CONSTRUCTION COMPLETION REPORT

for

SILVERCUP WEST – NYPA SITE 42-22 through 42-48 Vernon Blvd Long Island City, New York

> BCP Site No. C241109 NYSDEC Spill No. 93-09139

> > Prepared For:

Terra Cotta, LLC 44-22 22nd Road Long Island City, New York 11101

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

August 24, 2020 005635008

CERTIFICATION

I, Jason J. Hayes, certify that I am currently a NYS Registered Professional Engineer and that this Construction Completion Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation. I certify that all activities were performed in full accordance with the DER-approved work plans and any DER-approved TE OF NEW

089491-1

modifications.

NYS Professional Engineer # Date

TABLE OF CONTENTS

CERTI	IFICATION	I
1.0	INTRODUCTION	1
2.0	BACKGROUND	3
2.1	Site Location and Description	3
2.2	Surrounding Property Land Use	
2.3	Site Geology	4
2.3	3.1 Topography	
	3.2 Geologic Conditions	
	.3.3 Hydrogeology	
2.4	•	
	4.1 Environmental History	
	REMEDIAL MEASURES	
3.1	Contractors and Consultants	
3.2	Site Preparation and Site Security	
3.3	Waste Characterization	
	3.1 Preliminary Waste Characterization	
3.4	Bulkhead Cutoff Wall	
3.5	Soil Management	
	.5.1 Soil Screening	
	5.2 Soil Stockpiles	
3.	.5.3 Load Out, Transport and Off-Site Disposal Plan	
3.6	Dewatering and Fluids Management	15
3.7	Community Air Monitoring Program	15
3.8	Excavated Materials Removal	
	8.1 Non-Hazardous Petroleum Impacted Soil/ Fill	
_	8.2 Non-Hazardous Historic Fill	
	8.3 Non-Hazardous Cobalt-Impacted Soil	
	.8.4 Total Quantities Removed	
	8.6 Drum Disposal	
3.9	Documentation Soil Sampling	
	9.1 Documentation Sampling Results	
3.10		
4.0	DEVIATIONS FROM THE IRM WORK PLAN	
	LIMITATIONS	

TABLES

Table 1 Export Material Summary
 Table 2 Documentation Soil Sample Summary
 Table 3 Documentation Soil Sample Analytical Results
 Table 4 Import Material Summary

FIGURES

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Excavation and Documentation Sample Location Plan

Figure 4 Documentation Soil Sample Location and Analytical Results Map

Figure 5 Backfill Location Plan

APPENDICES

Appendix A NYSDEC Approved IRM WP and IRM WP Addendum Appendix B Waste Characterization Letter Report Disposal Facility and Permit Documentation Appendix C Supplemental Waste Characterization Laboratory Analytical Reports Appendix D Daily Field Reports Appendix E Appendix F As-Build Survey Appendix G Groundwater Disposal Facility and Permit Documentation Appendix H Countersigned Disposal Manifests Community Air Monitoring Data Appendix I Drum Disposal Documentation Appendix J Appendix K Laboratory Analytical Reports Data Usability Summary Reports Appendix L Appendix M Import Material Documentation and Manifests Appendix N Photograph Log Concrete Test Results, Correspondence Appendix O

1.0 INTRODUCTION

This Construction Completion Report (CCR) was prepared by Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan) on behalf of Terra Cotta, LLC (the Volunteer) for the Silvercup West – New York Power Authority (NYPA) site located at 42-22 to 42-48 Vernon Boulevard, Long Island City, New York ("the site"). The Volunteer executed a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in November 2009. This CCR describes and documents the remedial activities performed in accordance with the NYSDEC-approved May 20, 2013 Interim Remedial Measure Work Plan (IRM WP) and its April 18, 2016 Addendum.

The IRM WP and Addendum were prepared to address the design and installation of a new waterfront bulkhead cutoff wall along the western perimeter of the NYPA site to prevent the migration of petroleum product into the East River. The IRM WP and Addendum were implemented at the site between June 25, 2018 and October 30, 2019 and consisted of the following tasks:

- Completion of a preliminary waste characterization prior to excavation activities.
- Excavation and off-site disposal of petroleum-impacted media and soil impacted with elevated levels of cobalt (as identified and delineated around borings EB-04 and EB-05). The remedial excavations along the NYPA waterfront extended to about one foot below the observed water table, from about elevation¹ (el.) -1 NAVD88 to el. -4 (from about 2 to 12 feet below grade surface [bgs]). Groundwater was observed between about el. 0 and el. -3 NAVD88 during remedial excavations along the NYPA waterfront.
- Excavation and disposal off-site of approximately 4,494 tons (about 2,996 cubic yards) of non-hazardous petroleum-impacted soil/fill and 1,748 tons (about 1,165 cubic yards) of non-hazardous historic fill.
- Disposal of 13 drums containing non-hazardous petroleum-impacted soil and 6 drums containing spent petroleum socks/absorbent pads from remedial excavation activities
- Removal of 168,599 gallons of petroleum-impacted groundwater locally dewatered from the base of the excavation
- Installation of a new bulkhead cutoff wall with outfall along the western boundary of the site in accordance with the May 2013 IRM Work Plan and April 2016 Addendum. The cutoff wall was constructed of 40-foot-long continuous steel sheet piles with sealed seams and a sheet pile deadman. A continuous concrete cap was placed at the top of the cutoff wall following installation of the sheet piles.

¹ Elevations reference the United States Geologic Survey (USGS) North American Vertical Datum of 1988 (NAVD88), which is approximately 1.1 feet above mean sea level datum at Sandy Hook New Jersey (NGVD 1929).

- Collection and analysis of soil samples along the base and sidewalls of the remedial excavation to document contaminant concentrations in soil remaining on-site
- Placement of a demarcation layer consisting of woven geotextile fabric along the base of the remedial excavation to provide a visual reference, where the surface is capped with clean soil. Following placement of the filter fabric demarcation layer at the base of the remedial excavation, ¾-inch virgin crushed stone was used as backfill to bring the remedial excavation from below the water table to about one foot above the water table (minimum 2-foot-thick layer of ¾-inch stone). The filter fabric was wrapped around the ¾-inch stone to prevent future wash-out.
- Placement of cap treatments including Lime Item #4 quarry stone aggregate and/or clean topsoil meeting the soil quality requirements in Part 375-6.7(d)(ii)(b) (i.e., lower of Protection of Groundwater [PG] soil cleanup objectives (SCO) or Restricted-Use Residential [RUR] SCOs) at development grades in the eastern and southern region of the IRM WP work area (west of the NYPA fence line). Final cap placement will be addressed as part of the final site remedy.
- Restoration and/or replacement of chain-link security fencing to encompass the western region of the NYPA site.

2.0 BACKGROUND

2.1 Site Location and Description

The site is located at 42-22 to 42-48 Vernon Boulevard in the Long Island City neighborhood of Queens, New York (Borough of Queens Tax Block 477, Lot 24). The site is bounded by the Silvercup West – Terra Cotta property (Brownfield Cleanup Program [BCP] Site Nos. C2410099, C241086, C241100, and C241101) followed by the Queensboro Bridge to the north, Vernon Boulevard to the east, 43rd Avenue to the south, and the East River to the west. The site is about 3.4 acres and is improved with a natural gas-fired electric power plant operated by NYPA. The surrounding area is primarily industrial and commercial, with some residential areas to the north beyond the Queensboro Bridge. A site location map is included as Figure 1. A site plan is included as Figure 2.

2.2 Surrounding Property Land Use

The site is located in an urban setting that is characterized by residential, commercial, and industrial buildings. The following table summarizes surrounding property usage:

Direction	Property Description
North	Silvercup West – Terra Cotta Site – Parcel A (BCP Site No. C2441099), Parcel B (BCP Site No. C241086), Parcel C (BCP Site No. C241100), and Parcel D (BCP Site No. C241101) followed by New York City Department of Transportation (NYCDOT)-owned land and the Ed Koch Queensboro Bridge
South	43 rd Avenue followed by a Con Edison training facility, light industrial buildings, and warehouses
East	The remainder of the NYPA power generation facility followed by Vernon Blvd and commercial-use buildings
West	East River

The surrounding area is highly urbanized and characterized by major infrastructure including subway tunnels, the Ed Koch Queensboro Bridge, underground utility lines, storm drains, and sewers. The New York City Metropolitan Transit Authority (MTA) N, Q and R subway lines extend underneath the Ed Koch Queensboro Bridge about 150 feet north of the site.

Sensitive receptors (as defined in Technical Guidance for Site Investigations and Remediation [DER-10]) located within a half mile of the site include those listed in the following table:

Number	Name (Approximate distance from site)	Address
1	Queensbridge Park (0.05 miles north)	40-50 Vernon Boulevard, Long Island City, New York 11101
2	Western Queens Nursery School (0.18 miles northeast)	10-26 41 st Rd, Long Island City, New York 11101
3	Industrial Management and Train School (0.20 miles south)	43-82 Vernon Blvd, Long Island City, New York 11101
4	Roosevelt Island Day Nursery School (0.30 miles northwest)	4 River Road, New York, New York 10044
5	Busy Bee Playcare (0.34 miles southwest)	10-21 44 th Drive, Long Island City, New York 11101
6	Information Technology High School (0.37 miles southeast)	21-16 44 th Rd, Long Island City, New York 11101
7	Mason Tender School (0.38 miles southeast)	42-53 21 st Street, Long Island City, New York 11101
8	Queens Paideia School (0.43 miles southeast)	44-02 23 rd St, Long Island City, New York 11101
9	School of Construction Safety (0.43 miles south)	10-40 45 th Ave, Long Island City, New York 11101
10	Sage Music (0.44 miles southeast)	44-02 23 rd St., Long Island City, New York 11101
11	New York Kids Club – Court Square (0.46 miles south)	44-16 23 rd Street, Long Island City, New York 11101
12	Apex Technical School (0.48 miles southeast)	24-02 Queens Plaza S, Long Island City, New York 11101
13	New York Kids Club – Long Island City (0.5 miles south)	4545 Center Blvd, Long Island City, New York 11104

2.3 Site Geology

2.3.1 Topography

According to March 26, 2015 Topographical Survey of Vernon Substation prepared by C.T. Male Associates, the NYPA site elevation ranges from about el. 0.1 feet NAVD88 in the western region of the site along the East River to about el. 17 feet NAVD88 in the eastern portion of the site. Within the IRM WP work area in the western region of the NYPA site, pre-construction surface grade elevations ranged from about el. 0.1 to el. 14 feet NAVD88.

2.3.2 Geologic Conditions

Based on the findings of previous investigations, subsurface strata primarily consist of historic fill underlain by sand, silt, and cobbles. The historic fill primarily consists of brown, dark brown and

black, fine to medium-grained sand with varying amounts of gravel, silt, brick, concrete, wood, asphalt, coal ash, slag, plastic, and organics. The historic fill layer is about 5 to 21 feet thick in the eastern region of the site, about 4 to 15 feet in the central region of the site, and up to 20 feet thick in the western region of the site. A reddish-brown, fine to medium native sand deposit containing some silt and fine gravel is located below the historic fill. The native sand deposit is about 10 to 30 feet thick in the eastern region of the site, about 5 to 15 feet thick in the central region of the site, and about 0 to 15 feet thick in the western region of the site.

Between 5 and 10 feet of weathered to decomposed rock is present below the natural sand deposit throughout the site. The bedrock underlying the historic fill and natural sand deposits has weathered into grayish-brown coarse sand with cobbles, gravel, silt and mica. The depth to competent rock ranges from about 45 to 60 feet bgs in the eastern region of the site, to about 10 to 25 feet bgs in the central region of the site, to about 36 feet bgs in the western region of the site.

2.3.3 Hydrogeology

Groundwater was encountered at elevations ranging from about el. 3.83 to el. 11.83 NAVD88 during previous environmental investigations performed throughout the NYPA and adjoining Terra Cotta site in 2007, with higher groundwater elevations observed in the eastern region of the site. Average NYPA waterfront groundwater elevations were observed between about el 2.5 to 3 NAVD88 during previous environmental investigations performed in 2007. Groundwater flow is presumed to be from east to west toward the East River, and is tidally and seasonally influenced. During remedial excavations for bulkhead installation along the western region of the NYPA site in the fall/winter of 2018, the water table was observed at lower elevations ranging from about el. -3 to el. 0 NAVD88. Remedial excavations extended about one foot into the water table between el. -4 to el. -1 NAVD88.

2.4 Site History

2.4.1 Environmental History

Historic Sanborn fire insurance maps indicate that the NYPA site was occupied by the New York Architectural Terra Cotta company, from before 1898 (earliest records reviewed) until sometime after 1915, for the manufacturing of terra cotta. In 1932, the New York Architectural Terra Cotta company went bankrupt, and it was taken over by the Eastern Terra Cotta Company. Following terra cotta manufacturing, the site was used by the former Royal Petroleum Terminal, which was constructed in the early 1940s. The facility served primarily as a distribution center for heating oil.

On April 16, 1980, the United States Coast Guard (USCG) observed an oil slick on the East River along the bulkhead connected to the site. In response, about 92 monitoring wells were installed along the NYPA site and the north-adjacent Silvercup West – Terra Cotta site. A widespread

accumulation of oil was found on the water table, with product thickness' up to 5 feet on the northwest portion of the NYPA site. Three recovery wells were installed across the site and about 1,200 gallons of product were recovered by the fall of 1980. Periodic pumping from the recovery and monitoring wells continued until late 1981, when recovery efforts ceased. Groundwater and product-thickness monitoring continued into 1986, at which time, only a sheen of oil was observed in select wells. The facility was closed in June 1987 and all oil storage tank systems were dismantled and facilities demolished.

Between 1990 and 2000, the site underwent remedial activities. A spill was reported to the NYSDEC in October 1993. NYSDEC Spill No. 9309139 is listed at 42-20 Vernon Boulevard (associated with the NYPA site) as a gasoline spill resulting from a tank failure at a major facility (listed as less than 400,000-gallons). Groundwater is listed as an affected resource and the spill number remains open. In February 1999, two product recovery trenches were installed by Arcadis Geraghty & Miller (AGM). About 500 gallons of oil and water were removed during the recovery process. Product removal continued until July 1999 when product was, at the time, deemed no longer recoverable.

Construction of the NYPA facility was completed in 2002. During initial phases of construction, excavated soils were characterized and disposed off-site. About 6,000 tons of excavated material was managed as hazardous waste and sent to a United State Environmental Protection Agency (USEPA) licensed disposal facility.

In November 2009, the site enrolled in the NYSDEC BCP (Site No. C241109).

2.4.2 Previous Reports

The following environmental investigations and reports were prepared for the NYPA site and the north-adjacent Silvercup West – Terra Cotta site and are summarized in the May 20, 2013 IRM WP:

- Environmental Report for Former Long Island City Terminal, January 1994
- Environmental Liabilities Assessment for 41-98 and 42-02 through 42-16 Vernon Boulevard, May 1994
- Interim Remedial Measures and Site Characterization Investigation Report, July 1996
- Summary of Underground Storage Tank (UST) Closure Site Assessment Terra Cotta Facility, September 1996
- Groundwater Investigation Report, January 1997
- Risk Assessment Report of Former Royal Petroleum Site, July 1997
- 550-gallon Storage Tank Excavation Report, September 1997
- UST Closure Additional Soil Removal Report, September 1997
- Phase I Environmental Site Assessment for 41-98 and 42-02 through 42-16 Vernon Boulevard, January 1999

- Phase II Environmental Site Assessment for Former Terra Cotta Company Property Located at 41-98 and 42-02 through 42-16 Vernon Boulevard, August 9, 1999
- Site Summary Report, May 2000
- Site Summary Report, August 2000
- Boring and Lab Results, December 2000
- Summary of Property Transfer Related Site Activities, January 2001
- Vernon Boulevard Turbine Site, Environmental History Report, February 2001
- Vernon Boulevard Turbine Site, Memorandum, March 2001
- Issue of Sediment Sampling, March 2001
- Site Investigation Work Plan, June 2002
- Geotechnical Data Report, Waterfront Stabilization and Rehabilitation, December 2002
- Vernon Boulevard Turbine Site, Site Investigation Work Plan, March 2003
- Pre-Construction Notification for a Revised Bank Stabilization Design, April 2005
- Limited Phase II Environmental and Geotechnical Investigation Work Plan, December 2006
- Supplemental Remedial Investigation Report, June 2007
- Remedial Investigation Report for Silvercup West Terra Cotta Site, September 5, 2007, and
- East River Sediment Sampling Report, May 30, 2008

The following reports were prepared following NYSDEC approval of the May 20, 2013 IRM WP in November 2013 and are summarized below:

- Interim Remedial Measure Work Plan Addendum, April 18, 2016, and
- Preliminary Waste Characterization Report, Silvercup West NYPA Site, April 10, 2018

Interim Remedial Measure Work Plan Addendum, April 18, 2016

Langan prepared the IRM WP Addendum to present the construction design drawings for the proposed bulkhead cutoff wall to be constructed along the western site perimeter. The May 20, 2013 IRM WP only included conceptual bulkhead cutoff wall designs. The final bulkhead construction design included: 1) a continuous interlocking sheet pile wall using 40-foot-long steel sheets, as opposed to the king pile conceptual design; 2) horizontal ties to a deadman, located about 40 feet inland from the bulkhead, as opposed to the inclined anchor ties to rock; and 3) sealing the continuous sheet pile seam interlocks along the grossly-impacted zone to mitigate potential contaminant migration to the East River. In addition, the top of the wall was raised about

one foot to add protection against potential damage from storm surges during extreme weather events.

Preliminary Waste Characterization Report, April 10, 2018

Langan performed a preliminary waste characterization along the NYPA waterfront in February/March 2018 to provide data to assist the excavation contractor in obtaining off-site receiving facility pre-approvals for soil disposal.

The field investigation was performed on February 27 and March 1, 2018. The preliminary waste characterization investigation included the following:

- Installation of 8 soil borings along the NYPA waterfront
- Analysis of 21 grab and 5 composite soil samples (including duplicate samples) and analysis of 1 field blank sample and 2 trip blank samples for quality assurance/ quality control (QA/QC)

A summary of subsurface observations and analytical results from the preliminary waste characterization is provided below:

- Historic fill was observed in soil borings from grade surface to the termination depth of each boring at 3.5 to 20 feet bgs. The fill consisted of brown, dark brown, and black, fine to medium-grained sand with varying amounts of gravel, silt, brick, concrete, gypsum, asphalt, coal ash, slag, plastic, and organics.
- Saturated soils indicative of the approximate groundwater level were observed between about 2.5 to 3 feet bgs in borings closer to the East River waterfront (corresponding to about el -0.5 to 0 NAVD88), and from about 8 to 15 feet bgs in upland borings (corresponding to about el -2.5 to 0.25 NAVD88).
- Staining and petroleum-like odors were observed in all soil borings at varying depths from about 0.5 feet to 20 feet bgs. Elevated photoionization detector (PID) readings of up to 150 parts per million (ppm) volatile organic compounds (VOC) were detected at a depth of 1 to 4 feet bgs.
- No VOCs, polychlorinated biphenyls (PCB), pesticides, or herbicides exceeded the Title 6
 New York Codes, Rules, and Regulations (NYCRR) Part 375-6.8(a) RUR and PG SCOs.
- Three semivolatile organic compounds (SVOC) including benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene and one metal (mercury) were detected above the Part 375 RU or PG SCOs
- Total petroleum hydrocarbons diesel range organics (TPH DRO) were detected up to 8,400 milligrams per kilogram (mg/kg)

- Total petroleum hydrocarbons gasoline range organics (TPH GRO) were detected up to 1,000 mg/kg
- Resource Conservation and Recovery Act (RCRA) hazardous waste was not detected in the soil samples analyzed

Langan Project No. 005635008

3.0 REMEDIAL MEASURES

The interim remedy included installation of a new bulkhead cutoff wall along the western boundary of the NYPA site as described in the NYSDEC-approved May 20, 2013 IRM WP and April 18, 2016 Addendum. The objective of installing the cutoff wall was to prevent potential migration of petroleum impacts from the site into the East River. In addition, the cutoff wall allowed for the excavation and off-site disposal of petroleum-impacted soil landward of the cutoff wall, between the bulkhead and the deadman, by holding back the East River. The cutoff wall was installed along the NYPA waterfront at a location determined in coordination with NYSDEC.

The IRM WP and Addendum are provided in Appendix A. IRM implementation was conducted between June 25, 2018 and October 30, 2019 and included the following activities:

- Completion of a preliminary waste characterization prior to excavation activities.
- Excavation and off-site disposal of petroleum-impacted media and soil impacted with elevated levels of cobalt (as identified and delineated around borings EB-04 and EB-05). The remedial excavations along the NYPA waterfront extended to about one foot below the observed water table from about el. -1 NAVD88 to el. -4 (from about 2 to 12 feet bgs). Groundwater was observed between about el. 0 and el. -3 NAVD88 during remedial excavations along the NYPA waterfront.
- Excavation and disposal off-site of approximately 4,494 tons (about 2,996 cubic yards) of non-hazardous petroleum-impacted soil/fill and 1,748 tons (about 1,165 cubic yards) of non-hazardous historic fill.
- Disposal of 13 drums containing non-hazardous petroleum-impacted soil and 6 drums containing spent petroleum socks/absorbent pads from remedial excavation activities
- Removal of 168,599 gallons of petroleum-impacted groundwater locally dewatered from the base of the excavation
- Installation of a new bulkhead cutoff wall with outfall along the western boundary of the site in accordance with the May 2013 IRM Work Plan and April 2016 Addendum. The cutoff wall was constructed of 40-foot-long continuous steel sheet piles with sealed seams and a sheet pile deadman. A continuous concrete cap was placed at the top of the cutoff wall following installation of the sheet piles.
- Collection and analysis of soil samples along the base and sidewalls of the remedial excavation to document contaminant concentrations in soil remaining on-site
- Placement of a demarcation layer consisting of woven geotextile fabric along the base of the remedial excavation to provide a visual reference, where the surface is capped with clean soil. Following placement of the filter fabric demarcation layer at the base of the remedial excavation, ¾-inch virgin crushed stone was used as backfill to bring the

remedial excavation from below the water table to about one foot above the water table (minimum 2-foot-thick layer of ¾-inch stone). The filter fabric was wrapped around the ¾-inch stone to prevent future wash-out.

- Placement of cap treatments including Lime Item #4 quarry stone aggregate and/or clean topsoil meeting the soil quality requirements in Part 375-6.7(d)(ii)(b) (i.e., lower of PG SCOs or RUR SCOs) at development grades in the eastern and southern region of the IRM WP work area (west of the NYPA fence line). Final cap placement will be addressed as part of the final site remedy.
- Restoration and/or replacement of chain-link security fencing to encompass the western region of the NYPA site.

3.1 Contractors and Consultants

The Volunteer contracted with S2 Construction, LLC (S2 Construction) to act as the Construction Manager. Langan was retained as the Remedial Engineer (RE) and engineering consultant. Jason Hayes, P.E., of Langan, was the RE of record and has certified this CCR. The Construction Manager selected Soil Solutions and Brookside Environmental Inc. (Brookside) to implement the remedial activities at the Site. Soil Solutions, Inc. (Soil Solutions) was retained to complete the remedial excavation and off-site disposal of contaminated materials and install the bulkhead cutoff wall. Brookside coordinated removal of petroleum-contaminated liquids dewatered during bulkhead construction.

3.2 Site Preparation and Site Security

Site preparation included the establishment of work zones, addition of support facilities, construction of decontamination facilities (including a truck wash in the northwest corner of the IRM work area), and implementation of site security measures (i.e., maintaining security/privacy fencing around the site). In addition to a truck wash, a gravel/ stone site access roadway was constructed along the southern perimeter of Terra Cotta property. Soil erosion and sediment controls measures were installed before, and maintained during, implementation of the IRM WP and Addendum.

Perimeter security fencing and access gates with locks were installed at the boundary of the site to prevent access by unauthorized persons. Security cameras were installed at the boundary of the Terra Cotta site to monitor individuals entering and exiting the work zone at the NYPA site and to deter access by unauthorized persons.

3.3 Waste Characterization

3.3.1 Preliminary Waste Characterization

Langan performed a preliminary waste characterization along the NYPA waterfront in February/March 2018 to provide data to assist the excavation contractor in obtaining off-site receiving facility pre-approvals for soil disposal. The waste characterization is summarized in section 2.4.2.

3.3.2 Supplemental Waste Characterization

Non-hazardous cobalt-impacted material was identified in soil samples collected during the March 2018 preliminary waste characterization at concentrations above Pennsylvania (PA) Clean Fill criteria (applicable per the proposed disposal facility location). This finding prompted the identification of a disposal facility that both was permitted to accept the non-hazardous cobalt-impacted material and was listed on the *SD-53-02 Appendix E: Approved Waste Handling Facilities* provided by NYPA.

On October 18, 2018, the contractor performed a supplemental waste characterization along the NYPA waterfront. Langan collected additional waste characterization soil samples from two test pits excavated in the central-west region of the NYPA site. The test pits measured about 10-feetlong by 10-feet-wide by 10.5-feet-deep. Three 5-point composite soil samples (including one duplicate sample) were collected and analyzed from the test pits to delineate the horizontal and vertical extents of elevated non-hazardous cobalt concentrations identified during preliminary waste characterization investigation. The samples were submitted to Alpha and analyzed for total cobalt. Based on the results received from the laboratory, the non-hazardous cobalt-impacted area of the NYPA waterfront was delineated to a roughly 70-foot by 40-foot area in the central-west region of the site, up to about 10.5 feet deep based on the soil sample results. Overall excavations in the central-west region of the site ranged from about el. -1 to el. -4 NAVD88, corresponding to depths of about 1 to 11.5 feet bgs. The Conestoga Landfill in Morgantown, PA approved the disposal of the non-hazardous cobalt-impacted soil (in addition to petroleum-impacted soil).

Copies of the analytical laboratory results provided by Alpha from the supplemental waste characterization sampling are included in Appendix D.

3.4 Bulkhead Cutoff Wall

The interim remedy for the site included installation of a new bulkhead cutoff wall along the western property boundary as described in the NYSDEC-approved May 20, 2013 IRM WP and its April 18, 2016 Addendum. The objective of installing the cutoff wall was to prevent potential migration of petroleum impacts from the site into the East River. In addition, the cutoff wall allowed for the excavation and off-site disposal of petroleum-impacted soil landward of the cutoff

wall to the deadman by holding back the East River. The cutoff wall was installed along the NYPA waterfront at a location determined in coordination with NYSDEC. The cutoff wall was constructed of 40-foot-long steel sheet piles with sealed seams and a sheet pile deadman. Steel tie rods measuring about 40 feet in length connected the bulkhead steel sheet piles to the inland deadman structure. A structural concrete cap was placed at the top of the cutoff wall following installation of the sheet piles.

Subsurface obstructions were encountered during sheet pile installation in the northern and central regions of the bulkhead alignment between October 10 and October 24, 2018. Soil Solutions drove spud piles using a vibratory hammer to break through the obstructions. A non-conformance report (NCR) was issued on October 15, 2018 to address sheet piles No. 45 and 51 that were unable to be driven to their design elevation of el. -32 NAVD88 due to obstructions. Sheet pile No. 45 was driven to about el. -30.4 NAVD88, and sheet pile No. 51 was driven to about el. -29.3 NAVD88. The final depths of these sheet piles ranged from 37.3 to 38.4 feet below grade and more than 17 feet below the observed petroleum impacts. The final depths of the sheet piles were determined adequate to prevent upland contamination from migrating into the East River. Copies of the approved bulkhead design drawings are provided in Appendix A, beginning on page 7,893 of the appendix.

A bulkhead as-build survey was performed by Soil Solutions on November 7, 2019 to document final post-IRM conditions. Soil Solutions surveyed site features, including but not limited to existing surface grades, spot elevations, property line fencing, and bulkhead features. A copy of the as-build survey prepared by Soil Solutions is provided in Appendix F. Langan prepared a letter confirming the as-built documentation for bulkhead construction at the Silvercup West – NYPA site is consistent with the design and what Langan observed during construction of the new bulkhead. A copy of the Professional Engineer (PE)-signed and sealed letter prepared by Langan and dated August 18, 2020 is also provided in Appendix F. Daily engineering reports documenting the construction of the bulkhead cutoff wall are provided as Appendix E. Additional details are provided in the PE-signed and sealed bulkhead design drawings are provided in Appendix A.

3.5 Soil Management

Excavations associated with bulkhead construction and installation were conducted using conventional hydraulic excavators (CAT345C and CAT 320E excavators) and hand tools. Material backfilling and compaction was conducted using CAT345C and CAT 320E excavators, a jumping jack compactor, and a Wacker Neuson RTSC3 Roller. Contaminated soil/fill was excavated to about el -1 to el. -4 NAVD88 (about one foot below the observed water table) to support remediation and bulkhead construction. Remedial excavation areas throughout the NYPA waterfront are presented on Figure 3. Soil disposal facility documentation is provided in Appendix C.

3.5.1 Soil Screening

Excavated material was screened for visual, olfactory, and instrumental evidence of a chemical or petroleum release by the field engineer, geologist, or scientist. Instrumental soil screening was conducted with a PID equipped with a 10.6 electron volt (eV) lamp.

3.5.2 Soil Stockpiles

As needed, soil stockpile areas were constructed for staging soil, pending loading for off-site disposal or characterization testing. Separate stockpile areas were constructed to avoid comingling materials of differing types as needed. Stockpiles were covered with minimum 6-mil plastic sheeting or tarps at the end of each day, which were securely anchored to the ground.

3.5.3 Load Out, Transport and Off-Site Disposal Plan

A summary of the quantities of waste removed from the NYPA site as part of IRM WP implementation is provided in Section 3.8 and in Table 1. Non-hazardous petroleum-contaminated material, non-hazardous cobalt-impacted material, and non-hazardous historic fill were encountered during construction. All non-hazardous material was handled, transported and disposed of in accordance with applicable Part 360 regulations and other applicable local, state and federal regulations. The waste removal contractor provided the permits, certifications, and written commitments from disposal facilities to accept the material.

Non-hazardous petroleum-contaminated material, non-hazardous cobalt-impacted material and non-hazardous historic fill was transported by waste removal contractors who possessed a valid New York State Part 364 Waste Transporter Permit, where applicable. Non-hazardous waste manifests were used to track the waste and confirm disposal.

Prior to transporting material off-site, Langan reviewed the contractor's proposed disposal facilities to document that the facilities were permitted to accept the material. Non-hazardous contaminated soil was disposed at facilities licensed to handle this material. Commitment letters were supplied on the facility's letterhead, included the site as the originating location, referenced the analytical data provided to and reviewed by the facility, and noted any restrictions on delivery schedules or other conditions that may have caused rejection of transported materials. Letters of acceptance were received from the following soil disposal facilities: Conestoga Landfill of Morgantown, PA (Conestoga) and Clean Earth of Southeast Pennsylvania, in Morrisville, PA (CESPA).

A Langan field engineer, geologist, or scientist observed the load-out of excavated material. Loaded vehicles leaving the site were lined (as needed), securely covered, manifested, and placarded in accordance with federal, state, local, and New York State Department of Transportation (NYSDOT) requirements.

3.6 Dewatering and Fluids Management

To support excavation and installation of bulkhead components (i.e., the outfall), groundwater and accumulated precipitation was locally dewatered using a diesel-powered submersible pump and fluids were containerized prior to disposal off-site at Tradebe Treatment and Recycling Northeast, LLC located in Meriden, CT. Dewatered fluids were containerized into 5,000-gallon and 3,000-gallon frac tanks staged in the southwest portion of the Terra Cotta site. Brookside transported the containerized fluids to Tradebe by transferring the frac tank contents into vacuum trucks. Between December 27, 2018 and March 26, 2019, about 168,599 gallons of non-hazardous petroleum-impacted liquid locally dewatered from the remedial excavation were transported off-site by Brookside. Non-hazardous waste manifests were used to track the waste and confirm disposal. Groundwater disposal documentation is provided in Appendix G and includes the facility approval documentation and groundwater sampling results. The countersigned manifests are included in Appendix H.

3.7 Community Air Monitoring Program

Langan performed continuous community air monitoring at two locations during ground-intrusive activities and handling of impacted soil, except in instances of inclement weather. Air monitoring enclosures contained TSI Model 8530 DustTRAKs to monitor for particulates and MiniRAE 3000 PIDs to monitor for VOCs, each equipped with audible alarms to indicate concentrations above pre-established action levels. Real-time air monitoring was conducted to measure levels of airborne particulate matter with particle size smaller than 10 microns in diameter (PM10) and VOCs. Langan field staff also assessed possible fugitive dust (using visual means) and odor migration (using olfactory means) at the perimeter of the site.

Air monitoring data was compared to 15-minute time-weighted action levels of 150 micrograms per cubic meter ($\mu g/m^3$) for PM10 and 5 ppm for VOCs. Langan reported all elevated PM10 and VOC concentrations and instances of fugitive dust and odor migration to the contractor, and advised on-site personnel to pause work activity or use dust and/or odor suppression techniques to mitigate the issue. In cases where PM10 and/or VOC levels were not successfully mitigated, work was stopped and further engineering controls were instituted until concentrations had fallen below their respective action levels.

Field personnel observed ambient air conditions to check for visible dust emissions and/or odors; if observed or perceived, mitigation measures were implemented. Preventative measures for dust generation included wetting fill and soil, construction of an engineered construction entrance with gravel pad, covering soils with tarps, and limiting vehicle speeds to five miles per hour.

Odor and vapor mitigation methods included limiting the time that the excavations remained open, minimizing stockpiling of contaminated-source soil, minimizing the handling of

contaminated material, application of tarps over the source area, and direct load-out of soils to trucks for off-site disposal.

Fifteen-minute running averages were calculated from the data recorded in each respective PID or DustTRAK, and averages were compared to the action levels prescribed in the Community Air Monitoring Program (CAMP). Exceedances of the action levels established in the CAMP were documented in 12 of the 199 days during construction activities on the site. Exceedances were due to moisture trapped within the filters of the CAMP equipment; no fugitive dust or odors were observed migrating off-site during construction. Issues were identified and resolved in the field. Community air monitoring data is included as Appendix I. Daily field reports documenting IRM implementation and CAMP results are included as Appendix E.

3.8 Excavated Materials Removal

Implementation of the IRM WP and Addendum included the removal of: 1) petroleum-impacted media to one foot below the observed water table; 2) non-hazardous cobalt-impacted soil/ fill; 3) historic fill; and 4) drums containing petroleum-impacted soil and spent petroleum socks/absorbent pads from remedial excavation activities.

Pre-clearing activities in preparation of IRM implementation, including removal of overgrown vegetation, debris, rebar, and concrete blocks observed along the waterfront, were performed between June 25 and July 13, 2018.

Historic fill, native soil, and petroleum-impacted material were removed to depths between about 2 and 12 feet bgs as part of remedial excavation. When the target excavation depth was reached, documentation samples were collected from the excavation base (discussed in Section 3.9). After completion of remedial excavations and collection of documentation samples, the excavation area was filled with ¾-inch virgin crushed stone wrapped in geotextile fabric to about one foot above the water table (minimum 2-foot-thick layer of ¾-inch stone). The filter fabric was wrapped around the ¾-inch stone to prevent future wash-out, and the excavation area was backfilled with imported material. A layer of imported Lime Item #4 structural fill was backfilled along the IRM WP area (western portion of the site) to final grade. Table 1 details the quantities of material removed from the site. Waste disposal manifests and weight tickets are included in Appendix H. Langan monitored soil excavation at the site between July 11, 2018 and April 8, 2019.

3.8.1 Non-Hazardous Petroleum Impacted Soil/ Fill

Grossly contaminated material was identified in the northwest and central-west region of the NYPA waterfront along the East River. Vertically, the excavations ranged in depth from about 2 to 12 feet bgs. During implementation of the remedy, grossly contaminated material was excavated to one foot below the observed water table, extending to about el -1 to el -4 NAVD88. Material was removed to the extent practical so as not to undermine the stability of the adjacent

properties and structures. The contractor arranged for transportation and off-site disposal of the excavated material in accordance with applicable federal, state, and local regulations. NYCRR Part 364-permitted transporters were used as required to haul the excavated material to the designated disposal facilities. About 4,494 tons (about 2,996 cubic yards) of non-hazardous petroleum-impacted soil/fill was excavated from the NYPA waterfront and disposed of off-site in accordance with the NYSDEC-approved IRM WP and Addendum.

3.8.2 Non-Hazardous Historic Fill

Although non-impacted soil/fill was approved for reuse on-site per the IRM WP, the excavated material (fill including large concrete debris, bricks, timbers, abandoned well materials, metal tiebacks, boulders and wood debris) failed to meet geotechnical requirements for compaction as backfill between the new deadman and sheet pile bulkhead. Therefore, the non-impacted fill and miscellaneous debris excavated above the water table within the remedial excavation was unable to be reused on-site as originally anticipated. About 1,748 tons (about 1,165 cubic yards) of historic fill was excavated from the NYPA waterfront and disposed of off-site in accordance with the NYSDEC-approved IRM WP and Addendum.

3.8.3 Non-Hazardous Cobalt-Impacted Soil

Non-hazardous cobalt-impacted material was identified in soil samples collected during the March 2018 preliminary waste characterization at concentrations above PA Clean Fill criteria. The cobalt-impacted area was further delineated to an about 70-foot by 40-foot area in the central-west region of the site (between about 100 and 170 feet south of the Terra Cotta property line) to about 10.5 feet deep based on the soil sample results. Overall excavations in the central-west region of the site ranged from about el. -1 to el. -4 NAVD88, corresponding to depths of about 1 to 11.5 feet bgs. The total amount of non-hazardous cobalt-impacted material is shown in Table 1, and is included in the total disposal quantities above. The non-hazardous soil/fill was approved for disposal at the Conestoga Landfill in Morgantown, PA under the same approval code as the petroleum-impacted and historic fill/ overburden material disposed of off-site.

When excavation was completed in an area, documentation samples were collected from the excavation base throughout the NYPA waterfront (discussed in Section 3.9). Figure 3 shows the documentation sample location plan.

3.8.4 Total Quantities Removed

About 4,494 tons out of about 6,242 total tons excavated and disposed of off-site included petroleum-impacted soil/fill and/or non-hazardous cobalt-impacted material. About 1,748 tons out of about 6,242 total tons excavated and disposed of off-site included soil/fill free of petroleum impacts (overburden) and/or non-hazardous cobalt-impacted material.

A soil disposal log is provided in Table 1. Waste disposal documentation and facility-countersigned manifests/weight tickets are provided in Appendices C and H, respectively.

The extent of the excavated area is shown on Figure 3. A waste disposal summary is provided in the following table:

Disposal Facility	Material Type	Total Truckloads	Total Tons (Rounded)
Conestoga Landfill	Petroleum / Cobalt		
	Metal Impacted Non-Hazardous	146	3,396
Morgantown, PA	Soil/Fill		
Clean Earth of Southeast Pennsylvania	Petroleum		
Clean Latti of Southeast Fermsylvania	Impacted	128	2,846
Morrisville, PA	Non-Hazardous	120	2,040
IVIOITISVIIIE, I A	Soil/Fill		
	TOTAL	274	6,242

3.8.5 Non-Impacted Concrete Disposal

During excavations along the NYPA waterfront associated with bulkhead installation, non-impacted concrete from existing structures and/or demolition debris was excavated and stockpiled for off-site disposal. Nineteen loads (about 515 tons) of non-impacted concrete were disposed off-site to Evergreen Recycling of Corona Inc. in Flushing, New York (a NYSDEC Part-360 Registered facility). Concrete disposal manifests are included in Appendix H.

Disposal Facility	Material Type	Total Truckloads	Total Tons (Approximate)
Evergreen Recycling of Corona, Inc.	Non-Impacted Concrete	19	515
Flushing, NY	23.131010		

3.8.6 Drum Disposal

During excavations along the NYPA waterfront associated with bulkhead installation, excess petroleum-impacted soil that could not be reused and backfilled within the IRM WP area was transferred into NYCDOT-approved 55-gallon drums for off-site disposal. Thirteen drums containing petroleum impacted non-hazardous soil material and six drums containing spent petroleum socks/absorbent pads from remedial excavation activities were transported off-site to the Conestoga Landfill facility in Morgantown, Pennsylvania on May 24, 2019. Drum disposal documentation is provided in Appendix J and includes facility documentation and copies of countersigned manifests.

3.9 Documentation Soil Sampling

Per NYSDEC DER-10 guidance, and in accordance with the IRM WP and Addendum, documentation soil samples were collected at a frequency of one base excavation sample for every 900 square feet and one sidewall excavation sample for every 30 feet of sidewall. Based on these criteria, 13 base and 10 sidewall documentation samples plus the required QA/QC

samples, were collected. Langan collected documentation soil samples as the excavation for bulkhead installation proceeded. Each soil sample location was screened for evidence of petroleum impacts based on visual, olfactory, and instrumental readings as measured with a handheld PID. Soil samples were collected into laboratory-supplied containers and delivered, via courier, to Alpha in Westborough, MA under standard chain-of-custody protocol. Laboratory analytical reports are provided in Appendix K.

The documentation soil samples were collected and analyzed for NYSDEC Final Commissioner Policy (CP-51) Table 3 VOCs and SVOCs. Sample results were compared to NYSDEC CP-51 SCOs. Data Usability Summary Reports (DUSRs) were prepared for all soil samples (and related QA/QC samples) collected during the remedy. The data usability review confirmed that the data presented in these reports is of an appropriate quality for its intended usage. These DUSRs are included in Appendix L.

A sample summary of the documentation soil samples is provided in Table 2. The documentation sampling locations are shown on Figure 3.

3.9.1 Documentation Sampling Results

The following constituents were detected in soil from post-remedy documentation samples at concentrations that exceed CP-51 SCOs:

• SVOCs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-c,d)pyrene.

Documentation sample results are provided in Table 3 and on Figure 4, and laboratory analytical reports are provided in Appendix K.

Exposure to remaining soil contamination is prevented by limiting access to the western region of the NYPA site via secured chain-link fencing and cover treatments, consisting of a combination of gravel/stone, and/or clean imported material meeting the soil quality requirements in Part 375-6.7(d)(ii)(b) (i.e., lower of PG SCOs or RUR SCOs). In addition, within remedial excavations, a physical demarcation layer was placed along the base of the remedial excavation and wrapped around a minimum of two feet of ¾-inch crushed virgin stone backfilled to one foot above the water table. Capping or removal of residual contaminated material will be addressed as part of the final site remedy, as applicable.

3.10 Imported Material

Backfill was imported to the site in accordance with the IRM WP between September 7, 2018, and April 5, 2019. Imported backfill consisted of: clean topsoil meeting the soil quality requirements in Part 375-6.7(d)(ii)(b) (i.e., lower of PG SCOs or RUR SCOs), ¾-inch virgin quarry stone, Lime Item #4 quarry stone aggregate, 14-inch virgin rip rap stone, ASTM #2 2½-inch virgin quarry stone, and 3/8-inch virgin quarry stone. Prior to import, Langan reviewed material

documentation, including facility approval letters, sieve profile analyses and facility permit information. Upon delivery to the site, imported material was screened by Langan field personnel and was determined to be acceptable for use as backfill based on visual, olfactory, and instrumental (i.e., PID) observations.

A total of 9,186.98 tons of backfill were imported to the site as follows:

- 2,892.15 tons of ASTM #57 (3/4-inch) were imported from the Lafarge-Ravena Quarry via the New York Sand & Stone facility in Brooklyn, NY.
- 5,443.75 tons of Lime Item #4 quarry stone aggregate were imported from the Colarusso Quarry via the New York Sand & Stone facility in Brooklyn, NY.
- 75.52 tons of Lite Stone Fill (4-14 inches) were imported from the Hamburg Quarry via the Eastern Concrete Materials, Inc. facility in Hamburg, NJ.
- 51.54 tons of ASTM #2 (2½-inch) were imported from the Hamburg Quarry via Eastern Concrete Materials, Inc. facility in Hamburg, NJ.
- 268.76 tons of topsoil were imported from Impact Reuse and Recovery Center (IRRC) in Long Island City, NY.
- 455.26 tons of Lime ASTM #8 (3/8-inch) were imported from Martin Marietta-Nova Scotia Quarry via the Eastern Concrete Materials, Inc. facility in Hamburg, NJ.

The new rip rap apron for the outfall constructed at the new bulkhead includes $2\frac{1}{2}$ -inch virgin quarry stone and 14-inch virgin rip rap stone. For construction of the truck wash pad situated in the northwest region of the site, $2\frac{1}{2}$ -inch virgin quarry stone was imported and backfilled above geotextile fabric and polyethylene sheeting. In areas where excavation occurred below the water table, the excavation was filled with $\frac{3}{4}$ -inch virgin crushed stone wrapped in geotextile fabric to about one foot above the water table (minimum 2-foot-thick layer of $\frac{3}{4}$ -inch stone). The filter fabric was wrapped around the $\frac{3}{4}$ -inch stone to prevent future wash-out, and the excavation was backfilled with Lime Item #4 quarry stone aggregate to grade.

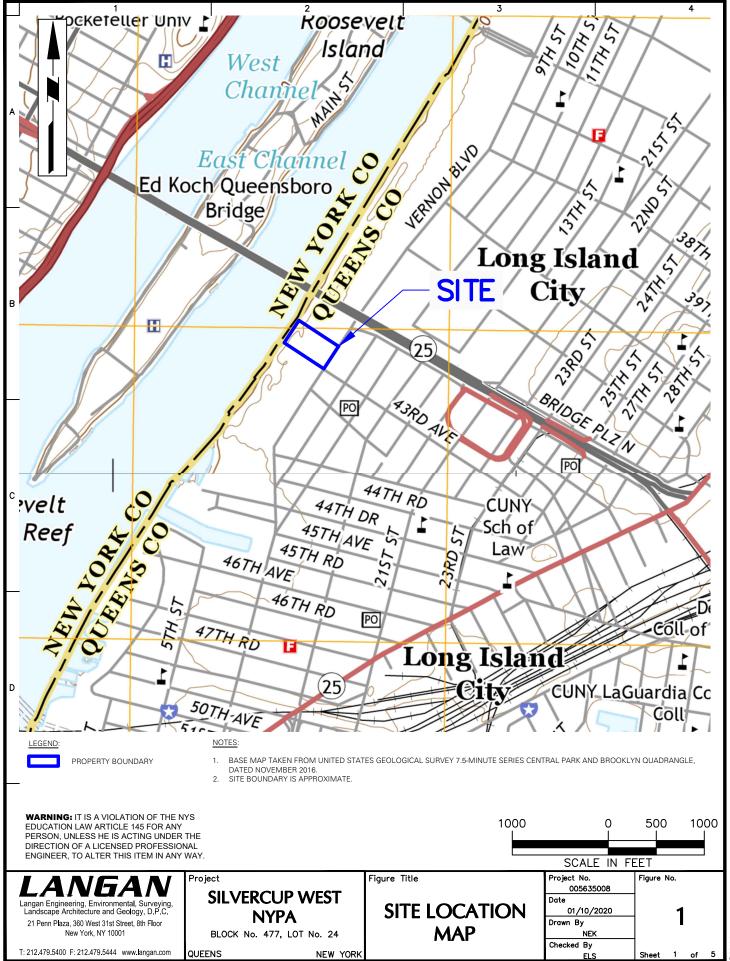
Clean topsoil was imported to the site and backfilled along the southern and eastern slopes of the IRM work area, as part of the stabilized slope. The imported topsoil material meets the soil quality requirements in Part 375-6.7(d)(ii)(b) (i.e., lower of PG SCOs or RUR SCOs). Grass seed was placed in areas where clean topsoil was imported and backfilled along the NYPA waterfront.

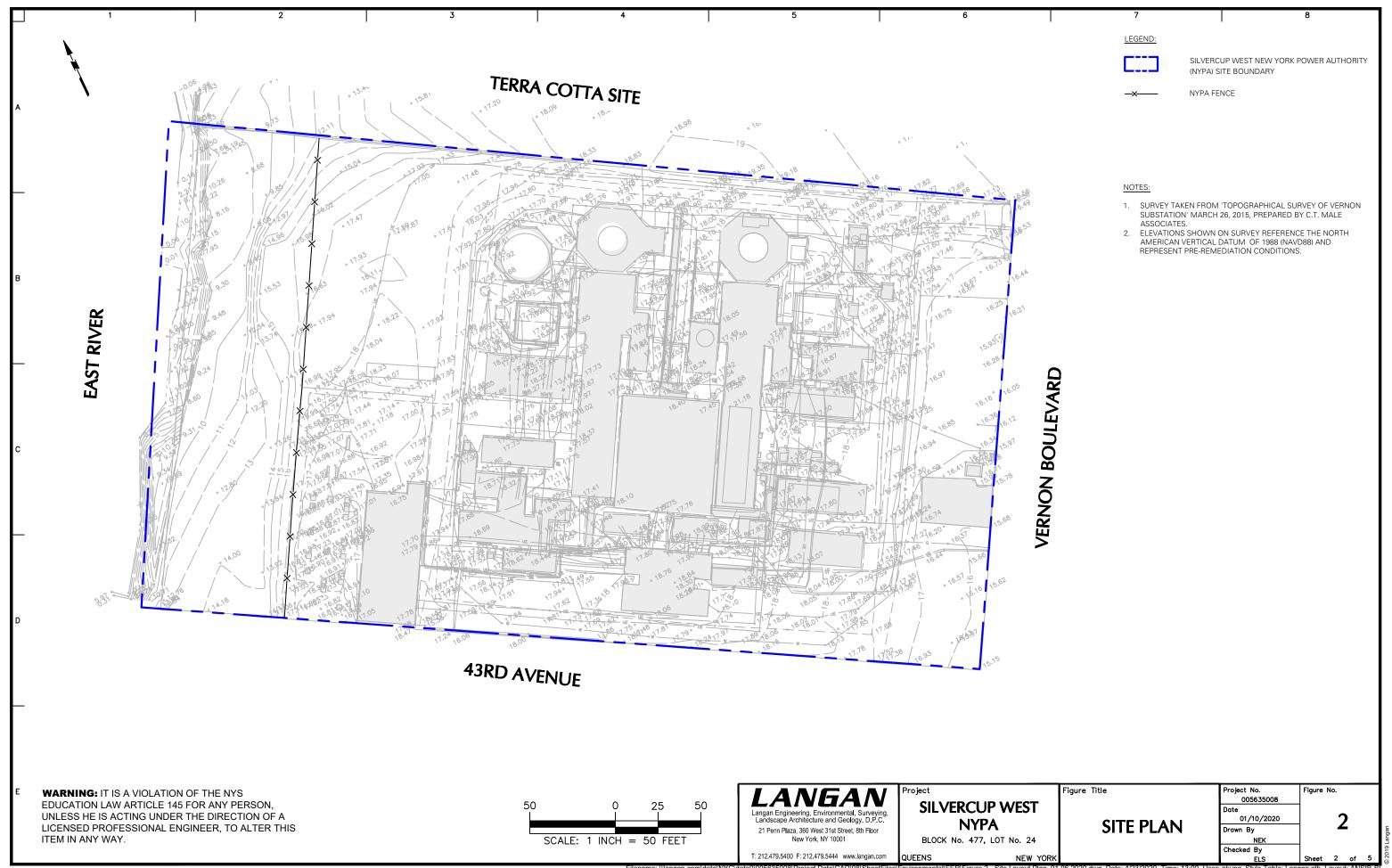
A tabulated summary of the import facilities, material types, number of loads, and material quantities is provided in Table 4. Backfill location areas are shown on Figure 5. Backfill documentation including facility records, sieve analyses, and analytical results (topsoil), and scale tickets for imported material are provided in Appendix M. Photographs of the IRM WP implementation and cover treatments conditions are shown in Appendix N.

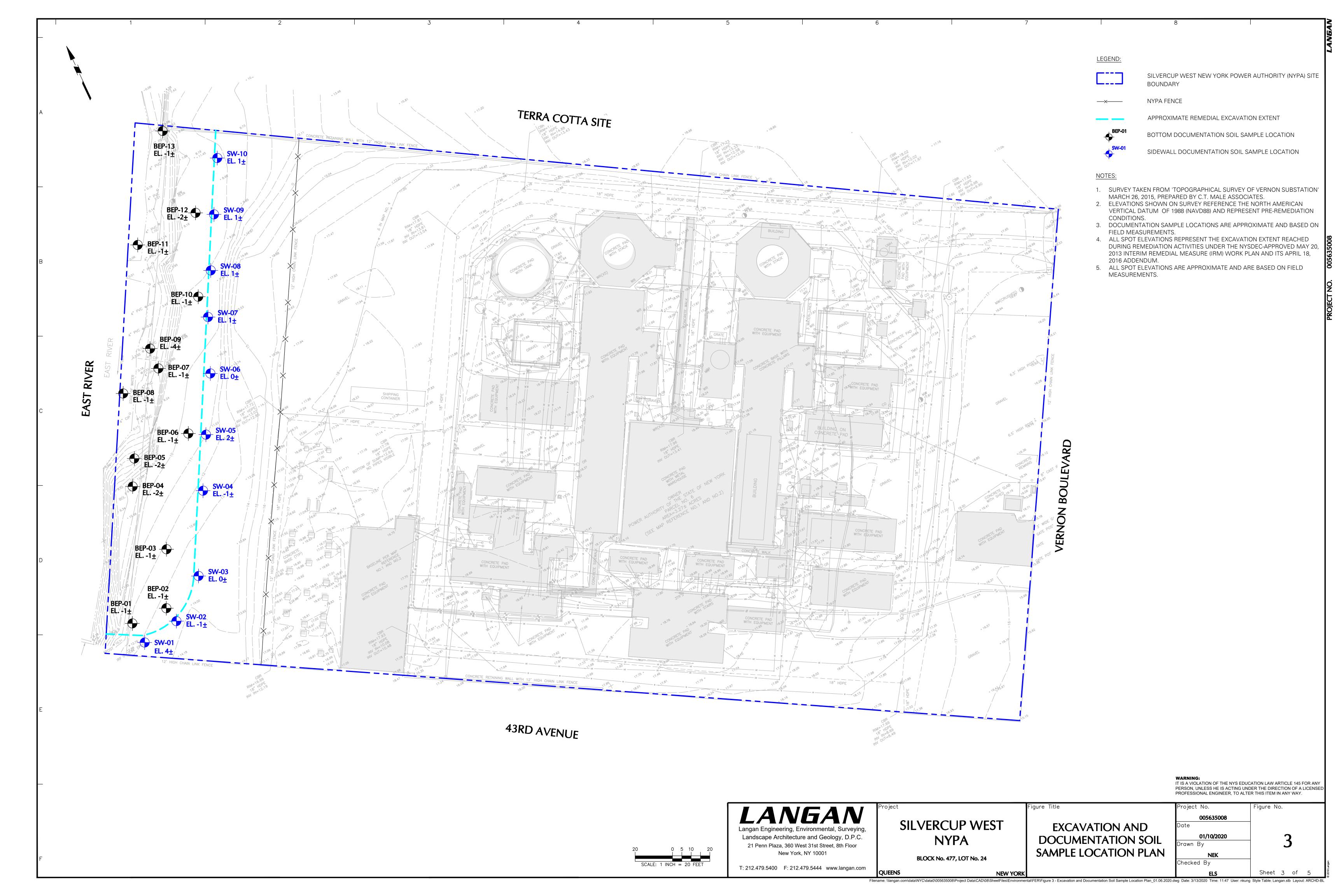
4.0 DEVIATIONS FROM THE IRM WORK PLAN

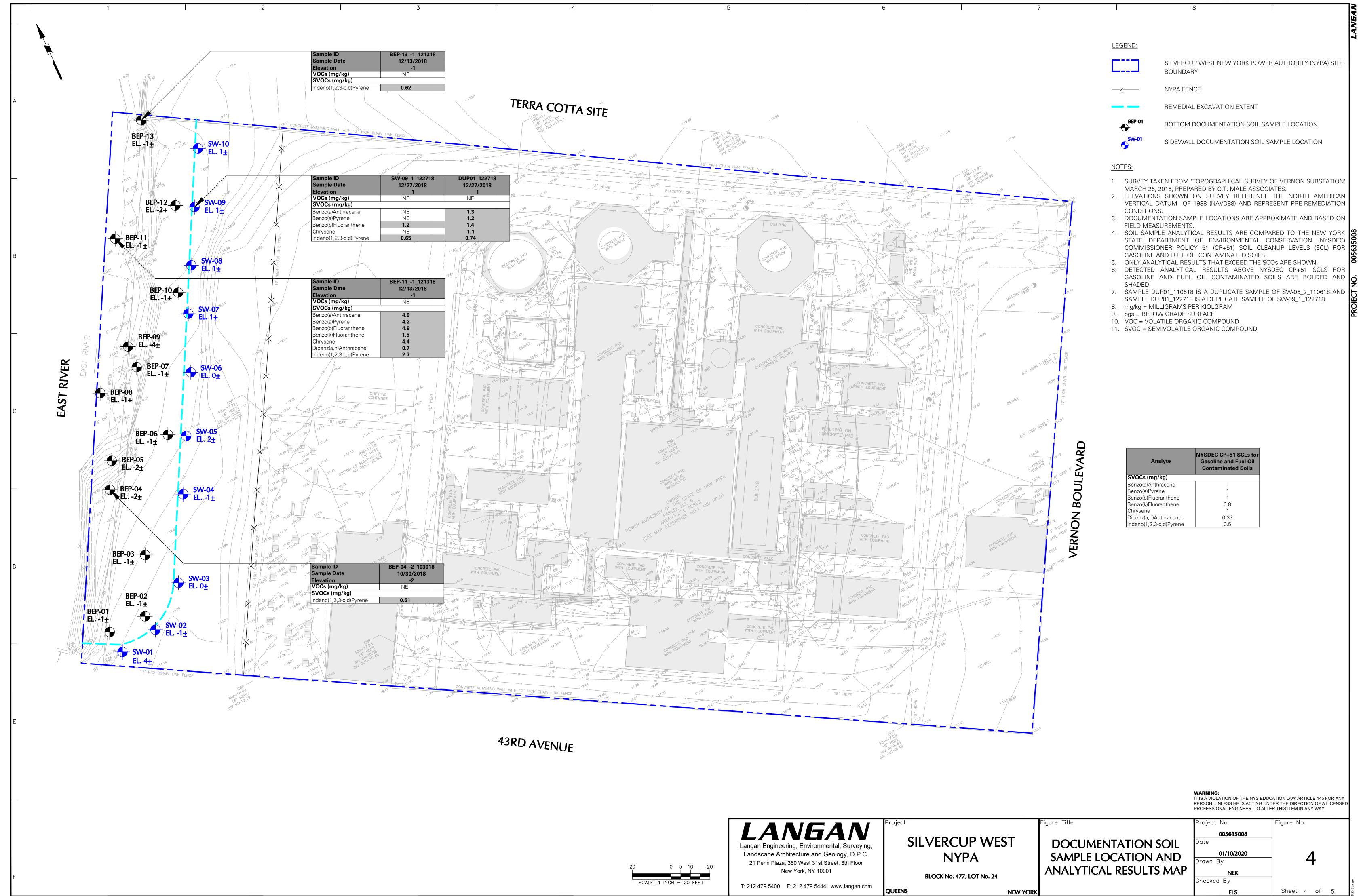
The following section summarizes deviations from the NYSDEC-approved May 2013 IRM WP and April 18, 2016 IRM WP Addendum.

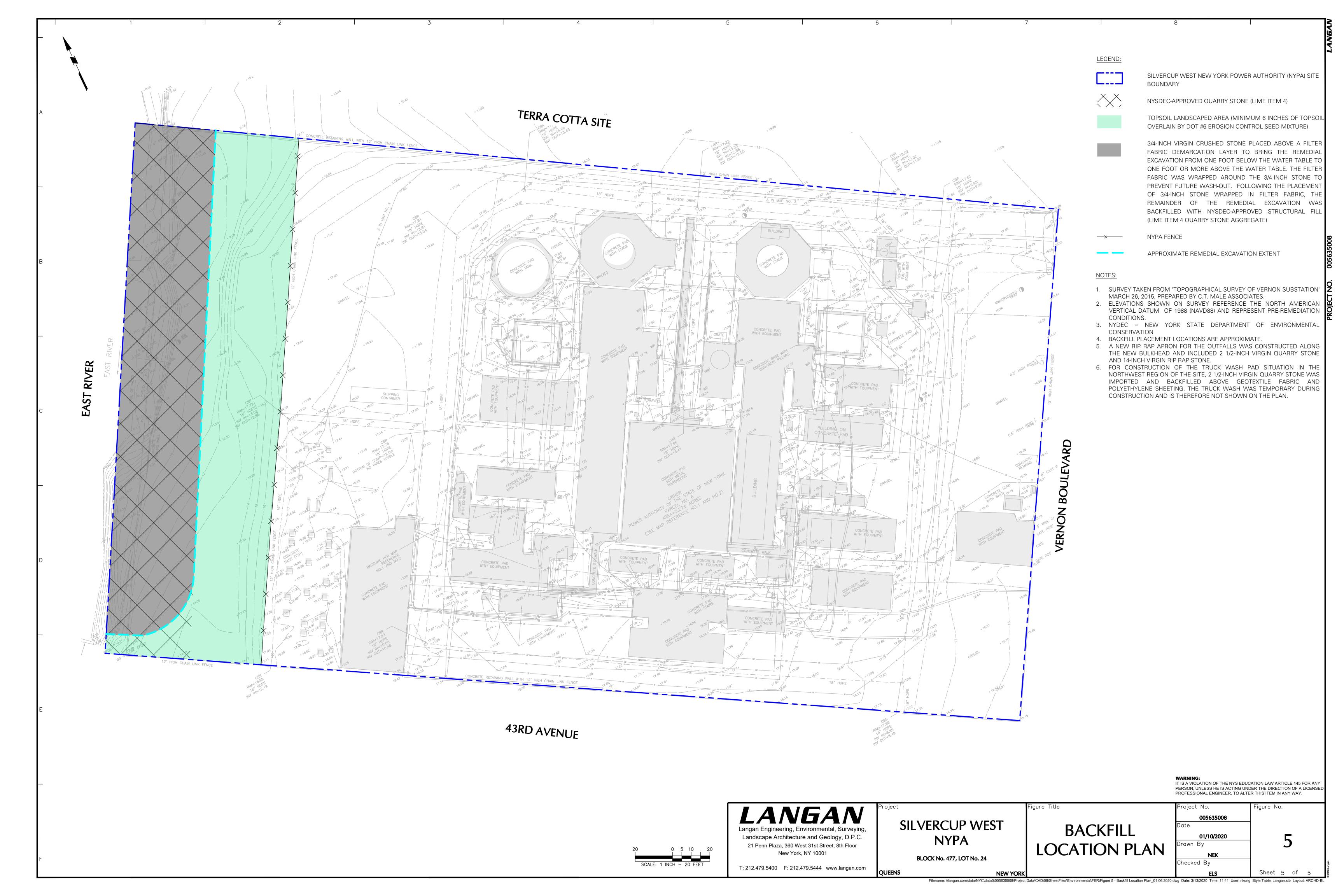
- 1. A NCR was issued on October 15, 2018 to address sheet piles No. 45 and 51 that were unable to be driven to their design elevation of el. -32 NAVD88 due to obstructions:
 - a. Sheet Pile No. 45 was driven to about el. -30.4 NAVD88.
 - b. Sheet Pile No. 51 was driven to about el. -29.3 NAVD88.
 - c. The final depths of these sheet piles ranged from 37.3 to 38.4 feet below grade and more than 17 feet below the observed petroleum impacts. The final depths of the sheet piles were determined adequate to prevent upland contamination from migrating into the East River.
 - d. No further action was required and the NCR was closed on October 24, 2018.
- 2. A second NCR was issued on January 9, 2019 to address an unapproved concrete mix that was used to pour the cast-in-place bulkhead cap in the southwest portion of the site and the headwall of the stormwater outfall.
 - a. The concrete mix used was of the same strength as the approved concrete mix (5,000 psi), but did not have additives for air entrainment and corrosion protection, and used a larger coarse aggregate. Field-measured air entrainment ranged from 1.5 to 2.5%. Required air entrainment was 6%±1.5% per the design drawings.
 - b. The headwall is a structural element exposed to direct contact with saltwater on a daily basis. The portion of the headwall in front of the sheet pile bulkhead (waterward side) was demolished and replaced. The portion of the headwall behind the sheet pile bulkhead (landward side) was encapsulated with at least 6inches of cast-in-place reinforced concrete (using the approved concrete design mix).
 - c. The following corrective actions were implemented:
 - i. Soil Solutions collected four concrete cylinder samples from the southern portion of the cast-in-place concrete cap. The samples were submitted to Long Island Analytical Laboratories, Inc. and analyzed for freeze / thaw parameters. The freeze-thaw durability testing was performed on four cores in accordance with New York State Department of Transportation (NYSDOT) Test Method 502-3P (two cores in 10% NaCl solution; two cores in 3% NaCl solution).


- ii. Based on the results of freeze-thaw durability testing, the concrete mix used for the southern portion of the concrete cap met the concrete design mix requirements for freeze-thaw durability (Exposure Class F1, per May 27, 2016 Construction Drawings prepared by Langan).
- iii. Between October 17, 2019 and October 24, 2019, Soil Solutions performed the following corrective measures:
 - 1. Soil Solutions repaired the concrete core holes within the bulkhead with NS Grout in accordance with the manufacturer's requirements.
 - A finite amount of honeycombing was observed along the concrete bulkhead cap. Locations where honeycombing was observed were mechanically abraded and cleaned. Speed Crete Red Line was applied to these locations to repair these conditions.
 - 3. Soil Solutions also power-washed the concrete surface of the bulkhead cap.
 - 4. Following repair of the concrete core holes and honeycombing, and power-washing, the concrete cap was sealed with two coats of Siloxa-Tek® 8500 sealing agent in accordance with the manufacturer's specifications.
- d. The non-conformance associated with the southern NYPA bulkhead was closed in October 2019, following completion of the abovementioned corrective measures. Documentation referenced in the NCR closure, including the concrete testing results and Langan review response, is provided in Appendix O.


5.0 LIMITATIONS


This CCR was prepared expressly for Terra Cotta, LLC to document on-site remedial activities associated with the ongoing redevelopment of the property located at 42-22 to 42-48 Vernon Boulevard, Long Island City, New York and for the objectives defined herein. Langan cannot assume responsibility for the use of this report for any property other than the specific site addressed in this report, or by any third party without specific written authorization from Langan.


This document can be used by Terra Cotta, LLC as an account of the remedial action as it related to redevelopment of the subject site, and should not be used by any outside entity to aid in nearby development.


FIGURES

TABLES

Table 1 Export Material Summary Construction Completion Report

LOAD COUNTER	DATE	TRUCKING COMPANY	TRUCK LICENSE PLATE NUMBER	TRUCK No.	MANIFEST NUMBER	MATERIAL APPROVAL NUMBER	MATERIAL TYPE	DISPOSAL FACILITY	COUNTERSIGNED MANIFEST/WEIGHT TICKET NUMBER	AMOUNT DISPOSED OFF- SITE (TON)
3	9/5/2018	CV CV	AS653U AU293E	25 19	4696218 4696219	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1163073 1163074	24.12
5	9/5/2018 9/5/2018	CV	AU292E AT363K	56	4696220 4696221	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1163075 1163066	22.44 21.99
6 9	9/5/2018 9/6/2018	CV	AU291E AS653U	99 25	4696222 4696223	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1163082 1163356	18.84 23.05
10 11	9/6/2018 9/6/2018	CV	AU292E AU293E	44 19	4696224 4696225	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1163358 1163359	23.09 22.72
12 13	9/6/2018	CV CV	AU291E AT363K	99 56	4696226 4696227	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1163394 1163387	22.09 24.46
15 16	9/7/2018 9/7/2018	CV CV	AU293E AU292E	19 44	4696228 4696229	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1163539 1163540	23.34 23.66
17 18	9/7/2018 9/7/2018	CV CV	AS653U AU291E	25 99	4696230 4696231	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1163548 1163583	24.07 23.19
19	9/7/2018	CV CV	AT363K AS653U	56 25	4696232 4696233	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1163600 1164722	24.09 25.38
22 23	9/14/2018	CV CV	AU292E AU293E	44	4696234 4696235	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga	1164710 1164711	23.41
24	9/14/2018	CV	AU291E	99	4696236	50811812699	Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1164721	26.47
25	9/14/2018	CV Serpa Express	AT363K AS443X	56	4696237 4696238	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1164779	21.30
27 28	9/14/2018	Serpa Express CV	AU837N AS653U	25	4696239 4696240	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1164787 1165483	19.36 23.21
29 30	9/19/2018 9/19/2018	CV Serpa Express	AU293E AU837N	19	4696241 4696242	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1165484 1165495	22.76 26.09
31	9/19/2018	Serpa Express CV	AS443X AU292E	2 44	4696243 4696244	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1165493 1165497	22.27 23.97
33 34	9/19/2018 9/19/2018	CV	AT363K AU291E	56 99	4696245 4696247	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1165496 1165508	22.50 24.22
35 36	9/20/2018 9/20/2018	CV	AU293E AU292E	19 44	4696248 4696249	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1165760 1165763	20.39 21.02
37 38	9/20/2018	CV	AT363K AU291E	56 99	4696250 4696251	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1165765 1165778	23.89 23.07
39	9/20/2018	Serpa Express	AU837N AU291E	4 99	4696252 4696253	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga	1165816 1166087	23.46
41	9/21/2018	CV	AU292E	44	4696254	50811812699	Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1166076	22.73
49 50	10/16/2018 10/16/2018	Manolos Manolos	AU148N AP414M	19 5	4696255 4696256	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1171699	22.58 27.85
51 52	10/16/2018 10/16/2018	TEV CV	AR240E AT363K	56	4696257 4696258	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1171723 1171724	23.00 20.65
53 54	10/16/2018 10/16/2018	CV TEV	AU292E AT941T	3	4696259 4696260	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1171729 1171730	21.70 20.70
55 57	10/16/2018	CV Manolos	AS653U AU148N	25 19	4696261 4696262	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1171746 1172336	20.64 25.06
58 60	10/18/2018 10/22/2018	Manolos Manolos	AR497D AU148N	6 19	4696263 4696264	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1172352 1173000	26.15 26.64
61 62	10/22/2018 10/22/2018	JC Transport JC Transport	AU111F AT779U	37 31	4696265 4696266	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173016 1173019	23.02 22.03
63 64	10/22/2018	JC Transport JC Transport	AT782U AT778U	34	4696267 4696268	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173021 1173039	22.42
65	10/22/2018	JC Transport JC Transport	AT780U AT353D	32	4696269 4696270	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173037 1173046	23.20
67	10/22/2018	JC Transport	AT384Y	35	4696271	50811812699	Historic Fill / Cobalt Metal Impacted Soil	Conestoga	1173047	22.54
68 69	10/22/2018	JC Transport Manolos	AS488S AT184B	12	4696272 4696273	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173057 1173048	21.57 23.58
72 73	10/24/2018 10/24/2018	Manolos Manolos	AU148N AU658H	19 17	4696274 4696275	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173588 1173606	28.22 22.47
74 75	10/24/2018 10/24/2018	JC Transport Manolos	AS401T AU440B	23 16	4696276 4696277	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173612 1173604	23.03 22.49
76 77	10/24/2018 10/24/2018	JC Transport JC Transport	AS622A AU316D	16 36	4696278 4696279	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173619 1173621	25.15 21.59
78 79	10/24/2018 10/24/2018	JC Transport Manolos	AT781U AT250E	33 13	4696280 4696281	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173636 1173622	19.90 21.87
80 81	10/24/2018	Manolos JC Transport	AT914A AS424V	11 24	4696282 4696283	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173627 1173646	21.89 20.02
82	10/25/2018	Manolos Manolos	AS126P AP414M	8	4696284 4696285	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173854 1173866	22.02 25.90
84	10/25/2018	JC Transport	AT778U	30	4696286	50811812699	Historic Fill / Cobalt Metal Impacted Soil	Conestoga	1173897	21.17
85 86	10/25/2018	Serpa Express JC Transport	AS443X AS425V	2 25	4696287 4696288	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173888 1173900	22.86
88	10/25/2018	JC Transport JC Transport	AS121E AT782U	18	4696289 4696290	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173899 1173916	23.23
90	10/25/2018 10/25/2018	JC Transport Manolos	AS319F AS640N	19	4696291 4696292	50811812699 50811812699	Historic Fill / Cobalt Metal Impacted Soil Historic Fill / Cobalt Metal Impacted Soil	Conestoga Conestoga	1173917 1173907	20.67
91	10/25/2018 10/30/2018	Manolos Manolos	AU205L AS126P	18	4696293 1780326	50811812699 183150168	Historic Fill / Cobalt Metal Impacted Soil Petroleum Impacted Soil	Conestoga Clean Earth of Southeast Pennsylvania	1173908 700000997512	20.67 19.78
93 94	10/30/2018 10/30/2018	Serpa Express Manolos	AS444X AT914A	3 11	1780327 1780328	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997579 700000997544	22.19 23.60
95 96	10/30/2018	Manolos Manolos	AT184B AT773S	12 15	1780329 1780330	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997756 700000997606	24.67 23.39
97 98	10/30/2018 10/30/2018	Manolos Serpa Express	AT250E AS443X	13 2	1780331 1780332	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997744 700000997782	23.62 25.54
99	10/30/2018	Manolos Manolos	AU440B AU658H	16 17	1780333 1780334	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997686 700000997668	21.13 21.13
101 102	10/30/2018	Manolos Manolos	AP414M AU205L	5 18	1780335 1780336	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997633 700000997814	20.70 25.31
103	10/30/2018	Manolos Cuenca Coronel	AT380H AU758A	14	1780337 1780338	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997661 700000997858	24.81
105	10/30/2018	Cuenca Coronel	AT280E	40	1780339	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700000997739	23.38
106	10/30/2018	Cuenca Coronel Cuenca Coronel	AS469U AS716J	65 57	1780340 1780341	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997797 700000997769	23.13
108 109	10/30/2018 10/30/2018	Cuenca Coronel Cuenca Coronel	AT472R AS99D	15 50	1780342 1780343	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997911 700000997922	25.48 25.93
110	10/30/2018 10/30/2018	Cuenca Coronel Cuenca Coronel	AT398F AS208J	41 54	1780344 1780345	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997833 700000997872	22.50 20.67
112 113	10/30/2018 10/30/2018	Cuenca Coronel Cuenca Coronel	AS753X AS211A	67 47	1780346 1780347	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997886 700000997900	17.77 21.39
114 115	10/30/2018 10/30/2018	Cuenca Coronel Cuenca Coronel	AS725D AT104E	48 17	1780348 1780349	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997936 700000997866	21.84 23.73
116 117	10/30/2018 10/30/2018	Cuenca Coronel Cuenca Coronel	AT399F AS597J	71 55	1780350 1780351	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	70000998007 70000998062	24.43 27.84
118	10/30/2018	Cuenca Coronel Cuenca Coronel	AS715J AS100E	56 51	1780352 1780353	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000997980	21.70
120	10/30/2018	Cuenca Coronel Cuenca Coronel	AS963Y AT686H	68	1780353 1780354 1780355	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998089 700000997992 700000998000	23.65
122	10/30/2018	Manolos Manolos	AS126P AT773S	8 15	1780355 1780357 1780358	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998000 700000998174 700000998181	15.39 21.03
124	10/30/2018	Manolos	AU440B	16	1780359	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700000998296	20.47
125 126	10/30/2018	Manolos Manolos	AP414M AU658H	17	1780360 1780361	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998593 700000998306	21.24 25.56
127	10/30/2018	Manolos Manolos	AT914A AT250E	11 13	1780362 1780363	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998313 700000998318	22.80
129 130	10/30/2018 10/30/2018	Manolos Cuenca Coronel	AR498D AT280E	4 40	1780364 1780365	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998335 700000998356	21.58 21.90
131 132	10/30/2018 10/30/2018	Manolos Manolos	AS874P AT184B	9	1780366 1780367	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998369 700000998378	20.25 21.86
133 134	10/30/2018 10/30/2018	Manolos Manolos	AU148N AP962W	19 3	1780368 1780369	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998491 700000998389	24.03 22.11
135 136	10/30/2018 10/30/2018	Manolos Cuenca Coronel	AS640N AS716J	10 57	1780370 1780371	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998413 700000998428	21.24 22.58
137	10/30/2018	Cuenca Coronel Manolos	AS469U AU205L	65	1780372 1780373	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998448	23.82
139	10/30/2018	Manolos	AT380H	14	1780374	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700000998463	19.49
140	10/30/2018 10/30/2018	Cuenca Coronel Cuenca Coronel	AU758A AT398F AT104E	73 41 17	1780375 1780376 1780377	183150168 183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998474 700000998482	20.85 20.63

Table 1 Export Material Summary Construction Completion Report

LOAD COUNTER	DATE	TRUCKING COMPANY	TRUCK LICENSE PLATE NUMBER	TRUCK No.	MANIFEST NUMBER	MATERIAL APPROVAL NUMBER	MATERIAL TYPE	DISPOSAL FACILITY	COUNTERSIGNED MANIFEST/WEIGHT TICKET NUMBER	AMOUNT DISPOSED OFF- SITE (TON)
143 144	10/30/2018	Cuenca Coronel Cuenca Coronel	AS208J AS211A	54 47	1780378 1780401	183150168 183150169	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998603 700000998609	24.86 21.84
145 146	10/30/2018	Cuenca Coronel Cuenca Coronel	AT472R AS999D	15 50	1780402 1780403	183150169 183150169	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000998596 700000998613	22.83 22.69
147 148	11/1/2018 11/1/2018	Manolos Manolos	AT773S AT380H	15 14	1780379 1780380	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000999946 700000999956	20.86 21.61
149 150	11/1/2018	Manolos Manolos	AT914A AU205L	11	1780404 1780405	183150169 183150169	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700000999970 700001000022	22.09 24.27
151	11/1/2018	Manolos	AT380H	14	1780406	183150169	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001000602	20.36
152 153	11/1/2018 11/1/2018	Manolos Manolos	AT914A AT773S	11 15	1780407 1780408	183150169 183150169	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001000619 700001000629	22.09 22.56
154 155	11/1/2018 11/6/2018	Manolos Manolos	AU205L AU440B	18 16	1780409 4696294	183150169 50811812699	Petroleum Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Clean Earth of Southeast Pennsylvania Conestoga	700001000737 1176056	20.49
156	11/6/2018	Manolos	AT20011	11 14	4696295	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1176082	23.18 20.14
157 158	11/6/2018 11/6/2018	Manolos Manolos	AT380H AT773S	15	4696296 4696297	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176079 1176094	25.64
159 160	11/6/2018 11/6/2018	Manolos Manolos	AU658H AT250E	17 13	4696298 4696299	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176097 1176098	21.19 20.55
161 162	11/6/2018 11/6/2018	Manolos Manolos	AS874P AT779U	9 31	4696300 4696301	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176100 1176103	22.80 26.56
163	11/6/2018	JC Transport	AT780U	32	4696302	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1176105	27.15
164 165	11/6/2018 11/6/2018	JC Transport JC Transport	AS424V AU316D	24 36	4696303 4696304	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176119 1176116	26.69 25.20
166 167	11/6/2018 11/6/2018	JC Transport JC Transport	AS622A AT778U	16 30	4696305 4696306	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176117 1176114	26.50 25.00
168 169	11/6/2018 11/6/2018	Manolos JC Transport	AU205L AT781U	18 33	4696307 4696308	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176101 1176121	26.36 26.32
170	11/7/2018	Manolos	AS126P	8	4696309	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1176317	26.74
171 172	11/7/2018 11/7/2018	Serpa Express Manolos	AS444X AP962W	3	4696310 4696311	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176324 1176334	27.91 26.29
173 174	11/7/2018 11/7/2018	Manolos Costa	AU148N AS864B	19	4696312 4696313	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176338 1176321	26.58 22.49
175	11/7/2018	Manolos Carpa Evarage	AR498D	4	4696314 4696315	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1176361	24.18
176 177	11/7/2018 11/7/2018	Serpa Express Serpa Express	AU837N AS443X	2	4696316	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176360 1176366	24.04 23.51
178 179	11/7/2018 11/7/2018	Manolos Manolos	AS640N AS874P	10 9	4696317 4696318	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176368 1176356	26.91 21.10
180 181	11/7/2018 11/7/2018	Manolos T-Mak	AU658H AS873T	17 6	5368531 5368532	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176374 1177185	21.58 25.54
182	11/7/2018	T-Mak	AS553B	5	5368533	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1176401	20.78
183 184	11/7/2018 11/7/2018	Costa Costa	AT222N AS314S	7 4	5368534 5368535	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1176399 1176402	19.99 24.91
185 186	11/12/2018 11/12/2018	Serpa Express Serpa Express	AU837N AS443X	2	5368536 5368537	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1177186 1177226	23.65 26.94
187 188	11/12/2018 11/13/2018	Serpa Express Manolos	AS444X AP414M	3 5	5368538 5368541	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga	1177411 1177427	25.90 24.41
189	11/13/2018	Manolos	AR498D	4	5368540	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1177450	23.84
190 191	11/13/2018 11/13/2018	Manolos Serpa Express	AP962W AU837N	3 4	5368539 5368542	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1177444	22.01 24.38
192 193	11/13/2018 11/13/2018	Manolos Serpa Express	AS640N AS443X	10	5368543 5368544	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1177432 1180783	28.20 28.84
194	12/3/2018	Serpa Express	AR498D	4	5368545	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1180791	31.09
195 196	12/3/2018 12/5/2018	Serpa Express Manolos	AS443X AR497D	6	5368546 1780382	50811812699 183150168	Petroleum / Cobalt Metal Impacted Soil Petroleum Impacted Soil	Conestoga Clean Earth of Southeast Pennsylvania	1182258 700001021894	25.48 18.99
197 198	12/5/2018 12/5/2018	Manolos Serpa Express	AU658H AU837N	17	1780383 1780384	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001021913 700001021963	19.76 21.12
199 200	12/5/2018 12/5/2018	Manolos Manolos	AU148N AS126P	19 8	1780385 1780386	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001021921 700001021987	24.48 21.41
201	12/5/2018	Manolos	AU440B	16	1780387	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001021991	19.16
202	12/6/2018 12/6/2018	Manolos Manolos	AU658H AU205L	17 18	1780388 1780389	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001022923 700001023065	21.76 21.04
204	12/6/2018 12/6/2018	Manolos Manolos	AP962W AS640N	3 10	1780390 1780391	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001023068 700001023071	20.81
206 207	12/10/2018 12/10/2018	Manolos Manolos	AS126P AU148N	8	5368547 5368548	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182267 1182273	24.73 26.71
208	12/10/2018	Manolos	AU440B	16	5368549	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1182265	20.65
209	12/10/2018 12/10/2018	Manolos Manolos	AU658H AS640N	17 10	5368550 5368551	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182277 1182278	22.38 23.56
211 212	12/10/2018 12/10/2018	Manolos Serpa Express	AS874P AU837N	9	5368552 5368553	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182285 1182300	22.36 24.70
213	12/10/2018	Manolos	AT380H	14	5368554	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1182537	23.23
214 215	12/11/2018 12/11/2018	Manolos Manolos	AR497D AU440B	6 16	5368555 5368556	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182565 1182554	20.65 16.55
216 217	12/11/2018 12/11/2018	Manolos Manolos	AU148N AS126P	19 8	5368557 5368558	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182554 1182562	18.75 21.55
218 219	12/11/2018 12/11/2018	Manolos Manolos	AU658H AT184B	17 12	5368559 5368560	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182555 1182567	20.03 21.06
220	12/11/2018	Manolos	AS874P	9	5368561	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1182559	20.35
221	12/11/2018 12/11/2018	Serpa Express Serpa Express	AS444X AS443X	3 2	5368562 5368563	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182568 1182577	21.88 24.90
223 224	12/11/2018 12/11/2018	Manolos Manolos	AT380H AT773S	14 15	1780392 1780393	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001026280 700001026276	24.71 23.36
225 226	12/12/2018 12/12/2018	Manolos Manolos	AU440B AR497D	16 6	5368564 5368565	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182818 1182827	22.32 26.90
227	12/12/2018	Manolos	AU148N	19	5368566	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1182822	23.25
228 229	12/12/2018 12/12/2018	Serpa Express Manolos	AS443X AS874P	9	5368567 5368568	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182845 1182828	29.64 20.24
230	12/12/2018 12/12/2018	Manolos Manolos	AT380H AS126P	14	5368569 5368570	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182843 1182842	22.21 19.96
232	12/12/2018 12/12/2018	Manolos Manolos	AP414M AU205L	5 18	5368571 5368572	50811812699 50811812699	Petroleum / Cobalt Metal Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Conestoga Conestoga	1182866 1182850	23.15 20.73
234	12/12/2018	Manolos	AT250E	13	1780394	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001026716	22.92
235 236	12/12/2018 12/12/2018	Manolos Cuenca Coronel	AT914A AT280E	11 40	1780395 1780396	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001026744 700001026859	21.71 28.03
237 238	12/12/2018 12/12/2018	Cuenca Coronel Cuenca Coronel	AT399F AS999D	71 50	1780397 1780398	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001026761 700001027048	19.49 22.32
239	12/12/2018	Cuenca Coronel Manolos	AT398F AT250E	41	1780399 1780400	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001027186 700001027194	22.61 23.56
241	12/12/2018	Manolos	AT914A	11	1790246	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001027170	19.93
242 243	12/12/2018 12/12/2018	Manolos Manolos	AP962W AR498D	3 4	1790247 1790248	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001027173 700001027209	21.05 22.67
244 245	12/12/2018 12/13/2018	Manolos Manolos	AT773S AP414M	15 5	1790249 5368573	183150168 50811812699	Petroleum Impacted Soil Petroleum / Cobalt Metal Impacted Soil	Clean Earth of Southeast Pennsylvania Conestoga	700001027208 1183131	20.90 30.22
246	12/13/2018	Manolos	AT914A	11	5368574	50811812699	Petroleum / Cobalt Metal Impacted Soil	Conestoga	1183127	24.28
247	12/13/2018 12/13/2018	Manolos Manolos	AS640N AT380H	10	1790257 1790258	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001027553 700001027603	25.09 23.34
249 250	12/13/2018 12/13/2018	Manolos Manolos	AU205L AT773S	18 15	1790259 1790260	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001027578 700001027672	24.26 22.54
251 252	12/13/2018	Manolos Manolos	AS126P AT380H	8	1790261 1790262	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001027704 700001028285	21.21
253	12/13/2018	Manolos	AT250E	13	1790263	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001028248	20.97
254 255	12/13/2018 12/13/2018	Manolos Manolos	AU205L AS640N	18 10	1790264 1790265	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001028288 700001028327	24.45 24.08
256 257	12/13/2018 12/14/2018	Manolos Manolos	AT773S AR498D	15	1790266 1790250	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001028314 700001028694	23.34 21.87
258	12/14/2018	Manolos	AP962W	3	1790251	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001028725	25.02
259 260	12/14/2018 12/14/2018	Manolos Manolos	AP414M AS874P	5 9	1790252 1790253	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001028718 700001028734	21.43 25.96
261 262	12/14/2018 12/14/2018	Manolos Manolos	AR497D AR498D	6 4	1790254 1790255	183150168 183150168	Petroleum Impacted Soil Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania Clean Earth of Southeast Pennsylvania	700001028731 700001029201	24.82 22.16
	12/14/2018	Manolos	AP414M	5	1790256	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001029251	21.00
263		Manolos	AS874P	9	1790267	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001029349	18.27
264 265	12/14/2018 12/14/2018	Manolos	AR497D	6	1790268	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001029318	22.35

Table 1 Export Material Summary Construction Completion Report

LOAD COUNTER	DATE	TRUCKING COMPANY	TRUCK LICENSE PLATE NUMBER	TRUCK No.	MANIFEST NUMBER	MATERIAL APPROVAL NUMBER	MATERIAL TYPE	DISPOSAL FACILITY	COUNTERSIGNED MANIFEST/WEIGHT TICKET NUMBER	AMOUNT DISPOSED OFF- SITE (TON)
269	12/17/2018	Manolos	AT773S	15	1790272	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001029759	20.39
270	12/17/2018	Manolos	AT380H	14	1790273	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001029778	20.04
271	12/17/2018	Manolos	AU205L	18	1790274	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001029786	22.47
272	12/17/2018	Manolos	AP962W	3	1790275	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030151	21.88
273	12/17/2018	Manolos	AT773S	15	1790276	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030158	25.32
274	12/17/2018	Manolos	AR498D	4	1790277	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030170	21.83
275	12/17/2018	Manolos	AU205L	18	1790278	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030229	20.34
276	12/17/2018	Manolos	AT380H	14	1790279	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030242	21.76
277	12/18/2018	Manolos	AT250E	13	1790280	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030709	22.93
278	12/18/2018	Manolos	AT914A	11	1790281	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030712	24.39
279	12/18/2018	Manolos	AS126P	8	1790282	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030759	20.04
280	12/18/2018	Manolos	AU440B	16	1790283	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001030772	21.62
281	12/18/2018	Manolos	AT250E	13	1790284	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001031209	20.27
282	12/18/2018	Manolos	AU440B	16	1790285	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001031269	20.64
283	12/18/2018	Manolos	AS126P	8	1790286	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001031278	22.94
284	12/18/2018	Manolos	AT914A	11	1790287	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001031261	21.23
285	12/19/2018	Serpa Express	AS444X	3	5368575	50811812699	Historic Fill / Cobalt Metal Impacted Soil	Conestoga	1184180	21.29
286	12/19/2018	Serpa Express	AS443X	2	5368576	50811812699	Historic Fill / Cobalt Metal Impacted Soil	Conestoga	1184198	25.19
287	12/19/2018	Manolos	AS874P	9	1790288	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001031821	14.58
288	12/19/2018	Manolos	AS126P	8	1790289	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001031853	19.21
289	12/19/2018	Manolos	AS874P	9	1790290	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001032394	24.15
290	12/19/2018	Manolos	AS126P	8	1790291	183150168	Petroleum Impacted Soil	Clean Earth of Southeast Pennsylvania	700001032434	22.62

Table 2 Construction Completion Report Documentation Soil Sample Summary

						SOIL		
No.	Sample Name	Boring Location	Sample Type	Sample Date	Sample Time	Sample Elevation (feet NAVD88)	Target Sample Depth	Analysis
1	BEP-011_103018	BEP-01		10/30/2018	940	-1		
2	BEP-021_103018	BEP-02		10/30/2018	950	-1		
3	BEP-031_103018	BEP-03		10/30/2018	1330	-1		
4	BEP-042_103018	BEP-04		10/30/2018	1400	-2		
5	BEP-052_103018	BEP-05		10/30/2018	1445	-2		
6	BEP-062_110618	BEP-06		11/6/2018	815	-2		
7	BEP-061_110818	BEP-06		11/8/2018	1000	-1		
8	BEP-071_110718	BEP-07		11/7/2018	815	-1		
9	BEP-081_110718	BEP-08		11/7/2018	1000	-1		
10	BEP-094_121018	BEP-09		12/10/2018	900	-4		
11	BEP-101_121318	BEP-10		12/13/2018	800	-1		
12	BEP-111_121318	BEP-11		12/13/2018	1030	-1		
13	BEP-122_121918	BEP-12	- Grab	12/19/2018	900	-1	One foot below the water table / Remediation Extent	CP-51 VOCs and SVOCs
14	BEP-131_121318	BEP-13		12/13/2018	805	-1		
15	SW-01_4_103018	SW-01		10/30/2018	945	4		
16	SW-021_103118	SW-02		10/31/2018	1245	-1		
17	SW-03_0_103118	SW-03		10/31/2018	1300	0		
18	SW-041_103118	SW-04		10/31/2018	1345	-1		
19	SW-05_2_110618	SW-05		11/6/2018	800	2		
20	SW-06_0_110718	SW-06		11/7/2018	830	0		
21	SW-07_1_122718	SW-07		12/27/2018	930	1		
22	SW-08_1_122718	SW-08		12/27/2018	920	1		
23	SW-09_1_122718	SW-09		12/27/2018	910	1		
24	SW-10_1_122718	SW-10		12/27/2018	915	1		
						QA/QC		
1	DUP01_110618	SW-05		11/6/2018	1200	2	One foot below the water table / Remediation Extent	
2	DUP01_122718	SW-09		12/27/2018	1200	1	One root below the water table / Nemediation Extent	CP-51 VOCs and SVOCs
3	FB01_110618	NA		11/6/2018	900	NA		CF-51 VOCS and SVOCS
4	FB01_122718	NA		12/27/2018	1130	NA		
5	TB01_103118	NA]	10/31/2018	NA	NA		
6	TB01_103018	NA]	10/30/2018	NA	NA		
7	TB01_110618	NA	Grab	11/6/2018	NA	NA		
8	TB01_121018	NA		12/10/2018	NA	NA		
9	TB01_121918	NA		12/19/2018	NA	NA		CP-51 VOCs
10	TB01_122718	NA		12/27/2018	NA	NA	NA	
11	TB01_110718	NA		11/7/2018	NA	NA		
12	TB01_110818	NA]	11/8/2018	NA	NA		
13	TB01_121318	NA		12/13/2018	NA	NA		
14	BEP-MS_110718	BEP-07	MS	11/7/2018	1200	-1		
15	BEP-MSD_110718	BEP-07	MSD	11/7/2018	1200	-1		CP-51 VOCs and SVOCs
16	SW-MS_122718	SW-10	MS	12/27/2018	915	1		CI -SI VOCS dIIU SVOCS
17	SW-MSD_122718	SW-10	MSD	12/27/2018	915	1		

- Notes:

 1. Elevations reference the United States Geological Survey (USGS) North American Vertical Datum of 1988 (NAVD88).

 2. VOC = Volatile organic compound

 3. SVOC = Semivolatile organic compound

 4. QA/QC = Quality assurance/quality control

 5. NA = Not applicable

Table 3 Documentation Soil Sample Analytical Results Construction Completion Report

Silvercup West - NYPA Long Island City, New York BCP Site No.: C2411099 Langan Project No.: 005635008

Location		BEP-01	BEP-02		BEP-03		BEP-04		BEP-05	BEP-06		BEP-07	BEP-08		BEP-09		BEP-10	BEP-11	BE	P-12
Sample ID	NYSDEC CP-51	BEP-01 -1 103018	BEP-02 -1 10301	8	BEP-03 -1 1030	18	BEP-04 -2 103018		BEP-052_103018	BEP-06 -1 110818		BEP-07 -1 110718	BEP-08 -1 110718	ш	BEP-094_121018	3	BEP-10 -1 121318	BEP-11 -1 121318		-2_121918
Laboratory ID	SCLs for Gasoline	L1844313-01	L1844313-02		L1844313-03		L1844313-04		L1844313-05	L1845851-01		L1845557-02	L1845557-01		L1850619-01		L1851330-03	L1851330-04	_	2290-01
Sample Date	and Fuel Oil	10/30/2018	10/30/2018		10/30/2018		10/30/2018		10/30/2018	11/8/2018		11/7/2018	11/7/2018		12/10/2018		12/13/2018	12/13/2018		9/2018
Depth (feet bgs)	Contaminated Soils	-1	-1		-1		-2		-2	-1		-1	-1		-4		-1	-1		-2
Volatile Organic Compounds (mg/kg)							_		_						•					
1,2,4-Trimethylbenzene	3.6	0.002 U	0.002	U	0.74		0.0027 U	J	0.0022 J	0.034 J		0.13 U	0.0023 U		0.0015	J	0.0021 U	0.003	0.002	21 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	0.002 U		U	0.13	U	0.0027 U	J	0.00061 J	0.09 U		0.13 U	0.0023 U		0.001	J	0.0021 U	0.003	0.002	
Benzene	0.06	0.0005 U	0.00049	U	0.033	U	0.00068 U	J	0.00024 J	0.013 J		0.032 U	0.00057 U		0.0006	U	0.00052 U	0.00076 U	0.000)52 U
Cymene	10	0.001 U	0.00099	U	0.28		0.0003 J	J	0.0078	0.033 J		0.064 U	0.0011 U		0.00024	J	0.00082 J	0.0015 l	0.00	,1 U
Ethylbenzene	1	0.001 U	0.00099	U	0.065	U	0.0014 U	J	0.00034 J	0.02 J		0.016 J	0.0011 U		0.0012	U	0.001 U	0.0015 U	0.00	,1 U ∫
Isopropylbenzene (Cumene)	2.3	0.001 U	0.00099	U	0.1		0.0014 U	J	0.00048 J	0.039 J		0.077	0.0033		0.0021		0.001 U	0.0015 l	0.00	,1 U
M,P-Xylene	~	0.002 U	0.002	U	0.13	U	0.0027 U	J	0.0013 J	0.053 J		0.13 U	0.0023 U		0.0024	U	0.0021 U	0.003	0.002	
Naphthalene	12	0.004 U	0.00	U	0.053	J	0.0013 J	J	0.0065	0.38		0.32	0.0058		0.0069		0.0041 U	0.0028	0.004	
n-Butylbenzene	12	0.001 U	0.00000	U	0.14		0.0014 U	J	0.00039 J	0.058		0.098	0.015		0.0012	U	0.001 U	0.0015 l	0.00	
n-Propylbenzene	3.9	0.001 U	0.00000	U	0.14		0.0014 U	J	0.00055 J	0.061		0.1	0.0011 U		0.00023	J	0.001 U	0.0015 l	0.00	
o-Xylene (1,2-Dimethylbenzene)	~	0.001 U	0.00099	U	0.065	U	0.0014 U	J	0.0004 J	0.016 J		0.064 U	0.0011 U		0.00055	J	0.001 U	0.0015 l	0.00	
Sec-Butylbenzene	11	0.001 U	0.00099	U	0.23		0.0003 J	J	0.0013	0.08		0.1	0.068		0.0011	J	0.00057 J	0.0015 l	0.00	
T-Butylbenzene	5.9	0.002 U	0.002	U	0.043	J	0.0027 U	´	0.00046 J	0.012 J		0.015 J	0.03		0.00068	J	0.00037 J	0.003	0.000	
Toluene	0.7	0.001 U	0.00000	U	0.065	U	0.0014 U	´	0.0013	0.033 J		0.064 U	0.0011 U		0.0012	U	0.001 U	0.0015 l	0.00	
Total Xylenes	0.26	0.001 U	0.00099	U	0.065	U	0.0014 U	J	0.0017 J	0.069 J		0.064 U	0.0011 U		0.00055	J	0.001 U	0.0015 l	0.00	1 U
Semivolatile Organic Compounds (mg	<u> </u>									T								T	1	
Acenaphthene	20	0.17 U	0.16	U	0.035	J	0.11 J	.	0.069 J	0.56		0.047 J	0.064 J		0.2		0.039 J	1.1	0.05	
Acenaphthylene	100	0.17 U		U	0.16	U	0.051 J	'	0.034 J	0.16 U		0.16 U	0.17 U		0.17	U	0.16 U	0.44	0.03	
Anthracene	100	0.12 U	0.12	U	0.088	J	0.24		0.21	0.44		0.12 U	0.13 U		0.13	U	0.14	2	0.1	
Benzo(a)Anthracene	1	0.3	0.12	U	0.3		0.78		0.46	0.39		0.12	0.27		0.14		0.33	4.9	0.23	
Benzo(a)Pyrene	1	0.2	0.16	U	0.27		0.73		0.39	0.38		0.14 J	0.31		0.18		0.22	4.2	0.26	
Benzo(b)Fluoranthene	1	0.26	J ***-	U	0.35		0.96		0.48	0.46		0.2	0.41		0.24	.	0.28	4.9	0.31	
Benzo(g,h,i)Perylene	100	0.11 J	1	U	0.18	, [0.49		0.26	0.23		0.099 J	0.2		0.13	J	0.13 J	2.6	0.18	
Benzo(k)Fluoranthene	0.8	0.096 J	1 02	U	0.089	J	0.28		0.17	0.16		0.057 J	0.15		0.07	J	0.1 J	1.5	0.11	
Chrysene	0.22	0.17	0.12	U	0.28	_ , [0.67		0.4	0.35		0.14	0.32		0.16		0.25	4.4	0.21	
Dibenz(a,h)Anthracene	0.33	0.034 J	0.12	٠ 	0.043	J	0.12		0.062 J	0.058 J		0.024 J	0.045 J		0.13	U	0.028 J	0.7	0.03	
Fluoranthene	100	0.98	0.12	U	0.6	, [1.3	.	0.98	0.78		0.25	0.56		0.31		0.78	11	0.47	
Fluorene	30	0.21 U	1	U	0.034	J	0.088 J 0.51	'	0.092 J	0.91		0.068 J	0.22 U		0.091	J	0.052 J	1.2 2.7	0.04	
Indeno(1,2,3-c,d)Pyrene Naphthalene	0.5	0.12 J 0.086 J	0.16 0.19	U	0.18	. , F	0.091 J	.	0.26	0.26 0.5		0.1 J 0.093 J	0.22 0.22 U		0.12	J	0.14 J 0.078 J		0.18 0.13	
·	12			٠ 	0.053	J		'	0.68						0.11	J		1.1		
Phenanthrene	100 100	0.12 U 1.3	0.12 0.12		0.42 0.56	- 1	0.85		0.89 0.84	0.71 0.93		0.089 J 0.22	0.22 0.5		0.19 0.28		0.55 0.61	7.7 9.9	0.27 0.42	
Pyrene General Chemistry (%)	100	1.3	0.12	U	0.00		1.1		0.84	0.33		U.ZZ	0.5		υ.Ζδ		0.01	J.3	0.42	-
Total Solids		79.7	85.2		81.8	Т	84.1	T	84	81.1	Т	83.3	76	1	75.1		84	66.5	83.9	a a
10tai 301105	~	/3./	00.2		01.ŏ		04.1		04	01.1		೦১.১	70		70.1		04	00.5	83.8	J

Notes provided on Page 4.

Table 3 Documentation Soil Sample Analytical Results Construction Completion Report

Silvercup West - NYPA Long Island City, New York BCP Site No.: C2411099 Langan Project No.: 005635008

Location Sample ID Laboratory ID Sample Date	NYSDEC CP-51 SCLs for Gasoline and Fuel Oil Contaminated Soils	BEP-01 BEP-011_1030 L1844313-01 10/30/2018	BEP-13 BEP-131_121318 L1851330-02 12/13/2018	SW-01 SW-01_4_103018 L1844313-06 10/30/2018	SW-02 SW-021_103118 L1844556-01 10/31/2018	SW-03 SW-03_0_103118 L1844556-02 10/31/2018	SW-04 SW-041_103118 L1844556-03 10/31/2018	SW-05 SW-05_2_110618 L1845293-01 11/6/2018	SW-05 DUP01_110618 L1845293-03 11/6/2018	SW-06 SW-06_0_110718 L1845557-03 11/7/2018	SW-07 SW-07_1_122718 L1853204-04 12/27/2018	SW-08 SW-08_1_122718 L1853204-03 12/27/2018	SW-09 SW-09_1_122718 L1853204-01 12/27/2018	SW-09 DUP01_122718 L1853204-05 12/27/2018
Depth (feet bgs)		-1	-1	4	-1	0	-1	2	2	0	1	1	1	1
Volatile Organic Compounds (mg/kg)	2.6	0.002	0.0022	0.0022	0.0022	0.0025	0.0027	0.52	T 0.11 II	1 0.42 11	0.10	0.000	0.062	0.046
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene (Mesitylene)	3.6 8.4	0.002	0.0023 U 0.0023 U	0.0022 U 0.0022 U	0.0023 U 0.0023 U	0.0025 U 0.0025 U	0.0027 U 0.0027 U	0.52 U 0.52 U	0.11 U 0.11 U	0.42 U 0.42 U	0.12 J 0.034 J	0.082 J 0.31 U	0.062 J 0.014 J	0.046 J 0.14 U
	0.06	0.002	0.0023 U	0.0022 U	0.0023 U	0.0025 U	0.0027 U	0.52 U	0.11 U	0.42 U	0.034 J	0.31 U	0.014 J	0.14 U
Benzene	10	0.0005	0.00036 U			0.00062 U			0.028 U					0.068 U
Cymene	10			0.0011 U	0.0012 U		0.0013 U	0.26 U	•	0.21 U	0.06 J 0.027 J	0.16 U	0.067 U	
Ethylbenzene	1	0.001	0.0012 U	0.0011 U	0.0012 U	0.0012 U	0.0013 U	0.26 U	0.055 U	0.21 U		0.04 J	0.038 J	0.034 J
Isopropylbenzene (Cumene)	2.3	0.001	0.0012 U	0.0011 U	0.0012 U	0.0012 U	0.0013 U	0.24 J	0.029 J	0.41	0.017 J	0.16	0.035 J	0.029 J
M,P-Xylene	~	0.002	0.0023 U	0.0022 U	0.0023 U	0.0025 U	0.0027 U	0.52 U	0.11 U	0.42 U	0.059 J	0.095 J	0.071 J	0.068 J
Naphthalene	12	0.004	0.0047 U	0.00072 J	0.0046 U	0.005 U	0.0053 U	1.2	0.12 J	3.2	0.17 J	0.63 U	0.21 J	0.27 U
n-Butylbenzene	12	0.001	0.0012 U	0.0011 U	0.0012 U	0.0012 U	0.0013 U	0.56	0.052 J	0.39	0.077 U	0.16	0.067 U	0.068 U
n-Propylbenzene	3.9	0.001	0.0012 U	0.0011 U	0.0012 U	0.0012 U	0.0013 U	0.3	0.023 J	0.24	0.026 J	0.16 U	0.049 J	0.043 J
o-Xylene (1,2-Dimethylbenzene)	~	0.001	0.00036 J	0.0011 U	0.0012 U	0.0012 U	0.0013 U	0.26 U	0.055 U	0.21 U	0.032 J	0.16	0.067 U	0.068 U
Sec-Butylbenzene	11	0.001	0.0012 U	0.0011 U	0.0012 U	0.0012 U	0.0013 U	0.43	0.046 J	0.48	0.037 J	0.16 U	0.072	0.11
T-Butylbenzene	5.9	0.002	0.0023 U	0.0022 U	0.0023 U	0.0025 U	0.0027 U	0.52 U	0.11 U	0.1 J	0.15 U	0.31 U	0.081 J	0.18
Toluene	0.7	0.001	0.0012 U	0.0011 U	0.0012 U	0.0012 U	0.0013 U	0.26 U	0.055 U	0.21 U	0.077 U	0.16 U	0.067 U	0.068 U
Total Xylenes	0.26	0.001	0.00036 J	0.0011 U	0.0012 U	0.0012 U	0.0013 U	0.26 U	0.055 U	0.21 U	0.091 J	0.095 J	0.071 J	0.068 J
Semivolatile Organic Compounds (mg.	, U.	0.17	0.075	0.040	0.17	0.17	0.10	0.1	1.1	1 00 1	0.000	0.070	0.10	0.001
Acenaphthene	20	0.17	0.075 J	0.046 J	0.17 U	0.17 U	0.16 U	2.1	1.1	0.8	0.088 J	0.072 J	0.13 J	0.091 J
Acenaphthylene	100	0.17	1.2	0.15 U	0.17 U	0.17 U	0.036 J	1.6 U	0.77 U	0.17 U	0.17 U	0.16 U	0.16 U	0.16 U
Anthracene	100	0.12	0.32	0.12	0.12 U	0.12 U	0.048 J	2	0.97	0.69	0.17	0.4	0.37	0.34
Benzo(a)Anthracene	1	0.3	0.77	0.35	0.033 J	0.12 U	0.24	1.2 U	0.11 J	0.14	0.37	0.37	1	1.3
Benzo(a)Pyrene	1	0.2	0.92	0.32	0.17 U	0.17 U	0.2	1.6 U	0.77 U	0.087 J	0.35	0.3	0.99	1.2
Benzo(b)Fluoranthene	1	0.26	1	0.42	0.038 J	0.12 U	0.23	1.2 U	0.58 U	0.11 J	0.46	0.36	1.2	1.4
Benzo(g,h,i)Perylene	100	0.11	0.65	0.26	0.17 U	0.17 U	0.14 J	1.6 U	0.77 U	0.054 J	0.25	0.18	0.63	0.69
Benzo(k)Fluoranthene	0.8	0.096	0.26	0.14	0.12 U	0.12 U	0.064 J	1.2 U	0.58 U	0.045 J	0.14	0.13	0.43	0.48
Chrysene	1	0.17	0.7	0.34	0.032 J	0.12 U	0.22	1.2 U	0.1 J	0.12 J	0.35	0.31	0.95	1.1
Dibenz(a,h)Anthracene	0.33	0.034	0.12	0.056 J	0.12 U	0.12 U	0.12 U	1.2 U	0.58 U	0.13 U	0.06 J	0.048 J	0.17	0.18
Fluoranthene	100	0.98	1.4	0.69	0.057 J	0.024 J	0.31	0.55 J	0.31 J	0.34	0.74	0.73	1.8	2.1
Fluorene	30	0.21	0.13 J	0.045 J	0.21 U	0.21 U	0.21 U	6.8	3.3	1.6	0.11 J	0.081 J	0.1 J	0.098 J
Indeno(1,2,3-c,d)Pyrene	0.5	0.12	0.62	0.25	0.17 U	0.17 U	0.13 J	1.6 U	0.77 U	0.053 J	0.26	0.19	0.65	0.74
Naphthalene	12	0.086	0.52	0.04 J	0.21 U	0.21 U	0.042 J	2 U	0.97 U	0.2 J	0.27	0.11 J	0.26	0.3
Phenanthrene	100	0.12	0.88	0.43	0.042 J	0.12 U	0.1 J	1.2 U	0.58 U	0.075 J	0.49	0.13	0.66 J	0.37 J
Pyrene	100	1.3	1.6	0.59	0.049 J	0.12 U	0.46	1.5	0.82	0.56	0.74	0.85	1.8	2.1
General Chemistry (%)	<u>, </u>	· · · · · · · · · · · · · · · · · · ·					·			, ,		T	1	
Total Solids	~	79.7	82.7	88.8	78.8	79.5	78.9	81.7	85.8	76.4	77.7	82.7	80.6	79.3

Notes provided on Page 4.

Table 3 Documentation Soil Sample Analytical Results Construction Completion Report

Location Sample ID Laboratory ID Sample Date Depth (feet bgs)	NYSDEC CP-51 SCLs for Gasoline and Fuel Oil Contaminated Soils	BEP-01 BEP-011_1030 ¹ L1844313-01 10/30/2018 -1	SW-10 SW-10_1_122 L1853204-0 12/27/2018 1	2
Volatile Organic Compounds (mg/kg)			
1,2,4-Trimethylbenzene	3.6	0.002	0.024	J
1,3,5-Trimethylbenzene (Mesitylene)	8.4	0.002	0.13	U
Benzene	0.06	0.0005	0.032	U
Cymene	10	0.001	0.064	L
Ethylbenzene	1	0.001	0.011	J
Isopropylbenzene (Cumene)	2.3	0.001	0.011	J
M,P-Xylene	~	0.002	0.13	L
Naphthalene	12	0.004	0.11	J
n-Butylbenzene	12	0.001	0.064	L
n-Propylbenzene	3.9	0.001	0.064	L
o-Xylene (1,2-Dimethylbenzene)	~	0.001	0.064	L
Sec-Butylbenzene	11	0.001	0.037	J
T-Butylbenzene	5.9	0.002	0.0092	J
Toluene	0.7	0.001	0.064	Ĺ
Total Xylenes	0.26	0.001	0.064	Ĺ
Semivolatile Organic Compounds (m	ıg/kg)			
Acenaphthene	20	0.17	0.036	J
Acenaphthylene	100	0.17	0.16	L
Anthracene	100	0.12	0.078	J
Benzo(a)Anthracene	1	0.3	0.21	
Benzo(a)Pyrene	1	0.2	0.19	
Benzo(b)Fluoranthene	1	0.26	0.25	
Benzo(g,h,i)Perylene	100	0.11	0.13	J
Benzo(k)Fluoranthene	0.8	0.096	0.082	J
Chrysene	1	0.17	0.19	
Dibenz(a,h)Anthracene	0.33	0.034	0.032	J
Fluoranthene	100	0.98	0.36	
Fluorene	30	0.21	0.03	
Indeno(1,2,3-c,d)Pyrene	0.5	0.12	0.14	J
Naphthalene	12	0.086	0.12	
Phenanthrene	100	0.12	0.22	
Pyrene	100	1.3	0.42	
General Chemistry (%)				
Total Solids	~	79.7	84.9	

Table 3

Documentation Soil Sample Analytical Results Construction Completion Report

Silvercup West - NYPA Long Island City, New York BCP Site No.: C2411099 Langan Project No.: 005635008

Notes:

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Commissioner Policy 51 (CP+51) Soil Cleanup Levels (SCL) for Gasoline and Fuel Oil Contaminated Soils.
- 2. Only detected analytes are shown in the table.
- 3. Detected analytical results above NYSDEC CP+51 SCLs for Gasoline and Fuel Oil Contaminated Soils are bolded and shaded.
- 4. Analytical results with reporting limits (RL) above NYSDEC CP+51 SCLs for Gasoline and Fuel Oil Contaminated Soils are italicized.
- 5. Sample DUP01_110618 is a duplicate sample of SW-05_2_110618 and sample DUP01_122718 is a duplicate sample of SW-09_1_122718.
- 6. ~ = Regulatory limit for this analyte does not exist 7. bgs = below grade surface
- 8. mg/kg = milligrams per kilogram
- 9. % = percent

Qualifiers:

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 4 Import Material Summary Construction Completion Report

LOAD COUNTER	DATE	TRUCKING COMPANY	TRUCK LICENSE PLATE NUMBER	TRUCK No.	TYPE OF MATERIAL	Backfill Location	IMPORTER FACILITY	COUNTERSIGNED MANIFEST / WEIGHT TICKET NUMBER	AMOUNT IMPORTED ON- SITE (ton)
1 2	7/9/2018 7/9/2018	Hillwick Hillwick	AT907W AS339P	E1317 E1326	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53043176 53043219	26.02 25.80
3 4	7/9/2018 7/11/2018	Hillwick Hillwick	AS295B AT907W	E1300 E1317	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53043201 53043374	25.85 25.70
5 6	7/11/2018 8/2/2018	Hillwick DJM Transport NYC Co.	AR633H AT727K	E1323 E8502	Lime ASTM #57 Lite Stone Fill 4-14	NYPA NYPA	New York Sand & Stone Eastern Concrete Materials, Inc.	53043424 50054446	25.56 25.31
7	8/21/2018 8/29/2018	Hillwick Hillwick	AT907W AT907W	E1317 E1317	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53046145 53046669	25.69 25.88
9 10	8/31/2018 8/31/2018	Hillwick Hillwick	AS205W AT973M	E1301 E1324	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53046839 53046838	26.80 26.44
11 12	9/14/2018 10/10/2018	Hillwick Hillwick	AS256H AS205W	E1320 E1301	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53047527 53048980	25.72 26.80
13 14	10/25/2018 10/31/2018	DJM Transport NYC Co. Hillwick	AG6789C AS205W	E8575 E1301	Lite Stone Fill 4-14 Lime ASTM #57	NYPA NYPA	Eastern Concrete Materials, Inc. New York Sand & Stone	50066347 53050486	25.60 26.80
15 16	10/31/2018 10/31/2018	Hillwick MSB Excvation & Truck	AT907W 56425PC	E1317 E1082	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050502 53050504	25.48 26.28
17 18	10/31/2018 10/31/2018	Hillwick Hillwick	AS295B AT907W	E1300 E1317	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050513 53050522	25.01 25.35
19 20	10/31/2018 10/31/2018	MSB Excvation & Truck Hillwick	25411PC AS295B	E2775 E1300	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050523 53050536	25.39 24.93
21 22	10/31/2018 10/31/2018	MSB Excvation & Truck Hillwick	56425PC AS205W	E1082 E1301	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050538 53050542	26.09 26.80
23 24	10/31/2018 11/1/2018	MSB Excvation & Truck Vincent Nicole Nobile	25411PC 39086TR	E2775 E1120	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050551 53050620	25.19 20.02
25 26	11/1/2018 11/1/2018	Vincent Nicole Nobile Gravesend Materials	39113TR 14395TC	E1121 E8663	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050627 53050655	19.93 21.40
27 28	11/2/2018 11/2/2018	Hillwick Hillwick	AS295B AT972M	E1300 E1329	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050745 53050703	25.39 36.56
29	11/2/2018 11/2/2018	Hillwick Hillwick	AT907W AT972M	E1317 E1329	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050746 53050752	24.86 37.24
31	11/2/2018 11/2/2018	Hillwick Hillwick	AT973M AT972M	E1324 E1329	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53050763 53050800	26.45 36.82
33 34	11/2/2018	Hillwick Hillwick	AS295B AT907W	E1300 E1317	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone Stone	53050765 53050766	24.97 25.38
35 36	11/2/2018	Hillwick Hillwick	AT973M AT973M	E1324 E1324	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53050799 53050817	26.95 26.36
37 38	11/6/2018 11/6/2018	Allia Materials Allia Materials	23312TC 23405TC	E1451 E1453	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53051042 53051046	37.83 37.67
39 40	11/6/2018 11/8/2018	Allia Materials Gravesend Materials	11259TC 40577TR	E1452 E8660	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53051052 53051186	37.75 37.86
41 42	11/8/2018	Gravesend Materials Gravesend Materials	14395TC AT972M	E8663 E1329	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53051197 53051207	37.18 36.18
43	11/8/2018	Gravesend Materials Hackettstown Material	33789PC AS205W	E1322 E1301	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53051211 53051252	38.88
45 46	11/9/2018	Hillwick Hackettstown Material	AT907W AS205W	E1317 E1301	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone Stone	53051272 53051295	26.06 26.56
47	11/9/2018	Hillwick Hillwick	AT907W AS339P	E1317 E1326	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53051296 53051324	25.06 25.27
49	11/9/2018 11/12/2018	Hillwick Hackettstown Material	AS339P AS205W	E1326 E1301	Lime ASTM #57 Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53051324 53051344 53051445	25.27 25.77 26.8
51 52	11/12/2018	Hillwick Hackettstown Material	AT907W AS205W	E1317 E1301	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53051457 53051488	24.75 26.8
53 54	11/12/2018 11/15/2018	Hillwick Hillwick	AT907W AT907W	E1317 E1317	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53051400 53051491 53051783	25.13 26.50
55 56	11/15/2018 11/15/2018	Valiant Contracting Hillwick	AT209B AT907W	E6563 E1317	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53051735 53051812 53051820	25.39 25.16
57 58	11/15/2018	Valiant Contracting Vincent Nicole Nobile	AT208B 39086TR	E6564 E1120	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53051827 53052021	25.23 39.37
59 60	11/19/2018 11/19/2018	Hillwick Vincent Nicole Nobile	AS295B 39113TR	E1300 E1121	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052021 53052038 53052034	25.07 38.94
61 62	11/19/2018	Hillwick Hillwick	AS295B AS295B	E1300 E1300	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052051 53052067	26.25 26.04
63	11/21/2018	West Coast Reclamation F & R Industries Inc	22904TC 20928TR	E5727 E2800	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052241 53052242	34.06 37.99
65 66	11/21/2018	F & R Industries Inc F & R Industries Inc	E1534TR 20928TR	E2841 E2800	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052254 53052271	38.18 37.82
67 68	11/21/2018	Gravesend Materials F & R Industries Inc	40577TR 21534TR	E8660 E2841	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052271 53052273 53052284	39.84 34.10
69 70	11/21/2018	Gravesend Materials Gravesend Materials	38675TR 40577TR	E8661 E8660	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052290 53052297	39.56 39.11
71 72	11/26/2018	Hackettstown Material Hillwick	AS205W AT907W	E1301 E1317	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052237 53052371 53052395	26.80 25.53
73 74	11/26/2018 11/26/2018	Hackettstown Material Hillwick	AS205W AS339P	E1301 E1326	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052396 53052408	26.80 25.55
75 76	11/26/2018 11/26/2018	Hillwick Hillwick	AT907W AT973M	E1317 E1324	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052400 53052410 53052413	25.19 26.77
77 78	11/26/2018	Hillwick Hackettstown Material	AT528G AT490M	E1328 E1311	Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052414 53052415	40.13
78 79 80	11/26/2018 11/26/2018 11/26/2018	Hackettstown Material Hillwick	AT490M AT493M AT527G	E1309 E1362	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052419 53052421	39.50 36.67
80 81 82	11/26/2018 11/26/2018 11/26/2018	Hillwick Hillwick	AT907W AT972M	E1302 E1317 E1329	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052421 53052424 53052428	25.69 38.26
82 83 84	11/26/2018 11/26/2018 11/28/2018	Hillwick Hackettstown Material	AT972M AT973M AT492M	E1329 E1324 E1315	Lime Item 4 Lime ASTM #57	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052428 53052430 53052564	26.74 37.40
85 86	11/28/2018 11/28/2018 11/28/2018	Hackettstown Material Hillwick	AT492M AT490M AT972M	E1315 E1311 E1329	Lime ASTM #57 Lime ASTM #57 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052564 53052572 53052559	37.40 39.98 37.58
87 88	11/28/2018 11/28/2018 11/28/2018		AT493M AT495J	E1309 E1305	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052563 53052568	37.58 39.64 38.27
88 89 90	11/28/2018 11/28/2018 11/28/2018	Gravesend Materials F & R Industries Inc	37371TR 37098TR	E8662 E2810	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052568 53052575 53052578	38.27 37.61 39.07
90 91 92	11/28/2018 11/28/2018 11/28/2018	F & R Industries Inc F & R Industries Inc Hackettstown Material	21534TR 33789PC	E2841 E1322	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052578 53052581 53052584	39.07 34.34 38.99
93 94	11/28/2018 11/28/2018 11/28/2018	F & R Industries Inc Hackettstown Material	33789PC 38953TR AT490M	E2801 E1311	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052588 53052606	39.64 40.28
94 95 96	11/28/2018 11/28/2018 11/29/2018	F & R Industries Inc	21534TR 37098TR	E2841 E2810	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052606 53052614 53052705	36.74 38.98
96 97 98	11/29/2018 11/29/2018 11/29/2018	Gravesend Materials F & R Industries Inc	40577TR 20928TR	E8660 E2800	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052705 53052709 53052716	38.98 37.25 38.82
99 100	11/29/2018 11/29/2018 11/29/2018	Gravesend Materials F & R Industries Inc	37371TR 21534TR	E8662 E2841	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052716 53052719 53052733	36.96 36.06
101	11/29/2018 11/29/2018 11/30/2018	Hackettstown Material Hackettstown Material	AT971J AT971J	E1318 E1318	Lime Item 4 Lime Item 4 Lime ASTM #57	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052743 53052771	39.23 40.2
103	11/30/2018	Hackettstown Material Hackettstown Material Hillwick	AT492M AT972M	E1318 E1315 E1329	Lime ASTM #57	NYPA NYPA NYPA	New York Sand & Stone	53052771 53052774 53052752	39.22 38.76
104 105	11/30/2018 11/30/2018	Hackettstown Material	AT493M	E1309	Lime Item 4 Lime Item 4	NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052755	39.64
106 107	11/30/2018 11/30/2018	Hackettstown Material Hackettstown Material	AT490M 33789PC	E1311 E1322 E1309	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052772 53052780	40.2 39.52
108 109	11/30/2018 11/30/2018 12/3/2018	Hackettstown Material Gravesend Materials Gravesend Materials	AT493M 40577TR 37371TR	E1309 E8660	Lime Item 4 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052794 53052806 53052908	39.64 37.54
110 111	12/3/2018	Gravesend Materials Hillwick Gravesend Materials	37371TR AT528G	E8662 E1328	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53052908 53052913	38.59 39.63
112 113	12/3/2018 12/3/2018	Gravesend Materials F & R Industries Inc	37371TR 20928TR	E8662 E2800	Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052867 53052870	39.3 38.18

Table 4 Import Material Summary Construction Completion Report

LOAD COUNTER	DATE	TRUCKING COMPANY	TRUCK LICENSE PLATE NUMBER	TRUCK No.	TYPE OF MATERIAL	Backfill Location	IMPORTER FACILITY	COUNTERSIGNED MANIFEST / WEIGHT TICKET NUMBER	AMOUNT IMPORTED ON- SITE (ton)
115 116 117 118	12/3/2018 12/3/2018 12/4/2018 12/4/2018	F & R Industries Inc F & R Industries Inc DJM Transport NYC Co. F & R Industries Inc	21534TR 38953TR AU123M 21534TR	E2841 E2801 E8593 E2841	Lime Item 4 Lime Item 4 ASTM #2 2.5" Lime Item 4	NYPA NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone Eastern Concrete Materials, Inc. New York Sand & Stone	53052884 53052888 50071267 53052968	37.19 40.07 24.96 37.75
119 120	12/4/2018 12/4/2018 12/4/2018	F & R Industries Inc F & R Industries Inc	37098TR 38953TR	E2810 E2801	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53052908 53052973 53052993	39.16 38.46
121 122	12/4/2018 12/5/2018	Hillwick F & R Industries Inc	AT972M 37098TR	E1329 E2810	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53052996 53053022	38.52 38.69
123 124 125	12/5/2018 12/5/2018 12/11/2018	F & R Industries Inc F & R Industries Inc Hackettstown Material	21534TR 20928TR AT970M	E2840 E2800 E1312	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053021 53053029 53053264	36.35 36.78 38.61
126 127	12/11/2018 12/11/2018 12/12/2018	Hackettstown Material Hackettstown Material	AT970IVI AT971J AT527G	E1318 E1362	Lime ASTM #57 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053204 53053273 53053338	40.06
128 129	12/12/2018 12/14/2018	Hackettstown Material Hackettstown Material	AT614M AT971J	E1304 E1318	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053337 53053493	35.86 39.21
130 131	12/14/2018 12/14/2018	Hackettstown Material F & R Industries Inc	AT490M 38953TR	E1311 E2801	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053496 53053502	39.79 38.89
132 133 134	12/14/2018 12/14/2018 12/14/2018	Gravesend Materials Gravesend Materials Gravesend Materials	38675TR 40577TR 38675TR	E8661 E8660 E8661	Lime ASTM #57 Lime ASTM #57 Lime ASTM #57	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053522 53053530 53053570	37.69 37.62 37.4
135	12/14/2018 12/14/2018	F & R Industries Inc	23611TC 38673TR	~ E2805	Lime ASTM #57 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053474 53053480	40.12 40.02
137 138	12/14/2018 12/14/2018	F & R Industries Inc Hackettstown Material	37098TR AT614M	E2810 E1304	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053483 53053490	39.54 35.98
139 140	12/14/2018	F & R Industries Inc	21534TR 20928TR	E2841 E2800	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053492 53053495	37.56 36.82
141 142 143	12/14/2018 12/14/2018 12/14/2018	Hillwick Hackettstown Material Gravesend Materials	AT527G AT492M 40577TR	E1362 E1315 E8660	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053500 53053504 53053556	36.31 38.84 37.47
143 144 145	12/18/2018 12/18/2018	Hackettstown Material Hackettstown Material	33789PC AT614M	E1322 E1304	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053936 53053716 53053722	39.46 35.82
146 147	12/18/2018 12/18/2018	Hillwick Hackettstown Material	AT527G AT490M	E1362 E1311	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053734 53053735	36.5 39.39
148 149	12/18/2018 12/20/2018	Hillwick Hackettstown Material	AT528G AT614M	E1328 E1304	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053736 53053874	39.93 35.59
150 151	12/20/2018 12/20/2018	Hackettstown Material	AT527G AT971J	E1362 E1318	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053856 53053881	36.47 38.99
152 153 154	12/27/2018 12/27/2018 12/27/2018	Hackettstown Material Hackettstown Material Hackettstown Material	AT614M AT971J AT614M	E1304 E1318 E1304	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053954 53053961 53053963	36.39 39.67 36.58
155 156	12/27/2018 12/27/2018	Hackettstown Material Hackettstown Material	AT971J AT614M	E1318 E1304	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053966 53053969	39.76 36.57
157 158	12/27/2018 12/27/2018	Hackettstown Material Hackettstown Material	AT490M AT492M	E1311 E1315	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053967 53053970	39.45 38.93
159 160	12/27/2018	Hackettstown Material Hackettstown Material	AT971J AT971J	E1318 E1318	Lime ASTM #57 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053972 53053975	40.09 40.08
161 162 163	12/28/2018 12/28/2018 12/28/2018	Hackettstown Material Hackettstown Material Hackettstown Material	AT614M AT970M AT971J	E1304 E1312 E1318	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053976 53053977 53053979	36.44 38.51 39.33
164 165	12/28/2018 12/28/2018	Hackettstown Material Hackettstown Material	AT614M AT970M	E1304 E1312	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53053979 53053980 53053981	36.44 39.21
166 167	12/31/2018 12/31/2018	Hackettstown Material Hackettstown Material	AT970M AT614M	E1312 E1304	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053988 53053989	38.49 36.53
168 169	12/31/2018 12/31/2018	Hackettstown Material Hackettstown Material	AT970M AT614M	E1312 E1304	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053995 53053996	38.71 36.58
170 171	12/31/2018 12/31/2018	Hackettstown Material	AT970M AT614M	E1312 E1304	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53053998 53054000	38.9 36.26
172 173 174	1/2/2019 1/2/2019 1/2/2019	Hackettstown Material Hackettstown Material Hackettstown Material	AT971J AT970M AT971J	E1318 E1312 E1318	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53054007 53054017 53054020	39.89 39.21 39.75
175 176	1/2/2019	Hackettstown Material Hackettstown Material	AT970M AT971J	E1312 E1318	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53054021 53054029	39.17 40.03
177 178	1/2/2019 1/2/2019	Hackettstown Material Hackettstown Material	AT970M AT971J	E1312 E1318	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53054030 53054032	39.2 39.95
179 180	1/3/2019 1/3/2019	Hackettstown Material Hackettstown Material	AT971J AT970M	E1318 E1312	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53054048 53054049	39.11 37.97
181 182 183	1/3/2019 1/3/2019 1/3/2019	Hackettstown Material Hackettstown Material Hackettstown Material	AT971J AT970M AT971J	E1318 E1312 E1318	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53054063 53054065 53054068	38.51 38.04 39.18
184 185	1/3/2019	Hackettstown Material Hackettstown Material	AT970M AT971J	E1312 E1318	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53054069 53054071	37.81 38.83
186 187	1/3/2019 1/4/2019	Hackettstown Material Hackettstown Material	AT970M AT971J	E1312 E1318	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53054072 53054085	38.33 40.66
188 189	1/4/2019	Hackettstown Material Hackettstown Material	AT971J AT971J	E1318 E1318	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53054099 53054108	40.79 40.35
190 191 192	1/4/2019 2/15/2019 2/15/2019	Hackettstown Material KMT Trucking LLC KMT Trucking LLC	AT971J AU51N AT879Y	E1318 E6909 E6884	Lime Item 4 Lite Stone Fill 4-14 ASTM #2 2.5"	NYPA NYPA NYPA	New York Sand & Stone Eastern Concrete Materials, Inc. Eastern Concrete Materials, Inc.	53054120 50077912 50077922	39.74 24.61 26.58
193 194	3/11/2019 3/18/2019	Hillwick Hackettstown Material	AT907W AT490M	E1317 E1311	Lime ASTM #57 Lime ASTM #57	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53057201 53057740	25.59 40.02
195 196	3/28/2019 3/28/2019	Hillwick Hillwick	AU412T AT972M	49 64	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53058440 53058492	39.55 38.86
197 198	4/1/2019 4/1/2019	DiNapoli Materials F & R Industries Inc	22974TC 20928TR	1	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53058682 53058683	40.59 39.11
199 200 201	4/1/2019 4/1/2019 4/1/2019	F & R Industries Inc Hackettstown Material Gravesend Materials	21534TR 33789PC 38675TR	5 ~ ~	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53058688 53058699 53058676	39.13 38.38 38.70
202	4/1/2019 4/1/2019 4/1/2019	Gravesend Materials F & R Industries Inc	37371TR 20928TR	1 1	Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53058676 53058728 53058731	39.38 39.15
204 205	4/1/2019 4/1/2019	Hillwick Hackettstown Material	AU158T AT492M	36 ~	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53058740 53058748	40.24 38.78
206 207	4/1/2019 4/1/2019	Hillwick Hillwick	AU158T AU160T	36 42	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53058769 53058767	38.80 40.24
208 209 210	4/2/2019 4/2/2019 4/2/2019	F & R Industries Inc F & R Industries Inc F & R Industries Inc	37098TR 20928TR 21534TR	~ ~	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53058785 53058799 53058802	40.30 38.84 39.41
211 212	4/2/2019 4/2/2019 4/2/2019	Gravesend Materials F & R Industries Inc	40577TR 37098TR	~ ~	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53058802 53058803 53058810	39.72 39.97
213 214	4/2/2019 4/2/2019	F & R Industries Inc DSM Trucking Inc	38953TR 35739TR	~ ~	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53058811 53058830	40.22 40.18
215 216	4/2/2019 4/2/2019	Gravesend Materials DiNapoli Materials	38675TR 22974TC	~ ~	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53058835 53058847	38.14 40.11
217 218 219	4/2/2019 4/2/2019 4/2/2019	DiNapoli Materials F & R Industries Inc	20671TC 28953TR	~ ~	Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53058843 53058836 53058846	39.95 39.69 39.46
219 220 221	4/2/2019 4/2/2019 4/2/2019	DiNapoli Materials DSM Trucking Inc DSM Trucking Inc	11941TC 35739TR 15219TC	~ ~ ~	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53058846 53058858 53058860	39.46 39.85 41.01
222	4/2/2019 4/2/2019 4/3/2019	DSM Trucking Inc F & R Industries Inc	25457TC 20928TR	~ ~	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53058861 53058928	40.75 40.15
224 225	4/3/2019 4/3/2019	Gravesend Materials Gravesend Materials	38675TR 40577TR	~ ~	Lime Item 4 Lime Item 4	NYPA NYPA	New York Sand & Stone New York Sand & Stone	53058924 53058915	37.16 39.27
226 227 228	4/3/2019 4/3/2019 4/3/2019	F & R Industries Inc Hillwick Gravesend Materials	38673TR AS295B 40588TR	~ 66 3	Lime Item 4 Lime Item 4 Lime Item 4	NYPA NYPA NYPA	New York Sand & Stone New York Sand & Stone New York Sand & Stone	53058907 53058939 53058948	40.83 26.22 39.14

Table 4 Import Material Summary Construction Completion Report

LOAD COUNTER	DATE	TRUCKING COMPANY	TRUCK LICENSE PLATE NUMBER	TRUCK No.	TYPE OF MATERIAL	Backfill Location	IMPORTER FACILITY	COUNTERSIGNED MANIFEST / WEIGHT TICKET NUMBER	AMOUNT IMPORTED ON- SITE (ton)
229	4/3/2019	Hackettstown Material	AT971J	~	Lime Item 4	NYPA	New York Sand & Stone	53058950	40.89
230	4/3/2019	Gravesend Materials	38675TR	~	Lime Item 4	NYPA	New York Sand & Stone	53058951	38.70
231	4/3/2019	F & R Industries Inc	38953TR	~	Lime Item 4	NYPA	New York Sand & Stone	53058980	40.57
232	4/3/2019	Auburn Industries	AU122P	6	Topsoil	NYPA	IRRC	88465	22.92
233	4/3/2019	Auburn Industries	AT691Y	5	Topsoil	NYPA	IRRC	88477	26.56
234	4/3/2019	Auburn Industries	AU123P	9	Topsoil	NYPA	IRRC	88482	26.55
235	4/3/2019	Auburn Industries	AU122P	6	Topsoil	NYPA	IRRC	88479	25.98
236	4/3/2019	Auburn Industries	AT691Y	5	Topsoil	NYPA	IRRC	88502	24.56
237	4/3/2019	Auburn Industries	AU123P	9	Topsoil	NYPA	IRRC	88508	23.44
238	4/3/2019	Auburn Industries	AU122P	6	Topsoil	NYPA	IRRC	88507	22.61
239	4/4/2019	Manolos Trucking	AT380H	14	Topsoil	NYPA	IRRC	88537	23.90
240	4/4/2019	Manolos Trucking	AR497D	6	Topsoil	NYPA	IRRC	88536	24.64
241	4/4/2019	Manolos Trucking	AT773S	15	Topsoil	NYPA	IRRC	88534	21.61
242	4/4/2019	Auburn Industries	AT691Y	5	Topsoil	NYPA	IRRC	88532	25.99
243	4/4/2019	Gravesend Materials	40577TR	~	Lime Item 4	NYPA	New York Sand & Stone	53059014	38.21
244	4/4/2019	Hackettstown Material	AS205W	~	Lime Item 4	NYPA	New York Sand & Stone	53059015	26.53
245	4/4/2019	Gravesend Materials	40577TR	~	Lime Item 4	NYPA	New York Sand & Stone	53059043	37.59
246	4/4/2019	Hillwick	AT907W	~	Lime Item 4	NYPA	New York Sand & Stone	53059077	25.52
247	4/4/2019	Gravesend Materials	38675TR	~	Lime Item 4	NYPA	New York Sand & Stone	53059055	39.04
248	4/4/2019	Gravesend Materials	38675TR	~	Lime Item 4	NYPA	New York Sand & Stone	53059076	39.62
249	4/5/2019	Hillwick	AT972M	~	Lime Item 4	NYPA	New York Sand & Stone	53059117	38.65
250	4/5/2019	Hillwick	AT490M	~	Lime Item 4	NYPA	New York Sand & Stone	53059136	39.96
251	4/5/2019	Hillwick	AT972M	~	Lime Item 4	NYPA	New York Sand & Stone	53059147	37.24
252	4/5/2019	Hackettstown Material	AT490M	~	Lime Item 4	NYPA	New York Sand & Stone	53059159	40.25
253	10/25/2019	KMT Trucking LLC	AU517N	E6909	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035558	25.22
254	10/25/2019	KMT Trucking LLC	AU948Z	E6917	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035559	26.05
255	10/25/2019	KMT Trucking LLC	AT879Y	E6884	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035560	26.61
256	10/25/2019	JCH Express LLC	AU815C	E2655	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035566	25.56
257	10/25/2019	KMT Trucking LLC	AU450X	E8823	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035589	25.24
258	10/25/2019	KMT Trucking LLC	T302936	E6921	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035600	25.22
259	10/28/2019	DJM Transport NYC Co.	AR175A	E2365	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035713	25.26
260	10/28/2019	DJM Transport NYC Co.	AT121B	E6853	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035714	25.63
261	10/28/2019	DJM Transport NYC Co.	AU276Y	E8567	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035717	24.35
262	10/28/2019	DJM Transport NYC Co.	AU987T	E8608	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035718	25.55
263	10/28/2019	DJM Transport NYC Co.	AW442G	E8651	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035721	25.56
264	10/28/2019	DJM Transport NYC Co.	AU277Y	E8644	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035722	24.80
265	10/28/2019	DJM Transport NYC Co.	AU106R	E8603	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035723	25.05
266	10/28/2019	DJM Transport NYC Co.	AU165G	E8574	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035724	23.93
267	10/28/2019	DJM Transport NYC Co.	AW816G	E8676	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035726	25.03
268	10/29/2019	DJM Transport NYC Co.	AU243W	E8615	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035788	25.36
269	10/29/2019	DJM Transport NYC Co.	AT644K	E8503	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035789	25.30
270	10/29/2019	DJM Transport NYC Co.	AU874R	E8605	Lime ASTM #8 3/8	NYPA	Eastern Concrete Materials, Inc.	58035790	25.54