore utmost care must be taken. Do NOT take working clothes home. Tetraphene is a common name. Card has been partly updated in October 2005 and August 2006: see sections Occupational Exposure Limits, EU classification. |                                                                                                             |                                                                                               |  |  |
| ADDITIONAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             |                                                                                               |  |  |

**ROUTES OF EXPOSURE:** 

COLOURLESS TO YELLOW BROWN FLUORESCENT The substance can be absorbed into the body by inhalation,

IMPORTANT LEGAL NOTICE:

ICSC: 0385

Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

(C) IPCS, CEC, 1994

**BENZ(a)ANTHRACENE** 

### BENZO(g,h,i)FLUORANTHENE











ICSC: 0527

2,13-Benzofluoranthene Benzo(mno)fluoranthene  $C_{18}H_{10}$ Molecular mass: 226.3

ICSC# 0527 CAS# 203-12-3 RTECS # <u>DF6140000</u>

March 25, 1998 Peer reviewed

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS | PREVENTION                               | FIRST AID/<br>FIRE FIGHTING                                                                                                                                  |
|---------------------------------|----------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Combustible.               | NO open flames.                          | Water spray, powder.                                                                                                                                         |
| EXPLOSION                       |                            |                                          |                                                                                                                                                              |
| EXPOSURE                        |                            | PREVENT DISPERSION OF DUST!              |                                                                                                                                                              |
| •INHALATION                     |                            | Local exhaust or breathing protection.   |                                                                                                                                                              |
| •SKIN                           | MAY BE ABSORBED!           |                                          | Remove contaminated clothes. Rinse and then wash skin with water and soap. Refer for medical attention. Wear protective gloves when administering first aid. |
| •EYES                           |                            | protection in combination with           | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.                                      |
| •INGESTION                      |                            | Do not eat, drink, or smoke during work. |                                                                                                                                                              |

| SPILLAGE DISPOSAL                                                                                                                                                                                  | STORAGE      | PACKAGING & LABELLING |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|
| Sweep spilled substance into containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder, then remove to safe place. Do NOT let this chemical enter the environment. | Well closed. | R:<br>S:              |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0527

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values

## **International Chemical Safety Cards**

### BENZO(g,h,i)FLUORANTHENE

PHYSICAL STATE; APPEARANCE: YELLOW CRYSTALS

PHYSICAL DANGERS:

#### **ROUTES OF EXPOSURE:**

The substance can be absorbed into the body by inhalation of its aerosol and through the skin.

ICSC: 0527

M

I

| o                        |                                                                                                                                                   | INHALATION RISK:                                                                                                                                              |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| R T A N T D A            | CHEMICAL DANGERS: The substance decomposes on heating producing toxic fumes.  OCCUPATIONAL EXPOSURE LIMITS: TLV not established.                  | EFFECTS OF SHORT-TERM EXPOSURE:  EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: See Notes.                                                                        |  |  |  |
| A                        |                                                                                                                                                   |                                                                                                                                                               |  |  |  |
| PHYSICAL<br>PROPERTIES   | Melting point: 149°C<br>Solubility in water: none<br>Vapour pressure, Pa at 20°C: <10                                                             | Relative vapour density (air = 1): 7.8 Relative density of the vapour/air-mixture at 20°C (air = 1): 1.0 Octanol/water partition coefficient as log Pow: 7.23 |  |  |  |
| ENVIRONMENTAL<br>DATA    | llenvironment. In the food chain important to hilmans, bioaccilmillation takes place, specifically in oils and                                    |                                                                                                                                                               |  |  |  |
| NOTES                    |                                                                                                                                                   |                                                                                                                                                               |  |  |  |
| Insufficient data are av | Insufficient data are available on the effect of this substance on human health, therefore utmost care must be taken. Also consult ICSC #0720 and |                                                                                                                                                               |  |  |  |

Insufficient data are available on the effect of this substance on human health, therefore utmost care must be taken. Also consult ICSC #0720 and 0721.

# ADDITIONAL INFORMATION ICSC: 0527 BENZO(g,h,i)FLUORANTHENE (C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

### **BENZO(k)FLUORANTHENE**











Dibenzo(b,jk)fluorene 8,9-Benzofluoranthene 11.12-Benzofluoranthene  $C_{20}H_{12}$ 

Molecular mass: 252.3





ICSC: 0721

ICSC# 0721 CAS# 207-08-9 RTECS # DF6350000 EC# 601-036-00-5 March 25, 1999 Peer reviewed

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS | PREVENTION                                                                              | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|----------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            |                            |                                                                                         | In case of fire in the surroundings: use appropriate extinguishing media.                                               |
| EXPLOSION                       |                            |                                                                                         |                                                                                                                         |
| EXPOSURE                        |                            | AVOID ALL CONTACT!                                                                      |                                                                                                                         |
| •INHALATION                     |                            | Local exhaust or breathing protection.                                                  | Fresh air, rest.                                                                                                        |
| •SKIN                           |                            | Protective gloves. Protective clothing.                                                 | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                           |                            | Safety spectacles or eye protection in combination with breathing protection if powder. | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      |                            | Do not eat, drink, or smoke during work.                                                | Rinse mouth. Refer for medical attention.                                                                               |

| SPILLAGE DISPOSAL                                                          | STORAGE                                                             | PACKAGING & LABELLING         |
|----------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------|
|                                                                            | Provision to contain effluent from fire extinguishing. Well closed. | T symbol                      |
| prevent dusting. Carefully collect remainder,                              |                                                                     | N symbol                      |
| then remove to safe place. Do NOT let this chemical enter the environment. |                                                                     | R: 45-50/53<br>S: 53-45-60-61 |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0721

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# **International Chemical Safety Cards**

### **BENZO(k)FLUORANTHENE**

ICSC: 0721

PHYSICAL STATE; APPEARANCE:

YELLOW CRYSTALS

**ROUTES OF EXPOSURE:** The substance can be absorbed into the body by inhalation of its aerosol and through the skin.

I

| P O R T A N T D A T A                                                                                                                      | PHYSICAL DANGERS:  INHALATION RISK: Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however, be reached quickly.  DCCUPATIONAL EXPOSURE LIMITS: TLV not established.  MAK: Carcinogen category: 2; (DFG 2004).  EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:  This substance is possibly carcinogenic to humans. |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PHYSICAL<br>PROPERTIES                                                                                                                     | Boiling point: 480°C Melting point: 217°C Solubility in water: none Octanol/water partition coefficient as log Pow: 6.84                                                                                                                                                                                                                             |  |  |  |
| ENVIRONMENTAL DATA                                                                                                                         | This substance may be hazardous to the environment; special attention should be given to air quality and water quality. Bioaccumulation of this chemical may occur in crustacea and in fish.  NOTES                                                                                                                                                  |  |  |  |
| Benzo(k)fluoranthene is present as a component of polycyclic aromatic hydrocarbons (PAH) content in the environment usually resulting from |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

Benzo(k)fluoranthene is present as a component of polycyclic aromatic hydrocarbons (PAH) content in the environment usually resulting from the incomplete combustion or pyrolysis of organic matters, especially fossil fuels and tobacco. ACGIH recommends environment containing benzo(k)fluoranthene should be evaluated in terms of the TLV-TWA for coal tar pitch volatile, as benzene soluble 0.2 mg/m³. Insufficient data are available on the effect of this substance on human health, therefore utmost care must be taken.

# ADDITIONAL INFORMATION ICSC: 0721 BENZO(k)FLUORANTHENE

(C) IPCS, CEC, 1994

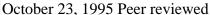
IMPORTANT LEGAL NOTICE:

### **DIBENZO(a,h)ANTHRACENE**












 $\substack{1,25,6\text{-Dibenzanthracene} \\ C_{22}H_{14}}$ 

Molecular mass: 278.4

ICSC # 0431 CAS # 53-70-3 RTECS # <u>HN2625000</u> EC # 601-041-00-2







ICSC: 0431

ICSC: 0431

| TYPES OF<br>HAZARD/<br>EXPOSURE                         | ACUTE HAZAI<br>SYMPTOMS     | ll l | PREVENTION                                                           |        | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------------------------------|-----------------------------|------|----------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                                                    | Combustible.                |      | NO open flames.                                                      |        | Water spray, powder.                                                                                                    |
| EXPLOSION                                               |                             |      |                                                                      |        |                                                                                                                         |
| EXPOSURE                                                |                             |      | AVOID ALL CONTACT!                                                   |        |                                                                                                                         |
| •INHALATION                                             |                             |      | Local exhaust or breathing protec                                    | tion.  | Fresh air, rest.                                                                                                        |
| •SKIN                                                   | Redness. Swelling. Itching. |      | Protective gloves. Protective cloth                                  | hing.  | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                                                   | Redness.                    |      | Face shield or eye protection in combination with breathing prote    | ction. | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                                              |                             |      | Do not eat, drink, or smoke durin<br>work. Wash hands before eating. | g      | Rinse mouth.                                                                                                            |
| CDILLA CE DICDOCAL CTODA CE DA CIVA CINC. 9, LA DELL'IN |                             |      | CIZACING O LABELLING                                                 |        |                                                                                                                         |

| SPILLAGE DISPOSAL                                                                                                                                                                                                          | STORAGE | PACKAGING & LABELLING                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------|
| Sweep spilled substance into sealable containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder, then remove to safe place. Personal protection: P3 filter respirator for toxic particles. |         | T symbol<br>N symbol<br>R: 45-50/53<br>S: 53-45-60-61 |

#### SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

## **International Chemical Safety Cards**

### **DIBENZO(a,h)ANTHRACENE**

| I | PHYSICAL STATE; APPEARANCE:    | ROUTI   |
|---|--------------------------------|---------|
|   | COLOURLESS CRYSTALLINE POWDER. | The sub |
| M |                                | through |
|   | PHYSICAL DANGERS:              | •       |
| P |                                | INHAL   |

#### **ROUTES OF EXPOSURE:**

The substance can be absorbed into the body by inhalation, through the skin and by ingestion.

#### **INHALATION RISK:**

Evaporation at 20°C is negligible; a harmful concentration

| R                      | CHEMICAL DANGERS:                                                                  | of airborne particles can, however, be reached quickly.                             |  |  |
|------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| T                      | OCCUPATIONAL EXPOSURE LIMITS:                                                      | EFFECTS OF SHORT-TERM EXPOSURE:                                                     |  |  |
| A                      | TLV not established.                                                               | EFFECTS OF LONG-TERM OR REPEATED                                                    |  |  |
| N                      |                                                                                    | EXPOSURE: The substance may have effects on the skin, resulting in                  |  |  |
| Т                      |                                                                                    | photosensitization. This substance is probably carcinogenic to humans.              |  |  |
| D                      |                                                                                    |                                                                                     |  |  |
| A                      |                                                                                    |                                                                                     |  |  |
| Т                      |                                                                                    |                                                                                     |  |  |
| A                      |                                                                                    |                                                                                     |  |  |
| PHYSICAL<br>PROPERTIES | Boiling point: 524°C<br>Melting point: 267°C<br>Relative density (water = 1): 1.28 | Solubility in water:<br>none<br>Octanol/water partition coefficient as log Pow: 6.5 |  |  |
| ENVIRONMENTAL<br>DATA  | Bioaccumulation of this chemical may occur in seafood.                             |                                                                                     |  |  |
| NOTES                  |                                                                                    |                                                                                     |  |  |

This is one of many polycyclic aromatic hydrocarbons - standards are usually established for them as mixtures, e.g., coal tar pitch volatiles. However, it may be encountered as a laboratory chemical in its pure form. Insufficient data are available on the effect of this substance on human health, therefore utmost care must be taken. Do NOT take working clothes home. DBA is a commonly used name. This substance is one of many polycyclic aromatic hydrocarbons (PAH).

### ADDITIONAL INFORMATION ICSC: 0431 **DIBENZO(a,h)ANTHRACENE** (C) IPCS, CEC, 1994

**IMPORTANT LEGAL** 

**NOTICE:** 

### **COAL-TAR PITCH**











Pitch

ICSC # 1415

CAS # 65996-93-2 RTECS # <u>GF8655000</u> EC # 648-055-00-5

March 07, 2002 Peer reviewed



**ICSC: 1415** 

ICSC: 1415

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS                                            | PREVENTION                                                                  | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Combustible.                                                          | NO open flames.                                                             | Foam, dry powder, carbon dioxide.                                                                                       |
| EXPLOSION                       |                                                                       |                                                                             |                                                                                                                         |
| EXPOSURE                        |                                                                       | AVOID ALL CONTACT! PREVENT<br>DISPERSION OF DUST!                           |                                                                                                                         |
| •INHALATION                     | Sneezing. Cough. See EFFECTS OF<br>LONG-TERM OR REPEATED<br>EXPOSURE. | Closed system and ventilation.                                              | Fresh air, rest.                                                                                                        |
| •SKIN                           | MAY BE ABSORBED! Redness.<br>Burning sensation.                       | Protective gloves. Protective clothing.                                     | Rinse and then wash skin with water and soap.                                                                           |
| •EYES                           | Redness. Pain.                                                        | Safety goggles, or eye protection in combination with breathing protection. | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      |                                                                       | Do not eat, drink, or smoke during work. Wash hands before eating.          | Give plenty of water to drink. Refer for medical attention.                                                             |

| SPILLAGE DISPOSAL | STORAGE                  | PACKAGING & LABELLING                                                       |
|-------------------|--------------------------|-----------------------------------------------------------------------------|
|                   | from food and feedstuffs | Do not transport with food and feedstuffs.  Note: H T symbol R: 45 S: 53-45 |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 1415

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

### **International Chemical Safety Cards**

### **COAL-TAR PITCH**

**PHYSICAL STATE; APPEARANCE:** BLACK TO BROWN PASTE

M

I

**PHYSICAL DANGERS:** 

**ROUTES OF EXPOSURE:** 

The substance can be absorbed into the body by inhalation and through the skin and by ingestion.

INHALATION RISK:

Evaporation at 20°C is negligible; a harmful concentration

| О                       | CHEMICAL DANGERS:                                                                                                                                                        | of airborne particles can, however, be reached quickly                                                                                              |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| R                       | The substance decomposes on heating above 400°C producing toxic fumes Reacts with strong oxidants                                                                        | when dispersed and when heated.                                                                                                                     |  |  |
| Т                       | OCCUPATIONAL EXPOSURE LIMITS:                                                                                                                                            | <b>EFFECTS OF SHORT-TERM EXPOSURE:</b> The substance is irritating to the eyes the skin and the                                                     |  |  |
| A                       | TLV: (as benzene soluble aerosol for coal tar pitch volatiles) 0.2 mg/m³ as TWA A1 (ACGIH 2001).                                                                         | respiratory tract                                                                                                                                   |  |  |
| N                       | OSHA PEL: TWA 0.2 mg/m <sup>3</sup> (benzene-soluble fraction) 1910.1002 See Appendix C                                                                                  | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:                                                                                                          |  |  |
| Т                       | NIOSH REL: Ca TWA 0.1 mg/m <sup>3</sup> (cyclohexane-<br>extractable fraction) <u>See Appendix A See Appendix C</u><br>NIOSH IDLH: Ca 80 mg/m <sup>3</sup> See: 65996932 | Repeated or prolonged contact with skin may cause dermatitis and hyperpigmentation of skin. This substance is carcinogenic to humans.               |  |  |
| D                       |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| A                       |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| Т                       |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| A                       |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| PHYSICAL<br>PROPERTIES  | Boiling point: >250°C Melting point: 30-180°C Density: >1 g/cm3 Solubility in water: at 20°C none                                                                        | Vapour pressure, kPa at 20°C: <0.01 Flash point: >200°C o.c. Auto-ignition temperature: >500°C Octanol/water partition coefficient as log Pow: 6.04 |  |  |
| ENVIRONMENTAL<br>DATA   | This substance may be hazardous to the environment; spec<br>contamination and aquatic organisms. The substance may<br>environment.                                       |                                                                                                                                                     |  |  |
| NOTES                   |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| Depending on the degree | ee of exposure, periodic medical examination is suggested.                                                                                                               | NFPA Code: H0; F1; R0;                                                                                                                              |  |  |
| il                      |                                                                                                                                                                          | 11111 2000. 110, 1 1, 110,                                                                                                                          |  |  |

#### ADDITIONAL INFORMATION

ICSC: 1415 COAL-TAR PITCH

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

### **COAL-TAR PITCH**











Pitch

ICSC # 1415

CAS # 65996-93-2 RTECS # <u>GF8655000</u> EC # 648-055-00-5

March 07, 2002 Peer reviewed



**ICSC: 1415** 

ICSC: 1415

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZARDS/<br>SYMPTOMS                                            | PREVENTION                                                                  | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Combustible.                                                          | NO open flames.                                                             | Foam, dry powder, carbon dioxide.                                                                                       |
| EXPLOSION                       |                                                                       |                                                                             |                                                                                                                         |
| EXPOSURE                        |                                                                       | AVOID ALL CONTACT! PREVENT<br>DISPERSION OF DUST!                           |                                                                                                                         |
| •INHALATION                     | Sneezing. Cough. See EFFECTS OF<br>LONG-TERM OR REPEATED<br>EXPOSURE. | Closed system and ventilation.                                              | Fresh air, rest.                                                                                                        |
| •SKIN                           | MAY BE ABSORBED! Redness.<br>Burning sensation.                       | Protective gloves. Protective clothing.                                     | Rinse and then wash skin with water and soap.                                                                           |
| •EYES                           | Redness. Pain.                                                        | Safety goggles, or eye protection in combination with breathing protection. | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      |                                                                       | Do not eat, drink, or smoke during work. Wash hands before eating.          | Give plenty of water to drink. Refer for medical attention.                                                             |

| SPILLAGE DISPOSAL | STORAGE                  | PACKAGING & LABELLING                                                       |
|-------------------|--------------------------|-----------------------------------------------------------------------------|
|                   | from food and feedstuffs | Do not transport with food and feedstuffs.  Note: H T symbol R: 45 S: 53-45 |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 1415

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

### **International Chemical Safety Cards**

### **COAL-TAR PITCH**

**PHYSICAL STATE; APPEARANCE:** BLACK TO BROWN PASTE

M

I

**PHYSICAL DANGERS:** 

**ROUTES OF EXPOSURE:** 

The substance can be absorbed into the body by inhalation and through the skin and by ingestion.

INHALATION RISK:

Evaporation at 20°C is negligible; a harmful concentration

| О                       | CHEMICAL DANGERS:                                                                                                                                                        | of airborne particles can, however, be reached quickly                                                                                              |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| R                       | The substance decomposes on heating above 400°C producing toxic fumes Reacts with strong oxidants                                                                        | when dispersed and when heated.                                                                                                                     |  |  |
| Т                       | OCCUPATIONAL EXPOSURE LIMITS:                                                                                                                                            | <b>EFFECTS OF SHORT-TERM EXPOSURE:</b> The substance is irritating to the eyes the skin and the                                                     |  |  |
| A                       | TLV: (as benzene soluble aerosol for coal tar pitch volatiles) 0.2 mg/m³ as TWA A1 (ACGIH 2001).                                                                         | respiratory tract                                                                                                                                   |  |  |
| N                       | OSHA PEL: TWA 0.2 mg/m <sup>3</sup> (benzene-soluble fraction) 1910.1002 See Appendix C                                                                                  | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:                                                                                                          |  |  |
| Т                       | NIOSH REL: Ca TWA 0.1 mg/m <sup>3</sup> (cyclohexane-<br>extractable fraction) <u>See Appendix A See Appendix C</u><br>NIOSH IDLH: Ca 80 mg/m <sup>3</sup> See: 65996932 | Repeated or prolonged contact with skin may cause dermatitis and hyperpigmentation of skin. This substance is carcinogenic to humans.               |  |  |
| D                       |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| A                       |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| Т                       |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| A                       |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| PHYSICAL<br>PROPERTIES  | Boiling point: >250°C Melting point: 30-180°C Density: >1 g/cm3 Solubility in water: at 20°C none                                                                        | Vapour pressure, kPa at 20°C: <0.01 Flash point: >200°C o.c. Auto-ignition temperature: >500°C Octanol/water partition coefficient as log Pow: 6.04 |  |  |
| ENVIRONMENTAL<br>DATA   | This substance may be hazardous to the environment; spec<br>contamination and aquatic organisms. The substance may<br>environment.                                       |                                                                                                                                                     |  |  |
| NOTES                   |                                                                                                                                                                          |                                                                                                                                                     |  |  |
| Depending on the degree | ee of exposure, periodic medical examination is suggested.                                                                                                               | NFPA Code: H0; F1; R0;                                                                                                                              |  |  |
| il                      |                                                                                                                                                                          | 11111 2000. 110, 1 1, 110,                                                                                                                          |  |  |

#### ADDITIONAL INFORMATION

ICSC: 1415 COAL-TAR PITCH

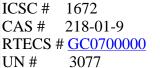
(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

CHRYSENE ICSC: 1672












 $\begin{array}{c} Benzoaphenanthrene\\ 1,2\text{-Benzophenanthrene}\\ 1,2,5,6\text{-Dibenzonaphthalene}\\ C_{18}H_{12} \end{array}$ 

Molecular mass: 228.3



EC # 601-048-00-0 October 12, 2006 Validated







| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZ                                           | PREVENTION                                                                                       |       | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | Combustible.                                        | NO open flames.                                                                                  |       | Water spray. Dry powder. Foam.<br>Carbon dioxide.                                                                       |
| EXPLOSION                       | Finely dispersed particle explosive mixtures in air | Prevent deposition of dust; closed system, dust explosion-proof election equipment and lighting. |       |                                                                                                                         |
| EXPOSURE                        | See EFFECTS OF LONG<br>REPEATED EXPOSUR             | AVOID ALL CONTACT!                                                                               |       |                                                                                                                         |
| •INHALATION                     |                                                     | Local exhaust or breathing protection.                                                           |       | Fresh air, rest.                                                                                                        |
| •SKIN                           |                                                     | Protective gloves. Protective clotl                                                              | hing. | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                           |                                                     | Safety goggles                                                                                   |       | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      |                                                     | Do not eat, drink, or smoke durin work.                                                          | g     | Rinse mouth.                                                                                                            |
| SDILLACI                        | E DISPOSAT                                          | STORACE                                                                                          | DA    | CKACING & LARFILING                                                                                                     |

| SPILLAGE DISPOSAL          | STORAGE                                                                                                                                | PACKAGING & LABELLING                                                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Separated from strong oxidants, Provision to contain effluent from fire extinguishing. Store in an area without drain or sewer access. | T symbol<br>N symbol<br>R: 45-68-50/53<br>S: 53-45-60-61                                                                                                                         |
| then remove to safe place. |                                                                                                                                        | UN Hazard Class: 9 UN Packing Group: III Signal: Warning Aqua-Cancer Suspected of causing cancer Very toxic to aquatic life with long lasting effects Very toxic to aquatic life |

#### SEE IMPORTANT INFORMATION ON BACK

#### **ICSC: 1672**

# **International Chemical Safety Cards**

CHRYSENE ICSC: 1672

| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHYSICAL STATE; APPEARANCE:                                                             | ROUTES OF EXPOSURE:                                                                                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COLOURLESS TO BEIGE CRYSTALS OR POWDER                                                  | The substance can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion. |  |  |  |
| P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHYSICAL DANGERS: Dust explosion possible if in powder or granular form,                | INHALATION RISK:                                                                                             |  |  |  |
| О                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mixed with air.                                                                         | A harmful concentration of airborne particles can be reached quickly when dispersed                          |  |  |  |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHEMICAL DANGERS: The substance decomposes on burning producing toxic                   | EFFECTS OF SHORT-TERM EXPOSURE:                                                                              |  |  |  |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fumes Reacts violently with strong oxidants                                             |                                                                                                              |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OCCUPATIONAL EXPOSURE LIMITS: TLV: A3 (confirmed animal carcinogen with unknown         | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:                                                                   |  |  |  |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | relevance to humans); (ACGIH 2006). MAK not established.                                | This substance is possibly carcinogenic to humans.                                                           |  |  |  |
| Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                              |  |  |  |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                              |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                              |  |  |  |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                              |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                                                                                                              |  |  |  |
| PHYSICAL<br>PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Boiling point: 448°C<br>Melting point: 254 - 256°C<br>Density: 1.3<br>g/cm <sup>3</sup> | Solubility in water:<br>very poor<br>Octanol/water partition coefficient as log Pow: 5.9                     |  |  |  |
| ENVIRONMENTAL<br>DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lite etrangly advised that this substance does not enter the environment                |                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOTES                                                                                   |                                                                                                              |  |  |  |
| Described and the description of the second state of the second st |                                                                                         |                                                                                                              |  |  |  |

Depending on the degree of exposure, periodic medical examination is suggested. Do NOT take working clothes home. This substance does not usually occur as a pure substance but as a component of polyaromatic hydrocarbon (PAH) mixtures. Human population studies have associated PAH's exposure with cancer and cardiovascular diseases.

Transport Emergency Card: TEC (R)-90GM7-III

|            |                     | Transport Emergency Card. TEC (R)-70GW17-III |
|------------|---------------------|----------------------------------------------|
|            | ADDITIONAL INFORMA  | ATION                                        |
|            |                     |                                              |
| ICSC: 1672 |                     | CHRYSENE                                     |
|            | (C) IPCS, CEC, 1994 |                                              |

IMPORTANT LEGAL NOTICE:

### **BENZO(b)FLUORANTHENE**











 $\begin{array}{c} Benz(e) ace phen anthrylene\\ 2,3-Benz of luoroan thene\\ Benzo(e) fluoran thene\\ 3,4-Benz of luoran thene\\ C_{20}H_{12} \end{array}$ 

Molecular mass: 252.3





ICSC: 0720

ICSC # 0720 CAS # 205-99-2 RTECS # <u>CU1400000</u> EC # 601-034-00-4 March 25, 1999 Peer reviewed

| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZ<br>SYMPTO |                 | PREVENTION                                                                                                            |        | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|---------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            |                     |                 |                                                                                                                       |        | In case of fire in the surroundings: use appropriate extinguishing media.                                               |
| EXPLOSION                       |                     |                 |                                                                                                                       |        |                                                                                                                         |
| EXPOSURE                        |                     |                 | AVOID ALL CONTACT!                                                                                                    |        |                                                                                                                         |
| •INHALATION                     |                     |                 | Local exhaust or breathing prote                                                                                      | ction. | Fresh air, rest.                                                                                                        |
| •SKIN                           |                     |                 | Protective gloves. Protective clo                                                                                     | thing. | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                           |                     |                 | Safety spectacles or eye protectic combination with breathing protections are combination with breathing protections. |        | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      |                     |                 | Do not eat, drink, or smoke durinwork.                                                                                | ng     | Rinse mouth. Refer for medical attention.                                                                               |
| SPILLAGE                        | DISPOSAL            |                 | STORAGE                                                                                                               | PA     | CKAGING & LABELLING                                                                                                     |
| Cyypan smilled substant         | no into account     | Provision to as | entain afflyant from fire                                                                                             |        |                                                                                                                         |

| SPILLAGE DISPOSAL | STORAGE | PACKAGING & LABELLING                                 |
|-------------------|---------|-------------------------------------------------------|
|                   |         | T symbol<br>N symbol<br>R: 45-50/53<br>S: 53-45-60-61 |

#### SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

## **International Chemical Safety Cards**

### **BENZO(b)FLUORANTHENE**

ICSC: 0720

| M P O R                | PHYSICAL DANGERS:  CHEMICAL DANGERS: Upon heating, toxic fumes are formed.  OCCUPATIONAL EXPOSURE LIMITS: | of its aerosol and through the skin.  INHALATION RISK: Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however, be reached quickly.  EFFECTS OF SHORT-TERM EXPOSURE: |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| T                      | TLV: A2 (suspected human carcinogen); (ACGIH 2004). MAK:                                                  | EFFECTS OF LONG-TERM OR REPEATED                                                                                                                                                                           |  |  |  |
| A<br>N                 | Carcinogen category: 2; (DFG 2004).                                                                       | EXPOSURE: This substance is possibly carcinogenic to humans. May cause genetic damage in humans.                                                                                                           |  |  |  |
| Т                      |                                                                                                           |                                                                                                                                                                                                            |  |  |  |
| D                      |                                                                                                           |                                                                                                                                                                                                            |  |  |  |
| A                      |                                                                                                           |                                                                                                                                                                                                            |  |  |  |
| T                      |                                                                                                           |                                                                                                                                                                                                            |  |  |  |
| A                      |                                                                                                           |                                                                                                                                                                                                            |  |  |  |
| PHYSICAL<br>PROPERTIES | Boiling point: 481°C<br>Melting point: 168°C<br>Solubility in water:<br>none                              | Octanol/water partition coefficient as log Pow: 6.12                                                                                                                                                       |  |  |  |
| ENVIRONMENTAL<br>DATA  | This substance may be hazardous to the environment; spec water quality.                                   | ial attention should be given to air quality and                                                                                                                                                           |  |  |  |
|                        | NOTES                                                                                                     |                                                                                                                                                                                                            |  |  |  |
|                        |                                                                                                           |                                                                                                                                                                                                            |  |  |  |

Benzo(b)fluoranthene is present as a component of polycyclic aromatic hydrocarbons (PAH) content in the environment usually resulting from the incomplete combustion or pyrolysis of organic matters, especially fossil fuels and tobacco. ACGIH recommends environment containing benzo(b)fluoranthene should be evaluated in terms of the TLV-TWA for coal tar pitch volatile, as benzene soluble 0.2 mg/m<sup>3</sup>. Insufficient data are available on the effect of this substance on human health, therefore utmost care must be taken.

# ADDITIONAL INFORMATION

ICSC: 0720 BENZO(b)FLUORANTHENE

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

### INDENO(1,2,3-cd)PYRENE











ICSC: 0730

ICSC: 0730

o-Phenylenepyrene 2,3-Phenylenepyrene  $C_{22}H_{12}$ 

Molecular mass: 276.3

ICSC# 0730 CAS# 193-39-5 RTECS # NK9300000

March 25, 1999 Peer reviewed

| TYPES OF<br>HAZARD/<br>EXPOSURE                                                                                                                                                                            | ACUTE HAZ<br>SYMPTO |                                               | PREVENTION                                                                 |                     | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------|----------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                                                                                                                                                                                                       |                     |                                               |                                                                            |                     | In case of fire in the surroundings: use appropriate extinguishing media.                                               |
| EXPLOSION                                                                                                                                                                                                  |                     |                                               |                                                                            |                     |                                                                                                                         |
| EXPOSURE                                                                                                                                                                                                   |                     |                                               | AVOID ALL CONTACT!                                                         |                     |                                                                                                                         |
| •INHALATION                                                                                                                                                                                                |                     |                                               | Local exhaust or breathing protection                                      | ction.              | Fresh air, rest.                                                                                                        |
| •SKIN                                                                                                                                                                                                      |                     |                                               | Protective gloves. Protective clot                                         | hing.               | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                                                                                                                                                                                                      |                     |                                               | Safety spectacles or eye protection combination with breathing protections |                     | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                                                                                                                                                                                                 |                     |                                               | Do not eat, drink, or smoke durinwork.                                     | ng                  | Rinse mouth. Refer for medical attention.                                                                               |
| SPILLAGE                                                                                                                                                                                                   | E DISPOSAL          |                                               | STORAGE                                                                    | PA                  | CKAGING & LABELLING                                                                                                     |
| Sweep spilled substance into covered containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder, then remove to safe place. Do NOT let this chemical enter the environment. |                     | ontain effluent from fire<br>Well closed.     | R:<br>S:                                                                   |                     |                                                                                                                         |
|                                                                                                                                                                                                            | S                   | EE IMPORTA                                    | NT INFORMATION ON BAC                                                      | K                   |                                                                                                                         |
| ICSC: 0730                                                                                                                                                                                                 | Com                 | ared in the context of<br>munities (C) IPCS C | EC 1994. No modifications to the Internation                               | amme on lal version | Chemical Safety & the Commission of the European have been made except to add the OSHA PELs,                            |

# **International Chemical Safety Cards**

NIOSH RELs and NIOSH IDLH values.

### INDENO(1,2,3-cd)PYRENE

| I            | PHYSICAL STATE; APPEARANCE: | ROUTES OF EXPOSURE:                                       |
|--------------|-----------------------------|-----------------------------------------------------------|
|              | YELLOW CRYSTALS             | The substance can be absorbed into the body by inhalation |
| $\mathbf{M}$ |                             | of its aerosol and through the skin.                      |
|              | PHYSICAL DANGERS:           | Č                                                         |
| P            |                             | INHALATION RISK:                                          |

| O R T A N T D A T      | CHEMICAL DANGERS: Upon heating, toxic fumes are formed.  OCCUPATIONAL EXPOSURE LIMITS: TLV not established. MAK: Carcinogen category: 2; (DFG 2004). | Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however, be reached quickly.  EFFECTS OF SHORT-TERM EXPOSURE:  EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:  This substance is possibly carcinogenic to humans. |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PHYSICAL<br>PROPERTIES | Boiling point: 536°C<br>Melting point: 164°C<br>Solubility in water:<br>none                                                                         | Octanol/water partition coefficient as log Pow: 6.58                                                                                                                                                                                                |  |  |
| ENVIRONMENTAL<br>DATA  |                                                                                                                                                      |                                                                                                                                                                                                                                                     |  |  |
|                        | NOTES                                                                                                                                                |                                                                                                                                                                                                                                                     |  |  |

Indeno(1,2,3-cd)pyrene is present as a component of polycyclic aromatic hydrocarbons (PAH) content in the environment usually resulting from the incomplete combustion or pyrolysis of organic matters, especially fossil fuels and tobacco. ACGIH recommends environment containing Indeno(1,2,3-c,d)pyrene should be evaluated in terms of the TLV-TWA for coal tar pitch volatile, as benzene soluble 0.2 mg/m<sup>3</sup>. Insufficient data are available on the effect of this substance on human health, therefore utmost care must be taken.

#### ADDITIONAL INFORMATION

ICSC: 0730 INDENO(1,2,3-cd)PYRENE

(C) IPCS, CEC, 1994

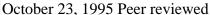
**IMPORTANT LEGAL NOTICE:** 

### **DIBENZO(a,h)ANTHRACENE**












 $\substack{1,25,6\text{-Dibenzanthracene} \\ C_{22}H_{14}}$ 

Molecular mass: 278.4

ICSC # 0431 CAS # 53-70-3 RTECS # <u>HN2625000</u> EC # 601-041-00-2







ICSC: 0431

ICSC: 0431

| TYPES OF<br>HAZARD/<br>EXPOSURE                        | ACUTE HAZAI<br>SYMPTOMS     | ll l | PREVENTION                                                           |        | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|--------------------------------------------------------|-----------------------------|------|----------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                                                   | Combustible.                |      | NO open flames.                                                      |        | Water spray, powder.                                                                                                    |
| EXPLOSION                                              |                             |      |                                                                      |        |                                                                                                                         |
| EXPOSURE                                               |                             |      | AVOID ALL CONTACT!                                                   |        |                                                                                                                         |
| •INHALATION                                            |                             |      | Local exhaust or breathing protec                                    | tion.  | Fresh air, rest.                                                                                                        |
| •SKIN                                                  | Redness. Swelling. Itching. |      | Protective gloves. Protective cloth                                  | hing.  | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                                                  | Redness.                    |      | Face shield or eye protection in combination with breathing prote    | ction. | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                                             |                             |      | Do not eat, drink, or smoke durin<br>work. Wash hands before eating. | g      | Rinse mouth.                                                                                                            |
| CDILLA CE DICDOCAL CTODA CE DA CIVA CINC. S. LADELLINA |                             |      | CIZACING & LADELLING                                                 |        |                                                                                                                         |

| SPILLAGE DISPOSAL                                                                                                                                                                                                          | STORAGE | PACKAGING & LABELLING                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------|
| Sweep spilled substance into sealable containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder, then remove to safe place. Personal protection: P3 filter respirator for toxic particles. |         | T symbol<br>N symbol<br>R: 45-50/53<br>S: 53-45-60-61 |

#### SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

## **International Chemical Safety Cards**

### **DIBENZO(a,h)ANTHRACENE**

| I | PHYSICAL STATE; APPEARANCE:    | ROUTI   |
|---|--------------------------------|---------|
|   | COLOURLESS CRYSTALLINE POWDER. | The sub |
| M |                                | through |
|   | PHYSICAL DANGERS:              | •       |
| P |                                | INHAL   |

#### **ROUTES OF EXPOSURE:**

The substance can be absorbed into the body by inhalation, through the skin and by ingestion.

#### **INHALATION RISK:**

Evaporation at 20°C is negligible; a harmful concentration

| R                      | CHEMICAL DANGERS:                                                                  | of airborne particles can, however, be reached quickly.                             |  |  |  |
|------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| T                      | OCCUPATIONAL EXPOSURE LIMITS:                                                      | EFFECTS OF SHORT-TERM EXPOSURE:                                                     |  |  |  |
| A                      | TLV not established.                                                               | EFFECTS OF LONG-TERM OR REPEATED                                                    |  |  |  |
| N                      |                                                                                    | EXPOSURE: The substance may have effects on the skin, resulting in                  |  |  |  |
| Т                      |                                                                                    | photosensitization. This substance is probably carcinogenic to humans.              |  |  |  |
| D                      |                                                                                    |                                                                                     |  |  |  |
| A                      |                                                                                    |                                                                                     |  |  |  |
| Т                      |                                                                                    |                                                                                     |  |  |  |
| A                      |                                                                                    |                                                                                     |  |  |  |
| PHYSICAL<br>PROPERTIES | Boiling point: 524°C<br>Melting point: 267°C<br>Relative density (water = 1): 1.28 | Solubility in water:<br>none<br>Octanol/water partition coefficient as log Pow: 6.5 |  |  |  |
| ENVIRONMENTAL<br>DATA  |                                                                                    |                                                                                     |  |  |  |
|                        | NOTES                                                                              |                                                                                     |  |  |  |

This is one of many polycyclic aromatic hydrocarbons - standards are usually established for them as mixtures, e.g., coal tar pitch volatiles. However, it may be encountered as a laboratory chemical in its pure form. Insufficient data are available on the effect of this substance on human health, therefore utmost care must be taken. Do NOT take working clothes home. DBA is a commonly used name. This substance is one of many polycyclic aromatic hydrocarbons (PAH).

### ADDITIONAL INFORMATION ICSC: 0431 **DIBENZO(a,h)ANTHRACENE** (C) IPCS, CEC, 1994

**IMPORTANT LEGAL** 

**NOTICE:** 

### NAPHTHALENE ICSC: 0667











 $\begin{array}{c} \text{Naphthene} \\ \text{C}_{10}\text{H}_8 \end{array}$ 

Molecular mass: 128.18

ICSC # 0667 CAS # 91-20-3 RTECS # QJ0525000

UN # 1334 (solid); 2304 (molten)

EC # 601-052-00-2 April 21, 2005 Peer reviewed





| ACUTE HAZARDS/<br>SYMPTOMS                                                                                         | PREVENTION                                                                                                                                                                                                                                                                                                                         | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Combustible.                                                                                                       | NO open flames.                                                                                                                                                                                                                                                                                                                    | Powder, water spray, foam, carbon dioxide.                                                                              |
| Above 80°C explosive vapour/air mixtures may be formed. Finely dispersed particles form explosive mixtures in air. | Prevent deposition of dust; closed system, dust explosion-proof electrical equipment and lighting.                                                                                                                                                                                                                                 |                                                                                                                         |
|                                                                                                                    | PREVENT DISPERSION OF DUST!                                                                                                                                                                                                                                                                                                        |                                                                                                                         |
| Headache. Weakness. Nausea.<br>Vomiting. Sweating. Confusion.<br>Jaundice. Dark urine.                             | Ventilation (not if powder), local exhaust, or breathing protection.                                                                                                                                                                                                                                                               | Fresh air, rest. Refer for medical attention.                                                                           |
| MAY BE ABSORBED! (Further see Inhalation).                                                                         | Protective gloves.                                                                                                                                                                                                                                                                                                                 | Rinse skin with plenty of water or shower.                                                                              |
|                                                                                                                    | Safety spectacles.                                                                                                                                                                                                                                                                                                                 | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| Abdominal pain. Diarrhoea. Convulsions. Unconsciousness. (Further see Inhalation).                                 | Do not eat, drink, or smoke during work. Wash hands before eating.                                                                                                                                                                                                                                                                 | Rest. Refer for medical attention.                                                                                      |
|                                                                                                                    | SYMPTOMS  Combustible.  Above 80°C explosive vapour/air mixtures may be formed. Finely dispersed particles form explosive mixtures in air.  Headache. Weakness. Nausea. Vomiting. Sweating. Confusion. Jaundice. Dark urine.  MAY BE ABSORBED! (Further see Inhalation).  Abdominal pain. Diarrhoea. Convulsions. Unconsciousness. | Combustible.   NO open flames.                                                                                          |

| SPILLAGE DISPUSAL                          | STURAGE                                                    | PACKAGING & LABELLING                                                                                                                                         |
|--------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| organic gases and vapours. Do NOT let this | feedstuffs Store in an area without drain or sewer access. | Do not transport with food and feedstuffs. Marine pollutant. Xn symbol N symbol R: 22-40-50/53 S: 2-36/37-46-60-61 UN Hazard Class: 4.1 UN Packing Group: III |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0667

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

**ICSC: 0667 NAPHTHALENE** 

| I                                                                                                                                           | PHYSICAL STATE; APPEARANCE: WHITE SOLID IN VARIOUS FORMS, WITH                                   | ROUTES OF EXPOSURE: The substance can be absorbed into the body by                                                                                              |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| M                                                                                                                                           | CHARACTERISTIC ODOUR.                                                                            | inhalation, through the skin and by ingestion.                                                                                                                  |  |  |
| P                                                                                                                                           | PHYSICAL DANGERS:                                                                                | INHALATION RISK:                                                                                                                                                |  |  |
| 0                                                                                                                                           | Dust explosion possible if in powder or granular form, mixed with air.                           | A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C. See Notes.                                           |  |  |
| R                                                                                                                                           | CHEMICAL DANGERS:                                                                                |                                                                                                                                                                 |  |  |
| Т                                                                                                                                           | On combustion, forms irritating and toxic gases. Reacts with strong oxidants                     | EFFECTS OF SHORT-TERM EXPOSURE: The substance may cause effects on the blood, resulting in lesions of blood cells (haemolysis) See Notes. The                   |  |  |
| A                                                                                                                                           | OCCUPATIONAL EXPOSURE LIMITS:<br>TLV: 10 ppm as TWA 15 ppm as STEL (skin) A4 (not                | effects may be delayed. Exposure by ingestion may result in death. Medical observation is indicated.                                                            |  |  |
| N                                                                                                                                           | classifiable as a human carcinogen); (ACGIH 2005).                                               | PERFORM OF LONG WERNLOR REPEATER                                                                                                                                |  |  |
| Т                                                                                                                                           | MAK: skin absorption (H);<br>Carcinogen category: 2; Germ cell mutagen group: 3B;<br>(DFG 2004). | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: The substance may have effects on the blood, resulting                                                               |  |  |
| D                                                                                                                                           | OSHA PEL±: TWA 10 ppm (50 mg/m³)<br>NIOSH REL: TWA 10 ppm (50 mg/m³) ST 15 ppm (75               | in chronic haemolytic anaemia. The substance may have effects on the eyes, resulting in the development of cataract. This substance is possibly carcinogenic to |  |  |
| A                                                                                                                                           | mg/m <sup>3</sup> )<br>NIOSH IDLH: 250 ppm See: <u>91203</u>                                     | humans.                                                                                                                                                         |  |  |
| T                                                                                                                                           |                                                                                                  |                                                                                                                                                                 |  |  |
| A                                                                                                                                           |                                                                                                  |                                                                                                                                                                 |  |  |
| PHYSICAL<br>PROPERTIES                                                                                                                      |                                                                                                  |                                                                                                                                                                 |  |  |
| ENVIRONMENTAL DATA  The substance is very toxic to aquatic organisms. The substance may cause long-term effects in the aquatic environment. |                                                                                                  |                                                                                                                                                                 |  |  |
| NOTES                                                                                                                                       |                                                                                                  |                                                                                                                                                                 |  |  |
| Some individuals may be more sensitive to the effect of naphthalene on blood cells.                                                         |                                                                                                  |                                                                                                                                                                 |  |  |

Transport Emergency Card: TEC (R)-41S1334 (solid); 41GF1-II+III (solid); 41S2304 (molten)

NFPA Code: H2; F2; R0;

#### ADDITIONAL INFORMATION

ICSC: 0667 **NAPHTHALENE** 

(C) IPCS, CEC, 1994

#### **IMPORTANT LEGAL NOTICE:**

### **BENZO(a)PYRENE**











 $\begin{array}{c} \operatorname{Benz}(a) \operatorname{pyrene} \\ \operatorname{3,4-Benzopyrene} \\ \operatorname{Benzo}(\operatorname{d,e,f}) \operatorname{chrysene} \\ \operatorname{C}_{20} \operatorname{H}_{12} \end{array}$ 

Molecular mass: 252.3

ICSC # 0104 CAS # 50-32-8 RTECS # <u>DJ3675000</u> EC # 601-032-00-3

October 17, 2005 Peer reviewed





ICSC: 0104

| TYPES OF<br>HAZARD/<br>EXPOSURE       | ACUTE HAZ<br>SYMPTO                     | PREVENTION                                                        |        | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------------|-----------------------------------------|-------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                                  | Combustible.                            | NO open flames.                                                   |        | Water spray, foam, powder, carbon dioxide.                                                                              |
| EXPLOSION                             |                                         |                                                                   |        |                                                                                                                         |
| EXPOSURE                              | See EFFECTS OF LONG<br>REPEATED EXPOSUR | AVOID ALL CONTACT! AVO<br>EXPOSURE OF (PREGNANT)<br>WOMEN!        | ID     |                                                                                                                         |
| •INHALATION                           |                                         | Local exhaust or breathing protect                                | ction. | Fresh air, rest.                                                                                                        |
| •SKIN                                 | MAY BE ABSORBED!                        | Protective gloves. Protective clot                                | hing.  | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                              |
| •EYES                                 |                                         | Safety goggles or eye protection combination with breathing prote |        | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                            |                                         | Do not eat, drink, or smoke durin<br>work.                        | ıg     | Induce vomiting (ONLY IN CONSCIOUS PERSONS!). Refer for medical attention.                                              |
| SDILLAGE DISDOSAL STODAGE DACKACING S |                                         | CKACING & LADELLING                                               |        |                                                                                                                         |

| SPILLAGE DISPOSAL                                                                                                                                                                                                                                                                                                                  | STORAGE | PACKAGING & LABELLING                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------|--|
| Evacuate danger area! Personal protection: complete protective clothing including self- contained breathing apparatus. Do NOT let this chemical enter the environment. Sweep spilled substance into sealable containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder, then remove to safe place. |         | T symbol<br>N symbol<br>R: 45-46-60-61-43-50/53<br>S: 53-45-60-61 |  |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0104

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

# **International Chemical Safety Cards**

### **BENZO(a)PYRENE**

| I                      | PHYSICAL STATE; APPEARANCE:                                                                    | ROUTES OF EXPOSURE:                                                                                                                                      |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| M                      | PALE-YELLOW CRYSTALS                                                                           | The substance can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion.                                             |  |  |  |
| P                      | PHYSICAL DANGERS:                                                                              | INHALATION RISK:                                                                                                                                         |  |  |  |
| 0                      | CHEMICAL DANGERS: Reacts with strong oxidants causing fire and explosion                       | Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however, be reached quickly when dispersed.                        |  |  |  |
| R                      | hazard.                                                                                        | •                                                                                                                                                        |  |  |  |
| T                      | OCCUPATIONAL EXPOSURE LIMITS: TLV: Exposure by all routes should be carefully controlled       | EFFECTS OF SHORT-TERM EXPOSURE:                                                                                                                          |  |  |  |
| A                      | to levels as low as possible A2 (suspected human                                               | EFFECTS OF LONG-TERM OR REPEATED                                                                                                                         |  |  |  |
| N                      | carcinogen); (ACGIH 2005).<br>MAK:                                                             | <b>EXPOSURE:</b> This substance is carcinogenic to humans. May cause                                                                                     |  |  |  |
| T                      | Carcinogen category: 2; Germ cell mutagen group: 2; (DFG 2005).                                | heritable genetic damage to human germ cells. Animal tests<br>show that this substance possibly causes toxicity to human<br>reproduction or development. |  |  |  |
| D                      |                                                                                                |                                                                                                                                                          |  |  |  |
| A                      |                                                                                                |                                                                                                                                                          |  |  |  |
| T                      |                                                                                                |                                                                                                                                                          |  |  |  |
| A                      |                                                                                                |                                                                                                                                                          |  |  |  |
| PHYSICAL<br>PROPERTIES | Boiling point: 496°C<br>Melting point: 178.1°C<br>Density: 1.4<br>g/cm <sup>3</sup>            | Solubility in water: none (<0.1 g/100 ml) Vapour pressure: negligible Octanol/water partition coefficient as log Pow: 6.04                               |  |  |  |
| ENVIRONMENTAL<br>DATA  | Unlants and in mollises. The substance may cause long-term effects in the adjustic environment |                                                                                                                                                          |  |  |  |
|                        | NOTES                                                                                          |                                                                                                                                                          |  |  |  |

Do NOT take working clothes home. Benzo(a)pyrene is present as a component of polycyclic aromatic hydrocarbons (PAHs) in the environment, usually resulting from the incomplete combustion or pyrolysis of organic matters, especially fossil fuels and tobacco.

# ADDITIONAL INFORMATION ICSC: 0104 BENZO(a)PYRENE (C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE:

### **BARIUM SULFATE**











ICSC: 0827

Barium sulphate Blanc fixe Artificial barite BaSO<sub>4</sub>

Molecular mass: 233.43

ICSC # 0827 CAS # 7727-43-7 RTECS # <u>CR0600000</u>

October 20, 1999 Peer reviewed

|                                                                                                  | · · · · · · · · · · · · · · · · · · ·                     |             |                                        |                     |                                                                                                                         |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------|----------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|
| TYPES OF<br>HAZARD/<br>EXPOSURE                                                                  | ACUTE HAZ<br>SYMPTO                                       |             | PREVENTION                             |                     | FIRST AID/<br>FIRE FIGHTING                                                                                             |
| FIRE                                                                                             | Not combustible. Give irritating or toxic fume in a fire. |             | -                                      |                     | In case of fire in the surroundings: use appropriate extinguishing media.                                               |
| EXPLOSION                                                                                        |                                                           |             |                                        |                     |                                                                                                                         |
| EXPOSURE                                                                                         |                                                           |             | PREVENT DISPERSION OF DUST!            | T.                  |                                                                                                                         |
| •INHALATION                                                                                      |                                                           |             | Local exhaust or breathing protection. |                     | Fresh air, rest.                                                                                                        |
| •SKIN                                                                                            |                                                           |             | Protective gloves.                     |                     | Remove contaminated clothes. Rinse skin with plenty of water or shower.                                                 |
| •EYES                                                                                            |                                                           |             | Safety spectacles.                     |                     | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                                                                                       |                                                           |             | Do not eat, drink, or smoke dwork.     | uring               | Rinse mouth.                                                                                                            |
| SPILLAGE DISPOSAL                                                                                |                                                           | STORAGE PAG |                                        | CKAGING & LABELLING |                                                                                                                         |
| Sweep spilled substa<br>appropriate, moisten<br>dusting. Personal pro-<br>respirator for inert p | otection: P1 filter                                       |             |                                        | R:<br>S:            |                                                                                                                         |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0827

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

## **International Chemical Safety Cards**

ICSC: 0827

#### **BARIUM SULFATE**

| I                      | PHYSICAL STATE; APPEARANCE:<br>ODOURLESS TASTELESS, WHITE OR                                                                                                 | <b>ROUTES OF EXPOSURE:</b> The substance can be absorbed into the body by                          |  |  |  |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| M                      | YELLOWISH CRYSTALS OR POWDER.                                                                                                                                | inhalation of its aerosol.                                                                         |  |  |  |  |  |  |
| P                      | PHYSICAL DANGERS:                                                                                                                                            | INHALATION RISK:                                                                                   |  |  |  |  |  |  |
| О                      | CHEMICAL DANGEDO                                                                                                                                             | Evaporation at 20°C is negligible; a nuisance-<br>causing concentration of airborne particles can, |  |  |  |  |  |  |
| R                      | CHEMICAL DANGERS: Reacts violently with aluminium powder.                                                                                                    | however, be reached quickly.                                                                       |  |  |  |  |  |  |
| Т                      | OCCUPATIONAL EXPOSURE LIMITS:                                                                                                                                | EFFECTS OF SHORT-TERM EXPOSURE:                                                                    |  |  |  |  |  |  |
| A                      | TLV: 10 mg/m³ as TWA; (ACGIH 2004).  MAK: (Inhalable fraction) 4 mg/m³; (Respirable                                                                          | EFFECTS OF LONG-TERM OR REPEATED                                                                   |  |  |  |  |  |  |
| N                      | fraction) 1.5 mg/m³; (DFG 2004).<br>OSHA PEL‡: TWA 15 mg/m³ (total) TWA 5                                                                                    | EXPOSURE: Lungs may be affected by repeated or prolonged                                           |  |  |  |  |  |  |
| Т                      | mg/m <sup>3</sup> (resp) NIOSH REL: TWA 10 mg/m <sup>3</sup> (total) TWA 5                                                                                   | exposure to dust particles, resulting in baritosis (a form of benign pneumoconiosis).              |  |  |  |  |  |  |
| D                      | mg/m³ (resp) NIOSH IDLH: N.D. See: <u>IDLH INDEX</u>                                                                                                         |                                                                                                    |  |  |  |  |  |  |
| A                      |                                                                                                                                                              |                                                                                                    |  |  |  |  |  |  |
| T                      |                                                                                                                                                              |                                                                                                    |  |  |  |  |  |  |
| A                      |                                                                                                                                                              |                                                                                                    |  |  |  |  |  |  |
| PHYSICAL<br>PROPERTIES | Melting point (decomposes): 1600°C<br>Density: 4.5<br>g/cm <sup>3</sup>                                                                                      | Solubility in water: none                                                                          |  |  |  |  |  |  |
| ENVIRONMENTAL<br>DATA  |                                                                                                                                                              |                                                                                                    |  |  |  |  |  |  |
|                        | NOTES                                                                                                                                                        |                                                                                                    |  |  |  |  |  |  |
|                        | Occurs in nature as the mineral barite; also as barytes, heavy spar. Card has been partly updated in October 2005. See section Occupational Exposure Limits. |                                                                                                    |  |  |  |  |  |  |
|                        | ADDITIONAL INFORM                                                                                                                                            | ATION                                                                                              |  |  |  |  |  |  |
|                        |                                                                                                                                                              |                                                                                                    |  |  |  |  |  |  |
| ICSC: 0827             |                                                                                                                                                              | BARIUM SULFATE                                                                                     |  |  |  |  |  |  |
| (C) IPCS, CEC, 1994    |                                                                                                                                                              |                                                                                                    |  |  |  |  |  |  |

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

## **International Chemical Safety Cards**

COPPER ICSC: 0240











Cu (powder)

ICSC # 0240 CAS # 7440-50-8 RTECS # <u>GL5325000</u>

ICSC: 0240

September 24, 1993 Validated

| TYPES OF<br>HAZARD/<br>EXPOSURE                                                                                                                                           | ACUTE HAZARDS/<br>SYMPTOMS                         |                | PREVENTION                               |         | FIRST AID/<br>FIRE FIGHTING                                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------|--|
| FIRE                                                                                                                                                                      | Combustible.                                       |                | NO open flames.                          |         | Special powder, dry sand, NO other agents.                                                                             |  |
| EXPLOSION                                                                                                                                                                 |                                                    |                |                                          |         |                                                                                                                        |  |
| EXPOSURE                                                                                                                                                                  |                                                    |                | PREVENT DISPERSION OF I                  | OUST!   |                                                                                                                        |  |
| •INHALATION                                                                                                                                                               | Cough. Headache. Shortness of breath. Sore throat. |                | Local exhaust or breathing prote         | ection. | Fresh air, rest. Refer for medical attention.                                                                          |  |
| •SKIN                                                                                                                                                                     | Redness.                                           |                | Protective gloves.                       |         | Remove contaminated clothes. Rinse and then wash skin with water and soap.                                             |  |
| •EYES                                                                                                                                                                     | Redness. Pain.                                     |                | Safety goggles.                          |         | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor |  |
| •INGESTION                                                                                                                                                                | Abdominal pain. Nausea                             | . Vomiting.    | Do not eat, drink, or smoke during work. |         | Rinse mouth. Refer for medical attention.                                                                              |  |
| SPILLAGI                                                                                                                                                                  | E DISPOSAL                                         |                | STORAGE PA                               |         | ACKAGING & LABELLING                                                                                                   |  |
| Sweep spilled substance into containers. Carefully collect remainder. Then remove to safe place. (Extra personal protection: P2 filter respirator for harmful particles). |                                                    | Separated from | R: S:                                    |         |                                                                                                                        |  |
|                                                                                                                                                                           | S                                                  | EE IMPORTA     | ANT INFORMATION ON BAC                   | CK      |                                                                                                                        |  |

## **International Chemical Safety Cards**

NIOSH RELs and NIOSH IDLH values.

Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs,

COPPER ICSC: 0240

| T | PHYSICAL STATE; APPEARANCE:<br>RED POWDER, TURNS GREEN ON EXPOSURE TO<br>MOIST AIR. | <b>ROUTES OF EXPOSURE:</b> The substance can be absorbed into the body by inhalation and by ingestion. |
|---|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| M | PHYSICAL DANGERS:                                                                   | <b>INHALATION RISK:</b> Evaporation at 20°C is negligible; a harmful concentration                     |
| P | CHEMICAL DANGERS:                                                                   | of airborne particles can, however, be reached quickly when dispersed.                                 |

| lı .                  |                                                                                     |                                                     |
|-----------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|
| 0                     | Shock-sensitive compounds are formed with acetylenic                                |                                                     |
| D.                    | compounds, ethylene oxides and azides. Reacts with strong                           |                                                     |
| R                     | oxidants like chlorates, bromates and iodates, causing                              | Inhalation of fumes may cause metal fume fever. See |
| T                     | explosion hazard.                                                                   | Notes.                                              |
| _                     | OCCUPATIONAL EXPOSURE LIMITS:                                                       | EFFECTS OF LONG-TERM OR REPEATED                    |
| A                     | TLV: 0.2 mg/m <sup>3</sup> fume (ACGIH 1992-1993).                                  | EXPOSURE:                                           |
|                       | TLV (as Cu, dusts & mists): 1 mg/m³ (ACGIH 1992-1993).                              |                                                     |
| N                     | Intended change 0.1 mg/m <sup>3</sup>                                               | sensitization.                                      |
| T                     | Inhal.,                                                                             |                                                     |
| 1                     | A4 (not classifiable as a human carcinogen);<br>MAK: 0.1 mg/m³ (Inhalable fraction) |                                                     |
|                       | Peak limitation category: II(2) Pregnancy risk group: D                             |                                                     |
| D                     | (DFG 2005).                                                                         |                                                     |
|                       | OSHA PEL*: TWA 1 mg/m <sup>3</sup> *Note: The PEL also applies                      |                                                     |
| A                     | to other copper compounds (as Cu) except copper fume.                               |                                                     |
| T                     | NIOSH REL*: TWA 1 mg/m <sup>3</sup> *Note: The REL also                             |                                                     |
| _                     | applies to other copper compounds (as Cu) except Copper                             |                                                     |
| A                     | fume.                                                                               |                                                     |
|                       | NIOSH IDLH: 100 mg/m <sup>3</sup> (as Cu) See: <u>7440508</u>                       |                                                     |
|                       |                                                                                     |                                                     |
|                       | Boiling point: 2595°C                                                               | Solubility in water:                                |
| PHYSICAL              | Melting point: 1083°C                                                               | none                                                |
| PROPERTIES            | Relative density (water = 1): 8.9                                                   |                                                     |
| ENVIRONMENTAL         |                                                                                     |                                                     |
| DATA                  |                                                                                     |                                                     |
|                       | NOTES                                                                               |                                                     |
| The symptoms of motal | fume fever do not become manifest until several hours.                              |                                                     |
| The symptoms of metal | Turne rever do not become mannest until several nours.                              |                                                     |
|                       | ADDITIONAL INFORMA                                                                  | TION                                                |
|                       |                                                                                     |                                                     |
| ICSC: 0240            |                                                                                     | COPPER                                              |

(C) IPCS, CEC, 1994

IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

### **International Chemical Safety Cards**

LEAD ICSC: 0052











Lead metal Plumbum Pb Atomic mass: 207.2 (powder)

ICSC # 0052 CAS # 7439-92-1 RTECS # <u>OF7525000</u>

October 08, 2002 Peer reviewed

| TYPES OF<br>HAZARD/<br>EXPOSURE       | ACUTE HAZ<br>SYMPTO                                |                                                                               | PREVENTION                                                                                         |                                                                            | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                                  | Not combustible. Gives or toxic fumes (or gases    |                                                                               |                                                                                                    |                                                                            | In case of fire in the surroundings: use appropriate extinguishing media.                                               |
| EXPLOSION                             | Finely dispersed particle explosive mixtures in ai |                                                                               | Prevent deposition of dust; closed system, dust explosion-proof electrical equipment and lighting. |                                                                            |                                                                                                                         |
| EXPOSURE                              | See EFFECTS OF LON<br>REPEATED EXPOSUI             |                                                                               | PREVENT DISPERSION OF DUST!<br>AVOID EXPOSURE OF<br>(PREGNANT) WOMEN!                              |                                                                            |                                                                                                                         |
| •INHALATION                           | ION Lo                                             |                                                                               | Local exhaust or breathing protection.                                                             |                                                                            | Fresh air, rest.                                                                                                        |
| •SKIN                                 |                                                    | Protective gloves.                                                            |                                                                                                    | Remove contaminated clothes. Rinse and then wash skin with water and soap. |                                                                                                                         |
| •EYES                                 | ES                                                 |                                                                               | Safety spectacles.                                                                                 |                                                                            | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                            | Abdominal pain. Nause                              | nal pain. Nausea. Vomiting. Do not eat, drink, or sm<br>work. Wash hands befo |                                                                                                    |                                                                            | Rinse mouth. Give plenty of water to drink. Refer for medical attention.                                                |
| SPILLAGI                              | E DISPOSAL                                         |                                                                               | STORAGE PACKAGIN                                                                                   |                                                                            | CKAGING & LABELLING                                                                                                     |
| · · · · · · · · · · · · · · · · · · · |                                                    | n food and feedstuffs                                                         | R·                                                                                                 |                                                                            |                                                                                                                         |

| SPILLAGE DISPOSAL                              | STORAGE | PACKAGING & LABELLING |
|------------------------------------------------|---------|-----------------------|
| appropriate, moisten first to prevent dusting. | D       | R:<br>S:              |

#### SEE IMPORTANT INFORMATION ON BACK

ICSC: 0052

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

## **International Chemical Safety Cards**

ICSC: 0052 **LEAD** 

|                         | PHYSICAL STATE; APPEARANCE: BLUISH-WHITE OR SILVERY-GREY SOLID IN VARIOUS FORMS. TURNS TARNISHED ON EXPOSURE TO AIR. | <b>ROUTES OF EXPOSURE:</b> The substance can be absorbed into the body by inhalation and by ingestion.        |
|-------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| I<br>M                  | PHYSICAL DANGERS:                                                                                                    | INHALATION RISK: A harmful concentration of airborne particles can be                                         |
|                         | Dust explosion possible if in powder or granular form, mixed with air.                                               | reached quickly when dispersed, especially if powdered.                                                       |
| P                       | CHEMICAL DANGERS:                                                                                                    | EFFECTS OF SHORT-TERM EXPOSURE:                                                                               |
| О                       | On heating, toxic fumes are formed. Reacts with oxidants. Reacts with hot concentrated nitric acid,                  | EFFECTS OF LONG-TERM OR REPEATED                                                                              |
| R                       | boiling concentrated hydrochloric acid and sulfuric acid.                                                            | EXPOSURE:                                                                                                     |
| Т                       | Attacked by pure water and by weak organic acids in the presence of oxygen.                                          | marrow central nervous system peripheral nervous                                                              |
| A                       | OCCUPATIONAL EXPOSURE LIMITS:                                                                                        | system kidneys, resulting in anaemia, encephalopathy (e.g., convulsions), peripheral nerve disease, abdominal |
| N                       | TLV: 0.05 mg/m <sup>3</sup> A3 (confirmed animal carcinogen with unknown relevance to humans); BEI issued            | cramps and kidney impairment. Causes toxicity to human reproduction or development.                           |
| T                       | (ACGIH 2004).<br>MAK:                                                                                                |                                                                                                               |
| D                       | Carcinogen category: 3B; Germ cell mutagen group: 3A; (DFG 2004).<br>EU OEL: as TWA 0.15 mg/m³ (EU 2002).            |                                                                                                               |
| A                       | OSHA PEL*: 1910.1025 TWA 0.050 mg/m <sup>3</sup> See                                                                 |                                                                                                               |
| Т                       | Appendix C *Note: The PEL also applies to other lead compounds (as Pb) see Appendix C.                               |                                                                                                               |
|                         | NIOSH REL*: TWA 0.050 mg/m <sup>3</sup> See Appendix C *Note: The REL also applies to other lead compounds           |                                                                                                               |
| A                       | (as Pb) see Appendix C.<br>NIOSH IDLH: 100 mg/m <sup>3</sup> (as Pb) See: 7439921                                    |                                                                                                               |
|                         |                                                                                                                      |                                                                                                               |
| PHYSICAL<br>PROPERTIES  | Boiling point: 1740°C<br>Melting point: 327.5°C                                                                      | Density: 11.34 g/cm3<br>Solubility in water: none                                                             |
| ENVIRONMENTAL<br>DATA   | Bioaccumulation of this chemical may occur in plants and substance does not enter the environment.                   | l in mammals. It is strongly advised that this                                                                |
|                         | NOTES                                                                                                                |                                                                                                               |
| Depending on the degree | ee of exposure, periodic medical examination is suggested.                                                           | Do NOT take working clothes home.  Transport Emergency Card: TEC (R)-51S1872                                  |
|                         | ADDITIONAL INFORMA                                                                                                   | ΓΙΟΝ                                                                                                          |
|                         |                                                                                                                      |                                                                                                               |

ICSC: 0052 **LEAD** 

(C) IPCS, CEC, 1994

**IMPORTANT LEGAL NOTICE:** 

Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

### **International Chemical Safety Cards**

ZINC POWDER











Blue powder
Merrillite
Zn
Atomic mass: 65.4
(powder)

ICSC # 1205

CAS # 7440-66-6 RTECS # **ZG**8600000

UN # 1436 (zinc powder or dust)

EC# 030-001-00-1

October 24, 1994 Peer reviewed









| TYPES OF<br>HAZARD/<br>EXPOSURE | ACUTE HAZA                                                                                      |             | PREVENTION                                                                                                                                                                              |      | FIRST AID/<br>FIRE FIGHTING                                                                                             |
|---------------------------------|-------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------|
| FIRE                            | cause fire or explosion. Gives off irritating or toxic fumes (or gases) in a                    |             |                                                                                                                                                                                         |      | Special powder, dry sand, NO other agents. NO water.                                                                    |
| EXPLOSION                       | Risk of fire and explosion on contact with acid(s), base(s), water and incompatible substances. |             | Closed system, ventilation, explosion-<br>proof electrical equipment and lighting.<br>Prevent build-up of electrostatic<br>charges (e.g., by grounding). Prevent<br>deposition of dust. |      | In case of fire: cool drums, etc., by spraying with water but avoid contact of the substance with water.                |
| EXPOSURE                        |                                                                                                 |             | PREVENT DISPERSION OF DU<br>STRICT HYGIENE!                                                                                                                                             | JST! |                                                                                                                         |
| •INHALATION                     | Metallic taste and metal fume fever.<br>Symptoms may be delayed (see Notes).                    |             | Local exhaust.                                                                                                                                                                          |      | Fresh air, rest. Refer for medical attention.                                                                           |
| •SKIN                           | Dry skin.                                                                                       |             | Protective gloves.                                                                                                                                                                      |      | Rinse and then wash skin with water and soap.                                                                           |
| •EYES                           |                                                                                                 |             | Safety spectacles.                                                                                                                                                                      |      | First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. |
| •INGESTION                      | Abdominal pain. Nausea                                                                          | . Vomiting. | Do not eat, drink, or smoke during work. Wash hands before eating.                                                                                                                      |      | Rinse mouth. Refer for medical attention.                                                                               |
| SPILLAGE DISPOSAL               |                                                                                                 |             | STORAGE                                                                                                                                                                                 | PA   | CKAGING & LABELLING                                                                                                     |

# Extinguish or remove all ignition sources. Do NOT wash away into sewer. Sweep spilled substance into containers, then remove to safe place. Personal protection: self-contained breathing apparatus. Fireproof. Separated from acids, bases oxidants Dry. Fireproof. Separated from acids, bases oxidants F symbol N symbol R: 15-17-50/53 S: 2-7/8-43-46-60-61 UN Hazard Class: 4.3 UN Subsidiary Risks: 4.2

#### SEE IMPORTANT INFORMATION ON BACK

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

### **International Chemical Safety Cards**

ZINC POWDER ICSC: 1205

**ROUTES OF EXPOSURE:** 

and by ingestion.

mixed with air. If dry, it can be charged electrostatically by Evaporation at 20°C is negligible; a harmful concentration

INHALATION RISK:

The substance can be absorbed into the body by inhalation

PHYSICAL STATE; APPEARANCE:

PHYSICAL DANGERS:

ODOURLESS GREY TO BLUE POWDER.

Dust explosion possible if in powder or granular form,

I

M

P

**IMPORTANT** 

LEGAL NOTICE:

| O                         | swirling, pneumatic transport, pouring, etc.                                                                                                                                               | of airborne particles can, however, be reached quickly when dispersed.                            |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| R                         | CHEMICAL DANGERS:                                                                                                                                                                          | when dispersed.                                                                                   |
| T                         | Upon heating, toxic fumes are formed. The substance is a strong reducing agent and reacts violently with oxidants.                                                                         | EFFECTS OF SHORT-TERM EXPOSURE: Inhalation of fumes may cause metal fume fever. The               |
| A                         | Reacts with water and reacts violently with acids and bases forming flammable/explosive gas (hydrogen - see                                                                                | effects may be delayed.                                                                           |
| N                         | ICSC0001) Reacts violently with sulfur, halogenated hydrocarbons and many other substances causing fire and                                                                                | EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:                                                        |
| T                         | explosion hazard.                                                                                                                                                                          | Repeated or prolonged contact with skin may cause dermatitis.                                     |
|                           | OCCUPATIONAL EXPOSURE LIMITS:                                                                                                                                                              |                                                                                                   |
| D                         | TLV not established.                                                                                                                                                                       |                                                                                                   |
| A                         |                                                                                                                                                                                            |                                                                                                   |
| T                         |                                                                                                                                                                                            |                                                                                                   |
| A                         |                                                                                                                                                                                            |                                                                                                   |
| PHYSICAL<br>PROPERTIES    | Boiling point: 907°C<br>Melting point: 419°C<br>Relative density (water = 1): 7.14                                                                                                         | Solubility in water: reaction Vapour pressure, kPa at 487°C: 0.1 Auto-ignition temperature: 460°C |
| ENVIRONMENTAL<br>DATA     |                                                                                                                                                                                            |                                                                                                   |
|                           | NOTES                                                                                                                                                                                      |                                                                                                   |
| violently with fire extin | amounts of arsenic, when forming hydrogen, may also form to<br>aguishing agents such as water, halons, foam and carbon dioxiours later. Rinse contaminated clothes (fire hazard) with plen | ide. The symptoms of metal fume fever do not become                                               |
|                           |                                                                                                                                                                                            | NFPA Code: HU; F1; R1;                                                                            |
|                           | ADDITIONAL INFORMA                                                                                                                                                                         | TION                                                                                              |
|                           |                                                                                                                                                                                            |                                                                                                   |
| ICSC: 1205                |                                                                                                                                                                                            | ZINC POWDER                                                                                       |

(C) IPCS, CEC, 1994

the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the

use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should

verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce

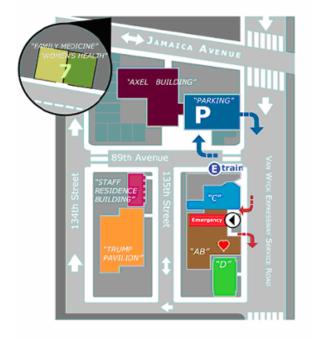
# APPENDIX D HOSPITAL INFORMATION AND MAP FIELD ACCIDENT REPORT

#### FIELD ACCIDENT REPORT

This report is to be filled out by the designated Site Safety Officer after EVERY accident.

| PROJECT NAME                                                                                  | PROJECT. NO                                                   |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Date of Accident T                                                                            | Time Report By                                                |
| Type of Accident (Check One):                                                                 |                                                               |
| ( ) Vehicular ( ) Person                                                                      | nal ( ) Property                                              |
| Name of Injured                                                                               | DOB or Age                                                    |
| How Long Employed                                                                             |                                                               |
| Names of Witnesses                                                                            |                                                               |
| Description of Accident                                                                       |                                                               |
| Action Taken                                                                                  |                                                               |
| Did the Injured Lose Any Time? F                                                              | How Much (Days/Hrs.)?                                         |
| Was Safety Equipment in Use at the Tim Shoes, etc.)?                                          |                                                               |
| (If not, it is the EMPLOYEE'S sole response Welfare Fund.) INDICATE STREET NAMES, DESCRIPTION | onsibility to process his/her claim through his/her Health ar |

#### **HOSPITAL INFORMATION AND MAP**


The hospital nearest the site is:

Distance: 0.4 miles Approximate Travel Time: 2 min

#### Jamaica Hospital Medical Center

8900 Van Wyck Expressway Jamaica (Queens), New York 11418





- Start out going EAST on JAMAICA AVE 1. 0.3 mi toward 130TH ST.
- 2. Turn RIGHT onto VAN WYCK EXPY. 0.1 mi
- 3. 8900 VAN WYCK EXPY.

# ATTACHMENT E Well Construction Logs

#### TO BE ADDED

# ATTACHMENT F Groundwater Sampling Logs

#### **GROUNDWATER PURGE / SAMPLE LOGS**



#### ENVIRONMENTAL BUSINESS CONSULTANTS

| Well I.D.:                        |   | Date:      |
|-----------------------------------|---|------------|
| Well Depth (from TOC):            |   | Equipment: |
| Static Water Level (from TOC):    |   | <u></u>    |
| Height of Water in Well:          | 0 |            |
| Gallons of Water per Well Volume: | 0 |            |
| Flow Rate: 400ml/min.             |   |            |

| Time | Pump Rate | Gal. Removed | рН | Cond. (mS/cm) | Temp. (deg. C) | DO (mg/L) | Comments |
|------|-----------|--------------|----|---------------|----------------|-----------|----------|
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |
|      |           |              |    |               |                |           |          |

Note 400 ml = 0.11 gallons

# ATTACHMENT G Site Inspection Checklist and Inspection Forms

#### SITE INSPECTION CHECKLIST

Site Inspection Checklist - Subslab Depressurization System 129-09 Jamaica Avenue Richmond Hill, NY

| Date:Time:                     |               |         |                               |
|--------------------------------|---------------|---------|-------------------------------|
| Inspector Name/Organization:   |               |         |                               |
| Physical Inspection of Fans    |               |         |                               |
| Fan 1 :                        | yes           | no      | Fan Model No. Manufacturer:   |
| Operational?                   |               |         |                               |
| Observed Leaks at Seals?       |               |         |                               |
| Air Flow at Exhaust Stack?     |               |         | Other Comments / Observations |
| Alarm Sound W/power off?       |               |         |                               |
| Alarm Flash W/power off?       |               |         |                               |
| Vacuum Reading:                | _             |         |                               |
| Fan 2 :                        | yes           | no      | Fan Model No. Manufacturer:   |
| Operational?                   |               |         |                               |
| Observed Leaks at Seals?       |               |         |                               |
| Air Flow at Exhaust Stack?     |               |         | Other Comments / Observations |
| Alarm Sound W/power off?       |               |         |                               |
| Alarm Flash W/power off?       |               |         |                               |
| Vacuum Reading:                | <u> </u>      |         |                               |
| Fan 3 :                        | yes           | no      | Fan Model No. Manufacturer:   |
| Operational?                   |               |         |                               |
| Observed Leaks at Seals?       |               |         |                               |
| Air Flow at Exhaust Stack?     |               |         | Other Comments / Observations |
| Alarm Sound W/power off?       |               |         |                               |
| Alarm Flash W/power off?       |               |         |                               |
| Vacuum Reading:                |               |         |                               |
| Repairs Needed and / or Mainte | enance at thi | s time? |                               |
|                                |               |         |                               |
|                                |               |         |                               |
|                                |               |         |                               |
|                                |               |         |                               |
| Signature:                     |               |         | Date:                         |

#### SITE INSPECTION CHECKLIST

Site Inspection Checklist - Cover System 129-09 Jamaica Avenue Richmond Hill, NY

| Date:                                   | Time:                                                               |                                                         |
|-----------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|
| Inspector Name/Org                      | ganization:                                                         |                                                         |
| Visual Inspection of                    | of Concrete Slabs                                                   |                                                         |
| Building 1                              | Inspect concrete slab for cracks, perforation                       | s and patching                                          |
| Describe General C                      | ondition of Slab                                                    |                                                         |
| Doscribo any Crack                      | s or New Penetrations                                               |                                                         |
| Describe any Cracks                     | S OF NEW Penerialions                                               |                                                         |
| Describe any Patchi                     | ng                                                                  |                                                         |
|                                         |                                                                     |                                                         |
| Building 2                              | Inspect for cracks, perforations and patchin                        | a a                                                     |
| Describe General C                      |                                                                     |                                                         |
|                                         |                                                                     |                                                         |
| Describe any Cracks                     | s or New Penetrations                                               |                                                         |
| Describe any Patchi                     | na                                                                  |                                                         |
| Describe any Fatoni                     | ng                                                                  |                                                         |
|                                         | s Cap Areas (Driveway, Parking areas and ondition of Impervious Cap | Walkways) Inspect for cracks, perforations and patching |
|                                         |                                                                     |                                                         |
| Describe any Cracks                     | s or New Penetrations                                               |                                                         |
| Describe any Patchi                     | ng                                                                  |                                                         |
|                                         |                                                                     |                                                         |
| Exterior Green Are  Describe General Co | as Inspect for signs of disturbance ondition of Soil Cover          |                                                         |
|                                         |                                                                     |                                                         |
| Describe any Indica                     | tions of Recent Disturbance                                         |                                                         |
| Repairs Needed and                      | d / or Maintenance at this time?                                    |                                                         |
|                                         |                                                                     |                                                         |
|                                         |                                                                     |                                                         |
|                                         |                                                                     |                                                         |
|                                         |                                                                     |                                                         |

# ATTACHMENT H Quality Assurance Project Plan

#### QUALITY ASSURANCE PROJECT PLAN Former Uniforms for Industry Site 129-09 Jamaica Avenue, Richmond Hill NY

Prepared on behalf of:

UNION JAMAICA LLC 15 Verbena Avenue, Suite #100 Floral Park, NY 11001-2711

Prepared by:

ENVIRONMENTAL BUSINESS CONSULTANTS 1808 Middle Country Road Ridge, NY 11961

#### TABLE OF CONTENTS

#### QUALITY ASSURANCE PROJECT PLAN **Former Uniforms for Industry Site** 129-09 Jamaica Avenue, Richmond Hill NY

| 1.0  | PR   | OJECT ORGANIZATION AND RESPONSIBILITIES                          | 1 |
|------|------|------------------------------------------------------------------|---|
|      | 1.1  | Organization                                                     | 1 |
|      |      |                                                                  |   |
| 2.0  | -    | ALITY ASSURANCE PROJECT PLAN OBJECTIVES                          |   |
|      | 2.1  | Overview                                                         |   |
|      | 2.2  | QA/QC Requirements for Analytical Laboratory                     |   |
|      |      | 2.2.1 Instrument calibration                                     |   |
|      |      | 2.2.2 Continuing Instrument calibration                          |   |
|      |      | 2.2.3 Method Blanks                                              |   |
|      |      | 2.2.4 Trip Blanks                                                |   |
|      |      | 2.2.5 Surrogate Spike Analysis                                   |   |
|      |      | 2.2.6 Matrix Spike / Matrix Spike duplicate / Matrix Spike Blank |   |
|      | 2.3  | Accuracy                                                         |   |
|      | 2.4  | Precision                                                        |   |
|      | 2.5  | Sensitivity                                                      |   |
|      | 2.6  | Representativeness                                               | 4 |
|      | 2.7  | Completeness                                                     | 4 |
|      | 2.8  | Laboratory Custody Procedures                                    | 5 |
| 3.0  | AN   | ALYTICAL PROCEDURES                                              | 6 |
|      | 3.1  | Laboratory Analyses                                              | 6 |
| 4.0  | DA!  | TA DEDUCTION WALLDATION DEVIEW AND DEDODTING                     | 7 |
| 4.0  |      | TA REDUCTION, VALIDATION, REVIEW. AND REPORTING                  |   |
|      | 4.1  | Overview                                                         |   |
|      | 4.2  | Data Reduction                                                   |   |
|      | 4.3  | Laboratory Data Reporting                                        | 7 |
| 5.0  | CO   | RRECTIVE ACTION                                                  | 8 |
|      |      |                                                                  |   |
|      |      |                                                                  |   |
| TAB  | ELES |                                                                  |   |
| Tabl | e 1  | Analytical Summary Table                                         |   |
| Tabl | e 2  | Containers Preservatives and Holding Times                       |   |

#### 1.0 INTRODUCTION

To ensure the successful completion of the project, each individual responsible for a given component of the project must be aware of the quality assurance objectives of his / her particular work and of the overall project. The EBC Project Director, Charles Sosik will be directly responsible to the client for the overall project conduct and quality assurance/quality control (QAIQC) for the project. The project manager will be responsible for overseeing all technical and administrative aspects of the project and for directing QA/QC activities.

Reporting directly to the project manager will be the Field Operations Officer, Kevin Brussee; who will also serve as the laboratory coordinator and Health & Safety Officer (HSO). The HSO will be responsible for overseeing all health and safety aspects of the project.

#### 1.1 Organization

Project QA will be maintained under the direction of the Project Manager, in accordance with this QAPP. QC for specific tasks will be the responsibility of the individuals and organizations listed below, under the direction and coordination of the Project Manager

| GENERAL RESPONSIBILITY | SCOPE OF WORK                                                | RESPONSIBILITY OF QUALITY CONTROL |
|------------------------|--------------------------------------------------------------|-----------------------------------|
| Field Operations       | Supervision of Field Crew, end-point verification sampling   | Kevin Brussee                     |
| Laboratory Analysis    | Analysis of soil samples by<br>NYSDEC ASP methods Laboratory | NYSDOH-Certified Laboratory       |
| Data review            | Review for completeness and compliance                       | 3 <sup>rd</sup> party validation  |

#### 2.0 QUALITY ASSURANCE PROJECT PLAN OBJECTIVES

#### 2.1 Overview

Overall project goals are defined through the development of Data Quality Objectives (DQOs), which are qualitative and quantitative Statements that specify the quality of the data required to support decisions; DQOs, as described in this section, are based on the end uses of the data as described in the work plan.

In this plan, Quality Assurance and Quality Control are defined as follows:

- Quality Assurance The overall integrated program for assuring reliability of monitoring and measurement data.
- Quality Control The routine application of procedures for obtaining prescribed standards of performance in the monitoring and measurement process.

#### 2.2 QA / QC Requirements For Analytical Laboratory

Samples will be analyzed by a New York State Department of Health (NYSDOH) certified laboratory. Data generated from the laboratory will be used primarily to evaluate off-site contaminant levels of PCE and known break-down products. The QA requirements for all subcontracted analytical laboratory work performed on this project are described below. QA elements to be evaluated include accuracy, precision, sensitivity, representativeness, and completeness. The data generated by the analytical laboratory for this project are required to be sensitive enough to achieve detection levels low enough to meet required quantification limits as specified in NYSDEC Analytical Services Protocol (NYSDEC ASP, 06/2000. The analytical results meeting the required quantification limits will provide data sensitive enough to meet the data quality objectives of this remedial program as described in the work plan. Reporting of the data must be clear, concise, and comprehensive. The QC elements that are important to this project are completeness of field data, sample custody, sample holding times, sample preservation, sample storage, instrument calibration and blank contamination.

#### 2.2.1 Instrument Calibration

Calibration curves will be developed for each of the compounds to be analyzed. Standard concentrations and a blank will be used to produce the initial curves. The development of calibration curves and initial calibration response factors must be consistent with method requirements presented in the most recent version of NYSDEC ASP (06/2000).

#### 2.2.2 Continuing Instrument Calibration

The initial calibration curve will be verified every 12 hrs by analyzing one calibration standard. The standard concentration will be the midpoint concentration of the initial calibration curve. The calibration check compound must come within 25% relative percent difference (RPD) of the average response factor obtained during initial calibration. If the RPD is greater than 25%, then corrective action must be taken as provided in the specific methodology.

#### 2.2.3 Method Blanks

Method blank or preparation blank is prepared from an analyte-free matrix which includes the same reagents, internal standards and surrogate standards as me related samples. II is carried through the entire sample preparation and analytical procedure. A method blank analysis will be performed once



for each 12 hr period during the analysis of samples for volatiles. An acceptable method blank will contain less than five (5) times the CRQL of methylene chloride, acetone and 2-butanone. For all other target compounds, the method blank must contain less than or equal to the CRQL of any single target compound. For non-target peaks in the method blank, the peak area must be less than 10 percent of the nearest internal standard. The method blank will be used to demonstrate the level of laboratory background and reagent contamination that might result from the analytical process itself.

#### 2.2.4 Trip Blanks.

Trip blanks consist of a single set of sample containers filled at the laboratory with deionized. laboratory-grade water. The water used will be from the same source as that used for the laboratory method blank. The containers will be carried into the field and handled and transported in the same way as the samples collected that day. Analysis of the trip blank for VOCs is used to identify contamination from the air, shipping containers, or from other items coming in contact with the sample bottles. (The bottles holding the trip blanks will be not opened during this procedure.) A complete set of trip blanks will be provided with each shipment of samples to the certified laboratory.

#### 2.2.5 Surrogate Spike Analysis

For organic analyses, all samples and blanks will be spiked with surrogate compounds before purging or extraction in order to monitor preparation and analyses of samples. Surrogate spike recoveries shall fall within the advisory limits in accordance with the NY5DEC ASP protocols for samples falling within the quantification limits without dilution.

2.2.6 Matrix Spike / Matrix Spike Duplicate / Matrix Spike Blank (MS/MSDIMSB) Analysis MS, MSD and MSB analyses will be performed to evaluate the matrix effect of the sample upon the analytical methodology along with the precision of the instrument by measuring recoveries. The MS / MSD / MSB samples will be analyzed for each group of samples of a similar matrix at a rate of one for every 20 field samples. The RPD will be calculated from the difference between the MS and MSD. Matrix spike blank analysis will be performed to indicate the appropriateness of the spiking solution(s) used for the MS/MSD.

#### 2.3 Accuracy

Accuracy is defined as the nearness of a real or the mean (x) of a set of results to the true value. Accuracy is assessed by means of reference samples and percent recoveries. Accuracy includes both precision and recovery and is expressed as percent recovery (% REC). The MS sample is used to determine the percent recovery. The matrix spike percent recovery (% REC) is calculated by the following equation:

$$\%REC = \frac{SSR - SR}{SA} \times 100$$

Where:

SSR = spike sample results

SR = sample results

SA = spike added from spiking mix



#### 2.4 Precision

Precision is defined as the measurement of agreement of a set of replicate results among themselves without a Precision is defined as the measurement of agreement of a set of replicate results among themselves without assumption of any prior information as to the true result. Precision is assessed by means of duplicate/replicate sample analyses.

Analytical precision is expressed in terms of RPD. The RPD is calculated using the following formula:

$$RPD = \frac{D^{1} - D^{2}}{(D^{1} - D^{2})/2} \times 100$$

Where:

RPD = relative percent difference

 $D^1$  = first sample value

 $D^2$  = second sample value (duplicate)

#### 2.5 Sensitivity

The sensitivity objectives for this plan require that data generated by the analytical laboratory achieve quantification levels low enough to meet the required detection limits specified by NYSDEC ASP and to meet all site-specific standards, criteria and guidance values (SGCs) established for this project.

#### 2.6 Representativeness

Representativeness is a measure of the relationship of an individual sample taken from a particular site to the remainder of that site and the relationship of a small aliquot of the sample (i.e., the one used in the actual analysis) to the sample remaining on site. The representativeness of samples is assured by adherence to sampling procedures described in the Investigative Work Plan.

#### 2.7 Completeness

Completeness is a measure of the quantity of data obtained from a measurement system as compared to the amount of data expected from the measurement system. Completeness is defined as the percentage of all results that are not affected by failing QC qualifiers, and should be between 70 and 100% of all analyses performed. The objective of completeness in laboratory reporting is to provide a thorough data support package. The laboratory data package provides documentation of sample analysis and results in the form of summaries, QC data, and raw analytical data. The laboratory will be required to submit data packages that follow NYSDEC ASP reporting format which, at a minimum, will include the following components:

- 1. All sample chain-of-custody forms.
- 2. The case narrative(s) presenting a discussion of any problems and/or procedural changes required during analyses. Also presented in the case narrative are sample summary forms.
- 3. Documentation demonstrating the laboratory's ability to attain the contract specified detection limits for all target analytes in all required matrices.
- 4. Tabulated target compound results and tentatively identified compounds.
- 5. Surrogate spike analysis results (organics).
- 6. Matrix spike/matrix spike duplicate/matrix spike blank results.
- 7. QC check sample and standard recovery results
- 8. Blank results (field, trip, and method).
- 9. Internal standard area and RT summary.



#### 2.8 Laboratory Custody Procedures

The following elements are important for maintaining the field custody of samples:

- Sample identification
- Sample labels
- Custody records
- Shipping records
- Packaging procedures

Sample labels will be attached to all sampling bottles before field activities begin; each label will contain an identifying number. Each number will have a suffix that identifies the site and where the sample was taken. Approximate sampling locations will be marked on a map with a description of the sample location. The number, type of sample, and sample identification will be entered into the field logbook. A chain-of-custody form, initiated at the analytical laboratory will accompany the sample bottles from the laboratory into the field. Upon receipt of the bottles and cooler, the sampler will sign and date the first received blank space. After each sample is collected and appropriately identified, entries will be made on the chain-of-custody form that will include:

- Site name and address
- Samplers' names and signatures



#### 3.0 ANALYTICAL PROCEDURES

#### 3.1 Laboratory Analysis

Samples will be analyzed by the NYSDEC ASP laboratory for one or more of the following parameters: VOCs in soil by USEPA Method 8260, SVOCs in soil by USEPA Method 8270BN, Target Analyte Metals in soil, pesticides and PCBs by USEPA Method 8081/8082 and VOCs in air by USEPA Method TO15. If any modifications or additions to the standard procedures are anticipated. and if any nonstandard sample preparation or analytical protocol is to be used, the modifications and the nonstandard protocol will be explicitly defined and documented. Prior approval by EBC's PM will be necessary for any nonstandard analytical or sample preparation protocol used by the laboratory, i.e., dilution of samples or extracts by greater than a factor of five (5).



#### 4.0 DATA REDUCTION, REVIEW, AND REPORTING

#### 4.1 Overview

The process of data reduction, review, and reporting ensures the assessments or a conclusion based on the final data accurately reflects actual site conditions. This plan presents the specific procedures, methods, and format that will be employed for data reduction, review and reporting of each measurement parameter determined in the laboratory and field. Also described in this section is the process by which all data, reports, and work plans are proofed and checked for technical and numerical errors prior to final submission.

#### 4.2 Data Reduction

Standard methods and references will be used as guidelines for data handling, reduction, validation, and reporting. All data for the project will be compiled and summarized with an independent verification at each step in the process to prevent transcription/typographical errors. Any computerized entry of data will also undergo verification review.

All data generated by the off-site laboratory will be reported in a specified format containing all required elements to perform data validation. Analytical results shall be presented on standard NYSDEC ASP-B forms or equivalents, and include the dates the samples were received and analyzed, and the actual methodology used. Laboratory QA/QC information required by the method protocols will be compiled, including the application of data QA/QC qualifiers as appropriate. In addition, laboratory worksheets, laboratory notebooks, chains-of-custody, instrument logs, standards records, calibration records, and maintenance records, as applicable, will be provided in the laboratory data packages to determine the validity of data. Specifics on internal laboratory data reduction protocols are identified in the laboratory's SOPs.

Following receipt of the laboratory analytical results by EBC, the data results will be compiled and presented in an appropriate tabular form. Where appropriate, the impacts of QA/QC qualifiers resulting from laboratory or external validation reviews will be assessed in terms of data usability.

#### 4.3 Laboratory Data Reporting

All sample data packages submitted by the analytical laboratory will be required to be reported in conformance to the NYSDEC ASP (6/2000), Category B data deliverable requirements as applicable to the method utilized.

#### 5.0 CORRECTIVE ACTION

Review and implementation of systems and procedures may result in recommendations for corrective action. Any deviations from the specified procedures within approved project plans due to unexpected site-specific conditions shall warrant corrective action. All errors, deficiencies, or other problems shall be brought to the immediate attention of the EBC PM, who in turn shall contact the Quality Assurance/Data Quality Manager or his designee (if applicable).

Procedures have been established to ensure that conditions adverse to data quality are promptly investigated, evaluated and corrected. These procedures for review and implementation of a change are as follows:

- Define the problem.
- Investigate the cause of the problem.
- Develop a corrective action to eliminate the problem, in consultation with the personnel who defined the problem and who will implement the change.
- Complete the required form describing the change and its rationale (see below for form requirements).
- Obtain all required written approvals.
- Implement the corrective action.
- Verify that the change has eliminated the problem.

During the field investigation, all changes to the sampling program will be documented in field logs/sheets and the EBC PM advised.

If any problems occur with the laboratory or analyses, the laboratory must immediately notify the PM, who will consult with other project staff. All approved corrective actions shall be controlled and documented.

All corrective action documentation shall include an explanation of the problem and a proposed solution which will be maintained in the project file or associated logs. Each report must be approved by the necessary personnel (e.g., the PM) before implementation of the change occurs. The PM shall be responsible for controlling, tracking, implementing and distributing identified changes.

# TABLE 1 SUMMARY OF SAMPLING PROGRAM RATIONALE AND ANALYSIS

| Matrix | Location             | Approximate Number of Samples | Frequency             | Rationale for Sampling | Laboratory Analysis                                                      | Duplicates | Matrix Spikes       | Spike<br>Duplicates | Trip Blanks |
|--------|----------------------|-------------------------------|-----------------------|------------------------|--------------------------------------------------------------------------|------------|---------------------|---------------------|-------------|
| Soil   | Excavation Sidewalls | 13                            | 1 per 30 linear feet  | Endpoint verification  | VOCs by 8260                                                             | 1 per day  | 1 per 20<br>samples | 1 per 20<br>samples | 0           |
| Soil   | Excavation Bottom    | 3                             | 1 per 900 square feet | Endpoint verification  | VOCs by 8260                                                             | 1 per day  | 1 per 20<br>samples | 1 per 20<br>samples | 0           |
| Soil   | Hot Spot Stockpiles  | 1                             | 1 per 1,000 cy        | Waste Characterization | VOCs EPA Method 8260B,<br>pesticides and PCBs by EPA<br>8081/8082, other | 0          | 0                   | 0                   | 0           |
| Soil   | Historic Fill        | 2                             | 1 per 1,000 cy        | Waste Characterization | VOCs EPA Method 8260B,<br>pesticides and PCBs by EPA<br>8081/8082, other | 0          | 0                   | 0                   | 0           |
| Soil   | Clean Native Soil    | 38                            | 1 per 500 cy          | Verify Clean           | VOCs EPA Method 8260B,<br>pesticides and PCBs by EPA<br>8081/8082, other | 0          | 0                   | 0                   | 0           |

TABLE 2
SAMPLE COLLECTION AND ANALYSIS PROTOCOLS

| Sample<br>Type | Matrix | Sampling<br>Device       | Parameter | Sample<br>Container   | Sample<br>Preservation | Analytical<br>Method#   | CRQL /<br>MDLH                 | Holding<br>Time    |
|----------------|--------|--------------------------|-----------|-----------------------|------------------------|-------------------------|--------------------------------|--------------------|
| Soil           | Soil   | Scoop<br>Direct into Jar | VOCs      | (1) 2 oz Jar          | Cool to 4° C           | EPA Method 8260         | Compound specific (1-5 ug/kg)  | 14 days            |
|                |        |                          | SVOCs     | (1) 8 oz jar          | Cool to 4° C           | EPA Method 8260 BN      | Compound specific (1-5 ug/kg)  | 14 day ext/40 days |
|                |        |                          | Pest/PCBs | from 8oz jar<br>above | Cool to 4° C           | EPA Method<br>8081/8082 | Compound specific (1-5 ug/kg)  | 14 day ext/40 days |
|                |        |                          | Metals    | from above            | Cool to 4° C           | TAL Metals              | Compound specific (01-1 mg/kg) | 6 months           |

#### Notes:

All holding times listed are from Verified Time of Sample Receipt (VTSR) unless noted otherwise. \* Holding time listed is from time of sample collection. The number in parentheses in the "Sample Container" column denotes the number of containers needed.

Triple volume required when collected MS/MSD samples

The number of trip blanks are estimated.

CRQL / MDL = Contract Required Quantitation Limit / Method Detection Limit.

MCAWW = Methods for Chemical Analysis of Water and Wastes.

NA = Not available or not applicable.

# ATTACHMENT I Metes and Bounds Description

#### **EXHIBIT A**

All that piece or parcel of property situate in the Borough and County of Queens, City and State of New York, shown as Block 9281, Lot 44 on the New York City Tax Map and being more particularly described as follows:

Beginning at a point 177.98 feet easterly from the corner formed by the intersection of the northerly line of Jamaica Avenue with the easterly line of 127<sup>th</sup> Street, formerly Wickes Street;

Thence northerly along a line forming an interior angle of 90° 20' 36" with northerly line of Jamaica Avenue a distance of 135.37 feet to a point;

Thence westerly at right angles to the previously described course a distance of 48.93 feet to a point on the centerline of the block between Wickes Street and Gould Street as shown on a certain map entitled "Map of Lots in Richmond Hill" filed in the Queens County Clerk's office, now Registrars Office on August 18, 1906 as Map Number 1133;

Thence northerly along said centerline of the block and parallel with the easterly line of 127<sup>th</sup> Street forming an interior angle of 78° 38' 54" with the last described course a distance of 243.08 feet to a point on the southerly line of Lot Number 25 on the aforementioned map;

Thence easterly along the southerly line of Lot Number 25 and at right angles to the last described course a distance of 61.33 feet to a point on the westerly line of land of The Long island Railroad;

Thence southeasterly along the westerly line of land of The Long Island Railroad, forming an interior angle of 122° 55' 45" with the last described course, a distance of 394.97 feet to a point on the northerly line of Jamaica Avenue;

Thence the following three (3) courses and distances along the northerly line of Jamaica Avenue:

- 1) Westerly, forming an interior angle of 65° 07' 25" with the last described course, a distance of 117.10 feet to a point,
- 2) Westerly, forming an interior angle of 184° 26' 18" with the last described course, a distance of 61.46 feet to a point, and
- 3) Westerly, forming an interior angle of 178° 31' 01.7" with the last described course, a distance of 25.95 feet to the point or place of beginning

Said parcel containing 53,756 square feet or 1.2341 acres more or less