Remedial Investigation Report

Former Johnny on the Spot Cleaners 152-153 10th Avenue Whitestone, NY 11357 BCP Site Id C241125

Prepared for: New York State Department of Environmental Conservation

Division of Environmental Remediation, Region 2

Prepared by: Stantec Consulting Services Inc.

DRAFT

Draft RIR: March 2018 SRIR: October 2022 RIR: March 2025 RIR: June 2025 RIR: October 2025

October 31, 2025

Sign-off Sheet

Prepared by Donald F, More (signature)
Donald F. Moore, P.G.
Reviewed by
CERTIFICATION
I, Alexander J. DeNadai, certify that I am currently a NYS registered professional engineer in the State of New York as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with the applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that the activities were performed in accordance with the DER-approved work plan and any DER-approved modifications.
10/31/25

Date

Signature

Table of Contents

<u>Secti</u>	on Title P	<u>age No.</u>
1.0	INTRODUCTION	1
2.0	BACKGROUND	3
2.1	SITE DESCRIPTION	
2.2	PHYSICAL SETTING	
	2.2.1 Topography	
	2.2.2 Geology	
	2.2.3 Hydrogeology	4
	2.2.4 Surface Water / Wetlands	4
2.3	HISTORICAL INFORMATION	
2.4	IDENTIFICATION OF STANDARDS, CRITERA, AND GUIDANCE	5
3.0	PREVIOUS WORK	7
3.1	HISTORIC INVESTIGATIONS (WHITESTONE ASSOCIATES, INC. 2003 – 2008)	7
3.2	SUMMARY OF REMEDIAL INVESTIGATION (STANTEC 2012-2018)	
	3.2.1 Soil Investigations and Results	
	3.2.2 Groundwater Investigations and Results	
	3.2.3 Sub-Slab Soil Gas and Indoor Air Results: 2013 - 2018	
	3.2.3.1 SSSG and IA Results - 2013	
	3.2.3.2 SSSG and IA Results - 2017	
2.2	3.2.3.3 SSSG and IA Results - February 2018 INTERIM REMEDIAL MEASURES – SUB-SLAB DEPRESSURIZATION SYSTEMS	
3.3	INTERIM REMEDIAL MEASURES - SUB-SLAB DEPRESSURIZATION STSTEMS	23
4.0	SUPPLEMENTAL WORK PERFORMED	
4.1	SUPPLEMENTAL REMEDIAL INVESTIGATION OBJECTIVES	
4.2	SOIL BORINGS	
4.3	MONITORING WELL INSTALLATION	
4.4	GROUNDWATER SAMPLING	
4.5	VAPOR INTRUSION SAMPLING	
4.6	CONTAMINATED MATERIALS REMOVAL – SOIL AND GROUNDWATER	
4.7	DATA VALIDATION AND MANAGEMENT	31
5.0	RESULTS	32
5.1	GEOLOGY	
5.2	SITE HYDROLOGY	
	5.2.1 Shallow Horizontal Flow and Gradients	
	5.2.2 Vertical Hydraulic Flow and Gradients	
. .	5.2.3 Permeabilities	
5.3	LABORATORY ANALYTICAL RESULTS	
	5.3.1 Soil Analytical Results	
	5.3.1.1 Soil Results - VOCs	
	J.J. 1.Z 3011 KE30113 - 3 V OC3	

		5.3.1.3	Soil Results - TAL Metals	
		5.3.1.4	Soil Results - PCBs	
		5.3.1.5	Soil Results - Pesticides	
		5.3.1.6	Soil Results - PFAS	
		5.3.1.7	Soil Results – NOD and SRD	
	5.3.2		water Analytical Results	
		5.3.2.1	Groundwater Results - VOCs	
		5.3.2.2	Groundwater Results - SVOCs	
		5.3.2.3	Groundwater Results - SVOCs-SIM	
		5.3.2.4	Groundwater Results - TAL Metals	
		5.3.2.5	Groundwater Results - PCBs	
		5.3.2.6	Groundwater Results - Pesticides	
		5.3.2.7	Groundwater Results - PFAS	
		5.3.2.8	Groundwater Results - Sulfate and Nitrate	
	5.3.3		Soil Gas and Indoor Air Quality Results	
		5.3.3.1	SSSG and IA Results - March 2023	
		5.3.3.2	SSSG and IA Results - February 2024	
5.4			AN HEALTH EXPOSURE ASSESSMENT	
5.5	QA/C	ac summary	′	49
6.0	CON	CLUSIONS		50
7.0	RECC	MMENDATIO	NS	51
LIST C	OF TABL	ES		
TABLI	= 1	WELL CONS	STRUCTION DETAILS	
TABLI			ATER LEVEL DATA	
TABLI			YDRAULIC GRADIENTS AT WELL PAIRS	
TABLI			TY TEST RESULTS	
TABLI	_		LE/CONDUCTIVITY RESULTS	
TABLI	Ξ 5	SUMMARY (OF SOIL ANALYTICAL RESULTS: VOCS: SEP 2017	
TABLI	E 5A	SUMMARY (OF SOIL ANALYTICAL RESULTS: VOCS: JUNE 2022	
TABLI	∃ 5B	SUMMARY (OF SOIL ANALYTICAL RESULTS: SVOCS: JUNE 2022	
TABLI			OF SOIL ANALYTICAL RESULTS: TAL METALS: JUNE 2022	2
TABLI	5D	SUMMARY (OF SOIL ANALYTICAL RESULTS: PCBS: JUNE 2022	
TABLI	E 5E	SUMMARY (OF SOIL ANALYTICAL RESULTS: PESTICIDES: JUNE 2022	
TABLI	∃ 5F	SUMMARY (OF SOIL ANALYTICAL RESULTS: PFAS: JUNE 2022	
TABLI	E 6A	SUMMARY (OF GROUNDWATER ANAYLTICAL RESULTS: VOCS 2008	8 - 2025
TABL	E 6B	SUMMARY (OF GROUNDWATER ANAYLTICAL RESULTS: SVOCS 200	08 - 2022
TABLI	E 6C	SUMMARY (2022	OF GROUNDWATER ANAYLTICAL RESULTS: SVOCS VIA	A SIM 2013 -
TABLI	E 6D	_	OF GROUNDWATER ANAYLTICAL RESULTS: TAL METAL	S JUNE 2022
TABL			OF GROUNDWATER ANAYLTICAL RESULTS: PCBS JUNE	
TABL			OF GROUNDWATER ANAYLTICAL RESULTS: PESTICIDES	-
	= 6G		OF GROUNDWATER ANAYITICAL RESULTS: PEAS IUNE	

TABLE 6H	SUMMARY OF GROUNDWATER ANAYLTICAL RESULTS: SULFATE AND NITRATE JUNE 2022
TABLE 7A	SUMMARY OF SUB-SLAB SOIL GAS ANALYTICAL RESULTS: 2008 TO 2024
TABLE 7B	SUMMARY OF INDOOR AIR ANALYTICAL RESULTS: 2017 TO 2024

LIST OF FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	TAX MAP
FIGURE 2A	SITE MAP
FIGURE 3A	SITE MAP WITH SOIL BORING LOCATIONS
FIGURE 3B	SITE MAP WITH MONITORING WELL LOCATIONS
FIGURE 3C	SITE MAP WITH VAPOR INTRUSTION LOCATIONS
FIGURE 3D	SUB-SLAB PIPING AND MONITORING POINTS PLAN – FORMER JOHNNY ON THE SPOT CLEANERS
FIGURE 3E	PIPING PLAN AND MONITORING POINTS - STARS REHABILITATION CENTER (FORMER BANK)
FIGURE 4A	SHALLOW GROUNDWATER CONTOUR PLAN: NOVEMBER 2017
FIGURE 4B	DEEP GROUNDWATER CONTOUR PLAN: NOVEMBER 2017
FIGURE 4C	SHALLOW GROUNDWATER CONTOUR PLAN: JUNE 2022
FIGURE 4D	DEEP GROUNDWATER CONTOUR PLAN: JUNE 2022
FIGURE 4E	SHALLOW GROUNDWATER CONTOUR PLAN: SEPTEMBER 2025
FIGURE 4F	DEEP GROUNDWATER CONTOUR PLAN: SEPTEMBER 2025
FIGURE 5	VOCS IN SOILS EXCEEDING SOIL CLEANUP OBJECTIVES
FIGURE 6	CONTAMINANTS IN GROUNDWATER EXCEEDING GW QUALITY STANDARDS
FIGURE 7A	VOC CONCENTRATIONS IN SUB-SLAB SOIL GAS AND INDOOR AIR: FORMER
	JOHNNY ON THE SPOT CLEANERS
FIGURE 7B	VOC CONCENTRATIONS IN SUB-SLAB SOIL GAS AND INDOOR AIR: REHAB
	CENTER (FORMER BANK)
FIGURE 8	PLOTS OF TOTAL CVOCS OVER TIME
FIGURE 9	PFAS CONCENTRATIONS IN SITE WELLS: JUNE 2022
FIGURE 10	CROSS SECTION A - A

LIST OF APPENDICES

APPENDIX A:	COPIES OF PERTINENT FIGURES AND DATA TABLES FROM PREVIOUS REPORTS
APPENDIX B:	BORING LOGS
APPENDIX C:	DUSR AND LABORATORY REPORT – SEPTEMBER 2017 SOILS
APPENDIX D:	GRAIN SIZE DISTRIBUTION RESULTS – SEPTEMBER 2017 SOILS
APPENDIX E:	LOW FLOW PURGE AND SAMPLE FORMS - NOVEMBER 2017, AND JUNE
	AND AUGUST 2022 GROUNDWATER
APPENDIX F:	DUSR AND LABORATORY REPORT – NOVEMBER 2017 GROUNDWATER
APPENDIX G:	DUSR AND LABORATORY REPORT – MARCH 2017 SSSG AND IA
APPENDIX H:	DUSR AND LABORATORY REPORT – FEBRUARY 2018 SSSG AND IA

APPENDIX I: DUSR AND LABORATORY REPORT – JUNE 2022 SOILS

APPENDIX J: DUSR AND LABORATORY REPORT – JUNE 2022 GROUNDWATER

APPENDIX K: DUSR AND LABORATORY REPORT – AUGUST 2022 GROUNDWATER

APPENDIX L: DUSR AND LABORATORY REPORT – MARCH 2023 SSSG AND IA

APPENDIX M: DUSR AND LABORATORY REPORT – FEBRUARY 2024 SSSG AND IA

DUSR AND LABORATORY REPORT – SEPTEMBER 2025 GROUNDWATER

LIST OF ACRONYMS

ADT Aquifer Drilling and Testing
AMSL Above Mean Sea Level

AWQSGVS Ambient Water Quality Standards and Guidance Values

BCA Brownfield Cleanup Agreement
BCP Brownfield Cleanup Program

BLS Below Land Surface
CPA Control Point Associates

CVOC Chlorinated Volatile Organic Compound
DER Division of Environmental Remediation

DUSR Data Usability Summary Report

IAQ Indoor Air Quality

IRM Interim Remedial Measure

IRM-CCR Interim Remedial Measures-Construction Completion Report

IRMWP Interim Remedial Measures Work Plan

MDL Method Detection Limit
MG/KG Milligrams per Kilogram
MG/L Milligrams per Liter
MSL Mean Sea Level

NAVD North American Vertical Datum

NG/L Nanograms per Liter

NYCCR New York Codes, Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH
New York State Department of Health
NYCRR
New York Codes, Rules and Regulations
OM&M
Operation, Maintenance and Monitorina

PCBs Poly-chlorinated Biphenyls

PCE Perchloroethene

PFAS Per- and Polyfluoroalkyl Substances

PFOA Perfluorooctanoic Acid
PFOS Perfluorooctanesulfonic Acid
PGW Protection of Groundwater
PID Photoionization Detector

PPB Part per Billion
PPM Part per Million
PPT Part per Trillion

QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation

RIR Remedial Investigation Report SCG Standards, Criteria and Guidelines

SCO Soil Cleanup Objective

SF Square Feet

SRIWP Supplemental Remedial Investigation Work Plan

SSD Sub-slab Depressurization

SSDS Sub-slab Depressurization System

SSF State Superfund SSSG Sub-slab Soil Gas

SVOC Semi Volatile Organic Compound

TAGM Technical and Administrative Guidance Memorandum

TAL Target Analyte List TCE Trichloroethene

TCL Target Compound List

TOGS Technical and Operational Guidance Series

UG/KG Micrograms per Kilogram
UG/L Micrograms per Liter
VC Vinyl Chloride
VI Vapor Intrusion

VOC Volatile Organic Compound

1.0 INTRODUCTION

In July 2012, The Great Atlantic and Pacific Tea Company, Inc. (A&P) contracted Stantec Consulting Services Inc. (Stantec) to conduct supplemental subsurface investigation work at the former Johnny on the Spot Cleaners store, located in a shopping plaza at 152 to 153 10th Avenue Whitestone, Queen's County, NY ("the Store" or "Site"). The location of the property is shown on Figure 1.

At that time, A&P was leasing a former Waldbaum's Grocery store at the property from Feil Whitestone, LLC (Feil) of New York, New York and was considered the responsible party for the entire property. From June 2013 to February 2018, Stantec conducted remedial investigation work at both the Site and at adjacent lease/business units. The work included advancing soil borings, soil sampling, monitoring well construction, groundwater gauging and sampling, and sub-slab soil gas and indoor air sampling. This work was conducted in general accordance with Stantec's Site Characterization Work Plan, dated October 19, 2012, and revised March 1, 2013, that was approved by the New York State Department of Environmental Conservation (NYSDEC) on April 19, 2013, and with Stantec's Remedial Investigation Workplan, dated July 19, 2015 and revised October 21, 2016, that was approved by NYSDEC on March 3, 2017.

In July 2015, A&P filed for Chapter 11 bankruptcy protection and the A&P Waldbaum's grocery store closed. Several phases of bankruptcy transactional proceedings associated with A&P, the bankruptcy court, and the property owner subsequently occurred. In December 2015, Feil retained Stantec as the environmental professional for this Site. Feil entered into a Brownfield Cleanup Agreement (BCA, index no. C241125) with the NYSDEC in January 2017.

This remedial investigation involved completing the nature and extent of impacts to soil and groundwater associated with a past release from the Johnny on the Spot dry cleaner operations. Stantec subsequently submitted the results of this work in a draft Remedial Investigation Report (RIR) in March 2018. In November 2020, NYSDEC requested that a supplemental investigation be conducted to further evaluate soil and groundwater for the following additional analytical parameters: semi-volatile organic compounds (SVOCs), Target Analyte List (TAL) Metals, polychlorinated biphenyls (PCBs), Pesticides, and emerging contaminants (per- and polyfluoroalkyl substances [PFAS] and 1,4-dioxane). This supplemental investigation work was required due to the Site's approval into the New York State (NYS) Brownfield Cleanup Program (BCP) and the fact that these (potential) compounds of concern (COCs) were not tested during previous investigations at the Site.

Stantec submitted a supplemental remedial investigation workplan (SRIWP) in December 2020. After further NYSDEC review and response, Stantec's SRIWP, dated February 16, 2022, was approved by NYSDEC on March 14, 2022. The supplemental investigation field work was conducted from June to August 2022 and the results presented in Stantec's report entitled Supplemental Remedial Investigation Report, dated October 28, 2022 (i.e., the 2022 SRIR). Based

on comments provided by NYSDEC and NYSDOH on January 13, 2025, Stantec subsequently combined the 2018 draft RIR and the 2022 SRIR into a comprehensive RIR, which was submitted to NYSDEC on March 31, 2025 (the 2025 RIR). Based on comments provided by NYSDEC and NYSDOH on May 6, 2025, Stantec subsequently submitted a revised 2025 RIR on June 6, 2025. NYSDEC reviewed the June 6, 2025 revised RIR and requested, via email. that an additional round of groundwater samples be collected for volatile organic compound analyses. This additional sampling was conducted in September 2025. The results of the September 2025 sampling are included herein.

The supplemental remedial investigation work was intended to identify the constituents of concern at the Site and to generate data to be evaluated for Site closure under the BCP. This work has been conducted based on collaboration between the property owner, Stantec, and the NYSDEC.

This RIR is being submitted on behalf of the owner/Remedial Party:

Feil Whitestone LLC 7 Penn Plaza New York, NY 10001 Point of Contact: Mr. Peter O'Connor Account Executive (212) 279-7600

The Technical Consultant for this RIR is:

Stantec Consulting Services Inc.
65 Network Drive, 2nd Floor
Burlington, MA 01803
The Qualified Professional: Donald Moore (603) 206-7561
The NYS Professional Engineer: Alex DeNadai, P.E., PMP, LEED AP

.

2.0 BACKGROUND

2.1 SITE DESCRIPTION

The Former Johnny on the Spot Cleaners (the Site) is located at 153-01 10th Avenue, Whitestone, NY 11357, at latitude 40.79397 North, longitude 73.80771 West. The Site is in the southwestern corner of a retail strip mall known as Whitestone Plaza (see Figures 2 and 2A) and is approximately 1,860 square feet (sf). As described below, a portion of the Site has been renovated into office space and is doing business as a travel agency. The renovated office space of the travel agency, which fronts 10th Avenue, is approximately 1,025 sf. The storage space of the travel agency, located in the rear or back portion of the Site, is approximately 835 sf. Access to the storage space is through exterior doors on the northern side of the Site.

The property on which the Site is located is a 3.59±-acre parcel located at 152-45 through 153-01 10th Avenue in Whitestone, Queens County, New York. Previously the property was identified as Block 4531, Lots 100 and 447. The property was merged at some point in time and is currently identified r as Block 4531, Lot 447 (see Figures 2 and 2A). The property owner is identified as Feil Whitestone LLC. The property is identified as the Whitestone Plaza.

The property currently houses a strip mall-type shopping complex located in the western portion of the property (i.e., Lot 447) and a large parking lot located in the eastern portion of the property (i.e., former Lot 100). The strip mall building is generally rectangular and orientated north to south. At the present time, businesses in this shopping plaza consist of the travel agency noted above, as well as Sunshine Spa and Hair, Subway restaurant, Shake & Swirl, Cascarino's restaurant, JD Opticians, and a former Sterling National Bank. From late winter to early summer of 2022, this former bank was renovated by a new tenant into a Stars Rehabilitation Center (Rehab Center) operated by Northwell Health (Northwell). Note that this tenant space described in this RIR is referred to as both the former Bank and/or Rehab Center and abuts the Site to the east. Tenants may change at any time at this shopping plaza.

The former Johnny on the Spot dry cleaner store closed sometime after 2004 and remained vacant through 2019 when a portion of the space was renovated into a travel agency. Access to the property parking lot is from 154th Street to the east and from 10th Avenue to the south. An access route or drive for delivery trucks from 10th Avenue to a loading dock/parking lot area behind the Site is located on the far western portion of the property.

The properties adjacent to the subject property include Tropicana of New York, Inc., an orange juice packaging facility to the north; Citi-Bank; Healthy Choices Deli; residences beyond 10th Avenue to the south; residential dwellings beyond 154th Street to the east and south; Kinray Pharmaceutical Distribution Company; additional commercial properties; and residences to the west. Sensitive receptors include a daycare, identified as "Kiddie Academy of Whitestone", located approximately 900 ft northwest and upgradient of the Site, and residential properties located within 1000 ft to the east, south and west of the Site.

2.2 PHYSICAL SETTING

2.2.1 Topography

Surface topography at the subject property is relatively flat with an approximate average elevation of 20 feet (ft) above mean sea level (AMSL). The boundaries of the property are more fully shown in the Survey Plan presented in Appendix A. According to survey data, the ground surface elevation ranges from approximately 20 ft AMSL in the northern portion of the property to approximately 17.5 ft AMSL in the loading dock/parking lot area behind the Site.

2.2.2 Geology

According to the University of the State of New York, State Education Department Geologic Map of New York, Lower Hudson Sheet dated 1970, the Property is situated in the Atlantic Coastal Plain Physiographic Province of southeastern New York. Specifically, the property is underlain by the upper Cretaceous Raritan Formation, which generally consists of clay, silty clay, silt, sand, and gravel.

As described further in section 5.1 below, soils encountered during this investigation consisted of fill material (silty fine to coarse sand and gravel) from ground surface to approximately 5 to 7 ft below land surfaces (bls) at various locations. Underlying the fill, or in those locations where fill was not observed, the soils encountered consisted of silty fine to medium sand. A gray clay unit was encountered at depths ranging from 38 ft bls 46 ft bls.

Bedrock was not encountered during previous investigations.

2.2.3 Hydrogeology

Groundwater was encountered during investigation activities at depths ranging from approximately 5 ft below land surface (bls) in wells located in the loading dock/parking lot area behind the Site to 10 ft bls in wells located in the sidewalk along 10th Avenue. Based on well gauging and survey elevational data, groundwater is shown to converge towards the Site from the northwest, west and south-southeast.

2.2.4 Surface Water / Wetlands

The Site is located within a highly developed, urban area of Whitestone, New York. No surface water bodies or wetland areas are present at, or adjoining, the Site. Furthermore, wetland areas are not depicted at the Site on the 1999 U.S. Department of the Interior Fish and Wildlife Service National Wetlands Inventory Map. The nearest surface water body is the East River, which is located approximately 1,000-feet to the north of the Site (see Figure 1).

comments rev 10-31-25 clean.docx

2.3 HISTORICAL INFORMATION

The property historically has supported a mix of residential, commercial, and industrial uses. In 1903, the Whitestone Landing Depot train station was situated in the southeastern portion of the property, and a Long Island Railroad corridor occupied the eastern portion of the property. By 1916, a single-story residential dwelling had been constructed at 752 154th Street adjacent to the intersection of 22nd Street (currently 10th Avenue) and 14th Avenue (currently 154th Street). By 1942, the residence and train station had been demolished and the railroad tracks removed. The property was identified as a portion of the Wheeler Ship Building Corporation facility, which reportedly manufactured PT boats during World War II. In 1950, a boat building warehouse and a woodworking building were located in the western portion of the property (portions of the existing shopping center structure). In addition, a narrow, elongated "lacquer spraying" building had been constructed in the central portion of the property. Fifteen additional small buildings had been constructed throughout the eastern portion of the property between 1942 and 1950, including an electric shop, a restroom, a clock tower, and several storage sheds.

Between 1950 and 1981, additions/renovations to the existing building (located on Lot 447) and the former "lacquer spraying" building, located in the eastern portion of the property (Lot 100), had been completed. In 1981 The structure located on Lot 100 had been expanded and consisted of nine commercial stores. The former Waldbaum's shopping center structure was occupied by the Fuller Tool Company, Inc. (Fuller), which manufactured hand tools on site until July 1988. Between 1988 and 1990, the former building on Lot 100 was razed, and the Fuller structure was renovated to house the existing retail businesses.

2.4 IDENTIFICATION OF STANDARDS, CRITERA, AND GUIDANCE

Each media of concern (soil, groundwater, and indoor air/soil vapor) was evaluated separately herein with results from field sampling compared against the appropriate NYSDEC and/or New York State Department of Health (NYSDOH) cleanup standards or guidance values in place at this time.

<u>Soil</u>

In December 2006, NYSDEC issued regulations for Section 6 of the New York Code, Rules and Regulations (6 NYCRR) Part 375, Environmental Remediation Programs, which applies to the Inactive Hazardous Waste Disposal Site Program (State Superfund, or SSF), the Environmental Restoration Program (ERP), and the BCP. NYSDEC 6 NYCRR Part 375-6.8 establishes Soil Cleanup Objectives (SCOs) that replaced the Technical Administrative Guidance Memorandum (TAGM) 4046 guidance values.

The reported sample concentrations for the analyzed constituents detected in soil at the Site were compared to the Commercial SCOs except for volatile organic compounds (VOCs), which were compared to the Protection of Groundwater (PGW) SCOs provided in 6 NYCCR Table 375-6.8(b), current through February 28, 2023.

Guidance values for per- and polyfluoroalkyl substances (PFAS) in soils were compared against the PGW and Commercial Guidance Values presented in NYSDEC's "Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS)" under NYSDEC's Part 375 Remedial Programs, dated April 2023.

<u>Groundwater</u>

The reported analytical concentrations for groundwater samples were compared to the Ambient Water Quality Standards and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Series (TOGS) Groundwater Standards ("AWQSGVs" or the "Standards").

The reported concentrations for groundwater samples analyzed for perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and 1,4-dioxane were compared to Guidance Values promulgated in February 2023 as an addendum to the June 1998 TOGS No 1.1.1.

Indoor Air/Soil Vapor

The current NYSDOH guidance document entitled "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006 with Soil Vapor Intrusion Updates (the latest update in February 2024), were used to evaluate resultant indoor air, sub-slab vapor, and soil vapor data.

3.0 PREVIOUS WORK

Previous Site investigation activities are described in, or included by reference in, the following reports submitted to NYSDEC Division of Environmental Remediation (DER):

- Phase I, Environmental Site Assessment, dated October 23, 2003, prepared by Whitestone Associates, Inc. (Whitestone);
- Underground Storage Tank Closure and Site Investigation Report, dated February 6, 2004, prepared by Whitestone;
- Limited Phase II Site Investigation, dated February 10, 2004, prepared by Whitestone;
- Remedial Investigation Report and Corrective Action Workplan, dated January 7, 2007, prepared by Whitestone;
- Remedial Investigation Report and Supplemental Remedial Investigation Workplan, dated December 24, 2008, prepared by Whitestone;
- Site Characterization Work Plan, dated October 19, 2012, and revised March 1, 2013, prepared by Stantec;
- Remedial Investigation Workplan, dated July 19, 2015, and revised October 21, 2016, prepared by Stantec;
- Draft Remedial Investigation Reported, dated March 30, 2018, prepared by Stantec;
- Supplemental Remedial Investigation Work Plan, dated February 16, 2022, prepared by Stantec;
- Interim Remedial Measures-Construction Completion Report, dated August 12, 2022, prepared by Stantec, which was approved by NYSDEC on March 27, 2023.

Figures 2 and 2A depict the present configuration of the property and Site boundaries, buildings, and parking lots. Figures 3A to 3C depict the present configuration of the site-specific portion of the Site, buildings, parking lots, and various sampling locations.

The documents referenced above were made available to Stantec (or prepared by Stantec) and subsequently reviewed to develop the following description of the several phases of investigation work that were conducted at the Site. Copies of pertinent figures and data tables from previous reports are presented in Appendix A.

3.1 HISTORIC INVESTIGATIONS (WHITESTONE ASSOCIATES, INC. 2003 – 2008)

A Phase I Environmental Site Assessment (ESA) was conducted in 2003 on the subject property by Whitestone. At the time, Johnny on the Spot dry cleaners occupied the southwestern portion of the shopping complex building and was identified as a Resource Conservation and Recovery Act (RCRA) Small Quantity Generator facility (United States Environmental Protection Agency [USEPA] Identification #NYD986957413). The ESA report concluded that no violations of hazardous waste regulations were recorded in the database report, but due to the presence of

the dry cleaner (as well as historic Site use and an existing underground storage tank [UST] that were unrelated to the dry cleaner), a Phase II site investigation was recommended.

In 2004, Whitestone conducted subsurface investigations associated with the removal/closure of one 5,000-gallon regulated No. 2 heating oil UST. As shown on the Boring Location Plan in Appendix A, the UST was located in the northeastern portion of the property behind the former Waldbaum's grocery store. Borings B-1 through B-5 were advanced by Whitestone in January 2004 in the vicinity of the former fuel oil UST at the property. Soil samples were collected and laboratory-analyzed for VOCs and SVOCs. Results of this work indicated no VOCs reported above laboratory method detection limits (MDLs). Two SVOCs, phenanthrene and fluoranthene, were reported at 0.073 parts per million (ppm) and 0.077 ppm, respectively, from B-4. These concentrations were below the SCOs of 50.0 ppm in place at that time. Comparing those concentrations to the current Commercial SCOs of 500 ppm indicates no exceedances. The results of this work are presented in Whitestone's "Underground Storage Tank Closure and Site Investigation Report", dated February 6, 2004.

Also, in January and February 2004, Whitestone advanced 12 additional soil borings in the area of the dry cleaners and installed ten temporary well points into the water table (8 to 12 ft bls) to collect grab samples of groundwater. The locations of these borings, identified as B-6 through B-17, are shown on the Figure in Appendix A. These boring locations are also presented in this RIR on Figure 3A. Soil samples from B-6 and B-7 were analyzed for VOCs and SVOCs. Soil samples from B-8 to B-17 were analyzed for VOCs only. The well points were completed and sampled at the following shallow (S) and deep (D) boring locations: B-1/GW-1; B-6/GW-6; B-8/GW-8; B-10/GW-10; B-12/GW-12; B-13/GW-13S; B-13/GW-13D; B-14/GW-14; B-15/GW-15S; B-15/GW-15D; B-16/GW-16S; B-16/GW-16D; and B-17/GW-17. Three locations (GW-13D, GW-15D, and GW-16D) were advanced to 24 to 28 ft bls and groundwater samples were collected from the deeper saturated zone. Samples from B-1/GW-1; B-6/GW-6; B-12/GW-12; B-13/GW-13S; B-14/GW-14; B-15/GW-15S; B-16/GW-16S; and B-17/GW-17 were analyzed for VOCs and SVOCs. Samples from B-8/GW-8; B-10/GW-10; B-13/GW-13D; B-15/GW-15D; and B-16/GW-16D were analyzed for VOCs only. Results of this work are presented in Whitestone's "Limited Phase II Site Investigation" (Phase II SI), dated February 10, 2004. Pertinent data tables presenting the results from the soil and groundwater sampling are presented in Appendix A and discussed below.

The 2004 Phase II SI report identified select VOCs in soil samples from borings B-6, B-9, and B-14 to B-17, but at levels below NYSDECs Recommended SCOs in place at that time. Concentrations of SVOCs in soil samples from B-6 and B-7 were also below the SCOs in place at that time. Whitestone ultimately concluded that no residual soil source area of contamination was identified.

As outlined below, the analytical results from these borings are compared by Stantec to the 2023 SCOs. Again, the VOC results are compared to the PGW SCOs while the SVOC results are compared to the Commercial SCOs. As shown below, no VOC or SVOC sample concentrations exceeded the current Standards.

			2023 SCO (ppm)	
Boring	Compound	Conc (ppm)	PGW	Commercial
B-6	Ethylbenzene	0.014 J	1	390
	Acenaphthene	0.119	98	500
	Fluorene	0.177	386	500
	Phenanthrene	0.379	1,000	500
B-7	VOCs	ND	Varies	Varies
	Acenaphthene	1.87	98	500
	Fluorene	2.04	386	500
	Phenanthrene	4.53	1,000	500
	Anthracene	0.449	1,000	500
	Fluoranthene	0.091 J	1,000	500
	Pyrene	0.227	1,000	500
B-9	Tetrachloroethene	0.00305 J	1.3	150
B-14	MTBE	0.002 J	0.93	500
	Naphthalene	0.002 J	12	500
B-15	Naphthalene	0.737	12	500
B-16	MTBE	0.0014 J	0.93	500
	Xylene	0.013 J	1.6	500
	1,2,4-Trimethylbenzene	0.003 J	3.6	190
	Naphthalene	0.017 J	12	500
B-17	1,2,4-Trimethylbenzene	0.005 J	3.6	190
	Naphthalene	0.192	12	500

Whitestone reported that the 2004 groundwater sample results from the temporary well points identified tetrachloroethene (or perchloroethene [PCE]), trichloroethene (TCE), vinyl chloride (VC), benzene, ethylbenzene and certain SVOCs at concentrations exceeding applicable groundwater standards (TOGs and TAGM) near the northeastern corner of the dry cleaner store unit (well point B-6 / GW-6). Groundwater samples from the following sampling points also had chlorinated VOCs (cVOCs) at levels exceeding applicable standards in B-13 / GW-13 shallow and deep; B-14 / GW-14; B-15 / GW-15 shallow and deep; and B-16 / GW-16 shallow and deep.

The compounds identified in the temporary well points also exceed some of the AWQSGVs, primarily for cVOCs.

In 2008, additional site investigation activities were conducted by Whitestone to further delineate soil and groundwater conditions. The results are presented in Whitestone's "Remedial Investigation Report and Supplemental Remedial Investigation Workplan", dated December 24,

2008. Copies of pertinent figures and tables are presented in Appendix A. The work included the following:

- the installation and sampling of three additional soil borings (identified as B-18 to B-20 on Figure 3A) to further delineate soil conditions;
- the installation, surveying, and sampling of six permanent shallow and deep groundwater monitor wells (identified as MW-1S, MW-1D, MW-2S, MW-2D, MW-3S, and MW-3D on Figure 3B) to evaluate groundwater conditions;
- permeability testing (slug tests) to establish aquifer/hydraulic characteristics;
- the installation and sampling of a sub-slab soil gas probe (SG-1, inside the dry cleaner space) and soil gas vapor points (SG-2 and SG-3 in the parking lot/loading dock area behind the dry cleaner); and
- the collection of air samples for indoor air quality (IAQ-1, inside the dry cleaner space) and outside/ambient air (AA-1, outside in the driveway to the west of the dry cleaner).

Reference Figure 3C for the soil gas point and air sample locations. Well construction details are presented in Table 1 and logs are presented in Appendix B.

Soil samples from the three soil borings (B-18 to B-20) were analyzed for VOCs. As shown in Appendix A Table 2, no VOCs were detected above MDLs, and therefore there were no exceedances of PGW SCOs.

The shallow and deep groundwater monitoring well pairs MW-1S / MW-1D and MW-2S / MW-2D were advanced in the loading dock/parking lot area behind the former dry cleaner (to the north), and well pair MW-3S/MW-3D was advanced further to the north. At the time of well installation and measurement, groundwater flow appeared to be to the south. Water levels measured during a low tide and high tide period were essentially the same in the shallow and deep wells (see Appendix A, Table 4 from the 2008 RIR). This indicates that tidal flow does not appear to affect the groundwater at the Site.

Groundwater samples from the six monitoring wells were sampled for VOCs. The 2008 water quality results presented in Appendix A are also included in Table 6A to compare to the AWQSGVs. Shallow groundwater at well MW-1S contained VOCs at concentrations below MDLs and/or below AWQSGVs. However, chlorinated compounds (i.e., 1,1-dichloroethane [1,1-DCA], 1,1-dichloroethane [1,1-DCE], and 1,2-dichloroethane [1,2-DCA]) exceedances were identified in the deeper off-set well MW-1D. In well MW-2S, 1,1-DCE, cis- 1,2-DCE, PCE, TCE, and VC were detected at concentrations above AWQSGVs, but no compounds were reported above MDLs in the groundwater sample collected from the deeper off-set well MW-2D. No exceedances of Standards were identified in the groundwater samples collected from monitor wells MW-3S and MW-3D, with the exception of the concentration of 1,2-DCA (2.8 parts per billion [ppb]) in MW-3D, which exceeded its Standard of 0.6 ppb.

The results for sub-slab soil gas and indoor air samples collected in 2008 are presented in Appendix A, Table 6. To assist the reader, the data from Appendix A are also included in Table 7A (Sub-Slab Soil Gas) and Table 7B (Indoor Air). Locations of the vapor intrusion sampling points are shown on Figure 3C.

As shown on Table 7B, the results for the indoor air sample (IAQ-1) in the former dry cleaner unit identified VOCs, the most significant of which was PCE at a concentration of 160 micrograms per cubic meter (ug/m³), which exceeded the air guidance value of 100 ug/m³ in place at that time. The 160 ug/m³ level also exceeds the current guidance value of 30 ug/m³. Analytical results of the outside/ambient air sampled collected at location AA-1 identified PCE at a concentration in air of 1 ug/m³.

As shown on Table 7A, sub-slab soil gas sample SG-1, which was collected in close proximity to IAQ-1 and beneath the slab of the former dry cleaner unit, exhibited PCE and TCE levels of 4,300 ug/m³ and 75 ug/m³, respectively. cVOCs were also identified in soil vapor samples SG-2 and SG-3 (located in the loading dock/parking area to the north of the former dry cleaner unit). In sample SG-2, PCE was reported at 30 ug/m³ and TCE at 19 ug/m³. In sample SG-3, PCE was reported at 9.5 ug/m³ and TCE was not detected. VC and 1,2-DCE were also detected at SG-2 only at 46 ug/m³ and 79 ug/m³, respectively. Other VOCs were detected in the two soil vapor samples including benzene, toluene, ethylbenzene, and xylenes (BTEX compounds) ranging from non-detect to 83 ug/m³ of benzene, 8.3 to 20 ug/m³ of toluene, 1.3 to 2.7 ug/m³ of ethylbenzene, and 4.4 to 10.5 ug/m³ of total xylenes.

In their December 2008 Remedial Investigation Report and Supplemental Remedial Action Plan, Whitestone provided a map that recommended an additional well pair (MW-4S/MW-4D) be drilled and constructed to the east of the Site building in a landscaped area in the parking lot. However, no additional information/report was provided to Stantec related to the actual construction of these two wells, and the wells could not be found by Stantec during the various field activities described in this RIR. No data were available for these wells, and it is assumed that MW-4S/4D were not installed.

Whitestone also reported that, due to the elevated levels of PCE in SG-1, and comparison of the indoor air (IAQ-1) and sub-slab soil gas (SG-1) concentrations with the NYSDOH Decision Matrices, that mitigation would be required to address the PCE levels from inside and beneath the former dry-cleaning unit.

3.2 SUMMARY OF REMEDIAL INVESTIGATION (STANTEC 2012-2018)

Remedial Investigation (RI) activities were performed at the Site by Stantec from 2012 to 2018 to supplement environmental investigations performed by Whitestone from 2003 to 2008, as described above.

In 2012, Stantec worked with the NYSDEC to develop a Site Characterization Work Plan to further the investigation of shallow and deep groundwater at the subject property, as well as to further the investigation of sub-slab soil vapor, soil vapor, and indoor air to assess the potential for vapor

intrusion associated with the known chlorinated solvent groundwater plume. The Site Characterization Plan (prepared by Stantec, October 19, 2012, and revised March 1, 2013) was approved by NYSDEC in a letter dated April 19, 2013. Prior to the initiation of field investigation activities, Stantec conducted a series of public outreach services, including letters to nearby residents, dissemination of a Fact Sheet detailing what the public can expect during the investigation, and distribution of background materials to a local library. During the implementation of field activities, Stantec worked closely with the building tenants and nearby residents to ensure that questions and concerns were addressed and conducted the required air monitoring (including dust and volatiles) during the work to ensure the public's safety.

Field investigation activities included the assessment of shallow and deep groundwater, and the assessment of vapor intrusion issues at the former dry cleaner, the adjacent stores, and sidewalks adjacent to the subject property and nearby residential units. These investigations included the collection of soil, shallow groundwater, deep groundwater, sub-slab soil vapor, soil vapor, indoor air, and outdoor air samples. Sampling locations are shown on Figures 3A, 3B, and 3C.

Note that in July 2015, A&P filed for Chapter 11 bankruptcy protection and the A&P Waldbaum's grocery store closed. Several phases of bankruptcy transactional proceedings associated with A&P, the bankruptcy court, and the property owner subsequently occurred. In December 2015, Feil retained Stantec as the environmental professional for this Site. Feil subsequently entered into a BCA (index no. C241125) with NYSDEC in January 2017.

The results of the RI were initially summarized in a report by Stantec entitled "Draft Remedial Investigation Report, Former Johnny on the Spot Cleaners, 152-153 10th Avenue, Whitestone, NY 11357, BCP Site ID C241125," submitted to NYSDEC in March 2018 (2018 Draft RIR).

The 2018 Draft RIR identified activities that included:

- Drilling of test borings in soil at interior and exterior locations chosen to further evaluate areas of previously identified or suspected cVOC presence (see Figure 3A);
- Laboratory analysis of soil samples for cVOCs;
- Installation of six shallow and seven deep overburden groundwater monitoring wells (Well Construction Details are presented in Table 1, locations are shown on Figure 3B, and boring logs are presented in Appendix B);
- Hydraulic conductivity testing of selected wells;
- Sampling of groundwater monitoring wells for cVOCs;
- Laboratory analysis of groundwater samples for cVOCs; and
- Sampling of soil gas, sub-slab vapors, and indoor air at the Site, at adjacent exterior locations, and at adjacent interior store locations (i.e., Bank, Cascarino's restaurant, and JD Opticians).

Results are discussed below.

3.2.1 Soil Investigations and Results

In June 2013, Stantec oversaw the advancement of borings at select locations to collect additional soil samples and to construct additional monitoring wells. Well pair MW-101S/MW-101D was installed in the northern sidewalk of 10th Avenue, and well pair MW-102S/MW-102D was installed in the southern sidewalk (adjacent to the homes at 58 and 64 10th Avenue). One additional deep monitoring well (MW-103D) was advanced further north of the Site, in the truck access drive just beyond the loading dock/parking lot area to the north of the Site. The locations are shown on Figure 3B. Boring logs are presented in Appendix B.

Soil samples were collected continuously during the drilling of the deep boring at each location via a Geoprobe® drill rig and evaluated in the field for grain size distribution, odors, and visible evidence of staining. Samples were also screened for VOCs using a jar-headspace procedure and a photoionization detector (PID). Soil samples were collected at the depth intervals of 13-14 ft and 45-46 ft at MW-101D; 15-16 ft and 38-39 ft at MW-102D; and 12-13 ft and 38-39 ft at MW-103D. The shallow samples were collected above the water table. The samples were analyzed for VOCs only. A table showing the results for the VOCs that were detected is presented in Appendix A. Note the results are presented in micrograms per kilogram (ug/kg or ppb). The results showed VOCs were reported at levels below MDLs in the four samples collected from MW-101D and MW-102D. At MW-103D, acetone was the only VOC detected in soil collected at a depth of 12-13 ft bls (43.2 ug/kg) and again at a depth of 38-39 feet bls (25.5 ug/kg). These concentrations are well below the PGW SCO of 0.05 ug/kg.

In June 2013, a small Geoprobe® rig was utilized to advance a boring inside the back portion of the Site to construct a sub-slab soil gas probe (SG-1) as a replacement for the probe that was installed by Whitestone in 2008. During this drilling, a soil sample was collected at a depth of approximately 8-inches below the floor and analyzed for VOCs. As show in the table in Appendix A, acetone, naphthalene, and PCE were each detected in the soil sample from this sub-slab soil gas location at concentrations of 24.4 ug/kg, 93.4 ug/kg, and 91 ug/kg, respectively. These soil sampling results were below the most stringent CP-51 Table 375-6.8(b) SCOs in place at that time. These levels are also below the current PGW SCOs.

In September 2017, Stantec oversaw the advancement of sixteen (16) soil borings at locations both inside and outside (to the north and west) of the former dry cleaner unit. Drilling was conducted by Aquifer Drilling and Testing (ADT) using a Geoprobe® rig. For safety reasons, each location was cleared for shallow utilities prior to drilling using an air-knife to a depth of 5 ft. Borings were subsequently advanced to pre-determined depths of 15 ft, as described in Stantec's Remedial Investigation Workplan (RIWP dated October 21, 2016) that was approved by NYSDEC on March 7, 2017. Soil samples were collected continuously for field characterization and field screening for VOCs using a properly calibrated PID. Locations of the borings (identified as B-101 to B-116) are shown on Figure 3A. Hand-sketched boring logs and cross-sections are presented in Appendix B.

Two soil samples were selected from borings B-101 to B-115 and submitted to a New York-certified laboratory for analysis. The selected soil samples were collected using Encore samplers. One sample was collected from the interval showing the greatest evidence of impacts (PID, olfactory or visual). The second sample was collected from the base of the boring. If no impacts were observed, one of the two samples was collected from just above the water table, and the second sample from the base of the boring. The two samples were submitted for laboratory analysis of VOCs (USEPA Method 8260B). The laboratory results, in NYS Category B data deliverable format, were subsequently submitted to a third party for data validation and preparation of a Data Usability Summary Report (DUSR). Copies of pertinent laboratory report pages are included in Appendix C. The DUSR for the soil quality is also presented in Appendix C. Also, one sample from each boring was sent to a state-certified laboratory for grain size analysis. The samples for grain size analysis were selected to span the range of geologic stratum types observed. The grain size distribution results are presented in Appendix D.

Analytical results for the September 2017 soil samples are shown on Table 5. A spider map depicting exceedances of SCOs is presented as Figure 5. Soil quality data from previous investigations, presented in Appendix A, had no exceedances so are not shown on Figure 5.

As shown on Table 5 and Figure 5, concentrations of VOCs from the 2017 soil boring samples were reported at levels exceeding PGW SCOs in four borings (in 6 of the 29 samples). These six samples were from various depth intervals in B-109 (3.5 - 5.0 ft bls), B-110 (6.5 ft bls and 14.5 ft bls), B-113 (6.5 ft bls and 12.9 ft bls), and B-114 (1.0 ft bls).

The individual VOCs exceeding SCOs in the six soil samples included:

Boring	Compound	Conc (ppm)	2023 PGW SCO (ppm)
B-109 (3.5-5.0')	Acetone	0.055	0.05
B-110 (6.5°)	PCE	4.4	1.3
	TCE	0.49	0.47
B-110 (14.5')	cis-1,2-DCE	0.31	0.25
	PCE	1.4	1.3
B-113 (6.5')	PCE	3.0	1.3
B-113 (12.9')	cis-1,2-DCE	2.2	0.25
	PCE	52	1.3
	TCE	4.1	0.47
	VC	0.056 J	0.02
B-114 (1.0')	PCE	18	1.3
	TCE	7.8	0.47

The 2017 soil quality data showed that soils impacted by the contaminants of concern (cVOCs including PCE and breakdown products TCE, cis-1,2-DCE, and VC) are located within the former dry cleaner unit and are not widespread across the Site area.

3.2.2 Groundwater Investigations and Results

As mentioned above, in June 2013 monitoring wells MW-101S/D, MW-102S/D, and MW-103D were constructed. In July 2013, Stantec collected groundwater samples from MW-1S, MW-1D, MW-2S, MW-2D, MW-3D, MW-101S/D, MW-102S/D, and MW-103D for VOCs, SVOCs, nitrate, sulfate, and metabolic acids. Note that well MW-3S could not be found during that sampling event and was assumed to have been destroyed or paved over. The July 2013 results for VOCs and SVOCs are included in Tables 6A and 6B, respectively. A spider map depicting exceedances of AWQSGVs is presented on Figure 6.

As shown on Table 6A, cVOCs were detected in groundwater collected from all wells except well MW-101S, MW-102S/D, and MW-103D. The concentrations detected were highest to the north of the dry cleaner unit at well MW-1S. Well MW-2S, also located in that area, contained cVOCs at lower concentrations than MW-1S, but still above AWQSGVs. Deep groundwater at wells MW-1D and MW-2D was also impacted with concentrations of cVOCs above the AWQSGVs, but significantly lower than in the respective shallow wells. At MW-3D, only 1,2-DCA (1.86 ug/L) was detected above its AWQSGV of 0.6 ug/L. Groundwater at deep well MW-103D contained only PCE, but at a concentration below its AWQSGV.

The results show that cVOC concentrations generally decreased with distance north from the dry cleaner.

Up-gradient shallow wells MW-101S and MW-102S, located on the north and south sidewalks of 10th Avenue, respectively, had no VOCs at levels above MDLs and/or above AWQSGVs. Deeper groundwater in the up-gradient wells was more impacted than in the shallow wells; well MW-101D (closest to the dry cleaner unit) contained five cVOCs above AWQSGVs. At the most up-gradient well pair, the concentration of TCE in well MW-102D (3.56 ug/L) was slightly higher than shallow well MW-102S (3.24 ug/L), but below the AWQSGV. These results suggest that the subject Site may also have been, or may be, impacted by an off-site, up-gradient source of cVOCs.

As shown in Table 6B, all SVOCs were reported at levels below laboratory MDLs and/or below AWQSGVs.

In September 2017, Stantec oversaw the drilling and constructing of an additional upgradient shallow and deep well pair (identified as MW-201S and MW-201D on Figure 3B). No soil samples were collected for laboratory analysis. Well completion details are presented in Table 1 and boring logs in Appendix B.

In November 2017, Stantec collected groundwater samples from all thirteen site wells for laboratory analysis of VOCs only. Each well was purged and sampled using low-flow sampling techniques in accordance with the USEPA Region II guidance document entitled "Groundwater

Sampling Procedure, Low Stress (Low Flow) Purging and Sampling". The monitoring wells were low-flow purged prior to sampling by evacuating groundwater at a rate between 120 and 280 milliliters per minute for a minimum of 55 minutes, or until stabilization of the field parameters occurred. Purging was conducted using a peristaltic pump, which was connected to polyethylene tubing within each well. Low flow sampling data sheets are presented in Appendix E.

The laboratory results, in NYS Category B data deliverable format, were subsequently submitted to a third party for data validation and preparation of a DUSR. Copies of pertinent laboratory report pages are included in Appendix F. The DUSR for the water quality is also presented in Appendix F.

The November 2017 results for VOCs are included in Table 6A. A spider map depicting exceedances of AWQSGVs is presented on Figure 6.

As shown on Table 6A and Figure 6, concentrations of cVOCs at levels exceeding AWQSGVs were reported at just two shallow wells (MW-1S and MW-2S). Consistent with previous sampling events, the specific chemicals of concern include PCE and its breakdown products (TCE, 1,1-DCE, cis-1,2-DCE, and VC). Concentrations of cVOCs at levels exceeding AWQSGVs in the deep wells were only shown at one well (MW-101D). At this location only cis-1,2-DCE and VC were reported above AGWQSGs. At MW-1D and MW-2D, two deep wells located just north and downgradient of the Site, cVOCs were reported at levels below MDLs and/or AWQSGVs.

Levels of 1,1-DCA at MW-101D and MW-201D; and 1,2-DCA at MW-2D, MW-3D, and MW-101D were also reported above AWQSGVs during the November 2017 event.

3.2.3 Sub-Slab Soil Gas and Indoor Air Results: 2013 - 2018

3.2.3.1 SSSG and IA Results - 2013

In June 2013, two sub-slab soil gas (SSSG) probes were installed inside the former dry cleaner (identified as SG-1 and located proximal to the SG-1 sampling location that was installed in 2008) and inside the bank (identified as SG-4), at an accessible location near the former dry cleaner. Two soil vapor points were also installed at the two upgradient well pairs: SGP-5 was located on the northern sidewalk near MW-101S/D, and SGP-6 on the southern sidewalk near MW-102S/D. The soil gas probe locations are shown on Figure 3C. Spider maps showing the results from 2008 to 2024 are presented on Figure 7A (former dry cleaner) and Figure 7B (Rehab Center/former Bank).

Please note that only those VOCs that have an associated Matrix value and had detected concentrations are shown. For instance, although 1,1,1-trichloroethane (1,1,1-TCA) is included in Matrix B it has always been reported as non-detect and so it is not shown on Figures 7A or 7B.

Sub-slab soil gas and soil vapor samples were collected in June 2013 from SG-1, SG-4, SGP-5, and SGP-6. Indoor air samples were also collected in June 2013 from locations inside the Bank (AA-1)

and inside the dry cleaner unit (AA-2). In July 2013, Stantec collected another round of sub-slab soil gas and soil vapor samples from SG-1, SG-4, and SGP-6. The vapor samples were tested for VOCs via USEPA Method TO-15. Results of the sub-slab soil gas and soil vapor samples are presented in Table 7A. Results of the indoor air samples are presented in Table 7B.

The June/July 2013 SSSG concentrations of PCE were as high as 2,746 ug/m³ (SG-1), and indoor air concentrations for PCE were as high as 166 ug/m³ (AA-2) in the former dry cleaner unit. The 166 ug/m³ exceeded the NYSDOH Indoor Air Standard of 100 ug/m³ in place at that time. At the Bank unit, SSSG concentrations of PCE in SG-4 were as high as 2,909 ug/m³ and indoor air concentrations of PCE in AA-1 were as high as 45 ug/m³. The 45 ug/m³ did not exceed the Standard in place at that time. Also at the Bank unit, TCE levels in AA-1 (5.27 ug/m³) exceeded the NYSDOH Indoor Air Standard of 5 ug/m³ in place at that time.

Results from the exterior sidewalk samples (SGP-5 and SGP-6) showed low levels (generally less than 1 ug/m³) of cVOCs and gasoline components.

Concentrations of cVOCs in sub-slab vapor and indoor air in both units were evaluated using the NYSDOH Guidance for Evaluating Soil Vapor Intrusion Decision Matrix in place at that time. Based on the 2013 sub-slab and indoor air concentrations of PCE and TCE, the Decision Matrices recommended mitigation.

Although the dry-cleaning equipment had been previously removed from the unit (at an unknown date), as the first measure in mitigating the presence of cVOCs in indoor air, Stantec engaged a remediation contractor (SCE environmental [SCE]) to clean the dry cleaner space. This work was conducted in accordance with the work plan submitted to NYSDEC on September 23, 2013. The content of the work plan was verbally discussed with NYSDEC representatives, Hasan Ahmed and Jane O'Connell, on September 23, 2013, and although not formally approved at that time, work was initiated immediately upon submittal of the plan to begin mitigation efforts without delay.

Between September 25, 2013, and September 30, 2013, this cleaning work was conducted. SCE initially removed all tenant-related storage from the unit, which consisted of various construction materials, and removed the dry wall to the steel beams along the inside walls on the lower level of the unit. The drywall and former racks and hangers associated with the dry cleaner unit were removed from the unit, placed in two 15-yard roll-off dumpsters and shipped off-site for proper disposal. Piping related to active utilities (e.g., heating ducts, electric lines, and water lines) remained in place, although inactive pipes were capped when accessible. During the clean-out activities, gaps or cracks noted on the walls were sealed with expandable spray foam, while cracks in the floor were sealed with a silicone caulk. Laminate floor tiles in the lower level that were observed to be damaged were removed. The majority of the floor tiles and mastic were found to provide an adequate seal and were, therefore, not removed. The ceiling, walls, and floors were then power-washed with simple green and water throughout the unit. Power washing activities were conducted in three cycles (e.g., gross abatement, initial cleaning, and final cleaning) and were completed between September 30 and October 1, 2013. Waste water was

collected into two 55-gallon drums, characterized, and disposed of as a non-hazardous waste on November 7, 2013.

During the mitigation effort, ventilation fans were used in the existing exhaust vents to keep the unit as dry as possible. Subsequently, the building space was allowed to air dry for a period of two weeks before collecting additional indoor air samples.

On October 16, 2013, Stantec personnel resampled sub-slab soil gas and indoor air in the former dry cleaner unit (SG-1 and AA-2) and in the Bank unit (SG-4 and AA-1). An outside/ambient air was also resampled (AA-3). The associated results are included in Tables 7A and 7B. Comparing the June and October 2013 results for the indoor air samples indicated a decrease in concentrations in the Bank unit, and an increase in concentrations in the dry cleaner unit (possibly due to incomplete ventilation of the unit following the clean out conducted 2 weeks before the sampling event). The levels of TCE in indoor air in the Bank at AA-1 decreased from 5.27 ug/m³ (and above Standards) in June 2013 to non-detect levels in October 2013.

Comparing the July and October results from the sub-slab soil gas samples showed levels in the dry cleaner increased, while levels in the Bank decreased. The dry cleaner unit was ventilated with fans during the clean-out work and continues to ventilate passively through the two window vents.

To further the investigation, Stantec developed a Remedial Investigation Workplan, dated July 19, 2015, and revised October 21, 2016, that was approved by NYSDEC on March 3, 2017. Again, as noted above, A&P filed for bankruptcy in July 2015 and Feil retained Stantec as the environmental professional for this Site in December 2015.

3.2.3.2 SSSG and IA Results - 2017

On March 8, 2017, Stantec set re-usable sub-slab soil gas probes inside three lease units at the property. At each location a hole-saw was used to cut a small (3-inch diameter) hole in the concrete slab and then each probe was set between roughly one and two feet below the bottom of the floor slab. Clean filter sand was placed around the slotted portion of the probe and a bentonite seal placed from the top of the sand to the bottom of the slab. A small (3-inch diameter) road box with bolted manhole cover was set and grouted flush to the floor surface at each location. Once installed, Stantec performed leak tests on each sub-slab vapor probe utilizing a helium shroud technique. The sub-slab soil gas probes are identified on Figure 3C as follows:

- SG-6 and SG-6A inside the Bank;
- SG-7 inside J.D. Opticians; and
- SG-8 inside Cascarino's restaurant.

During this same mobilization, Stantec also set three additional re-usable soil gas vapor points in the parking lot area behind (to the north of) the former dry cleaner. These points are identified on Figure 3C as SGP-1, SGP-2, and SGP-3. These soil gas points were installed in the same manner

as described above. Due to relatively shallow water table encountered (for instance 1.0 ft bls at SGP-3) the points were installed at depths of approximately 1.0 to 1.5 feet below the top of pavement.

On March 9, 2017, Stantec collected 8-hour indoor air quality (IAQ) samples from the former dry cleaner unit and from the three other leased units (Bank, JD Opticians, and Cascarino's) using appropriate six-liter (6-L) Summa canisters. Note that two IAQ samples (Bank 1 and Bank 2) were collected from inside the Bank. To prevent interference with the IAQ samples, Stantec collected six sub-slab soil gas samples (SG-1, SG-4, SG-6, SG-6A, SG-7, and SG-8) using appropriate one-liter (1-L) Summa canisters on March 10, 2017, after the IAQ samples were collected and secured. For quality assurance and quality control (QA/QC) purposes, one outside/ambient sample was also collected. Prior to collecting any samples, each sub-slab soil gas probe was determined to be properly sealed (i.e., no leakage) by using a helium shroud testing technique. In addition, soil vapor samples were collected as grabs from the three parking lot locations (SGP-1, SGP-2, and SGP-3). Near the end of sample collection at SGP-1, water was observed flowing through the probe tubing and into the Summa canister. Due to this observation, the sample was terminated.

The sample Summa canisters were shipped under chain of custody to Test America of Burlington, VT for analysis of VOCs by USEPA Method TO-15. The laboratory results, in NYS Category B data deliverable format, were subsequently submitted to a third party for data validation and preparation of a data usability summary report (DUSR). The DUSR and copies of pertinent laboratory report pages for the March 2007 events are presented in Appendix G. Sample locations are shown on Figure 3C. Results of the SSSG samples and indoor air samples are included in Tables 7A and 7B, respectively, and discussed below.

Cascarino's Restaurant and JD Opticians

As shown on Tables 7A and 7B, PCE and its degradation products were not detected in either the sub-slab or indoor air sample from Cascarino's restaurant. The low concentrations of VOCs that were detected inside the restaurant are common in indoor air.

In the Opticians unit, although PCE was detected at 2.0 ug/m³ in the SSSG sample (SG-7 located at the back wall to the rear parking area), no degradation products were reported in the SSSG. PCE and its degradation products were not detected in the indoor air sample from JD Opticians, and the low concentrations of VOCs that were detected are common in indoor air.

<u>The Bank</u>

Three sub-slab soil gas and two indoor air samples were collected in the Bank unit. The soil gas sample collected near the front entrance (SG-6A) reported 2.7 ug/m³ of PCE. The soil gas sample in the customer area of the Bank floor (SG-6) reported 5.7 ug/m³ PCE and 0.49 ug/m³ TCE. The indoor air sample collected between SG-6 and SG-6A, identified as Bank 1, had PCE reported at 2.6 ug/m³; TCE was not detected. The results from the sub-slab soil gas probe located at the rear of the Bank near the wall separating the Bank from the former dry cleaners (SG-4), reported 72

ug/m³ PCE and 6.8 ug/m³ TCE. A second indoor air sample (identified as Bank 2) located near SG-4 had PCE reported at 2.4 ug/m³ PCE; TCE was not detected.

Previously in 2013, the SG-4 location reported PCE concentrations ranging from 399 ug/m³ to 2,909 ug/m³, and TCE ranging from 7.42 ug/m³ to 54 ug/m³. The 2013 indoor air sample at this Bank location (AA-1) had reported PCE concentrations ranging from non-detect to 45 ug/m³, and TCE concentrations ranging from non-detect to 5 ug/m³.

Former Dry Cleaner

One SSSG and one indoor air sample were collected from the former dry cleaner space. The soil gas sample (SG-1) had PCE and TCE reported at 2,400 ug/m³ and 750 ug/m³, respectively. The indoor air sample from the former dry cleaner space (identified as Cleaner) had PCE reported at 3.6 ug/m³; TCE was not detected.

Previously in 2013, the SG-1 location reported PCE concentrations ranging from 2,610 ug/m³ to 16,614 ug/m³ and TCE concentrations ranging from 188 ug/m³ to 1,102 ug/m³. The 2013 indoor air sample (AA-2) reported PCE concentrations ranging from 166 ug/m³ to 468 ug/m³, and non-detect for TCE.

Soil Vapor Samples

Soil vapor point SGP-1 was located northwest of the former dry cleaners in the entrance road to the rear loading dock/parking lot area. The results showed no detections of the cVOCs of concern.

Soil vapor point SGP-2 was located on the east end of the loading dock/parking lot area adjacent to the retaining wall of the retail store. The results showed no cVOCs of concern detected except VC at 0.14 ug/m³.

Soil vapor point SGP-3 was placed in the northern portion of the loading dock/parking lot area adjacent to the rear of the building. The sample collected from this location had PCE reported at 2,600 ug/m³ PCE. All other cVOCs of concern were not detected.

NYSDOH Decision Matrix for 2017 Sub-slab Soil Gas and Indoor Air Results

Stantec evaluated the SSSG and IAQ results in accordance with Section 3.4 (Decision Matrices) of the "NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (October 2006, revised May 2017). The Decision Matrices are another way to compare SSSG with indoor air concentrations to develop recommended actions. At that time, NYSDOH had developed three matrices – Matrix A for evaluating TCE, cis-1,2-DCE, 1,1-DCE, and carbon tetrachloride; Matrix B for evaluating PCE, 1,1,1-TCA, and methylene chloride; and Matrix C for evaluating VC.

Carbon tetrachloride was detected in sub-slab samples from the Bank (SG-6, SG-6A, and SG-4) and JD Opticians (SG-7) at levels of approximately 0.30 ug/m³. The corresponding indoor air

results for carbon tetrachloride from these same units (Bank 1, Bank 2, and JD Opticians) were approximately 0.40 ug/m³. Therefore, utilizing Matrix A (reference table below), the results would place both units within <u>Category 2</u> (i.e., No further action).

It should be noted that carbon tetrachloride is persistent in the atmosphere from historical uses and is consistently detected in indoor and ambient air at concentrations near 0.40 ug/m³ (Agency for Toxic Substances and Disease Registry Toxicological Profile for Carbon Tetrachloride, 2005). Concentrations of both 1,1-DCE and cis-1,2-DCE were reported as non-detect in all indoor air samples, so this would place these compounds in <u>Category 1</u> (i.e., No further action).

Levels of TCE (Tables 7A and 7B) were reported in the sub-slab samples in the Bank from the customer area (SG-6) and near the front entrance (SG-6A) at 0.49 ug/m³ and non-detect (less than 0.21 ug/m³), respectively, and in the corresponding indoor air samples (Bank 1 and Bank 2) at non-detect (less than 0.21 ug/m³), placing this compound in <u>Category 1</u> (i.e., No further action). Levels of TCE in the SSSG in the Bank near the wall separating the Bank from the former dry cleaners (SG-4) were reported at 6.8 ug/m³ and in the indoor air sample (Bank 2) at non-detect (less than 0.21 ug/m³). These values place this compound in this portion of the Bank in <u>Category 4</u> (i.e., No further action).

Levels of TCE in the sub-slab (SG-1) and indoor air from the dry cleaner (Cleaner) were reported at 750 ug/m³ and non-detect (less than 0.21 ug/m³). Due to the elevated levels of TCE in SG-1, this unit falls in <u>Category 7</u> (i.e., Mitigate).

Soil Vapor/Indoor Air Matrix A TCE, cis-1,2-DCE, 1,1-DCE, Carbon Tetrachloride

	INDOOR AIR CONCENTRATION OF COMPOUND (UG/M³)		
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (UG/M³)	< 0.2	0.2 to < 1	1 and above
< 6	1. No further action	2. No further action	3. IDENTIFY SOURCE(S) and RE-SAMPLE or MITIGATE
6 to < 60	4. No further action	5. Monitor	6. MITIGATE
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

The results for 1,1,1-TCA, methylene chloride, and PCE from Tables 7A and 7B were also evaluated in terms of the concentrations and recommended actions depicted in Matrix B shown in the table below. 1,1,1-TCA and methylene chloride were not detected in any sample, so these two compounds fall in <u>Category 1</u> (No further action) in Matrix B.

PCE was detected in all sub-slab samples (except for the sample from Cascarino's restaurant); and in indoor air samples from the Bank and the former dry cleaner. In the Bank unit, PCE was reported in the sub-slab samples at 72 ug/m³ (SG-4), 5.7 ug/m³ (SG-6), and 2.7 ug/m³ (SG-6A) (all

< 100 ug/m³) and in the two indoor air samples at 2.6 and 2.4 ug/m³ (both < 3), which would place the Bank unit in <u>Category 1</u> (No Further Action) for PCE. In the former dry cleaner, PCE was reported in the sub-slab sample (SG-1) at 2,400 ug/m³ and in the indoor air sample (Cleaner) at 3.6 ug/m³, which would place this unit in <u>Category 8</u> (Mitigate) for PCE. The levels of PCE in Cascarino's and JD Opticians place these two units in <u>Category 1</u> (No further action). Further description of Stantec's conclusions and rationale for additional work related to these various Categories is presented below.

Soil Vapor/Indoor Air Matrix B (PCE, 1,1,1-TCA, and Methylene Chloride)

	INDOOR AIR CONCENTRATION OF COMPOIND (UG/M³)		
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (UG/M³)	< 3	3 to < 10	10 and above
< 100	1. No further action	2. No further action	3. IDENTIFY SOURCES(S) and RESAMPLE or MITIGATE
100 to < 1,000	4. No further action	5. Monitor	6. MITIGATE
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE

As described in the 2006 NYSDOH Soil Vapor Intrusion Guidance, the three action Categories are described as follows:

Category 1 and 2 - No further action. Given that the compound was not detected in the indoor air sample and that the concentration detection in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

Category 4 - No further action. Same as above.

Category 7 and 8 - Mitigate. Mitigation is appropriate to minimize current or potential exposures associated with soil vapor intrusion. Methods to mitigate exposures related to soil vapor intrusion are described in Section 4.

3.2.3.3 SSSG and IA Results - February 2018

Stantec considered the results and conclusions from the March 2017 sampling event (i.e., "No further action" at the Bank, Cascarino's, and JD Opticians, and "Mitigate" at the former dry cleaner) and conducted another "winter heating season" sampling event in February 2018.

During this event three IAQ samples were collected from inside the former dry cleaner (these are identified as Cleaner, Cleaner 2, and Cleaner 3) and two from inside the Bank (Bank 1 and Bank 2). Sub-slab soil gas samples were collected from the former dry cleaner (SG-1) and the Bank (SG-6 and SG-6A). Samples were not collected from SG-4 inside the Bank due to water being

observed flowing through the probe tubing and into the Summa canister. Due to this observation, the sample was terminated.

The two additional IAQ samples from inside the former dry cleaner unit were collected in the front portion (closest to 10th Avenue) of the dry cleaner. These two additional samples (identified as Cleaner 2 and Cleaner 3) were collected because the owner was planning to partition the former dry cleaner unit into two lease units and begin leasing the front portion sometime in the summer of 2018. Therefore, two IAQ samples were collected in this front portion to obtain more specific data.

The samples were analyzed by Test America of Burlington, VT for analysis of VOCs by USEPA Method TO-15. The laboratory results, in NYS Category B data deliverable format, were subsequently submitted to a third party for data validation and preparation of a DUSR. The DUSR and copies of pertinent laboratory report pages for the February 2018 event are presented in Appendix H. Sample locations are shown on Figure 3C. The results of the SSSG samples and indoor air samples are included in Tables 7A and 7B, respectively, and discussed below.

As shown on Table 7A, VOCs were detected in each of the sub-slab soil gas and indoor air samples. TCE was detected in sub-slab soil gas samples in the Bank (4.6 ug/m³ in SG-6), and in the former dry cleaner (97 ug/m³ in SG-1). PCE was detected in sub-slab soil gas samples from the Bank (86 and 87 ug/m³ in SG-6 and SG-6A, respectively), and in the former dry cleaner (75 ug/m³ in SG-1). Compared to the March 2017 results, the February 2018 results showed an increase in concentrations of PCE and TCE in sub-slab soil gas from the Bank; and a decrease in detected concentrations of PCE and TCE in sub-slab soil gas from the former dry cleaner. Although not detected in any of the indoor air samples, VC was detected in sub-slab soil gas from the Bank (3.8 ug/m³ in SG-6). VC was not detected in any sub-slab soil gas or indoor air sample collected in March 2017.

Low concentrations of VOCs were detected in each indoor air sample. Consistent with the March 2017 event, TCE was not detected (with detection limit of 0.19 ug/m³) in any of the February 2018 indoor air samples. PCE was detected in indoor air from the Bank at levels of 3.7 ug/m³ (Bank 1) and 4.3 ug/m³ (Bank 2), and in the former dry cleaner at levels of 2.1 ug/m³ (Cleaner), 6.0 ug/m³ (Cleaner 2), and 7.0 ug/m³ (Cleaner 3). Although the concentrations of PCE detected in indoor air in February 2018 were slightly higher than in March 2017, all results were well below the guidance value of 30 ug/m³ for PCE.

Stantec also evaluated the February 2018 SSSG and IAQ results in the context of the NYSDOH Decision Matrices to further compare sub-slab vapor with indoor air concentrations and to further develop recommended actions.

Concentrations of carbon tetrachloride were consistent with ambient and indoor air (ATSDR, 2005). 1,1-DCE was not detected in sub-slab soil gas (with detection limit of 1.4 ug/m^3) or indoor air (with detection limit of 0.14 ug/m^3) from the Bank. 1,1-DCE was detected at a concentration

of 16 ug/m³ in sub-slab soil gas from the former dry cleaner but was not detected (with detection limit of 0.14 ug/m³) in indoor air. Cis-1,2-DCE was not detected (with detection limit of 1.4 ug/m³) in sub-slab soil gas and indoor air (with detection limit of 0.14 ug/m³) from the Bank. Cis-1,2-DCE was detected at 22 ug/m³ in sub-slab soil gas, but not in indoor air (with detection limit of 0.14 ug/m³) from the former dry cleaner. According to Matrix A, the results would place the lease units within Category 4 (i.e., No further action).

TCE was detected at 4.6 ug/m 3 in sub-slab soil gas sample SG-6 (Table 7A) but was not detected (with detection limit of 1.9 ug/m 3) in SG-6A and was not detected (with detection limit of 0.19 ug/m 3) in indoor air from the Bank (Table 7B). According to Matrix A, the sub-slab and indoor air results for the Bank put this unit in <u>Category 1</u> (i.e., No further action).

TCE was detected in sub-slab soil gas at 97 ug/m³ (SG-1) but was not detected (with detection limit of 0.19 ug/m³) in any of the three indoor air samples from the dry cleaner (Cleaner, Cleaner 2, and Cleaner 3). The concentration of TCE in sub-slab soil gas puts this unit in action <u>Category 7</u> (i.e., Mitigate).

The results for PCE (Tables 7A and 7B) were evaluated in the context of Decision Matrix B. PCE was detected in each of the sub-slab and indoor air samples from the Bank and the former dry cleaner.

- In the Bank, PCE was detected in the sub-slab samples at levels of < 100 ug/m³ (86 and 87 ug/m³ in SG-6 and SG-6A, respectively) and in the indoor air samples at 3 to < 10 ug/m³ (3.7 and 4.3 ug/m³ in Bank1 and Bank 2, respectively). This would place the Bank in Category 2 (No further action) for PCE.
- In the former dry cleaner unit, PCE was detected in the sub-slab sample at levels of < 100 ug/m³ (75 ug/m³ in SG-1) and in the indoor air samples at < 3 and from 3 to < 10 ug/m³ (2.1, 6.0, and 7.0 ug/m³ in Cleaner, Cleaner 2, and Cleaner 3, respectively). This would place the former dry cleaner in <u>Categories 1 and 2</u> (No further Action) for PCE.

The February 2018 sample results indicated fluctuating levels of contaminants in sub-slab soil gas and indoor air. The levels of TCE and PCE in the sub-slab and indoor air within the Bank (in accordance with the Matrix evaluations described above) indicated that no further action was warranted.

In the former dry cleaners, the concentrations of PCE detected in sub-slab soil gas and indoor air are consistent with Decision Matrix B, Category 2 (No further action). TCE was not detected (with detection limit of 0.19 ug/m³) in the three indoor air samples from the former cleaner. However, the concentration of TCE detected in sub-slab soil gas (97 ug/m³ at SG-1) puts this unit in Decision Matrix A, Category 7 (Mitigate). VC was not detected in the three indoor air samples from the former cleaner (with detection limit of 0.089 ug/m³). However, the concentration of VC detected in sub-slab soil gas (78 ug/m³ at SG-1) puts this unit in Decision Matrix C, Category 7 (Mitigate).

Soil Vapor/Indoor Air Matrix C (Vinyl Chloride)

	INDOOR AIR CONCENTRATION OF COMPOIND (UG/M3)		
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (UG/M3)	< 0.2	0.2 and above	
< 6	1. No further action	3. IDENTIFY SOURCES(S) and RE-SAMPLE or MITIGATE	
6 to < 60	4. No further action	6. MITIGATE	
60 and above	7. MITIGATE	9. MITIGATE	

Although "no further action" was determined for the Bank, due to its proximity to the former cleaner and the levels of PCE and TCE in the sub-slab soil gas, it was anticipated/desired that a mitigation system installed in the former dry cleaner would reach out into, or under, the western portion of the Bank.

3.3 INTERIM REMEDIAL MEASURES – SUB-SLAB DEPRESSURIZATION SYSTEMS

This section presents a summary of the installation of the sub-slab depressurization systems (SSDSs). Details are presented in Stantec's Interim Remedial Measures-Construction Completion Report (IRM-CCR), dated August 12, 2022, and approved March 27, 2023.

The Interim Remedial Measures Work Plan (IRMWP) was developed in two phases. The first phase was a pilot test/communication test that was conducted on two vapor extraction points located inside the former dry cleaner unit. The pilot test work was conducted in accordance with Stantec's Remedial Investigation Workplan (RIWP, dated October 21, 2016) that was approved by NYSDEC on March 7, 2017. Since that RIWP did not include a design for an SSDS, Stantec revised the RIWP into an IRMWP that combined both the pilot test and a preliminary SSDS design and submitted it to NYSDEC in May 2018. The second phase of the IRMWP was the design of the depressurization systems. The results of the May 2018 communication test showed that an SSDS in the former dry cleaner unit would consist of several lengths, or segments, of 3-inch diameter perforated PVC piping, installed horizontally under the exiting sub slab floor and connected to solid PVC pipes located on the outside wall. Two radon fans would be connected to the two solid riser pipes on the outside. These two radon fans/systems are identified as System A and System B. A figure (Figure 3 from the IRM-CCR) that depicts the components of the SSDSs in the former dry cleaner is presented herein as Figure 3D.

The results of the pilot test also showed that, due to lack of vacuum influence from the former dry cleaner, a separate SSDS would need to be installed inside the kitchen of the adjacent Bank. This system would consist of a 3-inch diameter PVC perforated pipe installed vertically in a suction pit connected to solid PVC pipe. The solid PVC pipe would extend vertically through the ceiling and

the roof for connection to a radon fan located on the vertical pipe on top of the roof. This radon fan/system is identified as System C.

During this same time period, the former dry cleaner unit was undergoing renovation. A major component of this renovation was installing new flooring in the large area in the "Front/Upper" portion of the unit. This area is shown on Figure 3D. This new flooring would consist of approximately 4 feet of structural Styrofoam underlying 4-inches of new concrete. Since this new flooring would cover up large portions of the existing floor, Stantec worked with the selected contractor to install portions of the sub-slab piping in the front/upper portion of the former dry cleaner unit while the existing floor was accessible. These portions are identified as segments A1, B1, and C1. This work was conducted on June 26 and 27, 2018.

The IRMWP was subsequently revised based on continued verbal and email correspondence with NYSDEC and the NYSDOH. The final IRMWP was submitted to NYSDEC and NYSDOH on November 30, 2018. The NYSDEC issued a letter approving the IRMWP on December 3, 2018. The final portions, or segments, of the sub-slab piping for the former dry cleaner unit and the Bank were installed in January 2019. Subsequent pressure extension field testing conducted on the SSDSs indicted they were creating a vacuum underlying the slab at the Site and in the pertinent areas of the Bank that required "Mitigation".

In mid-March 2022, Stantec was notified by Feil that the former Bank was being renovated by a new tenant into a Stars Rehabilitation Center (a.k.a., Rehab Center) operated by Northwell Health (Northwell), and that the solid PVC piping for the SSDS in the former Bank (identified as System C) would be located in the middle of a hallway in the new Rehab Center. Stantec subsequently worked with Feil and Northwell to relocate System C to an unobtrusive location, approximately 4 feet to the north. The work involved with this relocation was conducted in a similar manner as the installation of the initial system (i.e., a 3-inch diameter PVC perforated pipe installed vertically in a suction pit connected to solid PVC pipe that extended vertically through the ceiling and the roof and was connected to the System C radon fan). The portion of the solid PVC piping that extended from the floor to the ceiling was enclosed within a 2x6 sheet rock office wall as a means to conceal the piping. A figure (Figure 4A from the IRM-CCR) that depicts the components of the SSDSs in the Rehabilitation Center is presented herein as Figure 3E.

Subsequent pressure extension testing conducted on the three SSDSs after System C was relocated continued to show a vacuum underlying the slabs of the former dry cleaner and Rehabilitation Center units.

4.0 SUPPLEMENTAL WORK PERFORMED

The following sections describe the work that was conducted in accordance with the approved February 2022 SRIWP.

4.1 SUPPLEMENTAL REMEDIAL INVESTIGATION OBJECTIVES

The objective of the Supplemental Remedial Investigation is to close specific data gaps in the Site characterization as identified by NYSDEC from their review of the 2018 draft RIR. Specifically, NYSDEC required that additional soil and groundwater samples be collected at select locations and laboratory-analyzed for TAL Metals, SVOCs, PCBs, Pesticides, PFAS, and 1,4-dioxane, since these contaminant classes had not been tested during previous investigations at the Site.

This supplemental investigation was intended to determine if these contaminant classes require further investigation and/or remediation.

4.2 SOIL BORINGS

Based on previous results described in the 2018 draft RIR as described above, Stantec oversaw the advancement of three interior borings (identified as B-110, B-113, and B-114) and two exterior borings (identified as B-7 and B-9) on June 7 and 8, 2022. The three interior locations were chosen because previous sampling showed concentrations of cVOCs at levels exceeding SCOs. The two exterior locations were chosen based on their locations beyond/outside the presumed source area inside the building. Locations of the borings are shown on Figure 3A. Boring logs are included in Appendix B.

Drilling was conducted by ADT using a Geoprobe® rig. For safety reasons, each location was cleared for shallow utilities prior to drilling using an air-knife to a depth of five feet. Borings were subsequently advanced to pre-determined depths as described in the February 2022 SRIWP. Soil samples were collected continuously for field characterization and field screening for VOCs using a properly calibrated PID. Due to tight access issues, a smaller Geoprobe® rig was needed at the B-114 location, an alcove area where the former dry-cleaning machine was reported to be located and operated. Due to the tight soils encountered, this smaller rig was not powerful enough to advance beyond 5 feet, so only the shallow soil sample (from 1 to 2 ft bls) was collected. The proposed deeper sample (at 14 ft bls) was not collected.

Soil samples were selected from each boring from the previous sampled depths, as described below, and submitted to a New York-certified laboratory for analysis. It is important to note that the previous soil samples were collected from discrete depth intervals since they were only being tested for VOCs. In order to have sufficient volumes of soil for the analyses required for this supplemental investigation, sample intervals of 12 inches were required.

• B-7 7.5 ft bls;

- B-9 7.5 ft bls;
- B-110 6.5 ft bls and 14.5 ft bls:
- B-113 6.5 ft bls and 12.9 ft bls; and
- B-114 1.0 ft bls.

The soil samples were submitted for laboratory analyses of VOCs, SVOCs, TAL Metals, PCBs, Pesticides, and emerging contaminants (PFAS and 1,4-dioxane). The laboratory results, in NYS Category B data deliverable format, were subsequently submitted to a third party for data validation and preparation of a DUSR. The DUSR and laboratory report are included in Appendix I. Results are discussed in Section 5.3.1.

During the drilling of B-113, a soil sample was also collected from the saturated interval between 15 and 18 ft bls. This soil core was submitted to Stantec's treatability testing facility in Sylvania, Ohio for natural oxidant demand (NOD) and soil reductant demand (SRD) testing as a means to conduct a preliminary evaluation of potential remediation strategies.

4.3 MONITORING WELL INSTALLATION

During the June 2022 drilling event, Stantec oversaw the drilling and construction of an additional monitoring well at the B-113 location to allow for additional collection of field water level measurements and groundwater samples for laboratory analysis. This well, identified as MW-113 on Figure 3B, was located inside the rear storage room. Due to access issues one well with a 15-ft screened interval (from 20 to 5 ft bls) was constructed instead of a shallow/deep well pair. The well was subsequently developed to reduce the amount of fines in the wells. Well completion details are presented in Table 1 and in the boring logs in Appendix B.

On September 29, 2022, Control Point Associates, Inc. (CPA), a New York State licensed land surveyor, surveyed the horizontal location and vertical elevations (ground surface and top of PVC riser measuring point) of the newly installed well (MW-113) indoors at the rear of the lower-level dry cleaners' operations area, and tied the data into the Site base. The horizontal datum was the New York State Plane Coordinate system, North American Datum (NAD 83). The vertical elevation datum was the North American Vertical Datum, 1988 (NAVD 88) in feet above mean sea level (ft MSL). The resurveying was conducted to get all well elevations corrected to NAVD 88. The surveyed elevations are incorporated into Tables 1 and 2.

4.4 GROUNDWATER SAMPLING

Groundwater samples were collected from 13 of the 14 existing wells from June 27 to 30, 2022. Prior to sampling, depths to water were measured in all Site wells. At well MW-201S, although depth to water was measured at 11.91 feet below top of PVC, an obstruction was reported at 12 feet. Therefore, this well was not sampled in June 2022. Instead, Stantec and ADT flushed out and redeveloped this well on August 12, 2022. During this redevelopment, there was no evidence that the well screen was damaged (i.e., no filter sand entering the well). Stantec therefore

returned to the Site on August 30, 2022 (at least 14 days after redevelopment) to purge and sample this well only. Water levels were also measured at all Site wells on August 30, 2022.

Each of the monitoring wells was purged and sampled using low-flow sampling techniques in accordance with the USEPA Region II guidance document entitled "Groundwater Sampling Procedure, Low Stress (Low Flow) Purging and Sampling". The monitoring wells were low-flow purged prior to sampling by evacuating groundwater at a rate between 120 and 280 milliliters per minute for a minimum of 55 minutes, or until stabilization of the field parameters occurred. Purging was conducted using a peristaltic pump, which was connected to polyethylene tubing within each well. Two samples from the shallow and deep zones were collected from MW-113 and are identified as MW-113S and MW-113D. Due to relatively high turbidity levels, samples for metals at all wells (except MW-101S and MW-201D) were also field filtered to allow the laboratory to analyze for both total and dissolved metals. Low flow sampling data sheets are presented in Appendix E.

The groundwater samples were collected in laboratory-prepared glassware containing an appropriate amount of preservative. Samples were labeled, packaged in ice packs, and delivered to Test America under standard chain of custody protocol. As mentioned in the 2018 draft RIR, the samples from November 2017 were analyzed for VOCs. The samples from June/August 2022 were analyzed for VOCs, nitrate and sulfate, SVOCs, TAL Metals, PCBs, Pesticides, and emerging contaminants (PFAS and 1,4-dioxane) as shown below.

- All wells for VOCs, nitrate and sulfate. The nitrate and sulfate analyses were requested by Stantec's remediation engineers as a preliminary means to evaluate potential remediation options or strategies.
- Nine wells (MW-1S, MW-1D, MW-2S, MW-2D, MW-101S, MW-101D, MW-113, MW-201S, and MW-201D) were analyzed for SVOCs, TAL Metals, PCBs, Pesticides, and emerging contaminants (PFAS and 1,4-dioxane). Again, two samples from MW-113 (MW-113S and MW-113D) were collected from the shallow and deep zones, respectively.

For QA/QC purposes, additional samples consisting of a duplicate and a trip blank were also collected and submitted. The duplicate sample ("Dupe") was collected from MW-2S to evaluate the reproducibility of the laboratory analytical results. The trip blank accompanied the sample bottles during sampling activities to determine if samples and/or sample bottles were potentially contaminated during shipment to, and/or from, the laboratory. A field blank, for PFAS analysis, was also collected. QA/QC results are described in Section 5.5 below. The laboratory results, in NYS Category B data deliverable format, were subsequently submitted to a third party for data validation and preparation of a DUSR. The DUSR and laboratory report from the June 2022 event are included in Appendix J. The laboratory report and DUSR from the August 2022 event included in Appendix K.

In September 2025, Stantec conducted an additional groundwater sampling event for VOCs only. Samples were collected from 13 of the 14 existing wells from September 2 to 4, 2025. Prior to sampling, depths to water were measured. At well MW-201S, sediment was again observed

in the well at approximately 11 ft bls and depth to water table could not be measured. It is presumed that the water table was deeper than 11 ft bls. After consultation with NYSDEC, it was decided to forego attempting to flush and sample this well since there is historical data that indicate low levels of VOCs (from non-detect to below AWQSGVs) in this upgradient area. The remaining Site wells were purged and sampled via low flow protocols as described above. Two samples from the shallow and deep zones were collected from MW-113 and are identified as MW-113S and MW-113D. Low flow sampling data sheets are presented in Appendix E.

For QA/QC purposes, additional samples consisting of a duplicate and a trip blank were also collected and submitted. The duplicate sample ("Dupe") was collected from MW-2S to evaluate the reproducibility of the laboratory analytical results. The trip blank accompanied the sample bottles during sampling activities to determine if samples and/or sample bottles were potentially contaminated during shipment to, and/or from, the laboratory. QA/QC results are described in Section 5.5 below.

The groundwater samples were collected in laboratory-prepared glassware containing an appropriate amount of preservative. Samples were labeled, packaged in ice packs, and delivered to Eurofins under standard chain of custody protocol. The laboratory results, in NYS Category B data deliverable format, were subsequently submitted to a third party for data validation and preparation of a DUSR. The DUSR and laboratory report from the September 2025 event are included in Appendix N.

4.5 VAPOR INTRUSION SAMPLING

Vapor intrusion sampling was conducted by Stantec throughout the investigation work. In June, July, and October 2013, as well as in March 2017 and February 2018, both indoor air and sub slab soil gas samples were collected in both the former dry cleaner and Bank units. These samples were utilized to confirm the need for, and refine the final designs of, the SSDSs installed in the two units. In January and October 2019 only IA samples were collected to evaluate the air quality in the two units after the installation of the SSDSs. In March 2022 both IA and SSSG samples were collected to further evaluate the concentrations of cVOCs in the indoor air and beneath the slabs in each of the two units. As mentioned previously, the System C SSDS in the former Bank was relocated due to this unit being renovated into a Rehabilitation Center in May 2022.

Details of this overall work are presented in Stantec's IRM-CCR, dated August 12, 2022, and described above in Section 3.3. Based on the overall results, Stantec concluded that the SSDSs, including the relocated System C, are operating as intended and installed, and creating a vacuum under the former dry cleaner and pertinent area of the Rehab Center.

In March 2023 and February 2024, continued sampling of both IA and SSSG samples was conducted as part of Annual Operations, Maintenance, and Monitoring to further evaluate the concentrations of cVOCs in the indoor air and beneath the slabs in each of the two units. Results are presented below in Section 5.3.3.

4.6 CONTAMINATED MATERIALS REMOVAL – SOIL AND GROUNDWATER

As discussed in the 2018 draft RIR, environmental investigations identified low levels of cVOCs in soil samples collected from inside the former dry cleaner space. As the SSDS construction-related activities were conducted in the former dry cleaner unit, soils from the trenches were excavated and placed in 55-gallon drums.

The concrete floor slab that existed under the upper/front portion of the former dry cleaner unit was saw cut and removed in June 2018. The concrete floor slab in the lower/rear portion of the former dry cleaner and in the kitchen of the Bank was saw cut and removed in January 2019. The slab was found to be approximately 6 to 8-inches thick in the former dry cleaner and approximately 12-inches thick in the Bank. The concrete was removed and staged in a roll-off on-site.

In June 2018 and January 2019 approximately 19 cubic yards (cy) of soil were removed from the trenches and suction pit. The soils were very dense and required a small portable jackhammer to loosen them prior to removal by hand shovel. There was no visible staining or odors.

The excavated soils were placed in 55-gallon drums and temporarily staged outside in the rear parking lot. The soils from the June 2018 work were sampled and analyzed in accordance with approvals by the disposal company (Lorco Petroleum Services [Lorco]). The drums were removed by Lorco for disposal at Clean Earth of New Jersey as non-hazardous waste. The soils from the 2019 work were also sampled and analyzed in accordance with approvals by Lorco and have been transported and disposed off-site.

Soils from the June 2022 drilling; and purge water from the June 2022 groundwater sampling, August 2022 redevelopment and sampling of well MW-201S, and September 2025 groundwater sampling event, were also placed in 55-gallon drums (labeled as Hazardous Waste) and subsequently transported and disposed off-site in accordance with approvals by Lorco.

4.7 DATA VALIDATION AND MANAGEMENT

The soil, groundwater, sub-slab vapor, soil vapor, and indoor air samples were analyzed by Test America/Eurofins (Test America). Test America is accredited under the NYSDOH environmental lab approval program and provided analytical results in NYS Category B data deliverable format. The laboratory reports were subsequently submitted to a third party (Stantec's Project Chemist) for validation in accordance with New York State Analytical Service Protocols (ASP). DUSRs, which documented the adequacy of the analytical data, were subsequently prepared by Stantec. The DUSRs described herein are included in Appendices I (June 2022 soils), J (June 2022 groundwater), and K (August 2022 groundwater). Sample results are discussed in Section 5.3.

5.0 RESULTS

5.1 GEOLOGY

According to available maps and information, Long Island is part of the Atlantic Coastal Plain Geomorphic Province, which stretches north and south along the east coast. Long Island is primarily a ridge of direct contact glacial and glacial outwash sediments that almost completely cover the underlying Cretaceous sedimentary bedrock. The area in the vicinity of the Site is underlain by marine and fluvial sediments which have been subjected to glaciation. Long Island topography, therefore, is glacial topography, with little or no influence from the underlying bedrock.

The soils encountered during this investigation consisted of fill material (silty fine to coarse sand and gravel) from ground surface to approximately 5 to 7 ft bls at various locations. Underlying the fill, or in those locations where fill was not observed, the soils encountered consisted of silty fine to medium sand. A gray clay unit was encountered at each of the deep wells (except MW-3D) at depths ranging from 38 ft bls at MW-2D to 46 ft bls at MW-101D. Clay was not encountered at MW-3D, most likely due to this well being terminated at a depth of 35 ft bls and above the clay. At MW-101D and MW-102D, the clay was observed to be 2 feet thick. The overall data suggest this clay unit extends beneath the entire Site. Bedrock was not encountered in any of the borings drilled at this Site.

A geologic Cross-Section, from northwest to southeast across the Site, is presented as Figure 10. The data indicates the water table to be about 5 to 12 feet below ground and located primarily in the fill material in the vicinity of the former dry cleaner and back parking lot, and in the sand horizon in the vicinity of 10th Avenue.

5.2 SITE HYDROLOGY

5.2.1 Shallow Horizontal Flow and Gradients

Depths to groundwater, as measured in Site monitoring wells, typically ranged from 5 to 12 ft bls. Historic data indicated groundwater elevation and flow are not influenced by tidal action.

Depths to groundwater measured during groundwater sampling activities (November 2017 and June 2022) ranged from approximately 2 to 13 ft bls in the shallow wells and from 5 to 13 ft bls in the deep wells (see Table 2). The corresponding measuring point elevations (top of PVC well riser in ft MSL) were used to derive groundwater elevations shown in Table 2 and the Shallow and Deep Groundwater Contour Maps (Figures 4A to 4D). As shown on these figures, groundwater flow in both the shallow and deep overburden converges from the northwest, west, and south-southeast towards the Site.

Horizontal hydraulic gradients in the shallow zone range from 0.04 ft/ft on the northern side of the Site to 0.15 ft/ft in the vicinity of 10th Avenue. This steep gradient is shown by the elevations at MW-101S (14.78 ft MSL) and MW-201S (10.63 ft MSL). Gradients in the deep zone are more consistent at 0.112 ft/ft throughout the Site. Comparing the elevations in Figure 4A to 4B and 4C to 4D indicate the shallow water table is about 3 to 4 feet higher than the deep.

5.2.2 **Vertical Hydraulic Flow and Gradients**

Water level elevations derived during the site investigations have been used to calculate vertical hydraulic gradients for the several well pairs at the Site and are presented in Table 2A. As shown in Table 2A, water level elevations in the shallow wells are consistently greater than elevations in the corresponding deep wells, which indicates downward vertical gradients.

5.2.3 **Permeabilities**

Rising head permeability tests were conducted on MW-1S and MW-2S by Whitestone in November 2008 and presented in the RIR and SRIWP, dated December 24, 2008. The results of that permeability (hydraulic conductivity) testing are also presented in Table 3 and show hydraulic conductivities ranged from 5.25 x 10-2 cm/sec to 1.39 x 10-1 cm/sec (149 ft/day to 394 ft/day).

Samples for sieve analyses were also collected from several borings drilled inside the former dry cleaner unit to estimate the hydraulic conductivities of the top several feet of soils encountered. Results of the sieve analyses are presented in Appendix D and Table 4.

The relationship between conductivity and grain size requires the choice of a representative grain-size diameter (Freeze and Cherry, 1979). A simple, and apparently durable, empirical relation is described by the formula:

 $K = A(d_{10})^2$

where:

K: Hydraulic conductivity in cm/s.

The grain-size diameter, in mm, at which 10% by weight of the soil particles are d₁₀: finer and 90% are coarser. The d_{10} value is taken directly from the gradation

A: A constant; for K in cm/s and d_{10} in mm, the coefficient A is equal to 1.0.

As shown in Appendix D and Table 4, the d_{10} fraction was extrapolated from the gradation curves for those samples collected in the top several feet of silty sand from borings B-110, B-112, B-113, B-114, and B-115. The d₁₀ fraction was able to be calculated directly from the gradation curve from the sample collected at 13.5 to 14.5 ft bls from B-111. The calculated hydraulic conductivities, based on grain-size distribution, are also listed in Table 4. This method calculated conductivities in the shallow silty sand material from 0.3 ft/day (1.0 x 10-4 cm/sec) to 1.1 ft/day

 $(4.0 \times 10^{-4} \text{ cm/sec})$. The deeper sand at B-111 had conductivity calculated at 18.3 ft/day (1 6.4 x $10^{-3} \text{ cm/sec})$.

5.3 LABORATORY ANALYTICAL RESULTS

5.3.1 Soil Analytical Results

5.3.1.1 Soil Results - VOCs

Analytical results for VOCs from the soil samples collected during boring advancement for this supplemental investigation are presented in Table 5A. Please note that the laboratory reported the results in micrograms per kilogram (ug/kg) or parts per billion (ppb). To assist the reader, since the SCOs are presented in milligrams per kilogram (mg/kg) or parts per million (ppm), the results presented in Table 5A have been converted to mg/kg. A spider map depicting VOC exceedances of the PGW SCOs is presented as Figure 5. Soil quality data from previous investigations, presented in Appendix A, only had VOC exceedances of PGW SCOs, so these are also shown on Figure 5.

As shown on Table 5A and Figure 5, concentrations of VOCs from samples collected during the 2022 soil borings were reported at levels exceeding SCOs at B-113 only as shown below.

The individual VOCs exceeding PGW SCOs in the 2022 soil samples included:

			<u>PGW SCO (mg/kg)</u>
•	PCE	5.8 J mg/kg at B-113 (12.5-13.5 ft)	1.3

As described above, previous soil sampling showed exceedances of PGW SCOs in four borings (in six of the twenty-nine samples). These six samples were from various depth intervals in B-109 (3.5 - 5.0 ft bls), B-110 (6.5 ft and 14.5 ft bls), B-113 (6.5 ft and 12.9 ft bls), and B-114 (1.0 ft bls).

The individual VOCs exceeding PGW SCOs in the six soil samples included:

•	Acetone	0.055 mg/kg at B-109 (3.5-5.0 ft)	PGW SCO (mg/kg) 0.05
•	cis-1,2-DCE	0.31 mg/kg at B-110 (14.5 ft) 2.2 mg/kg at B-113 (12.9 ft)	0.25
•	PCE	4.4 mg/kg at B-110 (6.5 ft) 1.4 mg/kg at B-110 (14.5 ft) 3.0 mg/kg at B-113 (6.5 ft) 52 mg/kg at B-113 (12.9 ft) 18 mg/kg at B-114 (1.0 ft)	1.3
•	TCE	0.49 mg/kg at B-110 (6.5 ft) 4.1 mg/kg at B-113 (12.9 ft)	0.47

7.8 mg/kg at B-114 (1.0 ft)

VC 0.056 mg/kg at B-113 (12.9 ft) 0.02

The soil quality data show that soils impacted by the contaminants of concern (cVOCs including PCE and breakdown products TCE, cis-1,2-DCE, and VC) are located within the former dry cleaner unit and are not widespread across the Site area.

5.3.1.2 Soil Results - SVOCs

Analytical results for SVOCs from the soil samples collected during boring advancement for this supplemental investigation are presented in Table 5B. Again, the laboratory results reported in ug/kg have been converted to mg/kg in Table 5B. As shown, there were no SVOCs, including 1,4-dioxane, reported above the applicable Commercial Use (CU) SCOs.

5.3.1.3 Soil Results - TAL Metals

Analytical results for TAL Metals from the soil samples collected during boring advancement for this supplemental investigation are presented in Table 5C. The laboratory results were reported in mg/kg for metals, so no conversion was undertaken. As shown, there were no metals reported above applicable CU SCOs.

5.3.1.4 Soil Results - PCBs

Analytical results for PCBs from the soil samples collected during boring advancement for this supplemental investigation are presented in Table 5D. Again, the laboratory results reported in ug/kg have been converted to mg/kg in Table 5D. As shown, no PCB results were reported at levels above the laboratory reporting limits.

5.3.1.5 Soil Results - Pesticides

Analytical results for Pesticides from the soil samples collected during boring advancement for this supplemental investigation are presented in Table 5E. Again, the laboratory results reported in ug/kg have been converted to mg/kg in Table 5E. As shown, no Pesticides were reported at levels above the laboratory reporting limits.

5.3.1.6 Soil Results - PFAS

Analytical results for PFAS from the soil samples collected during boring advancement for this supplemental investigation are presented in Table 5F. The laboratory reported the results in ug/kg, and since the Guidance Values presented in NYSDEC's "Sampling, Analysis and Assessment of Per- and Polyfluoroalkyl Substances (PFAS)" are also in ug/kg, no conversion was undertaken in Table 5F. As shown, PFAS were mostly "non-detect" at levels above the laboratory reporting limits, and similarly below both CU and PGW SCOs.

5.3.1.7 Soil Results – NOD and SRD

As mentioned in Section 4.1, a soil sample collected from 15-18 ft bls in B-113 was submitted to Stantec's treatability testing facility in Sylvania, Ohio for NOD and SRD testing. The soil consisted of a fine to medium grain sand with some silt.

The screening results indicated low values for the individual analysis parameters. The NOD was determined to be 2.7 grams per kilogram (g/kg). The SRD was measured to be 5.8 g/kg. The relatively low NOD and SRD values indicate significant volumes of excess oxidant and/or carbon substrate solutions should not be required to overcome potential soil reactions during implementation of any in-situ chemical oxidation (ISCO) or enhanced reductive dechlorination (ERD) remediation program. In addition, identification of the daughter products cis-1,2-DCE and VC during the groundwater monitoring events indicates natural reductive dechlorination is occurring at the Site, suggesting an indigenous population of dehalococcoides bacteria is present, and the addition of a supplemental electron donor has the potential to stimulate and enhance an ERD application at the Site. Further evaluation and additional treatability testing are recommended for determining the optimal treatment alternative and providing design parameters for a potential full-scale field application for remediation of the contaminants of concern at the Site.

5.3.2 Groundwater Analytical Results

5.3.2.1 Groundwater Results - VOCs

Analytical results for VOCs from the groundwater samples collected from monitoring wells at the Site in June/August 2022 and September 2025 are presented in Table 6A. Historical results are presented in Appendix A. The sampling locations are shown on Figure 3B. A spider map depicting exceedances of AWQSGVs is presented on Figure 6.

As shown on Figure 6, groundwater analytical results reported concentrations of cVOCs at levels exceeding AWQSGVs at four shallow wells (MW-1S, MW-2S, MW-113S, and MW-201S). Consistent with previous sampling, the specific chemicals of concern include PCE and its breakdown products (TCE, 1,1-DCE, cis-1,2-DCE, and VC). cVOCs at levels exceeding AWQSGVS are also shown at five deep wells (MW-1D, MW-2D, MW-3D, MW-101D, and MW-113D). The specific contaminants of concern are similar to the shallow wells (PCE and breakdown products) but levels of 1,1-DCA, 1,2-DCA, and/or 1,1-DCE above AWQSGVs are also shown in the deep wells. The September 2025 results show, in general, a decrease in PCE concentrations along with an increase in the breakdown products suggesting that reductive dechlorination is occurring.

The horizontal distribution of cVOC exceedances in the shallow wells appears to be within and to the north of (downgradient of), and in close proximity to, the former dry cleaner store unit at wells MW-113S (located within the former dry cleaner tenant space), MW-1S (located about 15).

feet to the north of the tenant space) and MW-2S (located about 20 feet north-northeast of the tenant space). Concentrations in MW-113S appear to be higher than MW-1S and MW-2S.

The horizontal distribution of cVOC exceedances in the deep wells appears to be slightly more widespread, extending 10 to 15 feet to the north and northeast of the store at MW-1D and MW-2D and approximately 40 feet to the southeast at MW-101D. At MW-101D, exceedances of the AWQSGVs for cis-1,2-DCE and VC were detected. Detections of 1,1-DCA above AWQSGVs are also shown at MW-101D. 1,2-DCA is reported above AWQSGVs at MW-101Dand MW-3D (70 feet north of the store), and apparently upgradient of the former dry cleaner unit.

Plots of total cVOCs over time are shown on Figure 8. As shown, concentrations of cVOCs are consistently higher (by at least an order of magnitude) in the shallow wells than in the deep wells at the downgradient well pairs (MW-1S/MW-1D and MW-2S/2D). Levels in the shallow wells (MW-1S and MW-2S) show decreasing trends from 2013 to 2025. Levels of total cVOCs in the deep wells show fluctuating trends at MW-1D. Levels at MW-2D show an increasing trend from 2008 to 2017 and decreasing trend from 2017 to 2025.

At the MW-3S/MW-3D well pair total cVOC levels in the deep well are greater than in the shallow well and are showing an increasing trend from 2008 to 2025. As shown in Table 6A the primary chlorinated compound is cis-1,2-DCE. In 2022 and 2025, cis-1,2-DCE was reported above its AWQSGV of 5 ug/L in MW-3D (11 ug/L and 23 ug/L, respectively). Levels of total cVOCs in the MW-3S shallow well are comprised solely of cis-1,2-DCE and are showing generally stable concentrations below 2 ug/L and below AWQSGV. Although this well pair is located in the northern portion of the loading dock/parking lot area, the water level elevations indicate this well pair is upgradient of the former dry cleaner.

In the well pair located in the 10th Avenue sidewalk (MW-101S/MW-101D) Total cVOC levels are also greater in the deep well than in the shallow and are showing decreasing trends. As shown in Table 6A, the primary compounds are the breakdown products cis-1,2-DCE and VC (PCE is consistently reported at levels below reporting limits).

The analytical data indicate that groundwater contamination is not widespread and may be decreasing. Although the distribution of exceedances of AWQSGVs appears to be in wells located primarily within, and to the north, of the former dry cleaner unit there are reported exceedances of AWQSGVs in shallow and deep wells located in the 10th Avenue sidewalk upgradient of the Site. The overall fluctuations/trends in total cVOCs are suggested to be due to decreases in PCE along with increases in breakdown products.

5.3.2.2 Groundwater Results - SVOCs

Analytical results for SVOCs from the groundwater samples collected from monitoring wells at the Site in June/August 2022 are presented in Table 6B. As shown, for all samples collected during this event, SVOCs were not reported at levels above the respective laboratory reporting limits.

5.3.2.3 Groundwater Results - SVOCs-SIM

Analytical results for SVOCs via SIM analyses (to derive lower reporting limits) from the groundwater samples collected from monitoring wells at the Site in June/August 2022 are presented in Table 6C. As shown, SVOCs were not reported at levels above the laboratory reporting limits and/or AWQSGVs, with the exception of 1,4-dioxane which was reported above its AWQSGV of 0.35 ug/L at two upgradient deep wells at estimated ("J") concentrations of 1.4 ug/L (MW-101D) and 0.64 J ug/L (MW-201D. These two wells are located on the 10th Avenue sidewalk upgradient of the Site.

5.3.2.4 Groundwater Results - TAL Metals

Analytical results for TAL Metal analyses from the groundwater samples collected from monitoring wells at the Site in June/August 2022 are presented in Table 6D. As shown, concentrations of total iron and total sodium were reported above AWQSGVs in all samples. The corresponding levels of dissolved iron were much lower with only two samples (MW-101D and MW-201S) exhibiting results above AWQSGVs. Levels of dissolved sodium were reported above AWQSGVs in all samples analyzed. Levels of total magnesium were reported above AWQSGVs in three upgradient wells (MW-101S, MW-101D, and MW-201S). Levels of dissolved magnesium were also reported above AWQSGVs in MW-101D and MW-201S. Again, due to low turbidity, samples from MW101S were only analyzed for total metals. Levels of total manganese were reported above AWQSGVs in seven wells located sporadically across the Site. Dissolved manganese was reported above AWQSGVs in only four of the wells: three deep wells (MW-1D, MW-2D, and MW-101D) and one shallow well (MW-201S).

The data do not show a correlation between concentrations of metals in soils with metals in groundwater. For instance, as described above in Section 5.3.1.3, there were no metals in soils that exceeded CU SCOs, whereas various metals are reported above AWQSGVs in wells located both upgradient and downgradient. The overall data suggest the detections are for metals that are naturally occurring in NYC groundwater and are not contaminants of concern.

5.3.2.5 Groundwater Results - PCBs

Analytical results for PCBs from the groundwater samples collected from monitoring wells at the Site in June/August 2022 are presented in Table 6E. As shown, PCBs were not reported at levels above laboratory reporting limits for any of the samples collected during this event.

5.3.2.6 Groundwater Results - Pesticides

Analytical results for Pesticides from the groundwater samples collected from monitoring wells at the Site in June/August 2022 are presented in Table 6F. As shown, Pesticides were not reported at levels above laboratory reporting limits for any of the samples collected during this event.

5.3.2.7 Groundwater Results - PFAS

Analytical results for PFAS from the groundwater samples collected from monitoring wells at the Site in June/August 2022 are presented in Table 6G.

The sampling locations are shown on Figure 3B. A spider map depicting exceedances of AWQSGVs is presented on Figure 6.

Since the Guidance Values in NYSDEC's "Sampling, Analysis and Assessment of Per- and Polyfluoroalkyl Substances (PFAS)" and the laboratory data are presented in nanograms per liter (ng/L or parts per trillion [ppt]) no conversion was undertaken. Results are shown in Table 6G. Exceedances are shown on Figure 6 (Spider Map). A graphical presentation of PFAS concentrations from June 2022 sampling event is also shown on Figure 9.

As shown, perfluorooctanesulfonic acid (PFOS) was reported at levels above its AWQSGV (2.7 ng/L) in four of the five shallow wells sampled (MW-1S, MW-2S, MW-101S, and MW-201S) and in four of the five deep wells sampled (MW-1D, MW-101D, MW-113D, and MW-201D).

As shown in Figure 9, the highest concentrations of PFOS are reported in the deep portion of well MW-113D, whereas the lowest concentrations are reported in the shallow portion of well MW-113S. Levels in upgradient wells MW-101S/MW-101D and MW-201S are comparable to the levels in the downgradient wells MW-1S/1D and MW-2S.

Perfluorooctanoic acid (PFOA) was reported above its AWQSGV (6.7 ng/L) in four of the five shallow wells sampled (MW-2S, MW-101S, MW-113S, and MW-201S) and in three of the five deep wells sampled (MW-1D, MW-101D, and MW-113D). As shown in Figures 6 and 9, the distribution of PFOA is somewhat similar to that of PFOS with the highest concentration being in the deep portion of well MW-113D. However, levels in upgradient wells MW-101S/MW-101D and MW-201S are slightly higher than in downgradient wells MW-1S/MW-1D and MW-2S/MW-2D.

The overall data indicated that although PFAS levels are shown in the wells inside (MW-113D) and downgradient (MW-1S/MW-1D and MW-2S/MW-2D) of the former dry cleaner, there may also be a contributing off-site (upgradient) source.

5.3.2.8 Groundwater Results - Sulfate and Nitrate

Analytical results for sulfate and nitrate analyses (to evaluate potential remediation strategies) from the groundwater samples collected from monitoring wells at the Site in June/August 2022 are presented in Table 6H. As shown, sulfate and nitrate were reported at levels below laboratory reporting limits and/or AWQSGVs for each of the samples.

5.3.3 Sub-Slab Soil Gas and Indoor Air Quality Results

As described in Section 4.5, soil gas, sub-slab soil gas, and indoor air quality samples were collected by Stantec at the Site from June 2013 to March 2022 as a means to conduct vapor

intrusion investigations prior to and after installing SSDSs in the former dry cleaner and Bank/Rehab Center. Historical analytical results for the SSSG and IA samples are presented in Appendix A and in Tables 7A and 7B, respectively.

Details of the 2013 to 2022 work are presented in Stantec's IRM-CCR, dated August 12, 2022, and described above in Sections 3.2.3 and 3.3.

The additional vapor intrusion work conducted in 2023 and 2024 was related to the annual operations, maintenance, and monitoring (OM&M) of the SSDSs. The laboratory results, in NYS Category B data deliverable format, were subsequently submitted to a third party for data validation and preparation of a DUSR. The DUSR and laboratory report for the March 2023 vapor intrusion work are presented in Appendix L. The DUSR and laboratory report for the February 2024 vapor intrusion work are presented in Appendix M. The SSSG and IA results are presented in Tables 7A and 7B, respectively, and are discussed below.

5.3.3.1 SSSG and IA Results - March 2023

Former Dry Cleaner

On March 2, 2023, Stantec collected indoor air quality samples at three locations in the former dry cleaner unit (identified as Cleaner, Cleaner 2, and Cleaner 3) and sub-slab soil gas samples from three sub-slab probes in the former dry cleaner (VMP-2R, VMP-3R, and VMP-4R).

TCE was not detected at the laboratory reporting limit of 0.19 ug/m^3 in any of the three IA samples in the former dry cleaner (all results < 0.2 ug/m^3). The TCE levels in the sub-slab samples in the former dry cleaner ranged from "non-detect" (1.9 ug/m^3) to 7.2 ug/m^3 (i.e., 6 to 60 ug/m^3). The sample results would place TCE in <u>Category 4</u> (No further action) for the former dry cleaner (reference Matrix A table below).

Soil Vapor/Indoor Air Matrix A TCE, cis-1,2-DCE, 1,1-DCE, Carbon Tetrachloride

	INDOOR AIR CONCENTRATION OF COMPOUND (UG/M³)							
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (UG/M³)	< 0.2	0.2 to < 1	1 and above					
< 6	1. No further action	2. No further action	3. IDENTIFY SOURCE(S) and RE-SAMPLE or MITIGATE					
6 to < 60	4. No further action	5. Monitor	6. MITIGATE					
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE					

Levels of PCE in the SSSG samples were 59 ug/m³ in VMP-2R, 25 ug/m³ in VMP-3R, and 150 ug/m³ in VMP-4R. TCE concentrations were 7.2 ug/m³ in VMP-2R, "non-detect" in VMP-3R, and 1.6 J

ug/m³ in VMP-4R. Note that this was the second time these three probes have been sampled. The results indicate that PCE remains in the sub-slab soil gas beneath the former dry cleaner.

Levels of PCE in the IA were 0.43 J ug/m^3 in the lower storage area (Cleaner), and 0.19 J ug/m^3 and "non-detect" (1.4 U ug/m³) in the upper renovated space (Cleaner 2 and Cleaner 3, respectively). Note that the "J" indicates an estimated value.

PCE in the sub-slab samples in the former dry cleaner ranged from 25 ug/m 3 to 150 ug/m 3 (i.e., 100 to < 1,000 ug/m 3). PCE in the indoor air samples ranged from "non-detect" (at 1.4 ug/m 3) to 0.43 J ug/m 3 . These levels are all < 3 ug/m 3 . The sample results would therefore place PCE in Category 4 (No further action) for the former dry cleaner (reference Matrix B table below).

Soil Vapor/Indoor Air Matrix B (PCE, 1,1,1-TCA, and Methylene Chloride)

	INDOOR AIR CONCENTRATION OF COMPOUND (UG/M³)							
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (UG/M³)	< 3	3 to < 10	10 and above					
< 100	1. No further action	2. No further action	3. IDENTIFY SOURCES(S) and RESAMPLE or MITIGATE					
100 to < 1,000	4. No further action	5. Monitor	6. MITIGATE					
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE					

The results for BTEX compounds from the March 2023 event are compared to the Soil Vapor/Indoor Air Matrices developed by NYSDOH in February 2024.

The compounds in Matrix D below were reported in the IA samples at levels ranging from non-detect to 1.6 μ m³ (1,2,4-trimethylebenzene at Clenaer-2). These levels are all < 2 μ m³. Levels of the same compounds in the SSSG samples ranged from non-detect to 37 μ m³. The 37 μ m³ was the level of naphthalene reported at VMP-3R. These levels are all < 60 μ m³. The overall data would therefore place these compounds in Category 4 (No further action) for the former dry cleaner (reference Matrix D table below).

Soil Vapor/Indoor Air Matrix D

Benzene, ethylebenzene, naphthalene, cyclohexane, 2,2,4-trimethylpentate, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, o-xylene

	INDOOR AIR CONCENTRATION OF COMPOIND (UG/M3)							
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (UG/M3)	< 2	2 to < 10	10 and above					
< 60	1. No further action	2. No further action	3. IDENTIFY SOURCES(S) and RE-SAMPLE or MITIGATE					
60 to < 60	4. No further action	5. Monitor	6. MITIGATE					
600 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE					

The compounds in Matrix E below were reported in the IA samples at levels ranging from "non-detect" to 1.2 ug/m^3 (m, p-xylenes at Clenaer-2). These levels are all < 6 ug/m^3 . Levels of the same compounds in the SSSG samples ranged from "non-detect" to 5.4 ug/m^3 (hexane at VMP-4). These levels are all < 200 ug/m^3 . The overall data would therefore place these compounds in Category 1 (No further action) for the former dry cleaner (reference Matrix E table below).

	Soil Vapor/Indoor Air Matrix E										
m,p-xylene, heptane, hexane											
	INDOOR	AIR CONCENTRATION OF CO	MPOIND (UG/M³)								
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (UG/M³)	< 6	6 to < 20	20 and above								
< 200	1. No further action	2. No further action	3. IDENTIFY SOURCES(S) and RE-SAMPLE or MITIGATE								
200 to < 2,2000	4. No further action	5. Monitor	6. MITIGATE								
2,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE								

The compound (toluene) in Matrix F below was reported in the IA samples at levels ranging from "non-detect" to 1.6 μ m (at Cleaner-1). These results are all < 10 μ m. Levels of toluene in the SSSG samples ranged from 1.6 to 3.5 μ m (VMP-2R). These results are all < 300 μ m. The overall data would therefore place these compounds in Category 1 (No further action) for the former dry cleaner (reference Matrix F table below).

	Soil Vapor/Indoor Air Matrix F										
Toluene											
	DMPOIND (UG/M³)										
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (UG/M³)	< 10	10 to < 50	50 and above								
< 300	1. No further action	2. No further action	3. IDENTIFY SOURCES(S) and RE-SAMPLE or MITIGATE								
300 to < 3,000	4. No further action	5. Monitor	6. MITIGATE								
3,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE								

Former Bank/Rehab Center

On March 2, 2023, Stantec collected IA samples at the two locations in the former Bank (Bank-1 and 2) and SSSG samples from four of the seven probes in the former Bank (SG-4, SG-6, SG-11, and SG-12).

Levels of TCE were reported in the indoor air samples from the Bank as "non-detect" (at 0.19 U ug/m^3). These results are all < 0.2 ug/m^3 . TCE in the sub-slab samples in the Bank/Rehab Center were all "non-detect" (at 1.9 U ug/m^3), which are all < 6 ug/m^3 . This would place TCE in <u>Category 1</u> (No further action) for the former Bank/Rehab Center (reference Matrix A table above).

PCE in the two IA samples were reported at estimated levels of 0.21 NJ and 0.31 NJ ug/m³. These results are $< 3 \text{ mg/}^3$. PCE concentrations in the SSSG probes in the Rehab Center ranged from "non-detect" to 12 ug/m³ (SG-11). These results are all $< 100 \text{ ug/m}^3$. The levels would therefore place PCE in <u>Category 1</u> (No further action) for the former Bank/Rehab Center (reference Matrix B table above).

The compounds in Matrix D were reported in the two IA samples at levels ranging from "non-detect" to $0.92\,\mathrm{ug/m^3}$ (1,2,4-trimethylebenzene at Bank-2). These results are all < $2\,\mathrm{ug/m^3}$. Levels of the same compounds in the SSSG samples ranged from "non-detect" to $3.1\,\mathrm{ug/m^3}$ (ethylbenzene at SG-6). These results are all < $60\,\mathrm{ug/m^3}$. The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former Bank/Rehab Center (reference Matrix D table above).

The compounds in Matrix E were reported in the two IA samples at levels ranging from 0.44 to 2.4 ug/m^3 (m,p-xylenes at Bank-1). These results are all < 6 ug/m^3 . Levels of the same compounds in the SSSG samples ranged from "non-detect" to 6.6 ug/m^3 (hexane at SG-4). These levels are all < 200 ug/m^3 . The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former Bank/Rehab Center (reference Matrix E table above).

The compound (toluene) in Matrix F was reported in the two IA samples at levels ranging from 2.0 to 3.2 ug/m^3 . These results are all < 10 ug/m^3 . Levels of toluene in the SSSG samples ranged from "non-detect" to 7.2 ug/m^3 (SG-4). These results are all < 300 ug/m^3 . The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former Bank/Rehab Center (reference Matrix F table above).

5.3.3.2 SSSG and IA Results - February 2024

Former Dry Cleaner

On February 14, 2024, Stantec collected indoor air quality samples at three locations in the former dry cleaner unit (identified as Cleaner, Cleaner 2, and Cleaner 3) and sub-slab soil gas samples from three sub-slab probes in the former dry cleaner (VMP-2R, VMP-3R, and VMP-4R).

TCE was not detected at the laboratory reporting limit of 0.107 ug/m^3 in any of the three IA samples in the former dry cleaner (all results < 0.2 ug/m^3). The TCE levels in the sub-slab samples in the former dry cleaner ranged from "non-detect" to 1.15 ug/m^3 (at VMP-4R), which are all < 6 ug/m³. The sample results would place TCE in <u>Category 1</u> (No further action) for the former dry cleaner (reference Matrix A table above).

Levels of PCE in the indoor air were reported as "non-detect" (at 0.136 U ug/m^3) for all three IA samples. PCE in the sub-slab samples in the former dry cleaner ranged from 5.93 ug/m^3 to 111 ug/m^3 (i.e., $100 \text{ to} < 1,000 \text{ ug/m}^3$). The levels would therefore place PCE in <u>Category 4</u> (No further action) for the former dry cleaner (reference Matrix B table above).

The compounds in Matrix D were reported as "non-detect" for all three IA samples (all results < 2 ug/m^3). Levels of the same compounds in the SSSG samples ranged from "non-detect" to 1.20 ug/m³ (benzene at VMP-2R). These results are all < 60 ug/m^3 . The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former dry cleaner (reference Matrix D table above).

The compounds in Matrix E were reported in the IA samples at levels ranging from "non-detect" to 2.63 ug/m³ (heptane at Cleaner-3). These results are all < 6 ug/m³. Levels of the same compounds in the SSSG samples were all reported as "non-detect" (all results < 200 ug/m³). The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former dry cleaner (reference Matrix E table above).

The compound (toluene) in Matrix F was reported in the indoor air samples as "non-detect" in each of the IA samples (all results < 10 ug/m^3). Levels of toluene in the SSSG samples ranged from "non-detect" to 2.52 ug/m^3 (VMP-2R) (all results < 300 ug/m^3). The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former dry cleaner (reference Matrix F table above).

Former Bank/Rehab Center

On February 14, 2024, Stantec collected IA samples at the two locations in the former Bank (Bank-1 and 2) and SSSG samples from four of the seven probes in the former Bank (SG-4, SG-6, SG-11, and SG-12).

Levels of TCE were reported in the indoor air samples from the Bank as "non-detect" (at 0.19 U ug/m^3). These results are all < 0.2 ug/m^3 . TCE in the sub-slab samples in the Bank/Rehab Center were also reported as "non-detect", which are all < 6 ug/m^3 . This would place TCE in Category 1 (No further action) for the former Bank/Rehab Center (reference Matrix A table above).

PCE in the two IA samples were reported as "non-detect" (at 0.136 ug/m³). These levels are < 3 ug/m³. PCE concentrations in the SSSG probes in the Rehab Center ranged from "non-detect" to 33.6 ug/m³ (SG-6). These results are all < 100 ug/m³. The levels would therefore place PCE in Category 1 (No further action) for the former Bank/Rehab Center (reference Matrix B table above).

The compounds in Matrix D were reported in the two IA samples as "non-detect" (all results < 2 ug/m³). Levels of the same compounds in the SSSG samples ranged from "non-detect" to 6.71 ug/m³ (cyclohexane at SG-6). These results are all < 60 ug/m³. The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former Bank/Rehab Center (reference Matrix D table above).

The compounds in Matrix E were reported in the two IA samples as "non-detect" (all results < 6 ug/m^3). Levels of the same compounds in the SSSG samples ranged from "non-detect" to 3.13 ug/m^3 (m,p-xylenes at SG-4). These results are all < 200 ug/m^3 . The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former Bank/Rehab Center (reference Matrix E table above).

The compound (toluene) in Matrix F was reported in the two IA samples at levels ranging "non-detect" to 0.765 ug/m³. These results are all < 10 ug/m³. Levels of toluene in the SSSG samples ranged from "non-detect" to 2.65 ug/m³ (SG-4). These results are all < 300 ug/m³. The overall data would therefore place these compounds in <u>Category 1</u> (No further action) for the former Bank/Rehab Center (reference Matrix F table above).

5.4 QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

The New York State Department of Environmental Conservation's guidance (Appendix 3B, DER-10/Technical Guidance for Site Investigation and Remediation - May 2010), describes the overall purpose of a Qualitative Human Health Exposure Assessment (or the exposure assessment) as:

"...to evaluate and document how people might be exposed to site-related contaminants, and to identify and characterize the potentially exposed population(s) now and under the reasonably anticipated future use of the site."

The guidance requires:

"the exposure assessment must evaluate five elements associated with exposure pathways and describe how each element pertains to the site being evaluated."

The five elements as they pertain to the Site are discussed below:

 a description of the contaminant source(s) including the location of the contaminant release to the environment (any waste disposal area or point of discharge) or if the original source is unknown, the contaminated environmental medium (soil, indoor or outdoor air, biota, water) at the point of exposure;

As described above, numerous VOCs were detected in one or more samples of soil, groundwater, sub-slab soil vapor, soil gas, and indoor air. Of those compounds present in environmental media on the Site, the source of cVOCs has been determined to be the former dry cleaner (i.e., historical releases and/or spills of dry cleaning fluids are the primary constituents of concern at the Site). The specific contaminants of concern are PCE, TCE, cis-1,2-DCE, 1,1-DCE, and VC.

2. an explanation of the contaminant release and transport mechanisms to the exposed population;

The primary source of cVOCs were historical releases and/or spills of dry cleaning fluids at the former Johnny on the Spot Dry Cleaner. The specific locations and/or timing of the releases are unknown. During the overall investigation work, soil and groundwater samples were collected and analyzed for VOCs, SVOCs, TAL Metals, PCBs, Pesticides, PFAS, and 1,4-dioxane. As described throughout the draft RIR, cVOCs are the primary contaminants of concern.

<u>Soils</u>: cVOCs were generally detected at depths exceeding 6 feet below ground. The overall soil quality data indicate these impacts are located inside the former dry cleaner (i.e., no impacts to subsurface soils are shown in the loading dock parking located to the north of the former dry cleaner. No SVOCs, Metals, PCBs, PFAS, or 1,4-dioxane were reported above SCOS.

<u>Groundwater</u>: cVOCs have leached to groundwater on site with evidence of impacts to groundwater in wells in the loading dock/parking lot area downgradient of, and in close proximity to, the site. There is evidence of dissolved phase VOCs and PFAS above AGWQSGVs in groundwater both downgradient and upgradient of the site.

<u>Surface water</u>: There are no surface water impoundments on-site or in close proximity off-site. Exposure to surface water is, therefore, not a complete pathway and does not warrant further evaluation or discussion.

<u>Ambient Air</u>: Contaminants in soil could potentially be introduced to ambient air via wind erosion (e.g. contaminants bound to airborne soil particulate) and/or via volatilization to ambient air

from soil. However, asphalt/concrete covers the majority of on-site and off-site soils, thus potential for wind erosion of soils and volatilization are minimal.

Indoor Air: cVOCs in soil and groundwater are volatile, they can be entrained to soil gas via advection/diffusion through the vadose zone. Vapor intrusion can occur when cVOCs in subslab soil gas enter indoor air through preferential pathways in building slabs and foundations. As described above, based on elevated levels of cVOCs in sub-slab soil gas underneath the former dry cleaner, and to some extent underneath the western portion of the former Bank, sub-slab depressurization systems were installed in both units.

3. identification of all potential exposure point(s) where actual or potential human contact with a contaminated medium may occur;

<u>Soils</u>: The direct contact pathway (dermal, ingestion and inhalation of particulate or vapor) for subsurface and surface soils can be ruled out and warrants no further investigation based on the lines of evidence:

- There is no completed physical pathway of exposure: pathways for direct contact with soil are blocked by concrete and/or pavement both inside and outside of structures on site and off site. There is very little, if any, exposure to soil on-site or off-site due to the covering effect of concrete and pavement.
- Detected concentrations are generally at depths below 6 feet below ground. Evidence from laboratory analysis and PID screening suggest that impacts are in the subsurface. Residents, commercial workers, and "shoppers" have very little chance of being exposed to subsurface soils.

A hypothetical current or future excavation worker may have exposure to subsurface soil, but risks/hazards would be minimal since cVOC concentrations are generally below 6 feet below ground.

It can be concluded that risk/hazard from direct contact with soils on-site are de minimis. The potential for direct contact to soils for human receptors does not warrant further investigation.

<u>Groundwater:</u> The potential for direct contact with groundwater on-site or off-site is also minimal and warrants no further investigation based on the following lines of evidence:

- cVOCs and PFAS have impacted shallow groundwater, which is not considered a potable water source:
- Groundwater in this area is not used for irrigation, process water, or other consumption; and.
- A public water supply provides potable water to the region.

An excavation worker could come into contact with shallow groundwater during subsurface excavation, however risk and hazard would be minimal given short exposure durations and exposure frequencies.

<u>Indoor Air – Inhalation</u>: There are potentially two contaminated media sources which may contribute to vapor intrusion risk/hazard:

- cVOCs in soil; and.
- dissolved cVOCs in groundwater.

Based on the reported concentrations of cVOCs in sub-slab soil gas and indoor air samples and comparing the concentrations to the NYSDOH Soil Vapor/Indoor Air Matrices, this exposure route exists and mitigation was, and is being initiated, via sub-slab depressurization systems.

<u>Ambient Air – Inhalation</u>: Contaminants in soil and/or groundwater could potentially be introduced to ambient air via wind erosion (e.g. contaminants bound to airborne soil particulate) and/or via volatilization to ambient air from soil and/or groundwater. However, this pathway can be ruled out and warrants no further investigation since the pathway is essentially blocked by concrete/pavement and low concentrations of cVOCs detected in soil gas samples from the loading dock/parking lot area.

<u>Surface water and sediments</u>: There are no surface water impoundments or sediments on-site or in proximity to the site. Direct contact to surface water and sediments warrants no further investigation.

description(s) of the route(s) of exposure (i.e., ingestion, inhalation, dermal absorption);

Descriptions of potential routes of exposure were discussed in context of exposure point and medium in the previous section. In general, the major direct contact routes of exposure to soil include: ingestion, dermal, and inhalation (volatilization and wind erosion to ambient air). In addition, volatile contaminants in soil and groundwater can enter indoor air spaces via volatilization and preferential pathways (vapor intrusion).

5. a characterization of the receptor populations who may be exposed to contaminants at a point of exposure.

Potential current and future human receptors for the qualitative assessment include:

- Indoor commercial worker this worker works indoors presumably at the Travel Agency or Rehab Center, or in a future business on-site or off-site.
- Excavation worker an excavation worker could have exposure to on-site or off-site contamination now or in the future. An excavation worker could come into contact with subsurface soils and groundwater during subsurface excavation.
- Patron of Travel Agency or Rehab Center or visitor this receptor currently would be represented by a "shopper" or a "visitor" to the two units.

In summary, the only pathway of exposure that could be considered complete is inhalation of cVOCs migrating from subsurface sources to indoor air. The concentrations of cVOCs detected in indoor air in March 2017, February 2018, and March 2022 to March 2024 do not pose an unacceptable risk to people currently working within the lease units. However, the concentrations of PCE, TCE and VC detected in sub-slab soil vapor beneath the former dry cleaner and the former Bank/Rehab Center could be a potential source of exposure if conditions in the subsurface change in the future.

As discussed above, evaluation of the sub-slab soil gas and indoor air sample results in the context of the NYSDOH Soil Vapor/Indoor Air matrices indicate that "Mitigation" is required based on the concentrations of TCE and VC detected in sub-slab soil gas beneath the former dry cleaner lease unit. And as discussed in Section 3.3 above, this exposure pathway is actively being mitigated by sub-slab depressurization systems in both the former dry cleaner/Travel Agency and the former Bank/Rehab Center.

5.5 QA/QC SUMMARY

During the June 2022 soil sampling event, one Duplicate sample ("Dupe") was collected from B-113 (12.5 – 13.5 ft bls). As described in the DUSR (Appendix I), the relative percent differences (RPDs) were within acceptable limits, except for cis-1,2-DCE, PCE, TCE, calcium and magnesium. Laboratory results for the Trip Blank (for VOCs only), the Equipment Blank (all tests), and Field Blank (all tests) were all "non-detect".

During the June 2022 groundwater sampling event, one Duplicate sample ("Dupe") was collected from MW-2S. As described in the DUSR (Appendix J) the RPDs were within acceptable limits, except for total aluminum, dissolved aluminum, and total chromium. Trip Blanks accompanied the samples collected during each of the three days of sampling and were analyzed for VOCs only. The laboratory results for two of the Trip Blanks were all "non-detect". Results from the third Trip Blank exhibited methylene chloride and toluene at estimated levels of 0.8 J and 0.6 J ug/L. Laboratory results for the Equipment Blank (all tests), also reported methylene chloride detected at an estimated level of 1.5 JB ug/L. Results for the Field Blank (tested for PFAS only) were all "non-detect".

During the September 2025 groundwater sampling event, one Duplicate sample ("Dupe") was collected from MW-2S. As described in the DUSR (Appendix N) the RPDs were within acceptable limits. A Trip Blank accompanied the samples and was analyzed for VOCs only. The laboratory results from the Trip Blank exhibited acetone at concentration of 5.1 ug/L. Acetone was not detected in the field samples so no validation qualification was necessary. Laboratory results for the Equipment Blank were all "non-detect".

6.0 CONCLUSIONS

The overall soil, groundwater, and vapor quality data continue to show that the media within and just downgradient (to the north) of the Site are impacted by cVOCs. The impacted soils and groundwater appear to be within, or downgradient, of the former dry cleaner. Detected levels of sub-slab vapors also appear to extend beneath the former dry cleaner and to the former Bank/Rehab Center abutting the eastern side of the former dry cleaner. The extent of sub-slab vapors underlying the former Bank appears to be approximately 5 to 10 feet horizontally under this portion of the former Bank/Rehab Center (in the vicinity of SG-4). Levels of SVOCs, TAL Metals, PCBs, Pesticides and 1,4-dioxane in soil and groundwater samples were not reported at levels above laboratory reporting limits and/or the applicable SCOs and AWQSGVs, except 1-4-dioxane, which was reported above its AWQSGV in groundwater sampled from two upgradient deep wells (MW-101D and MW-201D).

PFAS were not reported at levels above laboratory reporting limits in any of the soil samples. The groundwater sample results exhibited PFOS and PFOA at levels above AWQSGVs in a few shallow and deep monitoring wells, including upgradient wells. The highest concentrations in groundwater were reported in the deep portion of well MW-113D located inside the former dry cleaner. The lack of detections for these constituents in the Site soils may suggest their presence in the Site groundwater are related to both the Site historical activities and potential upgradient off-site sources.

Concentrations of PCE and TCE detected in sub-slab soil gas indoor air inside the former dry cleaner and the Bank lease units were below NYSDOH levels of concern for people working within those spaces and suggest decreasing levels over time. This condition is most likely due to the influence of the SSDSs.

7.0 RECOMMENDATIONS

Based on the results of these supplemental remedial investigations, potential recommendations or follow up activities related to the Site include:

- Conduct additional groundwater quality samples for VOCs on a semi-annual basis to evaluate trends.
- Evaluate institutional/engineering controls to prevent exposure to underlying soils, groundwater, and sub-slab vapors (i.e., routine maintenance of paved parking lot areas and the SSDSs).
- Inspect and measure SSDS vacuum pressures at various sub-slab vapor points on a monthly basis.
- Collect an annual round of sub-slab and indoor air quality samples for VOC analysis by USEPA Method TO-15, during the winter heating season (between October and March).
- Conduct OM&M on the SSDS and report on the need to maintain system operations on an annual basis.
- Evaluate the soil and groundwater quality in terms of developing options for remediation.
 Due to the logistics of the former dry cleaner and Bank/Rehab Center (tight spaces and active commercial units), additional soil excavation does not appear practical. A likely remediation strategy could consist of in-situ injections for ERD.

TABLES

Table 1
Well Construction Details
Former Johnny On the Spot Cleaner
152 10th Avenue, Whitestone, NY

Well No	Date of	Grnd Surf	Top of PVC	Northing	Easting	Total Depth	Depth to	Well	Depth to S	cree	ned Interval	Elevation of	Elevation of	Scree	ened Interval
Well No	Installation	Elev *	Elev *	Northing	Lasting	Total Depth	Clay	Diameter	Bot		Тор	Clay	Bot		Тор
		(ft MSL)	(ft MSL)			(ft bls)	(ft bls)	(in)	(ft bls)		(ft bls)	(ft MSL)	(ft MSL)		(ft MSL)
MW-1S	9/11/2008	19.2	18.45	228,493.77	1,037,307.67	17	NE	2	17	-	2	NE	2.2	-	17.2
MW-1D	9/11/2008	19.2	18.98	228,494.02	1,037,314.55	40	39	2	35	-	30	-19.8	-15.8	-	-10.8
MW-2S	9/11/2008	18.9	18.72	228,495.94	1,037,350.13	19	NE	2	19	-	4	NE	-0.1	-	14.9
MW-2D	9/11/2008	18.9	18.83	228,496.02	1,037,353.01	40	38	2	35	-	30	-19.1	-16.1	-	-11.1
MW-3S	10/2/2008	17.3	17.03	228,555.65	1,037,314.84	17	NE	2	17	-	2	NE	0.3	-	15.3
MW-3D	10/2/2008	17.4	17.03	228,550.95	1,037,313.85	35	NE	2	35	-	30	NE	-17.6	-	-12.6
MW-101S	6/18/2013	23.8	23.63	228,418.45	1,037,366.83	21	NE	2	21	-	11	NE	2.8	-	12.8
MW-101D	6/18/2013	23.8	23.43	228,417.62	1,037,372.56	48	46	2	45	-	40	-22.2	-21.2	-	-16.2
MW-102S	6/19/2013	24.0	23.23	228,344.97	1,037,431.52	25	NE	2	21	-	11	NE	3.0	-	13.0
MW-102D	6/19/2013	24.1	23.36	228,346.50	1,037,427.17	55	39	2	35	-	30	-14.9	-10.9	-	-5.9
MW-103D	6/18/2013	18.9	18.58	228,604.26	1,037,271.87	40	39	2	38	-	33	-20.1	-19.1	-	-14.1
MW-113	6/8/2022	20.1	19.69	228,469.90	1,037,320.82	20	NE	2	20	-	5	NE	0.1	-	15.1
MW-201S	9/13/2017	23.8	23.55	228,414.26	1,037,338.49	20	NE	2	20	-	10	NE	3.8	-	13.8
MW-201D	9/13/2017	23.8	23.61	228,416.82	1,037,336.50	40	39.5	2	39	-	34	-15.7	-15.2	-	-10.2

Notes:

Horizontal Datum: New York State Plane Coordinate System Long Island Zone, NA Datum 1983 (NAD 83) Vertical Datum: North American Vertical Datum, 1988 (NAVD 88).

ft MSL = feet above Mean Sea Level (NAVD 88 Datum)

ft bls = feet below land surface

in = inches

ft = feet

NE = Not Encountered

MW-1S/D to MW-3S/D installed by Whitestone Associates, Inc MW-101S/D to MW-201S/D installed by Stantec Consulting Services

^{*} All wells re-surveyed by Control Point Associates in October 2022.

Table 2Groundwater Level Data
Former Johnny On the Spot Cleaner
152 10th Avenue, Whitestone, NY

Well No	Date of Installation	Grnd Surf Elev*	Top of PVC Elev*	Date	Depth to Water	Water Level Elev.
		(ft MSL)	(ft MSL)		(ft TOP)	(ft MSL
MW-1S	9/11/2008	19.2	18.45	10/14/08	4.02	14.43
MW-1S	9/11/2008	19.2	18.45	07/10/13	NM	NM
MW-1S	9/11/2008	19.2	18.45	03/09/17	NM	NM
MW-1S	9/11/2008	19.2	18.45	11/07/17	5.87	12.58
MW-1S	9/11/2008	19.2	18.45	02/21/18	4.72	13.73
MW-1S	9/11/2008	19.2	18.45	06/27/22	5.35	13.10
MW-1S	9/11/2008	19.2	18.45	08/30/22	5.82	12.63
MW-1S	9/11/2008	19.2	18.45	09/02/25	6.79	11.66
10100-10	3/11/2000	19.2	10.43	03/02/23	0.79	11.00
MW-1D	9/11/2008	19.2	18.98	10/14/08	6.24	12.74
MW-1D	9/11/2008	19.2	18.98	07/10/13	NM	NM
MW-1D	9/11/2008	19.2	18.98	03/09/17	NM	NM
MW-1D	9/11/2008	19.2	18.98	11/07/17	8.17	10.81
MW-1D	9/11/2008	19.2	18.98	02/21/18	8.15	10.83
MW-1D	9/11/2008	19.2	18.98	06/27/22	7.97	11.01
MW-1D	9/11/2008	19.2	18.98	08/30/22	7.96	11.02
MW-1D	9/11/2008	19.2	18.98	09/02/25	8.44	10.54
MW-2S	9/11/2008	18.9	18.72	10/14/08	5.41	13.31
MW-2S	9/11/2008	18.9	18.72	07/10/13	5.88	12.84
MW-2S	9/11/2008	18.9	18.72	03/09/17	5.80	12.92
MW-2S	9/11/2008	18.9	18.72	11/07/17	6.72	12.00
MW-2S	9/11/2008	18.9	18.72	02/21/18	6.04	12.68
MW-2S	9/11/2008	18.9	18.72	06/27/22	5.69	13.03
MW-2S	9/11/2008	18.9	18.72	08/30/22	6.35	12.37
MW-2S	9/11/2008	18.9	18.72	09/02/25	6.84	11.88
MW-2D	9/11/2008	18.9	18.83	10/14/08	5.89	12.94
MW-2D	9/11/2008	18.9	18.83	07/10/13	6.72	12.11
MW-2D	9/11/2008	18.9	18.83	03/09/17	7.00	11.83
MW-2D	9/11/2008	18.9	18.83	11/07/17	8.04	10.79
MW-2D	9/11/2008	18.9	18.83	02/21/18	8.04	10.79
MW-2D	9/11/2008	18.9	18.83	06/27/22	7.78	11.05
MW-2D	9/11/2008	18.9	18.83	08/30/22	7.84	10.99
MW-2D	9/11/2008	18.9	18.83	09/02/25	8.34	10.49
MW-3S	10/2/2008	17.3	17.03	10/14/08	1.61	15.42
MW-3S	10/2/2008	17.3	17.03	07/10/13	NM	NM
MW-3S	10/2/2008	17.3	17.03	03/09/17	6.85	10.18
MW-3S	10/2/2008	17.3	17.03	11/07/17	1.86	15.17
MW-3S	10/2/2008	17.3	17.03	02/21/18	1.52	15.51
MW-3S	10/2/2008	17.3	17.03	06/27/22	1.85	15.18
MW-3S	10/2/2008	17.3	17.03	08/30/22	2.01	15.02
MW-3S	10/2/2008	17.3	17.03	09/02/25	2.35	14.68

Table 2Groundwater Level Data
Former Johnny On the Spot Cleaner
152 10th Avenue, Whitestone, NY

Well No	Date of Installation	Grnd Surf Elev*	Top of PVC Elev*	Date	Depth to Water	Water Level Elev.
	motanation	(ft MSL)	(ft MSL)		(ft TOP)	(ft MSL
MW-3D	10/2/2008	17.4	17.03	10/14/08	3.92	13.11
MW-3D	10/2/2008	17.4	17.03	07/10/13	5.92	11.92
MW-3D	10/2/2008	17.4	17.03	03/09/17	6.81	10.22
MW-3D	10/2/2008	17.4	17.03	11/07/17	5.58	11.45
						11.45
MW-3D	10/2/2008	17.4	17.03	02/21/18	5.48	11.97
MW-3D	10/2/2008	17.4	17.03	06/27/22	5.06	
MW-3D	10/2/2008	17.4	17.03	08/30/22	5.31	11.72
MW-3D	10/2/2008	17.4	17.03	09/02/25	5.70	11.33
MW-101S	6/18/2013	23.8	23.63	10/14/08	NYD	NYD
MW-101S	6/18/2013	23.8	23.63	07/10/13	8.72	14.91
MW-101S	6/18/2013	23.8	23.63	03/09/17	8.14	15.49
MW-101S	6/18/2013	23.8	23.63	11/07/17	8.85	14.78
MW-101S	6/18/2013	23.8	23.63	02/21/18	7.51	16.12
MW-101S	6/18/2013	23.8	23.63	06/27/22	8.28	15.35
MW-101S	6/18/2013	23.8	23.63	08/30/22	9.14	14.49
MW-101S	6/18/2013	23.8	23.63	09/02/25	10.36	13.27
MW-101D	6/18/2013	23.8	23.43	10/14/08	NYD	NYD
MW-101D	6/18/2013	23.8	23.43	07/10/13	11.63	11.80
MW-101D	6/18/2013	23.8	23.43	03/09/17	11.69	11.74
MW-101D	6/18/2013	23.8	23.43	11/07/17	12.74	10.69
MW-101D	6/18/2013	23.8	23.43	02/21/18	12.65	10.78
MW-101D	6/18/2013	23.8	23.43	06/27/22	12.33	11.10
MW-101D	6/18/2013	23.8	23.43	08/30/22	12.44	10.99
MW-101D	6/18/2013	23.8	23.43	09/02/25	12.91	10.52
MW-102S	6/19/2013	24.0	23.23	10/14/08	NYD	NYD
MW-102S	6/19/2013	24.0	23.23	07/10/13	7.05	16.18
MW-102S	6/19/2013	24.0	23.23	03/09/17	NM	NM
MW-102S	6/19/2013	24.0	23.23	11/07/17	7.41	15.82
MW-102S	6/19/2013	24.0	23.23	02/21/18	5.91	17.32
MW-102S	6/19/2013	24.0	23.23	06/27/22	6.82	16.41
MW-102S	6/19/2013	24.0	23.23	08/30/22	7.78	15.45
MW-102S	6/19/2013	24.0	23.23	09/02/25	8.10	15.13
	0/40/22/5			40/4//22	ND 7=	10.75
MW-102D	6/19/2013	24.1	23.36	10/14/08	NYD	NYD
MW-102D	6/19/2013	24.1	23.36	07/10/13	11.23	12.13
MW-102D	6/19/2013	24.1	23.36	03/09/17	NM	NM
MW-102D	6/19/2013	24.1	23.36	11/07/17	11.75	11.61
MW-102D	6/19/2013	24.1	23.36	02/21/18	9.32	14.04
MW-102D	6/19/2013	24.1	23.36	06/27/22	11.57	11.79
MW-102D	6/19/2013	24.1	23.36	08/30/22	11.75	11.61
MW-102D	6/19/2013	24.1	23.36	09/02/25	12.28	11.08

Table 2

Groundwater Level Data Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

Well No	Date of Installation	Grnd Surf Elev*	Top of PVC Elev*	Date	Depth to Water	Water Level Elev.
		(ft MSL)	(ft MSL)		(ft TOP)	(ft MSL
MW-103D	6/18/2013	18.9	18.58	10/14/08	NYD	NYD
MW-103D	6/18/2013	18.9	18.58	07/10/13	5.98	12.60
MW-103D	6/18/2013	18.9	18.58	03/09/17	6.38	12.20
MW-103D	6/18/2013	18.9	18.58	11/07/17	7.32	11.26
MW-103D	6/18/2013	18.9	18.58	02/21/18	7.27	11.31
MW-103D	6/18/2013	18.9	18.58	06/27/22	6.92	11.66
MW-103D	6/18/2013	18.9	18.58	08/30/22	6.97	11.61
MW-103D	6/18/2013	18.9	18.58	09/02/25	7.79	10.79
MW-113	6/6/2022	NYD	NYD	10/11/00	NYD	NYD
				10/14/08		
MW-113	6/6/2022	NYD	NYD NYD	07/10/13	NYD	NYD
MW-113	6/6/2022	NYD		03/09/17	NYD	NYD
MW-113	6/6/2022	NYD	NYD	11/07/17	NYD	NYD
MW-113	6/6/2022	NYD	NYD	02/21/18	NYD	NYD
MW-113	6/6/2022	20.1	19.69	06/27/22	8.38	11.31
MW-113	6/6/2022	20.1	19.69	08/30/22	8.39	11.30
MW-113	6/6/2022	20.1	19.69	09/02/25	8.91	10.78
MW-201S	9/13/2017	23.8	23.55	10/14/08	NYD	NYD
MW-201S	9/13/2017	23.8	23.55	07/10/13	NYD	NYD
MW-201S	9/13/2017	23.8	23.55	03/09/17	NYD	NYD
MW-201S	9/13/2017	23.8	23.55	11/07/17	12.92	10.63
MW-201S	9/13/2017	23.8	23.55	02/21/18	12.80	10.75
MW-201S	9/13/2017	23.8	23.55	06/27/22	11.91	11.64
MW-201S	9/13/2017	23.8	23.55	08/30/22	12.64	10.91
MW-201S	9/13/2017	23.8	23.55	09/02/25	NM	-
MW-201D	9/13/2017	23.8	23.61	10/14/08	NYD	NYD
MW-201D	9/13/2017	23.8	23.61	07/10/13	NYD	NYD
MW-201D	9/13/2017	23.8	23.61	03/09/17	NYD	NYD
MW-201D	9/13/2017	23.8	23.61	11/07/17	12.98	10.63
MW-201D	9/13/2017	23.8	23.61	02/21/18	12.91	10.70
MW-201D	9/13/2017	23.8	23.61	06/27/22	12.59	11.02
MW-201D	9/13/2017	23.8	23.61	08/30/22	12.84	10.77
MW-201D	9/13/2017	23.8	23.61	09/02/25	13.13	10.48

Notes:

Horizontal Datum: New York State Plane Coordinate System Long Island

Zone, NA Datum 1983 (NAD 83)

Vertical Datum: North American Vertical Datum, 1988 (NAVD 88).

ft MSL = Feet ablove Mean Sea Level

ft TOP = feet below Top of PVC riser (aka measuring point)

NM = Not Measured.

NYD = Not Yet Drilled

^{*} All wells re-surveyed by Control Point Associates in October 2022.

Table 2AVertical Hydraulic Gradients at Well Pairs
Former Johnny On the Spot Cleaner
Whitestone, NY

Date	Mid-Pt Screen	Mid-Pt Screen	Water Level	Water Level	Vertical Hydraulic
Bate	Elev*	Elev*	Elev*	Elev*	Gradient
	(ft MSL)	(ft MSL)	(ft MSL)	(ft MSL)	(ft/ft)
	MW-1S (WT)	MW-1D (DOB)	MW-1S (WT)	MW-1D (DOB)	
07/10/13	9.7	-13.3	NM	NM	NM
03/09/17	9.7	-13.3	NM	NM	NM
11/07/17	9.7	-13.3	12.58	10.81	-7.70E-02
02/21/18	9.7	-13.3	13.73	10.83	-1.26E-01
06/27/22	9.7	-13.3	13.10	11.01	-9.09E-02
08/30/22	9.7	-13.3	12.63	11.02	-7.00E-02
09/02/25	9.7	-13.3	11.66	10.54	-4.87E-02
	MW-2S (WT)	MW-2D (DOB)	MW-2S (WT)	MW-2D (DOB)	
07/10/13	7.4	-13.5	12.84	12.11	-3.49E-02
03/09/17	7.4	-13.5	12.92	11.83	-5.22E-02
11/07/17	7.4	-13.5	12.00	10.79	-5.79E-02
02/21/18	7.4	-13.5	12.68	10.79	-9.04E-02
06/27/22	7.4	-13.5	13.03	11.05	-9.47E-02
08/30/22	7.4	-13.5	12.37	10.99	-6.60E-02
09/02/25	7.4	-13.5	11.88	10.49	-6.65E-02
	MW-3S (WT)	MW-3D (DOB)	MW-3S (WT)	MW-3D (DOB)	
07/10/13	7.8	-15.1	NM	11.92	NM
03/09/17	7.8	-15.1	10.18	10.22	1.75E-03
11/07/17	7.8	-15.1	15.17	11.45	-1.62E-01
02/21/18	7.8	-15.1	15.51	11.55	-1.73E-01
06/27/22	7.8	-15.1	15.18	11.97	-1.40E-01
08/30/22	7.8	-15.1	15.02	11.72	-1.44E-01
09/02/25	7.8	-15.1	14.68	11.33	-1.46E-01
	MW-101S (WT)	MW-101D (DOB)	MW-101S (WT)	MW-101D (DOB)	
07/10/13	7.8	-18.7	14.91	11.80	-1.17E-01
03/09/17	7.8	-18.7	15.49	11.74	-1.42E-01
11/07/17	7.8	-18.7	14.78	10.69	-1.54E-01
02/21/18	7.8	-18.7	16.12	10.78	-2.02E-01
06/27/22	7.8	-18.7	15.35	11.10	-1.60E-01
08/30/22	7.8	-18.7	14.49	10.99	-1.32E-01
09/02/25	7.8	-18.7	13.27	10.52	-1.04E-01
	·			-	

Table 2A

Vertical Hydraulic Gradients at Well Pairs Former Johnny On the Spot Cleaner Whitestone, NY

Dete	Mid-Pt Screen	Mid-Pt Screen	Water Level	Water Level	Vertical Hydraulic
Date	Elev*	Elev*	Elev*	Elev*	Gradient
	(ft MSL)	(ft MSL)	(ft MSL)	(ft MSL)	(ft/ft)
	MW-102S (WT)	MW-102D (DOB)	MW-102S (WT)	MW-102D (DOB)	
07/10/13	8.0	-8.4	16.18	12.13	-2.47E-01
03/09/17	8.0	-8.4	NM	NM	NM
11/07/17	8.0	-8.4	15.82	11.61	-2.57E-01
02/21/18	8.0	-8.4	17.32	14.04	-2.00E-01
06/27/22	8.0	-8.4	16.41	11.79	-2.82E-01
08/30/22	8.0	-8.4	-2.34E-01		
09/02/25	8.0	-8.4	15.13	11.08	-2.47E-01
	MW-201S (WT)	MW-201D (DOB)	MW-201S (WT)	MW-201D (DOB)	
07/10/13	8.8	-12.7	NYD	NYD	NM
03/09/17	8.8	-12.7	NYD	NYD	NM
11/07/17	8.8	-12.7	10.63	10.63	0.00E+00
02/21/18	8.8	-12.7	10.75	10.70	-2.33E-03
06/27/22	8.8	-12.7	11.64	11.02	-2.88E-02
08/30/22	8.8	-12.7	10.91	10.77	-6.51E-03
08/30/22	8.8	-12.7	NM	10.48	NM

Notes:

Horizontal Datum: New York State Plane Coordinate System Long Island

Zone, NA Datum 1983 (NAD 83)

Vertical Datum: North American Vertical Datum, 1988 (NAVD 88).

ft MSL = Feet ablove Mean Sea Level NYI = Not yet installed

ft/ft = feet per foot NM = Not Measured WT = Water Table

DOB = Deep Overburden

- = Downward vertical gradient

^{*} All wells re-surveyed by Control Point Associates in October 2022.

Table 3

Permeability Results Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

RESULTS FROM PREVIOUS INVESTIGATION

Well	Type of Test	Date of Test	Hydraulic ((cm/sec)	Stratagraphic Unit	
MW-1S	Rising Head	11/3/2008	1.08E-01	306.1	F - M SAND
	Rising Head	11/3/2008	1.39E-01	394.0	F - M SAND
MW-2S	Rising Head	11/3/2008	5.25E-02	148.8	F - M SAND
	Rising Head	11/3/2008	6.75E-02	191.3	F - M SAND

Average 9.18E-02 260.1

TABLE 4 Sieve Sample/Conductivity Results Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

								Hydraulic Co	nductivity (K)
Location	Type of Test	Material	Sample Depth	% Gravel	% Sand	% Silt & Clay	d_{10}^{1}	(cm/sec) ²	(ft/day)
			(ft BLS)						
Shallow Ov	erburden								
B-110	Sieve Analysis	Silty Sand	0.5 - 1.5	3.9	60.0	36.1	0.0100	1.0E-04	0.3
B-111	Sieve Analysis	Well Graded sand with Silt	13.5 - 14.5	0.3	90.1	9.6	0.0803	6.4E-03	18.3
B-112	Sieve Analysis	Silty Sand	2 - 4	7.0	61.6	31.4	0.0100	1.0E-04	0.3
B-113	Sieve Analysis	Silty Sand	5.5 - 7.5	7.5	65.0	27.5	0.0200	4.0E-04	1.1
B-114	Sieve Analysis	Silty Sand	1 - 3	2.4	65.6	32.0	0.0100	1.0E-04	0.3
B-115	Sieve Analysis	Silty Sand	1.5 - 3.5	5.8	57.7	36.5	0.0100	1.0E-04	0.3
					AVE	I RAGE SILTY SAN	ND MATERIAL	1.6E-04	0.5
					AVERA	 \GE SHALLOW C	VERBURDEN	1.2.E-03	3.4

^{1 =} d10 values in **bold** derived by extrapolating the gradation curve. High percentage of fines prevents direct calculation of d10 with this method. Hydrometer analysis not performed.

2 = K =
$$A(d_{10})^{2}$$
 (Freeze and Cherry, 1979)
A = 1

Table 5 Summary of Soil Analytical Results: VOCs Sep 2017 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

		Client ID	B-101(7.6')	B-101(14	5')	B-102(6.5')		B-102(13.6')		B-103(7.5')		B-103(13.6')	B-104(7.0')	B-104(14.3')	B-105 (5.	.5')	B-105 (13.5')	B-106 (5.5')	B-106 (14.5')
		Lab Sample ID	460-140792-8	460-14079	2-9	460-140792-6		460-140792-7		460-140792-4		460-140792-5	460-140792-2	460-140792-3	460-140863-		460-140863-13	460-140863-14	460-140863-15
		Sampling Date	9/11/2017	9/11/20	17	9/11/2017		9/11/2017		9/11/2017		9/11/2017	9/11/2017	9/11/2017	912	/17	912/17	912/17	912/17
		Matrix	Soil		Soil	Soil		Soil		Soil		Soil	Soil	Soil		Soil	Soil	Soil	Soil
Dilution Factor		1		. 1	1		1		1		1	1 1	1		1	1	1	1	
		Unit	mg/kg	mg		mg/kg		mg/kg		mg/kg		mg/kg	mg/kg	mg/kg	mg.		mg/kg	mg/kg	mg/kg
VOCs by EPA Method 8260B	Units	NYSDEC SCO POG	Result	Q Re:	suit C	Result	Q	Result	Q	Result	Q	Result Q	Result Q	Result	Q Res	suit Q	Result Q	Result Q	Result Q
1,1,1-Trichloroethane	mg/kg	0.68	0.00028	U 0.00	02 1	J 0.00029	- 11	0.00019		0.00019		0.00023 U	0.00023 U	0.00022	U 0.000	122 11	0.0002 U	0.00023 U	0.00031 U
1,1,2,2-Tetrachloroethane	mg/kg	NS	0.00026	U 0.000		J 0.00029	11	0.00019	ü	0.00019	H	0.00023 U	0.00023 U	0.00022	U 0.000		0.0002 U	0.00023 U	0.00031 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	mg/kg	NS	0.00020	U 0.000		J 0.00027	Ü	0.00025	ŭ	0.00017	- ŭl	0.00021 U	0.00021 U	0.00028	U 0.000		0.00016 U	0.00022 U	0.00023 U
1,1,2-Trichloroethane	mg/kg	NS	0.00022	U 0.000		J 0.00022	Ü	0.00015	Ü	0.00014	ü	0.00023 U	0.0000 U	0.00017	U 0.000		0.00025 U	0.00018 U	0.00041 U
1,1-Dichloroethane	mg/kg	0.27	0.00025	U 0.000	_	0.00026	Ü	0.00017	ŭ	0.00017	ŭ	0.0002 U	0.00010 U	0.00019	U 0.00		0.00017 U	0.00010 U	0.00021 U
1.1-Dichloroethene	mg/kg	0.33	0.00027	U 0.00	_	J 0.00028	Ŭ	0.00019	Ŭ	0.00018	ŭ	0.00022 U	0.00023 U	0.00021	U 0.000		0.00019 U	0.00023 U	0.0003 U
1,2,3-Trichlorobenzene	mg/kg	NS	0.00022	U 0.000		J 0.00023	Ü	0.00015	Ü	0.00015	Ü	0.00018 U	0.00018 U	0.00017	U 0.000		0.00015 U	0.00018 U	0.00024 U
1,2,4-Trichlorobenzene	mg/kg	NS	0.00011	U 0.000		J 0.00012	Ū	0.000076	U	0.000075	Ū	0.00009 U	0.000092 U	0.000087	U 0.0000		0.000077 U	0.000093 U	0.00012 U
1,2-Dibromo-3-Chloropropane	mg/kg	NS	0.00056	U 0.00	04 ι	0.00058	U	0.00038	U	0.00037	U	0.00045 U	0.00046 U	0.00043	U 0.000		0.00039 UJ	0.00046 UJ	0.00062 UJ
1,2-Dichlorobenzene	mg/kg	1.1	0.00018	U 0.000	13 l	J 0.00018	U	0.00012	U	0.00012	U	0.00014 U	0.00014 U	0.00014	U 0.000	14 U	0.00012 U	0.00015 U	0.00019 U
1,2-Dichloroethane	mg/kg	0.02	0.00036	U 0.000	26 l	J 0.00037	U	0.00024	U	0.00024	U	0.00029 U	0.0003 U	0.00028	U 0.000	28 U	0.00025 U	0.0003 U	0.0004 U
1,2-Dichloropropane	mg/kg	NS	0.00051	U 0.000	37 l	J 0.00053	U	0.00035	U	0.00034	U	0.00041 U	0.00042 U	0.0004	U 0.000	141 U	0.00036 U	0.00043 U	0.00057 U
1,3-Dichlorobenzene	mg/kg	2.4	0.00019	U 0.000	14 l	J 0.0002	U	0.00013	U	0.00013	U	0.00016 U	0.00016 U	0.00015	U 0.000	15 U	0.00013 U	0.00016 U	0.00021 U
1,4-Dichlorobenzene	mg/kg	1.8	0.00012	U 0.0000		J 0.00013	U	0.000082	U	0.000081	U	0.000098 U	0.0001 U	0.000094	U 0.0000		0.000084 U	0.0001 U	0.00013 U
1,4-Dioxane	mg/kg	0.1	0.011	U 0.0	ا 80	J 0.012	U	0.0076	U	0.0075	U	0.009 U	0.0092 U	0.0087	U 0.00	88 U	0.0077 U	0.0093 U	0.012 U
2-Butanone (MEK)	mg/kg	0.12	0.0014 l	JJ 0.000		J 0.0014	UJ	0.00091	U	0.0019	NJ	0.0011 U	0.0025 NJ	0.0010 l		20 NJ	0.00093 U	0.0019 NJ	0.0015 U
2-Hexanone	mg/kg	NS	0.00095	U 0.000		J 0.00098	U	0.00064	U	0.00064	U	0.00076 U	0.00078 U	0.00073	U 0.000		0.00066 U	0.00079 U	0.0011 U
4-Methyl-2-pentanone	mg/kg	NS	0.00081	U 0.000		J 0.00084	U	0.00055	U	0.00054	U	0.00065 U	0.00067 U	0.00063	U 0.000		0.00056 U	0.00067 U	0.00089 U
Acetone	mg/kg	0.05	0.0046	U 0.00			U	0.0031	U	0.017	JB	0.0037 U	0.011 JB	0.0059	JB 0.00		0.0042	0.0089	0.0071
Benzene	mg/kg	0.06	0.00031	U 0.000		J 0.00033	U	0.00021	U	0.00021	U	0.00025 U	0.00026 U	0.00024	U 0.000		0.00022 U	0.00026 U	0.00035 U
Bromoform	mg/kg	NS	0.00052	U 0.000		J 0.00054	U	0.00035	U	0.00035	U	0.00042 U	0.00043 U	0.0004	U 0.000		0.00036 U	0.00043 U	0.00057 U
Bromomethane	mg/kg	NS	0.00058	U 0.000		0.0006	U	0.00039	U	0.00039	, U	0.00046 U	0.00048 U	0.00045	U 0.000		0.0004 U	0.00048 U	0.00064 U
Carbon disulfide	mg/kg	NS 0.70	0.00032	U 0.000	_	J 0.00034	U	0.00022	U.	0.00036	NJ	0.00057 NJ	0.00039 NJ	0.00026 N	0.000		0.00022 U	0.00027 U	0.0013
Carbon tetrachloride	mg/kg	0.76	0.00022	U 0.000		J 0.00023	U	0.00015	U.	0.00015	- !!	0.00018 U	0.00018 U	0.00017	U 0.000		0.00015 U	0.00018 U	0.00024 U
Chlorobenzene	mg/kg	1.1	0.00022	U 0.000		J 0.00022	U	0.00015	U	0.00014	U	0.00017 U	0.00018 U	0.00017	U 0.000		0.00015 U	0.00018 U	0.00024 U
Chlorodromomethane	mg/kg	NS NS	NR NR		NR NR	NR NR		NR NR		NR NR		NR	NR	NR		NR NR	NR NR	NR NR	NR NR
Chlorodibromomethane	mg/kg	NS NS	0.00064 l	JJ 0.000	** *	J 0.00066	- 111		UJ	0.00042		0.00051 U	NR 0.00052 UJ	0.00049 U	0.00		0.00044 U	0.00053 U	0.0007 U
Chloroethane Chloroform	mg/kg mg/kg	0.37	0.00039	U 0.000		J 0.0004	11	0.00043 0.00026	03	0.00042	11	0.00031 U	0.00032 U	0.00049 0	U 0.000		0.00044 U	0.00033 U	0.0007 U
Chloromethane	mg/kg	NS	0.00053	U 0.000	_	J 0.00055	- 11	0.00026	H	0.00020	띪	0.00031 U	0.00032 U	0.0003	U 0.000		0.00027 U	0.00032 U	0.00043 U
cis-1,2-Dichloroethene	mg/kg	0.25	0.00033	U 0.000	_	J 0.0017		0.0042	ŭ	0.00033	- iil	0.00043	0.00015 U	0.059	0.000		0.0037	0.00015 U	0.0033
cis-1,3-Dichloropropene	mg/kg	NS	0.00033	U 0.000		0.00034	u	0.00023	Ü	0.00012	ŭ	0.00027 U	0.00010 U	0.00026	U 0.000		0.00023 U	0.00018 U	0.00037 U
Cyclohexane	mg/kg	NS	0.00027	U 0.000	_	0.00028	Ŭ	0.00018	Ŭ	0.00018	ŭ	0.00022 U	0.00022 U	0.00021	U 0.000		0.00019 U	0.00022 U	0.0003 U
Dibromochloromethane	mg/kg	NS	0.00024	U 0.000		J 0.00024	ŭ	0.00016	Ŭ	0.00016	ŭ	0.00019 U	0.00019 U	0.00018	U 0.000		0.00016 U	0.0002 U	0.00026 U
Dichlorodifluoromethane	mg/kg	NS	0.00041	U 0.000	29 l	0.00043	U	0.00028	U	0.00028	U	0.00033 U	0.00034 U	0.00032	U 0.000		0.00028 U	0.00034 U	0.00046 U
Ethylbenzene	mg/kg	1	0.00024	U 0.000	_	J 0.00025	U	0.00016	U	0.00016	U	0.00019 U	0.0002 U	0.00019	U 0.000		0.00017 U	0.00042 NJ	0.00027 U
Ethylene Dibromide	mg/kg	NS	NR		NR	NR		NR		NR		NR	NR	NR		NR	NR	NR	NR
Isopropylbenzene	mg/kg	NS	0.00015	U 0.000	11 l	J 0.00016	U	0.0001	U	0.0001	U	0.00012 U	0.00013 U	0.00012	U 0.000	12 U	0.00011 U	0.00013 U	0.00017 U
Methyl acetate	mg/kg	NS	0.0052	U 0.00	38 l	J 0.0054	U	0.0035	U	0.0035	U	0.0042 U	0.0043 U	0.0041	U 0.00	41 U	0.0036 U	0.0043 U	0.0058 U
Methyl tert-butyl ether (MTBE)	mg/kg	0.93	NR		٧R	NR		NR		NR		NR	NR	NR		NR	NR	NR	NR
Methylcyclohexane	mg/kg	NS	0.00019	U 0.000		J 0.0002		0.00013	U	0.00053	J	0.00016 U	0.00016 U	0.00015		15 U	0.00013 U	0.00061 NJ	
Methylene Chloride	mg/kg	0.05	0.0002		28 NJI				UJB	0.00015		0.00026 NJB		0.00024 U.		16 U	0.00014 U	0.00016 U	
m&p-Xylene	mg/kg	1.6	0.00021	U 0.000	_	J 0.00030	NJ	0.00014	U	0.00022		0.00032 NJ		0.00046 N		24 NJ	0.00020 UJB	0.0016 JB	
o-Xylene	mg/kg	1.6	0.00012	U 0.0000		J 0.00012	U	0.000078	U	0.00011	NJ	0.000093 U	0.00012 NJ	0.00022			0.00008 U	0.0011	0.00013 U
Styrene	mg/kg	NS	0.00015	U 0.000		J 0.00016	U	0.0001	U	0.0001	U	0.00012 U	0.00012 U	0.00012	U 0.000		0.0001 U	0.00012 U	0.00017 U
Tetrachloroethene	mg/kg	1.3	0.00017	U 0.000		J 0.00023	NJ	0.00024	NJ	0.00024	NJ	0.00022 NJ	0.00014 U	0.00013	U 0.000		0.00012 U	0.00014 U	0.00019 U
Toluene	mg/kg	0.7	0.00076	U 0.000		J 0.00079	U	0.00052	U	0.00051	U	0.00061 U	0.00063 U	0.00059	U 0.00		0.00052 U	0.00063 U	0.00084 U
trans-1,2-Dichloroethene	mg/kg	0.19	0.0003	U 0.000		J 0.00031	U	0.0002	U	0.0002	U	0.00032 NJ	0.00025 U	0.00059 1			0.00021 U	0.00025 U	0.00033 U
trans-1,3-Dichloropropene	mg/kg	NS 0.47	0.00032	U 0.000		J 0.00034	Ų	0.00022	Ų	0.00022	U	0.00026 U	0.00027 U	0.00025	U 0.000		0.00022 U	0.00027 U	0.00036 U
Trichloroethene	mg/kg	0.47	0.00018	U 0.000		J 0.00036	NJ	0.00057	NJ	0.00012	U.	0.00053 NJ	0.00014 U	0.00014	U 0.000		0.00012 NJ	0.00015 U	0.00019 U
Trichlorofluoromethane	mg/kg	NS 0.02	0.00049	U 0.000		J 0.00051	U	0.00033	U	0.00033	U.	0.0004 U	0.00041 U	0.00038	U 0.000		0.00034 U	0.00041 U	0.00055 U
Vinyl chloride	mg/kg	0.02	0.00066	U 0.000	48 l	J 0.00069	U	0.00054	NJ	0.00044	U	0.0031	0.00055 U	0.00056	0.000 مالا	152 U	0.00046 U	0.00055 U	0.00074 U
Total Conc	mg/kg	NS	0.0	0.004	58	0.00293		0.00576		0.02051		0.08232	0.01464	0.06723	0.002	24	0.03852	0.01453	0.02677

Notes:

mg/Kg = milligrams per kilogram = parts per million (ppm) NYSDEC SCO = Soil Cleanup Objectives from 6 NYCRR Table 375-6.8(a), current through 2/28/2023.

POG = Protection of Groundwater

NS = No Standard

NR = Not Reported

Bold = concentration exceeds Soil Cleanup Objectives

B: compound found in the blank and sample

- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and
- nrecisely measure the analyte in the sample.
 B = The analyte was detected in the method, field and/or trip blank

Table 5 Summary of Soil Analytical Results: VOCs Sep 2017 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

		Client ID	B-107 (6.5')	B-107 (12.5')	B-108 (5.5')	B-108 (13.5')	B-109 (3.5'-5.0')	B-110(6.5')	B-110(14.5')	B-111 (3.5')	B-111 (14.5')	B-112 (8.5')	B-112 (14.5')	B-113 (6.5')	B-113 (12.9')
		Lab Sample ID		460-140863-17		460-140863-19	460-140863-11	460-140792-10	460-140792-11	460-140863-1	460-140863-2	460-140863-3	460-140863-4	460-140863-5	460-140863-6
		Sampling Date	912/17	912/17	912/17	912/17	912/17	9/11/2017	9/11/2017	912/17	912/17	912/17	912/17	912/17	912/17
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Dilution Factor	1	1	1	1	7	50	50	1	1 1	1	1	50	100
	1	Unit NYSDEC SCO	mg/kg Result	mg/kg Q Result		mg/kg Q Result Q	mg/kg Result (mg/kg Q Result (mg/kg Q Result (mg/kg Q Result Q	mg/kg Result 0	mg/kg Result (mg/kg Result 0	mg/kg Result 0	mg/kg Q Result Q
VOCs by EPA Method 8260B	Units	POG	rtesuit	Q itesuii	Q Nesuit	Q Nesuit Q	i Nesuit V	Q Result (Q Result (Q Result Q	i ivesuit c	2 Nesuit C	Z Nesuit C	2 Nesuit C	X INESUIL Q
1,1,1-Trichloroethane	mg/kg	0.68	0.00021	U 0.0002	U 0.00022	U 0.00021 U	0.00021	U 0.022 I	U 0.024	U 0.00023 U	0.00024 เ	J 0.0002 l	J 0.0002 L	J 0.021 l	J 0.053 U
1,1,2,2-Tetrachloroethane	mg/kg	NS	0.00019	U 0.00018	U 0.0002	U 0.0002 U	0.00019	U 0.015 I	U 0.016	U 0.00021 U	0.00022 l	J 0.00018 l	J 0.00018 l	J 0.014 l	J 0.036 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	mg/kg	NS	0.00027	U 0.00026	U 0.00028	U 0.00028 U	0.00027	U 0.027 I	U 0.029	U 0.00029 U	0.00031 l	J 0.00025 U	J 0.00026 l	J 0.025 l	J 0.064 UJ
1,1,2-Trichloroethane	mg/kg	NS	0.00016	U 0.00015	U 0.00017	U 0.00016 U	0.00016	U 0.0064 I	U 0.0067	U 0.00017 U	0.00019 l	J 0.00015 l	J 0.00015 l	J 0.006 l	J 0.015 U
1,1-Dichloroethane	mg/kg	0.27	0.00019	U 0.00018	U 0.00019	U 0.00019 U	0.00018	U 0.019 I	U 0.02	U 0.0002 U	0.00022 l	J 0.00017 U	J 0.00018 l	J 0.018 l	J 0.045 U
1,1-Dichloroethene	mg/kg	0.33	0.0002	U 0.00019	U 0.00021	U 0.00021 U	0.0002	U 0.027 I	U 0.029	U 0.00022 U	0.00023 U	J 0.00019 l	ا 0.00019	J 0.025 L	J 0.064 U
1,2,3-Trichlorobenzene	mg/kg	NS	0.00016	U 0.00015	U 0.00017	U 0.00017 U	0.00016	U 0.028 I	U 0.029	U 0.00018 U	0.00019 U	J 0.00015 U	J 0.00016 U	ا 0.026 ا	J 0.066 U
1,2,4-Trichlorobenzene	mg/kg	NS	0.000083	U 0.000079	U 0.000086	U 0.000085 U	0.000082	U 0.022 I	U 0.023	U 0.000089 U	0.000096 U	J 0.000078 U	J 0.000079 U	J 0.020 U	J 0.051 U
1,2-Dibromo-3-Chloropropane	mg/kg	NS	0.00041	UJ 0.00039	UJ 0.00043 L		0.00041 U	J 0.018 I	U 0.019	U 0.00045 U	0.00048 U	0.00039	J 0.0004 L	0.017 \	J 0.043 U
1,2-Dichlorobenzene	mg/kg	1.1 0.02	0.00013	U 0.00012	U 0.00014	U 0.00013 U	0.00013	U 0.018 U	U 0.019	U 0.00014 U	0.00015 U	J 0.00012 U	J 0.00012 U	0.016	J 0.041 U
1,2-Dichloroethane 1,2-Dichloropropane	mg/kg	0.02 NS	0.00027 0.00038	U 0.00025 U 0.00036	U 0.00028 U 0.0004	U 0.00027 U 0.00039 U	0.00026 0.00038	U 0.02 U U 0.014 U	U 0.021 U 0.015	U 0.00029 U U 0.00041 U	0.00031 U 0.00044 U	J 0.00025 U J 0.00036 U	J 0.00025 U J 0.00036 U	U 0.019 U 0.013 U	J 0.047 U J 0.034 U
1,2-Dichloropropane 1.3-Dichlorobenzene	mg/kg mg/kg	2.4	0.00038	U 0.00036	U 0.0004	U 0.00039 U	0.00038	U 0.026	U 0.018	U 0.00041 U	0.00044 C	J 0.00036 (J 0.00036 C	J 0.025 U	J 0.062 U
1,3-Dichlorobenzene	mg/kg	1.8	0.00014	U 0.00014	U 0.00015	U 0.000092 U	0.00014	U 0.026 U	U 0.028	U 0.00015 U	0.00017	J 0.00013 (J 0.00014 0	J 0.025 U	J 0.062 U
1,4-Dioxane	mg/kg	0.1	0.0003	U 0.00083	U 0.00094	U 0.00092 U	0.00089	U 0.69 U	U 0.028	U 0.00097 U	0.0001	J 0.00084 0	J 0.00080 U	J 0.65 L	J 1.6 U
2-Butanone (MEK)	mg/kg	0.12	0.0003	U 0.0012	NJ 0.001	U 0.0003 U	0.0002	0.09	U 0.19	U 0.0009 U	0.0030	0.00077	J 0.00096 U	0.05 0	J 0.410 U
2-Hexanone	mg/kg	NS	0.0007	U 0.00067	U 0.00073	U 0.00072 U	0.00069	U 0.057	U 0.061	U 0.00075 U	0.00081	0.00066	J 0.00067 U	0.054	J 0.140 UJ
4-Methyl-2-pentanone	mg/kg	NS	0.0006	U 0.00057	U 0.00062	U 0.00061 U	0.00059	U 0.05	U 0.053	U 0.00064 U	0.00069	J 0.00056 U	J 0.00057 L	J 0.047 L	J 0.120 U
Acetone	mg/kg	0.05	0.015	0.0051	0.0082	0.010	0.055	0.085	U 0.090	U 0.0037 U	0.0072	0.018	0.010	0.080	J 0.20 U
Benzene	mg/kg	0.06	0.00023	U 0.00022	U 0.00024	U 0.00024 U	0.00023	U 0.015 I	U 0.016	U 0.00025 U	0.00027 l	J 0.00022 l	J 0.00022 L	ا 0.014 ل	J 0.036 U
Bromoform	mg/kg	NS	0.00038	U 0.00036	U 0.0004	U 0.00039 U	0.00038	U 0.014 I	U 0.015	U 0.00041 U	0.00044 l	J 0.00036 U	J 0.00037 L	J 0.013 l	J 0.034 U
Bromomethane	mg/kg	NS	0.00043	U 0.0004	U 0.00045	U 0.00044 U	0.00042	U 0.014 I	U 0.015	U 0.00046 U	0.00049 l	J 0.00040 l	J 0.00041 U	J 0.013 l	J 0.034 U
Carbon disulfide	mg/kg	NS	0.00024	U 0.0025	0.00025	U 0.00024 U	0.00024	U 0.018 I	U 0.019	U 0.00026 U	0.00028 U	* 0.00022 U	* 0.00023 l	J 0.016 l	J 0.041 U
Carbon tetrachloride	mg/kg	0.76	0.00016	U 0.00015	U 0.00017	U 0.00017 U	0.00016	U 0.026 I	U 0.028	U 0.00018 U	0.00019 l	J 0.00015 U	J 0.00016 l	J 0.025 l	J 0.062 U
Chlorobenzene	mg/kg	1.1	0.00016	U 0.00015	U 0.00017	U 0.00016 U	0.00016	U 0.019 I	U 0.02	U 0.00017 U	0.00018 U	J 0.00015 U	J 0.00015 U	ا 0.018 ا	J 0.045 U
Chlorobromomethane	mg/kg	NS	NR	NR NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Chlorodibromomethane	mg/kg	NS	NR 0.00047	NR 0.00045	NR	NR NR	NR 0.00046	NR NR	NR 0.004	NR NR	NR 0.00054	NR NR	NR NR	NR 0.000 I	NR NR
Chloroform	mg/kg	NS 0.37	0.00047	U 0.00045	U 0.00049	U 0.00048 U	0.00046	U 0.03 U	U 0.031	U 0.00051 U	0.00054 U	J 0.00044 U	J 0.00045 U	0.028 \	J 0.07 U
Chloroform Chloromethane	mg/kg mg/kg	0.37 NS	0.00029 0.00039	U 0.00027 U 0.00037	U 0.0003 U 0.00041	U 0.00029 U U 0.0004 U	0.00028	U 0.018 U 0.018 U	U 0.019 U 0.019	U 0.00031 U U 0.00042 U	0.00033 U 0.00045 U	J 0.00027 U J 0.00037 U	J 0.00027 L J 0.00037 L	0.016 U 0.016 U	J 0.041 U J 0.041 U
cis-1,2-Dichloroethene		0.25	0.00039	0.00037	NJ 0.00041	U 0.0004 U	0.00039	U 0.018	0.019	0.00042 U	0.00045 C	J 0.00037 0	0.00037	0.016	
cis-1,3-Dichloropropene	mg/kg mg/kg	0.23 NS	0.00025	U 0.00030	U 0.00014	U 0.00014 0	0.00014	U 0.013 I	U 0.013	U 0.00013 U	0.00016 U	J 0.00023 U		0.13	2.2 J 0.03 U
Cyclohexane	mg/kg	NS	0.0002	U 0.00019	U 0.00021	U 0.0002 U	0.0002	U 0.021	U 0.022	U 0.00021 U	0.00023	0.00020	J 0.00019 U	0.012	J 0.049 UJ
Dibromochloromethane	mg/kg	NS	0.00017	U 0.00017	U 0.00018	U 0.00018 U	0.00017	U 0.018 U	U 0.019	U 0.00019 U	0.00020	0.00016	J 0.00017 U	0.016	J 0.041 U
Dichlorodifluoromethane	mg/kg	NS	0.0003	U 0.00029	U 0.00032	U 0.00031 U	0.0003	U 0.011 I	U 0.012	U 0.00033 U	0.00035 U	J 0.00028 U	J 0.00029 L	0.01	J 0.026 U
Ethylbenzene	mg/kg	1	0.00018	U 0.00017	U 0.0016	0.00018 U	0.00018	U 0.024 I	U 0.025	U 0.00019 U	0.00021 U	J 0.00017 U	J 0.00017 N	J 0.022 l	J 0.056 U
Ethylene Dibromide	mg/kg	NS	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Isopropylbenzene	mg/kg	NS	0.00011	U 0.00011	U 0.00012	U 0.00012 U	0.00011	U 0.026 I	U 0.027	U 0.00012 U	0.00013 U	J 0.00011 l	J 0.00011 L	J 0.024 l	J 0.06 U
Methyl acetate	mg/kg	NS	0.0039	U 0.0037	U 0.004	U 0.004 U	0.0038	U 0.046 I	U 0.049	U 0.0042 U	0.0045 l	J 0.0036 l	J 0.0037 L	J 0.043 l	J 0.11 U
Methyl tert-butyl ether (MTBE)	mg/kg	0.93	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Methylcyclohexane	mg/kg	NS	0.00014	U 0.00014			0.00014	U 0.018 I			0.00017 L	J 0.00013 l		ا 0.016	
Methylene Chloride	mg/kg	0.05	0.00015	U 0.00014		U 0.00015 U	0.00015	U 0.017 I		U 0.00016 U	0.00017 U	0.00042 NJI		J 0.016 U	
m&p-Xylene	mg/kg	1.6	0.00017					U 0.022 I	U 0.024	U 0.0003 NJB			J 0.0005 NJE		J 0.053 U
o-Xylene	mg/kg	1.6	0.000086	U 0.000081	U 0.0027	0.000087 U	0.000085	U 0.026 I		U 0.000092 U	0.000099 \	0.00008	J 0.00013 N		J 0.06 U
Styrene	mg/kg	NS 1.2	0.00011	U 0.0001	U 0.00012		0.00011	U 0.014 I		U 0.00012 U	0.00013 L	0.0001	J 0.00011 L	0.013	
Tetrachloroethene	mg/kg	1.3 0.7	0.00013	U 0.00012			0.00013	U <u>4.4</u> U 0.02 U	1.4	0.0031	0.00015 U	0.013	0.0060	3.0 J 0.019 U	J 0.047 U
Toluene trans-1,2-Dichloroethene	mg/kg	0.7	0.00056 0.00022	U 0.00053 U 0.00021	U 0.00061 N U 0.00023		0.00056 0.00022	U 0.014 U		U 0.0006 U U 0.00024 U	0.00065 U 0.00026 U	J 0.00053 U J 0.00045 N	J 0.00054 U J 0.00040 N	J 0.019 (
trans-1,3-Dichloropropene	mg/kg mg/kg	NS	0.00022	U 0.00021		U 0.00024 U	0.00022	U 0.015		U 0.00024 U	0.00028 UJE		J 0.00040 N	J 0.014 U	U 0.036 U
Trichloroethene	mg/kg	0.47	0.00024	U 0.00023			0.00024	U <u>0.49</u>	0.40	0.00026 U	0.00028 03E	0.00022	0.0023	0.014	4.1
Trichlorofluoromethane	mg/kg	NS	0.00013	U 0.00035		U 0.00013 U	0.00013	U 0.012 U		U 0.00039 U	0.00013	J 0.00034 U	J 0.0024	J 0.011 U	J 0.028 U
Vinyl chloride	mg/kg	0.02	0.00049	U 0.00047		U 0.0005 U	0.00049	U 0.016		U 0.00053 U	0.00057	J 0.0004 (0.00097	0.015	
•															
Total Conc	mg/kg	NS	0.02917	0.00933	0.02028	0.0102	0.066	5.07	2.11	0.00376	0.00738	0.18837	0.06957	3.45	58.356

Notes:

mg/Kg = milligrams per kilogram = parts per million (ppm) NYSDEC SCO = Soil Cleanup Objectives from 6 NYCRR Table 375-6.8(a), current through 2/28/2023.

POG = Protection of Groundwater

NS = No Standard

NR = Not Reported

Bold = concentration exceeds Soil Cleanup Objectives

Laboratory Qualifiers

- B: compound found in the blank and sample
- J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to
- accurately and precisely measure the analyte in the sample.
 B = The analyte was detected in the method, field and/or trip blank

Table 5 Summary of Soil Analytical Results: VOCs Sep 2017 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

		Client ID	B-114 (1.0')		B-114 (14.0')		B-115 (6.5')		B-115 (14.0')	_
		Lab Sample ID			460-140863-10		460-140863-7		460-140863-8	_
		Sampling Date			912/17		912/17		912/17	_
		Matrix	Soil		Soil		Soil		Soil	_
		Dilution Factor	50		1		1		1	_
		Unit	mg/kg		mg/kg		mg/kg		mg/kg	
		NYSDEC SCO	Result	ΙQ		ΙQ	Result	ΙQ	Result	C
VOCs by EPA Method 8260B	Units	POG								
1,1,1-Trichloroethane	mg/kg	0.68	0.024	U	0.0002	U	0.00019	U	0.00019	l
1,1,2,2-Tetrachloroethane	mg/kg	NS	0.016				0.00018	U	0.00017	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon TF)	mg/kg	NS	0.029	U	0.00026	U	0.00025	U	0.00024	U
1,1,2-Trichloroethane	mg/kg	NS	0.0069	U	0.00015	U	0.00015	U	0.00014	l
1,1-Dichloroethane	mg/kg	0.27	0.021	U	0.00018	U	0.00017	U	0.00017	l
1,1-Dichloroethene	mg/kg	0.33	0.029				0.00019	U	0.00023	·
1,2,3-Trichlorobenzene	mg/kg	NS	0.030				0.00015	U	0.00015	l
1,2,4-Trichlorobenzene	mg/kg	NS	0.023	U			0.000076	U	0.000075	l
1,2-Dibromo-3-Chloropropane	mg/kg	NS	0.020				0.00038	U	0.00037	l
1,2-Dichlorobenzene	mg/kg	1.1	0.019				0.00012	U	0.00012	l
1,2-Dichloroethane	mg/kg	0.02	0.021	U			0.00025	U	0.00024	L
1,2-Dichloropropane	mg/kg	NS	0.015				0.00035	U	0.00034	L
1,3-Dichlorobenzene	mg/kg	2.4	0.028			U	0.00013	U	0.00013	L
1,4-Dichlorobenzene	mg/kg	1.8	0.028			_	0.000083	U	0.000081	Ļ
1,4-Dioxane	mg/kg	0.1	0.75	_		U	0.0076	U	0.0075	L
2-Butanone (MEK)	mg/kg	0.12 NS	0.19	_		_	0.0016		0.0009	L
2-Hexanone	mg/kg	NS NS	0.062	U		U	0.00065	U	0.00063	L
4-Methyl-2-pentanone Acetone	mg/kg mg/kg	0.05	0.054 0.092			ľ	0.00055 0.0087	U	0.00054 0.0094	·
Benzene	mg/kg	0.06	0.092			U	0.0007	υ	0.00021	ι
Bromoform	mg/kg	NS	0.016				0.00021	Ü	0.00021	L
Bromomethane	mg/kg	NS NS	0.015	_		U	0.00039	Ü	0.00039	ī
Carbon disulfide	mg/kg	NS	0.019	_		_	0.00062	_	0.00022	ī
Carbon tetrachloride	mg/kg	0.76	0.028	U			0.00015	U	0.00015	ī
Chlorobenzene	mg/kg	1.1	0.021	Ū			0.00015	Ū	0.00014	ī
Chlorobromomethane	mg/kg	NS	NR		NR		NR		NR	
Chlorodibromomethane	mg/kg	NS	NR		NR		NR		NR	
Chloroethane	mg/kg	NS	0.032	U	0.00045	U	0.00043	U	0.00042	l
Chloroform	mg/kg	0.37	0.019			U	0.00026	U	0.00026	l
Chloromethane	mg/kg	NS	0.019	U		U	0.00036	U	0.00035	l
cis-1,2-Dichloroethene	mg/kg	0.25	0.17		0.036		0.00013	U	0.16	
cis-1,3-Dichloropropene	mg/kg	NS	0.014	U			0.00023	U	0.00022	l
Cyclohexane	mg/kg	NS	0.022	U			0.00018	U	0.00018	ι
Dibromochloromethane	mg/kg	NS	0.019	_		U	0.00016	U	0.00016	L
Dichlorodifluoromethane	mg/kg	NS	0.012	_		_	0.00028	U	0.00027	L
Ethylbenzene	mg/kg	1	0.026	U		U	0.00017	U	0.00016	L
Ethylene Dibromide	mg/kg	NS	NR 0.007	l	NR	١.,	NR	l	NR	_
Isopropylbenzene	mg/kg	NS NS	0.027 0.05	U		U	0.0001 0.0036	U	0.0001 0.0035	L
Methyl test but d other (MTRF)	mg/kg	0.93	0.05 NR	U	0.0037 NR	_	0.0036 NR	U	0.0035 NR	·
Methyl tert-butyl ether (MTBE) Methylcyclohexane	mg/kg mg/kg	0.93 NS	0.019	U		_		U	0.00013	l
Methylene Chloride	mg/kg	0.05	0.019				0.00013		0.00013	ī
m&p-Xylene	mg/kg	1.6	0.018	U					0.00013	ī
o-Xylene	mg/kg	1.6	0.027			Ū			0.000077	ū
Styrene	mg/kg	NS	0.015			_	0.0001	ŭ	0.0001	ī
Tetrachloroethene	mg/kg	1.3	18		0.0016		0.00012	_	0.25	_
Toluene	mg/kg	0.7	0.021			_	0.00052	_	0.00051	l
trans-1,2-Dichloroethene	mg/kg	0.19	0.015	_			0.0002		0.0011	_
trans-1,3-Dichloropropene	mg/kg	NS	0.016				0.00022		0.00022	L
Trichloroethene	mg/kg	0.47	7.8		0.0023		0.00012		0.29	
Trichlorofluoromethane	mg/kg	NS	0.013	U	0.00035		0.00034		0.00033	L
Vinyl chloride	mg/kg	0.02	0.017				0.00045		0.0032	
Total Conc	mg/kg	NS	25.97		0.04915		0.01092		0.71393	_
. 5 50110	פיייטיי		20.01	_	0.07010	_	J.0100Z		0.7 1000	_

Notes:

mg/Kg = milligrams per kilogram = parts per million (ppm) NYSDEC SCO = Soil Cleanup Objectives from 6 NYCRR Table 375-6.8(a), current through 2/28/2023.

POG = Protection of Groundwater

NS = No Standard

NR = Not Reported

Bold = concentration exceeds Soil Cleanup Objectives

- <u>Laboratory Qualifiers</u>
 B: compound found in the blank and sample
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to
- accurately and precisely measure the analyte in the sample. B = The analyte was detected in the method, field and/or trip blank

Table 5A Summary of Soil Analytical Results: VOCs June 2022 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

	Client ID B-7 (7'-8')		B-9 (7'-8')	B-9 (7'-8') B-110 (6'-7')		B-110 (12.5'-13.5')		B-113 (6'-7')	B-113 (12.5'-13	.5')	, ,		DUPE [B-113 (12.5'-13.5')]		
Lab Sample ID		460-259668-1	460-259668-2	460-259668-5		460-259668-10		460-259668-6	460-259668-11		460-259668-8		460-259668-7		
		Sampling Date	6/7/2022	6/7/2022	6/7/2022		6/7/2022		6/8/2022	6/8/2022		6/8/2022		6/8/2022	
		Matrix	Soil	Soil	Soil		Soil		Soil	Soil		Soil		Soil	
		Dilution Factor NYSDEC SCO	Result (Result	Q Res	ut C	Q Result		1 Result	Q Result	t Q	1 Result		50 Result	
VOCs by EPA Method 8260B	Units	POG	result (, itesuit	1103		a result	\dashv	rtesuit	Q NOSUI		resuit	Q	resuit	
1,1,1-Trichloroethane	mg/kg	0.68	0.00023	0.00019	U 0.000	25 l	U 0.00034	U	0.00018	U 0.030	U	0.00022	U	0.027	U
1,1,2,2-Tetrachloroethane	mg/kg	NS	0.00021	0.00018	U 0.000		U 0.00031	U	0.00017	U 0.021			U	0.019	J *+
1,1,2-Trichloro-1,2,2-trifluoroethane	mg/kg	NS	0.0003	0.00025	U 0.000		U 0.00044	U	0.00024	U 0.036		0.00028	U	0.033	U
1,1,2-Trichloroethane	mg/kg	NS	0.00018 J F	0.00015	U 0.000	19 l	U 0.00026	U	0.00014	U 0.022	U	0.00016	U	0.020	U
1,1-Dichloroethane	mg/kg	0.27	0.0002 U	0.00017	U 0.000	22 l	U 0.0003	U	0.00016	U 0.025	U	0.00019	U	0.023	U
1,1-Dichloroethene	mg/kg	0.33	0.00022 ا	0.00018	U 0.000	<u>2</u> 4 l	0.00033	U	0.00018	U 0.028	U	0.00021	U	0.026	U
1,2,3-Trichlorobenzene	mg/kg	NS	ا 0.00018	0.00015	U 0.00)2 l	J 0.00027	U	0.00014	U 0.037	, U	0.00017	U	0.034	U
1,2,4-Trichlorobenzene	mg/kg	NS	0.00035 ا	0.00029	U 0.000	39 l	U 0.00052	U	0.00028	U 0.029	U	0.00033	U	0.026	U
1,2-Dibromo-3-Chloropropane	mg/kg	NS	0.00045 U	0.00038	U 0.00)5 l	0.00067	U	0.00036	U 0.022	U	0.00043	U	0.021	U
1,2-Dichlorobenzene	mg/kg	1.1	ا 0.00036	0.0003	U 0.000	39 l	U 0.00053	U	0.00029	U 0.023	U	0.00033	U	0.021	U
1,2-Dichloroethane	mg/kg	0.02	0.00029 U	0.00024	U 0.000	32 l	0.00043	U	0.00023	U 0.026	U	0.00027	U	0.024	U
1,2-Dichloropropane	mg/kg	NS	0.00042 ا	0.00035	U 0.000	ا 6ا	0.00062	U	0.00034	U 0.019	U	0.00039	U	0.017	U
1,3-Dichlorobenzene	mg/kg	2.4	0.00036 ا	0.0003	U 0.00)4 l	U 0.00054	U	0.00029	U 0.035	U	0.00034	U	0.032	U
1,4-Dichlorobenzene	mg/kg	1.8	ا 0.00022	0.00018	U 0.000	<u>2</u> 4 l	0.00033	U	0.00018	U 0.035	U	0.00021	U	0.032	U
1,4-Dioxane	mg/kg	0.1	0.0091 U *	0.0075 U	*- 0.0)1 U *	*- 0.013 U	J *-	0.0073 لـ	J *-	s U	0.0085	U *3	2.7	J *+
2-Butanone (MEK)	mg/kg	0.12	0.00036 ا	0.0003	U 0.00)4 l	U 0.00054	U	0.00029	U 0.23	U	0.00034	U	0.21	U
2-Hexanone	mg/kg	NS	0.0017 ا	0.0014	U 0.00	19 l	U 0.0025	U	0.0014	U 0.12	u U	0.0016	U	0.11	U
4-Methyl-2-pentanone (MIBK)	mg/kg	NS	0.0015 ا	0.0013	U 0.00	ا ا	U 0.0023	U	0.0012	U 0.14	U	0.0014	U	0.13	U
Acetone	mg/kg	0.05	0.04	J 0.0051	0.0	18	0.042		0.012	0.47	' U	0.038		0.43	U
Benzene	mg/kg	0.06	0.00025 ا	0.00021	U 0.000	<u>18</u>	U 0.00038	U	0.0002	U 0.021	U	0.00024	U	0.02	U
Bromoform	mg/kg	NS	0.00042 U	J 0.00035	U 0.000	ا 6ا	U 0.00062	U	0.00034	U 0.019	UJ	0.00039	U	0.017	UJ
Bromomethane	mg/kg	NS	ا 9.00099	0.00082	U 0.00	1 U	U 0.0015	U	0.00079	U 0.058	U	0.00093	U	0.054	U
Carbon disulfide	mg/kg	NS	0.00026 ا	0.00022	U 0.000	<u>19</u>	U 0.00039	U	0.001	0.071	U	0.00025	U	0.065	U
Carbon tetrachloride	mg/kg	0.76	ا 88000.0	0.00032	U 0.000	12 l	U 0.00057	U	0.00031	U 0.035	UJ	0.00036	U	0.032	UJ
Chlorobenzene	mg/kg	1.1	0.00017 ا	0.00015	U 0.000	19 l	U 0.00026	U	0.00014	U 0.025	U	0.00016	U	0.023	U
Chlorobromomethane	mg/kg	NS	0.00028 J F	0.00023	U 0.00)3 l	U 0.00041	U	0.00022	U 0.032	U *-	0.00026	U	0.029 ไ	J *-
Chlorodibromomethane	mg/kg	NS	0.00019 J F	0.00016	U 0.000	21 l	U 0.00028	U	0.00015	U 0.023	U	0.00018	U	0.021	U
Chloroethane	mg/kg	NS	0.00052 ا	0.00043	U 0.000	57 l	U 0.00077	U	0.00041	U 0.039	U	0.00048	U	0.036	U
Chloroform	mg/kg	0.37	0.00096 J F	0.0008	U 0.00	1 U	U 0.0014	U	0.00077	U 0.023	U	0.00090	U	0.021	U
Chloromethane	mg/kg	NS	0.00043 ا	0.00036	U 0.000	17 l	U 0.00064	U	0.00034	U 0.042	. U	0.00040	U	0.039	U
cis-1,2-Dichloroethene	mg/kg	0.25	0.00035 ا	0.017	0.	17	0.00052	U	0.0094	0.13	J	0.00090	NJ	0.52	J
cis-1,3-Dichloropropene	mg/kg	NS	0.00027 ا	0.00022	U 0.00)3 l	U 0.0004	U	0.00022	U 0.023	U	0.00025	U	0.022	U
Cyclohexane	mg/kg	NS	0.00022 ا	0.00018	U 0.000	24 l	U 0.00032	U	0.00018	U 0.027	' U	0.00020	U	0.025	U
Dichlorobromomethane	mg/kg	NS	0.00025 ا	0.00021	U 0.000	28 l	0.00038	U	0.0002	U 0.016	U	0.00024	U	0.015	U
Dichlorodifluoromethane	mg/kg	NS	0.00033 U	J 0.00028 U	JJ 0.000	37 U	J 0.0005 L	UJ	0.00027	UJ 0.033	UJ	0.00031	U	0.03	U
Ethylbenzene	mg/kg	1	0.0002 ا	0.00016	U 0.000	22 l	U 0.00029	U	0.00016	U 0.032	U	0.00018	U	0.029	U
Ethylene Dibromide	mg/kg	NS	0.00018 J F	0.00015	U 0.00)2 l	U 0.00026	U	0.00014	U 0.02	U	0.00017	U	0.018	U

Table 5A Summary of Soil Analytical Results: VOCs June 2022

Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

		Client ID	B-7 (7'-8')		B-9 (7'-8')		B-110 (6'-7')		B-110 (12.5'-13.5')		B-113 (6'-7')		B-113 (12.5'-13.5'	')	B-114 (1'-2')		DUPE [B-113 (12.5'-13.5')]	П
		Lab Sample ID	460-259668-1		460-259668-2		460-259668-5		460-259668-10		460-259668-6		460-259668-11		460-259668-8		460-259668-7	
		Sampling Date	6/7/2022		6/7/2022		6/7/2022		6/7/2022		6/8/2022		6/8/2022		6/8/2022		6/8/2022	
		Matrix	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil	
		Dilution Factor	1		1		1		1		1		50		1		50	
		NYSDEC SCO	Result	Q	Result	Q	Result	Q	Result (Q	Result	Q	Result	Q	Result	Q	Result (Q
VOCs by EPA Method 8260B	Units	POG																
Isopropylbenzene	mg/kg	NS	0.00028	U	0.00023	U	0.00042	NJ	0.00042	U	0.00023	U	0.034	U	0.00026	U	0.031	Ū
Methyl acetate	mg/kg	NS	0.0042	UJ	0.0035	U	0.0047	U	0.0063	U	0.0034	U	0.083	U	0.004	U	0.076	U
Methyl tert-butyl ether (MTBE)	mg/kg	0.93	0.00051	J F1	0.00042	U	0.00056	U	0.00075	U	0.00041	U	0.023	U	0.00047	U	0.021	U
Methylcyclohexane	mg/kg	NS	0.00049	U	0.00041	U	0.00054	U	0.00073	U	0.0004	U	0.077	U	0.00046	U	0.07	U
Methylene Chloride	mg/kg	0.05	0.0011	U	0.00094	U	0.0012	U	0.0017	U	0.00091	U	0.022	U	0.0011	U	0.02	U
m-Xylene & p-Xylene	mg/kg	1.6	0.00017	U	0.00014	U	0.00019	U	0.00026	U	0.00014	U	0.03	U	0.00016	U	0.027	U
o-Xylene	mg/kg	1.6	0.00019	U	0.00016	U	0.00021	U	0.00028	U	0.00015	U	0.034	U	0.00018	U	0.031	U
Styrene	mg/kg	NS	0.00027	U	0.00023	U	0.0003	U	0.00041	U	0.00022	U	0.018	U	0.00026	U	0.016	U
Tetrachloroethene	mg/kg	1.3	0.0003	U	0.033		0.4		0.00045	U	0.097		<u>5.8</u>	J	0.00060	NJ	<u>18</u>	J
Toluene	mg/kg	0.7	0.00023	U	0.00019	U	0.00025	U	0.00034	U	0.00019	U	0.026	U	0.00022	U	0.024	U
trans-1,2-Dichloroethene	mg/kg	0.19	0.00024	U	0.0002	U	0.00075	NJ	0.00036	U	0.00019	U	0.019	U	0.001		0.017	U
trans-1,3-Dichloropropene	mg/kg	NS	0.00026	J F1	0.00022	U	0.00029	U	0.00039	U	0.00021	U	0.023	U	0.00025	U	0.022	U
Trichloroethene	mg/kg	0.47	0.00032	U	0.0018		0.035		0.00047	U	0.016		0.350	J	0.00030	U	<u>1.1</u>	J
Trichlorofluoromethane	mg/kg	NS	0.0004	U	0.00033	U	0.00044	U	0.0006	U	0.00032	U	0.034	U	0.00038	U	0.031	U
Vinyl chloride	mg/kg	0.02	0.00054	U	0.00045	U	0.00059	U	0.0008	U	0.00043	U	0.021	U	0.00051	U	0.019	U
Total VOCs	mg/kg	NS	0.04		0.0569		0.62417		0.042		0.1354		6.28		0.0405		19.62	_

Notes:

mg/Kg = milligrams per kilogram = parts per million (ppm)

NYSDEC SCO = Soil Cleanup Objectives from 6 NYCRR Table 375-6.8(a), current through 2/28/2023.

POG = Protection of Groundwater

NS = No Standard

Bold = concentration exceeds Soil Cleanup Objectives

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J+" = Indicates an estimated positive result that should be higher. According to the math of the matrix data, more of that analyte is present than what was reported.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Laboratory Qualifiers

- *- : LCS and/or LCSD is outside acceptance limits, low biased.
- *+ : LCS and/or LCSD is outside acceptance limits, high biased.
- *3 : ISTD response or retention time outside acceptable limits.
- F1: MS and/or MSD recovery exceeds control limits.
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

Table 5B Summary of Soil Analytical Results: SVOCs June 2022 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

		Client ID	B-7 (7'-8')		B-9 (7'-8')		B-110 (6'-7')		B-110 (12.5'-13.5	5') I	B-113 (6'-7')	B-113 (12.5'-13	.5')	B-114 (1'-2')	T	DUPE [B-113 (12.5'-13.5')]
		Lab Sample ID	460-259668-1		460-259668-2		460-259668-5		460-259668-10		460-259668-6	460-259668-11		460-259668-8		460-259668-7
		Sampling Date	6/7/2022		6/7/2022		6/7/2022		6/7/2022		6/8/2022	6/8/2022		6/8/2022		6/8/2022
		Matrix	Soil		Soil		Soil		Soil		Soil	Soil		Soil		Soil
		Dilution Factor	1		1		1		1		11	50		1		50
	_	NYSDEC SCO	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result	: Q	Result	Q	Result Q
SVOCs by EPA Method 8270C	Units	COMMERCIAL														
1,1'-Biphenyl	mg/kg	NS	0.084		0.013	U	0.012	U	0.012	U	0.012 U	0.013		0.013	U	0.013 U
1,2,4,5-Tetrachlorobenzene	mg/kg	NS	0.011	U F1	0.012	U	0.011	U	0.011	U	0.011 U	0.012		0.012	U	0.011 U
1,4-Dioxane	mg/kg	130	0.031	U	0.032	U	0.031	U	0.031	U	0.031 U	0.032	l u	0.032	U	0.032 U
2,2'-oxybis[1-chloropropane]	mg/kg	NS	0.0064	U	0.0067	U	0.0065	U	0.0063	U	0.0064 U	0.0067	l u	0.0067	U	0.0065 U
2,3,4,6-Tetrachlorophenol	mg/kg	NS	0.024		0.025	U	0.024	U	0.024	U	0.024 U	0.025		0.025	U	0.025 U
2,4,5-Trichlorophenol	mg/kg	NS	0.036	U F1	0.038	U	0.036	U	0.036	U	0.036 U	0.038	U	0.038	U	0.037 U
2,4,6-Trichlorophenol	mg/kg	NS	0.046	U F1	0.047	U	0.046	U	0.045	U	0.045 U	0.047	U	0.048	U	0.046 U
2,4-Dichlorophenol	mg/kg	NS	0.023	U	0.024	U	0.023	U	0.022	U	0.023 U	0.024		0.024	U	0.023 U
2,4-Dimethylphenol	mg/kg	NS	0.042	U	0.044	U	0.043	U	0.042	U	0.042 U	0.044	U	0.044	U	0.043 U
2,4-Dinitrophenol	mg/kg	NS	0.17	U	0.18	U	0.18	U	0.17	U	0.17 U	0.18	U	0.18	U	0.18 U
2,4-Dinitrotoluene	mg/kg	NS	0.038	U F1	0.04	U	0.039	U	0.038	U	0.038 U	0.04	U	0.04	U	0.039 U
2,6-Dinitrotoluene	mg/kg	NS	0.026		0.027	U	0.026	U	0.025	U	0.025 U	0.027	U	0.027	U	0.026 U
2-Chloronaphthalene	mg/kg	NS	0.016		0.017	U	0.017	U	0.016	U	0.016 U	0.017	U	0.017	U	0.017 U
2-Chlorophenol	mg/kg	NS	0.013	U	0.013	U	0.013	U	0.012	U	0.013 U	0.013	U	0.013	U	0.013 U
2-Methylnaphthalene	mg/kg	NS	0.94		0.01	U	0.01	U	0.0098	U	0.0098 U	0.01	U	0.01	U	0.01 U
2-Methylphenol	mg/kg	NS	0.013	U	0.014	U	0.013	U	0.013	U	0.013 U	0.014	U	0.014	U	0.014 U
2-Nitroaniline	mg/kg	NS	0.027	U	0.028	U	0.027	U	0.027	U	0.027 U	0.028	U	0.028	U	0.028 U
2-Nitrophenol	mg/kg	NS	0.036	U	0.037	U	0.036	U	0.035	U	0.035 U	0.037	U	0.037	U	0.036 U
3,3'-Dichlorobenzidine	mg/kg	NS	0.054	U	0.056	U	0.054	U	0.053	U	0.053 U	0.056	U	0.056	U	0.055 U
3-Nitroaniline	mg/kg	NS	0.085	U	0.088	U	0.085	U	0.083	U	0.083 U	0.088	U	0.088	U	0.086 U
4,6-Dinitro-2-methylphenol	mg/kg	NS	0.15	U	0.15	U	0.15	U	0.14	U	0.14 U	0.15	U	0.15	U	0.15 U
4-Bromophenyl phenyl ether	mg/kg	NS	0.014	U F1	0.015	U	0.014	U	0.014	U	0.014 U	0.015	U	0.015	U	0.014 U
4-Chloro-3-methylphenol	mg/kg	NS	0.02	U F1	0.021	U	0.02	U	0.02	U	0.02 U	0.021	U	0.021	U	0.02 U
4-Chloroaniline	mg/kg	NS	0.063	U	0.066	U	0.064	U	0.062	U	0.062 U	0.066	U	0.066	U	0.064 U
4-Chlorophenyl phenyl ether	mg/kg	NS	0.013	U F1	0.013	U	0.013	U	0.012	U	0.012 U	0.013	U	0.013	U	0.013 U
4-Methylphenol	mg/kg	NS	0.022	U	0.023	U	0.022	U	0.022	U	0.022 U	0.023		0.023	U	0.023 U
4-Nitroaniline	mg/kg	NS	0.041	U	0.042	U	0.041	U	0.04	U	0.04 U	0.042	U	0.042	U	0.042 U
4-Nitrophenol	mg/kg	NS	0.058	U	0.06	U	0.058	U	0.057	U	0.057 U	0.06	U	0.06	U	0.059 U
Acenaphthene	mg/kg	500	0.067	NJ	0.011	U	0.01	U	0.01	U	0.01 U	0.011	U	0.011	U	0.01 U
Acenaphthylene	mg/kg	500	0.025	NJ	0.011	U	0.01	U	0.01	U	0.01 U	0.011	U	0.011	U	0.01 U
Acetophenone	mg/kg	NS	0.017	U	0.018	U	0.018	U	0.017	U	0.017 U	0.018	U	0.018	U	0.018 U
Anthracene	mg/kg	500	0.022	NJ	0.011	U	0.011	U	0.011	U	0.019 NJ	0.011	U	0.011	U	0.011 U
Atrazine	mg/kg	NS	0.021	U	0.022	U	0.021	U	0.021	U	0.021 U	0.022	U	0.022	U	0.021 U
Benzaldehyde	mg/kg	NS	0.059	UJ	0.061	UJ		UJ	0.058	UJ	0.058 UJ	0.061			UJ	0.06 UJ
Benzo[a]anthracene	mg/kg	5.6	0.012			NJ		U	0.012	U	0.022 NJ	0.013			U	0.013 U
Benzo[a]pyrene	mg/kg	1	0.0095		0.022	NJ		U	0.0093	U	0.0094 U	0.0098		0.0099	U	0.0096 U
Benzo[b]fluoranthene	mg/kg	5.6	0.0092		0.033	NJ	0.0093	U	0.0091	U	0.019 NJ	0.0096		0.01	NJ	0.0094 U
Benzo[g,h,i]perylene	mg/kg	500	0.011	U	0.017	NJ		U	0.01	U	0.01 U	0.011	U	0.011	U	0.011 U
Benzo[k]fluoranthene	mg/kg	56	0.007	U	0.012	NJ		U	0.0069	U	0.0069 U	0.0072		0.0073	U	0.0071 U
Bis(2-chloroethoxy)methane	mg/kg	NS	0.028		0.029	U	0.028	U	0.027	U	0.027 U	0.029		0.029	U	0.028 U
Bis(2-chloroethyl)ether	mg/kg	NS	0.012		0.013	U	0.012	U	0.012	U	0.012 U	0.013		0.013	U	0.013 U
Bis(2-ethylhexyl) phthalate	mg/kg	NS NO	0.019		0.022	NJ		U	0.019	Ų	0.019 U	0.02		0.021	NJ	0.019 U
Butyl benzyl phthalate	mg/kg	NS	0.017	l U	0.017	U	0.017	U	0.016	U	0.016 U	0.017	Į U	0.017	U	0.017 U

Table 5B Summary of Soil Analytical Results: SVOCs June 2022 Former Johnny On the Spot Cleaner

152 10th Avenue, Whitestone, NY

		Client ID	B-7 (7'-8')	B-9 (7'-8')	B-110 (6'-7')	B-110 (12.5'-13.5')	B-113 (6'-7')	B-113 (12.5'-13.5')	B-114 (1'-2')	DUPE [B-113 (12.5'-13.5')]
		Lab Sample ID	460-259668-1	460-259668-2	460-259668-5	460-259668-10	460-259668-6	460-259668-11	460-259668-8	460-259668-7
		Sampling Date	6/7/2022	6/7/2022	6/7/2022	6/7/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022
		Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		Dilution Factor	1	1	1	1	1	50	1	50
		NYSDEC SCO	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q
SVOCs by EPA Method 8270C	Units	COMMERCIAL								
Caprolactam	mg/kg	NS	0.055 U	0.058 U	0.056	J 0.055 U	0.055 U	0.057 U	0.058 U	0.056 U
Carbazole	mg/kg	NS	0.014 U	0.014 U	0.014	J 0.013 U	0.013 U	0.014 U	0.014 U	0.014 U
Chrysene	mg/kg	56	0.006 U	0.031 NJ	0.0061	J 0.0059 U	0.015 NJ	0.0074 NJ	0.0063 U	0.0061 U
Dibenz(a,h)anthracene	mg/kg	0.56	0.015 U	0.016 U	0.015	J 0.015 U	0.015 U	0.016 U	0.016 U	0.016 U
Dibenzofuran	mg/kg	350	0.07 NJ	0.012 U	0.012	J 0.012 U	0.012 U	0.012 U	0.012 U	0.012 U
Diethyl phthalate	mg/kg	NS	0.011 U F1	0.012 U	0.012	J 0.011 U	0.011 U	0.012 U	0.012 U	0.012 U
Dimethyl phthalate	mg/kg	NS	0.081 U F1	0.084 U	0.081	U 80.0	0.08 U	0.084 U	0.084 U	0.082 U
Di-n-butyl phthalate	mg/kg	NS	0.013 U	0.014 U	0.013	J 0.013 U	0.013 U	0.014 U	0.014 U	0.014 U
Di-n-octyl phthalate	mg/kg	NS	0.019 U	0.02 U	0.019	J 0.019 U	0.019 U	0.02 U	0.02 U	0.019 U
Fluoranthene	mg/kg	500	0.018 NJ	0.052 NJ	0.013	J 0.012 U	0.046 NJ	0.023 NJ	0.013 U	0.013 U
Fluorene	mg/kg	500	0.019 NJ	0.011 U	0.01	J 0.01 U	0.01 U	0.011 U	0.011 U	0.011 U
Hexachlorobenzene	mg/kg	NS	0.017 U F1	0.018 U	0.017	J 0.017 U	0.017 U	0.018 U	0.018 U	0.017 U
Hexachlorobutadiene	mg/kg	NS	0.0076 U	0.0079 U	0.0076	J 0.0075 U	0.0075 U	0.0079 U	0.0079 U	0.0077 U
Hexachlorocyclopentadiene	mg/kg	NS	0.031 U	0.032 U	0.031	J 0.031 U	0.031 U	0.032 U	0.032 U	0.032 U
Hexachloroethane	mg/kg	NS	0.012 U	0.013 U	0.012	J 0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
Indeno[1,2,3-cd]pyrene	mg/kg	5.6	0.014 U	0.045	0.014	J 0.014 U	0.014 U	0.014 U	0.027 NJ	0.014 U
Isophorone	mg/kg	NS	0.1 U	0.11 U	0.1	J 0.1 U	0.1 U	0.11 U	0.11 U	0.1 U
Naphthalene	mg/kg	500	0.11 NJ	0.0064 U	0.0062	J 0.0061 U	0.026 NJ	0.0083 NJ	0.0064 U	0.0063 U
Nitrobenzene	mg/kg	NS	0.02 U	0.021 U	0.02	J 0.019 U	0.02 U	0.02 U	0.021 U	0.02 U
N-Nitrosodi-n-propylamine	mg/kg	NS	0.026 U	0.027 U	0.026	J 0.025 U	0.026 U	0.027 U	0.027 U	0.026 U
N-Nitrosodiphenylamine	mg/kg	NS	0.029 U	0.03 U	0.029	J 0.029 U	0.029 U	0.03 U	0.03 U	0.03 U
Pentachlorophenol	mg/kg	6.7	0.073 U	0.076 U	0.073	J 0.072 U	0.072 U	0.076 U	0.076 U	0.074 U
Phenanthrene	mg/kg	500	0.29 NJ	0.038 NJ	0.011 N	J 0.011 NJ	0.074 NJ	0.041 NJ	0.013 NJ	0.025 NJ
Phenol	mg/kg	500	0.013 U	0.014 U	0.013	J 0.013 U	0.013 U	0.014 U	0.014 U	0.013 U
Pyrene	mg/kg	500	0.022 NJ	0.047 NJ	0.0089	J 0.0087 U	0.036 NJ	0.017 NJ	0.0098 NJ	0.009 U
Total Conc	mg/kg	NS	1.667	0.35	0.011	0.011	0.257	0.1097	0.0808	0.025

Notes:

mg/Kg = milligrams per kilogram = parts per million (ppm)

NYSDEC SCO = Soil Cleanup Objectives from 6 NYCRR Table 375-6.8(a), current through 2/28/2023.

NS = No Standard

Bold = concentration exceeds Soil Cleanup Objectives

Laboratory Qualifiers

- F1: MS and/or MSD recovery exceeds control limits.
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U: Indicates the analyte was analyzed for but not detected.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = Indicates an estimated positive result that should be higher. According to the math of the matrix data, more of that analyte is present than what was reported.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Table 5C Summary of Soil Analytical Results: TAL Metals June 2022 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

		Client ID	B-7 (7'-8')		B-9 (7'-8')		B-110 (6'-7')		B-110 (12.5'-13.5	5')	B-113 (6'-7')		B-113 (12.5'-13.	5')	B-114 (1'-2')		DUPE [B-113 (12.5'-13.5')]	П
		Lab Sample ID			460-259668-2		460-259668-5		460-259668-10		460-259668-6		460-259668-11		460-259668-8		460-259668-7	
		Sampling Date	6/7/2022		6/7/2022		6/7/2022		6/7/2022		6/8/2022		6/8/2022		6/8/2022		6/8/2022	
		Matrix	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil	
		Dilution Factor	1		1		1		1		1		50		1		50	_
		NYSDEC SCO	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result (Q
METALS BY 6020B	Units	COMMERCIAL																
Aluminum	mg/Kg	NS	3,580	J+	3,190		3,210		4,430		3,270		5,660		9,850		4,630	٦
Antimony	mg/kg	NS	0.12	UJ	0.13	UJ	0.13	UJ	0.13	UJ	0.12	UJ	0.13	UJ	0.13	UJ	0.12 U	J
Arsenic	mg/kg	16	1.7		1.2		1.2		1.3		1.6		1.6		0.9		1.2	
Barium	mg/kg	400	37.0	J+	19.8		24.6		57.6		19.1		46		70.4		35.4	
Beryllium	mg/kg	590	0.24	NJ	0.17	NJ	0.16	NJ	0.20	NJ	0.12	NJ	0.33	NJ	0.26	NJ	0.26 N	J
Cadmium	mg/kg	9.3	0.094	U	0.1	U	0.099	U	0.098	U	0.096	U	0.1	U	0.11	NJ	0.091 เ	U
Calcium	mg/kg	NS	1,290		1,540		1,210		571		771		4,490	J	1,510		2,190	J
Chromium	mg/kg	1,500	14.1		16.8		12.3		14.1		12.3		22		15.8		17.5	
Cobalt	mg/kg	NS	6.6	J+	3.2		3.5		8.4		5.4		6		3.4		5.6	
Copper	mg/kg	270	7.1		7.7		7.8		6.8		6.8		12		12.5		9.9	
Iron	mg/kg	NS	31,200		7,170		10,500		23,100		3,650		16,100		6,830		12,200	
Lead	mg/kg	1,000	2		7.8		2.3		2		1.5		3.7		9.1		3.3	
Magnesium	mg/Kg	NS	942		1,300		1,360		1,180		2,430		4,310	J	1,760		2,500	J
Manganese	mg/kg	10,000	1,360		91.6		72.6		524		38.3		245		69		191	
Nickel	mg/kg	310	14.3	J+	14.6		16.7		12.2		36		22.8		10.7		18.3	
Potassium	mg/kg	NS	550		582		874		784		666		1850		739		1430	
Selenium	mg/kg	1,500	0.11	U	0.12	U	0.11	U	0.11	U	0.11	U	0.11	U	0.27	NJ	0.1 l	J
Silver	mg/kg	1,500	0.074	U	0.082	U	0.078	U	0.077	U	0.076	U	0.08	U	0.077	U	0.072 l	J
Sodium	mg/kg	NS	81.4	NJ	94.3		95.4		39.4	U	67	NJ	108		331		100	
Thallium	mg/kg	NS	0.061	NJ	0.049	NJ	0.067	NJ	0.071	NJ	0.037	NJ	0.12	NJ	0.096	NJ	0.086 N	J
Vanadium	mg/kg	NS	18.1	J+	15.8		15.1		16.6		11.4		26.3		13.2		22.1	
Zinc	mg/kg	10,000	18.6		16.6		16.2		15.4		10.2		26.7		33.4		20.4	
METALS BY 7471B																		_
Mercury	mg/kg	2.8	0.0081	J F1	0.011	J	0.0085	U	0.0084	U	0.008	U	0.0083	U	0.034		0.0081 U	Ū

mg/Kg = milligrams per kilogram = parts per million (ppm)

NYSDEC SCO = Soil Cleanup Objectives from 6 NYCRR Table 375-6.8(a), current through 2/28/2023.

NS = No Standard

Bold = concentration exceeds Soil Cleanup Objectives

Laboratory Qualifiers

- F1: MS and/or MSD recovery exceeds control limits.
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = Indicates an estimated positive result that should be higher. According to the math of the matrix data, more of that analyte is present than what was reported.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Table 5D Summary of Soil Analytical Results: PCBs June 2022 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

		Client ID	B-7 (7'-8')		B-9 (7'-8')	B-1	110 (6'-7')		B-110 (12.5'-1	3.5')	B-113 (6'-7')		B-113 (12.5'-1	3.5')	B-114 (1'-2')		DUPE [B-113 (12.5'-13.	.5')]
		Lab Sample ID	460-259668-1		460-259668-2	460)-259668-5		460-259668-	·10	460-259668-6		460-259668-	11	460-259668-8		460-259668-7	
		Sampling Date	6/7/2022		6/7/2022	6	6/7/2022		6/7/2022		6/8/2022		6/8/2022		6/8/2022		6/8/2022	
		Matrix	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil	
		Dilution Factor	1		11		1		1		1		50		1		50	
	_	NYSDEC SCO	Result	Q	Result (Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
PCBs by 8082A	Units	COMMERCIAL																
Aroclor 1016	mg/Kg	1	0.019	U	0.020 l	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U
Aroclor 1221	mg/kg	1	0.019	U	0.020 ไ	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U
Aroclor 1232	mg/kg	1	0.019	U	0.020 l	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U
Aroclor 1242	mg/kg	1	0.019	U	0.020 l	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U
Aroclor 1248	mg/kg	1	0.019	U	0.020 l	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U
Aroclor 1254	mg/kg	1	0.019	U	0.020 ไ	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U
Aroclor 1260	mg/kg	1	0.019	U	0.020 ไ	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U
Aroclor 1268	mg/kg	1	0.019	U	0.020 ไ	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U
Aroclor-1262	mg/kg	1	0.019	Ū	0.020 l	U	0.019	U	0.019	U	0.019	Ū	0.020	U	0.020	U	0.019	U
Total PCBs	mg/kg	NS	0.019	U	0.020 ไ	U	0.019	U	0.019	U	0.019	U	0.020	U	0.020	U	0.019	U

Laboratory Qualifiers

U: Indicates the analyte was analyzed for but not detected.

mg/Kg = milligrams per kilogram = parts per million (ppm)

NYSDEC SCO = Soil Cleanup Objectives from 6 NYCRR Table 375-6.8(a), current through 2/28/2023.

NS = No Standard

Bold = concentration exceeds Soil Cleanup Objectives

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J+ = Indicates an estimated positive result that should be higher. According to the math of the matrix data, more of that analyte is present than what was reported.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Table 5E Summary of Soil Analytical Results: Pesticides June 2022 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

		Client ID	B-7 (7'-8')		B-9 (7'-8')		B-110 (6'-7')		B-110 (12.5'-13.5')	B-113 (6'-7')		B-113 (12.5'-13.	5')	B-114 (1'-2')		DUPE [B-113 (12.5'-13.5'))]
		Lab Sample ID	460-259668-1		460-259668-2		460-259668-5		460-259668-10	460-259668-6		460-259668-11		460-259668-8		460-259668-7	
		Sampling Date	6/7/2022		6/7/2022		6/7/2022		6/7/2022	6/8/2022		6/8/2022		6/8/2022		6/8/2022	
		Matrix	Soil		Soil		Soil		Soil	Soil		Soil		Soil		Soil	
		Dilution Factor	11		1		11		1	1		1		11		1	
		NYSDEC SCO	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result	Q
PESTICIDES s by 8081B	Units	COMMERCIAL															
4,4'-DDD	mg/kg	92	0.0012	U	0.0013	С	0.0012	U	0.0012 U	0.0012	С	0.0013	U	0.0013	U	0.0012	U
4,4'-DDE	mg/kg	62	0.00085	U	0.00088	U	0.00085	U	0.00084 U	0.00084	U	0.00088	U	0.00088	U	0.00086	U
4,4'-DDT	mg/kg	47	0.0013	U	0.0014	U	0.0013	U	0.0013 U	0.0013	U	0.0014	U	0.0014	U	0.0013	U
Aldrin	mg/kg	0.68	0.0011	U	0.0011	U	0.0011	U	0.0011 U	0.0011	U	0.0011	U	0.0011	U	0.0011	U
alpha-BHC	mg/kg	3.4	0.00073	U	0.00076	U	0.00073	U	0.00072 U	0.00072	U	0.00076	U	0.00076	U	0.00074	U
beta-BHC	mg/kg	3	0.00081	U	0.00084	U	0.00081	U	0.00079 U	0.0008	U	0.00084	U	0.00084	U	0.00082	U
Chlordane (technical)	mg/kg	24	0.017	U	0.018	U	0.018	U	0.017 U	0.017	U	0.018	U	0.018	U	0.018	U
delta-BHC	mg/kg	500	0.00044	U	0.00046	U	0.00044	U	0.00043 U	0.00044	U	0.00046	U	0.00046	U	0.00045	U
Dieldrin	mg/kg	1.4	0.00094	U	0.00097	U	0.00094	U	0.00092 U	0.00093	U	0.00097	U	0.00097	U	0.00095	U
Endosulfan I	mg/kg	200	0.0011	U	0.0011	U	0.0011	U	0.0011 U	0.0011	U	0.0011	U	0.0011	U	0.0011	U
Endosulfan II	mg/kg	200	0.0019	U	0.0019	U	0.0019	U	0.0018 U	0.0018	U	0.0019	U	0.0019	U	0.0019	U
Endosulfan sulfate	mg/kg	200	0.00091	U	0.00094	U	0.00091	U	0.00089 U	0.00089	U	0.00094	U	0.00094	U	0.00092	U
Endrin	mg/kg	89	0.001	U	0.0011	U	0.001	U	0.001 U	0.001	U	0.0011	U	0.0011	U	0.001	U
Endrin aldehyde	mg/kg	NS	0.0017	U	0.0018	U	0.0017	U	0.0017 U	0.0017	U	0.0018	U	0.0018	U	0.0017	U
Endrin ketone	mg/kg	NS	0.0014	U	0.0015	U	0.0014	U	0.0014 U	0.0014	U	0.0014	U	0.0014	U	0.0014	U
gamma-BHC (Lindane)	mg/kg	NS	0.00067	U	0.00069	U	0.00067	U	0.00066 U	0.00066	U	0.00069	U	0.00069	U	0.00068	U
Heptachlor	mg/kg	15	0.00085	U	0.00088	U	0.00085	U	0.00084 U	0.00084	U	0.00088	U	0.00088	U	0.00086	U
Heptachlor epoxide	mg/kg	NS	0.0011	U	0.0011	U	0.0011	U	0.0011 U	0.0011	U	0.0011	U	0.0011	U	0.0011	U
Methoxychlor	mg/kg	NS	0.0016	U	0.0017	U	0.0017	U	0.0016 U	0.0016	U	0.0017	U	0.0017	U	0.0017	U
Toxaphene	mg/kg	NS	0.0016	U	0.027	U	0.026	U	0.026 U	0.026	U	0.027	U	0.027	U	0.026	U
Total Pesticides	mg/kg				0.00		0.00		0.00	0.00		0.00		0.00		0.00	

Laboratory Qualifiers

U : Indicates the analyte was analyzed for but not detected.

ug/Kg = micrograms per kilogram = parts per billion (ppb)

NYSDEC SCO = Soil Cleanup Objectives from 6 NYCCR Table 375-6.8(a), 12/16/06.

* Supplemental Soil Cleanup Objectives from CP-51/Soil Cleanup Guidance Table 1, 10/21/10.

NS = No Standard

Bold = concentration exceeds Soil Cleanup Objectives

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J+ = Indicates an estimated positive result that should be higher. According to the math of the matrix data, more of that analyte is present than what was reported.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Table 5F Summary of Soil Analytical Results: PFAS June 2022 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

				Client ID	B-7 (7'-8')		B-9 (7'-8')	B-110 (6'-7')	B-110 (12.5'-13.5')	B-113 (6'-7')	B-113 (12.5'-13.5')	B-114 (1'-2')	DUPE [B-113 (12.5'-13.5')]
				Lab Sample ID			460-259668-2	460-259668-5	460-259668-10	460-259668-6	460-259668-11	460-259668-8	460-259668-7
				Sampling Date			6/7/2022	6/7/2022	6/7/2022	6/8/2022	6/8/2022	6/8/2022	6/8/2022
				Matrix	Soil		Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Dilution Factor	1		11	1	1	1	1 1	1	1
			NYSDEC GUI	DANCE VALUES	Result	Q	Result Q	Result (Q Result C	Result	Q Result Q	Result Q	Result Q
PFAS (by 537 Modified		Units	Commercial	POG									
6:2 Fluorotelomer sulfonic acid	6:2 FTS	ug/kg	NS	NS	0.052	U	0.054 U	0.053	U 0.052 U	0.052	U 0.054 U	0.054 U	0.054 U
8:2 Fluorotelomer sulfonic acid	8:2 FTS	ug/kg	NS	NS	0.018	U	0.019 U	0.018	U 0.018 U	0.018	U 0.019 U	0.019 U	0.019 U
N-ethylperfluoro-1-octanesulfonamide	NEtFOSA	ug/kg	NS	NS	0.024	U	0.024 U	0.024	U 0.023 U	0.023	U 0.270	0.024 U	0.200 NJ
N-methylperfluoro-1-octanesulfonamide	NMeFOSA	ug/kg	NS	NS	0.033	U	0.034 U	0.033	U 0.033 U	0.033	U 0.034 U	0.034 U	0.034 U
Perfluorobutanesulfonic acid	PFBS	ug/kg	NS	NS	0.390	U	0.400 U	0.390	U 0.380 U	0.380	U 0.400 U	0.400 U	0.400 U
Perfluorobutanoic acid	PFBA	ug/kg	NS	NS	0.034	NJ	0.027 U	0.026	U 0.025 U	0.025	U 0.027 U	0.027 U	0.026 U
Perfluorodecanesulfonic acid	PFDS	ug/kg	NS	NS	0.022	U	0.023 U	0.023	U 0.022 U	0.022	U 0.023 U	0.023 U	0.023 U
Perfluorodecanoic acid	PFDA	ug/kg	NS	NS	0.026	U	0.027 U	0.026	U 0.025 U	0.025 N	NJ 0.041 NJ		0.033 NJ
Perfluorododecanoic acid	PFDoA	ug/kg	NS	NS	0.025	U	0.026 U	0.025	U 0.024 U	0.041 N	JJ 0.026 U	0.026 U	0.025 U
Perfluoroheptanesulfonic acid	PFHpS	ug/kg	NS	NS	0.021	U	0.022 U	0.021	U 0.021 U	0.021	U 0.022 U	0.022 U	0.022 U
Perfluoroheptanoic acid	PFHpA	ug/kg	NS	NS	0.026	U	0.027 U	0.026	U 0.025 U	0.025	U 0.027 U	0.027 U	0.026 U
Perfluorohexanesulfonic acid	PFHxS	ug/kg	NS	NS	0.020	U	0.021 U	0.020	U 0.020 U	0.020	U 0.021 U	0.021 U	0.021 U
Perfluorohexanoic acid	PFHxA	ug/kg	NS	NS	0.020	U	0.021 U	0.020	U 0.020 U	0.020	U 0.021 U	0.021 U	0.021 U
Perfluorononanoic acid	PFNA	ug/kg	NS	NS	0.025	U	0.026 U	0.025	U 0.024 U	0.024	U 0.026 U	0.026 U	0.025 U
Perfluorooctanesulfonamide	FOSA	ug/kg	NS	NS	0.022	U	0.023 U	0.023	U 0.022 U	0.059 N	J 0.023 U	0.023 U	0.042 NJ
Perfluorooctanesulfonic acid	PFOS	ug/kg	440	1.0	0.037	U	0.039 U	0.038	U 0.037 U	0.037	U 0.042 NJ		0.038 U
Perfluorooctanoic acid	PFOA	ug/kg	500	0.8	0.024	U	0.024 U	0.042 N	J 0.023 U	0.045 N	JJ 0.048 NJ	0.062 NJ	0.035 NJ
Perfluoropentanoic acid	PFPeA	ug/kg	NS	NS	0.026	U	0.027 U	0.026	U 0.025 U	0.025	U 0.027 U	0.027 U	0.026 U
Perfluorotetradecanoic acid	PFTA	ug/kg	NS	NS	0.026	U	0.027 U	0.026	U 0.025 U	0.025	U 0.027 U	0.027 U	0.026 U
Perfluorotridecanoic acid	PFTrDA	ug/kg	NS	NS	0.022	U	0.023 U	0.023	U 0.022 U	0.022	U 0.023 U	0.023 U	0.023 U
Perfluoroundecanoic acid	PFUnA	ug/kg	NS	NS	0.060	U	0.062 U	0.060	U 0.059 U	0.059	U 0.062 U	0.062 U	0.061 U

ug/Kg = micrograms per kilogram = parts per billion (ppb)

NYSDEC Guidance Values from - Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), April 2023

POG = Protection of Groundwater

NS = No Standard

Bold = concentration exceeds Soil Cleanup Objectives

Validator Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = Indicates an estimated positive result that should be higher. According to the math of the matrix data, more of that analyte is present than what was reported.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Laboratory Qualifiers

- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-1S	MW-1S	MW-1S	MW-1S	MW-1S	MW-1D	MW-1D	MW-1D	MW-1D	MW-1D
		Lab Sample ID	AC40514-001	SB72998-02	460-144917-15	460-261171-3	460-334312-14	AC40514-002	SB72998-03	460-144917-14	460-261171-4	460-261171-4
		Sampling Date	10/14/2008	7/10/2013	11/9/2017	6/29/2022	9/4/2025	10/14/2008	7/10/2013	11/9/2017	6/29/2022	9/4/2025
		Matrix	Water		Water	Water	Water	Water		Water	Water	Water
		Dilution Factor	1		2	1	1	1		1	1	1
L	шито	Unit	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
VOCs by 8260D	UNITS	AWQSGV	Result	Q Result Q		Q Result Q		Result Q	Result Q	Result Q		
1,1,1-Trichloroethane	ug/L	5	1	U 100 U	0.56	U 0.24 U		1 U	5.00 U		0.24 U	
1,1,2,2-Tetrachloroethane	ug/L	5	1	U 50 U	0.38	U 0.37 U	0.085 U	1 U	5.00 U	0.19 U	0.37 U	0.085 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5	1	U 100 U	NR	0.31 U	0.31 U	1 U	5.00 U	NR	0.31 U	0.31 U
1,1,2-Trichloroethane	ug/L	1	1	U 100 U	0.16	U 0.20 U	0.19 U	1 U	5.00 U	0.08 U	0.20 U	0.19 U
1,1-Dichloroethane	ug/L	5	1	U 100 U	0.48	U 0.26 U	0.26 U	<u>21</u>	5.00 U	4.0	1.2	0.56 J
1,1-Dichloroethene	ug/L	5	1	U 100 U	0.83	J 0.34 NJ	0.28 J	6.5	5.00 U	0.94 J	0.82 N J	0.44 J
1,2,3-Trichlorobenzene	ug/L	5	1	U 100 U	0.7	U 0.36 U	0.36 U	1 U	5.00 U	0.35 U	0.36 U	0.36 U
1,2,4-Trichlorobenzene	ug/L	5	1	U 100 U	0.54	U 0.37 U	0.37 U	1 U	5.00 U	0.27 U	0.37 U	0.37 U
1,2-Dibromo-3-Chloropropane	ug/L	0.04	NR	200 U	0.46	U 0.38 U	0.38 U	NR	10.0 U	0.23 U	0.38 U	0.38 U
1,2-Dichlorobenzene	ug/L	3	1	U 100 U	0.44	U 0.21 U	0.21 U	1 0	5.00 U	0.22 U	0.21 U	0.21 U
1,2-Dichloroethane	ug/L	0.6	0.5	U 100 U	0.5	U 0.43 U	0.087 U	<u>5.1</u>	5.00 U	0.28 J	0.43 U	0.087 U
1,2-Dichloropropane	ug/L	1	1	U 100 U	0.36	U 0.35 U	0.074 U	1 0	5.00 U	0.18 U	0.35 U	0.074 U
1,3-Dichlorobenzene	ug/L	3	1	U 100 U	0.66	U 0.34 U	0.34 U	1 0	5.00 U	0.33 U	0.34 U	0.34 U
1,4-Dichlorobenzene	ug/L	3	1	U 100 U	0.66	U 0.33 U	0.33 U	1 0	5.00 U	0.85 J	1	0.68 J
1,4-Dioxane	ug/L	0.35	250	U 2000 U	17	U 28 U	24 U	250 U	100 U	8.7 U	28 U	24 U
2-Butanone (MEK)	ug/L	NS 50*	0.5	U 1000 U	4.4	U 1.9 U	3.9 U	0.5 U	50.0 U	2.2 U	1.9 U *+	3.9 U
2-Hexanone	ug/L	50*	1	U 1000 U	1.4	U 1.1 U	1.1 U	1 0	50.0 U	0.72 U	1.1 U	1.1 U
4-Methyl-2-pentanone (MIBK)	ug/L	NS 50#	1	U 1000 U	1.3	U 1.3 U	1.3 U	1 0	50.0 U	0.63 U	1.3 U	
Acetone	ug/L	50*	5	U 1000 U	2.1	U 4.4 U	4.4 U	5 0	50.0 U	1.1 U	4.4 U	I
Benzene	ug/L	1	0.5	U 100 U	0.18	U 0.20 U	0.070 U	0.5 U	5.00 U	0.09 U	0.20 U	
Bromoform	ug/L	50*	1	U 100 U	0.36	U 0.54 U	0.54 U	1 0	5.00 U	0.18 U	0.54 U	
Bromomethane	ug/L	5	1	U 200 U	0.36	U 0.55 U J	0.55 U	1 0	10.0 U	0.18 U	0.55 UJ	
Carbon disulfide	ug/L	60 5	1	U 200 U 100 U	0.44	U 0.82 U U 0.21 U	0.82 U 0.21 U	1 0	10.0 U 5.00 U	0.22 U	0.82 U 0.21 U	0.82 U 0.21 U
Carbon tetrachloride	ug/L	5	- 1	U 100 U	0.66 0.48	U 0.38 U	0.21 U	1 0	5.00 U	0.33 U 0.24 U	0.21 U	0.21 U
Chlorobenzene Chlorobromomethane	ug/L	NS	NR	NR U	0.46 NR	0.36 U	0.36 U	NR NR	5.00 U NR U	0.24 U NR	0.36 U	0.36 U
Chlorodibromomethane	ug/L ug/L	NS	NR	NR U	NR	0.41 U	0.41 0 0.086 U	NR NR	NR U	NR	0.41 U	0.41 U
Chloroethane	ug/L ug/L	5	1	U 200 U	0.74	U 0.32 UJ	0.080 U	1 11	10.0 U	0.37 U	0.28 U	0.080 U
Chloroform	ug/L ug/L	7	- 1	U 100 U	0.74	U 0.33 U	0.32 U	1 0	5.00 U	0.37 U	0.32 U	0.32 U
Chloromethane	ug/L	NS	- 1	U 200 U	0.44	U 0.40 U	0.33 U	1 0	10.0 U	0.22 U	0.40 U	0.40 U
cis-1,2-Dichloroethene	ug/L	5	- 1	U <u>1830</u>	<u>500</u>	160	44	1 1	20.6	4.9	79	71
cis-1,3-Dichloropropene	ug/L	NS NS	1	U 50 U	0.32	U 0.22 U	0.069 U	1 1	2.50 U	0.16 U	0.22 U	0.069 U
Cyclohexane	ug/L	NS NS	NR	NR NR	0.52	U 0.32 U	0.32 U	NR	NR	0.10 U	0.32 U	0.32 U
Dichlorobromomethane	ug/L	NS NS	1	U NR	0.44	U 0.34 U	0.32 U	1 11	NR	0.22 U	0.34 U	0.32 U
Dichlorodifluoromethane	ug/L	5	2.4	200 U	0.28	U 0.31 U	0.13 U	1 0	10.0 U	0.14 U	0.34 U	0.13 U
Ethylbenzene	ug/L	5	1	U 100 U	0.6	U 0.30 U	0.30 U	1 11	5.00 U	0.3 U	0.30 U	0.30 U
Ethylene Dibromide	ug/L	0.0006	NR	NR NR	0.68	U 0.50 U	0.50 U	NR	NR	0.34 U	0.50 U	
Isopropylbenzene	ug/L	5	1	U 100 U		U 0.34 U	0.34 U	1 11	5.00 U	0.32 U	0.34 U	
Methyl acetate	ug/L	NS NS	NR	NR NR	1.2	U 0.79 U	0.79 U	NR NR	NR	0.58 U	0.79 UJ	
Methyl tert-butyl ether (MTBE)	ug/L	NS	0.5	U 100 U	NR	0.22 U	0.75 U	0.5 U	14.4 U	NR	18	4.3
Methylcyclohexane	ug/L	NS	NR	NR NR	0.44	U 0.71 U	0.71 U	NR NR	NR	0.22 U	0.71 U	0.71 U
Methylene Chloride	ug/L	5	1	U 200 U	0.42	U 0.32 U	0.65 U	1 U	10.0 U	0.21 U	0.32 U	0.65 U
m-Xylene & p-Xylene	ug/L	NS	2	U 200 U	0.56	U 0.30 U	0.30 U	2 U	10.0 U	0.28 U	0.30 U	0.30 U
o-Xylene	ug/L	5	1	U 100 U	0.64	U 0.36 U	0.36 U	1 0	5.00 U	0.32 U	0.36 U	0.36 U
Styrene	ug/L	5	1	U 100 U	0.34	U 0.42 U	0.42 U	1 0	5.00 U	0.17 U	0.42 U	0.42 U
Tetrachloroethene	ug/L	5	2.3	6140	94	<u>53</u>	<u>10</u>	1 0	<u>70.4</u>	5.0	<u>54</u>	4.1
Toluene	ug/L	5		U 100 U	0.5	U 0.38 U	0.38 U	1 0	5.00 U	0.25 U	0.38 U	0.38 U
trans-1,2-Dichloroethene	ug/L	5	1	U 100 U	2.4	1.3	0.26 J	1 0	5.00 U	0.18 U	0.79 N J	0.56 J
trans-1,3-Dichloropropene	ug/L	0.4	1	U 50 U	0.38	U 0.22 U	0.12 U	1 0	2.50 U	0.19 U	0.22 U	0.12 U
Trichloroethene	ug/L	5	1	U <u>548</u>	<u>28</u>	7.3	2.0	1 0	9.5	1.0	9.9	1.9
Trichlorofluoromethane	ug/L	5	1	U 100 U	0.3	U 0.32 U	0.32 U	1 U	5.00 U	0.15 U	0.32 U	0.32 U
Vinyl chloride	ug/L	2	1	U 100 U	<u>18</u>	14	<u>10</u>	1 0	5.00 U	0.49 J	2.2	4.3
<u> </u>			<u> </u>		-	-					_	
Total Conc	ug/L	NA	4.7	8518	643.23	235.94	66.54	32.6	114.9	17.46	166.91	87.84

NOTES

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards

BOLD = Exceeds Groundwater Quality Standards

ug/L = micrograms per liter or parts per billion (ppb) NS = No Standard

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

<u>Laboratory Qualifiers</u>
J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent

the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

STATEMENSMENSMENSMENSMENSMENSMENSMENSMENSMEN			Client ID	MW-2S	MW-2S	MW-2S	MW-2S	MW-2S	MW-2D	MW-2D	MW-2D	MW-2D	MW-2D
March Marc				AC40514-003					AC40514-004		460-144917-8		
Control Cont					7/10/2013					7/10/2013			
Company Comp				Water		Water	Water	Water			Water	Water	Water
Vocto passion Vocto passio				1		1	' '	1	<u>'</u>			1	1
11-Information with a series of the control of the		LINUTO											
11-22-Farest-Development upl. 5				Result									
11-12-Teleboordame	* *			1									
11.2 Trickrewbare				1					U 1 U				
11 Discovershere			-	1					U 1 U				
11-Distribute-brane wight 5 12 18-20 18-20 19-20	* *		·	1					1 0				
12.5-Informementation 12.5	· ·		-	1					1 0				
1.4 Triansference			·	12					1 0				
12 Demons-Schresprepare 12 Demons-Schres	* *			1					1 0				
12-Discroberosere Ugit 3	* *		-	ND ND					1 0				
12-Chichordentare	· · · · · · · · · · · · · · · · · · ·			NR 4					U NK				
12 Delichopsquaper 195 1			-	0.5					0 1 0			V.= · · ·	
13-Definitionescense 19FL 3	· ·			U.5					0.5 0			00	
1.4 Chiloshodemere			·	1					1 0				
14-Decame	F-5			1 1					1 0				
2-Buthamono (MEC) ug/L So	· ·			250					250 11				
2-Hosenore wigst w	*												
Asherhy-C-pentamon (MIRK)	,	-		1					0.5 0				
Acatone Ugil. 50° 5 U 100 U 1.1 U 4.4 U 5 U 10.0 U 1.1 U 4.4 U 4.4 U 5 U 10.0 U 1.1 U 4.4 U 4.4 U 6.5 U 10.0 U 1.1 U 4.4 U 4.4 U 6.5 U 1.0 U 1				1					1 1				
Benzeme Ug/L 1 0.79	` ` ` /			5					5 1				
Bramendem				0.79					.1 0.5 11				
Bromomehane			·	1					U 1 U				
Carbon designificide Ug/L 5 1 U 200 U 200 U 201 U 202 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1					U 1 U				* * * * *
Carbon tetrachloride Ug/L S S NR			·	1					U 1 U				
Chloropersoneme ugfL 5 1 U 100 U 0.24 U 0.38 U 0.38 U 0.08 U 0.00 U 0.24 U 0.38 U 0.38 U 0.00 U 0.04				1					U 1 U				
Chorbornomethane	Chlorobenzene		5	1			0.38 U		U 1 U	1.00 U	0.24 U		
Chlorodifromomethane	Chlorobromomethane		NS	NR					U NR				
Chlorothane Ug/L NS 1 U 10,00 U 0.70 J 0.32 U 0.65 J 1 U 20,0 U 0.32 U 0.33 U 0.34 U 0	Chlorodibromomethane		NS	NR	NR U	NR	0.28 U	0.086	U NR	NR U	NR	0.28 U	0.086 U
Calcomethane Ug/L S T1 S T2 S T3 S T4 S T5 T5 T5 T5 T5 T5 T5 T5 T5	Chloroethane		5	1	U 20.0 U	0.70 J	0.32 U	0.65	J 1 U	2.00 U	0.37 U		0.32 U
Cast 1.2 Dichloroethene Ug/L S	Chloroform	ug/L	7	1	U 10.0 U	0.22 U	0.33 U	0.33	U 1 U	1.00 U	0.22 U	0.33 U	0.33 U
cies-13-Dichloropropene Ug/L NS 1 U 5.00 U 0.16 U 0.22 U 0.069 U 1 U 0.50 U 0.16 U 0.22 U 0.069 U 0.22 U 0.069 U 0	Chloromethane	ug/L	NS	1	U 20.0 U	0.22 U	0.40 UJ	0.40	U 1 U	2.00 U	0.22 U	0.40 UJ	0.40 U
Cyclohexane Ug/L NS NR NR NR 0.43 J 0.32 U 0.34 J NR 0.78 0.26 U 0.32 U 0.32 Dichlorobromethane Ug/L S 1 U NR 0.22 U 0.34 U 0.15 U 1 U NR 0.22 U 0.34 U 0.15 Dichlorobromethane Ug/L S 1 U 0.00 U 0.14 U 0.31 U 0.31 U 1 U 0.00 U 0.31 U 0.32 U 0.33 U 0.33 U 0.33 U 0.33 U 0.31 U 0.33 U 0.31 U 0.32 U 0.33 U	cis-1,2-Dichloroethene		5	<u>71</u>	<u>186</u>	<u>420</u>	<u>62</u>	<u>270</u>	1 U		<u>92</u>	1.0	0.48 U
Dichlorodromomethane Ug/L 5 1 1 U NR 1 200 U 0.14 U 0.31 U 0.30 U 0.31 U 0.31 U 0.30 U	cis-1,3-Dichloropropene	ug/L		1	U 5.00 U	0.16 U		0.069	U 1 U	0.50 U	0.16 U		0.069 U
Dichlorodiffluoromethane Ug/L 5 1 1 200 U 0.14 U 0.31 U 0.33 U 0.30 U 0.	Cyclohexane			NR				0.34	J NR				0.32 U
Ethylbenzene				1					U 1 U				
Ethylene Dibromide				1					U 1				
Sopropylbenzene Ug/L S			-	1					U 1 U				
Methyl acetate		J.		NR					U NR				
Methylert-butyl ether (MTBE) Ug/L NS NS NS NS NS NS NS N				1					U 1 U				
Methylcyclohexane	•												
Methylene Chloride													
m-Xylene & p-Xylene				NK 1					NK NK				
o-Xylene ug/L 5 1 U 10.0 U 0.32 U 0.36 U 1.0 U 1.00 U 0.36 U 0.36 U 1.00 U 0.36 U 0.36 U 0.36 U 0.36 U 1.00 U 0.36 U 0.36 U 0.36 U 0.06 U 0.03 U 0.06 U 0.02 U 0.03 U				1					1 0				
Styrene ug/L 5 1 U 10.0 U 0.17 U 0.42 U 0.42 U 1 U 1.00 U 0.17 U 0.42 U 0.42 U 1 U 1.00 U 0.17 U 0.42 U 0.42 U 0.42 U 0.44 U 0.4				2					2 0				
Tetrachloroethene	•			1 1					1 0				
Toluene ug/L 5 1 U 10.0 U 0.25 U 0.38 U 11 U 1.00 U 0.25 U 0.38 U 0.38 U 1 U 1.00 U 0.25 U 0.38 U 0.38 U 1 U 1.00 U 0.25 U 0.38 U 0.38 U 1.00 U 0.25 U 0.38	·			230					1 11				
trans-1,2-Dichloroethene ug/L 5 1 U 10.0 U 2.1 U 5.0 U 0.14 U 0.24 U 0.2			·	1	U 10.0 II	0.25 11	0.38 11		1 1				
trans-1,3-Dichloropropene ug/L 0.4 1 U 5.0 U 0.19 U 0.22 U 0.12 U 1 U 0.50 U 0.19 U 0.22 U 0.12 U 0.15 U 0.05 U 0.19 U 0.22 U 0.17 U 0.05 U 0.19 U 0.22 U 0.17 U 0.19 U 0.22 U 0.17 U 0.05 U 0.19 U 0.22 U 0.19 U 0.24 U 0.25 U 0.31 U 0.				1					1 11				
Trichloroethene ug/L 5 100 221 140 10 1.5 1 U 1.0 U 0.074 U Trichlorofluoromethane ug/L 5 1 U 10.0 U 0.15 U 0.32 U 0.32 U 1 U 1.0 0 0.15 U 0.03 U Vinyl chloride ug/L 2 33 47.4 25 2.9 24 1 U 1.0 U 0.28 NJ 0.40 U	•			1					1 1				
Trichlorofluoromethane	• •			100					1 11				
Vinyl chloride ug/L 2 33 47.4 25 2.9 24 1 U 12.2 U 29 0.28 N J 0.40 U				100	U 10.0 II		0.32 11		1 1				
				33					1 11				
Total Conc. 110/1 NA 446.79 817.21 687.61 103.82 301.56 0.0 61.61 122.06 1.29 0.0		~g, _	<u>-</u>		71.7	===		==		12.2		0.20	0.40
1000 1000	Total Conc	ug/L	NA	446.79	817.2	687.61	103.82	301.56	0.0	61.6	122.96	1.28	0.0

NOTES

NS = No Standard

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers Validator Qualifiers

J = The analyte was | J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis in NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of

quantitation necessary to accurately and precisely measure the analyte in the sample. Page 2 of 9

Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

1,1,1-Trichloroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethene ug/L 1,2,3-Trichlorobenzene ug/L 1,2-Trichlorobenzene ug/L 1,2-Diromo-3-Chloropropane ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichloropropane ug/L 1,2-Dichloropropane ug/L 1,2-Dichloropropane ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 2-Botanone (MIBK) ug/L 2-Hothyl-2-pentanone (MIBK) ug/L 2-Hothyl-2-pentanone (MIBK) ug/L 2-Hothyl-2-pentanone (MIBK) ug/L 2-Dichlorobrome ug/L 3-Dichloromethane ug/L 3-Dichlorobromethane ug/L 3-Dichlorobromomethane ug/L 3-Dichlorobromomethane ug/L 3-Dichloropropene ug/L 3-Dichloropropene ug/L 3-Dichloropropene ug/L 3-Dichloropropene ug/L 3-Dichloropropene ug/L 3-Dichloropromethane ug/L 3-Dichloropropene ug	Lab Sample ID Sampling Date Matrix Dilution Factor Unit	AC40514-005 10/14/2008	=14010040	460-144917-7	460-261171-9	- 1	460-334312-5		AC40514-005	SB72998-08	460-144917-6	1		
1,1,1-Trichloroethane ug/L 1,1,2,2-Tetrachloroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1,2-Trichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,2-Trichlorobenzene ug/L 1,2,3-Trichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L <t< th=""><th>Matrix Dilution Factor Unit</th><th>10/14/2008</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>460-261171-10</th><th>460-334312-4</th></t<>	Matrix Dilution Factor Unit	10/14/2008											460-261171-10	460-334312-4
1,1,1-Trichloroethane ug/L 1,1,2,2-Tetrachloroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1,2-Trichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,2-Trichlorobenzene ug/L 1,2,3-Trichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L <t< th=""><th>Dilution Factor Unit</th><th></th><th>7/10/2013</th><th>11/8/2017</th><th>6/30/2022</th><th></th><th>9/3/2025</th><th></th><th>10/14/2008</th><th>7/10/2013</th><th>11/8/2017</th><th></th><th>6/30/2022</th><th>9/3/2025</th></t<>	Dilution Factor Unit		7/10/2013	11/8/2017	6/30/2022		9/3/2025		10/14/2008	7/10/2013	11/8/2017		6/30/2022	9/3/2025
1,1,1-Trichloroethane ug/L 1,1,2,2-Tetrachloroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1,2-Trichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethene ug/L 1,2-Trichlorobenzene ug/L 1,2-Trichlorobenzene ug/L 1,2-Trichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dickne ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L 4-Methyl-2-pentanone (MIBK) ug/L Benzene ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chloroethane ug/L Chloroethane	Unit	Water		Water	Water	_	Water		Water		Water		Water	Water
1,1,1-Trichloroethane ug/L 1,1,2,2-Tetrachloroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1,2-Trichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,2-Trichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Benzene ug/L Bromoform ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chloroethane ug/L Chlor		1		1	1		1		1		1		1	1
1,1,1-Trichloroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1,2-Trichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,2,3-Trichlorobenzene ug/L 1,2,3-Trichlorobenzene ug/L 1,2,3-Trichlorobenzene ug/L 1,2-Dichloroethane ug/L 1,2-Dichloroethane ug/L 1,2-Dichloroethane ug/L 1,2-Dichloroethane ug/L 1,2-Dichloropropane ug/L 1,2-Dichloroethane ug/L 1,3-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dioxane ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 2-Bottanone (MIBK) ug/L 2-Horoethane ug/L 2-Bottanone ug/L 2-Bottanone ug/L 3-Dichloroethane ug/L 3-	A14/0001/	ug/l	ug/l	ug/l	ug/l		ug/l		ug/l	ug/l	ug/l		ug/l	ug/l
1,1,2,2-Tetrachloroethane ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethane ug/L 1,2-Dichloroethene ug/L 1,2-Trichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L 4-Methyl-2-pentanone (MIBK) ug/L 4-Methyl-2-pentanone (MIBK) ug/L Benzene ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chloroformomethane ug/L Chloroform ug/L Chloroethane	AWQSGV	Result Q	Result Q	Result Q	Result	Q	Result	Q	Result Q	Result Q	Result	Q	Result Q	Result
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	5	1 U		0.28 U	0.24	U	0.24	U	1 U	1.00 U	0.28	U	0.24 U	0.24
1,1,2-Trichloroethane ug/L 1,1-Dichloroethane ug/L 1,1-Dichloroethene ug/L 1,2,3-Trichlorobenzene ug/L 1,2,4-Trichlorobenzene ug/L 1,2-Dichloroethane ug/L 1,2-Dichloroethane ug/L 1,2-Dichloropropane ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobenzene ug/L	5	1 U	Not Sampled	0.19 U	0.37	U	0.085	U	1 U	0.50 U	0.19	U	0.37 U	0.085
1,1-Dichloroethane ug/L 1,2,3-Trichlorobenzene ug/L 1,2,4-Trichlorobenzene ug/L 1,2-J-Dichlorobenzene ug/L 1,2-Dibromo-3-Chloropropane ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichloropropane ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobromethane ug/L Chlorobromomethane ug/L Chloroform ug/L Chloroform ug/L Chloromethane ug/L Cyclohexane ug/L Dichlorob	5	1 U		NR	0.31	U	0.31	U	1 U	1.00 U	NR		0.31 U	0.31
1,1-Dichloroethene ug/L 1,2,3-Trichlorobenzene ug/L 1,2,4-Trichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichloropenzene ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chloroform ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,2-Dichloroethene ug/L cis-1,2-Dichloroethene ug/L	1	1 U		0.08 U	0.20	U	0.19	U	1 U	1.00 U	0.08	U	0.20 U	0.19
1,2,3-Trichlorobenzene ug/L 1,2,4-Trichlorobenzene ug/L 1,2-Dibromo-3-Chloropropane ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichloropropane ug/L 1,2-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Diohlorobenzene ug/L 1,4-Dioklorobenzene ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloropethene ug/L cis-1,3-Dichloropropene ug/L <td>5</td> <td>1 U</td> <td></td> <td>0.24 U</td> <td>0.26</td> <td>U</td> <td>0.26</td> <td>U</td> <td>1 U</td> <td>1.00 U</td> <td>0.78</td> <td>J</td> <td>0.66 N J</td> <td>1.7</td>	5	1 U		0.24 U	0.26	U	0.26	U	1 U	1.00 U	0.78	J	0.66 N J	1.7
1,2,4-Trichlorobenzene ug/L 1,2-Dibromo-3-Chloropropane ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichloropropane ug/L 1,3-Dichlorobenzene ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorodibromomethane ug/L Chlorodibromomethane ug/L Chloroform ug/L Chlorodiflooropropene ug/L Cyclohexane ug/L	5	1 U		0.34 U	0.26	U	0.26	U	1 U	1.00 U	0.34	U	0.26 U	0.26
1,2-Dibromo-3-Chloropropane ug/L 1,2-Dichlorobenzene ug/L 1,2-Dichloropethane ug/L 1,2-Dichloropropane ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Carbon durachioride ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chlorothane ug/L Chlorobromomethane ug/L Uschlorobromomethane ug/L Uschlorobromomethane ug/L Dichlorodifluoromethane ug/L Dichlorodifluoromethane ug/L Uschylene ug/L <tr< td=""><td>5</td><td>1 U</td><td></td><td>0.35 U</td><td>0.36</td><td>U</td><td>0.36</td><td>U</td><td>1 U</td><td>1.00 U</td><td>0.35</td><td>U</td><td>0.36 U</td><td>0.36</td></tr<>	5	1 U		0.35 U	0.36	U	0.36	U	1 U	1.00 U	0.35	U	0.36 U	0.36
1,2-Dichlorobenzene ug/L 1,2-Dichloroethane ug/L 1,2-Dichloropropane ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromoform ug/L Carbon disulfide ug/L Carbon disulfide ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chlorobenzene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Et	5	1 U		0.27 U	0.37	U	0.37	U	1 U	1.00 U	0.27	U	0.37 U	0.37 U
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone (MEK) 2-Hexanone 4-Methyl-2-pentanone (MIBK) 4-Methyl-2-pentanone (MIBK) 4-Moroethane 4-Methyl-2-pentanone (MIBK) 4-Moroethane 4-Methyl-2-pentanone (MIBK) 4-Moroethane 4-Moroet	0.04	NR		0.23 U	0.38	U	0.38	U	NR	2.00 U	0.23	U	0.38 U	0.38
1,2-Dichloropropane ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorothane ug/L Chlorothomomethane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothomomethane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothomomethane ug/L Chlorothane ug/L Chlorothomomethane ug/L Chlorothomomethane ug/L Cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorotromomethane ug/L Dichlorotromomethane ug/L Dichlorotromomethane ug/L Dichlorotromomethane ug/L Methyl acetate ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L	3	1 U		0.22 U	0.21	U	0.21	U	1 U	1.00 U	0.22	U	0.21 U	0.21
1,2-Dichloropropane ug/L 1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorothane ug/L Chlorothomomethane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothomomethane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothomomethane ug/L Chlorothane ug/L Chlorothomomethane ug/L Chlorothomomethane ug/L Cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorotromomethane ug/L Dichlorotromomethane ug/L Dichlorotromomethane ug/L Dichlorotromomethane ug/L Methyl acetate ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L	0.6	0.5 U		0.25 U	0.43	U	0.087	U	2.8	1.86 U	1.8		<u>1.2</u>	0.81
1,3-Dichlorobenzene ug/L 1,4-Dichlorobenzene ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chloroform ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloropropene ug/L Cyclohexane ug/L Dichlorodifluoromethane ug/L Dichlorodifluoromethane ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl ert-butyl ether (MTBE) ug/L Methyl ert-butyl ether (MTBE) ug/L Methylene Chloride ug/L	1	1 U		0.18 U	0.35	U	0.074	U	1 U	1.00 U	0.18	U	0.35 U	0.074 l
1,4-Dichlorobenzene ug/L 1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorothane ug/L Cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorotfluoromethane ug/L Dichlorotfluoromethane ug/L Dichlorotfluoromethane ug/L Ethylbenzene ug/L Methyl acetate ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L	3	1 U		0.33 U	0.34	U	0.34	U	1 U	1.00 U	0.33	U	0.34 U	0.34 l
1,4-Dioxane ug/L 2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chloromethane ug/L Chloromethane ug/L Chlorothomomethane ug/L Chlorothomomethane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Chlorothane ug/L Cis-1,3-Dichloropropene ug/L Cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylbenzene ug/L Ethylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L Methylene Chloride ug/L Methylene Chloride ug/L Styrene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L Tetrachloroethene ug/L	3	1 U		0.33 U	0.33	u	0.33	U	1 0	1.00 U	0.33	U	0.33 U	0.33 l
2-Butanone (MEK) ug/L 2-Hexanone ug/L 4-Methyl-2-pentanone (MIBK) ug/L Acetone ug/L Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorodibromomethane ug/L Chlorodibromomethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylbenzene ug/L Ethylbene Dibromide ug/L Isopropylbenzene ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L <t< td=""><td>0.35</td><td>250 U</td><td></td><td>8.7 U</td><td>28</td><td>Ū</td><td>24</td><td>Ū</td><td>250 U</td><td>20.0 U</td><td>8.7</td><td>U</td><td>28 U</td><td>24 L</td></t<>	0.35	250 U		8.7 U	28	Ū	24	Ū	250 U	20.0 U	8.7	U	28 U	24 L
2-Hexanone 4-Methyl-2-pentanone (MIBK) 4-Methyl acetate (MTBE) 4-Methyl acetate (MTBE) 4-Methyl acetate (MTBE) 5-Methyl-2-pentanone (MIBK) 4-Methyl acetate (MTBE) 4-Methyl-2-pentanone (MIBK) 4-Methy	NS	0.5 U		2.2 U	1.9 L	J *+	3.9	Ū	0.5 U	10.0 U	2.2	U	1.9 U *+	3.9
4-Methyl-2-pentanone (MIBK) Acetone Benzene Benzene Bromoform Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobromomethane Chlorothane Cis-1,2-Dichloroethene cis-1,3-Dichloropropene Ug/L Cyclohexane Dichlorotifluoromethane Ug/L Chylorotifluoromethane Ug/L Chylorotifluoromethane Ug/L Cyclohexane Ug/L Cyclohexane Ug/L Dichlorotifluoromethane Ug/L Dichlorotifluoromethane Ug/L Ethylbenzene Ug/L Ethylbenzene Ug/L Methyl acetate Ug/L Methyl acetate Ug/L Methyl tert-butyl ether (MTBE) Methylcyclohexane Wg/L Methylene Chloride Methylene Chloride Methylene Chloride Methylene Chloride Methylene Chloride Methylene Chloride Methylene Styrene Ug/L Tetrachloroethene Ug/L Tetrachloroethene Ug/L Toluene	50*	1 U		0.72 U	1.1	u	1.1	Ū	1 U	10.0 U	0.72	U	1.1 U	1.1 U
Acetone ug/L Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chloroform ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Tetrachloroethene ug/L Toluene	NS	1 U		0.63 U	1.3	Ū	1.3	Ū	1 U	10.0 U	0.63	U	1.3 U	1.3 L
Benzene ug/L Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	50*	5 U		1.1 U	4.4	Ū	4.4	Ū	5 U	10.0 U	1.1	Ū	4.4 U	4.4 L
Bromoform ug/L Bromomethane ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	1	0.5 U		0.09 U	0.20	Ū	0.070	Ü	0.5 U	1.00 U	0.09	Ū	0.20 U	0.070 L
Bromomethane ug/L Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobenzene ug/L Chlorodibromomethane ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	50*	1 U		0.18 U	0.54	ŭ	0.54	Ū	1 U	1.00 U	0.18	Ū	0.54 U	0.54 L
Carbon disulfide ug/L Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 U		0.18 U	0.55	UJ	0.55	Ü	1 U	2.00 U	0.18	U	0.55 UJ	0.55 L
Carbon tetrachloride ug/L Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	60	1 1		0.22 U	0.82	u	0.82	Ü	1 1	2.00 U	0.22	ii	0.82 U	0.82 L
Chlorobenzene ug/L Chlorobromomethane ug/L Chlorodibromomethane ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 U		0.33 U	0.21	Ü	0.21	Ü	1 0	1.00 U	0.33	U	0.21 U	0.21 L
Chlorobromomethane ug/L Chlorodibromomethane ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 U		0.24 U	0.38	Ü	0.38	Ü	1 U	1.00 U	0.24	U	0.38 U	0.38
Chlorodibromomethane ug/L Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	NR NR		NR NR	0.41	Ü	0.41	Ü	NR	NR U	NR		0.41 U	0.41 L
Chloroethane ug/L Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	NR		NR	0.28	ŭ	0.086	Ü	NR	NR U	NR		0.28 U	0.086 L
Chloroform ug/L Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 1		0.37 U	0.32	ŭ	0.32	Ü	1 U	2.00 U	0.37	П	0.32 U	0.32
Chloromethane ug/L cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	7	1 1		0.22 U	0.33	ŭ	0.33	Ü	1 1	1.00 U	0.22	ii	0.33 U	0.33 L
cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	, NS	1 1		0.22 U	0.40	U.I	0.40	Ü	1 1	2.00 U	0.22	ii	0.40 UJ	0.40 L
cis-1,3-Dichloropropene ug/L Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 1		1.8	0.41	.1	0.48	Ü	1 1	0.98	2.6	-	11	23
Cyclohexane ug/L Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L Methylene & p-Xylene ug/L m-Xylene & p-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	1 U		0.16 U	0.22	ŭ	0.069	Ü	1 0	0.50 U	0.16	U	0.22 U	0.069 L
Dichlorobromomethane ug/L Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	NR NR		0.44 J	0.32	Ü	0.32	Ü	NR	NR NR	0.26	U	0.32 U	0.32 L
Dichlorodifluoromethane ug/L Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	1 1		0.22 U	0.34	Ü	0.15	Ü	1 U	NR	0.22	U	0.34 U	0.15 L
Ethylbenzene ug/L Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 3		0.14 U	0.31	ŭ	0.31	Ü	1	2.00 U	0.14	ii	0.31 U	0.31
Ethylene Dibromide ug/L Isopropylbenzene ug/L Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 1		0.3 U	0.30	iil	0.30	- Ü	1 11	1.00 U	0.3	Ü	0.30 U	0.30 L
Isopropylbenzene	0.0006	NR		0.34 11	0.50	-ŭl	0.50	Ü	NR NR	NR NR	0.34	Ü	0.50 U	0.50 L
Methyl acetate ug/L Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 U		0.32 U	0.34	-il	0.34	- ii	1 11	1.00 U	0.32	ŭ l-	0.34 U	0.34 L
Methyl tert-butyl ether (MTBE) ug/L Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	NR		0.58 U		UJ	0.79	- Ü	NR NR	NR NR	0.58	Ü	0.79 U	0.79 L
Methylcyclohexane ug/L Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	0.5 U		NR	0.22	11	0.22	Ü	0.5 U	1.00 U	NR	_	3.8	8.1
Methylene Chloride ug/L m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	NR		0.22 U	0.71	-ij	0.71	- Ü	NR NR	NR	0.22	ul	0.71 U	0.71 L
m-Xylene & p-Xylene ug/L o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 11		0.21 U	0.32	-ŭl	0.65	Ü	1 11	2.00 U	0.21	Ü	0.32 U	0.65 L
o-Xylene ug/L Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	NS	2 11		0.21 U	0.30	-il	0.30	- ii	2 11	2.00 U	0.28	ŭ l-	0.32 U	0.30 L
Styrene ug/L Tetrachloroethene ug/L Toluene ug/L	5	1 11		0.32 U	0.36	-il	0.36	- ii	1 11	1.00 U	0.32	ŭ l-	0.36 U	0.36 L
Tetrachloroethene ug/L Toluene ug/L	5	1 1		0.17 U	0.42	iil	0.42	- Ü	1 1	1.00 U	0.17	Ü	0.42 U	0.42 L
Toluene ug/L	5	1 0		0.17 U	0.42	-iil	0.42	- ii	1 11	2.16	0.17	Ü	0.42 U	0.28
	5	1 11		0.12 U	0.38	픎	0.38	-ĭi	1 11	1.00 U	0.25	ĭ	0.38 U	0.38
Itrans-1 Z-Dichloroethene	5	1 U		0.23 U	0.38	픪	0.24	- ii	1 11	1.00 U	0.23	ĭ	0.36 U	0.34
trans-1,2-Dichloroethene ug/L trans-1,3-Dichloropropene ug/L	0.4	1 0		0.18 U	0.24	귀	0.12	- 11	1 1	0.50 U	0.18	띪	0.24 U	0.12
Trichloroethene ug/L	5	1 1		0.19 U	0.22	픪	0.12	H	1 1	1.00 U	0.19		0.22 U	0.074
Trichlorofluoromethane ug/L	5	1 U		0.22 U	0.31	귀	0.074	- ii	1 1	1.00 U	0.22	\mathbb{H}	0.31 U	0.32
Vinyl chloride ug/L	2	1 0		0.15 U	0.32	귀	0.32	- 11	1 1	1.37	0.15		0.65 N J	0.32
viriyi cirioride ug/L	۷		<u> </u>	0.06	0.17	-	0.40	U		1.31	0.94	٦	U.05 N J	0.97
Total Conc ug/L		0.0		2.24	0.41		0.0		2.8	6.37	6.12		17.31	34.58

NOTES

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

<u>Laboratory Qualifiers</u>
J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

T-6A GW Qual VOCs Hist Page 3 of 9

Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-101S	MW-101S	MW-101S	MW-101S		MW-101S	MW-101D	MW-101D	MW-101D	MW-101D	MW-101D
		Lab Sample ID	4014410005	SB73081-02	460-144917-2	460-260997-1		460-334312-6	40/44/0000	SB73081-01	460-144917-3	460-260997-2	460-334312-7
		Sampling Date	10/14/2008	7/11/2013	11/7/2017	6/28/2022		9/3/2025	10/14/2008	7/11/2013	11/7/2017	06/28/202	9/3/2025
		Matrix			Water	Water		Water			Water	Water	Water
		Dilution Factor			1 1	1		1			1 1	1 1	1 1
VOCa his ageon	UNITS	Unit AWQSGV	Result	ug/l Q Result 0	ug/l	ug/l		ug/l	Q Result Q	ug/l Result	ug/l	ug/l	ug/l
VOCs by 8260D		·	Result			Q Result	-	Result (Result Q				Q Result (
1,1,1-Trichloroethane	ug/L	5	Not Committed	1.00 L	0.20	U 0.24	U	0.24 L	J Nat Camania d		U 0.28 U	0.24	U 0.24
1,1,2,2-Tetrachloroethane	ug/L	5	Not Sampled	0.50 L	0.19	U 0.37		0.085 L	Not Sampled		U 0.19 I	J 0.37	U 0.085
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5	N 137 1	1.00 L	J NR	0.31	U U	0.31 L	J 11 137 1	1.00	U NR	0.31	U 0.31
1,1,2-Trichloroethane	ug/L	1 -	Not Yet	1.00 L	0.08	U 0.20	U	0.19 L	Not Yet	1.00	U 0.08 I	J 0.20	0.10
1,1-Dichloroethane	ug/L	5	Installed	1.00 L	0.24	U 0.26	U	0.26 L	J Installed	<u>18.6</u>	9.7	5.4	3.8
1,1-Dichloroethene	ug/L	5		1.00 L	0.34	U 0.26	U U	0.26 L	<u> </u>	<u>5.52</u>	2.5	1.7	1.3
1,2,3-Trichlorobenzene	ug/L	5		1.00 L	0.35	U 0.36	U	0.36 L			U 0.35 U	0.36	U 0.36
1,2,4-Trichlorobenzene	ug/L	5		1.00 L	0.27	U 0.37	U	0.37 L	J		U 0.27 I	J 0.37	U 0.37
1,2-Dibromo-3-Chloropropane	ug/L	0.04		2.00 U	0.23	U 0.38	U	0.38 L	J	2.00	U 0.23 I	0.38	U 0.38
1,2-Dichlorobenzene	ug/L	3		1.00 L	0.22	U 0.21	U	0.21 l	J	1.00	U 0.22 I	J 0.21	U 0.21
1,2-Dichloroethane	ug/L	0.6		1.00 l	0.25	U 0.43	U	0.087 L	J	1.31	0.95		N J 0.56
1,2-Dichloropropane	ug/L	1		1.00 l	0.18	U 0.35	U	0.074 l	ال ال	1.00	U 0.18 I	0.35	U 0.074
1,3-Dichlorobenzene	ug/L	3		1.00 l	0.33	U 0.34	U	0.34 l	ال ال	1.00	U 0.33 I	0.34	U 0.34
1,4-Dichlorobenzene	ug/L	3		1.00 l	0.33	U 0.33	U	0.33 l	ال ا	1.00	U 0.33 I		N J 0.33
1,4-Dioxane	ug/L	0.35		20.0 l	8.7	U 28	U	24 l	ال ال	20.0	U 8.7 I	J 28	U 24 I
2-Butanone (MEK)	ug/L	NS		10.0 l	J 2.2	U 1.9	U	3.9 l	J	10.0	U 2.2 I	J 1.9	U 3.9 I
2-Hexanone	ug/L	50*		10.0 l	0.72	U 1.1	U	1.1 l	ال	10.0	U 0.72 I	J 1.1	U 1.1 I
4-Methyl-2-pentanone (MIBK)	ug/L	NS		10.0 l	0.63	U 1.3	U	1.3 l	J	10.0	U 0.63 U	J 1.3	U 1.3 I
Acetone	ug/L	50*		10.0 l	J 1.1	U 4.4	U	4.4 l	J	10.0	U 1.1 U	J 4.4	U 4.4 I
Benzene	ug/L	1		1.00 l	0.09	U 0.20	U	0.070 l	J	1.00	U 0.16	J 0.20	U 0.070 I
Bromoform	ug/L	50*		1.00 U	0.18	U 0.54	U	0.54 l	J	1.00	U 0.18 U	J 0.54	UJ 0.54 I
Bromomethane	ug/L	5		2.00 l	0.18	U 0.55	U	0.55 เ	J	2.00	U 0.18 I	J 0.55	U 0.55 I
Carbon disulfide	ug/L	60		2.00 l	0.22	U 0.82	U	0.82 l	J	2.00	U 0.22 I	0.82	U 0.82 I
Carbon tetrachloride	ug/L	5		1.00 l	0.33	U 0.21	U	0.21 l	J	1.00	U 0.33 U	0.21	UJ 0.21 I
Chlorobenzene	ug/L	5		1.00 l	0.24	U 0.38	U	0.38 l	J	1.00	U 0.24 I	0.38	U 0.38 I
Chlorobromomethane	ug/L	NS		NR l	J NR	0.41	U	0.41 l	J	NR	U NR	0.41	U 0.41 U
Chlorodibromomethane	ug/L	NS		NR U	J NR	0.28	U	0.086 l	J	NR	U NR	0.28	U 0.086 I
Chloroethane	ug/L	5		2.00 l	0.37	U 0.32	U	0.32 l	J	2.88	0.37	J 0.32	U 0.32 I
Chloroform	ug/L	7		1.00 U	0.22	U 0.33	U	0.33 l	J	1.00	U 0.22 I	0.33	U 0.33 I
Chloromethane	ug/L	NS		2.00 l	0.22	U 0.40	U	0.40 l	ار	2.00	U 0.22 I	0.40	U 0.40 I
cis-1,2-Dichloroethene	ug/L	5		1.00 L	0.26	U 0.22	U	0.48 l	ار	<u>19.3</u>	<u>72</u>	<u>12</u>	<u>14</u>
cis-1,3-Dichloropropene	ug/L	NS		0.50 L	0.16	U 0.22	Ū	0.069 L		0.50	U 0.16 I	0.22	U 0.069 I
Cyclohexane	ug/L	NS		NR	0.26	U 0.32	u	0.32 l	J	NR	0.26		UJ 0.32 I
Dichlorobromomethane	ug/L	NS		NR	0.22	U 0.34	Ü	0.15 L		NR	0.22	0.34	U 0.15 I
Dichlorodifluoromethane	ug/L	5		2.00 L	J 0.14	U 0.31	Ü	0.31 L		2.00	U 0.14 U		UJ 0.31 U
Ethylbenzene	ug/L	5		1.00 L	0.3	U 0.30	Ü	0.30	J	1.00	U 0.3 I	0.30	U 0.30 I
Ethylene Dibromide	ug/L	0.0006		NR	0.34	U 0.50	l ül	0.50		NR	0.34	J 0.50	U 0.50 U
Isopropylbenzene	ug/L	5		1.00 U	0.32	U 0.34		0.34 U	-	1.00	U 0.32 U		U 0.34 U
Methyl acetate	ug/L	NS NS		NR	0.58	U 0.79		0.79		NR	0.58	J 0.79	U 0.79
Methyl tert-butyl ether (MTBE)	ug/L	NS NS		1.00 U	J NR	0.22		0.79		1.00	U NR	47	13
Methylcyclohexane	ug/L ug/L	NS		NR	0.22	U 0.71		0.22 C	1 -	NR	0.22		UJ 0.71 I
Methylene Chloride	ug/L	5		2.00	J 0.21	U 0.32		0.65	1	2.00	U 0.21 U	0.71	U 0.65
m-Xylene & p-Xylene	ug/L ug/L	NS		2.00	J 0.28	U 0.30		0.30	1	2.00	U 0.28	J 0.30	U 0.30
o-Xylene	ug/L ug/L	5		1.00	J 0.32	U 0.36		0.36 U	1	1.00	U 0.32	J 0.36	U 0.36
•		5		1.00		U 0.42			1	1.00	U 0.32 U	J 0.42	U 0.42
Styrene Tetrachloroethene	ug/L	ა 5		1.00 0	0.17	U 0.42		0.42 l 0.28 l	1	1.00	U 0.17 U		U 0.28
Tetrachloroethene	ug/L				0.12							0.25	
Toluene	ug/L	5		1.00 L	0.25	U 0.38	'	0.38 L	1	1.00	U 0.25 U	0.38	
trans-1,2-Dichloroethene	ug/L	5		1.00 L	0.18	U 0.24	!!	0.24 L	1	1.00	U 0.87		N J 0.35
trans-1,3-Dichloropropene	ug/L	0.4		0.50 L	0.19	U 0.22	U U	0.12 L	1	0.50	U 0.19 I	J 0.22	U 0.12
Trichloroethene	ug/L	5		1.00 U	0.22	U 0.31	U	0.074 L	<u> </u>	2.25	0.65		N J 0.49
Trichlorofluoromethane	ug/L	5		1.00 U	0.15	U 0.32		0.32 L	<u> </u>	1.00	U 0.15 I	J 0.32	U 0.32
Vinyl chloride	ug/L	2		1.00 l	0.06	U 0.17	U	0.40 l	ال	2.47	<u>22</u>	<u>7.6</u>	3.6
	1 1												
Total Conc	ug/L	NA		0.0	0.0	0.0		0.0		51.33	108.83	76.54	37.1

NOTES

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards
ug/L = micrograms per liter or parts per billion (ppb)

BOLD = Exceeds Groundwater Quality Standards

ug/L = micrograms per liter or parts per billion (ppb)
NS = No Standard

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

/alidator Qualifiers

Page 4 of 9

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

U : Indicates the analyte was analyzed for but not detected.

Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-102S	MW-102S	MW-102S	MW-102S	MW	-102S	MW-102D	MW-102D	MW-102D	MW-102D	MW-102D
		Lab Sample ID		SB73081-04	460-144917-12	460-260919-2	460-334	312-1		SB73081-03	460-144917-13	460-260919-1	460-334312-2
		Sampling Date	10/14/2008	7/11/2013	11/9/2017	6/27/2022	9/2	2/2025	10/14/2008	7/11/2013	11/9/2017	6/27/2022	9/2/2025
		Matrix			Water	Water	,	Water			Water	Water	Water
		Dilution Factor			1	1		1			1	1	1
		Unit		ug/l	ug/l	ug/l		ug/l		ug/l	ug/l	ug/l	ug/l
VOCs by 8260D	UNITS	AWQSGV	Result	Q Result	Q Result	Q Result	Q I	Result	Q Result Q	Result	Q Result Q	Result	Q Result Q
1,1,1-Trichloroethane	ug/L	5		1.00	U 0.28	U 0.24	U	0.24	U	1.00	U 0.28 U	0.24	U 0.24 U
1,1,2,2-Tetrachloroethane	ug/L	5	Not Sampled	0.50	U 0.19	U 0.37	U	0.085	U Not Sampled	0.50	U 0.19 U	0.37	U 0.085 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5		1.00	U NR	0.31	U	0.31	U	1.00	U NR	0.31	U 0.31 U
1,1,2-Trichloroethane	ug/L	1	Not Yet	1.00	U 0.08	U 0.20	U	0.19	U Not Yet	1.00	U 0.08 U	0.20	U 0.19 U
1,1-Dichloroethane	ug/L	5	Installed	1.00	U 0.24	U 0.26	U	0.26	U Installed	1.00	U 0.24 U	0.26	U 0.26 U
1,1-Dichloroethene	ug/L	5		1.00	U 0.34	U 0.26	U	0.26	U	1.00	U 0.34 U	0.26	U 0.26 U
1,2,3-Trichlorobenzene	ug/L	5		1.00	U 0.35	U 0.36	U	0.36	U	1.00	U 0.35 U	0.36	U 0.36 U
1,2,4-Trichlorobenzene	ug/L	5		1.00	U 0.27	U 0.37	U	0.37	U	1.00	U 0.27 U	0.37	U 0.37 U
1,2-Dibromo-3-Chloropropane	ug/L	0.04		2.00	U 0.23	U 0.38	U	0.38	U	2.00	U 0.23 U	0.38	U 0.38 U
1,2-Dichlorobenzene	ug/L	3		1.00	U 0.22	U 0.21	U	0.21	U	1.00	U 0.22 U	0.21	U 0.21 U
1,2-Dichloroethane	ug/L	0.6		1.00	U 0.25	U 0.43		0.087	U	1.00	U 0.25 U		U 0.087 U
1,2-Dichloropropane	ug/L	1		1.00	U 0.18	U 0.35	U	0.074	U	1.00	U 0.18 U	0.35	U 0.074 U
1,3-Dichlorobenzene	ug/L	3		1.00	U 0.33	U 0.34	U	0.34	U	1.00	U 0.33 U	0.34	U 0.34 U
1,4-Dichlorobenzene	ug/L	3		1.00	U 0.33	U 0.33	U	0.33	U	1.00	U 0.33 U	0.33	U 0.33 U
1,4-Dioxane	ug/L	0.35		20.0	U 8.7	U 28	U	24	U	20.0	U 8.7 U	28	U 24 U
2-Butanone (MEK)	ug/L	NS		10.0	U 2.2	U 1.9	U	3.9	U	10.0	U 2.2 U	1.9	U 3.9 U
2-Hexanone	ug/L	50*		10.0	U 0.72	U 1.1	U	1.1	U	10.0	U 0.72 U		U 1.1 U
4-Methyl-2-pentanone (MIBK)	ug/L	NS		10.0	U 0.63	U 1.3	U	1.3	U	10.0	U 0.63 U	1.3	U 1.3 U
Acetone	ug/L	50*		10.0	U 1.1	U 12		4.4	U	10.0	U 1.1 U	4.4	U 4.4 U
Benzene	ug/L	1		1.00	U 0.09	U 0.20	U	0.070	U	1.00	U 0.09 U	0.20	U 0.070 U
Bromoform	ug/L	50*		1.00	U 0.18	U 0.54	UJ	0.54	U	1.00	U 0.18 U	0.54	UJ 0.54 U
Bromomethane	ug/L	5		2.00	U 0.18	U 0.55	U	0.55	U	2.00	U 0.18 U	0.55	U 0.55 U
Carbon disulfide	ug/L	60		2.00	U 0.22	U 0.82	U	0.82	U	2.00	U 0.22 U		U 0.82 U
Carbon tetrachloride	ug/L	5		1.00	U 0.33		UJ	0.21	U	1.00	U 0.33 U		UJ 0.21 U
Chlorobenzene	ug/L	5		1.00	U 0.24	U 0.38	U	0.38	U	1.00	U 0.24 U		U 0.38 U
Chlorobromomethane	ug/L	NS		NR	U NR	0.41	U	0.41	U	NR	U NR		U 0.41 U
Chlorodibromomethane	ug/L	NS		NR	U NR	0.28	U	0.086	U	NR	U NR	0.28	U 0.086 U
Chloroethane	ug/L	5		2.00	U 0.37	U 0.32	U	0.32	U	2.00	U 0.37 U		U 0.32 U
Chloroform	ug/L	7		1.00	U 0.22	U 0.33	U	0.33	U	1.00	U 0.22 U		U 0.33 U
Chloromethane	ug/L	NS		2.00	U 0.22	U 0.40	U	0.40	U	2.00	U 0.22 U		U 0.40 U
cis-1,2-Dichloroethene	ug/L	5		1.00	U 0.26	U 0.22	U	0.48	U	1.00	U 0.26 U		U 0.48 U
cis-1,3-Dichloropropene	ug/L	NS		0.50	U 0.16	U 0.22		0.069	U	0.50	U 0.16 U	-	U 0.069 U
Cyclohexane	ug/L	NS		NR	0.26		UJ	0.32	U	NR	0.26 U		UJ 0.32 U
Dichlorobromomethane	ug/L	NS -		NR	0.22	U 0.34	U	0.15	U	NR	0.22 U		U 0.15 U
Dichlorodifluoromethane	ug/L	5		2.00	U 0.14		UJ	0.31	U	2.00	U 0.14 U		UJ 0.31 U
Ethylbenzene	ug/L	5		1.00	U 0.30	U 0.30	U	0.30	U	1.00	U 0.3 U		U 0.30 U
Ethylene Dibromide	ug/L	0.0006		NR	0.34	U 0.50	U	0.50	U	NR	0.34 U	0.50	0.50 0
Isopropylbenzene	ug/L	5		1.00	U 0.32		U	0.34	<u> </u>	1.00	U 0.32 U		U 0.34 U
Methyl acetate	ug/L	NS		NR	0.58	U 0.79	U	0.79	<u> </u>	NR	0.58 U		U 0.79 U
Methyl tert-butyl ether (MTBE)	ug/L	NS		1.00	U NR	0.22	U	0.22	<u> </u>	1.00	U NR	1.2	2.2
Methylcyclohexane	ug/L	NS		NR	0.22		UJ	0.71	U	NR	0.22 U		UJ 0.71 U
Methylene Chloride	ug/L	5		2.00	U 0.21	U 0.32	U	0.65	U	2.00	U 0.21 U		U 0.65 U
m-Xylene & p-Xylene	ug/L	NS		2.00	U 0.28	U 0.30	U	0.30	U	2.00	U 0.28 U	0.30	U 0.30 U
o-Xylene	ug/L	5		1.00	U 0.32	U 0.36	U	0.36	U	1.00	U 0.32 U		U 0.36 U
Styrene	ug/L	5		1.00	U 0.17	U 0.42	U	0.42	U	1.00	U 0.17 U		U 0.42 U
Tetrachloroethene	ug/L	5		1.00	U 0.12	U 0.25	U	0.28	U	1.00	U 0.12 U	0.25	U 0.28 U
Toluene	ug/L	5		1.00	U 0.25	U 0.38	U	0.38	U	1.00	U 0.25 U		U 0.38 U
trans-1,2-Dichloroethene	ug/L	5		1.00	U 0.18	U 0.24	U	0.24	U	1.00	U 0.18 U		U 0.24 U
trans-1,3-Dichloropropene	ug/L	0.4		0.50	U 0.19	U 0.22	U	0.12	U	0.50	U 0.19 U		U 0.12 U
Trichloroethene	ug/L	5		3.24	0.22	U 0.31	U	0.074	U	3.56	2.0	1.3	1.6
Trichlorofluoromethane	ug/L	5		1.00	U 0.15	U 0.32	U	0.32	U	1.00	U 0.15 U		U 0.32 U
Vinyl chloride	ug/L	2		1.00	U 0.060	U 0.17	U	0.40	U	1.00	U 0.060 U	0.17	U 0.40 U
T + + 0						<u> </u>							
Total Conc	ug/L	NA		3.24	0.0	12		0.0		3.24	2.0	2.5	3.8

NOTES

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb) NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

Page 5 of 9

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentratio UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent

the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Table 6A Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125

152 10th Avenue, Whitestone, NY

		Client ID	MW-103D	MW-103D		MW-103D	MW-103D		MW-103D		MW-113S	MW-113S	MW-113S	MW-113S	MW-113S
		Lab Sample ID		SB72998-07	4	160-144917-11	460-261171-8		460-334312-3					460-261171-5	460-334312-16
		Sampling Date	10/14/2008	7/11/2013		11/9/2017	6/30/2022		9/2/2025		10/14/2008	7/11/2013	11/9/2017	6/29/2022	9/4/2025
		Matrix				Water	Water		Water					Water	Water
		Dilution Factor				1	1		1					20	20
		Unit		ug/l		ug/l	ug/l		ug/l					ug/l	ug/l
VOCs by 8260D	UNITS	AWQSGV	Result	Q Result	Q	Result C	Result	Q	Result	Q	Result Q	Result (Q Result Q	Result (Result
1,1,1-Trichloroethane	ug/L	5		1.00	U	0.28 L	0.24	U	0.24	U				4.8 l	4.8
1,1,2,2-Tetrachloroethane	ug/L	5	Not Sampled	0.50	U	0.19 L	0.37	U	0.085	U	Not Sampled	Not Sampled	Not Sampled	7.3 l	1.7
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5		1.00	U	NR	0.31	U	0.31	U				6.2 l	6.2
1,1,2-Trichloroethane	ug/L	1	Not Yet	1.00	U	0.08 L	0.20	U	0.19	U	Not Yet	Not Yet	Not Yet	4.1 l	3.8
1,1-Dichloroethane	ug/L	5	Installed	1.00	U	0.57	0.26	U	0.26	U	Installed	Installed	Installed	5.3 L	5.3
1,1-Dichloroethene	ug/L	5		1.00	U	0.34 L	0.26	U	0.26	U				5.3 l	5.3
1,2,3-Trichlorobenzene	ug/L	5		1.00	U	0.35 L	0.36	U	0.36	U				7.1 l	7.1
1,2,4-Trichlorobenzene	ug/L	5		1.00	U	0.27 L	0.37	U	0.37	U				7.3 l	7.3
1,2-Dibromo-3-Chloropropane	ug/L	0.04		2.00	U	0.23 L	0.38	U	0.38	U				7.5 L	7.5
1,2-Dichlorobenzene	ug/L	3		1.00	U	0.44	0.21	U	0.21	U				4.2 L	4.2
1,2-Dichloroethane	ug/L	0.6		1.00	U	0.25 L	 	U	0.087	ΙŪ				8.6	1.7
1,2-Dichloropropane	ug/L	1		1.00	Ū	0.18 L		Ū	0.074	Ū				7.1	1.5
1,3-Dichlorobenzene	ug/L	3		1.00	Ū	0.33 L		Ū	0.34	Ū				6.8	6.8
1,4-Dichlorobenzene	ug/L	3		1.00	Ū	0.33 L		IJ	0.33	Ιŭ				6.7	6.7
1,4-Dioxane	ug/L	0.35		20.0	U	8.7 L		U	24	Ü				560 L	480
2-Butanone (MEK)	ug/L	NS		10.0	Ü	2.2		J *+	3.9	Ü				37 U *-	
2-Hexanone	ug/L	50*		10.0	U	0.72 L		· U	1.1	Hil				23 (23
4-Methyl-2-pentanone (MIBK)	ug/L	NS		10.0	Ü	0.63 L	 	-11	1.3	U				26 (26
Acetone	ug/L	50*		10.0	ij	1.1 L	4.4	11	4.4	Hi				88 (88
Benzene	ug/L	1		1.00	11	0.09		U	l	U				4.1	1.4
Bromoform	ug/L	50*		1.00	- 11	0.03 C	 	11		U				11 (1.4
Bromomethane	ug/L	5		2.00	- 11	0.18 U		UJ	0.55	- 11				11 (11
Carbon disulfide	ug/L	60		2.47	-	0.18 C		03	0.82	"				16 0	16
Carbon tetrachloride		5		1.00	- 11	0.22 C		- 11	0.82	"				4.2	4.2
Chlorobenzene	ug/L	5		1.00	11	0.33 C	0.21	- 11	0.21	"				7.5	
	ug/L	NS		NR		0.24 C	0.36	- 11	0.36	U				8.2	J 7.5 J 8.2
Chlorobromomethane	ug/L	NS NS		NR	- 0			- 11		"					
Chlorodibromomethane	ug/L					NR	0.28	- 11	0.086	'				5.6 L	1.7
Chloroethane	ug/L	5 7		2.00	U	0.37 L	0.32	U	0.32	U				6.4 L	6.4
Chloroform	ug/L	, , , , , , , , , , , , , , , , , , ,		1.00	U	0.22 L			0.33	U				6.5 L	6.5
Chloromethane	ug/L	NS -		2.00	U	0.22 L		UJ	0.40	U				8.0 U	
cis-1,2-Dichloroethene	ug/L	5		1.00	U	0.87	0.97	N J	1.2	L				<u>450</u>	<u>1800</u>
cis-1,3-Dichloropropene	ug/L	NS		0.50	U	0.16 L	*	U	0.069	U				4.4 L	´ '''
Cyclohexane	ug/L	NS		NR		0.26 L	*.*-	U	0.32	U				6.4 l	6.4
Dichlorobromomethane	ug/L	NS -		NR		0.22 L		U	0.15	U				6.9 L	3.0
Dichlorodifluoromethane	ug/L	5		2.00	U	0.14 L		U	0.31	U			<u> </u>	6.2 l	6.2
Ethylbenzene	ug/L	5		1.00	U	0.30 L		U	0.30	U				6 L	6.0
Ethylene Dibromide	ug/L	0.0006		NR		0.34 L	0.50	U	0.50	U				10 l	10
Isopropylbenzene	ug/L	5		1.00	U	0.32 L		U	0.34					6.7 l	6.7
Methyl acetate	ug/L	NS		NR		0.58 L	0.79	UJ	0.79	_				16 U	
Methyl tert-butyl ether (MTBE)	ug/L	NS		2.11		NR	2.4		0.83	J				4.3 l	4.3
Methylcyclohexane	ug/L	NS		NR		0.22 L	0.71	U	0.71	U				14 l	14
Methylene Chloride	ug/L	5		2.00	U	0.21 L	***-	U	0.65					6.3 l	13
m-Xylene & p-Xylene	ug/L	NS		2.00	U	0.28 L		U	0.30					5.9 l	5.9
o-Xylene	ug/L	5		1.00	U	0.32 L		U	0.36					7.2 l	7.2
Styrene	ug/L	5		1.00	U	0.17 L	0.42	U	0.42	U				8.3 l	8.3
Tetrachloroethene	ug/L	5		0.88		0.12 L		U	0.28	U				<u>7600</u>	<u>14000</u>
Toluene	ug/L	5		1.00	U	0.25 L	0.38	U	0.38	U				7.6 L	7.6
trans-1,2-Dichloroethene	ug/L	5		1.00	U	0.18 L		U	0.24	U				4.7 L	7.6
trans-1,3-Dichloropropene	ug/L	0.4		0.50	υĺ	0.19 L	 	U	0.12	U				4.5 L	2.3
Trichloroethene	ug/L	5		1.00	U	0.74	0.94	ΝJ	0.074	U				200	1400
Trichlorofluoromethane	ug/L	5		1.00	U	0.15 L		U	0.32	U				6.4 l	6.4
Vinyl chloride	ug/L	2		1.00	υĺ	0.16	0.17	U	0.40					9.5 N	
,	-9-							_	1					<u> </u>	
Total Conc	ug/L	NA		5.46		2.78	4.31		2.03					8259.5	17256.6

NOTES

NS = No Standard

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

BOLD = Exceeds Groundwater Quality Standards

<u>Laboratory Qualifiers</u>
J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Whitestone Data Tables Oct 2025.xlsx T-6A GW Qual VOCs Hist Page 6 of 9

Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-113D	MW-113	D	MW-113D	MW-113D		MW-113D	MW-2	201S	MW-201S		MW-201S		MW-201S	MW-201S
		Lab Sample ID					460-261171-6		460-334312-17					460-144917-4		460-264645-1	
		Sampling Date	10/14/2008	7/11/201	3	11/9/2017	6/29/2022		9/4/2025	10/14/	2008	7/11/2013		11/8/2017		8/30/2022	9/4/2025
		Matrix					Water		Water					Water		Water	
		Dilution Factor					20		20					1		1	
		Unit					ug/l		ug/l					ug/l			
VOCs by 8260D	UNITS	AWQSGV	Result	Q Resu	lt Q	Result C	Result	C	Q Result	Q R	esult C	Result	Q	Result	Q	Result Q	Result (
1,1,1-Trichloroethane	ug/L	5					4.8	Ų	J 4.8	U				0.28	U	0.24 U	
1,1,2,2-Tetrachloroethane	ug/L	5	Not Sampled	Not Sampled		Not Sampled	7.3	l	J 1.7	U Not Samp	led	Not Sampled		0.19	U	0.37 U	Not Sampled
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5					6.2	ι	J 6.2	U				NR		0.31 U	Sediment
1,1,2-Trichloroethane	ug/L	1	Not Yet	Not Yet		Not Yet	4.1	l	J 3.8	U Not Ye	:	Not Yet		0.08	U	0.20 U	in Well
1,1-Dichloroethane	ug/L	5	Installed	Installed		Installed	5.3	l	J 5.3	U Installe	t	Installed		0.24	U	0.26 U	
1,1-Dichloroethene	ug/L	5					5.3	l	J 5.3	U				0.34	U	0.26 U	
1,2,3-Trichlorobenzene	ug/L	5					7.1	l	J 7.1	U				0.35	U	0.36 U	
1,2,4-Trichlorobenzene	ug/L	5					7.3	Ų	J 7.3	U				0.27	U	0.37 U	
1,2-Dibromo-3-Chloropropane	ug/L	0.04					7.5	ι	J 7.5	U				0.23	U	0.38 U	
1,2-Dichlorobenzene	ug/L	3					4.2	ι	J 4.2	U				0.22	U	0.21 U	
1,2-Dichloroethane	ug/L	0.6					8.6	ι	J 1.7	U				0.25	U	0.43 U	
1,2-Dichloropropane	ug/L	1					7.1	l	J 1.5	U				0.18		0.35 U	
1,3-Dichlorobenzene	ug/L	3					6.8	l	J 6.8	U				0.33	U	0.34 U	
1,4-Dichlorobenzene	ug/L	3					6.7	ι		U				0.33	_	0.33 U	
1,4-Dioxane	ug/L	0.35					560	ι	J 480	U				8.7	U	28 U	
2-Butanone (MEK)	ug/L	NS					37	U *-		U				2.2		1.9 U	
2-Hexanone	ug/L	50*					23	ι	J 23	U				0.72	U	1.1 U	
4-Methyl-2-pentanone (MIBK)	ug/L	NS					26	ι	J 26	U				0.63	U	1.3 U	
Acetone	ug/L	50*					88		J 88	U				1.1	U	4.4 U	
Benzene	ug/L	1					4.1	ι	J 1.4	U				0.09	U	0.20 U	
Bromoform	ug/L	50*					11	ι	J 11	U				0.18	_	0.54 U	
Bromomethane	ug/L	5					11	U,	J 11	U				0.18	U	0.55 UJ	
Carbon disulfide	ug/L	60					16	ι	J 16	U				0.22	U	0.82 U	
Carbon tetrachloride	ug/L	5					4.2	ι	J 4.2	U				0.33	U	0.21 U	
Chlorobenzene	ug/L	5					7.5	ι	J 7.5	U				0.24	U	0.38 U	
Chlorobromomethane	ug/L	NS					8.2	ι	J 8.2	U				NR		0.41 U	
Chlorodibromomethane	ug/L	NS					5.6	ι		U				NR		0.28 U	
Chloroethane	ug/L	5					6.4	ι	J 6.4	U				0.37	U	0.32 U	
Chloroform	ug/L	7					6.5	ι	J 6.5	U				0.22	U	0.33 U	
Chloromethane	ug/L	NS					8.0	U	J 8.0	U				0.22	U	0.4 U	
cis-1,2-Dichloroethene	ug/L	5					<u>450</u>		<u>2200</u>					4.9		<u>30</u>	
cis-1,3-Dichloropropene	ug/L	NS					4.4	ι	J 1.4	U				0.16	U	0.22 U	
Cyclohexane	ug/L	NS					6.4	ι	J 6.4	U				0.26	U	0.32 U	
Dichlorobromomethane	ug/L	NS					6.9	ι	J 3.0	U				0.22	U	0.34 U	
Dichlorodifluoromethane	ug/L	5					6.2	ι	J 6.2	U				0.14	U	0.31 U	
Ethylbenzene	ug/L	5					6	ι	J 6.0	U				0.30	U	0.30 U	
Ethylene Dibromide	ug/L	0.0006					10	ι		U				0.34		0.5 U	
Isopropylbenzene	ug/L	5					6.7	ι	J 6.7	U				0.32	U	0.34 U	
Methyl acetate	ug/L	NS					16			U				0.58		0.79 U	
Methyl tert-butyl ether (MTBE)	ug/L	NS					4.3			U				NR		0.22 U	
Methylcyclohexane	ug/L	NS					14			U				0.22		0.71 U	
Methylene Chloride	ug/L	5					6.3	ι	J 13	U				0.21	U	0.32 U	
m-Xylene & p-Xylene	ug/L	NS					5.9	ι	J 5.9	U				0.28	U	0.3 U	
o-Xylene	ug/L	5					7.2	ι		U				0.32		0.36 U	
Styrene	ug/L	5					8.3	ι		U				0.17		0.42 U	
Tetrachloroethene	ug/L	5					7200		<u>16000</u>	D				0.12	_	0.25 U	
Toluene	ug/L	5					7.6	ι		U				0.25		0.38 U	
trans-1,2-Dichloroethene	ug/L	5					4.7	ι		J				0.18		0.24 U	
trans-1,3-Dichloropropene	ug/L	0.4					4.5			U				0.19	_	0.22 U	
Trichloroethene	ug/L	5					<u>190</u>		<u>1500</u>					0.22	_	0.31 U	
Trichlorofluoromethane	ug/L	5					6.4	ι		U				0.15	_	0.32 U	
Vinyl chloride	ug/L	2						N.						0.22		0.29 N J	
·								<u> </u>								1.2	
Total Conc	ug/L	NA					7847.4		19786.5					5.12		30.29	

NOTES

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards

BOLD = Exceeds Groundwater Quality Standards

ug/L = micrograms per liter or parts per billion (ppb) NS = No Standard

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

T-6A GW Qual VOCs Hist Whitestone Data Tables Oct 2025.xlsx Page 7 of 9

Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-201D		MW-201D		MW-201D		MW-201D		MW-201D	
		Lab Sample ID					460-144917-5		460-261171-11		460-334312-13	
		Sampling Date	10/14/2008		7/11/2013	Ι	11/8/2017		6/30/2022		9/4/2025	
		Matrix				_	Water		Water		Water	
		Dilution Factor					1		1		1	
		Unit					ug/l		ug/l		ug/l	
VOCs by 8260D	UNITS	AWQSGV	Result	Q	Result	ΙQ	Result	Q	Result	Q	Result	
1,1,1-Trichloroethane	ug/L	5					0.28	U	0.24	U	0.24	_
1,1,2,2-Tetrachloroethane	ug/L	5	Not Sampled		Not Sampled		0.19	Ū	0.37	Ū	0.085	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5					NR		0.31	Ū	0.31	Ū
1,1,2-Trichloroethane	ug/L	1	Not Yet		Not Yet		0.08	U	0.20	U	0.19	U
1,1-Dichloroethane	ug/L	5	Installed		Installed		<u>7.8</u>		1.2		7.1	
1,1-Dichloroethene	ug/L	5					3.0		0.71	ΝJ	3.1	
1,2,3-Trichlorobenzene	ug/L	5					0.35	U	0.36	U	0.36	U
1,2,4-Trichlorobenzene	ug/L	5					0.27	U	0.37	U	0.37	U
1,2-Dibromo-3-Chloropropane	ug/L	0.04					0.23	U	0.38	U	0.38	U
1,2-Dichlorobenzene	ug/L	3					0.22	U	0.21	U	0.21	U
1,2-Dichloroethane	ug/L	0.6					0.25	J	0.43	U	0.087	U
1,2-Dichloropropane	ug/L	1					0.18	U	0.35	U	0.074	U
1,3-Dichlorobenzene	ug/L	3					0.33	U	0.34	U	0.34	U
1,4-Dichlorobenzene	ug/L	3					0.33	U	0.33	U	0.33	U
1,4-Dioxane	ug/L	0.35					8.7	Ū	28	Ū	24	Ū
2-Butanone (MEK)	ug/L	NS					2.2	U		U *+	3.9	Ū
2-Hexanone	ug/L	50*					0.72	U	1.1	U	1.1	U
4-Methyl-2-pentanone (MIBK)	ug/L	NS					0.63	U	1.3	U	1.3	U
Acetone	ug/L	50*					1.1	U	4.4	U	4.4	U
Benzene	ug/L	1					0.20	J	0.20	U	0.070	U
Bromoform	ug/L	50*					0.18	U	0.54	U	0.54	U
Bromomethane	ug/L	5					0.18	U	0.55	UJ	0.55	U
Carbon disulfide	ug/L	60					0.22	U	0.82	U	0.82	U
Carbon tetrachloride	ug/L	5					0.33	U	0.21	U	0.21	U
Chlorobenzene	ug/L	5					0.24	U	0.38	U	0.38	U
Chlorobromomethane	ug/L	NS					NR		0.41	U	0.41	U
Chlorodibromomethane	ug/L	NS					NR		0.28	U	0.086	U
Chloroethane	ug/L	5					0.37	U	0.32	U	0.32	U
Chloroform	ug/L	7					0.22	U	0.33	U	0.33	U
Chloromethane	ug/L	NS					0.22	U	0.40	UJ	0.40	U
cis-1,2-Dichloroethene	ug/L	5					2.0		0.75	ΝJ	<u>6.4</u>	
cis-1,3-Dichloropropene	ug/L	NS					0.16	U	0.22	U	0.069	U
Cyclohexane	ug/L	NS					0.26	U	0.32	U	0.32	U
Dichlorobromomethane	ug/L	NS					0.22	U	0.34	U	0.15	U
Dichlorodifluoromethane	ug/L	5					0.14	U	0.31	U	0.31	U
Ethylbenzene	ug/L	5					0.30	U	0.30	U	0.30	
Ethylene Dibromide	ug/L	0.0006					0.34	U	0.50	U	0.50	U
Isopropylbenzene	ug/L	5					0.32		0.34	U		
Methyl acetate	ug/L	NS					0.58	U	0.79		0.79	_
Methyl tert-butyl ether (MTBE)	ug/L	NS					NR		0.81	ΝJ	4.0	
Methylcyclohexane	ug/L	NS					0.22	U	0.71	U	0.71	
Methylene Chloride	ug/L	5					0.21	U	0.32	U	0.65	
m-Xylene & p-Xylene	ug/L	NS					0.28		0.30	U	0.30	_
o-Xylene	ug/L	5					0.32	U	0.36	U	0.36	
Styrene	ug/L	5					0.17	U	0.42	U	0.42	
Tetrachloroethene	ug/L	5					0.12		0.25	U	0.28	
Toluene	ug/L	5					0.25	U	0.38	U	0.38	U
trans-1,2-Dichloroethene	ug/L	5					1.0		0.24	U	1.1	
trans-1,3-Dichloropropene	ug/L	0.4		L			0.19	U	0.22	U	0.12	
Trichloroethene	ug/L	5					1.8		2.3		1.3	
Trichlorofluoromethane	ug/L	5					0.15		0.32	U	0.32	
Vinyl chloride	ug/L	2					0.76	J	0.17	U	0.90	J
Total Conc	ug/L	NA					16.81		5.77		23.9	

NOTES

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

T-6A GW Qual VOCs Hist Whitestone Data Tables Oct 2025.xlsx Page 8 of 9

Summary of Groundwater Analytical Results: VOCs 2008 -2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	Trip Blank	Trip Blank	Trip Blank		Dup (MW-2S)	DUP (MW-2S)	DUP (MW-2S)	EB_063022	EB-20250903
		Lab Sample ID	460-144917-1	460-261171-12	460-334312-12	_	460-144917-10	460-261171-7	460-334312-10	460-261171-13	460-334312-11
		Sampling Date	11/9/2017	6/30/2022	9/4/2025		11/8/2017	6/29/2022	9/3/2025	6/30/2022	9/3/2025
		Matrix Dilution Factor	Water 1	Water 1	Water 1		Water 1	Water 1	Water 1	Water 1	Water 1
		Unit	ug/l	ug/l	ug/l		ug/l	ug/l	ug/l	ug/l	ug/l
VOCs by 8260D	UNITS	AWQSGV	Result Q	Result Q	Result	Q	Result Q	Result Q	Result Q	Result	Result (
1,1,1-Trichloroethane	ug/L	5	0.28 U	0.24 U	0.24	U	0.28 U	0.24 U	0.24 U	0.24	J 0.24
1,1,2,2-Tetrachloroethane	ug/L	5	0.19 U	0.37 U	0.085	U	0.19 U	0.37 U	0.085 U	0.37	J 0.085
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	5	NR	0.31 U	0.31	U	NR	0.31 U	0.31 U	0.31	J 0.31
1,1,2-Trichloroethane	ug/L	1	0.08 U	0.2 U	0.19	U	0.08 U	0.2 U	0.19 U	0.2	J 0.19
1,1-Dichloroethane	ug/L	5	0.24 U	0.26 U	0.26	U	0.35 J	0.26 U	0.26 U	0.26	J 0.26
1,1-Dichloroethene	ug/L	5	0.34 U	0.26 U	0.26	U	<u>7.0</u>	0.26 U	2.0	0.26	J 0.26
1,2,3-Trichlorobenzene	ug/L	5	0.35 U	0.36 U	0.36	U	0.35 U	0.36 U	0.36 U	0.36	J 0.36
1,2,4-Trichlorobenzene	ug/L	5	0.27 U	0.37 U	0.37	U	0.27 U	0.37 U	0.37 U	0.37	J 0.37
1,2-Dibromo-3-Chloropropane	ug/L	0.04	0.23 U	0.38 U	0.38	U	0.23 U	0.38 U	0.38 U	0.38	0.38
1,2-Dichlorobenzene	ug/L	3	0.22 U	0.21 U	0.21	U	0.22 U	0.21 U	0.21 U	0.21	J 0.21
1,2-Dichloroethane	ug/L	0.6	0.25 U	0.43 U	0.087	U	0.25 U	0.43 U	0.087 U	0.43	J 0.087
1,2-Dichloropropane	ug/L	1	0.18 U	0.35 U	0.074	U	0.18 U	0.35 U	0.074 U	0.35	J 0.074
1,3-Dichlorobenzene	ug/L	3	0.33 U	0.34 U	0.34	U	0.33 U	0.34 U	0.34 U	0.34	J 0.34
1,4-Dichlorobenzene	ug/L	3	0.33 U	0.33 U	0.33	U	0.33 U	0.33 U	0.33 U	0.33	J 0.33
1,4-Dioxane	ug/L	0.35	8.7 U	28 U	24	U	8.7 U	28 U	24 U	28	J 24
2-Butanone (MEK)	ug/L	NS	2.2 U	1.9 U *+	3.9	U	2.2 U	1.9 U *+	3.9 U	1.9 U *	+ 3.9
2-Hexanone	ug/L	50*	0.72 U	1.1 U	1.1	U	0.72 U	1.1 U	1.1 U	1.1	J 1.1
4-Methyl-2-pentanone (MIBK)	ug/L	NS	0.63 U	1.3 U	1.3	U	0.63 U	1.3 U	1.3 U	1.3	J 1.3
Acetone	ug/L	50*	1.1 U	4.4 U	5.1		1.1 U	4.4 U	4.4 U		J 4.4
Benzene	ug/L	1	0.09 U	0.20 U	0.070	U	0.47 J	0.2 U	0.25 J	0.2	J 0.070
Bromoform	ug/L	50*	0.18 U	0.54 U	0.54	Ū	0.18 U	0.54 U	0.54 U		J 0.54
Bromomethane	ug/L	5	0.18 U	0.55 UJ	0.55	Ū	0.18 U	0.55 UJ	0.55 U	0.55 U	
Carbon disulfide	ug/L	60	0.22 U	0.82 U	0.82	Ū	0.22 U	0.82 U	0.82 U		J 0.82
Carbon tetrachloride	ug/L	5	0.33 U	0.21 U	0.21	Ü	0.33 U	0.21 U	0.21 U		J 0.21
Chlorobenzene	ug/L	5	0.24 U	0.38 U	0.38	ŭ	0.24 U	0.38 U	0.38 U		J 0.38
Chlorobromomethane	ug/L	NS	NR	0.41 U	0.41	Ū	NR	0.41 U	0.41 U		J 0.41
Chlorodibromomethane	ug/L	NS	NR	0.28 U	0.086	Ü	NR	0.28 U	0.086 U		0.086
Chloroethane	ug/L	5	0.37 U	0.32 U	0.32	Ü	0.62 J	0.32 U	0.81 J		J 0.32
Chloroform	ug/L	7	0.22 U	0.33 U	0.33	Ü	0.22 U	0.33 U	0.33 U		J 0.33
Chloromethane	ug/L	NS	0.22 U	0.40 UJ	0.40	Ü	0.22 U	0.40 UJ	0.40 U	0.40 U	
cis-1,2-Dichloroethene	ug/L	5	0.26 U	0.22 U	0.48	Ū	410	60	290		J 0.48
cis-1,3-Dichloropropene	ug/L	NS	0.16 U	0.22 U	0.069	ŭ	0.16 U	0.22 U	0.069 U		0.069
Cyclohexane	ug/L	NS	0.26 U	0.32 U	0.32	Ü	0.41 J	0.32 U	0.40 J		J 0.32
Dichlorobromomethane	ug/L	NS	0.22 U	0.34 U	0.15	Ū	0.22 U	0.34 U	0.15 U		J 0.15
Dichlorodifluoromethane	ug/L	5	0.14 U	0.31 U	0.31	Ü	0.14 U	0.31 U	0.31 U		J 0.31
Ethylbenzene	ug/L	5	0.30 U	0.30 U	0.30	Ü	0.30 U	0.30 U	0.30 U		0.30
Ethylene Dibromide	ug/L	0.0006	0.34 U	0.50 U	0.50	Ū	0.34 U	0.50 U	0.50 U		J 0.50
Isopropylbenzene	ug/L	5	0.32 U	0.34 U	0.34	Ü	0.32 U	0.34 U	0.34 U		J 0.34
Methyl acetate	ug/L	NS	0.58 U	0.79 UJ	0.79	ŭ	0.58 U	0.79 UJ	0.79 U	0.79 U	
Methyl tert-butyl ether (MTBE)	ug/L	NS	NR	0.73 U	0.22	ŭ	NR NR	0.22 U	0.65 J		J 0.22
Methylcyclohexane	ug/L	NS	0.22 U	0.71 U	0.71	Ü	0.30 J	0.71 U	0.71 U		J 0.71
Methylene Chloride	ug/L	5	0.21 U	0.8 J	0.65	ŭ	0.21 U	0.32 U	0.65 U		B 0.65
m-Xylene & p-Xylene	ug/L	NS	0.21 U	0.3 U	0.30	ŭ	0.28 U	0.32 U	0.30 U		J 0.30
o-Xylene	ug/L	5	0.32 U	0.36 U	0.36	ŭ	0.32 U	0.36 U	0.36 U	***	J 0.36
Styrene	ug/L ug/L	5	0.32 U	0.30 U	0.42	-ĭI	0.32 U	0.30 U	0.30 U	0.30	J 0.42
Tetrachloroethene	ug/L	5	0.17 U	0.42 U	0.42	H			0.42 0	0.42	J 0.28
Toluene	ug/L ug/L	5	0.12 U	0.25 U	0.38	Ü	95 0.25 U	25 0.38 U	0.38 U		J 0.38
trans-1,2-Dichloroethene		5 5	0.25 U						1.4	0.38	
trans-1,3-Dichloropropene	ug/L ug/L	0.4	0.18 U	0.24 U 0.22 U	0.24 0.12		2.0 0.19 U	0.47 N J 0.22 U	0.12 U	0.24	U 0.24 U 0.12
Trichloroethene	ug/L ug/L	5	0.19 U	0.22 U	0.074	U			1.8		J 0.12 J 0.074
		5 5			0.074		150	10 0.32 U			
Trichlorofluoromethane Vinyl chloride	ug/L ug/L	2	0.15 U 0.060 U	0.32 U 0.17 U	0.32	U	0.15 U <u>25</u>	0.32 U 3.5	0.32 U <u>28</u>	0.32 0.17	U 0.32 U 0.40
							_		_		

NOTES

NS = No Standard

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

Page 9 of 9

<u>Laboratory Qualifiers</u>
J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the

reported sample quantitation limit. However, the

Summary of Groundwater Analytical Results: SVOCs 2008 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125

152 10th Avenue, Whitestone, NY

		Client ID	MW-1S	MW-1S	MW-1S	MW-1S		MW-1D		MW-1D	MW-1D		MW-1D		MW-2S	MW-2S		MW-2S	MW-2	
		Lab Sample ID		SB72998-02		460-261171-3				SB72998-03		4	60-261171-4			SB72998-05			460-261171-	
		Sampling Date	10/14/2008	7/10/2013	11/9/2017	6/29/2022		10/14/2008		7/10/2013	11/9/2017		6/29/2022	10)/14/2008	7/10/2013		11/9/2017	6/29/202	.2
		Matrix				Water							Water						Wate	er
		Dilution Factor				1							1_							1
•	UNITS	AWQSGV	Result Q	Result Q	Result Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result Q	Result	Q	Result (Resu	<u>it</u>
,1'-Biphenyl	ug/L	5		NR		1.2	U			NR			1.2	U		NR			1.	_
,2,4,5-Tetrachlorobenzene	ug/L	5	Not Sampled		Not Sampled	1.2	U	Not Sampled		5.32 U	Not Sampled		1.2	U Not S	Sampled	5.21	U	Not Sampled	1.	
2,2'-oxybis[1-chloropropane]	ug/L	NS		NR		0.63	U			NR			0.63	U		NR			0.6	
2,3,4,6-Tetrachlorophenol	ug/L	NS		NR		0.75	UJ			NR			0.75 l	JJ		NR			0.7	
2,4,5-Trichlorophenol	ug/L	NS		5.26 U		0.88	UJ			5.32 U			0.88 l	JJ		5.21	U		0.8	
2,4,6-Trichlorophenol	ug/L	NS		5.26 U		0.86	UJ			5.32 U			0.86 เ	JJ		5.21	U		0.8	6 L
2,4-Dichlorophenol	ug/L	1		5.26 U		1.1	UJ			5.32 U			1.1 l	JJ		5.21	U		1.	
2,4-Dimethylphenol	ug/L	1		5.26 U		0.62	UJ			5.32 U			0.02	JJ		5.21	U		0.6	
2,4-Dinitrophenol	ug/L	1		5.26 U		2.6	UJ			5.32 U			2.6 l	JJ		5.21	U		2.	
2,4-Dinitrotoluene	ug/L	5		5.26 U		1.0	U			5.32 U			1.0	U		5.21	U		1.	
2,6-Dinitrotoluene	ug/L	5		5.26 U		0.83	U			5.32 U			0.83	U		5.21	U		0.8	.3
2-Chloronaphthalene	ug/L	10*		5.26 U		1.2	U			5.32 U			1.2	U		5.21	U		1.	
2-Chlorophenol	ug/L	NS		5.26 U		0.38	UJ			5.32 U			0.38 l	JJ		5.21	U		0.3	
2-Methylnaphthalene	ug/L	NS		5.26 U		0.53	U			5.32 U			0.53	U		5.21	U		0.5	3
2-Methylphenol	ug/L	NS		5.26 U		0.67	UJ			5.32 U			0.67 l	JJ		5.21	U		0.6	37 L
2-Nitroaniline	ug/L	5		5.26 U		0.47	U			5.32 U			0.47	U		5.21	U		0.4	.7
2-Nitrophenol	ug/L	NS		5.26 U		0.75	UJ			5.32 U			0.75 l	JJ		5.21	U		0.7	5 l
3,3'-Dichlorobenzidine	ug/L	5		5.26 U		1.4	U			5.32 U			1.4	U		5.21	U		1.	.4
3-Nitroaniline	ug/L	5		5.26 U		1.9	U			5.32 U			1.9	U		5.21	U		1.	.9
1-Bromophenyl phenyl ether	ug/L	NS		5.26 U		0.75	U			5.32 U			0.75	U		5.21	U		0.7	
1-Chloro-3-methylphenol	ug/L	NS		5.26 U		0.58	UJ			5.32 U			0.58 l	JJ		5.21	U		0.5	
I-Chloroaniline	ug/L	5		5.26 U		1.9	U			5.32 U			1.9	U		5.21	U		1.	
1-Chlorophenyl phenyl ether	ug/L	NS		5.26 U		1.3	U			5.32 U			1.3	U		5.21	U		1.	.3
1-Methylphenol	ug/L	NS		NR		0.65	UJ			NR			0.65 l	JJ		NR			0.6	<i>5</i> ι
1-Nitroaniline	ug/L	5		21.1 U		1.2	U			21.3 U			1.2	U		20.8	U		1.	
4-Nitrophenol	ug/L	NS		21.1 U		4.0	UJ			21.3 U			4.0 L	JJ		20.8	Ū		4.	
Acenaphthene	ug/L	20		5.26 U		1.1	U			5.32 U			1.1	U		5.21	Ū		1.	_
Acenaphthylene	ug/L	NS		5.26 U		0.82	Ŭ			5.32 U			0.82	Ü		5.21	ŭ		0.8	
Acetophenone	ug/L	NS		NR		2.3	UJ			NR			2.3 l	JJ		NR			2.	
Anthracene	ug/L	50*		5.26 U		1.3	U			5.32 U			1.3	U		5.21	U		1.	
Atrazine	ug/L	7.5		NR		1.3	Ü			NR			1.3	U		NR			1.	_
Benzaldehyde	ug/L	NS		NR		2.1	Ü			NR			2.1	Ü		NR			2.	
Benzoic Acid	ug/L	NS		5.26 U		NR				5.32 U			NR			5.21	U		NI NI	
Bis(2-chloroethoxy)methane	ug/L	5		5.26 U		0.59	U			5.32 U			0.59	υ		5.21	Ü		0.5	
Bis(2-ethylhexyl) phthalate	ug/L	5		5.26 U		0.80	Ü			5.32 U			0.80	ŭ		5.21	Ü		0.8	
Butyl benzyl phthalate	ug/L	NS		5.26 U		0.85	Ü			5.32 U			0.85	ŭ		5.21	Ü		0.8	
Caprolactam	ug/L	NS		NR NR		2.2	UJ			NR NR			2.2 l	1.1		NR			2.	
Carbazole	ug/L	NS		5.26 U		0.68	II.I			5.32 U			0.68	1.1		5.21	l ul		0.6	
Chrysene	ug/L ug/L	0.002*		5.26 U		0.00	11			5.32 U			0.91	ŭ		5.21	t ŭt		0.9	
Dibenzofuran	ug/L ug/L	NS		5.26 U		1.1	Hil			5.32 U			1.1	ŭ		5.21	⊢ ŭH		1.	_
Diethyl phthalate	ug/L ug/L	50*		5.26 U		0.98	H			5.32 U			0.98	ŭ		5.21			0.9	_
Dimethyl phthalate	ug/L ug/L	50*		5.26 U		0.98	H			5.32 U			0.98	ĭ		5.21			0.9	
Di-n-butyl phthalate	ug/L ug/L	50		5.26 U		0.77	II			5.32 U			0.77	ĭ		5.21			0.8	
Di-n-octyl phthalate	ug/L ug/L	50*		5.26 U		0.75	H			5.32 U			0.75	ĭ		5.21			0.7	
Fluoranthene	ug/L ug/L	50*		5.26 U		0.75	H			5.32 U			0.73	ĭ		5.21			0.8	
Fluorene	ug/L ug/L	50*		5.26 U		0.84	H			5.32 U			0.84	ĭl		5.21			0.8	
Hexachlorobutadiene	ug/L ug/L	0.5		5.26 U		0.78	H			5.32 U			0.78	ĭl		5.21			0.9	
Hexachlorocyclopentadiene		0.5 5		5.26 U		3.6				5.32 U			3.6	ĭ		5.21			3.	
lexachloroethane	ug/L	5 5		5.26 U		0.80				5.32 U			0.80 U	ĭ		5.21			0.8	
	ug/L	50*		5.26 U						5.32 U 5.32 U			0.80 U	1.1		5.21			0.8	ب ام
sophorone	ug/L			5.26 U		0.80)J						
aphthalene	ug/L	10*				0.54				5.32 U			0.54			5.21			0.5	
litrobenzene	ug/L	0.4		5.26 U		0.57				5.32 U			0.57	<u> </u>		5.21	!!		0.5	
N-Nitrosodi-n-propylamine	ug/L	NS		5.26 U		0.43	Ų			5.32 U			0.43	U		5.21			0.4	
N-Nitrosodiphenylamine	ug/L	50*		5.26 U		0.89				5.32 U			0.89	U		5.21	!		0.8	
Phenanthrene	ug/L	50*		5.26 U		1.3				5.32 U			1.3	U		5.21	U		1.	
Phenol	ug/L	1		5.26 U		0.29				5.32 U			0.29 l	JJ		5.21	U		0.2	
Pyrene	ug/L	50*		5.26 U		1.6	U			5.32 U			1.6	U		5.21			1.	6
							Ш													
otal Conc	ug/L	NS		0.00		0.00	1 I			0.00	1		0.00			0.00	1		0.0	ıΩl

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

Page 1 of 6

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not

represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Summary of Groundwater Analytical Results: SVOCs 2008 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

Second Column Second Colum			Client ID	MW-2D	MW-2D	MW-2D	MW-2D	MW-3S	MW-3S	MW-3S	MW-3S	MW-3D	MW-3D	MW-3D	MW-3D
Second Column				IVIVV-2D		IVIVV-2D		14144-22	10100-33	IVIVV-33	14144-33	WW-3D	IVIVV-3D	INIAA-2D	IVIVV-3D
March Marc				10/14/2008		11/9/2017		10/14/2008	7/10/2013	11/9/2017	6/29/2022	10/14/2008	7/10/2013	11/9/2017	6/29/2022
Part						11/0/2011		100.00	1, 1, 1, 1, 1	11/0/2011			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11/0/2011	
1							1								
24.5 September 1.5 Sep	SVOCS by 8270E	UNITS	AWQSGV	Result Q		Result Q	Result (Q Result (Q Result	Q Result (Q Result C	Result Q	Result Q	Result C	Result Q
2	1,1'-Biphenyl							J							
3-3.6 Filter properties 34 NS				Not Sampled		U Not Sampled		J Not Sampled	Not Sampled	Not Sampled	Not Sampled	Not Sampled		Not Sampled	Not Sampled
2.6.5 Trickportery 10.5	2,2'-oxybis[1-chloropropane]	ug/L						J							
Add Title registered Sol. NS						11									
Committee Comm													5.32 11		
A. S. Descriptor A. De						U							5.32 U		
Add Interpretation Application Applica			1			Ü							5.32 U		
2-6-Protectoridation			1			Ü							5.32 U		
A Description A Descri	2,4-Dinitrotoluene		5			U		Ĵ					5.32 U		
Commitment	2,6-Dinitrotoluene		5		5.10	U	0.83	J					5.32 U		
Abdelymental district MS	2-Chloronaphthalene					U		J					5.32 U		
Alternative March	2-Chlorophenol	ug/L				U		J					5.32 U		
Columnian Colu						U		J.					5.32 U		
C-Notice Company Com						<u> </u>		J.					5.32 U		
2.5 Section Section Section								4					5.32 U		
Description													5.32 U		
## Aftermorphysis plane sept. sep. sept. sept. sept. sept. sept. sept. sept. sept.													5.32 0		
Chinos-methyphenol ugl		ug/L ug/l				U							5.32 U		
Chiestophery plane) English S	4-Chloro-3-methylphenol					Ü		J					5.32 U		
Chinopheny pheny ethors	4-Chloroaniline					Ü	1.9	Ĵ							
Alberhyphened Ugit NS	4-Chlorophenyl phenyl ether		NS			U	1.3	J					5.32 U		
New York	4-Methylphenol		NS				0.65 U	J					NR		
Acenaphthrene	4-Nitroaniline	ug/L				U		J							
Accessed personne						U		J							
Acadephenore Ug/L NS						U		J					5.32 U		
Anthracone UgU 50' 510 U 1.3 U 85' NR 8						U		J.							
Altrazine	•					11		J							
Demonstrative Light Ligh															
Serzoic Acid Ug/L NS S.10 U NR S.22 U Sig/2-chlore(hox)/methane Ug/L S S.10 U 0.59 U S.32 U Sig/2-chlore(hox)/methane Ug/L S S.10 U 0.59 U U S.32 U Sig/2-chlore(hox)/methane Ug/L S S.10 U 0.85 U S.32 U Sig/2-chlore(hox)/methane Ug/L NS S.10 U 0.85 U S.32 U Sig/2-chlore(hox)/methane Ug/L NS S.10 U 0.85 U S.32 U Sig/2-chlore(hox)/methane Ug/L NS S.10 U S.32 U Sig/2-chlore(hox)/methane Ug/L S.32 U Sig/2-chlore(hox)/methane Ug/L S.32 U Sig/2-chlore(hox)/methane Ug/L															
Bis(2-chrorehoxy)nethane Ug/L 5 5.10 U 0.69 U 0.60						U									
Bis(2-ethylexyt) phthalate ug/L 5 5.10 U 0.80 U 0.	Bis(2-chloroethoxy)methane					U		J					5.32 U		
Suly berxy phthalate ug/L NS S. S. U 0.85	Bis(2-ethylhexyl) phthalate		5		5.10	U	0.80	J							
Carbazole	Butyl benzyl phthalate	ug/L				U		J							
Chrysene	Caprolactam							-							
Dibergofuran Ug/L NS S. S. U S. S. U S. S.						U		J							
Diethy phthalate ug/L 50° 5.10 U 0.98 U 0.97 U 0.98 U 0.99 U	Chrysene					U		4					5.32 U		
Dimetry phthalate															
Din-buty phthalate ug/L 50 5.10 U 0.84 U 0.75 U												1	5.32 U		
Din-octyl phthalate Ug/L 50° 5.10 U 0.75 U 0.84 U 5.32 U 5.32 U 5.32 U 5.32 U 5.32 U 5.33 U 5.34 U 5.35 U U 5.35 U U 5.35	Di-n-butyl phthalate				5.10	ŭ l –		ĭI – – –			+		5.32		
Fluoranthene Ug/L 50* 5.10 U 0.84 U	Di-n-octyl phthalate	ua/L			5.10	$\bar{\mathbf{U}}$		JI -			1		5.32 U		
Fluorene	Fluoranthene	ug/L			5.10	u		J			1		5.32 U		
Hexachlorobutadiene	Fluorene				5.10	U	0.91	J					5.32 U		
Hexachlorocyclopentadiene ug/L 5 5.10 U 0.80 UJ UJ UJ UJ UJ UJ UJ U	Hexachlorobutadiene	ug/L	0.5		5.10	U	0.78	J					5.32 U		
Sophorone Ug/L 50* 5.10 U 0.80 UJ 0.90 UJ 0.54 U 0.55 U 0.90 UJ 0.90	Hexachlorocyclopentadiene	ug/L				U		J					5.32 U		
Naphthalene	Hexachloroethane				5.10	U							5.32 U		
Nitrobenzene	Isophorone					U		J					5.32 U		
N-Nitrosodi-n-propylamine ug/L NS 5.10 U 5.32 U 5.32 U 5.32 U 5.33 U 5.34 U 5.3					5.10	U	0.54	<u> </u>					5.32 U		
N-Nitrosodiphenylamine													5.32 U		
Phenanthrene ug/L 50* 5.10 U 1.3 U 1.3 U 5.32 U 9<		ug/L			5.10								5.32 U		
Phenol ug/L 1 5.10 U 0.29 UJ 5.32 U 5		ug/L ug/l			5.10	ŭ l							5.32 11		
Pyrene ug/L 50* 5.10 U 1.6 U 5.32 U 5.32 U 5.32 U						ŭ		j					5.32		
	Pyrene				5.10	ū l		الّ					5.32 U		
Total Cone ug// NS 0.00		5'-						-							
τοιαι φοιν το	Total Conc	ug/L	NS		0.00		0.00						0.00		

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

Page 2 of 6

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not

represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Summary of Groundwater Analytical Results: SVOCs 2008 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125

152 10th Avenue, Whitestone, NY

		Client ID	MW-101S	MW-101S	MW-101S	MW-101S		MW-101D	MW-101D	MW-101D	MW-101D	MW-102S	MW-102S	MW-102S	MW-102S
		Lab Sample ID	IWIVV-1010	SB73081-02	10104-1013	460-260997-1		1010	SB73081-01	IVIVV-101D	460-260997-2	14144-1020	SB73081-04	IVIVV-1023	WW-1023
		Sampling Date	10/14/2008	7/11/2013	11/9/2017	6/28/2022	1	10/14/2008	7/11/2013	11/9/2017	6/28/2022	10/14/2008	7/11/2013	11/9/2017	6/29/2022
		Matrix	10/11/2000	7711/2010	11/5/2017	Water		10/11/2000	771172010	11/3/2017	Water	10/11/2000	771172010	11/5/2017	0/20/2022
		Dilution Factor				1					1				
SVOCS by 8270E	UNITS	AWQSGV	Result Q	Result Q	Result Q	Result	Q	Result Q	Result	Q Result	Q Result Q	Result Q	Result	Q Result Q	Result (
1,1'-Biphenyl	ug/L	5		NR		1.2	UJ		NR	i	1.2 U F1		NR		
1,2,4,5-Tetrachlorobenzene	ug/L	5	Not Sampled	5.10 U	Not Sampled	1.2	UJ Not	Sampled	5.10	U Not Sampled	1.2 U	Not Sampled	5.16	U Not Sampled	Not Sampled
2,2'-oxybis[1-chloropropane]	ug/L	NS		NR		0.63	UJ		NR		0.63 U		NR		
2,3,4,6-Tetrachlorophenol	ug/L	NS	Not Yet	NR				lot Yet	NR		0.75 UJ	Not Yet	NR		
2,4,5-Trichlorophenol	ug/L	NS	Installed	5.10 U				stalled	5.10	U	0.88 UJ	Installed	5.16	U	
2,4,6-Trichlorophenol	ug/L	NS		5.10 U			UJ		5.10	U	0.86 UJ		5.15	U	
2,4-Dichlorophenol	ug/L	1		5.10 U			UJ		5.10	U	1.1 UJ		5.15	U	
2,4-Dimethylphenol	ug/L	1		5.10 U			UJ		5.10	U	0.62 UJ		5.15	U	
2,4-Dinitrophenol	ug/L	1		5.10 U			UJ		5.10 5.10	U	2.6 UJ		5.15 5.15		
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/L	5 5		5.10 U 5.10 U			UJ		5.10		1.0 U 0.83 U		5.15		
	ug/L	•		5.10 U			UJ		5.10				5.15		
2-Chloronaphthalene 2-Chlorophenol	ug/L	10* NS		5.10 U			UJ		5.10	ii l	1.2 U F1 0.38 UJ		5.15		
2-Methylnaphthalene	ug/L ug/L	NS NS		5.10 U	- 		UJ		5.10	Ŭ	0.53 U		5.15	ŭ –	
2-Methylphenol	ug/L	NS		5.10 U			UJ		5.10	ŭ	0.67 UJ		5.15	ŭ	
2-Nitroaniline	ug/L	5		5.10 U			UJ		5.10	Ū	0.47 U F1		5.15	Ū	
2-Nitrophenol	ug/L	NS		5.10 U			UJ		5.10	u	0.75 UJ		5.15	υl	
3,3'-Dichlorobenzidine	ug/L	5		5.10 U			UJ		5.10	U	1.4 U		5.15	u	
3-Nitroaniline	ug/L	5		5.10 U		1.9	UJ		5.10	U	1.9 U		5.15	U	
4-Bromophenyl phenyl ether	ug/L	NS		5.10 U		0.75 U	UJ		5.10	U	0.75 U		5.15	U	
4-Chloro-3-methylphenol	ug/L	NS		5.10 U		0.58	UJ		5.10	U	0.58 UJ		5.15	U	
4-Chloroaniline	ug/L	5		5.10 U		1.9	UJ		5.10	U	1.9 U		5.15	U	
4-Chlorophenyl phenyl ether	ug/L	NS		5.10 U			UJ		5.10	U	1.3 U		5.15	U	
4-Methylphenol	ug/L	NS		NR			UJ		NR		0.65 UJ		NR		
4-Nitroaniline	ug/L	5		20.4 U			UJ		20.4	U	1.2 U F1		20.6	U	
4-Nitrophenol	ug/L	NS		20.4 U			UJ		20.4	U	4.0 UJ		20.6	U	
Acenaphthene	ug/L	20 NO		5.10 U			UJ		5.10	U	1.1 U F1		5.15	U	
Acenaphthylene	ug/L	NS NC		5.10 U NR			UJ UJ		5.10 NR	U	0.82 U		5.15 NR	U	
Anthracono	ug/L	NS 50*		5.10 U			UJ		5.10	11	2.3 UJ 1.3 U		5.15	11	
Anthracene Atrazine	ug/L ug/L	7.5		3.10 O			UJ		NR	<u> </u>	1.3 U F1		NR		
Benzaldehyde	ug/L	NS		NR			UJ		NR		2.1 U F1		NR		
Benzoic Acid	ug/L	NS		5.10 U		NR NR	00		4.15		NR NR		5.15	ul	
Bis(2-chloroethoxy)methane	ug/L	5		5.10 U			UJ		5.10	U	0.59 U F1		5.15	ŭl l	
Bis(2-ethylhexyl) phthalate	ug/L	5		2.05			UJ		2.05		0.80 U		1.67		
Butyl benzyl phthalate	ug/L	NS		5.10 U			UJ		5.10	U	0.85 U		5.15	U	
Caprolactam	ug/L	NS		NR		2.2	UJ		NR		2.2 U		NR		
Carbazole	ug/L	NS		5.10 U		0.68	UJ		5.10	U	0.68 UJ		5.15	U	
Chrysene	ug/L	0.002*		5.10 U			UJ		5.10	U	0.91 U		5.15	U	
Dibenzofuran	ug/L	NS		5.10 U			UJ		5.10	U	1.1 U		5.15	U	
Diethyl phthalate	ug/L	50*		5.10 U			UJ		5.10	U	0.98 U		5.15	U	
Dimethyl phthalate	ug/L	50*		5.10 U			UJ		5.10	U	0.77 U		5.15	U	
Di-n-butyl phthalate	ug/L	50		5.10 U			UJ		5.10	<u> </u>	0.84 U		5.15	U	
Di-n-octyl phthalate	ug/L	50* 50*		5.10 U			UJ		5.10		0.75 U		5.15		
Fluoranthene	ug/L	50* 50*		5.10 U			UJ		5.10		0.84 U		5.15 5.15		
Fluorene Hexachlorobutadiene	ug/L	50* 0.5		5.10 U 5.10 U			UJ UJ		5.10 5.10		0.91 U F1 0.78 U		5.15 5.15		
Hexachloroputadiene Hexachlorocyclopentadiene	ug/L ug/L	0.5 5		5.10 U			UJ		5.10		3.6 U		5.15		
Hexachloroethane	ug/L ug/L	5		5.10 U			UJ		5.10	ŭ 	0.80 U		5.15	ĭi	
sophorone	ug/L	50*		5.10 U	- 		UJ		5.10	ŭ 	0.80 UJ		5.15	ŭl –	
Naphthalene	ug/L	10*		5.10 U			UJ		5.10	ŭ –	0.54 U		5.15	ŭ	
Vitrobenzene	ug/L	0.4		5.10 U			UJ		5.10	Ū	0.57 U F1		5.15	Ū	
N-Nitrosodi-n-propylamine	ug/L	NS		5.10 U			UJ		5.10	U	0.43 U F1		5.15	u	
N-Nitrosodiphenylamine	ug/L	50*		5.10 U			UJ		5.10	U	0.89 U		5.15	U	
Phenanthrene	ug/L	50*		5.10 U			UJ		5.10	U	1.3 U		5.15	U	
Phenol	ug/L	1		5.10 U		0.29	UJ		5.10	U	0.29 UJ		5.15	U	
Pyrene	ug/L	50*		5.10 U			UJ		5.10	U	1.6 U		5.15	U	
Total Conc	ug/L	NS		2.05		0.00			5.45		0.00		1.67		

NOTE

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

ed. represent the actual limit of quantitation necessary to accurately and precisely measure th Page 3 of 6

Summary of Groundwater Analytical Results: SVOCs 2008 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125

152 10th Avenue, Whitestone, NY

		Client ID	MW-102D	MW-102D	MW-102D	MW-102D	MW-103D	MW-103	D	MW-103D		MW-103D		MW-113S	MW-113S		MW-113S	MW-113S	s
		Lab Sample ID		SB73081-03				SB72998-0	7									460-261171-5	5
		Sampling Date	10/14/2008	7/11/2013	11/9/2017	6/29/2022	10/14/2008	7/11/2013	3	11/9/2017		6/29/2022		10/14/2008	7/11/2013		11/9/2017	6/29/2022	
		Matrix																Water	:r
SVOCS by 8270E	UNITS	Dilution Factor AWQSGV	Result Q	Result C	Q Result (Q Result (Q Result	Q Resul	ıtl O	Result	l o	Result	0	Result Q	Result	0	Result Q	1 Result	1
1,1'-Biphenyl		5	Result Q	NR NR	ر Result (Z Resuit (Result	Q Resul		Result	l Q	Result	Q	Result Q	Result	Q	Result Q	1.2	_
1,2,4,5-Tetrachlorobenzene	ug/L ug/L	5	Not Sampled	5.10 L	U Not Sampled	Not Sampled	Not Sampled	5.62		Not Sampled		Not Sampled		Not Sampled	Not Sampled		Not Sampled	1.2	
2,2'-oxybis[1-chloropropane]	ug/L	NS	140t Gampica	NR NR	o Not Campica	Not campica	rtot Gampica	NF		110t Gampied		140t Gampied		Not campica	Not Campica		rtot Gampica	0.63	
2,3,4,6-Tetrachlorophenol	ug/L	NS	Not Yet	NR				NF						Not Yet	Not Yet		Not Yet	0.75	
2,4,5-Trichlorophenol	ug/L	NS	Installed	5.10 L	J			5.62						Installed	Installed		Installed	0.88	
2,4,6-Trichlorophenol	ug/L	NS		5.10 U	J			5.62	2 U									0.86	6 UJ
2,4-Dichlorophenol	ug/L	1		5.10 l	J			5.62										1.1	
2,4-Dimethylphenol	ug/L	1		5.10 l	J			5.62										0.62	
2,4-Dinitrophenol	ug/L	1		5.10 l	U L			5.62										2.6	6 UJ
2,4-Dinitrotoluene	ug/L	5		5.10 l	J			5.62										1	1 Ľ
2,6-Dinitrotoluene	ug/L	5		5.10 L	U			5.62										0.83	
2-Chloronaphthalene	ug/L	10*		5.10 L	J			5.62										1.2	
2-Chlorophenol	ug/L	NS		5.10 L	<u> </u>			5.62										0.38	
2-Methylnaphthalene	ug/L	NS NO		5.10 L	<u> </u>			5.62				1						0.53	
2-Methylphenol	ug/L	NS		5.10 L	<u> </u>			5.62										0.67	
2-Nitroaniline	ug/L	5 NC		5.10 L				5.62					1			-+		0.47	
2-Nitrophenol 3,3'-Dichlorobenzidine	ug/L	NS 5		5.10 L 5.10 L				5.62 5.62								-+		0.75 1.4	
3-Nitroaniline	ug/L	5 5		5.10 C				5.62					_					1.4	_
4-Bromophenyl phenyl ether	ug/L ug/L	NS		5.10 U				5.62										0.75	
4-Chloro-3-methylphenol	ug/L	NS		5.10 U				5.62										0.58	
4-Chloroaniline	ug/L	5		5.10 U				5.62										1.9	
4-Chlorophenyl phenyl ether	ug/L	NS		5.10 U	J			5.62										1.3	
4-Methylphenol	ug/L	NS		NR				NF										0.65	
4-Nitroaniline	ug/L	5		20.4 l	U			22.5										1.2	
4-Nitrophenol	ug/L	NS		20.4 L	U			22.	5 U									4.0	
Acenaphthene	ug/L	20		5.10 l	J			5.62	2 U									1.1	1 L
Acenaphthylene	ug/L	NS		5.10 l	J			5.62										0.82	2 U
Acetophenone	ug/L	NS		NR				NF										2.3	
Anthracene	ug/L	50*		5.10 L	U			5.62										1.3	
Atrazine	ug/L	7.5		NR				NF								_		1.3	
Benzaldehyde	ug/L	NS		NR				NF										2.1	
Benzoic Acid	ug/L	NS		5.10 L	<u> </u>			5.62										NR	
Bis(2-chloroethoxy)methane	ug/L	5		5.10 L 5.10 L	U			5.62										0.59	
Bis(2-ethylhexyl) phthalate	ug/L	5 NS		5.10 C				1.33 5.62										0.8 0.85	
Butyl benzyl phthalate Caprolactam	ug/L	NS NS		NR	<u> </u>			NF					_					2.2	
Carbazole	ug/L ug/L	NS NS		5.10 L				5.62										0.68	
Chrysene	ug/L ug/L	0.002*		5.10 U				5.62										0.91	_
Dibenzofuran	ug/L ug/L	0.002 NS		5.10 L	j –			5.62								\dashv		1.1	
Diethyl phthalate	ug/L	50*		5.10 U	-			5.62					- 1			\neg		0.98	
Dimethyl phthalate	ug/L	50*		5.10 U	ال			5.62	2 Ŭ				T			\neg		0.77	7 1
Di-n-butyl phthalate	ug/L	50		5.10 l	U			5.62	2 U				ij					0.84	
Di-n-octyl phthalate	ug/L	50*		5.10 L	U			5.62					T					0.75	5 U
Fluoranthene	ug/L	50*		5.10 L	U			5.62	2 U									0.84	4 U
Fluorene	ug/L	50*		5.10 l	U			5.62										0.91	1 U
Hexachlorobutadiene	ug/L	0.5		5.10 l	U			5.62										0.78	
Hexachlorocyclopentadiene	ug/L	5		5.10 L	U			5.62										3.6	
Hexachloroethane	ug/L	5		5.10 L	U			5.62					J					0.80	
Isophorone	ug/L	50*		5.10 L	<u> </u>			5.62										0.80	
Naphthalene	ug/L	10*		5.10 L	U			5.62	2 U				1					0.54	
Nitrobenzene	ug/L	0.4		5.10 L	<u> </u>			5.62										0.57	
N-Nitrosodi-n-propylamine	ug/L	NS 50*		5.10 L	<u> </u>			5.62								_		0.43	
N-Nitrosodiphenylamine	ug/L	50*		5.10 L	<u> </u>			5.62	쉬 뭐									0.89	
Phenanthrene Phanal	ug/L	50* 1		5.10 L 5.10 L				5.62 5.62								+		1.3	
Phenol	ug/L	1 50*		5.10 U				5.62					1					0.29	
Pyrene	ug/L	30		3.10	<u> </u>			3.0	4 4				1			-+		1.6	4
Total Conc	ug/L	NS		0.00	 			1.33	3									0.00	d

NOTES

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Page 4 of 6

Summary of Groundwater Analytical Results: SVOCs 2008 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125

152	10th	Avenue	Whitestone.	NY
102	IUII	Avenue.	VVIIILE SLUITE.	1111

		Client ID	MW-113D	MW-113D	MW-113D	MW-113D	MW-201S	MW-201S	MW-201S	MW-201S	MW-201D	MW-201D	MW-201D	MW-201D
		Lab Sample ID	40/4//0000			460-261171-6	40444/0000			460-264645-1	404440000			460-261171-11
		Sampling Date	10/14/2008	7/11/2013	11/9/2017	6/29/2022	10/14/2008	7/11/2013	11/9/2017	8/30/2022	10/14/2008	7/11/2013	11/9/2017	6/30/2022
		Matrix				Water				Water				Water
01/000 h 0070F	LINUTO	Dilution Factor	Desuit	O Decuit	Q Result Q	1 Result C	Danut O	Result C	D	The state of the s	Danulth (D	O D-1114 O	1 D(k)
SVOCS by 8270E	UNITS	AWQSGV	Result	Q Result	Q Result Q	Tresuit 6	Result Q	Result C	Result (a recent a	Result (Q Result	Q Result Q	Result
1,1'-Biphenyl	ug/L	5	Not Consulted	Not Committed	Not Committed	1.2 L	Not Committed	Not Committed	Not Committed	1.2 U	Not Committee	Not Committed	Not Committed	1.2
1,2,4,5-Tetrachlorobenzene	ug/L	5	Not Sampled	Not Sampled	Not Sampled	1.2 L	Not Sampled	Not Sampled	Not Sampled	1.2 U	Not Sampled	Not Sampled	Not Sampled	1.2
2,2'-oxybis[1-chloropropane]	ug/L	NS	N1.4 X/.4	NI-4 V/-4	NetWet	0.63 L) N.437.4	N. 4 V. 4	N - 4 3 / - 4	0.63 U	N - 4 37 - 4	NI-4 V-4	NetVet	0.63
2,3,4,6-Tetrachlorophenol	ug/L	NS	Not Yet	Not Yet	Not Yet	0.75 U.	J Not Yet	Not Yet	Not Yet	0.75 UJ		Not Yet	Not Yet	0.75 L
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/L	NS NS	Installed	Installed	Installed	0.88 U.	J Installed	Installed	Installed	0.88 UJ 0.86 UJ		Installed	Installed	0.88 L
2,4-Dichlorophenol	ug/L	1100				0.86 U.								0.86 L 1.1 L
2,4-Dimethylphenol	ug/L	1				1.1 U. 0.62 U.	1							
2,4-Dinitrophenol	ug/L	1				2.6 U.	1			0.62 UJ 2.6 UJ				0.62 L 2.6 L
2,4-Dinitrophenol	ug/L	5				2.0 0.	<u> </u>			2.0 03				2.0 0
2,4-Dinitrotoluene	ug/L	5				0.83	<u> </u>			0.83 U				0.83
2-Chloronaphthalene	ug/L ug/L	10*				1.2	1			1.2 U				1.2
2-Chlorophenol	_	NS				0.38 U.	1			0.38 UJ				0.38 L
2-Chlorophenol 2-Methylnaphthalene	ug/L	NS NS				0.53 U				0.53 U				0.53
2-Methylphenol	ug/L ug/L	NS NS				0.53 C	<u> </u>			0.53 U 0.67 UJ				0.53 0.67 L
2-Nitroaniline	ug/L ug/L	5				0.67 U. 0.47 U	<u> </u>			0.67 U				0.67
2-Nitrophenol	ug/L ug/L	NS				0.47 C	<u> </u>			0.47 U 0.75 UJ	 			0.47 0.75 L
3,3'-Dichlorobenzidine	ug/L ug/L	5				1.4	í l – –			1.4 U	 			1.4
3-Nitroaniline	ug/L ug/L	5				1.4				1.4 U				1.9
4-Bromophenyl phenyl ether	ug/L	NS				0.75 L	í			0.75 U				0.75
4-Chloro-3-methylphenol	ug/L	NS				0.58 U.	í			0.58 UJ				0.58 L
4-Chloroaniline	ug/L	5				1.9 L	í			1.9 U				1.9
4-Chlorophenyl phenyl ether	ug/L	NS				1.3 U	í			1.3 U				1.3
4-Methylphenol	ug/L	NS				0.65 U.	í			0.65 UJ				0.65 L
4-Nitroaniline	ug/L	5				1.2 L	i			1.2 U				1.2
4-Nitrophenol	ug/L	NS				4.0 U.				4 UJ				4.0 L
Acenaphthene	ug/L	20				1.1 U				1.1 U				1.1
Acenaphthylene	ug/L	NS				0.82 L				0.82 U				0.82
Acetophenone	ug/L	NS				2.3 U.				2.3 UJ				2.3 L
Anthracene	ug/L	50*				1.3 L	j			1.3 U				1.3
Atrazine	ug/L	7.5				1.3 L	J			1.3 U *+				1.3
Benzaldehyde	ug/L	NS				2.1 L	J			2.1 UJ				2.1
Benzoic Acid	ug/L	NS				NR				NR				NR
Bis(2-chloroethoxy)methane	ug/L	5				0.59 L	J			0.59 U				0.59
Bis(2-ethylhexyl) phthalate	ug/L	5				0.8 L	J			0.8 U				0.8
Butyl benzyl phthalate	ug/L	NS				0.85 L	J			0.85 U				0.85
Caprolactam	ug/L	NS				2.2 U.	J			2.2 UJ				2.2 L
Carbazole	ug/L	NS				0.68 U.	J			0.68 UJ				0.68 L
Chrysene	ug/L	0.002*				0.91 L	J			0.91 U				0.91
Dibenzofuran	ug/L	NS				1.1 L	J			1.1 U				1.1
Diethyl phthalate	ug/L	50*				0.98 L	J			0.98 U				0.98
Dimethyl phthalate	ug/L	50*				0.77 L	J I			0.77 U				0.77
Di-n-butyl phthalate	ug/L	50				0.84 L	J			0.84 U				0.84
Di-n-octyl phthalate	ug/L	50*				0.75 L				0.75 U				0.75
Fluoranthene	ug/L	50*				0.84 L	<u> </u>			0.84 U				0.84
Fluorene	ug/L	50*				0.91 L	<u> </u>			0.91 U				0.91
Hexachlorobutadiene	ug/L	0.5				0.78 L	<u> </u>			0.78 U				0.78
Hexachlorocyclopentadiene	ug/L	5				3.6 L				3.6 U				3.6
Hexachloroethane	ug/L	5				0.80 U.				0.8 U				0.80 L
sophorone	ug/L	50*				0.80 U.				0.8 UJ				0.80 L
Naphthalene	ug/L	10*				0.54 L				0.54 U				0.54
Nitrobenzene	ug/L	0.4				0.57 L				0.57 U				0.57
N-Nitrosodi-n-propylamine	ug/L	NS				0.43 L				0.43 U				0.43
N-Nitrosodiphenylamine	ug/L	50*				0.89 L				0.89 U				0.89
Phenanthrene	ug/L	50*				1.3 L				1.3 U				1.3
Phenol	ug/L	1				0.29 U.				0.29 UJ				0.29 (
Pyrene	ug/L	50*				1.6 L	J			1.6 U				1.6
-												1		
otal Conc	ug/L	NS				0.00				0.00				0.00

NOTE

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Page 5 of 6

		Client ID	DUP (MW-2S)		EB_063022	
		Lab Sample ID	460-261171-7		460-261171-13	
		Sampling Date	6/29/2022		6/30/2022	
		Matrix	Water		Water	
		Dilution Factor	1		1	
SVOCS by 8270E	UNITS	AWQSGV	Result	Q	Result	C
1,1'-Biphenyl	ug/L	5	1.2	U	1.2	U
1,2,4,5-Tetrachlorobenzene	ug/L	5	1.2	U	1.2	U
2,2'-oxybis[1-chloropropane]	ug/L	NS	0.63	U	0.63	U
2,3,4,6-Tetrachlorophenol	ug/L	NS	0.75	UJ	0.75	UJ
2,4,5-Trichlorophenol	ug/L	NS	0.88	UJ	0.88	UJ
2,4,6-Trichlorophenol	ug/L	NS	0.86	UJ	0.86	UJ
2,4-Dichlorophenol	ug/L	1	1.1	UJ	1.1	UJ
2,4-Dimethylphenol	ug/L	1	0.62	UJ	0.62	U
2,4-Dinitrophenol	ug/L	1 5	2.6	UJ	2.6	UJ
2,4-Dinitrotoluene	ug/L	5 5	1	U	1	L
2,6-Dinitrotoluene 2-Chloronaphthalene	ug/L ug/L	10*	0.83 1.2	U	0.83 1.2	U
2-Chlorophenol	ug/L ug/L	NS	0.38	UJ	0.38	U
2-Methylnaphthalene	ug/L ug/L	NS NS	0.53	U	0.53	U
2-Methylphenol	ug/L	NS	0.67	UJ	0.67	UJ
2-Nitroaniline	ug/L	5	0.47	U	0.47	Ü
2-Nitrophenol	ug/L	NS	0.75	UJ	0.75	UJ
3,3'-Dichlorobenzidine	ug/L	5	1.4	U	1.4	U
3-Nitroaniline	ug/L	5	1.9	U	1.9	U
4-Bromophenyl phenyl ether	ug/L	NS	0.75	U	0.75	U
4-Chloro-3-methylphenol	ug/L	NS	0.58	UJ	0.58	U
4-Chloroaniline	ug/L	5	1.9	U	1.9	U
4-Chlorophenyl phenyl ether	ug/L	NS	1.3	U	1.3	L
4-Methylphenol	ug/L	NS	0.65	UJ	0.65	U٠
4-Nitroaniline	ug/L	5	1.2	U	1.2	U
4-Nitrophenol	ug/L	NS 20	4.0	UJ	4.0 1.1	UJ
Acenaphthene Acenaphthylene	ug/L ug/L	NS NS	0.82	U	0.82	l
Acetophenone	ug/L ug/L	NS NS	2.3	UJ	2.3	UJ
Anthracene	ug/L	50*	1.3	U	1.3	l
Atrazine	ug/L	7.5	1.3	Ü	1.3	ŭ
Benzaldehyde	ug/L	NS	2.1	Ū	2.1	ŭ
Benzoic Acid	ug/L	NS	NR		NR	
Bis(2-chloroethoxy)methane	ug/L	5	0.59	U	0.59	L
Bis(2-ethylhexyl) phthalate	ug/L	5	0.8	U	0.8	L
Butyl benzyl phthalate	ug/L	NS	0.85	U	0.85	U
Caprolactam	ug/L	NS	2.2	UJ	2.2	UJ
Carbazole	ug/L	NS	0.68	UJ	0.68	UJ
Chrysene	ug/L	0.002*	0.91	U	0.91	U
Dibenzofuran	ug/L	NS 50#	1.1	U	1.1	Į.
Diethyl phthalate	ug/L	50*	0.98	U	0.98	L
Dimethyl phthalate	ug/L	50* 50	0.77 0.84	U	0.77 0.84	Ļ
Di-n-butyl phthalate Di-n-octyl phthalate	ug/L	50*	0.64	Ü	0.64	U
Fluoranthene	ug/L ug/L	50*	0.73	Ü	0.73	U
Fluorene	ug/L ug/L	50*	0.04	ŭ	0.04	U
Hexachlorobutadiene	ug/L	0.5	0.78	Ŭ	0.78	ŭ
Hexachlorocyclopentadiene	ug/L	5	3.6	ŭ	3.6	ŭ
Hexachloroethane	ug/L	5	0.80	UJ	0.80	U
Isophorone	ug/L	50*	0.80	UJ	0.80	Ü
Naphthalene	ug/L	10*	0.54	U	0.54	L
Nitrobenzene	ug/L	0.4	0.57	U	0.57	U
N-Nitrosodi-n-propylamine	ug/L	NS	0.43	U	0.43	L
N-Nitrosodiphenylamine	ug/L	50*	0.89	U	0.89	L
Phenanthrene	ug/L	50*	1.3	U	1.3	L
Phenol Pyrene	ug/L ug/L	1 50*	0.29 1.6	UJ	0.29 1.6	UJ
ווי איטווט	uy/∟	30	1.0		1.0	
		NS				

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

Table 6B Summary of Groundwater Analytical Results: SVOCs 2008 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

- J : Result is less than the RL but greater than or equal to the MDL and the J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 - NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
 - UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

T-6B GW Qual SVOCs Hist Page 6 of 6

Summary of Groundwater Analytical Results: SVOCs via SIM 2013 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-1S		MW-1S		MW-1D		MW-1D		MW-2S		MW-2S		MW-2D	MW-2D		MW-3S	MW-3S	,
		Lab Sample ID	SB72998-02		460-261171-3		SB72998-03		460-261171-4		SB72998-05		460-261171-1		SB72998-04	460-261171-2				
		Sampling Date	7/10/2013		6/29/2022		7/10/2013		6/29/2022		7/10/2013		6/29/2022		7/10/2013	6/29/2022		7/10/2013	6/26/2022	
		Matrix			Water				Water				Water			Water				
		Dilution Factor			1				1				1			1				
SVOCs by 8270E SIM	UNITS	AWQSGV	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result C	Q	Result Q	Result	Q
1,4-Dioxane **	ug/L	0.35**	2000	U	0.17	UJ	100	U	0.43	UJ	200	U	0.17	UJ	20.0 U	0.17 U	IJ			
4,6-Dinitro-2-methylphenol	ug/L	NS	5.26	U	0.38	UJ	5.32	U	0.38	UJ	5.21	U	0.38	UJ	5.10 U	0.38 U	IJN	Not Sampled	Not Sampled	
Benzo[a]anthracene	ug/L	NS	5.26	U	0.016	U	5.32	U	0.016	U	5.21	U	0.016	U	5.10 U	0.016 L	U			
Benzo[a]pyrene	ug/L	ND	5.26	U	0.022	U	5.32	U	0.022	U	5.21	U	0.022	U	5.10 U	0.022 l	U			
Benzo[b]fluoranthene	ug/L	0.002*	5.26	U	0.024	UJ	5.32	U	0.024	UJ	5.21	U	0.024	UJ	5.10 U	0.024 U	IJ			
Benzo[g,h,i]perylene	ug/L	NS	5.26	U	0.035	U	5.32	U	0.035	U	5.21	U	0.035	U	5.10 U	0.035 L	U			
Benzo[k]fluoranthene	ug/L	0.002*	5.26	U	0.028	U	5.32	U	0.028	U	5.21	U	0.028	U	5.10 U	0.028 L	U			
Bis(2-chloroethyl)ether	ug/L	1	5.26	U	0.026	U	5.32	U	0.026	U	5.21	U	0.026	U	5.10 U	0.026 L	U			
Dibenz(a,h)anthracene	ug/L	NS	5.26	U	0.02	U	5.32	U	0.02	U	5.21	U	0.02	U	5.10 U	0.02 L	U			
Hexachlorobenzene	ug/L	0.04	5.26	U	0.011	U	5.32	U	0.011	U	5.21	U	0.011	U	5.10 U	0.011 L	U			
Indeno[1,2,3-cd]pyrene	ug/L	0.002*	5.26	U	0.036	U	5.32	U	0.036	U	5.21	U	0.036	U	5.10 U	0.036 L	U			
N-Nitrosodimethylamine	ug/L	NS	5.26	U	0.12	UJ	5.32	U	0.12	UJ	5.21	U	0.12	UJ	5.10 U	0.12 U	IJ			
Pentachlorophenol	ug/L	1	21.1	U	0.18	U	21.3	U	0.18	U	20.8	U	0.18	U	20.40 U	0.18 L	U			
Total Conc	ug/L	NS	0.0		0.0		0.0		0.43		0.0		0.0		0.00	0.0				

NOTES

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

** = 1,4-dioxane from 2023 addendum to June 1998 Division of Water Techical and Operational Guidance Series (TOGs) No. 1.1.1

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte

^{* =} Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

Summary of Groundwater Analytical Results: SVOCs via SIM 2013 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-3D		MW-3D		MW-101S		MW-101S		MW-101D		MW-101D		MW-102S		MW-102S		MW-102D	мм	V-102D	
		Lab Sample ID	SB72998-08				SB73081-02		460-260997-1		SB73081-01		460-260997-2		SB73081-04				SB73081-03			
		Sampling Date	7/10/2013		6/26/2022		7/11/2013		6/28/2022		7/11/2013		6/28/2022		7/10/2013		6/26/2022		7/10/2013	6/2	6/2022	
		Matrix							Water				Water									
		Dilution Factor							1				1									
SVOCs by 8270E SIM	UNITS	AWQSGV	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q		Result	Q
1,4-Dioxane **	ug/L	0.35**	20.0	U			20.0	U	0.17	UJ	20.0	U	<u>1.4</u>	J	20.0	U			20.0	J		
4,6-Dinitro-2-methylphenol	ug/L	NS	5.32	U	Not Sampled		5.10	U	0.38	U	5.10	U	0.38	U	5.15	U	Not Sampled		5.10	J Not Sar	npled	
Benzo[a]anthracene	ug/L	NS	5.32	U			5.10	U	0.016	U	5.10	U	0.016	U	5.15	U			5.10	J		
Benzo[a]pyrene	ug/L	ND	5.32	U			5.10	U	0.022	U	5.10	U	0.022	U	5.15	U			5.10	J		
Benzo[b]fluoranthene	ug/L	0.002*	5.32	U			5.10	U	0.024	UJ	5.10	U	0.024	UJ	5.15	U			5.10	J		
Benzo[g,h,i]perylene	ug/L	NS	5.32	U			5.10	U	0.035	U	5.10	U	0.035	U	5.15	U			5.10	J		
Benzo[k]fluoranthene	ug/L	0.002*	5.32	U			5.10	U	0.028	U	5.10	U	0.028	U	5.15	U			5.10	J		
Bis(2-chloroethyl)ether	ug/L	1	5.32	U			5.10	U	0.026	U	5.10	U	0.026	U	5.15	U			5.10	J		
Dibenz(a,h)anthracene	ug/L	NS	5.32	U			5.10	U	0.02	U	5.10	U	0.02	U	5.15	U			5.10	J		
Hexachlorobenzene	ug/L	0.04	5.32	U			5.10	U	0.011	U	5.10	U	0.011	U	5.15	U			5.10	J		
Indeno[1,2,3-cd]pyrene	ug/L	0.002*	5.32	U			5.10	U	0.036	U	5.10	U	0.036	U	5.15	U			5.10	J		
N-Nitrosodimethylamine	ug/L	NS	5.32	U			5.10	U	0.12	UJ	5.10	U	0.12	UJ	5.15	U			5.10	J		
Pentachlorophenol	ug/L	1	21.3	U			20.4	U	0.18	U	20.4	U	0.18	U	20.6	U			20.4	J		
Total Conc	ug/L	NS	0.0				0.0		0.0		0.0		1.4		0.0				0.0			

NOTES

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

** = 1,4-dioxane from 2023 addendum to June 1998 Division of Water Techical and Operational Guidance Series (TOGs) No. 1.1.1

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte

^{* =} Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

Summary of Groundwater Analytical Results: SVOCs via SIM 2013 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-103D		MW-103D		MW-113S	;	MW-113S		MW-113D		MW-113D		MW-201S		MW-201S		MW-201D		MW-201D	\neg
		Lab Sample ID	SB72998-07						460-261171-5				460-261171-6				460-264645-1				460-261171-11	
		Sampling Date	7/11/2013		6/26/2022		7/11/2013		6/29/2022		7/11/2013		6/29/2022		7/11/2013		8/30/2022		7/11/2013		6/30/2022	
		Matrix							Water				Water				Water				Water	
		Dilution Factor							1				1				1				1	
SVOCs by 8270E SIM	UNITS	AWQSGV	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result (Q	Result	Q	Result	Q	Result	Q	Result	Q
1,4-Dioxane **	ug/L	0.35**	20.0	U					0.17	UJ			0.17 l	U			0.17	UJ			<u>0.64</u>	J-
4,6-Dinitro-2-methylphenol	ug/L	NS	5.62	U	Not Sampled		Not Sampled		0.38	UJ	Not Sampled		0.38 U *	1	Not Sampled		3	UJ	Not Sampled		0.38	UJ
Benzo[a]anthracene	ug/L	NS	5.62	U					0.016	U			0.016 l	U			0.59	U			0.016	U
Benzo[a]pyrene	ug/L	ND	5.62	U			Not Yet		0.022	U	Not Yet		0.022 l	U	Not Yet		0.41	U	Not Yet		0.022	U
Benzo[b]fluoranthene	ug/L	0.002*	5.62	U			Installed		0.024	UJ	Installed		0.024 U	IJ	Installed		0.68	U	Installed		0.024	UJ
Benzo[g,h,i]perylene	ug/L	NS	5.62	U					0.035	U			0.035 U	U			0.7	U			0.035	U
Benzo[k]fluoranthene	ug/L	0.002*	5.62	U					0.028	U			0.028 l	U			0.67	U			0.028	U
Bis(2-chloroethyl)ether	ug/L	1	5.62	U					0.026	U			0.026 l	U			0.63	U			0.026	U
Dibenz(a,h)anthracene	ug/L	NS	5.62	U					0.02	U			0.02 l	U			0.72	U			0.02	U
Hexachlorobenzene	ug/L	0.04	5.62	U					0.011	U			0.011 l	U			0.4	U			0.011	U
Indeno[1,2,3-cd]pyrene	ug/L	0.002*	5.62	U					0.036	U			0.036 U	U			0.94	U *+			0.036	U
N-Nitrosodimethylamine	ug/L	NS	5.62	U					0.12	UJ			0.12 U	IJ			NT	U			0.12	UJ
Pentachlorophenol	ug/L	1	22.5	U					0.18	U			0.18 l	U			1.4	UJ			0.18	U
Total Conc	ug/L	NS	0.0						0.0				0.0				0.0			\dashv	0.64	

NOTES

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

** = 1,4-dioxane from 2023 addendum to June 1998 Division of Water Techical and Oerational Guidance Series (TOGs) No. 1.1.1

Laboratory Qualifiers

 ${\sf J}$: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte

^{* =} Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

Summary of Groundwater Analytical Results: SVOCs via SIM 2013 - 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	DUP (MW-2S)		EB_063022	
		Lab Sample ID	460-261171-7		460-261171-13	
		Sampling Date	6/29/2022		6/30/2022	
		Matrix	Water		Water	
		Dilution Factor	1		1	
SVOCs by 8270E SIM	UNITS	AWQSGV	Result	Q	Result	Q
1,4-Dioxane **	ug/L	0.35**	0.17	UJ	0.17	UJ
4,6-Dinitro-2-methylphenol	ug/L	NS	0.38	UJ	0.38	UJ
Benzo[a]anthracene	ug/L	NS	0.016	U	0.016	U
Benzo[a]pyrene	ug/L	ND	0.022	U	0.022	U
Benzo[b]fluoranthene	ug/L	0.002*	0.024	UJ	0.024	UJ
Benzo[g,h,i]perylene	ug/L	NS	0.035	U	0.035	U
Benzo[k]fluoranthene	ug/L	0.002*	0.028	U	0.028	U
Bis(2-chloroethyl)ether	ug/L	1	0.026	U	0.026	U
Dibenz(a,h)anthracene	ug/L	NS	0.02	U	0.02	U
Hexachlorobenzene	ug/L	0.04	0.011	U	0.011	U
Indeno[1,2,3-cd]pyrene	ug/L	0.002*	0.036	U	0.036	U
N-Nitrosodimethylamine	ug/L	NS	0.12	UJ	0.12	IJ
Pentachlorophenol	ug/L	1	0.18	U	0.18	U
Total Conc	ug/L	NS	0.00		0.00	

NOTES

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

** = 1,4-dioxane from 2023 addendum to June 1998 Division of Water Techical and Operational Guidance Series (TOGs) No. 1.1.1

Laboratory Qualifiers

 ${\sf J}$: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Table 6D Summary of Groundwatr Analytical Results: TAL Metals June 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-1S	MW-1D		MW-2S	MW-2D	MW-101S	MW-101D		MW-113S		MW-113D	MW-201S	MW-201D	DUP (MW-2S)	EB 063022
		Lab Sample ID	460-261171-3	460-261171-4		460-261171-1	460-261171-2	460-260997-1	460-260997-2		460-261171-5		460-261171-6	460-264645-1	460-261171-11	460-261171-7	460-261171-13
		Sampling Date	6/29/2022	6/29/2022		6/29/2022	6/29/2022	6/28/2022	6/28/2022		6/29/2022		6/29/2022	8/30/2022	6/29/2022	6/30/2022	400-201171-13
		Matrix	Water	Water		Water	Water	Water	Water		Water		Water	Water	Water	Water	Water
WATER BY 6020B	UNITS	AWQSGV	Result	Q Result	Q	Result Q	Result Q	Result Q	Result		Result	Q	Result	Q Result	Q Result Q	Result (Result
Aluminum	ug/L	2,000	314	19.5	U	1080 J	59.9	43.9	154	J	997		962	26.3	N J 27.9 J	708	J 19.5
Aluminum, Dissolved	ug/L	2,000	19.5	U 19.5	U	19.5 U	19.5 U	NR	24.3	NJ	19.5	U	19.5	U 19.5	U NR	19.5 l	19.5
Antimony	ug/L	3	0.76	U 0.76	U	2.5	0.76 U	0.76 U	0.76	U	0.76	U	0.76	U 0.76	U 0.76 U	2.3	0.76
Antimony, Dissolved	ug/L	3	0.76	U 0.76	U	2.3 J	0.76 U	NR	0.76	l U	0.76	U	0.76	U 0.76	U NR	1.4 N	
Arsenic Arsenic, Dissolved	ug/L	25 25	4.9 0.99	3.2 NJ 1.3		5.2 3.8	0.89 U 0.89 U	0.89 U NR	3.7 3.6		2.9 1.7	N.J	1.9 N		1.1 NJ	3.8	0.89 0.89
Barium	ug/L ug/L	1,000	100	106		20.5	51.8	506	550		35.2	INJ	40	512	123	20.5	0.89
Barium, Dissolved	ug/L	1,000	22.7	87.2		5.6 J	48.3	NR	528		34.9		30.3	549	NR	14.9	J 0.91
Beryllium	ug/L	3*	0.13	U 0.13	U	0.13 U	0.13 U	0.13 U	0.13	l u	0.13	U	0.13	U 0.13	U 0.13 U	0.13 U	0.13
Beryllium, Dissolved	ug/L	3*	0.13	U 0.13	Ü	0.13 U	0.13 U	NR	0.13	Ü	0.13	U	0.13	U 0.13	U NR	0.13 U	0.13
Cadmium	ug/L	5	0.39	U 0.39	Ü	0.39 U	0.39 U	0.82 NJ	0.39	Ū	0.39	U	0.39	U 0.39	U 0.39 U	0.39	0.39
Cadmium, Dissolved	ug/L	5	0.39	U 0.39	U	0.39 U	0.39 U	NR	0.39	Ü	0.39	U	0.39	U 0.39	U NR	0.39	0.39
Calcium	ug/L	NS	42,900	55,600	ľ	31,100 J	59,800	280,000	67,000	1	31,600		32,400	163,000	63,200	30,600	J 53.6
Calcium, Dissolved	ug/L ug/L	NS	42,900	55,900		28,100	56,900	200,000 NR	67,400		32,200		32,200	158,000	05,200 NR	40,900	J 53.6
Chromium	ug/L	50	4.7	2.5	U	12.4	2.5 U	2.5 U	29.5	J.	4		3.4 N	J 2.5	U 2.5 U	12.7	2.5
Chromium, Dissolved	ug/L	50	2.5	U 2.5		9.0 J	2.5 U	NR	2.5	UJ	2.5	U	2.5	U 2.5	U NR	2.9 N	
Cobalt	ug/L	NS	2.3	NJ 1.1	_	1.2 NJ	1.3 NJ	2.4 NJ	0.71	U	3.9	NJ	4 1	0.71	U 0.90 NJ	0.84 N	
Cobalt, Dissolved	ug/L	NS	0.71	U 1.1	_	0.71 U	1.0 NJ	NR NR	0.71	Ü	2.9	-	2.8 N		U NR	0.71 U	0.71
Copper	ug/L	200	5.6	2.5		8.5	2.5 U	2.5 U	2.5	l ŭ	3.4	NJ	3.7 N		U 2.5 U	7.8	2.5
Copper, Dissolved	ug/L	200	2.5	U 2.5		3.8 NJ	2.5 U	NR	2.5	l ü	2.5	U	2.5	U 2.5	U NR	3.1 N	J 2.5
Iron	ug/L	300	3,520	6,230		2,050 J	<u>2,290</u>	390	22,000	1	991		<u>1,120</u>	10,600	4,330	1,470	J 58.2
Iron, Dissolved	ug/L	300	58.2	U 58.2		58.2 U	58.2 U	NR	19,800	1	58.2	U	58.2	U <u>9,570</u>	NR	58.2 U	58.2
Lead	ug/L	25	2.4	0.84		0.84 U	0.84 U	0.84 U	0.84	_	0.84	U	0.84	U 0.84	U 0.84 U	0.84	0.84
Lead, Dissolved	ug/L	25	0.84	U 0.84		0.84 U	0.84 U	NR	0.84	_	0.84	U	0.84	U 0.84	U NR	0.84 U	0.84
Magnesium	ug/L	35,000*	5,030	J 23,900		5,570	32,800	61,100	35,500	1	5,350		5,580	54,300	34,400	5,520	J 46.9
Magnesium, Dissolved	ug/L	35,000*	6,270	J 23,200		4,920 J	31,000	NR	36,600		5,910		5,200	51,900	NR	8,010	J 46.9
Manganese	ug/L	300	<u>3,240</u>	486		<u>571</u>	2,770	2,140	1,080		86.1		121	1,070	290	<u>518</u>	1.5
Manganese, Dissolved	ug/L	300	139	458		10.3 J	2,590	NR	1,080		83.8		73.5	1,030	NR	99.1	1.5
Nickel	ug/L	100	8.1	0.91	U	5.5	0.91 U	10.6	0.91	Ūυ	54.4		54.8	0.91	U 0.91 U	4.1	0.91
Nickel, Dissolved	ug/L	100	0.91	U 0.91	U	0.91 U	0.91 U	NR	0.91	U	46.6		45.6	0.91	U NR	4.3	0.91
Potassium	ug/L	NS	3,730	4,500		4,400	2,980	5,210	4,710		3,030		3,150	10,900	2,480	4,470	112
Potassium, Dissolved	ug/L	NS	3,700	4,480		4,130	2,830	NR	4,780		2,960		2,890	10,800	NR	4,530	112
Selenium	ug/L	10	0.59	U 0.59	U	0.78 NJ	0.59 U	0.59 U	0.59	U	0.59	U	0.59	U 0.59	U 0.59 U	1.0 N	0.59
Selenium, Dissolved	ug/L	10	0.59	U 0.59	U	0.97 NJ	0.59 U	NR	0.59	U	0.59	U	0.59	U 0.59	U NR	0.59 l	0.59
Silver	ug/L	50	0.29	U 0.29	U	0.29 U	0.29 U	0.29 U	0.29	U	0.29	U	0.29	U 0.29	U 0.29 U	0.29 l	0.29
Silver, Dissolved	ug/L	50	0.29	U 0.29	U	0.29 U	0.29 U	NR	0.29	U	0.29	U	0.29	U 0.29	U NR	0.29 U	0.29
Sodium	ug/L	20,000	77,600	79,100		101,000	24,700	966,000	167,000		35,200		34,400	680,000	24,200	98,800	J 163
Sodium, Dissolved	ug/L	20,000	75,500	80,700		89,200 J	25,300	NR	166,000		36,000		34,900	656,000	NR	143,000	J 163
Thallium	ug/L	0.5*	0.21	U 0.21		0.21 U	0.21 U	0.21 U	0.21	U	0.21	U	0.21	U 0.21	U 0.21 U	0.21 l	0.21
Thallium, Dissolved	ug/L	0.5*	0.21	U 0.21	U	0.21 U	0.21 U	NR	0.21	U	0.21	U	0.21	U 0.21	U NR	0.21 l	0.21
Vanadium	ug/L	NS	7	0.68	U	16.3	0.68 U	0.79 NJ	0.68	U	5.9		5.9	0.68	U 0.68 U	16	0.68
Vanadium, Dissolved	ug/L	NS	0.79	NJ 0.68	U	9.2 J	0.68 U	NR	0.68	U	1.7	NJ	2.0 N	J 0.68	U NR	6.9	0.68
Zinc	ug/L	2,000*	6.5	U 6.5		6.5 UJ	35.4	6.5 U	6.5	_	6.5	U	6.5	U 10.4	N J 6.5 U	6.5 L	6.5
Zinc, Dissolved	ug/L	2,000*	9.1	NJ 6.5		18.6 J	37.7	NR	6.5	_	6.5	U	6.5	U 6.5	U NR	6.5 U	6.5
WATER BY 7470A(UG/L)																	
Mercury	ug/L	0.7	0.091	U 0.091	U	0.091 U	0.091 U	0.091 U	0.091	U	0.091	U	0.091	U 0.091	U 0.091 U	0.091 l	0.091
Mercury, Dissolved	ug/L	0.7				0.16 NJ	0.15 J	NR	0.13		0.14		0.17 N		U NR	0.16 N	

NOTES

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards

ug/L = micrograms per liter or parts per billion (ppb)
NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Table 6E Summary of Groundwater Analytical Results: PCBs 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-1S	MW-1D	MW-2S	MW-2D	MW-101S	MW-101D	MW-113S	MW-113D	MW-201S	MW-201D	DUP (MW-2S)	EB_063022
		Lab Sample ID	460-261171-3	460-261171-4	460-261171-1	460-261171-2	460-260997-1	460-260997-2	460-261171-5	460-261171-6	460-264645-1	460-261171-11	460-261171-7	460-261171-13
		Sampling Date	6/29/2022	6/29/2022	6/29/2022	6/29/2022	6/28/2022	6/28/2022	6/29/2022	6/29/2022	8/30/2022	6/30/2022	6/29/2022	6/30/2022
		Matrix	Water	Water	Water									
		Dilution Factor	1	1	1	1	1	1	1	1	1	1	1	1
PCBs BY 8082A	UNITS	AWQSGV	Result Q	Result	Q Result C	Result Q	Result Q	Result Q	Result					
Aroclor 1016	ug/L	NA	0.12 U	0.12	U 0.12 L	0.12 U	0.12 U	0.12 U	0.12					
roclor 1221	ug/L	NA	0.12 U	0.12	U 0.12 L	0.12 U	0.12 U	0.12 U	0.12					
Aroclor 1232	ug/L	NA	0.12 U	0.12	U 0.12 L	0.12 U	0.12 U	0.12 U	0.12					
Aroclor 1242	ug/L	NA	0.12 U	0.12	U 0.12 L	0.12 U	0.12 U	0.12 U	0.12					
Aroclor 1248	ug/L	NA	0.12 U	0.12	U 0.12 L	0.12 U	0.12 U	0.12 U	0.12					
Aroclor 1254	ug/L	NA	0.11 U	0.11	U 0.11 L	0.11 U	0.11 U	0.11 U	0.11					
roclor 1260	ug/L	NA	0.11 U	0.11	U 0.11 L	0.11 U	0.11 U	0.11 U	0.11					
Aroclor 1268	ug/L	NA	0.11 U	0.11	U 0.11 L	0.11 U	0.11 U	0.11 U	0.11					
roclor-1262	ug/L	NA	0.11 U	0.11	U 0.11 L	0.11 U	0.11 U	0.11 U	0.11					
otal PCRs	ua/I	n na	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0 12 11	0.12	0.12	0.12

NOTES

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

Validator Qualifier

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the acquantitation necessary to accurately and precisely measure the analyte in the sample.

Whitestone Data Tables 2025.xlsx Page 1 of 1 T-6E GW Qual_PCBs Jun 22

Table 6F Summary of Groundwater Analytical Results: Pesticides June 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-1S		MW-1D	MW-2S		MW-2D	MW-101S		MW-101D	MW-113S	MW-113D	MW-201S	MW-201D	DUP (MW-2S)	EB 063022
		Lab Sample ID	460-261171-3		460-261171-4	460-261171-1		460-261171-2	460-260997-1		460-260997-2	460-261171-5	460-261171-6	460-264645-1	460-261171-11	460-261171-7	460-261171-13
		Sampling Date	6/29/2022		6/29/2022	6/29/2022		6/29/2022	6/28/2022		6/28/2022	6/29/2022	6/29/2022	8/30/2022	6/30/2022	6/29/2022	6/30/2022
		Matrix	Water		Water	Water		Water	Water		Water	Water	Water	Water	Water	Water	Water
		Dilution Factor	1		11	1		1	1		1	1	1	11	1	11	1
WATER BY 8082A	UNITS	AWQSGV	Result	Q	Result (Q Result	Q	Result Q	Result	Q	Result Q	Result (Result C	Result C	Result Q	Result (Q Result C
Aldrin	ug/L	ND	0.003	U	0.003 l	0.003	U	0.003 U	0.003	U	0.003 U	0.003	J 0.003 L	J 0.003 L	0.003 U	0.003	U 0.003 U
alpha-BHC	ug/L	0.01	0.007	U	0.007 l	0.007	U	0.007 U	0.007	U	0.007 U	0.007 l	J 0.007 L	J 0.007 U	0.007 U	0.007	U 0.007 U
beta-BHC	ug/L	0.04	0.015	U	0.015 l	0.015	U	0.015 U	0.015	U	0.015 U	0.015 l	J 0.015 L	J 0.015 U	0.015 U	0.015	U 0.015 U
Chlordane (technical)	ug/L	NS	0.055	U	0.055 l	0.055	U	0.055 U	0.055	U	0.055 U	0.055 l	J 0.055 L	J 0.055 U	0.055 U	0.055	U 0.055 U
delta-BHC	ug/L	0.04	0.005	U	0.005 l	0.005	U	0.005 U	0.005	U	0.005 U	0.005 l	J 0.005 L	J 0.005 U	0.005 U	0.005	U 0.005 U
Dieldrin	ug/L	0.004	0.003	U	0.003 l	0.003	U	0.003 U	0.003	U	0.003 U	0.003 U	J 0.003 L	J 0.003 U	0.003 U	0.003	U 0.003 U
Endosulfan I	ug/L	NS	0.002	U	0.002 l	0.002	U	0.002 U	0.002	U	0.002 U	0.002 l	J 0.002 L	J 0.002 U	0.002 U	0.002	U 0.002 U
Endosulfan II	ug/L	NS	0.004	U	0.004 l	0.004	U	0.004 U	0.004	U	0.004 U	0.004 l	ال 0.004 ل	J 0.004 U	0.004 U	0.004	U 0.004 U
Endosulfan sulfate	ug/L	NS	0.006	U	0.006 L	0.006	U	0.006 U	0.006	U	0.006 U	0.006 ไ	J 0.006 L	J 0.006 U	0.006 U	0.006 U	U 0.006 U
Endrin	ug/L	ND	0.004	U	0.004 l	0.004	U	0.004 U	0.004	U	0.004 U	0.004 l	J 0.004 L	J 0.004 U	0.004 U	0.004	U 0.004 U
Endrin aldehyde	ug/L	5	0.008	U	ا 800.0	0.008	U	0.008 U	0.008	U	0.008 U	0.008 U	ا 0.008 ل	J 0.008 U	0.008 U	0.008	U 0.008 U
Endrin ketone	ug/L	5	0.008	U	ا 800.0	0.008	U	0.008 U	0.008	U	0.008 U	0.008 U	J 0.008 L	J 0.008 U	0.008 U	0.008	U 0.008 U
gamma-BHC (Lindane)	ug/L	0.05	0.012	U	0.012 l	0.012	U	0.012 U	0.012	U	0.012 U	0.012 l	J 0.012 L	J 0.012 U	0.012 U	0.012	U 0.012 U
Heptachlor	ug/L	0.04	0.003	U	0.003 l	0.003	U	0.003 U	0.003	U	0.003 U	0.003 l	J 0.003 L	0.003 U	0.003 U	0.003	U 0.003 U
Heptachlor epoxide	ug/L	0.03	0.005	U	0.005 L	0.005	U	0.005 U	0.005	U	0.005 U	0.005 l	J 0.005 L	J 0.005 U	0.005 U	0.005	U 0.005 U
Methoxychlor	ug/L	35	0.004	U	0.004 l	0.004	U	0.004 U	0.004	U	0.004 U	0.004 l	J 0.004 L	J 0.004 U	0.004 U	0.004	U 0.004 U
Toxaphene	ug/L	0.06	0.11	U	0.11 l	0.11	U	0.11 U	0.11	U	0.11 U	0.11 l	J 0.11 L	J 0.11 U	0.11 U	0.11	U 0.11 U

NOTES

AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards * = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards

ug/L = micrograms per liter or parts per billion (ppb)

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

NR: Not Analyzed

U : Indicates the analyte was analyzed for but not detected.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the act quantitation necessary to accurately and precisely measure the analyte in the sample.

Table 6G Summary of Groundwater Analytical Results: PFAS 2022 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

			Client ID	MW-1S		MW-1S		MW-1D		MW-2S		MW-2S		MW-2D		MW-101S		MW-101D
			Lab Sample ID	460-261171-3		460-261171-3		460-261171-4		460-261171-1		460-261171-1		460-261171-2		460-260997-1		460-260997-2
			Sampling Date	6/29/2022		6/29/2022		6/29/2022		6/29/2022		6/29/2022		6/29/2022		6/28/2022		6/28/2022
			Matrix	Water		Water		Water		Water		Water		Water		Water		Water
			Dilution Factor	1		1		1		1		1		1		1		1
WATER BY D516-11		UNITS	GWQS	Result	Q	Secondary 1	Q	Result	Q	Result	Q	Secondary 1	Q	Result	Q	Result	Q	Result Q
6:2 Fluorotelomer sulfonic acid		ng/L	NA	2.04	NJ	1.64	U	1.77	U	1.91	ΝJ	1.75 L	JJ	1.68	U	6.66		1.71 U
8:2 Fluorotelomer sulfonic acid		ng/L	NA	0.84	U	0.82	UJ	0.89	U	0.88	U	0.87 L	JJ	0.84	U	0.82	U	0.86 U
NEtFOSAA	NEtFOSA	ng/L	NA	0.42	U	0.41	UJ	0.97	ΝJ	0.44	U	0.52 N	۱ ا	0.42	U	0.41	U	5.01
NMeFOSAA	NMeFOSA	ng/L	NA	0.5	U	0.49	UJ	0.53	U	0.53	U	0.52 L	JJ	0.5	U	0.49	U	0.51 U
Perfluorobutanesulfonic acid	PFBS	ng/L	NA	8.98		13.0	J	2.84		7.51	ΝJ	8.83	J	1.08	ΝJ	11.2		3.50
Perfluorobutanoic acid	PFBA	ng/L	NA	4.53		4.49	J	4.41	ΝJ	5.38		4.67	J	2.32	ΝJ	10.1		6.81
Perfluorodecanesulfonic acid	PFDS	ng/L	NA	0.42	U	0.41	UJ	0.86	ΝJ	0.44	U	0.44 L	JJ	0.42	U	0.41	U	0.43 U
Perfluorodecanoic acid	PFDA	ng/L	NA	2.58		0.42	ΝJ	0.95	ΝJ	1.94	ΝJ	3.05	J	0.42	U	0.69	J	1.38 N J
Perfluorododecanoic acid	PFDoA	ng/L	NA	0.42	U	0.41	UJ	0.44	U	0.44	U	0.44 L	JJ	0.42	U	0.41	U	0.43 U
Perfluoroheptanesulfonic acid	PFHpS	ng/L	NA	0.42	U	0.41	UJ	0.44	U	0.44	U	0.44 L	JJ	0.42	U	0.41	U	0.43 U
Perfluoroheptanoic acid	PFHpA	ng/L	NA	2.8		2.9	J	7.16		4.28		4.62	J	1.73		4.16		7.61
Perfluorohexanesulfonic acid	PFHxS	ng/L	NA	0.42	U	0.41	UJ	5.43		1.13	ΝJ	1.78	J	0.58	ΝJ	1.75		3.78
Perfluorohexanoic acid	PFHxA	ng/L	NA	3.55		4.27	J	7.25		4.8		5.78	J	2.80		11.1		12.0
Perfluorononanoic acid	PFNA	ng/L	NA	2.6		1.13	ΝJ	1.23	ΝJ	2.20		2.90	J	0.42	U	2.74		2.13
Perfluorooctanesulfonamide	FOSA	ng/L	NA	0.42	U	0.67	ΝJ	0.57	ΝJ	0.48	ΝJ	0.66	۱ J	0.42	U	0.41	U	0.43 U
Perfluorooctanesulfonic acid	PFOS	ng/L	2.7	<u>7.19</u>		0.41	UJ	<u>19.3</u>	В	<u>28.6</u>	J	<u>34.1</u>	J	2.23		<u>15</u>		<u>22.8</u>
Perfluorooctanoic acid	PFOA	ng/L	6.7	7.19 5.3		3.64	J	<u>17.9</u>		<u>7.12</u>	J	9.1 5.25	J	5.85		<u>16.4</u>		<u>17.8</u>
Perfluoropentanoic acid	PFPeA	ng/L	NA	3.91		4.26	J	6.21		3.70	J	5.25	J	2.38		8.06		11.3
Perfluorotetradecanoic acid	PFTA	ng/L	NA	0.42	U	0.41	UJ	0.44	U	0.44	U	0.44 L	JJ	0.42	U	0.41	U	0.43 U
Perfluorotridecanoic acid	PFTrDA	ng/L	NA	0.42	U	0.41	UJ	0.44	U	0.44	U	0.44 L	JJ	0.42	U	0.41	U	0.43 U
Perfluoroundecanoic acid	PFUnA	ng/L	NA	1.33	NJ	0.41	UJ	0.44	U	0.44	U	0.44 L	JJ	0.42	U	0.41	U	0.43 U

Groundwater Quality Standard from: 6 NYCRR Part 703

ng/L = nanograms per liter

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

- B: Compound was found in the blank and sample.
- U : Indicates the analyte was analyzed for but not detected.
- I : Value is EMPC (estimated maximum possible concentration).
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The result is an estimate and is biased high
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Table 6G Summary of Groundwater Analytical Results: PFAS 2022 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

			Client ID	MW-113S		MW-113D		MW-201S	MW-201D		DUP (MW-2S)	DUP (MW-2S)	EB_063022	FB_063022
			Lab Sample ID	460-261171-5		460-261171-6		460-264645-1	460-261171-11		460-261171-7	460-261171-7	460-261171-13	460-261171-14
			Sampling Date	6/29/2022		6/29/2022		8/30/2022	6/30/2022		6/29/2022	6/29/2022	6/30/2022	6/30/2022
			Matrix	Water		Water		Water	Water		Water	Water	Water	Water
			Dilution Factor	1		1		1	1		1	1	1	1
WATER BY D516-11		UNITS	GWQS	Result	Q	Result	Q	Result C	Result	Q	Result Q	Secondary 1 Q	Result Q	Result Q
6:2 Fluorotelomer sulfonic acid		ng/L	NA	1.95	U	1.69	U	3.94 L	1.71	U	3.22 N J	2.71 N J	1.78 U	1.68 U
8:2 Fluorotelomer sulfonic acid		ng/L	NA	0.98	U	0.85	ΝJ	0.94 L	0.86	U	0.88 U	0.88 U J	0.89 U	0.84 U
NEtFOSAA	NEtFOSA	ng/L	NA	0.49	U	6.58		0.47 L	0.43	U	0.44 U	0.44 U J	0.44 U	0.42 U
NMeFOSAA	NMeFOSA	ng/L	NA	0.59	U	2.18		0.56 L	0.51	U	0.53 U	0.53 U J	0.53 U	0.5 U
Perfluorobutanesulfonic acid	PFBS	ng/L	NA	1.20	ΝJ	18.1		10.9 J+	0.43	U	8.52	8.04 J	0.44 U	0.42 U
Perfluorobutanoic acid	PFBA	ng/L	NA	10.4		10.2		6.81	1.71	U	4.66	4.71 J	1.78 U	1.68 U
Perfluorodecanesulfonic acid	PFDS	ng/L	NA	0.49	U		ΝJ	0.47 L	0.43	U	0.93 N J	0.44 U J	0.44 U	0.42 U
Perfluorodecanoic acid	PFDA	ng/L	NA	0.49	U	26.3		1.37 N s	0.43	U	2.93 J	3.04 J	0.44 U	0.42 U
Perfluorododecanoic acid	PFDoA	ng/L	NA	0.49	U	5.33		0.47 L	0.43	U	0.44 U	0.44 U J	0.44 U	0.42 U
Perfluoroheptanesulfonic acid	PFHpS	ng/L	NA	0.49	U	0.47	ΝJ	0.47 L	0.43	U	0.44 U	0.44 U J	0.44 U	0.42 U
Perfluoroheptanoic acid	PFHpA	ng/L	NA	21.8		41.7		5.76	0.54	ΝJ	4.89	5.53 J	0.44 U	0.42 U
Perfluorohexanesulfonic acid	PFHxS	ng/L	NA	0.49	U	1.14	ΝJ	1.57 N s	0.58	ΝJ	1.24 N J	1.22 N J	0.44 U	0.42 U
Perfluorohexanoic acid	PFHxA	ng/L	NA	15.3		17.5		8.94	0.55	ΝJ	6.02	5.69 J	0.44 U	0.42 U
Perfluorononanoic acid	PFNA	ng/L	NA	0.49	U	29.7		3.36	0.43	U	2.38 J	2.56 J	0.44 U	0.42 U
Perfluorooctanesulfonamide	FOSA	ng/L	NA	0.56	NJ	27		0.47 L	0.43	U	1.1 NJ	0.66 N J	0.44 U	0.42 U
Perfluorooctanesulfonic acid	PFOS	ng/L	2.7	0.49	U	<u>55.4</u>	В	<u>21.2</u>	3.62 2.2		37.6 J	34.1 J 9.08 J 4.31 J	0.44 U	0.42 U
Perfluorooctanoic acid	PFOA	ng/L	6.7	<u>8.33</u>		<u>56.3</u>		<u>20.1</u>	2.2		9.47 J	<u>9.08</u> J	0.44 U	0.42 U
Perfluoropentanoic acid	PFPeA	ng/L	NA	17.7		17.8		8.75	0.66	ΝJ	5.45 J	4.31 J	0.44 U	0.42 U
Perfluorotetradecanoic acid	PFTA	ng/L	NA	0.49	U	0.42	U	0.47 L	0.43	U	0.44 U	0.44 U J	0.44 U	0.42 U
Perfluorotridecanoic acid	PFTrDA	ng/L	NA	0.49	U	0.42	U	0.47 L	0.43	U	0.44 U	0.44 U J	0.44 U	0.42 U
Perfluoroundecanoic acid	PFUnA	ng/L	NA	0.49	U	15.3		0.47 L	0.43	U	0.44 U	0.44 U J	0.44 U	0.42 U

Groundwater Quality Standard from: 6 NYCRR Part 703

ng/L = nanograms per liter

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

Laboratory Qualifiers

- B: Compound was found in the blank and sample.
- U : Indicates the analyte was analyzed for but not detected.
- I : Value is EMPC (estimated maximum possible concentration).
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The result is an estimate and is biased high
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Table 6H

Summary of Groundwatr Analytical Results: Sulfate and Nitrate 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-1S	MW-1D	MW-2S	MW-2D	MW-3S	MW-3D	MW-101S	MW-101D
		Lab Sample ID	460-261171-3	460-261171-4	460-261171-1	460-261171-2	460-261171-9	460-261171-10	460-260997-1	460-260997-2
		Sampling Date	6/29/2022	6/29/2022	6/29/2022	6/29/2022	6/30/2022	6/30/2022	6/28/2022	06/28/202
		Matrix	Water	Water	Water	Water	Water	Water	Water	Water
WATER BY D516-11	UNITS	AWGSGV	Result C	Result Q	Result Q	Result Q				
Sulfate (mg/l)	mg/L	250	13.8	42.5	48.2	47.6	26.2	39.2	47	43.8
WATER BY SM 4500 NO3 F										
Nitrate as N (mg/l)	mg/L	10	0.3	0.021 U	1.5 H	0.084 N J	0.03 N J	0.021 U	0.21	0.021 U

NOTES

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

Laboratory Qualifiers

- H: Sample was prepped or analyzed beyond the specified holding time
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

^{* =} Guidance Value from: NYSDEC TOGS 1.1.1 GW Standard ug/L = micrograms per liter or parts per billion (ppb)

Table 6H

Summary of Groundwatr Analytical Results: Sulfate and Nitrate 2022 Former Johnny On the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY

		Client ID	MW-102S		MW-102D	MW-103D		MW-113S		MW-113D		MW-201S		MW-201D		DUP (MW-2S)	EB_063022	,
		Lab Sample ID	460-260919-2		460-260919-1	460-261171-8		460-261171-5		460-261171-6		460-264645-1		460-261171-11		460-261171-7	460-261171-13	
		Sampling Date	6/27/2022		6/27/2022	6/30/2022		6/29/2022		6/29/2022		8/30/2022		6/30/2022		6/30/2022	6/29/2022	
		Matrix	Water		Water	Water		Water		Water		Water		Water		Water	Water	
WATER BY D516-11	UNITS	AWGSGV	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result	
Sulfate (mg/l)	mg/L	250	2.4	U	111	30		12		13.5		22.6		101		48.6	2.4	T
WATER BY SM 4500 NO3 F																		
Nitrate as N (mg/l)	mg/L	10	0.23		0.082 J	0.021	U	0.55		0.43		0.070	U	0.021	U	2.1	0.021	l

NOTES

NS = No Standard

BOLD = Exceeds Groundwater Quality Standards

* = Guidance Value from: NYSDEC TOGS 1.1.1 GW Standards AWQSGVs = Ambient Water Quality Standard and Guidance Values from 6 NYCRR Part 703 and NYSDEC Technical and Operational Guidance Serries (TOGS) Groundwater Standards

Laboratory Qualifiers

- H: Sample was prepped or analyzed beyond the specified holding time
- J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- U : Indicates the analyte was analyzed for but not detected.

Validator Qualifiers

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

^{* =} Guidance Value from: NYSDEC TOGS 1.1.1 GW Standard: ug/L = micrograms per liter or parts per billion (ppb)

TABLE 7A Summary of Sub-Slab Soil Gas Analytical Results: 2008 to 2024 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH Stnds 1						Former Johnny	on the Spot Cleaners					
	Medium	102 011 0111	Sub-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vapor			•	b-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vapor
	Laboratory ID						200-37771-11	200-42355-8		0-67137-8	L2408362-13	200-62822-15	200-67137-12	L2408362-12
	Sample ID		SG-1	SG-1	SG-1	SG-1	SG-1	SG-1		/MP-2R	VMP-2R	VMP-3R	VMP-3R	VMP-3R
	Collection Date		08/26/08	06/19/13	07/11/13	10/16/13	03/10/17	02/21/18		3/02/23	02/14/24	03/30/22	03/02/23	02/14/24
	Units	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3		ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
CAS Number	Chemical Name	g, c	agimo	l ag/mo	ug/mo	l ag/mo	ag/iiio	l ag/mo	ug/mo	адино	l agrillo	agiiio	l ag/iiic	agimo
71-55-6	1.1.1-TRICHLOROETHANE	NS	11 U			1	17 U	11 U	11 U	1.1 U	1.09 L	J 11 U	J 11 U	1.09 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	14 U				21 U	14 U	14 U	14 U	1.37 L	J 14 U	J 14 U	1.37 U
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE (FREON TF)	NS	14 0				23 U	14 U	15 U	15 U	1.53 L	15 U	J 15 U	1.53 U
75-35-4	1,1-DICHLOROETHENE	NS	13 U				21	16	1.4 U	1.4 U	0.793 L	1.4 U	J 1.4 U	0.793 U
95-63-6	1.2.4-TRIMETHYLBENZENE	NS	10 0	72.76	14.5	91.93	15 U	36	3.3 NJ	9.8 U	0.983 L	3.3 U	J 9.8 U	0.983 U
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	16 U	24.58 U	16.9 U		15 U	14	9.8 U	9.8 U	0.983 L	9.8 U	J 9.8 U	0.983 U
106-99-0	1.3-BUTADIENE	NS	19 U	21.00	10.0	1 10.00	6.7 U	4.4 U	4.4 U	4.4 U	0.442 L	J 4.4 U		0.442 U
541-73-1	1,3-DICHLOROBENZENE	NS					18 U	12 U	12 U	12 U	1.20 L	12 U		1.20 U
106-47-7	1,4-DICHLOROBENZENE	NS					18 U	12 U	12 U	12 U	1.20 L	12 U	J 12 U	1.20 U
540-84-1	2.2.4-TRIMETHYLPENTANE	NS	11 U				14 U	79	9.3 U	9.3 U	0.934 L	9.3 U	J 9.3 U	0.934 U
622-96-8	4-ETHYLTOLUENE	NS	16 U	35.4	16.9 U	143.55 U	15 U	9.8	9.8 U	9.8 U	0.983 L	9.8 U		0.983 U
99-87-6	4-ISOPROPYLTOLUENE (CYMENE)	NS					17 U	12 U	11 U	11 U	NT	11 U	J 11 U	NT
67-64-1	ACETONE	NS		337.43	16.9 U	1451.91	180 U	120 U	81 NJ	120 U	16.5	120 U	J 120 U	27.1
71-43-2	BENZENE	NS		17.23	16.9 U	93.15 U	9.7 U	6.4 U	6.4 U	1.5 NJ	1.20	6.4 U		0.639 U
106-97-8	BUTANE	NS					18 U	26	12 U	12 U	NT	12 U	J 12 U	NT
75-15-0	CARBON DISULFIDE	NS		25.52	16.9 U	295.06	24 U	16 U	16 U	16 U	0.623 L	J 16 U	J 16 U	0.738
56-23-5	CARBON TETRACHLORIDE	NS	15	31.45 U	16.9 U	183.68 U	3.8 U	2.2 U	2.2 U	2.2 U	1.26 L	J 2.2 U		1.26 U
75-45-6	CHLORODIFLUOROMETHANE (Freon 22)	NS					27 U	18 U	18 U	18 U	NT	18 U	J 18 U	NT
108-90-7	CHLOROBENZENE	NS		23.03 U	16.9 U	134.48 U	14 U	7.0 U	9.2 U	9.2 U	0.921 L	J 9.2 U	J 9.2 U	0.921 U
	CHLOROFORM	NS	18 U	89.07	16.9	142.12 U	15 U	9.8 U	9.8 U	9.8 U	0.977 L	J 9.8 U	J 9.8 U	0.977 U
74-87-3	CHLOROMETHANE	NS	22 U	10.33 U	16.9 U		16 U	10 U	10 U	10 U	0.884	10 U	J 10 U	0.413 U
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS	16 U	19.83 U	6.76 U	115.78 U	51	22	2.0 U	2.0 U	0.793 L	J 2.0 U	J 2.0 U	0.793 U
110-82-7	CYCLOHEXANE	NS	21 U	17.21 U	16.9 U	100.51 U	10 U	18	6.9 U	6.9 U	0.688 L	J 6.9 U	J 6.9 U	0.688 U
75-71-8	DICHLORODIFLUOROMETHANE	NS	42 U				38 U	25 U	14 NJ	25 U	2.74	25 U	J 25 U	2.84
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	13 U				52	22	16 U	16 U	NT	16 U	J 16 U	NT
64-17-5	ETHANOL	NS					NT	NT	NT	NT	38.6	NT	NT	18.1
100-41-4	ETHYLBENZENE	NS	14 U	49.42	16.9 U	78.47	13 U	26	8.7 U	2.7 NJ	0.869 L	J 8.7 U	J 8.7 U	0.869 U
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS		12.27 U	16.9 U	180.86	190 U	120 U	120 U	120 U	5.26	120 U	J 120 U	12.6
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS		24.58 U	16.9 U	143.55 U	9.8 U	9.8 U	9.8 U	9.8 U	NT	9.8 U	J 9.8 U	NT
179601-23-1	M,P-XYLENES	NS	36 U	224.57	16.9 U	345.1	33 U	78	22 U	22 U	1.74 L	J 22 U	J 22 U	1.74 U
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS		14.74 U	16.9 U	86.11 U	22 U	15 U	15 U	15 U	2.15	15 U	J 15 U	3.19
1634-04-4	METHYL TERT-BUTYL ETHER (MTBE)	NS	30 U				11 U	7.2 U	7.2 U	7.2 U	0.721 L	J 7.2 U	J 7.2 U	0.721 U
75-09-2	METHYLENE CHLORIDE	NS	19 U	17.36 U	16.9 U	101.39 U	26 U	17 U	17 U	17 U	6.53	27 J	17 U	1.74 U
91-20-3	NAPHTHALENE	NS		26.18 U	16.9 U	152.87 U	40 U.	J 26 U	26 UJ	26 U	NT	26 U	J 37	NT
142-82-5	N-HEPTANE	NS	14 U	20.49 U	16.9 U	119.67 U	12 U	31	8.2 U	8.2 U	0.82 L	J 3.1 N	J 8.2 U	0.82 U
110-54-3	N-HEXANE	NS	30 U	35.61	16.9 U	325.76	11 U	35	18 U	18 U	0.705 L	9.0 N	J 18 U	0.705 U
	N-PROPYLBENZENE	NS					15 U	9.8 U	9.8 U	9.8 U	NT	9.8 U	J 9.8 U	NT
	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	14 U	52.89	16.9 U		13 U	44	8.7 U	2.4 NJ		J 8.7 U	J 8.7 U	0.869 U
	STYRENE	NS		21.27 U	16.9 U	124.2 U	13 U	13 U	8.5 U	8.5 U	0.852 L	J 8.5 U	J 8.5 U	0.852 U
75-65-0	TERT-BUTYL ALCOHOL	NS					230 U	150 U	150 U	150 U	1.52 L	J 150 U	J 150 U	2.85
109-99-9	TETRAHYDOFURAN	NS		14.74 U	16.9 U	86.11 U		150 U	150 U	150 U	6.11	150 L	J 150 U	1.47 U
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	4300	2746.38	2610	16,614	2400	75	43	59	5.93	13 N	-	50.7
108-88-3	TOLUENE	NS	12 U	171.58	6.42	360.85	11 U	37	6.3 NJ	3.5 NJ		5.3 N	J 1.6 NJ	
156-60-5	TRANS-1,2-DICHLOROETHENE	NS					12 U	7.9 U	7.9 U	7.9 U	0.793 L	J 7.9 U	J 7.9 U	0.793 U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	75	192.4	188	1101.72	750	97	6.0	7.2	1.07 L	J 1.9 U	J 1.9 U	1.07 U
75-69-4	TRICHLOROFLUOROMETHANE	NS	19 U	28.1 U			17 U		11 U	11 U	1.49	11 U	J 11 U	1.56
	VINYL CHLORIDE	NS	8.4 U	59.56	43.3	74.64 U	1.6 U	78	2.0 U	2.0 U	0.511 L	J 2.0 U	J 2.0 U	0.511 U
	XYLENES, TOTAL	NS					46 U	120	30 U	2.4 NJ	2.6 L	J 30 U	J 30 U	2.6 U
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS						24 No	J 48 N	0		33 N	1 0	

NYSDOH October 2006, with revisions.

Only those analytes detected in one or more samples are presented above Blank values indicate concentrations below laboratory method detection limits ug/m3 = micrograms per cubic meter

NS = No Standard

Bold = Concentration exceeds Standards

Validator Qualifiers

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N = The analysis indicates the tentative presence of a non-target/method specified analyte

U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the

actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

TABLE 7A Summary of Sub-Slab Soil Gas Analytical Results: 2008 to 2024 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH Stnds ¹	Former .	Johnny on the Spo	t Cleaners				Former Bank				
	Medium		Sub-Slab Vapo			Sub-Slah Vanor	Sub-Slah Vanor	Sub-Slab Vapor		Sub-Slah Vanor	Sub-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vapor
	Laboratory ID		200-62822-16	200-67137-13	L2408362-11	Cub Clab Vapor	Cub Club Vupor	Cas Clas Vapor	200-37771-12	Cas Clas Vapor	200-63226-1	200-67137-10	L2408362-07
	Sample ID		VMP-4R	VMP-4R	VMP-4R	SG-4	SG-4	SG-4	SG-4	SG-4	SG-4	SG-4	SG-4
	Collection Date		03/30/22	03/02/23	02/14/24	06/19/13	07/11/13	10/16/13	03/11/17	02/21/18	04/29/22	03/02/23	02/14/24
	Units	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
CAS Number	Chemical Name	, and the second	J	J	J	J	<u> </u>	<u> </u>	J	<u> </u>	<u> </u>	J. J.	J
71-55-6	1.1.1-TRICHLOROETHANE	NS	11 l	J 11 U	1.09 U				1.1 U		11 L	J 11 U	1.09 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	14 l	J 14 U	1.37 U				1.4 U		14 L	J 14 U	1.37 U
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE (FREON TF)	NS	15 l	J 15 U	1.53 U				1.5 U		15 L	15 U	1.53 U
75-35-4	1,1-DICHLOROETHENE	NS	1.4 l	J 1.4 U	0.793 U				0.79 U	Water being	1.4 L	J 1.4 U	
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	9.8 l	J 9.8 U	0.983 U	195.17	15.1	1.47	5.2	drawn up	4.0 N	J 9.8 U	1.31
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	9.8 l	J 9.8 U	0.983 U	34.41	3.1	2.46 U	1.4	through tubing	9.8 L	9.8 U	0.983 U
106-99-0	1,3-BUTADIENE	NS	4.4 l	J 4.4 U	0.442 U				0.44 U	into Summa	4.4 L	J 4.4 U	0.442 U
541-73-1	1,3-DICHLOROBENZENE	NS	12 l	J 12 U	1.20 U				6.0	Canister.	12 L	12 U	1.20 U
106-47-7	1,4-DICHLOROBENZENE	NS	12 l	J 12 U	1.20 U				1.2 U			12 U	3.34
	2,2,4-TRIMETHYLPENTANE	NS	9.3 l	J 9.3 U	0.934 U				6.3		9.3 L	9.3 U	0.934 U
	4-ETHYLTOLUENE	NS	9.8 l	J 9.8 U	0.983 U	70.79	2.7	2.46 U	1.6	Sample	9.8 L	9.8 U	0.983 U
	4-ISOPROPYLTOLUENE (CYMENE)	NS	11 l	J 11 U	NT				1.1 U	canceled.	11 L	J 11 U	NT
	ACETONE	NS	120 N		14.9	11.88 U	5.00 U	30.18	18		930	120 U	349
71-43-2	BENZENE	NS	6.4 l	J 6.4 U	0.639 U	15.95 U	5.00 U	0.77	3.8		6.4 L	2.3 No	
	BUTANE	NS	12 l	J 12 U	NT				9.6		19	12 U	NT
75-15-0	CARBON DISULFIDE	NS	16 l	J 16 U	0.629	15.56 U	5.00 U	1.56 U	1.6 U		16 L	J 16 U	19.0
	CARBON TETRACHLORIDE	NS	2.2 l	J 2.2 U	1.26 U	31.45 U	5.00 U	3.15 U	0.29		2.2 L	J 2.2 U	
75-45-6	CHLORODIFLUOROMETHANE (Freon 22)	NS	18 l	J 18 U	NT		500 11		1.8 U		18 L	J 18 U	NT
108-90-7	CHLOROBENZENE	NS	9.2 l	J 9.2 U	0.921 U	23.03 U	5.00 U	2.3 U	0.92 U			9.2 U	0.921 U
67-66-3	CHLOROFORM	NS	9.8 l	J 9.8 U	0.977 U	24.34 U	5.00 U	2.43 U	5.7		9.8 L	9.8 U	1.19
74-87-3	CHLOROMETHANE	NS	10 l	J 10 U	0.413 U	10.33 U	5.00 U	1.05	1.0 U		10 L	10 U	0.537
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS	1.5 N		0.793 U	19.83 U	5.00 U	1.98 U	0.79 U		2 L	2.0 U	0.793 U
	CYCLOHEXANE	NS	6.9 L	J 6.9 U	0.688 U	17.21 U	5.00 U	1.72 U	2.8		2.7 N		
	DICHLORODIFLUOROMETHANE	NS NS	25 l 16 l	J 25 U J 16 U	3.13				5.7 1.6 U		6.1 N	J 25 U J 16 U	2.90 NT
64-17-5	DICHLOROETHYLENES (1,2-DCE TOTAL) ETHANOL	NS NS	NT	NT	NT 9.42 U				NT		10 C	16 0	15.2
100-41-4	ETHYLBENZENE	NS NS	8.7 L	J 2.5 NJ	0.869 U	61.13	5.00 U	1.04	4.5		8.7 L	2.6 N	
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS NS	120 U	J 2.5 NJ J 120 U	21.2	12.27 U	5.00 U	53.5	28		320	120 U	1140
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS NS	9.8 L		NT	24.58 U	5.00 U	2.46 U			9.8 L		
	M,P-XYLENES	NS NS	22	J 22 U	1.74 U	327.75	10.0	4.81	15		22) 9.8 U	3.13
	METHYL ETHYL KETONE (2-BUTANONE)	NS	15	J 15 U	1.47 U	14.74 U	5.00 U	3.69	4.6		10 N		6.13
	METHYL TERT-BUTYL ETHER (MTBE)	NS	7.2 l	J 7.2 U	0.721 U	14.74 0	3.00	3.03	0.72 U		7.2	J 7.2 U	0.721 U
75-09-2	METHYLENE CHLORIDE	NS	17 L	J 17 U	12.9	17.36 U	5.00 U	1.74 U	1.7 U		17 L	14 N	
	NAPHTHALENE	NS	26 U	JJ 26 U	NT	28.79	2.6	2.62 U	2.6 U.		26 U	_	NT NT
	N-HEPTANE	NS	8.2 U	J 8.2 U	0.82 U	20.49 U	5.00 U	2.05 U	3.9		8.2 L	J 8.2 U	0.82 U
	N-HEXANE	NS	18 l	5.4 NJ		80.03	5.00	7.19	8.5		18 L	6.6 N	
	N-PROPYLBENZENE	NS	9.8	J 98 U	NT	00.00	0.00	1.10	0.98 U		9.8	9.8 U	NT OT
	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	8.7 L	J 2.5 NJ	0.869 U	84.54	5.00 U	1.56	5.0		8.7 L	0.0	1.22
	STYRENE	NS	8.5 L	J 8.5 U		21.27 U					8.5 L	8.5 U	
	TERT-BUTYL ALCOHOL	NS	150 l	J 150 U	1.73	<u> </u>	1		15 U		180	150 U	
109-99-9	TETRAHYDOFURAN	NS	150 l	J 150 U		14.74 U	5.00 U	1.47 U			1	150 U	
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	380	150	111	2909.13	399	435.35	72		6.2 N		6.04
	TOLUENE	NS	7.5 l	J 2.4 NJ		156.16	5.00 U		23		5.8 N		
	TRANS-1,2-DICHLOROETHENE	NS	7.9 l	J 7.9 U	0.793 U				0.72 U		7.9 L	7.9 U	0.793 U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	3.9	1.6 NJ		54.82	9.1	7.42	6.8		1.9 L		
75-69-4	TRICHLOROFLUOROMETHANE	NS	11 l		1.63	28.1 U	5.00 U				11 L	J 11 U	
75-01-4	VINYL CHLORIDE	NS	2.0 l	J 2.0 U	0.511 U	12.78 U					2.0 L	J 2.0 U	0.511 U
XYLENES	XYLENES, TOTAL	NS	30 l	J 2.5 NJ					20		30 L	3.0 No	
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS	33	۷ 0	,				3.7 No	J	68 N	I 34 N	

NYSDOH October 2006, with revisions.

Only those analytes detected in one or more samples are presented above Blank values indicate concentrations below laboratory method detection limits ug/m3 = micrograms per cubic meter

NS = No Standard

Bold = Concentration exceeds Standards

Validator Qualifiers

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N = The analysis indicates the tentative presence of a non-target/method specified analyte

U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is

approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the Blank space indicates compound not reported and/or data not available.

Whitestone Indoor Air and Sub Slab Results Jan 2025.xlsx

TABLE 7A Summary of Sub-Slab Soil Gas Analytical Results: 2008 to 2024 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH Stnds ¹	1 Former Bank													
Medium			Sub-Slab Vap	or I S	ub-Slab Var		Sub-Slab Vapor	Sub-Slab Vapo	r I	Sub-Slab Vapor	Sub-Slab Vapor	r T	Sub-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vapor
	Laboratory ID		200-37771-13		0-342355-7	~	200-62822-10	200-67137-9	+	L2408362-10	200-37771-14	\pm	200-42355-6	200-62822-8	- Cas Clas (aps.	
	Sample ID		SG-6	-	SG-6		SG-6	SG-6		SG-6	SG-6A		SG-6A	SG-6A	SG-6A	SG-6A
	Collection Date		03/10/17		02/21/18		03/30/22	03/02/23		02/14/24	03/10/17		02/21/18	03/30/22	03/02/23	02/14/24
	Units	ug/m3	ug/m3		ug/m3		ug/m3	ug/m3		ug/m3	ug/m3		ug/m3	ug/m3	ug/m3	ug/m3
CAS Number	Chemical Name	_				一	<u> </u>	ĺ	T	<u> </u>		一				İ
71-55-6	1,1,1-TRICHLOROETHANE	NS	1.1	U	11	U	11 U	11	U	5.46 L	J 1.1	U	11 L	11	U Not Sampled	Not Sampled
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	1.4	U	14	U	14 U	14	U	6.87 L	J 1.4	U	14 L	J 14	U	,
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE (FREON TF)	NS	1.5	U	15	U	15 U	15	U	7.66 L	1.5	U	15 L	15	U	
75-35-4	1,1-DICHLOROETHENE	NS	0.79	U	1.4	U	1.4 U	1.4	U	3.96 L	0.79	U	1.4 L	1.4	U	
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	4.8		78		9.8 U	9.8	U	4.92 L	6.0		75	9.8	U	
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	1.3		29		9.8 U	9.8	U	4.92 L	1.6		29	9.8	U	
106-99-0	1,3-BUTADIENE	NS	0.44	U	4.4	U	4.4 U	4.4	U	2.21 L	J 0.44	U	4.4 L	1	U	
541-73-1	1,3-DICHLOROBENZENE	NS	5.9		12	U	12 U	12	U	6.01 L	5.6		12 L	J 12	U	
106-47-7	1,4-DICHLOROBENZENE	NS	1.2	U	12	U	12 U	12	U	6.01 L	J 1.2	U	12 L	J 12	U	
	2,2,4-TRIMETHYLPENTANE	NS	6.2		78		9.3 U	9.3	U	4.67 L	6.4		76	0.0	U	
622-96-8	4-ETHYLTOLUENE	NS	1.5		21		9.8 U	9.8	U	4.92 L	1.9		22	9.8	U	
99-87-6	4-ISOPROPYLTOLUENE (CYMENE)	NS	1.1	U	11	U	11 U	11	U	NT	1.1	U	11 L	* * *	U	
67-64-1	ACETONE	NS	190	J	120	U	120 U		NJ	934	21		120 L	.=0	U	
71-43-2	BENZENE	NS	4.9	J	6.4	U	6.4 U		NJ	3.19 L	3.5		6.4 L	6.4	U	
106-97-8	BUTANE	NS	36		18		12 U	12	U	NT	9.8		18	12	U	
75-15-0	CARBON DISULFIDE	NS	58		16	U	16 U	16	U	3.11 L	1.6	U	16 L	16	U	
56-23-5	CARBON TETRACHLORIDE	NS	0.30		2.2	U	2.2 U	2.2	U	6.29 L	0.33		2.2 L	J 2.2	U	
75-45-6	CHLORODIFLUOROMETHANE (Freon 22)	NS	1.8	U	18	U	18 U 9.2 U		NJ	NT 4.61 U	1.8	U	18 L	18	U	
108-90-7 67-66-3	CHLOROBENZENE CHLOROFORM	NS	0.92	U	9.2	U	9.2 U	9.2	U	4.61 U	0.92	U	9.2 L	9.2	U	
74-87-3	CHLOROMETHANE	NS NS	8.3		9.8	U	9.8 U	9.8	U	2.07 L	J 0.98 J 1.0	U	9.8 L 10 L	J 9.8 J 10	U	
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS NS	2.9 0.79	1.1	1.4	11	2 11	2.0	U	3.96 L	J 0.79	11	1.4 L	10	U	
110-82-7	CYCLOHEXANE	NS NS	4.1	U	11	0	6.9 U	6.9	U	6.71	2.3	0	9.3	6.9	11	
75-71-8	DICHLORODIFLUOROMETHANE	NS NS	100		48		20 NJ	25	U	4.94 L	84	-	25 L	750	0	
	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	1.6	11	16	11	16 U	16	U	NT	1.6	11	16 L	J 16		
64-17-5	ETHANOL	NS	NT	0	NT		NT O	NT		73.1	NT		NT	NT	0	
100-41-4	ETHYLBENZENE	NS	4.5		49		8.7 U		NJ	4.34 L	5.0		51	8.7	П	
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	45		120	U	120 U	120	U	6120	25		25 L	120	IJ	
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS	NT		9.8	Ü	9.8 U	9.8	Ü	NT	NT		9.8		U	
	M,P-XYLENES	NS	15		150		15 U	15	Ü	8.69 L	17		160	22	U	
	METHYL ETHYL KETONE (2-BUTANONE)	NS	13		15	U	15 U	15	U	7.37 L	5.2		15 L	15	U	
	METHYL TERT-BUTYL ETHER (MTBE)	NS	0.72	U	7.2	U	7.2 U	7.2	U	3.61 L	0.72	U	7.2 L	7.2	U	
75-09-2	METHYLENE CHLORIDE	NS	1.7	U	17	U	17 U	8.1	NJ	8.69 L	J 1.7	U	17 L	J 17	U	
91-20-3	NAPHTHALENE	NS	2.6	UJ	26	U	26 UJ	26	U	NT	2.6	UJ	26 L	J 26	U	
	N-HEPTANE	NS	7.0		25.0		8.2 U	8.2	U	4.1 L	3.9		24	8.2	U	
	N-HEXANE	NS	24		12		18 U	4.4	NJ	3.52 L	7.7		7.7	18	U	
	N-PROPYLBENZENE	NS	0.98	U	19		9.8 U	9.8	U	NT	1.1		19	9.8	U	
95-47-6	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	5.0		86		4.9 NJ		NJ	4.34 L	5.9		89	8.7		
	STYRENE	NS	0.85	U	8.5	U	8.5 U	0.0	U	4.26 L	J 0.85	U	8.5 L	0.0	U	
	TERT-BUTYL ALCOHOL	NS	15	U	150	U	150 U	150	U	7.58 L	J 15	U	150 L		U	
109-99-9	TETRAHYDOFURAN	NS	15	U	150	U	150 U	150	U	7.37 L	J 15	U	150 L		U	
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	5.7		86		3.8 NJ		NJ	33.6	2.7		87	14	U	
	TOLUENE	NS	24		63		7.5 U		NJ	3.77 L	23		64	7.5	U	
	TRANS-1,2-DICHLOROETHENE	NS	0.79	U	7.9	U	7.9 U	7.9	U	3.96 L		U	7.9 L		U	
	TRICHLOROETHYLENE (TCE)	NS	0.49		4.6		1.9 U	1.9	U	5.37 L	0.2.	U	1.9 L		U	
	TRICHLOROFLUOROMETHANE	NS	7.8		11	U	11 U	11	U	5.62 L	3.5		11 L	1	U	
	VINYL CHLORIDE	NS	0.10		3.8		2.0 U	2.0	U	2.56 L	0.1	U	0.89 L		U	
	XYLENES, TOTAL	NS	20		240	<u>, .</u>	20 NJ		NJ	13 L	23		250	30	U	
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS	14	NJ	44	NJ	13 N	16	N		3.3	NJ	24 N	J		

NYSDOH October 2006, with revisions.

Only those analytes detected in one or more samples are presented above Blank values indicate concentrations below laboratory method detection limits ug/m3 = micrograms per cubic meter

NS = No Standard

Bold = Concentration exceeds Standards

Validator Qualifiers

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N = The analysis indicates the tentative presence of a non-target/method specified analyte

U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

TABLE 7A Summary of Sub-Slab Soil Gas Analytical Results: 2008 to 2024 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH Stnds ¹				Former Bank					
	Medium	02 011 011103	Sub-Slab Vapor								
	Laboratory ID		200-62822-7	Cub Club Vupoi	Cub Club Vupor	200-62822-9	Cub Club Vupoi	Cub Club Vupoi	200-62822-11	200-67137-11	L2408362-9
	Sample ID		SG-9	SG-9	SG-9	SG-10	SG-10	SG-10	SG-11	SG-11	SG-11
	Collection Date		03/30/22	03/02/23	02/14/24	03/30/22	03/02/23	02/14/24	03/30/22	03/02/23	02/14/24
	Units	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
CAS Number	Chemical Name	ug/illo	ug/IIIO	L ug/iiio	l ug/mo	ug/mo	ug/iiio	l ug/iiio	ug/iiio	l ug/illo	ug/mo
71-55-6	1.1.1-TRICHLOROETHANE	NS	11 U	Not Sampled	Not Sampled	11 U	Not Sampled	Not Sampled	11 U	11 L	J 1.09 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	14 U	Not Sampled	Not Sampled	14 U	140t Garripieu	140t Garripied	14 U		J 1.37 U
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE (FREON TF)	NS	15 U			15 U			15 U		J 1.53 U
75-35-4	1,1-DICHLOROETHENE	NS	1.4 U			1.4 U			1.4 U		
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	9.8 U			9.8 U.			9.8 U		1.08
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	9.8 U			9.8 U	,		9.8 U		J 0.983 U
106-99-0	1,3-BUTADIENE	NS	4.4 U			4.4 U			4.4 U		J 0.442 U
541-73-1	1,3-DICHLOROBENZENE	NS	12 U			12 U			12 U		J 1.2 U
106-47-7	1,4-DICHLOROBENZENE	NS	12 U			12 U			12 U		J 1.2 U
540-84-1	2,2,4-TRIMETHYLPENTANE	NS	9.3 U			9.3 U			9.3 U		J 0.934 U
622-96-8	4-ETHYLTOLUENE	NS	9.8 U			9.8 U			9.8 U		J 0.983 U
99-87-6	4-ISOPROPYLTOLUENE (CYMENE)	NS	11 U			11 U			11 U		J NT
67-64-1	ACETONE	NS	120 U			47 NJ	I		120 NJ		93.6
	BENZENE	NS	6.4 U			6.4 U			6.4 U		
106-97-8	BUTANE	NS	12 U			12 U			12 U		J NT
	CARBON DISULFIDE	NS	16 U			16 U			16 U		2.09
56-23-5	CARBON TETRACHLORIDE	NS	2.2 U			2.2 U			2.2 U	· ·	J 1.26 U
75-45-6	CHLORODIFLUOROMETHANE (Freon 22)	NS	4.4 NJ			4.7 NJ	J		4.1 NJ		J NT
108-90-7	CHLOROBENZENE	NS	9.2 U			9.2 U			9.2 U		J 0.921 U
	CHLOROFORM	NS	9.8 U			9.8 U			9.8 U		
74-87-3	CHLOROMETHANE	NS	10 U			10 U			10 U	10 L	J 0.413 U
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS	2 U			2 U			2 U	2.0 L	J 0.793 U
110-82-7	CYCLOHEXANE	NS	6.9 U			6.9 U			6.9 U	6.9 L	J 0.688 U
75-71-8	DICHLORODIFLUOROMETHANE	NS	19 NJ			29			110	25 L	59.8
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	16 U			16 U			16 U	16 L	J NT
64-17-5	ETHANOL	NS	NT			NT			NT	NT	12.6
100-41-4	ETHYLBENZENE	NS	8.7 U			7.6 NJ			8.7 U	2.7 N	J 1.01
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	120 U			120 U			120 U	120 L	122
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS	9.8 U			9.8 U			9.8 U	9.8 L	
179601-23-1	M,P-XYLENES	NS	22 U			30			14 NJ	22 L	1.95
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS	15 U			15 U			15 U		3.36
1634-04-4	METHYL TERT-BUTYL ETHER (MTBE)	NS	7.2 U			7.2 U			7.2 U		****
75-09-2	METHYLENE CHLORIDE	NS	17 U			17 U			17 U		J 1.74 U
91-20-3	NAPHTHALENE	NS	26 U			26 U.	J		26 U.		J NT
142-82-5	N-HEPTANE	NS	8.2 U			8.2 U			8.2 U		
110-54-3	N-HEXANE	NS	18 U			18 U			18 U		
	N-PROPYLBENZENE	NS	9.8 U			9.8 U			9.8 U	0.0	J NT
	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	8.7 U			7.5 NJ	J		4.5 NJ		
	STYRENE	NS	8.5 U			8.5 U			8.5 U		
75-65-0	TERT-BUTYL ALCOHOL	NS	150 U			150 U			150 U		3.52
109-99-9	TETRAHYDOFURAN	NS	150 U			150 U			150 U		J 1.47 U
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	14 U			14 U			14 U	·- ·-	
108-88-3	TOLUENE	NS	7.5 U			7.5 U			7.5 U	***	1.61
156-60-5	TRANS-1,2-DICHLOROETHENE	NS	7.9 U			7.9 U			7.9 U		
79-01-6	TRICHLOROETHYLENE (TCE)	NS	1.9 U			1.6 NJ			1.9 U		
75-69-4	TRICHLOROFLUOROMETHANE	NS	11 U			11 U			11 U		3.10
75-01-4	VINYL CHLORIDE	NS	2.0 U			2.0 U			2.0 U		J 0.511 U
	XYLENES, TOTAL	NS	30 U			38			19 N.		J 1.95
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS				<u> </u>			13	0	

NYSDOH October 2006, with revisions.

Only those analytes detected in one or more samples are presented above Blank values indicate concentrations below laboratory method detection limits ug/m3 = micrograms per cubic meter

NS = No Standard

Bold = Concentration exceeds Standards

Validator Qualifiers

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N = The analysis indicates the tentative presence of a non-target/method specified analyte

U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

TABLE 7A Summary of Sub-Slab Soil Gas Analytical Results: 2008 to 2024 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH Stnds 1					Cascarinos	<u> </u>	JD Optician				Parking Lot		
	Medium	N 13DOH 3tilus	Sub-Slab Vapo	r	Sub-Slab Vapor	Sub-Slab Vapor	Sub-Slab Vap		Sub-Slab Vapor	Soil	Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas
	Laboratory ID		200-62822-12	' 	200-67137-7	L2408362-8	200-37771-9	_	200-37771-15	3011	Oas	Joil Gas	200-37771-10	200-37771-8	200-37771-7
	Sample ID		SG-12		SG-12	SG-12	SG-8	,	SG-7	so	2_2	SG-3	SGP-1	SGP-2	SGP-3
	Collection Date		03/30/22		03/02/23	02/14/24	03/10/17		03/10/17	08/2		08/26/08	03/09/17	03/09/17	03/09/17
	Units	ug/m3	ug/m3	+	ug/m3	ug/m3	ug/m3	\dashv	ug/m3	ug/m		_		ug/m3	ug/m3
CAS Number	Chemical Name	ug/m3	ug/III3	-	ug/III3	l ug/ms	ug/IIIS	\dashv	ug/III3	ug/II	13 G	t ug/ma Q	l ug/mo	ug/ms	ug/mo
71-55-6	1.1.1-TRICHLOROETHANE	NS	11	U	11 U	1.09 U	1.9	11	1.1	1.5		1.8	2.7 U,	1 11 1	J 17 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS NS	14	U	11 U	1.37 U	2.4	U	1.1 U	4.3		1.0	2.7 U.		J 22 U
76-13-1		NS NS	15	U	15 U	1.53 U	2.4	U	1.4 U	4.3		10	3.4 0.	J 1.4 C	22 0
75-35-4	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE (FREON TF) 1,1-DICHLOROETHENE	NS NS	1.4	U	1.4 U	0.793 U	1.4	1.1	0.79 U	0.79	<u> </u>	J 0.79 U	2.0 U	J 0.79 L	13 U
95-63-6	1.2.4-TRIMETHYLBENZENE	NS NS	9.8	U	9.8 U	0.793 U	1.4	U	0.79 U	0.73	, ,	0.79	2.4 U		16 U
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS NS	9.8	U	9.8 U	0.983 U		U	0.98 U	0.98) 1	0.98	2.4 U.		16 U
106-99-0	1,3-BUTADIENE	NS NS	4.4	U	9.6 U	0.963 U		U	0.96 U	3.3		5.8	1.1 U.		7.1 U
541-73-1	1.3-DICHLOROBENZENE	NS NS	12	U	12 U		2.1	U	1.2 U	3.3		3.0	3.0 U		19 U
106-47-7	1,4-DICHLOROBENZENE		12	0	12 U	1.2 U	۷.۱	U	1.2				3.0 0.	J 1.4	19 0
540-84-1	2,2,4-TRIMETHYLPENTANE	NS NS	9.3	U	9.3 U	1.2 U 0.934 U	1.7		0.96	4.2		12	5.5 J	2.8	15 U
622-96-8	4-ETHYLTOLUENE	NS NS	9.3	U	9.3 U	0.934 U	1.7	11	0.96 0.98 U	1.3		1.7	2.4 U	J 0.98	15 U
99-87-6	4-ETHYLTOLUENE 4-ISOPROPYLTOLUENE (CYMENE)	NS NS	9.8	U	9.8 U	0.983 U	1.7	U	0.90 U	1.3		1.7	Z.4 U.	0.90	10 0
99-87-6 67-64-1	ACETONE	NS NS	120	U	120 U	232	26		18				29 U,	110	190 U
71-43-2	BENZENE	NS NS	6.4	U	6.4 U	0.639 U	2.0		0.94	83		0.79 U		J 110 c 2.5	190 0
71-43-2 106-97-8	BUTANE	NS NS	12	U	12 U	0.639 U	12		0.94 4.7	03		0.79	1 3.3 J	4.1	35
75-15-0	CARBON DISULFIDE	NS NS	16	U	12 U	7.04	2.7	11	1.6 U				3.9 U	J 55	25 U
56-23-5	CARBON TETRACHLORIDE	NS NS	2.2	U	2.2 U	1.26 U	0.44	U	0.32	3.2		1.7	0.62 U		4 11
75-45-6	CHLORODIFLUOROMETHANE (Freon 22)	NS NS		NJ	18 U	NT	3.1	U	1.8 U	3.2		1.7	4.4 U,		J 28 U
108-90-7	CHLOROBENZENE	NS NS	3.9	INJ	9.2 U	0.921 U	3.1	U	1.0				4.4 0,	J 1.0 C	20 0
67-66-3	CHLOROFORM	NS NS	9.8	U	9.8 U	0.977 U	14		0.98 U	1.1	U	J 1.1 U	73 J	87	16 U
74-87-3	CHLOROMETHANE	NS NS	10	U	10 U	0.450	1.8	11	1.0 U	1.1				_	J 17 U
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS NS	2	U	2.0 U	0.793 U	1.4	U	0.79 U	0.98		1) 17 U
110-82-7	CYCLOHEXANE	NS NS	6.9	U	6.9 U	0.793 U		U	0.79 U	1.3					13
75-71-8	DICHLORODIFLUOROMETHANE	NS NS	21	NJ	25 U	2.49	4.3	11	2.5 U	2.6		1.3	6.1 U		J 40 U
	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS NS	16	U	16 U	NT	2.8	U	1.6 U	79		0.79 U	_	J 1.6 L	J 25 U
64-17-5	ETHANOL	NS NS	10	U	10 0	36.7	2.0	U	1.0	19		0.79	3.9 0.	1.0	25 0
100-41-4	ETHYLBENZENE	NS NS	8.7	U	2.5 N		1.5	11	0.87 U	1.3		2.7	2.2 U.	5.0	14 U
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS NS	120	U	120 U	570	21	U	12 U	1.3		2.1	30 U	J 12 L	J 200 U
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS NS		U	9.8 U	NT	21	U	12 0				30 0,	J 12 C	200 0
	M,P-XYLENES	NS	22	U	22 U	1.74 U	3.8	11	2.2	3.2		7.4	5.4 U,	J 17	35 U
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS NS	15	U	15 U	2.65	4.8	U	3.9	3.2		7.4	4.6 J	21	24 U
	METHYL TERT-BUTYL ETHER (MTBE)	NS NS	7.2	U	7.2 U	0.721 U			5.5	1.8	U	J 1.8 U			24 0
75-09-2	METHYLENE CHLORIDE	NS NS	17	U	17 U	1.74 U		П	1.7 U	1.7				3.3	28 U
91-20-3	NAPHTHALENE	NS NS	26	UJ	26 U	NT	4.6	П	2.6 UJ	1.7		1.7	6.5 U		J 42 U
142-82-5	N-HEPTANE	NS NS	8.2	U	8.2 U	0.82 U			1.3	3.4		11	3.3 J	6.4	13 U
110-54-3	N-HEXANE	NS	18	U	18 U	0.705 U		+	2.1	4.2		9.5	13 J	5.1	11 U
	N-PROPYLBENZENE	NS NS	9.8	U	9.8 U	NT	1.7	П	0.98 U	T		J.5	2.4 U.	J 0.98 L	J 16 U
	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	0.0	U	2.6 N		1.5	П	0.87 U	1.2		3.1	2.2 U.	J 4.8	14 U
100-42-5	STYRENE	NS NS		U	8.5 U	0.852 U			0.07	1.4		0.1	2.2	7.0	17 0
	TERT-BUTYL ALCOHOL	NS	150	U	150 U	1.63 J									
109-99-9	TETRAHYDOFURAN	NS	100		150 U	1.03 J		+							
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	14	U	130 U	1.36 U		П	2.0	30		9.5	3.4 U.	J 1.4 L	2600
108-88-3	TOLUENE	NS	7.5	U	2.3 N		7.5		3.9	8.3		20	7.9 J		12 U
156-60-5	TRANS-1,2-DICHLOROETHENE	NS NS	7.9	U	7.9 U	0.793 U		П	0.79 U	2.8		20	2 U		12 U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	1.9	U	1.9 U	1.07 U		П	0.79 U	19		1.1 U			J 3.4 U
	TRICHLOROFLUOROMETHANE	NS NS	1.9	U	1.9 U	1.33 J	2	П	1.2	3.1		4.1	2.8 U		18 U
75-09-4 75-01-4	VINYL CHLORIDE	NS NS	2.0	U	2.0 U	0.511 U		II	0.1 U	46		0.51 U	_		1.6 U
	XYLENES, TOTAL	NS NS	30	U	2.6 N		5.3	П	3 U	40		0.51	7.5 U		49 UJ
	UNKNOWN WITH HIGHEST CONC.	NS NS	13	N	2.0 IN	2.0	16		1.4 NJ				1.5 0.		
CINICINOVINI	OTALINOVATA VALLETTIIGHEST CONC.	CVI	13	IN	U		10	J	1.4 NJ				1	2.4 N	J

NYSDOH October 2006, with revisions.

Only those analytes detected in one or more samples are presented above Blank values indicate concentrations below laboratory method detection limits ug/m3 = micrograms per cubic meter

NS = No Standard

Bold = Concentration exceeds Standards

Validator Qualifiers

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N = The analysis indicates the tentative presence of a non-target/method specified analyte

U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not

represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

TABLE 7A

Summary of Sub-Slab Soil Gas Analytical Results: 2008 to 2024
Former Johnny On the Spot Cleaner
152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH Stnds 1			Side Wal			
	Medium		Soil Vap	or	Soil Vap	or	Soil Vap	or
	Laboratory ID		SB71726-01		SB71726		SB73048-	
	Sample ID		SGP-5		SGP-6	;	SGP-6	;
	Collection Date		6/17/201	3	6/17/201	13	7/11/201	13
	Units	ug/m3	ug/m3		ug/m3		ug/m3	
CAS Number	Chemical Name							
71-55-6	1,1,1-TRICHLOROETHANE	NS						
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS						
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE (FREON TF)	NS						
75-35-4	1,1-DICHLOROETHENE	NS						
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	0.81		0.37		0.16	
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	0.500	U	0.500	U	0.13	
106-99-0	1,3-BUTADIENE	NS						
541-73-1	1,3-DICHLOROBENZENE	NS						
106-47-7	1,4-DICHLOROBENZENE	NS						
540-84-1	2,2,4-TRIMETHYLPENTANE	NS						
622-96-8	4-ETHYLTOLUENE	NS	0.500	U	0.26		0.14	
99-87-6	4-ISOPROPYLTOLUENE (CYMENE)	NS						
67-64-1	ACETONE	NS	9.82		12.5		11.05	
71-43-2	BENZENE	NS	0.22		0.44		0.26	
106-97-8	BUTANE	NS						
75-15-0	CARBON DISULFIDE	NS	0.500	U	0.500	U	0.2	
56-23-5	CARBON TETRACHLORIDE	NS	0.500	U	0.500	U	0.08	
75-45-6	CHLORODIFLUOROMETHANE (Freon 22)	NS						
108-90-7	CHLOROBENZENE	NS	0.500	U	0.37		0.100	U
67-66-3	CHLOROFORM	NS	0.500	U	0.500	U	0.05	
74-87-3	CHLOROMETHANE	NS	0.65		0.76		0.55	
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS	0.500	U	0.500	U	0.100	U
110-82-7	CYCLOHEXANE	NS	0.500	U	0.500	U	0.1	
75-71-8	DICHLORODIFLUOROMETHANE	NS						
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS						
64-17-5	ETHANOL	NS	0.500		0.04		0.47	
100-41-4	ETHYLBENZENE	NS	0.500	U	0.24		0.17	
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	0.500	U	2.02		0.97	
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS	0.500	U	0.500	U	0.1 0.4	
179601-23-1	M,P-XYLENES	NS	0.78		1.01			
78-93-3 1634-04-4	METHYL ETHYL KETONE (2-BUTANONE) METHYL TERT-BUTYL ETHER (MTBE)	NS NS	0.500	U	0.500	U	1.34	
75-09-2	METHYLENE CHLORIDE	NS NS	1.72		1.09		0.14	
91-20-3	NAPHTHALENE NAPHTHALENE	NS NS	0.77		0.500	U	0.14	U
142-82-5	N-HEPTANE	NS NS	0.500	U	0.500	Ü	0.100	U
110-54-3	N-HEXANE	NS	0.99		1.22	- 0	0.100	U
103-65-1	N-PROPYLBENZENE	NS NS	0.99		1.22		0.5	
95-47-6	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	0.500	U	0.4		0.16	
100-42-5	STYRENE	NS	0.500	Ü	0.500	U	0.14	
75-65-0	TERT-BUTYL ALCOHOL	NS	0.000		0.000		0.17	
109-99-9	TETRAHYDOFURAN	NS	0.500	U	0.500	U	0.100	U
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	0.29		0.35		0.16	
108-88-3	TOLUENE	NS	1.15		1.8		0.65	
156-60-5	TRANS-1,2-DICHLOROETHENE	NS	1.10		1.0		0.00	
79-01-6	TRICHLOROETHYLENE (TCE)	NS	0.500	U	0.500	U	0.100	U
75-69-4	TRICHLOROFLUOROMETHANE	NS	0.500	ŭ	0.500	Ü	0.25	
75-01-4	VINYL CHLORIDE	NS	0.500	ŭ	0.500	Ü	0.100	U
XYLENES	XYLENES, TOTAL	NS	3.555		2.000		3.100	
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS						
	1	. 10						

NYSDOH October 2006, with revisions.

Only those analytes detected in one or more samples are presented above Blank values indicate concentrations below laboratory method detection limits ug/m3 = micrograms per cubic meter

NS = No Standard

Bold = Concentration exceeds Standards

Validator Qualifiers

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N = The analysis indicates the tentative presence of a non-target/method specified analyte

U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual

limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

Sample Location			NYSDOH Stnds ¹				Cleaner (Lower)								Cleaner-2	
Medium		Subsurface Vapors	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air
	Laboratory ID Sample ID	vapors		IAQ-1	SB71801-02 AA-2	SB78841-03 AA-2	200-37771-5 Cleaner	200-42355-3 Cleaner	200-47168-4 Cleaner	200-51061-4 Cleaner	200-62822-3 Cleaner	200-67137-3 Cleaner	L2408362-03 Cleaner	Cleaner 2	200-42355-4 Cleaner 2	200-47168-1 Cleaner 2
	Collection Date			08/27/08	6/18/2013	10/16/2013	03/09/17	02/21/18	01/23/19	10/16/19	03/29/22	03/02/23	02/14/24	03/09/17	02/21/18	01/23/19
	Units	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
CAS Number	Chemical Name															
71-55-6	1,1,1-TRICHLOROETHANE	NS	NS	0.22 U			1.1 U	1.1 L	J 1.1 L	J 1.1 L	1.1 U	J 1.1 U	J 0.109 L	J	1.1 U	1.1 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	NS	0.27 U			1.4 U	1.4 L	J 1.4 L	J 1.4 L	J 1.4 L	J 1.4 L	J 1.37 L	J	1.4 L	1.4 U
	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	NS	NS				1.5 U	1.5 L	J 0.49 J	0.41 N		· · · · · · · · · · · · · · · · · · ·	1100	Not Yet	1.5 L	0.50 J
	1,1-DICHLOROETHENE	NS	NS	0.16 U			0.79 U	0.14 L	J 0.14 L	J 0.14 L	J 0.14 L	J 0.14 L	J 0.079 L	Established	0.14 U	0.14 U
	1,2,4-TRIMETHYLBENZENE	NS	NS		12.29 U	2.46	J 0.98 U	0.98 L	J 0.71 J	0.63 N		0.00	J 0.983 L	J	0.98 L	0.98 U
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	NS	1.9	12.29 U	2.46 l	J 0.98 U	0.98 L	J 0.98 L	J 0.98 L	0.98 L	J 0.98 L	J 0.983 L	J	0.98 L	0.98 U
106-99-0	1,3-BUTADIENE	NS	NS	0.18 U			0.44 U	0.44 L	0.34 J	0.44 L	0.44 L	J 0.44 L	J 0.442 L	J	0.44 L	0.44 U
541-73-1	1,3-DICHLOROBENZENE	NS	NS				1.2 U	1.2 L	J 1.2 L	J 1.2 L	1.2 L	J 1.2 L	J 1.20 L	J	1.2 U	1.2 U
106-46-7	1,4-DICHLOROBENZENE	NS	NS				1.2 U	1.2 L	J 1.2 L	J 1.2 L	1.2 L	J 1.2 L	J 1.20 L	J	1.2 L	1.2 U
	2,2,4-TRIMETHYLPENTANE	NS	NS	1.3	10.00	0.40	0.93 U	1.2	0.83 J	0.93 L	0.93 L	0.26 N	0.00-	J	1.1	0.56 J
	4-ETHYLTOLUENE	NS	NS		12.29 U	2.46 l	J 0.98 U	0.98 L	J 0.98 L	J 0.98 L	0.98 L	J 0.98 L	J 0.983 L	J	0.98 L	0.98 U
	4-ISOPROPYLTOLUENE (CYMENE)	NS	NS		45.45	40.50	1.1 U	1.1 L	J 1.1 L	J 1.1 L	1.1 L	J 1.1 L	J NT		1.1 U	1.1 U
	ACETONE	NS	NS	0.54	15.45	18.58	12 U	12 L	J 12 L	14	7.4 N	J 12 N	J 5.65		12 L	12 U
	BENZENE	NS	NS	0.54	7.98 ∪	0.64	0.64 U	0.76	2.2	0.60 N	J 0.25 N	J 0.74	0.639 L	J	0.73	0.99
	BUTANE	NS	NS		7.00	5.04	1.4	7.5	6.2	2.9	18	20	NT		6.9	3.4
	CARBON DISULFIDE	NS	NS	0.44	7.98 U	5.04	1.6 U	1.6 L	J 1.6 L	J 1.6 L	1.6 L	J 1.6 L	J 0.623 L	J	1.6 L	1.6 U
	CARBON TETRACHLORIDE	NS	NS	0.44	15.73 ∪	3.15 l	0.39	0.44	0.37	0.41	0.31	0.26	0.484		0.46	0.35
	CHLORODIFLUOROMETHANE (Freon 22)	NS	NS		44.54	0.0	1.8 U	1.8 L	J 1.0 J	1.4 N		00	NT L 0.004	1	1.8 L	0.99 J
	CHLOROBENZENE CHLOROFORM	NS NS	NS	0.70	11.51 U	2.3 L 2.43 L	J 0.92 U J 0.98 U	0.92 L	J 0.92 L	J 0.92 L	0.92 L	J 0.92 L	J 0.921 L	J	0.92 L	0.92 U
156-59-2	CHLOROMETHANE	NS NS	NS NS	0.78	12.17 U 5.16 U	1.03	J 1.0 U	0.98 L	0.98 L 1.0 J	1.3	0.98 L 1.3	0.98 L 1.1	J 0.977 L 1.17)	0.98 U	0.98 U
	CIS-1.2-DICHLOROETHYLENE	NS	NS NS	0.21 U 0.44	9.91 U	1.03 (J 0.79 U	0.14 L	J 0.20 L	J 1.3 J 0.20 L	1.3 J 0.20 L	J 0.20 L	J 0.079 L	1	0.14 L	1.2 0.20 U
	CYCLOHEXANE	NS	NS NS	0.44	8.61 U	1.72	J 0.69 U	0.69	J 0.31 J	0.20 C	0.20 C	J 0.69 L	J 0.688 L	1	0.14 C	0.20 U
	DICHLORODIFLUOROMETHANE	NS NS	NS NS	2.4	0.01	1.72	2.5 U	2.5	J 2.2 J	2.9	2.2 N	_)	2.5 U	2.1 J
	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS NS	NS	0.37			1.6 U	1.6 L	J 1.6 L	J 1.6 L	1.6 L	J 1.6 L	J NT		1.6 L	1.6 U
	ETHANOL	NS	NS	0.07			NT NT	NT NT	NT NT	NT	NT NT	NT	48.2		NT	NT NT
	ETHYLBENZENE	NS	NS	1.1	10.84 U	2.04	0.87 U	0.87 L	0.81 J	0.52 N	J 0.87 L	0.50 N		J	0.87 L	0.37 J
	SOPROPANOL (ISOPROPYL ALCOHOL)	NS	NS		6.13 U	2.63	12 U	12 L	J 12 L	J 12 L	20	10 N	_		12 L	12 U
	SOPROPYLBENZENE (CUMENE)	NS	NS		12.29 U	2.46 l	J 0.98 U	0.98 L	J 0.98 L	J 0.98 L	0.98 L	J 0.98 L	J NT		0.98 U	0.98 U
	M,P-XYLENES	NS	NS	3.7	21.68 U	7.28	2.2 U	2.2	2.2	0.94 N		0.93 N		J	2.2 L	0.86 J
	METHYL ETHYL KETONE (2-BUTANONE)	NS	NS	-	7.37 U	1.47 l	J 1.5 U	1.8	1.5	20	1.5 L	J 1.5 L	J 1.47 U	J	1.5 L	1.5
	METHYL TERT-BUTYL ETHER (MTBE)	NS	NS	0.14 U			0.72 U	0.72 L	J 0.72 L	J 0.72 L	J 0.72 L	J 0.72 L	J 0.721 L	J	0.72 L	0.72 U
	METHYLENE CHLORIDE	NS	60	2.8 U	8.68 ∪	1.74 l	J 1.7 U	1.7 L	J 1.7 L	0.84 N	J 1.7 L	0.91 N			1.7 L	1.7 U
104-51-8	NAPHTHALENE	NS	NS		13.09 ∪	2.62 l	J 2.6 U.	J 2.6 U	J 2.6 L	J 2.6 U	J 2.6 L	J 2.6 L	J NT		2.6 U	J 6.5 *
	N-HEPTANE	NS	NS	0.98	10.25 U	2.05 l	J 0.82 U	0.82 L	0.56 J	1.1	0.82 L	0.75 N	J 0.820 L	J	0.82 L	0.82 U
	N-HEXANE	NS	NS	2.3	8.81 ∪	1.76	0.70 U	0.85	0.90	1.0 JE	3 1.8 L	0.70 N	J 0.705 L	J	0.87	0.70 U
	N-PROPYLBENZENE	NS	NS				0.98 U	0.98 L	J 0.98 L	J 0.98 L	0.98 L	J 0.98 L	J NT		0.98 L	0.98 U
	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	NS	1.7	10.84 U	1.91	0.87 U	0.87 L	0.69 J	0.45 N			IJ 0.869 L	J	0.87 L	0.87 U
	STYRENE	NS	NS		10.63 U	2.13 l	J 0.85 U	0.85 L	J 0.85 L	0.56 N	J 0.85 L	J 0.85 L	J 0.852 L	J	0.85 L	0.85 U
	TERT-BUTYL ALCOHOL	NS	NS				15 U	15 L	J 15 L	J 15 L	J 15 L	J 15 L	J 1.52 L	J	15 L	15 U
	TETRAHYDOFURAN	NS	NS		7.37 ∪	1.47 l	J 15 U	15 L	J 15 L	J 15 L	J 15 L	J 15 L	J 1.47 L	J	15 L	15 U
	TETRACHLOROETHYLENE (PCE)	NS	30	<u>160</u> E	<u>166.14</u>	<u>467.9</u>	3.6	2.1	0.74 J	1.3 N			IJ 0.136 L	J	6.0	0.54 J
	TOLUENE	NS	NS	4.5	9.41 ∪	2.41	0.87	2.2	3.7	1.7	0.75 L	1.6	0.754 L	J	2.1	1.9
	FRANS-1,2-DICHLOROETHENE	NS	NS		<u> </u>		0.79 U	0.79 L	J 0.79 L	J 0.79 L	0.79 L	J 0.79 L	J 0.793 L	J	0.79 L	0.79 U
	FRICHLOROETHYLENE (TCE)	NS	2	0.59	13.44 U	2.69	J 0.21 U	0.19 L	J 0.19 L	J 0.19 L	0.19 L	J 0.19 L	J 0.107 L	J	0.19 L	0.19 U
	FRICHLOROFLUOROMETHANE	NS	NS	1.9	14.05 U	2.81	J 1.1 U	1.2	1.2	1.3	1.2		J 1.38		1.1	1.2
	VINYL CHLORIDE	NS	NS	0.2 U	6.39 ∪	1.28 ເ	J 0.1 U	0.089 L	J 0.20 L	J 0.20 L		J 0.20 L	J 0.051 L	J	0.089 L	0.20 U
	XYLENES, TOTAL	NS	NS				3 U	3.0 L	J 2.9 J	1.4 N			IJ 2.6 L	J	3.0 L	0.87 J
UNKNOWN1	JNKNOWN WITH HIGHEST CONC.	NS	NS					1.1 N	J		12 N	1 2.3 N	N			

Only those analytes detected in one or more samples are presented above

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, N = The analysis indicates the tentative presence of a non-target/method specified analyte NYSDOH October 2006, with February 2024 revisions.

NS = No Standard

NT = Not Tested

Bold = Concentration exceeds Standards

Validator Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

Whitestone Indoor Air and Sub Slab Results Jan 2025.xlsx Page 1 of 5

Sample Location	1		NYSDOH Stnds ¹		Clea	aner 2					Cleaner 3			
Medium	Laboratory ID	Subsurface Vapors	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air 200-67137-5	Indoor Air
	Laboratory ID Sample ID			200-51061-5 Cleaner 2	200-62822-4 Cleaner 2	200-67137-4 Cleaner 2	L2408362-04 Cleaner 2	Cleaner 3	200-42355-5 Cleaner 3	200-47168-2 Cleaner 3	200-51061-6 Cleaner 3	200-62822-5 Cleaner 3	Cleaner 3	L2408362-05 Cleaner 3
	Collection Date Units	ug/m3	119/202	10/16/19 ug/m3	03/29/22 ug/m3	03/02/23 ug/m3	02/14/24 ug/m3	03/09/17 ug/m3	02/21/18 ug/m3	01/23/19 ug/m3	10/16/19 ug/m3	03/29/22 ug/m3	03/02/23 ug/m3	02/14/24 ug/m3
CAS Number	Chemical Name	ug/III3	ug/m3	ug/IIIS	ug/III3	ug/iiis	ug/IIIS	ug/IIIS	ug/IIIS	ug/IIIS	ug/ms	ug/ms	ug/III3	ug/ms
71-55-6	1,1,1-TRICHLOROETHANE	NS	NS	1.1 U	1.1 U	1.1 U	0.109 U		1.1 L	J 1.1 L	J 11 U	I 1.1 U	J 11 L	0.109 U
79-34-5	1.1.2.2-TETRACHLOROETHANE	NS	NS	1.4 U	1.4 U	1.4 U	1.37 U		1.4 L	J 1.4 L		1.4		1.37 U
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	NS	NS	0.47 NJ	1.5 U	0.42 N	_	Not Yet	1.5 L	0.52	J 0.47 N			1.53 U
75-35-4	1,1-DICHLOROETHENE	NS	NS	0.14 U	0.14 U	0.14 U	0.079 U	Established	0.14 L	J 0.14 L	J 0.14 U	0.14 L	J 0.14 L	0.079 U
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	NS	0.60 NJ	0.98 U	1.6	0.983 U		0.98 L	J 0.98 L	0.57 N	J 0.98 L	J 0.98 L	0.983 U
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	NS	0.98 U	0.98 U	0.46 No	J 0.983 U		0.98 L	J 0.98 L	J 0.98 U	0.98 L	J 0.98 L	0.983 U
106-99-0	1,3-BUTADIENE	NS	NS	0.44 U	0.44 U	0.44 U	0.442		0.44 L	J 0.44 L	J 0.44 U	0.44 L	J 0.44 L	0.442 U
541-73-1	1,3-DICHLOROBENZENE	NS	NS	1.2 U	1.2 U	1.2 U	1.20 U		1.2 L	J 1.2 L	J 1.2 U	1.2 L	7 1.2	1.20 U
106-46-7	1,4-DICHLOROBENZENE	NS	NS	1.2 U	1.2 U	1.2 U	1.20 U		1.2 L	J 1.2 L	7 1.2 0	1.2 L	1.2	1.20 U
540-84-1	2,2,4-TRIMETHYLPENTANE	NS	NS	0.93 U	0.93 U	0.93 U	0.934 U		1.1	0.49	J 0.93 U	0.93 L	J 0.93 L	0.934 U
622-96-8	4-ETHYLTOLUENE	NS	NS	0.98 U	0.98 U	0.39 N			0.98 L	J 0.98 L	J 0.98 U	0.98 L	J 0.98 L	0.983 U
67-64-1	4-ISOPROPYLTOLUENE (CYMENE)	NS	NS	1.1 U	1.1 U	0.47 N			1.1 L	J 1.1 L	J 1.1 U	1.1 U	1.1	NT 10.0
107-05-1	ACETONE	NS	NS	18	21	13	21.0		12 L	6.4	J 21	17	16	18.2
100-44-7	BENZENE	NS	NS	0.65	0.42 N	0.69	0.639 U		0.73	0.80	0.69	0.39 N		
75-15-0	BUTANE	NS	NS	3.2	48	23	NT 0.000		6.8	2.9	2.9	63	36	NT NT
56-23-5 108-90-7	CARBON DISULFIDE CARBON TETRACHLORIDE	NS	NS	1.6 U	1.6 U	3.3	0.623 U		1.6 L	J 1.6 L	1.6 U 0.42	1.6	0.01	
75-00-3		NS NS	NS NS	0.38 1.5 NJ	0.35 0.98 N.	0.28 J 3.4	0.510 NT		0.45	0.30 J 1.0	J 1.5 N	0.36 J 0.97 N	0.15 N	0.497 NT
108-90-7	CHLORODIFLUOROMETHANE (Freon 22) CHLOROBENZENE	NS	NS	1.5 NJ 0.92 U	0.98 No 0.92 U	0.41 N			1.8 L 0.92 L	J 0.92 L	J 0.92 U	0.97 N	-	0.921 U
74-87-3	CHLOROFORM	NS NS	NS	0.92 U	0.92 U	0.41 N	0.921 U		0.92 C	J 0.98 L		0.92 0.92 0.92 N		0.921 U
156-59-2	CHLOROMETHANE	NS	NS	1.5	1.4	1.0	1.22		1.1	1.1	1.5	1.4	1.1	1.23
10061-01-5	CIS-1.2-DICHLOROETHYLENE	NS	NS	0.20 U	0.20 U	0.20 U			0.14 L	J 0.20 L		0.20 L		0.079 U
99-87-6	CYCLOHEXANE	NS	NS	0.69 U	0.69 U	0.69 U			0.69 L	J 0.69 L		0.69		0.688 U
75-71-8	DICHLORODIFLUOROMETHANE	NS	NS	3.1	2.2 N	J 2.3 N	J 2.24		2.5 L	2.1	3.2	2.3 N	J 2.4 N	J 2.24
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	NS	1.6 U	1.6 U	1.6 U	NT		1.6 L	J 1.6 L	J 1.6 U	1.6 L	J 1.6 L	NT NT
64-17-5	ETHANOL	NS	NS	NT	NT	NT	580		NT	NT	NT	NT	NT	693
100-41-4	ETHYLBENZENE	NS	NS	0.44 NJ	0.87 U	0.61 N			0.87 L	J 0.87 L	J 0.46 N		0.21	
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	NS	12 U	130 J	27	16.4		12 L	J 12 L		96	43	15.4
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS	NS	0.98 U	0.98 U	0.21 N			0.98 L	J 0.98 L	J 0.98 U	0.98 L	0.00	NT NT
179601-23-1	M,P-XYLENES	NS	NS	0.84 NJ	2.2 U	1.2 N			2.2 L	J 0.76	0.89 N			1.74 U
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS	NS	1.6	1.4 N	J 1.6	1.47 U		1.5 L	1.6	1.7	1.0 N		1.47 U
75-09-2 91-20-3	METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE	NS	NS 60	0.72 U	0.72 U	0.72 U	0.721 U		0.72 L	J 0.72 L	0	0.72 L	J 0.72 L	0.721 U
104-51-8	NAPHTHALENE NAPHTHALENE	NS NS	60 NS	0.78 NJ 2.6 UJ	0.82 No.	J 1.2 N. 2.6 U	J 1.74 U		1.7 L 2.6 U	J 1.7 L J 2.6 L	0.0.		J 1.5 N J 2.6 L	J 1.74 U NT
110-54-3	N-HEPTANE	NS NS	NS	0.97	0.59 N	J 1.0	2.81 J		0.82 L	J 0.82 L		0.45 N		2.63
103-65-1	N-HEXANE	NS	NS	0.92 JB	1.8 U	1.0 1.1 N			0.81	0.70 L	J 0.95 JE		J 1.8 L	0.705 U
95-47-6	N-PROPYLBENZENE	NS	NS	0.92 JD	0.98 U	0.38 J	NT		0.98 L	J 0.98 L	J 0.98 U	0.98	J 0.98 L	NT
	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	NS	0.39 NJ	0.87 U	0.65 N			0.87	J 0.87 L				0.869 U
98-06-6	STYRENE	NS	NS	0.85 U	0.85 U	0.85 U	0.852 U		0.85 L	J 0.85 L	J 0.85 U	0.85 L		0.852 U
1634-04-4	TERT-BUTYL ALCOHOL	NS	NS	15 U	15 U	15 U	1.52 U		15 L	J 15 L		15	J 15 L	1.52 U
109-99-9	TETRAHYDOFURAN	NS	NS	15 U	15 U	15 U	1.47 U		15 L	J 15 L	J 15 U	15 L	3.8 N	
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	30	1.4 U	0.21 N	J 0.19 N	_		7.0	0.55	J 0.21 N	_	J 1.4 L	0.136 U
108-88-3	TOLUENE	NS	NS	1.4	0.44 N	J 1.5	0.754 U		2.1	1.5	1.6	0.42 N	J 0.75 L	0.754 U
156-60-5	TRANS-1,2-DICHLOROETHENE	NS	NS	0.79 U	0.79 U	0.79 U	0.793 U		0.79 L	J 0.79 L		0.79 L	0.10	0.793 U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	2	0.19 U	0.19 U	0.19 U	0.107 U		0.19 L	J 0.19 L	01.10	0.19 L	J 0.19 L	0.107 U
75-69-4	TRICHLOROFLUOROMETHANE	NS	NS	1.4	1.2	1.1 N	-		1.2	1.1	1.4	1.2	0.94 N	
75-01-4	VINYL CHLORIDE	NS	NS	0.20 U	0.20 U	0.20 U	0.051 U		0.089 L	J 0.20 L	0.20			0.051 U
	XYLENES, TOTAL	NS	NS	1.2 NJ	3.0 U	1.8 N			3.0 L	0.74	J 1.3 N		0.0	2.6 U
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS	NS		44 N	2.3 N		<u> </u>				61 N	1 2.6 N	

Only those analytes detected in one or more samples are presented above

NYSDOH October 2006, with February 2024 revisions.

NS = No Standard

NT = Not Tested

Bold = Concentration exceeds Standards

Validator Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- 1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, N = The analysis indicates the tentative presence of a non-target/method specified analyte
 - U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.
 - NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

 UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not

represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

Whitestone Indoor Air and Sub Slab Results Jan 2025.xlsx Page 2 of 5

Sample Location			NYSDOH Stnds ¹						Bank-1					Bank-2	
Medium		Subsurface Vapors	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air
	Laboratory ID			SB71801-01	SB78841-02	200-37771-1	200-42355-1	200-47168-6	200-51061-1	200-62822-1	200-67137-2	L2408362-1	200-37771-2	200-42355-2	200-47168-5
	Sample ID			AA-1	AA-1	Bank 1	Bank 1	Bank 1	Bank 1	Bank 1	Bank 1	Bank 1	Bank 2	Bank 2	Bank 2
	Collection Date	/ 0		6/18/2013	10/16/2013	03/09/17	02/21/18	01/23/19	10/16/19	03/29/22	03/02/23	02/14/24	03/09/17	02/21/18	01/23/19
CAC Number	Units	ug/m3	ug/m3		ļ	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
CAS Number 71-55-6	Chemical Name 1,1,1-TRICHLOROETHANE	NS	NC		1	1 1 1	1 11 1	1 11 11	J 1.1	U 1.1 U	1 11 11	0.109 L	J 11 L	J 1.1 L	J 1.1 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS NS	NS NS			1.1 U	J 1.1 L J 1.4 L	J 1.1 U J 1.4 U	J 1.1	U 1.1 U	J 1.1 U J 1.4 U	1.37 L	J 1.4 U	J 1.1 C	1.1 U
76-13-1	1.1.2-TRICHLORO-1.2.2-TRIFLUOROETHANE	NS	NS			1.5 U	J 1.5 L	J 0.54 N		NJ 1.5 U	0.43 N	1.53 L	J 1.5 L	J 1.5 L	0.50 J
75-35-4	1,1-DICHLOROETHENE	NS	NS			0.79 U			0.14	U 0.14 U	J 0.14 U	0.079 L	J 0.79 L	J 0.14 L	0.14 U
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	NS	3.24	0.49 ∪	1.4	4.3	0.98 U	2.0	0.25 N	J 1.1 U	0.983 L	1.5	3.4	0.98 U
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	NS	4.92 U	0.49 U	0.98 U	1.4	0.98 U	0.68	VJ 0.98 U	0.25 No	0.983 L	J 0.98 L	1.1	0.98 U
106-99-0	1,3-BUTADIENE	NS	NS			0.44 U	J 0.44 L	0	0.44	U 0.24 N	J 0.44 U	0.442 L	J 0.44 L	J 0.44 L	0.44 U
541-73-1	1,3-DICHLOROBENZENE	NS	NS			1.2 U			J 1.2	U 1.2 U	J 1.2 U	1.20 L	J 1.2 L	J 1.2 L	J 1.2 U
106-46-7	1,4-DICHLOROBENZENE	NS	NS			1.2 U	1.2	1.2	J 1.2	U 1.2 U	J 1.2 U	1.82	1.2 l	J 1.2 L	J 1.2 U
	2,2,4-TRIMETHYLPENTANE	NS	NS			0.93 U		0.42 N	0.00	NJ 0.21 N	· · · · · · · · · · · · · · · · · · ·	0.934 L	J 0.93 L	1.0	0.45 J
	4-ETHYLTOLUENE	NS	NS	4.92 U	0.49 U	0.98 U	1.4	0.98 U	0.45 N	NJ 0.98 U	J 0.98 U	0.983 L	J 0.98 L	0.97	0.98 U
	4-ISOPROPYLTOLUENE (CYMENE)	NS	NS	20.04	20.00	1.1 U	J 1.1 L	0.54 N		U 1.1 U	J 1.1 U	NT C4.0	1.1 L	J 1.1 L	1.1 U
	ACETONE BENZENE	NS NS	NS	29.94	28.28	12 U 0.64 U	J 23 J 0.78	33 0.78	16 0.67	30 0.62 N	22 J 0.71	61.8	12 U J 0.64 U	J 17 J 0.72	26 0.81
	BUTANE	NS	NS NS	3.19 U	0.32 U	1.2 U	0.76	3.0	3.7	9.4	2.8	0.639 L NT	1.2	0.72 J 6.1	3.0
56-23-5	CARBON DISULFIDE	NS	NS	3.11 U	0.22	1.6 U	J 1.6 L		J 1.6	U 1.6 U	J 1.6 U	0.623 L	J 1.6 L	J 1.6 L	J 1.6 U
108-90-7	CARBON TETRACHLORIDE	NS	NS	6.29 U	0.25 U	0.38	0.49	0.39	0.37	0.37	0.28	0.793	0.40	0.41	0.36
75-00-3	CHLORODIFLUOROMETHANE (Freon 22)	NS	NS	0.20	0.20	1.8 U	2.8	1.1 N		2.3	5.0	NT	1.8 L	2.8	1.1 J
108-90-7	CHLOROBENZENE	NS	NS	4.61 U	0.46 U	0.92 U	J 0.92 L	J 0.92 U	J 0.92	U 0.92 U	J 0.92 U	0.921 L	0.92	J 0.92 L	0.92 U
74-87-3	CHLOROFORM	NS	NS	4.87 U	0.49 U	0.98 U			0.98	U 0.98 U	J 0.98 U	0.977 L	J 0.98 L	J 0.98 L	0.98 U
156-59-2	CHLOROMETHANE	NS	NS	1.69	0.21 U	1 U	1.5	1.1	1.0	1.2	1.1	1.20	1 l	1.1	1.2
10061-01-5	CIS-1,2-DICHLOROETHYLENE	NS	NS	3.97 ∪	0.4 U	0.79 U	J 0.14 L	J 0.20 U	0.20	U 0.20 U	J 0.20 U	0.079 L	J 0.79 L	J 0.14 L	0.20 U
99-87-6	CYCLOHEXANE	NS	NS	3.44 ∪	0.34 U	0.69 U	4.0	0.69 U	0.69	U 0.69 U	J 0.69 U	0.688 L	J 0.69 L	2.9	0.69 U
	DICHLORODIFLUOROMETHANE	NS	NS			5.9	12	7.7	30	140	7.5	3.33	6.6	14	8.5
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	NS			1.6 U	J 1.6 L	J 1.6 U	1.6	U 1.6 U	J 1.6 U	NT 345	1.6 L	J 1.6 L	1.6 U
64-17-5 100-41-4	ETHANOL ETHYLBENZENE	NS NS	NS NS	4.34 U	0.43 U	NT 0.87 U	NT J 0.87 L	U 0.60 N	NT J 0.64 N	NT NJ 0.87 U	NT J 0.81 N	0.869 L	NT J 0.87 L	NT J 0.87 L	NT 0.61 J
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	NS	10.65	26.75	35	31	19	13	15	8.3 No	15400	24	22	20
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS	NS	4.92 U	0.49 U	0.98 U	J 0.98 L	0.42 N	J 0.98	U 0.98 U	J 0.98 U	NT	0.98 L	J 0.98 L	0.98 U
179601-23-1	M,P-XYLENES	NS	NS	8.67 U	0.87 U	2.2 U				NJ 2.2 U	2.4	1.74 L	J 2.2 L	J 2.2 L	1.9 J
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS	NS	2.95 U	0.29 U	1.5 U	2.0	1.6	1.7	2.1	2.6	1.47 L	1.5	1.5 L	3.0
75-09-2	METHYL TERT-BUTYL ETHER (MTBE)	NS	NS			0.72 U	J 0.72 L	J 0.72 U	0.72	U 0.72 U	J 0.72 U	0.721 L	J 0.72 L	J 0.72 L	0.72 U
91-20-3	METHYLENE CHLORIDE	NS	60	3.47 ∪	0.35 U	1.7 U	J 1.7 L	J 1.7 U	J 0.76 N	NJ 1.7 U	J 1.1 No	1.74 L	J 1.7 L	J 1.7 L	1.7 U
104-51-8	NAPHTHALENE	NS	NS	5.24 ∪	1 2.62 ∪	2.6 U	J 2.6 U	2.0	J 2.6 J	N. 2.6 U	J 2.6 U	NT	2.6 U	J 2.6 U	J 2.6 U
	N-HEPTANE	NS	NS	4.1 U	0.41 U	0.82 U	1.2	0.82 U	0.94	0.82 U	0.47 N	0.82 L	J 0.82 L	J 1.1	0.82 U
	N-HEXANE	NS	NS	3.53 ∪	1.3	0.70 U	2.0	0.70 U		JB 1.8 U	0.87 N	0.705 L	J 0.7 L	1.6	0.70 U
	N-PROPYLBENZENE	NS	NS	4.24	0.40	0.98 U	J 0.98 L	J 0.98 U	0.98	U 0.98 U	J 0.98 U	NT 0.000	0.98 L	J 0.98 L	0.98 U
135-98-8 98-06-6	O-XYLENE (1,2-DIMETHYLBENZENE) STYRENE	NS NS	NS NS	4.34 U 4.25 U	0.43 U 0.43 U	0.87 U 0.85 U	J 0.87 L J 0.85 L	0.00		NJ 0.87 U U 0.85 U		0.869 L 0.852 L	J 0.87 L J 0.85 L	J 0.87 L J 0.85 L	0.54 J 0.85 U
	TERT-BUTYL ALCOHOL	NS	NS	4.25	0.43	15 U	J 17	5.9 N		NJ 6.3 N		1.52 L	J 15 L	J 15 L	J 10 J
109-99-9	TETRAHYDOFURAN	NS	NS	2.95 ∪	0.29 U	15 U		J 15 U	J 15	U 15 U	J 15 U	1.47 L	J 15 L	J 15 L	15 U
	TETRACHLOROETHYLENE (PCE)	NS	30	45.03	0.34	2.6	3.7	0.50 N	_	NJ 0.19 N			2.4	4.3	0.78 J
	TOLUENE	NS	NS	5.95	0.38 ∪	0.75 U	2.3	1.5	1.9	1.6	3.2	0.765	0.84	2.3	2.1
	TRANS-1,2-DICHLOROETHENE	NS	NS			0.79 U	J 0.79 L		0.79	U 0.79 U	J 0.79 U	0.793 L	J 0.79 L	J 0.79 L	0.79 U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	2	<u>5.27</u>	0.21 ∪	0.21 U	J 0.19 L	J 0.19 U	0.19	U 0.19 U	J 0.19 U	0.107 L	J 0.21 L	J 0.19 L	0.19 U
75-69-4	TRICHLOROFLUOROMETHANE	NS	NS	5.62 U	1.46	1.1 U		1.2	1.3	1.1	1.1 No		J 1.1 L	1.4	1.1
	VINYL CHLORIDE	NS	NS	2.56 ∪	0.26 ∪	0.1 U	J 0.089 L		0.20	U 0.20 U	J 0.20 U	0.051 L	J 0.1 L	J 0.089 L	0.20 U
XYLENES	XYLENES, TOTAL	NS	NS			3 U	J 3.0 L		J 2.1 N	NJ 3.0 U	3.5	2.6 L	J 3 L	J 3.0 L	2.4 J
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS	NS			12 N	J 26 N	IJ		12 N	N 1.1 N	<u> </u>	7.6 N	J 4.1 N	J

Only those analytes detected in one or more samples are presented above

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, N = The analysis indicates the tentative presence of a non-target/method specified analyte NYSDOH October 2006, with February 2024 revisions.

NS = No Standard

NT = Not Tested

Bold = Concentration exceeds Standards

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may

not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

Whitestone Indoor Air and Sub Slab Results Jan 2025.xlsx Page 3 of 5

Sample Location	n	NYSDOH Stnds ¹ Bank 2						Cascarinos	JD Optician				Ambient			
Medium		Subsurface Vapors	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Ambient Air	Ambient Air	Ambient Air	Ambient Air	Ambient Air	Ambient Air	Ambient Air
	Laboratory ID	vaporo		200-51061-2	200-62822-2	200-67137-2	L2408362-2	200-37771-3	200-37771-6		SB71801-03	SB78841-01	200-37771-4	200-47168-3	200-51061-3	200-62822-6
	Sample ID			Bank 2	Bank 2	Bank 2	Bank 2	Cascarino	JD Optician	Ambient (AA-1)	Ambient (AA-3)	Ambient (AA-3)	1	Ambient	Ambient	Ambient
	Collection Date			10/16/19	03/29/22	03/02/23	02/14/24	03/09/17	03/09/17	08/27/08	6/18/2013 ´	10/16/2013	03/09/17	01/23/19	10/16/19	03/29/22
	Units	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
CAS Number	Chemical Name		<u> </u>													
71-55-6	1,1,1-TRICHLOROETHANE	NS	NS	1.1 U	1.1 U	1.1 U	0.109 U	1.1 U	1.1 U	0.22 U			1.1 U	1.1	J 1.1	U 1.1 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	NS	1.4 U	1.4 U	1.4 U	1.37 U	1.4 U	1.4 U	0.27 U			1.4 l	J 1.4	U 1.4	U 1.4 U
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	NS	NS	0.46 NJ	0.48 NJ	0.43 N	1.53 U		1.5 U				1.5 l	0.50	J 1.5	∪ 0.56 NJ
75-35-4	1,1-DICHLOROETHENE	NS	NS	0.14 U	0.14 U	0.14 U	0.079 U	0.79 U	0.79 U	0.16 U			0.79 L	J 0.14	U 0.14	U 0.14 U
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	NS	1.9	0.98 U	0.92 No	0.983 U	0.98 U	0.98 U		12.29 U	0.49 U	0.98 l	0.98	∪ 0.52 N	
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	NS	0.63 NJ	0.98 U	0.30 No	0.983 U	0.98 U	0.98 U	0.39 U	12.29 U	0.49 U	0.98 L	J 0.98	U 0.98	U 0.98 U
106-99-0	1,3-BUTADIENE	NS	NS	0.44 U	0.16 NJ	0.44 U	0.442 U	0.44 U	0.44 U	0.18 U			0.44 L	0	U 0.44	U 0.11 NJ
541-73-1	1,3-DICHLOROBENZENE	NS	NS	1.2 U	1.2 U	1.2 U	1.20 U	1.20 U	1.2 U				1.2 l	J 1.2	J 1.2	U 1.2 U
106-46-7	1,4-DICHLOROBENZENE	NS	NS	1.2 U	1.2 U	1.2 U	6.01		1.2 U				1.2 l	J 1.2	J 1.2	U 1.2 U
540-84-1	2,2,4-TRIMETHYLPENTANE	NS	NS	0.62 NJ	0.20 NJ	0.93 U	0.934 U	0.93 U	0.93 U	0.7			0.93 L	0.52	J 0.93	U 0.93 U
622-96-8	4-ETHYLTOLUENE	NS	NS	0.44 NJ	0.98 U	0.24 N	0.983 U	0.98 U	0.98 U	0.2 U	12.29 U	0.49 U	0.98 L	0.00	U 0.98	U 0.98 U
67-64-1	4-ISOPROPYLTOLUENE (CYMENE)	NS	NS	1.1 U	1.1 U	1.1 U	NT = 2.1		1.1 U		201.10	ļ	1.1 U	J 1.1	U 1.1	U 1.1 U
107-05-1	ACETONE	NS	NS	22	27	16	58.4	24	19		394.46	17.3	12 l	J 12	U 7.0 N	-
100-44-7	BENZENE	NS	NS	0.65	0.59 NJ	0.65	0.639 U	0.64 U	0.64 U	0.32	4.63	0.7	0.64 L	0.77	0.51 N	
75-15-0	BUTANE	NS	NS	3.7	11	2.7	NT	1.2 U	2.1		7.70	0.44	1.2 L	3.0	2.3	1.7
56-23-5	CARBON DISULFIDE	NS	NS	1.6 U	1.6 U	1.6 U	0.623 U	1.6 U	1.6 U		7.78 U	0.44	1.6 L	J 1.6	U 1.2 N	
108-90-7	CARBON TETRACHLORIDE	NS	NS	0.38	0.35	0.30	0.541	0.40	0.31	0.4	15.73 U	0.38	0.25 L	0.35	0.40	0.39
75-00-3	CHLORODIFLUOROMETHANE (Freon 22)	NS	NS	2.7	2.3	8.4	NT	13	1.8 U		44.54	0.40	1.8 L	0.00	J 1.2 N	
108-90-7	CHLOROBENZENE CHLOROFORM	NS	NS	0.92 U	0.92 U	0.92 U	0.921 U	0.00	0.92 U	0.0	11.51 U	0.46 U	0.92 L	0.02	U 0.92	U 0.92 U
74-87-3		NS	NS	0.98 U	0.98 U	0.98 U	0.977 U	0.98 U	0.98 U	0.2 U	12.17 U	0.49 U	0.98 L	0.98	U 0.98	U 0.98 U
156-59-2 10061-01-5	CHLOROMETHANE	NS	NS	1.2	1.3	1.1	1.18	1.0 U	1 U	0.21 U	5.16 U	0.21 U	1 0.70	0.99	J 1.2	1.5
99-87-6	CIS-1,2-DICHLOROETHYLENE CYCLOHEXANE	NS NS	NS	0.20 U 0.69 U	0.20 U 0.69 U	0.20 U 0.69 U	0.079 U 0.688 U	0.79 U	0.79 U	0.16 U 0.14 U	9.91 U	0.4 U	0.79 L	J 0.20 J 0.69	U 0.20 U 0.69	U 0.20 U U 0.69 U
75-71-8	DICHLORODIFLUOROMETHANE	NS NS	NS NS	32	120	5.3	2.79	0.69 U 2.5 U	0.69 U 2.5 U	2.2	8.61 U	0.34 U	0.69 L 2.5 L	J 2.1	J 2.8	2.0 NJ
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS NS	NS	1.6 U	1.6 U	1.6 U	NT NT	1.6 U	1.6 U	0.16 U			1.6 L	J 2.1 J 1.6	J 2.6 U 1.6	U 1.6 U
64-17-5	ETHANOL	NS	NS	NT	NT	NT	236	1.0	1.0	0.10			NT NT	NT	NT	NT NT
100-41-4	ETHYLBENZENE	NS	NS	0.65 NJ	0.87 U	0.51 No	0.869 U	0.87 U	0.87 U	0.17 U	10.84 U	0.43 U	0.87 L	J 0.87	U 0.35 N	
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	NS	13	18	7.2 No	9120	93	1500 J	0.17	6.13 U	2.65	12		U 12	U 12 U
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS	NS	0.98 U	0.98 U	0.98 U	NT	00	0.98 U		12.29 U	0.49 U	0.98	J 0.98	U 0.98	U 0.98 U
179601-23-1	M,P-XYLENES	NS	NS	1.5 NJ	2.2 U	1.2 No	1.74 U	2.2 U	2.2 U	0.35 U	21.68 U	0.95	2.2		J 0.71 N	
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS	NS	1.8	1.8	1.5 U	1.47 U	1.5 U	1.5 U		50.43	2.54	1.5 U	J 1.2	J 1.5	1.2 J
75-09-2	METHYL TERT-BUTYL ETHER (MTBE)	NS	NS	0.72 U	0.72 U	0.72 U	0.721 U		0.72 U	0.14 U			0.72 L	J 0.72	U 0.72	U 0.72 U
91-20-3	METHYLENE CHLORIDE	NS	60	0.97 NJ	0.97 NJ	2.3	1.74 U	1.7 U	1.7 U	2.8 U	8.68 U	0.35 U	1.7 l		J 1.7	U 1.1 NJ
104-51-8	NAPHTHALENE	NS	NS	2.6 UJ	2.6 U	2.6 U	NT	2.6 U.	J 2.6 U.	J	13.09 U	2.62 U	2.6 l	JJ 2.6	U 2.6 L	JJ 2.6 U
110-54-3	N-HEPTANE	NS	NS	0.94	0.82 U	0.44 No	0.82 U	0.82 U	0.82 U	0.45	43.44	0.41 U	0.82 l	J 0.82	U 0.82	U 0.82 U
103-65-1	N-HEXANE	NS	NS	1.1 JB	1.8 U	1.9	0.705 U	0.7 U	0.7 U	0.53	8.81 U	1.73	0.7 L	J 0.70	U 0.98 J	JB 1.8 U
95-47-6	N-PROPYLBENZENE	NS	NS	0.98 U	0.98 U	0.98 U	NT	0.98 U	0.98 U				0.98 l	J 0.98	U 0.98	U 0.98 U
135-98-8	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	NS	0.60 NJ	0.87 U	0.64 N	0.869 U	0.87 U	0.87 U	0.17 U	10.84 U	0.43 U	0.87 l	J 0.87	U 0.34 N	NJ 0.87 U
98-06-6	STYRENE	NS	NS	0.85 U	0.85 U	0.85 U	0.852 U		0.85 U		10.63 U	0.43 U	0.85 L	J 0.85	U 0.85	U 0.85 U
1634-04-4	TERT-BUTYL ALCOHOL	NS	NS	6.6 NJ	8.8 NJ	15 U	1.52 ∪		15 U				15 l	J 15	U 15	U 15 U
109-99-9	TETRAHYDOFURAN	NS	NS	15 U	15 U	15 U	1.47 ∪		15 U		26.24	0.29 U	15 l		U 15	U 15 U
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	30	0.63 NJ		0.31 N		1.4 U	1.4 U	1	16.65 U	1.42	1.4 l	0.50	J 1.4	∪ 0.75 NJ
108-88-3	TOLUENE	NS	NS	2.2	1.4	2.0	0.754 U	0.91	1.2	1.2	9.41 U	2.41	0.75 L	1.4	1.0	0.63 NJ
156-60-5	TRANS-1,2-DICHLOROETHENE	NS	NS	0.79 U	0.79 U	0.79 U	0.793 U	0.79 U	0.79 U				0.79 L	J 0.79	U 0.79	U 0.79 U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	2	0.19 U	0.19 U	0.19 U	0.107 U	0.21 U	0.21 U	0.21 U	13.44 U	0.16	0.21	0.19	U 0.19	U 0.19 U
75-69-4	TRICHLOROFLUOROMETHANE	NS	NS	1.3	1.2	0.96 No		1.2	1.1	1.7	14.05 U	1.91	1.1	****	1.3	1.2
75-01-4	VINYL CHLORIDE	NS	NS	0.20 U	0.20 U	0.20 U	0.051 U	0.10 U	0.10 U	0.2 U	6.39 U	0.26 U	0.1 L	0.20	U 0.20	U 0.20 U
XYLENES	XYLENES, TOTAL	NS	NS	2.1 NJ		1.8 N	2.6 U	3.0 U	3 U	<u> </u>			3 l	0.78	J 1.0 N	
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS	NS		13 N	1.6 No		25 N	J 7.6 No	J						3.4 NJ

Only those analytes detected in one or more samples are presented above

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, N = The analysis indicates the tentative presence of a non-target/method specified analyte NYSDOH October 2006, with February 2024 revisions.

NS = No Standard

NT = Not Tested

Bold = Concentration exceeds Standards

Validator Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

 UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not

represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Blank space indicates compound not reported and/or data not available.

Whitestone Indoor Air and Sub Slab Results Jan 2025.xlsx Page 4 of 5

Sample Location	n		NYSDOH Stnds ¹	An	nbie	ent	System B Effluent Stack	System C Effluent Stack	
Medium		Subsurface Vapors	Indoor Air	Ambient Air	\ \ \	Ambient Air	Effluent	Effluent	
	Laboratory ID Sample ID Collection Date			200-67137-6 Ambient 03/02/23	1	L2408362-6 Ambient 02/14/24	200-37771-4 Ambient 03/09/17	200-62822-13 System C Effluent 03/30/22	
	Units	ug/m3	ug/m3	ug/m3	+	ug/m3	ug/m3	ug/m3	
CAS Number	Chemical Name	agimo	ug/mo	ug/iiio	+	ug/IIIO	ug/IIIa	ug/m3	
71-55-6	1,1,1-TRICHLOROETHANE	NS	NS	1.1 L	J	0.109	J 3.3 U	11 L	
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	NS	1.4 L	_		J 4.2 U	14	
76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	NS	NS	1.5 L	_		J 4.6 U	15 U	
75-35-4	1,1-DICHLOROETHENE	NS	NS	0.14 L	_		J 0.42 U	1.4	
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	NS	4.1	_		J 17	9.8	
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	NS	1.3	+		J 4.7	9.8	
106-99-0	1,3-BUTADIENE	NS	NS	0.44 L	1		J 1.3 U		
541-73-1	1,3-DICHLOROBENZENE	NS	NS	1.2 L	_		J 3.6 U	12	
106-46-7	1,4-DICHLOROBENZENE	NS	NS	1.3	+		J 3.0	12	
540-84-1	2,2,4-TRIMETHYLPENTANE	NS	NS	0.31 N			J 40	1.7 N	
622-96-8	4-ETHYLTOLUENE	NS	NS	0.31 N			J 40 J 4.2	9.8 L	
67-64-1	4-ISOPROPYLTOLUENE (CYMENE)	NS	NS	0.75 N	13	NT			
107-05-1					-	4.96			
	ACETONE BENZENE	NS	NS	23	-		-	120 L	
100-44-7		NS	NS	1.0	-		6.4	6.4 L	
75-15-0	BUTANE	NS	NS	4.0		NT	64	12 L	
56-23-5	CARBON DISULFIDE	NS	NS	8.2			J 1.6 U		
108-90-7	CARBON TETRACHLORIDE	NS	NS	0.28		0.491	0.67 L		
75-00-3	CHLORODIFLUOROMETHANE (Freon 22)	NS	NS	1.5 N	_	NT	5.4 L	18 L	
108-90-7	CHLOROBENZENE	NS	NS	0.92 L			J		
74-87-3	CHLOROFORM	NS	NS		J		J 3 L	0.0	
156-59-2	CHLOROMETHANE	NS	NS	1.1		1.15	3.1 L	10	
10061-01-5	CIS-1,2-DICHLOROETHYLENE	NS	NS	0.20 L	_		J 2.1	2 L	
99-87-6	CYCLOHEXANE	NS	NS	0.69 L	_		J 16	6.9 L	
75-71-8	DICHLORODIFLUOROMETHANE	NS	NS	2.1 N	_	2.10	7.5 L	• • • • • • • • • • • • • • • • • • • •	
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	NS	1.6 L	J	NT	2.1 J	16 L	
64-17-5	ETHANOL	NS	NS	NT			J		
100-41-4	ETHYLBENZENE	NS	NS	3.5			9.4	8.7 L	
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	NS	12 L	J		J 37 L	120	
98-82-8	ISOPROPYLBENZENE (CUMENE)	NS	NS	0.98 L	J	NT	0.92 J	9.8 L	
179601-23-1	M,P-XYLENES	NS	NS	4.0			J 36	22 L	
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS	NS	20			J 5.6	15 L	
75-09-2	METHYL TERT-BUTYL ETHER (MTBE)	NS	NS	0.72 L	J	0.721	J 2.2 L	7.2 L	
91-20-3	METHYLENE CHLORIDE	NS	60	0.69 N	IJ	1.74	J 5.3 L	J 17 L	
104-51-8	NAPHTHALENE	NS	NS	150		NT	7.9 U	26 U	
110-54-3	N-HEPTANE	NS	NS	1.4		0.82	J 17	8.2 L	
103-65-1	N-HEXANE	NS	NS	0.47 N	IJ	0.705	J 31	18 L	
95-47-6	N-PROPYLBENZENE	NS	NS	0.65 N	IJ	NT	2.7 J	9.8 L	
135-98-8	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	NS	2.2		0.869	J 13	8.7 L	
98-06-6	STYRENE	NS	NS	0.85 L	J	0.852	J 0.85 L	8.5 L	
1634-04-4	TERT-BUTYL ALCOHOL	NS	NS	15 L	J	1.52	J 46 L	150 L	
109-99-9	TETRAHYDOFURAN	NS	NS	15 L	J		J		
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	30	1.4 L	_		J 220	2.8 N	
108-88-3	TOLUENE	NS	NS	2.9	T		J 48	7.5 L	
156-60-5	TRANS-1,2-DICHLOROETHENE	NS	NS		J		J 2.4 L		
79-01-6	TRICHLOROETHYLENE (TCE)	NS	2		J		J 5.9	1.9	
75-69-4	TRICHLOROFLUOROMETHANE	NS	NS	0.98 N	_	1.29	1.1 J		
75-01-4	VINYL CHLORIDE	NS	NS	0.20 L	_		J 0.61 L		
XYLENES	XYLENES. TOTAL	NS	NS	6.2			J 48	30	
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS	NS	27 N	.	,		35 N	

Only those analytes detected in one or more samples are presented above

1 Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, N = The analysis indicates the tentative presence of a non-target/method specified analyte NYSDOH October 2006, with February 2024 revisions.

NS = No Standard

NT = Not Tested

Bold = Concentration exceeds Standards

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but not detected above the reported sample quantitation limit.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent

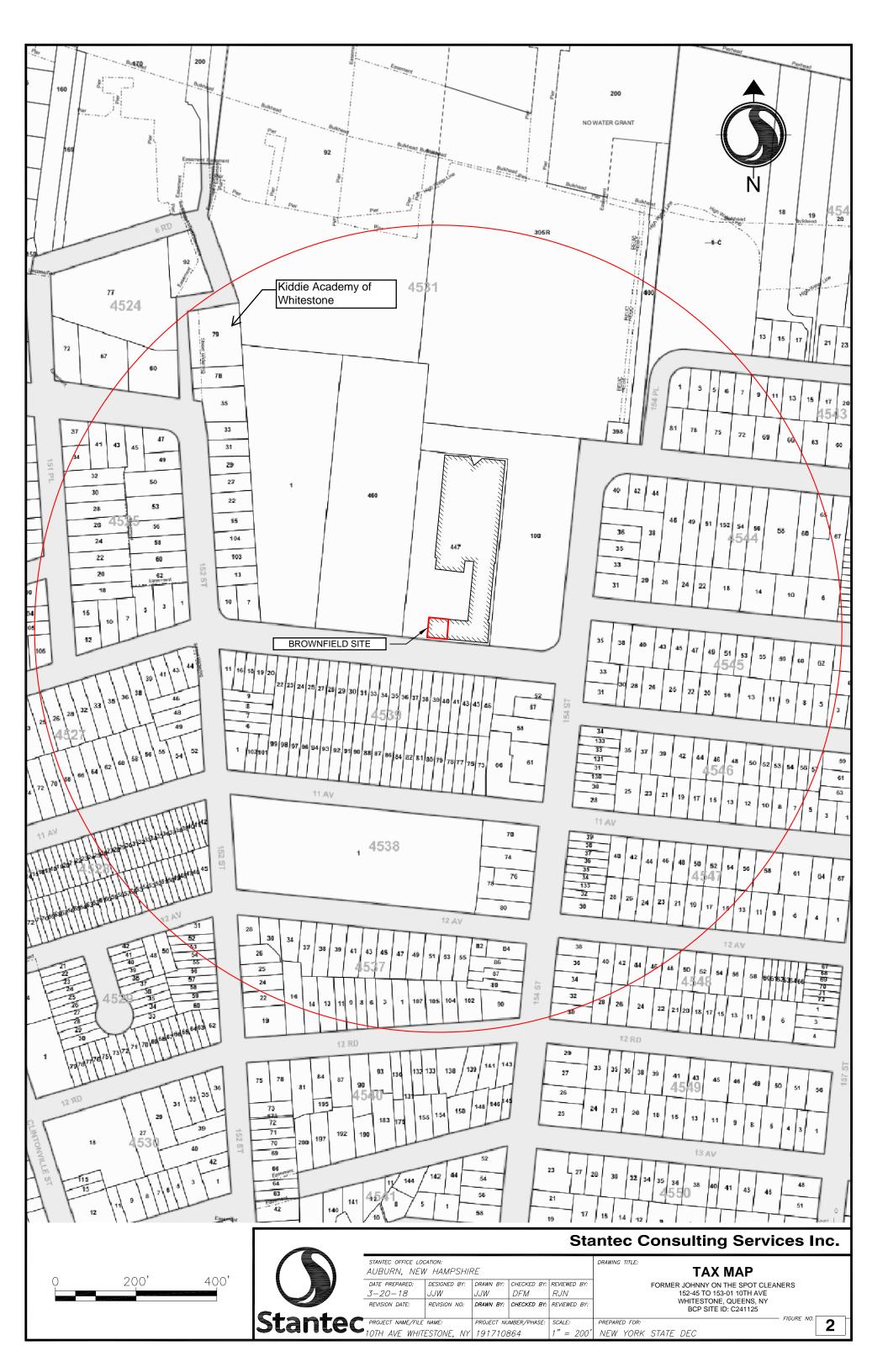
the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Blank space indicates compound not reported and/or data not available.

Whitestone Indoor Air and Sub Slab Results Jan 2025.xlsx Page 5 of 5

FIGURES

Stantec Consulting Services Inc. 5 Dartmouth Drive, Suite 101 Auburn NH U.S.A. 03032-3984

Fax. 603.669.7636 www.stantec.com


Client/Project

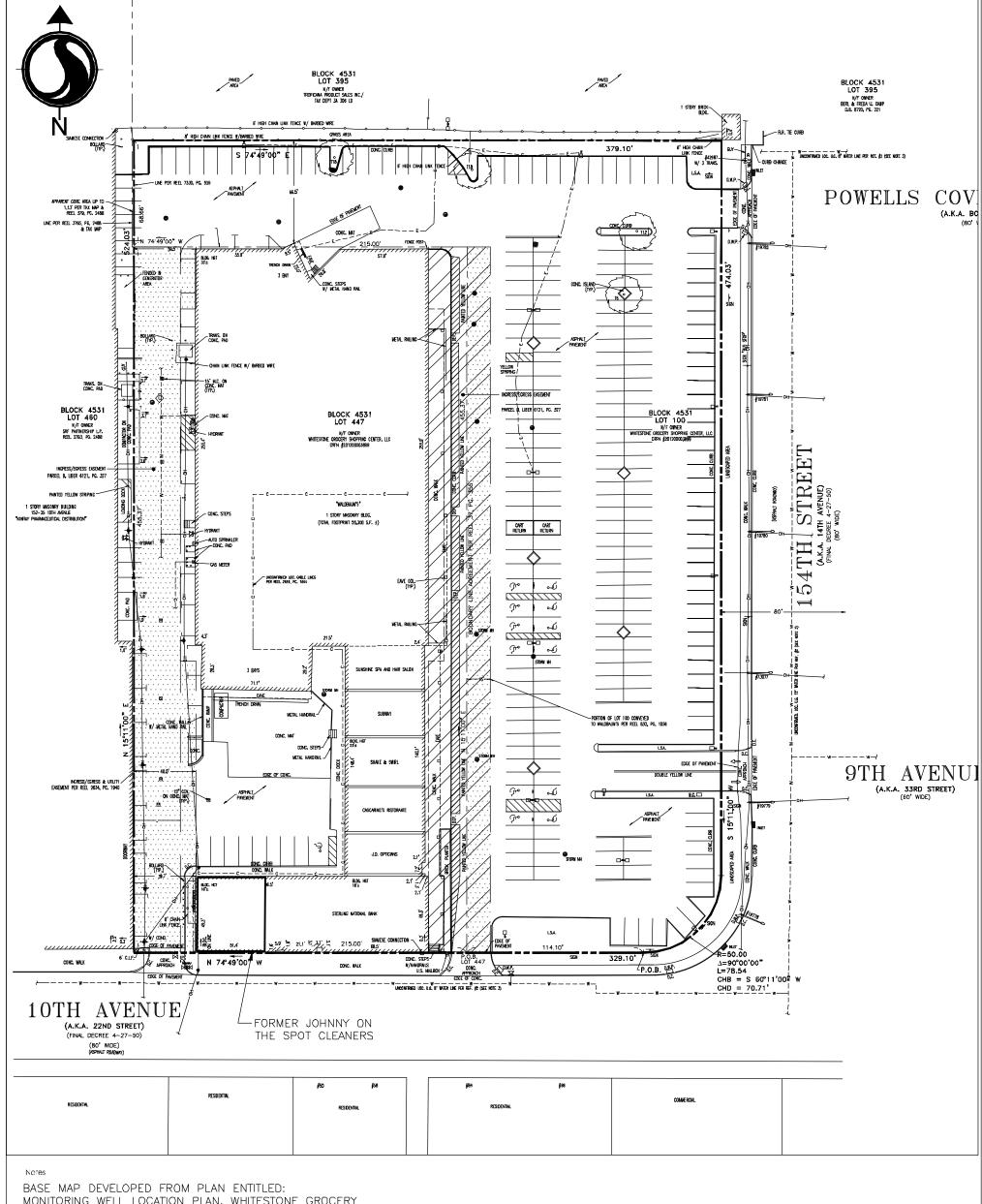
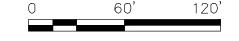

WALBAUM'S SUPERMARKET 152-45 TO 153-01 10TH AVE WHITESTONE, QUEENS, NY

Figure No.


Title

SITE LOCATION MAP

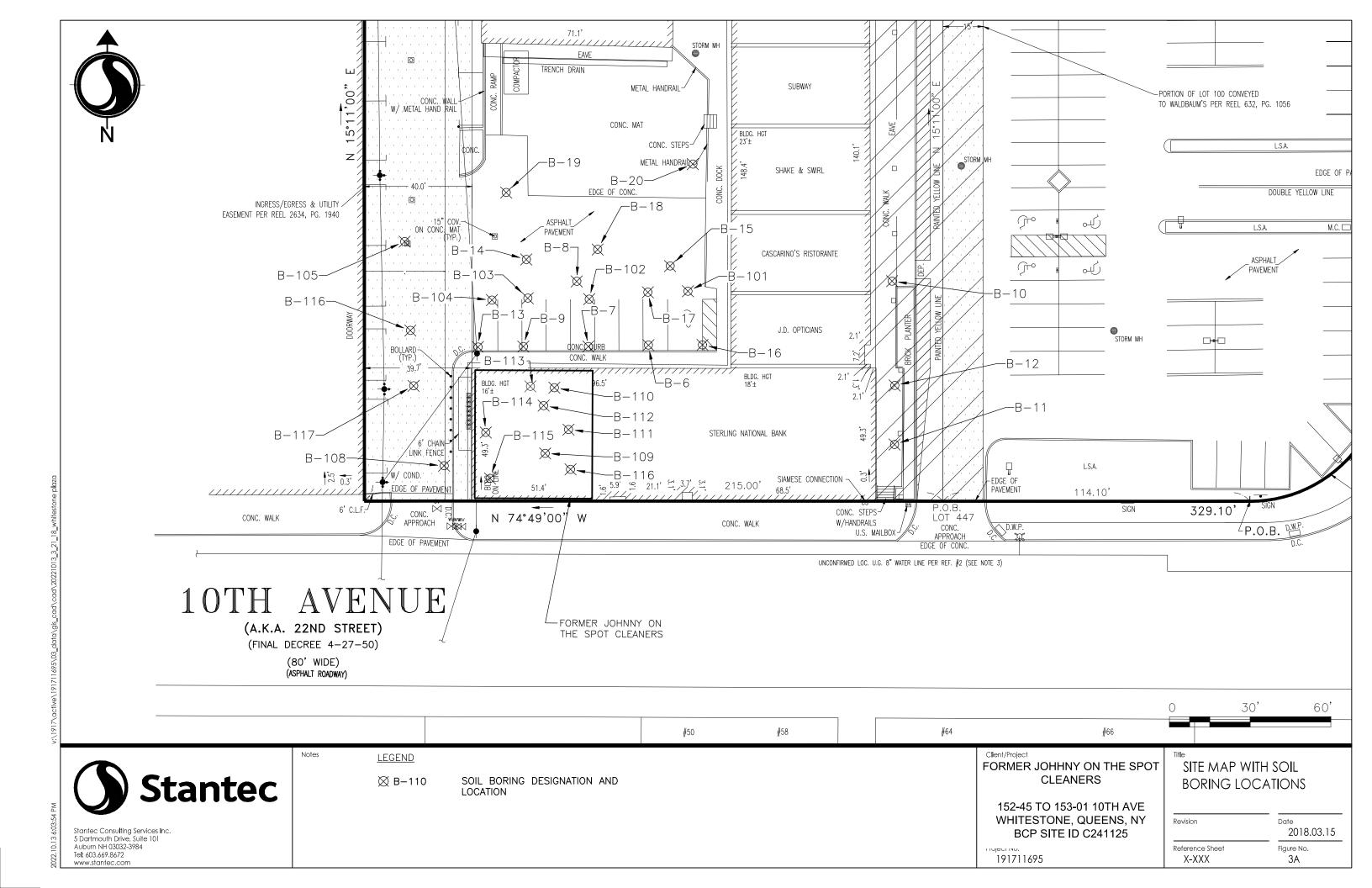
MONITORING WELL LOCATION PLAN, WHITESTONE GROCERY SHOPPING CENTER, LLC, PREPARED BY CONTROL POINT ASSOCIATES, INC., DATED MARCH 3, 2018. ORIGINAL SCALE 1"=20"

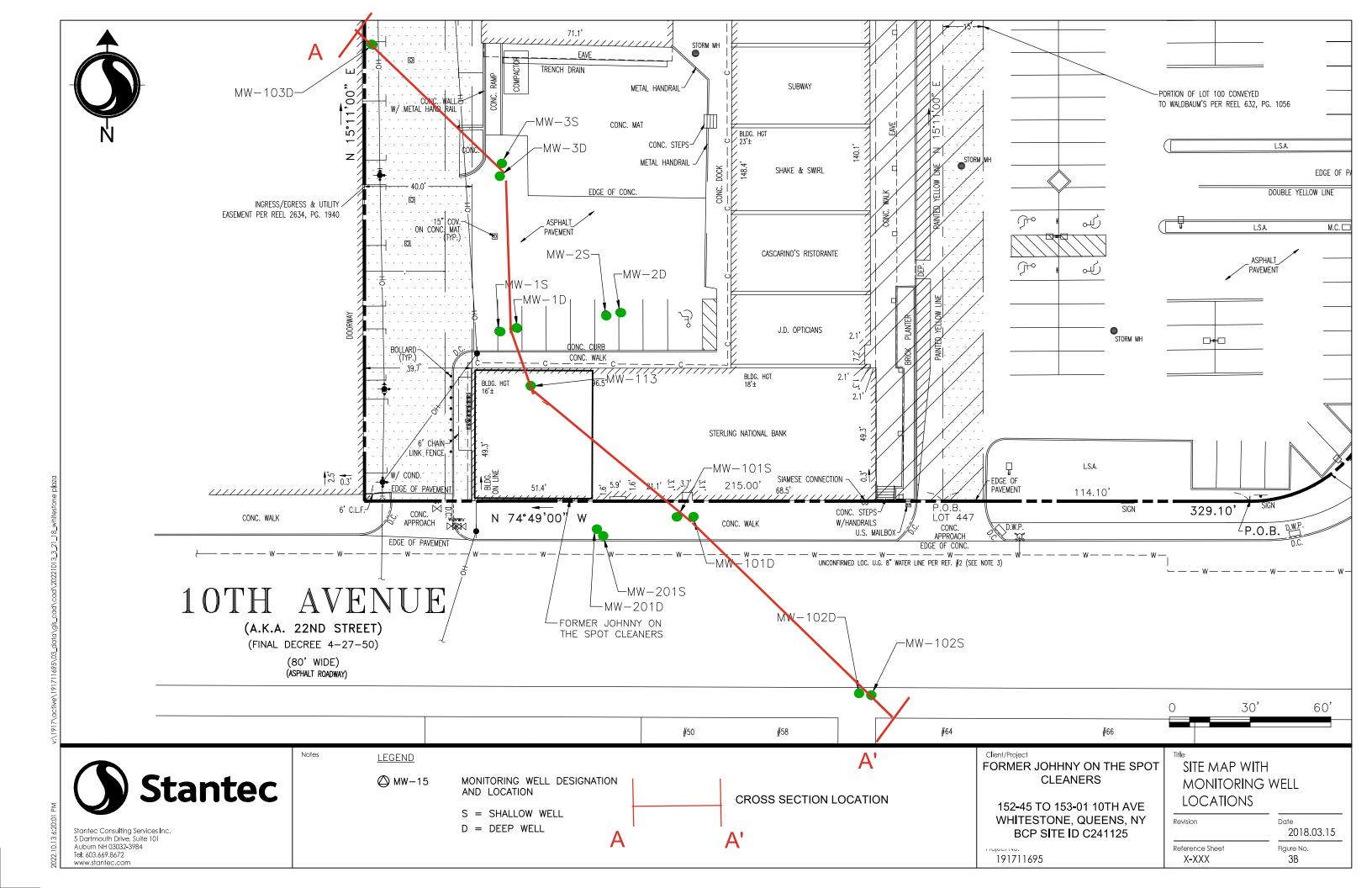
Startred Consulting Services Inc. 5 Dartmouth Drive, Suite 101 Aubum NH 03032-3984 Tel: 603.669.8672 www.srantec.com

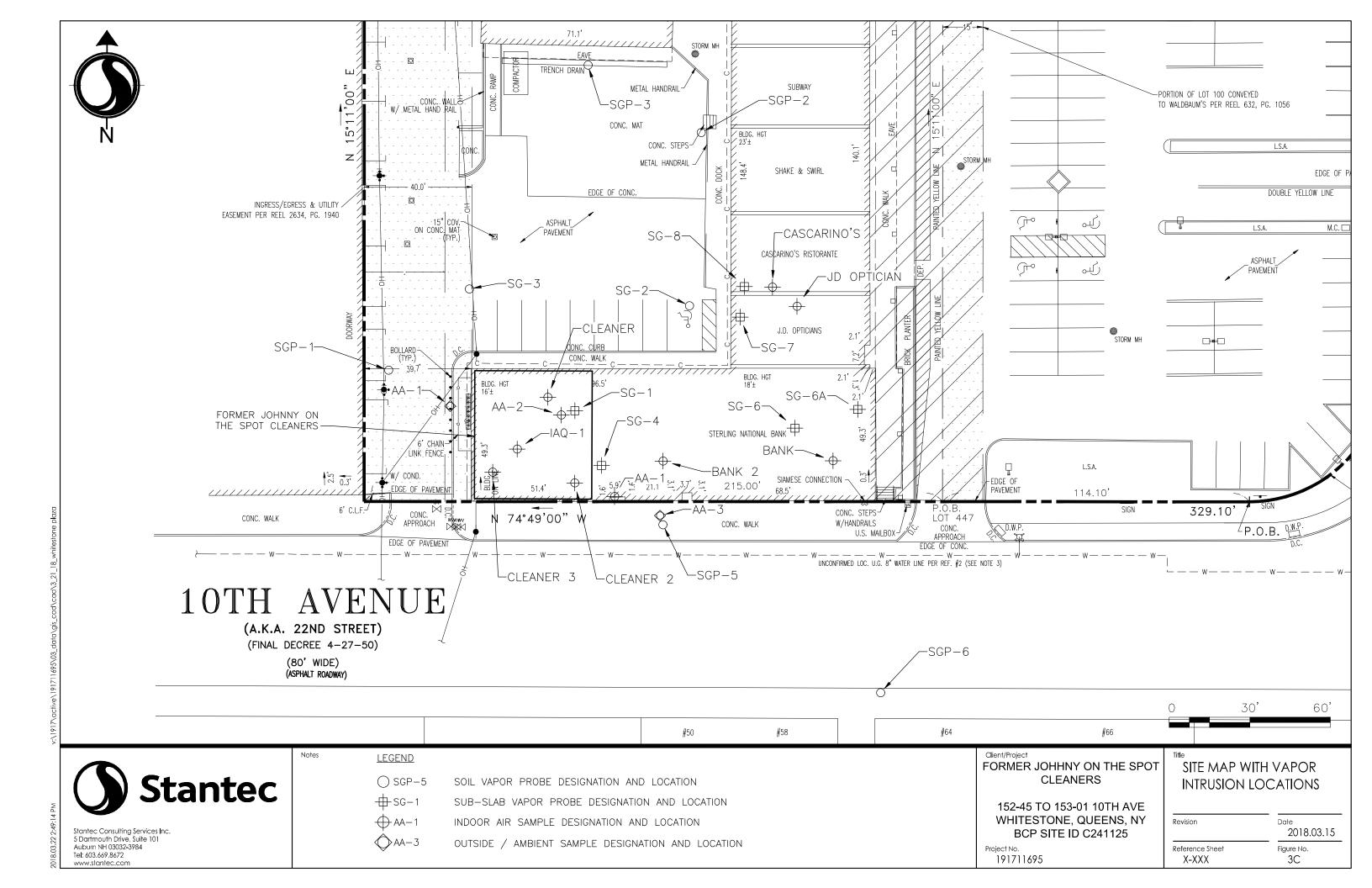
<u>LEGEND</u>

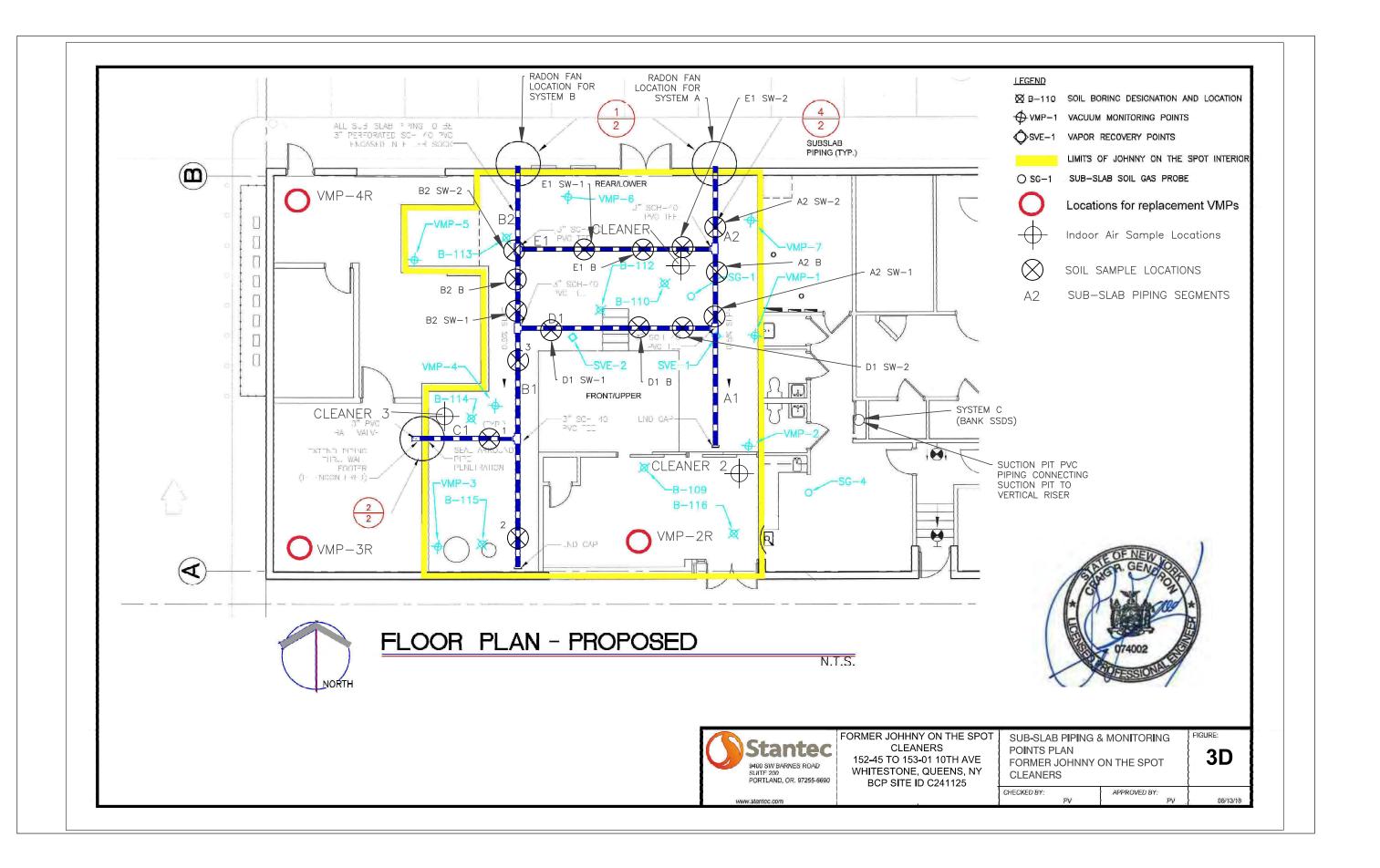
Client/Project FORMER JOHNNY ON THE SPOT **CLEANERS**

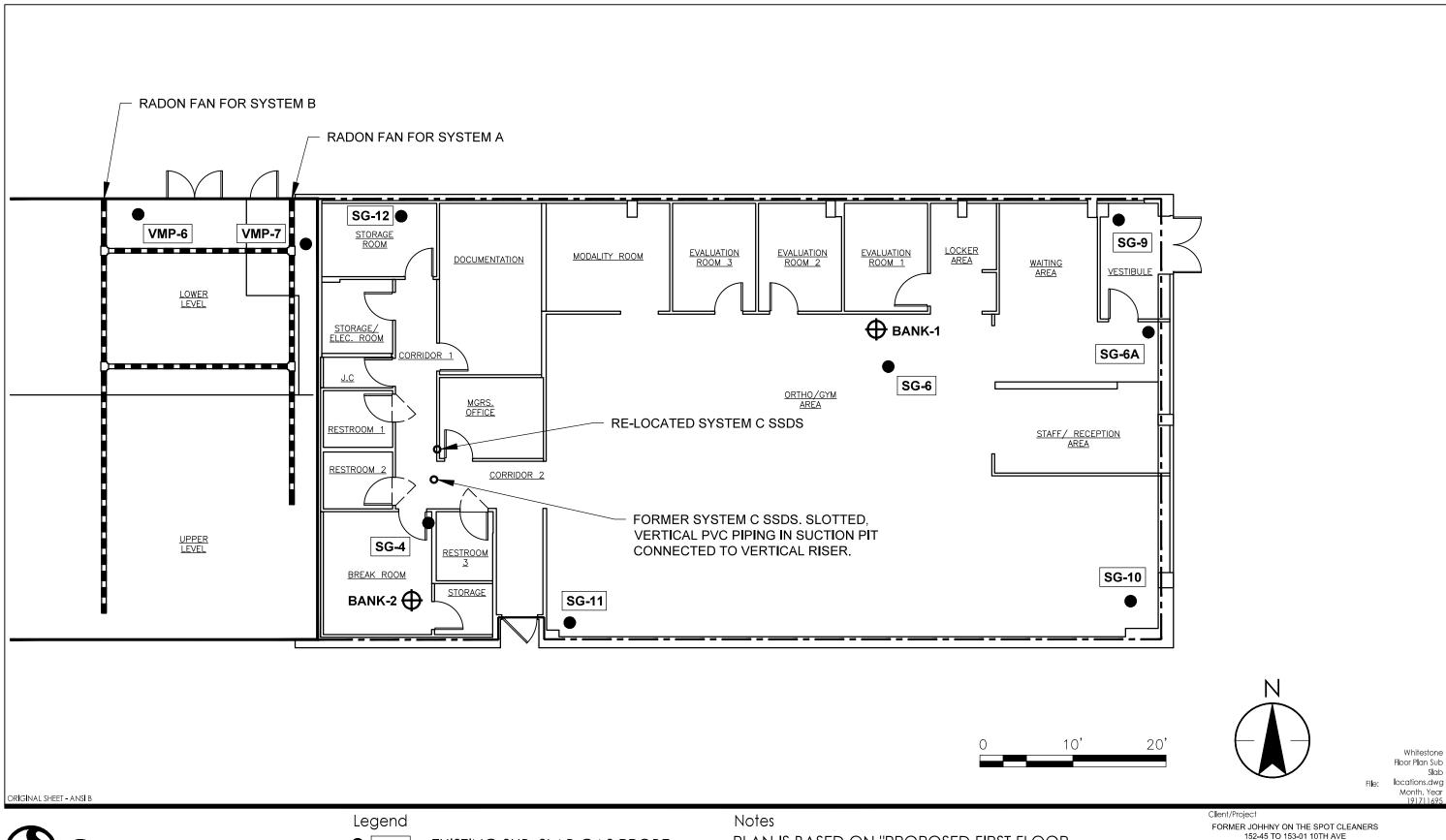
152-45 TO 153-01 10TH AVE WHITESTONE, QUEENS, NY BCP SITE ID C241125 Project No.


191711695


SITE MAP


Date Revision 2018.03.15 Reference Sheet Figure No.

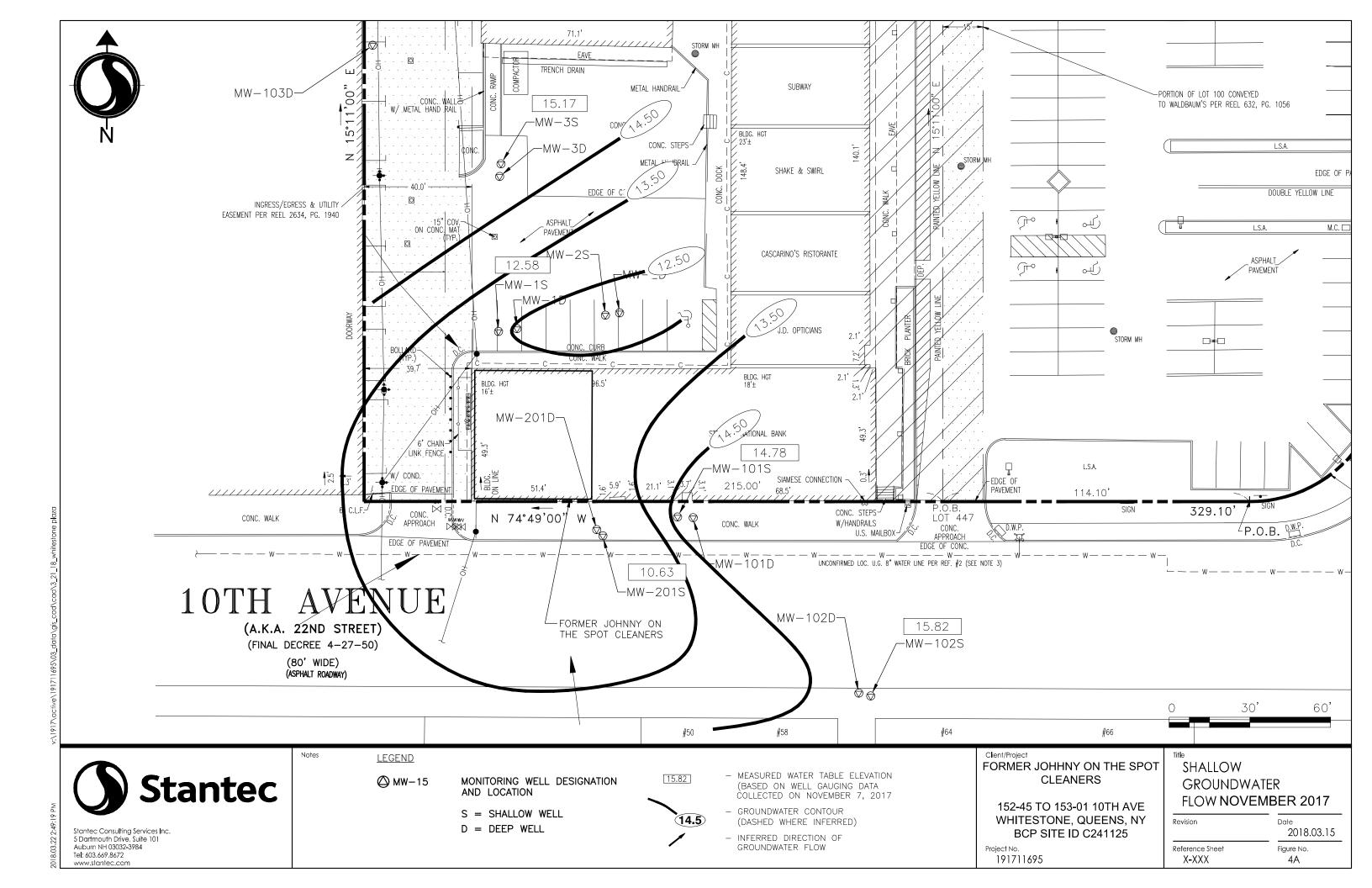

2**A**

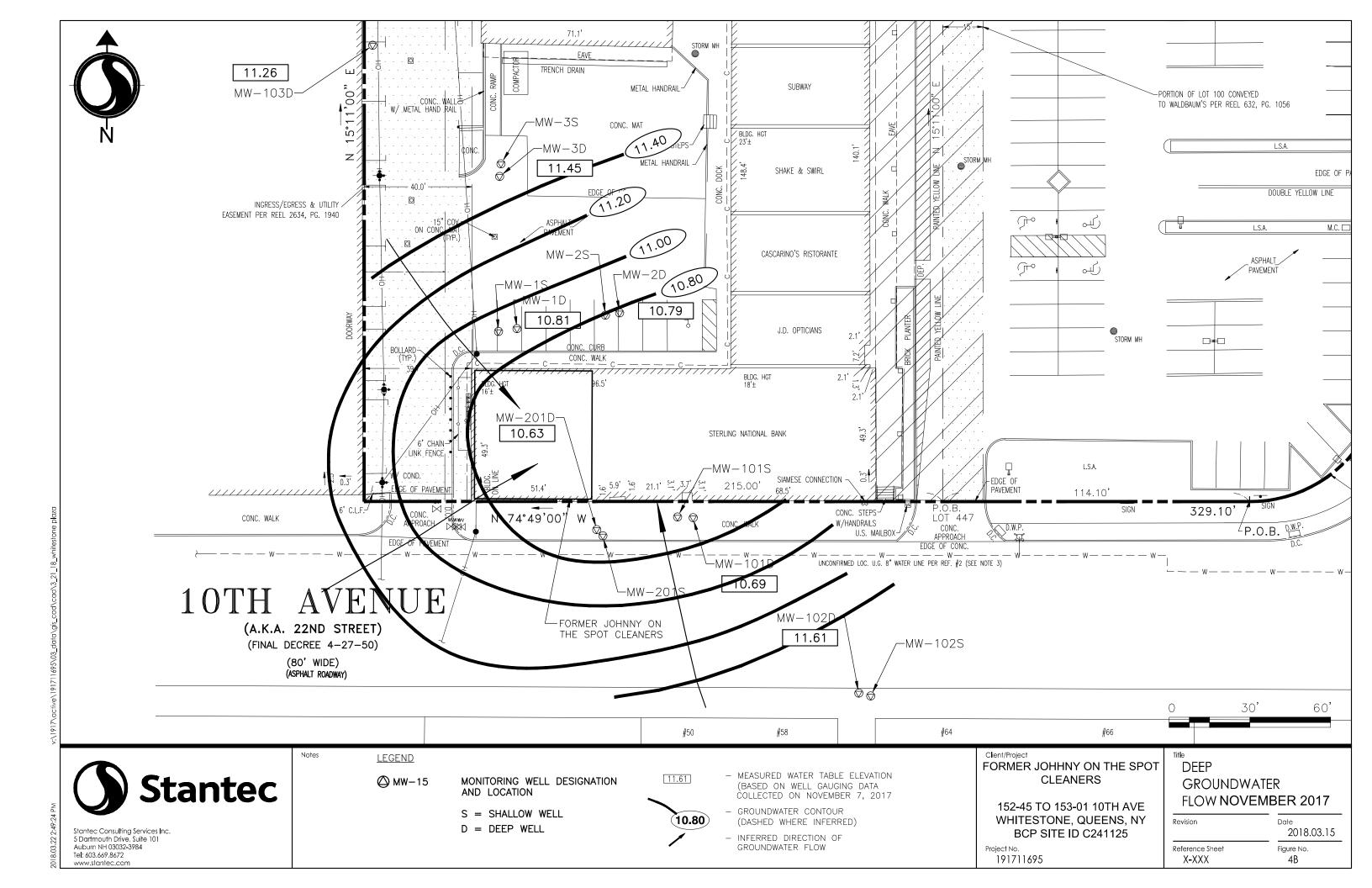

2018:03:22 2:48:58 PM v:\1917\active\191711695\03_data\gis_cad\cad\3_21_18_wnitestone plaza

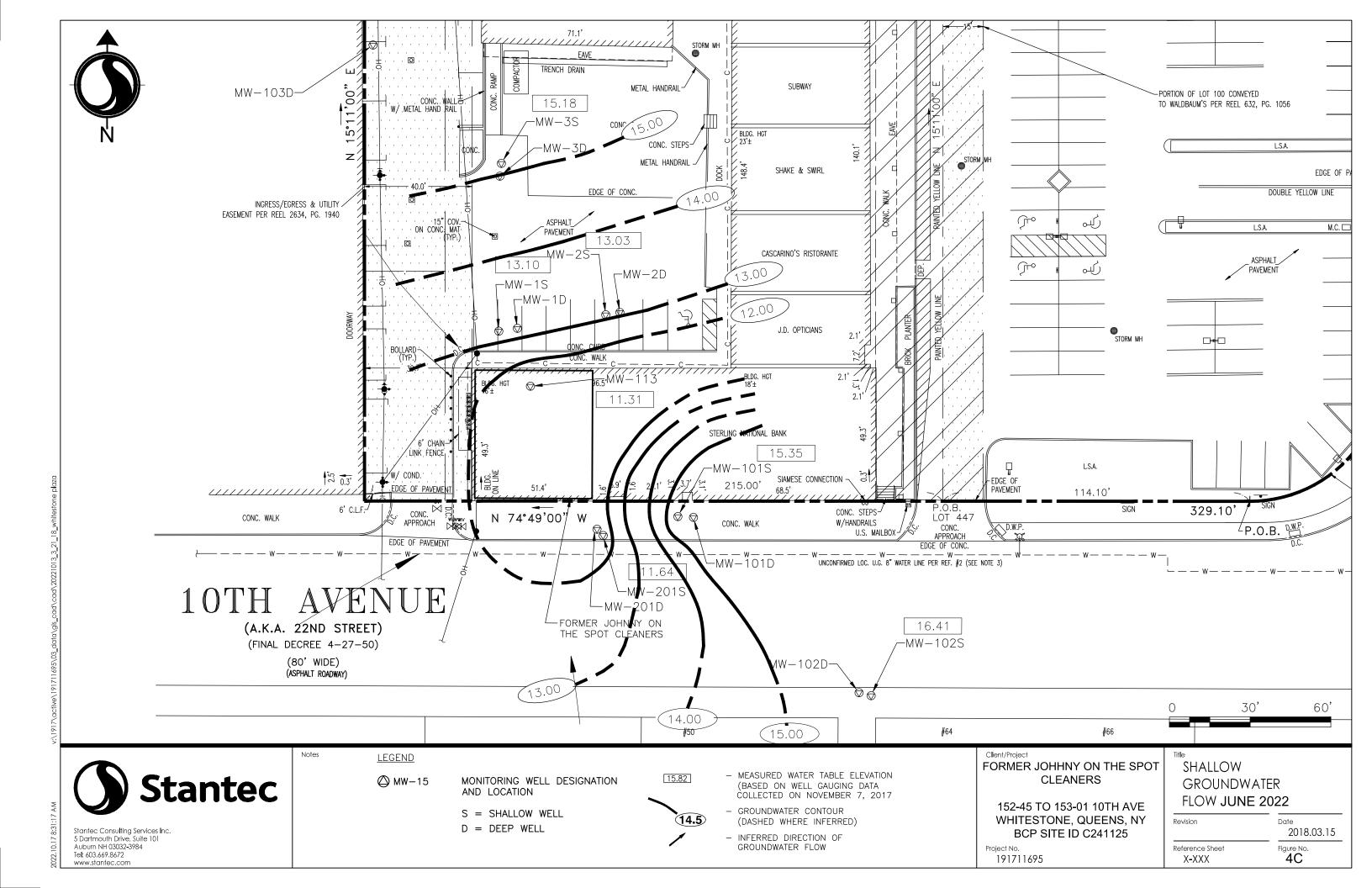
5 DARTMOUTH DRIVE, SUITE 200 AUBURN, NH 03032 www.stantec.com

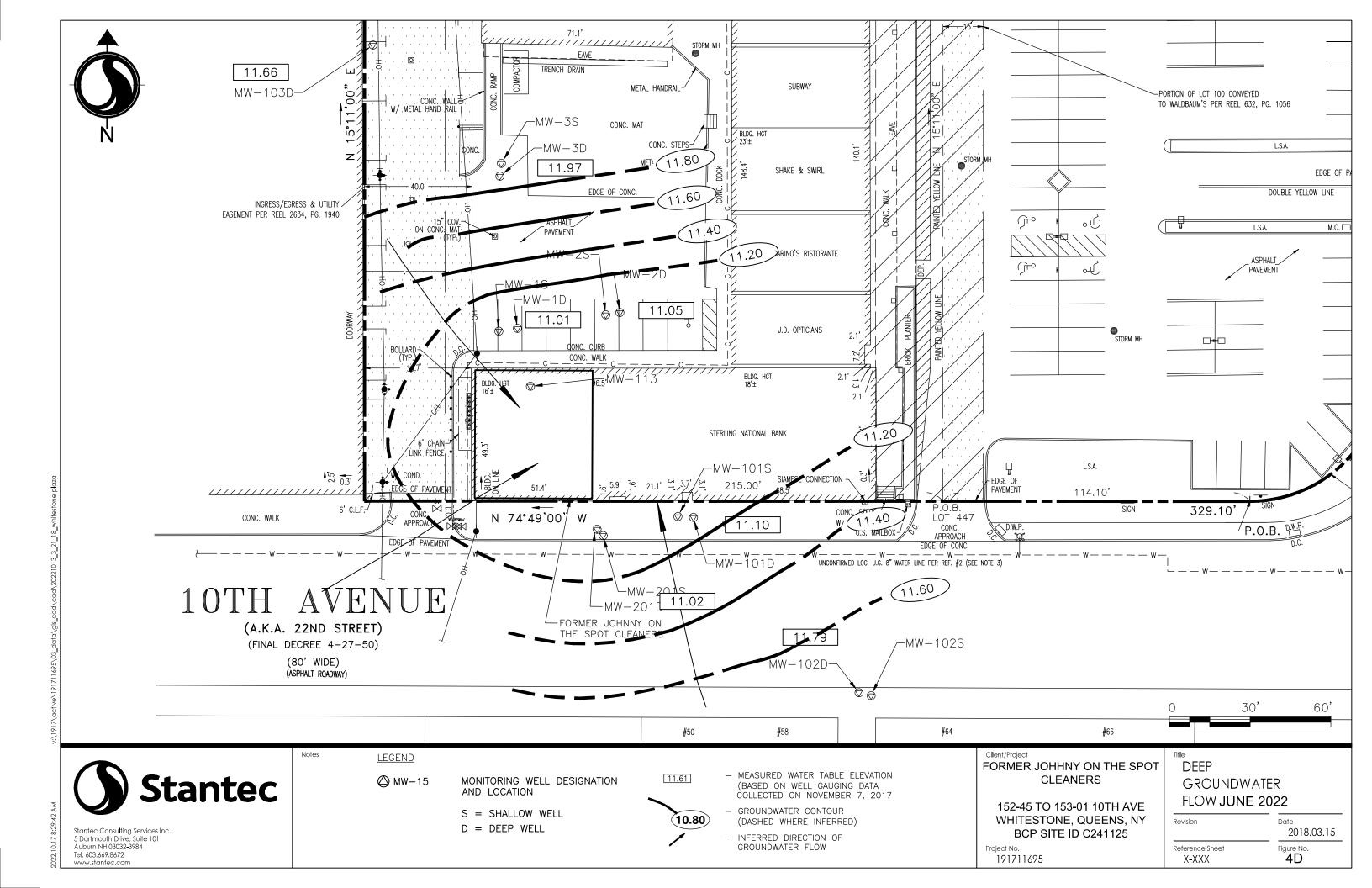
EXISTING SUB_SLAB GAS PROBE LIMITS OF FORMER JOHNNY ON THE SPOT CLEANERS

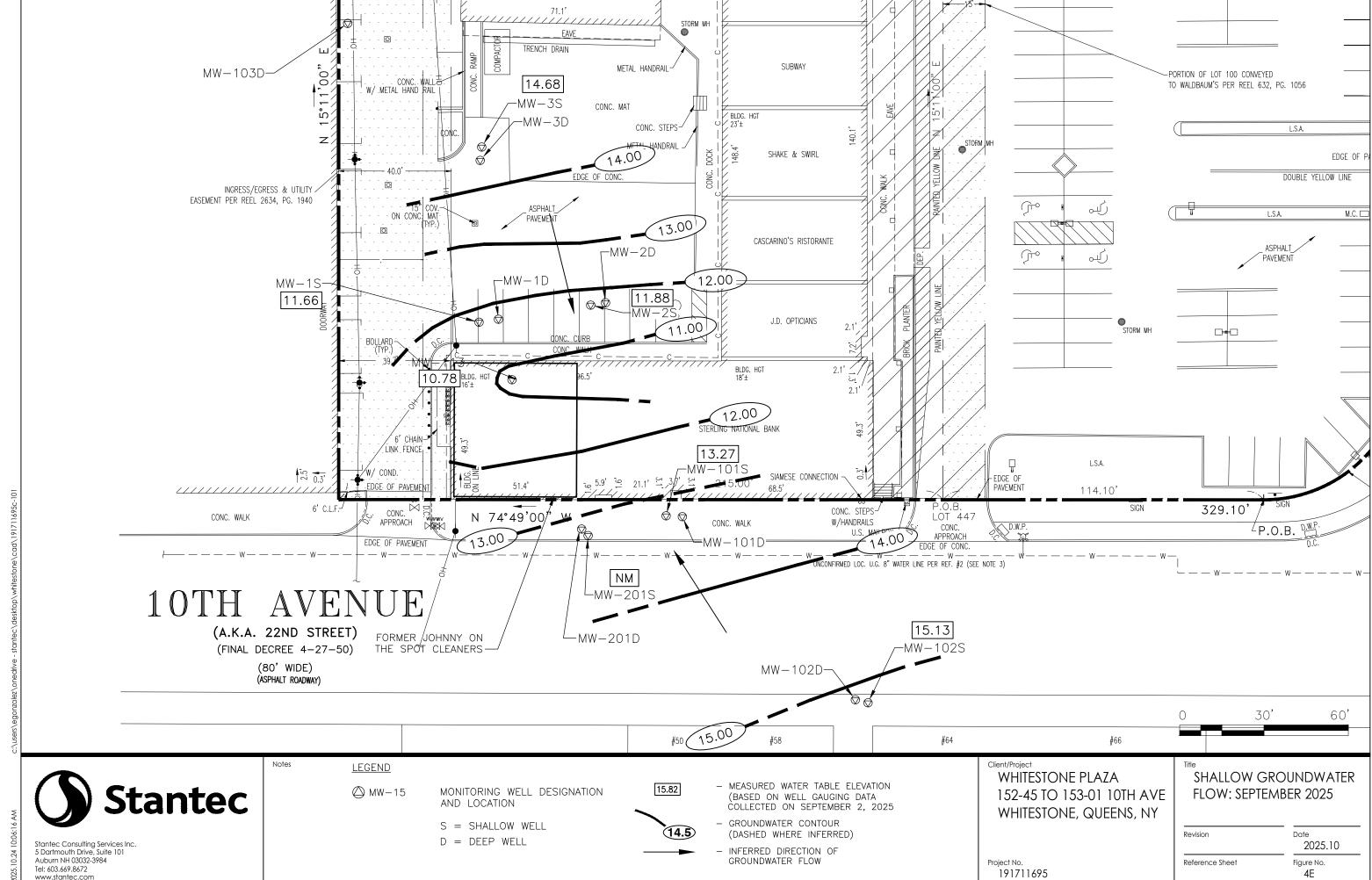
BANK-1 INDOOR AIR SAMPLE

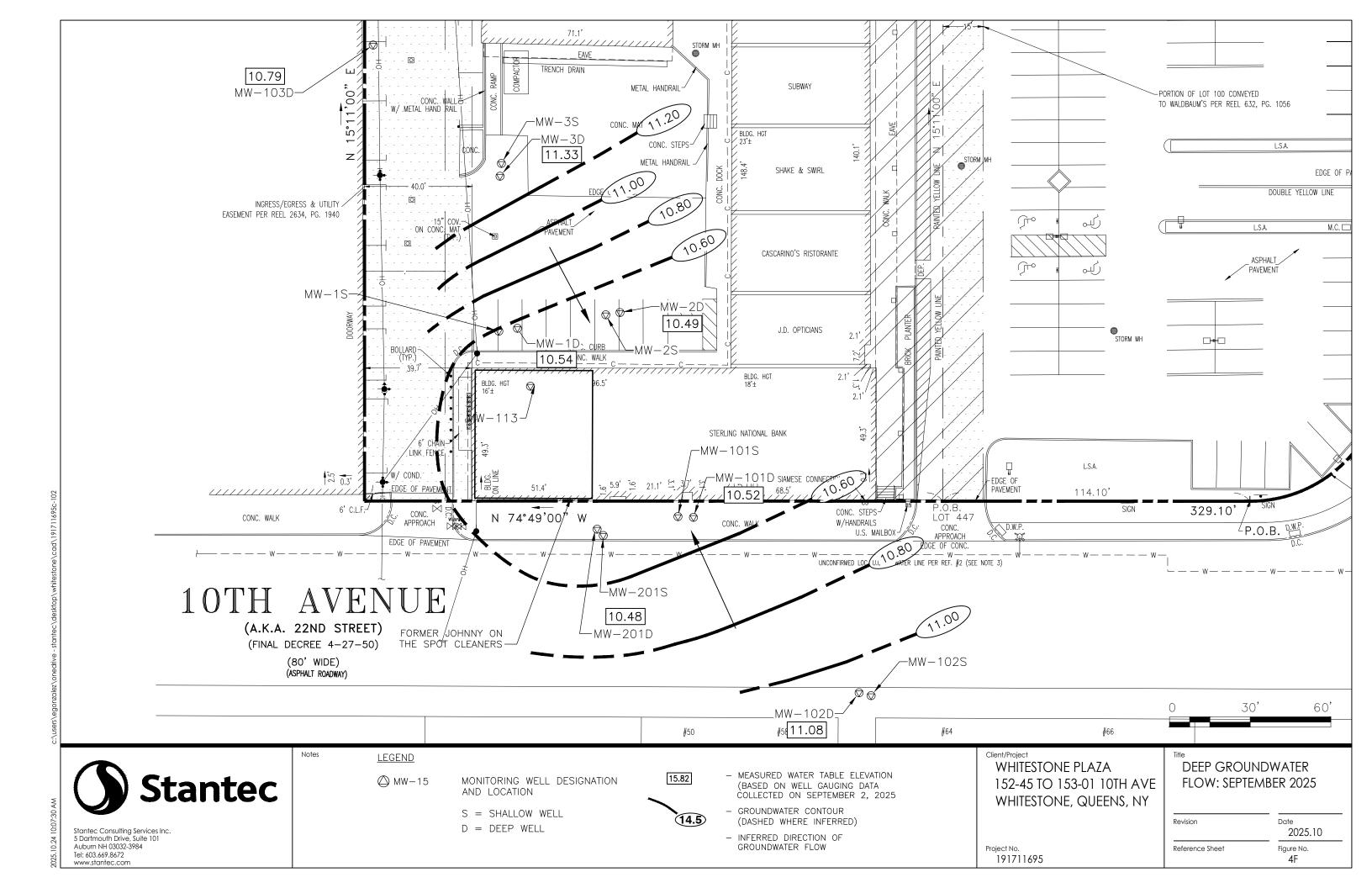

HORIZONTAL SUB SLAB PIPING IN FMR JOHNNY ON THE SPOT

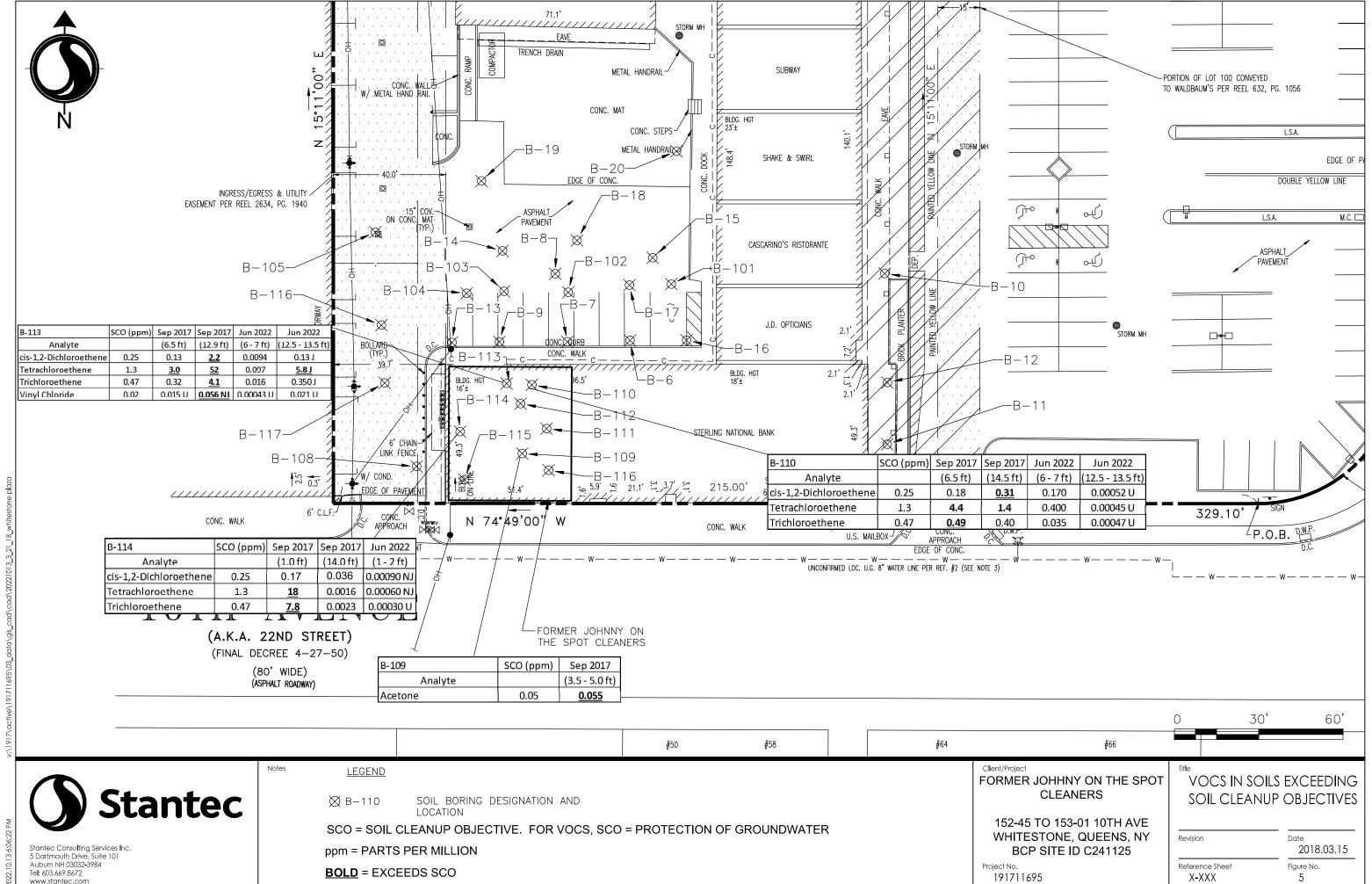

PLAN IS BASED ON "PROPOSED FIRST FLOOR PLAN" PREPARED BY DEGIAIMO GROUP ARCHITECTS, LLP SYSTEM C SSDS, RE-LOCATED ON 5/4/22

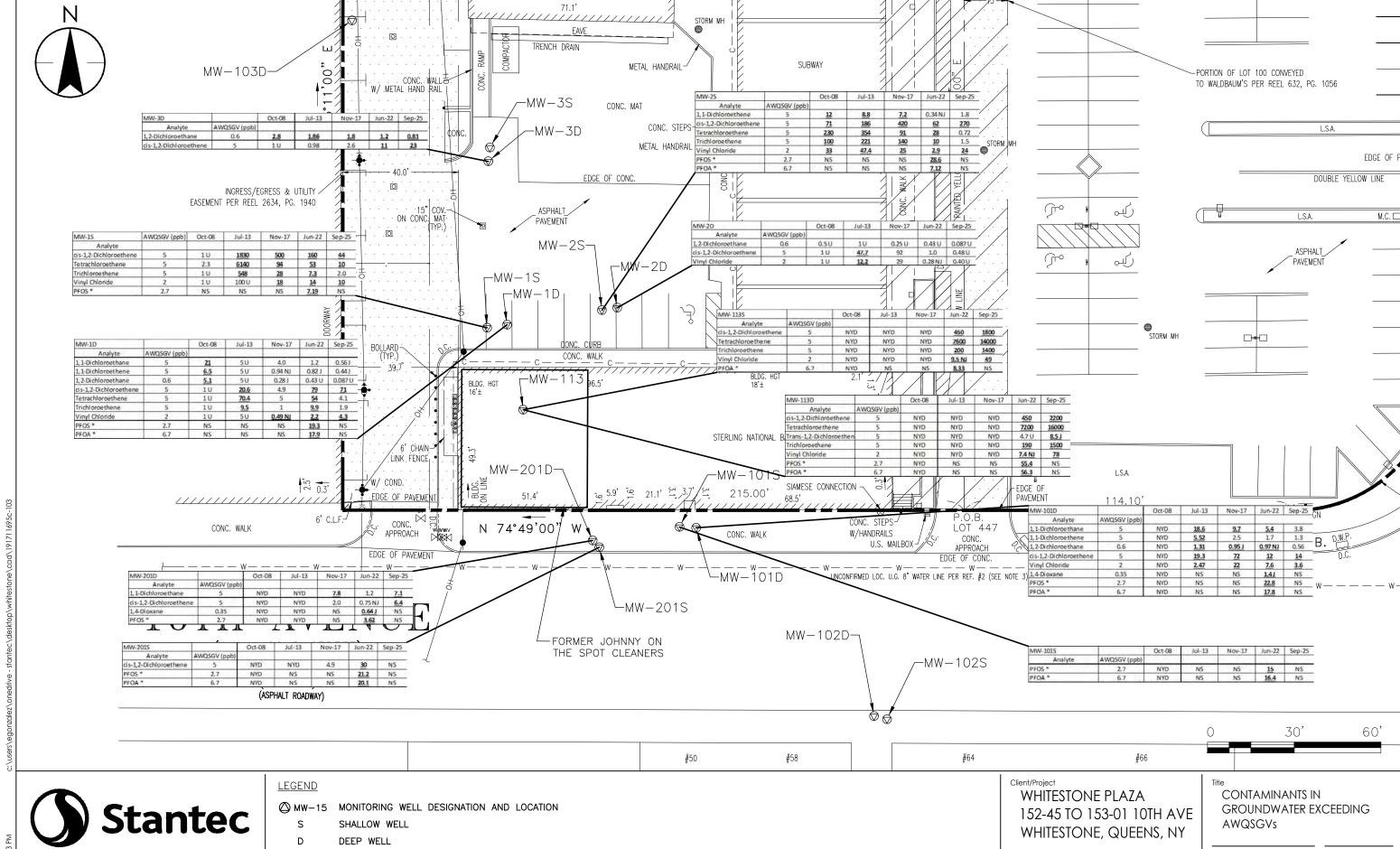

152-45 TO 153-01 10TH AVE WHITESTONE, QUEENS, NY BCP SITE ID C241125


Figure No.


PIPING PLAN AND MONITORING POINTS. STARS REHABILITATION CENTER (FORMER BANK)

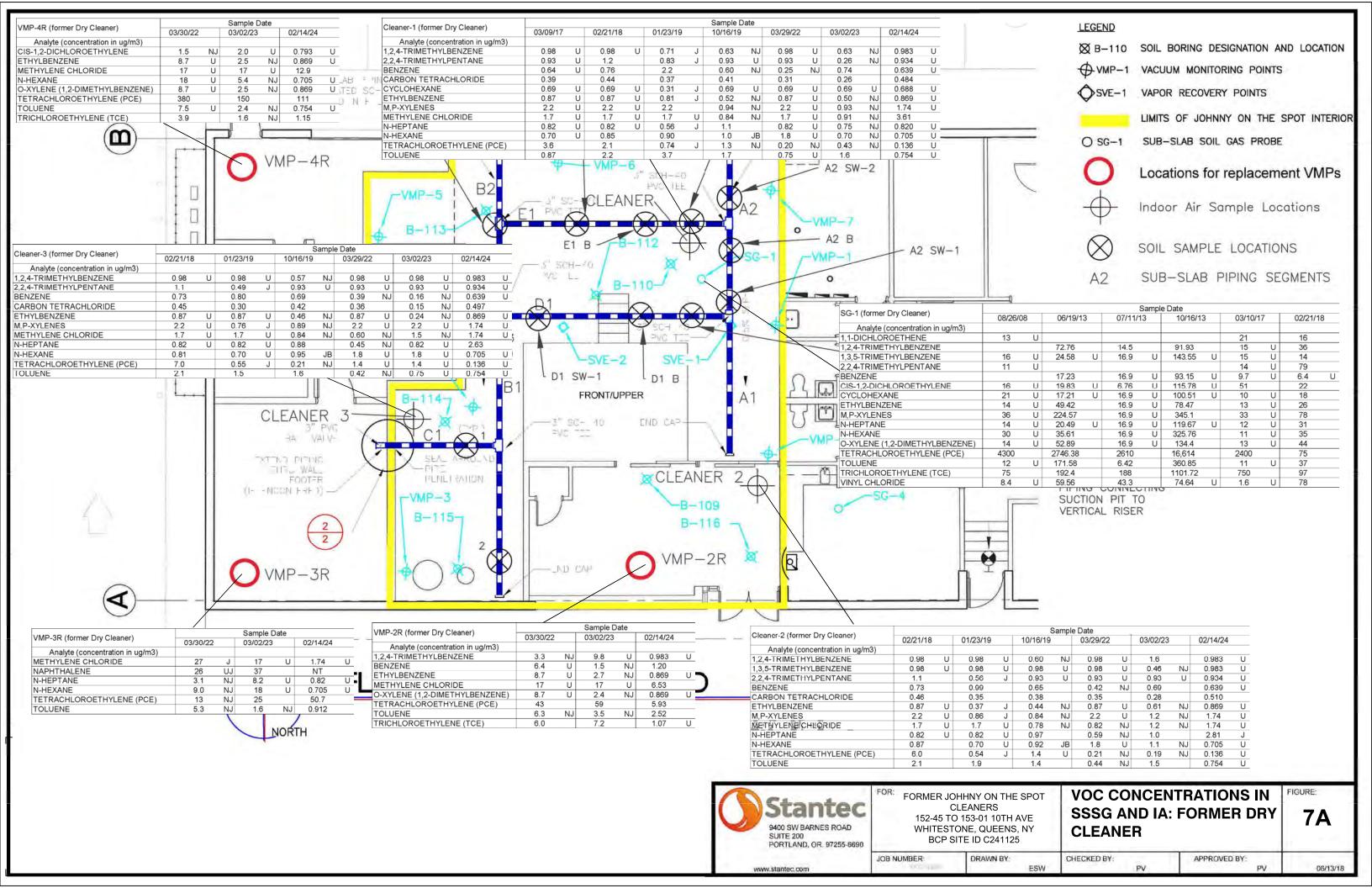


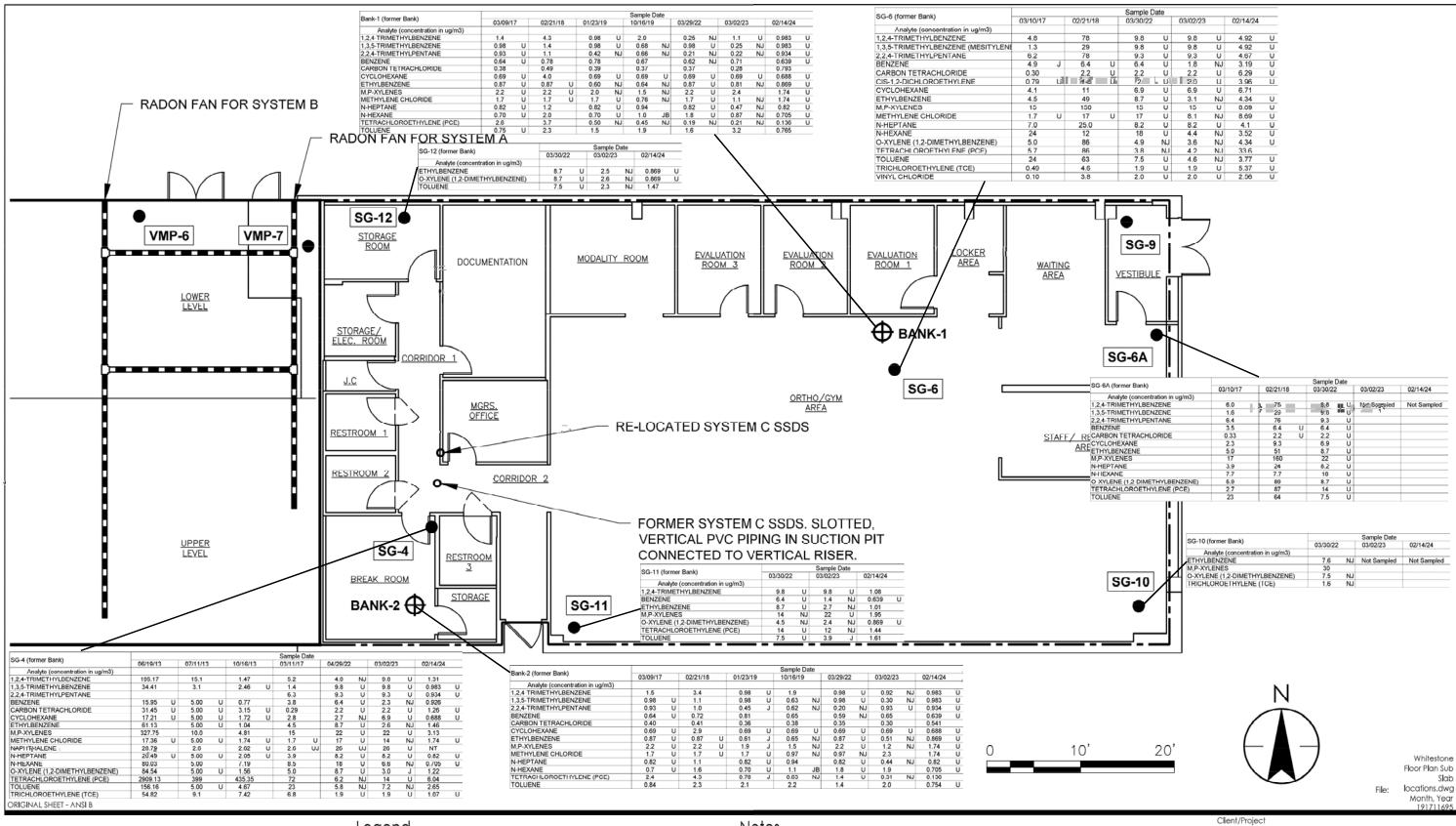




Stantec Consulting Services Inc. 5 Dartmouth Drive, Suite 101 Auburn NH 03032-3984 Tel: 603.669.8672 www.stantec.com

AMBIENT WATER QUALITY STANDARDS AND **AWQSGV**


GUIDANCE VALUES


PFOS AND PFOA DATA IN PARTS PER TRILLION

Revision Date 2025.10.24 Reference Sheet Figure No. X-XXX 6

Project No.

191711695

5 DARTMOUTH DRIVE, SUITE 200 AUBURN, NH 03032 www.stantec.com

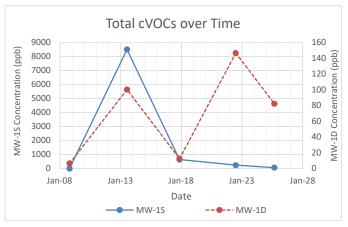
Legend

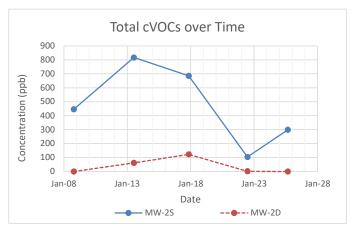
EXISTING SUB_SLAB GAS PROBE LIMITS OF FORMER JOHNNY ON THE **SPOT CLEANERS**

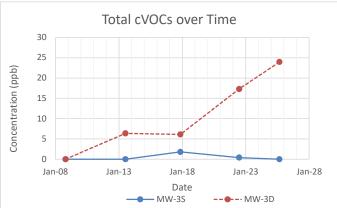
BANK-1 INDOOR AIR SAMPLE

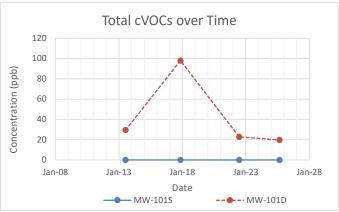
HORIZONTAL SUB SLAB PIPING IN FMR JOHNNY ON THE SPOT

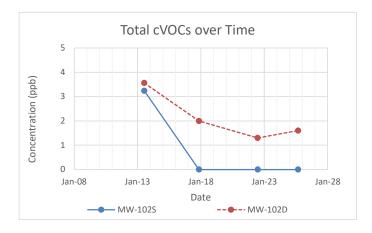
Notes

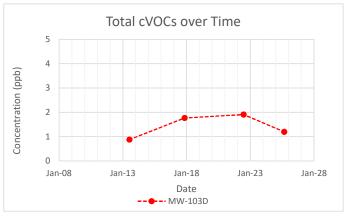

PLAN IS BASED ON "PROPOSED FIRST FLOOR PLAN" PREPARED BY DEGIAIMO GROUP ARCHITECTS, LLP SYSTEM CSSDS, RE-LOCATED ON 5/4/22

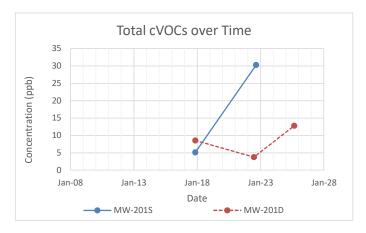

FORMER JOHHNY ON THE SPOT CLEANERS 152-45 TO 153-01 10TH AVE WHITESTONE, QUEENS, NY BCP SITE ID C241125


Figure No. **7B**


VOC CONCENTRATIONS IN SSSG AND IA: REHAB CENTER (FORMER BANK)


FIGURE 8 Plots of Total cVOCs over Time former Johnny on the Spot Cleaner: DEC Site No. C241125 152 10th Avenue, Whitestone, NY





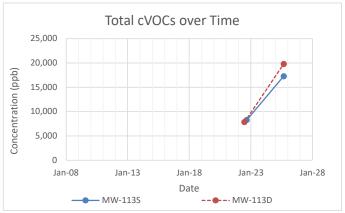
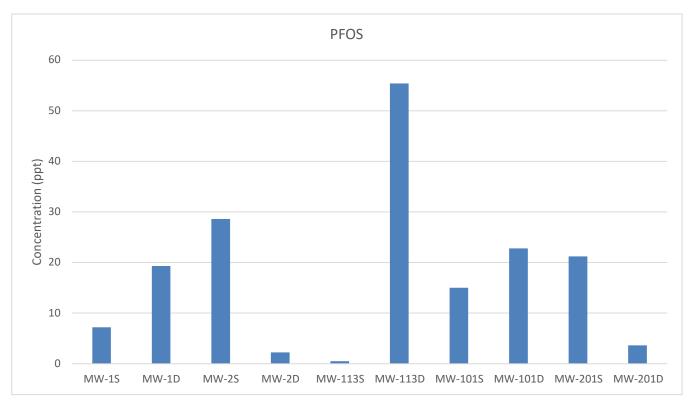
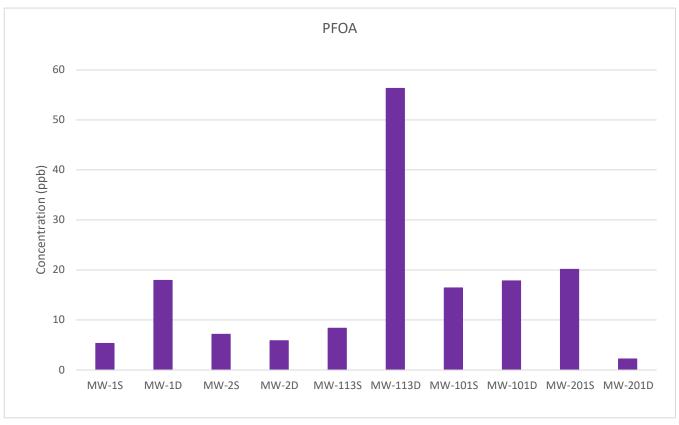




FIGURE 9
PFAS Concentrations in Site Wells: June 2022
Former Johnny on the Spot Cleaner: DEC Site No. C241125

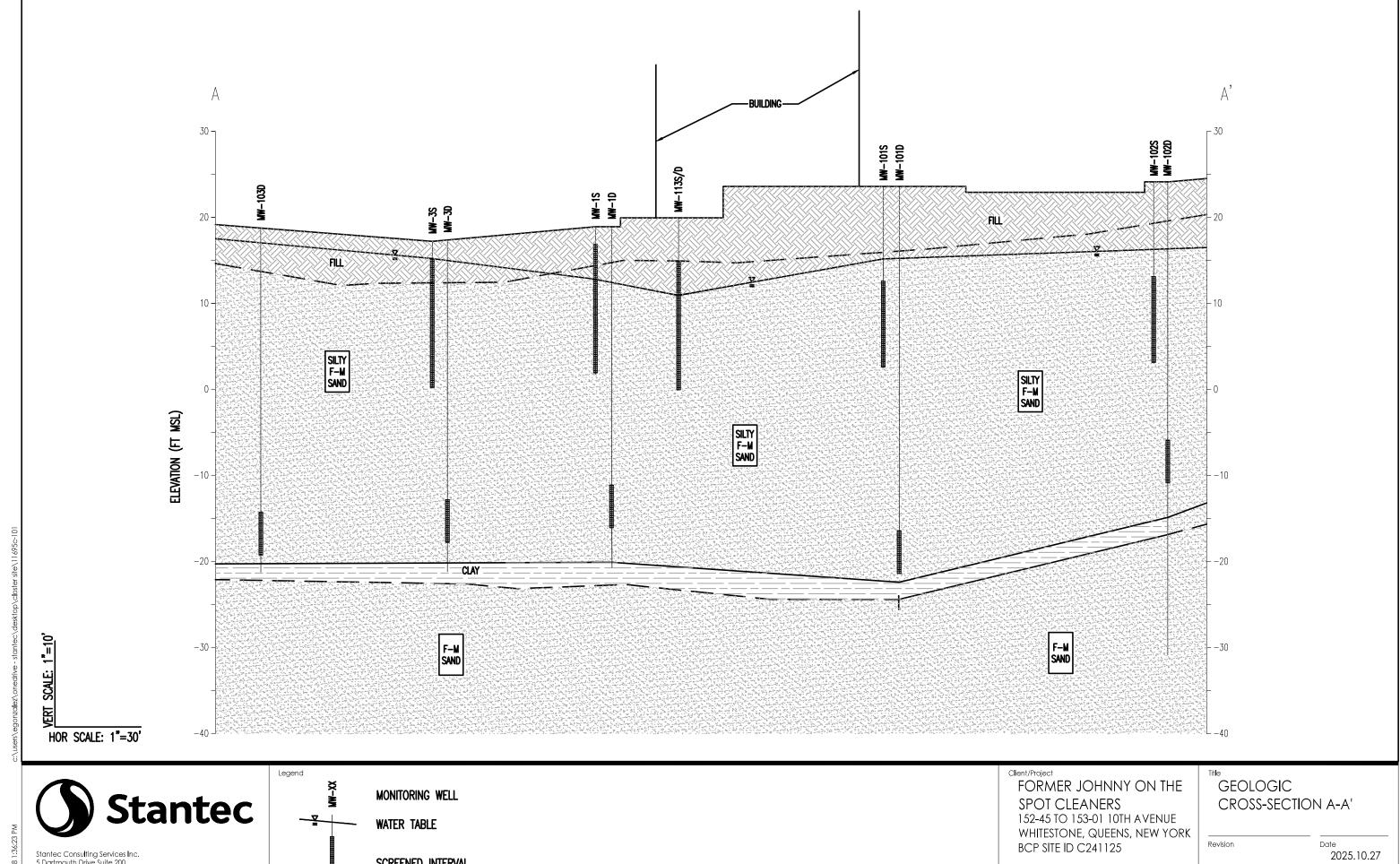
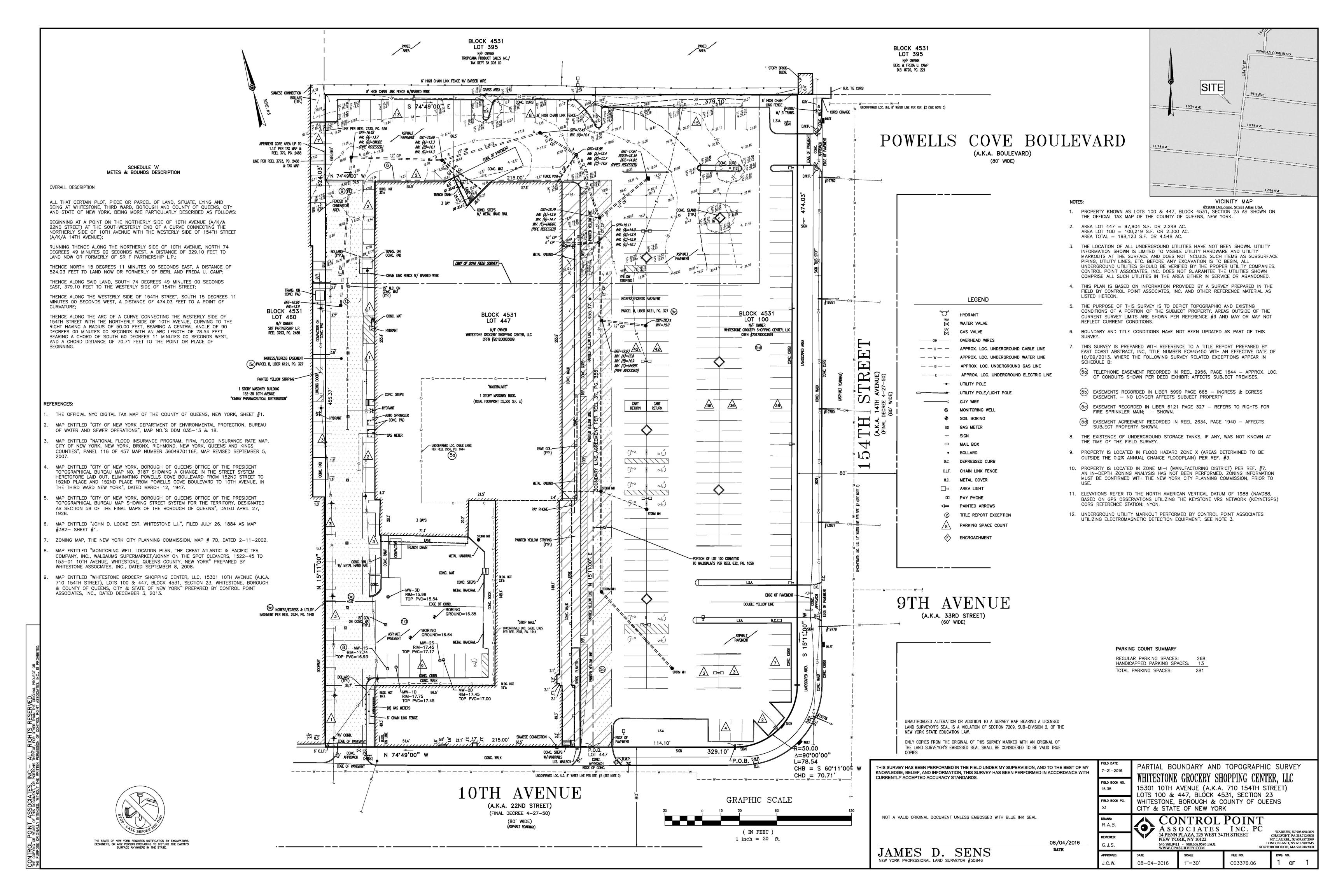
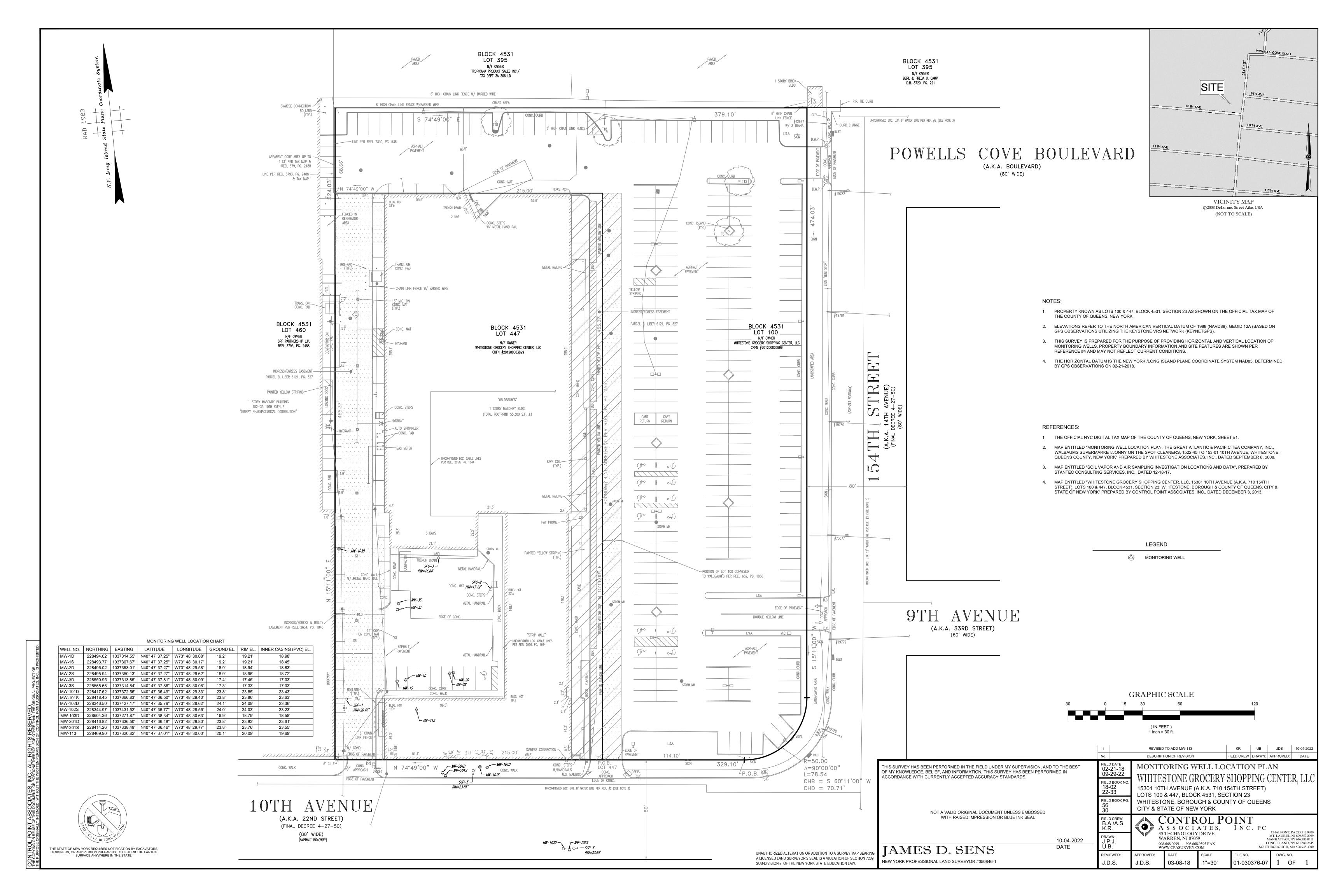


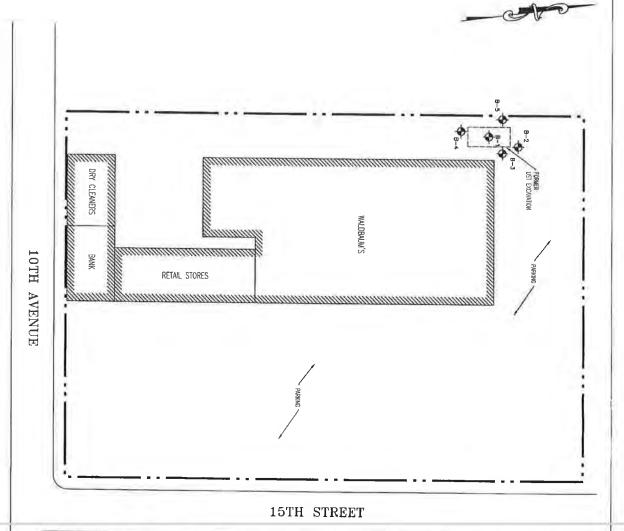
Figure No.

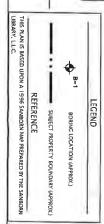
Reference Sheet


Project No. 191711695


Stantec Consulting Services Inc. 5 Dartmouth Drive Suite 200 Auburn NH 03032-3984 Tel: (603) 669-8672 www.stantec.com

SCREENED INTERVAL


APPENDIX A


Copies of Pertinent Figures and Data Tables From Previous Reports

(19T

TITLE

BORING LOCATION PLAN

CLIENT: THE GREAT ATLANTIC & PACIFIC TEA COMPANY, INC.

WHITESTONE ASSOCIATES, INC.

786 Mountain Boulevard, Suite 200 Watchung, New Jersey 07069 Phone (908) 668-7777 Fax (908) 754-5936

PROJECT: FULLER TOOL COMPANY/INDUSTRIAL PLASTICS DIVISION 153-01 10TH AVENUE WHITESTONE, QUEENS COUNTY, NEW YORK

PROJECT #: WJ03-6322 BY: MG PROJ. MGR.: TKU DATE: 2/4/04 SCALE: N.T.S. FIGURE:

TABLE 1 SOIL SAMPLING SUMMARY

Fuller Tool Company/Industrial Plastics Division 153-01 10th Avenue

Whitestone, Queens County, New York

Boring Number	Soil Sample Intervals (fbgs)	Total Depth (fbgs)	Maximum PID Reading (ppm)
B-1	8.0 to 8.5	16.0	0.0
B-2	8.0 to 8.5	16.0	0.0
B-3	7.5 to 8.0	16.0	0.0
B-4	8.0 to 8.5	16.0	0.0
B-5	8.0 to 8.5	16.0	0.0

NOTES:

PID

Photoionization Detector

fbgs

feet below ground surface

ppm

parts per million

TABLE 2 SOIL SAMPLING & ANALYSIS DATA SUMMARY

Fuller Tool Company/Industrial Plastics Division 153-01 10th Avenue

Whitestone, Queens County, New York

Sample Number	Date Sampled	Analytical Parameters	STARS VO Detected Above MDLs (ppm)	STARS SVO Detected Above MDLS (ppm)	
6414-B1	01-07-04	VO, SVO	ND	ND	
6414-B2	01-07-04	VO, SVO	ND	ND	
6414-B3	01-07-04	VO, SVO	ND	ND	
6414-B4	01-07-04	VO, SVO	ND	phenanthrene = $0.073 \text{ J} (50.0)$ fluoranthene = $0.077 \text{ J} (50.0)$	
6414-B5 01-07-04 VO, SVO		ND	ND		

NOTES:

() NYSDEC Recommended	d Soil Cleanup Objectives shown in parentheses
-----------------------	--

Volatile Organic Compounds per NYSDEC STARS protocol Semivolatile Organic Compounds per NYSDEC STARS protocol VO

SVO

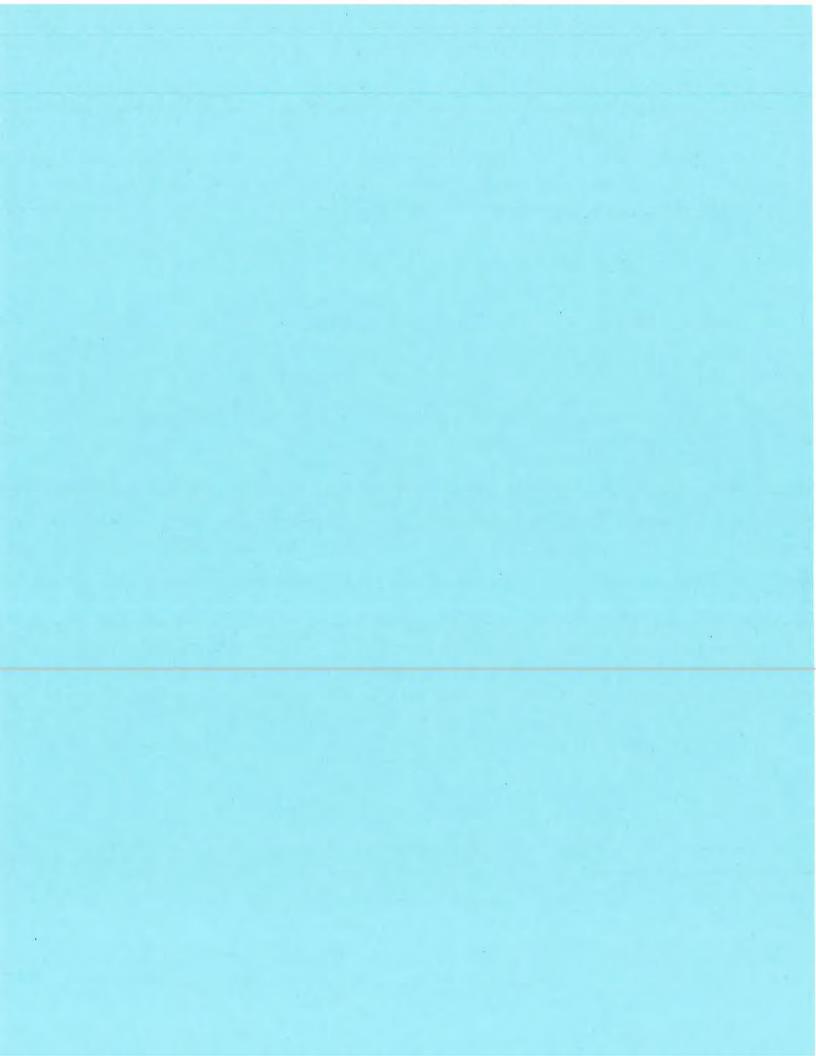
parts per million ppm Not Detected above MDLs

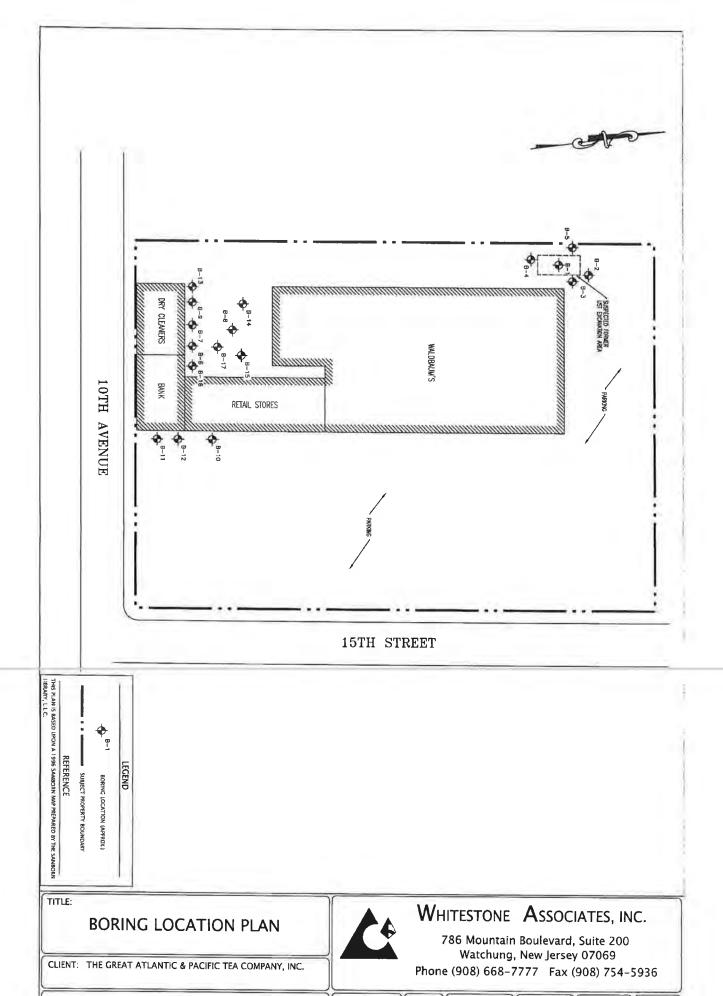
ND J Detected at a concentration below the laboratory MDL

TABLE 3 GROUNDWATER SAMPLING & ANALYSIS DATA SUMMARY

Fuller Tool Company/Industrial Plastics Division 153-01 10th Avenue

Whitestone, Queens County, New York


Sample Number	Date Sampled	Analytical Parameters	STARS VO Detected Above MDLs (ppb)	STARS SVO Detected Above MDLS (ppb)
6414-GW1	01-07-04	VO, SVO	benzene = 0.424 (0.7)	ND


NOTES:

() VO NYSDEC Groundwater Standards shown in parentheses Volatile Organic Compounds per NYSDEC STARS protocol svo Semivolatile Organic Compounds per NYSDEC STARS protocol

ppb ND parts per billion

Not Detected above MDLs

PROJECT: LIMITED PHASE II SITE INVESTIGATION 152–45 10TH AVENUE WHITESTONE, QUEENS COUNTY, NEW YORK

PROJECT #: WP03-6414 BY, MG PROJ. MGR.: TKU DATE: 2/5/04 SCALE: N.T.S. FIGURE:

TABLE 1 SOIL SAMPLING SUMMARY Waldbaum's Shopping Center Site 152-45 through 153-01 10th Avenue Whitestone, Queens County, New York

Soil Boring ID	Sample Date	Soil Sample Interval (fbgs)	Total Boring Depth (fbgs)	Depth to Groundwater (fbgs)	Maximum PID Reading (ppm)	
B-1	1/7/04	8.5 - 9.0	16.0	12.0	0.0	
B-2	1/7/04	9.0 -9.5	16.0	12.0	0.0	
B-3	1/7/04	7.5 - 8.0	16.0	12.0	0.0	
B-4	1/7/04	8.0 - 8.5	16.0	12.0	0.0	
B-5	1/7/04	8.5 - 9.0	16.0	12.0	0.0	
B-6	1/7/04	7.0 - 7.5	12.0	9.0	225	
B-7	1/7/04	7.5 - 8.0	12.0	10.0	210	
B-8	1/7/04	7.0 - 7.5	12.0	9.0	0.0	
B-9	1/7/04	7.5 - 8.0	12.0	9.0	0.0	
B-10	1/7/04	7.0 - 7.5	12.0	8.0	0.0	
B-11	1/7/04	8.0 - 8.5	12.0	9.0	0.0	
B-12	2/2/04	11.0 - 11.5	17.0	12.0	0.0	
B-13	2/2/04	11.0 -11.5	24.0	12.0	0.0	
B-14	2/2/04	11.0 - 11.5	16.0	12.0	0.0	
B-15	2/2/04	11.0 - 11.5	28.0	12.0	0.0	
B-16	2/2/04	11.0 - 11.5	28.0	12.Ū	0.0	
B-17	2/2/04	11.0 - 11.5	16.0	12.0	0.0	

NOTES:

fbgs feet below ground surface PID Photoionization Detector

ppm parts per million
NE Not encountered
NS Not sampled

TABLE 2 SOIL SAMPLING & ANALYSES DATA SUMMARY

Waldbaum's Shopping Center Site 152-45 through 153-01 10th Avenue Whitestone, Queens County, New York

Compale Date		VOC Constituents Detected Above MDLs (ppm)	SVOC Constituents Detected Above MDLs (ppm)
6414-B1	1/7/04	ND	ND
6414-B2	1/7/04	ND	ND
6414-B3	1/7/04	ND	ND
6414-B4	1/7/04	ND	Phenanthrene - 0.073J Fluoranthene - 0.077J
6414-B5	1/7/04	ND	ND
6414-B6 1/7/04		Ethyl benzene - 0.014J	Acenaphthene - 0.119 Fluorene - 0.177 Phenanthrene - 0.379
6414-B7	1/7/04	ND	Acenaphthene - 1.87 Fluorene - 2.04 Phenanthrene - 4.53 Anthracene = 0.449 Fluoranthene - 0.091J Pyrene - 0.227
6414-B8	1/7/04	ND	NS
6414-B9	1/7/04	Tetrachloroethene - 0.00305J	NS
6414-B10	1/7/04	ND	NS
6414-B11	1/7/04	ND	NS
6414-B12	2/2/04	ND	NS
6414-B13	2/2/04	ND	NS
6414-B14	2/2/04	MTBE - 0.002J Naphthalene - 0.002J	NS
6414-B15	2/2/04	Naphthalene - 0.737	NS
6414-B16	2/2/04	MTBE - 0.0014J Xylene - 0.0013J 1,2,4 Trimethylbenzene - 0.003J Napthalene - 0.017	NS
6414-B17	2/2/04	1,2,4 Trimethylbenzene - 0.005J Napthalene - 0.192	NS

TABLE 2 (continued)

SOIL SAMPLING & ANALYSES DATA SUMMARY

Waldbaum's Shopping Center Site 152-45 through 153-01 10th Avenue Whitestone, Queens County, New York

Sample Number	Date Sampled	VOC Constituents Detected Above MDLs (ppm)	SVOC Constituents Detected Above MDLs (ppm)
NOTES:			***************************************
BOLD	Exceeds NYSDI	EC Recommended Soil Cleanup Objective	ves .
VOC		compounds (Method 8260)	
SVOC		ganic compounds (Method 8270)	
ND		concentration above the laboratory MD	L
NS	Not sampled		S
ppm	parts per million		
MDL	- •	od Detection Limit	
J		ntration greater than zero but less than M	IDL

TABLE 3 GROUNDWATER SAMPLING & ANALYSES DATA SUMMARY

Waldbaum's Shopping Center Site 152-45 through 153-01 10th Avenue Whitestone, Queens County, New York

Sample ID Number	Sample Date	Analyses	Constituents Detected Above MDLs (ppb)				
6414-GW1	1/7/04	VOC, SVOC	Benzene - 0.424				
6414-GW6	1/7/04	voc, svoc	Vinyl chloride - 36.1 1,1-dichloroethene - 1.05 Benzene - 1.44 Trichloroethene - 21.1 Toluene - 0.974 Tetrachloroethene - 1,750 Ethyl benzene - 8.22 Xylenes - 3.41 Acenaphthene - 62.2 Fluorene - 86.4 Phenanthrene - 164 Anthracene - 11.9 Fluoranthene - 4.50 Pyrene - 6.67 Benzo(a)anthracene - 0.920 Chrysene - 0.707				
6414-GW8	1/7/04	VOC	Toluene - 0.586 Tetrachloroethene - 1.89				
6414-GW10	1/7/04	VOC	Vinyl chloride - 1.83 trans-1,2-dichloroethene - 1.11 Trichloroethene - 0.478 Toluene - 0.272 Tetrachloroethene - 0.405				
6414-GW-12	2/2/04	VOC, SVOC	Vinyl chloride - 1.64 trans-1,2-dichloroethene - 1.18 Toluene - 0.388 Tetrachloroethene - 0.739				
6414-GW13	2/2/04	VOC, SVOC	Vinyl chloride - 14.3				
6414-GW13D	2/3/04	VOC	Vinyl chloride - 11.5 Trichloroethene - 0.862 Tetrachloroethene - 0.811				
6414-GW14	2/2/04	voc, svoc	Vinyl chloride - 5.23 Chloroethane - 1.75 1,1-dichloroethane - 3.55 1,2-dichloroethane - 1.51				

TABLE 3 (continued)

GROUNDWATER SAMPLING & ANALYSES DATA SUMMARY

Waldbaum's Shopping Center Site 152-45 through 153-01 10th Avenue Whitestone, Queens County, New York

Sample ID Number	Sample Date	Analyses	Constituents Detected Above MDLs (ppb)
6414-GW15	2/2/04	VOC, SVOC	Vinyl chloride - 2.6 Chloroethane - 6.44 1,1-dichloroethene - 0.953 MTBE - 0.841 1,1-dichloroethane - 15.3 1,2-dichloroethane - 1.6 Toluene - 0.353
6414-GW15D	2/3/04	VOC	Vinyl chloride - 0.591 Chloroethane - 4.35 1,1-dichloroethene - 12.0 trans-1,2-dichloroethene - 0.688 1,1-dichloroethane - 9.08 Trichloroethene - 1.5

VOC, SVOC

VOC

VOC, SVOC

Tetrachloroethene - 1.29 1,4-dichlorobenzene - 0.975 Vinyl chloride - 0.784 Chloroethane - 1.77

1,1-dichloroethane - 5.41
Trichloroethene - 0.733
Tetrachloroethene - 0.855

Vinyl chloride - 0.670
Chloroethane - 2.89
1,1-dichloroethene - 8.49

1,1-dichloroethane - 27.9
1,2-dichloroethane - 1.15
Trichloroethene - 1.58
Tetrachloroethene - 1.24

Vinyl chloride - 1.92
Chloroethane - 1.2

1,1-dichloroethane - 3.18 1,2-dichloroethane - 0.739

NOTES:

6414-GW16

6414-GW16D

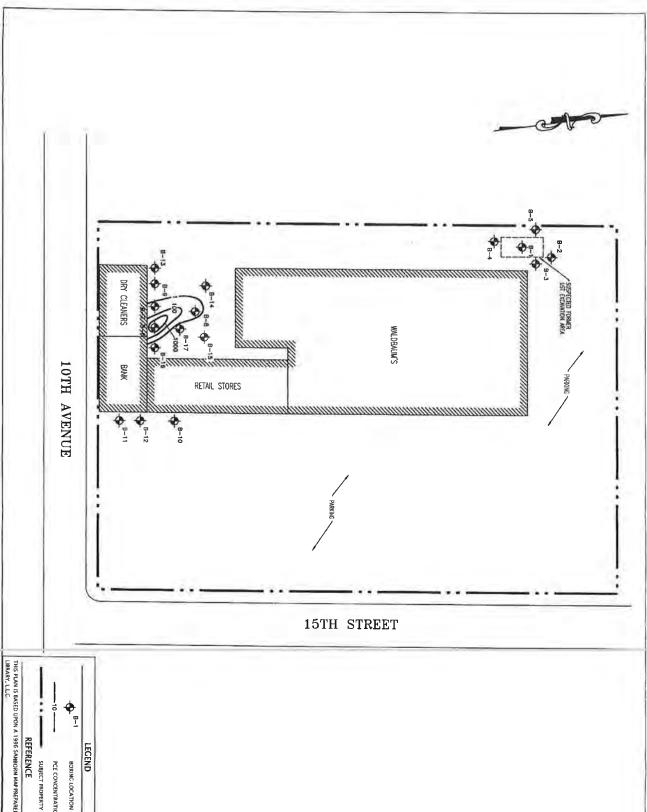
6414-GW17

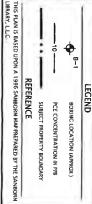
BOLD Exceeds NYSDEC groundwater standards/criteria

VOC Volatile organic compounds (Method 8260)

SVOC Semi-volatile organic compounds (Method 8270)

ND Not detected at a concentration above the laboratory MDL


2/2/04


2/3/04

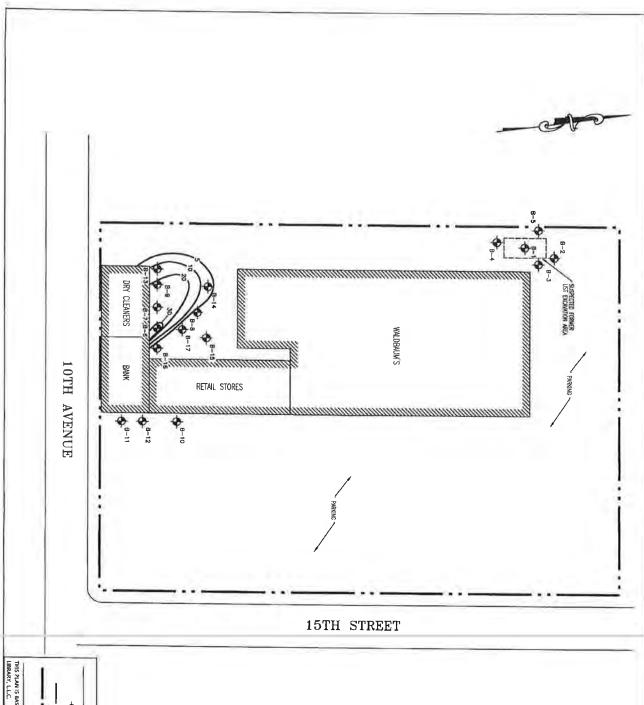
2/2/04

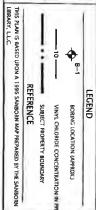
ppb parts per billion

MDL Laboratory Method Detection Limit

TITLE: PCE CONCENTRATIONS IN GROUNDWATER (SHALLOW SAMPLES)

CLIENT: THE GREAT ATLANTIC & PACIFIC TEA COMPANY, INC.


WHITESTONE ASSOCIATES, INC.


786 Mountain Boulevard, Suite 200 Watchung, New Jersey 07069 Phone (908) 668-7777 Fax (908) 754-5936

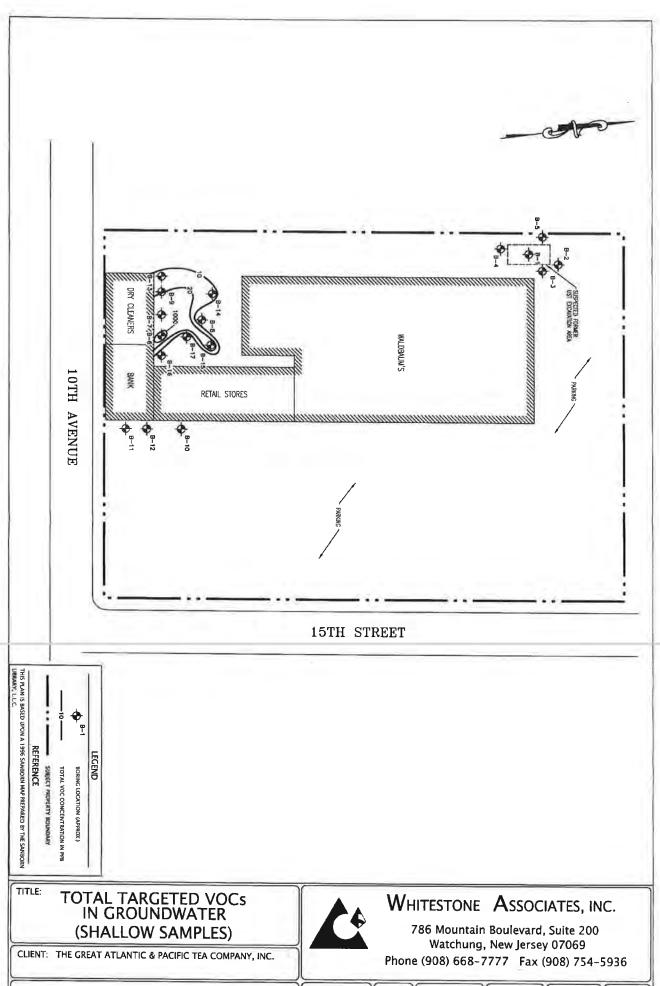
PROJECT: LIMITED PHASE II SITE INVESTIGATION 152-45 10TH AVENUE
WHITESTONE, QUEENS COUNTY, NEW YORK PROJECT #: WP03-6414 BY: MG PROJ. MGR.:

DATE: 2/5/04 SCALE: N.T.S.

FIGURE: 3

VINYL CHLORIDE CONCENTRATIONS
IN GROUNDWATER
(SHALLOW SAMPLES)

CLIENT: THE GREAT ATLANTIC & PACIFIC TEA COMPANY, INC.


WHITESTONE ASSOCIATES, INC.

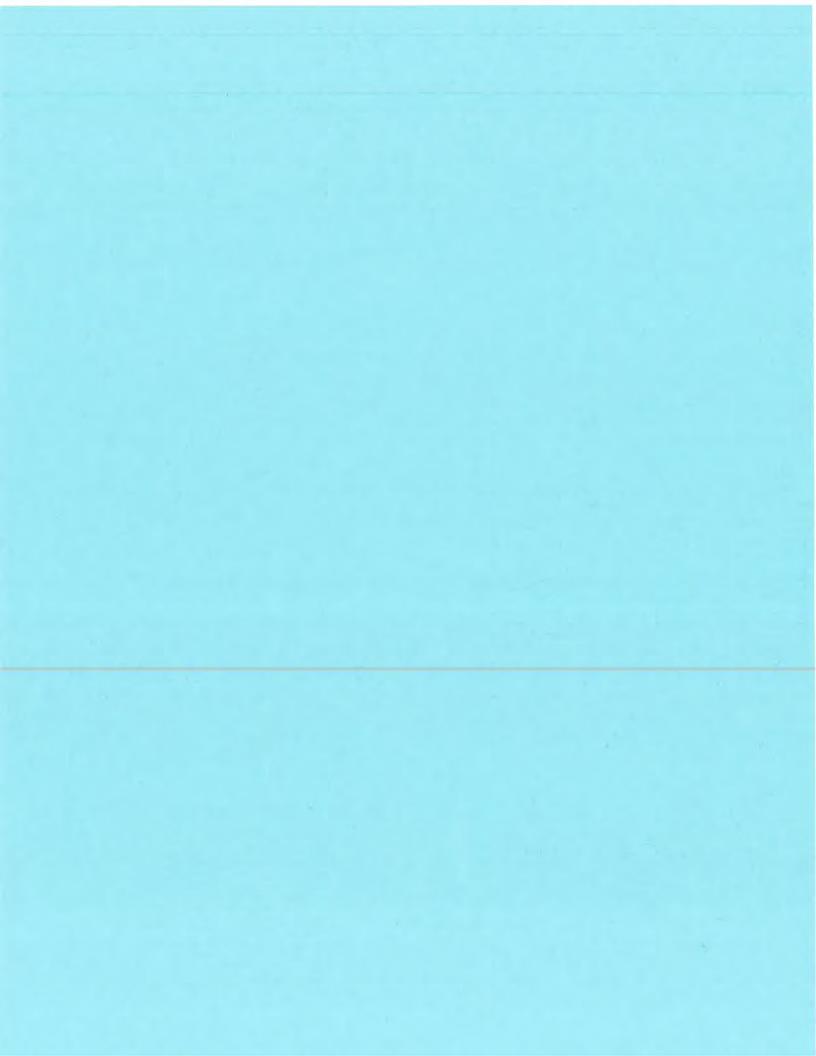
786 Mountain Boulevard, Suite 200 Watchung, New Jersey 07069 Phone (908) 668-7777 Fax (908) 754-5936

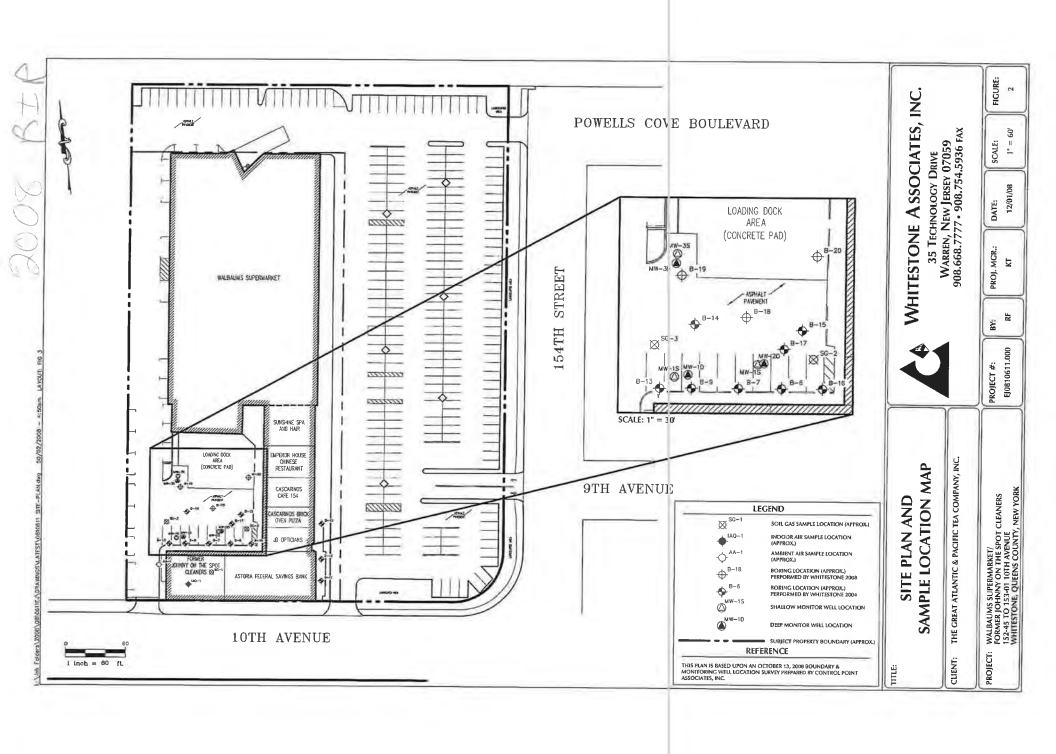
PROJECT: LIMITED PHASE II SITE INVESTIGATION 152~45 10TH AVENUE WHITESTONE, QUEENS COUNTY, NEW YORK

PROJECT #: WP03-6414 BY: MG PROJ. MGR.: TKU DATE: 2/5/04

SCALE: FIGURE: N.T.S. 4

PROJECT: LIMITED PHASE II SITE INVESTIGATION
152-45 10TH AVENUE
WHITESTONE, QUEENS COUNTY, NEW YORK


PROJECT #:
WP03-6414


BY:
WP03-6414

PROJ. MGR.:
DATE:
2/5/04

N.T.S.

FIGURE:
5

TABLE 1 SAMPLING SUMMARY

Waldbaum's Shopping Center Site Former Johnny On The Spot Dry Cleaners 152-45 to 153-01 10th Avenue Whitestone, Queens County, New York

Boring/Monitor Well	Date Installed	Installed Interval		Maximum PID Reading (ppm)		
B-18	9-11-08	4.5 to 5.0	10.0	85.0		
B-19	9-11-08	3.0 to 3.5	10.0	0.0		
B-20	9-11-08	3.5 to 4.0	10.0	0.0		
MW-1S	9-11-08	NA	17.0	0.0		
MW-1D	9-11-08	NA	40.0	27.5		
MW-2S	9-11-08	NA	19.0	0.0		
MW-2D	9-11-08	NA	40.0	0.0		
MW-3S	10-2-08	NA	17.0	0.0		
MW-3D	10-2-08	NA	35.0	0.0		

Notes:

PID Photoionization Detector fbgs feet below ground surface

ppm parts per million
NA Not Applicable

TABLE 2

SOIL SAMPLING AND ANALYSES DATA SUMMARY

Waldbaum's Shopping Center Site Former Johnny On The Spot Dry Cleaners 152-45 to 153-01 10th Avenue

Whitestone, Queens County, New York

A		CLIENT ID:		3-18		3-19	B-20		
WHITESTONE ASSOCIATES INC.		LAB ID:		889-001	AC39	889-002	AC39889-003		
		COLLECTION DATE:		1/2008	9/1	1/2008	9.	/11/2008	
A CONTRACTOR OF THE PARTY OF TH	Carlotte Control of the Control of t	MATRIX		Soil		Soil		Soil	
ANALYTES	Soil TAGM RSCO	NYSDEC RPSCO	Result	Flg MDL	Result	Fig MDL	Result	Flg MDL	
Volatile Organics		1							
1,1,1-Trichloroethane	0.8	0.68	ND	0.027	ND	0.0058	ND	0.0056	
1.1,2.2-Tetrachloroethane	0.6	NA	ND	0.027	ND	0.0058	ND	0,0056	
1,1,2-trichloro-1,2,2-trifluoroethane		NA	ND	0.027	ND	0.0058	ND	0.0056	
1,1,2-Trichloroethane	NA	NA	ND	0.027	ND	0.0058	ND	0.0056	
I,I-Dichloroethane	0.2	0.27	ND	0.027	ND	0.0058	ND	0.0056	
1,1-Dichloroethene	0.4	0.33	ND	0.027	ND	0.0058	ND	0.0056	
1,2-Dibromo-3-chloropropane	NA	NA	ND	0.027	ND	0.0058	ND	0.0056	
I,2-Dibromoethane	NA	NA	ND	0.027	ND	0,0058	ND	0.0056	
1.2-Dichlorobenzene	7.9	Ll	ND	0.027	ND	0.0058	ND	0.0056	
1,2-Dichloroethane	0.1	0.02	ND	0.027	ND	0.0058	ND	0.0056	
1,2-Dichloropropane	NA	NA	ND	0.027	ND	0.0058	ND	0,0056	
1,3-Dichlorobenzene	1,6	2.4	ND	0.027	ND	0.0058	ND	0.0056	
1,4-Dichlorobenzene	8.5	1.8	ND	0.027	ND	0,0058	ND	0.0056	
2-Butanone	0.3	0,12	ND	0.027	ND	0.0058	ND	0.0056	
2-Chloroethylvinylether	NA	NA NA	ND	0.027	ND	0.0058	ND	0.0056	
2-Hexanone	NA	NA NA	ND	0.027	ND	0.0058	ND	0.0056	
4-Methyl-2-Pentanone	1	NA	ND	0.027	ND	0.0058	ND	0.0056	
Acetone	0.2	0.05	ND	0.14	ND	0.029	ND	0.028	
Acrolein	NA	NA NA	ND	0.14	ND	0.029	ND	0.028	
Acrylonitrile	NA	NA	ND	0.027	ND	0.0058	ND	0.0056	
Benzene	0.06	0.06	ND	0.0054	ND	0.0012	ND	0.0011	
Bromodichloromethane	NA	NA	ND	0.027	ND	0.0058	ND	0.0056	
Bromoform	NA	NA.	ND	0.027	ND	0.0058	ND	0.0056	
Bromomethane	NA	NA	ND	0.027	ND	0.0058	ND	0.0056	
Carbon Disulfide	2.7	NA.	ND	0.027	ND	0.0058	ND	0.0056	
Carbon Tetrachloride	0.6	0.76	ND	0.027	ND	0,0058	ND	0.0056	
Chlorobenzene	1.7	1.1	ND	0.027	ND	0.0058	ND	0.0056	
Chloroethane	1.9	NA	ND	0.027	ND	0.0058	ND	0.0056	
Chloroform	0.3	0.37	ND	0.027	ND	0,0058	ND	0.0056	
Chloromethane	NA	NA	ND	0.027	ND	0.0058	ND	0,0056	
cis-1,2-Dichloroethene	NA NA	0.25	ND	0.027	ND	0.0058	ND	0.0056	
cis-1,3-Dichloropropene	NA	NA	ND	0.027	ND	0.0058	ND	0.0056	
Dibromochloromethane	NA	NA NA	ND	0.027	ND	0.0058	ND	0.0056	
Dichlorodifluoromethane	NA NA	NA	ND	0.027	ND	0,0058	ND	0.0056	
Ethylbenzene	5.5	1	ND	0.0054	ND	0.0012	ND	0.0011	
n&p-Xylenes	1.2	0.26	ND	0.011	ND	0.0023	ND	0.0023	
Methyl Acetate	NA	NA NA	ND	0.027	ND	0.0058	ND	0.0056	
Methylene Chloride	0.1	0.05	ND	0.027	ND	0.0058	ND	0.0056	
Methyl-t-butyl ether	NA	0.93	ND	0.0054	ND	0.0012	ND	0.0011	
o-Aylene	1.2	0.26	ND	0.0054	ND	0.0012	ND	0.0011	
Styrene	NA	NA	ND	0.027	ND	0.0058	ND	0.0056	
-Butyl Alcohol	NA	NA	ND	0.14	ND	0.029	ND	0.028	
Tetrachloroethene	1.4	1.3	ND	0.027	ND	0.0058	ND	0,0056	
Toluene	1,5	0.7	ND	0.0054	ND	0.0012	ND	0.0011	
Frans-1,2-Dichloroethene	0.3	0.19	ND	0.027	ND	0.0012	ND	0.0056	
rans-1,3-Dichloropropene	NA	NA NA	ND	0.027	ND	0.0058	ND	0.0056	
richloroethene	0.7	0.47	ND	0.027	ND	0.0058	ND	0.0056	
Frichlorofluoromethane	NA	NA	ND	0.027	ND	0.0058	ND	0.0056	
Vinyl Chloride	0.2	0.02	ND	0.027	ND	0.0058	ND	0.0056	

NOTES:
NYSDEC TAGM RSCO - NYSDEC Technical and Administrative Guidance Memorandum Recommended Soil Cleanup Objectives
NYSDEC RPSCO - NYSDEC's Remedial Program Soil Cleanup Objectives (Unrestricted Use)
Bold and shaded values indicate an exceedence of NYSDEC criteria

All results reported in parts per million (ppm or mg/Kg)

Flg - Data Qualifier
MDL - Method Detection Limit

ND - Not Detected exceeding MDL NA - No Applicable Cleanup Objective

TABLE 3

GROUNDWATER SAMPLING AND ANALYSES DATA SUMMARY

Waldbaum's Shopping Center Site Former Johnny On The Spot Dry Cleaners 152-45 to 153-01 10th Avenue

WHITESTC	ONE	CLIENT ID: LAB ID:		8 GW 883-001		6W 83-002	B-20		
WHITESTO ASSOCIATE	ES, INC.	COLLECTION DATE:		/2008			AC39883-003 9/11/2008		
NALYTE	TAGM	TOGS	Result Fig MDL		9/11/2008 Result Flg MDL		Result Fig MDI		
olatile Organics						B III	1 100001	B	
,1,1-Trichloroethane	5	5	ND	1	ND	- 1	ND	- 1	
,1,2,2-Tetrachloroethane	5	5	ND	1	ND	- 1	ND	1	
.1,2-trichloro-1,2,2-trifluoroethane	5	5	ND	5	ND	5	ND	1	
1.2-Trichloroethane	NA	T	ND	I	ND	1	ND	- 1	
,1-Dichloroethane	5	5	ND	1	ND	1	ND	1	
1-Dichloroethene	5	5	ND		ND	1	ND	1	
,2,3-Trichloropropane	5	0.04	ND	1	ND	1	ND	- 1	
.2.4-Trimethylbenzene	NA	5	1.5		ND	1	ND	1	
,2-Dichlorobenzene	4.7	3	ND	1	ND	1	ND	1	
,2-Dichloroethane	5	0,6	ND	0.5	ND	0.5	ND	0.5	
,2-Dichloropropane	NA	5	ND	1	ND	1	ND	- 1	
,3,5-Trimethylbenzene	NA	5	ND	1	ND	1	ND	1	
,3-Dichlorobenzene	5	3	ND	1	ND	1	ND	1	
,3-Dichloropropane	5	5	ND	l l	ND	1	ND	1	
,4-Dichlorobenzene	5	3	ND	1	ND	1	ND	1	
.4-Dioxane	NA	NA	ND	50	ND	50	ND	50	
-Butanone	50	NA NA	ND	1	ND	1	ND	1	
-Chloroethylvinylether	NA	NA NA	ND	1	ND	- 1	ND	5	
-Hexanone	NA	NA NA	ND		ND	1	ND	5	
-Isopropyltoluene	NA	5	ND	1	ND	1	ND	- 1	
-Methyl-2-Pentanone	50	NA NA	ND	1	ND		ND	- 1	
cetone	50	50	ND	25	ND	25	ND	. 5	
crolein	NA	5	ND	5	ND	5	ND	5	
crylonitrile	NA	5	ND		ND	1	ND		
Benzene	0.7	1	ND	0.5	ND	0.5	ND	0.5	
Fromodichloromethane	NA	50	ND	1	ND	1	ND	- 1	
Bromoform	NA	50	ND	- 4	ND	1	ND		
Fromomethane	NA	5	ND	1	ND	1	ND	1	
Carbon disulfide	50	60	ND	1	ND	1	2.6		
Carbon tetrachloride	5	5	ND	1	ND	1	ND	1	
Thlorobenzene	5	5	ND	1	ND	1	ND	1	
Chloroethane	50	5	4		ND	1	ND		
Chloroform	7	7	ND	1	ND	1	ND	1	
hloromethane	NA	5	ND	1	ND	1	ND	1	
is-1,2-Dichloroethene	NA	5	3.4	T	ND	1	ND	1	
is-1,3-Dichloropropene	NA	0.4	ND	=1 $=$ 0	ND	1	ND	I	
ibromochloromethane	50	5	ND	1	ND	1	ND	1	
Dichlorodifluoromethane	NA	5	ND	1	ND	1	ND	- 1	
thylbenzene	5	5	1.1		ND	1	ND	1	
opropylbenzene	NA	5	The state of the s	Commission of the second	ND	1	ND	. 1	
1&p-Xylenes	5	5	ND	2	ND	2	ND	2	
lethylene chloride	5	5	ND	1	ND	1	ND	1	
lethyl-t-butyl ether	10	10	6	0.5	ND	0.5	ND	0.5	
-Butylbenzene	NA	5	4.8	1_	ND		ND	Ī	
-Propylbenzene	NA	5	- 15		ND	1	ND	1	
-Xylene	5	5	ND	1	ND	1	ND	1	
c-Butylbenzene	NA	5		THE VIEW	ND		ND	1	
yrene	NA	5	ND	1	ND	1	ND	1	
Butyl Alcohol	NA	NA	ND	5	ND	5	ND	5	
Butylbenzene	NA	5	1.3	1	ND	1	ND	. 1	
etrachloroethene	5	5	ND	1	ND	1	ND	1	
Dluene	5	5	ND	I	ND	1	ND	- 1	
rans-1,2-dichloroethene	5	5	ND	1	ND	1	ND	1	
rans-1,3-dichloropropene	NA	NA NA	ND	1	ND	1	ND	- 1	
richloroethene	5	5	ND	1	ND	1	ND	1	
richlorofluoromethane	NA	5	ND	1	ND	1	ND	1	
inyl chloride	2	2	2.2		ND	I	ND	1	

NOTES:
TAGM - NYSDEC Technical and Administratice Guidance Memorandum #4046 Groundwater Standards/Criteria
TOGS - NYSDEC Technical and Operational Guidance Series Memo 1.1.1. Ambient Groundwater Quality (GA) Standard

Bolded and Shaded values indicate exceedances of NYSDEC TAGM and/or TOGS GWS

Results reported in parts per billion (ppb)

MDL - Laboratory Method Detection Limit
ND - Not Detected at a concentration exceeding laboratory MDL
NA - No Applicable Standard

Flg - Data Qualifier

TABLE 4 GROUNDWATER LEVEL MEASUREMENTS Waldbaum's Shopping Center Site Former Johnny On The Spot Dry Cleaners 152-45 to 153-01 10th Avenue

Whitestone, Queens County, New York

Well# Screened Top of Date Interval Casing (fbgs) (feet asl)*		Date	Depth to Groundwater (feet asl)	Groundwater Elevation (feet asl)		
MW-1S	2 - 17	16.93	10-14-08	4.02	12.91	
			11-3-08 (low tide)	3.89	13.04	
			11-3-08 (high tide)	3.85	13.08	
MW-1D	30 -35	17.45	10-14-08	6.24	11.21	
			11-3-08 (low tide)	6.22	11.23	
			11-3-08 (high tide)	6.21	11.24	
MW-2S	4 - 19	17.17	10-14-08	5.41	11.76	
1			11-3-08 (low tide)	5.41	11.76	
			11-3-08 (high tide)	5.39	11.78	
MW-2D	30 - 35	17.00	10-14-08	5.89	11.11	
			11-3-08 (low tide)	5.88	11.12	
			11-3-08 (high tide)	5.86	11.14	
MW-3S	2 - 17	15.50	10-14-08	1.61	13.89	
			11-3-08 (low tide)	1.62	13.88	
			11-3-08 (high tide)	1.62	13 88	
MW-3D	30 - 35	15.54	10-14-08	3.92	11.62	
			11-3-08 (low tide)	3.94	11.60	
			11-3-08 (high tide)	3.94	11.60	

NOTES:

asl Above mean sea level

fbgs Feet below ground surface

Top of PVC casing elevation surveyed by Control Point Associates, Inc.

TABLE 5

GROUNDWATER SAMPLING AND ANALYSES DATA SUMMARY (MONITOR WELLS)

Waldbaum's Shopping Center Site Former Johnny On The Spot Dry Cleaners 152-45 to 153-01 10th Avenue

Whitestone, Queens County, New York

WHITESTONE ASSOCIATES INC.		CLIENT 10: MW-1S LAB 1D: AC40514-001 COLLECTION DATE: 10/14/2008		MW-1D MW-2S AC40514-002 AC40514-003 10/14/2008 10/14/2008		MW-			W-3S	MW-3D				
						AC40514-003 10/14/2008		AC40514-004		AC40514-005		AC40514-006		
NALYTE	TAGM	TOGS	Result F			Flg MDL			10/14/2			14/2008	10/14/2	
olatile Organics			Account 11	E IVELDE	I Result 1	rig IVILIE	Result F	lg MDL	Result Fig	MDL	Result	Flg MDL	Result Flg	M
1,1-Trichloroethane	5	1 5	ND	1	I ND	-	ND		LVID		1 100			
1,2,2-Tetrachloroethane	5	5	ND	Î	ND	- 1	ND	-	ND	-1	ND	1	ND	1
1,2-trichloro-1,2,2-trifluoroethane	5	5	ND	1	ND	1	ND	-	ND	- 1	ND	1	ND	
1,2-Trichloroethane	NA		ND		ND	-	ND	-	ND	1	ND	1	ND	
I-Dichloroethanc	5	5	ND	1	210000	ti.dimini.esi.e sitiri	ND	- 1	ND		ND	4	ND	
1-Dichloroethene	5	5	ND	I	6.5	TERROR I		1	ND		ND	I	ND	
2,3-Trichloropropane	5	0.04	ND		ND	1193957646, 25	ND	19 出作11。出	ND		ND	1	ND	
2,4-Trimethylbenzene	NA	5	ND	1	ND	- 1	ND		ND		ND	1_	ND	
2-Dichlorobenzene	4.7	3	ND	-	ND	-		1	ND	1	ND	1	ND	
2-Dichloroethane	5	0.6	ND	0.5	E-5.E	0.5	ND		ND	1	ND	. 1	ND	
2-Dichloropropane	NA	1 1	ND	1		0.5	ND	0.5	ND	0.5	ND	0.5	2.8	0.
3,5-Trimethylbenzene	NA	5	ND	-	ND ND		ND	1	ND		ND	1	ND	
3-Dichlorobenzene	5	3	ND	-	ND	1	ND	1	ND		ND	1	ND	
3-Dichloropropane	5	5	ND	-	ND		ND	1	ND	1	ND	1	ND	
4-Dichlorobenzene	5	3	ND	-	ND		ND		ND	1	ND	1	ND	
4-Dioxane	NA	NA NA	ND	250	ND	1	ND	1	ND	1	ND	1	ND	
Butanone	50	NA NA	ND	0.5	ND	250	ND	250	ND	250	ND	250	ND	25
Chloroethylvinylether	NA	NA NA	ND	V,3	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.
Hexanone	NA	NA NA	ND		ND		ND	1_	ND	1	ND	1	ND	
Isopropyltoluene	NA	5	ND		ND	- 1	ND		ND	1	ND		ND	1
Methyl-2-Pentanone	50	NA NA	ND		ND	1	ND	1	ND		ND	1	ND	1
cetone	50	50	ND	5	ND		ND		ND	1	ND	1	ND	- 1
crolein	NA	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	
crylonitrile	NA	5	ND	1	ND		ND	5	ND	- 5	ND	5	ND	5
enzene	0.7	1 1	ND	0.5	ND	0.5	ND	1	ND	1	ND	1	ND	I
romodichloromethane	NA	50	ND	1	ND	0.5		0.5	ND	0.5	ND	0.5	ND	0.
romoform	NA	50	ND	-1-	ND	- 1	ND	- 1	ND	1	ND		ND	
romomethane	NA.	5	ND	-	ND	1	ND		ND	- 1	ND	1	ND	1
arbon disulfide	50	60	ND	1		1	ND		ND		ND	4 1	ND	1
arbon tetrachloride	5	5	ND	- 1	ND		ND		ND		ND		ND	- 1
hlorobenzene	5	5	ND	-	ND	-	ND		ND	_1_	ND	1	ND	I
hloroethane	50	5	ND	1	ND		ND		ND	1	ND	1	ND	I
hloroform	7	7 1	ND	-	ND ND		ND		ND	1	ND	1	ND	1
hloromethane	NA	5	ND	-	ND		ND		ND	1	ND	1	4,5	- 1
s-1,2-Dichlorgethene	NA	5	ND	-	ND ND		ND	1	ND	1	ND		ND	- 1
s-1,3-Dichloropropene	NA	0.4	ND	- 1	ND	1	典71年	January 1	ND	16	ND	1	ND	1
bromochloromethane	50	5	ND				ND	1	ND	1	ND	1	ND	1
chlorodifluoromethane	NA	5	2.4	-	ND ND		ND	1	ND	_1	ND	I	ND	1
hylbenzene	5	5	ND	- 1			ND	1	ND	1	ND	11	ND	- 1
propylbenzene	NA	5	ND		ND	1	ND	1	ND	1	ND	1	ND	1
&p-Xvienes	5	5	ND	2	ND ND	1	ND	1	ND	1	ND	1	ND	_ 1
ethylene chloride	5	5	ND	2		2	ND	2	ND	2	ND	2	ND	2
ethyl-t-butyl ether	10	10	ND	0.5	ND	1	ND	1	ND	1	ND	1	ND	1
Butylbenzene	NA NA	5	ND	0.5	ND ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.
Propylbenzene	NA.	3	ND ND	- 1			ND	1	ND	1	ND	1	ND	- 1
Xylene	5	5	ND	1	ND	1	ND	1	ND	1	ND	1	ND	-1
c-Butylbenzene	NA.	5	ND ND	- 1	ND ND		ND ND	I.	ND ND	1	ND ND	1	ND	

TABLE 5

GROUNDWATER SAMPLING AND ANALYSES DATA SUMMARY (MONITOR WELLS)

Waldbaum's Shopping Center Site

Former Johnny On The Spot Dry Cleaners

152-45 to 153-01 10th Avenue

Whitestone, Queens County, New York

A VAC-HOUSE	STONE	CLIENT D:	MW-	IS .	l N	/IW-ID	-53	1	MW-25	3	N	W-2D	T	MW-35		1	AW-3D	Y
ASSOC	TATES INC.	LAB D:			AC40514-002 10/14/2008			AC40514-003		AC40514-004		AC40514-005			AC2			
- Acceptant Control Co	water of the property of the second	COLLECTION DATE:					10/14/2008		10/14/2008			10/14/2008		10/14/2008				
NALYTE	TAGM	TOGS	Result Flg	MDL	Result	Flg M	DL	Result	Flg	MDL	Result	Flg MDL	Result	FIg	MDL	Result	Flg	MDL
Styrene	NA	5	ND		ND		1	ND		1	ND	1	ND	FIE	1		LIE	MUL
-Butyl Alcohol	NA	NA NA	ND	5	ND		5	ND		- 5	ND		ND	_	-	ND ND	_	-
-Butylbenzene	NA	5	ND	1	ND		1	ND	_	1	ND		ND		3			- >
Tetrachloroethene	5	5	2.3	1	ND		1	230	althorno	Desta Sulli	ND	-	ND	_	1	ND		
l'ofuene l'action de la constant de	5	5	ND	Ť	ND	_	1	ND	#H200504	SHACKS PICE	4.00		ND	-	4	ND		1
frans-1,2-dichloroethene	5	5	ND	1	ND	_	÷	1.2	_	-	ND	-	ND			ND		
Frans-1,3-dichloropropene	NA.	NA NA	ND	1	ND		•	ND	_	-	ND	- 1		_	-	ND	_	1
Frichloroethene	5	5	ND	1	ND	_	-		C#1050	Contradiction and	ND	- 1	ND	_		ND		1
Frichlorofluoromethane	NA	5	ND	1	ND	_	1	ND	antinii Bi	SER METERS			ND		1	ND		- 1
Vinyl chloride	2	7	ND	1	ND		1		Walter Line	number attention	ND	1	ND		1	ND	_	- 1
			1112		ND		1	33	等海田田	PLY DELIVERY	ND	1	ND		1	ND		- 1

NOTES:
TAGM - NYSDEC Technical and Administratice Guidance Memorandum #4046 Gro indwater Standards/Criteria
TOGS - NYSDEC Technical and Operational Guidance Series Memo 1.1.1. Ambient Broundwater Quality (GA) Standard
Bolded and Shaded values indicate exceedances of NYSDEC TAGM and/or GWS

Results reported in parts per billion (ppb)

MDL - Laboratory Method Detection Limit

ND - Not Detected at a concentration exceeding laboratory MDL

NA - No Applicable Standard Flg - Data Qualifier

TABLE 6 INDOOR AIR QUALITY AND SOIL GAS VAPOR

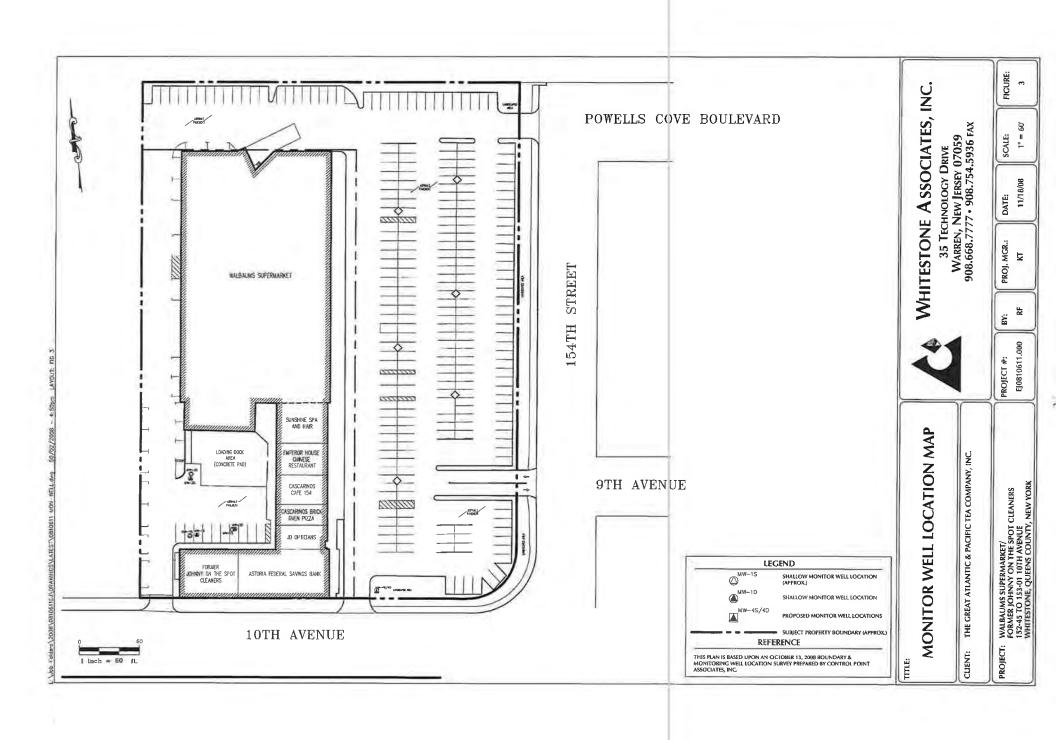
Waldbaum's Shopping Center Site Former Johnny On The Spot Dry Cleaners 152-45 to 153-01 10th Avenue

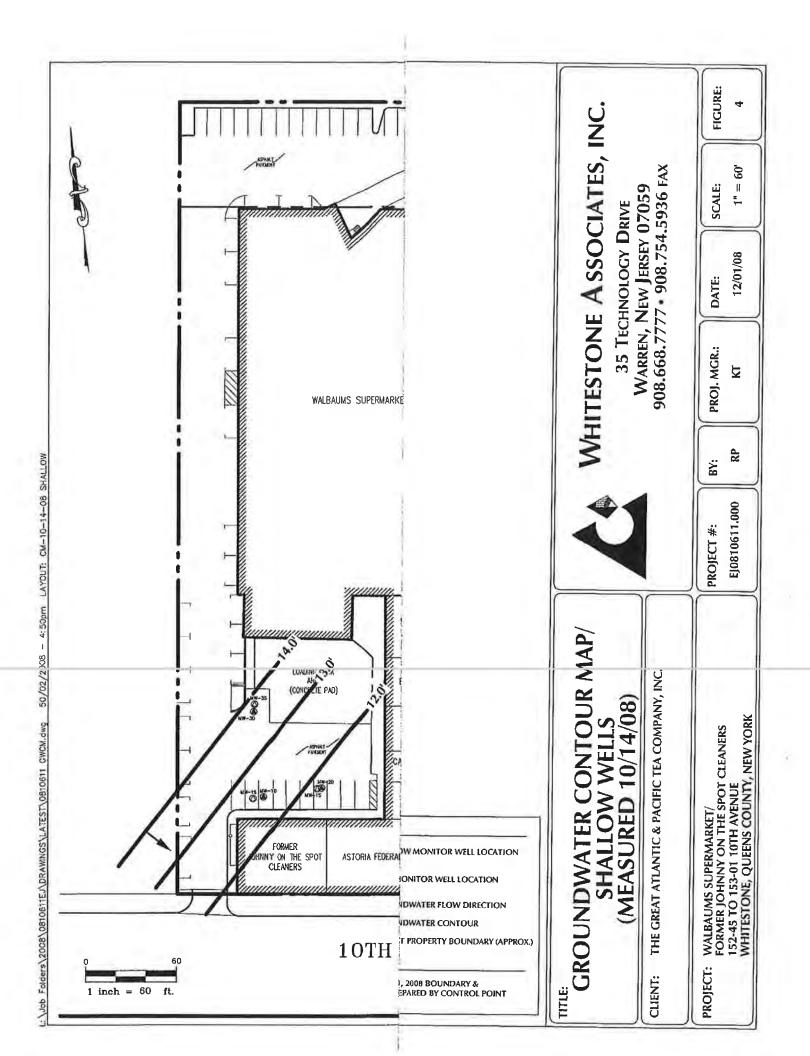
Whitestone, Oueens County, New York

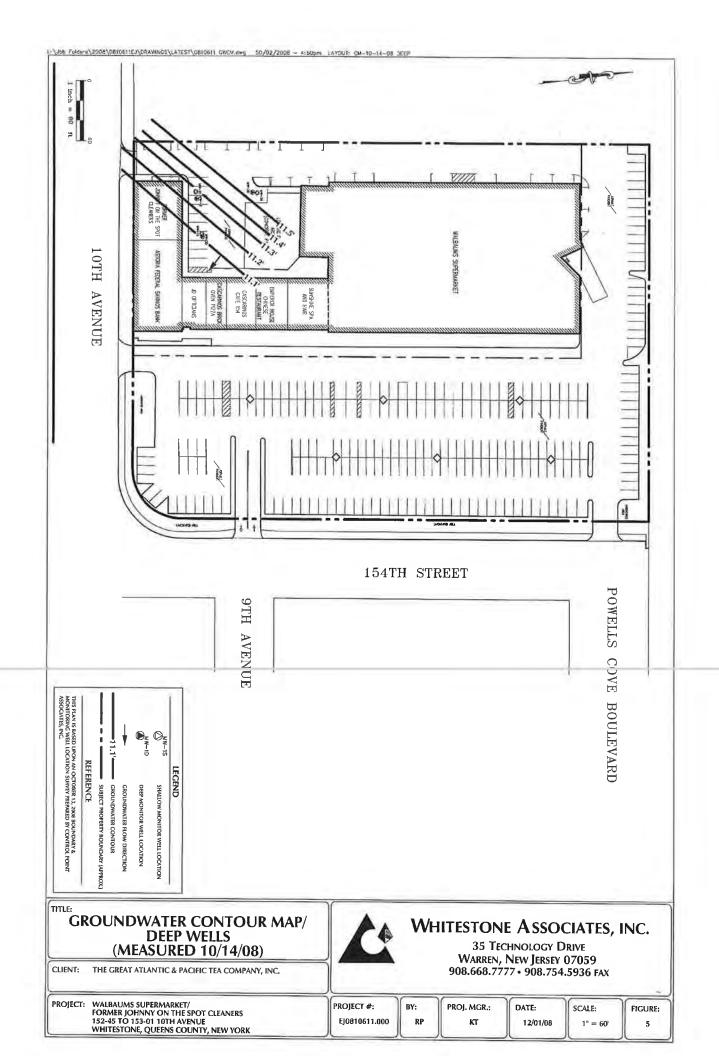
_		whitestone	2. (ueens Count	y , [New York						
WHITESTONE ASSOCIATES INC.												
Sample ID		AA-1	T	IAO-1	T	IAQ-1DL	-	SG-1	1	00.5	_	
Lab Sample No.		765984	+	765988	+	765988D1	-	765985	-	SG-2	-	SG-3
Sampling Date		08/27/2008 1040	+	08/27/2008 1030	+	08/27/2008 1030	+	08/26/2008 1234	-	765986	-	765987
Matrix	CAS Number	AIR	+	AIR	+	AIR	-		-	08/26/2008 1037		08/26/2008 1241
Dilution Factor		4	+	4	-	35.7	⊢	AIR	1	AIR		AÏR
Units	-	ug/m3	-	ug/m3	-		-	16.7		1		1
VOLATILE COMPOUNDS (GC/MS)		ug/ms	+	ug/III5	+	ug/m3	\vdash	ug/m3		ug/m3		ug/m3
Dichlorodifluoromethane	75-71-8	2.2		2.4	+	3.5	1	40	-			
1,2-Dichlorotetrafluoroethane (Freon 114)	76-14-2	0.28	U	0.28	U		D		U			16
Vinyl Chloride	75-01-4	0.2	U	0.2	U		U	23	U		U	1.4
1,3-Butadiene	106-99-0	0.18	U	0.18	U		U	8.4	U	46 0		0,51 €
Bromomethane (Methyl bromide)	74-83-9	0.31	U	0.18	U		U	19	U	3,3		5.8
Chloroethane (ethyl chloride)	75-00-3	0.21	U	0.21	U		U	13	U	0.78	U	0.78
Vinyl bromide	593-60-2	0.35	U	0.35	U		U		U	1.3	U	1.3
Trichlorofluoromethane (Freon 11)	75-69-4	1.7	-	1.9	U	2,3	U	14	Ū	0,87	U	0.87
1,1-Dichloroethene	75-35-4	0.16	U	0.16	U		D	19	U	3.1		4.1
3-Chloropropene (allyl chloride)	107-05-1	0.25	U	0.16	Ü		U	13	U	0.79	U	0.79
Methylene Chloride	75-09-2	2,8	U	2.8	U		U	26	U	1.6	U	1.6
MTBE (Methyl tert-butyl ether)	1634-04-4	0.14	U	0.14	U		U	29	U	1.7	U	1.7
1,2-Dichloroethene (trans)	156-60-5	0.16	Ŭ	0.16	U	1.4	U	30	Ũ	1.8	U	1.8
n-Hexane	110-54-3	0.53	۲	2.3	, u	2.9		13	U	2,8		0.79
i,1-Dichloroethane	75-34-3	0,16	U	0.16	u		D	30	U	4.2		9.5
1.2 Diallament and Grant	540-59-0	0.16	U	0.16	-	1.5	U	13	U	0.81	U	0.81
l,2-Dichloroethene (cis)	156-59-2	0.16	U	0.44	Н	1.4	U	13	Ü	79	Ш	0.79
Chloroform	67-66-3	0.10	Ü	0.78	Н	1.4	U	16	U	0.98	U	0 98
** 1,1,1-Trichloroethane	71-55-6	0.22	Ü	0.78	U	1.8	U	18	U	1.1	U	1.1
Cyclohexane	110-82-7	0.14	Ü	0.29	0	1 2	U	11	U	1.5		1.8
Carbon tetrachloride	56-23-5	0.4	10	0.44	H		-	21	U	1.3	U	1,3
2,2,4-Trimethylpentane	540-84-1	0.7	Н	1.3	Н	2.3	U	15	U	3.2		1.7
Benzene	71-43-2	0,32	Н	0.54	Н	1.7	U	11	U	4.2		12
1,2-Dichloroethane	107-06-2	0.32	U	0.32	U	2.9	U	13	U	83 🌣		0.79
1-Heptane	142-82-5	0.45	1	0.98	0	1.5	U	13	U	0.81	U	0.81
Prichloroethene (TCE)	79-01-6	0.21	U	0.59 <	Н	1.5	U	14	U	3.4	-	- 11
,2-Dichloropropane	78-87-5	0.21	U	0.37	U	3.3	U	75 €		19 €	_	1.1
Bromodichloromethane	75-27-4	0.27	U	0.27	U	2,4	U		U		U	0.92
,3-Dichloropropene (cis)	10061-01-5	0.18	U	0,27	U		U	22	U		U	1.3
* Toluene	108-88-3	1.2	1	4.5	0		D	15 12	U	0.91 8.3 &	U	0.91 1 20

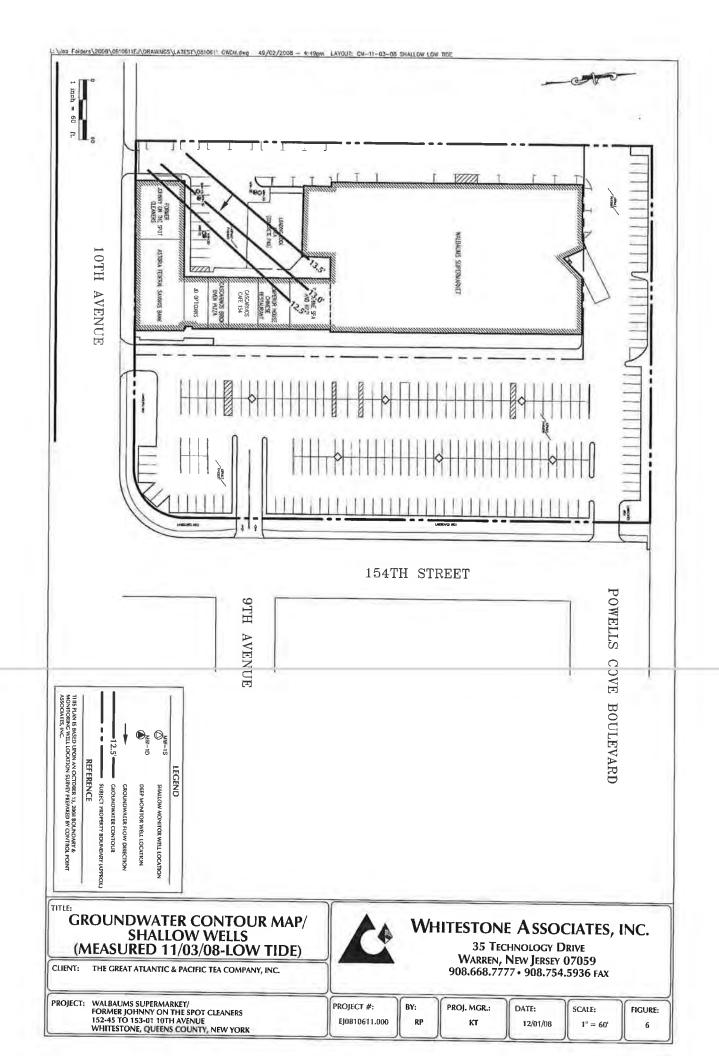
TABLE 6 INDOOR AIR QUALITY AND SOIL GAS VAPOR

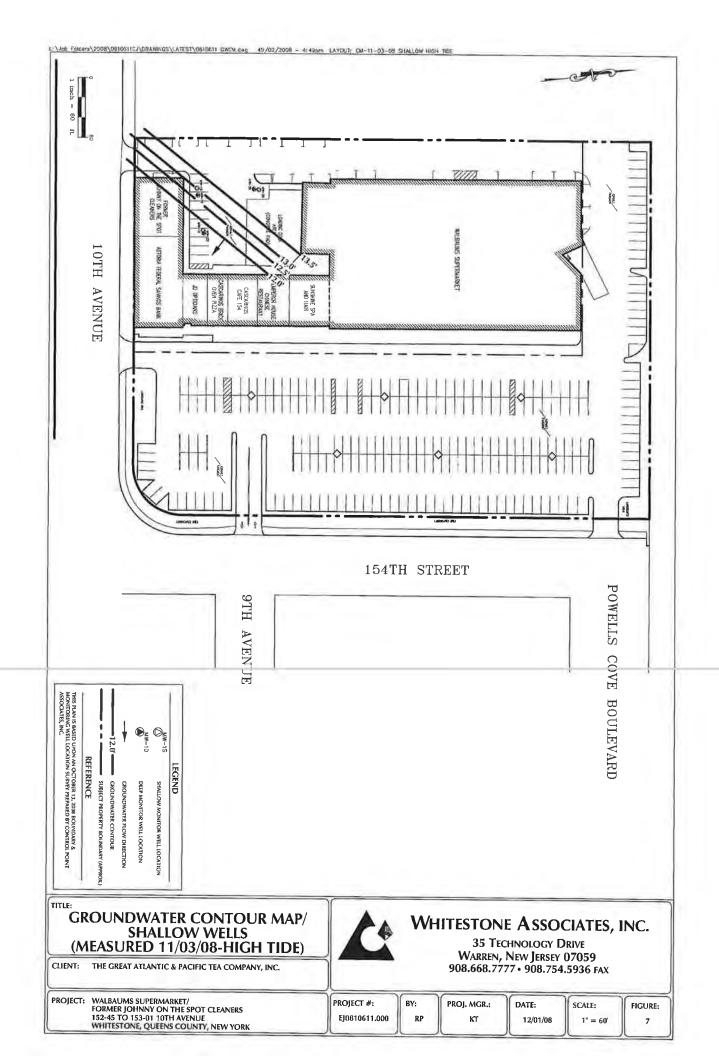
Waldbaum's Shopping Center Site Former Johnny On The Spot Dry Cleaners 152-45 to 153-01 10th Avenue

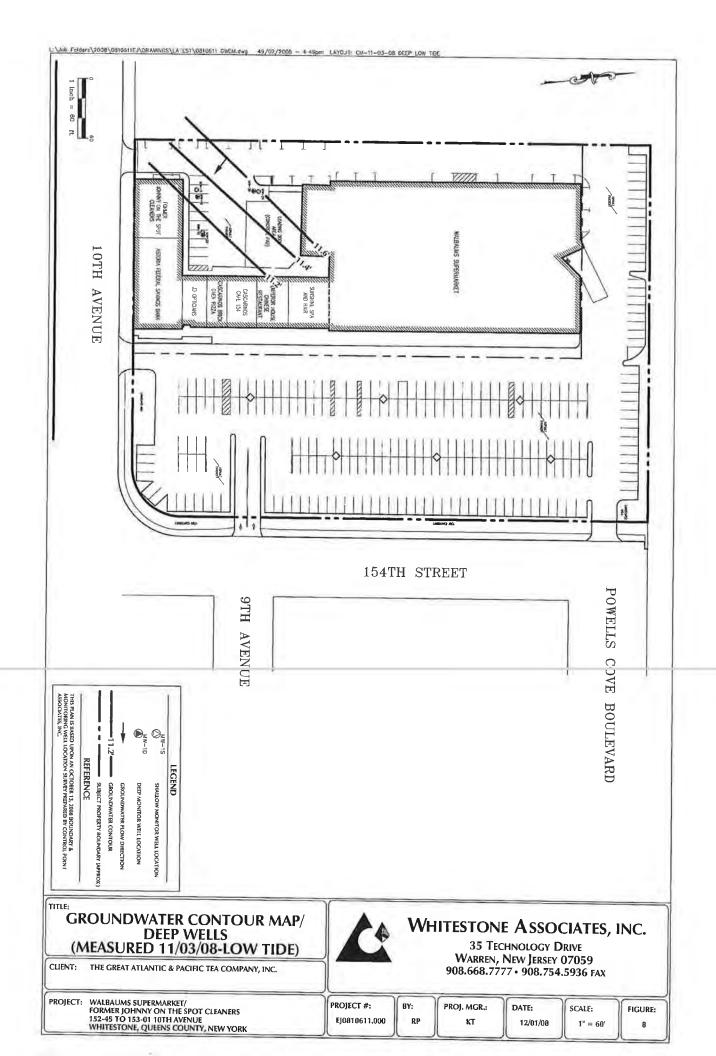

Whitestone, Oueens County, New York

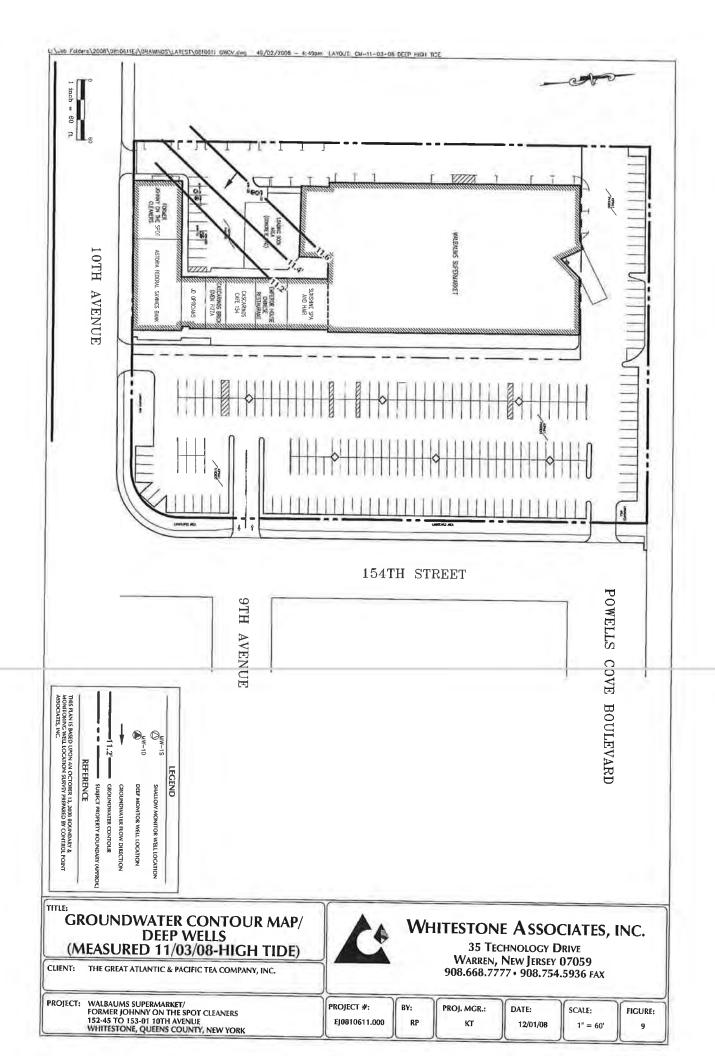

A		- AMS STORY	-	ueens Count	Yel	NEW TOCK	_		_				
WHITESTONE ASSOCIATES, INC.													
Sample ID		AA-1	1	IAQ-1	T	IAQ-IDL	1	80.1	1	1 000			_
Lab Sample No.		765984		765988	+	765988D1		SG-1		SG-2		SG-3	1
Sampling Date	1 /	08/27/2008 1040	1	08/27/2008 1030 AIR				765985	+	765986		765987	
Matrix	CAS Number	AIR	+					08/26/2008 1234	-	08/26/2008 1037	\perp	08/26/2008 1241	
Dilution Factor		4	-	4	-		-	AIR	-	AIR		AÍR	
Units		ug/m3	-	ug/m3	-	35_7	-	16,7		1		1	
VOLATILE COMPOUNDS (GC/MS)	1	ug/III	Н	ug/ms	-	ug/m3	-	ug/m3		ug/m3		ug/m3	1
1,3-Dichloropropene (trans)	10061-02-6	0,18	U	0.18	U	1,6	U	12	1				
1,1,2-Trichloroethane	79-00-5	0.22	Ū	0.22	U		-	15	U	0.91	U	0.91	I
Tetrachloroethene (PCE)	127-18-4	1 2	۲	160	E	160	U	18	U	1.1	U	1.1	I
Dibromochloromethane	124-48-1	0,34	U	0.34	U		D	4300 0		30		9.5	1
1,2-Dibromoethane	106-93-4	0.31	U	0.31	-	3.1	U	28	U		U	1.7	I
Ethylbenzene @	100-41-4	0.31	U		U	2.8	U	25	U	1.5	U	1.5	I
Xylene (m,p)	1330-20-7	0.35	Ü	3.7		1.6	U		U			2.7 €	
Xylene (o)	95-47-6	0.17	Ü			3,1	U	36	U	3.2		7.4	1
Xylene (m&p)	1330-20-7	0.17	U	1.7		1.6	U	14	U	1.2		3.1	
Bromoform	75-25-2	0.41	U	5,2 0,41		1.6	U		U	2.1	U	2.1	Ţ
1,1,2,2-Tetrachloroethane	79-34-5	0.27	U	0.41	U	3.7	U	23	U	1.4	U	1.4	U
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	0.2	U		U	2.5	U		U	4.3		10	
1,3,5-Trimethylbenzene	108-67-8	0.39	U	1.9		3.9	U		U			1.7	
		0.07	10	1.7		2.3	U	16	U	0.98	U	0.98	U

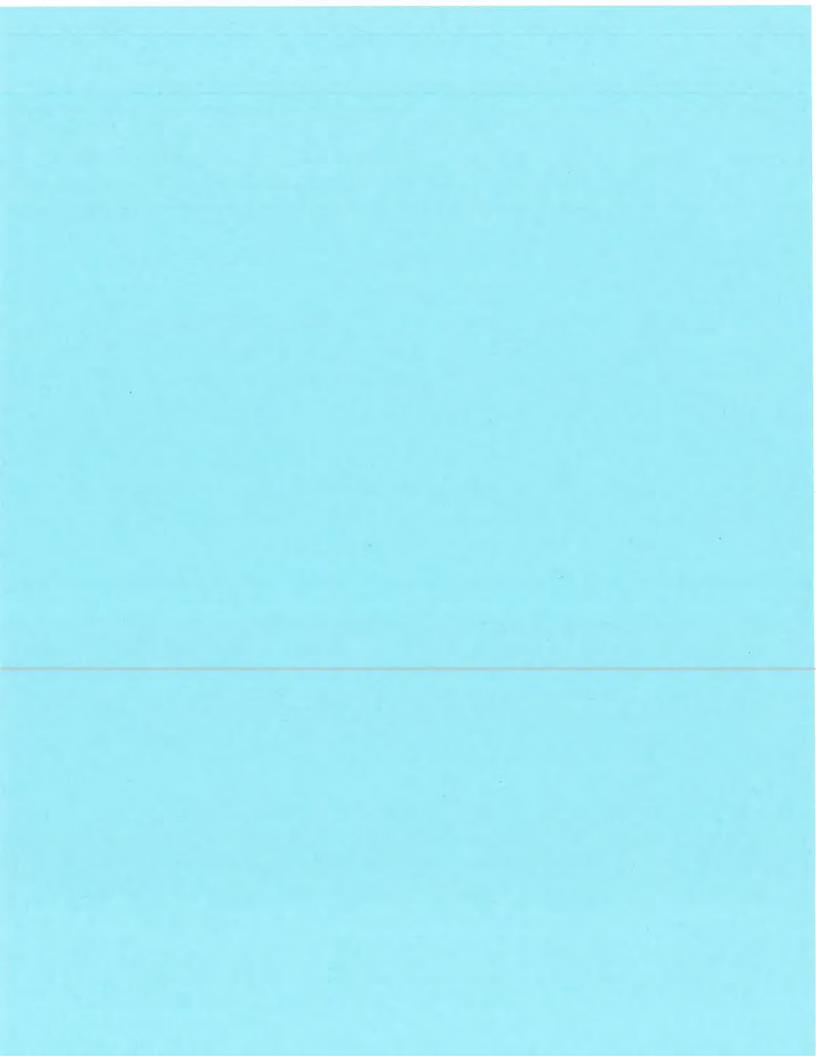

NR - Not analyzed.

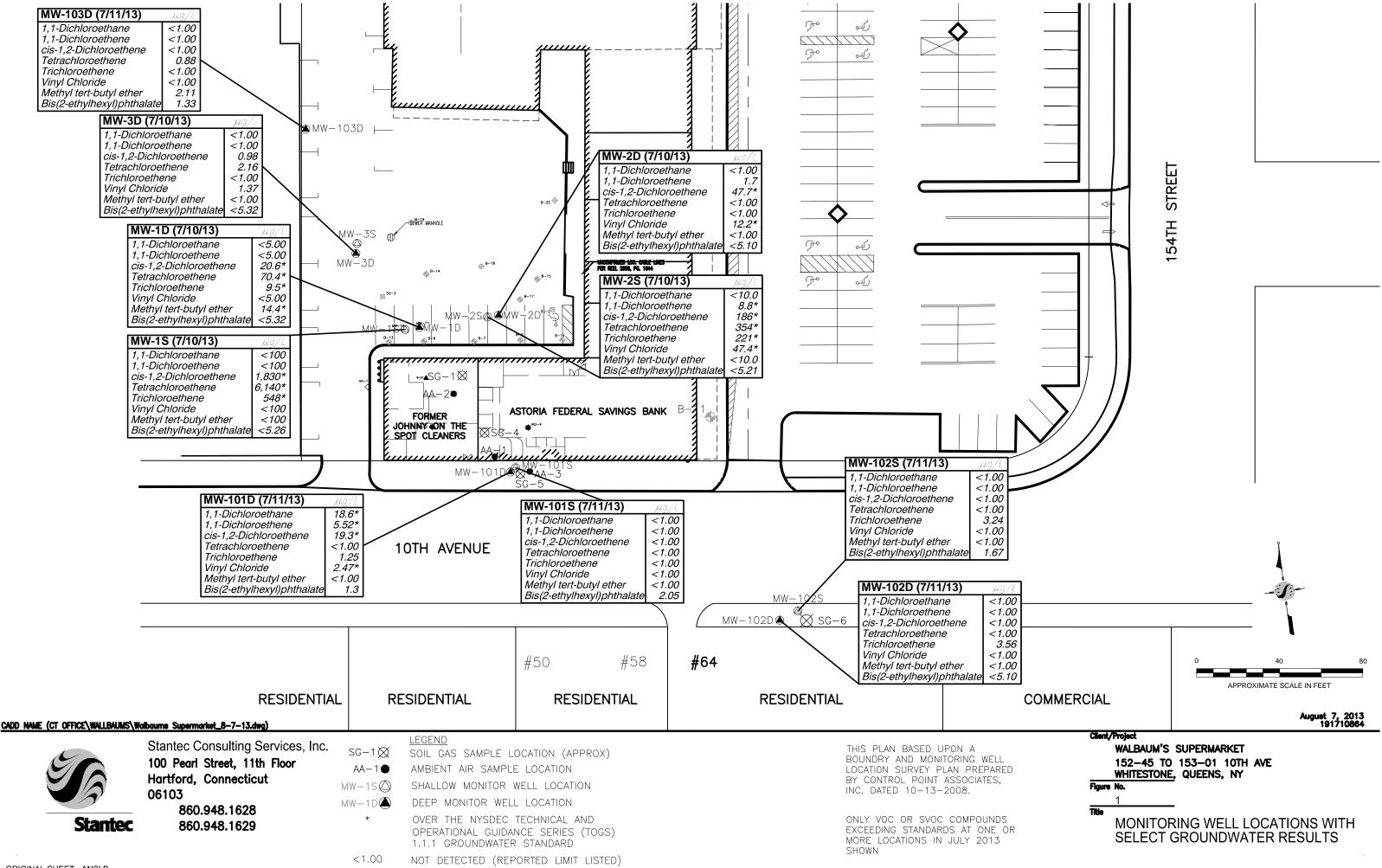

- U Compound analyzed but not detected at a concentration above the reporting limit.
- J Estimated value.
- N Indicates presumptive evidence of a compound. The flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specificied in project QA plan, the lower of the two values is reported on the Form I.
- B Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D Concentrations identified from analysis of the sample at a secondary dilution.
- A Tentatively identified compound is a suspected aldol condensation product.













ALL UNITS IN MICROGRAMS PER LITER

Table 1 Summary of Soil Detects Waldbaum's Plaza 152-153 10th Avenue Whitestone, NY

Sample Location Laboratory ID Sample Date SW846 9045D (pH Units)	CP-51, Table 375-6.8(b) Res. NE	CP-51, Table 375- 6.8(b) Restricted Res. NE	CP-51, Table 375-6.8(b) Commercial NE	CP-51, Table 375-6.8(b) Industrial NE	CP-51, Table 375-6.8(b) Protect of Eco Resources NE	CP-51, Table 375 6.8(b) Protect of GW NE	13-14'		MW-102D- 15-16' SB71901-03 6/19/2013 7.66	MW-102D- 38-39' SB71901-04 6/19/2013 8.03	12-13' SB71726-03	MW-103D- 38-39' SB71726-04 6/18/2013 7.11	SG-1A 01
ASTM D422 (% Retained)	INE	INE.	INE	INE	INE	I NE	6.01	7.05	7.00	6.03	6.09	7.11	INA
Fractional % Sieve #4 (>4750µm)	NE	NE	NE	NE	NE	NE	2.78	4.22	5.4	1.04	2.87	2.26	NA
Fractional % Sieve #10 (4750-2000µm)	NE	NE	NE	NE	NE	NE	20.3	3.99	13.8	2.83	5.2	3.31	NA
Fractional % Sieve #20 (2000-850µm)	NE	NE	NE	NE	NE	NE	21.4	11.8	15.7	22.4	17.2	16.7	NA
Fractional % Sieve #40 (850-425µm)	NE	NE	NE	NE	NE	NE	14.7	29.6	19.8	30	37.6	44.9	NA
Fractional % Sieve #60 (425-250µm)	NE	NE	NE	NE	NE	NE	13	27.4	15.5	18	17.7	16.8	NA
Fractional % Sieve #100 (250-150µm)	NE	NE	NE	NE	NE	NE	7.99	12.8	11.7	12.8	8.15	7.76	NA
Fractional % Sieve #200 (150-75µm)	NE	NE	NE	NE	NE	NE	6.6	0.962	8.24	4.62	5.43	4.37	NA
Fractional % Sieve #230 (less than 75µm)	NE	NE	NE	NE	NE	NE	13.2	9.17	9.92	8.35	5.82	3.88	NA
Sulfate as SO4 (EPA 300.0 (mg/kg))	NE	NE	NE	NE	NE	NE	123	27.2	78.4	47.3	40.7	52.2	NA
Specific Conductance (EC) SM2510B (uS/cm)	NE	NE	NE	NE	NE	NE	616	64.5	66.6	79.6	152	47.5	NA
% Solids SM2540 G Mod. (%)	NE	NE	NE	NE	NE	NE	73.7	83.4	88.3	82.9	91.2	88.6	NA
Sulfide SM4500-S D (mg/kg)	NE	NE	NE	NE	NE	NE	1.67	0.71	0.78	< 0.971	<1.00	0.893	NA
Volatile Organic Compounds SW846 8260C													
Acetone	100000	100000	500000	1000000	2200	50	<64.9	<25.5	<370	<32.8	43.2	25.5	24.4
Naphthalene	100000	100000	500000	1000000	NE	12000	<6.5	<2.5	<37.0	<3.3	<2.8	<2.9	93.4
Tetrachloroethene	5500	19000	150000	300000	2000	1300	<6.5	<2.5	<37.0	<3.3	<2.8	<2.9	91

NE = Not Established

NA = Not Analysed

Blue underlined values indicate an exceedance of

the most stringent soil standard

N:\1917\active\191710864\Report\SSDS Pilot Test Work Plan\Tables\Soil Table.xls

Table 2
Summary of Groundwater Data (Detects)
Former Johnny On the Spot Cleaner
152 10th Avenue, Whitestone, NY

Sample Location	TOGS 1.1.1	MW-1S	MW-1D	MW-2D	MW-2S	MW-2S	MW-DUP	MW-103D	MW-3D	MW-101D	MW-101S	MW-102D			Trip Blank
Laboratory ID	Groundwater	SB72998-02	SB72998-03	SB72998-04	SB72998-05	05RE1	SB72998-06	SB72998-07	SB72998-08	SB73081-01	SB73081-02	SB73081-03	SB73081-04	SB72998-09	SB73081-05
Sample Date	Standards	7/10/2013	7/10/2013	7/10/2013	7/10/2013	7/10/2013	7/10/2013	7/11/2013	7/10/2013	7/11/2013	7/11/2013	7/11/2013	7/11/2013	7/10/2013	7/11/2013
Sulfate as SO4	500000	NA	NA	64.1	21.4	NA	21.2	NA	NA	41	32.7	NA	NA	NA	NA
Nitrate as N	20000	NA	NA	< 0.100	< 0.100	NA	< 0.100	NA	NA	< 0.100	< 0.100	NA	NA	NA	NA
Mod EPA 3C/SOP RSK-175 (μg/l)						Re-ran									
Methane	NE	NA	NA	11.6	119	100	135	NA	NA	52.6	<22.0	NA	NA	NA	NA
Ethane	NE	NA	NA	< 5.00	< 5.00	<25.0	5.07	NA	NA	< 5.00	< 50.0	NA	NA	NA	NA
Ethene	NE	NA	NA	< 5.00	< 5.00	<25.0	10.1	NA	NA	< 5.00	<50.0	NA	NA	NA	NA
Carbon dioxide	NE	NA	NA	4860	6270	4720	6120	NA	NA	4920	10600	NA	NA	NA	NA
Hydrogen	NE	NA	NA	<2.70	<2.70	<13.5	<2.70	NA	NA	<2.70	<27.0	NA	NA	NA	NA
Nitrogen	NE	NA	NA	1830	23600	32600	4210	NA	NA	6400	<3740	NA	NA	NA	NA
Oxygen	NE	NA	NA	696	8440	12800	1830	NA	NA	2190	<4500	NA	NA	NA	NA
Metabolic Acids Modified EPA															
300.0 (mg/L)															
Pyruvic Acid	NE	NA	NA	< 5.0	< 5.0	NA	< 5.0	NA	NA	< 5.0	< 5.0	NA	NA	NA	NA
Lactic Acid	NE	NA	NA	< 5.0	< 5.0	NA	< 5.0	NA	NA	< 5.0	< 5.0	NA	NA	NA	NA
Acetic Acid	NE	NA	NA	< 5.0	< 5.0	NA	< 5.0	NA	NA	< 5.0	< 5.0	NA	NA	NA	NA
Propionic Acid	NE	NA	NA	< 5.0	< 5.0	NA	< 5.0	NA	NA	< 5.0	< 5.0	NA	NA	NA	NA
Butyric Acid	NE	NA	NA	< 5.0	< 5.0	NA	< 5.0	NA	NA	< 5.0	< 5.0	NA	NA	NA	NA
Volatile Organic Compounds															
SW846 8260C (μg/l)															
Carbon disulfide	60	<200	<10.0	<2.00	<20.0	NA	<20.0	2.47	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	< 2.00
Chloroethane	5	<200	<10.0	<2.00	<20.0	NA	<20.0	<2.00	<2.00	2.88	<2.00	<2.00	<2.00	<2.00	< 2.00
1,1-Dichloroethane	5	<100	< 5.00	<1.00	<10.0	NA	<10.0	<1.00	<1.00	<u>18.6</u>	<1.00	<1.00	<1.00	<1.00	<1.00
1,2-Dichloroethane	0.6	<100	< 5.00	<1.00	<10.0	NA	<10.0	<1.00	<u>1.86</u>	<u>1.31</u>	<1.00	<1.00	<1.00	<1.00	<1.00
1,1-Dichloroethene	5	<100	< 5.00	1.7	<u>8.8</u>	NA	<u>8.1</u>	<1.00	<1.00	<u>5.52</u>	<1.00	<1.00	<1.00	<1.00	<1.00
cis-1,2-Dichloroethene	5	<u>1830</u>	<u>20.6</u>	<u>47.7</u>	<u>186</u>	NA	<u>194</u>	<1.00	0.98	<u>19.3</u>	<1.00	<1.00	<1.00	<1.00	<1.00
Methyl tert-butyl ether	10	<100	<u>14.4</u>	<1.00	<10.0	NA	<10.0	2.11	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Tetrachloroethene	5	<u>6140</u>	<u>70.4</u>	<1.00	<u>354</u>	NA	<u>288</u>	0.88	2.16	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Trichloroethene	5	<u>548</u>	<u>9.5</u>	<1.00	<u>221</u>	NA	<u>201</u>	<1.00	<1.00	1.25	<1.00	3.56	3.24	<1.00	<1.00
Vinyl chloride	2	<100	< 5.00	<u>12.2</u>	47.4	NA	<u>50.5</u>	<1.00	1.37	2.47	<1.00	<1.00	<1.00	<1.00	<1.00
Semivolatile Organic Compounds													_		
8270D (μg/l)															
Benzoic acid	NE	<5.26	<5.32	<5.10	<5.21	NA	<5.32	< 5.62	<5.32	4.15	<5.10	<5.10	<5.15	NA	NA
Bis(2-ethylhexyl)phthalate	5	<5.26	<5.32	<5.10	<5.21	NA	<5.32	1.33	<5.32	1.3	2.05	<5.10	1.67	NA	NA
ME Mat Fatal Pales I		-			•		•		•		•				

NE = Not Established

NA = Not Analyzed

Blue and Underlined exceed the TOGS 1.1.1 Groundwater Standards

<5.0 = Not detected (reported limit listed)

N:\1917\active\191710864\Report\SSDS Pilot Test Work Plan\Tables\Groundwater Table.xls

Table 3 Summary of Soil Vapor and Air Sampling Waldbaum's Plaza

152-153 10th Avenue, Whitestone, New York

Sample Location	NYSDOH Indoor	SG-1	SG-1	SG-1	AA-2	AA-2	SG-4	SG-4	SG-4	AA-1	AA-1		
Laboratory ID	Air Guideline	SB71901-02	SB73048-01	SB78841-04	SB71801-02	SB78841-03	SB71901-01	SB73048-02	SB78841-05	SB71801-01	SB78841-02		
Sample Date	(ug/m3)	6/19/2013		10/16/2013	6/18/2013	10/16/2013	6/19/2013	7/11/2013		6/18/2013	10/16/2013		
Media			Soil Vapo			ent Air		Soil Vapor		Ambie	nt Air		
Location				Inside Drycle	eaner		Inside Bank						
VOCs by EPA TO-15 (ug/m3)													
Propene	NE	133.04	<16.9	<50.26	<4.3	<0.86	<8.61	<5.00	<0.86	<1.72	< 0.17		
1,2,4-Trimethylbenzene	NE	72.76	14.5	91.93	<12.29	<2.46	195.17	15.1	1.47	3.24	< 0.49		
1,3,5-Trimethylbenzene	NE	<24.58	<16.9	<143.55	<12.29	<2.46	34.41	3.1	<2.46	<4.92	< 0.49		
1,4-Dioxane	NE	<18	<16.9	<105.1	<9	<1.8	<18	< 5.00	<1.8	<3.6	<1.8		
2-Butanone (MEK)	NE	<14.74	<16.9	<86.11	<7.37	<1.47	<14.74	<5.00	3.69	<2.95	< 0.29		
2-Hexanone (MBK)	NE	<20.49	<16.9	<119.67	<10.25	<2.05	<20.49	<5.00	<2.05	<4.1	< 0.41		
4-Ethyltoluene	NE	35.4	<16.9	<143.55	<12.29	<2.46	70.79	2.7	<2.46	<4.92	< 0.49		
4-Methyl-2-pentanone (MIBK)	NE	<20.49	<16.9	<119.67	<10.25	<2.05	<20.49	<5.00	<2.05	<4.1	< 0.41		
Acetone	NE	337.43	<16.9	1451.91	15.45	18.58	<11.88	<5.00	30.18	29.94	28.28		
Benzene	NE	17.23	<16.9	<93.15	<7.98	0.64	<15.95	< 5.00	0.77	<3.19	< 0.32		
Carbon disulfide	NE	25.52	<16.9	295.06	<7.78	5.04	<15.56	< 5.00	<1.56	<3.11	0.22		
Carbon tetrachloride	NE	<31.45	<16.9	<183.68	<15.73	<3.15	<31.45	< 5.00	<3.15	<6.29	<0.25^		
Chlorobenzene	NE	<23.03	<16.9	<134.48	<11.51	<2.3	<23.03	< 5.00	<2.3	<4.61	< 0.46		
Chloroform	NE	89.07	<16.9	<142.12	<12.17	<2.43	<24.34	< 5.00	<2.43	<4.87	< 0.49		
Chloromethane	NE	<10.33	<16.9	<60.31	<5.16	<1.03	<10.33	< 5.00	1.05	1.69	< 0.21		
cis-1,2-Dichloroethene	NE	<19.83	6.76	<115.78	<9.91	<1.98	<19.83	< 5.00	<1.98	<3.97	< 0.4		
Cyclohexane	NE	<17.21	<16.9	<100.51	<8.61	<1.72	<17.21	< 5.00	<1.72	< 3.44	< 0.34		
Dichlorodifluoromethane(Freon12)	NE	<24.72	<16.9	<144.39	<12.36	2.62	81.09	21.6	15.03	20.17	35.36		
Ethanol	NE	49.59	<16.9	950.28	50.15	119.16	<9.43	7.5	90.5	158.19	136.51		
Ethyl acetate	NE	<18.02	<16.9	272.05	<9.01	<1.8	<18.02	< 5.00	<1.8	<3.6	< 0.36		
Ethylbenzene	NE	49.42	<16.9	78.47	<10.84	2.04	61.13	< 5.00	1.04	<4.34	< 0.43		
Hexane	NE	35.61	<16.9	325.76	<8.81	1.76	80.03	< 5.00	7.19	<3.53	1.3		
Isopropyl alcohol	NE	<12.27	<16.9	180.86	<6.13	2.63	<12.27	< 5.00	53.5	10.65	26.75		
Isopropylbenzene	NE	<24.58	<16.9	<143.55	<12.29	<2.46	<24.58	< 5.00	<2.46	<4.92	< 0.49		
m,p-Xylene	NE	224.57	<33.8	345.1	<21.68	7.28	327.75	<10.0	4.81	<8.67	< 0.87		
Methylene chloride	60	<17.36	<16.9	<101.39	<8.68	<1.74	<17.36	< 5.00	<1.74	<3.47	< 0.35		
Naphthalene	NE	<26.18	<16.9	<152.87	<13.09	<2.62	28.79	2.6	<2.62	< 5.24	<2.62		
n-Heptane	NE	<20.49	<16.9	<119.67	<10.25	< 2.05	<20.49	< 5.00	< 2.05	<4.1	< 0.41		
o-Xylene	NE	52.89	<16.9	134.4	<10.84	1.91	84.54	< 5.00	1.56	<4.34	< 0.43		
Styrene	NE	<21.27	<16.9	<124.2	<10.63	<2.13	<21.27	< 5.00	<2.13	<4.25	< 0.43		
Tetrachloroethene	100	2,746.4	2610	16,614	166.14	467.9	2909.13	399	435.35	45.03	0.34^		
Tetrahydrofuran	NE	<14.74	<16.9	<86.11	<7.37	<1.47	<14.74	<5.00	<1.47	<2.95	<0.29		
Toluene	NE	171.58	6.42	360.85	<9.41	2.41	156.16	<5.00	4.67	5.95	<0.38		
Trichloroethene	5	192.4	188	1101.72	<13.44	<2.69	54.82	9.1	7.42	5.27	<0.21^		
Trichlorofluoromethane (Freon 11)	NE NE	<28.1	<16.9	<164.09	<14.05	<2.81	<28.1	<5.00	<2.81	<5.62	1.46		
Vinyl chloride	NE	59.56	43.3	<74.64	<6.39	<1.28	<12.78	<5.00	<1.28	<2.56	<0.26		
Helium (%)	NE	NA	17.4	0	NA	NA	NA	0	0	NA	NA		
NE - Not Established	1 1			o lower report		14/1	14/1	J	9	1 1/ 1	14//		

NE = Not Established

NA = Not Analyzed

Blue underlined values denote an exceedanes of the

NYSDOH indoor air guidline values (compared to

ambient air samples only)

[^] Reported as SIM with lower reporting levels

<5.0 = Not detected (reported limit listed)

Table 3 Summary of Soil Vapor and Air Sampling Waldbaum's Plaza

152-153 10th Avenue, Whitestone, New York

Sample Location	NYSDOH Indoor	SG-5	AA-3	AA-3	SG-6	SG-6	SG-6	Trip-7/11		
Laboratory ID	Air Guideline	SB71726-01	SB71801-03	SB78841-01	SB71726-02	SB73048-04	SB73048-04RE1	SB73048-03		
Sample Date	(ug/m3)	6/17/2013	6/18/2013	10/16/2013	6/17/2013	7/11/2013	7/11/2013	7/11/2013		
Media		Soil Vapor Ambient Air				Soil Vapor				
Location		Sidewalk Bank	Outside	Rear		Sidewalk F	Res			
VOCs by EPA TO-15 (ug/m3)										
Propene	NE	< 0.500	<4.3	< 0.17	< 0.500	<0.10000	<0.20000	<0.10000		
1,2,4-Trimethylbenzene	NE	0.81	<12.29	< 0.49	0.37	0.16	0.26	<0.10000		
1,3,5-Trimethylbenzene	NE	< 0.500	<12.29	< 0.49	< 0.500	0.13	< 0.20000	< 0.10000		
1,4-Dioxane	NE	< 0.500	41.75	<1.8	< 0.500	< 0.50000	<1.0000	< 0.50000		
2-Butanone (MEK)	NE	< 0.500	50.43	2.54	< 0.500	1.34	1.42	< 0.10000		
2-Hexanone (MBK)	NE	< 0.500	<10.25	< 0.41	< 0.500	0.17	<0.20000	< 0.10000		
4-Ethyltoluene	NE	< 0.500	<12.29	< 0.49	0.26	0.14	0.26	< 0.10000		
4-Methyl-2-pentanone (MIBK)	NE	< 0.500	<10.25	< 0.41	< 0.500	0.15	0.2	< 0.10000		
Acetone	NE	9.82	394.46	17.3	12.5	11.05	12.88	1.31		
Benzene	NE	0.22	4.63	0.7	0.44	0.26	0.28	< 0.10000		
Carbon disulfide	NE	< 0.500	<7.78	0.44	< 0.500	0.2	0.22	< 0.50000		
Carbon tetrachloride	NE	< 0.500	<15.73	0.38^	< 0.500	0.08	< 0.20000	< 0.10000		
Chlorobenzene	NE	< 0.500	<11.51	< 0.46	0.37	< 0.10000	< 0.20000	< 0.10000		
Chloroform	NE	< 0.500	<12.17	< 0.49	< 0.500	0.05	0.1	< 0.10000		
Chloromethane	NE	0.65	<5.16	< 0.21	0.76	0.55	0.7	< 0.10000		
cis-1,2-Dichloroethene	NE	< 0.500	<9.91	< 0.4	< 0.500	< 0.10000	< 0.20000	< 0.10000		
Cyclohexane	NE	< 0.500	<8.61	< 0.34	< 0.500	0.1	< 0.20000	< 0.10000		
Dichlorodifluoromethane(Freon12)	NE	0.53	<12.36	3.51	0.56	0.38	0.56	< 0.10000		
Ethanol	NE	9.73	45.63	105.96	16.6	12.13	17.62	0.21		
Ethyl acetate	NE	< 0.500	<9.01	< 0.36	< 0.500	< 0.10000	1.08	< 0.10000		
Ethylbenzene	NE	< 0.500	<10.84	< 0.43	0.24	0.17	0.26	< 0.10000		
Hexane	NE	0.99	<8.81	1.73	1.22	0.5	1.92	< 0.50000		
Isopropyl alcohol	NE	< 0.500	<6.13	2.65	2.02	0.97	1.84	< 0.50000		
Isopropylbenzene	NE	< 0.500	<12.29	< 0.49	< 0.500	0.1	< 0.20000	< 0.10000		
m,p-Xylene	NE	0.78	<21.68	0.95	1.01	0.4	0.6	< 0.20000		
Methylene chloride	60	1.72	<8.68	< 0.35	1.09	0.14	0.18	< 0.10000		
Naphthalene	NE	0.77	<13.09	<2.62	< 0.500	< 0.50000	<1.0000	< 0.50000		
n-Heptane	NE	< 0.500	43.44	< 0.41	< 0.500	< 0.10000	< 0.20000	< 0.10000		
o-Xylene	NE	< 0.500	<10.84	< 0.43	0.4	0.16	0.26	< 0.10000		
Styrene	NE	< 0.500	<10.63	< 0.43	< 0.500	0.14	< 0.20000	< 0.10000		
Tetrachloroethene	100	0.29	<16.95	1.42	0.35	0.16	0.26	< 0.10000		
Tetrahydrofuran	NE	< 0.500	26.24	< 0.29	< 0.500	< 0.10000	< 0.20000	< 0.10000		
Toluene	NE	1.15	<9.41	2.41	1.8	0.65	0.74	< 0.10000		
Trichloroethene	5	< 0.500	<13.44	0.16^	< 0.500	< 0.10000	< 0.20000	< 0.10000		
Trichlorofluoromethane (Freon 11)	NE	< 0.500	<14.05	1.91	< 0.500	0.25	0.32	< 0.10000		
Vinyl chloride	NE	< 0.500	<6.39	< 0.26	< 0.500	< 0.10000	< 0.20000	< 0.10000		
Helium (%)	NE	0	NA	NA	NA	0	0	NA		

NE = Not Established

NA = Not Analyzed

Blue underlined values denote an exceedanes of the

NYSDOH indoor air guidline values (compared to

ambient air samples only)

<5.0 = Not detected (reported limit listed)

Table 5 Summary of Soil Analytical Results: VOCs Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

Analyte/Method ¹	units ²	NYSDEC Soil	B-101	B-101	B-102	B-102	B-103	B-103	B-104	B-104	B-105	B-105
Sample Depth	feet	Cleanup	(7.6)	(14.5)	(6.5)	(13.6)	(7.5)	(13.6)	(7.0)	(14.3)	(5.5)	(13.5)
Laboratory ID	1661	Objectives ³	460-140792-8	460-140792-9	460-140792-6	460-140792-7	460-140792-4	460-140792-5	460-140792-2	460-140792-3	460-140863-12	460-140863-13
Sample Collection Date			09/11/17	09/11/17	09/11/17	09/11/17	09/11/17	09/11/17	09/11/17	09/11/17	09/12/17	09/12/17
Volatile Organic Compounds	(VOCs) by	EPA Method 8260	В									
1,1-Dichloroethene	mg/kg	0.33	0.00027 U	0.00020 U	0.00028 U	0.00019 U	0.00018 U	0.00022 U	0.00023 U	0.00021 U	0.00022 U	0.00019 U
2-Butanone (MEK)	mg/kg	0.1	0.0014 UJ	0.00097 UJ	0.0014 UJ	0.00091 U	0.0019 NJ	0.0011 U	0.0025 NJ	0.0010 UJ	0.0020 NJ	0.00093 U
Acetone	mg/kg	0.05	0.0046 U	0.0043 NJB	0.0048 U	0.0031 U	0.017 JB	0.0037 U	0.011 JB	0.0059 JB	0.0036 U	0.0042
Carbon disulfide	mg/kg	2.7 *	0.00032 U	0.00023 U	0.00034 U	0.00022 U	0.00036 NJ	0.00057 NJ	0.00039 NJ	0.00026 NJ	0.00025 U	0.00022 U
Chloroethane	mg/kg	1.9 *	0.00064 UJ	0.00046 UJ	0.00066 UJ	0.00043 UJ	0.00042 U	0.00051 UJ	0.00052 UJ	0.00049 UJ	0.00050 U	0.00044 U
cis-1,2-Dichloroethene	mg/kg	0.25	0.00018 U	0.00013 U	0.0017	0.0042 U	0.00012 U	0.077	0.00015 U	0.059	0.00015 U	0.034
Ethylbenzene	mg/kg	1.0	0.00024 U	0.00017 U	0.00025 U	0.00016	0.00016 U	0.00019 U	0.00020 U	0.00019 U	0.00019 U	0.00017 U
m&p-Xylene	mg/kg	0.26	0.00021 U	0.00015 U	0.00030 NJ	0.00014 U	0.00022 NJ	0.00032 NJ	0.00028 NJ	0.00046 NJ	0.00024 NJ	0.00020 UJB
Methylcyclohexane	mg/kg	NS	0.00019 U	0.00014 U	0.0002 U	0.00013 U	0.00053 J	0.00016 U	0.00016 U	0.00015 U	0.00015 U	0.00013 U
Methylene Chloride	mg/kg	0.05	0.0002 U	0.00028 NJB	0.00034 NJB	0.00021 UJB	0.00015 UJB	0.00026 NJB	0.00035 NJB	0.00024 UJB	0.00016 U	0.00014 U
o-Xylene	mg/kg	0.26	0.00012 U	0.000083 U	0.00012 U	0.000078 U	0.00011 NJ	0.000093 U	0.00012 NJ	0.00022 NJ	0.000091 U	0.00008 U
Tetrachloroethene (PCE)	mg/kg	1.3	0.00017 U	0.00012 U	0.00023 NJ	0.00024 NJ	0.00024 NJ	0.00022 NJ	0.00014 U	0.00013 U	0.00014 U	0.00012 U
Toluene	mg/kg	0.7	0.00076 U	0.00055 U	0.00079 U	0.00052 U	0.00051 U	0.00061 U	0.00063 U	0.00059 U	0.0006 U	0.00052 U
trans-1,2-Diochloroethene	mg/kg	0.19	0.0003 U	0.00021 U	0.00031 U	0.0002 U	0.0002 U	0.00032 J	0.00025 U	0.00059 NJ	0.00024 U	0.00021 U
Trichloroethene	mg/kg	0.47	0.00018 U	0.00013 U	0.00036 NJ	0.00057 NJ	0.00012 U	0.00053 NJ	0.00014 U	0.00014 U	0.00014 U	0.00012 NJ
Vinyl Chloride	mg/kg	0.02	0.00066 U	0.00048 U	0.00069 U	0.00054 NJ	0.00044 U	0.0031	0.00055 U	0.00056 NJ	0.00052 U	0.00046 U
Total VOCs	mg/kg		0.0	0.00458	0.00293	0.00576	0.02051	0.08232	0.01464	0.06723	0.00224	0.03852

Notes:

NS = No Standard

Bold = concentration exceeds Soil Cleanup Objectives

Bold = concentration exceeds Supplemental Soil Cleanup Objectives

J = Concentration is an approximate value.

B = Compound found in the blank and sample

U = Analyte was analyzed for but not detected

¹ Only detected compounds listed - all others below respective laboratory detection limits

² mg/Kg = miligrams per kilogram = parts per million (ppm)

³ Soil Cleanup Objectives from 6 NYCCR Table 375-6.8(a), 12/16/06.

^{*} Supplemental Soil Cleanup Objectives from CP-51/Soil Cleanup Guidance Table 1, 10/21/10.

Table 5 Summary of Soil Analytical Results: VOCs Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

Analyte/Method ¹	units ²		B-106	B-106	B-107	B-107	B-108	B-108	B-109	B-110	B-110
		NYSDEC Soil									
Sample Depth	feet	Cleanup	(5.5)	(14.5)	(6.5)	(12.5)	(5.5)	(13.5)	(3.5 - 5.0)	(6.5)	(14.5)
Laboratory ID		Objectives ³	460-140863-14	460-140863-15	460-140863-16	460-140863-17	460-140863-18	460-140863-19	460-140863-11	460-140792-10	460-140792-11
Sample Collection Date			09/12/17	09/12/17	09/12/17	09/12/17	09/12/17	09/12/17	09/12/17	09/11/17	09/11/17
Volatile Organic Compounds	(VOCs) by										
1,1-Dichloroethene	mg/kg	0.33	0.00023 U	0.00030 U	0.00020 U	0.00019 U	0.00021 U	0.00021 U	0.00020 U	0.027 U	0.029 U
2-Butanone (MEK)	mg/kg	0.1	0.0019 NJ	0.00015 U	0.00100 U	0.0012 NJ	0.0010 U	0.0010 U	0.011	0.18 U	0.19 U
Acetone	mg/kg	0.05	0.0089	0.0071	0.015	0.0051	0.0082	0.010	<u>0.055</u>	0.085 U	0.09 U
Carbon disulfide	mg/kg	2.7 *	0.00027 ∪	0.0013	0.00024 U	0.0025	0.00025 U	0.00024 U	0.00024 U	0.018 U	0.019 U
Chloroethane	mg/kg	1.9 *	0.00053 U	0.00070 U	0.00047 U	0.00045 U	0.00049 U	0.00048 U	0.00046 U	0.030 U	0.031 U
cis-1,2-Dichloroethene	mg/kg	0.25	0.00015 ∪	0.018	0.014	0.00030 NJ	0.00014 U	0.00014 U	0.00014 U	0.18	<u>0.31</u>
Ethylbenzene	mg/kg	1.0	0.00042 NJ	0.00027 U	0.00018 U	0.00017 U	0.0016	0.00018 U	0.00018 U	0.024 U	0.025 U
m&p-Xylene	mg/kg	0.26	0.0016 JB	0.00037 NJB	0.00017 UJB	0.00023 NJ	0.0063 B	0.00020 ∪	0.00015 U	0.022 U	0.024 U
Methylcyclohexane	mg/kg	NS	0.00061 NJ	0.00022 U	0.00014 U	0.00014 U	0.00015 U	0.00015 U	0.00014 U	0.018 U	0.019 U
Methylene Chloride	mg/kg	0.05	0.00016 U	0.00022 U	0.00015 U	0.00014 U	0.00015 U	0.00015 U	0.00015 U	0.017 U	0.018 U
o-Xylene	mg/kg	0.26	0.0011	0.00013 U	0.000086 U	0.000081 U	0.0027	0.000087 U	0.000085 U	0.026 U	0.027 U
Tetrachloroethene (PCE)	mg/kg	1.3	0.00014 U	0.00019 U	0.00013 U	0.00012 U	0.00087 NJ	0.00013 U	0.00013 U	4.4	<u>1.4</u>
Toluene	mg/kg	0.7	0.00063 U	0.00084 U	0.00056 U	0.00053 U	0.00061 NJ	0.00058 U	0.00056 U	0.02 U	0.021 U
trans-1,2-Diochloroethene	mg/kg	0.19	0.00025 U	0.00033 U	0.00022 U	0.00021 U	0.00023 U	0.00023 U	0.00022 U	0.014 U	0.015 U
Trichloroethene	mg/kg	0.47	0.00015 U	0.00019 U	0.00013 U	0.00012 U	0.00014 U	0.00013 U	0.00013 U	<u>0.49</u>	0.40
Vinyl Chloride	mg/kg	0.02	0.00055 U	0.00074 U	0.00049 U	0.00047 U	0.00051 U	0.00050 U	0.00049 U	0.016 U	0.017 U
Total VOCs	mg/kg		0.01453	0.02677	0.02917	0.00933	0.02028	0.0102	0.066	5.07	2.11

Bold = concentration exceeds Soil Cleanup Objectives

Bold = concentration exceeds Supplemental Soil Cleanup Objectives

- J = Concentration is an approximate value.
- B = Compound found in the blank and sample
- U = Analyte was analyzed for but not detected

¹ Only detected compounds listed - all others below respective laboratory detection limits

² mg/Kg = miligrams per kilogram = parts per million (ppm)

³ Soil Cleanup Objectives from 6 NYCCR Table 375-6.8(a), 12/16/06.

^{*} Supplemental Soil Cleanup Objectives from CP-51/Soil Cleanup Guidance Table 1, 10/21/10. NS = No Standard

Table 5 Summary of Soil Analytical Results: VOCs Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

Analyte/Method ¹	units ²	NYSDEC Soil	B-111	B-111	B-112	B-112	B-113	B-113	B-114	B-114	B-115	B-115
Sample Depth	feet	Cleanup	(3.5)	(14.5)	(8.5)	(14.5)	(6.5)	(12.9)	(1.0)	(14.0)	(6.5)	(14.0)
Laboratory ID	1001	Objectives ³	460-140863-1	460-140863-2	460-140863-3	460-140863-4	460-140863-5	460-140863-6	460-140863-9	460-140863-10	460-140863-7	460-140863-8
Sample Collection Date		-	09/12/17	09/12/17	09/12/17	09/12/17	09/12/17	09/12/17	09/12/17	09/12/17	09/12/17	09/12/17
Volatile Organic Compounds	(VOCs) by	EPA Method 8260I										
1,1-Dichloroethene	mg/kg	0.33	0.00022 U	0.00023 U	0.00019 U	0.00019 U	0.025 U	0.064 U	0.029 U	0.00023 NJ	0.00019 ∪	0.00023 J
2-Butanone (MEK)	mg/kg	0.1	0.0011 U	0.0012 U	0.00094 U	0.00096 U	0.16 U	0.41 U	0.15 U	0.0078 U	0.0016 NJ	0.00090 U
Acetone	mg/kg	0.05	0.0037 ∪	0.0072	0.018	0.010	0.080 U	0.20 U	0.092 U	0.0086	0.0087	0.0094
Carbon disulfide	mg/kg	2.7 *	0.00026 U	0.00028 UJ	0.00022 UJ	0.00023 U	0.016 U	0.041 U	0.019 UJ	0.00023 U	0.00062 NJ	0.00022 U
Chloroethane	mg/kg	1.9 *	0.00051 U	0.00054 U	0.00044 U	0.00045 U	0.028 U	0.07 U	0.032 U	0.00045 U	0.00043 U	0.00042 U
cis-1,2-Dichloroethene	mg/kg	0.25	0.00015 U	0.00016 U	0.15	0.049	0.13	<u>2.2</u>	0.17	0.036	0.00013 U	0.16
Ethylbenzene	mg/kg	1.0	0.00019 U	0.00021 U	0.00017 U	0.00017 NJ	0.022 U	0.0560 U	0.026 U	0.00017 U	0.00017 U	0.00016 U
m&p-Xylene	mg/kg	0.26	0.00030 NJB	0.00018 UJB	0.00015 U	0.00050 NJB	0.021 U	0.053 U	0.024 U	0.00015 U	0.00014 U	0.00014 U
Methylcyclohexane	mg/kg	NS	0.00015 U	0.00017 U	0.00013 U	0.00014 U	0.016 U	0.041 U	0.019 U	0.00014 U	0.00013 U	0.00013 U
Methylene Chloride	mg/kg	0.05	0.00016 U	0.00017 U	0.00042 NJB	0.00014 U	0.016 U	0.039 U	0.018 U	0.00014 U	0.00014 U	0.00013 U
o-Xylene	mg/kg	0.26	0.000092 U	0.000099 U	0.000080 U	0.00013 NJ	0.024 U	0.060 U	0.027 U	0.000081 U	0.000079 U	0.000077 U
Tetrachloroethene (PCE)	mg/kg	1.3	0.0031	0.00015 U	0.013	0.0060	3.0	<u>52</u>	<u>18</u>	0.0016	0.00012 U	0.25
Toluene	mg/kg	0.7	0.0006 U	0.00065 U	0.00053 U	0.00054 U	0.019 U	0.047 U	0.021 U	0.00053 U	0.00052 U	0.00051 U
trans-1,2-Diochloroethene	mg/kg	0.19	0.00024 U	0.00026 U	0.00045 NJB	0.00040 NJ	0.013 U	0.034 U	0.015 U	0.00021 U	0.0002 U	0.0011
Trichloroethene	mg/kg	0.47	0.00036 NJ	0.00015 U	0.0065	0.0024	0.32	<u>4.1</u>	<u>7.8</u>	0.0023	0.00012 U	0.29
Vinyl Chloride	mg/kg	0.02	0.00053 U	0.00057 U	0.00046 U	0.00097 U	0.015 U	<u>0.056</u> NJ	0.017 U	0.00065 NJ	0.00045 U	0.0032
Total VOCs	mg/kg		0.00376	0.00738	0.18837	0.06957	3.45	58.356	25.97	0.04915	0.01092	0.71393

NS = No Standard

<u>Bold</u> = concentration exceeds Soil Cleanup Objectives

Bold = concentration exceeds Supplemental Soil Cleanup Objectives

J = Concentration is an approximate value.

B = Compound found in the blank and sample

U = Analyte was analyzed for but not detected

¹ Only detected compounds listed - all others below respective laboratory detection limits

² mg/Kg = miligrams per kilogram = parts per million (ppm)

³ Soil Cleanup Objectives from 6 NYCCR Table 375-6.8(a), 12/16/06.

^{*} Supplemental Soil Cleanup Objectives from CP-51/Soil Cleanup Guidance Table 1, 10/21/10.

Table 6
Summary of Groundwater Quality Results: VOCs
Former Johnny On the Spot Cleaner
152 10th Avenue, Whitestone, NY

Sample Location	Groundwater	MW-1S	MW-1D	MW-2S	MW-2D	MW-3S	MW-3D	MW-101S	MW-101D	MW-102S	MW-102D	MW-103D	MW-201S	MW-201D	MW-DUP	Trip Blank
Laboratory ID	Quality Std	460-144917-15	460-144917-14	460-144917-9	460-144917-8	460-144917-7	460-144917-6	460-144917-2	460-144917-3	460-144917-12	460-144917-13	460-144917-11	460-144917-4	460-144917-5	460-144917-10	460-144917-1
Sample Date	(ug/L)	11/9/2017	11/9/2017	11/8/2017	11/8/2017	11/8/2017	11/8/2017	11/7/2017	11/7/2017	11/9/2017	11/9/2017	11/9/2017	11/8/2017	11/8/2017	11/8/2017	11/9/2017
Volatile Organic Compounds																
SW846 8260C (µg/I)																
1,1-Dichloroethane	5	0.48 U	4.0	0.40 NJ	0.24 U	0.24 U	0.78 NJ	0.24 U	<u>9.7</u>	0.24 U	0.24 U	0.57 NJ	0.24 U	<u>7.8</u>	0.35 J	0.24 U
1,1-Dichloroethene	5	0.83 NJ	0.94 NJ	<u>7.2</u>	1.1	0.34 U	0.34 U	0.34 U	2.5	0.34 U	0.34 U	0.34 U	0.34 U	3.0	<u>7.0</u>	0.34 U
1,2-Diclorobenzene	3	0.44 U	0.19 U	0.22 U	0.19 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.44 NJ	0.22 U	0.22 U	0.22 U	0.22 U
1,2-Dichloroethane	0.6	0.50 U	0.28 J	0.25 U	0.25 U	0.25 U	<u>1.8</u>	0.25 U	<u>0.95 J</u>	0.25 U	0.25 U	0.25 U	0.25 U	0.25 NJ	0.25 U	0.25 U
1,4-Diclorobenzene	3	0.66 U	0.85 J	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U					
Acetone	50	1.1 U	1.1 UJ	1.1 U	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 U	1.1 UJ				
Benzene	1	0.18 U	0.090 U	0.45 J	0.22 NJ	0.090 U	0.090 U	0.090 U	0.16 NJ	0.090 U	0.090 U	0.090 U	0.090 U	0.20 NJ	0.47 J	0.090 U
Bromomethane	NS	0.18 UJ	0.18 U	0.18 UJ	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 U	0.18 UJ	0.18 U				
Carbon disulfide	60	0.44 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
Chloroethane	5	0.74 U	0.37 UJ	0.70 NJ	0.37 UJ	0.37 UJ	0.37 UJ	0.37 UJ	0.37 UJ	0.37 UJ	0.62 J	0.37 UJ				
cis-1,2-Dichloroethene	5	<u>500</u>	4.9	420	92	1.8	2.6	0.26 U	<u>72</u>	0.26 U	0.26 U	0.87 NJ	4.9	2.0	<u>410</u>	4.9
Cyclohexane	NS	0.52 U	0.26 UJ	0.43 NJ	0.26 UJ	0.44 NJ	0.26 UJ	0.26 UJ	0.26 UJ	0.26 UJ	0.26 UJ	0.26 UJ	0.26 UJ	0.26 UJ	0.41 J	0.26 UJ
Dichlorodifluromethane	NS	0.28 U	0.14 UJ	0.14 U	0.14 UJ	0.14 UJ	0.14 UJ	0.14 UJ	0.14 UJ	0.14 UJ	0.14 U	0.14 UJ				
1,1,2-trichloro-1,1,2- trifluoromethane (Freon TF)	NS	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 UJ	0.34 UJ	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Methylcyclohexane	NS	0.44 U	0.22 U	0.33 NJ	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.30 J	0.22 U				
Methyl tert-butyl ether	NS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	5	<u>94</u>	5.0	<u>91</u>	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U	<u>95</u>	0.12 U				
trans-1,2 Dichloroethene	5	2.4	0.18 U	2.1	0.64 J	0.18 U	0.18 U	0.18 U	0.87 NJ	0.18 U	0.18 U	0.18 U	0.18 U	1.0	2	0.18 U
Trichloroethene	5	<u>28</u>	1.0	<u>140</u>	0.22 U	0.22 U	0.22 U	0.22 U	0.65 NJ	0.22 U	2.0	0.74 NJ	0.22 U	1.8	<u>150</u>	0.22 U
Trichlorofluromethane	NS	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ	0.15 UJ
Vinyl chloride	2	<u>18</u>	0.49 NJ	<u>25</u>	<u>29</u>	0.060 U	0.94 NJ	0.060 U	<u>22</u>	0.060 U	0.060 U	0.16 NJ	0.22 NJ	0.76 NJ	<u>25</u>	0.060 U

Groundwater Quality Standard from: 6 NYCRR Part 703

ug/L = micrograms per liter

NS = No Standard

U = Not detected (reported limit listed)

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration.

NJ = Presence of analyte "tentatively identified", associated value represents its approximate concentration

UJ = Analyte not detected above quantitation limit. However quantitation limit is approximate and may not represent actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample

<u>Blue</u> = Exceed Groundwater Quality Standards

Whitestone Data Tables 2018.xlsx Page 1 of 1

TABLE 7
Summary of Sub-Slab Vapor and Indoor Air Analytical Results: March 2017
Former Johnny On the Spot Cleaner
152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH S	tandards 1	Ambient		Bank 1		Ban	k 2	Casc	arinos	Cle	aner
	Medium	Subsurface Vapors	Indoor Air	Ambient Air	Sub-Slab Vapor	Sub-Slab Vapor	Indoor Air						
	Laboratory ID	.,		200-37771-4	200-37771-13	200-37771-14	200-37771-1	200-37771-12	200-37771-2	200-37771-9	200-37771-3	200-37771-11	200-37771-5
	Sample ID	1		Ambient	SG-6	SG-6A	Bank 1	SG-4	Bank 2	SG-8	Cascarino	SG-1	Cleaner
	Collection Date			03/09/17	03/10/17	03/10/17	03/09/17	03/11/17	03/09/17	03/10/17	03/09/17	03/10/17	03/09/17
	Units	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
CAS Number	Chemical Name												
71-55-6	1,1,1-TRICHLOROETHANE	NS	NS	1.1 l	J 1.1	U 1.1 U	J 1.1 U	1.1 U	1.1 U	1.9 U	1.1 U	17 U	1.1 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	NS	1.4 l	J 1.4	U 1.4 l	J 1.4 U	1.4 U	1.4 U	2.4 U	1.4 U	21 U	1.4 U
75-35-4	1,1-DICHLOROETHENE	NS	NS	0.79 l	0.79	U 0.79 I	J 0.79 U	0.79 U	0.79 U	1.4 U	0.79 U	21	0.79 U
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	NS	0.98 l	4.8	6.0	1.4	5.2	1.5	1.7 U	0.98 U	15 U	0.98 U
78-87-5	1,2-DICHLOROPROPANE	NS	NS	0.92 l	4.1	0.92	J 0.92 U	0.92 U	0.92 U	1.6 U	0.92 U	14 U	0.92 U
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	NS	0.98 l	1.3	1.6	0.98 U	1.4	0.98 U	1.7 U	0.98 U	15 U	0.98 U
106-99-0	1,3-BUTADIENE	NS	NS	0.44 L	0.44	U 0.44 l	J 0.44 U	0.44 U	0.44 U	0.77 U	0.44 U	6.7 U	0.44 U
541-73-1	1,3-DICHLOROBENZENE	NS	NS	1.2 l	0.0	5.6	1.2 U	6.0	1.2 U	2.1 U	1.20 U	18 U	
540-84-1	2,2,4-TRIMETHYLPENTANE	NS	NS	0.93 l	6.2	6.4	0.93 U	6.3	0.93 U	1.7	0.93 U	14 U	0.93 U
622-96-8	4-ETHYLTOLUENE	NS	NS	0.98 l	****	1.9	0.98 U	1.6	0.98 U	1.7 U	0.98 U	15 U	0.98 U
67-64-1	ACETONE	NS	NS	12 l	190	J 21	12 U	18	12 U	26	24	180 U	
71-43-2	BENZENE	NS	NS	0.64 l		J 3.5	0.64 U	3.8	0.64 U	2.0	0.64 U	9.7 U	0.64 U
106-97-8	BUTANE	NS	NS	1.2 l	36	9.8	1.2 U	9.6	1.2 U	12	1.2 U	18 U	1.4
75-15-0	CARBON DISULFIDE	NS	NS	1.6 l	58	1.6 l	J 1.6 U	1.6 U	1.6 U	2.7 U	1.6 U	24 U	
56-23-5	CARBON TETRACHLORIDE	NS	NS	0.25 L	0.30	0.33	0.38	0.29	0.40	0.44 U	0.40	3.8 U	0.39
75-45-6	CHLORODIFLUOROMETHANE (Freon 22)	NS	NS	1.8 l	1.8	U 1.8 l	J 1.8 U	1.8 U	1.8 U	3.1 U	13	27 U	1.8 U
	CHLOROFORM	NS	NS	0.98 L	8.3	0.98 l	J 0.98 U	5.7	0.98 U	14	0.98 U	15 U	0.98 U
74-87-3	CHLOROMETHANE	NS	NS	1.0 l	2.9	1.0 l	J 1 U	1.0 U	1 U	1.8 U	1.0 U	16 U	1.0 U
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS	NS	0.79 l	0.79	00	J 0.79 U	0.79 U	0.79 U	1.4 U	0.79 U	51	0.79 U
110-82-7	CYCLOHEXANE	NS	NS	0.69 l	***	2.3	0.69 U	2.8	0.69 U	1.7	0.69 U	10 U	0.69 U
75-71-8	DICHLORODIFLUOROMETHANE	NS	NS	2.5 l	100	84	5.9	5.7	6.6	4.3 U	2.5 U	38 U	2.5 U
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	NS	1.6 l	1.6	U 1.6 l	J 1.6 U	1.6 U	1.6 U	2.8 U	1.6 U	52	1.6 U
100-41-4	ETHYLBENZENE	NS	NS	0.87 L	4.5	5.0	0.87 U	4.5	0.87 U	1.5 U	0.87 U	13 U	0.87 U
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	NS	12 l	J 45	25	35	28	24	21 U	93	190 U	12 U
179601-23-1	M,P-XYLENES	NS	NS	2.2 l		17	2.2 U	15	2.2 U	3.8 U	2.2 U	33 U	2.2 U
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS	NS	1.5 l	13	5.2	1.5 U	4.6	1.5	4.8	1.5 U	22 U	1.5 U
108-10-1	METHYL ISOBUTYL KETONE (4-METHYL-2- PENTANONE)	NS	NS	2.0 L	12	2 (J 2 U	2.0 U	2 U	3.6 U	2 U	31 U	2 U
75-09-2	METHYLENE CHLORIDE	NS	60	1.7 l	J 1.7	U 1.7 U	J 1.7 U	1.7 U	1.7 U	3 U	1.7 U	26 U	1.7 U
91-20-3	NAPHTHALENE	NS	NS	2.6 l		JJ 2.6 L	J 2.6 U.	J 2.6 U.	J 2.6 U.	4.6 U	2.6 U.	J 40 U.	J 2.6 UJ
142-82-5	N-HEPTANE	NS	NS	0.82 l	7.0	3.9	0.82 U	3.9	0.82 U	2.5	0.82 U	12 U	0.82 U
110-54-3	N-HEXANE	NS	NS	0.70 L	24	7.7	0.7 U	8.5	0.7 U	5.3	0.7 U	11 U	0.7 U
103-65-1	N-PROPYLBENZENE	NS	NS	0.98 L	0.98	U 1.1	0.98 U	0.98 U	0.98 U	1.7 U	0.98 U	15 U	0.98 U
95-47-6	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	NS	0.87 L	5.0	5.9	0.87 U	5.0	0.87 U	1.5 U	0.07	13 U	0.87 U
98-06-6	TERT-BUTYLBENZENE	NS	NS	1.1 l			J 1.1 U	1.1 U	1.1 U	1.9 U	1.1 U	17 U	
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	30	1.4 L	5.7	2.7	2.6	72	2.4	2.4 U	1.4 U	2400	3.6
108-88-3	TOLUENE	NS	NS	0.75 L	24	23	0.75 U	23	0.84	7.5	0.91	11 U	0.87
156-60-5	TRANS-1,2-DICHLOROETHENE	NS	NS	0.79 L	0.79	U 0.79 l	J 0.79 U	0.72 U	0.79 U	1.4 U	0.79 U	12 U	0.79 U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	2	0.21 l	0.49	0.21 l	J 0.21 U	6.8	0.21 U	0.37 U	0.21 U	750	0.21 U
75-69-4	TRICHLOROFLUOROMETHANE	NS	NS	1.1 l	7.8	3.5	1.1 U	1.2	1.1 U	2 U	1.2	17 U	1.1 U
75-01-4	VINYL CHLORIDE	NS	NS	0.10 L	0.10	0.1	J 0.1 U	0.1 U	0.1 U	0.18 U	0.10 U	1.6 U	0.1 U
XYLENES	XYLENES, TOTAL	NS	NS	3.0 L		23	3 U	20	3 U	5.3 U	3.0 U	46 U	3 U
	UNKNOWN WITH HIGHEST CONC.	NS	NS			NJ 3.3 N	J 12 N.	J 3.7 N	J 7.6 N		25 N	J	
-					-	•	-	-	•	-	•	-	•

Only those analytes detected in one or more samples are presented above

ug/m3 = micrograms per cubic meter

E = Result exceeded calibration Range

J = Analyte was positevly identified; the associated numerical value is the approximate concentraion of the analyte in the sample

U = Indicates analyte was analyzed for but not detected

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is

approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Whitestone Indoor Air and Sub Slab Results-bpb rev 03-20-18.xlsx

Bold = Concentration exceeds Standards Sampling Location AA-1 is the Same as Bank 2 Sampling Location AA-2 is the Same as Cleaner

Page 1 of 2

¹ Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, NYSDOH October 2006, with May 2017 revisions.

NS = No Standard

TABLE 7 Summary of Sub-Slab Vapor and Indoor Air Analytical Results: March 2017 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH S	Standards ¹	J	D Op	tician				Parking I	_ot	·	
	Medium	Subsurface Vapors	Indoor Air	Sub-Slab V	apor	Indoor Air		Soil Ga	s	Soil Ga	s	Soil Gas	s
	Laboratory ID	·		200-37771-1	15	200-37771-	6	200-37771-	10	200-37771-	8	200-37771-7	.7
	Sample ID			SG-7		JD Opticiar	1	SGP-1		SGP-2		SGP-3	,
	Collection Date			03/10/17		03/09/17		03/09/1	7	03/09/1	7	03/09/17	7
	Units	ug/m3	ug/m3	ug/m3		ug/m3		ug/m3		ug/m3		ug/m3	
CAS Number	Chemical Name		Ŭ							Ü			
71-55-6	1,1,1-TRICHLOROETHANE	NS	NS	1.1	U	1.1	U	2.7	UJ	1.1	U	17	U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	NS	1.4	U	1.4	U	3.4	UJ	1.4	U	22	U
75-35-4	1,1-DICHLOROETHENE	NS	NS	0.79	U	0.79	U	2.0	UJ	0.79	U	13	U
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	NS	0.98	U	0.98	U	2.4	UJ	2.6		16	U
78-87-5	1,2-DICHLOROPROPANE	NS	NS	0.92	U	0.92	U	2.3	UJ	0.92	U	15	U
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	NS	0.98	U	0.98	U	2.4	UJ	1.0		16	U
106-99-0	1,3-BUTADIENE	NS	NS	0.44	U	0.44	U	1.1	UJ	0.44	U	7.1	U
541-73-1	1,3-DICHLOROBENZENE	NS	NS	1.2	U	1.2	U	3.0	UJ	1.4		19	U
540-84-1	2,2,4-TRIMETHYLPENTANE	NS	NS	0.96		0.93	U	5.5	J	2.8		15	U
622-96-8	4-ETHYLTOLUENE	NS	NS	0.98	U	0.98	U	2.4	UJ	0.98		16	U
67-64-1	ACETONE	NS	NS	18		19		29	UJ	110	J	190	U
71-43-2	BENZENE	NS	NS	0.94		0.64	U	3.3	J	2.5	J	11	
106-97-8	BUTANE	NS	NS	4.7		2.1		17	J	4.1		35	
75-15-0	CARBON DISULFIDE	NS	NS	1.6	U	1.6	U	3.9	UJ	55		25	U
56-23-5	CARBON TETRACHLORIDE	NS	NS	0.32		0.31		0.62	UJ	0.32	J	4	U
75-45-6	CHLORODIFLUOROMETHANE (Freon 22)	NS	NS	1.8	U	1.8	U	4.4	UJ	1.8	U	28	U
67-66-3	CHLOROFORM	NS	NS	0.98	U	0.98	U	73	J	87		16	U
74-87-3	CHLOROMETHANE	NS	NS	1.0	U	1.0	U	2.6	UJ	1.0	U	17	U
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS	NS	0.79	U	0.79	U	2	UJ	0.79	U	13	U
110-82-7	CYCLOHEXANE	NS	NS	0.69	U	0.69	U	2.8	J	0.73		13	
75-71-8	DICHLORODIFLUOROMETHANE	NS	NS	2.5	U	2.5	U	6.1	UJ	2.5	U	40	U
540-59-0	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	NS	1.6	U	1.6	U	3.9	UJ	1.6	U	25	U
100-41-4	ETHYLBENZENE	NS	NS	0.87	U	0.87	U	2.2	UJ	5.0		14	U
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	NS	12	U	1500	J	30	UJ	12	U	200	U
	M,P-XYLENES	NS	NS	2.2		2.2	U	5.4	UJ	17		35	U
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS	NS	3.9		1.5	U	4.6	J	21		24	U
	METHYL ISOBUTYL KETONE (4-METHYL-2-	NO	NC	0	- 11	0.0		<i>5.4</i>		0.0		20	- 11
108-10-1	PENTANONE)	NS	NS	2	U	2.0	U	5.1	UJ	3.3		33	U
75-09-2	METHYLENE CHLORIDE	NS	60	1.7	U	1.7	U	4.3	U	3.3		28	U
91-20-3	NAPHTHALENE	NS	NS	2.6	UJ	2.6	UJ	6.5	UJ	2.6	UJ	42	U
142-82-5	N-HEPTANE	NS	NS	1.3		0.82	U	3.3	J	6.4		13	U
110-54-3	N-HEXANE	NS	NS	2.1		0.70	U	13	J	5.1		11	U
103-65-1	N-PROPYLBENZENE	NS	NS	0.98	U	0.98	U	2.4	UJ	0.98	U	16	U
95-47-6	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	NS	0.87	U	0.87	U	2.2	UJ	4.8		14	U
98-06-6	TERT-BUTYLBENZENE	NS	NS	1.1	U	1.1	U	2.7	UJ	1.1	U	18	U
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	30	2.0		1.4	U	3.4	UJ	1.4	U	2600	
108-88-3	TOLUENE	NS	NS	3.9		1.2		7.9	J	13		12	U
156-60-5	TRANS-1,2-DICHLOROETHENE	NS	NS	0.79	U	0.79	U	2	UJ	0.79	U	13	U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	2	0.21	U	0.21	U	0.74	J	0.21	U		U
75-69-4	TRICHLOROFLUOROMETHANE	NS	NS	1.2		1.1		2.8	UJ	7.7		18	U
75-01-4	VINYL CHLORIDE	NS	NS	0.1	U	0.10	U	0.25	UJ	0.14		1.6	U
XYLENES	XYLENES, TOTAL	NS	NS	3	Ū	3	Ū	7.5	UJ	21		49	UJ
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS	NS	1.4	NJ	7.6	NJ			2.4	NJ		

Only those analytes detected in one or more samples are presented above

NS = No Standard

ug/m3 = micrograms per cubic meter

E = Result exceeded calibration Range

J = Analyte was positevly identified; the associated numerical value is the approximate concentration of the analyte in the sample

U = Indicates analyte was analyzed for but not detected

represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Bold = Concentration exceeds Standards

Sampling Location AA-1 is the Same as Bank 2

Sampling Location AA-2 is the Same as Cleaner

Page 2 of 2

Whitestone Indoor Air and Sub Slab Results-bpb rev 03-20-18.xlsx

¹ Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, NYSDOH October 2006, with May 2017 revisions.

U = Indicates analyte was analyzed for but not detected

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not

TABLE 7A Summary of Sub-Slab Vapor and Indoor Air Analytical Results: February 2018 Former Johnny On the Spot Cleaner 152 10th Avenue, Whitestone, NY

	Sample Location	NYSDOH S	Standards ¹			Bank 1		Bank	2	Cleaner	(Lower)	Cleaner-2	Cleaner-3
	Medium	Subsurface Vapors	Indoor Air	Sub-Slab Vapor		Sub-Slab Vapor	Indoor Air	Sub-Slab Vapor	Indoor Air	Sub-Slab Vapor	Indoor Air	Indoor Air	Indoor Air
	Laboratory ID			200-342355-7		200-42355-6	200-42355-1	200-37771-12	200-42355-2	200-42355-8	200-42355-3	200-42355-4	200-42355-5
	Sample ID			SG-6		SG-6A	Bank 1	SG-4	Bank 2	SG-1	Cleaner	Cleaner 2	Cleaner 3
	Collection Date			02/21/18		02/21/18	02/21/18	02/21/17	02/21/18	02/21/18	02/21/18	02/21/18	02/21/18
	Units	ug/m3	ug/m3	ug/m3	1	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
CAS Number	Chemical Name					<u> </u>	Ĭ	Ì		Ť		Ì	Ť
71-55-6	1,1,1-TRICHLOROETHANE	NS	NS	11	U	11.0 U	1.1 U		1.1 U	11 U	1.1 U	1.1 L	J 1.1 U
79-34-5	1,1,2,2-TETRACHLOROETHANE	NS	NS	14	U	14 U	1.4 U	J	1.4 U	14 U	1.4 U	1.4 L	J 1.4 U
75-35-4	1,1-DICHLOROETHENE	NS	NS	1.4	U	1.4 U	0.14 U	J	0.14 U	16	0.14 U	0.14 L	J 0.14 U
95-63-6	1,2,4-TRIMETHYLBENZENE	NS	NS	78		75	4.3		3.4	36	0.98 U	0.98 L	J 0.98 U
78-87-5	1,2-DICHLOROPROPANE	NS	NS	9.2	U	9.2 U	0.92 U	J	0.92 U	9.2 U	0.92 U	0.92 L	J 0.92 U
108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	NS	NS	29		29	1.4	Not Tested.	1.1	14	0.98 U	0.98 L	J 0.98 U
106-99-0	1,3-BUTADIENE	NS	NS	4.4	U	4.4 U	0.44 U	Water being drawn	0.44 U	4.4 U	0.44 U	0.44 L	J 0.44 U
541-73-1	1,3-DICHLOROBENZENE	NS	NS	12	U	12 U	1.2 U	up through tubing	1.2 U	12 U	1.2 U	1.2 L	J 1.2 U
540-84-1	2,2,4-TRIMETHYLPENTANE	NS	NS	78		76	1.1	into Summa	1.0	79	1.2	1.1	1.1
622-96-8	4-ETHYLTOLUENE	NS	NS	21		22	1.4	Canister. Sample	0.97	9.8	0.98 U	0.98 L	J 0.98 U
67-64-1	ACETONE	NS	NS	120	U	120 U	23	canceled.	17	120 U	12 U	12 L	J 12 U
71-43-2	BENZENE	NS	NS	6.4	U	6.4 U			0.72	6.4 U	00	0.73	0.73
	BUTANE	NS	NS	18		18	6.1		6.1	26	7.5	6.9	6.8
75-15-0	CARBON DISULFIDE	NS	NS	16	U	16 U	1.6 U	J	1.6 U	16 U	1.6 U	1.6 L	J 1.6 U
56-23-5	CARBON TETRACHLORIDE	NS	NS	2.2	U	2.2 U			0.41	2.2 U	0.44	0.46	0.45
	CHLORODIFLUOROMETHANE (Freon 22)	NS	NS	18	U	18 U			2.8	18 U	1.0	1.8 L	
	CHLOROFORM	NS	NS	9.8	U	9.8 U	0.00	J	0.98 U	9.8 U	0.98 U	0.98 L	J 0.98 U
	CHLOROMETHANE	NS	NS	10	U	10 U			1.1	10 U	1.1	1.1	1.1
156-59-2	CIS-1,2-DICHLOROETHYLENE	NS	NS	1.4	U	1.4 U		J	0.14 U	22	0.14 U	0.14 L	
	CYCLOHEXANE	NS	NS	11		9.3	4.0		2.9	18	0.69 U	0.69 L	
	DICHLORODIFLUOROMETHANE	NS	NS	48		25 U	12		14	25 U	2.5 U	2.5 L	
	DICHLOROETHYLENES (1,2-DCE TOTAL)	NS	NS	16	U	16 U	1.0	J	1.6 U	22	1.6 U	1.6 L	
100-41-4	ETHYLBENZENE	NS	NS	49		51	0.87 U	J	0.87 U	26	0.87 U	0.87 L	
67-63-0	ISOPROPANOL (ISOPROPYL ALCOHOL)	NS	NS	120	U	25 U	31		22	120 U	12 U	12 L	J 12 U
	M,P-XYLENES	NS	NS	150		160	2.2 U	J	2.2 U	78	2.2 U	2.2 L	J 2.2 U
78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	NS	NS	15	U	15 U	2.0		1.5 U	15 U	1.8	1.5 L	J 1.5 U
108-10-1	METHYL ISOBUTYL KETONE (4-METHYL-2-	NS	NS	20	U	20 U	2.0 U	J	2.0 U	20 U	2.0	2.0 L	J 2.0 U
	PENTANONE)										U		
1634-04-4	METHYL TERT-BUTYL ETHER (MTBE)	NS	NS	7.2	U	7.2 U		J	0.72 U	7.2 U	0.72 U	0.72 L	0=
75-09-2	METHYLENE CHLORIDE	NS	60	17	U	17 U)	1.7 U	17 U	111	1.7 L	
91-20-3	NAPHTHALENE	NS	NS	26	U	26 U	2.6 U.	J	2.6 U.	J 26 U	2.6 U.	J 2.6 U	J 2.6 UJ
142-82-5	N-HEPTANE	NS	NS	25.0		24	1.2		1.1	31	0.82 U	0.82 L	J 0.82 U
	N-HEXANE	NS	NS	12		7.7	2.0		1.6	35	0.85	0.87	0.81
	N-PROPYLBENZENE	NS	NS	19		19	0.98 U	J L	0.98 U	9.8 U	0.98 U	0.98 L	0.00
	O-XYLENE (1,2-DIMETHYLBENZENE)	NS	NS	86	, .	89	0.87 U	J	0.87 U	44	0.87 U	0.87 L	J 0.87 U
75-65-0	TERT-BUTYL ALCOHOL	NS	NS	150	U	150 U	17		15 U	150 U	15 U	15 L	J 15 U
98-06-6	TERT-BUTYLBENZENE	NS	NS	11	U	11 U		J	1.1 U	11 U	1.1 U	1.1	J 1.1 U
127-18-4	TETRACHLOROETHYLENE (PCE)	NS	30	86		87	3.7		4.3	75	2.1	6.0	7.0
108-88-3	TOLUENE	NS	NS	63	1.1	64	2.3	1	2.3	37	2.2	2.1	2.1
156-60-5	TRANS-1,2-DICHLOROETHENE	NS	NS	7.9	U	7.9 U	0.79 U)	0.79 U	7.9 U	0.79 U	0.79 L	J 0.79 U
79-01-6	TRICHLOROETHYLENE (TCE)	NS	2	4.6	1.1	1.9 U	00	J	0.19 U	97	0.19 U	0.19 L	J 0.19 U
75-69-4	TRICHLOROFLUOROMETHANE	NS	NS	11	U	11 U	1.5		1.4	11 U	1.2	1.1	1.2
75-01-4	VINYL CHLORIDE	NS	NS	3.8		0.89 U	0.089 U)	0.089 U	78	0.089 U	0.089 L	J 0.089 U
XYLENES	XYLENES, TOTAL	NS	NS	240	NI I	250	3.0 U)	3.0 U	120	3.0 U	3.0 L	J 3.0 U
UNKNOWN1	UNKNOWN WITH HIGHEST CONC.	NS	NS	44	NJ	24 N.	J 26 N	J	4.1 No	J 24 N	J 1.1 N	4	

Only those analytes detected in one or more samples are presented above

Whitestone Indoor Air and Sub Slab Results-bpb rev 03-20-18.xlsx

NS = No Standard **Bold** = Concentration exceeds Standards Sampling Location AA-1 is the Same as Bank 2 Sampling Location AA-2 is the Same as Cleaner

¹ Standards from Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, NYSDOH October 2006, with May 2017 revisions. ug/m3 = micrograms per cubic meter

J = Analyte was positevly identified; the associated numerical value is the approximate concentraion of the analyte in the sample

U = Indicates analyte was analyzed for but not detected

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

APPENDIX B

Boring Logs

Boring No.: B-1

Project	1	Waldbaum's Shopping Center	Site	WAI Project N	lo.: WP03-6	414		
Locatio	n:	152-4510th Avenue; Whiteston	e, NY	Cli	ent: A&P			
	Elevation De		Date Started: Date Completed:	01/07/04 01/07/04	Wate	er Depths / (feet / feet-		ons
	Method:	Geoprobe Macro-Core	Logged By: Contractor: Machine:	J. Chiappetta Enviroprobe Service, Inc. Truck Mounted	While Dri At Compl 24 Hours:	etion:	12. 11. N.	
Depth feet)	Strata		DESCRIPTION OF M			PID Readings (ppm)	Rec.	Dept (fee
0.0	Strata	P. Standard	(Classificati	oll)		(ppin)	(m/)	-0.0
2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		Asphalt/Subbase Dark Grayish Silty Clay Grayish Sandy Silt				0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		- 5.0
15.0		Grayish Medium to Coarse Sand, Some G	iravel			0.0 0.0 0.0 0.0		- 15.
20.0		Boring B-1 Terminated at a Depth of 16.0 Sample 6414-B1 Collected at 8.5 to 9.0 ft Water Sample Screen at 11.0 to 16.0 fbgs	ogs					- 20
25,0								-25,

Boring No.: B-2

Project		Waldbaum's Shopping Cente		WAI Project N		1414	_	_
Locatio		152-4510th Avenue; Whitestor			ent: A&P			
	Elevat ation D	(1)4.00 PA (1)4.00 PA (1)4.00	Date Started: Date Completed:	01/07/04 01/07/04	Wat	er Depths / (feet / feet-		ns
Drilling	Metho		Logged By:	J. Chiappetta	While Dr	illing:	12.	0 2
Test Me		Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp		11.4	5 🗸
			Machine:	Truck Mounted	24 Hours		N/	
	-		Tordinant.	Truck Hadanes	1 47 279410	PID		1
	Strata		DESCRIPTION OF N (Classificati			Readings (ppm)	Rec. (in.)	Dept (fee
0.0		Asphal/Subbase					-	-0.0
-	1	Dark Gray Silty Clay with Brick and Con	ncrete			0.0		-
-						0.0		-
-						0.0		
-						0.0	1	-
-		(4)				0.0		-
٦						0.0	5	
5.0 -						0,0		- 5.0
-						0.0	1 3	-
						0.0	1 1	
						0,0	1 6	_
+						0.0		-
						0.0		
-		0 110 1 00				0.0		_
		Grayish Sandy Silt				0.0		-
0.0						0.0		- 10.
-						0.0		_
4 -						0.0		-
~ [0.0		
-						0.0		
-						0.0		-
						0.0		
15.0		Grayish Medium to Coarse Sand, Little C	irayel			0.0		-15.0
-						0.0		-
1		Boring B-2 Terminated at a Depth of 16.0	Feet Below Ground Surface				- 1	
-	2 to 1	Sample 6414-B2 Collected at 9.0 to 9.5 ft	bgs			11111111		-
			-2				1	100
- 1								-
-								-
0.0								-20.0
-							49	-
							1 13	
7								_
-								~
-								-
							1	
5.0-								-25.0
ES NE	= Not For	countered, NA = Not Applicable		BECORD OF	SUBSURFACE EXI	CORATION 641	(envlous wo	

Boring No.: B-3

Project:		Waldbaum's Shopping Center		WAI Project N		414		
Location	:	152-4510th Avenue; Whitestone		Clie				
Surface l Fermina			Date Started: Date Completed:	01/07/04 01/07/04	Wat	er Depths / (feet / feet-		ons
Drilling			Logged By:	J. Chiappetta	While Dr	illing:	12.0	4
Test Mei		Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp		12.0	
	,,,,,,	Macro-core	Machine:	Truck Mounted	24 Hours		N	
-),ii.co.iii.c	Tiber Mounted	2730000	PID		1
	Strata		DESCRIPTION OF A (Classificati			Readings (ppm)	Rec. (in.)	Dept (fee
0.0		Asphalt/Subbase						-0.0
T		Grayish Silty Clay				0.0		F
-						0.0		-
-	9					0.0		-
	- 1					0.0		L
-						0.0		-
-						0.0		-
5.0						0.0		L 5.
-						0.0		-
-						0.0		-
1						0.0		L
-	- 1					0.0		-
1						0.0		-
7	- 1	Gray Sandy Silt				0.0		Ľ.
-						0,0		-
0.0						0.0		-10
	1					0.0		L
4						0.0		-
-						0.0		-
7						0.0		
						0.0		
-		Gray Coarse to Medium Sand			_	0.0	1	-
. +		Gray Coarse to Medium Sand				0.0	1 8	١.
5.0	- 1					0.0		-15.
-	-1	Boring B-3 Terminated at a Depth of 16.0 F	set Relow Ground Surface			0.0		-
=								
	1	Sample 6414-B3 Collected at 7.5 to 8.0 fbg	D.					
-	- 1							-
-	- 1						1113	-
0,0								-20
	- 1							
							1	
-								-
4						0		-
1								
								_
-								-
5.0								-25.

Boring No.: B-4

Project		Waldbaum's Shopping Cen	ter Site	WAI Project N	lo.: WP03-64	114		
Locatio	on:	152-4510th Avenue; Whitest	one, NY	Cli	ent: A&P			
	Elevation De		Date Started: Date Completed.	01/07/04 01/07/04		r Depths /) (feet / feet-		ons
	g Method		Logged By: Contractor: Machine:	J. Chiappetta Enviroprobe Service, Inc. Truck Mounted	While Dril At Comple 24 Hours:		12. 11. N	
Depth			DESCRIPTION OF M	IATERIALS		PID Readings	Rec.	Dept
(eet)	Strata		(Classification	on)		(ppm)	(in.)	(fee
0.0-		Asphalt/Subbase						-0.0
-		Dark Gray Silty Clay				0.0		-
12						0.0		
-	21				1	0.0		E
-						0.0		-
-					- 10	0.0		1
- 7	N 1					0.0		
5.0 —	8.1					0.0		- 5.0
-				-X-		0.0		F
- 5						0.0		E
_					- 4	0.0		F
-					-	0.0		-
+						0.0		-
	b U					0.0		L
		Gray Sandy Silt				0.0		-
0.0 —						0.0		- 10.
-						0.0		L
						0.0		F
A _						0.0		-
-					4.11	0.0		1
- 1						0.0		F
-		Grayish Medium to Coarse Sand				0.0		-
		Glayian Medium to Coulse Sand				0.0		F
5.0 —	-					0.0		-15,0
-		Boring B-4 Terminated at a Depth of I	6 0 Feet Relaw Ground Surface		4	0.0		-
1.5	1							-
		Sample 6414-B4 Collected at 8.0 to 8.	5 fbgs			6 b []		
1								-
-								-
7								
0.0								-20.
4						1		-
-								-
					i N			
-					- 11			-
-								-
-								
								1

Boring No.: B-5

Locatio	on:	152-4510th Avenue; Whitestone,	NY	Client:	A&P			
	Elevati		Date Started:	01/07/04		er Depths /	Flavatio	ne
	ation D		Date Completed:		77 20	(feet / feet-		ль
				01/07/04	200.00		-	
	g Metho		Logged By:	J. Chiappetta	While Dr		12.	
Test M	ethod:	Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp			Δ
			Machine:	Truck Mounted	24 Hours		N/	A Y
Depth (feet)	Strata		DESCRIPTION OF M			PID Readings (ppm)	Rec.	Dep (fee
0.0		1-1-100 11			_	75.63		-0.0
		Asphalt/Subbase Grayish Silty Clay, Some Brick and Concre	le		-	0.0		-
1						0.0		
-						0.0		-
1						0.0		-
						0,0		
1						0.0	d 8	L
-						0.0		-
5.0 —						0.0		- 5.
-						0,0		
-						0.0		-
-						0.0		-
1						0.0	8 3	L
		V				0.0	1	-
-		Grayish Sandy Silt				0.0	V	-
0.0						0.0		-10
-						0.0		-
-						0.0		-
111111		k.				0.0		L
-						0.0		-
-						0.0		-
						0.0		L
-		Grayish Medium to Coarse Sand				0.0		-
15.0						0.0		15.
_						0.0		
-		Boring B-5 Terminated at a Depth of 16.0 F	eet Below Ground Surface					-
-		Sample 6414-B5 Collected at 8.5 to 9.0 fbgs						-
_		the second second					1	
-							-	-
-								-
20,0	0							_20.
	6					1 1		-
-							y 14	-
	5							-
-								-
-							1	-
25,0-							- 1	-25.0

Boring No.: B-6

Project		Waldbaum's Shopping Cente		WA1 Project No			_	
Location		152-4510th Avenue; Whitestor		Clien				_
	e Elevat		Date Started:	01/07/04	Wat	er Depths / (feet / feet-	Elevation	ons
	nation D	The state of the s	Date Completed:	01/07/04				
	g Metho		Logged By:	J. Chiappetta	While Dr		9.	
Test M	ethod:	Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp			A
			Machine:	Truck Mounted	24 Hours		N.	A A
Depth (feet)	Strata		DESCRIPTION OF A			PID Readings (ppm)	Rec. (in.)	Depth (feet
0.0	-	Asphalt/Subbase						-0,0
-		Gray Sandy Silt				0.0		F
-						15.50		L
						22.1		F
_						37.5		-
-						98.1		-
5.0 —						89.7		5.0
70 C						40.2		-
A.						55.7		T.
-		Gray Coarse to Medium Sand				200		-
-						225		L
v -						185		-
						98.2		-
10.0 —						76.1		-10.0
1		80. AL				56.3		L
1.3		Silty Clay				22.1		-
12		Boring B-6 Terminated at a Depth of 12.	D Feet Below Ground Surface				- 7	F
-								-
-								_
15.0								- 160
13.0								-15.0
-								_
-								-
1							11.5	
-		Y						
-							9	
20.0							Y Y	_20.0
-						1	0.3	-
-								
-		0						L
10-4							Y	-
								Ε
25.0 -						1.00		-25.0

Boring No.: B-7

(Page 1 of 1)

Project: WAI Project No .: WP03-6414 Waldbaum's Shopping Center Site Location: 152-4510th Avenue; Whitestone, NY Client: A&P Surface Elevation: Not Surveyed Date Started: 01/07/04 Water Depths / Elevations (feet / feet-msl) Date Completed: Termination Depth: 12.0 feet bgs 01/07/04 A Drilling Method: Logged By: While Drilling: 10.0 Geoprobe J. Chiappetta Test Method: V Macro-Core Contractor: Enviroprobe Service, Inc. At Completion: Machine: Truck Mounted 24 Hours: NA ¥ PID DESCRIPTION OF MATERIALS Depth Depth Readings Rec. (feet) Strata (Classification) (ppm) (in.) (feet) -0.0 0.0 Asplialt/Subbase Gray Sandy Silt 0.0 0.0 0.0 15.6 19.8 12.6 18.5 5.0 22.2 38.1 70.1 Gray Medium to Coarse Sand 185 210 190 170 180 10.0 90.2 92.6 Sandy Clay 38.4 Boring B-7 Terminated at a Depth of 12.0 Feet Below Ground Surface Sample 6414-B7 Collected at 7.5 to 8.0 fbgs 15.0 15.0 20.0--20.0 RECORD OF SUBSURFACE EXPLORATION 6414envlogs.wpd 01/21/04 NOTES: NE - Not Encountered, NA - Not Applicable

Boring No.: B-8

Project		Waldbaum's Shopping Cente		WAI Project No		4117	_
Location		152-4510th Avenue; Whitestor		Clie			
Surface	e Elevati	on: Not Surveyed	Date Started:	01/07/04	Wat	ter Depths/	Elevations
Termin	nation De	epth: 12.0 feet bgs	Date Completed:	01/07/04		(feet / feet-	-msl)
Drillin	g Metho	d: Geoprobe	Logged By:	J. Chiappetta	While D	rilling:	9.0
Test M	lethod:	Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp	letion:	7
			Machine:	Truck Mounted	24 Hours	1	NA 3
Depth (feet)	Strata		DESCRIPTION OF M	MATERIALS		PID Readings (ppm)	Rec. Dep
0.0		Aughorities de la comp	(anathra)	****		(PPIN)	-0,0
-		Asphalt/Subbase Brown Silty Clay, Some Sand			-	0.0	1
- 7						0.0	-
-						0.0	-
-						0.0	-
- 1						0.0	
						0,0	
						0.0	F .
5.0						0.0	- 5.
- 2	8					0.0	
-						0.0	-
1.1.1.1		Brown Silty Sand				0.0	
- 2						0,0	
A_						0.0	-
*_						0.0	
10.0 -						0.0	L10
-		/				0.0	-
-						0.0	-
						0.0	
1 2		Boring B-8 Terminated at a Depth of 12.	D Feet Below Ground Surface				15-
-							F
-4	- 1						L
-							-
15.0 —							- 15
		K.					E.
-	6 1						
-		V					-
-							-
		1					
	(-
20.0							T
20.0							-20.
_	9: 11						-
7.5							-
	5						L
-							-
	0-						-
25.0	100						-25
1						1	-23.

Boring No.: B-9

Project	:	Waldbaum's Shopping Cente	er Site	WAI Project No	: WP03-6	414		
Locatio	n:	152-4510th Avenue; Whitesto	ne, NY	Člie	nt: A&P			
	Elevati		Date Started: Date Completed:	01/07/04 01/07/04	Wat	er Depths /] (feet / feet-		ns
Drilling	Metho		Logged By:	J. Chiappetta	While Dr	illing:		A
Test M	ethod:	Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Compi	letion:		V
			Machine:	Truck Mounted	24 Hours		NA	
			THE PART OF THE PA			PID		
Depth (feet)	Strata		DESCRIPTION OF M (Classification)			Readings (ppm)	Rec. (in.)	Dept (fee
0.0		Asphalt/Subbase						-0.0
		Brown Silty Sand	***			0.0		
-		11.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.				0.0		
						0.0		-
	. 1					0.0	1	
-						0.0		-
-	1					0.0		-
5.0 -						0.0		- - 5.0
-						0.0		-
-						0.0		-
- 1						0.0	1	-
- 1		Brown Medium Sand				0.0		
7-	1	Blown Medinin 28nd				0.0		-
						0.0		
-						0.0		
10.0						0.0	1	-10.
						0.0	1	
-						0.0		-
-		Boring B-9 Terminated at a Depth of 12	.0 Feet Below Ground Surface					
-								-
- 1								
-							1	_
15.0							1	- 15.
							1	
-							1	
-							1	-
		1						
_								-
-							1	-
20.0								- -20.
-							-	- 20.
-						1 1/4		-
7							1	
-								
-							1	-
							1	
-								

Boring No.: B-10

Project:	Waldbaum's Shopping Center	Site	WAI Project No.:	WP03-	6414		
Location:	152-4510th Avenue; Whitestone	e, NY	Client	A&P			
Surface Eleva Fermination I	49000 mm file file of the 1980 mm file of the	Date Started: Date Completed:	01/07/04 01/07/04	Wat	ter Depths / . (feet / feet-		ons
Drilling Meth		Logged By: Contractor: Machine:	J. Chiappetta Enviroprobe Service, Inc. Truck Mounted	While Do	oletion:	8. N	0 5 A 5
Depth (feet) Strata		DESCRIPTION OF M	MATERIALS	12300	PID Readings (ppm)	Rec. (in.)	Dep (fee
5.0	Asphalt/Subbase Brown Silty Clay Brown Silty Sand Boring B-10 Terminated at a Depth of 12.0				0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		-0.
25.0	scountered, NA = Not Applicable		RECORD OF SUI	SURFACE EX	PLORATION 6414	cnylogs w	- 25.

Boring No.: B-11

Location	on:	152-4510th Avenue; Whitestone, N	v	Ci	ent: A&P			
_	e Elevati		Date Started:	01/07/04		er Depths /	Elevation	nne
	nation D	THE SALVANDER CO.	Date Completed:	01/07/04	1,4	(feet / feet-		0113
	g Metho		Logged By:	J. Chiappetta	While Dr	illing:	9.	0 Y
	lethod:	Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp			∇
1,551 10	177.36147	Made Core	Machine:	Truck Mounted	24 Hours		N.	
			.1	Truck mounicu	1 577110410	PID		T
Depth	Strata		DESCRIPTION OF M (Classificati			Readings	Rec.	Dept
(feet) 0.0 —	Snata	- 1 W R	(Classificati	onj		(ppm)	(in.)	(fee
3.5	_	Asphalt/Subbase Brown Silty Clay				0.0		-
ST.						0.0		
0						0.0		-
E c						0.0		-
-						0,0		
2						0.0		-
5.0		1				0.0		-
		17				0.0		- 5.0
_						0.0		-
A						0.0		+
-						0.0		E
-						0.0		F
V -		e				0.0		-
-		Brown Silty Sand				0.0		
0.0	0					0.0	100	-10.0
(e						0.0		-
- 4						0.0		
0-		Boring B-11 Terminated at a Depth of 12.0 Fee	Below Ground Surface			0.0		-
-			result fractor salares			14		
12								2
-							1	F
15.0 —								15.0
-						1		-
-								
								-
-								-
_	0							
	0 1							_
-								-0
20.0—								-20.0
-								-
-								-
						1		F
	80							-
9) I II					(I d)		-
1	9 9							
[1]	0.1							-25.0

Boring No.: B-12

Project:	Waldbaum's Shopping Cente		WAI Project N				
Location:	152-45 10th Avenue; Whitesto			ent: A&P		Ž.	
Surface Elev Termination		Date Started: Date Completed:	02/02/04 02/02/04	Wat	er Depths / (feet / feet-		ons
Drilling Met		Logged By:	J. Chiappetta	While Dr	illing:	12.	0 7
Test Method		Contractor:	Enviroprobe Service, Inc.	At Comp		11.	5 5
		Machine:	Truck Mounted	24 Hours		N	
			1.444,0104,010		PID		T
Depth feet) Stra	ta	DESCRIPTION OF M (Classificati			Readings (ppm)	Rec. (in.)	Dep (fee
0.0	Asphalt/Subbase						-0.0
4	Grayish Silty Clay				0.0		-
7					0.0		-
					A 0		F
-	I				0.0		-
1					0.0		
- 4					0.0		-
5.0 —					0.0		- 5.
7					0.0		E
3					0.0		F
					0.0		F
0.0					0.0		F.,
0.0	Gray Silty Sand				0.0		- 10.
A _					0.0		E
3					0.0		-
13					0.0		E
5.0					0.0		- 15.
-	Grayish Medium to Coarse Sand				0.0		
1	Boring B-12 Terminated at a Depth of 17	0 Feet Below Ground Surface	/		0.0		ļ.
- 3							
4	Sample 6414-B12 Collected at 11.0 to 11	A INES			l i	1 7	-
-						1 3	-
0.0					K 1		-20.
_							
10 =							
7						1	-
-							
-						1.1	-
1							
5.0-					1 - 4		-25.
ES: NE = Not	Encountered, NA = Not Applicable		RECORD OF STIRE	SUNFACE EXPLOR	ATION 64) denut	ps12-17 um	VI 02/0

Boring No.: B-13

Project	_	Waldbaum's Shopping Cente		WAI Project No		1414	_	
Locatio		152-45 10th Avenue; Whitesto		Clier			-01	
	Elevation D	***************************************	Date Started: Date Completed:	02/02/04 02/03/04	Wat	er Depths / (feet / feet-		ons
Orilling	g Metho		Logged By:	J. Chiappetta	While Dr	illing:	12.	0 T
l'est M		Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp		12.	0 🗸
	1000	3,100.0 00.0	Machine:	Truck Mounted	24 Hours		N.	
-	-		To a control	Truck Mounted	24 110013	PID	T	
Depth feet)	Strata		DESCRIPTION OF M (Classification			Readings (ppm)	Rec.	Dept (fee
0,0 -		Asphalt/Subbase						-0.0
		Gray Silty Clay				0.0		L
-						0.0		E
11111						0.0		-
-						0,0		-
5.0 —						0.0		- 5.0
-						0.0		-
-						0.0		-
1111111						0.0		E
=		Gray Silty Sand		1000		0.0		-
0.0						0.0		-10,0
						0.0		
4						0.0		-
-						0.0		-
-		Gray Medium to Coarse Sand				0.0		F.,
5.0						0.0		-15.0
=						0.0		E
_	č d					0.0		Ė
-						0.0		_
0.0		}				0.0		20.0
-						0.0	16	
-		1				0.0		_
1						0.0		-
_		Domin D 13 Taminated at a book - 554	O Free Palaus Granu 4 St. A.			0,0		-
25.0		Boring B-13 Terminated at a Depth of 24. Sample 6414-B13 Collected at 11.0 to 11.	.5 fbgs				1. 1	-25.0
		Water Sample Shallow Screen at 11.0 to 1 countered, NA = Not Applicable	16.0 logs, Water Sample Deep Sch	een at 20.0 to 24.0 fbgs RECORD OF SUBSI				

Boring No.: B-14

Location:	Waldbaum's Shopping Center 152-45 10th Avenue; Whitesto		201	at App	-		
	~		Clie				
Surface Eleva		Date Started:	02/02/04	Wat	er Depths /	mel)	ons
Termination I		Date Completed:	02/02/04	1000			
Drilling Meth		Logged By:	J. Chiappetta	While Dr		12.0	
Test Method:	Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp	letion:		∇
		Machine:	Truck Mounted	24 Hours		N	A Y
Depth		DESCRIPTION OF M	MATERIALS		PID Readings	Rec.	Dept
feet) Strata		(Classificati			(ppm)	(in.)	(feet
0.0	Asphalt/Subbase						-0.0
-	Gray Silty Clay				0.0		
-					0.0		+
7							F
-					0.0		-
					0.0		L
-					0.0		-
5.0 —	V.				0.0		- 5.0
4					0.0		-
-					0.0		-
7	V				2.4		-
					0.0		-
7	Gray Silty Sand				0.0		L
-					0.0		-
0.0					A DELLA		-10.0
-					0.0	/	-
7					0.0		_
-					0.0		-
1	Gray Medium to Coarse Sand						-
-					0.0		-
15.0					0.0		-15.0
+					0.0		-
1	Boring B-14 Terminated at a Depth of 16	5.0 Feet Below Ground Surface					
-	Sample 6414-B14 Collected at 11.0 to 1	.5 fbgs					-
1	Water Sample Screen at 11.0 to 16.0 fbg	S					
-							-
0.0							-20.0
							Ė
4							F
1	V						-
_							_
-							-
2							
25.0-							-25.0

Boring No.: B-15

(Page 1 of 2) Project: WAI Project No .: WP03-6414 Waldbaum's Shopping Center Site Location: 152-45 10th Avenue; Whitestone, NY Client: A&P Date Started: Water Depths / Elevations Surface Elevation: 02/02/04 Not Surveyed (feet / feet-msl) Date Completed: Termination Depth: 28.0 feet bgs 02/03/04 While Drilling: 12.0 Y Drilling Method: Logged By: J. Chiappetta Geoprobe Test Method: 12.0 V Macro-Core Contractor: Enviroprobe Service, Inc. At Completion: 24 Hours: NA Machine: Truck Mounted Y PID **DESCRIPTION OF MATERIALS** Depth Depth Readings Rec. Strata (Classification) (feet) (ppm) (in.) (feet) 0.0 --0.0 Asphalt/Subbase Gray Silty Clay 0.0 0.0 0,0 0,0 0.0 5,0 -5.0 0.0 0.0 0.0 0.0 Gray Silty Sand 0.0 10,0 10.0 0.0 0.0 0.0 Gray Coarse to Medium Sand 0.0 0.0 15.0 0.0 0,0 0.0 0.0 0.0 20.0-20.0 0.0 0.0 0.0

0.0

Boring No.: B-15

(Page 2 of 2)

Project: WAI Project No .: WP03-6414 Waldbaum's Shopping Center Site Location: 152-45 10th Avenue; Whitestone, NY Client: A&P Surface Elevation: Date Started: 02/02/04 Water Depths / Elevations Not Surveyed (feet / feet-msl) Date Completed: 02/03/04 Termination Depth: 28.0 feet bgs Drilling Method: Logged By: J. Chlappetta While Drilling: 12.0 A Geoprobe Test Method: Contractor: At Completion: 12.0 ∇ Macro-Core Enviroprobe Service, Inc. 24 Hours: ¥ Machine: NA Truck Mounted PID Depth **DESCRIPTION OF MATERIALS** Readings Depth Rec. (Classification) (feet) Strata (feet) (ppm) (in.) 25.0--25.0 Continued from Page 1 0.0 0.0 Boring B-15 Terminated at a Depth of 28.0 Feet Below Ground Surface Sample 6414-B15 Collected at 11.0 to 11.5 fbgs Water Sample Shallow Screen at 11.0 to 16.0 fbgs 30.0 -Water Sample Deep Screen at 24.0 to 28.0 fbgs 30.0 35.0 35.0 --40.0 -40.0 45,0-NOTES NE - Not Encountered, NA - Not Applicable RECORD OF SUBSURFACE EXPLORATION 6414envlogs12-17.wpd 02/05/04

Boring No.: B-16

Project	ĭ	Waldbaum's Shopping Cente	r Site	WAI Project N	o.: WP03-6	414		
Locatio	on:	152-45 10th Avenue; Whitesto	ne, NY	Clie	nt: A&P			
	Elevation D		Date Started: Date Completed:	02/02/04 02/03/04	Wat	er Depths / (feet / feet-		ons
Drilling	g Metho	d: Geoprobe	Logged By:	J. Chiappetta	While Dri	lling:	12.	0 7
Test M	ethod:	Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Compl	etion:	12.	0 5
			Machine:	Truck Mounted	24 Hours:		N.	A 3
			and the second second			PID		
1000	Strata		DESCRIPTION OF M (Classification)			Readings (ppm)	Rec. (in.)	Dep (fee
0.0		Asphalt/Subbase						-0.0
-		Gray Silty Clay				0.0		-
						0.0		
-						0.0		-
-						0.0		-
5.0 —		2				0.0		- 5
		Petroleum Odor				0.0		E
-						0.0		-
=		Grayish Silty Clay				0.0		-
-		Grayish Sitty Clay				0.0		-
0.0						0.0		-10
-	1					0.0		-
A	1					0,0		-
	3					0.0		-
-		Grayish Medium to Coarse Sand				0,0		-
5.0-						0.0		-15.
-						0.0		-
-		V.				0.0		F
-						0.0		E
0.0						0.0		- - 20.
-						0.0		-
=						0.0		-
-						0.0		_
-						0.0		E
5.0					41	0.0		- 25

Boring No.: B-16

(Page 2 of 2)

Project	_	Waldbaum's Shopping Cente		WAI Project No.:		414	_	-
Location	on:	152-45 10th Avenue; Whitesto		Client	A&P	-		
	Elevati		Date Started: Date Completed:	02/02/04 02/03/04	Wat	er Depths / (feet / feet-	Elevatio -msl)	ons
	g Metho		Logged By:	J. Chiappetta	While Dr	illing:	12.	.0 ¥
Test M		Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp		12.	
1001111	vinou.	Macro-core	Machine:	Truck Mounted	24 Hours		N.	
			Mactine.	1 ruck Mounted	24 Flours	PID	1	1
Depth (feet)	Strata		DESCRIPTION OF M (Classificati			Readings (ppm)	Rec. (in.)	Depth (feet
25.0		Continued from Page 1				0.0	-1	-25.0
1,2								F
1						0.0		-
						0.0		T.
E e-		Boring B-16 Terminated at a Depth of 2	O Fast Balow Ground Surface					+
								-
	200	Sample 6414-B16 Collected at 11.0 to 1 Water Sample Shallow Screen at 11.0 to	1.5 fbgs 16.0 fbgs					F
30,0 —		Water Sample Deep Screen at 24.0 to 28	.0 fbgs					30.0
1								
-								-
-						1		
1								L
-								-
~								-
35.0 —						1		-35.0
-								
_							1 1	F
0								-
								L
-	/							-
-								-
40.0								-40.0
-). I I							+
7								
-								-
-								-
1								
-								-0
45.0								45,0
1510							1	- 43,0
-	V 1							-
							-	
4								-
								-
-						17		
						U		+
50.0							11	-50.0

Boring No.: B-17

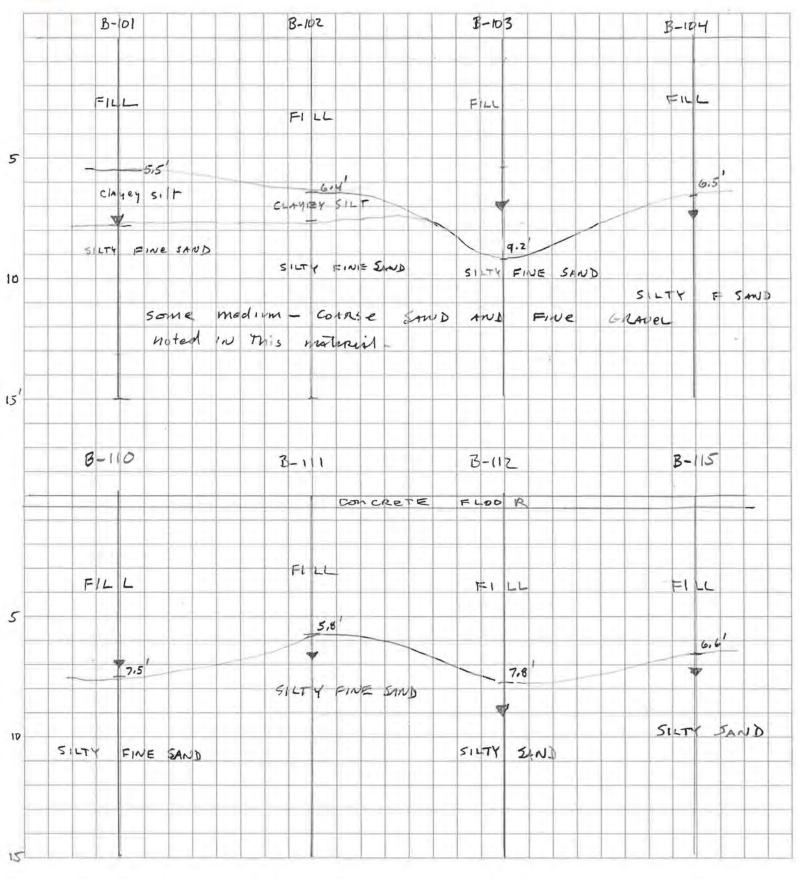
Project	_	Waldbaum's Shopping Center		WAI Project		414	
Locatio		152-45 10th Avenue; Whiteston			lient: A&P		
	Elevati		Date Started: Date Completed:	02/02/04 02/02/04	Wat	er Depths / (feet / feet	
Drilling	g Metho		Logged By:	J. Chiappetta	While Dr	illing:	12.0
	ethod:	Macro-Core	Contractor:	Enviroprobe Service, Inc.	At Comp		12.0
		24407.3447	Machine:	Truck Mounted	24 Hours		NA.
-	-			3.1.4711.0122.4831.4		PID	L
Depth feet)	Strata		DESCRIPTION OF M (Classificati			Readings (ppm)	Rec. De (in.) (fe
0.0	-	Asphal/Subbase					-0
_		Gray Silty Clay				0.0	1
-						0.0	L
- 4						0,0	F
-						0.0	-
						0,0	F
-						0.0	1
- 0.						0.0	F
111111						0.0	E
-	7					0.0	
		Gray Silty Sand			-	0.0	-
							-
0.0						0.0	-10
						0.0	L
Y.						0.0	E
-						0.0	F
		Gray Medium to Coarse Sand				0.0	l F
1						0.0	F
5.0-						0.0	F''
		Boring B-17 Terminated at a Depth of 16.	Feet Below Ground Surface			0.0	
- 4		Sample 6414-B17 Collected at 11.0 to 11.	5 fbgs				-
-	200	Water Sample Screen at 11.0 to 16.0 fbgs					
							-
-							-
0.0							-20
15	b 17						-
-	Č N						F
-							-
1		k					E
-							
-		1					E
5.0-							-25

Boring No.: B-18

Project:	Waldbaum's Shopping Center Si Former Johnny On The Spot Dr	ite/ WAI Project y Cleaners	t No.: EJ08100	511.000		
Location:	152-45 to 153-01 10th Avenue, W		Client: A&P			
Surface Eleva	ation: NS	Date Started: 9/11/08 Date Completed: 9/11/08		er Depths / (feet / feet-		ns
Drilling Meth		Logged By: D. Kapson	While Dr	illing:	5.	0 2
Test Method:		Contractor: Tri-State Drilling, Inc.	At Comp	etion;	4.8	7 5
		Machine: IR-T2W	24 Hours		N,	A 3
Depth feet) Strate		DESCRIPTION OF MATERIALS (Classification)		PID Readings (ppm)	Rec. (in.)	Dep (fee
0.0 P	6* Asphalt and Subbase					-0.0
Sand/	Dark Grayish-Brown Fine to Medium Sand,	Some Silt and Subrounded Gravel Cobbles, Dense		15		F
				26	20	L
-				29		-
3				100		F
-	Dark Grayish-Brown Fine to Medium Sand,	Some Silt, Little Fine to Medium Gravel.		37	18	t
5.0				78		- 5
1				85	22	L
Sand	Gray Fine to Medium Sand, Some Silt, Trace	Fine Gravel		72		-
4				100	20	F
=				42	20	+
4				40	1111	-
0.0				38	16	L 10
	Boring B-18 Terminated at a Depth of 10 Fee	et Below Ground Surface				-
7						F
1						
-				1		-
7						L
-						١.
5.0					115	-15
4						-
7						
-						
-						-
0.0						-20
4				1		-
7						L
15-						-
3						-
						-
25.0					1.7	-25
	Encountered, NA = Not Applicable, NS = Not Surveyed	DID = Photoionisulas Detartos	OF SUBSURFACE EXT	U OD ATIONII	D18 D20	1

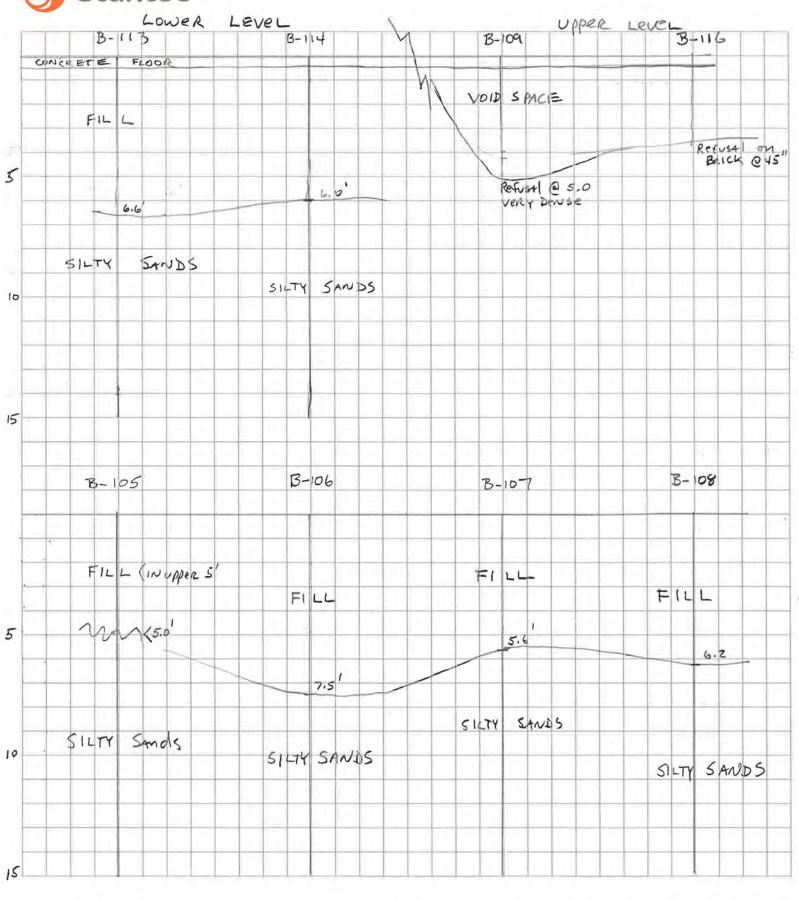
Boring No.: B-19

Project:	Waldbaum's Shopping Center Sit Former Johnny On The Spot Dry	e/ Cleaners	WAI Project No.:	EJ08106	511.000		
Location:	152-45 to 153-01 10th Avenue, Wh		Client:	A&P			
Surface Elevat		Date Started: 9/11/08			er Depths /	Elevatio	ons
Termination D		Date Completed: 9/11/08		100	(feet / feet-	-msl)	
Drilling Metho		Logged By: D. Kapso	on	While Dri	Iling:	3.	5 7
Test Method:	Split Spoon	Contractor: Tri-State	e Drilling, Inc.	At Compl	etion:	3.2	6 \
		Machine: IR-T2W		24 Hours:		N.	4 1
Depth feet) Strata		DESCRIPTION OF MATERIALS (Classification)	4		PID Readings (ppm)	Rec. (in.)	Dept (fee
0.0 - P	6" Asphalt and Subbase						-0.0
Sand	Dark Brown Fine to Medium Sand, Some Silt,	Little Subrounded Gravel			0.0		
Silt	Perched Water @ 1.5 fbgs				0.0	16	-
7					0.0	11.7	-
3					0.0	18	E
5.0 -					0.0		F 5.0
Sand	Gray Fine to Medium Sand, Some Silt, Trace I Septic Odor	Medium to Fine Gravel			0.0	22	E
-					0.0		E
-					0,0	24	-
					0.0		E
0.0	Boring B-19 Terminated at a Depth of 10 Feet	Ralaw Ground Surface			0.0	20	-10
1	Boring B-19 Tellimated at a Depth of To Peet	Below Glowing Surface				7.	L
							E
-							-
7							F
15.0							-15
							-
-							-
7							-
3							E
1.0							-
20.0							- 20.
-							-
7							-
-						1	Ė.
							F
- 4							-
5.0-	the second of the second						- 25.


Boring No.: B-20

(Page 1 of 1)

Project: Waldbaum's Shopping Center Site/ WAI Project No.: EJ0810611.000 Former Johnny On The Spot Dry Cleaners Location: 152-45 to 153-01 10th Avenue, Whitestone, NY Client: A&P Surface Elevation: Date Started: 9/11/08 Water Depths / Elevations (feet / feet-msl) Date Completed: Termination Depth: 10.0 feet bgs 9/11/08 Drilling Method: While Drilling: A Hollow-Stem Auger Logged By: D. Kapson 5.0 Test Method: Split Spoon Contractor: Tri-State Drilling, Inc. At Completion: 4.23 V Y Machine: 24 Hours: NA IR-T2W PID DESCRIPTION OF MATERIALS Depth Readings Depth Rec. (feet) Strata (Classification) (ppm) (in.) (feet) 0.0-0.0 6" Asphalt and Subbase Sand/ Dark Grayish-Brown Fine to Medium Sand, Some Silt and Subrounded Gravel Cobbles, Dense Sill 0,0 0.0 0.0 0.0 5.0 0.0 Sand Gray Fine to Medium Sand, Some Silt, Trace Fine to Medium Gravel 0.0 18 0.0 0.0 0.0 20 10.0 Boring B-20 Terminated at a Depth of 10 Feet Below Ground Surface 15.0 15.0-20.0-20.0



Designed by:

Checked by:

Designed by:

Checked by:

	Stantec
--	---------

BOREHOLE LOG

B-7

## PUSH 1 60 Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60 PUSH 3 60 7.8 PUSH 3 60 7.8 PUSH 3 60 7.8 PUSH 4 60 0.5	V		arriec Bor		10	LE		_0	G								D)			
## PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 4 00 0.5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 5 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 6 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 7 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 6 Driller: ADT/Chrits; Supervisor: Jason Ward PUSH 7 Driller: ADT/Chrits; Supervisor: Jason Ward																					
SAMPLES																					
MATERIAL DESCRIPTION												T									
O Asghalt O Asghalt Damp, randark brown fine to coarse SAND and GRAVIL, trace small cobbles Wet, dark brown fine to medium SAND and SILT, trace grave! Wet, dark brown fine to medium SAND and SILT, trace grave! PUSH 2 60 34.6 PUSH 3 60 7.8 PUSH 3 60 7.8 PUSH 4 60 0.5 Fine to medium brown SAND, trace silt, trace coarse sand and grave! PUSH 4 60 0.5 O Abuncarian Provision Feature Sand and grave! Driller: ADT/Cltris: Supervisor: Juson Ward PUSH 4 60 0.5 O Abuncarian Provisor: Juson Ward Driller: ADT/Cltris: Supervisor: Juson Ward	(£)	JN (f		707	EVEI					<u>o</u>	TUE			1		2		3		4	
O Asghalt O Asghalt Damp, randark brown fine to coarse SAND and GRAVIL, trace small cobbles Wet, dark brown fine to medium SAND and SILT, trace grave! Wet, dark brown fine to medium SAND and SILT, trace grave! PUSH 2 60 34.6 PUSH 3 60 7.8 PUSH 3 60 7.8 PUSH 4 60 0.5 Fine to medium brown SAND, trace silt, trace coarse sand and grave! PUSH 4 60 0.5 O Abuncarian Provision Feature Sand and grave! Driller: ADT/Cltris: Supervisor: Juson Ward PUSH 4 60 0.5 O Abuncarian Provisor: Juson Ward Driller: ADT/Cltris: Supervisor: Juson Ward	PTH	/ATIC	MATERIAL DESCRIPTION	ATA F	ER L	띰	BER	VER	/ swo	-Valu) VA										
Asphalt Damp, tan/dark brown fine to coarse SAND and GRAVEL, trace small cobbies Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60 34.6 28.7 PUSH 3 60 7.8 A Unconfine to medium brown SAND, trace silt, trace coarse sand		ELE		STR/	WATI	≽	MUM	ECO	T blc	PT N)9)N .	ı							ot	<i>⊃</i> — ★	7
Asplant Damp, tan/dark brown fine to cearse SAND and GRAVEL, trace small cobbles Wet, dark brown medium to cearse SAND and GRAVEL, trace silt Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60 34.6 28.7 PUSH 3 60 7.8 PUSH 3 60 0.5 Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward									R	S	SPT	Sta	andaro	d Pen	etratio	on Te	st, blo	ws/foo		•	
GRAVEL, trace small cobbles Variable Va	- 0 +			/F2,54.5		Ī		in.				1	10 2 :::::	20 3	30 <u>4</u>	40 5	<u>i0 6</u>	<u>i0 7</u> ∷∷∷	0 8 :::::	<u>30</u> ∷∷	<u>90</u>
Wet, dark brown medium to coarse SAND and GRAVEL, trace silt Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60 34.6 28.7 PUSH 3 60 7.8 Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward	_																				1
Wet, dark brown medium to coarse SAND and GRAVEL, trace silt Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60 34.6 28.7 PUSH 3 60 7.8 Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test. □ Fine to ware feet with the same silt. Test of the s	-		GRAVEL, trace small cobbles																	: -	
Wet, dark brown medium to coarse SAND and GRAVEL, trace silt Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60 34.6 28.7 PUSH 3 60 7.8 Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test. □ Fine to ware feet with the same silt. Test of the s																					:
Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60	<u>.</u>] ¥	PUSI	H 1	60			37.6	::::	::::							:::	
Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60	-																				-
Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60																		:::::			:-
Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60																					
Wet, dark brown fine to medium SAND and SILT, trace gravel Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 2 60 28.7 PUSH 3 60 7.8 Fine to medium brown SAND, trace silt, trace coarse sand	-																				-
trace gravel PUSH 2 60 28.7			GRAVEL, trace sin																		-
trace gravel PUSH 2 60 28.7	1																				il
Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 3 60 7.8 Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Field Vare Test Remotded	1					PUSI	Н 2	60													
Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 3 60 7.8 Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Remoided			trace gravel								28.7										: -
Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 3 60 7.8 Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Remoided	-																				:
Wet, dark brown fine to medium SAND and SILT, trace coarse sand and gravel PUSH 3 60 7.8 Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Remoided																					
trace coarse sand and gravel	- 10		Wet, dark brown fine to medium SAND and SILT				-							1::::			1::::	11111		1 : : :	+
Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Field Vane Test Remolded	-																				1
Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Field Vane Test Remolded																					
Fine to medium brown SAND, trace silt, trace coarse sand PUSH 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Field Vane Test Remolded																					}
PUSH 4 60 0.5 Push 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Remolded	1					PUSI	I 3	60			7.8										1
PUSH 4 60 0.5 Push 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Remolded																					
PUSH 4 60 0.5 Push 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Remolded																					: -
PUSH 4 60 0.5 Push 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward A Unconfined Compression Test Remolded	4.5																				:
PUSH 4 60 0.5 Push 4 60 0.5 Driller: ADT/Chris; Supervisor: Jason Ward Driller: ADT/Chris; Supervisor: Jason Ward	- 15 -																				
Driller: ADT/Chris; Supervisor: Jason Ward △ Unconfined Compression Test □ Field Vane Test ■ Remolded			sand																		:-
Driller: ADT/Chris; Supervisor: Jason Ward △ Unconfined Compression Test □ Field Vane Test ■ Remolded	-																				1
Driller: ADT/Chris; Supervisor: Jason Ward △ Unconfined Compression Test □ Field Vane Test ■ Remolded	_]					PUSI	H 4	60			0.5										
Driller: ADT/Chris; Supervisor: Jason Ward △ Unconfined Compression Test □ Field Vane Test ■ Remolded	- 4										0.5										: -
Driller: ADT/Chris; Supervisor: Jason Ward △ Unconfined Compression Test □ Field Vane Test ■ Remolded	-																				1
Driller: ADT/Chris; Supervisor: Jason Ward △ Unconfined Compression Test □ Field Vane Test ■ Remolded																					
□ Field Vane Test ■ Remolded	- 20												: : : : : : : : : :	:::: <u>:</u>	<u> </u>						:
		Drille	er: ADT/Chris; Supervisor: Jason Ward									ı				-					
Focket Perletionieter / Torvane												ı							olded		

STN13-GEO-I-VOC WES.GPJ JW NHP.GDT 10/21/22

(St	cantec B	ORE	Н	Ю	LE	I	LO	G								B	3- 9)	
CL	JENT	Feil Whitestone, LLC												PRO	JEC.	Γ Νο)	191	711	695
LC	CATION	Former Johnny on the Spot Cleaners	, Whi	tes	ston	ıe, Q	u <u>e</u> gg	SEIN	¥				-	EXP	LOR	ATIO	ON N	No.	B	<u>-9</u>
EX	PLORAT	ON DATE6/7/2022 to 6/7/2022 GRO	DUND	EL.		•		WA	TER LE	EVEL	_3		-	DAT	'UM					
	ft)		-	_			SA	MPL	.ES				Unc	Iraine	d She	ear Str	rength	- tsf		
Ê) NC		j C	3				>		<u>e</u>	LUE			1		2	;	3 		4
ОЕРІН (π)	ELEVATION (ft)	MATERIAL DESCRIPTION	TO IG ATAGES		WATER LEVEL	TYPE	NUMBER	RECOVERY	SPT blows / 6"	SPT N-Value	SPT N(60) VALUE	 Wa	ter C	onten	t & At	terber	g Lim		W _P	w
5	ELE		L D		WAT	F	N	RECC	PT bl	PT N	9)N -	1					t, blov		ot	*
_				4					ß	S	SPI	Sta	ndard	d Pen	etratio	on Tes	st, blo	ws/fo	ot	•
o 🕂		Dense, brown, fine to coarse SAND and GRAVE	r 44	=		1		in.				11	0 2	20 3	30 4	10 5	50 6	0 7	70 8	30
-		trace silt and cobbles	- ,	- -																
1				- -								:::::							::::	
1				=																
4				=		PUSI	H 1	60			4.9								::::	
4				- -	$\overline{\Delta}$															
-				=																
7				-																
, 1				=								::::		::::	::::	::::	::::	::::	::::	: : : : : :
		Wet, brown/dark brown fine to medium SAND at	nd																	
4		SILT, thin layer of gravel at 6'																		
-																				
1						DYVAY					- 0									
]						PUSI	12	60			7.9									
_																				
4																				
4																				
+		Wet, grey to brown medium to coarse SAND, trace	ce :	1									:::::	::::				::::	::::	
1		silt and gravel																		
_																				
+						PUSI	I 3	60			3.5									
1																				
1																				
4																				
5 $+$		Wet, brown, fine to medium SAND, trace coarse		4								1	:::::	1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1	::::	
1		sand, trace silt												::::						
+														::::					::::	
														::::						
						PUSI		60			12	[::::				1::::		::::	::::	

■ Pocket Penetrometer / Torvane

☐ Field Vane Test

■ Remolded

STN13-GEO-LVOC WES.GPJ JW NHP.GDT 10/21/22

- 20

Driller: ADT/Chris; Supervisor: Jason Ward

BOREHOLE LOG

B-110

CL	JENT	Feil Whitestone, LLC				_ N	OR'	THIN	NG _				_	PRO	JEC?	Г По)	191	711	<u>695</u>	_
LC	CATION															ATIO	ON 1	No.	<u>B-1</u>	10	-
EX	(PLORAT	ION DATE <u>6/7/2022 to 6/7/2022</u> GROUI	ND EI	L	•					EVEL	_3.5 A	Appı I									_
æ l	(±)		Ю.	Æ			SAN	/IPLE			ЭE		Und	Iraine 1		ear Str 2		n - tsf 3	,	4	
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRIPTION	STRATA PLOT	WATER LEVEL	TYPE	NUMBER		RECOVERY	SPT blows / 6"	SPT N-Value	SPT N(60) VALUE	W _P W V Water Content & Atterberg Limits □ Dynamic Penetration Test, blows/foot Standard Penetration Test, blows/foot □ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot ■ Dynamic Penetration Test, blows/foot Dynamic Penetration Test, blows/foot Dynamic Penetration Test, blows/foot Dynamic Penetration Test, blows/foot Dynamic Penetrati									w _L
- o -		Damp, grey, fine to medium SAND and SILT, trace		-			4	in.					10 2	20 3	30 4	<u> 10 5</u>	<u> 10 6</u>	30 7	<u>70 8</u>	30 9	<u>30</u>
		coarse sand and gravel Wet, brown/tan fine to medium SAND and SILT		_ ✓	PUS	БН 1	Į.	60			7.3										-
 - 10		with dark brown/black silty seams. Trace coarse sand and gravel			PUS	SH 2	2	60			21.5										
		Wet, brown, medium to coarse SAND, trace fine sand and silt			PU	SH 3	3	60			0.4										-
- 13		Wet, dark brown fine to medium SAND, trace silt and coarse sand			PU	SH 4	1	60			0.6										
	Drille	er: ADT/Chris; Supervisor: Jason Ward	•					•				-	Field	d Van	e Tes	mpres st ometer		Rem	nolded	 I	

STN13-GEO-I-VOC WES.GPJ JW NHP.GDT 10/21/22

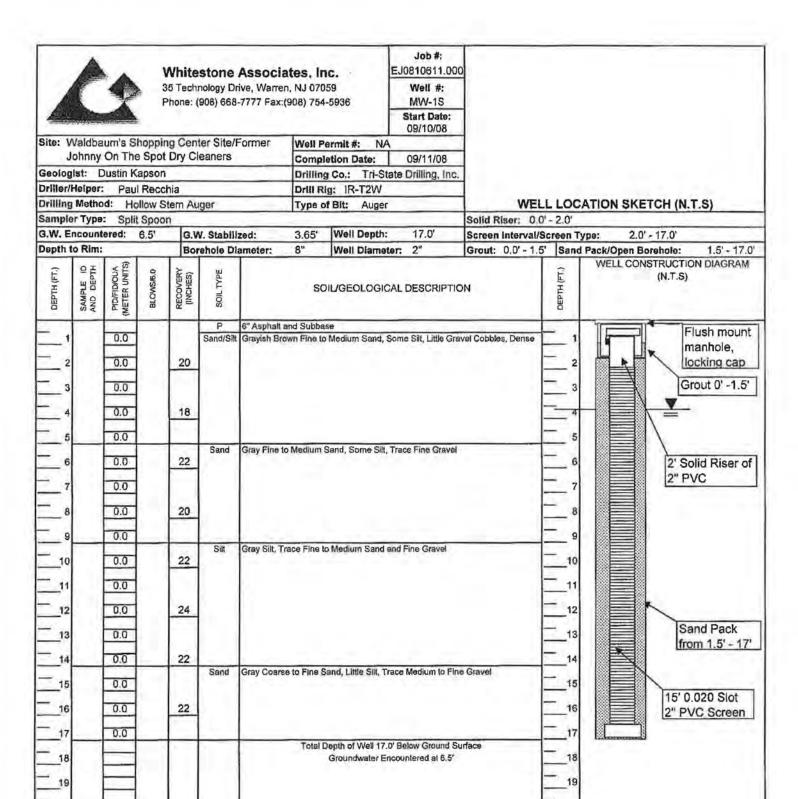
STN13-GEO-LVOC WES.GPJ JW NHP.GDT 10/21/22

BOREHOLE LOG

B-113/MW-113

CI	JENT							ING							Г По.		191′						
	OCATION										EXPLORATION B ₀ .11 <u>3/MW-</u> 113 3 <u>Approx</u> imato, PrpM												
ЕУ	(PLORATI	ON DATE <u>6/8/2022 to 6/8/2022</u> GROU	ND E	L	<u>'</u>				/EL	_3 A _I	prox												
ť.	(±)		10.	Æ		SA	AMPL			UE	Undrained Shear Strength - tsf 1 2 3 4												
DЕРТН (ft)	ELEVATION (ft)	MATERIAL DESCRIPTION	STRATA PLOT	WATER LEVEL		ER	ERY	SPT blows / 6"	SPT N-Value	SPT N(60) VALUE			-					— N _P v	v W _I				
DEP'	EVA		IRAT	ATEF	TYPE	NUMBER	RECOVERY	wold	> <u>-</u>	(09)	ı				terberç		its	<u>·</u>	⊣				
	□		S	Š		Ž	R	SPT	SP	PΤΛ	ı				n Test on Tes				r				
- 0 -			1.1.1.				in.			<i></i>	ı								0 90				
-		Damp grey/brown, fine to medium SAND and SILT trace coarse sand and gravel	, []]]																-				
		g-11-1-																					
													::::										
-					HAN	D 1	60			1.7													
				Ţ																			
-																			::::-				
- 5 -		Damp grey/brown, fine to medium SAND and SILT	,	<u> -</u>			+																
_]		trace coarse sand and gravel. Seam of medium sand at 7'																					
-																			-				
						11 2	60			0.0													
_]					PUS	H 2	60			0.9													
-																			-				
- 10 -							_																
-		Wet fine to medium SAND, trace gravel																					
-					PUS	Н 3	60			1.1													
-																			-				
– 15 – -		Wet fine to medium SAND, trace gravel																					
-																			-				
					PUS	H 4	60																
																			H				
-																							
- 20 -		ADTRICT : 11.1 G · · · · · · · · · · · · · · · · · ·	<u> [08]</u>	4_	 	-	-				: : : : : : : : : :	: : : :	: : : : : : : : : :	::::	: : : : <u> </u>								
	Drille	r: ADT/Chris and John; Supervisor: Jason Ward																					
											ı				meter								

\mathcal{C}	St	antec	BOR	RΕΙ	HC	LE	I	_0(G							B	-11	4	
CI	JENT	Feil Whitestone, LLC					NO	RTHI	NG _					PROJ	ECT	No.	191	711	<u>695</u>
LC	CATION	Former Johnny on the Spot Clea															No.		
ЕХ	CPLORAT	ION DATE6/8/2022 to 6/8/2022	GROUN	D EI	Ĺ	•		WA	ΓER LI	EVEL				DAT	UM .				
	£)			_	_		SA	MPL	.ES				Und	rained	l Sheai	r Stren	gth - tsf		
Œ) NC			PLO	EVE			>	9	<u>e</u>	LUE			1	2		3	4	4
DEPTH (ft)	ELEVATION (ft)	MATERIAL DESCRIPTION		STRATA PLOT	WATER LEVEL	TYPE	NUMBER	RECOVERY	SPT blows / 6"	SPT N-Value	SPT N(60) VALUE	Wet	or C	ntont	9 A#0	rhora I	imits	W _P \	w w
8	ELE)			STR/	VAT		Σ	E	T blc	N L)9)N	1					lows/foc		∪
					>			₩	S	R	SPT	1					olows/fo		•
0 -		Committee		루고: - 구구:	_			in.				10) 2	0 30	0 40	50	60 7	0 8	30 90
-		Concrete																	
-				#_ -#															
-		Bown, dense fine to medium SAND and SIL Refusal at 4.9'	LT.																
		Refusar at 4.9				PUSE	Ŧ 1	58											
_																			
-																			
-																			::::: -
_																			
5 -												1							
-																			-
_																			
-																			
-																			
_																			::::
10 –													:::::						
-																			
-																			
_																			
-																			-
-																			
15-																			
]																			-
-																			::::
_																			
-																			


■ Pocket Penetrometer / Torvane

☐ Field Vane Test

■ Remolded

- 20

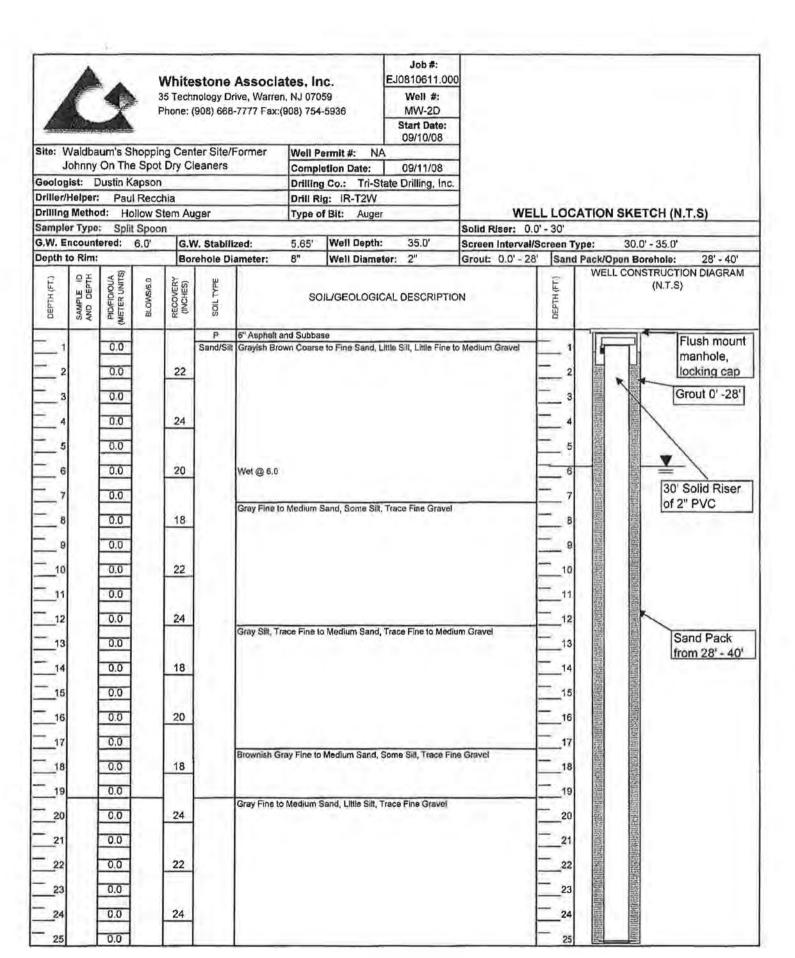
Driller: ADT/Chris and John; Supervisor: Jason Ward

35 Technology Drive, Warren, NJ 07059 Phone: (908) 668-7777 Fax: (908) 754-5936 Job#: EJ0810611.000

Well #: MW-1D Start Date:

Driller/Hel	lper:	Pau	Reco	hia			Drill F	tig: IR-T2W				
Drilling M		: Ho	llow S	tem Au	iger		Type	of Bit: Auger		WEL	L LOCATIO	N SKETCH (N.T.S)
Sampler 1		_	Spool	_				-		Solid Riser: 0.0		
G.W. Ence		red:	6.0'	_	V. Stabili		6.17'	Well Depth:	35.0	Screen Interval/S		30.0' - 35.0'
Depth to F				Bo	rehole Di	ameter:	8"	Well Diameter:	2"	Grout: 0.0' - 28'		Open Borehole: 28' - 40'
DEPTH (FT.)	AND DEPTH	PID/FID/OUA (METER UNITS)	BLOWS/6.0	RECOVERY (INCHES)	SOIL TYPE		S	DIL/GEOLOGICAL	DESCRIP	TION	рерти (гт.)	ELL CONSTRUCTION DIAGRAM (N.T.S)
		- 7			P	6" Asphalt					_ 1	Flush mount
1 2		0.0		18	Sand/Silt	Grayish Br Dense	own Fine t	o Medium Sand, Son	ne Silt, Little f	Fine to Medium Gravel,	1	manhole, locking cap
3		0.0									3 3	Grout 0' -28'
4	F	0.0		20							4	Industrial Industrial
5	F	0.0									5	
6	-	0.0		22		Gray Fine	lo Medium	Sand, Some Silt, Tra	ce Fine Gro	vel Very Majet	6	V
7	F	0.0		114		Sidy Fills	www.uiff	own, oville oil, He	- Inc Oral	en, yely moist	7	30' Solid Riser
8	F	0.0		20						0	8	of 2" PVC
9	E	0.0									9 9	10000000000000000000000000000000000000
10	_	0.0		16	Silt	Crou Sill 7	room Made	um to Fine Send and	Cina Crown		10	
	1	0.0			- Silt	Gray Sill,	race Medi	um to rine sand and	rillo Glavei		11	
12	F	0.0		18							12	
13	F	0.0								5	13	Sand Pack from 28' - 40'
14	E	0.0		20	0					-	14	
15	E	0.0		20							15	
		0.0		20	Sand	Gray Coar	se to Fine !	Sand, Little Silt, Trace	Medium to I	Fine Gravel	16	THE STATE OF THE S
- 18	F	0.0		15							18	भावता मुख्या का
19	E	0.0		1							19	
20		0.0		17							20 21 21 22 22 23 23 24 24 25 25 25	सुनाम्बर्धात्राहात्
21	Ė	0.0									21	
22		0.0		18							22	
23	-	0.0									23	
24	-	0.0		24		Dark Brown	n Fine to M	ledium Sand, Little Si	It, Trace Med	llum to Fine Gravel	24	
25		26.0									25	

Job #:


EJ0810611.000 35 Technology Drive, Warren, NJ 07059 Well #: Phone: (908) 668-7777 Fax:(908) 754-5936 MW-1D Start Date: 09/10/08 Site: Waldbaum's Shopping Center Site/Former Well Permit #: NA Johnny On The Spot Dry Cleaners Completion Date: 09/11/08 Geologist: Dustin Kapson Drilling Co.: Tri-State Drilling, Inc. Driller/Helper: Paul Recchia Drill Rig: IR-T2W Drilling Method: WELL LOCATION SKETCH (N.T.S) Hollow Stem Auger Type of Bit: Auger Sampler Type: Split Spoon Solid Riser: 0.0' - 30.0' G.W. Encountered: 6.0' Well Depth: 35.0 Screen Interval/Screen Type: G.W. Stabilized: 6.17 30.0' - 35.0' Depth to Rim: Borehole Diameter: 2" Grout: 0.0' - 28' Sand Pack/Open Borehole: 28' - 40' 8" Well Dlameter: WELL CONSTRUCTION DIAGRAM PID/FID/OUA (METER UNITS) DEPTH DEPTH (FT.) BLOWS/6.0 RECOVERY (INCHES) DEPTH (FT.) (N.T.S) SOIL/GEOLOGICAL DESCRIPTION SAMPL AND D SOIL 25 27.5 Dark Brown Fine to Medium Sand, Llittle Sit, Trace Medium to Fine Gravel 25 0.0 26 22 26 27 0.0 27 28 0.0 22 28 30' Solid Riser of 2" PVC 0.0 29 29 Dark Brown Coarse to Fine Sand, Little Silt, Sewer Odor Sand Pack 0.0 24 30 30 from 28' - 40' 0.0 31 31 32 0.0 22 32 0.0 33 33 5' Screen from 0.0 34 22 30' - 35' Brown Coarse to Fine Sand, Little Medium Gravel, Trace Silt and Quartz. 0.0 35 35 36 0.0 18 36 5' 0 020 Slot 2" PVC Screen 37 0.0 37 0.0 20 38 38 39 0.0 39 Clay Gray Clay, Trace Fine Gravel 40 0.0 22 40 Total Depth of Well 35.0' Below Ground Surface (Boring to 40') 41 Groundwater Encountered at 6.0' 42 43

Job#:

EJ0810611.000

	Access		e. 9	AALIIFE	Stone	Maauuii	ates. II	110.		4			
A		2				ive, Warre -7777 Fax:			Well #: MW-2S Start Date:	-			
-		- Appendix					_		09/10/08				
					ter Site/	Former	_	Permit#: NA		-			
_					leaners			letion Date:	09/11/08	-			
_	Helper	Dustin K	_						tate Drilling, Inc.	-			
	Metho		Reco	tem Au	ider			Rig: IR-T2W of Bit: Auger		IAVE	11100	ATION SKETCH (N.T.	SI
	er Type		t Spoo		igei		Trype	of Bil. Auger		Solid Riser: (ATION SKETCH (N.T.	31
_	ncount		6.0'		V. Stabili	zed:	5.19'	Well Depth:	19.0'	Screen Interva		ype: 4.0' - 19.0'	
epth	to Rim:			Во	rehole Di	ameter:	8"	Well Diame		Grout: 0.0' - 3		Pack/Open Borehole:	3.0' - 19.0
DEPTH (FT.)	SAMPLE ID AND DEPTH	PID/FID/OUA (METER UNITS)	BLOWSÆD	RECOVERY (INCHES)	SOLTYPE		S	OIL/GEOLOGIO	CAL DESCRIPTION	ON	DEPTH (FT.)	WELL CONSTRUCTION (N.T.S)	DIAGRAM
		5.3		1	P	6" Asphalt						Flu	sh mount
_1		0.0		1	Sand/Silt	Grayish Br	own Coars	se to Fine Sand, L	ittle Sill, Little Fine I	o Medium Gravel	- 1		nhole,
_ 2		0.0		18							2		king cap
-		0.0											ut 0' -3'
_ 3		0.0									3	1 1310	w, 0 0
_ 4		0.0		16							4		
5		0.0			1						5	_ _	
- 6		0.0		22		Wet @ 6.0					- 6	4' Soli	d Riser o
-		0.0				1						2" PV0	
'	-	0.0			Sand	Gray Fine t	o Medium	Sand, Some Silt,	Trace Fine Gravel		1		
8		0.0		24	9.00.00	30.547.00					8		
. 9		0.0									9		
		0.0	5	24							- 40		
10	1	0.0	6.0	24	ł						10		
_11		0.0									11		
- 12		0.0		22							- 12		
		la de la			Sill	Gray Silt, T	race Fine	to Medium Sand,	Trace Fine to Media	um Gravel		San	d Pack
13		0.0		-							13		3' - 19'
_14		0.0		20							14		
15		0.0									15		
16	1 3	0.0		18							- 16		20 Slot Screen
- 17		0.0									- 17		Duicen
18		0.0		20		Brownish G	ay Fine t	o Medium Sand,	Some Silt, Trace Fin	ne Gravel	- 18		
		0.0		20							- 19		
19	-				-		Total	Depth of Well 19.	0' Below Ground St	urface		B	
20					1111			Groundwater E	ncountered at 6.0'		20		
21	117										- 21		
3	1					i i							
_22											22		
23			5								- 23		
						N .					E 33		
24			61 =								24	7	
-0.55		_	1 7								-		

Job#: EJ0810611.000

	Access			Attires	STOLLO	Vagorie	1103, 11	ic.		4			
A		1	-			rive, Warrer 3-7777 Fax:(Well #: MW-2D Start Date:				
Spinite.	I HARRIS								09/10/08				
						Former		ermit#: NA					
	111111111111111111111111111111111111111		March 1985	Dry Cle	eaners		_	etion Date:	09/11/08				
	Helper	Dustin K		it-	_				tate Drilling, Inc.				
-	Metho		Recci	tem Aug	701		_	ig: IR-T2W if Bit: Auger		WEI	1100	TION SK	ETCH (N.T.S)
	or Type		t Spool		901		Trype o	Dit. Auger		Solid Riser: 0.0		TION SK	E1011 (M.1.0)
		tered:		_	. Stabil	ized:	5.65'	Well Depth:	35.0'	Screen Interval/S		pe: 30	0.0' - 35.0'
Depth (to Rim:			Bore	ehole D	iameter:	8"	Well Diame	ter: 2"	Grout: 0.0' - 28'		Pack/Open I	Borehole: 28' - 40'
DEPTH (FT.)	SAMPLE ID AND DEPTH	PID/FID/OUA (METER UNITS)	BLOWS/6.0	RECOVERY (INCHES)	SOILTYPE		sc	oIL/GEOLOGIO	CAL DESCRIPTIO	on .	оертн (FT.)	WELL CO	ONSTRUCTION DIAGRAM (N.T.S)
25		0.0			Fill	Gray Fine to	Medium :	Sand, Little Sill, 1	Trace Fine Gravel		25	6	n
26		0.0		22							26		
27		0.0				Brown Fine Slight Petro		3 7 7 7 Y	Trace Fine Gravel		27		Grout 0' -28'
28		0.0		20							28		
29		0.0									29		30' Solid Riser
30		0.0		24							30		of 2" PVC
21		0.0				Grayish Bro	wn Fine to	Medium Sand,	Little Silt and Fine to	Medium Gravel	31		
32		0.0		22							32		
33		0.0									33		Sand Pack
34		0.0		24		Gravel Incre	asing with	Depth		4	34		from 28' - 40'
35		0.0									35		5' 0.020 Slot 2"
36		0.0		22	_	0	In Fig. 6	and I was posses	1 Occur VO abbles		36		PVC Screen
37		0.0				Sewer Odor		and, Little Sitt ar	d Gravel/Cobbles		37		[VO Screen
38		0.0		20		Gray Clay, 1	race Fine	Gravel			38		
39		0.0				Gray Clay					39		
40		0.0	-	22						1	40		
		0.0					Total D		0' Below Ground Suncountered at 7.0'	irface	=		
_		0.0									\equiv		
	1					1							
_				I 1						- 3			
										3			
45													
-	11										=		
											_		
	111	-											
	1	T = I											
	1	1 11				1				1	100		

Job #: EJ0810611.000

Well #:

35 Technology Drive, Warren, NJ 07059 MW-3S Phone: (908) 668-7777 Fax:(908) 754-5936 Start Date: 10/02/08 Site: Waldbaum's Shopping Center Site/Former Well Permit #: NA Johnny On The Spot Dry Cleaners Completion Date: 10/02/08 Geologist: Dustin Kapson Drilling Co.: Tri-State Drilling, Inc. Driller/Helper: Paul Recchia Drill Rig: IR-T2W Drilling Method: Hollow Stem Auger Type of Bit: Auger WELL LOCATION SKETCH (N.T.S) Sampler Type: Split Spoon Solid Riser: 0.0' - 2.0' G.W. Encountered: 4.0 G.W. Stabilized: 2.89 Well Depth: 17.0 Screen Interval/Screen Type: 2.0'-17.0' Grout: 0.0' - 1.5' Sand Pack/Open Borehole: Depth to Rim: Borehole Diameter: 8" Well Dlameter: 2" 1.5' - 17.0' PID/FID/OUA (METER UNITS) WELL CONSTRUCTION DIAGRAM SAMPLE ID AND DEPTH (INCHES) DEPTH (FT.) DEPTH (FT. (N.T.S) SOIL/GEOLOGICAL DESCRIPTION SOIL 6" Asphall and Subbase Flush mount 0.0 Sand/Sill Dark Brown Coarse to Fine Sand, Little Silt and 3/4" Rounded Gravet manhole, locking cap 0.0 20 0.0 0.0 24 Grout 0' -1.5' 0.0 Wet @ 4.0" 0.0 22 2' Solid Riser of 2" PVC 0.0 Gray Fine to Medium Sand, Some Silt, Trace Fine Gravel 0.0 18 0.0 0.0 24 Gray Sill, Trace Medium to Fine Sand, Trace Fine Gravel 0.0 0.0 20 12 Sand Pack from 0.0 1.5' - 17.0' 0.0 22 14 Gray Fine to Medium Sand, Some Silt, Little Fine to Medium Gravel Sand 0.0 15' 0.020 Slot 0.0 18 16 2" PVC Screen Gravel increasing with Depth 17 0.0 Total Depth of Well 17,0' Below Ground Surface 18 Groundwater Encountered at 4.0" 19 20 20 21 21 22 22 23 23 24 24

35 Technology Drive, Warren, NJ 07059 Phone: (908) 668-7777 Fax:(908) 754-5936 Job #: EJ0810611.000

Well #: MW-3D Start Date: 10/02/08

Site: Waldbaum's Shopping Center Site/Former
Johnny On The Spot Dry Cleaners

Geologist: Dustin Kapson

Drilling Co.: Tri-State Drilling, Inc.

Drilling Method: Hollow Stem Auger

10/02/08

Well Permit #: NA

Completion Date: 10/02/08

Drilling Co.: Tri-State Drilling, Inc.

Drill Rig: IR-T2W

Type of Bit: Auger

Driller/F	lelper:	Pau	Reco	hia			Dritt R	Rig: IR-T2W				
Drilling	Metho	d: Ho	llow S	tem Au	ger		Туре	of Bit: Auger		WELI	LOCATION	N SKETCH (N.T.S)
Sample	_		Spoo							Solid Riser: 0.0'	- 3.0'	
G.W. Er		ered:	4.5'	-	V. Stabili		6.04	Well Depth:	35.0	Screen Interval/Sc		30.0' - 35.0'
Depth to	Rim:			Boi	ehole Di	ameter:	8"	Well Diameter:	2"	Grout: 0.0' - 28'		pen Borehole: 28' - 35.0
DEPTH (FT.)	SAMPLE 1D AND DEPTH	PID/FID/OUA (METER UNITS)	BLOWS/6.0	RECOVERY (INCHES)	SOILTYPE		S	OIL/GEOLOGICAL	DESCRIP	TION	DEPTH (FT.)	LL CONSTRUCTION DIAGRAM (N.T.S)
					P	6" Asphalt			20.00		- Tr	Flush mount
1 2 3		0.0		20	Sand/Silt	Dark Brow	n Coarse l	o Fine Sand, Little Sil	and 3/4" Ro	ounded Gravel	1 2	manhole, locking cap Grout 0' -28'
4 5		0.0		24		Wet @ 4.0					4	30' Solid Riser of 2" PVC
6		0.0		22							6	▼
7 8		0.0		18	Sand	Gray Fine	to Medium	Sand, Some Sill, Tra	ce Fine Grav	vel	7 8	30' Solid Riser of 2" PVC
10		0.0		24							- 9 - 10	
	8	0.0			Silt	Gray Silt, 7	race Medi	um to Fine Sand, Tra	ce Fine Grav	rel	11	
12		0.0		20							12 13	Sand Pack
14		0.0		22	Sand	Grav Fine	to Medium	Sand, Some Silt, Littl	a Fina to Me	dium Gravel	14	from 28' - 35
_15 16		0.0		18	Jana	0.0, 1.00		cana, como ona can	9 1 11/9 10 111/9		15 16	
17		0.0				Gravel Inci	reasing with	h Depth			15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	
18		0.0		20							18	
19				22		N					20	
21				18								
23												
24				20							24 25	

35 Technology Drive, Warren, NJ 07059

Job #: EJ0810611.000

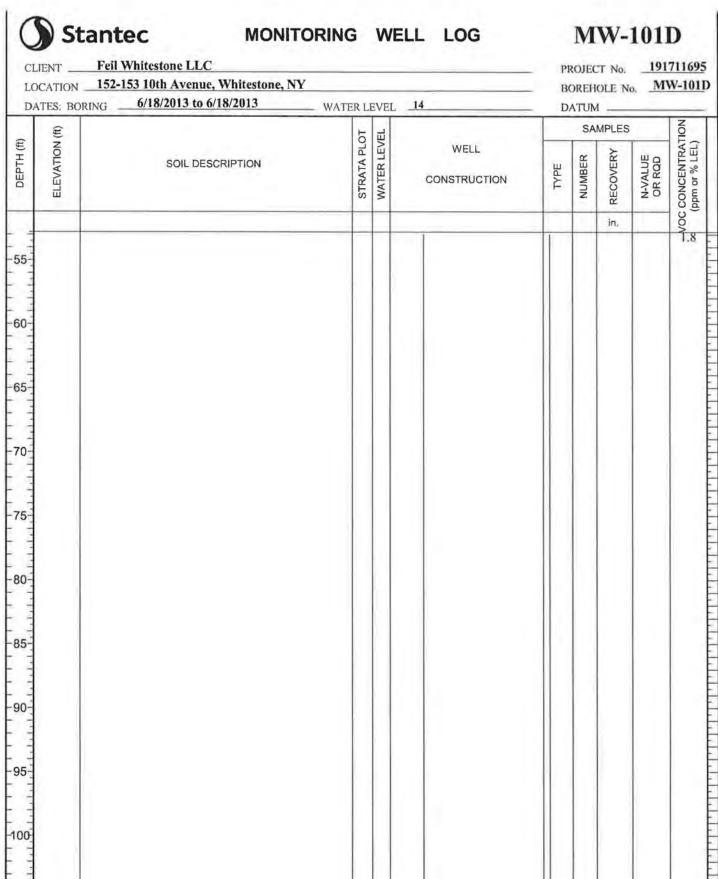
Well #:

Phone: (908) 668-7777 Fax:(908) 754-5936 MW-3D Start Date: 10/02/08 Site: Waldbaum's Shopping Center Site/Former Well Permit #: NA Johnny On The Spot Dry Cleaners 10/02/08 Completion Date: Geologist: Dustin Kapson Drilling Co.: Tri-State Drilling, Inc. Driller/Helper: Drill Rig: IR-T2W Paul Recchia **Drilling Method:** Hollow Stem Auger WELL LOCATION SKETCH (N.T.S) Type of Bit: Auger Sampler Type: Split Spoon Solid Riser: 0.0' - 3.0' G.W. Encountered: 4.5' 35.0 G.W. Stabilized: 6.04 Well Depth: Screen Interval/Screen Type: 30.0' - 35.0' Depth to Rim: Borehole Diameter: Well Diameter: 2" Grout: 0.0' - 28' Sand Pack/Open Borehole: 28' - 35.0' WELL CONSTRUCTION DIAGRAM PID/FID/OUA (METER UNITS) PLE ID DEPTH (FT.) DEPTH (FT.) (INCHES) (N.T.S) SOIL/GEOLOGICAL DESCRIPTION SAMPL AND D SOIL Sand Gray Fine Sand, Some Sill, Little Fine to Medium Gravei 25 0.0 25 26 0.0 20 26 30' Solid Riser 27 0.0 27 of 2" PVC 28 0.0 24 28 29 0.0 29 0.0 30 22 30 Brown Coarse to Fine Sand, Little Firm Gravel and Cobbles, Trace Silt 31 0.0 31 0.0 18 32 32 5' 0.020 Slot 2" 33 0.0 33 **PVC Screen** 0.0 20 34 Sand Pack 35 0.0 35 from 28' - 35' Total depth of well 35.0' Below Ground Surface 0.0 36 Groundwater Encountered at 4.5' 0.0 37 0.0 38 0.0 39 0.0 0.0 0.0 20 21

24

MONITORING WELL LOG

MW-101D


Continued Next Page

 CLIENT
 Feil Whitestone LLC
 PROJECT No.
 191711695

 LOCATION
 152-153 10th Avenue, Whitestone, NY
 BOREHOLE No.
 MW-101D

 DATES: BORING
 6/18/2013 to 6/18/2013
 WATER LEVEL
 14
 DATUM

	Œ Z		10	Æ		14.00		SA	MPLES	
	ELEVATION (ft)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL		WELL	TYPE	NUMBER	RECOVERY	N-VALUE OR RQD
		pl C							in.	
-		Concrete	/ 🚃	88		B				
1		Grey fine to coarse SAND, some silt, trace gravel. Moist. (fill)	J.	000	Thirthirth		PUSI	11	32	
41111		Brown fine to coarse SAND, little gravel, trace silt. Moist. (fill)			քներների արդաների արդաների մարդաների արդաների արդաների արդաների արդաների արդաների արդաների անդաների արդաների ա Մարդար հայոնում արդաների արդաների արդաների արդաների արդաների արդաների արդաների արդաների արդաների անդաների արդա		PUSI	12	60	
=		Clay	7				100	12	OU	
-		11	1/		HILLIAN STREET					
A LIVE					Highligh Michigan		PUSI	13	60	
5-		Grey fine to medium SAND, little gravel, trace clay.			INTERIOR DESIGNATION OF THE PERSON OF THE PE		+		-	-
1							PUSI	K 1	60	
4							103	14	00	
1		Grey fine to coarse SAND, some gravel, little clay.	13				+			
1							PUSI	15	60	
3							100		ou	
3							-			
-							PUSI	16	60	
-							100		00	
1		Brown fine to coarse SAND, trace gravel, trace silt.			THE PERSON		1			
1							PUSI	17	60	
-										
1							PUSI	1.8	60	
3					8 8					
1					l li		1			
1							PUSI	19	60	11-4
-										
1					ZHE	1				
-		Clay	1/				PUSI	110	60	1
-			1				1031	110	-00	
-							-			
3										

105

Driller: ADT; Stantec Field Representative: Sam Burke

MONITORING WELL LOG

MW-101S

Feil Whitestone LLC PROJECT No. 191711695 LOCATION __ 152-153 10th Avenue, Whitestone, NY MW-101S BOREHOLE No. 6/18/2013 to 6/18/2013 DATES: BORING WATER LEVEL 13 DATUM -/OC CONCENTRATION (ppm or % LEL) SAMPLES EVATION (ft) STRATA PLOT WATER LEVEL DEPTH (ft) WELL RECOVERY N-VALUE OR RQD NUMBER SOIL DESCRIPTION TYPE CONSTRUCTION in. 0 Concrete Grey fine to coarse SAND, some silt, trace gravel. Moist. 0.3 0.3 PUSH 1 32 0.2 0.2 5 Brown fine to coarse SAND, little gravel, trace silt. Moist. (fill) 1.7 2.3 PUSH 2 60 5.8 0.7 Clay 0.6 1.8 1.6 PUSH 3 2.2 60 0.8 0.7 Grey fine to medium SAND, little gravel, trace clay. 15 0.1 0.2 PUSH 4 0.2 60 0.3 0.3 20 Driller; ADT; Stantec Field Representative: Sam Burke

STN13-MON-! WHITESTONE, GPJ JW NHP, GDT 11/20/17

STN13-MON-I WHITESTONE GPJ JW NHP, GDT 11/20/17

MONITORING WELL LOG

MW-102D

Feil Whitestone LLC 191711695 PROJECT No. LOCATION 152-153 10th Avenue, Whitestone, NY MW-102D BOREHOLE No. 6/19/2013 to 6/19/2017 DATES: BORING WATER LEVEL DATUM CONCENTRATION (ppm or % LEL) SAMPLES (# WATER LEVEL STRATA PLOT DEPTH (ft) ELEVATION WELL N-VALUE OR RQD RECOVERY NUMBER SOIL DESCRIPTION TYPE CONSTRUCTION 200/ in. 0 Concrete 0.1 Brown fine to coarse SAND, some silt, little gravel. PUSH 1 24 0.2 Moist/wet 0.1 5 Grey-brown fine to coarse SAND, little silt, trace gravel, 0.1 trace clay. Moist PUSH 2 60 0.3 0.1 0.2 Grey-brown fine to coarse SAND, little silt, trace gravel, 0.3 trace clay. Moist PUSH 3 60 0.5 0.7 0.9 Grey-brown fine to coarse SAND, little silt, trace gravel, 0.6 trace clay. Wet at 16' PUSH 4 60 0.3 0.2 20 0.1 Grey-brown fine to coarse SAND, trace silt 0.1 PUSIT 5 60 0.1 0.3 25 0.3 Grey-brown fine to coarse SAND, trace silt 0.7 IUSH 6 60 2.5 1.8 30 Grey-brown fine to coarse SAND, trace silt 2.7 2.3 RUSH 7 60 0.9 1.6 35 Red fine to coarse SAND, little silt, trace gravel 2.1 4.8 PUSH 8 60 12.3 Clay 8.4 -40 0.6 Red fine to coarse SAND, little silt, trace gravel 0.8 PUSH 9 60 0.3 0.2 Red fine to coarse SAND, little silt, trace gravel 0.2 0.1 PUSH10 60 0.0 50 0.1 Red fine to coarse SAND, little silt, trace gravel 0.3 PUSHII 60 0.1 0.1 55 0.1 0.4 0.1 0.1 Driller: ADT; Stantec Field Representative: Sam Burke Continued Next Page

MONITORING WELL LOG

MW-102D

	52-153 10th Avenue, Whitestone, N				75				io. MV
TES: BORING	6/19/2013 to 6/19/2017	WATER L	EVE	EL -	16	_ D	ATUN	_	
ELEVATION (#)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL		WELL	TYPE	NUMBER	RECOVERY T	N-VALUE OR RQD
								in.	

LO	ENT _	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2			n. 7	В	ROJEC	ET No.	144	711695 W-102
T		OKING WA	T Fire	1				MPLES		N O
מבינו (וו)	ELEVATION (ft)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	WELL	TYPE	NUMBER	RECOVERY	N-VALUE OR RQD	VOC CONCENTRATION (ppm or % LEL)
1					W 116			in.		Noc
1		Concrete Brown fine to coarse SAND, some silt, little gravel. Moist/wet								0.1
						PUS	H4	24		0.1
Transfer to the T		Grey-brown fine to coarse SAND, little silt, trace gravel, trace clay. Moist		Ā		PUS	H 2	60		0.1 0.1 0.3 0.1 0.2
		Grey-brown fine to coarse SAND, little silt, trace gravel, trace clay. Moist				PUS	H 3	60		0.3 0.5 0.7 0.9 0.6
		Grey-brown fine to coarse SAND, little silt, trace gravel, trace clay. Wet at 16'				PUS	H 4	60		0.3 0.2 0.1 0.1 0.1
-		Grey-brown fine to coarse SAND, trace silt				PUS	11.5	60		0.3

Continued Next Page

Driller: ADT; Stantec Field Representative: Sam Burke

STA13-MON-I WHITESTONE GPJ JW NHP GDT 11/20/17

	TES: BORING	-153 10th Avenue, Whitestone, 6/19/2013 to 6/19/2013	WATER L	EVE	1 7	0			1	lo. M	
T				1					MPLES		NO
טברוח (ת)	ELEVATION (ft)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL		WELL	TYPE	NUMBER	RECOVERY	N-VALUE OR RQD	VOC CONCENTRATION
1			150						in.		VOC
5-											
1											
7											
1											
-											
-											
-										1	
1						1	41				
-											
-				l.							
-											
-											
-											
				Н							
1											
1							Ш				
)											
-											
-											
-											
-											
5-1											
1											
1											
-											

MONITORING WELL LOG

MW-103D

CLIENT	Feil Whitestone LLC		PROJECT No. 191711695
LOCATION _	152-153 10th Avenue, Whitestone, I	NY	BOREHOLE No. MW-103I
DATES: BOR	ING 6/18/2013 to 6/18/2017	WATER LEVEL 13	DATUM —

£		15	ü	1		SA	MPLES		NOL
ELEVATION (#)	SOIL DESCRIPTION	STRATA PLOT	WATER I EVE	WELL	TYPE	NUMBER	RECOVERY	N-VALUE OR ROD	VOC CONCENTRATION
				di Dia			in.		Noc
	Asphalt Grey fine to coarse SAND, some silt, trace gravel. Moist.	-/							0.3
	orey the to coarse symb, some sit, trace graver. Moist.				PUS	H 1	34		0.4
	Grey fine to coarse SAND, some clay, little silt. Moist				H				0.3
					PUS	12	60		0.4
					103	12	00		0.4
-	Grey fine to coarse SAND, some silt, trace gravel. Moist.								0.4
	Wet @ 13'								0.4
			Ž	z 🔛 🔛	PUS	13	60		1.4
									0.7
	Grey fine to coarse SAND, some silt, trace gravel.								4.5
					PUS	14	60		3.0
					1022		7.0		1.8
	Grey fine to coarse SAND, trace silt, trace gravel.				-	-	_	-	0.8
							0.57		0.6
					PUS	15	60		0.4
									0.6
	Grey fine to coarse SAND, trace silt.								4.7
					PUS	16	60		3.5
							12.		3.0
	Grey fine to coarse SAND, trace silt.				+		-		0.3
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			類 麗	701701		60		0.3
					PUS	1 /	60		0.3
	Constitution of Carlos								0.3
	Grey fine to coarse SAND, trace silt								
					PUS	1 8	60		
	Clay	-							
		1							
	Driller: ADT; Stantee Field Representative: Sam Burke	-	-	1				-	

MONITORING WELL LOG

MW-201D

Feil Whitestone LLC PROJECT No. 191711695 152-153 10th Avenue, Whitestone, NY BOREHOLE No. MW-201D LOCATION _ 9/13/2017 to 9/13/2017 DATES: BORING WATER LEVEL DATUM VOC CONCENTRATION (ppm or % LEL) SAMPLES STRATA PLOT WATER LEVEL DEPTH (ft) ELEVATION WELL N-VALUE OR RQD NUMBER RECOVERY SOIL DESCRIPTION TYPE CONSTRUCTION in. 0 Concrete Fill. Dark grey fine to coarse SAND, trace silt, trace fine PUSH 1 gravel 5 Dark grey fine to coarse SAND, clayey silt, trace fine gravel PUSH 2 Grey silty fine SAND PUSH 3 15 Grey silty fine SAND, some medium sand PUSH 4 Fine brown SAND, some medium sand, trace silt PUSH 5 Dense fine grey-brown SAND, some silt stringers PUSH 6 30 Fine brown SAND, trace fine gravel PUSH 7 35 Fine brown SAND, trace fine gravel PUSH 8 Orange-brown silty, gravelly SAND Sand added to 39'below ground Grey CLAY surface Driller: ADT; Stantec Field Representative: Bruce Bline

STN13-MON-I WHITESTONE GPJ JW NHP GDT 11/20/17

STN13-MON-I WHITESTONE.GPJ JW NHP.GDT 11/20/17

MONITORING WELL LOG

MW-201S

Feil Whitestone LLC PROJECT No. 191711695 LOCATION __152-153 10th Avenue, Whitestone, NY BOREHOLE No. MW-201S 9/13/2017 to 9/13/2017 DATES: BORING WATER LEVEL DATUM -VOC CONCENTRATION (ppm or % LEL) SAMPLES WATER LEVEL STRATA PLOT DEPTH (ft) ELEVATION WELL N-VALUE OR RQD RECOVERY NUMBER SOIL DESCRIPTION TYPE CONSTRUCTION in. 0 Concrete Fill. Dark grey fine to coarse SAND, trace silt, trace fine gravel PUSH 1 5 Dark grey fine to coarse SAND, clayey silt, trace fine gravel PUSH 2 Grey silty fine SAND PUSH 3 15 Grey silty fine SAND, some medium sand PUSH 4 20 Driller: ADT; Stantec Field Representative: Bruce Bline

BORING LOG

B-113/MW-113

DATUM ____

Feil Whitestone, LLC PROJECT No. __191711695 **LOCATION** Former Johnny on the Spot Cleaners Whitestone, Queens, NY BOREHOLE No. B-113/MW-113 DATES: BORING 6/8/2022 to 6/8/2022

WATER LEVEL 3 Approximate Depth

<i>D</i> .	TIES. DC	WATI				T D	ATUN			
$\overline{}$	(#)		ТО	百			SA	MPLES		NO (
DEPTH (ft)	ELEVATION (ft)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	WELL	ш	ER	ΈRΥ	H G	VOC CONCENTRATION (ppm or % LEL)
DEF	ELEV,		STRA	WATE	CONSTRUCTION	TYPE	NUMBER	RECOVERY	N-VALUE OR RQD	ONCE m or 9
			"				_	in.	_)C CC
- 0 +		Damp grey/brown, fine to medium SAND and SILT, trace				<u> </u>		111.		<u> </u>
_		coarse sand and gravel								
-										
• -						HAN	D1	60		1.7
				Ā						1.7
-										
- 5 -		Damp grey/brown, fine to medium SAND and SILT, trace								†
		coarse sand and gravel. Seam of medium sand at 7'								
_										
-						PUSI	H 2	60		0.9
- -10-					[2] [[] [] [] [] [] [] [] [] [
-10-		Wet fine to medium SAND, trace gravel								
-						PUSI	I 3	60		1.1
-15 -		Wet fine to medium SAND, trace gravel								-
-		wet line to medium SAND, trace graver								
-										
						Direct	T 4	(0)		
-						PUSI	14	60		
-										
· -										
-20			<u> (48)</u>	_		11				
		Driller: ADT/Chris and John; Stantec Field Representative	e: Jas	on V	Vard					

STN13-MON-I WES.GPJ JW NHP.GDT 10/21/22

APPENDIX C

DUSR and Laboratory Report – September 2017 Soils

Stantec Analytical Validation DUSR

Report No. 021518-EC-01 Project Number: 191711695 Project Name: Whitestone Laboratory: Test America – Test America – Edison, NJ Stantec Validator: Elizabeth Crowley Date Validated: 02/13/18 Laboratory Project Number: 460-140792-1 Sample Start-End Date: 09/11/17 Laboratory Report Date: 09/24/17 Parameters Validated: Volatile Organic Compounds (VOC) by EPA SW 846 8260C Associated Chain(s) of Custody - 274567 Samples Validated – 10 soil field samples and 1 Trip Blank **VALIDATION CRITERIA CHECK** Validation Flags Applicable to this Review: The analyte was analyzed for, but not detected above the reported sample quantitation limit. J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. В The analyte was detected in the method, field and/or trip blank. 1. Yes Were all the analyses requested for the samples No submitted with each COC completed by the lab? Χ Comments: Yes Did the laboratory identify any non-conformances No related to the analytical result? Χ Comments: Case narrative reports matrix issues, dilutions and minor analytical problems. Were sample Chain-of-Custody forms complete? Yes No Χ Comments: Were samples received in good condition and at the Yes No appropriate temperature? Χ Comments: Were sample holding times met? Yes Nο Χ Comments: Were correct concentration units reported? Yes No Χ Comments: Were detections found in laboratory blank samples? Yes No

Χ

Comments: Prep Batch 462404 – Methylene Chloride = 0.00025 mg/kg.		
Sample results below the blank concentration are validated to non-detect results greater than the blank concentration are flagged "JB". The detect concentration. Sample results greater than 10 times the blank concentra Reason Code – MB	tion limit changed to t	he blank
8. Were detections found in field blank, equipment rinse	Yes	No
blank, and/or trip blank samples?	X	140
Comments: Trip Blank – Acetone = 3.3 μg/L.		
Sample results below the blank concentration are validated to non-detect results greater than the blank concentration are flagged "JB". The detect concentration. Sample results greater than 10 times the blank concentra Reason Code – TB	tion limit changed to t	he blank
9. Were instrument calibrations within method criteria?	Yes	No X
Comments: Analytical Batch 462654 – Continuing calibration %D above : Chloroethane (21%). Associated sample results flagged "UJ". Reason Code – CCAL	±limit for 2-Butanone	(27%) and
10. Were surrogate recoveries within control limits?	Yes	No
	X	
Comments:		
11. Were laboratory control sample recoveries within control limits?	Yes X	No
Comments:		
12. Were matrix spike recoveries within control limits? NA	Yes	No
Comments: No matrix sample data reported.		
13. Were RPDs within control limits?	Yes	No
	X	
Comments:		
14. Were dilutions required on any samples?	Yes	No
	X	
Comment: Dilution required due to target analyte concentration. No qua	llifying action is requir	ed.
15. Were Tentatively Identified Compounds (TIC) present?	Yes X	No
Comments: Sample results below the reporting limit do not possess the displayed "NJ". Reason Code – SQL		
	.,	
16. Were organic system performance criteria met?	Yes X	No
Comments:		

			Х	
Comments:				
18. Were inorganic sys	tem performance criteria met?	NA NA	Yes	No
Comments: No inorganio	analyses requested.			
19. Were blind field du precision (RPD) of the re	plicates collected? If so, discuesults.	ss the	Yes	No X
Duplicate Sample No.	Primary Sample No.			
Comments:				
20. Were at least 10 per the Electronic Data Deliv	ercent of the hard copy results rerable Results?	· · · · · · · · · · · · · · · · · · ·	'es No X	Initials EAC
Comments:				
21. Other: Questionabl	e Chromatograms		Yes X	No
	chromatogram is questionable ut of limits for Methylene Chlori ed "J".			
PRECISION, ACC	URACY, METHOD COMPLIA	NCE AND COMPLETE	ENESS ASSESSI	MENT
Precision:	Acceptable X	Unacceptable	Initials E	AC
Comments: Data usable	as flagged.		-	
Accuracy:	Acceptable X	Unacceptable	Initials E	AC
Comments: Data usable	as flagged.		•	
Method Compliance:	Acceptable X	Unacceptable	Initials E	AC
Comments: Data usable	as flagged.			
Completeness:	Acceptable X	Unacceptable	Initials E	AC
Comments: Greater than	90%, no data rejected			

Stantec Analytical Validation DUSR

Report No. 021518-EC-02 Project Number: 191711695 Project Name: Whitestone Laboratory: Test America – Test America – Edison, NJ Stantec Validator: Elizabeth Crowley Date Validated: 02/14/18 Laboratory Project Number: 460-140863-1 Sample Start-End Date: 09/12/17 Laboratory Report Date: 09/21/17 Parameters Validated: Volatile Organic Compounds (VOC) by EPA SW 846 8260C Associated Chain(s) of Custody – no numbers Samples Validated – 19 soil field samples **VALIDATION CRITERIA CHECK** Validation Flags Applicable to this Review: The analyte was analyzed for, but not detected above the reported sample quantitation limit. J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. В The analyte was detected in the method, field and/or trip blank. 1. Yes Were all the analyses requested for the samples No submitted with each COC completed by the lab? Χ Comments: Yes Did the laboratory identify any non-conformances No related to the analytical result? Χ Comments: Case narrative reports matrix issues, dilutions and minor analytical problems. Were sample Chain-of-Custody forms complete? Yes No Χ Comments: Were samples received in good condition and at the Yes No appropriate temperature? Χ Comments: Were sample holding times met? Yes Nο Χ Comments: Were correct concentration units reported? Yes No Χ Comments: Were detections found in laboratory blank samples? Yes No

Χ

Comments: Prep Batch 462684 - Methylene Chloride = 0.00017 mg/kg and m&p-Xylene = 0.000229 Sample results below the blank concentration are validated to non-detect and flagged "UJB". Sample results greater than the blank concentration are flagged "JB". The detection limit changed to the blank concentration. Sample results greater than 10 times the blank concentration require no qualifying action. Reason Code - MB Were detections found in field blank, equipment rinse Yes No blank, and/or trip blank samples? NA Comments: No blank sample submitted. Were instrument calibrations within method criteria? Yes No Χ Comments: Analytical batch 462919 - Continuing calibration %D above ±20 limit for Carbon Disulfide (26%), cis-1,3-Dichloropropane (26%) and trans-1,3-Dichloropropane (24%). Analytical batch 462944 - Continuing calibration %D above ±20% limit for Bromoform (32%), Carbon Disulfide (26%) and Dichlorodifluoromethane (29%). Analytical batch 462978 - Continuing calibration %D above ±20% limit for 1,2-Dibromo-3-chloropropane (20.4%).Analytical batch 463159 - Continuing calibration %D above ±20% limit for Trifluorochloromethane (22%). Analytical batch 463160 - Continuing calibration %D above ±20% limit for 2-Hexanone (22%). Analytical batch 463758 - Continuing calibration %D above ±20% limit for Bromomethane (25%). Analytical batch 463829 - Continuing calibration %D above ±20% limit for Trichlorotrifluoroethane (22%) and Cyclohexane (20.2%). Associated sample results flagged "UJ". Reason Code - CCAL 10. Were surrogate recoveries within control limits? Yes No Χ Comments: 11. Were laboratory control sample recoveries within Yes No control limits? Χ Comments: 12. Were matrix spike recoveries within control limits? Yes No NA Comments: No matrix sample data reported. 13. Were RPDs within control limits? Yes No Χ Comments:

Yes

No

14. Were dilutions required on any samples?

			Х	
Comment: Dilution req	uired due to target analyte conce	entration. No qualifying	g action is require	ed.
15. Were Tentatively	Identified Compounds (TIC) pres	sent?	Yes X	No
quantitative confidence flagged "NJ".	sults below the reporting limit do required. The value may be a fa			
Reason Code – SQL				
16. Were organic syst	em performance criteria met?		Yes X	No
Comments:				
17. Were GC/MS inte	rnal standards within method crit	eria?	Yes X	No
Comments:				
18. Were inorganic sy	stem performance criteria met?	NA	Yes	No
Comments: No inorgan	ic analyses requested.			
19. Were blind field do precision (RPD) of the	uplicates collected? If so, discus results.	ss the	Yes	No X
Duplicate Sample No.	Primary Sample No.			
Comments:				
20. Were at least 10 p the Electronic Data Del	percent of the hard copy results of iverable Results?		es No X	Initials EAC
Comments:				
21. Other: Questional	ole Chromatograms		Yes	No X
Comments:				
PRECISION, ACC	CURACY, METHOD COMPLIAN	ICE AND COMPLETE	NESS ASSESSI	MENT
Precision:	Acceptable X	Unacceptable	Initials E	AC
Comments: Data usable	e as flagged.		•	
Accuracy:	Acceptable X	Unacceptable	Initials E	AC
Comments: Data usable	e as flagged.	_		
Method Compliance:	Acceptable X	Unacceptable	Initials E.	AC
Comments: Data usable	e as flagged.		I	

Completeness:	Acceptable X	Unacceptable	Initials EAC
Comments: Greater than	n 90%, no data rejected		

TABLE 1 SUMMARY OF SEPTEMBER 2017 SOIL QUALITY DATA: WITH DATA VALIDATION FORMER JOHNNY-ON-THE-SPOT CLEANERS WHITESTONE, NY

sus cample sode	lab_anl_	analysis data	lab_matrix_	dilution_	lah sampla id	cac rn	chamical name	result_	result_	lab_	validator_	reason_	method_	reporting_	detection
sys_sample_code	method_name	analysis_date	code	factor	lab_sample_id	cas_rn	chemical_name	value	type_code	qualifiers	qualifiers	code	detection_limit	detection_limit	limit_unit
101(7.6')-20170911	SW8260C	09/14/2017 03:52:0	00 SO	1	460-140792-8	75-00-3	CHLOROETHANE		TRG	U	UJ	CCAL	0.00064	0.0012	mg/kg
-101(7.6')-20170911	SW8260C	09/14/2017 03:52:0	00 SO	1	460-140792-8	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)		TRG	U	UJ	CCAL	0.0014	0.0061	mg/kg
101(14.5')-20170911	SW8260C	09/14/2017 04:15:0	00 SO	1	460-140792-9	67-64-1	ACETONE	0.0043	TRG	J	NJB	TB,SQL	0.0033	0.0044	mg/kg
101(14.5')-20170911	SW8260C	09/14/2017 04:15:0		1	460-140792-9	75-00-3	CHLOROETHANE	0.00.0	TRG	U	UJ	CCAL	0.00046	0.00087	mg/kg
101(14.5')-20170911	SW8260C	09/14/2017 04:15:0		1	460-140792-9	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)		TRG	U	ΠΊ	CCAL	0.00097	0.0044	mg/kg
101(14.5')-20170911	SW8260C	09/14/2017 04:15:0		1	460-140792-9	75-09-2	METHYLENE CHLORIDE	0.00028	TRG	ВЈ	NJB	ID,MB,SQL	0.00037	0.00087	mg/kg
101(1) 101/0011		00,11,2011 011101				75 65 2		0.00020					0.00020		6/6
102(6.5')-20170911	SW8260C	09/14/2017 03:04:0	00 SO	1	460-140792-6	75-00-3	CHLOROETHANE		TRG	U	UJ	CCAL	0.00066	0.0013	mg/kg
102(6.5')-20170911	SW8260C	09/14/2017 03:04:0	00 SO	1	460-140792-6	179601-23-1	M,P-XYLENES	0.00030	TRG	J	NJ	SQL	0.00022	0.0013	mg/kg
102(6.5')-20170911	SW8260C	09/14/2017 03:04:0	00 SO	1	460-140792-6	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)		TRG	U	UJ	CCAL	0.0014	0.0063	mg/kg
102(6.5')-20170911	SW8260C	09/14/2017 03:04:0	00 SO	1	460-140792-6	75-09-2	METHYLENE CHLORIDE	0.00034	TRG	BJ	NJB	ID,MB,SQL	0.00025	0.0013	mg/kg
102(6.5')-20170911	SW8260C	09/14/2017 03:04:0	00 SO	1	460-140792-6	127-18-4	TETRACHLOROETHYLENE(PCE)	0.00023	TRG	J	NJ	SQL	0.00018	0.0013	mg/kg
102(6.5')-20170911	SW8260C	09/14/2017 03:04:0	00 SO	1	460-140792-6	79-01-6	TRICHLOROETHYLENE (TCE)	0.00036	TRG	J	NJ	SQL	0.00018	0.0013	mg/kg
-102(13.6')-20170911	SW8260C	09/14/2017 03:28:0	00.50	1	460-140792-7	75-00-3	CHLOROETHANE		TRG	111	UJ	CCAL	0.00043	0.00082	mg/kg
102(13.6')-20170911	SW8260C	09/14/2017 03:28:0		1	460-140792-7	75-00-3	METHYLENE CHLORIDE		TRG	DI	UJB	MB	0.00045	0.00082	
	SW8260C	09/14/2017 03:28:0		1	_	127-18-4		0.00024	TRG	DJ	1			0.00082	mg/kg
102(13.6')-20170911				1	460-140792-7	+	TETRACHLOROETHYLENE (PCE)			J.	NJ	SQL	0.00012		mg/kg
102(13.6')-20170911	SW8260C	09/14/2017 03:28:0	-	1	460-140792-7	79-01-6	TRICHLOROETHYLENE (TCE)	0.00057	TRG	J	NJ	SQL	0.00012	0.00082	mg/kg
102(13.6')-20170911	SW8260C	09/14/2017 03:28:0	00 50	1	460-140792-7	75-01-4	VINYL CHLORIDE	0.00054	TRG	J	NJ	SQL	0.00045	0.00082	mg/kg
103(7.5')-20170911	SW8260C	09/14/2017 02:17:0		1	460-140792-4	67-64-1	ACETONE	0.017	TRG		JB	ТВ	0.0033	0.0041	mg/kg
103(7.5')-20170911	SW8260C	09/14/2017 02:17:0	00 SO	1	460-140792-4	75-15-0	CARBON DISULFIDE	0.00036	TRG	J	NJ	SQL	0.00022	0.00081	mg/kg
103(7.5')-20170911	SW8260C	09/14/2017 02:17:0	00 SO	1	460-140792-4	75-00-3	CHLOROETHANE		TRG	U	UJ	CCAL	0.00042	0.00081	mg/kg
103(7.5')-20170911	SW8260C	09/14/2017 02:17:0	00 SO	1	460-140792-4	179601-23-1	M,P-XYLENES	0.00022	TRG	J	NJ	SQL	0.00014	0.00081	mg/kg
103(7.5')-20170911	SW8260C	09/14/2017 02:17:0	00 SO	1	460-140792-4	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	0.0019	TRG	J	NJ	CCAL,SQL	0.00090	0.0041	mg/kg
-103(7.5')-20170911	SW8260C	09/14/2017 02:17:0	00 SO	1	460-140792-4	75-09-2	METHYLENE CHLORIDE		TRG	BJ	UJB	MB	0.00025	0.00081	mg/kg
103(7.5')-20170911	SW8260C	09/14/2017 02:17:0	00 SO	1	460-140792-4	95-47-6	O-XYLENE (1,2-DIMETHYLBENZENE)	0.00011	TRG	J	NJ	SQL	0.000077	0.00081	mg/kg
-103(7.5')-20170911	SW8260C	09/14/2017 02:17:0	00 SO	1	460-140792-4	127-18-4	TETRACHLOROETHYLENE(PCE)	0.00024	TRG	J	NJ	SQL	0.00012	0.00081	mg/kg
103(13.6')-20170911	SW8260C	09/14/2017 02:40:0	00.50	1	460-140792-5	75-15-0	CARBON DISULFIDE	0.00057	TRG	1	NJ	SQL	0.00026	0.00098	mg/kg
103(13.6')-20170911	SW8260C	09/14/2017 02:40:0		1	460-140792-5	75-00-3	CHLOROETHANE	0.00037	TRG	Tu .	UJ	CCAL	0.00051	0.00098	mg/kg
103(13.6')-20170911	SW8260C	09/14/2017 02:40:0		1	460-140792-5	1	M,P-XYLENES	0.00032	TRG	ı	NJ	SQL	0.00017	0.00098	mg/kg
103(13.6')-20170911	SW8260C	09/14/2017 02:40:0		1	460-140792-5	75-09-2	METHYLENE CHLORIDE	0.00032	TRG	BI	NJB	ID,MB,SQL	0.00017	0.00098	mg/kg
103(13.6')-20170911	SW8260C	09/14/2017 02:40:0		1	460-140792-5	156-60-5	TRANS-1,2-DICHLOROETHENE	0.00020	TRG	1	NJ	SQL	0.00023	0.00098	mg/kg
103(13.6')-20170911	SW8260C	09/14/2017 02:40:0		1	460-140792-5	79-01-6	TRICHLOROETHYLENE (TCE)	0.00052	TRG	J	NJ	SQL	0.00024	0.00098	mg/kg
·															
104(7.0')-20170911	SW8260C	09/14/2017 01:29:0		1	460-140792-2	67-64-1	ACETONE	0.011	TRG		JB	ТВ	0.0038	0.0050	mg/kg
104(7.0')-20170911	SW8260C	09/14/2017 01:29:0	00 SO	1	460-140792-2	75-15-0	CARBON DISULFIDE	0.00039	TRG	J	NJ	SQL	0.00027	0.0010	mg/kg
104(7.0')-20170911	SW8260C	09/14/2017 01:29:0	00 SO	1	460-140792-2	75-00-3	CHLOROETHANE		TRG	U	UJ	CCAL	0.00052	0.0010	mg/kg
104(7.0')-20170911	SW8260C	09/14/2017 01:29:0	00 SO	1	460-140792-2	179601-23-1	M,P-XYLENES	0.00028	TRG	J	NJ	SQL	0.00017	0.0010	mg/kg
104(7.0')-20170911	SW8260C	09/14/2017 01:29:0	00 SO	1	460-140792-2	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	0.0025	TRG	J	NJ	CCAL,SQL	0.0011	0.0050	mg/kg
104(7.0')-20170911	SW8260C	09/14/2017 01:29:0	00 SO	1	460-140792-2	75-09-2	METHYLENE CHLORIDE	0.00035	TRG	BJ	NJB	ID,MB,SQL	0.00016	0.0010	mg/kg
104(7.0')-20170911	SW8260C	09/14/2017 01:29:0	00 50	1	460-140792-2	95-47-6	O-XYLENE (1,2-DIMETHYLBENZENE)	0.00012	TRG	T ₁	NJ	SQL	0.000095	0.0010	mg/kg

TABLE 1 SUMMARY OF SEPTEMBER 2017 SOIL QUALITY DATA: WITH DATA VALIDATION FORMER JOHNNY-ON-THE-SPOT CLEANERS WHITESTONE, NY

#sys_sample_code	lab_anl_ method_name	analysis_date	lab_matrix_ code	dilution_ factor	lab_sample_id	cas_rn	chemical_name	result_ value	result_ type_code	lab_ qualifiers	validator_ qualifiers	reason_ code	method_ detection_limit	reporting_ detection_limit	detection_ limit_unit
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00	SO	1	460-140792-3	67-64-1	ACETONE	0.0059	TRG		JB	ТВ	0.0036	0.0047	mg/kg
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00		1	460-140792-3	75-15-0	CARBON DISULFIDE	0.00026	TRG	J	NJ	SQL	0.00025	0.00094	mg/kg
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00	SO	1	460-140792-3	75-00-3	CHLOROETHANE		TRG	U	UJ	CCAL	0.00049	0.00094	mg/kg
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00	SO	1	460-140792-3	179601-23-1	M,P-XYLENES	0.00046	TRG	J	NJ	SQL	0.00016	0.00094	mg/kg
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00	SO	1	460-140792-3	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)		TRG	U	UJ	CCAL	0.0010	0.0047	mg/kg
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00	SO	1	460-140792-3	75-09-2	METHYLENE CHLORIDE		TRG	ВЈ	UJB	МВ	0.00025	0.00094	mg/kg
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00	SO	1	460-140792-3	95-47-6	O-XYLENE (1,2-DIMETHYLBENZENE)	0.00022	TRG	J	NJ	SQL	0.000090	0.00094	mg/kg
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00	SO	1	460-140792-3	156-60-5	TRANS-1,2-DICHLOROETHENE	0.00059	TRG	J	NJ	SQL	0.00023	0.00094	mg/kg
B-104(14.3')-20170911	SW8260C	09/14/2017 01:53:00	SO	1	460-140792-3	75-01-4	VINYL CHLORIDE	0.00056	TRG	J	NJ	SQL	0.00051	0.00094	mg/kg
B-105 (5.5')-20170912	SW8260C	09/15/2017 23:36:00	SO	1	460-140863-12	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00044	0.00096	mg/kg
B-105 (5.5')-20170912	SW8260C	09/15/2017 23:36:00		1	460-140863-12	179601-23-1	M,P-XYLENES	0.00024	TRG	J	NJ	SQL	0.00017	0.00096	mg/kg
B-105 (5.5')-20170912	SW8260C	09/15/2017 23:36:00	SO	1	460-140863-12	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	0.0020	TRG	J	NJ	SQL	0.0011	0.0048	mg/kg
B-105 (13.5')-20170912	SW8260C	09/15/2017 12:27:00	SO	1	460-140863-13	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00039	0.00084	mg/kg
B-105 (13.5')-20170912	SW8260C	09/15/2017 12:27:00	1	1	460-140863-13		M,P-XYLENES		TRG	RI	UJB	MB	0.00033	0.00084	mg/kg
B-105 (13.5')-20170912	SW8260C	09/15/2017 12:27:00	1	1		79-01-6	TRICHLOROETHYLENE (TCE)	0.00012	TRG	1	NJ	SQL	0.00012	0.00084	mg/kg
D 103 (13.5) 20170312	34402000	00/10/2017 12:27:00		1	400 140003 13	75 01 0	THICHEONOETH LENE (162)	0.00012	TING TING		143	JQL	0.00012	0.00004	1116/116
B-106 (5.5')-20170912	SW8260C	09/15/2017 12:51:00	SO	1	460-140863-14	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00046	0.0010	mg/kg
B-106 (5.5')-20170912	SW8260C	09/15/2017 12:51:00	SO	1	460-140863-14	100-41-4	ETHYLBENZENE	0.00042	TRG	J	NJ	SQL	0.00020	0.0010	mg/kg
B-106 (5.5')-20170912	SW8260C	09/15/2017 12:51:00	SO	1	460-140863-14	179601-23-1	M,P-XYLENES	0.0016	TRG	В	JB	MB	0.00023	0.0010	mg/kg
B-106 (5.5')-20170912	SW8260C	09/15/2017 12:51:00	SO	1	460-140863-14	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	0.0019	TRG	J	NJ	SQL	0.0011	0.0050	mg/kg
B-106 (5.5')-20170912	SW8260C	09/15/2017 12:51:00	SO	1	460-140863-14	108-87-2	METHYLCYCLOHEXANE	0.00061	TRG	J	NJ	SQL	0.00016	0.0010	mg/kg
D 100 (14 F!) 20170012	CM63COC	09/15/2017 13:16:00	020	1	460-140863-15	96-12-8	1.2 DIDDOMO 2 CHI ODODDODANE		TRG	11	111	CCAL	0.00062	0.0013	ma // // /
B-106 (14.5')-20170912	SW8260C SW8260C	09/15/2017 13:16:00		1			1,2-DIBROMO-3-CHLOROPROPANE	0.00037	TRG	D.I	NJB	MB,SQL	0.00062	0.0013	mg/kg
B-106 (14.5')-20170912	30082000	09/13/2017 13.10.00	30	1	460-140863-15	1/9001-23-1	M,P-XYLENES	0.00037	ING	DJ	INJD	IVID,3QL	0.00023	0.0013	mg/kg
B-107 (6.5')-20170912	SW8260C	09/15/2017 13:41:00	SO	1	460-140863-16	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00041	0.00090	mg/kg
B-107 (6.5')-20170912	SW8260C	09/15/2017 13:41:00	SO	1	460-140863-16	179601-23-1	M,P-XYLENES		TRG	BJ	UJB	МВ	0.00023	0.00090	mg/kg
B-107 (12.5')-20170912	SW8260C	09/15/2017 22:48:00	so	1	460-140863-17	156-59-2	CIS-1.2-DICHLOROETHYLENE	0.00030	TRG		NI	SQL	0.00013	0.00085	mg/kg
B-107 (12.5')-20170912	SW8260C	09/15/2017 22:48:00	+	1	460-140863-17		,	0.00023	TRG	1	NJ	SQL	0.00015	0.00085	mg/kg
B-107 (12.5')-20170912	SW8260C	09/15/2017 22:48:00		1	460-140863-17		METHYL ETHYL KETONE (2-BUTANONE)	0.0012	TRG	1	NJ	SQL	0.00095	0.0043	mg/kg
B-107 (12.5')-20170912	SW8260C	09/15/2017 22:48:00		1	460-140863-17		TRICHLOROFLUOROMETHANE	0.0012	TRG	U	UJ	CCAL	0.00035	0.00085	mg/kg
(,										1					
B-108 (5.5')-20170912	SW8260C	09/15/2017 14:30:00	SO	1	460-140863-18	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00043	0.00094	mg/kg
B-108 (5.5')-20170912	SW8260C	09/15/2017 14:30:00		1	460-140863-18		TETRACHLOROETHYLENE(PCE)	0.00087	TRG	J	NJ	SQL	0.00013	0.00094	mg/kg
B-108 (5.5')-20170912	SW8260C	09/15/2017 14:30:00		1	460-140863-18		TOLUENE	0.00061	TRG	J	NJ	SQL	0.00059	0.00094	mg/kg
															,
B-108 (13.5')-20170912	SW8260C	09/15/2017 14:55:00	1	1	460-140863-19		1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00042	0.00092	mg/kg
B-108 (13.5')-20170912	SW8260C	09/15/2017 14:55:00	50	1	460-140863-19	1/9601-23-1	M,P-XYLENES		TRG	R1	UJB	МВ	0.00023	0.00092	mg/kg
B-109 (3.5'-5.0')-20170912	SW8260C	09/15/2017 11:37:00	so	1	460-140863-11	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00041	0.00089	mg/kg
B-111 (3.5')-20170912	SW8260C	09/15/2017 09:59:00	so	1	460-140863-1	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00045	0.00097	mg/kg
B-111 (3.5')-20170912	SW8260C	09/15/2017 09:59:00		1	460-140863-1		M,P-XYLENES	0.00030	TRG	BI	NJB	MB,SQL	0.00043	0.00097	mg/kg
B-111 (3.5')-20170912	SW8260C	09/15/2017 09:59:00	1	1		79-01-6	TRICHLOROETHYLENE (TCE)	0.00036	TRG	1	NJ	SQL	0.00023	0.00097	mg/kg
D TTT (3.3) 201/0312	34402000	03/13/2017 03.03.00		-	-00 T-0003-T	, , , , , , ,	THICHEOROETHTEENE (TCL)	0.00030	1110	,	143	عرد	0.00017	0.00057	1116/ Nő

TABLE 1 SUMMARY OF SEPTEMBER 2017 SOIL QUALITY DATA: WITH DATA VALIDATION FORMER JOHNNY-ON-THE-SPOT CLEANERS WHITESTONE, NY

	lab_anl_		lab matrix	dilution_				result_	result_	lab_	validator_	reason	method_	reporting_	detection
#sys_sample_code	method_name	analysis_date	code	factor	lab_sample_id	cas_rn	chemical_name	value	_	qualifiers	qualifiers	code	detection_limit	detection_limit	limit_unit
B-111 (14.5')-20170912	SW8260C	09/15/2017 03:10:0	0 SO	1	460-140863-2	75-15-0	CARBON DISULFIDE		TRG	UT	UJ	CCAL	0.00028	0.0010	mg/kg
B-111 (14.5')-20170912	SW8260C	09/15/2017 03:10:0	0 SO	1	460-140863-2	10061-01-5	CIS-1,3-DICHLOROPROPENE		TRG	U	UJ	CCAL	0.00028	0.0010	mg/kg
B-111 (14.5')-20170912	SW8260C	09/15/2017 03:10:0	0 SO	1	460-140863-2	179601-23-1	M,P-XYLENES		TRG	BJ	UJB	МВ	0.00023	0.0010	mg/kg
B-111 (14.5')-20170912	SW8260C	09/15/2017 03:10:0	0 SO	1	460-140863-2	10061-02-6	TRANS-1,3-DICHLOROPROPENE		TRG	U	UJ	CCAL	0.00028	0.0010	mg/kg
B-112 (8.5')-20170912	SW8260C	09/15/2017 03:34:0	0 SO	1	460-140863-3	75-15-0	CARBON DISULFIDE		TRG	UT	UJ	CCAL	0.00022	0.00084	mg/kg
B-112 (8.5')-20170912	SW8260C	09/15/2017 03:34:0	0 SO	1	460-140863-3	10061-01-5	CIS-1,3-DICHLOROPROPENE		TRG	U	UJ	CCAL	0.00023	0.00084	mg/kg
B-112 (8.5')-20170912	SW8260C	09/15/2017 03:34:0	0 SO	1	460-140863-3	75-09-2	METHYLENE CHLORIDE	0.00042	TRG	BJ	NJB	MB,SQL	0.00018	0.00084	mg/kg
B-112 (8.5')-20170912	SW8260C	09/15/2017 03:34:0	0 SO	1	460-140863-3	156-60-5	TRANS-1,2-DICHLOROETHENE	0.00045	TRG	J	NJ	SQL	0.00021	0.00084	mg/kg
B-112 (8.5')-20170912	SW8260C	09/15/2017 03:34:0	0 SO	1	460-140863-3	10061-02-6	TRANS-1,3-DICHLOROPROPENE		TRG	U	UJ	CCAL	0.00022	0.00084	mg/kg
B-112 (14.5')-20170912	SW8260C	09/20/2017 02:02:0	0 SO	1	460-140863-4	74-83-9	BROMOMETHANE		TRG	U	UJ	CCAL	0.00041	0.00086	mg/kg
B-112 (14.5')-20170912	SW8260C	09/20/2017 02:02:0	0 SO	1	460-140863-4	100-41-4	ETHYLBENZENE	0.00017	TRG	J	NJ	SQL	0.00017	0.00086	mg/kg
B-112 (14.5')-20170912	SW8260C	09/20/2017 02:02:0	0 SO	1	460-140863-4	179601-23-1	M,P-XYLENES	0.00050	TRG	BJ	NJB	MB,SQL	0.00023	0.00086	mg/kg
B-112 (14.5')-20170912	SW8260C	09/20/2017 02:02:0	0 SO	1	460-140863-4	95-47-6	O-XYLENE (1,2-DIMETHYLBENZENE)	0.00013	TRG	J	NJ	SQL	0.000082	0.00086	mg/kg
B-112 (14.5')-20170912	SW8260C	09/20/2017 02:02:0	0 SO	1	460-140863-4	156-60-5	TRANS-1,2-DICHLOROETHENE	0.00040	TRG	J	NJ	SQL	0.00021	0.00086	mg/kg
B-113 (12.9')-20170912	SW8260C	09/16/2017 03:33:0	0 SO	100	460-140863-6	591-78-6	2-HEXANONE		TRG	U	UJ	CCAL	0.14	0.94	mg/kg
B-113 (12.9')-20170912	SW8260C	09/16/2017 03:33:0	0 SO	100	460-140863-6	75-01-4	VINYL CHLORIDE	0.056	TRG	J	NJ	SQL	0.038	0.19	mg/kg
B-113 (6.5')-20170912	SW8260C	09/20/2017 11:06:0	0 SO	50	460-140863-5	76-13-1	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE		TRG	U	UJ	CCAL	0.025	0.074	mg/kg
B-113 (6.5')-20170912	SW8260C	09/20/2017 11:06:0	0 SO	50	460-140863-5	110-82-7	CYCLOHEXANE		TRG	U	UJ	CCAL	0.019	0.074	mg/kg
B-114 (1.0')-20170912	SW8260C	09/15/2017 00:22:0	0 SO	50	460-140863-9	75-25-2	BROMOFORM		TRG	U	UJ	CCAL	0.015	0.086	mg/kg
B-114 (1.0')-20170912	SW8260C	09/15/2017 00:22:0	0 SO	50	460-140863-9	75-15-0	CARBON DISULFIDE		TRG	U	UJ	CCAL	0.019	0.086	mg/kg
B-114 (1.0')-20170912	SW8260C	09/15/2017 00:22:0	0 SO	50	460-140863-9	124-48-1	DIBROMOCHLOROMETHANE		TRG	U	UJ	CCAL	0.019	0.086	mg/kg
B-114 (1.0')-20170912	SW8260C	09/15/2017 00:22:0	0 SO	50	460-140863-9	75-71-8	DICHLORODIFLUOROMETHANE		TRG	U	UJ	CCAL	0.012	0.086	mg/kg
B-114 (14.0')-20170912	SW8260C	09/15/2017 11:13:0	0 SO	1	460-140863-10	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00039	0.00085	mg/kg
B-114 (14.0')-20170912	SW8260C	09/15/2017 11:13:0	0 SO	1	460-140863-10	75-01-4	VINYL CHLORIDE	0.00065	TRG	J	NJ	SQL	0.00047	0.00085	mg/kg
B-115 (14.0')-20170912	SW8260C	09/15/2017 10:48:0	0 SO	1	460-140863-8	75-35-4	1,1-DICHLOROETHENE	0.00023	TRG	J	NJ	SQL	0.00018	0.00081	mg/kg
B-115 (14.0')-20170912	SW8260C	09/15/2017 10:48:0	0 SO	1	460-140863-8	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00037	0.00081	mg/kg
B-115 (6.5')-20170912	SW8260C	09/15/2017 10:23:0	0 SO	1	460-140863-7	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE		TRG	U	UJ	CCAL	0.00038	0.00083	mg/kg
B-115 (6.5')-20170912	SW8260C	09/15/2017 10:23:0	0 SO	1	460-140863-7	75-15-0	CARBON DISULFIDE	0.00062	TRG	J	NJ	SQL	0.00022	0.00083	mg/kg
B-115 (6.5')-20170912	SW8260C	09/15/2017 10:23:0	0 SO	1	460-140863-7	78-93-3	METHYL ETHYL KETONE (2-BUTANONE)	0.0016	TRG	J	NJ	SQL	0.00092	0.0042	mg/kg
Trip Blank-20170911	SW8260C	09/15/2017 22:31:0	0 SO	1	460-140792-1	67-64-1	ACETONE	3.3	TRG	J	NJ	SQL	1.1	5.0	ug/l

Lab Qualifiers

B = Coumpound was found in the blank and sample

E = Result exceeded calibration range.

J = Indicates an Estimated Value for TICs

N = This flag indicates the presumptive evidence of a compound.

U = Indicates the analyte was analyzed for but not detected.

Result Type Code

TRG = target analyte

TIC = tentitivaly identified compound

Validator Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported

quantitation limit is approximate and may or may not represent the actual limit of quantitation

necessary to accurately and precisely measure the analyte in the sample.

NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

B = The analyte was detected in the method, field and/or trip blank

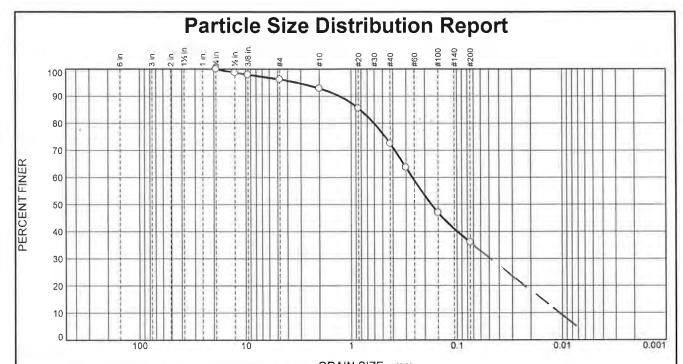
Reason Code

CCAL = Continuing Calibration problem

ID = Identification questionable/incorrect

MB = Matrix Spike Duplicate

SQL = Subquantitation Level


TB = Trip Blank

Page 3 of 3 Tables Sept Soil.xlsx Checked by: DFM

APPENDIX D

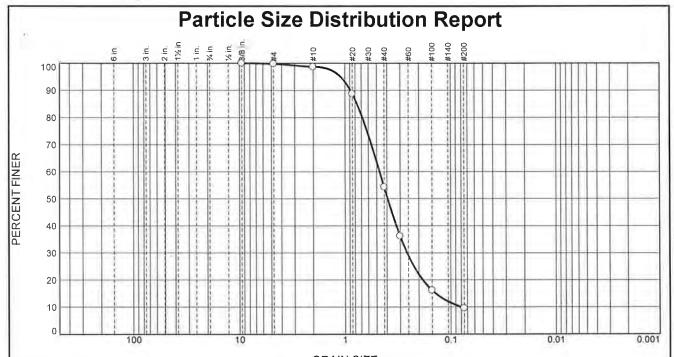
Grain Size Distribution Results—September 2017 Soils

			(-	<u> RAIN SIZE -</u>	mm.		
0/ Cabbles	% Gr	avel		% Sand		% Fine	es
% Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	3.9	3.3	20.3	36.4	36.1	

	TEST R	ESULTS	
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X=Fail)
3/4	100.0		
1/2	98.6		
3/8	97.9		
#4	96.1		
#10	92.8		
#20	85.5		
#40	72.5		
#50	63.6		
#100	47.0		
#200	36.1		0
			ľ
		1	

	Material Des	cription	
Silty sand			
	rberg Limits (A)
PL=	LL=	PI=	
USCS (D 2487)=	Classifica AAS	ation HTO (M 145)=	
	Coefficie		
D ₉₀ = 1.2946 D ₅₀ = 0.1731	D ₈₅ = 0.8197	D ₆₀ = D ₁₅ =	0.2609
D ₁₀ =	D ₃₀ = C _u =	C _c =	
	Remari	(S	
In-Situ Moisture: 7	1.1%		
Date Received:)-21-17 [ate Tested:	9-22-17
Tested By:	red Moody		
	- 00 3/		
Checked By:	err Young		

Date Sampled: 9-21-17


(no specification provided)

Location: B-110 Sample Number: 17-933 Depth: 0.5'-1.5'

Client: Stantec

Project: Miscellaneous Testing

002 Project No: 17-25-018 Figure

			G	RAIN SIZE -	mm.		
0/ Cabbles	% Gr	avel		% Sand		% Fine	es
% Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.3	1.1	44.3	44.7	9.6	

	TEST RI	ESULTS	
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X=Fail)
3/8 #4 #10 #20 #40 #50 #100 #200	100.0 99.7 98.6 88.7 54.3 36.1 16.2 9.6		

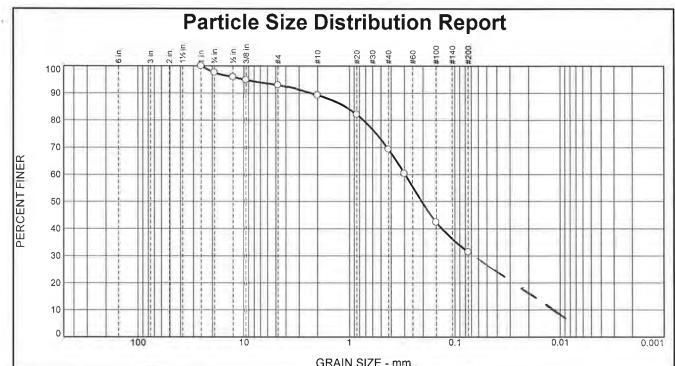
	Material	Descrip	tion
Well-graded sand	with silt		
		14- /ACT	M D 4240)
PL=	erberg Lim LL=	its (ASI	PI=
USCS (D 2487)=	Class	sification AASHTC	<u>1</u>) (M 145)=
D ₉₀ = 0.8861 D ₅₀ = 0.3935 D ₁₀ = 0.0803	D ₈₅ = 0. D ₃₀ = 0. C _u = 5.8	fficients 7686 2584 5	D ₆₀ = 0.4699 D ₁₅ = 0.1386 C _c = 1.77
		emarks	
In-Situ Moisture:	18.0%		
Date Received:	9-21-17	Date	Tested: 9-22-17
Tested By:	Ted Moody		
Checked By:	Jeff Young		
	Lab Manage		

(no specification provided)

Location: B-111 Sample Number: 17-934

Depth: 13.5'-14.5'

Client: Stantec


Project: Miscellaneous Testing

Project No: 17-25-018

Figure

Date Sampled: 9-21-17

003

				INAIN SIZE -	HIIII.		
% Cobbles	% Gr	avel	el % Sand			% Fines	
% Copples	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.4	4.6	3.8	19.9	37.9	31.4	

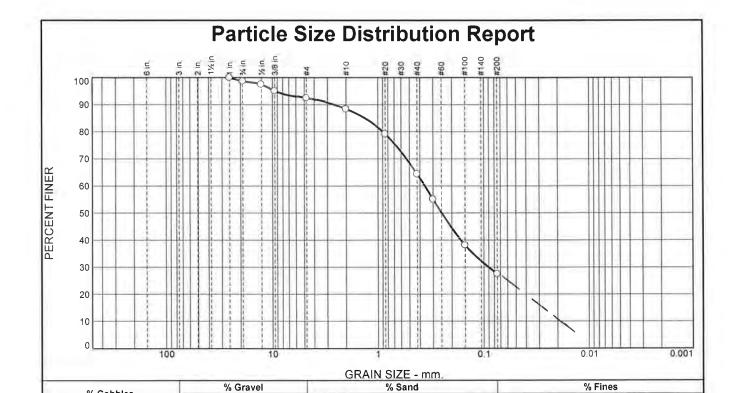
	IESIKI	ESULTS			
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X=Fail)		
1 3/4 1/2 3/8 #4 #10 #20 #40 #50 #100 #200	100.0 97.6 95.9 94.8 93.0 89.2 82.1 69.3 60.3 42.4 31.4	(i Greening			

	Material Desc	ription
Silty sand		
A	tterberg Limits (A	STM D 4318)
PL=	LL=	PI=
USCS (D 2487)	Classificat AASH	<u>tion</u> HTO (M 145)=
	Coefficier	
D ₉₀ = 2.3223 D ₅₀ = 0.2053	D ₈₅ = 1.1011 D ₃₀ =	D ₆₀ = 0.2964
D ₁₀ =	Cu=	D ₁₅ = C _c =
	Remarks	3
In-Situ Moisture	e: 9.2%	
Date Received	d: 9-21-17 Da	ate Tested: 9-21-17
Tested By	: Ted Moody	
Checked By	: Jeff Young	
Title	: Lab Manager	

(no specification provided)

Location: B-112 Sample Number: 17-935

Depth: 2'-4'


Date Sampled: 9-21-17

Client: Stantec

Project: Miscellaneous Testing

Project No: 17-25-018 Figure 004

Medium

23.9

Fine

36.9

Opening	Percent	ESULTS Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1	100.0	(, , , , , , , , , , , , , , , , , , ,	(10 1 411)
3/4	98.6		
1/2	97.5		
3/8	95.1		
#4	92.5		
#10	88.3		
#20	79.2		
#40	64.4		
#50	55.0		
#100	38.1		
#200	27.5		
- 1			

Coarse

1.4

Fine

Coarse

4.2

Silty sand	Material Desc	ription
Att	erberg Limits (AS	STM D 4318) PI=
USCS (D 2487)=	<u>Classificat</u> AASH	ion TO (M 145)=
D ₉₀ = 2.6076 D ₅₀ = 0.2490 D ₁₀ =	Coefficien D85= 1.3364 D30= 0.0905 Cu=	D ₆₀ = 0.3601 D ₁₅ = C _c =
In-Situ Moisture:	Remarks	•
Date Received:		te Tested: 9-21-17
Tested By:	•	
Checked By:	Jeff Young	
Title:	Lab Manager	

Silt

27.5

Clay

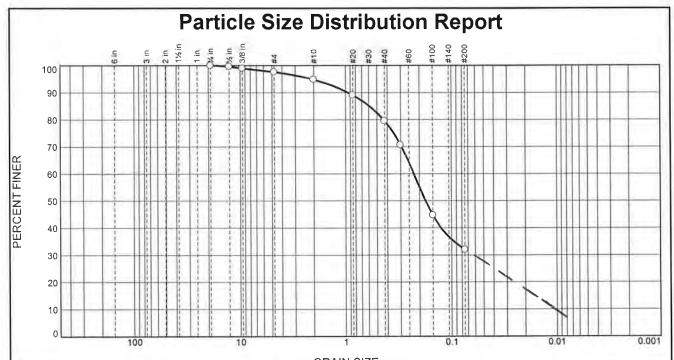
(no specification provided)

Location: B-113 Sample Number: 17-936

% Cobbles

0.0

Depth: 5.5'-7.5'


Date Sampled: 9-21-17

Client: Stantec

Project: Miscellaneous Testing

Project No: 17-25-018 Figure 005

			G	RAIN SIZE -	mm.		
0/ 0-551	% Gr	avel		% Sand		% Fine	es
% Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	2.4	2.8	15.2	47.6	32.0)

	TEST R	ESULTS	
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X=Fail
3/4	100.0		
1/2	99.6		
3/8	99.0		
#4	97.6		/
#10	94.8		
#20	89.0		
#40	79.6		
#50	70.6	1	
#100	44.6		
#200	32.0		
		1	
- 1			
- 1			

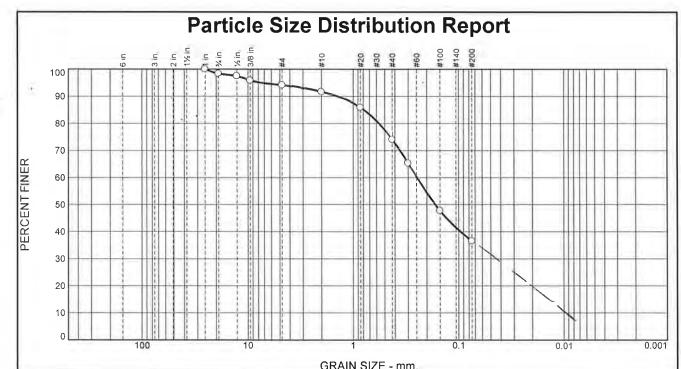
	Material Desc	cription	
Silty sand			
A++e	erberg Limits (A	STM D 4318	v.
PL=	LL=	PI=	C.
USCS (D 2487)=	Classifica AAS	<u>ition</u> HTO (M 145)=	
D ₉₀ = 0.9477 D ₅₀ = 0.1755 D ₁₀ =	Coefficie D ₈₅ = 0.5906 D ₃₀ = C _u =		0.2259
	Remark	(S	
In-Situ Moisture:	11.3%		
Date Received:	9-21-17 Г	ate Tested:	9-21-17
Tested By:		ato rootsur	,
Checked By:	Jeff Young		

Date Sampled: 9-21-17

Figure

006

(no specification provided)


Location: B-114 Sample Number: 17-937 Depth: 1'-3'

Client: Stantec

Project: Miscellaneous Testing

Project No: 17-25-018

				SKAIN SIZE -	IIIII.		
% Cobbles	% G	ravel	No.	% Sand		% Fin	es
% Cobbles	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	1.7	4.1	2.6	17.5	37.6	36.5	5

	TEST RI	ESULTS	
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X=Fail)
1 3/4 1/2 3/8 #4 #10 #20 #40 #50 #100 #200	100.0 98.3 97.3 95.9 94.2 91.6 85.9 74.1 65.3 47.7 36.5		

	Material Des	cription
Silty sand		
	Atterberg Limits (A	
PL=	LL=	PI=
USCS (D 248	7)= Classifica	<u>tion</u> HTO (M 145)=
	Coefficie	
D ₉₀ = 1.4137 D ₅₀ = 0.1662	D ₈₅ = 0.7897	D ₆₀ = 0.2468
D ₁₀ = 0.1002	D ₃₀ = C _u =	D ₁₅ = C _c =
	Remark	8
In-Situ Moist		-
Date Receiv	ed: 9-21-17 D	ate Tested: 9-22-17
Tantad	By: Ted Moody	
rested		
	By: Jeff Young	

(no specification provided)

Location: B-115 Sample Number: 17-938

Depth: 1.5'-3.5'

Date Sampled: 9-21-17

Client: Stantec

Project: Miscellaneous Testing

Project No: 17-25-018 Figure 007

APPENDIX E

Low Flow Purge and Sample Forms

November 2017, June and August 2022, and September 2025 Groundwater

YSI 556 Instrument Serial # Hach 2100O Serial #

Sheet of Hach 2100O Serial # A+P Whitestere Field Personnel: Blive Date: 11/9/17 Weather: 40 4 Monitor Well #: MW - 15 Well Depth: 17.4 Screened/Open Interval: Well Permit #: Well Diameter: Pump Intake (feet below TOC): Make/ Model of Pump: Peristal tie / George Depth to Water Before Pump Installation: 5.87 (TEPVC) Specific

PH Conductivity

(pH units) (umhos/cm)

READING CHANGE READING CHANGE Specific Redox Dissolved Depth Potential Oxygen **Turbidity** Temperature 1 Pumping to (my) (mg/l)(NTU) (degrees centigrade) Rate Water READING CHANGE READING CHANGE READING CHANGE TIME (ml/min) (feet below TOC) -27.2 0.52 34.3 8.46 (Rimof Read) 489 19.52 7.54 1355 120 -1 31.4 7.53 488 -17.2 0.59 40.07 19.43 410.0 8.75 1400 -0.01 - 2.9 -0.09 120 0.56 31.6 493 +5 -10.0 1405 +7.2 -0.03 40.2 19.36 7.54 8.94 40.01 -0.07 120 491 -2.6 46.0 19.25 7.54 -2 +7.4 -0.16 114.4 1410 040 -0.11 9.11 120 1415 7.54 2.3 0.37 27.0 19.M 491 +4.9 -0.03 9.14 X -19.0 -0.06 120 3.6 29.9 7.54 +1.3 19.11 490 -1 0.41 +0.04 +2.9 1420 9.17 -0.03 120 3.9 27.7 - 2.2 +0.3 7.55 19.14 +0.02 -0.02 1425 X 489 -1 0.39 9.19 +0.01 120 Comments: 1345 : Begin purse

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet of

f i VI	7 - 11 -4		24.1	()		Inc. u.p.	2.1	7			_	0 1/0	Y .			
Monitor W		:	MW -	1 1		Well Dept Well Diam	n: 39	2"					open Interva ce (feet belo			
V CH T CHI	it π.						Vater Before	Pump Inst	allation	8.17				Por215t	11.0/	Geopum
		()			Spe	cific		dox		olved		with the	ler or r unip	10 KISL	THE P	Depth
	PURGING	SAMPLING	pŀ	·	Condu	activity	Pote	ential		ygen	Turk	oidity	Tempe	erature 1	Pumping	to
	RGI	MPI	(pH	units)	(umh	os/cm)	(n	nv)		g/l)		ΓU)	_	centigrade)	Rate	Water
TIME	PU	SA	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING		(ml/min)	(feet below TO
1245	X		6.83	NA	671	NA	-25-1	NA	0.93	NA	25.6	NA	17.95	NA	150	8.37
1250	x		6.73	-6.10	671	_	-23.2	+1.9	0.17	-0.76	16.5	-9.1	18.01	10.06	150	8.37
1255	K		6.70	-0.03	672	+1	-22.4	+0.8	0.14	-0.03	9 - 39	-7.1 i	18.12	toil	150	8.37
1300	X		6.67	~0. 03	674	+2	-25.9	-3.5	0.17	+0.03	9.24	-0.15	18.16	10.04	150	8-37
1305	X		6.66	-0.01	678	+4	-28.5	-2.6	0.18	40.01	12.5	+3,26	18.21	to.05	/50	8.37
1310	×		6.67	10.01	691	+13	-38.1	-9.6	0.11	-0.07	22.3	49.8	18-15	-0.06	150	8.37
1315	×		b.71	+0.04	704	+13	-58.2	-20.1	0-11	-	78.1	+2.8	17.98	-0-17	150	8,37
1320	×			40.02	706	+2	-66.6		0.11	-	28.6	to.5	17.94	-0.04	150	8.37
1325	X	X	6.73	-	707	+1	-69.7	-3.1	0.10	-0.01	29.1	+0.5	17.78	-0.16	150	8.37
ommente	. 13	10	1 30:	m porg											,	

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet 1 of 3

Site: F Date:	11/8	WI	hitestor 7	re					Field Pers Weather:	onnel: F	5-ung	40	5			
Ionitor W Vell Perm		m	W - Z	- 5		Well Dept	neter: 2	11				Pump Inta	Open Interva ke (feet belo	ow TOC):	-	
TIME	PURGING	SAMPLING	pł (pH READING	units)	Condi	ecific uctivity os/cm)	Re Pote	e Pump Inst edox ential nv) CHANGE	Diss Ox (n	solved sygen ng/l)		bidity TU)	Tempe	erature 1 centigrade) CHANGE	Pumping Rate (ml/min)	Depth to Water (feet below TOO
1440	X		7.17	NA	590	NA	32.5	NA	0.77	NA	27.1	NA	18.68	NA	140	7.56
1445	X		7.15	-0.02	595	+5	350	+2.5	0.65	-0.12	24.5	-2.6	18.67	-0.01	100	7.87
145D	X		7.14	-0.01	598	+3	20.0	-15.0	0.52	-0.13	244	-0.1	18.69	to.02	100	8 15
1455	X		7.15	to.01	605	+7	-0.7	-20.7	0.45	-0.07	28.1	+3.7	18.65	-0.04	100	8-31
1300	X		7.16	to.01	611	+6	-13.8	-13.1	0.38	-0.07	41.5	H3,4	18.56	-0.09	100	8.80
1505	×		7-17	+0.01	617	+6	-178	-4.0	0.55	HD.17	74.3	+32.8	18:55	-0.01	100	9.20
1510	Х		7.17	-	633	+16	-18.2	-0.4	0.29	-0.26	263	H88.7	18.55	_	100	9-68
1515	×		713	-0.04	693	160	-30.7	-12.5	0.15	-0.14	258	- 5	18.46	-0.09	100	10.00
1520	X		7-14	+0.01	727	+ 34	-36.4	-5.7	0.10	-0.05	330	+ 72	18.45	-0.01	100	10.13
1525	*		7.16	40.02	692	- 35	-33.4	+3.0	0.10	_	469	+139	18.53	+0.08	100	10.41
1530	х		7.17	+0.01	681	-11	-41-8	-3,4	0.10	-	759	t290	18.74	to:21	100	10.70
1545	X		7.18	40.01	674	-7	-15.6	H26.2	0.32	10:22	292	-4/67	18.17	-0.57	100	11.00
Comments	ान	30	: Begi	m Purs	e - 1:	530 RAIS	se Tub	ING, DA	ZAIN Y	f low Th	10460	((0.0		BIS

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet $\frac{2}{3}$ of $\frac{3}{3}$

Monitor W Well Perm		N	1W - 2	S		Well Depti Well Diam Depth to W		2 " Pump Insta	ıllation:	6.72		Pump Intak	open Interva se (feet belo del of Pump		TIC / 1	zeosu mp
ТІМЕ	PURGING	SAMPLING	pH (pH READING	units)	Condi	cific activity os/cm) CHANGE	Pote	dox ential nv) CHANGE	Ox	olved ygen g/l) CHANGE	1	oidity TU)	Tempe	erature ¹	Pumping Rate (ml/min)	Depth to Water (feet below TO
1545	4		7-18	NA	674	NA	-15.6	NA	0.32	NA	292	NA	18.17	NA	100	11.00
1550	X		7.18	-	678	+4	-14.7	to,9	0.29	-0.03	199	- 93	18-13	-0.04	100	1110
1555	×		- 18	^	638	+10	-13.1	+1.6	0.44	+0.5	146	-53	18.19	+0.06	100	11.16
1600	X		7.18	~	694	+6	-9.1	+4.0	0.65	15.0+	132	-14	18.21	+0.02	100	11.26
1605	×		7.19	+0.01	704	+10	-5.3	+3.8	0.98	+0.33	105	- 27	18.16	-0.05	100	11.38
1610	X		7-19	_	711	+7	-2.7	+2,6	1.15	+0.17	117	+12	18.20	10.04	100	11.44
1615	×		7.19	-	731	+20	0.8	+3.5	1,29	to.14	114	- 3	18.37	40.17	100	11.50
1620	×		7.18	-0.01	766	+35	-17,9	-18:1	1.29	_	118	+4	18.42	+0.03	100	11.55
1625	X		717	-0.01	813	+47	-40.4	-22,5	1.55	+0,26	244	1126	18.57	+0.15	100	11.60
1630	X		7.16	-o.ol	839	+26	-60-0	- 19.6	1.17	-0.38	>1000	_	18.69	10.12	100	11.67
1635	X		7.16	_	850	+11	-64.2	-4.2	1.15	-0.02	634	_	18.61	-0.08	100	11.72
1640	X		7.15	-0.01	456	+6	-57.3	+6.9	1.53	+0,38	267	-367	1865	to.04	100	11.78

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential, and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet 3 of 3

Site: C Date:	+P	0	Uh. tes	true 7					Field Perso Weather:	onnel:	B Bliv	455				
Monitor W		t:	Mw	-25		Well Dept Well Diam			allation	6.72		Pump Intal	Open Interva	w TOC):	17	Colymp
TIME	PURGING	SAMPLING	pł (pH READING	units)	Condu	cific activity os/cm) CHANGE	Re Pote	dox ential av)	Diss Ox	olved ygen ig/l)	(N	oidity TU) CHANGE	Tempe	erature ¹ centigrade)	Pumping Rate (ml/min)	Depth to Water (feet below TOC)
1640	X		7.15	NA	856	NA	-57.3	NA	1.53	NA	767	NA	1865	NA	100	11.78
1645	×		7.15	_	871	+15	-588	-1.5	1.47	-0.06	124	-143	18.50	-0.15	100	1182
1650	K		715	_	880	+9	- 56.1	+2.7	1.64	+0.17	56.5	-67.5	18.37	-0.13	100	11-87
1655	×		7.15	-	882	+2	-55.7	+0.4	1.60	-0.04	50.8	-5.7	18.46	+009	100	11.92
1700	X		7:15	_	896	+14	-54.8	+0.9	1.73	to .13	38.8	-12.0	18.46	_	100	11.95
1705	×		7.14	-0.01	927	+31	-54.4	+0.4	1.75	to.02	34-1	#47	18.35	-0.11	100	11.98
1710	X		7.14	-	939	+12	-53.4	+1.0	172	-0.03	33.3	-0.8	18.24	-0.11	100	11.98
1715	×	X	7.14	_	948	+9	-53.8	-0.4	1.69	-0.03	33.4	to-1	18.20	-0.04	601	11.98
Comments		tu	sle mu	U-25	- col	leit du	uplieste	, Stry	ile let	olad "	Dupe"	no tin	ne of	collect	TON	AR

* Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet _____ of ____

Date:	=	117	8/17						Weather:	1'3	rthy 5	UMMA	40'5			
Monitor V		1	nw - 2	D		Well Dept							pen Interva			
Vell Pern	nit#:					Well Dian						Pump Intal				
	1	_					Vater Before			8.04	_	Make/ Mod	del of Pump	: Pezista	tic/6	eopump
	0	NG			1	cific		dox		solved						Depth
	N.	PLI	pŀ			ctivity		ential		ygen	1	bidity		erature	Pumping	to
TD (F	PURGING	SAMPLING		units)	(umh			nv)		ng/l)		TU)		centigrade)	Rate	Water
TIME		S	READING	NA	READING	NA	READING	NA	READING	NA	READING	CHANGE NA	READING	CHANGE NA	(ml/min)	(feet below TO
1355	X		7.07		1734		-66.9		0.18		2.85		17.50	A COLUMN	200	8.09
1400	Х		7.07	-	1740	+6	-67.0	-0.1	0.15	-0.03	1-49	-1.36	17.44	-0.06	200	809
1405	×		7,06	10.0	1742	42	-73.3	-6.3	0.12	-0.03	1-19	-0.30	17.40	-0.04	200	809
1410	X		7,06	-	1740	-2	-75.7	-2.4	0.13	to.01	1-40	+0.21	17.39	-0.01	200	8.09
1415	Х		707	to.01	1739	-1	-76.5	-0.8	0.12	-0.01	1-15	-0.25	17.27	-0.12	COS	8.09
								1								
	M															
		i y														
omments	: 13	15	: Be.	n purse												

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet of

Monitor W Well Perm			mw	-39		Well Dept	neter:	2"					e (feet belo	w TOC):	. 17	
TIME	PURGING	SAMPLING	pH (pH t	ınits)	Condu	cific activity os/cm)	Pote	dox ential iv)	Diss Ox:	olved ygen g/l)		oidity TU)	Tempe	rature ¹ entigrade)	Pumping Rate (ml/min)	Depth to Water (feet below TOG
1235	X		7.57	NA	567	NA	-114.8	NA	0.19	NA	18.6	NA	18.68	NA	120	2.62
1240	x		7.55	-0.02	563	-4	-116.8	-2.0	0.18	-0.61	16.0	-2.6	18.78	to-10	120	2.67
1245	X		7.55	_	560	-3	-116.1	+0.7	0.12	-0.06	19.0	+3.0	18.83	HD.05	120	2,67
1250	X		7.54	-o.ol	558	-2	-120.0	-3.9	0.12	•	13-5	-5-5	18.86	to.03	120	2.67
1300	х		7.54	_	555	-3	-122.0	-2.0	0.07	-0.05	10.9	-2.6	18.91	+0.05	120	2.67
1305	×		7.54	-	555	1	-122.1	-0.1	0.07	_	ક્ર-૪૧	-2.01	19.01	to.10	120	2.67
1310	×		7.54	1	555	1	-120.4	+0.7	0.07	-	7.35	-1.54	19.06	+0.05	120	2.67
1315	×		7.54	1	555	-	-122.1	to.7	0.04	-0.03	593	-1.42	18.58	-0.08	120	2.67
1320	X		7.54	-	555)	-123.9	-1.8	0.05	+0.01	4.75	-1.18	18.96	-0.02	120	2.67
1325	×		7-54	_	555	_	-124.6	-0.7	0.05	-	4.35	-0.40	19.02	10.06	120	2.67
omments	1.2	25.	Bezm	0.101												-2.1

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet of 1

Site: Date:	A	1	White	stone					Field Perso Weather:		BBIN	40°5				
Monitor W Well Perm			MW.	3 D		Well Dept Well Diam Depth to V		333 Z"		5.58		Pump Inta	Open Interva ke (feet belo del of Pump	w TOC):	ILTIC /	Gegin D
TIME	PURGING	SAMPLING	pH (pH READING	units)	Condu	cific uctivity os/cm)	Pote	dox ential av)	Diss Ox (m	solved ygen ig/l)		oidity TU)		rature ¹ centigrade)	Pumping Rate (ml/min)	Depth to Water (feet below TOC
1110	×	01	7 15	NA	1374	NA	36.1	NA	0.2Ý	NA	29.9	NA	18.06	NA	120	7.33
1115	Х		7-14	-0.01	1388	+14	9.0	-27.1	0.22	-0.02	30.5	+1.6	17.57	-0.09	120	7,80
1/20	×		7.13	~0.0	1387	-1	-30.3	-39.3	0.24	to.0Z	31-2	+0.7	1791	-0.06	120	7,92
1125	×		7.13	-	1457	+70	-30.9	-0.6	0.19	-0.05	24.4	-6.8	17.72	-0.19	120	8.03
1130	X		712	-0.01	1536	+79	-61.4	-25.5	0.17	-0.02	20.1	- 4.3	17.74	10.02	120	8.14
1135	×		7.12	-	1566	+ 30	-77.9	-16.5	0.16	-0.0	18.9	-0.2	17.78	10.04	120	8.22
1140	χ		7113	+0.01	1564	_2	-82.9	-5.0	0.20	+0.04	16.5	- Z.4	17.79	10.01	120	8.25
1145	×		7.12	-0.01	1568	+4	-83.9	-1.0	0.15	-0.65	14.2	- 2.3	17.75	-0.04	120	8.27
1150	X		7-13	+0.01	1568	-	-89.7	-5.8	9.17	+0.02	12.7	- 1.5	17.73	-0.02	120	8 29
1155	×		7.14	to.01	1570	+2	-92.6	-2.9	0.19	+0.02	11 3	-14	17.63	-0,10	120	8 29
1200	Х		7-15	+0.01	1570	-	-946	-z-0	0.17	-0-02	9.97	-1.38	17.63	_	120	8.29
1205	X		7.5	-	1569	-1	-97.8	-32	0-17	-	10.4	+0.48	17.51	-0.12	120	8.29
omments	:	4	Sam Ce		-30						64				edox Potent	Nis

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet ____ of ___

Site:	4+ 6	n/	7 117	top e					Field Pers Weather:	onnel: F	Bille dy	50 5				
lonitor W Vell Perm		:	MW -	1015		Well Dept		2"				Pump Intal	Open Interva ke (feet belo	ow TOC):		
TIME	PURGING	SAMPLING	pI (pH READING	units)	Condi	ecific activity os/cm)	Pote	edox ential nv)	Dis Ox (n	S. S solved tygen ng/l) CHANGE	Turl	bidity TU)	Tempe	erature 1	Pumping Rate (ml/min)	Depth to Water (feet below TOC)
1430	х		6.74	NA	4589	NA	72.8	NA	0.39	NA	22.1	NA	19-89	27.4	200	10.00
1435	×		6.75	+0.01	4467	- 122	74.7	+1.9	0.40	+0.01	7.90	-14.20	19-86	-0.03	200	9.91
1440	х		6.74	-0.01	4450	-17	73.9	-0.8	0.36	~o.o4	5.10	-2.80	19.83	-0.03	200	9.91
1445	×		6.75	10.01	4462	+12	76.1	+2.2	0.39	to.03	3.58	-1,12	११ ४५	10.01	200	991
1450	x	χ	6.74	-0.01	4480	+ 18	74.4	-1.7	0.37	-0.02	3.82	-0.16	19.84		200	9.91
150	;	5,	msle	nourse mw	- 101	S									Ledox Potent	KAK

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet _____ of ____

Ionitor W	/e11 #·	-	MW-11	010		Well Depti	h:	_				Saraanad/	pen Interva	1.		
ell Perm			1100 11	0. 1		Well Diam		2"					ce (feet belo			
							Vater Before	Pump Insta	allation:	12.7	4			Perist	iltic/	Geosim
		īĞ			Spe	cific	Re	dox	Diss	olved					1	Depth
	ΙžΙ	LIN	pH	H	Condu	ectivity	Pote	ential	Ox	ygen	Turl	bidity	Tempe	erature 1	Pumping	to
	PURGING	SAMPLING		units)		os/cm)		nv)		ig/l)		TU)	(degrees o	centigrade)	Rate	Water
TIME	<u>F</u>	S/	READING		READING		READING		READING		READING		READING		(ml/min)	(feet below T
1530	X		7.00	NA	1283	NA	-113.6	NA	0.05	NA	2.16	NA	17-69	NA	300	12.78
1535	×		7.00	-	1300	+17	-115.4	-18	0.02	-0.03	1.58	-0.58	17.60	-0.09	300	12.78
1540	X		7.00	-	1309	+9	-109.8	+5.6	0.02	-	2.27	10,69	17-61	10.01	300	12.78
1545	X		7.01	+0.01	1312	+3	-108.3	+1.5	0.02	-	2.69	+0.42	17-53	-0.0%	300	12.78
1550	X		7.01	-	1312	-	-106.5	+1.8	0.03	10.01	# 50	+1.8 1	17.47	-0.06	300	12.78
1555	x		7.00	-0.ol	1313	+4	-97.5	+9.0	0.01	-0.02	5.64	H-26	17.43	-0.04	300	12-78
1600	X		700	-	1339	+26	-87.4	10.1	0.00	-0.01	5.24	-0,60	17,36	-0.07	300	12.7
1605	×		7.00	-	1332	-7	-103.4	-16,0	0.04	40.04	4.80	-0.44	17.26	-0-10	300	(2.7)
1610	X		7.00	-	1328	-4	-106.3	-29	0.01	-0.03	3.30	-150	17.15	-0.09	300	12.78
1615	X		7.00	-	1324	-7	-111.1	- 4.8	0.02	+0.01	2.96	-0.34	16.89.	-0.26	300	12.79
		2-	77	m pury												

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet of

Aonitor W	ell#:	1	NW- 10	15		Well Deptl	h:	32.1				Screened/0	Open Interva	d:		
Vell Permi	it #:					Well Diam	neter: Vater Before	Dumm Inst					ke (feet belo		/	,
					Sne	cific		dox		olved		IVIAKE/ IVIO	del of Pump	resist	Altic /	Depth
	PURGING	SAMPLING	pН		Condu	ectivity	Pote	ential	Oxy	/gen		oidity	1 ^	rature 1	Pumping	to
TIME	URC	AM	(pH reading		(umho		(n READING	IV)	(m READING	g/l)	(N' READING	TU)	(degrees of READING	entigrade)	Rate	Water
TIME 279 50	X	S	G. 81	NA	1087	NA	-85.4	NA	0.17	NA	155	NA	16.66	NA	(ml/min)	(feet below TO
0955	×		6.81	-	1066	-21	- 84.0	+1-4	0-11	-0.06	131	- 24	16.72	to.06	120	9.25
005	X		6.80	-v.ol	१०५५	-17	-81.9	+2.1	0.10	-0.01	117	- 14	16.71	-0.01	120	9.38
1010	X		680	-	1033	-16	- 79-8	+2.1	0,11	+001	122	+5	16.84	+0.13	120	9.52
1015	X		6-80		1004	-29	-784	+1.4	0.12	+001	105	-17	1689	40.05	120	9.60
1020	×		6:50	-	984	-20	-77.2	+1.2	2.14	+0.02	97.8	-7.2	16 84	-0.05	120	9.66
025	X		6.80	~	967	-14	-76.9	+0.3	0.13	-0.01	83.2	-14.6	16.89	+0.05	120	9.73
1030	X		6.80	~	949	- 18	-768	to.1	0.16	to 03	70.5	-12.7	16.88	-0.01	120	9.81
035	X		6.80	•	935	- 14	-769	-0-1	0.14	-0.02	68.5	-2-0	16.84	-0.04	120	9.87
1040	χ	X	6.80	-	929	- 6	-77.1	to.2	0.14	_	67-5	-1.0	16.75	-0.09	120	9.93
			Bizm !													

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet ____ of ____

Monitor W	/ell #:	-	MW-	102D	V. 1	Well Dept	h:					Screened/C	pen Interva	ıl:		
Vell Perm						Well Diam	eter:	2				Pump Intal				
						_	Vater Before			11.76		Make/ Mod	del of Pump	Perst	Altic	Ceopun
	0	9 Q				cific		dox		olved			_	1		Depth
	Ž	PLII	pI-			ectivity		ential		ygen		oidity	-	erature 1	Pumping	to
	PURGING	SAMPLING		units)	(umho	-	(m			g/l)		TU)		centigrade)	Rate	Water
TIME		Š	READING	CHANGE NA	READING	NA	READING	NA	READING	NA	READING	NA	READING	DIA	(ml/min)	(feet below TO
1115	X	Ш	6.76		571		40.8		0.36		22.9		16.55		160	12.53
1120	X		6.76	~	586	+15	49.7	+8.9	0.26	-0.10	11.4	-11.5	16.68	+0.13	160	12.57
1125	X	I	6.76		597	+11	54.0	+4.3	0.17	-0.09	9.91	-1.49	16.77	t0.09	160	12.58
1130	Х		6.76	j	616	+19	36.2	-17.8	0.12	-0.05	8.27	-1.64	16.67	-0.10	160	18.58
1135	X		6.80	to.04	686	+70	-72.8	-109.0	0:00	-0.12	59.3	H51.03	16.62	-0.05	160	12.58
1140	X		6.58	+0.08	679	-7	-87.8	-12.0	0.00	_	73.5	H4. 2	16.60	70,02	160	12.58
1145	X		6.94	+0.06	672	-7	-92.0	-4.Z	0.00	-	67.4	-6.1	16.54	-0.06	160	12.50
1150	X		6.96	to.02	664	-8	-87.9	44.1	0.00	~~	63.6	~3,8	16.50	-0.04	160	12.55
1155	X		6.98	40.02	654	~ 10	-84.8	+3.1	0.00	_	62.1	-1.5	16.54	+0.04	160	12.54
	H															
omments	: 110	25:	Bozn	A.17.18												//

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet 1 of Z

Monitor V	/ell#	0	1W -10	3.0		Well Dept	h:	37.2				Screened/C	pen Interva	ıl·		
Well Perm		-	111			Well Dian		2"					ce (feet belo			
						Depth to V	Vater Before	Pump Insta	allation:	7.32					(tic/	Geopon
		IG			Spe	cific	Re	dox	Diss	olved					1 1	Depth
	PURGING	SAMPLING	pŀ	I	Condi	uctivity	Pote	ential	Ox	ygen	Turl	oidity	Tempe	erature 1	Pumping	to
	JRG	MF	-	units)	_	os/cm)	-	nv)		g/l)		TU)		centigrade)	Rate	Water
TIME	P.	S/	READING		READING		READING		READING	CHANGE	READING		READING		(ml/min)	(feet below TOO
0725	×		7-27	NA	1642	NA	-135.7	NA	0.02	NA	255	NA	16.16	NA	200	7.45
0730	×		7.27	-	1629	-13	H36.0	-0.3	0.05	to.03	302	+47	16-26	10.10	200	7.45
0735	X		7.27	-	1629	-	-138.4	-24	0.00	-0.05	349	+47	16.02	-0.24	200	7.45
0740	X		7-26	-0.ol	1607	-22	-136.8	+1.6	0.00	-	412	+63	16.05	1003	200	7.45
0745	×		7.18	-0.08	1529	- 78	-131 -7	+5.1	0.00	_	228	-184	15.29	-0.76	200	7.45
0750	X		7.19	+0.01	1455	- 74	-126.1	+ 5.6	0.00	1	139	- 89	14.54	-0.75	200	7.45
0755	х		7-14	-0.05	1419	- 36	-123.6	+2.5	0.00	J	130	- 9	16.04	H.50	200	7.45
0800	X		7.13	-0.0	1314	-105	-113-6	+10.0	0,00	j	120	-10	16.12	-0.08	200	7.45
0805	x		7-14	+0.01	1281	- 33	-1/0.2	+3.4	0.00	1	109	- []	16.16	+0.04	200	7.45
0310	×		7.11	-0.03	1270	- 11	107.1	+3.1	0.00	1	103	-6	16.13	-0.03	200	7.45
0315	X		7.06	-0.05	1238	- 32	-101.6	t-5.5	0.00	ı	95.5	- 7.5	16.11	-0.02	200	7.45
0820	x		7.02	-6.04	1189	-49	-100.6	+1.0	0 - 60	1	76.0	-19,5	16.09	-0.02	202	7.45

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet 2 of 2

Date:	_	-	117						Weather:	201	nny 4					
Monitor W	ell#		mw-i	03 D		Well Dept	h:	37.2				Screened/C	pen Interva	ıl:		
Vell Perm	it #:			777.1-		Well Diam		2		2.50		Pump Intal	ce (feet belo	w TOC):		
						Depth to V	Vater Before	Pump Inst	allation:	7.32		Make/ Mod	del of Pump	Perist	altie /	Feoder
		2			Spe	cific	Re	edox	Diss	olved						Depth
	PURGING	SAMPLING	pł	I	Condi	activity	Pote	ential	Ox	ygen	Turk	oidity	Tempe	rature 1	Pumping	to
	RG	MP	(pH	units)	(umh	os/cm)	(n	nv)	(m	g/l)	(N	ΓU)	(degrees	entigrade)	Rate	Water
TIME	PU	SA	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING	CHANGE	READING		(ml/min)	(feet below To
0820	X		7.02	NA	1189	NA	-100.6	NA	0.00	NA	76.0	NA	16.09	NA	200	7.45
0825	×		7.01	-0.01	1174	-15	-97.5	+3.1	0.00		70.8	- 5. z	16.14	+0.05	200	7.45
0830	×		6.99	-0.02	1137	- 37	~95.4	+2.1	0.00		70.3	-0.5	16.12	-0.02	700	7.45
0835	X		6.96	-0.03	1071	-66	-93.4	42.0	0.00	-	57.6	-12.7	16-10	-0.02	200	7.45
0340	×		694	-0.02	1061	-10	-90.2	+3.2	0.00	-	46.2	-11.4	16.22	10.12	200	7-45
0845	×		6.94	-	IPOI	-20	-86.1	+4.1	0.00	_	५१ . ५	+ 3.7	16.27	to.05	220	7.45
ö8 <i>5</i> 0	×		6.93	-0.01	1010	-31	-86.7	-0.6	0.00	_	40 -1	- 9.8	16.35	to.08	200	7.45
0855	×		6.91	-0.02	968	- 42	-87.0	-0.3	0.00	-	31.5	-8.6	16.44	10.09	200	7.45
0900	X		6.91	_	943	- 25	-87.4	-0.4	0.00	****	28.7	-2.8	16.44	1	200	7.45
0905	X		6-89	-0.02	933	-10	-85.5	+ 1.9	0.00	-	a7-4	-1.3	16-52	80.0t	200	7.45
910	X	X	6.90	to 01	921	-12	79.5	+6.0	0.00	-	26.9	-0.5	16.42	-010	200	7.45
omments:																

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet of 2

Monitor W	ell#		MW-2	015		Well Dept	h:					Screened/0	Open Interva	al:		
Well Perm	it #:					Well Dian		2"					ke (feet belo			
TDAT	PURGING	SAMPLING		units)	Condu (umho	cific activity os/cm)	Pote	e Pump Insta cdox ential nv) CHANGE	Diss Ox:	12-94 solved ygen ng/l) CHANGE		bidity TU)	Tempe	erature ¹ centigrade)	Pumping Rate	Depth to Water
0745	Х	S	READING 6.43	CHANGE NA	HI49	CHANGE NA	S+1	NA	0.19	NA	28.4	NA	17.75	NA	(ml/min) 125	(feet below TOC
5750	X		643	~	4150	+1	3.4	-1.7	0.14	-0.05	27.1	-1.3	17.83	+0.08	125	13, 19
0755	X		6.43	_	4152	+2	3.0	-0.4	0.17	+0.03	22.9	-4.9	17.75	-0.08	125	13-19
0800	X		6.43	-	4160	t8	2.1	-0.9	0.15	-0.02	20.0	-2.9	17.75	-	125	13.19
0805	X		6.42	-0.01	4157	-3	12	-0.9	0.12	-0.63	19-5	-0.5	17.80	to.05	125	13-19
0810	X		6.42	~	4161	+4	1.2	- 1-	0.13	40.01	16.5	-3.0	1773	-0.07	125	13.19
0815	X		6.43	10.01	4162	+ (1.3	+0:1	0.16	+0.03	15.5	-1.0	17.81	t0.08	125	13.19
0820	×		6.43	-	4159	- 3	-0.7	- 2-0	0.22	+0.06	178	+2.3	17.93	40.12	125	13.19
6825	X		6.43	-	4164	+5	-1-1	-0.4	0.23	to.01	13.9	-3.9	17.90	-0.03	125	13.19
0830	×		5 43		4(71	+7	-1-5	-0.4	0.18	-0.05	10.8	- 3. 1	17.83	-0.07	125	13.19
0835	×		6.44	-0.01	4159	-12	3.4	+4.9	0.21	+0.03	12-0	+1.2	1758	+0-15	125	13-19
×40	X		6-44 : Besu	-	4167	+8	6.9	+3.5	0.23	t0.02	9.13	-2.87	17.93	-0.05	125	13.19

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet 7 of Z

Site: Date:	Atl	Þ	Whites	tone					Field Perso Weather:	onnel: B	Blive					
Monitor V	/ell#	. 7	NW - 20			Well Dept	h:)pen Interva	ıl:		
Well Perm	it #:		•			Well Dian			2"			Pump Intak	te (feet belo	w TOC):		
	-						Vater Before			12.94		Make/ Mod	lel of Pump	: PERISTA	TTIC/6	
TIME	PURGING	SAMPLING	pH (pH reading	units)	Condu	cific activity os/cm)	Pote	edox ential nv) CHANGE	Oxy	olved ygen g/l) CHANGE		oidity (TU) (CHANGE	^	centigrade)	Pumping Rate (ml/min)	Depth to Water (feet below TOC)
0840	4	01	6.44	NA	4167	NA	3.5	NA	0.23	NA	9.13	NA	17.93	NA	125	13.19
0845	X		6.44	_	4171	+4	4.3	40.8	0.21	-0.02	6.73	-240	17.88	-0.05	125	13.19
.850	x		6.44	_	4175	+4	2.4	-1.9	0.24	-0.03		-0.26	17.85	-0.03	125	13.19
0355	×	X	5.44	-	4171	-4	-0.8	-3.2	0.22	-0.07	6.10	-0.37	17.85	_	125	13.19
Comments		<	Smple	2 Mu) - 20	15										11/5

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet of 2

Monitor W Well Perm			MW - 20	017		Well Deptl Well Diam		Z"	allation:	12.98		Pump Intal	Open Interva ke (feet belo del of Pump	w TOC):	uts ()	Geopum p
TIME	PURGING	SAMPLING	pH (pH READING	units)	Condu	eific activity os/cm)	Re Pote	dox ential nv)	Diss Oxy (m	olved ygen g/l) CHANGE	1	oidity ΓU)	Tempe	erature ¹ centigrade)	Pumping Rate (ml/min)	Depth to Water (feet below TO
0925	×		7-00	NA	720	NA	-57.8	NA	0.16	NA	11.1	NA	16.38	NA	Zoc	13.00
0930	×		7.00	-	726	+6	-52.3	+5.5	0.10	-0.06	10.7	-0.4	16.41	+0.03	200	13.00
0935	×		7.02	to.02	733	+7	-79.7	-27.4	0-11	+0.01	6.05	-4.65	16.42	10.01	200	13.00
०१५०	X		7.00	-0.02	737	+4	-75.6	+4.1	0.10	-0.01	3.80	-2.25	16.40	-0.02	200	13.00
0945	X		7.01	+0.01	741	+4	-68.5	+7-1	0.09	-0.01	2.47	-1,43	16.33	-0.07	200	13.00
6950	X		7.01	-	742	+1	-52.8	H5.7	0.06	-0.03	2.98	+0.51	16.43	+0.10	200	13.00
0955	X		7.01	-	744	+2	-53.1	~ 6.3	0.05	-0.01	2.28	- 0,70	16.48	40.05	200	13.00
1000	X		7.01	-	745	+1	-69.1	-16.0	0:63	<i>-0</i> ⋅02	1.86	-0.42	16.41	-0.07	200	13.00
1005	×		7.01	_	749	+4	-80.4	-11.3	0.04	-0.01	1.59	-0,27	16.34	-0.07	200	13.00
1010	X		7.02	+0,01	749	_	-82.6	- 2.2	0.08	10.04	1.65	+0.06	16:43	10.09	200	13.00
1015	X		10.0	-0.01	749	-	-69.8	412.8	0.06	-0.02	1.59	-006	16.49	+0.06	200	13.00
1020	×		7.02	+0.01	749	-	-81.3	- 11,5	009	+0.03	1.50	-0.09	16.56	+0.07	200	13.00

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

YSI 556 Instrument Serial # Hach 2100Q Serial #

Sheet 2 of 2

Site: Date:		TP W/	White	5 Tone					Field Perso	onnel: [3	Blive	40.5				
Monitor W				201 D		Well Dept	h:				1		Open Interva	al:		
Well Perm				-		Well Dian		'Z " Pump Inst	allation:	12-98		Pump Inta	ke (feet belo	w TOC):	inc /6	Echny
TIME	PURGING	SAMPLING	pH (pH READING	units)	Condi	cific activity os/cm)	Re Pote	dox ential nv)	Diss Ox (m	solved ygen ng/l) CHANGE		bidity TU)	Tempe	erature ¹ centigrade)	Pumping Rate (ml/min)	Depth to Water (feet below TOC)
1020	×		7.02	NA	749	NA	-81.3	NIA	0.09	NA	1.50	NA	16.56	NA	200	13-00
1025	4		7.02	1-	752	+3	-85.8	-4.5	0.09	-	2.03	+0.53	16.54	-0.02	200	13.00
1030	X	X	7.02	_	754	+2	-88.1	-2.3	0.08	-0.01	1.47	-0.56	16.50	-0.04	005	13.00
		Щ										1				
											1					
	-															
	H	H														
	H	H														
											1-1-1					
Comments		5	ms le	mw-	201]											1915

^{*} Indicator parameters have stabilized when 3 consecutive readings are within: +/- 0.1 for pH; +/- 3% for specific conductivity and temperature; +/- 10 mv for Redox Potential; and +/- 10% for Dissolved Oxygen and Turbidity

page	of 1	

		Monitori	ing Well Pur	ging and Sampl	ina Record			
Site Name:	Willesh			59		Well ID:	MW	-18
Depth to W	/ater: 5 - 35	ff TOIC				Date:	6/29	1/22
Total Well De	epth: (1)	ff TOIC			Purge	Start Time:		
	ump: 15				Purge	End Time:	124	5
	Rate: 250				P	ump Type:	per	stoute
	ed to: 100		1220		Well	Diameter:	2_	inches
	ed to:				We	ell Volume:	1.90	gallons
Time	Purge Volume (gallons)	pH (s.u.)	ORP (mV)	Conductivity (mS/cm)	Temp.	DO (mg/L)	Turbidity (NTU)	Water Level (ft)
1215	0	7.26	52	0.720	22.36	To the second	244	5.92
1220	0.5	7.53	159	0.527	24,32		122	6.99
1225	包.75	7.48	158	0.511	22.98	57.5	57.5	-
1230	1.0	7.42	149	0.512	23.51	0	57.9	8.72
1235	1.25	7.42	143	0.501	23.43	0	40.8	9.05
1240	1,50	7.43	(38	0.506	23.12	D	38.1	9,91
1245	1-75	7.45	133	0.521	22.98	O	28.7	10.32
Final Sa	mple Data:	7.45	(33	0.521	22.98	0	28.7	10.32
	123 MW-	-15			1			
Sample Time:				Sampler(s):	JROL	ey		
Analyses: VOCs SVOCs PCBs Pesticide TAL Meta	s Ils and Cyanide	<u>Dup?</u>	MS/MSD?	Equipment:			۷.	
SVIFOLE NITTELLE								

page	of	1
***************************************	A-reconstruction of the contract of the contra	

		Monitor	ing Well Pur	ging and Sampl	ling Record			
Site Name:	Mniteston	ne				Well ID:	Mw-	D
Depth to V	Vater: 7,97	ff TOIC					6/29/	
Total Well D	epth: 40	ff TOIC			Purge	Start Time:		
Depth to F	Pump: 33	ft TOIC (9	screen from	130-35)		End Time:		
	Rate: 250	mL/min				ump Type:		
	ed to:	- mL/min a	t			Diameter:		
	ed to:	-	t	•	We	ell Volume:	5.22	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1025	D	6.98	83	0.540	18.92	0.14	282	8-35
1030	0.5	7.48	145	0.474	20.08	0.35	238	8.36
1035	1.0	7.39	86	0,506	19.49	0.05	199	8.37
1040	1.5	7.11	-36	0.634	19.44	0	115	8.42
1045	1.75	7.01	-41	0.665	19.43	0	171	8.44
1050	2.25	7.04	-44	0.714	19.39	0	153-	8.45
1055	2.75	7.02	-47	0.749	19.33	0	145	8.45
1100	3.25	6.97	-57	0.791	19.32	00, O	137	8.45
1105	3.50	6.98	-52	0.805	19,34	0.0	123	8.46
1110	4,0	le .98	-54	0,936	19,20	0	118	8.46
1115	4.25	6,97	-500	0.861	19.32	D	112	8-46
1120	4.5	6.97	-57	0,872	(9.29	0	102	8.46
1125	5.0	6.96	- 578	0.877	19.30	0	101	8.46
				V. V.				
Final Sar	mple Data:	6.96	-578	0.877	19.30	0	101	8.46
Sample ID(s):	MW-ID							
3ample Time:	1130			Sampler(s):	J Fole	<u> </u>		
A I		Dung	N 10 /N 10 D 2	Equipment)	(.	
Analyses: ☑ VOCs		<u>Dup?</u>	MS/MSD? □	Equipment: _	seen	eld boo	'\C	-
Ø SVOCs								`
✓ PCBs✓ Pesticides	•			Comments:	PID D.9	ppm		
☑ TAL Metal	s and Cyanide			•		77		
DO PPAS			-					
& Surate								
יייטן עם			-					

& Nimare

475 Fifth Avenue New York, NY (212) 352-5160

		1
page \	of	1

		(212) 002 0	100					
Cit Name	In Indiana.		ng Well Pur	ging and Sampl	ing Record			
	Whileston				0		MW-	
	Vater: 5.69	•					6/29/2	
	epth: 19					Start Time:		
Depth to F	Pump: 17	ff TOIC				End Time;		
Initial Pump	Rate: 200	mL/min	10.04		P	ump Type:	Peristo	uhc
adjust	ed to: 100	mL/min at	0155		Well	Diameter:	_2_	inches
adjust	ed to:	mL/min at		2.00	We	ell Volume:	2.17	gallons
Time	Purge Volume (gallons)	pH <u>+</u> 0.1 (s.u.)	ORP+10	Conductivity (m\$/cm) ^{1,3}	Temp. (°C) ⁵͡ʒᠬ。		Turbidity (NTU)	Water Level (ft)
0130	O	9.34	194	0.658	20.08	8.38	-	6,12
0740	0.25	8.48	183	0.671	20.32	9.03	71.4	6.19
0745	0.5	8.55	182	0.657	19.67	8.10	58.1	6.53
ठाइ०	0.75	8.64	178	0.631	18.76	7.11	37.5	6.86
0756	1.0	8.66	175	0,632	18.41	6.85	36.6	7.05
0800	1.25	8.68	171	0.624	18.52	6.37	25-2	
0805	1,50	8,63	173	0.626	18.55	6.22	28.3	7.92
0810	1.75	8,54	174	0.035	18.65	5.92	26.7	
0.0.		0/2 1			70,00			
	-							
							1	
Final Sc	imple Data:	8.54	174	0.635	18.65	5.92	26.7	B.31
	MW-28,	DUP						0.01
	0015,	1200		Sampler(s):	J FOH	ey		
)		
Analyses: VOCs		Dup? N	MS/MSD?	Equipment:	see he	ld boot	K	
SVOCs		西西						
PCBs Pesticide		1		Comments:	DID 5	Con.		
	als and Cyanide	dr.						
M PPAS		ADA		purging pa	used bes	reen 7	soand	740
\$ sufare		da					3	

Casterres in

	1
page	of

	Whitesto Vater: 7.18						10/29	
	epth: 40	-			Purge		0917	
	ump: 32						094	
Initial Pump	Rate: 250	mL/min			P	ump Type:	Perist	outic
adjuste	ed to:	mL/min at			Well	Diameter:	2	inches
adjuste	ed to:	mL/min at			We	ell Volume:	5.25	gallons
Time	Purge Volume (gallons)	рН _£ 0,1 (s.u.)	ORP (mV)	Conductivity (m\$/cm)	Temp.	DO _{gol}	Turbidity (NTU)	Water Level (f
6912	0	7.95	85	0.603	19.33	366	(93	7.90
0917	0.5	7.21	4	0.509	19.00	1.17	57.5	7.94
0922	1.0	6.70	14	0.594	18.08	0.06	32.1	1.99
0927	1.5	6.60	17	0.642	18.03	0	14,5	1,90
0932	1.75	6.60	18	0.643	18.05	0	12.2	7.99
0937	2:0	6.59	16	0.648	18.06	0	10.2	7-9
0942	2.5	6.60	12	0.655	17.90	0	5.42	7.99
0947	3	6.62	8	0.663	17.57	6	4.61	7.99
Final Sar	mple Data:	6-62	8	0.663	17.51	0	4.61	7.99
ample ID(s): ample Time:	MW-20 0950			Sampler(s):	JOOK	4		_'
nalyses: VOCs SVOCs PCBs Pesticides TAL Metals	s and Cyanide	<u>Dup?</u> <u>N</u>	MS/MSD?	Equipment:		ld boo	K	

page	of	1
		-

		(212) 002 0						
		Monitoria	ng Well Pur	ging and Sampl	ing Record			
Site Name:	Whites	stone	Y 1	77 7 11 TO SEC. 19		Well ID:	MW-	35
	/ater: 2.0					Date:	6130	1/22
Total Well De	epth: 17	ff TOIC			Purge	Start Time:	bac	10
	ump: 14	ff TOIC			Purge	End Time:	107	5
	Rate: 150	mL/min				ump Type:		
	ed to: 250	mL/min at	0955		Well	Diameter:	2	inches
adjuste		mL/min at			We	ell Volume:	2.44	gallons
Time	Purge Volume (gallons)	pH (s.u.)	ORP (mV)	Conductivity (mS/cm)	Temp. (°C)	DO _{±10} 2 (mg/L)	Turbidity (NTU)	Water Level (ft)
0940	D	7.11	-54	2.12	23.56	0.86	68.8	3.03
0945	0.5	7.11	-83	2.56	22.24	0	56.4	3.48
0950	0.75	7.12	-89	2.57	22.37	D	50.3	3.59
0955	1.0	7-23	-83	2.48	22.92	9.06	44.8	3.38
1000	1.25	7.18	-85	2.28	22.57	8-76	38-8	3.72
1005	1.50	7.19	-90	2.13	22.70	8.31	35.8	3.88
1010	2.0	7.17	-93	2.16	22.95	7.84	35.3	3.93
1015	2.5	7.17	-97	2.26	23.13	7.26	29.2	3.95
1020	3.0	7.18	-98	2.26	23.21	6.99	28-2	
1020	2 0	7.0	-120	2 21	22 22			.7 . 7

Final Sample Data:	7.18	-100	2-26	23.37	6.57	26.1	3.97
comple ID(s): $M_{W}-3$ comple Time: 1030	35		Sampler(s):	JAN	24		
nalyses: VOCs SVOCs	Dup?	MS/MSD?	Equipment:	see he	ld 600	K	
PCBs Pesticides TAL Metals and Cyanide Nitrote SURVE		, 0	Comments:		. ,	meen o	95D and

sulfare

475 Fifth Avenue New York, NY (212) 352-5160

1		
page 1	of	- 1

	141		ng Well Pur	ging and Samp	ling Record			
	Wnites				-	Well ID	· Mu	1-30
Depth to V	Vater: 5-38	ff TOIC				Date	6131	0/22
Total Well D	epth: 35	ff TOIC			Purge	Start Time	10	50
Depth to F	Pump: 33	ff TOIC			Purge	End Time		15
Initial Pump	Rate: 250	mL/min			P	ump Type:	perisi	rouhz
adjust	ed to: 200	mL/min at	1054		Well	Diameter:	2	inches
adjust	ed to:	mL/min at					4.82	
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1050	0	7.22	-101	2.12	18.92	0.46	47.0	7,12
1055	0.5	7.19	-100	2.13	18.40	O	130	8.03
1100	0.7500	7.14	-101	2.11	18,93	0	197	8.85
1105	1.0	7.14	-102	2.11	18.81	0	82.3	9.12
1110	1.25	7.15	-103	2.09	18-78	0	74.2	9,44
1115	1.50	7.16	-105	2.06	18.66	0	742	9,59
							4	
	U -							
	1							
						1		
Final Sa	mple Data:	7.16	-105	2.06	18.66	0	74.7	9.59
	MW-3D							
ample Time:	HS 112	20		Sampler(s):_	Trover	1		
Analyses:		Dup?	MS/MSD?	Equipment:	Sea 6.	eld lang	V	
VOCs				Equipment	occ pr	710 000		
□ SVOCs □ PCBs				-				
□ Pesticide				Comments:	PID O.C	pan		
TAL Meto	als and Cyanide					F1.		

page 1	-4	1
page	Of	

Monitoring Well Purging and Sampling Record

Site Name:	Whitestone					Well ID:	MIN-	1015
Depth to V	Vater: 8.28	ff TOIC					6/18	
Total Well D	epth: 2	ff TOIC			Purge		tos	
Depth to P	Pump: 17	ff TOIC			Purge	End Time:	1116	
	Rate: 200	mL/min			Pi	ump Type:	Perist	aunc
adjust	ed to:	mL/min at			Well	Diameter:	2	inches
adjust	ed to:	mL/min at			We	ell Volume:	2.07	gallons
Time	Purge Volume (gallons)	pH (s.u.)	ORP (mV)	Conductivity (mS/cm)	Temp.	DO (mg/L)	Turbidity (NTU)	Water Level (ft)
1030	0	6.91	152	5.78	22.02	2,68	135	9,01
1035	0.75	6.90	129	5.91	18.40	0.0	109	9.72
1040	1.25	6.89	131	5.99	18.55	0	91.8	9,13
1045	1.50	6289	126	6,00	18.78	0	580	9,75
1050	1.75	6.89	117	5.97	18.97	0	35.4	9.81
1055	2.0	6.89	112	6104	19,16	0	27.4	9.88
1100	2.5	6.89	103	6.04	19.16	0	25.6	994
1105	2.75	6.89	101	6.07	19.18	0	18.2	10.0
1110	3.0	6.89	100	6.08	19.21	0	17.8	10.05
1115	3.5	6.89	100	6.08	19.26	0	17,5	10.06
Final Sc	ample Data:	6.89	100	6.08	19.26	0	17.5	10.06
Sample ID(s)	101-MM	S						
Sample Time	1120			Sampler(s):	JFOK	cy		
Analyses: VOCs		Dup? !	MS/MSD?	Equipment:	see h	eld box	JK.	
™ SVOCs								
PCBs Pesticide	es			Comments:	PID 0.0	00m		
TAL Met	als and Cyanide			de a junioni.		The state of the s		
DI SUlfare								
M Mirrate								

\$ Minute

475 Fifth Avenue New York, NY (212) 352-5160

page /	of	/
	_	

Site Name:	Whiteston		ring Well Pur	ging and Samp	ling Record	Well ID:	MW-1	010
	Water: 12.33						6/20	
		ff TOIC			Purae		1215	
	Pump: 43						130	
	Rate: 250	CE YEAR					Perisi	
			1 1220				2	
	6704	mL/min a		•			5.8	
Time	Purge Volume (gallons)	pH (s.u.)	ORP (mV)	Conductivity (mS/cm)	Temp.	DO (mg/L)	Turbidity (NTU)	Water Level (ff)
1215	D	6.96	-4	3.80	21.03	0.24	1000	12.37
1220	0.25	7.01	-101	1.41	22.62	0.18	1000	12.3
1225	0.5050	6.99	-105	1,44	21.01	0.45	615	12.37
1230	<u>1−0</u> 0.75	6.99	-106	1.45	20.14	0.02	367	12.38
1235	L#5 1.0	6.99	-107	1.45	20.25	0	275	12.38
1240	1.25	6.99	- 107	1.44	20.57	0	279	12.39
1245	4.75 1.5	7.00	-108	1,44	20.08	0	213	12.39
1250	1.75	7.01	-109	1,44	20.74	0	186	12.39
1255	2.0	7.02	- 110	1.46	20.56	0	157	12.39
1300	2.25	7.02	-110	1.46	20.67	0	141	12.39
(305	2.5	7.02	-109	1.46	20.72	0	128	12.39
Final Sa	mple Data:	7.02	-109	1.4Le	20.72	0	128	12.39
Sample ID(s): Sample Time:	0.1), MS, M	SD	Sampler(s):	J Roley			
	s Ils and Cyanide	<u>Dup?</u>	MS/MSD? Day Day Day Day Day Day Day	Equipment:			<	
SU SU Fave			K -					

Ø

	11		1
page	U	of _	1

		Monitor	ring Well Pur	ging and Samp	ling Record			
Site Name:	Whitesh	one	31.0			Well ID:	KA WI	025
Depth to V	Vater: 6.9L	ff TOIC				Date:	6/27	122
Total Well D	epth: 25	ff TOIC			Purge	Start Time:	1435	5
Depth to P	Pump: 15	ff TOIC			Purge	End Time:	1519	5
Initial Pump	Rate: 200	mL/min			P	ump Type:	Peris	tallic
adjuste	ed to:	mL/min a	t		Well	Diameter:	2	inches
adjuste	ed to:	mL/min a	t	3	We	ell Volume:	2.96	gallons
_	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1435		7.07	-74	0.874	18.11	0	759	8.57
1440	0.5	7.02	-57	0.997	19.14	0.60	711	10.15
1445	0.75	7.03	-61	0.998	18 95	0.60	549	10.45
1450	1-0	6.95	-71	1-23	19.09	0	386	11.00
1465	1-5	6.96	-69	1.17	18.06	0.05	295	11.05
1500	1.75	p. que	- 68	1.20	18 We	0.0	222	9,50
		6.97	-69	1.19	18.48	0	260	9.75
1510	2-5	6-18		1.14	19, 47	Ü	335	9-16
1515	3.0	7.00	-63	1.15	(8,68	0	340	7.18
			_ ^ /					
				1				
Final Sc	imple Data:	7.08	-68	1.15	18-68	0	340	9.78
	MW-1025			1				
Sample Time:	1.			Sampler(s):	JAN	ey		
Analyses: VOCs SVOCs PCBs Pesticide TAL Meta	es als and Cyanide	Dup?	MS/MSD?	Y.	PID 0.0		P.K.	
M sibrate								

	1 0	10
page	of	~

Site Name:	Whitestor		ring well Pur	ging and sampl	ing Record	Well ID	MW-	102 P
	Vater: 11,57						6/2	
	epth: 55 35		Oth to an		Purge	Start Time:		
	Pump: 82-8232		'screen o			End Time:		
	Rate: 200					ump Type:		
	ed to:		ıt			Diameter:		V-7
	ed to:					ell Volume:		•
Time	Purge Volume (gallons)	рН (s.u.)	ORP (mV)	Conductivity (mS/cm)	Temp.	DO (mg/L)	Turbidity (NTU)	Water Level (ft)
1140	0	7.05	-88	0.741	19.16	6.46	1000	12.21
1145	0.5	7.08	-85	0.711	19.36	5.48	1000	12.25
1150	1.0	7.11	-67	0.127	18.08	4.65	1000	12.26
1155	1-25	7.11	-62	0-731	18.00	4.15	1000	12.28
1200	1.5	7.13	-60	0.741	17.88	3.01	1000	12.28
1205	Purging pause	ed to che	an sensor	s and readi	rate for	w bidily		
1235	Resumed purgm							
1235	2.550	6.56	-7	0.774	18.45	0.09	43.2	12.57
1240	3	6.66	-29	0.774	18.19	0	1000	12.32
1245	3.25	7.08	-66	0-259	18.06	0	1000	2.30
1250	3.5	7.04	-65	0762	18.05	0	1000	12,23
1253	4.0	203	- Let	0.218	12-29	Ó	659	12-30
1300	4-25	201	-64	0.74	17.75	0	584	12-32
1305	4.5	k.96	-lele	0.791	17.68	0	465	12.32
1310	4.7.5	6-96	-69	0-794	17.63	0	374	12-32
Final Sc	ımple Data:			see v	lent pag	e		
Sample ID(s): Sample Time:	MW-102D			Sampler(s):	JFoley			
Analyses: VOCs SVOCs PCBs Pesticide TAL Meta	als and Cyanide	Dup?	MS/MSD?	Equipment:			c	

	0		
page	1	of	7

Monitoring Well Purging and Sampling Record

Site Name:	Whiteston	e				Well ID	MAVI	02D
Depth to \	Water:	ff TOIC						22
	Depth:				Purge :			
	Pump:							
	Rate:							
	ed to:		nt					
	ed to:							
Time	Purge Volume (gallons)	pH (s.u.)	ORP (mV)	Conductivity (mS/cm)	Temp.	DO (mg/L)	Turbidity (NTU)	CALL TO
1315	3.0	6-94	-73	0.799	17.58	0	306	12.32
[320	5.5	6.99	-78	0.798	17.58	0	310	12.32
(325	5.75	7.03	-80	0.793	17.35	0	350	12.32
1330	6.0	7.06	-81	0,784	17.76	0	412	12.34
1335	6.25	7.08		0.771	17.72	O	412	12.34
		1						
Final Sc	imple Data:	7.08	-80	0.771	17.72	0	472	12.34
ample ID(s):	µW-102D							
ample Time:	1340		-	Sampler(s):				
Analyses: VOCs		Dup? □	MS/MSD?	Equipment:				
SVOCs								
□ PCBs□ Pesticide	·e			C				
	als and Cyanide			Comments:				
13								

page 1	of	1

			ng well Pur	ging and Sampli	ing Record			
	Whiteston					Well ID:	MW-1	03D
Depth to W	ater: 6,93	ff TOIC				Date:	6/30	122
Total Well De	epth: 40	ff TOIC			Purge	Start Time:	1200	
Depth to Pu	ump: 35	ff TOIC			Purge	End Time:	122	5
Initial Pump (Rate: 250	mL/min			Po	ump Type:	Peris	tallic
adjuste	ed to:	mL/min at			Well	Diameter:	2	inches
adjuste	ed to:	mL/min at			We	ell Volume:	5.39	gallons
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)
1200	0	6.89	-88	1.12	18.36	0.17	123	7.08
1205	0.5	6.81	-87	1.07	17.89	0	98-3	7.10
1210	0.75	6.79	-87	1.06	(7.85	0	133	7.12
1215	1.25	6.68	-82	1.07	17.59	0	109	7.12
1220	1.5	6,62	-82	1.07	17.50	0	117	7.12
1225	2.0	6.58	-82	1.07	17.34	0	112	7.12
						Y Y		
					M A			
Final Sa	imple Data:	6.58	-82	1.07	17.34	0	112	7.12
Sample ID(s):								
Sample Time:	1230			Sampler(s):	JFOR	24		
						J .		
Analyses: VOCs		Dup?	MS/MSD?	Equipment:	See be	eld boo	ok	
□ SVOCs								
□ PCBs				Commonto	010 01	(1		
☐ Pesticide☐ TAL Meto	als and Cyanide			Comments:	עוץ ט,י	7 ppm		
A. G. Haite								
1 Nitrate	e							

DI Winate

475 Fifth Avenue New York, NY (212) 352-5160

1	
page	of

Monitoring Well Purging and Sampling Record Site Name: Whitestone Well ID: MW-1135 Depth to Water: 8.38 ft TOIC Date: 6/29/22 Total Well Depth: 20 ft TOIC Purge Start Time: 1405 Purge End Time: 1505 Depth to Pump: 10.5 ft TOIC Pump Type: Peristatic Initial Pump Rate: 200 mL/min Well Diameter: 2 inches adjusted to: mL/min at Well Volume: 1.89 gallons adjusted to: mL/min at _-Purge Volume Conductivity Temp. DO Turbidity Water pH ORP (mg/L) (NTU) Time (gallons) (mS/cm) (°C) Level (ff) (s.u.) (mV) 7.70 28-7 0 28.90 912 9.58 1405 208 0.344 0,5 0.350 24.76 7.33 7.21 148 1410 0.5 24.33 15.07 1430 6.76 0.373 60.6 8.77 150 6-82 7.84 8-78 0-75 20.52 62.4 1435 124 0.379 1.0 7.85 8.81 1440 55.1 19,31 10.76e 111 0.387 1.5 51.8 7.93 6.73 19.27 8.03 1445 110 0.388 1-75 8.85 7.62 54.5 1450 76 6.62 0.391 18.65 7.30 8.86 2.0 112 53-2 1455 6.60 0.396 18.13 7.12 2.5 8 86 1500 113 539 17.94 662 D. 396 48.9 3.25 6.66 7.04 1505 0.399 17.69 8.86 110 6.66 0.399 17.69 48.9 110 7.04 Final Sample Data: 8.86 Sample ID(s): MW-113 Sampler(s): J Foley Sample Time: 1510 Analyses: Dup? MS/MSD? Equipment: see held book ₩ VOCs SVOCs PCBs Pesticides Comments: PID 0.0 ppm ☑ TAL Metals and Cyanide prying paised at 1410 to replace DI PFAS \$ supare

page	\ of	1
F6-	1	

Monitoring Well Purging and Sampling Record

Site Name: Whitesh	me	Well ID:	MW413D
Depth to Water: 8.55	ff TOIC	Date:	6/29/22
Total Well Depth: 20	ff TOIC	Purge Start Time:	1545
Depth to Pump: 17.5	ff TOIC	Purge End Time:	1030
Initial Pump Rate: 200	mL/min	Pump Type:	Peristalis c
adjusted to:	mL/min at	Well Diameter:	2 inches
adjusted to:	mL/min at	Well Volume:	1.86 gallons
1.5 1/1			Total Make

Time	Purge Volume (gallons)	pH ₁₀ .\((s.u.)	ORP 510	Conductivity (m\$/cm)	Temp. (°C) ^{≒3%}	DO (mg/L)	Turbidity	Water Level (ft)
1545	0	7.29	189	0.386	101.83	11.13	441	8.78
1530	0.5	7-27	185	0.392	18.05	10.09	361	8.8
1533	1.0	7.15	163	0.401	17.49	10.02	262	8.89
1600	1.25	7.15	160	0.401	17.48	9.48	222	8.88
1605	1.5	7.14	116	0.402	17.45	9.25	205	8.8
1610	1.75	7.14	105	0.402	17.43	8.93	193	8.83
1615	2.25	7.4	96	0.403	17.40	8.33	140	8.9
1620	2,50	7.14	91	0.403	17.39	7.71	108	8.8
1025	3.00	7.15	83	0.403	17.38	7.69	87.2	
16.30	3.5	7.15	82	0.403	17.37	7.22	74.5	8.8
Final Sar	nple Data:	7.15	82	0.403	17.37	1.22	74.5	8.8

Final Sample Data:	7.15	82	0.403	17.37	1.22	74.5	8.89
Sample ID(s): MW-113 [
Sample Time: 1635		_	Sampler(s):	JFOH	<u>y</u>		
Analyses:	Dup?	MS/MSD?	Equipment:	see hel	dbook		
☑ VOCs							
SVOCs							
DY PCBs							
Pesticides			Comments:	PID OLD	Oppm		
TAL Metals and Cyanide					0.4		
& PPAS							
O SUPOLE OF Nitrate							

page	<u> </u>	of	
------	----------	----	--

Monitoring Well Purging and Sampling Record

Site Name:	Whilestor	rl		ging and dampi	ng kecola	Well ID:	MW.	12015	
Depth to W	ater: 11.35	ff TOIC				Date:	Lotza	10 61	30/22
Total Well De	epth: 12,55	ff TOIC			Purge	Start Time:			
Depth to P	ump: 12.0	ff TOIC			Purge	End Time:			
Initial Pump I	Rate:	mL/min				ump Type:			
adjuste	ed to:	mL/min at	t			Diameter:			
adjuste	ed to:	mL/min at		•		ell Volume:			
	Purge Volume	рН	ORP	Conductivity	Temp.	DO	Turbidity	Water	
Time	(gallons)	(s.u.)	(mV)	(mS/cm)	(°C)	(mg/L)	(NTU)	Level (ff)	
								doc	
,									
					•		·		
					» '				
									1
Final Sa	mple Data:								1
Sample ID(s):		-			0				•
				Sampler(s):					_
		D	N 40 (N 40D 0						
Analyses: UVOCs		<u>Dup?</u>	MS/MSD?	Equipment:					-
□ SVOCs									_
□ PCBs□ Pesticides	\$			Comments:	PIB A	0600			
	s Is and Cyanide			0011111011101		W KPIN			-
									-

475 Fifth Avenue New York, NY

	4
of	
	of

		(2120 352-	-5100					
			ring Well Purç	ging and Sampl	ing Record			
Site Name:	Whiteslow	l					MW-20	
Depth to W	/ater: 12.64	ff TOIC					8-30-	2072
Total Well De	epth: 19.80	ff TOIC				Start Time:		
Depth to P	ump: 17.50	ff TOIC				End Time:		
Initial Pump I	Rate: 300	mL/min			P	ump Type:	Perisalt	C
adjuste	ed to: 160	mL/min o	1 1050 t		Well	Diameter:	2	inches
adjuste	ed to: 125	mL/min c	The second second		We	ell Volume:	1.17	gallons
Time	Purge Volume (gallons)	pH (s.u.)	ORP (mV)	Conductivity (mS/cm)	Temp.	DO (mg/L)	Turbidity (NTU)	Water Level (ft)
1048	_	7.82	-39	5.49	Z0.93	1.50	271	12.90
1053	~0.6	7.94	-54	5.43	21.29	0.36	102	12.73
1058	20.9	787	-61	5.43	21.79	0.27	70.2	1274
M 1104	1.110	7.81	-47	5.41	7.2.27	0.13	67.6	12.71
1109	1.1.25	7.83	-48	5.42	21.07	0.03	57.6	1275
1114	1.55	7.84	-49	5.42	20.88	0.00	45.3	1275
1119	1.8	7.80	-49	5.41	20.74	0.00	31.8	12.75
1124	2.2	7.76	-50	5.41	20.62	0.00	15.5	1277
1129	2.5	7.68	-49	5.41	20.70	0.00	19.8	12.76
1134	2.75	7.64	-49	5.41	20.79	0.00	17.6	12.76
11301	3	7.60	-49	6.40	20.68	0.00	15.9	12.78
1144	3.35	754	-50	5.37	20.85	0.00	11.4	12.75
1149	3.6	7.49	-43	5.39	20.78	0.00	8.5	12.77
1154	3.8	7.46	-50	5.39	20.63	0.00	7.9	12-77
1159	4.1	7.44	-41	5.39	2059	0.00	6.8	12.78
	ample Data:	7.44	-41	6.39	20.09	0.00	6.8	12.78
Sample ID(s): Sample Time:		5	-	Sampler(s):	M. Brea	lehoert	,	
Jumple IIIIe.								150
Analyses:		Dup?	MS/MSD?	Equipment	Perisolli	1 /		V5Z
VOCs SVOCs					Jolinist	Interface	Meler	
PCBs					D.D. A.A.	- 4.		

TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanide

TO TAL Metals and Cyanid Temperature; \pm 10 mv for Redox Potential; and \pm 10% for Dissolved Oxygen and Turbidity

Comments: PID D.OppM

Pesticides

475 Fifth Avenue New York, NY (212) 352-5160

1		
page	of	1

Site Name:	Whileshow		ng Well Purg	jing and Sampli	ing Record	Well ID.	W-201	
	ater: 35317	-				Date:	W-201	22
		ff TOIC			Purge :	Start Time:		
		ff TOIC				End Time:		
		mL/min				ımp Type:	_	
		mL/min at				Diameter:		
adjuste	ed to:	mL/min at				II Volume:		
Time	Purge Volume (gallons)	pH , 01	ORP (mV)	Conductivity (m\$/cm)	Temp. (°C) ^{±3%}	DO _{_10} /2 (mg/L)	Turbidity (NTU)	Water Level (ft)
0717	0	6.11	193	0.760	19.75	4.87	201	12.65
0722	0.5	6.83	-32716	0,789	17.63	3.72	66.6	1267
0727	1.0	6.27	-26	0.796	17.31	3,39	33.3	12,67
0732	1.25	6,92	-57	0.796	17.35	3.34	29.3	12.67
0737	1.5	6.92	-61	0.797	17,19	3,19	27.1	12.67
0742	1.75	6-94	-66	0.797	17.11	1.56	15.5	12.67
0747	2.25	6.96	-70	0.797	17.17	1,37	13.4	12,67
0752	1 2.5	6.97	-73	0.797	17.17	1.30	9.71	12.67
0757	3.0	6.99	-76	0.797	17.30	0.97	6.09	12.67
0802	3.25	7.04	-80	0.798	17.30	0.92	5.27	12.67
0807	3-75	1.07	-8 Z	0.800	17.32	0,65	4.73	12.67
0812	4.0	7.03	-81	0.801	17.36	0.60	3,64	12,67
0817	4.25	711	-86	0.903	17-33	0.57	4.57	12,67
	7							
Final Sc	ample Data:	7.11	-86	0.803	17.33	0.57	4.57	12.67
Sample ID(s)	MN-201D							
Sample Time:	0820			Sampler(s)	JAOH	4		
Analyses: VOCs VOCs VOCs PCBs Pesticide TAL Meter Nitrade Suffect A PEAS	als and Cyanide	<u>Dup?</u>	MS/MSD?	Comments	See 8 PID 0.	Oppm		17/1/2

SITE: Whitestone CONSULTING FIRM: Started DATE: 914 35 WEATHER: 710F, SUMMY MONITOR WELL #: MW - 15 WELL DEPTH: 15.6 SCREENED/OPEN INTERVAL: 2 to 1744														T_ <u>l</u> OF_	
MONITOR WELL PER			1-15		LL DEPTH: DIAMETER:	15.6	inches			SCREEN	IED/OPEN II	NTERVAL:	<u>2 to i</u>	744	
PID/FID R	EADII	IGS (ppm):		UND: OUTER CAI INNER CAP				P INTAKE D				: <u>6.79</u> m t	pelow TOC		
TIME	5	_	CHANGE*		CHANGE*		CHANGE*		CHANGE*	0.30.				(ml/min)	
0922	X	7.46	NA	0.864	NA	39	NA	0.32	NA	350	NA	22.85	NA		7,98
0927	X	7,47	+0.01	0.858	-0.006	30	-9	0.25	-0.07	250	-100	23.30	+0,45		9.60
1932	X	7.47		0.818	-0.010	26	-4	0.18	-0.07	217	- 33	23,60	+0.30		10.43
0937	X	7,48	+0,01	0.845	-0/003	25	-1	0.22	+0.04	194	-23	23:73	+0.13		11.35
0942	X	7.48		0.348	+0.003	27	+2	0.34	+0.12	158	-36	23,42	-0.31		11.73
0947	X	7.50	+0.02	0.852	+0,004	31	+4	0.71	t0.37	148	-10	23,27	-0.15	-	12.01
0952	χ	7.50		0.855	+0,003	35	+4	0,97	+0.26	138	-10	23.12	-0.15		12-27
0957	X.	7,50		0.858	+0.003	39	+4	0.94	-0.03	134	-4	23.00	-0.12		12,42
1002	x	7,51	+0.01	0,860	+0,002	43	+ 4	0,86	-0.08	126	- 8	22.85	-0,15		
COMMEN	T\$: <	somple?	Time;	607	*									~30	gallons

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

		15.0	
SHEET	ı.	OFIX	

SITE: DATE: WEATHEI	<u> </u>	hitestor 14/25 4°F, 5vi	niny			* * **		CONSULTIN		stantec j. Nair				- B1	
MONITOF WELL PE		_	-10	_	LL DEPTH: DIAMETER:	34,5	inches			SCREEN	ED/OPEN IN	ITERVAL:	30 to 3	55++	
PID/FID R	EADIN	GS (ppm):		UND: OUTER CAI			PUMF DEPT	P INTAKE D	EPTH: <u>3</u> 9	t below	TOC ALLATION :	8,44 m	pelow TOC		
TIME															
1031	X	7.52	NA	0.973	NA	-59	NA	0.76	NA	88.0	NA	20,22	NA // /		9,04
1036	X	7.34	-0.18	0,987	+0.014	-72	- 13	0.04	-0.72	59.8	-22.2	19,58	-0.64	-	9.06
1041	X	7,25	-0.09	0,992	+0,005	-76	-4	0.00	-0.04	13.5	-46.3	19.42	-0.16		9.08
1046	X	7,21	-0.04	0.995	+0.003	-78	-2	0.00		8.6	-4.9	19.33	-0.09		9,06
1051	X	7.18	-0.03	0.997	+0.002	-80	-2	0,00	~	7.0	-1.6	19,24	-0,09		9.08
1056	X	7.16	-0.02	0,998	+0.001	- 80	Agraphia	0.00	4 (max = 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	7.2	+0.2	19.18	-0.06	,,	9.06
1101	X	7.15	-0.01	0,999	+0,001	- 80		0.00		7.1	-0-1	19.14	-0.04	Jul 200	9.03
COMMEN	ITS: 5	ample	Time:	1106		1		1	1	٦,	4			~3,5	gallons

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SITE: DATE: WEATHEI	NEATHER: 9325 FIELD PERSONNEL: J. No. (
MONITOR WELL PE				-25		LL DEPTH: DIAMETER:	13.06	inches		16		ED/OPEN IN	ITERVAL:	4+0	19		
PID/FID R	PID/FID READINGS (ppm): BACKGROUND: PUMP INTAKE DEPTH: A ft below TOC BENEATH OUTER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 484 ft below TOC BENEATH INNER CAP: DEPTH TO																
	TIME 2 7 7 PH CONDUCTIVITY POTENTIAL OXYGEN TURBIDITY TEMPERATURE (pH units) (mS/cm) (mv) (mg/l) (NTU) (degrees C) READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* (ml/min) TOC)																
TIME	2	SA		CHANGE*		CHANGE*		CHANGE*		CHANGE*		CHANGE*		CHANGE*	(ml/min)		
1340	×		7,25	NA	1.04	NA	38	NA	0.72	NA	23.8	NA	23,90	NA		7.38	
1345	X		7.22	-0,03	1.08	+0.04	34	-4	0.42	-03	14.6	-9.2	22.93	- 0.97	,—	8,65	
1350	X		7,20	-0.02	1.09	+0.01	3%	+4	0.56	+0.14	3.2	-11,4	23,37	+ 0.44		9.80	¥
1355	X		7,20	-	1.05	-0.04	39	41	0.35	-0,21	5.5	+2.3	23.77	+0.40		10.82	
1400	×		7,21	+0.01	1-00	-0.05	34	-5	0.38	+0.03	7.5	+2,0	23.77	,,		12.02	
1405	X		7.21		0.986	- 0.014	29	-5	0.52	+0.14	7.1	-0,4	23,55	-0,22		12.95	
1410	×		7,23	+0.02	0.999	+0.013	25	-4	1.05	+0.53	10.3	+3,2	23,29	-0,26		13,95	
1415	X		7.24	+0,01	01.02	+0.021	24	-1	1.71	+0.66	129	t26	2297	-0,34		15,38	*
1420	x		7.25	+0.01	1.05	+0.03	24		1,79	+0.08	11,9	-1.0	2292	-0.05		15,75	70
1425	×		7,27	40,02	15.4	+0.06	20	-4	2,00	10,21	10.0	-13	22,28	-0,64			
COMMEN	ITS:	5	ample Ti	me: 14	30		D	uplicat	e					~ 4 9 01	lbus pur	qed	

* Flow rate reduced

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SITE: DATE: WEATHER		9	hitestor 3 25 6°F, Su	vay			V		CONSULTIN			5				T OF
MONITOR WELL PER			#:	1-2D	→)	LL DEPTH: DIAMETER:	34,90	inches			SCREEN	IED/OPEN IN	ITERVAL:	30 +	o 35 F1	
PID/FID R	EAD	INC	GS (ppm):		UND: OUTER CAI INNER CAP	-			P INTAKE DI				<u> 5/34</u> #1	pelow TOC		
	PH CONDUCTIVITY POTENTIAL OXYGEN TURBIDITY TEMPERATURE (HT bunits) (mS/cm) (mv) (mg/l) (NTU) (degrees C) READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* READING CHANGE* (ml/min) TO												DEPTH TO WATER (ft below			
TIME		SA													(ml/min)	TOC)
448	X		7,14	NA	0.490	NA	-34	NA	0.73	NA	10.3	NA	24,50		-	8,50
453	X		75.92	-0.23	0,632	40,142	-42	-8	0.15	-0,58	7.7	-2,6	23.17	-2,30		8,55
458	X		6.86	-0.08	0.683	+0.051	-43	-1	0.00	- 0-15	7.5	-0.2	21.71	-0.46	,	8,56
503	X		6.83	-0.03	0,689	40.006	-41	+2	0,00		7.6	+0.1	21.68	-0.03		
508	X		6.82	-0,01	0,691	+0,000	-40	干机	0.00	- Colonian	6.5	-1.1	2118	-0,50		8,54
513	X		6.81	-0,01	0.687	-0.004	-40	-	0,00		5,9	-0.6	21.21	+0,03		
518	x		6,81		6,690	+0,003	-40		0,00		5.5	-0,4	21.38	+0.17		8,58
OMMEN	TS:	S	iample	. Time	: 1523)						90903 ent Big		35	~39	allonspur

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

								DA	ІА ЭПЕ						SHEE	тог
SITE: DATE: WEATHER	2:	W1 91	nitestor 3 25 2°F, Suv	ne						IG FIRM: 5						
MONITOR WELL PER	WE	ELL	#: MW			LL DEPTH: DIAMETER:		inches			SCREEN	IED/OPEN II	NTERVAL:	2 to	1754	
PID/FID R	D/FID READINGS (ppm): BACKGROUND: PUMP INTAKE DEPTH: 9 ft below TOC BENEATH OUTER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 5 ft below TOC BENEATH INNER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 5 ft below TOC BENEATH INNER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 5 ft below TOC BENEATH OUTER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 5 ft below TOC BENEATH OUTER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 5 ft below TOC															
	TIME 2 2 2 3 READING CHANGE* R															
TIME	2	SAN	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0803	x		7.28	NA	1.09	NA	-21	NA	0.96	NA	18.1	NA	25.67	NA		3,21
0808	×		7,16	-0.12	1.09		-60	-39	0.28	-0.68	13/1	-5	25,93	+0,26		3,43
0813	×		7,17	+0,01	1.09		-73	-13	0.17	-0.11	11.0	-21	26.16	+0,23	-	3.62
0818	×		7,17		1,09	-	-30	-7	0.11	-0.06	9.4	-1.6	28.29	+0.13		
0823	X		7.17		1.09	-	-85	-5	0.07	-0.04	7.8	-1.6	28,58	+0,09	J	3,72
0828	x		7.17	_	1.09	_	-88	-3	0.04	-0.03	6.1	-1.7	26,41		-	_
0833	X		7,17		1.08	- 6.01	-92	-4	0,03	-0.01	5.8	- 0.3	26,49		-	3.70
0838	X		7,17		1.08	,	- 94	-2	0.00	-0.03	54	-0,4		-0.01		
755		П														
COMMEN	ITS:	•	Sample	Time:	0843	·								~ 30al	ions pu	ged

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

		- 1
SHEET	\ OF	

SITE:		niteston	ne _					CONSULTIN						- 5	
DATE: WEATHER		3 25 7° F. Su	MANT				-	FIELD PERS	ONNEL:	110000					
			l .	1400	LL DEPTH:	23 CV				SCREEN	ED/OPEN IN	ITEDVAL.	30 to	3C FL	
WELL PE		:	V- 3V		LL DEPTH: DIAMETER:	33,30	 inches			SCREEN	ED/OPEN IN	IIERVAL:	50 70	2274	
PID/FID R									2 0	、 ft below					
PID/FID K	EADIN	os (ppin).	BACKGRO	OUND: OUTER CA	p: ==	//				<u>. </u>		5,70 m	elow TOC		
				INNER CAF					ï						
	و ر			SPE	CIFIC	REI	рох	DISS	DLVED						DEPTH TO
14	PURGING		oH units)		CTIVITY 6/cm)	1	NTIAL nv)		rgen ig/l)		IDITY TU)		RATURE ees C)	PUMPING RATE	WATER (ft below
TIME														,	
0901	X	7,34	NA	1.26	NA	- 48	NA	0,79	NA	5,1	NA	23,15	NA		7.93
0906	×	7,32	-0,02	1,32	+0.06	- 68	-20	0.19	-0.6	1.7	-3,4	20,34	-2.81		9,07
0911	X	7.35	-0,03	1.30	-0.02	- 79	-11	0.03	-0.16	1.6	-0,1	20.35	+0.01	***	10.30
0916	X	7,36	+0,01	1,29	-0.01	- 85	-6	0,00	-0,03	11.3	+9.7	20,25	-0.1		11.42
0921	X	7.37	+0.01	1,25	-0.04	-92	-7	0.00		30,3	+19	20.13	+0.12	-	12,13
0926	X	7.36	-0.01	1,23	-0.02	- 95	-3	0.00	-	22.8	-7.5	20,03	-0.1		12.53
0931	х	7.36		1,21	-0.02	-97	-2	0.00		25,5	+2.7	19.81	-0.16		13.02
0936	X	7,36		1,20	-0.0i	-100	-3	0.00	The state of the s	19.8	-5.7	19,79	-0.02		13,45
0941	x	7,37	+0.01	1,19	-0.01	-102	-2	0.00		16.2	-3.6	19.78	-0,01		13.89
0946	X	7.37		1.18	-0.01	-103	-1	0,00		17.1	+0,9	19.58	-0,2	(0	14.18
0951	×	7,37	_	[17]	-0.01	-104	-1	0.00	-	17.0	-0.1	19,51	-0.7		
COMMEN	iTS: <	Sample	Time:	D956									125	gallons	purged

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

								DA	ІА ЭПЕІ	= •					SHEE	r_ <u>l</u> of
SITE: DATE: WEATHE		91	hiteston 3 25 10F, Sun						CONSULTIN							
MONITOR			#:_^\W	-1015		LL DEPTH: DIAMETER:	21,13	 inches			SCREEN	ED/OPEN II	ITERVAL:	11 +0 2	1 ++	
PID/FID R	PID/FID READINGS (ppm): BACKGROUND: PUMP INTAKE DEPTH: 16 ft below TOC BENEATH OUTER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 10.36 ft below TOC BENEATH INNER CAP: DEPTH TO WATER DEPONDED.															
	PURGING	SAMPLING		oH units)	CONDU	CIFIC CTIVITY /cm)	POTE	DOX NTIAL IV)	ОХҮ	OLVED GEN g/l)		SIDITY TU)	1	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1039	X		7.13	NA	2.65	NA	59	NA	7.84	NA	14.5	NA	22.19	NA		11.68
1044	χ		7.09	-0,04	2,60	-0,05	55	-4	2,47	-5,37	6.6	-7.9	22.03	-0.16	_	12.88
1049	x		7,08	-0.01	2.51	-0.09	53	-2	2.47	_	3.1	-3.5	22.04	+0.01	_	13.17
1054	X		7.09	+0.01	2.58	+0,07	52	1	2.38	-0.69	1.0	-2.1	21,89	-0,19		12.30
1059	X		7,10	+0,01	2,62	+0.04	52		2,33	-0.05	0.6	-0,4	21,77	-0.12	_	12.75
1104	×		7,10		2,62		52		2,26	-0.07	0.4	-0,2	21.74	-0.03		12.89
1169	X		7.11	+0,01	2.62		54	+2	2.43	+0.17	0.7	+0.3	21,73	-0,01	_	·
									11							
COMMEN	ITS:	5	ample "	Tine:	1114	t.	•			•			~ 3 q	allons	purqe d	

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

	SHEET OF															
SITE: DATE: WEATHER	- T		nitestor 3 25	e e Mos	stly Sur	nnv			CONSULTIN	G FIRM: 5	tantec L.Nair	ě				
MONITOR WELL PER			#: _M\W	-1010	WE	LL DEPTH: DIAMETER:	46,10	inches			SCREEN	ED/OPEN IN	ITERVAL:	40 to	45 F.4	
PID/FID READINGS (ppm): BACKGROUND: PUMP INTAKE DEPTH: 43 ft below TOC DEPTH TO WATER BEFORE PUMP INSTALLATION BENEATH INNER CAP:														elow TOC		
	PURGING	SAMPLING		H units)	CONDU	CIFIC CTIVITY /cm)	POTE	DOX NTIAL nv)	ОХҮ	OLVED GEN g/i)	TURE (N	IDITY FU)	TEMPEI (degre	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SAI	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1122	X		7.11	NA	1.20	NA	-23	NA	2.92	NA	32.5	NA	21.33	NA		12.95
1127	X		7,15	+0.04	1.16	+0.04	-66	-43	2.14	-0.68	27.0	-5.5	20.86	-047		12.98
1132	X		7.17	+0.02	1,15	-0.01	-82	-16	1.91	-0,23	31,4	+4.4	20,53	-0,32	7	
1137	X		7,16	-0.01	1.14	-0.01	- 59	-7	1.71	-0.20	20.3	- ji.1	20.52	-0.01	-	13.02
1142	X		7,16		1.14		-92	-3	1.59	-0.12	16.0	- 5.3	20 A8	-0.04	-	-
1147	X		7,16		1,13	-0,01	-95	-3	1,44	-0,15	14,7	-0.3	20,44	-0,04		12.98
1152			7.16		1.13	n=====	-97	-2	1.30	-0.14	14.0	-0,7	20.41	-0.03		
COMMEN	TS:		Sample	e Time	- 1157						1				~ 4gall	ons

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

									1100000						SHEE	TOF
SITE: DATE: WEATHE	1	71	2 25	Queer ly sunn					CONSULTIN	IG FIRM:	Stanteo I/Nai(٤				
MONITOR WELL PE			#:	-1025		LL DEPTH: DIAMETER:	21,68	inches			SCREEN	IED/OPEN IN	ITERVAL:	_ 11 to	21 ft	
PID/FID R	EAD	IN	GS (ppm):		UND: OUTER CAI INNER CAP			PUMI DEPT	P INTAKE D	EPTH: 16 ER BEFORE	ft below PUMP INST		8,10 ft	elow TOC		
	PURGING	SAMPLING		oH units)	CONDU	CIFIC CTIVITY //cm)	POTE	DOX :NTIAL nv)	ΥCO	OLVED YGEN ng/l)		BIDITY TU)		RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SAR	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1200	x		7.10	NA	te60.80	NA PF	126	NA	1.33	NA	63,1	NA	21,52	NA		10.58
1205	х		7,00	-0,10	0.832	-0.012	120	-6	0.71	-0.62	42.0	- 21,1	21,44	-0.08		11-04
1210	X		7,04	+0.04	0,800	-0.032	105	-15	0,90	+6,19	40,0	-2.0	21.39	-0.05	-	11.42
1215	x		7,02	-0,02	0,803	+0.003	79	-26	1,02	+0,12	43,4	+3,4	21,29	-0,10	-	11.75
1220	X		7,00	-0.02	0,844		60	-19	0.87	-0.15	35,7	- 7,7	20.82	-0,47		12.02
1225	×		6,97	-0.03	0,903	+0,059	47	-13	0.71	-0.16	32,3	-3,4	20,74	-0.08	-	12.18
1230	×		6,96	-0,01	0,925	+0.022	41	-6	0.67	-0.04	33,5	+1,2	20,66	-0.08	_	12.42
1235	×		6.95	-0,01	0,939	+0,014	36	-5	0.62	-0,05	33,3	-0.2	20156	-0,08		_
)		
	Т															
COMMEN	ITS:		Sample	Time:	1240		L	L.	J			* ~	14 galla	in ever	1 ~ 5 min	nutes

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

SHEET _ OF _ 1

SITE: DATE: WEATHER	W	2 25 nitestan 5°F Mos	e 2 stly Sunv	1 4			=	CONSULTIN	G FIRM: _S	stantec , Nair					
MONITOR	WELL	#: _MW	- 102D	WE	LL DEPTH:	34.3 2	inches		33		ED/OPEN II	NTERVAL:	30 to	35	:
PID/FID R	PUMP INTAKE DEPTH: 3475 ft below TOC BENEATH OUTER CAP: BENEATH INNER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 12.28 ft below TOC														
	PURGING SAMPLING		H units)	SPEC CONDUC (mS		POTE	DOX NTIAL nv)	ОХҮ	OLVED 'GEN g/l)		IIDITY TU)	1	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PUF					READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1252	X	7.09	NA	0,838	NA	-58	NA	1.12	NA	0.0*	NA	21/13	NA		12.99
1257	X	7,22	+0.13	0,744	-0.094	-64	-6	0,04	-1.08	0,0*	_	19,01	-2.12	-	12,91
302	X	7,31	+0,09	0.715	-0,029	-61	+3	0.00	-0.04	0.0*	_	18,85	-0.16		12.94
315-5	х	7,08	-0,23	0,854	-0/139	-38	+23	81.09	+1.09	393	+393	19.66	+0.81	_	
320	x	7.00	-0.08	0.780	-0.074	-73	-35	0,05	-1.04	0.0*		18.99	-0,77		12.89
325	×	7,35	+0.35	0,729	-0.051	-74	-1	0.00	-0.05	0.0*		18.81	-0-18	===	
330	x	7,38	+0.03		+0.002	- 69	+5	6,00	_	0.0*	_	18,75	-0.06		12.95
1335	×	7,38		0,733	+0.006	- 66	+3	0,00		0,0*		18.70	-0.05	-	
COMMEN	TS:	Sample :	Time:	340				* 6	w is vi	sibly bro lmed the	wn (mu e senso	ddy/silly) may h	av e	

*INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature;

± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

Note: unable to reach the tubing in the well -> used new tubing and worked around the old

@1306 stop to clean out Horiba and raise tubing but sensor is still overwhelm
at this point

SHEET \ OF Q

SITE: DATE: WEATHER	91 75	nitestone 2 25 10F, Sunn	Υ				and the second		G FIRM: S	Nair					
MONITOR WELL PEI		.#: <u>MW-</u> :	-103D		LL DEPTH: DIAMETER:	36,80	inches			SCREEN	ED/OPEN IN	ITERVAL:	33 to	38	
PID/FID R	EADIN	GS (ppm):		UND: OUTER CAI					ертн: <u>35.9</u> :r before i			7,49 m	pelow TOC		
	PURGING		H units)	CONDU	CIFIC CTIVITY /cm)	POTE	OOX NTIAL IV)	ОХ	OLVED 'GEN g/l)		BIDITY TU)		RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PU	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1431	X	7.12	NA	0.628	NA	-70	NA	2,00	NA	0.0*	NA	19.61	NA		7.72
1436	X	6.94	-0.18	0,762	+0,134	-75	-5	1.30	-0.70	488		18,68	-0.93		7.76
1441	x	6.96	+0.02	0.802	+0,640	-81	-6	1.66	+0.36	263	-225	18,48	-0,20		
1446	x	6.94	-0.02	0,845	+0,043	- 85	-4	0.92	-0,74	191	-72	18.31	-0.17	_	7.76
1451	x	6,93	-0,01	0,884	+0,039	- 88	-3	0.80	-0.12	123	- 68	18.24	-0,07		
1456	×	6,93		0,911	+0.027	- 89	-1	0.72	-0.08	127	+4	18.22	-0.02	_	7.78
1501	×	6,92	-0.01	0,921	+0,010	-91	-2	0.57	-0.15	47.4	-79.6	18,17	-0,05	_	
1506	x	6,93	+0,01	0,933	+0,012	-92	-1	0,47	-0.1	32,5	- 14,9	18,07	-0.10		7,79
1511	х	6,92	-0.01	0,942	+0,009	-93	- (0.27	-0.2	28.1	-4,4	18,06	-001		
1516	X	6,95	+0,03	6,958	+0,016	-96	-3	0,13	-0,14	21,6	-6,5	17,96	-0,10		7-80
1521	X	6,95		0,959	t0,001	-97	-1	0,00	-0.13	19,7	-1.9	17,95	-0.01		
COMMEN	TS:	Sample	Time:	1541											

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

^{*} sensor may have been overwhelmed (Horiba was cleaned prior to start)

SHEET 2 OF 2

WELL PE	R: 5 WELI		S-103D BACKGRO BENEATH	WELL		36,80	inches	FIELD PERS	EPTH: 35		TOC ALLATION :		below TOC		
	PURGING	(pH	oH units)	CONDU	CIFIC CTIVITY /cm)	POTE	DOX NTIAL nv)	ОХҮ	OLVED 'GEN g/l)		BIDITY TU)		RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PU	-	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1521	X	6.95	NA	0,959	NA	-97	NA	0,000	NA	19.7	NA	17.95	NA		
1526	X	6,95	_	0.964	+0,005	- 98	- l	0,00		10,8	- 8,9	17.97	+0,02		7.78
1531	X	6.95		0.968	+0.004	- 99	1	0.00	4	10,3	-0.05	17.95	-0.02	_	
1536	X	6,95		0,971	+0,003	- 99	·	0.00		10-1	-0.02	17,93	-0.02		7,76
COMMEN	TS: 5	ample	Time?	1541					~	6gallons	, purged	total			

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

	TE: Whitestone consulting firm: Startec															
SITE: DATE:	_		hitesto	one						IG FIRM: SONNEL:						
WEATHER	= 12 = 12 = 12	-11	76	°F, Su	nny			—). —:3			7.40013			,		* 100
MONITOR WELL PER			#: _MW	- 1135	_	LL DEPTH: DIAMETER:	19,72	inches			SCREEN	ED/OPEN IN	ITERVAL:	_5 to	205+	
PID/FID RI	EADI	NG	SS (ppm):		UND: OUTER CAI INNER CAP			PUMF DEPT	H TO WATE	EPTH: 10,0 R BEFORE I	ft below	TOC ALLATION :	<u>8,91</u> n i	elow TOC		
	PURGING	SAMPLING	p (pH u		CONDU	CIFIC CTIVITY /cm)	POTE	DOX NTIAL nv)	ОХҮ	OLVED (GEN 1g/l)	TURB (N	IDITY (U)	TEMPER	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1136	X		7.84	NA	0,377	NA	37	NA	5,33	NA	219	NA	21,93	NA		9.55
1141	X		7.36	-048	0,380	+0.003	65	+28	4.16	-1,17	133	-86	20.87	-1.06	Carried States	9,56
1146	X	Ì	7.23	-0.13	0,390	+0.010	74	+9	2.99	-1.17	96,2	-36,8	20,52	- 0.35		9,58
1151	X	Ì	7.15	-0.08	0403	+0,013	79	+5	2,19	-0.80	83,6	-12.6	20,28	-0,24		9,64
1156	X	İ	7.10	-0.05	0.418	to,015	82	+3	1,63	-0.56	68,6	-15	20.19	-0.09		9,66
1201	X	İ	7.05	-0,05	0,438	+0,020	84	+2	1,25	-0.38	50.6	-18	20,13	-0.06	8 	9.65
1206	X	Ī	7.02	-0.03	0,463	+0,025	86	+2	0,91	-0,34	32,5	-17,8	20.07	-0.06		9.68
1211	×		7.01	-0.01	0.480	+0,17	87	+1	0.76	-0.15	28,6	-3.9	20,07	-		9.75
1216	X	ı	7,00	-0.01	0.489	+0.09	88	+1	0.69	-0.07	25.0	-3.6	20,07		_	9.70
1221	X		7,99	-0,01	0,497	F0.08	89	+(0.60	-0.03	22.8	-2,2	20.07			9.74
1226	×		6,98	-0.01	0. 507	10,10	89		0.61	-0.05	20.8	-2,0	20,03			9.75
COMMEN	TS:	5	iample	Time:	1231			•						~49	allons p	urged

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

															SHEE	TOF
SITE: DATE: WEATHER	: :	91	hitesto	ine 17°F, Si	INNY				CONSULTIN							
MONITOR WELL PER		LL	#:	v-113L	WE	LL DEPTH: DIAMETER:	19,72	inches			SCREEN	ED/OPEN IN	ITERVAL:			
PID/FID R	EAD	INC	GS (ppm):		UND: OUTER CAI INNER CAP			PUMF DEPT	P INTAKE DI H TO WATE	EPTH: <u>17/</u> R BEFORE I	5 ft below PUMP INST	TOC ALLATION :	891 m	below TOC		
	PURGING	SAMPLING	թ (pH ւ	H ınits)	SPEC CONDUC (mS		POTE	DOX NTIAL nv)	YXO	OLVED GEN g/l)		IDITY FU)	1	RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	2	SA	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
1252	X		7,07	NA	0.559	NA	119	NA	92.9	. NA	92.9	NA	20.16	NA		9.37
1257	x		6.99	- 0.08	0.554	-0.005	122	+3	0.27	-0.3	85.6	-7.3	19,97	-0,19		9,05
1302	X		6.98	-0,01	0.556	+0.002	120	-2	0.16	-0,11	77.4	-8,2	20.02	+0,05		
1307	Х		6.96	-0.02	0,564	+0,008	119	-1	0.13	-0.03	72,5	-4.9	20,01	10.0-		9.81
1302	X		6.94	-0.02	0,571	+0,007	118		0.15	+0.02	67.8	-4.7	20,05	+0.04	-	9,91
1317	χ		6,94	_	0.574	+0.003	118	_	0,14	-0,01	40.3	-17.5	20,03	-0,02	-	9.85
1322	χ		6,93	-0.01	0.581	+0,007	118		0.11	-0.03	56,5	+16.2	79.98	-0.05		9,90
1327	X		69.3		0,588	+0.007	117	-(0.09	-0.02	26,1	-30,4	20,00	+0.02		9,90
1332	>		693		0,597	+0,009	117	Annual	0.07	-0.02	33,3	+7.2	20,06	+0.06		9.88
1337	X		6.92	-0,0[0,603	10.006	H7		0.06	-0.01	31,1	-2,2	20,04	+0,02		9.89
1342			6.92		0,606	+0.003			0,05	-0,01	28,1	-3,0	20.04	-		9.90
		S	ample T	ime:	347									~ 6 gal	lons purq	ed

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

								IA OIIL						SHEE	т <u></u> О Г <u></u>
SITE: DATE: WEATHER	_9	hitestov 14125 6	ne 5°F, Sun	ny					IG FIRM: $\frac{5^3}{3}$						
MONITOR WELL PER			1-201D		LL DEPTH: DIAMETER:	39,75	inches			SCREEN	IED/OPEN IN	ITERVAL:	34-39	144	ī
PID/FID READINGS (ppm): BACKGROUND: BENEATH OUTER CAP: BENEATH INNER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 13.13 ft below TOC BENEATH INNER CAP: DEPTH TO WATER BEFORE PUMP INSTALLATION: 13.13 ft below TOC															
	PURGING	I (pH	oH units)	SPEC CONDUC (mS		POTE	DOX NTIAL nv)	OXY	OLVED (GEN 1g/I)	I	BIDITY TU)		RATURE ees C)	PUMPING RATE	DEPTH TO WATER (ft below
TIME	PO	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	READING	CHANGE*	(ml/min)	TOC)
0810	X	7.15	NA	0,921	NA	8	NA	1,82	NA	9,9	NA	20,99	NA		13,24
0815	x	7.10	-0,05	6,990	+0.069	-32	-40	0,44	-1.38	10-0	+0-1	20.01	-0.98		13.30
0820	X	7,10		81.01	+0.02	-43	-11	0,21	-0.23	10.5	+0.5	19.65	-0.36	*******	13.26
0825	X	7.10		1,02	40,01	-51	- 8	0.07	-0.14	12.5	+2.0	19.48	-0.17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13.24
0830	X	7.10		1.02		-55	-4	0.00	-0.07	11,9	-0.6	19.38	-0.10		13,24
0835	x	7.10		1.03	+0.01	-59	-4	0.38	+0.38	11.2	-0.7	19.28	-0,10		13.24
0840	x	7.10	-	1.03	~	-61	-2	0.35	-0.03	11.6	-0,4	19,22	-0.06		
0845	X	7.11	+0.01	1.04	+0.01	-64	-3	0.32	-0.62	10.6	- [19,08	-0.14		13,26
0 9 10															
															M
COMMEN	ITS:	Sample:	Time: 0	850									~49	allons p	urged

Unable to reach old to bing in well (slipped too far down puc casing)

^{*}INDICATOR PARAMETERS HAVE STABLIZED WHEN 3 CONSECUTIVE READINGS ARE WITHIN: ± 0.1 for pH; ± 3% for Specific Conductivity and Temperature; ± 10 mv for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity