REMEDIAL INVESTIGATION REPORT FOR 34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK NYSDEC BCP SITE NO. C241141

PREPARED FOR

ALPROF REALTY LLC VFP REALTY LLC

PREPARED BY

FPM group...

909 MARCONI AVENUE RONKONKOMA, NEW YORK 11779

MAY 2014

TABLE OF CONTENTS

<u>Section</u>	<u>Description</u>	<u>Page No</u>
	CERTIFICATION	iii
1.0	INTRODUCTION AND PURPOSE	1-1
1.1	Site Location and Description	1-1
1.2	Site Environmental Setting	1-1
1.3	Site History	1-4
1.4	Property Usage Immediately Adjacent to Site	1-5
2.0	SUMMARY OF PREVIOUS INVESTIGATIONS	2-1
2.1	2002 Environmental Site Assessment	2-1
2.2	2007 Environmental Investigation	2-3
2.3	2008 Environmental Investigation	2-3
2.4	2009 Environmental Investigation	2-4
2.5	2012 Environmental Investigation	2-4
2.6	Church Property Environmental Summary	2-6
3.0	REMEDIAL INVESTIGATION PROCEDURES AND RESULTS	3-1
3.1	RI Purpose	3-1
3.2	RI Procedures	3-2
3.2.1	Soil Sampling	3-2
3.2.2	Groundwater Monitoring Well Installation and Water Level Monitoring	3-2
3.2.3	Groundwater Sampling	3-5
3.2.4	Soil Vapor Sampling	3-6
3.2.5	Quality Assurance/Quality Control	3-6
3.3	RI Results	
3.3.1	Soil Stratigraphy and Sampling Results	3-6
3.3.2	Groundwater Flow Direction Evaluation	3-17
3.3.3	Groundwater Monitoring Well Sampling Results	3-17
3.3.4	Soil Vapor Sampling Results	3-28
3.3.5	Quality Assurance/Quality Control Results	3-31
3.4	Summary and Conclusions	3-31
3.5	Exposure Assessment	3-33
4.0	REFERENCES	4-1

LIST OF FIGURES

Figure No.	<u>Description</u>	Page No.
1.1.1	Site Area Map	1-2
1.1.2	Site Vicinity Plan	1-3
2.1	Stratigraphic Cross-Section, Block 15950, Lots 24 and 29	2-2
3.2.1	Soil Boring and Soil Vapor Sampling Locations	3-3
3.2.2	Monitoring Well Locations	3-4
3.3.1.1	Stratigraphic Cross-Section Locations	3-7
3.3.1.2	Stratigraphic Cross-Section SW-NE with Soil Data	3-8
3.3.1.3	Stratigraphic Cross-Section SW-NW with Soil Data	3-9
3.3.1.4	Stratigraphic Cross-Section W-E with Soil Data	3-10
3.3.1.5	Soil Samples Exceeding NYSDEC Objectives	3-14
3.3.2.1	August 2013 Shallow Groundwater Relative Elevation	3-19
3.3.2.2	August 2013 Intermediate Groundwater Relative Elevation Contours	3-20
3.3.2.3	November 2013 Shallow Groundwater Relative Elevation Contours	3-22
3.3.2.4	November 2013 Intermediate Groundwater Relative Elevation Contours	3-23
3.3.3.1	Shallow Groundwater Data Map	3-25
3.3.3.2	Intermediate Groundwater Data Map	3-26
3.3.4.1	Soil Vapor Data Map	3-30
	LIST OF TABLES	
Table No.	<u>Description</u>	Page No.
3.3.1.1	Soil Boring Sample Results	3-12
3.3.1.2	Soil Boring Sampling Results - Offsite Borings	3-13
3.3.2.1	Monitoring Well Relative Elevation Data – August 15, 2013	3-18
3.3.2.2	Monitoring Well Relative Elevation Data – November 12, 2013	3-21
3.3.3.1	Groundwater Sample Results – October 2013	3-24
3.3.4.1	Soil Vapor Sampling Results	3-29
	APPENDICES	
А	Boring Logs, Canister Sampling Forms, and Well Sampling Data Forms	
₽	Laboratory Analytical Data (on CD)	
С	Data Usability Summary Reports	

Prepared for

Facility:

34-11 Beach Channel Drive Site Far Rockaway, Queens, New York NYSDEC BCP Site # C241141

FPM File No:

1087g-13-05

CERTIFICATION

I Stephanie O. Davis, CPG certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved RI Work Plan and any DER-approved modifications.

Qualified Environmental Professional

Signature

Prepared by

FPM Group

909 Marconi Avenue Ronkonkoma, NY 11779 (Tel) 631-737-6200 (Fax) 631-737-2410

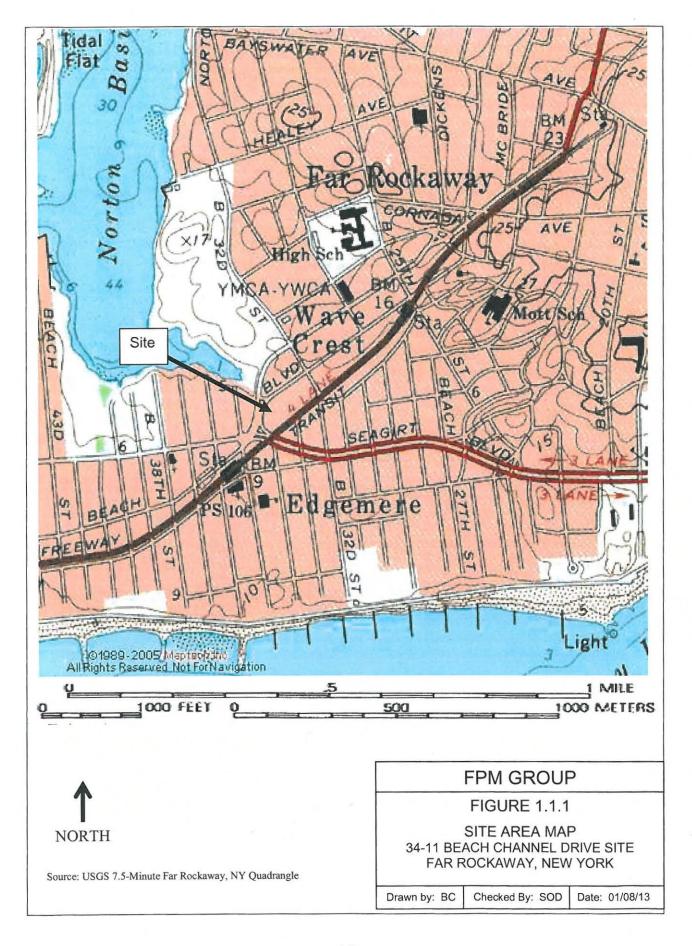
SECTION 1.0 INTRODUCTION AND PURPOSE

This Remedial Investigation (RI) Report has been prepared by FPM Group (FPM) for New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program Site #C241141, identified as the 34-11 Beach Channel Drive Site located in Far Rockaway, Queens, New York (Site). This RI Report was prepared to document the procedures and results of the RI conducted in accordance with the April 2013 RI Work Plan.

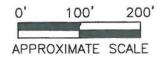
The results from previous investigations and remediation are summarized in Section 2 of this RI Report. The RI procedures and results are described in detail in Section 3.

1.1 Site Location and Description

The subject Site is identified as 34-11 Beach Channel Drive, located in Far Rockaway, Borough of Queens, New York, and is owned by Alprof Realty LLC and VFP Realty LLC. The Site occupies approximately 0.85 acres and consists of two parcels identified by the New York City Tax Map as Borough of Queens, Block 15950, Lots 14 and 24. The Site is generally bounded by Far Rockaway Boulevard to the north and northwest, Beach Channel Drive to the northwest, Rockaway Expressway and Long Island Rail Road tracks to the south, and a vacant lot (Lot 29) to the east. The Site is in a commercial overlay district and is zoned R6 residential, with a C2-2 commercial overlay.


There are presently no structures on the Site. Historically a gasoline service station was present on Lot 14; this use has been discontinued and the former building removed. Lot 14 was recently occupied by a construction contractor, which maintained a trailer-type building on the lot until late 2012; this use has been discontinued and the trailer-type building has been removed. Lot 14 is presently used for storage of dumpsters; no structures are present. Lot 24 is also used for storage of dumpsters; no structures are located on Lot 24. A location map showing the Site and vicinity is presented in Figure 1.1.1. A plan of the Site and surrounding property is included as Figure 1.1.2.

No storm drains, catch basins, or operational underground utilities are known to be present at the Site. As discussed in more detail in Section 2.1 herein, a geophysical survey performed on Lot 14 in 2002 identified a potential underground storage tank (UST) near the northwest corner of Lot 14. Ten concrete-filled UST fill ports were reported in association with a concrete pad on the western portion of Lot 14. No other USTs or subsurface infrastructure was reported.


1.2 Site Environmental Setting

The surface topography of the Site and surrounding vicinity was obtained from the USGS Far Rockaway, New York Quadrangle (1967, photorevised 1979). The topographic elevation of the Site is approximately 8 feet above mean sea level (MSL), as shown in Figure 1.1.1. The Site surface is generally flat and has been modified from its original configuration (former marsh with an elevation near sea level) by the placement of fill. Figure B included in Appendix A of the RI Work Plan depicts the Site vicinity in the late 1880s, when it was a marsh located between the Bay of Far Rockaway (now the Reynolds Channel) and Jamaica Bay to the northwest. This area underwent a lengthy period of filling and channel dredging in the late 1800s and into the 1900s, during which time much of the Rockaway Peninsula was filled. Fill appears to have been placed over the entire Site and vicinity. Fill in the Site vicinity appears to consist largely of native sand, presumably excavated during the enlargement of the

SOURCE: GOOGLE EARTH 11/5/2012

FPM GROUP

FIGURE 1.1.2 SITE VICINITY PLAN

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

Drawn By: H.C. Checked By: B.C. Date: 1/8/13

nearby Norton Bay and creation of the Reynolds Channel. Other materials, such as solid waste, coal ash, wood ash, incinerator ash, construction and demolition debris, railroad ballast, refuse, or land-clearing debris, which may be components of historic fill, have not been noted in the borings performed onsite.

A dredged channel that connects to Norton Basin is located approximately 500 feet to the northwest of the Site and the Atlantic Ocean is located approximately one-quarter mile south of the Site. The Edgemere Landfill is situated approximately one-half mile northwest of the Site.

Beneath the historic fill, the Site is underlain by Upper Glacial Formation sand, silt, and clay outwash plain deposits (USGS, 1966). The Gardeners Clay, consisting of clay with interbedded silt and sand, is present below the Upper Glacial Formation. Groundwater is found within the Upper Glacial Formation.

The depth to groundwater beneath the Site is approximately five to ten feet and is consistent with information obtained during previous investigations performed at the Site. The groundwater flow direction was determined to be generally to the west-northwest during previous investigation work conducted on the Site and the adjoining Lot 29. Additional groundwater flow direction information obtained during the RI is presented in Section 3 of this Report. The groundwater flow velocity in the shallowest groundwater has been estimated at 0.2 feet per day, while the flow velocity decreases downward to an estimated 0.005 feet per day in the deeper portion of the Upper Glacial Aquifer, as documented in a report concerning the adjoining Lot 29.

The NYSDEC's database of public water supply wells was searched and no public water supply wells were identified within one-half mile of the Site. The NYSDEC's Long Island wells database was searched and the only wells identified in Far Rockaway are three industrial supply wells operated by LILCO (now LIPA) at 1425 Bay 24th Street, approximately 3/4 mile northeast (crossgradient) from the Site. These wells are completed between 127 and 133 feet below grade and are associated with a power plant. Based on the distance and direction to these wells and their use, they do not present a concern. No other water supply wells were reported. Based on the urban nature of the surrounding area, the availability of public water via the New York City water supply system, the proximity to major salt water bodies and contaminant sources (Edgemere Landfill), additional private water supply wells are not anticipated in the Site vicinity. The USGS reported a chloride concentration of 12,200 mg/l in the Upper Glacial Aquifer in the Site vicinity in 1955 (USGS Water-Supply Paper 1613-F). 6 NYCRR Part 701 defines saline groundwaters (SGB) as groundwater with chloride content in excess of 1,000 mg/l. Based on this data, it is highly unlikely that the Upper Glacial Aquifer in the Site vicinity is used for potable water supply purposes.

1.3 Site History

Lot 14 of the Site was initially developed with a garage prior to 1933; uses noted since this time have included automobile repair and a retail gasoline station with associated USTs. The garage structure was reportedly removed circa 2004. A construction contractor most recently utilized Lot 14 for temporary offices and storage of construction-related equipment; a temporary trailer-type building was present during this use but was removed from the Site in late 2012. Lot 14 is presently used for storage of dumpsters.

No structures have been reported on Lot 24, except for a small shed noted in 1933. Lot 24 appears to have been vacant since this time and has most recently been used for storage of dumpsters.

Subsurface investigations have previously been performed on the Site, primarily along the eastern portion of Lot 24, to evaluate contamination by VOCs migrating from the adjoining property to the east (Lot 29), which is presently owned by the Presiding Bishop of the Church of Jesus Christ of Latter-Day Saints (Church). VOCs, including trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-1,2 DCE), vinyl chloride (VC), and petroleum-related VOCs, have been identified at the Church property and have migrated onto the Site. The Church property is listed as a NYSDEC Spills Site (spill #0207599); investigation and remedial efforts at the Church property have been conducted under the oversight of the NYSDEC. In early 2014 the Church submitted an application to the NYSDEC to include the Church property in the NYSDEC BCP. Previous subsurface investigations of the Site and the environmental history of the adjoining Church property are discussed in further detail in Section 2.

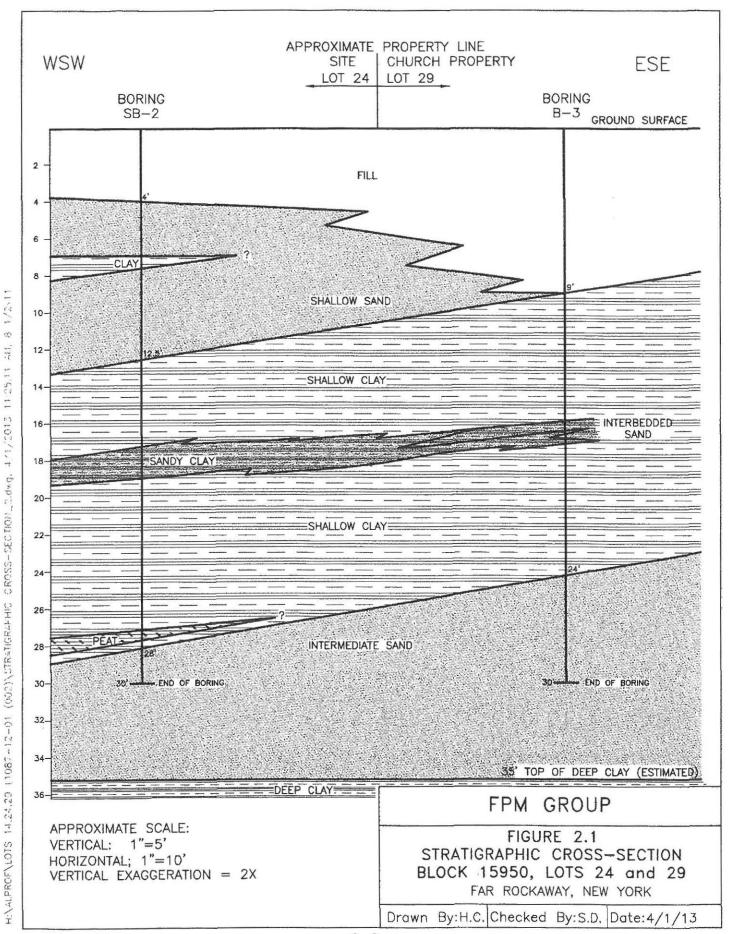
The RI documented herein is intended to provide additional information concerning the nature and extent of VOCs that have migrated onsite from the adjoining Church property. Evaluation of the nature of historic fill on the Site was also performed.

1.4 Property Usage Immediately Adjacent to Site

The Site is bounded to the north, across Far Rockaway Boulevard, by a shopping plaza containing a grocery store and several small retail shops. To the northwest, across and west of Beach Channel Drive are Bayswater Park and a residential area. To south, across Rockaway Freeway and the Long Island Rail Road tracks, is a multi-story apartment building. Adjoining to the east is the vacant Church property.

SECTION 2.0 SUMMARY OF PREVIOUS INVESTIGATIONS

The Site was initially investigated in 2002 during an environmental site assessment. Additional investigations were performed on the Site in 2007, 2008, 2009, and 2012 to further evaluate contamination migrating onsite from the adjoining Church property; these investigations are summarized in the RI Work Plan and are briefly reviewed below. An environmental summary of the adjoining Church property, including past investigations and remedial efforts, is also presented below. Pertinent investigation data collected from the Site by FPM in 2012 were included in Appendix A of the RI Work Plan. Additional data collected by others during previous investigations were also included in Appendix A of the RI Work Plan. A complete list of previous investigations is provided in the References in Section 4.


As shown in Figure 2.1, in general the Site and vicinity are underlain by fill to between approximately four and ten feet. Below the fill is a "shallow sand" that extends up to 16 feet below grade. Beneath the "shallow sand" is an organic clay ("shallow clay") to a depth of up to 28 feet. An "intermediate sand" is present beneath the "shallow clay" and extends to approximately 35 feet below grade. The "deep clay" is present below the "intermediate sand" and was present to a depth of 54 feet below grade on the adjoining Lot 29. This "deep clay" is an aquitard between the overlying shallow and intermediate sands (water-bearing units) and deeper units. All of these units are Upper Pleistocene glacial deposits; the "deep clay" may correspond to the Pleistocene 20-foot clay mapped by the USGS. The top of the Magothy Formation is mapped at an elevation of -200 feet MSL in the Site vicinity (USGS Water-Supply Paper 1613-F) and was not penetrated by any of the borings previously performed at the Site or on the adjoining Lot 29. Additional stratigraphic information for the Site and offsite vicinity obtained during the RI is presented in Section 3.

2.1 2002 Environmental Site Assessment

The Site was initially investigated in 2002; this investigation identified a historic gasoline service station, auto repair activities, and a suspected UST on the northwest portion of Lot 14 as Recognized Environmental Conditions (RECs). Lot 24 was identified as vacant and overgrown with vegetation. Solid waste debris was the only REC identified for Lot 24. The Site was not identified on any of the state or federal databases searched during this investigation.

The identified RECs on the Site were investigated by performing a geophysical survey, conducting soil borings and groundwater sampling, conducting in-house chromatographic screening, and submitting select samples to an analytical laboratory for testing of VOCs, semivolatile organic compounds (SVOCs), and metals.

The geophysical survey identified one anomaly consistent with a UST near the northwestern corner of Lot 14 of the Site. There is no report of this UST having been removed. No other anomalies were identified on the Site.

No visual or olfactory evidence of chemical or petroleum impact was observed in any of the below-grade soil samples. No VOCs or metals were detected in soil in excess of the NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives (Objectives), which were the applicable Standards, Criteria, and Guidance (SCGs) at that time. One SVOC (chrysene) was detected in a shallow soil sample (0 to 2 feet below grade) at a concentration that slightly exceeded the NYSDEC Objective. This sample was obtained from an area of surficial staining on the northwest side of Lot 14. This detection is consistent with surficial soil contamination by SVOCs typical of auto repair facilities and is also consistent with the historic fill present beneath Lot 14.

Low levels of petroleum-related VOCs, including methyl tert-butyl ether (MTBE), sec-butylbenzene, isopropylbenzene, and/or n-propylbenzene, were detected at two groundwater sampling locations on Lot 14. The levels of three VOCs slightly exceeded their respective NYSDEC Standards. No petroleum-related VOCs were identified in the groundwater sample collected from Lot 24.

Arsenic, chromium, barium, and/or lead were detected in two groundwater samples from Lot 14 at concentrations that exceeded the NYSDEC Standards. These samples were collected from wells that had not been properly developed and the samples were not filtered; it is likely that these detections resulted from suspended particulate material in the samples.

In-house screening of the soil and groundwater samples was also performed using a gas chromatograph. This screening identified large early peaks in the chromatograms of all of the groundwater samples; these peaks were noted as "solvent" on the chromatograms. However, since solvent VOCs were not identified as chemicals of concern at the Site, no further analysis was performed to quantify the in-house screening results.

2.2 2007 Environmental Investigation

Following the identification of contamination on the adjoining Church property, sampling of shallow groundwater was performed at seven locations on the Site to determine if contamination extended offsite from the Church property. The four groundwater samples located most closely downgradient of the area of contamination identified on the Church property (B-54, B-55, B-56, and B-57) exhibited concentrations of the chemicals of concern in excess of the NYSDEC Standards. VC was detected at the highest levels, ranging from 650 to 2,800 micrograms per liter (ug/l); trans-1,2-DCE was detected at up to 1,200 ug/l, and 1,1-DCE was detected at up to 280 ug/l. TCE was detected in one sample at 48 ug/l. Petroleum compounds were also detected, including benzene up to 35 ug/l. It was concluded that contamination from the adjoining Church property had migrated onto the Site.

2.3 2008 Environmental Investigation

To further evaluate contamination migrating from the adjoining Church property, additional investigation was performed in a small area of Lot 24 near the east corner of the Site in the downgradient vicinity of a contaminated area previously identified on the Church property.

Fill was identified to five feet below grade and was underlain by the "shallow sand" to a depth of 16 feet below grade; groundwater was present within the shallow sand. An organic clay ("shallow clay") was identified beneath the shallow sand to a depth of 22 feet; this clay was determined to have a high total organic carbon content (4.45%). Another sand layer ("intermediate sand") containing groundwater was present beneath the shallow clay to a depth of approximately 35 feet. A clay layer ("deep clay") was present beneath the intermediate sand. Soil sampling was conducted for the deep clay only; none of

the chemicals of concern were identified in the deep clay. No analysis for VOCs was conducted for the shallow clay.

Groundwater samples were collected from both the shallow and intermediate sands. Chlorinated VOCs were detected in all of the groundwater samples, including primarily cis-1,2-DCE with lower concentrations of VC, TCE, trans-1,2-DCE, and 1,1-DCE. Vertical profiling was performed at one location (MZ-4) to assess the distribution of VOCs in the shallow and intermediate sands. Chlorinated VOC concentrations were reported to increase downward within the shallow sand from 416.5 ug/l near the top of the shallow sand to 9,572.9 ug/l at the bottom of the shallow sand just above the shallow clay. In the intermediate sand chlorinated VOC concentrations decreased downward from 17,508.4 ug/l in the intermediate sand immediately below the shallow clay, to 718.9 ug/l in the middle of the intermediate sand, to 6.16 ug/l near the bottom of the intermediate sand. This distribution of chlorinated VOCs in the groundwater was not consistent with a potential source of chlorinated VOCs on the Site. Monitoring wells MW-5S and MW-5I were installed and sampled in the shallow sand and intermediate sand, respectively, and 1,1-DCE, cis- and trans-1,2-DCE, TCE, and/or vinyl chloride were found in both sands, with the concentrations of these CVOCs being highest in the intermediate sand.

2.4 2009 Environmental Investigation

In 2009 further investigation was performed on the east portion of Lot 24 in the downgradient vicinity of a contaminated area previously identified on the Church property where extensive excavation of TCE-impacted soil had been conducted in 2004 and additional excavation was conducted in 2009. Petroleum-contaminated soil, petroleum mixed with groundwater, and TCE-impacted soil were removed from an excavation area on the Church property (Lot 29) between June and November 2004. Additional impacted soil and petroleum and groundwater were removed from this area of the Church property in March and April 2009. A sample of the TCE-impacted soil was tested and found to contain 13,804 mg/kg of TCE. Petroleum product samples from wells MW-4S and MW-4I, in the shallow sand and intermediate sand, respectively, located on the Church property in the former excavation area were tested in May 2009 and found to contain 123,000 ug/l and 23,500,000 ug/l of TCE, respectively.

The Church's remediation process in 2004 included use of the surface of Lot 24 for access purposes, and included surface storage of contaminated soil on the adjacent area of the Church property for up to five months. As a result, the surface of Lot 24 may have been contaminated by impacted soil from the Church property. The 2009 investigation on Lot 24 included the collection of six shallow soil samples (SB-1 through SB-6) from a depth of approximately 2.5 feet below grade and laboratory analysis for CVOCs. One soil sample (SB-2) contained TCE at a concentration (11 ppm) above the 6 NYCRR Part 375 Soil Cleanup Objective (Objective) for unrestricted use, but below the NYSDEC Objective for restricted residential use (21 ppm). None of the other soil samples contained any CVOCs in excess of the NYSDEC Objectives.

2.5 2012 Environmental Investigation

To further evaluate impacts originating from the adjoining Church property, an environmental investigation was conducted by FPM on Lots 14 and 24 in August 2012. This investigation included soil, groundwater, and soil vapor sampling and the area investigated included the portions of Lots 14 and 24 located downgradient (generally west) of the area of contamination identified on the Church property. Sampling was conducted in accordance with typical NYSDEC and NYSDOH protocols for investigation of BCP sites, including sampling by environmental professionals, quality assurance/quality control (QA/QC) procedures, use of a NYSDOH-ELAP-certified laboratory, Category B data

deliverables, capability for electronic data deliverables (EDDs), and completion of data usability summary reports (DUSRs). These data were summarized in Appendix A of the RI Work Plan.

Soil borings were conducted at three locations (SB-1 through SB-3) on Lot 24 to between 25 and 30 feet below grade. The SB-3 boring was performed at the approximate location of the SB-2 boring conducted in 2009. Fill was identified between 2.5 and five feet below grade. The shallow sand was identified below the fill and extended to between approximately 12 and 18 feet below grade. Groundwater was encountered generally between 7 and 9 feet below grade in the shallow sand. The shallow clay was identified below the shallow sand and extended to depths ranging between approximately 24 and 28 feet. The intermediate sand was identified below the shallow clay in two borings but was not fully penetrated.

No odor or staining was noted in any of the fill samples. The soils were screened with a calibrated photoionization detector (PID) to evaluate the potential presence of organic vapors that may indicate VOC contamination; there were no significant organic vapor detections for any of the fill samples. These results suggested that no significant VOC impacts were present in the fill. PID readings of up to 21 parts per million (ppm) were noted in the shallow sand, shallow clay, and intermediate sand. These readings were suggestive of VOC contamination in deeper intervals.

Soil sampling was conducted in each of the borings; samples were selected to characterize the shallow sand and the shallow clay and the samples were analyzed for Target Compound List (TCL) VOCs. No exceedances of the NYSDEC Objectives were noted in any of the shallow sand samples. Exceedances of the NYSDEC Objectives for chemicals of concern, including cis-1,2-DCE and/or VC, were noted in all of the shallow clay samples. The highest concentrations were detected at the 2012 SB-2 location, which is the closest sample location to the area of contamination identified on the adjoining Church property. These results suggested that no source material was present in the shallow sand onsite, but breakdown products from TCE were present at depth in the shallow clay and most likely migrated from the Church property. TCE, which is the primary contaminant at the Church property, was not detected in any of the soil samples from the Site.

Groundwater sampling was conducted at six locations on Lot 24 (GW-1, GW-2 and GW-4 through GW-7) and one location on Lot 14 (GW-3). At each location one groundwater sample was collected from the lower portion of the shallow sand and one groundwater sample was collected from the upper portion of the intermediate sand. Chlorinated VOCs that are chemicals of concern were detected in nearly all of the groundwater samples; the highest concentrations at each location were detected in the groundwater in the shallow sand. The highest concentrations of chlorinated VOCs were noted in the shallow sand at GW-2, which is the location in closest downgradient proximity to the area of contamination identified on the Church property; cis-1,2-DCE was detected at 310,000 ug/l and VC was detected at 21,000 ug/l in GW-2. The highest concentrations of chlorinated VOCs in the intermediate sand (5,100 ug/l of cis-1,2-DCE and 86 ug/l of VC) were detected at GW-1, which is also in close proximity to the area of contamination identified on the Church property. Chlorinated VOCs extended downgradient (west) at least as far as the GW-3 location on Lot 14, where 320 ug/l of cis-1,2-DCE and 470 ug/l of VC were identified in the shallow sand. Petroleum compounds were also detected in many groundwater samples, including benzene up to 15 ug/l in GW-6, and toluene up to 23 ug/l in GW-7. These results indicated that VOCs in groundwater consisting primarily of breakdown products from TCE, as well as petroleum constitutents, were migrating onto the Site from the area of contamination identified on the Church property. This contamination migrating onto the Site extended downgradient at least as far as GW-3 on Lot 14.

Soil vapor sampling was conducted at five locations (SV-A through SV-E) on Lot 24; at each location one soil vapor sample was collected from approximately five feet below grade in accordance with NYSDOH procedures. Chlorinated VOCs that are chemicals of concern and petroleum compounds were detected in all of the samples. The highest concentrations of chlorinated VOCs were noted at SV-D and SV-E, which were the locations in closest downgradient proximity to the area of contamination identified on the Church property. The chlorinated VOCs detected at the highest concentrations at these two locations were cis-1,2-DCE and VC, both of which are breakdown products of TCE. These locations are closest to the area of the Church property that was thermally treated, as discussed below. At the SV-A through SV-C locations, which are more distant from the contaminated area on the Church property that was thermally treated, TCE was the chlorinated VOC detected at the highest concentration. In accordance with NYSDOH soil vapor intrusion guidance, mitigation for soil vapor intrusion would be required at each location if a building were present.

2.6 Church Property Environmental Summary

The adjoining upgradient Church property (Lot 29) is documented as the source of CVOC contamination that impacts the Site. Petroleum contamination from the Church property has also impacted the Site. The following information summarizes the investigation and remedial efforts conducted at the Church property as they pertain to the Site (Lots 14 and 24). Available data for the investigations discussed below are included in Appendix A in the RI Work Plan.

In 2002 a Phase I Environmental Site Assessment of the Church property was performed and soil sampling was recommended adjacent to the historic building that occupied the Church property. In August 2002 five soil borings were conducted in the area of the former building; TCE, cis-1,2-DCE, and xylenes were identified in excess of the NYSDEC TAGM 4046 Objectives. Additional soil and groundwater sampling was conducted in October 2002 in the footprint and northeast of the former building. Petroleum-contaminated soils were reported to have been identified in the interval from four to eight feet below grade and NYSDEC Spill No. 02-07599 was subsequently assigned.

In 2004, removal of contaminated soil was performed under a NYSDEC-approved Corrective Action Plan (CAP). Approximately 19,882 tons of petroleum-impacted soil and 12,430 gallons of free-phase petroleum and water were reported to have been removed during this remedial effort. Soil exhibiting a strong solvent odor was also noted during remedial efforts. A sample collected from this material was found to have a TCE concentration of 13,804 ppm. This TCE-impacted material (418.31 tons) was subsequently stockpiled for up to five months and transported and disposed offsite as hazardous waste. During remedial efforts a 300-gallon UST and a 1,500-gallon UST were discovered and, together with associated piping, were subsequently removed and disposed offsite.

An investigation of soil, groundwater and soil vapor conditions was conducted at the Church property in 2006. Three monitoring wells (MW-1 to MW-3) were installed into the shallow sand on the central and northwestern portions of the Church property and no VOCs or SVOCs were detected in these wells. Groundwater sampling was also conducted in boring locations from within and around the perimeter of the former remedial area; chlorinated solvents, including TCE, VC, 1,1-DCE, trans-1,2-DCE, and PCE, were noted at these locations. TCE was detected at the highest concentrations, including levels as high as 36,000 ug/l. The highest concentration was found within the previously-excavated area in apparent proximity to the south corner of the former onsite building. Soil vapor sampling was also conducted at several locations around the perimeter of the Church property and in portions of the property generally away from the previously-excavated area. Soil vapor samples contained several chemicals of concern, including TCE, PCE, and cis-1,2-DCE, at concentrations that would require mitigation if a building were present. Additional groundwater sampling was required by the NYSDEC

and was performed in November 2006, including multi-level groundwater sampling for TCE at three locations on the Church property that directly adjoined the Site. TCE was detected in groundwater from all three locations sampled (B47, B51, and B52) at depths ranging from 10 to 60 feet below grade. The highest TCE levels were detected in shallow groundwater from 10 feet below grade on the Church property, including TCE up to 950,000 ug/l at B47, which is nearly the solubility of TCE in water and suggestive of the presence of DNAPL. TCE was also detected in many of the deeper groundwater samples at levels exceeding the NYSDEC Standard. VC, 1,1-DCE, trans-1,2-DCE, and/or PCE were also detected in many of these samples. Based on these data, off-site groundwater sampling proceeded at the request of NYSDEC.

In January 2007 additional investigation was performed offsite on Lot 24 (the Site), as discussed above. Portions of this investigation were also conducted on the Church property and along the western side of Beach Channel Drive (offsite). Five groundwater samples (B63 through B67) were collected from an approximate depth of 10 feet below grade along the western side of Beach Channel Drive; the sampled area is generally to the northwest of the area of contamination on the Church property. No chemicals of concern are reported to have been detected in these samples. Two locations (B59 and B53) were sampled along the boundary of the Church property where it adjoins Lot 24 of the Site; groundwater samples collected from 10 feet below grade were found to contain TCE, VC, 1,1-DCE, and/or trans-1,2-DCE. Sample B53 was closest to the area of contamination on the Church property and contained VC at 4,800 ug/l. The report of this investigation concluded that the CVOC groundwater plume from the Church property extends to the west of the Church property and onto the Site

In March and April 2009 test pits were conducted on the Church property to delineate the extent of observed petroleum impacts. During these activities, petroleum-impacted soils were excavated and stockpiled and petroleum and groundwater were removed from one test pit. Further soil borings with groundwater sampling were conducted in May 2009. This investigation identified an area of approximately 100 feet by 100 feet impacted by petroleum. Petroleum product from two wells in this area was analyzed and found to contain TCE at concentrations ranging from 123,000 ug/l (shallow sand) to 23,500,000 ug/l (intermediate sand); these concentrations are indicative of the presence of DNAPL, particularly in the intermediate sand where the sample was collected from a double-cased well screened from 27 to 40 feet below grade (well below the water table). TCE was detected at concentrations ranging from 1.42 ppm to 6.990 ppm in soil samples from the investigated area, with a strong solvent odor and highly-elevated PID readings in the most impacted sample. It was concluded that the chlorinated VOC contamination in the shallow clay was more extensive and that an area of more than 1,000 square yards was impacted by petroleum. The TCE source area was identified in the vicinity of the MW-4 well cluster and the shallow clay was identified for remediation as a chlorinated VOC source. It was recommended that the remedial area be expanded and that remedial alternatives be evaluated.

In August 2009 a remedial plan for in-situ thermal treatment (ISTT) on the Church property was submitted to the NYSDEC and approved with revisions in November 2009. The remediation objectives were to mitigate the petroleum and chlorinated VOC impacts by heating the soil and groundwater to volatilize the contaminants. The contaminants would then migrate to the unsaturated zone above the water table where they would be captured by a vapor recovery system. This process was intended to mitigate potential vapor intrusion conditions and groundwater impacts. If free-phase petroleum was encountered, it would be removed by vacuum-enhanced fluid recovery. The treatment goal proposed and approved by the NYSDEC was a 99% reduction in groundwater TCE concentrations within the southwestern portion of the Church property; this would result in TCE concentrations of less than 400 ug/l in groundwater. This treatment goal did not address potential contamination by other VOCs in groundwater, including CVOCs, or potential contamination in soil and soil vapor.

The ISTT system was installed on the Church property, started up on November 1, 2010, and operated until August 25, 2011. Post-treatment groundwater sampling was conducted over a 90-day period in a limited area of the Church Property, including the MW-4/PZ-3 well cluster, the MW-3 and MW-9 well clusters, and MW-10s. Post-treatment soil sampling was also conducted within the treatment area. The soil results indicated no chlorinated VOCs in excess of the NYSDEC Restricted Use Objectives at the locations sampled. Although the post-treatment groundwater samples showed no TCE levels in excess of the 400 ug/l goal, cis-1,2-DCE, VC and other chlorinated VOCs remained present in excess of the NYSDEC Standards, as well as TCE above the 5 ug/l Standard. Additional groundwater sampling was conducted at well PZ-3 in January 2012 due to elevated VOCs in the PZ-3 sample collected in December 2011. These results showed chlorinated VOCs, including cis-1,2-DCE (585 ug/l), TCE (228 ug/l), and VC (4.8 ug/l), in excess of the NYSDEC Standards and petroleum-related VOCs, including benzene and toluene, in excess of the NYSDEC Standards.

An environmental investigation was conducted by FPM on the Church property (Lot 29) in August 2012; this investigation included soil, groundwater, and soil vapor sampling. The area investigated included the portions of Lot 29 in and surrounding the remedial treatment area, which included the area of contamination identified on the Church property. The data from this investigation are included in Appendix A of the RI Work Plan and are summarized below.

Soil borings were conducted at four locations (B-1 through B-4) on Lot 29 to 30 feet below grade. Fill was identified to between five and nine feet below grade in each boring. The shallow sand was identified below the fill in three of the borings and extended to between approximately 13 and 24 feet below grade. The fill was found to directly overlie the shallow clay in boring B-3. Groundwater was encountered between 5 and 10 feet below grade in the shallow sand except at boring B-3, where it was encountered in the fill just above the top of the clay. The shallow clay was identified below the shallow sand and extended to depths ranging between approximately 24 and 27 feet. The shallow clay was very thin (1.5 feet) at the B-1 location. The intermediate sand was identified below the shallow clay in all borings but was not fully penetrated. A summary of the pertinent investigation findings is:

- Soil sampling was conducted in each of the borings; samples were selected to characterize the shallow sand and the shallow clay. Where the shallow sand was absent a fill sample was collected. Exceedances of the NYSDEC Objectives for chemicals of concern, including cis-1,2-DCE and VC, were noted in two of the four shallow sand samples and in one shallow clay sample. Exceedances of the NYSDEC Objectives for the VOCs acetone and/or 2-butanone (methyl ethyl ketone) were also noted in shallow sand and shallow clay samples.
- Groundwater sampling was conducted at several locations on Lot 29, including the MW-6, MW-9, and MW-4/PZ-3 well clusters and two temporary locations (GW-A and GW-B). At each location one groundwater sample was collected from the shallow sand and one to two groundwater samples were collected from the intermediate sand. Chlorinated VOCs were detected in nearly all of the groundwater samples. The highest concentrations of chlorinated VOCs at each location were detected in the samples from the shallow sand. The highest concentrations of chlorinated VOCs were noted in the shallow sand at GW-A near the northern edge of the ISTT treatment area; cis-1,2-DCE was detected at 8,600 ug/l and VC was detected at 620 ug/l in GW-A. The highest concentrations of chlorinated VOCs in the intermediate sand (1,500 ug/l of cis-1,2-DCE and 120 ug/l of VC) were also detected at GW-A.
- Soil vapor sampling was conducted at five locations (SV-1 through SV-5) on Lot 29. At each location one soil vapor sample was collected from approximately five feet below grade in accordance with NYSDOH procedures. Chlorinated VOCs were detected in all of the samples.

Petroleum compounds were also detected in all of the samples. The highest concentrations of chlorinated VOCs were noted at SV-3, SV-4 and SV-5, which are the locations on the northern portion of the ISTT treatment area. The chlorinated VOCs detected at the highest concentrations were TCE and cis-1,2-DCE. In accordance with NYSDOH soil vapor intrusion guidance, mitigation for soil vapor intrusion would be required at each location if a building were present.

In summary, sources of CVOCs and petroleum have been identified on the Church property in upgradient proximity to the Site. Although some remediation has been conducted on the Church property, concentrations of CVOCs and petroleum remained present on the Church property, upgradient of the Site, at levels in excess of applicable SCGs. It is anticipated that the sources remaining on the Church property will continue to result in impacted groundwater and soil vapor that will continue to migrate from the Church property onto the Site. The RI documented in this report was performed to characterize the nature and extent of VOCs that are migrating onto the Site from the adjoining upgradient Church property. Sampling was also performed to assess the nature of historic fill at the Site and to assess whether offsite impacts are present.

SECTION 3.0 REMEDIAL INVESTIGATION PROCEDURES AND RESULTS

3.1 RI Purpose

The RI was performed to characterize the nature and extent of VOCs that have migrated onto the Site from the adjoining upgradient Church property. Sampling was also performed to assess the nature and extent of historic fill on the Site and to assess whether offsite migration of VOCs may be occurring.

The following sampling and evaluations were performed during the RI to address specific data needs:

- Soil sampling was performed at six onsite locations. The soil samples were tested to further
 evaluate the nature and extent of VOC contamination impacting the Site soils and to assess the
 nature of historic fill. The stratigraphic information from the soil borings was also obtained to
 further characterize Site stratigraphy, including historic fill. Soil sampling was also performed at
 three offsite locations to assess stratigraphy and whether VOC impacts are present in the offsite
 soils;
- Six well clusters were installed onsite to define the vertical and lateral extent of groundwater contamination migrating onsite from the adjoining Church property. Four of the clusters were installed on Lot 24 and two clusters were installed on Lot 14. The well clusters each included one well screened within the shallow sand unit and one well screened in the intermediate sand unit above the deep clay unit. These wells were used to evaluate groundwater conditions and flow direction;
- Three well clusters were installed offsite; two were located to the northwest of the Site across Beach Channel Drive and one well cluster was installed to the west-southwest of the Site near the intersection of Beach Channel Drive and Beach 34th Street. The well screens for these clusters were also installed in the shallow sand and intermediate sand, in the same manner as described above, to assess the vertical and lateral extent of groundwater impacts extending offsite. The locations of the offsite well clusters were adjusted from those proposed in the RI Work Plan based on the results of onsite groundwater flow data obtained in August 2013, as described in Section 3.2.2 below. A request to adjust the offsite well locations was submitted to the NYSDEC on September 4, 2013 and was approved on the same day;
- One soil vapor sampling point was installed offsite to the west-northwest of the Site to assess potential offsite vapor impacts in the direction of plume migration in the shallow sand groundwater. Two soil vapor sampling points were installed to the southeast of the Site to assess potential offsite vapor impacts in this direction. No onsite soil vapor sampling was performed as existing data from 2012 documents the existence of onsite soil vapor impacts; and
- A Qualitative Human Health Exposure Assessment was performed, in accordance with NYS DER-10 requirements, to identify the areas and chemicals of concern, actual or potential exposure pathways, potentially exposed receptors, and how any unacceptable exposures might be eliminated/mitigated.

3.2 RI Procedures

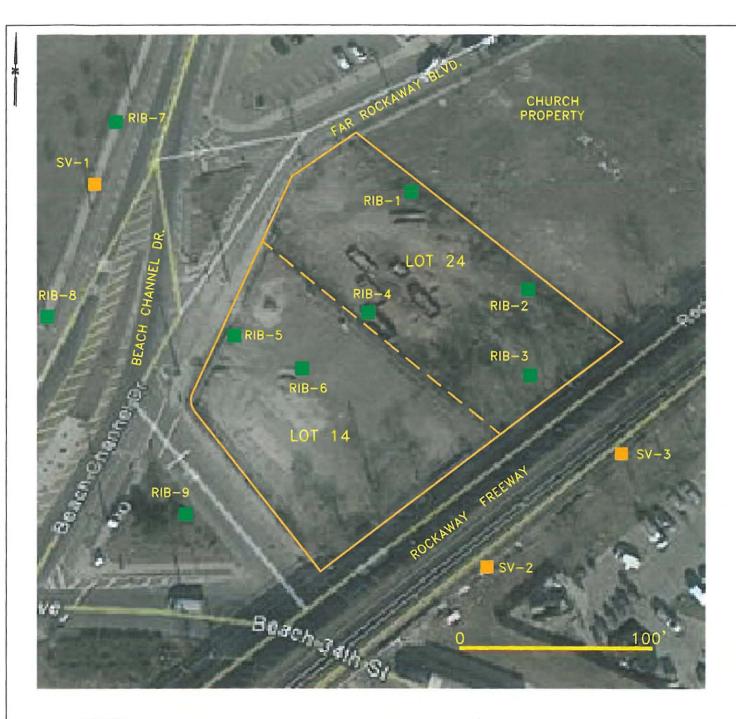
The procedures for soil sampling, monitoring well installation and sampling, soil vapor sampling and groundwater flow direction evaluation during the RI were in accordance with the procedures presented in Section 3.0 of the RI Work Plan and are described in detail in the following sections. All RI soil boring and soil vapor sampling locations are shown in Figure 3.2.1. The monitoring well locations are shown in Figure 3.2.2. The RI results are discussed in Section 3.3.

Quality assurance/quality control (QA/QC) procedures were implemented throughout the RI in accordance with the Quality Assurance Project Plan (QAPP) included in the RI Work Plan. The QA/QC procedures and the associated results are discussed in the appropriate sections below.

The RI field activities were performed in July through November 2013 and included onsite soil sampling and well installation (July 2013), groundwater level surveys (August, October and November 2013), offsite soil sampling, soil vapor sampling, and monitoring well installation (September/October 2013), and onsite and offsite groundwater sampling (October 2013).

3.2.1 Soil Sampling

Soil borings were performed at six onsite locations (RIB-1 though RIB-6) and three offsite locations (RIB-7 through RIB-9) utilizing direct-push sampling equipment. The soil borings were each performed to a depth of between 40 to 45 feet below grade and into the top of the deep clay. Samples were obtained continuously, screened by an environmental professional with a calibrated PID, and classified using the Unified Soil Classification System (USCS). The soil classification data were used to construct stratigraphic cross sections to characterize the subsurface, as further discussed in Section 3.3.1 of this report. Boring logs documenting the soil observations are included in Appendix A.


Soil samples were retained for analysis from the onsite soil borings to characterize the onsite historic fill, the shallow sand unit, and the shallow clay, where present. Samples of the deep clay were also retained from two onsite borings closest to the VOC source area on the Church property. Soil samples were retained from the offsite soil borings to characterize the shallow sand and shallow clay.

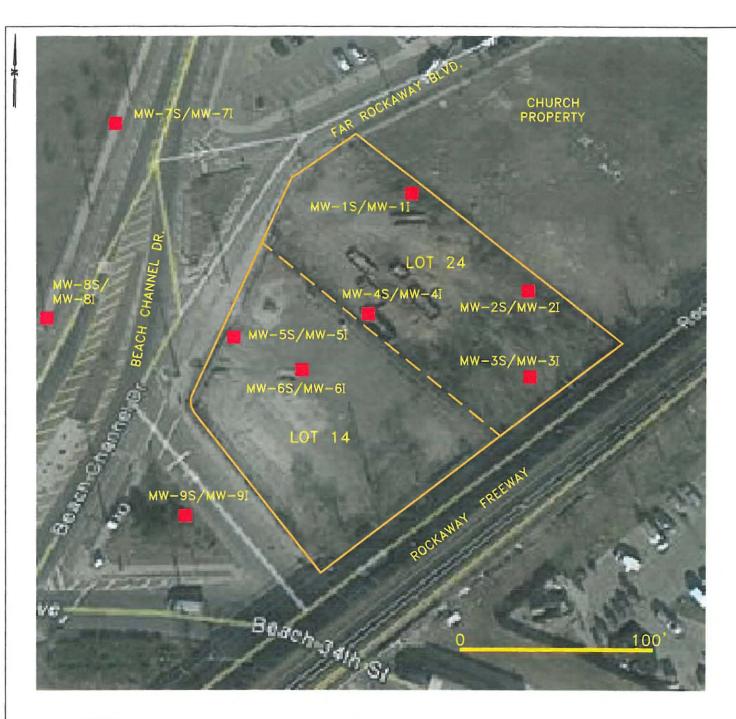
After examination by the environmental professional, the soil samples were containerized in laboratory-provided clean sample containers with appropriate preservatives as required by the analytical methods. The sample containers were sealed and labeled with the sample location, depth, date and time of sampling, and the analysis to be performed. The labeled sample containers were stored onsite in a cooler with ice sufficient to depress the sample temperature and a chain-of-custody was initiated to document the sequence of sample possession. The samples were transported under chain-of-custody to the analytical laboratory for testing. Soil sampling results are discussed in Section 3.3.1 of this report.

3.2.2 Groundwater Monitoring Well Installation and Water Level Monitoring

Six well clusters were installed onsite in July 2013; each cluster included one well in the shallow sand (MW-1S through MW-6S) and one well in the intermediate sand (MW-1I through MW-6I). The wells were each constructed using two-inch diameter PVC casing and 0.02-inch machine-slotted PVC screen. The shallow sand wells were installed across the water table with between 5 and 15 of well screen, depending on the location of the underlying clay. The intermediate sand wells were completed with five feet of screen and were installed just above the deep clay. The well annuli were backfilled with Morie #1 well gravel, or equivalent, from approximately one foot below to approximately one foot above

LEGEND:

SOIL BORING LOCATION


SOIL VAPOR SAMPLE LOCATION

FPM GROUP

FIGURE 3.2.1 SOIL BORING & SOIL VAPOR SAMPLE LOCATIONS

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

Drawn By: H.C. Checked By: B.C. Date: 4/9/2014

LEGEND:

SHALLOW AND INTERMEDIATE-LEVEL WELLS

FPM GROUP

FIGURE 3.2.2
MONITORING WELL LOCATIONS

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

Drawn By: H.C. Checked By: B.C. Date: 4/9/2014

each well screen. The sand pack above each screen was sealed with a two-foot bentonite seal, and the balance of each annulus in the vadose zone was backfilled with sand to near grade. The top of each well was capped with an expansion-fit locking well cap and completed with a traffic-rated bolt-down flush-mounted manhole cover or standpipe set in concrete. Boring logs/well installation diagrams were prepared to document the well construction details and are included in Appendix A.

Following installation the wells were developed by pumping/bailing to remove suspended sediment until a clear discharge was obtained. The top of each well casing was surveyed to the nearest 0.01 foot relative to a common datum. Water level measurements were then obtained and integrated with the top of casing relative elevations to develop groundwater relative elevation maps for the shallow and intermediate sands. The resulting data were used to further evaluate the Site-specific groundwater flow direction.

The locations of the offsite well clusters (MW-7S/MW-7I through MW-9S/MW-9I) were adjusted based on the results of the groundwater flow direction information from the onsite wells so as to provide a more complete assessment of offsite groundwater conditions. The proposed revised locations were provided to and approved by the NYSDEC.

The offsite wells were installed in the same manner as the onsite wells, as described above, and were developed and surveyed relative to the same datum as the onsite monitoring well network. Water level measurements from both the onsite and offsite monitoring wells were then obtained and integrated with the survey data to develop groundwater relative elevation maps for both the shallow sand and the intermediate sand. The water level monitoring results are discussed in Section 3.3.2 of this report.

3.2.3 Groundwater Sampling

Groundwater sampling was performed in October 2013 at the onsite and offsite shallow (MW-1S through MW-9S) and intermediate wells (MW-1I though MW-9I). At each well the depth to the static water level and depth of the well were measured with an interface probe. The potential presence of non-aqueous-phase liquid (NAPL) was also assessed. Then a decontaminated submersible pump was used to purge the well until the turbidity of the produced water is less than 50 NTU or until five well volumes of water have been purged. Following the removal of each well volume, field parameters, including pH, turbidity, specific conductivity, and temperature, were monitored. When all stability parameters varied by less than 10 percent between the removal of successive well volumes, the well was sampled. Samples were obtained using dedicated disposable polyethylene bailers suspended from dedicated lines. The retrieved samples were decanted into laboratory-supplied sample containers. Well sampling forms documenting the well purging and sampling procedures were completed and are provided in Appendix A.

The groundwater samples were containerized in laboratory-provided clean sample containers with appropriate preservatives as required by the analytical methods. The sample containers were sealed and labeled with the sample location, depth, date and time of sampling, and the analysis to be performed. The labeled sample containers were stored onsite in a cooler with ice sufficient to depress the sample temperature and a chain-of-custody was initiated to document the sequence of sample possession. The samples were transported under chain-of-custody to the analytical laboratory for testing for Target Compound List (TCL) VOCs. Groundwater sampling results are discussed in Section 3.3.3 of this report.

3.2.4 Soil Vapor Sampling

Soil vapor sampling was performed at three offsite locations, as shown on previously-presented Figure 3.2.1. One sample (RISV-1) was located to the northwest of the Site on the northwest side of Beach Channel Drive and two samples (RISV-2 and RISV-3) were located to the southeast of the Site on the southeast side of the Rockaway Freeway.

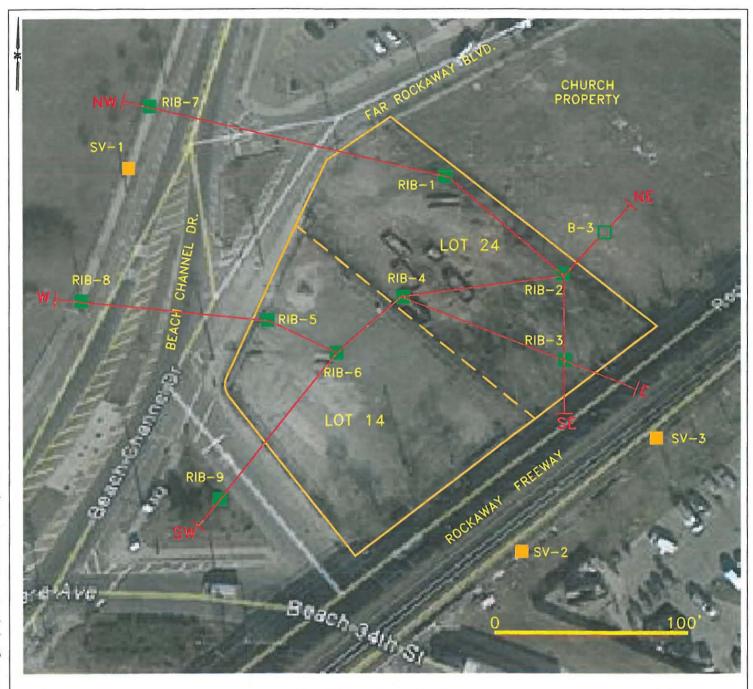
Each soil vapor point was installed to a depth of approximately three feet below grade and consisted of a six-inch stainless steel implant with inert tubing to grade in accordance with NYSDOH guidance (NYSDOH, October 2006). Each implant was purged prior to sampling using an air pump set at less than 0.2 liters per minute and helium gas was used as a tracer to evaluate the potential for ambient air bypassing. The results of the tracer tests indicated that no bypassing was occurring.

The soil vapor samples were collected into laboratory-provided Summa canisters equipped with flow controllers in accordance with NYSDOH guidance. The flow controllers were set for an approximately one-hour period and were filled at less than 0.2 liters per minute. The filled canisters were managed under chain-of-custody procedures, transmitted to a NYSDOH-certified lab, and analyzed for VOCs using the TO-15 Method. Copies of the canister sampling forms are included in Appendix A and the results are discussed in Section 3.3.4 of this report.

3.2.5 Quality Assurance/Quality Control

QA/QC procedures were implemented during the RI field activities and included field screening for organic vapors using a calibrated PID, decontamination of non-disposable sampling equipment, use of dedicated disposable sampling equipment when feasible, helium tracer testing of the sub-slab soil vapor implant seals, use of chains of custody to document the sequence of sample possession, and collection and analysis of QA/QC samples. Field-collected QA/QC samples included blind duplicate samples, trip blank samples, equipment blank samples, and matrix spike/matrix spike duplicate (MS/MSD) samples. All field-collected samples were prepared in the manner described in the RI Work Plan. In addition, the laboratory utilized internal QA/QC procedures and samples (including laboratory control samples or LCSs, method blanks or MBs, surrogates, and MS/MSDs) to confirm that the laboratory data are of sufficient accuracy and precision.

Following receipt of the chemical analytical data, the data packages and associated QA/QC sample results were evaluated and a Data Usability Summary Report (DUSR) was prepared for each data package. The complete laboratory analytical data packages are included in Appendix B and the DUSRs are included in Appendix C. The QA/QC results are discussed in Section 3.3.5 of this report. It should be noted that the RI data were determined to be of adequate quality for their intended purpose.

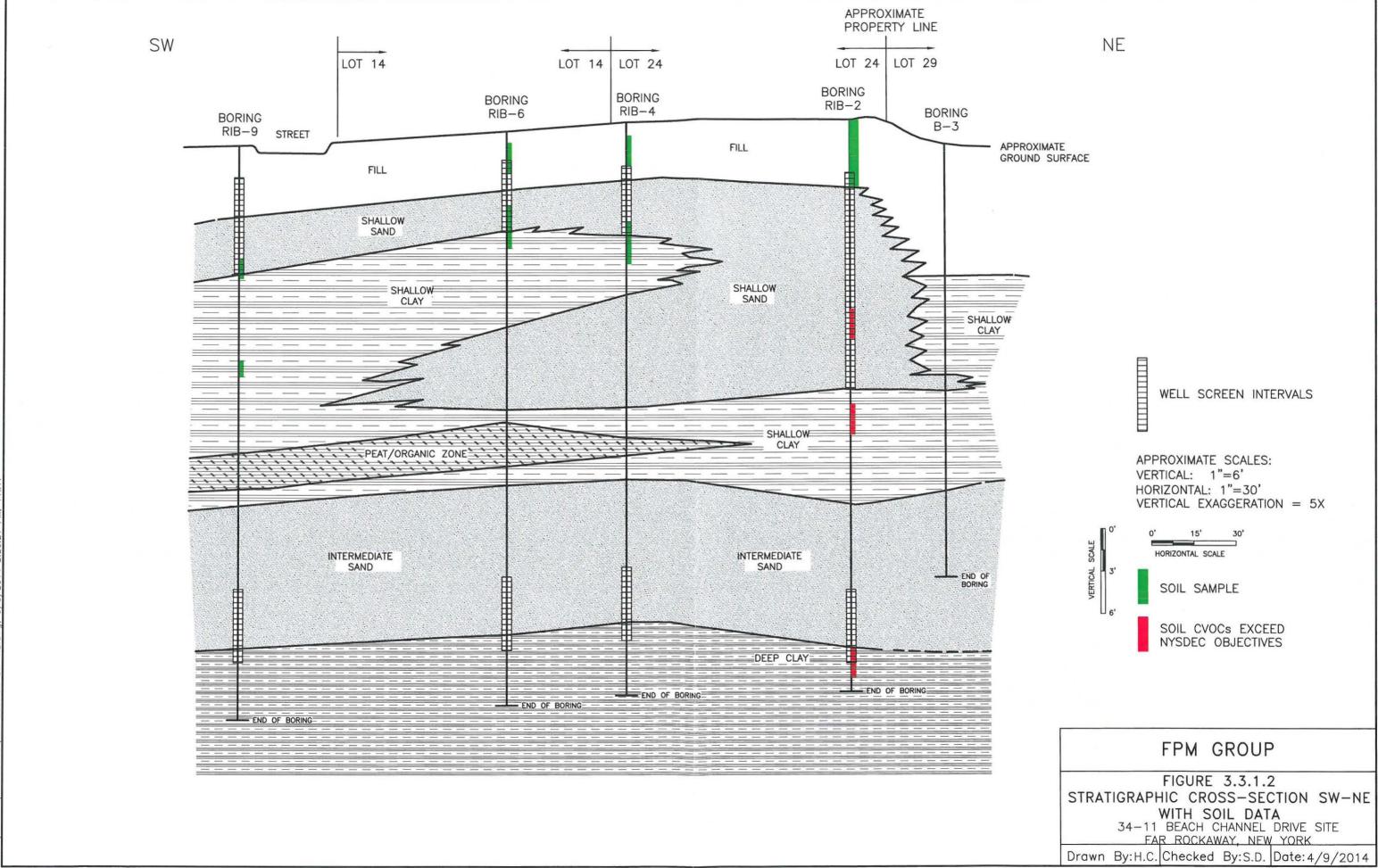

3.3 RI Results

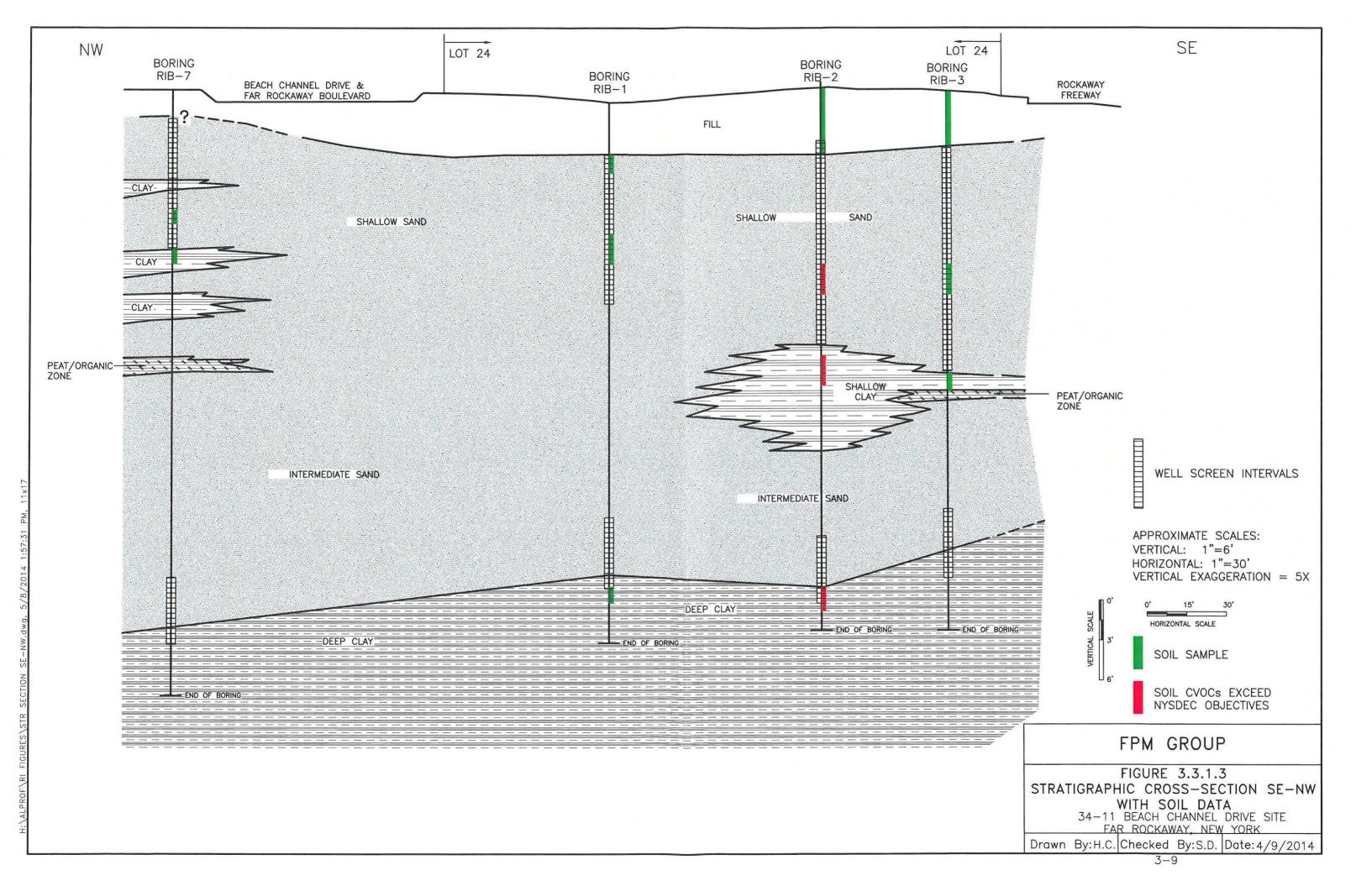
The RI results are discussed in the following sections. It should be noted that applicable data qualifiers developed during the DUSR process are applied to the tabulated analytical data. The results of the DUSR process are discussed in detail in Section 3.3.5.

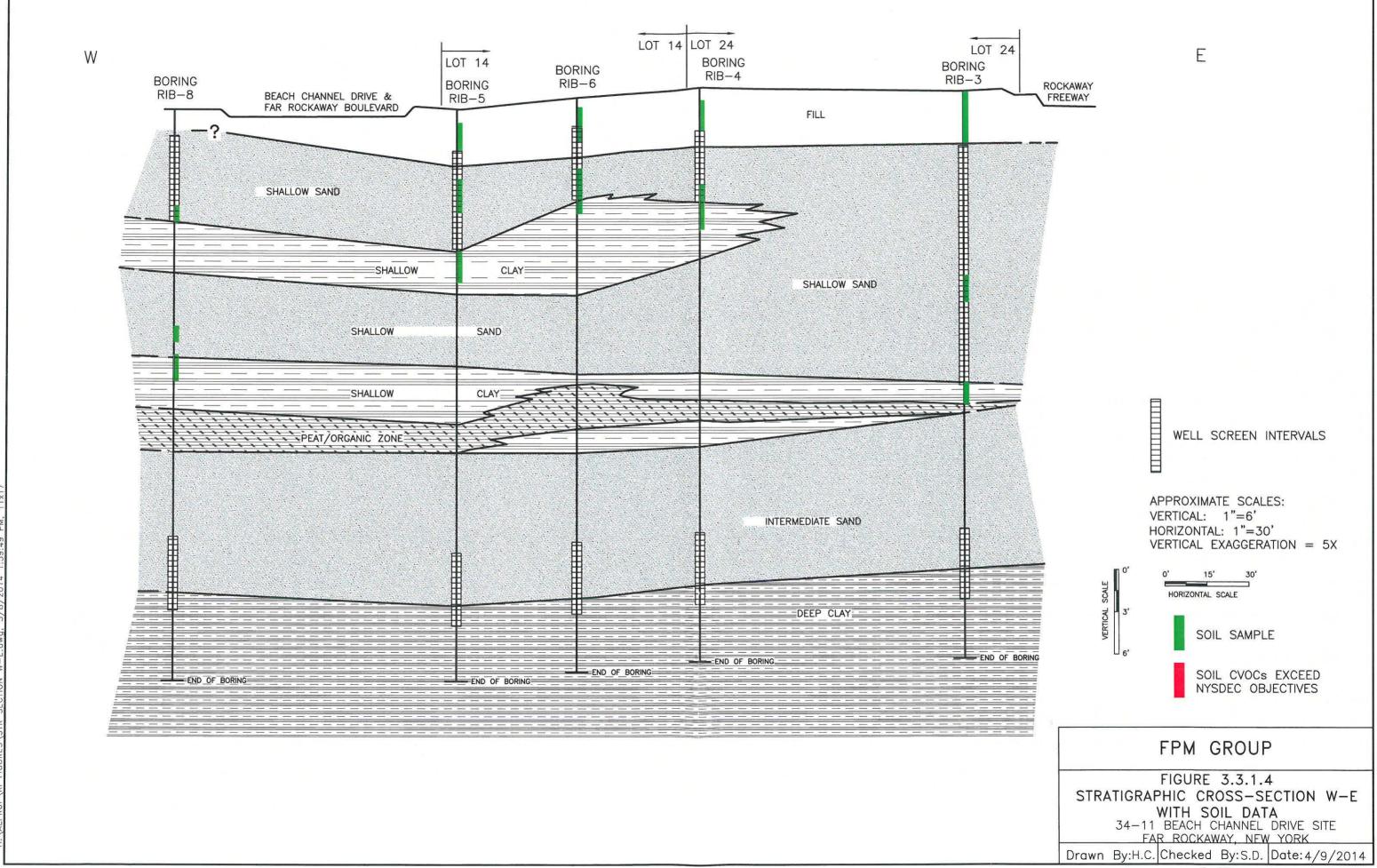
3.3.1 Soil Stratigraphy and Sampling Results

Cross-sections were prepared to show the stratigraphic relationships between the fill, shallow sand, shallow clay, intermediate sand, and deep clay. Figure 3.3.1.1 shows the locations of the soil borings and the cross-sections. Figures 3.3.1.2 through 3.3.1.4 show the stratigraphic cross-sections

LEGEND:


- SOIL BORING LOCATION
- SOIL VAPOR SAMPLE LOCATION
- PREVIOUS SOIL BORING LOCATON
- SW NE STRATIGRAPHIC CROSS-SECTION


FPM GROUP


FIGURE 3.3.1.1 STRATIGRAPHIC CROSS-SECTION LOCATIONS

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

Drawn By: H.C. Checked By: B.C. Date: 4/9/2014

developed using the RI soil boring data. Boring B-3 from the 2012 investigation performed on the Church property is included on one of the cross-sections to show the stratigraphic relationships between the materials underlying the area of contamination on the Church property and the materials underlying the Site.

Figure 3.3.1.2 is a northeast-southwest cross-section aligned along the general direction of groundwater flow in the intermediate sand. This cross-section shows that the fill is continuous from the Church property (Lot 29) to the Site (Lots 24 and 14) and to the offsite area to the southwest. The fill is somewhat thicker beneath the portion of the Church property shown on this cross-section; this condition may be related to an historic dredged channel in this area. The shallow sand is present in all of the onsite and offsite borings. Of note is the shallow clay, which is found at a shallower depth in the area of contamination on the Church property (boring B-3 vicinity) than in the area of the Site that is closely downgradient. It is possible that DNAPL from the Church property has migrated on top of the shallow clay. This clay has a variable thickness and is found at much shallower depths on the southwest side of the Site and offsite to the southwest. A layer of peat is present within this clay beneath much of the Site. The intermediate sand was found at all of the borings and is everywhere underlain by the deep clay. The deep clay was not fully penetrated by any of the RI borings and was noted to be at least five feet thick.

Figure 3.3.1.3 is a southeast-northwest cross-section extending across Lot 24 of the Site and offsite to the northwest, across Beach Channel Drive and Far Rockaway Boulevard. Of note on this cross-section is the absence of the shallow clay on the northwestern portion of Lot 24. The absence of the shallow clay in this area would have allowed for further downward migration of DNAPL originating from the Church property. In this area the shallow and intermediate sands are in contact, allowing for greater communication between these groundwater zones in this area. We also note that the top of the deep clay in the boring RIB-2 is somewhat deeper than the top of the deep clay in the nearby borings. As discussed below, this condition may affect the distribution of CVOC impacts in soil and groundwater in this area.

Figure 3.3.1.4 is a generally east-west cross-section extending through Lots 24 and 14 and offsite to the west. This cross-section shows that the shallow clay underlying the shallow sand appears to be continuous beneath the central portions of Lots 24 and 14 and fully separates the shallow and intermediate sands. Another shallow clay is also present beneath Lot 14 and offsite to the west, as also shown on Figure 3.3.1.2.

As discussed below, the presence of multiple layers of clay within and at the base of the shallow sand in this area has affected both the lateral and vertical groundwater flow. The presence of the shallow clay in the area of contamination on the Church property and its configuration in the vicinity of this area also likely affected the distribution of contamination that may have migrated as a DNAPL.

The soil sampling results are shown on Tables 3.3.1.1 and 3.3.1.2 and are compared to the NYSDEC Part 375 Soil Cleanup Objectives (Objectives) for unrestricted use. The soil sample results that exceed the NYSDEC Objectives for unrestricted use are summarized on Figure 3.3.1.5. The intervals where exceedances of the NYSDEC Objectives for CVOCs were noted are also shown graphically on Figures 3.3.1.2 through 3.3.1.4.

Onsite Fill Samples

Fill material was identified in the six onsite borings (RIB-1 through RIB-6) from grade to a depth of approximately five feet. The fill was noted to generally consist of sand and silt with varying amounts of brick, wood, cement, asphalt, and/or angular gravel. No odors or obvious staining suggestive of

TABLE 3.3.1.1 - SOIL BORING SAMPLING RESULTS 34-11 BEACH CHANNEL DRIVE SITE - ONSITE BORINGS FAR ROCKAWAY, QUEENS, NEW YORK

Sample Location	WINTED WA	RIB-1			RIB				RIB-3			RIB-4				B-5			RIB-6		NYSDEC Soil Clean
Sample Depth (Feet Below Grade)	4-5	10-12	35-37	0-5	13-15	20-22	37-39	0-4	13-15	21-22	1-3	7-8	8-10	1-3	1-3 (Duplicate)	5-7	10-12	1-3	5-7	7-8	Objectives for
Sample Stratigraphic Interval	Shallow Sand	Shallow Sand	Deep Clay	Fill	Shallow Sand	Shallow Clay	Deep Clay	Fill	Shallow Sand	Shallow Clay	Fill	Shallow Sand	Shallow Sand	Fill	Fill	Shallow Sand	Shallow Sand	Fill		Shallow Sand	Unrestricted Use
Sample Date					7/22/	2013				and the same	Manager 101			7/23/2013					7/24/2013		
Volatile Organic Compounds (ug/kg)																					
1,1-Dichloroethene	ND	ND	ND I	ND	ND I	ND	5.8	ND	ND	ND	ND	l ND	ND I	ND	l ND	ND	ND	ND	ND	ND	330
1,2,4-Trichlorobenzene	0.85 J		ND	ND	ND	ND	ND	ND	ND	0.35 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,400
1,2-Dichlorobenzene	0.39 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,100
1,3-Dichlorobenzene	0.42 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,400
1,4-Dichlorobenzene	1.9	0.26 J	ND	ND	0.19 J	ND	ND	0.098 J	ND	0.44 J	0.19 J	0.13 J	0.43 J	0.19 J	0.19 J	ND	ND OO D	0.31 J	0.30 J	0.91 J	1,800
Acetone	ND	2.9 J	22	ND	ND O44	ND	ND	ND	ND	0.31 J	ND	ND ND	56 B ND	2.0 JB ND	ND ND	27 ND	30 B ND	ND ND	ND ND	51 ND	50
Benzene Carbon disulfida	ND ND	0.23 J 2.1	ND 6.4	ND ND	0.41 J 4.3	ND ND	0.98 J 3.3	ND 0.18 J	ND 2.5	18	ND ND	ND ND	10	ND	ND	1.6	16	ND	ND	37	2,700
Carbon disulfide cis-1,2-Dichloroethene	4.1	1.4	0.39 J	ND	17	320,000	4,300 E	ND	2.5	91	ND	0.23 J	ND ND	ND	ND	0.37 J	ND	ND	ND	0.29 J	250
Cyclohexane	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.45 J	ND	ND	0.27 J	ND	ND	ND	ND	-
Ethylbenzene	ND	ND	ND	ND	ND	200 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000
Isopropylbenzene	ND	ND	ND	ND	ND	130 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.24 J	ND	ND	ND	ND	2,300
m&p-Xylene	ND	ND	ND	ND	ND	490 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260 (total)
Methylene Chloride	2.5	ND	4.1	2.5	ND	ND	4.3	ND	ND	5.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Methyl cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 12	ND	ND	0.76 J	ND	ND	0.31 J	ND 102	ND	ND	ND 10	400
Methyl ethyl ketone	ND	ND	ND 0.47	ND	ND ND	ND	ND	ND	ND	13 J ND	ND	ND	7.0 J	ND ND	ND ND	4.8 J ND	1.03 0.71 J	ND ND	ND ND	10 J ND	120
MTBE a Yidana	ND ND	ND ND	0.17 J ND	ND ND	ND ND	ND 230 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.32 J	ND ND	ND	ND ND	ND ND	930 260 (total)
o-Xylene Tetrachloroethene	ND	ND ND	ND ND	ND ND	ND ND	420 J	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	1.3	1.0	ND	ND	15	0.43 J	ND	1.300
Tetrachloroethene Toluene	ND	0.44 J	ND	ND	0.21 J	150 J	0.39 J	ND	ND	0.83 J	ND	ND	ND ND	ND	ND ND	0.22 J	ND	ND	ND	ND	700
trans-1,2-Dichloroethene	ND	0.16 J	ND	ND	2.6	830 J	39	ND	0.57 J	5.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	190
Trichloroethene	8.2	6.3	ND	ND	ND ND	3,400	20	ND	6.2	27	3.7	9.5	ND	ND	ND	0.22 J	ND	ND	ND	ND	470
Vinyl chloride	ND	6.5	1.2	ND	56	14,000	170	ND	ND	7.9	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	20
Semivolatile Organic Compounds (ug/kg	-																		•		
			114	440.1	1 1/4 1	114	1 10	ND	1 114	T NA I	00.1	T 515	I NA I	ND	ND	NA NA	l NA l	77 J	NA	T NA I	400,000
Anthracene	ND ND	NA NA	NA NA	110 J 600	NA NA	NA NA	NA NA	ND 34 J	NA NA	NA NA	98 J 460	NA NA	NA NA	44	45	NA NA	NA NA	340	NA NA	NA NA	100,000
Benzo[a]anthracene	ND ND	NA NA	NA NA	680	NA NA	NA NA	NA NA	34 J 44	NA NA	NA NA	520	NA NA	NA NA	40	51	NA NA	NA NA	370	NA NA	NA NA	1,000
Benzo[a]pyrene Benzo[b]fluoranthene	ND	NA NA	NA NA	840	NA NA	NA	NA NA	37	NA.	NA I	660	NA NA	NA	44	59	NA.	NA NA	390	NA NA	NA NA	1,000
Benzo[g,h,i]perylene	ND	NA NA	NA	670	NA I	NA	NA NA	ND	NA NA	NA NA	260 J	NA NA	NA	29 J	29 J	NA	NA	300 J	NA	NA NA	100,000
Benzo[k]fluoranthene	ND	NA	NA	310	NA	NA	NA	19 J	NA	NA	260	NA	NA	15 J	20 J	NA	NA	210	NA	NA	800
Bis(2-ethylhexyl) phthalate	ND	NA	NA	160 J	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	50,000
Butyl benzyl phthalate	ND	NA	NA	1,300	NA	NA	NA	ND	NA	NA	200 J	NA	NA	ND	ND	NA	NA	ND	NA	NA	100,000
Carbazole	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	62 J	NA	NA	ND	ND	NA	NA	ND	NA	NA	-
Chrysene	ND	NA	NA	670	NA	NA	NA	ND	NA	NA	540	NA NA	NA	58 J	56 J	NA	NA	360	NA NA	NA	1,000
Dibenz(a,h)anthracene	ND ND	NA NA	NA	140	NA NA	NA	NA NA	ND	NA NA	NA NA	72 45 J	NA NA	NA NA	5.9 J ND	5.4 J ND	NA NA	NA NA	75 ND	NA NA	NA NA	330
Di-n-butyl phthalate	ND	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	ND ND	NA NA	NA NA	ND	ND	NA NA	NA NA	ND	NA NA	NA NA	100,000
Di-n-octyl phthalate Fluoranthene	ND	NA NA	NA I	1,100	NA NA	NA	NA NA	48 J	NA NA	NA I	940	NA NA	NA NA	56 J	83 J	NA.	NA NA	450	NA NA	NA NA	100,000
Indeno[1,2,3-cd]pyrene	ND	NA NA	NA	640	NA NA	NA	NA.	ND	NA NA	NA	300	NA NA	NA	22 J	28 J	NA	NA	270	NA	NA NA	500
Phenanthrene	ND	NA	NA	440	NA NA	NA	NA	ND	NA	NA	480	NA	NA	ND	ND	NA	NA	320 J	NA	NA	100,000
Pyrene	ND	NA	NA	840	NA	NA	NA	47 J	NA	NA	780	NA	NA	75 J	72 J	NA	NA	590	NA	NA	100,000
Target Analyte List Metals (mg/kg)			,							*											
	3,020	NA I	NA	4980	NA I	NA	l NA	7,240	NA NA	NA I	4,200	l NA	NA I	3,200	4,140	NA NA	NA I	5,080	l NA	NA I	
Aluminum Antimony	ND	NA NA	NA NA	4980 ND	NA NA	NA NA	NA NA	7,240	NA NA	NA NA	4,200 ND	NA NA	NA NA	ND	ND ND	NA NA	NA NA	1.9	NA NA	NA NA	
Arsenic	4.0	NA NA	NA NA	5.5	NA NA	NA	NA NA	2.9	NA NA	NA I	2.5	NA NA	NA NA	2.3	2.3	NA	NA NA	2.5	NA NA	NA NA	13
Barium	15.9 J	NA	NA	41.7	NA NA	NA	NA NA	17.2 J	NA NA	NA	72	NA NA	NA NA	22.7 J	103	NA	NA	40.8	NA	NA	350
Beryllium	ND	NA	NA	0.18 J	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	7.2
Cadmium	ND	NA	NA	0.23 J	NA	NA	NA	ND	NA	NA	ND	NA	NA	0.31 J	ND	NA	NA	ND	NA	NA	2.5
Calcium	660 J	NA	NA	9,320	NA	NA	NA	4,100	NA	NA	4,730	NA	NA	9,000	25,900	NA	NA	8,550	NA	NA	
Chromium	11.4	NA	NA	46.5	NA	NA	NA	539	NA	NA	13.7	NA	NA NA	7.0	8.5	NA	NA NA	172	NA NA	NA NA	30
Cobalt	1.4 J	NA NA	NA	5.2 J	NA NA	NA	NA NA	8.3 J	NA NA	NA NA	4.2 J	NA NA	NA NA	1.9 J	2.1 J	NA NA	NA NA	4.0 J	NA NA	NA NA	30
Copper	13.5	NA NA	NA	116	NA NA	NA	NA NA	431	NA NA	NA NA	16.8	NA NA	NA NA	10.4	12.4			608		NA NA	50
Iron	5,420	NA NA	NA NA	11,100	NA NA	NA NA	NA NA	17,600	NA NA	NA NA	10,100 86.7	NA NA	NA NA	5,030 21.6	6,180	NA NA	NA NA	11,200 67.4	NA NA	NA NA	63
Lead	11.5 795 J	NA NA	NA NA	87.4 2,450	NA NA	NA NA	NA NA	27.9 2,240	NA NA	NA NA	2,210	NA NA	NA NA	1,270	2,440	NA NA	NA NA	3,190	NA NA	NA NA	63
Magnesium Manganese	27.5	NA NA	NA NA	159	NA NA	NA NA	NA NA	354	NA NA	NA NA	264	NA NA	NA NA	57.5	90.3	NA NA	NA NA	185	NA NA	NA NA	1,600
Nickel	5.3 J	NA NA	NA NA	33.9	NA NA	NA	NA NA	298	NA NA	NA I	27.4	NA NA	NA NA	4.8 J	5.6 J	NA	NA NA	82.8	NA NA	NA NA	30
Potassium	521 J	NA NA	NA	542 J	NA NA	NA	NA.	229 J	NA NA	NA NA	510 J	NA	NA	377 J	362 J	NA	NA	254 J	NA	NA	-
Selenium	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	3.9
Silver	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	2
Sodium	232 J	NA	NA	293 J	NA	NA	NA	ND	NA	NA	234 J	NA	NA	ND	216 J	NA	NA	239 J	NA	NA	-
Thallium	ND	NA	NA	ND	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	ND	NA	NA	ND	NA	NA	
Vanadium	10.3 J	NA	NA	15.1	NA	NA	NA	16.5	NA	NA	14.2	NA	NA	10.4	13.5	NA	NA	13.9	NA	NA	100
Zinc	19.0	NA	NA	148	NA	NA	NA	279	NA	NA	77.1	NA NA	NA NA	0.027	156	NA	NA NA	451	NA NA	NA	109
						NA	NA	0.020	NA	NA	0.034	NA	NA	11 (127	0.061	NA NA	NA	0.58	NA	NA	0.18
Mercury Polychlorinated Biphenyls (mg/kg)	ND ND	NA NA	NA NA	0.081 ND	NA NA	NA	NA NA	ND	NA NA	NA NA	ND	NA NA	NA NA	ND	ND	NA	NA NA	ND	NA NA	NA NA	100

J = Estimated concentration greater than the Method Detection Limit (MDL) and less than the Reporting Limit (RL).
 E = Analyte exceeded range of instrumentation and a diluted sample was reanalyzed.
 Bold shaded values indicate exceedances of the NYSDEC Soil Cleanup Objectives for Unrestricted Use.

- = Not established

B = Analyte detected in associated laboratory blank sample

Only compounds detected in one or more samples are reported. See lab report for complete data.

Boxed values exceed NYSDEC Soil Cleanup Objectives for commercial use.

ug/kg = micrograms per kilogram mg/kg = miliigrams per kilogram ND = Not detected NA = Not analyzed

TABLE 3.3.1.2 - SOIL BORING SAMPLING RESULTS - OFFSITE BORINGS 34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

Sample Location	RII	RIB-7		R	IB-8		RIE	3-9		
Sample Depth (Feet Below Grade)	9-10	12-13	7-8 Shallow Sand		15-16 (Duplicate	17-19	8-9	15-16 Shallow Clay	NYSDEC Soil	
Sample Stratigraphic Interval	Shallow Sand	Shallow Clay			Shallow Clay	Shallow Clay	Shallow Sand		Cleanup Objectives for Unrestricted Use	
Sample Date	9/30/	2013			10/1/2	2013				
Volatile Organic Compounds (ug/kg)										
1,1-Dichloroethane	ND	ND	ND	0.43 J	0.39 J	ND	ND	ND	270	
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	1.2 J	ND	ND	1,800	
Acetone	11 B	62 B	7.0 B	ND	ND	34 B	ND	35 B	50	
Benzene	ND	ND	ND	ND	ND	24	ND	ND	60	
Carbon disulfide	2.3	30	5.5	15	15	34	9.7	44	2,700	
Ethylbenzene	ND	ND	ND	ND	ND	0.36 J	ND	ND	1,000	
Isopropylbenzene	ND	0.42 J	ND	ND	ND	ND	ND	ND	2,300	
m&p-Xylene	ND	ND	ND	ND	ND	1.3 J	ND	ND	260 (total)	
Methylene Chloride	ND	ND	ND	ND	ND	2.0	ND	2.9	50	
мтве	ND	ND	ND	0.47 J	0.40 J	0.91 J	ND	ND	930	
o-Xylene	ND	ND	ND	ND	ND	1.0 J	ND	ND	260 (total)	
Toluene	ND	ND	ND	ND	ND	0.63 J	ND	ND	700	

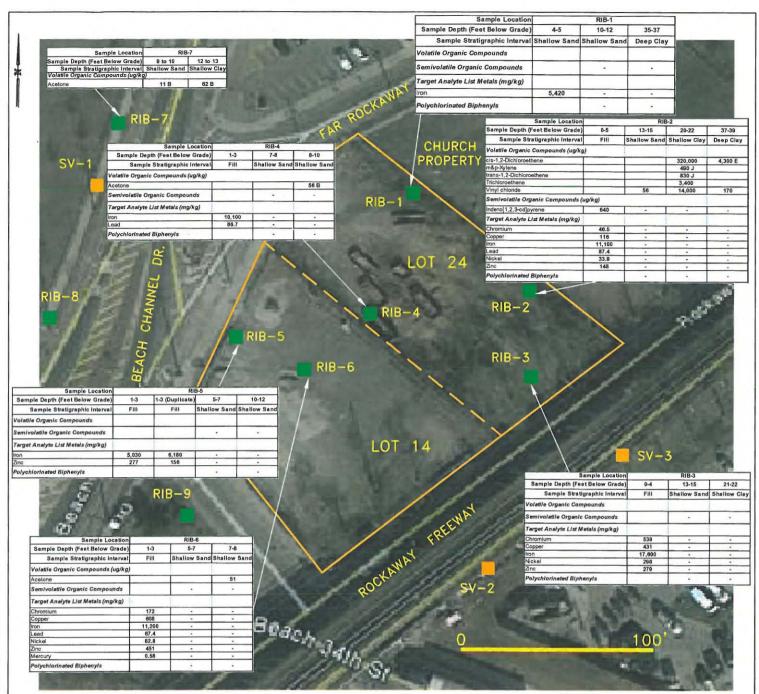
Notes:

ug/kg = micrograms per kilogram

J = Estimated concentration greater than the Method Detection Limit (MDL) and less than the Reporting Limit (RL).

ND = Not detected above the MDL.

NA = Not analyzed


B = Analyte detected in associated laboratory blank sample

Bold shaded values indicate exceedances of the NYSDEC Soil Cleanup Objectives for Unrestricted Use.

- = Not established

Only compounds detected in one or more samples are reported. See lab report for complete data.

LEGEND:

SOIL BORING LOCATION

SOIL VAPOR SAMPLE LOCATION

NOTED CONCENTRATIONS EXCEED NYSDEC OBJECTIVES FOR UNRESTRICTED USE.

— = NOT ANALYZED

FPM GROUP

FIGURE 3.3.1.5
SOIL SAMPLES EXCEEDING NYSDEC OBJECTIVES

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

Drawn By: H.C. Checked By: S.D. Date: 5/6/2014

potential contamination were noted. PID responses were noted in samples RIB-1 (4 to 5 feet) and RIB-5 (1 to 3 feet) at 15 and 25 parts per million (ppm), respectively, although it is noted that these measurements may have been affected the by excessive humidity at the Site at the time of the investigation.

A representative fill sample was retained from each of the RIB-1 through RIB-6 borings and analyzed for TCL VOCs and SVOCs, TAL metals, and PCBs; the results are shown on Table 3.3.1.1. No PCBs were detected in any of the fill samples and no VOCs were noted to exceed the NYSDEC Objectives. One SVOC, indeno(1,2,3-cd)pyrene, was noted to slightly exceed its NYSDEC Objective for unrestricted use in the 0 to 5-foot interval of RIB-2. This detection does not exceed the NYSDEC Objective for commercial use. Several metals, including chromium, copper, lead, nickel, and/or zinc were noted to exceed their respective NYSDEC Objectives for unrestricted use. Of these, only two detections of copper exceeded the NYSDEC Objective for commercial use. No other exceedances of the NYSDEC Objectives for unrestricted use were noted in the fill samples. These findings are consistent with historic fill conditions in the greater New York City metropolitan area and no further investigation of the fill is recommended.

Onsite and Offsite Shallow Sand

Shallow sand samples were retained from each of the onsite and offsite soil borings (RIB-1 through RIB-9) at several intervals from just below the fill to a depth of 15 feet below grade. These samples generally consisted of sand with some silt and/or gravel or interbedded clay. Vinyl chloride, a breakdown product of the CVOCs found on the Church property, was noted above its NYSDEC Objective for unrestricted use in soil boring RIB-2 in the 13 to 15-foot interval. This boring is located in close downgradient proximity to the area of contamination on the Church property and it appears that this detection is associated with contamination originating on the Church property.

Acetone was also detected in two shallow sand samples (RIB-4 and RIB-6 onsite) at concentrations just above its NYSDEC Objective for unrestricted use. One of these detections is B-qualified as acetone was found in an associated laboratory blank; this detection is not likely representative of actual soil conditions. Although the detection in boring RIB-6 was not B-qualified, it is possible that this detection is also related to laboratory contamination as acetone was not found in either of the two shallower samples in this boring.

No impacts were identified in the offsite shallow sand samples.

Based upon the RI soil sampling results, vinyl chloride is present in the shallow sand in the area of the Site in close downgradient proximity to the area of contamination on the Church property. This finding is consistent with prior investigation data; no further investigation of the shallow sand is recommended.

Onsite and Offsite Shallow Clay

Shallow clay samples were retained from onsite soil borings RIB-2 and RIB-3 at depths of 20 to 22 and 21 to 22 feet below grade, respectively. Shallow clay samples were also retained from offsite soil borings RIB-7 (12 to 13 feet), RIB-8 (15 to 16 feet), and RIB-9 (15 to 16 feet). The shallow clay samples were noted to generally consist of clay with trace amounts of sand.

Several CVOCs were noted in the sample from RIB-2 at concentrations exceeding their NYSDEC Objectives for unrestricted use, including cis-1,2-dichloroethene (320,000 ug/kg), vinyl chloride (14,000 ug/kg), trichloroethene (3,400 ug/kg), and trans 1,2-dichloroethene (830 J ug/kg). The petroleum constituents m & p xylene (490 J ug/kg) were also noted to exceed the NYSDEC Objective for

unrestricted use in this sample. The vinyl chloride detection in this sample also exceeded its NYSDEC Objective for commercial use. None of the other shallow clay samples from onsite or offsite exhibited exceedances of the NYSDEC Objectives for CVOCs or petroleum constituents. As noted above, the RIB-2 boring is in close proximity to the area of contamination identified on the Church property and it appears that the shallow clay in this area of the Site is impacted with CVOCs and petroleum from the Church property.

Acetone was also detected in one shallow clay sample from offsite boring RIB-7. This detection is B-qualified as acetone was found in an associated laboratory blank; this detection is not likely representative of actual soil conditions.

Based upon the RI soil sampling results, CVOCs and petroleum are present in the shallow clay in the area of the Site in close downgradient proximity to the area of contamination on the Church property. This finding is consistent with prior investigation data; no further investigation of the shallow clay is recommended.

Onsite Deep Clay

Deep clay samples were retained from onsite soil borings RIB-1 and RIB-2 at depths of 35 to 37 and 37 to 39 feet below grade, respectively. These samples were noted to generally consist of clay with trace amounts of sand. Two VOCs were noted to exceed their NYSDEC Objectives for unrestricted use in the sample from RIB-2, including cis-1,2-dichloroethene (cis-1,2-DCE, 4,300 E ug/kg) and vinyl chloride (VC, 170 ug/kg). No other exceedances of the NYSDEC Objectives were noted in the deep clay samples.

Based on the RI soil sampling results, CVOCs are present in the deep clay in the area of the Site in close proximity to the area of contamination on the Church property. This finding is consistent with prior investigation data; no further investigation of the deep clay is recommended.

Discussion

The stratigraphic cross-sections on Figures 3.3.1.2 through 3.3.1.4 have been annotated to depict the locations and intervals where CVOCs have been detected in onsite soil in excess of the NYSDEC Objectives. We note that no exceedances for CVOCs have been detected in any of the onsite fill samples; this finding is consistent with the absence of a source of CVOCs on the Site. Exceedances of the NYSDEC Objectives for CVOCs have been detected only at boring RIB-2 in the shallow sand, shallow clay, and deep clay, which is consistent with the migration of CVOCs from the area of contamination on the Church property, which closely adjoins the RIB-2 location. The distribution of CVOCs in RIB-2 is also suggestive of the migration of at least some of the CVOCs in DNAPL form, which is consistent with information concerning the nature of the contamination (former presence of DNAPL) at the Church property. We also note that the primary CVOCs detected in the soils at RIB-2 are cis-1,2-DCE and VC, both of which are breakdown products from TCE. The preponderance of breakdown products relative to primary CVOCs (such as TCE) further supports the migration of these CVOCs onto the Site from the source area on the Church property.

It should be noted that there were no exceedances of the NYSDEC Objectives for petroleum compounds in any of the soil samples from Lot 14, which was formerly used as a gasoline service station. The only exceedance for a petroleum compound was noted at depth in the shallow clay in RIB-2 on Lot 24, which is located closely downgradient of the area of contamination on the Church property. Free-phase petroleum was part of the contamination in this area of the Church property.

3.3.2 Groundwater Flow Direction Evaluation

August 2013 Water Levels from Onsite Wells

Groundwater relative elevation data obtained from the onsite wells in August 2013 were used to evaluate the groundwater flow directions in the shallow and intermediate sands such that the proposed offsite well locations could be confirmed. The water level data obtained on August 15, 2013 are shown in Table 3.3.2.1 and are presented graphically on Figures 3.3.2.1 and 3.3.2.2.

It was noted that the groundwater levels observed in the shallow sand wells appeared to show variable groundwater flow directions, which was inconsistent with other groundwater flow direction for both the Site and the Church property, as well as the previously-obtained groundwater quality data. These data were closely examined together with the well installation information and it was noted that there is a strong downward gradient between the shallow and intermediate sands and that the well screens for the shallow sands are installed at different depths within the sand. The screens for the shallow wells on the western portion of the Site, where the shallow clay is present at a relatively high elevation, are set in a very shallow interval of the shallow sand, while the screens for the shallow wells on the eastern and northern portions of the Site, where the shallow clay is deeper or absent, are longer and set deeper into the shallow sand. This results in an inconsistent set of screen intervals from which to accurately evaluate the groundwater flow direction in the shallow sand.

Groundwater level data from the intermediate sand wells were consistent and indicated a southwesterly groundwater flow direction, as shown in Figure 3.3.2.2. This finding is consistent with the construction of these wells, all of which are installed at comparable depths in the intermediate sand.

This information was provided to the NYSDEC on September 4, 2013, together with our recommendations for the placement of the offsite wells, which were approved by the NYSDEC. The offsite wells were installed in late September and early October 2013.

November 2013 Water Levels

Following offsite well installation additional water level data were collected in November 2013, as summarized in Table 3.3.2.2. The water level data from this event are presented graphically on Figures 3.3.2.3 and 3.3.2.4. The water level results from wells installed near the top of the shallow sand (MW-4S through MW-9S) indicate that groundwater flow in the shallow sand is to the west, which is consistent with previously-obtained information. The water level results from the intermediate sand wells show a southwesterly groundwater flow, which is consistent with the previously-obtained information. The vertical differential between the shallow sand and intermediate sand wells shows a downward vertical gradient between these two groundwater zones, which is consistent with the previously-obtained information and the distribution of groundwater contaminants, as discussed below.

3.3.3 Groundwater Monitoring Well Sampling Results

Groundwater sampling was performed at shallow sand monitoring wells MW-1S through MW-9S and intermediate sand monitoring wells MM-1I through MW-9I. The groundwater sampling results are shown on Table 3.3.3.1 and summarized on Figures 3.3.3.1 (shallow sand) and 3.3.3.2 (intermediate sand) and are compared to the NYSDEC Class GA Ambient Water Quality Standards (Standards). It should be noted that no DNAPL was detected during the well gauging and none of the data suggest that DNAPL is present onsite.

TABLE 3.3.2.1 MONITORING WELL RELATIVE ELEVATION DATA - AUGUST 15, 2013 34-11 BEACH CHANNEL DRIVE SITE #C241141 FAR ROCKAWAY, NY

Shallow Sand (Water Table) Wells

Well	Top of Casing Relative Elevation	Depth to Water (ft)	Groundwater Relative Elevation (ft)	Well Diameter (in.)
MW-1S	23.74	8.09	15.65	2
MW-2S	24.72	8.97	15.75	2
MW-3S	24.34	8.54	15.80	2
MW-4S	24.19	8.32	15.87	2
MW-5S	22.91	7.23	15.68	2
MW-6S	20.15	4.19	15.96	2

Intermediate Sand Wells

Well	Top of Casing Relative Elevation (ft.)	Depth to Water (ft)	Groundwater Relative Elevation (ft)	Well Diameter (in.)
MW-1I	23.69	8.46	15.23	2
MW-2I	24.75	9.49	15.26	2
MW-3I	24.30	9.21	15.09	2
MW-4I	24.24	9.15	15.09	2
MW-5I	22.91	8.04	14.87	2
MW-6I	20.32	5.42	14.90	2

Vertical Head Differential

Well Pair	Shallow Sand Groundwater Relative Elevation (ft.)	Intermediate Sand Groundwater Relative Elevation (ft.)	Differential (ft)	Differential Direction
MW-1S/MW-1I	15.65	15.23	0.42	Downward
MW-2S/MW-2I	15.75	15.26	0.49	Downward
MW-3S/MW-3I	15.80	15.09	0.71	Downward
MW-4S/MW-4I	15.87	15.09	0.78	Downward
MW-5S/MW-5I	15.68	14.87	0.81	Downward
MW-6S/MW-6I	15.96	14.90	1.06	Downward

Note: High tide 13:15, gauged over about 1 hour around 15:00 (2 hours after tide max).

SOIL BORING & SHALLOW/INTERMEDIATE WELLS
MW-1S WITH WATER TABLE RELATIVE ELEVATION
(15.65)

FPM GROUP

FIGURE 3.3.2.1
AUGUST 2013 SHALLOW GROUNDWATER
RELATIVE ELEVATIONS

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

SOIL BORING & SHALLOW/INTERMEDIATE WELLS WITH MW-1I INTERMEDIATE GROUNDWATER RELATIVE ELEVATION (15.23)

FPM GROUP

FIGURE 3.3.2.2
AUGUST 2013 INTERMEDIATE GROUNDWATER
RELATIVE ELEVATION CONTOURS

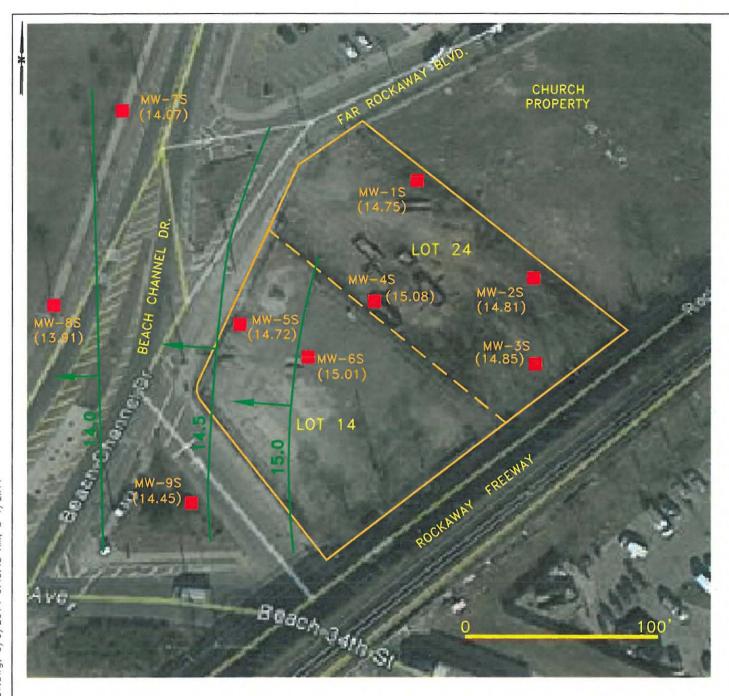
34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

TABLE 3.3.2.2 MONITORING WELL RELATIVE ELEVATION DATA - NOVEMBER 12, 2013 34-11 BEACH CHANNEL DRIVE SITE #C241141 FAR ROCKAWAY, NY

Shallow Sand (Water Table) Wells

Well	Top of Casing Relative Elevation	Depth to Water (ft)	Groundwater Relative Elevation (ft)	Well Diameter (in.)
MW-1S	23.74	8.99	14.75	2
MW-2S	24.72	9.91	14.81	2
MW-3S	24.34	9.49	14.85	2
MW-4S	24.19	9.11	15.08	2
MW-5S	22.91	8.19	14.72	2
MW-6S	20.15	5.14	15.01	2
MW-7S	21.45	7.38	14.07	2
MW-8S	19.53	5.62	13.91	2
MW-9S	19.10	4.65	14.45	2

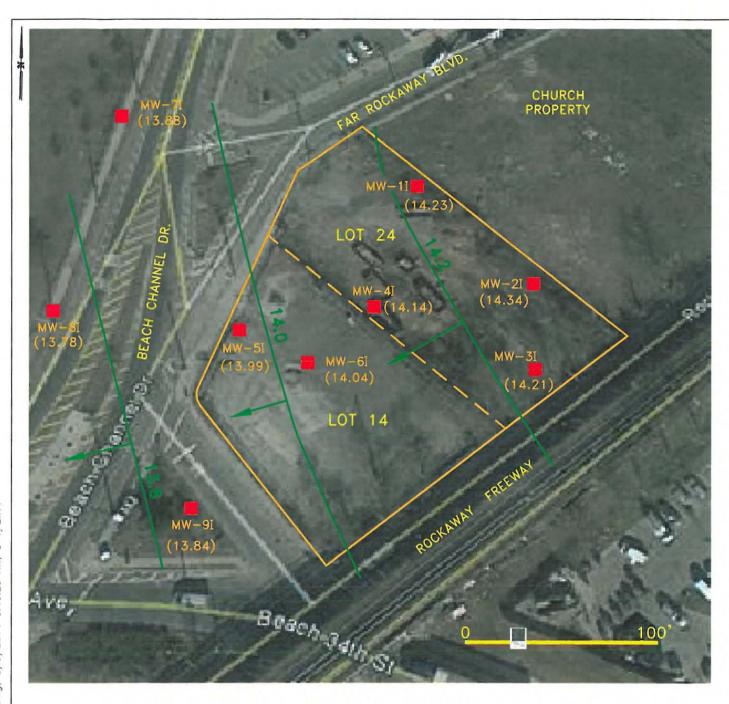
Intermediate Sand Wells


Well	Top of Casing Relative Elevation (ft.)	Depth to Water (ft)	Groundwater Relative Elevation (ft)	Well Diameter (in.)
MW-1I	23.69	9.46	14.23	2
MW-2I	24.75	10.41	14.34	2
MW-3I	24.30	10.09	14.21	2
MW-41	24.24	10.10	14.14	2
MW-5I	22.91	8.92	13.99	2
MW-6I	20.32	6.28	14.04	2
MW-71	21.34	7.46	13.88	2
MW-8I	19.47	5.69	13.78	2
MW-91	19.50	5.66	13.84	2

Vertical Head Differential

Well Pair	Shallow Sand Groundwater Relative Elevation (ft.)	Intermediate Sand Groundwater Relative Elevation (ft.)	Differential (ft)	Differential Direction									
MW-1S/MW-1I	14.75	14,23	0.52	Downward									
MW-2S/MW-2I	14.81	14.34	0.47	Downward									
MW-3S/MW-3I	14.85	14.21	0.64	Downward									
MW-4S/MW-4I	15.08	14.14	0.94	Downward									
MW-5S/MW-5I	14.72	13.99	0.73	Downward									
MW-6S/MW-6I	15.01	14.04	0.97	Downward									
MW-7S/MW-71	14.07	13.88	0.19	Downward									
MW-8S-MW-8I	13.91	13.78	0.13	Downward									
MW-9S/MW-9I	14.45	13.84	0.61	Downward									

Note: Wells gauged about 1 hour after low tide. Intermediate wells allowed to equilibrate prior to monitoring.


MW-1S (14.75) SHALLOW WELLS WITH GROUNDWATER RELATIVE ELEVATION (FEET)

GROUNDWATER FLOW DIRECTION

FPM GROUP

FIGURE 3.3.2.3 NOVEMBER 2013 SHALLOW GROUNDWATER RELATIVE ELEVATION CONTOURS

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

INTERMEDIATE-LEVEL WELLS WITH GROUNDWATER

MW-1I RELATIVE ELEVATION (FEET)

(14.24)

GROUNDWATER FLOW DIRECTION

FPM GROUP

FIGURE 3.3.2.4
NOVEMBER 2013
INTERMEDIATE GROUNDWATER
RELATIVE ELEVATION CONTOURS

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

TABLE 3.3.3.1 - GROUNDWATER SAMPLING RESULTS - OCTOBER 2013 34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY. QUEENS. NEW YORK

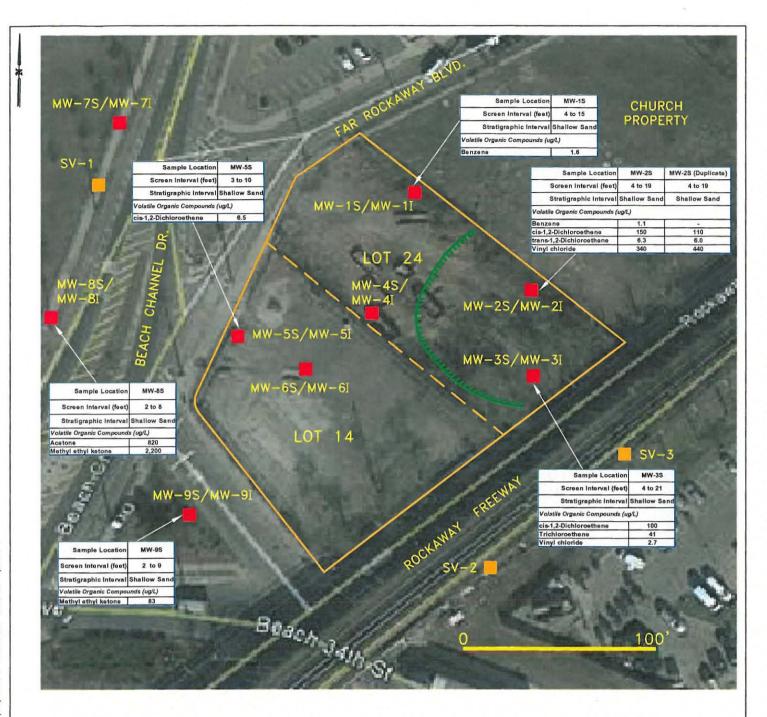
ONSITE WELLS

Sample Location	MW-1S	MW-1I	MW-2S	MW-2S (Duplicate)	MW-2I	MW-3S	MW-3I	MW-4S	MW-4I	MW-5S	MW-5I	MW-6S	MW-6I	NYSDEC Class
Screen Interval (feet)	4 to 15	31 to 36	4 to 19	4 to 19	33 to 38	4 to 21	31 to 36	3 to 8	31 to 36	3 to 10	31 to 36	2 to 7	31 to 36	GA Ambient Water Quality
Stratigraphic Interval 5	Shallow Sand	Inter. Sand	Shallow Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Standard
Volatile Organic Compounds (ug/L)			•											
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethene	ND	ND	ND	ND	10 J	0.83 J	0.84 J	ND	ND	ND	0.25 J	ND	ND	5
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	50
Benzene	1.6	ND	1.1	1.0	4.4 J	0.38 J	6.0	ND	3.7	ND	0.28 J	ND	4.4	1
Carbon disulfide	ND	0.20 J	ND	0.32 J	ND	ND	0.19 J	0.61 J	ND	0.15 J	0.35 J	ND	ND	50
Chlorobenzene	ND	ND	ND	0.19 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	2.8	ND	ND	ND	ND	ND	54	ND	ND	ND	ND	ND	ND	5
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.20 J	ND	7
cis-1,2-Dichloroethene	3.9	4.2	150	110	4,800	100	260	4.5	5.4	6.5	50	1.6	2.9	5
Ethylbenzene	0.50 J	ND	ND	0.13 J	ND	ND	0.54 J	ND	0.28 J	ND	ND	ND	0.52 J	5
Isopropylbenzene	ND	ND	ND	ND	ND	ND	0.10 J	ND	ND	ND	ND	ND	ND	5
m&p-Xylene	0.79 J	ND	ND	ND	ND	ND	0.77 J	ND	0.62 J	ND	ND	ND	0.77 J	5
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	46 J	6.4 J	ND	50
Methyl isobutyl ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
MTBE	ND	6.7	ND	ND	ND	ND	ND	ND	0.24 J	ND	11	ND	0.62 J	10
o-Xylene	0.41 J	ND	ND	ND	ND	ND	0.23 J	ND	0.38 J	ND	ND	ND	0.33 J	5
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.39 J	ND	2.7	ND	5
Toluene	2.2	ND	0.65 J	0.59 J	ND	ND	7.3	ND	0.76 J	ND	0.32 J	ND	7.7	5
trans-1,2-Dichloroethene	4.1	0.39 J	6.3	6.0	100	1.2	44	ND	2.3	0.17 J	0.82 J	ND	9.0	5
Trichloroethene	4.3	0.79 J	0.66 J	0.17 J	310	41	16	1.8	0.63 J	0.29 J	2.4	0.25 J	0.52 J	5
Vinyl chloride	1.4	23	340	440	420	2.7	180	1.6	1.1	1.2	6.9	0.30 J	1.8	2

OFFSITE WELLS

Sample Location	MW-7S	MW-7I	MW-8S	MW-81	MW-9S	MW-9i	NYSDEC Class GA	
Screen Interval (feet)	2 to 12	36 to 41	2 to 8	30 to 35	2 to 9	31 to 36	Ambient	
Stratigraphic Interval	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Water Quality Standard	
Volatile Organic Compounds (ug/L)								
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.36 J	5	
1,1-Dichloroethene	ND	ND	ND	0.18 J	ND	0.15 J	5	
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.20 J	1	
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.26 J	1	
Acetone	31	530	820	5.6	39	55	50	
Benzene	0.10 J	0.20 J	0.39 J	0.59 J	ND	15	1	
Carbon disulfide	ND	0.58 J	ND	ND	ND	ND	50	
Chlorobenzene	ND	ND	ND	ND	ND	0.29 J	5	
Chloroethane	ND	ND	ND	ND	ND	ND	5	
Chloroform	ND	ND	ND	ND	ND	ND	7	
cis-1,2-Dichloroethene	ND	0.28 J	ND	12	0.24 J	79	5	
Ethylbenzene	ND	ND	ND	ND	ND	0.70 J	5	
Isopropylbenzene	ND	ND	ND	ND	ND	0.086 J	5	
m&p-Xylene	ND	ND	ND	ND	ND	1.5 J	5	
Methyl ethyl ketone	ND	1,000	2,200	15	83	32	50	
Methyl isobutyl ketone	ND	ND	ND	ND	ND	1.6 J	50	
MTBE	ND	ND	ND	1.6	ND	2.1	10	
o-Xylene	ND	ND	ND	ND	ND	0.97 J	5	
Tetrachloroethene	ND	ND	ND	ND	ND	ND	5	
Toluene	ND	0.24 J	ND	0.22 J	ND	4.1	5	
trans-1,2-Dichloroethene	ND	ND	ND	0.26 J	ND	29	5	
Trichloroethene	ND	ND	ND	0.61 J	ND	ND	5	
Vinyl chloride	ND	ND	ND	12	ND	85	2	

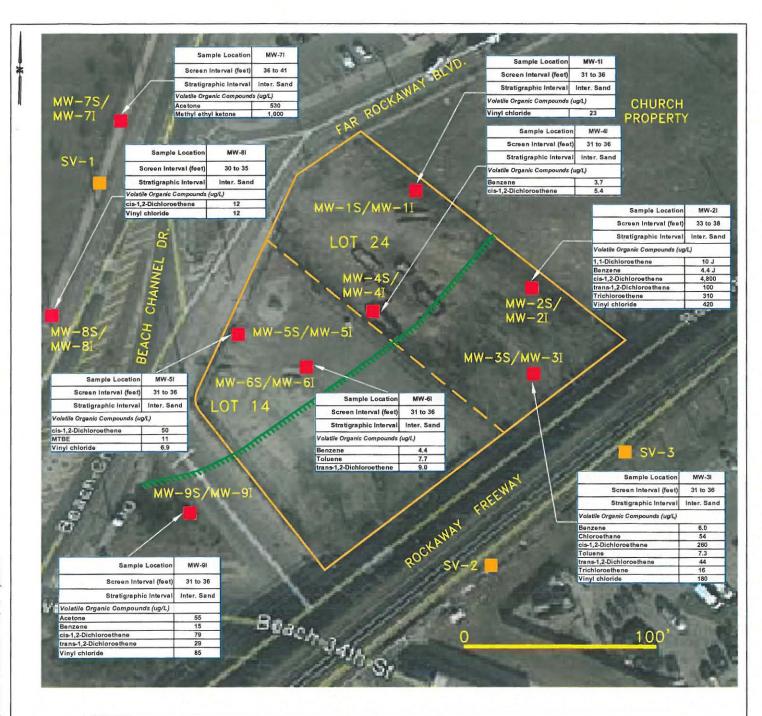
Notes:


ug/L = micrograms per liter

J = Estimated concentration greater than the Method Detection Limit (MDL) and less than the Reporting Limit (RL), or estimated due to LCS issues.

Bold shaded values indicate exceedances of the NYSDEC Class GA Ambient Water Quality Standards.

Only compounds detected in one or more samples are reported. See lab report for complete data.


- SHALLOW WELLS WITH EXCEEDANCES
 OF NYSDEC STANDARDS
- SOIL VAPOR SAMPLE LOCATION

LIVE ELEVATED CHLORINATED VOCs

FPM GROUP

FIGURE 3.3.3.1 SHALLOW GROUNDWATER DATA MAP

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

- INTERMEDIATE-LEVEL WELLS WITH EXCEEDANCES OF NYSDEC STANDARDS
- SOIL VAPOR SAMPLE LOCATION

ELEVATED CHLORINATED VOCs

FPM GROUP

FIGURE 3.3.3.2 INTERMEDIATE GROUNDWATER DATA MAP

34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

Shallow Sand Groundwater

Concentrations of CVOCs exceeding their NYSDEC Standards were noted in onsite shallow sand wells MW-2S, MW-3S, and MW-5S, all of which are downgradient of the area of contamination on the Church property. The CVOCs noted to exceed the NYSDEC Standards in these wells include VC, cis-1,2-DCE, and TCE, all of which are associated with the area of contamination on the Church property. The area of elevated CVOCs in shallow sand groundwater is illustrated on Figure 3.3.3.1.

The petroleum constituent benzene was also detected in excess of its NYSDEC Standard in onsite shallow wells MW-1S and MW-2S. These two wells are located on the upgradient side of the Site in downgradient proximity to the area of contamination on the Church property. Petroleum constituents were not detected in excess of the NYSDEC Standards in any of the other onsite shallow sand wells, including wells on Lot 14, which was formerly used as a gasoline service station.

The offsite shallow sand wells to the west and southwest of the Site (MW-8S and MW-9S) contained acetone and/or methyl ethyl ketone (MEK) in excess of the NYSDEC Standards. Acetone was not detected in any of the onsite shallow sand wells and MEK was detected at a low estimated concentration well below the NYSDEC Standard in one onsite shallow sand well. These detections in the offsite shallow sand wells, which are located on the other side of both a sanitary sewer and a stormwater sewer relative to the Site, are not related to Site conditions. No CVOCs or petroleum compounds were noted in any of the offsite shallow sand wells in excess of the NYSDEC Standards. These data are consistent with the data from the onsite wells and indicate that the CVOC and petroleum impacts in the shallow sand groundwater are limited to the Site in the downgradient vicinity of the area of contamination on the Church property.

Intermediate Sand Groundwater

Concentrations of CVOCs exceeding their NYSDEC Standards were noted in all of the onsite intermediate sand wells. The highest concentrations were noted in wells MW-2I and MW-3I, which are most closely downgradient of the area of contamination on the Church property. The CVOCs noted to exceed the NYSDEC Standards in these wells include VC, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, chloroethane, and TCE, which are associated with the area of contamination on the Church property.

The petroleum constituents benzene and/or toluene were also detected in excess of their NYSDEC Standards in onsite intermediate sand wells MW-2I, MW-3I, MW-4I, and MW-6I. These wells are located downgradient of the area of contamination on the Church property. The petroleum constituent MTBE was also detected at a low concentration slightly in excess of its NYSDEC Standard in onsite intermediate sand well MW-5I. MTBE was also detected in onsite intermediate sand wells MW-1I, MW-4I and MW-6I at levels just below the NYSDEC Standard; these wells are located on both Lots 14 and 24. Traces of MTBE were noted in only two of the onsite soil samples; based on these data, it does not appear that the MTBE has an onsite source.

The offsite intermediate sand wells to the west and southwest (downgradient) of the Site and the Church property (MW-8I and MW-9I) contained the CVOCs VC, cis-1,2-DCE, and/or trans-1,2-DCE in excess of the NYSDEC Standards, with somewhat higher concentrations noted at well MW-09I than at MW-8I. These detections are generally at lower levels than the levels noted in the onsite intermediate sand wells MW-2I and MW-3I and are consistent with a plume of dissolved CVOCs migrating in the intermediate sand groundwater from the Church property, through the Site, and then offsite to the southwest, as illustrated on Figure 3.3.3.2. The downgradient and lateral (southeast) limits of this plume have not been defined.

The petroleum constituent benzene was also detected in excess of its NYSDEC Standard in offsite intermediate sand well MW-9I, which is located downgradient of the Site and the Church property. This detection is consistent with a low-level plume of dissolved petroleum migrating in the intermediate sand groundwater from the Church property, through the Site, and then offsite to the southwest.

The offsite intermediate sand wells MW-7I and MW-9I contain acetone and/or MEK in excess of the NYSDEC Standards. As discussed above, these wells are located on the other side of both a sanitary sewer and a stormwater sewer relative to the Site and these detections are not related to Site conditions.

Discussion

Collectively, the groundwater data demonstrate that a dissolved CVOC plume is present in both the shallow sand and intermediate sand groundwater at the Site. None of the data suggest that DNAPL is present onsite.

The extent of the CVOC plume in the shallow sand at the Site is limited to the downgradient proximity of the area of contamination on the Church property, which is consistent with its source from this area. Petroleum impacts are also present in the shallow sand groundwater in this area, consistent with a source from the Church property.

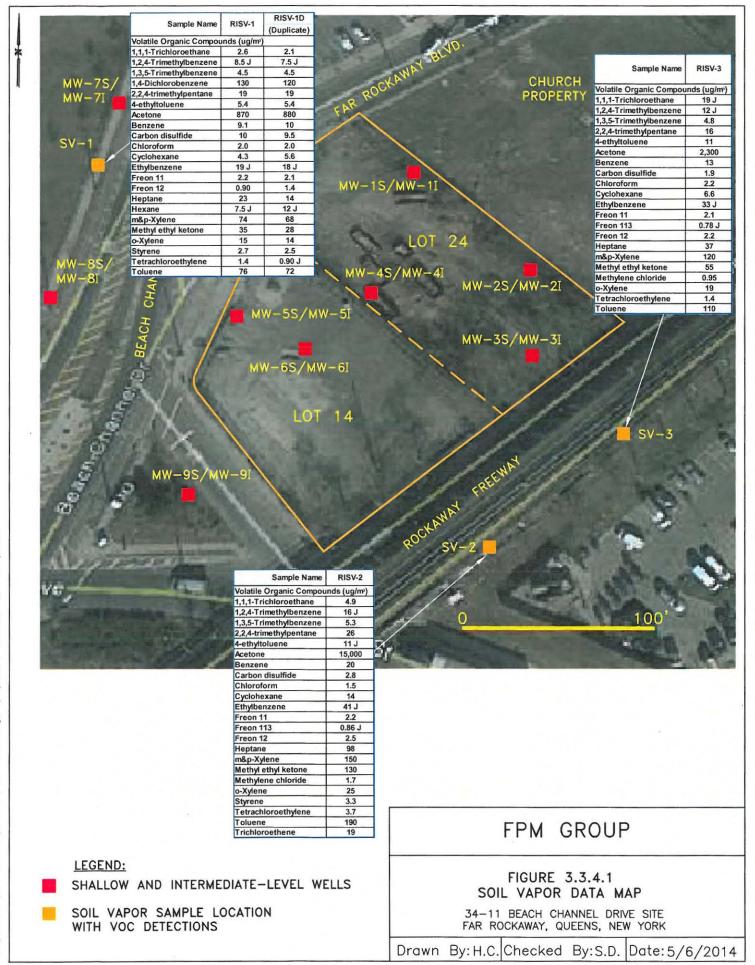
The CVOC concentrations are generally higher in the intermediate sand groundwater, which is consistent with the downward hydraulic gradient between the shallow and intermediate sands, the presence of CVOC impacts in the shallow sand, shallow clay, and deep clay in immediate downgradient proximity of the area of contamination on the Church property, and the likely historic migration of DNAPL from the source area on the adjoining Church property. The dissolved CVOC impacts extend offsite in the direction of groundwater flow in the intermediate sand and their extent has not been delineated, although the concentrations of CVOCs were noted to decrease downgradient. Petroleum constituents are also associated with the CVOCs and were most likely sourced from the Church property.

Acetone and MEK are found in several of the offsite shallow sand and intermediate sand wells, which are located on the other side of both a sanitary sewer and a stormwater sewer relative to the Site. No significant detections of these constituents were noted onsite and these detections are not related to Site conditions.

3.3.4 Soil Vapor Sampling Results

Soil vapor sampling was performed in October 2013 at three offsite locations. The data are summarized in Table 3.3.4.1 and Figure 3.3.4.1. CVOCs, including TCE, PCE, and/or 1,1,1-TCE, were detected in all of the samples at relatively low levels. 1,1,1-TCA was not detected in any of the soil or groundwater samples obtained during the RI and these detections are not related to the Site. PCE was noted in several of the soil and groundwater samples collected during the RI, but none of these detections exceeded applicable regulatory levels; the PCE source does not appear to be related to the Site. TCE was noted only in the RISV-2 sample, which is located south of the Site and not in the direction of shallow groundwater flow from the Site. The concentration of TCE (19 ug/m³) was not highly elevated, but when compared to NYSDOH guidance, if a building were present monitoring or mitigation could be required, depending on the associated indoor air concentration. It should be noted that the closest structure, a multi-story residential apartment building, is over 300 feet away from the RISV-2 location and, therefore, soil vapor intrusion is not likely a concern for this building.

TABLE 3.3.4.1 - SOIL VAPOR SAMPLING RESULTS 34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK


	RISV-1	RISV-1D (Duplicate)	RISV-2	RISV-3
Volatile Organic Compound	s (micrograms pe	er cubic meter)		
1,1,1-Trichloroethane	2.6	2.1	4.9	19 J
1,2,4-Trimethylbenzene	8.5 J	7.5 J	16 J	12 J
1,3,5-Trimethylbenzene	4.5	4.5	5.3	4.8
1,4-Dichlorobenzene	130	120	ND	ND
2,2,4-trimethylpentane	19	19	26	16
4-ethyltoluene	5.4	5.4	11 J	11
Acetone	870	880	15,000	2,300
Benzene	9.1	10	20	13
Carbon disulfide	10	9.5	2.8	1.9
Chloroform	2.0	2.0	1.5	2.2
Cyclohexane	4.3	5.6	14	6.6
Ethylbenzene	19 J	18 J	41 J	33 J
Freon 11	2.2	2.1	2.2	2.1
Freon 113	ND	ND	0.86 J	0.78 J
Freon 12	0.90	1.4	2.5	2.2
Heptane	23	14	98	37
Hexane	7.5 J	12 J	ND	ND
m&p-Xylene	74	68	150	120
Methyl ethyl ketone	35	28	130	55
Methylene chloride	ND	ND	1.7	0.95
o-Xylene	15	14	25	19
Styrene	2.7	2.5	3.3	ND
Tetrachloroethylene	1.4	0.90 J	3.7	1.4
Toluene	76	72	190	110
Trichloroethene	ND	ND	19	ND

Notes:

ND = Analyte not detected above indicated reporting limit (RL).

J = Analyte detected at or below RL but above the method detection limit (MDL), or estimated due to LCS/LCSD issues. Only compounds detected in one or more samples are reported. See lab report for complete data.

Acetone was detected at all three soil vapor sampling locations. These detections may be associated with the detections of acetone in the offsite wells and do not appear to be related to the Site. Several petroleum compounds and refrigerants were also detected in the soil vapor samples. None of these detections is elevated or appears to present significant concerns.

In summary, none of the soil vapor results suggest that there is a significant concern for offsite migration of soil vapors containing CVOCs. No further soil vapor sampling is warranted.

3.3.5 Quality Assurance/Quality Control Results

QA/QC samples were collected and analyzed in accordance with the RI Work Plan. QA/QC sample results were evaluated in the DUSR prepared for each laboratory data package, copies of which are included in Appendix C. Summaries of the pertinent QA/QC observations with the potential to affect the sample data are as follows:

- For the onsite soil data package (#460-59907-1) minor matrix-related effects and other laboratory QA/QC sample issues were noted. As evaluated in the associated DUSR, these issues do not significantly affect the primary sample results and no additional data qualifiers were needed. The data were determined to be adequate for their intended purpose.
- For the offsite soil data package (#460-63945-1) several VOCs, including methylene chloride, chloroform, and bromodichloromethane, were noted at low levels in the equipment blank sample and appear to be related to laboratory contamination. Acetone was also noted in the Method Blank and the associated results are B-flagged. Minor matrix-related effects and other laboratory QA/QC sample issues were noted in the data package. As evaluated in the associated DUSR, these issues do not significantly affect the primary sample results and the data were determined to be adequate for their intended purpose.
- For the data package including the groundwater samples (#460-64621-1), low concentrations of VOCs, including methylene chloride, chloroform, and bromodichloromethane were noted in the equipment blank sample and appear to be related to laboratory contamination. Minor matrix-related effects and other laboratory QA/QC sample issues were noted in the data package. As evaluated in the associated DUSR, these issues do not significantly affect the primary sample results and the data were determined to be adequate for their intended purpose.
- For the data package including the soil vapor samples (C1310037), several criteria were noted to be outside their respective limits in the LCSs and continuing calibration verifications. As evaluated in the associated DUSR, these issues do not significantly affect the primary sample results and the data were determined to be adequate for their intended purpose.

The data tables included in this report were revised to correct flagging issues as identified in the DUSRs. No data quality issues were noted that affect the validity of the RI sample data for this Site.

3.4 Summary and Conclusions

Stratigraphy

Historic fill is continuous beneath the Church property (Lot 29) to the Site (Lots 24 and 14) and to the offsite areas to the northwest, west and southwest. The fill is somewhat thicker beneath the portion of

the Church property adjacent to the Site; this condition may be related to an historic dredged channel in this area.

The shallow sand is present beneath the Church property and the Site and extends offsite. The presence of multiple layers of clay within and at the base of the shallow sand in this area affects both lateral and vertical groundwater flow.

The shallow clay is present beneath much of the Site and is found at a shallower depth in the area of contamination on the Church property than in the area of the Site that is closely downgradient. The presence of the shallow clay in the area of contamination on the Church property and its configuration in the vicinity of this area likely affected the distribution of contamination that may have migrated as a DNAPL. It is possible that DNAPL from the Church property has migrated on top of the shallow clay. The shallow clay is absent on the northwestern portion of Lot 24, which would have allowed for further downward migration of DNAPL originating from the Church property. In this area the shallow and intermediate sands are in contact, allowing for greater communication between these groundwater zones.

This clay has a variable thickness and is found at much shallower depths on the southwest side of the Site and offsite to the southwest. The shallow clay underlying the shallow sand appears to be continuous beneath the central portions of Lots 24 and 14 and fully separates the shallow and intermediate sands. Another shallow clay is also present beneath Lot 14 and offsite to the west. A layer of peat is present within the clay beneath much of the Site.

The intermediate sand was found at all of the borings and is everywhere underlain by the deep clay. The deep clay was not fully penetrated by any of the RI borings and was noted to be at least five feet thick. The top of the deep clay in the boring RIB-2 is somewhat deeper than the top of the deep clay in the nearby borings. This condition may affect the distribution of CVOC impacts in soil and groundwater in this area.

Soil Quality

Sampling of onsite soils is complete. The historic fill on the Site was noted to contain several metals and one SVOC that exceeded their respective NYSDEC Objectives for unrestricted use. Two detections of cooper were noted to exceed the NYSDEC Objective for commercial use.

VC is present in the onsite shallow sand in close downgradient proximity to the area of contamination on the Church property. The extent of impact is delineated and no further investigation is recommended.

CVOCs and petroleum constituents are present in the shallow clay and deep clay in the area of the Site in close downgradient proximity to the area of contamination on the Church property. The extent of impact appears to be limited to this area and no further investigation is recommended.

Groundwater Flow

Groundwater flow in the shallow sand is generally to the west and is consistent with the groundwater quality data for the shallow sand. Groundwater flow in the intermediate sand is generally to the southwest and is consistent with the groundwater quality data for the shallow sand. There is a downward vertical gradient between the shallow and intermediate sands, which is consistent with the distribution of groundwater contaminants between these two intervals. The groundwater flow direction

information obtained during the RI is generally consistent with the flow direction information obtained during previous studies at the Site and in the vicinity.

Groundwater Quality

The groundwater quality data demonstrate that a dissolved CVOC plume is present in both the shallow sand and intermediate sand groundwater at the Site. None of the data suggest that DNAPL is present onsite. The extent of the CVOC plume in the shallow sand at the Site is limited to the downgradient proximity of the area of contamination on the Church property, which is consistent with its source from this area. Petroleum impacts are also present in the shallow sand groundwater in this area, consistent with a source from the Church property.

The CVOC concentrations are generally higher in the intermediate sand groundwater, which is consistent with the downward gradient between the shallow and intermediate sands, the presence of CVOC impacts in the shallow sand, shallow clay, and deep clay in immediate downgradient proximity of the area of contamination on the Church property, and the likely historic migration of DNAPL from the source area on the adjoining Church property. The dissolved CVOC impacts extend offsite in the direction of groundwater flow in the intermediate sand and their extent has not been delineated, although the concentrations of CVOCs were noted to decrease downgradient. Petroleum constituents are also associated with the CVOCs in the intermediate sand and were likely sourced from the Church property.

Acetone and MEK are found in several of the offsite shallow sand and intermediate sand wells, which are located on the other side of both a sanitary sewer and a stormwater sewer relative to the Site. No significant detections of these constituents were noted onsite and these detections are not related to Site conditions.

Soil Vapor

None of the offsite soil vapor results suggests that there is a significant concern for offsite migration of soil vapors containing CVOCs. It is understood based upon prior investigation data that soil vapor impacts are present onsite.

3.5 Exposure Assessment

An exposure assessment has been conducted to evaluate potential receptors and exposure pathways for the identified impacts at the Site. This exposure assessment considered the existing and likely use(s) of the Site, the Site setting, and the above-described chemical analytical results of soil, groundwater, and soil vapor samples collected at and in the vicinity of the Site.

The Site is presently zoned in an R6 residential zone with a C2-2 commercial overlay. This zoning and the current property uses are consistent with typical commercial or multi-family residential uses. The Site is presently undeveloped and is utilized for the storage of dumpsters. Future uses of the property may reasonably include residential and/or commercial development.

The following conclusions were reached related to the impacted media and the potential for completed exposure pathways at the Site:

 Several metals and one SVOC were identified in the historic fill at concentrations above the NYSDEC Objectives for unrestricted use. Two detections of copper exceeded the NYSDEC

Objective for commercial use. Historic fill is present across the entire Site from grade to up to five feet below grade. Based on the near-surface location of these exceedances there is a reasonable potential for completed exposure pathways.

- CVOCs were identified in several soil samples collected from boring RIB-2 situated in close proximity to the off-site source at the adjoining Church property. Petroleum constituents were also noted in one sample from this boring. These detections exceeded the NYSDEC Objectives for unrestricted use, but only one detection in the shallow clay exceeded the NYSDEC Objective for commercial use. These samples were collected from below the water table at depths of 13 feet below grade and deeper. Given the depth of these samples and the shallow water table at the Site, there is not a reasonable potential for completed exposure pathways.
- Chlorinated VOCs and petroleum constituents are present in both the shallow sand and intermediate sand groundwater at the Site. None of the data suggest that DNAPL is present onsite. The extent of the CVOC plume and petroleum impacts in the shallow sand at the Site is limited to the downgradient proximity of the area of contamination on the Church property. The CVOC concentrations are generally higher in the intermediate sand groundwater and the impacts extend offsite in the direction of groundwater flow in the intermediate sand. The concentrations of CVOCs in the intermediate sand groundwater were noted to decrease downgradient. Petroleum constituents are also associated with the CVOCs in the intermediate sand groundwater. Due to the relatively shallow depth of the shallow sand groundwater, there is the potential for exposure to groundwater during onsite redevelopment activities. As the shallow groundwater impacts are limited to the Site, there is not a reasonable potential for offsite exposure. Due to the depth of the intermediate sand groundwater, there is not a reasonable potential for completed exposure pathways. As noted in the RI Work Plan (Section 1.2) it is highly unlikely that the Upper Glacial Aquifer in the Site vicinity is used for potable water supply purposes. Therefore, there is not a reasonable potential for a completed exposure pathway via drinking water.
- Offsite soil vapor testing did not suggest a significant concern for offsite migration of soil vapors.
 As noted above, soil vapor impacts are present onsite and there is a reasonable potential for a completed exposure pathway if a habitable building is constructed onsite.

Based on this information, it was concluded that the media of concern with respect to potential human health risks are historic fill, which is located up to five feet below grade onsite, shallow sand groundwater in proximity to the area of contamination on the Church property, and onsite soil vapor. Potential routes of human exposure were evaluated for each of these media.

➤ <u>Historic Fill:</u>

The subject property is presently used for storage of dumpsters and is fenced to prevent access by the public. There is a potential for onsite workers or trespassers to be exposed to the historic fill. If redevelopment is conducted in the future, then construction workers may contact the historic fill. Remediation workers may also contact the historic fill in the future during remedial activities. Construction and remediation activities may be reasonably anticipated under the current and future uses of the Site and, therefore, the contemplated remedial measures should include provisions to address these potential exposures to historic fill at the Site.

Shallow Sand Groundwater:

Groundwater impacted with chlorinated VOCs and petroleum is present beneath the eastern portion of the Site in the downgradient vicinity of the area of contamination on the Church property. This impact does not extend onto Lot 14 of the Site and does not extend offsite. The top of this groundwater is situated between five and ten feet below grade and no onsite water supply wells are present. Therefore, there are no potential routes of exposure for onsite workers, Site visitors, trespassers, or others who may routinely be present at the Site. It is likely that future construction workers could contact the groundwater due to its shallow depth. Remediation workers may contact the impacted groundwater during future remediation and/or monitoring activities. Remediation and construction activities may be reasonably anticipated under the current and future uses of the Site and, therefore, the contemplated remedial measures should include provisions to address potential exposures for future construction workers and remediation workers to impacted shallow sand groundwater at the Site.

Soil Vapor:

Based on previous investigation data, soil vapor impacted by CVOCs is present at the Site. As there are no habitable structures present onsite, there is no current exposure pathway. However, in the event that a habitable structure is constructed onsite, there is the potential for exposure for building occupants due to soil vapor intrusion. During redevelopment construction workers may be exposed to soil vapors. Remediation workers may also be exposed to soil vapors in the future during remedial or monitoring activities. Redevelopment, construction, and/or remediation activities may be reasonably anticipated under the current and future uses of the Site and, therefore, the contemplated remedial measures should include provisions to address potential exposures for future construction workers, building occupants, and remediation workers to onsite soil vapors.

Fish and Wildlife Resources Impact Analysis

The need for a Fish and Wildlife Resources Impact Analysis (FWRIA) was assessed as per DER-10, Section 3.10.1. It was concluded that there are no ecological resources present on or in the immediate vicinity of the Site, which is an unimproved parcel in an urban area surrounded by developed commercial and residential uses. The impacts at the Site are limited to onsite soil and soil vapor and shallow sand groundwater. The Site is completely fenced. Impacts to intermediate sand groundwater are present onsite and extend offsite to the southwest; these impacts are present only at depth and are demonstrated to decrease in a downgradient direction. Therefore, there is no reasonable potential for impacts to fish and wildlife and a FWRIA is not needed.

SECTION 4.0 REFERENCES

- Advanced Cleanup Technologies. April 4, 2002. Phase I Environmental Site Assessment and Phase II Environmental Site Assessment, 34-11 Far Rockaway Boulevard, Far Rockaway, New York.
- Anson Environmental, LTD. February 10, 2005. Soil Remediation Report for Vacant Property at Far Rockaway Boulevard, Far Rockaway, NY.
- Anson Environmental, LTD. July 5, 2006. Corrective Action Plan Addendum Preliminary Report for Soil and Groundwater Investigation.
- Anson Environmental, LTD. July 5, 2006. Corrective Action Plan Addendum Report for Soil and Groundwater Investigation Location: Spill #0207599.
- Anson Environmental, LTD. October 26, 2006. Corrective Action Plan Addendum Off-Site Groundwater Investigation Work Plan Location: Spill #0207599.
- Anson Environmental, LTD. March 7, 2007. Preliminary Corrective Action Plan Addendum Off-Site Groundwater Investigation Report Location: Spill #0207599.
- Anson Environmental, LTD. March 14, 2007. Corrective Action Plan Addendum Preliminary Report for On-Site Multilevel Groundwater Investigation Location: Spill #0207599.
- Anson Environmental, LTD. September 11, 2007. Corrective Action Plan Addendum Groundwater Remediation Work Plan Location: Spill #0207599.
- FPM Group. August 2012. Laboratory reports of soil, groundwater and soil vapor sampling conducted in August 2012 at the Site and the Church Property.
- H2M. Sketch showing soil boring locations.
- H2M. April 8, 2009. Laboratory report for soil samples collected from the Site on April 2, 2009.
- New York State Department of Health. October 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York.
- New York State Department of Environmental Conservation. May 2010. DER-10 Technical Guidance for Site Investigation and Remediation.
- PMK Group. September 6, 2002. Draft Report Limited Sampling Activities, Far Rockaway Boulevard, Block 15950, Lot 29, Queens, NY.
- TRC. December 16, 2008. Offsite Investigation Results (Block 1599, Lot 24).
- TRC. February 2009. Ground Water In-Situ Treatment Plan, Block 15950, Lots 29 and 24.
- TRC. April 6, 2009. Petroleum Hydrocarbon Impacts and Remedial Strategy, CPB Property, Edgemere, NY.

- TRC. May 22, 2009. Test Pit and Soil Boring Investigation Results, CPB Edgemere Site (SP #02-07599).
- TRC. August 2012. In-Situ Thermal Treatment (ISTT) Remedial Action Report, CPB Property, Block 15950, Lot 29, Edgemere, NY.
- U.S. Department of the Interior. 1967, Photorevised 1979. Far Rockaway, NY 15' Quadrangle (Map).U.S. Geological Service, National Mapping Division. Reston, VA.
- US Geological Survey. 1963. Geology and Ground-Water Conditions in Southern Nassau and Southeastern Queens Counties, Long Island, NY, USGS Water-Supply Paper 1613-A.

APPENDIX A

BORING LOGS, CANISTER SAMPLING FORMS, AND WELL SAMPLING DATA FORMS

FPM GROUP SITE MAP Ronkonkoma, NY FPM JOB # 1087g-13-05 PROJECT NAME Alprof Realty 34-11 Beach Channel Drive, Far Rockaway, NY SITE ADDRESS RIB-1/MW-1S/MW-1I TOTAL DEPTH 40 DIAMETER 2" BORING/WELL TOC ELEVATION 23.74'/23.69' WATER LEVEL INITIAL STATIC 111/51 SLOT SIZE 20 LENGTH SCREEN DIA. 2" LENGTH 4'/31' TYPE PVC CASING DIA. DP DRILLING METHOD DRILLING CO. **AES** DATE DRILLED 7/24-25/13 JV LOG BY BC/GH DRILLER DESCRIPTION/SOIL CLASSIFICATION **GRAPHIC** PID WELL (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, DEPTH (FT) SAMPLE (PPM) LOG CONSTR. MOISTURE CONTENT, COMMENTS) MW-1S MW-1I 0-5' 3.5' Recovery 0-4 ' Brown -Tan medium-fine SAND w/some gravel, FILL trace asphalt. No odor/stain. 0 4-5' Black medium-fine SILTY SAND w/ angular gravel, damp. No odor/stain. SM 15* 4-5 5-10' 2' Recovery. Tan medium-fine SAND w/gravel, marshy odor. Water @ 5' 20* 10-15' 2.5' Recovery Tan medium-coarse SAND w/some gravel, marshy odor. 10-12 5 15-20' 4.5' Recovery 15-16' SAA 16-20' Tan medium-fine SAND, marshy odor. SP 1 20-25' 3' Recovery 20 20-22' Tan medium-coarse SAND w/fine gravel, faint marshy odor. 0 22-25' Light brown fine SAND w/gravel, slight marsh odor. 25-30' 5' Recovery Brown medium-course SAND w/gravel, faint marshy odor. 0 30-35' 2.5' Recovery 30 Brown fine SILTY SAND. No odor/stain. 0 SM 35-40' 5' Recovery Gray CLAY. No odor/stain. 35-37 0 CL 38

FPM GROUP SITE MAP FPM JOB # 1087g-13-05 PROJECT NAME Alprof Realty SITE ADDRESS 34-11 Beach Channel Drive, Far Rockaway, NY RIB-2/MW-2S/MW-2I DIAMETER 40 TOTAL DEPTH BORING/WELL 24.72'/24.75' WATER LEVEL INITIAL STATIC TOC ELEVATION SCREEN DIA. LENGTH 151/51 SLOT SIZE 20 PVC 2" 41/331 TYPE LENGTH CASING DIA. DRILLING CO. AES DRILLING METHOD 7/22,24-25/13 DATE DRILLED DRILLER JV LOG BY BC/GH DESCRIPTION/SOIL CLASSIFICATION PID WELL **GRAPHIC** DEPTH (FT) SAMPLE (PPM) CONSTR. LOG (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, MOISTURE CONTENT, COMMENTS) MW-2S MW-2I 0-5' 4.5' Recovery Brown medium-fine SAND w/gravel, organics, brick, concrete, asphalt. No odor/stain. FILL 0 0-5 5-10' 3.5' Recovery. Black-tan medium-fine SAND w/gravel, marshy odor. Water @ 5' 0 10-15' 5' Recovery Tan medium-fine SAND w/some fine gravel. Clay lenses at 10.5', 11' and 13', marshy odor. SP 0 13-15 15-20' 4.5' Recovery 15-19' Tan medium-fine SAND w/some fine gravel, marshy odor. 19-20' Gray SANDY CLAY, marshy odor. 5 20-25' 3.5' Recovery Gray CLAY w/trace sand, marshy odor. 65 20-22 CL 85 25-30' 5' Recovery 15 25-27' Gray CLAY, odor. 7 27-29' Tan medium SAND, faint odor. 29-30' Tan medium-coarse SAND, faint odor. 5 30-35' 5' Recovery 30-34' Tan coarse SAND w/gravel, odor. SP 34-35' Brown SILTY SAND, faint odor. 0 35-40' 5' Recovery 5 35-37' Brown SILTY SAND, faint odor. SM 0 37-40' Gray CLAY w/trace Sand, faint odor. 5 CL

^{* =} Possible humidity/moisture interference.

SITE MAP FPM GROUP FPM JOB # 1087g-13-05 PROJECT NAME Alprof Realty 34-11 Beach Channel Drive, Far Rockaway, NY SITE ADDRESS DIAMETER RIB-3/MW-3S/MW-3I TOTAL DEPTH 40 BORING/WELL TOC ELEVATION 24.34'/24.30' WATER LEVEL INITIAL STATIC SLOT SIZE 20 SCREEN DIA. LENGTH 17'/5' PVC LENGTH 41/31 TYPE CASING DIA. DRILLING CO. **AES** DRILLING METHOD DP DATE DRILLED 7/22-23,25/13 BC/GH DRILLER JV LOG BY **GRAPHIC** DESCRIPTION/SOIL CLASSIFICATION PID WELL (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, SAMPLE DEPTH (FT) (PPM) CONSTR. LOG MW-3S MW-3D MOISTURE CONTENT, COMMENTS) 0-5' 2.5' Recovery FILL 0-4' Brown medium-fine SAND w/angular gravel, brick, concrete. No odor/stain. 0 4-5' Tan medium-fine SAND. No odor/stain. 5-10' 3' Recovery. Tan medium-fine SAND, slight marshy odor. Water @ 5' 0 10-15' 3' Recovery Tan medium-fine SAND , slight marshy odor. SP 0 13-15 15-20' 4.5' Recovery 15-17' Tan medium-fine SAND w/some fine gravel. No odor/stain. 17-19' Tan coarse SAND w/gravel. No odor/stain. 0 19-20' Tan medium-fine SAND w/some fine gravel. No odor/stain. 20-25' 4.5' Recovery CL 20-21' Tan medium-fine SAND w/some fine gravel. No 21-22 odor/stain. PT 21-22' Gray CLAY. No odor/stain 22-23 Peat. Marshy odor 23-25 Tan medium-fine SAND w/fine gravel. No odor/stain. 25-30' 4.5' Recovery 0 SP 25-28' Tan fine SAND w/gravel. Marshy odor. 28-30' Tan fine SAND. Marshy odor 30-35' 3' Recovery 30-34' Tan medium- coarse SAND. Marshy odor. 34-35' Brown fine SILTY SAND. Faint marshy odor. 5 35-40' 5' Recovery SM 35-37' Gray sandy CLAY, organic lens. No odor/stain. 37-40' Gray CLAY w/trace sand. No odor/stain. CL 0

^{* =} Possible humidity/moisture interference.

SITE MAP **FPM GROUP** FPM JOB # 1087g-13-05 PROJECT NAME Alprof Realty 34-11 Beach Channel Drive, Far Rockaway, NY SITE ADDRESS 40 DIAMETER RIB-4/MW-4S/MW-4I TOTAL DEPTH BORING/WELL TOC ELEVATION 24.19'/24.24' WATER LEVEL INITIAL STATIC SLOT SIZE 20 SCREEN DIA. LENGTH 51/51 PVC LENGTH 3/'31 TYPE 2" CASING DIA. DP DRILLING CO. **AES DRILLING METHOD** DATE DRILLED 7/23-25/13 JV BC/GH DRILLER LOG BY **GRAPHIC** DESCRIPTION/SOIL CLASSIFICATION PID WELL (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, SAMPLE DEPTH (FT) (PPM) CONSTR. LOG MW-4S MW-4I MOISTURE CONTENT, COMMENTS) 0-5' 3' Recovery FILL 0-2' Light brown medium-fine SAND w/gravel, asphalt, 1-3 paper, concrete. No odor/stain. 0 2-4' Dark brown medium-fine SAND w/ gravel. No odor/stain. SP 4-5' Tan fine SAND. No odor/stain. 5-10' 4' Recovery. 0 5-7' Brown to dark brown medium-fine SAND w/gravel. No 7-8 odor/stain. Water @ 7' 3 8-10 7-8' Tan medium to fine SAND. No odor/stain. CL 8-10' Gray CLAY. Faint odor. 10-15' 4.5' Recovery 10-12' Gray CLAY, marshy odor. 1 12-15' Tan fine SAND, marsh odor. 4 15-20' 4.5' Recovery SP Tan medium-fine SAND, marshy odor. 10 20 20-25' 5' Recovery SC 20-22' Gray tan Clayey Sand, marshy odor. 22-23' Peat, marshy odor. 0 PT 23-25' Gray CLAY, marshy odor CL 25-30' 3' Recovery 0 SP 25-26' Tan medium to coarse gravelly SAND, odor. 26-30' Tan fine SAND w/some fine gravel, marshy odor. 30-35' 4' Recovery 30-34' Tan medium- coarse SAND, marshy odor. 34-35' Brown fine SILTY SAND, marshy odor. 0 35-40' 5' Recovery SM 35-37' Gray silty CLAY, organics (bamboo?) lens, faint marshy odor. CL 37-40' Gray CLAY, faint marshy odor. 0

^{* =} Possible humidity/moisture interference.

SITE MAP FPM GROUP Ronkonkoma, NY FPM JOB# 1087g-13-05 PROJECT NAME Alprof Realty SITE ADDRESS 34-11 Beach Channel Drive, Far Rockaway, NY TOTAL DEPTH 40 DIAMETER BORING/WELL RIB-5/MW-5S/MW-5I TOC ELEVATION 22.91'/22.91' WATER LEVEL INITIAL STATIC 20 LENGTH 71/5 SLOT SIZE SCREEN DIA. PVC 3'/31' CASING DIA. 2" LENGTH TYPE DRILLING CO. AES DRILLING METHOD DATE DRILLED 7/23-25/13 DRILLER JV LOG BY BC/GH **GRAPHIC** DESCRIPTION/SOIL CLASSIFICATION PID WELL DEPTH (FT) SAMPLE CONSTR. LOG (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, (PPM) MOISTURE CONTENT, COMMENTS) MW-5S MW-5I 0-5' 3' Recovery 0 0-6" Asphalt and sub base. FILL 6"-4' Brown medium to fine SAND w/gravel, concrete, asphalt, no odor/stain. Groundwater at 4' 25 4-5' Black medium to fine SAND w/gravel. Petroleum SP 5-10' 3' Recovery. 30 5-7' Black medium to fine SAND w/gravel. Petroleum Odor. 5 SC 7-10' Tan -Gray clayey SAND, faint petroleum odor. 10-12 CL 10-15' 3.5' Recovery 10-13' Gray sandy CLAY, marshy odor. 0 13-15' Tan medium to fine SAND, faint marshy odor. SP 15-20' 5' Recovery 15-18' Tan medium to fine SAND, seashell fragments, marshy odor. 10 18-20' Gray CLAY, seashell fragments, marshy odor. 0 CL 20-25' 4.5' Recovery 20-22' Gray CLAY, w/organics, marshy odor. 22-24' PEAT, marshy odor. 30 PT 24-25' Tan fine SAND w/gravel, faint marshy odor. 0 25-30' 3' Recovery 0 25-30' Tan medium to coarse SAND w/some gravel, no SP odor. 30-35' 3' Recovery 30-35' Brown fine SAND, w/some fine gravel. No odor/stain. 0 35-40' 5' Recovery 35-36' Gray sandy CLAY, no odor. 36-40' Gray CLAY, no odor. CL 0

^{* =} Possible humidity/moisture interference.

FPM GROUP SITE MAP Ronkonkoma, NY FPM JOB # 1087g-13-05 PROJECT NAME Alprof Realty 34-11 Beach Channel Drive, Far Rockaway, NY SITE ADDRESS 40 DIAMETER BORING/WELL RIB-6/MW-6S/MW-6I TOTAL DEPTH 20.15'/20.32' WATER LEVEL INITIAL STATIC TOC ELEVATION SCREEN DIA. LENGTH 51/5 SLOT SIZE 20 PVC 21/311 TYPE CASING DIA. 2" LENGTH DRILLING METHOD DP DRILLING CO. AES 7/24-25/13 BC/GH DATE DRILLED DRILLER JV LOG BY DESCRIPTION/SOIL CLASSIFICATION WELL GRAPHIC PID SAMPLE (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, DEPTH (FT) (PPM) CONSTR. LOG MOISTURE CONTENT, COMMENTS) MW-6S MW-61 0-5' 3' Recovery FILL 0-4' Brown medium to fine SAND w/gravel, concrete, asphalt, no odor/stain. 0 4-5' Tan medium to fine SAND, no odor/stain, moist. 5-10' 5' Recovery. SP 5-7 5-7' Tan medium to fine SAND. Marshy odor. Groundwater @ 5' CL 0 7-8 SC 7-8' Tan -Gray CLAY w/organics, marshy odor. CL 8-9 Tan to gray clayey SAND, marshy odor. SP 9-10' Gray CLAY w/organics, marshy odor. 10-15' 4' Recovery CL 10-11' Tan medium to fine SAND, marshy odor. 0 11-13' Gray CLAY w/organics, trace sand, marshy odor. 13-13.5' Gray sandy CLAY, marshy odor. 13.5-15 Tan medium SAND, marshy odor. SP 15-20' 5' Recovery 0 15-19.5' Tan medium SAND w/gravel, seashell fragments, faint marshy odor. 19.5-20' Gray sandy CLAY, faint marshy odor. 3 20-25' 5' Recovery 20-23' Gray CLAY, w/organics, marshy odor. CL 23-24.5' Gray-tan clayey SAND, marshy odor. 0 SC 24.5-25' Tan medium to coarse gravelly SAND, no odor/stain. 25-30' 4' Recovery 0 Tan medium to coarse gravelly SAND, no odor/stain. SP 30-35' 4' Recovery 30-31' Brown silty SAND, no odor/stain. 0 31-35' Tan medium to coarse SAND w/fine gravel, no odor/stain 35-40' 5' Recovery 35-37' Gray sandy CLAY w/organics, no odor/stain. 37-40' Gray CLAY, no odor. CL 0

^{* =} Possible humidity/moisture interference.

SITE MAP **FPM GROUP** Ronkonkoma, NY FPM JOB # 1087g-13-05 PROJECT NAME Alprof Realty 34-11 Beach Channel Drive, Far Rockaway, NY SITE ADDRESS DIAMETER 45 BORING/WELL RIB-7/MW-7S/MW-7I TOTAL DEPTH 21.45'/21.34' WATER LEVEL INITIAL STATIC TOC ELEVATION SCREEN DIA. LENGTH 1075 SLOT SIZE 20 PVC 21/361 LENGTH TYPE CASING DIA. 2" DRILLING CO. DRILLING METHOD **AES** DATE DRILLED 9/30/2013 DRILLER JV LOG BY BC/GH DESCRIPTION/SOIL CLASSIFICATION PID WELL **GRAPHIC** SAMPLE (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, DEPTH (FT) (PPM) CONSTR. LOG MW-7S MW-7 MOISTURE CONTENT, COMMENTS) 0-5' Hand Cleared 0-5' Tan medium to fine SAND w/fine gravel. No odor/stain. 0 SW 5-10' 4' Recovery. 5-7' Tan medium to fine SAND, no odor/stain. Groundwater @ CL 0 7-7.5' Tan sandy CLAY. No odor/stain. 7.5-10 Tan medium to fine SAND w/ some fine gravel. Clayey 9-10 SM sand lenses and marshy odor at bottom. 5 10-15' 5' Recovery CL 10-12' Tan medium to fine SAND w/fine gravel. Marshy odor. 12-13 2 12-13.5' Gray CLAY with trace Peat 0 SM 13.5-15' Gray medium to fine SAND w trace silt. Marshy Odor. 15-20' 5' Recovery CL 3 15-16.5' Gray fine silty SAND w/'sandy clay lenses towards top. Marshy odor. SM 16.5-17' Gray CLAYw/ peat. Marshy odor. 0 20 PT 17-20' Gray medium-fine SAND. Marshy odor. 20-25' 4 5' Recovery SC 20-21' PEAT w/some clay. Marshy odor. 0 21-22.5 Gray clayey SAND w/gravel. Marshy odor. 22.5-25' Tan medium to coarse SAND w/gravel. No odor/stain SW 25-30' 5' Recovery 25-29.5' Tan coarse SAND w/gravel. No odor/stain. 0 29.5-30' Gray medium to fine SAND w/gravel, trace silt. Marshy odor. 30-35' Poor Recovery '6" 30-35 '? Brown silty SAND. No odor/stain 35-40' 4' Recovery 0 35-39.5' Brown silty SAND. No odor/stain. 39.5-40' Gray silty SAND w/organics (phragmities ?). No SM odor/stain. 40-45' 4' Recovery Gray CLAY. No odor/stain. 38 0 40 CL to 45'

^{* =} Possible humidity/moisture interference.

FPM GROUP Ronkonkoma, NY ____FPM JOB # ____1087g-13-05 PROJECT NAME Alprof Realty SITE ADDRESS 34-11 Beach Channel Drive, Far Rockaway, NY BORING/WELL RIB-8/MW-8S/MW-8I TOTAL DEPTH TOC ELEVATION 19.53/19.47 WATER LEVEL INITIAL DIAMETER 2" LENGTH 6/5' 2" LENGTH 2/30' SCREEN DIA. SLOT SIZE TYPE PVC CASING DIA. AES DRILLING METHOD DRILLING CO. DP GH DATE DRILLED 10/1/2013 DOLLER

DRILLER	JV	LOG BY	GH	DATE	DRILLED 10/1/2013
DEPTH (FT)	SAMPLE	PID (PPM)	WELL CONSTR. MW-7S MW-7	GRAPHIC LOG	DESCRIPTION/SOIL CLASSIFICATION (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, MOISTURE CONTENT, COMMENTS)
2		0		sw	0-5' Hand Cleared 0-5' Tan medium to fine SAND w/fine gravel. No odor/stain.
6 8	7-8	30		SM	5-10' 3' Recovery. 5-6' Tan medium to fine SAND w/fine gravel. No odor/stain. Groundwater @ 5'
10		0		CL	6-8' Tan to gray medium to fine SAND w/some fine gravel. Clay lenses at bottom. Marshy odor. 8-10' Gray CLAY w/organics, trace sand. Marshy odor.
12				SC	10-15' 4. 5' Recovery 10-11.5' CLAY w/organics, trace sand. Marshy odor.
14		0		SP	11.5-12.5' Gray fine clayey SAND. Marshy odor. 12.5-15' Gray fine SAND. Marshy odor.
16	15-16	10 4			15-20'_5' Recovery 15-16.5' Gray fine SAND. Marshy odor.
18	17-18	6		SC	16.5-17.5' Gray clayey SAND w/ shell fragments. Marshy odor.
20		0		CL	17.5-20' Gray CLAY. Marshy odor.
22		0		PT	20-25' 4' Recovery 20-21' Gray sandy CLAY. Marshy odor. 21-24' PEAT. Marshy odor. 24-25' Gray coarse SAND. Marshy odor.
26		0		SP	25-30' 5' Recovery 25-30' Tan coarse SAND w/gravel. No odor/stain. 30-35' 4.5' Recovery 30-31 Brown medium SAND. No odor//stai.
30		0		sc	31-32.5' Brown coarse SAND w/gravel. No odor/stain. 32.5-34' Brown to gray clayey SAND. No odor/stain. 34-35' Gray CLAY w/organics. No odor/stain.
34					35-40' 4.5' Recovery 35-40' Gray CLAY w/organics. No odor/stain.
36				CL	
38		0			

^{* =} Possible humidity/moisture interference.

DRILLER	JV	LOG BY	BC/GH		DRILLED 10/1/2013
DEPTH (FT)	SAMPLE	PID (PPM)	WELL CONSTR. MW-9S MW-9I	GRAPHIC LOG	DESCRIPTION/SOIL CLASSIFICATION (INTERVAL, RECOVERY, COLOR, MATRIX TYPE, MOISTURE CONTENT, COMMENTS)
2		0		FILL	0-5' Hand Cleared 0-5' Dark brown medium to fine SAND w/organics, gravel, concrete, asphalt, no odor/stain.
6 8		0		SW	5-10' 3' Recovery. 5-6' Tan medium to fine SAND w/some fine gravel, no odor/stain. Groundwater @ 5'
10	8 - 9	20 10		SM	6-7' Tan -Gray medium to fine SAND w some fine gravel. No odor/stain.
12		0			7-7.5' Gray sandy CLAY. Marshy odor 7.5-9' Gray to tan fine SAND w/organics and sandy clay lenses. Marshy odor.
14				CL	9-10' Gray CLAY w/organics. Marshy odor. 10-15' 3.5' Recovery.
16	15-16			OL.	10-13' Gray CLAY w/organics. Marshy odor. 13-15' Gray Sandy CLAY w/organics. Marshy odor.
18		0			15-20' 3.5' Recovery 15-20' Gray CLAY w/organics, sea shells. Marshy odor.
20		3			20-25' 5' Recovery 20-21' Gray CLAY w/organics, sea shells. Marshy odor.
22		30*		PT	21-23.5' PEAT. Marshy odor. 23.5-25' Tan to gray clayey SAND. Marshy odor.
24		10		SC	25-30' 3' Recovery 25-26' Tan medium to fine SAND w/fine gravel. Marshy od
26		0			26-30' Tan medium to coarse SAND w/gravel. Marshy odo 30-35' ~5' Recovery 30-31' Tan to Gray Medium SAND. Slight marshy odor.
30				sw	31-35' Tan to Gray medium to coarse SAND w/gravel. Slight marshy odor. 35-40' 5' Recovery
32		0			35-40' Gray CLAY w/organics (phragmities ?). Slight Marshy odor.
34		Ü			
36				1282	
38		0		CL	
40					

^{* =} Possible humidity/moisture interference.

pling	Device P	er: stalt.	C Pamp Tul	oing type	Polyeth	ylene	Water Lev	el <u>9.63</u>
suring	Point To	Dat Car	- 75	Other Inf	or	<i></i>		o 9 13 ing Type _ PVC_ el 9 .63
plinal	Personne	1 BC	6 H					
		°C						
Гime	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
:45	7.11	13.9	210		76			
53	7.20	14.3	246		40.45			
101	7.28	14.7	224		30.45	8		
:09	7.37	14.9	231		14.52			
:18	7.41	14.9	229		15.61			

200 ml/min

Project	Alprof		e 34-11	BC Doller			Date 10/9/13 2 " Casing Type PVC
Sampling	Device 🖹	Ecistaltic'	Pamp Tul	oing type _i _Other Info	Polyeth	ylere_	Water Level 9.66
Sampling	Personne	BC/	ж				
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc	Notes
0			201		00		

Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
9:51	7. 81	17.4	296		88			
10:01	7.64	17.7	321		58			
10:06	7.49	17.9	339		72			
10:13	7:38	18.0	334		46.6b			
15:21	7,44	17.8	326		40.00			
				1		4		
			,					
				400-400				
							-	

pe of Sample	es Collected						
	in = 617 ml/ft,		I/ft: Vol _{cyi} = 1	тг²h, Vol _{sphere}	_e = 4/3π r ³	 	
	3	200 L/m	ni~				

oject II Depth mpling I asuring	Alprof 21fba Device Point To	siter Sam Site Sc Scitalt pof Ca.		th 17' ping type _ Other Info	Well No Well Polyet or	35 Diameter_	Date Casi Water Leve	ing Type <u>P v C</u>
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
10.57	6.61	14.8	328	810	5.89			
11:05	6.52	14.6	345		0.00			
11:10	6.70	14.5	362		0.00	37		
11:18	6.64	14.4	371		0.00			

Type of Samples Collected

TCL Ucc's

Information: 2 in = 617 ml/ft, 4 in = 2470 ml/ft: $Vol_{cyl} = \pi r^2 h$, $Vol_{sphere} = 4/3\pi \ r^3$

pling l suring	Device Re Point To	Astaltic pot C	Punp Tul	oing type _ Other Inf	Polyeth or	ylene	Water Le	sing Type PVC vel 8.85
pling F	Personne	1 BC 6	ił					
ime	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
:43	7.26	14.5	208		>1000			
51	7.14	14.7	249		71000			
						-		
						- 1000		
			,			S1== 1		
	-							
			100					
	T.				. 10.			

Information: 2 in = 617 ml/ft, 4 in = 2470 ml/ft: $Vol_{cyl} = \pi r^2 h$, $Vol_{sphere} = 4/3\pi r^3$

		1 BC/	БН			5 S Diameter	 	
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc	<u> </u>	Notes
12:31	6.42	15.3	249		0.00			
12:36	6,94	15.6	197		0.00			
		15.7	184		0,00	ē		
12:49	6.77	15.6	211		0.00			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	1000							

e of Samples Collected			
	, ,		
100	(bc's		

ure 2. G	Fround W	ater Sam	pling Log					. 1
poject Alprof Site 34-11 BC Done Well No. 65 Date 10/9/13 Ill Depth 7 ba Screen Length 5' Well Diameter 2' Casing Type PVC mpling Device Project Casing Tubing type Polyethylen Water Level 4.89 assuring Point Top of Casing Other Infor								
Time	pН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
3:04	8.10	is.6	104		0.00			
		15.4	127		0.00			
	7,42	15.2	120		0.00	1.1		
13:19	7.38	15.1	138		0.00			
				S The	1			

Figure 2. Ground Water Sa	
	Site 34-11 3c De Well No. 75 Date 10 9 13
Well Depth 12-fb	Screen Length io Well Diameter 7 Casing Type PVC
Sampling Device Pers tal-	tic Purp Tubing type Polyethyler Water Level 6.88
Measuring Point to pof (Other Infor
Sampling Personnel 80	6H

Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
13:52	6.97	14.6	395		71000			
13:58	6.71	14.9	322		55	TOWNS S		
14:07	6.87	14.7	301		7.07	18		
14:14	6.79		27.6		0.00			
			12443			Sec. V		
		1,000				2 C 12 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2	345	

Type of Samples C	Collected	
	TCL Voc's	40
Information: 2 in =	= 617 ml/ft, 4 in = 2470 ml/ft: $Vol_{cyl} = \pi r^2 h$, $Vol_{sphere} = 4/3\pi r^3$	

roject Alpra Site 34-11 BC Dave Well No. 85 Date 10/9/13 Vell Depth 8 by Screen Length 6' Well Diameter 2' Casing Type PVC ampling Device Paradal Casing Tubing type Polyothylene Water Level 5,24 leasuring Point Top of Casing Other Infor											
mpling P	ersonne	1 Bc/6	+)					· · · · · · · · · · · · · · · · · · ·			
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes			
14:35	7.46	15.2	289		21000						
14:42		15.0	246		38.01						
	7.63	15.1	235		11.68						
14:58	7.63	15.2	228		2.01						

Type of Samples Collected

TCL UCC'S

Information: 2 in = 617 ml/ft, 4 in = 2470 ml/ft: $Vol_{cyl} = \pi r^2 h$, $Vol_{sphere} = 4/3\pi r^3$

Figure 2. G						0.0	1-1-	
Project A	orat	Site	e <u>34-11 B</u>	C Dove	Well No.	73	Date _ 10 9 13	
Well Depth	9fba	Sc	reen Leng	rth <u> </u>	Wel	Diameter	2" Casing Type PVC	
Sampling D	evice 1	contaltic	Puno Tul	oing type	Polyeth	ylen	Water Level 3.59	
Measuring	Point 1	porcas	ing	_Other Info	or		Water Level _ 3.59	
Sampling P	ersonne	11 Rc/6+	t					
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc	Notes	

Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
15:27	7.14	IS. 4	276		0.00			
15:32	7.08	15.5	291		0.00			
1	7:29		304	À	0.00			
is:48	7.22	15.7	306		0,00			
								4

amples Conected	ype of Samples Collected		
TCL VOC'S	TCL VOCS		

roject Alprof Site 34-11 BC Date Well No. 1 I Date 10/9/13 Vell Depth 36/64 Screen Length 5' Well Diameter 2" Casing Type PVL ampling Device Parts alt. Prop Tubing type physikale Water Level 8.89 leasuring Point Top of Casing Other Infor ampling Personnel BC/6H												
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes				
8:48	7,26	14.6	184		2.01							
8:56	7.18	14.8	169		0.00							
9:06	7.39	15.1	164		0.00							
9:12	7.35	15.0	153		0.00							
9:20	7.29	15.2	147		0.00							
			•									

Project <u>/</u> Well Depth Sampling I Measuring	igure 2. Ground Water Sampling Log roject Alprof Site 39-11 BC Prine Well No. 2 I Date 10 9 13 Vell Depth 38 fbg Screen Length 5 Well Diameter 2 Casing Type PVL ampling Device Printal Charp Tubing type Polyathylas Water Level 9.73 leasuring Point Top of Casing Other Infor ampling Personnel BC/LH											
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc			Notes			
9:55	7:71	16.6	290		75							
10:03	7.39	16.2	241		58							
	1	16.7	232		20.87	-						
10:15	7.59	16.6	257		3.50							
10:23	7.67	16.8	274		0.50							
			•									

7.67	16.8	274	0.50			
		*				
				1,000		
						5112
	7.67	7.67 16.8				

Type of Samples Collected	
TCL	Voc's
Information: 2 in = 617 ml/ft,	4 in = 2470 ml/ft: Vol., = $\pi r^2 h$, Vol., = 4/3 π r^3

Ground W	later Sam	nlina Loa					
Alprof	Sit	e 34-11 ?	3c Done	Well No.	3I	Date	10/9/13
th 36 fb	Sc	reen Leng	jth <u></u>	Well	Diameter_	1"(Casing Type PVC
g Device <u> </u>	costalt	Litury Tul	bing type _ Other Inf	or tolgeth	Lylere	Water	Level
g Personne	BC/	ЬH			(9)		
рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
7.46	15.1	346		3.31			
	15.1	378		0.00	ADM ADM		
	15.D	392		0.00	:41		
7.72	15.2	399		0.00			
		Walliam India					
		Ñ					
							AL PULLINE
			101 - VOIDNI	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
			V-10-4-2-5				
							N.
	Alpost oth 36 fb g Device 1 ng Point 12 g Personne pH 7.46 7.66	Alport Site Site State Song Device Project Song Point Top of Congression of the State Song Personnel BC PH Temp 7.46 IS.1	pH Temp Cond. 7.46 15.1 346 7.66 15.0 342 7.72 15.2 399	Alpost Site 34-11 BC Dive oth 36 fby Screen Length Signature g Device Peristalt Rep Tubing type ng Point Top of Caring Other Info g Personnel BC/6H pH Temp Cond. Dis.O ₂ 7.46 IS.1 346 7.51 IS.1 378 7.66 IS.0 391 7.72 IS.2 399	Alpost Site 34-11 3C Dive Well No. oth 36 fbg Screen Length S' Well go Device Peristalt Ang Tubing type Polyet and Point Top of Carny Other Infor Other Infor Prince BC/6H PH Temp Cond. Dis.O2 Turb. 7.46 15.1 378 0.00 7.72 15.2 399 0.00	Alpot Site 34-11 3c Drive Well No. 3T oth 36 fbg Screen Length S' Well Diameter go Device Peristalt Alpot Tubing type Polyethylereng Point Top of Carry Other Infor Other Infor 19 Personnel BC 6H 15.1 346 3.31 7.51 15.1 378 0.00 7.72 15.2 399 0.00	Alpost Site 34-11 BC Dive Well No. 3T Date oth 36 fbg Screen Length S' Well Diameter 1" (and provided and pro

amples Colle			
TC	e voc's		

igure 2. G	Fround W	later Sam	pling Log										
roject /ell Depth ampling [leasuring	Alpost 36 fb Device F	Site Sc Shirtelhad pof Co	e 34-11 reen Leng Pupp Tul		Well No. Well Polyetlor	HI I Diameter_	Date C Water L	asing Type PVC					
	Time pH Temp Cond. Dis.O ₂ Turb. []Conc Notes												
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes					
11:37	7.54	13.9	146		0.00								
11:45	7:06	13,4	198		0.00								
11:53		13.3	209		6,00	· ·							
11:58	7.15	13.5	221		0,00								
			•										

Type of Samples Collected

TCL UOC'SInformation: 2 in = 617 ml/ft, 4 in = 2470 ml/ft: $Vol_{cyl} = \pi r^2 h$, $Vol_{sphere} = 4/3\pi r^3$

Figure 2. (Project <u>Å</u> Well Depti Sampling	Ground W	ater Sam Sit	pling Log e <u>34-11</u> reen Leng & PompTul	BCD ve to the state of the stat	Well No Wel Polyetl	5 I Diameter_	Dat	eio Casi	9 13 ng Type 7VL
Measuring ————————————————————————————————————				Other Info	or				
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc			Notes
12:29	6.84	14.7	127		0.00				
12:35	6.72	14.9	181		0.00				
12:45	6.52	15.0	144		0.00	r.			
12:48	6.39	15.2	168		0.00				
			9						

ype of Samples Collected				
TCL	Coc'S			
		1 182 1020 12		

Information: 2 in = 617 ml/ft, 4 in = 2470 ml/ft: $Vol_{cyl} = \pi r^2 h$, $Vol_{sphere} = 4/3\pi r^3$

Figure 2. C	Fround W	ater Sam	pling Log								
Project	Alport 36ft	Site	e <u>34~11 7</u> reen Leng	th_5'	Wel	Diameter_	7. "	Casing Type PVL	_		
Sampling I Measuring	Sampling Device Peristalt PumpTubing type Polyathylana Water Level 5.26 Measuring Point Top of Cos - Other Infor										
Sampling F	Sampling Personnel BC 6H										
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes			

Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc	Notes
13:01	7.87	15.1	146		0.00		
13:07	7.22	14.8	ioi		0.00		
13:15	7.01	14.9	129		0.00	*	
13:25	7.14	45.1	119		0.00		

Type of Samples	Collected			
	TCL	Voc's		

roject_	Alpof	later Sam	e 34-11	Bc Dice	Well No	7I	Date	Ib Q 13 Casing Type PVC
ampling [Device 🖹	cristaltic	Pung Tuk	oing type _ Other Info	Polyet	hylere	Water	Level 6. 26
ampling F	ersonne	BC/6	H					
Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
13:50	6.71	13.9	462		0.00			

Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
13:50	6.71	13.9	462		0.00			
13:59	6.90	14.2	421		0.00			
14:05		14.6	417		0.00			
	7.22	14.5	404		0.00			
		13.54						
					9			

Type of Samples Collect	ed
	_ Voc's
information: 2 in = 617 r	ml/ft, 4 in = 2470 ml/ft: Vol., = $\pi r^2 h$, Vol., = 4/3 πr^3

		··· 0							
oicet A	lor of	ater Sam	pling Log	36.20	Mall Na	名为工	Des	- 10	10113
roject Alprof Site 34-11 BC Dove Well No. 8D I Date 10/9/13 ell Depth 35 fba Screen Length 5' Well Diameter 2' Casing Type Polyethylese Water Level 4.00 easuring Point Top of Casing Other Infor									
Time	pН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc			Notes
14:33	7.64	15.5	288		0.00				
4:40	7.81	15.4	302		0.00				
		15.2	310		0.00				
	7.52	15,2	333		0.00				
			*						
	138.002								

Type of Samples Colle	cted	
_ TCL	Uoc's	
Information: 2 in = 61	7 ml/ft, 4 in = 2470 ml/ft: Vol. = $\pi r^2 h$, Vol. = $4/3\pi r^3$	

Figure 2. Ground Water	Sampling Log		
Project Alpest	Site 34-11 13C Dare V	Vell No. 9I	Date 10 /9 / 3
Well Depth 36fba	_ Screen Length 5 '	Well Diameter _	Z Casing Type PVC
Sampling Device Period	telf. LPump Tubing type	Polyethylane	Water Level _ ৭.০ জ
	Carny Other Info		
Sampling Personnel	3c/6H		THE STATE OF THE S

Time	рН	Temp	Cond.	Dis.O ₂	Turb.	[]Conc		Notes
15:25	6.91	14.9	238		0.00			
15-31	7.05	15.2	256	,	0.00			
is:39	7.22	15.1	241		0.00			
15:44	7.29	15.0	236		0.00			
	7.27		228		0,00			7
			,					

Type of Samples Collected	
TOC UCC'S	
Information: 2 in = 617 ml/ft. 4 in = 2470 ml/ft: Vol. = $\pi r^2 h$, Vol. = 4/3 π r^3	

Project:	Alprot	and the second s				
Site Locatio	n: 34-11 Beach	34-11 Beach Channel Dr. for Rockaway, NY				
Sample ID	R12A-1	Canister ID	202			
Sampler	6H	Canister Volume	14			
Location	Nofsite peach Chemel	Flow Controller ID	66			
Height	apprex 3fbg w/ ab"screen	Flow Controller Setting	14/hr			
Sample Type	(subslab, soil gas, amb, indoor)	20	_			

Reading	Date	Time	Vacuum
Initial Canister Vacuum	10/2/13	9:21	-30
Final Canister Vacuum	10/2/13	10:32	- 3

11 0

Weather or Ambient Co	onditions: 70°f Sunny	
Purge Data:		_
Helium Check Data:	Good	
Comments:	DUPLICATE	_

Project:	Algort		
Site Location:	34-11 Beach	Chanel Drive, for Rock	Kaway, MY
Sample ID 2	15U-1D	Canister ID	366
	6H	Canister Volume	14
Location N	offile along Beach water of site along Beach	Flow Controller ID	147
Height app	ox 3fbg wlab"screen	Flow Controller Setting	14/hc
Sample Type (sub	slab, soil gas, amb, indoor)		

Reading	Date	Time	Vacuum
Initial Canister Vacuum	10/2/13	9:21	-30
Final Canister Vacuum	10/2/13	10:32	- 5

Weather or Ambient Condit	ions: 70°f Sun	
Purge Data:		
Helium Check Data:	Good	
Comments:	DUPLICATE	

Project:	Alprot					
Site Location:	34-11 Beach 1	34-11 Beach Channel Donce for Roukawa				
Sample ID 215	V-2	Canister ID	130			
Sampler 6	H	Canister Volume	16			
Location off	cite along Rockaray	Flow Controller ID	175			
Height <u>approx</u>	3fly w/ab" screen	Flow Controller Setting	14/6-			
Sample Type (subsla	b, soil gas, amb, indoor)					

Reading	Date	Time	Vacuum
Initial Canister Vacuum	10/2/13	10:46	-30
Final Canister Vacuum	10/2/13	11:41	- 3

Weather or Ambient Condition	ons: 70°f 56-14	
Purge Data:		
Helium Check Data:	Good	
Comments:		

Project:		Alzov.	+			
Site Location	on:	34-11	Beachcha	ned Dave, for Rock	away; Ny	
Sample ID	RISV-	3		Canister ID	201	_
Sampler	6 H		(-	Canister Volume	i L	
Location	offrite	along 200	Kavey reeway	Flow Controller ID	78	
Height	approx 3f	ba w/a6"	Screen	Flow Controller Setting	14/4-	
Sample Type	(subslab, se	oil gas, amb,	indoor)			

Reading	Date	Time	Vacuum
Initial Canister Vacuum	10/2/13	10:49	-29
Final Canister Vacuum	10/2/13	11:23	- 3

Weather or Ambient Conditions:	70°f, Sunny
Purge Data:	
Helium Check Data:	600 d
Comments:	

APPENDIX B LABORATORY ANALYTICAL DATA

THIS APPENDIX (LAB REPORT) SAVED AS SEPARATE FILE - RI_Rpt final5-12-14 Lab Report.pdf

APPENDIX C DATA USABILITY SUMMARY REPORTS

34-11 BEACH CHANNAL DRIVE DATA USABILITY SUMMARY REPORT July 22, 23 and 24, 2013 Soil Sampling (SDG No. 59907) Lab Report #460-59907-1

This data usability summary report (DUSR) was prepared in accordance with *Appendix 2B* of New York State Department of Environmental Conservation (NYSDEC) DER-10 using the entire original laboratory report, including the sample data summary report and the extended data package. The sampling event included 19 primary environmental soil samples and associated quality assurance / quality control (QA / QC) samples collected on July 22, 23 and 24, 2013.

Sample Collection

The samples were collected in labeled laboratory-provided sample containers; no issues with sample containers or labeling were reported by the laboratory. Sampling procedures, including collection of field QA / QC samples, were reported to have been in accordance with the procedures presented in the NYSDEC-approved Quality Assurance Project Plan (April 2013 for this project. All sample collection was conducted under Chain of Custody (COC) procedures.

Field QA / QC samples, including a blind duplicate sample, field blanks (equipment rinsate blanks) and trip blank samples, were collected to evaluate field sampling methods and laboratory procedures. Extra volume was also provided for a site-specific matrix spike / matrix spike duplicate (MS / MSD) QA / QC sample.

Sample Analyses

The samples were transmitted to and analyzed by TestAmerica Laboratories, Inc. at their Edison, New Jersey facility, which is New York State Department of Health-certified for the analyses performed. The samples were prepared and analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) using Methods 5035 / 8260B, TCL semi-volatile organic compounds (SVOCs) using Methods 3510C or 3541 / 8270C, Target Analyte List (TAL) metals using Methods 3050B / 6010B, and/or mercury using Methods 7471A and polychlorinated biphenyls (PCBs) by EPA Method 3510C or 3546 / 8082. The analytical methods and analytes are appropriate for the intended use of the data. The sample holding times were met and no problems with sample receipt or handling were reported by the laboratory.

Of the 19 field samples analyzed for TCL VOCs, the following two samples required dilution: RIB-2 (20-22) (250X) and RIB-2 (37-39) (50X). As is typical with this analyte group, several of the soil samples for TAL metals analyses required dilution prior to analysis, with the exception of the mercury analyses, none of which required dilution. The reporting limits have been adjusted accordingly for all samples / analyses requiring dilution.

None of the samples analyzed for SVOCs and PCBs required dilution.

QA / QC Results

Equipment Blank Samples

Rinsate (equipment) blank samples were collected on 7/22, 7/23 and 7/24 and were analyzed for all project analytes to evaluate potential contamination from field sampling procedures. As no target analytes (VOCs, SVOCs, metals or PCBs) were detected in the rinsate samples, cross-contamination from field sampling procedures does not appear to be of concern in this data set.

The following minor QA / QC issues were encountered associated with the Rinsate Blank Samples:

- The 7/24 TCL VOCs sample exhibited a "*" qualifier associated with 1,2-dibromo-3-chloropropane due to laboratory control sample (LCS) recovered outside control limits for this VOC.¹ As 1,2-dibromo-3-chloropropane was not detected in any other of the soil or QA / QC samples in this SDG, this minor excursion is not believed to affect the quality of the data set.
- The 7/23 and 7/24 samples exhibited "*" qualifiers for 2-nitroaniline and 4-nitroaniline due to LCS or laboratory control standard duplicate (LCSD) issues.
 As neither SVOC was detected in any other of the soil or QA / QC samples in this SDG, this minor excursion is not believed to affect the quality of the data set.

Surrogate Samples

Surrogate recoveries and internal standard responses in each of the samples for all analytes were within acceptance limits, with the following exceptions:

- Surrogate recovery (dibromofluoromethane) for the following sample was outside the upper control limit: RIB-3 (0-4) (460-59907-8). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.
- Toluene-d8 (Surr) failed the surrogate recovery criteria high for 460-59907-1.
 Toluene-d8 (Surr) failed the surrogate recovery criteria high for 460-59907-4MSD. As only one surrogate failed, re-extraction was not required.

The above-referenced surrogate excursions are not believed to affect the overall quality of the associated data set.

Trip Blanks

Trip blank samples were collected on 7/22/13, 7/23/13 and 7/24/13 which were transported with the cooler containing the VOC samples. Trip blank samples are used to verify that cross-contamination between samples did not occur in the field, in transit or in the laboratory. No

¹ The associated Form 1s for these samples are provided as part of the LCS discussion below.

VOCs were detected in any of the three trip blanks; therefore, cross-contamination issues were not of concern.

On minor issue identified for the TB0724, the LCS for associated Batch 173534 recovered outside control limits for the following analytes: 1,2-dibromo-3-chloropropane. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. Additionally, 1,2-dibromo-3-chloropropane was not detected in any of the field samples.

Blind Duplicate Samples

A blind duplicate sample was collected and utilized to evaluate the precision of the laboratory analyses. The results from the duplicate sample (RIB-S5 (1-3)) and the associated parent sample (RIB-5 (1-3)) are very similar for the VOCs, SVOCs and PCBs (most are non-detect except for generally low estimated concentrations of a few VOCs and SVOCs), and are similar for the metals. Given the heterogeneous nature of soil and the absence of soil sample homogenization procedures, some variability of the results is to be expected between these two samples. Based on the blind duplicate sample results, the laboratory results are likely to be precise.

MS / MSD Samples

An MS / MSD sample was prepared to evaluate the effect of the matrix on the reliability of the analytical results. Spiking occurs in the laboratory prior to sample preparation and analysis. One MS / MSD sample was collected and included in this sample delivery group (SDG), which was analyzed in several batches. Based on information provided by the analytical laboratory, the MS / MSD results were all within QC limits except as follows:

- The TCL VOC MS / MSD recoveries and precision for multiple compounds in Batch 173471 were outside control limits. The associated LCS recovery met acceptance criteria except for methylcyclohexane which was biased high and not detected in the samples.
- The TCL SVOC MS / MSD recoveries for Batch 173129 were outside control limits for multiple analytes. The MS / MSD recovered below the reporting limit (RL) for hexachlorocyclopentadiene and as a result, percent recoveries and % RPD are not calculated (NC).
- The MSD, %RPD and recoveries for calcium, chromium, zinc associated with Batch 172187 were outside the control limits. The associated LCS recovery met acceptance criteria.
- Antimony, chromium and iron failed the recovery criteria low for the MS of Sample 460-59563-20 in Batch 460-172438. Aluminum and potassium failed the recovery criteria high.

- Antimony, chromium, copper and iron failed the recovery criteria low for the MS of Sample 460-59907-04 in Batch 460-172438. Aluminum, calcium and zinc failed the recovery criteria high.
- There were no MS / MDS issues related to the PCBs analyses.

Based on these results, matrix-related effects have not significantly affected the analytical results.

Method Blank Samples

Method blank (MB) samples were analyzed by the laboratory to evaluate the potential for cross-contamination associated with the sample preparation and analysis. The MB results did not show concentrations of analytes above their method detection limits and / or the reporting limits except as follows:

 Acetone was detected in method blank MB 460-173716/7 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". If an associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

Laboratory Control Samples and Duplicates

Laboratory control samples (LCSs) and duplicates (LCSDs) were used by the laboratory to verify the accuracy and precision of the analyses. The LCS / LCSD results were all within established guidelines, with the following exceptions:

- The LCS for Batch 173534 recovered outside control limits for the following analytes: 1,2-Dibromo-3-Chloropropane. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.
- The laboratory LCSD for Batch 173315 recovered outside control limits for the following analytes: carbon tetrachloride and methyl cyclohexane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.
- The LCS and / or LCSD for Batch 173997 recovered outside control limits for the following analytes: carbon tetrachloride. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.
- The LCS for Batch 173129 recovered outside (elevated) control limits for 1,2dichlorobenzene.

- The %RPD of the LCS and LCSD for Preparation Catch 172827 recovered outside (elevated) control limits for 2-Nitroaniline.
- The LCSD for Batch 172940 recovered outside (elevated) control limits for 4-Nitroaniline.

Based on these results, the data do not appear to have been significantly affected by laboratory-related accuracy or precision issues.

Questions and Responses as per DER-10

1. Is the data package complete as defined under the current requirements for the NYSDEC ASP Category B or USEPA CLP deliverables?

The data package is complete. The external and internal chain-of-custody forms are present and complete. The case narrative and sample analysis summaries are present and complete. The analytical QA /Q C summary forms, including surrogate recovery forms, LCS forms, IDL forms, initial and continuing calibration summary forms, standards raw data, tuning criteria report, and MB data are all present and complete. The data report forms, including sample prep logs, injection logs, and examples of the calculations used to determine the sample concentrations are all present and complete. The raw data used to identify and quantify the contract-specified analytes are present and complete.

2. Have all holding times been met?

All samples were received and analyzed within the EPA-recommended holding times for the analyses performed.

3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data, fall within the protocol-required limits and specifications?

No – Although the majority of QC data were found to fall within the protocol-required limits and specifications, minor exceptions were noted above; however, these exceptions do not appear to significantly affect the data set.

4. Have all of the data been generated using established and agreed-upon analytical protocols?

Yes - all of the data were generated using TCL VOCs using Methods 5035 / 8260B, TCL SVOCs using Methods 3510C or 3541 / 8270C, TAL metals using Methods 3050B / 6010B, and/or mercury using Methods 7471A and PCBs by EPA Method 3510C or 3546 / 8082.

5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?

Yes – a representative number of raw data results were compared with the reported data

results to confirm that the reported analytical results (identification and quantification) are substantiated by the raw data.

6. Have the correct data qualifiers been used?

Yes – results below the quantitation limit and above the method detection limit have been J-qualified, analytes detected in associated MBs are B-qualified, asterisks have been applied where LCS results exceed the control limits, and results analyzed for but not detected have been U-qualified. No other qualifiers were indicated or applied.

7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?

Yes – exceedances have been noted in the DUSR and the corresponding QC summary sheets are attached.

Conclusions

The soil samples were reported to have been collected in accordance with the NYSDEC-approved QAPP for this project. No field or laboratory conditions occurred that would result in non-valid analytical data other than as noted above. The data appear to be adequate for their intended purpose.

Attachments

CASE NARRATIVE - REVISED

Client: Alprof Realty LLC

Project: Alprof Realty

Report Number: 460-59907-1 Revised Report #2

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results,

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

REVISED REPORT 1:

The following report required a revision: 460-59907-1. Details are as follows: Some of the form VI and form VII were missing or not calculating correctly and are now fixed by the laboratory therefore a revised report has been generated.

REVISED REPORT 2:

The following report required a revision: 460-59907-1. Details are as follow: Batch QC references were included in the job narrative; however, batch QC was not reported per client request. The wrong sample (460-59987-8) was identified as having a surrogate failure for VOC analysis. The correct sample is 460-59907-8. The wrong batch was referenced for the MS failure of sample 460-59907-4.

RECEIPT

The samples were received on 7/23/2013 3:50 PM, 7/24/2013 5:10 PM and 7/25/2013 5:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.5° C, 1.6° C and 1.8° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

TOTAL METALS

Sample 460-60086-1 was analyzed for total metals in accordance with EPA SW-846 Method 6010B. Samples 460-59907-1, 460-59907-4 and 460-59907-8 were analyzed for total metals in accordance with EPA SW-846 Method 6010B. Samples 460-59987-1, 460-59987-4 and 460-59987-5 were analyzed for total metals in accordance with EPA SW-846 Method 6010B. The samples were prepared on 07/24/2013, 07/25/2013 and 07/27/2013 and 07/27/2013 and 07/27/2013 and 07/27/2013.

The matrix duplicate %RPD and recoveries for calcium, chromlum, zinc associated with batch 172187 were outside the control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Antimony, Chromium and Iron failed the recovery criteria low for the MS of sample 460-59563-20 in batch 460-172438. Aluminum and Potassium failed the recovery criteria high.

Antimony, Chromium, Copper and Iron failed the recovery criteria low for the MS of sample 460-59907-4 in batch 460-172438. • Aluminum, Calcium and Zinc failed the recovery criteria high.

Refer to the QC report for details.

As a standard practice all soil samples and related QC samples (i.e., MB, LCS, Dup, MS, SD) are diluted 2X-4X prior to analysis. Further dilutions may be required dependent upon analyte levels in the samples. Refer to the analytical results forms for dilutions.

Samples 460-59907-1(4X), 460-59907-1(4X), 460-59907-1(4X), 460-59907-4(4X), 460-59907-4(4X), 460-59907-4(4X), 460-59907-4(4X), 460-59907-8(4X) required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the metals analyses.

All other quality control parameters were within the acceptance limits.

TOTAL METALS

Sample 460-60086-4 was analyzed for total metals in accordance with EPA SW-846 Method 6010B. Sample 460-59907-11 was analyzed for total metals in accordance with EPA SW-846 Method 6010B. Sample 460-59987-9 was analyzed for total metals in accordance with EPA SW-846 Method 6010B. The samples were prepared on 07/24/2013, 07/25/2013 and 07/26/2013 and analyzed on 07/24/2013, 07/25/2013, 07/27/2013 and 07/28/2013.

The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: (460-59957-10 DU), (460-59957-10 MS), (460-59957-10 PDS), (460-59957-10 SD), MW-06 (460-59957-10), manganese. Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the metals analysis.

All other quality control parameters were within the acceptance limits.

TOTAL MERCURY

Sample 460-60086-4 was analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. Sample 460-59907-11 was analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. Sample 460-59987-9 was analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 07/24/2013, 07/25/2013 and 07/26/2013.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples 460-59907-1, 460-59907-4 and 460-59907-8 were analyzed for total mercury in accordance with EPA SW-846 Method 7471A. Sample 460-69086-1 was analyzed for total mercury in accordance with EPA SW-846 Method 7471A. Samples 460-59987-1, 460-59987-4 and 460-59987-5 were analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared and analyzed on 07/27/2013.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS

Samples 460-59907-1, 460-59907-4 and 460-59907-8 were analyzed for polychlorinated biphenyls in accordance with EPA SW-846 Method 8082. Sample 460-60086-1 was analyzed for polychlorinated biphenyls in accordance with EPA SW-846 Method 8082. Samples 460-59987-1, 460-59987-4 and 460-59987-5 were analyzed for polychlorinated biphenyls in accordance with EPA SW-846 Method 8082. The samples were prepared on 07/25/2013 and 07/27/2013 and analyzed on 07/27/2013, 07/29/2013 and 07/30/2013.

No difficulties were encountered during the PCBs analyses.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Sample 460-59907-11 was analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082. Sample 460-59987-9 was analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082. Sample 460-60086-4 were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082. The samples were prepared on 07/25/2013 and 07/27/2013 and 07/27/2013 and 07/27/2013 and 08/01/2013.

No difficulties were encountered during the PCBs analysis.

All quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 460-60086-1 through 460-60086-3 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 82608. Samples 460-59987-1 through 460-59987-7 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 82608. Samples 460-59907-1 through 460-59907-10 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared on 07/24/2013, 07/25/2013 and 07/26/2013 and analyzed on 07/29/2013, 07/30/2013, 07/31/2013, 08/01/2013, 08/02/2013 and 08/05/2013.

Acetone was detected in method blank MB 460-173716/7 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged "J". If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

The laboratory control sample duplicate (LCSD) for batch 173315 recovered outside control limits for the following analytes: Carbon Tetrachloride and Methyl Cyclohexane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for multiple compounds in batch 173471 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria except for methylcyclohexane which was biased high and not detected in the samples.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 173997 recovered outside control limits for the following analytes:carbon tetrachloride. These analytes were blased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Surrogate recovery (Dibromofluoromethane) for the following sample was outside the upper control limit: RIB-3 (0-4) (460-59907-8). This sample did not contain any target analytes; therefore, re-extraction and/or re-enalysis was not performed.

Toluene-d8 (Surr) failed the surrogate recovery criteria high for 460-59907-1. Dibromofluoromethane (Surr) failed the surrogate recovery criteria high for 460-59907-8. Toluene-d8 (Surr) failed the surrogate recovery criteria high for 460-59907-4MSD.

Refer to the QC report for details.

The following sample was diluted to bring the concentration of target analytes within the calibration range: RIB-2 (20-22) (460-59907-6). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the volatiles analyses.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 460-59907-11 and 460-59907-12 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. Samples 460-59987-8 and 460-59987-9 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. Samples 460-60086-4 and 460-60086-5 were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 07/31/2013.

The laboratory control sample (LCS) for batch 173534 recovered outside control limits for the following analytes: 1,2-Dibromo-3-Chloropropane. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 173534 were outside control limits for Trichloroethene and 1,2-Dibromo-3-Chloropropane; MS recoveries were outside control limits for Chloroethane. The associated laboratory control sample (LCS) recovery met acceptance criteria, except for 1,2-Dibromo-3-Chloropropane.

Refer to the QC report for details.

No other difficulties were encountered during the volatiles analyses.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 460-59907-1, 460-59907-4 and 460-59907-8 were analyzed for semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8270C. Sample 460-60086-1 was analyzed for semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8270C. Samples 460-59987-1, 460-59987-4 and 460-59987-5 were analyzed for semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8270C. The samples were prepared on 07/29/2013 and analyzed on 07/30/2013, 07/31/2013 and 08/01/2013.

The laboratory control sample (LCS) for batch 173129 recovered outside control limits for the following analyte: 1.2-Dichlorobenzene.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 173129 were outside control limits for multiple analytes. The MS/MSD recovered below the reporting limit (RL) for Hexachlorocyclopentadiene and as a result, percent recoveries and % RPD are not calculated (NC).

The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 172827 recovered outside control limits for the following analytes: 2-Nitroaniline.

Refer to the QC report for details.

No other difficulties were encountered during the semivolatiles analyses.

All other quality control parameters were within the acceptance limits,

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample 460-60086-4 was analyzed for semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8270C. Sample 460-59987-9 was analyzed for semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8270C. Sample 460-59907-11 was analyzed for semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8270C. The samples were prepared on 07/24/2013, 07/26/2013 and 07/27/2013 and analyzed on 07/30/2013 and 08/03/2013.

The the laboratory control sample duplicate (LCSD) for batch 172940 recovered outside control limits for the following analytes: 4-Nitroaniline.

Refer to the QC report for details.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Samples 460-60086-1 through 460-60086-3 were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D). Samples 460-59987-1 through 460-59987-7 were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D). Samples 460-59907-1 through 460-59907-10 were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D). The samples were analyzed on 07/24/2013, 07/25/2013 and 07/26/2013.

No difficulties were encountered during the %solids/moisture analyses.

All quality control parameters were within the acceptance limits.

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

RIB-2 (20-22)

Lab Sample ID:

460-59907-6

Client Matrix: Solid % Moisture: 44.7 Date Received: 07/23/2013 1550

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method: 8260B 5035 Analysis Batch:

460-173182

Instrument ID: Lab File ID: VOAMS5 e19335.d

Date Sampled: 07/22/2013 1250

Dilution:

250

Prep Batch: 460-172280

Initial Weight/Volume:

4.848 g

Analysis Date:

07/29/2013 1453

Final Weight/Volume: 10 mL

Prep Date:

07/24/2013 1334

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Chloromethane		930	U	90	930
Bromomethane		930	U	170	930
Vinyl chloride		14000		130	930
Chloroethane		930	U	160	930
Methylene Chloride		930	U	170	930
Acetone		4700	Ü	2500	4700
Carbon disulfide		930	Ū	120	930
Trichlorofluoromethane		. 930	Ū	140	930
1.1-Dichloroethene		930	Ü	82	930
1,1-Dichloroethane		930	Ü	120	930
trans-1,2-Dichloroethene		830	J	120	930
cis-1,2-Dichloroethene		320000	J	170	930
•		930	U	73	930
Chloroform					930
1,2-Dichloroethane		930	U	180	930 4700
2-Butanone		4700	U	2200	
1,1,1-Trichloroethane		930	U	58	930
Carbon tetrachloride		930	U	53	930
Bromodichloromethane		930	U	120	930
1,2-Dichloropropane		930	U	80	930
cis-1,3-Dichloropropene		930	U	170	930
Trichloroethene		3400		86	930
Dibromochloromethane		930	U	190	930
1,1,2-Trichloroethane		930	U	170	930
Benzene		930	U	77	930
trans-1,3-Dichloropropene		930	U	230	930
Bromoform		930	U	180	930
4-Methyl-2-pentanone		4700	U	920	4700
2-Hexanone		4700	U	470	4700
Tetrachloroethene		420	J	91	930
1,1,2,2-Tetrachloroethane		930	Ü	150	930
Toluene		150	J	140	930
Chlorobenzene		930	Ū	100	930
Ethylbenzene		200	J	89	930
Styrene		930	U	110	930
m&p~Xylene		490	J	230	1900
· •		230	J	120	930
o-Xylene		930	Ü	76	930
Freon TF MTBE		930	U	130	930
			U	150	930
Cyclohexane		930			930
1,2-Dibromoethane		930	U	260	
1,3-Dichlorobenzene		930	U	130	930
1,4-Dichlorobenzene		930	U	220	930
1,2-Dichlorobenzene		930	U	190	930
Dichlorodifluoromethane		930	U	200	930
1,2,4-Trichlorobenzene 1,4-Dioxane		930 47000	U U	320 34000	930 47000

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID: RIB-2 (20-22)

Lab Sample ID: 460-59907-6 Date Sampled: 07/22/2013 1250

Client Matrix: Solid % Moisture: 44.7 Date Received: 07/23/2013 1550

8260B Volatile Organic Compounds (GC/MS)

VOAMS5 Analysis Method: 8260B Analysis Batch: 460-173182 Instrument ID: Prep Method: Prep Batch: 5035 460-172280 Lab File (D: e19335.d Dilution: 250 Initial Weight/Volume: 4.848 g

Analysis Date: 07/29/2013 1453 Final Weight/Volume: 10 mL

Prep Date: 07/24/2013 1334

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL 930 1,2,3-Trichlorobenzene 930 U 480 U 930 1,2-Dibromo-3-Chloropropane 930 370 U 930 Bromochloromethane 930 250 930 Isopropylbenzene J 130 71 U 310 1900 Methyl acetate 1900 Methylcyclohexane 930 U 930 130

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)11175 - 135Toluene-d8 (Surr)10159 - 150Bromofluorobenzene10672 - 133

Job Number: 460-59907-1 Client: Alprof Realty LLC

Client Sample ID:

RIB-2 (37-39)

Lab Sample ID:

460-59907-7

Client Matrix:

Solid

% Moisture:

26.7

Date Sampled: 07/22/2013 1400

Date Received: 07/23/2013 1550

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

460-174454

Instrument ID:

VOAMS5

Prep Method:

5035

Prep Batch:

460-172280

Lab File ID:

e19598.d

Dilution:

50

Run Type:

Initial Weight/Volume:

6.539 g

Analysis Date:

08/05/2013 1746

DL

Final Weight/Volume:

10 mL

Prep Date:

Analyte

07/24/2013 1334

Qualifier

MDL

RL

cis-1,2-Dichloroethene

DryWt Corrected: Y

Result (ug/Kg) 4300

Qualifier

18

100

%Rec Surrogate 120 1,2-Dichloroethane-d4 (Surr) 108 Toluene-d8 (Surr) Bromofluorobenzene 117

75 ~ 135 59 - 150 72 - 133

Acceptance Limits

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

FB0724

Lab Sample ID:

460-60086-4FB

Client Matrix:

Water

Date Sampled: 07/24/2013 1100 Date Received: 07/25/2013 1700

		8260B Volatile Orga	nic Compounds (GC	/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 07/31/2013 1239 07/31/2013 1239	Analysis Batch: Prep Batch:	460-173534 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS13 P73108.D 5 mL 5 mL
riop Bate.					
Analyte		Result (u	g/L) Quali	fier MDL	RL
Chloromethane		1.0	Ũ	0.10	1.0
Bromomethane		1.0	U	0.18	1.0
Vinyl chloride		1.0	U	0.14	1.0
Chloroethane		1.0	U	0.17	1.0
Methylene Chloride		1.0	U	0.18	1.0
Acetone		5.0	U	2.7	5.0
Carbon disulfide		1.0	U	0.13	1.0
Trichlorofluorometha	ane	1.0	U	0.15	1.0
1,1-Dichloroethene		1.0	IJ	0.090	1.0
1,1-Dichloroethane		1.0	U	0.13	1.0
trans-1,2-Dichloroet	hene	1.0	Ü	0.13	1.0
cis-1,2-Dichloroethe		1.0	Ū	0.18	1.0
Chloroform		1.0	Ü	0.080	1.0
2-Butanone		5.0	Ū	2.3	5.0
1,2-Dichloroethane		1.0	Ū	0.19	1.0
1,1,1-Trichloroethan	e	1.0	Ü	0.060	1.0
Carbon tetrachloride		1.0	Ū	0.060	1.0
Benzene	•	1.0	Ü	0.080	1.0
Bromoform		1.0	Ü	0.19	1.0
Styrene		1.0	Ü	0.12	1.0
m&p-Xylene		2.0	Ü	0.25	2.0
o-Xylene		1.0	Ü	0.13	1.0
Ethylbenzene		1.0	Ű	0.10	1.0
Chlorobenzene		1.0	Ü	0.11	1.0
Cyclohexane		1.0	Ü	0.16	1.0
Isopropylbenzene		1.0	Ü	0.080	1.0
2-Hexanone		5.0	Ü	0.50	5.0
MTBE		1.0	Ü	0.14	1.0
Freon TF		1.0	U	0.080	1.0
		2.0	U	0.34	2.0
Methyl acetate 1,4-Dioxane		50	U U	36	50
		1.0	U	0.090	1.0
Trichloroethene		1.0	U	0.050	1.0
Toluene	00000	1.0	U	0.24	1.0
trans-1,3-Dichloropr 4-Methyl-2-pentanor	,	5.0	υ	0.99	5.0
			υ		
cis-1,3-Dichloroprop		1.0	U	0.18	1.0
1,2-Dichlorobenzen		1.0		0.21	1.0
1,3-Dichlorobenzen		1.0	U	0.14	1.0
1,4-Dichlorobenzen		1.0	U	0.23	1.0
1,2,4-Trichlorobenze		1.0	U	0.34	1.0
1,2,3-Trichlorobenze		1.0	U	0.51	1.0
1,2-Dichloropropane	,	1.0	U	0.090	1.0
Methylcyclohexane		1.0	U	0.14	1.0
Tetrachloroethene		1.0	U	0.10	1.0
1,2-Dibromo-3-Chlo	Alleria De La Carte de La Cart	1.0	U*	0.40	1.0
1,1,2,2-Tetrachloroe	tnane	1.0	U	0.16	1.0

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

FB0724

Lab Sample ID:

460-60086-4FB

Client Matrix:

Water

Date Sampled: 07/24/2013 1100

Date Received: 07/25/2013 1700

Analysis Method: Prep Method:

8260B 5030B

1.0

Dilution: Analysis Date: Prep Date:

07/31/2013 1239 07/31/2013 1239 Analysis Batch: Prep Batch:

460-173534

N/A

Instrument ID:

Lab File ID:

CVOAMS13 P73108.D 5 mL

Initial Weight/Volume:

Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,2-Trichloroethane	1.0	U	0.19	1.0
Dibromochloromethane	1.0	U	0.20	1.0
1,2-Dibromoethane	1.0	U	0.28	1.0
Dichlorodifluoromethane	1.0	U	0.22	1.0
Bromochloromethane	1.0	U	0.27	1.0
Bromodichloromethane	1.0	U	0.12	1.0
Surrogate	%Rec	Qualifier	Accepta	nce Limits
1,2-Dichloroethane-d4 (Surr)	111		70 - 130	
Toluene-d8 (Surr)	103	•	70 - 130	
Bromofluorobenzene	85		70 - 130	
Dibromofluoromethane (Surr)	95		70 - 130	

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

FB0723

Lab Sample ID:

460-59987-9FB

Client Matrix:

Prep Date:

Water

Date Sampled: 07/23/2013 1500 Date Received: 07/24/2013 1710

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C Analysis Bat
Prep Method: 3510C Prep Batch:
Dilution: 1.0
Analysis Date: 08/03/2013 0636

07/26/2013 1347

Analysis Batch: 460-174194 Prep Batch: 460-172827 Instrument ID: Lab File ID: Initial Weight/Volume: CBNAMS6 M68087.D 240 mL

Final Weight/Volume: 2 mL Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Bis(2-chloroethyl)ether	1.0	U	0.31	1.0
1,3-Dichlorobenzene	10	U	1.7	10
1,4-Dichlorobenzene	10	U	2.0	10
1,2-Dichlorobenzene	10	U	1.4	10
N-Nitrosodi-n-propylamine	1.0	U	0.28	1.0
Hexachloroethane	1.0	U	0.16	1.0
Nitrobenzene	1.0	U	0.35	1.0
Isophorone	10	U	1.4	10
Bis(2-chloroethoxy)methane	10	Ų	1.0	10
1,2,4-Trichlorobenzene	1.0	U	0.20	1.0
Naphthalene	10	U	2.1	10
4-Chloroaniline	1.0	U	0.33	1.0
Hexachlorobutadiene	2.1	U	0.71	2.1
2-Methylnaphthalene	10	U	1.6	10
Hexachlorocyclopentadiene	10	U	1.6	10
2-Chloronaphthalene	10	U	1.4	10
2-Nitroaniline	21	U*	2.1	21
Dimethyl phthalate	10	U	1.1	10
Acenaphthylene	10	U	1.9	10
2,6-Dinitrotoluene	2.1	U	0.28	2.1
3-Nitroaniline	21	U	3.0	21
Acenaphthene	10	U	1.1	10
Dibenzofuran	10	U	1.6	10
2,4-Dinitrotoluene	2.1	U	0.29	2.1
Diethyl phthalate	10	U	1.5	10
4-Chlorophenyl phenyl ether	10	U	1.6	10
Fluorene	10	U	1.8	10
4-Nitroaniline	21	U	3.0	21
N-Nitrosodiphenylamine	10	U	1.0	10
4-Bromophenyl phenyl ether	10	U	1.1	10
Hexachlorobenzene	1.0	U	0.21	1.0
Phenanthrene	10	Ü	1.3	10
Anthracene	10	U	0.89	10
Carbazole	10	U	1.3	10
Di-n-butyl phthalate	10	U	1.0	10
Fluoranthene	10	U	1,1	10
Pyrene	10	U	1.1	10
Butyl benzyl phthalate	10	U	1.5	10
3,3'-Dichlorobenzidine	21	U	3.3	21
Benzo[a]anthracene	1.0	U	0.19	1.0
Chrysene	10	Ū	1.5	10
Bis(2-ethylhexyl) phthalate	10	Ü	0.84	10
Di-n-octyl phthalate	10	Ü	0.92	10
Benzo[b]fluoranthene	1.0	Ü	0.22	1.0
Benzo[k]fluoranthene	1.0	Ü	0.15	1.0
Benzo[a]pyrene	1.0	Ü	0.15	1.0
Sourcealblusiene		-	2	

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

FB0723

Lab Sample ID:

460-59987-9FB

Client Matrix:

Water

Date Sampled: 07/23/2013 1500 Date Received: 07/24/2013 1710

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C 3510C Analysis Batch: Prep Batch: 460-174194

Instrument ID: Lab File ID: CBNAMS6 M68087.D

Prep Method: Dilution:

1.0 08/03/2013 460-172827

Initial Weight/Volume: Final Weight/Volume:

M68087.D 240 mL 2 mL

Analysis Date: Prep Date: 08/03/2013 0636 07/26/2013 1347

Injection Volume:

5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Indeno[1,2,3-cd]pyrene	1.0	U	0.11	1.0
Dibenz(a,h)anthracene	1.0	U	0.17	1.0
Benzo[g,h,i]perylene	10	U	0.97	10
bis (2-chloroisopropyl) ether	10	U	1.4	10

Surrogate	%Rec	Qualifier	Acceptance Limits
Nitrobenzene-d5	104		60 - 114
Terphenyl-d14	117		72 - 130
2-Fluorobiphenyl	104		50 - 120

Job Number: 460-59907-1 Client: Alprof Realty LLC

Client Sample ID:

FB0724

Lab Sample ID:

460-60086-4FB

Client Matrix:

Water

Date Sampled: 07/24/2013 1100 Date Received: 07/25/2013 1700

8270C Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C 3510C Analysis Batch:

460-174231

Instrument ID:

CBNAMS6

Prep Method: Dilution:

1.0

Prep Batch:

460-172940

Lab File ID: Initial Weight/Volume: M68112.D 240 mL

Analysis Date: Prep Date:

08/03/2013 1938 07/27/2013 0805 Final Weight/Volume: 2 mL Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Bis(2-chloroethyl)ether	1.0	Ú	0.31	1.0
1,3-Dichlorobenzene	10	U	1.7	10
1,4-Dichlorobenzene	10	U	2.0	10
1,2-Dichlorobenzene	10	U	1.4	10
N-Nitrosodi-n-propylamine	1.0	U	0.28	1.0
Hexachloroethane	1.0	U	0.16	1.0
Nitrobenzene	1.0	U	0.35	1.0
Isophorone	10	U	1.4	10
Bis(2-chloroethoxy)methane	10	U	1.0	10
1,2,4-Trichlorobenzene	1.0	U	0.20	1.0
Naphthalene	10	U	2.1	10
4-Chloroaniline	1.0	U	0.33	1.0
Hexachlorobutadiene	2.1	U	0.71	2.1
2-Methylnaphthalene	10	U	1.6	10
Hexachlorocyclopentadiene	10	U	1.6	10
2-Chloronaphthalene	10	U	1.4	10
2-Nitroaniline	21	U	2.1	21
Dimethyl phthalate	10	U	1.1	10
Acenaphthylene	10	U	1.9	10
2,6-Dinitrotoluene	2.1	U	0.28	2.1
3-Nitroaniline	21	U	3.0	21
Acenaphthene	10	U	1.1	10
Dibenzofuran	10	U	1.6	10
2,4-Dinitrotoluene	2.1	U	0.29	2.1
Diethyl phthalate	10	U	1.5	10
4-Chlorophenyl phenyl ether	10	U	1.6	10
Fluorene	10	U	1.8	10
4-Nitroaniline	21	U*	3.0	21
N-Nitrosodiphenylamine	10	U	1.0	10
4-Bromophenyl phenyl ether	10	U	1.1	10
Hexachlorobenzene	1.0	U	0.21	1.0
Phenanthrene	10	U	1.3	10 10
Anthracene	10	U	0.89	
Carbazole	10	U	1.3	10 10
Di-n-butyl phthalate	10	U U	1.0 1.1	10
Fluoranthene	10	U	1.1	10
Pyrene Sut diseased abbledate	10 10	U	1.5	10
Butyl benzyl phthalate	21	U	3.3	21
3,3'-Dichlorobenzidine	1.0	U	0.19	1.0
Benzo[a]anthracene	1.0	U	1,5	1.0
Chrysene	10	U	0.84	10
Bis(2-ethylhexyl) phthalate	10	U	0.92	10
Di-n-octyl phthalate	1.0	บ	0.92	1.0
Benzo[b]fluoranthene	1.0	U	0.15	1.0
Benzo[k]fluoranthene	1.0	U	0.15	1.0
Benzo[a]pyrene	1.0	0	0.15	1.0

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

FB0724

Lab Sample ID:

460-60086-4FB

Client Matrix:

Water

Date Sampled: 07/24/2013 1100

Date Received: 07/25/2013 1700

		8270C Semivolatile Or	rganic Compou	nds (GC	/MS)	
Analysis Method:	8270C	Analysis Batch:	460-174231		Instrument ID:	CBNAMS6
Prep Method:	3510C	Prep Batch:	460-172940		Lab File ID:	M68112.D
Dilution:	1.0				Initial Weight/Volume:	240 mL
Analysis Date:	08/03/2013 1938				Final Weight/Volume:	2 mL
Prep Date:	07/27/2013 0805				Injection Volume:	5 uL
Analyte		Result (u	g/L)	Qualifie	r MDL	RL
Indeno[1,2,3-cd]py	геле	1.0		U	0.11	1.0
Dibenz(a,h)anthrac	ene	1.0		U	0.17	1.0
Benzo[g,h,i]peryler	ne	10		U	0.97	10
bis (2-chloroisoprop	oyl) ether	10		U	1.4	10
Surrogate		%Rec		Qualifie	r Acceptar	nce Limits
Nitrobenzene-d5		101			60 - 114	
Terphenyl-d14		109			72 - 130	
2-Fluorobiphenyl		95			50 - 120	

Client: Alprof Realty LLC Job Number: 460-59907-1

Surrogate Recovery Report

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Solid

Lab Sample ID	Client Sample ID	DBFM %Rec	DCA %Rec	TOL %Rec	BFB %Rec
460-59907-1	RIB-1(4-5)	122	109	140*	105
460-59907-2	RIB-1 (10-12)	114	106	98	110
460-59907-3	RIB-1 (35-37)	119	109	99	96
460-59907-4	RIB-2 (0-5)	121	114	106	105
460-59907-5	RIB-2 (13-15)	120	104	80	85
460-59907-7	RIB-2 (37-39)	95	87	98	105
460-59907-8	RIB-3 (0-4)	140*	128	84	93
460-59907-9	RIB-3 (13-15)	118	101	71	109
460-59907-10	RIB-3 (21-22)	97	94	109	113
460-59987-1	RIB-4 (1-3)	104	111	100	95
460-59987-2	RIB-4 (7-8)	100	105	96	93
460-59987-3	·RJB-4 (8-10)	103	113	100	95
460-59987-4	RIB-5 (1-3)	105	112	100	95
460-59987-5	RIB-S5 (1-3)	101	108	97	91
460-59987-6	RIB-5 (5-7)	101	108	95	97
460-59987-7	RIB-5 (10-12)	103	113	96	93
460-60086-1	RIB-6 (1-3)	109	105	101	108
460-60086-2	RIB-6 (7-8)	114	112	104	110
460-60086-3	RIB-6 (5-7)	110	104	101	108
MB 460-173315/8		115	110	95	96
MB 460-173471/9		1 1 6	111	96	95
MB 460-173716/7		99	103	96	89
MB 460-173743/8		106	97	102	108
MB 460-173762/7		103	106	97	92
MB 460-173949/8		117	105	98	112
MB 460-173997/8		116	104	99	114
MB 460-174179/7		104	102	101	96
LCS 460-173315/4		110	104	99	99
LCS 460-173471/6		113	114	83	109

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	70-130
DCA = 1,2-Dichloroethane-d4 (Surr)	70-130
TOL = Toluene-d8 (Surr)	70-130
BFB = Bromofluorobenzene	70-130

Job Number: 460-59907-1

Surrogate Recovery Report

Client: Alprof Realty LLC

8260B Volatile Organic Compounds (GC/MS)

Client Matrix: Solid

Lab Sample ID	Client Sample ID	DBFM %Rec	DCA %Rec	TOL %Rec	BFB %Rec
LCS 460-173716/3		101	103	103	99
LCS 460-173743/4		108	99	102	109
LCS 460-173762/3		103	107	103	99
LCS 460-173949/4		112	99	101	109
LCS 460-173997/3		119	103	100	112
LCS 460-174179/3		97	93	95	97
LCSD 460-173315/5		108	102	101	102
LCSD 460-173716/4		99	100	99	93
LCSD 460-173743/5		110	101	104	111
LCSD 460-173762/4		100	102	98	96
LCSD 460-173949/5		114	102	100	112
LCSD 460-173997/5		119	104	100	115
LCSD 460-174179/4		98	92	97	96
460-59907-4 MS	RIB-2 (0-5) MS	105	99	122	94
460-59907-4 MSD	RIB-2 (0-5) MSD	111	98	134*	101

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	70-130
DCA = 1,2-Dichloroethane-d4 (Surr)	70-130
TOL = Toluene-d8 (Surr)	70-130
BFB = Bromofluorobenzene	70-130

38

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID: RIB-3 (0-4)

1,4-Dioxane

Lab Sample ID: 460-59907-8 Date Sampled: 07/22/2013 1430

Client Matrix: Solid % Moisture: 8.5 Date Received: 07/23/2013 1550

8260B Volatile Organic Compounds (GC/MS)

Analysis Batch: 460-173471 Instrument ID: CVOAMS4 Analysis Method: 8260B Prep Method: 5035 Prep Batch: 460-172288 Lab File ID: D35157.D Dilution: Initial Weight/Volume: 7.117 g 1.0

Analysis Date: 07/30/2013 2326 Final Weight/Volume: 5 mL

Prep Date: 07/24/2013 1353

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Chloromethane		0.77	U	0.12	0.77
Bromomethane		0.77	U	0.33	0.77
√inyl chloride		0.77	U	0.26	0.77
Chloroethane		0.77	U	0.25	0.77
Methylene Chloride		0.77	U	0.12	0.77
Acetone		7.7	U	1.3	7.7
Carbon disulfide		0.18	J	0.12	0.77
Frichlorofluoromethane		0.77	U	0.12	0.77
1,1-Dichloroethene		0.77	U	0.15	0.77
1,1-Dichloroethane		0.77	U	0.085	0.77
rans-1,2-Dichloroethene		0.77	U	0.10	0.77
cis-1,2-Dichloroethene		0.77	U	0.085	0.77
Chloroform		0.77	U	0.18	0.77
1,2-Dichloroethane		0.77	U	0.14	0.77
2-Butanone		7.7	U	0.48	7.7
1,1,1-Trichloroethane		0.77	U	0.10	0.77
Carbon tetrachloride		0.77	U	0.12	0.77
Bromodichloromethane		0.77	U	0.25	0.77
1,2-Dichloropropane		0.77	U	0.12	0.77
cis-1,3-Dichloropropene		0.77	U	0.11	0.77
Frichloroethene		0.77	U	0.092	0.77
Dibromochloromethane		0.77	U	0.077	0.77
1,1,2-Trichloroethane		0.77	U	0.11	0.77
Benzene		0.77	U	0.12	0.77
rans-1,3-Dichloropropene		0.77	U	0.077	0.77
Bromoform		0.77	U	0.13	0.77
1-Methyl-2-pentanone		7.7	U ,	0.15	7.7
2-Hexanone		7.7	U	0.10	7.7
Tetrachloroethene		0.77	Ų	0.092	0.77
1,1,2,2-Tetrachloroethane		0.77	U	0.069	0.77
oluene		0.77	U	0.11	0.77
Chlorobenzene		0.77	U	0.14	0.77
Ethylbenzene		0.77	U	0.13	0.77
Styrene		0.77	U	0.22	0.77
n&p-Xylene		1.5	U	0.45	1.5
o-Xylene		0.77	U	0.15	0.77
Freon TF		0.77	U	0.085	0.77
MTBE		0.77	U	0.085	0.77
Cyclohexane		0.77	U	0.10	0.77
,2-Dibromoethane		0.77	Ū	0.12	0.77
1,3-Dichlorobenzene		0.77	Ū	0.12	0.77
I,4-Dichlorobenzene		0.098	Ĵ	0.085	0.77
1,2-Dichlorobenzene		0.77	U	0.077	0.77
Dichlorodifluoromethane		0.77	Ü	0.17	0.77
1,2,4-Trichlorobenzene		0.77	Ü	0.15	0.77
.,,					

U

9.7

38

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID: RIB-3 (0-4)

 Lab Sample ID:
 460-59907-8
 Date Sampled: 07/22/2013 1430

 Client Matrix:
 Solid
 % Moisture: 8.5
 Date Received: 07/23/2013 1550

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 460-173471 Instrument ID: CVOAMS4 Prep Method: 5035 Prep Batch: 460-172288 Lab File ID: D35157.D Dilution: 1.0 Initial Weight/Volume: 7.117 g Analysis Date: 07/30/2013 2326 Final Weight/Volume: 5 mL

Prep Date: 07/24/2013 1353

1,2,3-Trichlorobenzene 0.77 U 0.12 0.7 1,2-Dibromo-3-Chloropropane 0.77 U 0.34 0.7 Bromochloromethane 0.77 U 0.085 0.7 Isopropylbenzene 0.77 U 0.085 0.7 Methyl acetate 0.77 U 0.25 0.7	Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
Bromochloromethane 0.77 U 0.085 0.7 Isopropylbenzene 0.77 U 0.085 0.7 Methyl acetate 0.77 U 0.25 0.7	1,2,3-Trichlorobenze	ene		Ū	0.12	0.77
Isopropylbenzene 0.77 U 0.085 0.7 Methyl acetate 0.77 U 0.25 0.7	1,2-Dibromo-3-Chlo	ropropane	0.77	U	0.34	0.77
Methyl acetate 0.77 U 0.25 0.7	Bromochloromethar	ne	0.77	U	0.085	0.77
	Isopropylbenzene		0.77	U	0.085	0.77
Methylcyclohexane 0.77 U * 0.077 0.7	Methyl acetate		0.77	U	0.25	0.77
	Methylcyclohexane		0.77	U *	0.077	0.77

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	128		70 - 130
Toluene-d8 (Surr)	84		70 - 130
Bromofluorobenzene	93		70 - 130
Dibromofluoromethane (Surr)	140		70 - 130

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

RIB-1(4-5)

Lab Sample ID:

460-59907-1

Client Matrix:

Solid

% Moisture:

16.1

Date Sampled: 07/22/2013 0855

Date Received: 07/23/2013 1550

8260B Volatile Organic Compounds (GC/MS)					
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5035 1.0 08/02/2013 2106 07/24/2013 1348	Analysis Batch: Prep Batch:	460-174179 460-172288	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS4 D35262.D 5.205 g 5 mL
Analyte Chloromethane	DryWt Corrected: Y	Result (u	g/Kg) Qualifi U	er MDL 0.18	RL 1.1
Bromomethane		1.1	ΰ	0.49	1.1
Vinyl chloride		1.1	Ü	0.39	1.1
Chloroethane		1.1	Ü	0.38	1.1
Methylene Chloride		2.5	ŭ	0.17	1.1
Acetone		11	U	1.9	11
Carbon disulfide		1.1	Ü	0,17	1.1
Trichlorofluorometha	ane	1.1	Ü	0.18	1.1
1,1-Dichloroethene		1.1	Ü	0.22	1.1
1,1-Dichloroethane		1.1	Ü	0.13	1.1
trans-1,2-Dichloroet	hone	1.1	Ü	0.15	1.1
cis-1,2-Dichloroethe		4.1	O	0.13	1.1
Chloroform	ii e	1.1	U	0.27	1.1
1,2-Dichloroethane		1.1	Ü	0.21	1.1
2-Butanone		11	Ű	0.72	11
1,1,1-Trichloroethan		1.1	Ü	0.15	1.1
Carbon tetrachloride		1.1	Ü	0.17	1.1
Bromodichlorometha		1.1	Ü	0.37	1.1
1,2-Dichloropropane		1.1	Ü	0.17	1.1
cis-1,3-Dichloroprop		1.1	Ŭ	0.16	1.1
Trichloroethene	retie	8.2	Ü	0.14	1.1
Dibromochlorometh	ane	1.1	U	0.11	1.1
1,1,2-Trichloroethan		1.1	Ŭ	0.16	1.1
Benzene		1.1	Ü	0.17	1,1
trans-1,3-Dichloropr	onene	1.1	Ü	0.11	1.1
Bromoform	орене	1.1	Ü	0.19	1.1
4-Methyl-2-pentanor	ne	11	Ü	0.23	11
2-Hexanone		11	Ü	0.15	11
Tetrachloroethene		1.1	Ü	0.14	1.1
1,1,2,2-Tetrachloroe	thane	1.1	Ū	0.10	1.1
Toluene		1.1	Ū	0.16	1.1
Chlorobenzene		1.1	Ŭ	0.21	1.1
Ethylbenzene		1.1	Ü	0.19	1.1
Styrene		1.1	Ü	0.32	1.1
m&p-Xylene		2.3	Ū	0.68	2.3
o-Xylene		1.1	U	0.22	1.1
Freon TF		1.1	U	0.13	1.1
MTBE		1.1	U	0.13	1.1
Cyclohexane		1.1	Ü	0.15	1.1
1,2-Dibromoethane		1.1	Ū	0.17	1.1
1,3-Dichlorobenzen	e	0.42	Ĵ	0.18	1.1
1,4-Dichlorobenzen		1.9	-	0.13	1.1
1,2-Dichlorobenzene		0.39	J	0.11	1.1
Dichlorodifluorometh		1.1	Ü	0.25	1.1
1,2,4-Trichlorobenze		0.85	J	0.22	1.1
1,4-Dioxane	-	57	Ü	15	57
,,			-		

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

RIB-1(4-5)

Lab Sample ID:

460-59907-1

Client Matrix:

Solid

% Moisture: 16.1

Date Sampled: 07/22/2013 0855 Date Received: 07/23/2013 1550

	8	260B Volatile Organ	ic Compounds (G	C/MS)		
Analysis Method:	8260B	Analysis Batch:	460-174179	Instrumer	nt ID:	CVOAMS4
Prep Method:	5035	Prep Batch:	460-172288	Lab File I	D:	D35262.D
Dilution:	1.0			Initial We	ight/Volume:	5.205 g
Analysis Date:	08/02/2013 2106			Final Wei	ght/Volume:	5 mL
Prep Date:	07/24/2013 1348					
Analyte	DryWt Corrected: Y	Result (ug	/Kg) Qu	alifier	MDL	RL
1,2,3-Trichlorobenz	ene	1.1	U		0.18	1.1
,2-Dibromo-3-Chlo	propropane	1.1	U		0.50	1.1
Bromochlorometha	ne	1.1	U		0.13	1.1
sopropylbenzene		1.1	U		0.13	1.1
Methyl acetate		1.1	U		0.37	1.1
Methylcyclohexane		1.1	U		0.11	1.1
Surrogate		%Rec	Qua	alifier	Acceptan	ce Limits
1,2-Dichloroethane	-d4 (Surr)	109			70 - 130	
Toluene-d8 (Surr)		140	*		70 - 130	
Bromofluorobenzer	e	105			70 - 130	
Dibromofluorometh	ane (Surr)	122			70 - 130	

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID: TB0724

Lab Sample ID: 460-60086-5TB Date Sampled: 07/24/2013 0730

Client Matrix: Water Date Received: 07/25/2013 1700

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 460-173534 Instrument ID: CVOAMS13 Prep Method: Prep Batch: P73109.D 5030B N/A Lab File ID: Initial Weight/Volume: Dilution: 1.0 5 mL

Final Weight/Volume: 5 mL

Analysis Date: 07/31/2013 1302 Prep Date: 07/31/2013 1302

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloromethane	1.0	U	0.10	1.0
Bromomethane	1.0	U	0.18	1.0
Vinyl chloride	1.0	U	0.14	1.0
Chloroethane	1.0	U	0.17	1.0
Methylene Chloride	1.0	U	0.18	1.0
Acetone	5.0	U	2.7	5.0
Carbon disulfide	1.0	U	0.13	1.0
Frichlorofluoromethane	1.0	U	0.15	1.0
,1-Dichloroethene	1.0	U	0.090	1.0
,1-Dichloroethane	1.0	U	0.13	1.0
rans-1,2-Dichloroethene	1.0	U	0.13	1.0
is-1,2-Dichloroethene	1.0	U	0.18	1.0
Chloroform	1.0	U	0.080	1.0
-Butanone	5.0	U	2.3	5.0
,2-Dichloroethane	1.0	U	0.19	1.0
,1,1-Trichloroethane	1.0	U	0.060	1.0
Carbon tetrachloride	1.0	U	0.060	1.0
Benzene	1.0	U	0.080	1.0
Bromoform	1.0	U	0.19	1.0
Styrene	1.0	U	0.12	1.0
n&p-Xylene	2.0	U	0.25	2.0
-Xylene	1.0	U	0.13	1.0
Ethylbenzene	1.0	U	0.10	1.0
Chlorobenzene	1.0	U	0.11	1.0
Cyclohexane	1.0	U	0.16	1.0
sopropylbenzene	1.0	IJ	0.080	1.0
-Hexanone	5.0	U	0.50	5.0
MTBE	1.0	U	0.14	1.0
Freon TF	1.0	Ū	0.080	1.0
Methyl acetate	2.0	Ū	0.34	2.0
,4-Dioxane	50	Ū	36	50
richloroethene	1.0	Ü	0.090	1.0
oluene	1.0	Ū	0.15	1.0
rans-1,3-Dichloropropene	1.0	U	0.24	1.0
-Methyl-2-pentanone	5.0	υ	0.99	5.0
is-1,3-Dichloropropene	1.0	Ü	0.18	1.0
,2-Dichlorobenzene	1.0	ŭ	0.21	1.0
,3-Dichlorobenzene	1.0	Ü	0.14	1.0
,4-Dichlorobenzene	1.0	Ü	0.23	1.0
,2,4-Trichlorobenzene	1.0	Ü	0.34	1.0
,2,3-Trichlorobenzene	1.0	Ü	0.51	1.0
,2-Dichloropropane	1.0	Ŭ	0.090	1.0
Methylcyclohexane	1.0	Ü	0.14	1.0
Tetrachloroethene	1.0	Ü	0.10	1.0
,2-Dibromo-3-Chloropropane	1.0	Ú*	0.40	1.0
1,1,2,2-Tetrachloroethane	1.0	Ú	0.16	1.0

Client: Alprof Realty LLC Job Number: 460-59907-1

Client Sample ID:

TB0724

Lab Sample ID:

460-60086-5TB

Client Matrix:

Water

Date Sampled: 07/24/2013 0730 Date Received: 07/25/2013 1700

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8260B 5030B

1.0

Analysis Date: Prep Date:

Dilution:

07/31/2013 1302 07/31/2013 1302 Analysis Batch: Prep Batch:

460-173534

N/A

Instrument ID:

Lab File ID:

CVOAMS13 P73109.D

Initial Weight/Volume:

5 mL

Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
1,1,2-Trichloroethane	1.0	U	0.19	1.0	
Dibromochloromethane	1.0	U	0.20	1.0	
1,2-Dibromoethane	1.0	ีย	0.28	1.0	
Dichlorodifluoromethane	1.0	U	0.22	1.0	
Bromochloromethane	1.0	U	0.27	1.0	
Bromodichloromethane	1.0	U	0.12	1.0	
Surrogate	%Rec	Qualifier	fier Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)	115	70 ~ 130			
Toluene-d8 (Surr)	104	70 - 130			
Bromofluorobenzene	92	70 - 130			
Dibromofluoromethane (Surr)	99	70 - 130			

CVOAMS4

Client: Alprof Realty LLC Job Number: 460-59907-1

N/A

Analysis Batch:

Prep Batch:

Leach Batch:

Matrix Spike/ Method: 8260B Matrix Spike Duplicate Recovery Report - Batch: 460-172288 Preparation: 5035

Analysis Batch: 460-173471 MS Lab Sample ID: 460-59907-4 Client Matrix: Solid Prep Batch: Dilution: 1.0 Leach Batch: N/A 07/30/2013 2127

Analysis Date: 07/24/2013 1350 Prep Date:

Leach Date: N/A

MSD Lab Sample ID: 460-59907-4 Client Matrix: Solid Dilution: 1.0

07/30/2013 2151 Analysis Date: 07/24/2013 1350 Prep Date:

Leach Date: N/A 460-172288 D35152.D Lab File ID: Initial Weight/Volume: 5.566 g Final Weight/Volume: 5 mL

Instrument ID:

460-173471 Instrument ID: CVOAMS4 460-172288 Lab File ID: D35153.D Initial Weight/Volume: 6.608 g Final Weight/Volume: 5 mL

% Rec. MSD RPD **RPD Limit** Analyte MS Limit MS Qual MSD Qual Chloromethane 83 84 50 - 151 15 30 92 100 54 - 142 9 30 Bromomethane 67 - 133 Vinyl chloride 82 87 12 30 Chloroethane 90 92 56 - 146 15 30 90 Methylene Chloride 86 74 - 137 19 30 Acetone 151 96 27 - 164 61 30 Carbon disulfide 57 73 72 - 128 7 30 103 61 - 139 30 Trichlorofluoromethane 99 13 1,1-Dichloroethene 78 79 71 - 126 16 30 103 96 76 - 125 24 30 1,1-Dichloroethane 12 98 103 75 - 122 30 trans-1,2-Dichloroethene 97 97 80 - 120 17 30 cis-1,2-Dichloroethene 100 93 77 - 120 25 30 Chloroform 76 - 118 1,2-Dichloroethane 89 86 20 30 80 77 - 117 18 30 2-Butanone 81 78 - 117 21 30 103 100 1,1,1-Trichloroethane 30 Carbon tetrachloride 107 105 79 - 118 19 79 - 119 3 30 Bromodichloromethane 75 87 30 1,2-Dichloropropane 66 90 82 - 122 15 cis-1,3-Dichloropropene 105 97 80 - 123 25 30 143 96 79 - 119 55 30 Trichloroethene 68 - 120 30 Dibromochloromethane 96 119 5 1,1,2-Trichloroethane 72 107 73 - 118 23 30 134 116 77 - 117 32 30 Benzene 67 - 121 30 67 90 11 trans-1,3-Dichloropropene 107 120 59 - 125 6 30 Bromoform 55 95 68 - 120 38 30 4-Methyl-2-pentanone 30 49 47 70 - 122 21 2-Hexanone 100 118 80 - 120 1 30 Tetrachloroethene 2 73 79 - 122 189 30 1,1,2,2-Tetrachloroethane 79 108 75 - 115 30 Toluene 14 76 72 80 - 120 22 30 Chlorobenzene 30 Ethylbenzene 78 78 81 - 121 17

Client: Alprof Realty LLC Job Number: 460-59907-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 460-172288 Preparation: 5035

MS Lab Sample ID: 460-59907-4 Analysis Batch: 460-173471 Instrument ID: CVOAMS4 Client Matrix: 460-172288 Lab File ID: D35152.D Solid Prep Batch: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5.566 g 07/30/2013 2127 Analysis Date: Final Weight/Volume: 5 mL 07/24/2013 1350 Prep Date: Leach Date: N/A MSD Lab Sample ID: 460-59907-4 Analysis Batch: 460-173471 Instrument ID: CVOAMS4 Client Matrix: Solid Prep Batch: 460-172288 Lab File ID: D35153.D Dilution: Leach Batch: 1.0 N/A Initial Weight/Volume: 6.608 g 07/30/2013 2151 Analysis Date: Final Weight/Volume: 5 mL

Prep Date: 07/24/2013 1350

Leach Date: N/A

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Styrene	75	100	82 - 122	11	30	*	
m&p-Xylene	79	83	81 - 121	11	30	*	
o-Xylene	85	109	82 - 122	8	30		
Freon TF	77	77	73 - 123	18	30		
MTBE	104	97	78 - 120	24	30		
Cyclohexane	87	90	80 - 121	14	30		
1,2-Dibromoethane	83	95	75 - 117	3	30		
1,3-Dichlorobenzene	70	62	80 - 120	30	. 30	*	*
1,4-Dichlorobenzene	66	57	80 - 120	30	30	*	*
1,2-Dichlorobenzene	71	67	80 - 120	23	30	*	•
Dichlorodifluoromethane	112	113	52 - 144	16	30		
1,2,4-Trichlorobenzene	39	44	80 - 120	7	30	*	*
1,4-Dioxane	107	86	69 - 131	39	30		*
1,2,3-Trichlorobenzene	40	4 5	75 - 121	6	30	*	*
1,2-Dibromo-3-Chloropropane	87	80	74 - 118	25	30		
Bromochloromethane	101	102	74 - 125	16	30		
Isopropylbenzene	84	105	65 - 129	6	30		
Methyl acetate	19	81	73 - 137	111	30	*	*
Methylcyclohexane	75	92	78 - 118	3	30	*	
Surrogate		MS % Rec	MSD 9	% Rec	Aco	eptance Limit	S
1,2-Dichloroethane-d4 (Surr)		99	98		7	70 - 130	
Toluene-d8 (Surr)		122	134	*	7	70 - 130	
Bromofluorobenzene		94	101		7	70 - 130	

Client: Alprof Realty LLC Job Number: 460-59907-1

Units: ug/Kg

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 460-172288

Method: 8260B Preparation: 5035

MS Lab Sample ID:

460-59907-4

460-59907-4

Client Matrix:

Solid

MSD Lab Sample ID: Client Matrix:

Solid

Dilution:

1.0

Dilution:

1.0

Analysis Date:

07/30/2013 2127

Analysis Date: Prep Date: 07/30/2013 2151 07/24/2013 1350

Prep Date:

07/24/2013 1350

Leach Date:

N/A

Leach Date:

N/A

	Sample		MS Spike	MSD Spike	MS		MSD	
Analyte	Result/C	lual	Amount	Amount	Result/Q	ual	Result/Q	ual
Chloromethane	1.3	U	19.3	16.3	16.0		13.7	
Bromomethane	1.3	Ü	19.3	16.3	17.8		16.2	
Vinyl chloride	1.3	Ū	19.3	16.3	15.9		14.1	
Chloroethane	1.3	Ū	19.3	16.3	17.4		15.0	
Methylene Chloride	2.5	_	19.3	16.3	19.8		16.4	
Acetone	13	U	96.6	81.4	146		78.2	,
Carbon disulfide	1.3	Ü	19.3	16.3	11.1	*	11.9	
Trichlorofluoromethane	1.3	U	19.3	16.3	19.1		16.8	
1.1-Dichloroethene	1.3	Ü	19.3	16.3	15.1		12.8	
1,1-Dichloroethane	1.3	Ü	19.3	16.3	19.9		15.7	
trans-1,2-Dichloroethene	1.3	Ū	19.3	16.3	19.0		16.8	
cis-1,2-Dichloroethene	1.3	Ü	19.3	16.3	18.7		15.8	
Chloroform	1.3	Ü	19.3	16.3	19.4		15.1	
1,2-Dichloroethane	1.3	Ū	19.3	16.3	17.1		14.0	
2-Butanone	13	Ü	96.6	81.4	77.9		64.8	
1.1.1-Trichloroethane	1.3	Ü	19.3	16.3	20.0		16.2	
Carbon tetrachloride	1.3	Ü	19.3	16.3	20.7		17.1	
Bromodichloromethane	1.3	Ü	19.3	16.3	14.6	*	14.2	
1,2-Dichloropropane	1.3	Ũ	19.3	16.3	12.7	*	14.7	
cis-1,3-Dichloropropene	1.3	Ü	19.3	16.3	20.3		15.9	
Trichloroethene	1.3	Ü	19.3	16.3	27.6	*	15.6	,
Dibromochloromethane	1.3	Ŭ	19.3	16.3	18.5		19.4	
1,1,2-Trichloroethane	1.3	Ü	19.3	16.3	13.9	*	17.5	
Benzene	1.3	Ü	19.3	16.3	25.9	*	18.9	,
trans-1,3-Dichloropropene	1.3	Ŭ	19.3	16.3	13.0		14.6	
Bromoform	1.3	Ü	19.3	16.3	20.6		19.5	
4-Methyl-2-pentanone	13	Ü	96.6	81.4	53.0	*	77.6	,
2-Hexanone	13	Ũ	96.6	81.4	47.3	*	38.3	,
Tetrachloroethene	1.3	υ	19.3	16.3	19.3		19.2	
1,1,2,2-Tetrachloroethane	1.3	Ŭ	19.3	16.3	0.344	J *	11.9	,
Toluene	1.3	Ŭ	19.3	16.3	15.2	ŭ	17.5	
Chlorobenzene	1.3	Ü	19.3	16.3	14.8	*	11.8	,
Ethylbenzene	1.3	Ü	19.3	16.3	15.1	*	12.7	,
Styrene	1.3	Ŭ	19.3	16.3	14.5	*	16.2	
m&p-Xylene	2.6	Ü	19.3	16.3	15.2	*	13.6	
o-Xylene	1.3	Ŭ	19.3	16.3	16.4		17.7	
Freon TF	1.3	Ű	19.3	16.3	14.9		12.5	
MTBE	1.3	U	19.3	16.3	20.0		15.7	
Cyclohexane	1.3	Ü	19.3	16.3	16.7		14.6	
1,2-Dibromoethane	1.3	U	19.3	16.3	16.0		15.5	
1,3-Dichlorobenzene	1.3	U	19.3	16.3	13.5	*	10.0	
1,4-Dichlorobenzene	1.3	U	19.3	16.3	12.7	*	9.34	
1,2-Dichlorobenzene	1.3	U	19.3	16.3	13.6	*	10.8	

Client: Alprof Realty LLC Job Number: 460-59907-1

Units: ug/Kg

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 460-172288 Method: 8260B Preparation: 5035

MS Lab Sample ID:

460-59907-4

MSD Lab Sample ID:

460-59907-4

Client Matrix:

Solid

Client Matrix:

Solid

Dilution:

1.0

Dilution:

1.0

Analysis Date:

07/30/2013 2127

Analysis Date:

07/30/2013 2151

Prep Date: Leach Date:

07/24/2013 1350 N/A

Prep Date:

07/24/2013 1350

Leach Date:

N/A

Analyte	Sample Result/G	Qual	MS Spike Amount	MSD Spike Amount	MS Result/0	Qual	MSD Result/Q	lual
Dichlorodifluoromethane	1.3	U	19.3	16.3	21.7		18.4	
1,2,4-Trichlorobenzene	1.3	U	19.3	16.3	7.63	*	7.12	*
1,4-Dioxane	66	U	387	326	412		279	*
1,2,3-Trichlorobenzene	1.3	U	19.3	16.3	7.71	*	7.26	*
1,2-Dibromo-3-Chloropropane	1.3	U	19.3	16.3	16.8		13.0	
Bromochloromethane	1.3	U	19.3	16.3	19.5		16.5	
Isopropylbenzene	1.3	U	19.3	16.3	16.2		17.1	
Methyl acetate	1.3	U	96.6	81.4	18.8	*	66.1	*
Methylcyclohexane	1.3	U	19.3	16.3	14.6	*	15.0	

Client: Alprof Realty LLC Job Number: 460-59907-1

Matrix Spike/ Method: 8270C
Matrix Spike Duplicate Recovery Report - Batch: 460-173129 Preparation: 3541

MS Lab Sample ID	: 460-59907-4	Analysis Batch:	460-173298	Instrument ID:	CBNAMS10
Client Matrix:	.Solid	Prep Batch:	460-173129	Lab File ID:	p38626.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	15.03 g
Analysis Date:	07/30/2013 1012			Final Weight/Volume:	1 mL
Prep Date:	07/29/2013 0840			Injection Volume:	1 uL
Leach Date:	N/A				

MSD·Lab Sample ID: 460-59907-4 Analysis Batch: 460-173298 Instrument ID: CBNAMS10 Client Matrix: Solid Prep Batch: 460-173129 Lab File ID: p38627.D Initial Weight/Volume: Dilution: 1.0 Leach Batch: N/A 15.02 g

 Dilution:
 1.0
 Leach Batch:
 N/A
 Initial Weight/Volume:
 15.02 g

 Analysis Date:
 07/30/2013 1037
 Final Weight/Volume:
 1 mL

 Prep Date:
 07/29/2013 0840
 Injection Volume:
 1 uL

 Leach Date:
 N/A

% Rec. RPD Analyte MS MSD Limit **RPD Limit** MS Qual MSD Qual 74 78 44 - 101 5 30 Bis(2-chloroethyl)ether 47 - 84 30 1,3-Dichlorobenzene 72 76 5 1,4-Dichlorobenzene 74 78 47 - 85 6 30 1,2-Dichlorobenzene 83 87 48 - 87 5 30 86 84 42 - 107 2 30 N-Nitrosodi-n-propylamine Hexachloroethane 72 74 45 - 90 3 30 90 99 42 - 106 9 30 Nitrobenzene 30 95 95 48 - 97 Isophorone 1 Bis(2-chloroethoxy)methane 90 95 51 - 100 6 30 84 88 48 - 94 30 1,2,4-Trichlorobenzene 5 53 - 94 6 30 Naphthalene 95 100 54 56 10 - 96 3 30 4-Chloroaniline 83 91 45 - 98 9 30 Hexachlorobutadiene 2-Methylnaphthalene 92 93 51 - 98 2 30 5 24 - 98 NC 30 U * Hexachlorocyclopentadiene 0 83 86 30 51 - 102 3 2-Chloronaphthalene 2-Nitroaniline 82 86 51 - 109 4 30 2 30 Dimethyl phthalate 107 109 52 - 112 91 95 51 - 103 5 30 Acenaphthylene 2,6-Dinitrotoluene 95 95 51 - 115 30 76 80 32 - 104 6 30 3-Nitroaniline Acenaphthene 96 97 46 - 100 1 30 Dibenzofuran 97 98 52 - 106 2 30 2,4-Dinitrotoluene 93 92 53 - 110 0 30 96 97 52 ~ 114 30 Diethyl phthalate 93 96 50 - 106 30 4-Chlorophenyl phenyl ether 93 96 51 - 108 2 30 Fluorene 30 4-Nitroaniline 81 90 45 - 106 11 118 118 49 - 106 30 N-Nitrosodiphenylamine 1 97 44 - 102 30 4-Bromophenyl phenyl ether 96 1 43 - 104 30 Hexachlorobenzene 92 93 1 93 48 - 108 30 Phenanthrene 88 5 30 Anthracene 90 90 50 - 107 0

Job Number: 460-59907-1 Client: Alprof Realty LLC

Method: 8270C Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 460-173129 Preparation: 3541

MS Lab Sample iD: 460-59907-4 Client Matrix: Solid Dilution: 1.0 Analysis Date: 07/30/2013 1012 Prep Date: 07/29/2013 0840 Leach Date: N/A	Pre	llysis Batch: p Batch: ch Batch;	460-173298 460-173129 N/A		ID: eight/Volume: ight/Volume:	CBNAMS1 p38626.D 15.03 g 1 mL 1 ul.	0
MSD Lab Sample ID: 460-59907-4 Client Matrix: Solid Dilution: 1.0 Analysis Date: 07/30/2013 1037 Prep Date: 07/29/2013 0840 Leach Date: N/A	Pre	llysis Batch: p Batch: ch Batch:	460-173298 460-173129 N/A		ID: eight/Volume: ight/Volume:	CBNAMS1 p38627.D 15.02 g 1 mL 1 ut.	0
	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Carbazole Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo[a]anthracene Chrysene Bis(2-ethylhexyl) phthalate Di-n-octyl phthalate Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Benzo[g,h,i]perylene bis (2-chloroisopropyl) ether	96 106 84 61 59 79 87 86 92 69 70 82 83 127 128 121 78	99 111 95 62 61 81 92 90 94 65 80 76 88 125 127 119 81	49 - 104 50 - 108 49 - 108 49 - 116 49 - 117 24 - 105 46 - 112 45 - 114 49 - 119 40 - 106 33 - 96 35 - 115 36 - 89 43 - 109 43 - 107 43 - 106 45 - 102	4 4 10 1 2 3 5 4 2 5 10 7 5 2 1 2 4	30 30 30 30 30 30 30 30 30 30 30 30 30 3	* *	* * *
Surrogate 2-Fluorobiphenyl Nitrobenzene-d5 Terphenyl-d14		MS % Rec 89 82 70	MSD 9 92 86 66	6 Rec		eptance Limit 40 - 109 38 - 105 16 - 151	s

Client: Alprof Realty LLC Job Number: 460-59907-1

Matrix Spike/ Method: 8270C Matrix Spike Duplicate Recovery Report - Batch: 460-173129 Preparation: 3541

Units: ug/Kg

MS Lab Sample ID:

460-59907-4

Client Matrix:

MSD Lab Sample ID:

460-59907-4

Solid

Client Matrix:

Solid

Dilution:

1.0

Dilution:

1.0

Analysis Date:

Analysis Date:

07/30/2013 1037

Prep Date:

07/30/2013 1012 07/29/2013 0840

Prep Date:

07/29/2013 0840

Leach Date:

N/A

Leach Date: N/A

	Sample		MS Spike	MSD Spike	MS	MSD
Analyte	Result/Q	ual	Amount	Amount	Result/Qual	Result/Qual
Bis(2-chloroethyl)ether	35	U	3580	3580	2660	2810
1,3-Dichlorobenzene	350	U	3580	3580	2580	2710
1,4-Dichlorobenzene	350	U	3580	3580	2630	2780
1,2-Dichlorobenzene	350	U	3580	3580	2980	3120
N-Nitrosodi-n-propylamine	35	U	3580	3580	3090	3020
Hexachloroethane	35	U	3580	3580	2590	2660
Nitrobenzene	35	U	3580	3580	3230	3540
{sophorone	350	U	3580	3580	3390	3410
Bis(2-chloroethoxy)methane	350	U	3580	3580	3210	3420
1,2,4-Trichlorobenzene	35	U	3580	3580	2990	3150
Naphthalene	350	U	3580	3580	3380 *	3590 *
4-Chloroaniline	350	U	3580	3580	1940	1990
Hexachlorobutadiene	72	U	3580	3580	2960	3240
2-Methylnaphthalene	350	U	3580	3580	3300	3350
Hexachlorocyclopentadiene	350	U	3580	3580	169 J*	350 U *
2-Chloronaphthalene	350	U	3580	3580	2980	3070
2-Nitroaniline	720	U	3580	3580	2950	3070
Dimethyl phthalate	350	บ	3580	3580	3820	3890
Acenaphthylene	350	Ū	3580	3580	3240	3400
2,6-Dinitrotoluene	72	U	3580	3580	3410	3390
3-Nitroaniline	720	U	3580	3580	2700	2880
Acenaphthene	350	Ü	3580	3580	3430	3470
Dibenzofuran	350	Ü	3580	3580	3450	3510
2,4-Dinitrotoluene	72	Ü	3580	3580	3320	3310
Diethyl phthalate	350	Ü	3580	3580	3440	3480
4-Chlorophenyl phenyl ether	350	Ũ	3580	3580	3310	3450
Fluorene	350	Ü	3580	3580	3340	3420
4-Nitroaniline	720	υ	3580	3580	2900	3230
N-Nitrosodiphenylamine	350	Ü	3580	3580	4210 *	4240 *
4-Bromophenyl phenyl ether	350	Ü	3580	3580	3440	3460
Hexachlorobenzene	35	Ü	3580	3580	3280	3310
Phenanthrene	440	·	3580	3580	3580	3770
Anthracene	110	J	3580	3580	3340	3350
Carbazole	350	Ŭ	3580	3580	3420	3560
Di-n-butyl phthalate	350	Ŭ	3580	3580	3800	3960 *
Fluoranthene	1100	J	3580	3580	4060	4480
Pyrene	840		3580	3580	3020	3050
Butyl benzyl phthalate	1300		3580	3580	3400	3450
3,3'-Dichlorobenzidine	720	υ	3580	3580	2820	2890
Benzo[a]anthracene	600	Ü	3580	3580	3700	3900
Chrysene	670		3580	3580	3730	3890
Bis(2-ethylhexyl) phthalate	160	J	3580	3580	3450	3510
	350	U	3580	3580	2460	2330
Di-n-octyl phthalate	350	U	3000	2200	2400	2330

Job Number: 460-59907-1 Client: Alprof Realty LLC

Units: ug/Kg

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 460-173129 Method: 8270C Preparation: 3541

MS Lab Sample ID:

460-59907-4

Client Matrix:

MSD Lab Sample ID:

460-59907-4

Solid

Client Matrix:

Solid

Dilution:

1.0

Dilution:

1.0

Analysis Date:

07/30/2013 1012

Analysis Date:

07/30/2013 1037 07/29/2013 0840

Prep Date:

07/29/2013 0840

Prep Date: Leach Date:

N/A

Leach Date: N/A

Analyte	Sample Result/G	tual	MS Spike Amount	MSD Spike Amount	MS Result/0	Qual	MSD Result/Q	ual
Benzo[b]fluoranthene	840		3580	3580	3330		3690	
Benzo[k]fluoranthene	310		3580	3580	3240		3030	
Benzo[a]pyrene	680		3580	3580	3660		3840	
Indeno[1,2,3-cd]pyrene	640		3580	3580	5200	*	5110	*
Dibenz(a,h)anthracene	140		3580	3580	4740	*	4680	*
Benzo[g,h,i]perylene	670		3580	3580	5010	*	4920	*
bis (2-chloroisopropyl) ether	350	U	3580	3580	2790		2910	

Client: Alprof Realty LLC Job Number: 460-59907-1

Matrix Spike - Batch: 460-172187

Method: 6010B Preparation: 3050B

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	460-59907-4 Solid 4.0 07/24/2013 1850 07/24/2013 0809 N/A	Analysis (Prep Bato Leach Ba Units:	ch:	460-172438 460-172187 N/A mg/Kg	Instrument ID Lab File ID: Initial Weight/ Final Weight/	Volume:	ICP5 07242013.asc 1.08 g 50 mL	
Analyte		Sample Re	sult/Qual	Spike Amount	Result	% Rec.	Limit	Qual
Aluminum		4980		199	5832	430	75 - 125	4
Antimony		2.0	U	49.8	32.23	65	75 - 125	N
Arsenic		5.5		199	187.2	91	75 - 125	
Barium		41.7		199	250.4	105	75 - 125	
Beryllium		0.18	J	4.98	5.09	99	75 - 125	
Cadmium		0.23	J	4.98	5.02	96	75 - 125	
Calcium		9320		1990	13480	209	75 - 125	4
Chromium		46.5		19.9	57.67	56	75 - 125	N
Cobalt		5.2	J	49.8	55.16	100	75 - 125	
Copper		116		24.9	123.4	31	75 - 125	4
Iron		11100		99.6	9988	-1140	75 - 125	4
Lead		87.4		49.8	130.0	86	75 - 125	
Magnesium		2450		1990	4844	120	75 - 125	
Manganese		159		49.8	211.7	105	75 - 125	
Nickel		33.9		49.8	79.92	92	75 - 125	
Potassium		542	J	1990	2466	97	75 - 125	
Selenium		2.0	U	199	183.0	92	75 - 125	
Silver		2.0	U	4.98	4.30	86	75 - 125	
Sodium		293	J	1990	2301	101	75 - 125	
Thallium		2.0	υ	199	202.0	101	75 - 125	
Vanadium		15.1		49.8	63.54	97	75 - 125	
Zinc		148		49.8	254.6	214	75 - 125	Ν

Post Digestion Spike - Batch: 460-172187

460-59907-4

Lab Sample ID:

Method: 6010B Preparation: 3050B

ICP5

Instrument ID:

Client Matrix: Dilution: Analysis Date: Prep Date:	Solid 4.0 07/24/2013 1854 07/24/2013 0809	Prep Batch: Leach Batch Units:	: N	60-172187 I/A ng/Kg	Lab File ID: Initial Weight Final Weight/		07242013.asc 1.05 g 50 mL	
Leach Date:	N/A							
Analyte		Sample Resul	t/Qual	Spike Amount	Result	% Rec.	Limit	Qual
Aluminum		4980		410	5380	NC	75 - 125	
Arsenic		5.5		410	387.6	93	75 - 125	
Barium		41.7		410	451.0	100	75 - 125	
Beryllium		0.18	J	10.2	10.37	99	75 - 125	
Calcium		9320		4100	13470	101	75 - 125	

460-172438

Analysis Batch:

Client: Alprof Realty LLC Job Number: 460-59907-1

Post Digestion Spike - Batch: 460-172187

Method: 6010B Preparation: 3050B

Lab Sample ID:	460-59907-4	Analysis Batch:	460-172438	Instrument ID:	ICP5
Client Matrix:	Solid	Prep Batch:	460-172187	Lab File ID:	07242013.asc
Dilution:	4.0	Leach Batch:	N/A	Initial Weight/Volume:	1.05 g
Analysis Date:	07/24/2013 1854	Units:	mg/Kg	Final Weight/Volume:	50 mL
Prep Date:	07/24/2013 0809				

Leach Date: N/A

Analyte	Sample Res	ult/Qual	Spike Amount	Result	% Rec.	Limit	Qual
Cadmium	0.23	J	10.2	10.20	97	75 - 125	
Cobalt	5.2	J	102	106.0	98	75 - 125	
Chromium	46.5		41.0	87.16	99	75 - 125	
Copper	116		51.2	164.5	95	75 - 125	
Iron	11100		205	11250	NC	75 - 125	
Magnesium	2450		4100	6405	96	75 - 125	
Manganese	159		102	262.7	101	75 - 125	
Nickel	33.9		102	135.8	100	75 - 125	
Potassium	542	J	4100	4565	98	75 - 125	
Lead	87.4		102	188.6	99	75 - 125	
Silver	2.0	U	10.2	8.76	86	75 - 125	
Antimony	2.0	U	102	88.08	86	75 - 125	
Selenium	2.0	U	410	380.9	93	75 - 125	
Sodium	293	J	4100	4507	103	75 - 125	
Thallium	2.0	U	410	416.5	102	75 - 125	
Vanadium	15.1		102	113.9	96	75 - 125	
Zinc	148		102	246.7	97	75 - 125	

ICP5

Client: Alprof Realty LLC Job Number: 460-59907-1

460-172438

Analysis Batch:

Duplicate - Batch: 460-172187

460-59907-4

Lab Sample ID:

Method: 6010B Preparation: 3050B

Instrument ID:

Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	Solid 4.0 07/24/2013 1825 07/24/2013 0809 N/A	Prep Batch: Leach Batch: Units:	460-172187 N/A mg/Kg	,	Lab File ID: Initial Weigh Final Weigh		07242013.asc 1.06 g 50 mL	
Analyte		Sample Result/0	Qual	Result		RPD	Limit	Qual
Aluminum		4980		5021		0.9	20	
Antimony		2.0	U	2.0		NC	20	U
Arsenic		5.5		4.72		16	20	
Barium		41.7		44.16		6	20	
Beryllium		0.18	J	0.157		13	20	J
Cadmium		0.23	J	0.219		7	20	J
Calcíum		9320		15000		47	20	*
Chromium		46.5		35.88		26	20	*
Cobalt		5.2	J	3.71		33	20	J
Copper		116		101.8		13	20	
Iron		11100		9677		14	20	
Lead		87.4		76.39		13	20	
Magnesium		2450		3326		30	20	
Manganese		159		163.8		3	20	
Nickel		33.9		29.02		15	20	
Potassium		542	J	482.8		12	20	J
Selenium		2.0	U	2.0		NC	20	U
Silver		2.0	U	2.0		NC	20	U
Sodium		293	J	273.4		7	20	J
Thallium		2.0	U	2.0		NC	20	U
Vanadium		15.1		15.51		3	20	
Zinc		148		111.5		28	20	*

Serial Dilution - Batch: 460-172187

Method: 6010B Preparation: 3050B

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	460-59907-4 Solid 20 07/24/2013 1847 07/24/2013 0809 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-172438 460-172187 N/A mg/Kg		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	ICP5 07242013.asc 1.05 g 50 mL	
Analyte		Sample Result/	Qual	Result	%Diff	Limit	Qual
Aluminum		4980		4920	1.1	10	
Arsenic		5.5		5.80	NC	10	
Barium		41.7		41.19	NC	10	J
Beryllium		0.18	J	2.0	NC	10	υ
Calcium		9320		9200	1.3	10	
Cadmium		0.23	J	5.1	NC	10	U
Cobalt		5.2	J	5.44	NC	10	J

Client: Alprof Realty LLC Job Number: 460-59907-1

Serial Dilution - Batch: 460-172187

Method: 6010B Preparation: 3050B

Lab Sample ID: Client Matrix:

460-59907-4 Solid

Analysis Batch: Prep Batch:

460-172438 460-172187

Leach Batch: N/A Units:

mg/Kg

Instrument ID:

ICP5

Lab File ID:

07242013.asc

Initial Weight/Volume: Final Weight/Volume:

1.05 g 50 mL

Analysis Date: Prep Date:

Dilution:

07/24/2013 1847 07/24/2013 0809

Leach Date:

N/A

20

Analyte	Sample Resu	lt/Qual	Result	%Diff	Limit	Qual
Chromium	46.5		46.39	0.22	10	
Copper	116		113.4	2.0	10	
Iron	11100		11180	0.48	10	
Magnesium	2450		2484	NC	10	J
Manganese	159		159.7	0.15	10	
Nickel	33.9		33.31	NC	10	J
Potassium	542	J	5120	NC	10	U
Lead	87.4		87.97	0.69	10	
Silver	2.0	U	10.2	NC	10	U
Antimony	2.0	U	10.2	NC	10	U
Selenium	2.0	U	10.2	NC	10	U
Sodium	293	J	5120	NC	10	U
Thallium	2.0	Ų	10.2	NC	10	Ų
Vanadium	15.1		14.68	NC	10	J
Zinc	148		149.1	0.83	10	

Client: Alprof Realty LLC Job Number: 460-59907-1

Method Blank - Batch: 460-173716

Method: 8260B Preparation: N/A

Lab Sample ID: Client Matrix:

MB 460-173716/7 Solid

Analysis Batch: Prep Batch:

460-173716 N/A

Instrument ID: Lab File ID:

CVOAMS9 K15845.D

Dilution: Analysis Date: 1.0 07/31/2013 2007 Leach Batch: Units:

N/A ug/Kg Initial Weight/Volume: Final Weight/Volume:

5 g 5 mL

Prep Date:

N/A

Leach Date: N/A

Chloromethane	Analyte	Result	Qual	MDL	RL
Viryl chloride 1.0 U 0.34 1.0 Chloroethane 1.0 U 0.33 1.0 Methylene Chloride 1.0 U 0.15 1.0 Acctone 2.44 J 1.7 10 Carbon disulfide 1.0 U 0.15 1.0 Trichlorofthoromethane 1.0 U 0.16 1.0 1,1-Dichloroethane 1.0 U 0.11 1.0 1,1-Dichloroethane 1.0 U 0.11 1.0 cs1-2,2-Dichloroethane 1.0 U 0.11 1.0 cs1-2,2-Dichloroethane 1.0 U 0.13 1.0 cs1-2,2-Dichloroethane 1.0 U 0.24 1.0 1,2-Dichloroethane 1.0 U 0.63 1.0 2-Butanone 1.0 U 0.63 1.0 2-Butanone 1.0 U 0.63 1.0 1,1-1-Tichloroethane 1.0 U 0.15 1.0 </td <td>Chloromethane</td> <td>1.0</td> <td>U</td> <td>0.16</td> <td>1.0</td>	Chloromethane	1.0	U	0.16	1.0
Chicroethane	Bromomethane	1.0	U	0.43	1.0
Methylene Chloride 1.0 U 0.15 1.0 Acetone 2.44 J 1.7 10 Carbon disulfide 1.0 U 0.15 1.0 Trichloroethene 1.0 U 0.19 1.0 1,1-Dichloroethene 1.0 U 0.11 1.0 1,1-Dichloroethene 1.0 U 0.13 1.0 cis-1,2-Dichloroethene 1.0 U 0.11 1.0 cis-1,2-Dichloroethene 1.0 U 0.11 1.0 Chloroform 1.0 U 0.18 1.0 L2-Dichloroethane 1.0 U 0.63 1.0 2-Bulanone 1.0 U 0.63 1.0 1,1,1-Trichloroethane 1.0 U 0.13 1.0 2-Bulanone 1.0 U 0.15 1.0 Berzene 1.0 U 0.15 1.0 Berzene 1.0 U 0.15 1.0 Berzen	Vinyl chloride	1.0	U	0.34	1.0
Acatone					
Carbon disulfide 1.0 U 0.15 1.0 Trichlorofluoromethane 1.0 U 0.16 1.0 1,1-Dichloroethane 1.0 U 0.11 1.0 1,1-Dichloroethane 1.0 U 0.11 1.0 cara-1,2-Dichloroethene 1.0 U 0.11 1.0 cis-1,2-Dichloroethane 1.0 U 0.18 1.0 Chloroform 1.0 U 0.18 1.0 1,2-Dichloroethane 1.0 U 0.63 1.0 1,2-Dichloroethane 1.0 U 0.63 1.0 2-Butanone 1.0 U 0.63 1.0 1,1,1-Trichloroethane 1.0 U 0.15 1.0 Benzane 1.0 U 0.15 1.0 Berzane 1.0 U 0.15 1.0 Berzane 1.0 U 0.17 1.0 Tokinoroethane 1.0 U 0.12 1.0	A CONTRACTOR OF THE PROPERTY O				
Trichlorofluoromethane 1.0 U 0.16 1.0 1,1-Dichloroethane 1.0 U 0.19 1.0 1,1-Dichloroethane 1.0 U 0.13 1.0 cis-1,2-Dichloroethane 1.0 U 0.11 1.0 Chloroform 1.0 U 0.24 1.0 1,2-Dichloroethane 1.0 U 0.83 1.0 Chloroform 1.0 U 0.63 1.0 1,1-Trichloroethane 1.0 U 0.63 1.0 Carbon tetrachloride 1.0 U 0.13 1.0 Carbon tetrachloride 1.0 U 0.15 1.0 Bernzene 1.0 U 0.15 1.0 Bernzene 1.0 U 0.15 1.0 Bernzene 1.0 U 0.15 1.0 Carbon tetrachloride 1.0 U 0.15 1.0 Bernzene 1.0 U 0.15 1.0					
1,1-Dichloroethane 1.0 U 0,19 1.0 1,1-Dichloroethane 1.0 U 0,11 1.0 cis-1,2-Dichloroethene 1.0 U 0,11 1.0 cis-1,2-Dichloroethene 1.0 U 0,11 1.0 Chloroform 1.0 U 0,24 1.0 1,2-Dichloroethane 1.0 U 0,63 10 1,1,1-Tichloroethane 1.0 U 0,63 10 2-Butanone 1.0 U 0,13 1,0 Carbon tetrachloride 1.0 U 0,15 1,0 Berzsene 1.0 U 0,15 1,0 Bromoform 1.0 U 0,17 1,0 2-Hexanone 1.0 U 0,13 10 Trichloroethene 1.0 U 0,13 10 Toluene 1.0 U 0,12 1.0 Tolkene 1.0 U 0,14 1.0 Chlorobenzene 1.0 U 0,18 1.0 Tolkene 1.0			-		
1,1-Dichloroethane 1.0 U 0.11 1.0 trans-1,2-Dichloroethene 1.0 U 0.13 1.0 dis-1,2-Dichloroethene 1.0 U 0.11 1.0 Chloroform 1.0 U 0.24 1.0 1,2-Dichloroethane 1.0 U 0.63 10 1,1-Trichloroethane 1.0 U 0.63 10 1,1,1-Trichloroethane 1.0 U 0.13 1.0 Carbon tetrachloride 1.0 U 0.15 1.0 Bernzene 1.0 U 0.15 1.0 Bernzene 1.0 U 0.15 1.0 Stronoform 1.0 U 0.13 10 2-Hexanone 1.0 U 0.13 10 Trichloroethene 1.0 U 0.13 10 Trichloroethene 1.0 U 0.14 1.0 Chlorobenzene 1.0 U 0.14 1.0 Chlorobenzene 1.0 U 0.14 1.0 Ethylbenzene <td></td> <td></td> <td></td> <td></td> <td></td>					
trans-1,2-Dichloroethene 1,0 U 0,13 1,0 cls-1,2-Dichloroethene 1,0 U 0,14 1,0 Chloroform 1,0 U 0,24 1,0 1,2-Dichloroethane 1,0 U 0,18 1,0 2-Butanone 1,0 U 0,63 10 1,1,1-Trichloroethane 1,0 U 0,13 1,0 Carbon tetrachloride 1,0 U 0,15 1,0 Benzene 1,0 U 0,15 1,0 Bromoform 1,0 U 0,15 1,0 2-Hexanone 1,0 U 0,13 1,0 1-Chloroethene 1,0 U 0,13 1,0 1-Chlorobenzene 1,0 U 0,14 1,0 Chlorobenzene 1,0 U 0,18 1,0 Itans-1,3-Dichloropropene 1,0 U 0,13 1,0 Ethylbenzene 1,0 U 0,17 1,0	•				
cis-1,2-Dichloroethene 1.0 U 0.11 1.0 Chloroform 1.0 U 0.24 1.0 1,2-Dichloroethane 1.0 U 0.63 10 2-Butanone 1.0 U 0.63 10 1,1,1-Trichloroethane 1.0 U 0.13 1.0 Carbon tetrachloride 1.0 U 0.15 1.0 Benzene 1.0 U 0.15 1.0 Bromoform 1.0 U 0.15 1.0 Shazene 1.0 U 0.17 1.0 Shazene 1.0 U 0.17 1.0 Shazene 1.0 U 0.12 1.0 Trichloroethene 1.0 U 0.12 1.0 Toluene 1.0 U 0.12 1.0 Trichloroethene 1.0 U 0.14 1.0 Chloroparzene 1.0 U 0.10 1.0 Ethylberzene 1.0 <td>,</td> <td></td> <td></td> <td></td> <td></td>	,				
Chloroform 1.0 U 0.24 1.0 1,2-Dichloroethane 1.0 U 0.83 1.0 2-Butanone 10 U 0.63 10 1,1,1-Trichloroethane 1.0 U 0.13 1.0 Carbon tetrachloride 1.0 U 0.15 1.0 Benzene 1.0 U 0.15 1.0 Benzene 1.0 U 0.15 1.0 Bromoform 1.0 U 0.17 1.0 2-Hexanone 10 U 0.13 10 Trichloroethene 1.0 U 0.12 1.0 Trichloroethene 1.0 U 0.12 1.0 Toluene 1.0 U 0.18 1.0 Chlorobenzene 1.0 U 0.18 1.0 Hash-1,2-Dichloropropene 1.0 U 0.17 1.0 Ethylbenzene 1.0 U 0.17 1.0 Styrene 1.0	•				
1,2-Dichloroethane 1,0 U 0,18 1,0 2-Butanone 10 U 0,63 10 1,1,1-Trichloroethane 1,0 U 0,13 1,0 Carbon tetrachloride 1,0 U 0,15 1,0 Benzene 1,0 U 0,17 1,0 Bromoform 1,0 U 0,17 1,0 2-Hexanone 10 U 0,13 10 Trichloroethene 1,0 U 0,13 10 Toluene 1,0 U 0,14 1,0 Chlorobenzene 1,0 U 0,14 1,0 Chlorobenzene 1,0 U 0,18 1,0 Chlorobenzene 1,0 U 0,18 1,0 Chlorobenzene 1,0 U 0,18 1,0 Chloropropene 1,0 U 0,18 1,0 Ethylbenzene 1,0 U 0,17 1,0 Ethylbenzene 1,0 U 0,14 1,0 Styrene 1,0 U	•				
2-Butanone 10 U 0.63 10 1,1,1-Trichloroethane 1.0 U 0.13 1.0 Carbon tetrachloride 1.0 U 0.15 1.0 Benzene 1.0 U 0.15 1.0 Bromoform 1.0 U 0.17 1.0 2-Hexanone 10 U 0.13 10 Trichloroethene 1.0 U 0.12 1.0 Trichloroethene 1.0 U 0.14 1.0 Chlorobenzene 1.0 U 0.10 1.0 Chlorobenzene 1.0 U 0.10 1.0 Ethylbenzene 1.0 U 0.17 1.0 Ethylbenzene 1.0 U 0.14 1.0 Styrene 1.0 <td></td> <td></td> <td>_</td> <td></td> <td></td>			_		
1,1,1-Trichloroethane 1.0 U 0.13 1.0 Carbon tetrachloride 1.0 U 0.15 1.0 Benzene 1.0 U 0.15 1.0 Bromoform 1.0 U 0.17 1.0 2-Hexanone 10 U 0.13 10 Trichloroethene 1.0 U 0.12 1.0 Toluene 1.0 U 0.12 1.0 Chlorobenzene 1.0 U 0.18 1.0 Chlorobenzene 1.0 U 0.10 1.0 4-Methyl-2-pentanone 1.0 U 0.20 10 Ethylbenzene 1.0 U 0.17 1.0 Ethylbenzene 1.0 U 0.17 1.0 Styrene 1.0 U 0.28 1.0 Wap-Xylene 2.0 U	•				
Carbon tetrachloride 1.0 U 0.15 1.0 Benzene 1.0 U 0.15 1.0 Berzene 1.0 U 0.15 1.0 Bromoform 1.0 U 0.13 10 Trichloroethene 1.0 U 0.12 1.0 Trichloroethene 1.0 U 0.14 1.0 Chlorobenzene 1.0 U 0.18 1.0 Chlorobenzene 1.0 U 0.18 1.0 Chlorobenzene 1.0 U 0.10 1.0 Chlorobenzene 1.0 U 0.14 1.0 Styrene 1.0 U 0.14 1.0 Styrene 1.0 U 0.19 1.0 Freon TF 1.0 <td< td=""><td></td><td></td><td>_</td><td></td><td></td></td<>			_		
Benzene 1.0 U 0.15 1.0 Bromoform 1.0 U 0.17 1.0 2-Hexanone 10 U 0.13 10 Trichloroethene 1.0 U 0.12 1.0 Toluene 1.0 U 0.14 1.0 Chlorobenzene 1.0 U 0.18 1.0 trans-1,3-Dichloropropene 1.0 U 0.10 1.0 4-Methyl-2-pentanone 10 U 0.20 10 Ethylbenzene 1.0 U 0.17 1.0 cis-1,3-Dichloropropene 1.0 U 0.17 1.0 Ethylbenzene 1.0 U 0.17 1.0 Styrene 1.0 U 0.14 1.0 Styrene 1.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U					
Bromoform 1.0 U 0.17 1.0 2-Hexanone 10 U 0.13 10 Trichloroethene 1.0 U 0.12 1.0 Toluene 1.0 U 0.14 1.0 Chlorobenzene 1.0 U 0.18 1.0 Chloropropene 1.0 U 0.10 1.0 4-Methyl-2-pentanone 10 U 0.20 10 Ethylbenzene 1.0 U 0.17 1.0 cis-1,3-Dichloropropene 1.0 U 0.17 1.0 cis-1,3-Dichloropropene 1.0 U 0.14 1.0 Styrene 1.0 U 0.14 1.0 Styrene 1.0 U 0.28 1.0 m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 Cyclohexane 1.0					
2-Hexanone 10 U 0.13 10 Trichloroethene 1.0 U 0.12 1.0 Toluene 1.0 U 0.14 1.0 Chlorobenzene 1.0 U 0.18 1.0 trans-1,3-Dichloropropene 1.0 U 0.10 1.0 4-Methyl-2-pentanone 10 U 0.20 10 Ethylbenzene 1.0 U 0.17 1.0 ethylbenzene 1.0 U 0.14 1.0 Styrene 1.0 U 0.14 1.0 Styrene 1.0 U 0.28 1.0 m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.15 1.0 1,2-Dichlorobenzene 1.0 U 0.16 1.0 1,4-Dichlorobenzene 1.0 U			-		
Toluene 1.0 U 0.14 1.0 Chlorobenzene 1.0 U 0.18 1.0 trans-1,3-Dichloropropene 1.0 U 0.10 1.0 4-Methyl-2-pentanone 10 U 0.20 10 Ethylbenzene 1.0 U 0.17 1.0 cis-1,3-Dichloropropene 1.0 U 0.14 1.0 Styrene 1.0 U 0.28 1.0 m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropenzene 1.0 U 0.15 1.0 1,2-Dichlorobenzene 1.0 U 0.16 1.0 1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,2-Dichlorobenzene<	2-Hexanone				
Chlorobenzene 1.0 U 0.18 1.0 trans-1,3-Dichloropropene 1.0 U 0.10 1.0 4-Methyl-2-pentanone 10 U 0.20 10 Ethylbenzene 1.0 U 0.17 1.0 cis-1,3-Dichloropropene 1.0 U 0.14 1.0 Styrene 1.0 U 0.28 1.0 m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,2-Dichlorobenzene 1.0 U 0.16 1.0 Tetrachloroethene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,1,2-Tric	Trichloroethene	1.0	U	0.12	1.0
trans-1,3-Dichloropropene 1.0 U 0.10 1.0 4-Methyl-2-pentanone 10 U 0.20 10 Ethylbenzene 1.0 U 0.17 1.0 cis-1,3-Dichloropropene 1.0 U 0.14 1.0 Styrene 1.0 U 0.28 1.0 MS-yslene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 Tetrachloroethene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.10 1.0 1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4	Toluene	1.0	U	0.14	1.0
4-Methyl-2-pentanone 10 U 0.20 10 Ethylbenzene 1.0 U 0.17 1.0 cis-1,3-Dichloropropene 1.0 U 0.14 1.0 Styrene 1.0 U 0.28 1.0 m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 1,4-Dichlorobenzene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2-Trichloroethane 1.0 U 0.10 1.0 1,2,4-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichloroethane 1.0 U 0.10 1.0 1,2-Dibromoetha	Chlorobenzene	1.0	U	0.18	1.0
Ethylbenzene 1.0 U 0.17 1.0 cis-1,3-Dichloropropene 1.0 U 0.14 1.0 Styrene 1.0 U 0.28 1.0 m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 Tetrachloroethene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,1,2-Trichloroethane 1.0 U 0.10 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2-Trichloroethane 1.0 U 0.14 1.0 1,2-T	trans-1,3-Dichloropropene	1.0	U	0.10	1.0
cis-1,3-Dichloropropene 1.0 U 0.14 1.0 Styrene 1.0 U 0.28 1.0 m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 1,4-Dichlorobenzene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,1,2-Tetrachloroethane 1.0 U 0.10 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.19 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-D	4-Methyl-2-pentanone	10	U	0.20	10
Styrene 1.0 U 0.28 1.0 m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 1,4-Dichlorobenzene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,1,2-Tetrachloroethane 1.0 U 0.10 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 0.15 1.0	Ethylbenzene	1.0	U	0.17	1.0
m&p-Xylene 2.0 U 0.59 2.0 o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 1,4-Dichlorobenzene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,1,2,2-Tetrachloroethane 1.0 U 0.10 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 0.15 1.0	cis-1,3-Dichloropropene			0.14	1.0
o-Xylene 1.0 U 0.19 1.0 Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 1,4-Dichlorobenzene 1.0 U 0.12 1.0 1,2-Dichlorobenzene 1.0 U 0.11 1.0 1,2,2-Tetrachloroethane 1.0 U 0.10 1.0 1,1,2,2-Teichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 0.15 1.0	•				
Freon TF 1.0 U 0.11 1.0 MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 1,4-Dichlorobenzene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.14 1.0 1,2,4-Trichloromethane 1.0 U 0.19 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50	•				
MTBE 1.0 U 0.11 1.0 Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 1,4-Dichlorobenzene 1.0 U 0.12 1.0 1,2-Dichlorobenzene 1.0 U 0.11 1.0 1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2-Tetrachloroethane 1.0 U 0.090 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 1,2-Dibromoethane 1.0 U 0.19 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50	•		-		
Cyclohexane 1.0 U 0.13 1.0 1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 Tetrachloroethene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50			_		
1,2-Dichloropropane 1.0 U 0.15 1.0 1,3-Dichlorobenzene 1.0 U 0.16 1.0 Tetrachloroethene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2-Tetrachloroethane 1.0 U 0.14 1.0 1,2-Trichloroethane 1.0 U 0.19 1.0 1,2-Trichloroethane 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50					
1,3-Dichlorobenzene 1.0 U 0.16 1.0 Tetrachloroethene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2-Tetrachloroethane 1.0 U 0.090 1.0 1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50	•		_		
Tetrachloroethene 1.0 U 0.12 1.0 1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2-Tetrachloroethane 1.0 U 0.090 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50					
1,4-Dichlorobenzene 1.0 U 0.11 1.0 1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2,2-Tetrachloroethane 1.0 U 0.090 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50	•				
1,2-Dichlorobenzene 1.0 U 0.10 1.0 1,1,2,2-Tetrachloroethane 1.0 U 0.090 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50			-		
1,1,2,2-Tetrachloroethane 1.0 U 0.090 1.0 1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50	•		-		
1,1,2-Trichloroethane 1.0 U 0.14 1.0 1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50	•		-		
1,2,4-Trichlorobenzene 1.0 U 0.19 1.0 Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50					
Dibromochloromethane 1.0 U 0.10 1.0 1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50					
1,2-Dibromoethane 1.0 U 0.15 1.0 1,4-Dioxane 50 U 13 50	• •				
1,4-Dioxane 50 U 13 50					
1,2,3-Trichlorobenzene 1.0 U 0.16 1.0	1,4-Dioxane	50	U		
	1,2,3-Trichlorobenzene	1.0	U	0.16	1.0

Client: Alprof Realty LLC Job Number: 460-59907-1

Method Blank - Batch: 460-173716

Method: 8260B Preparation: N/A

Lab Sample ID: Client Matrix:	MB 460-173716/7 Solid	Analysis Batch: Prep Batch:	460-173716 N/A	Instrum Lab Fil		CVOAMS9 K15845.D	
Dilution:	1.0	Leach Batch:	N/A	Initial V	Veight/Volume:	5 g	
Analysis Date:	07/31/2013 2007	Units:	ug/Kg	Final V	/eight/Volume:	5 mL	
Prep Date:	N/A						
Leach Date:	N/A						
Analyte		Res	:ult	Qual	MDL	RL	
Dichlorodifluorom	ethane	1.0		U	0.22	1.0	
1,2-Dibromo-3-Ch	iloropropane	1.0		U	0.44	1.0	
Bromochlorometh	ane	1.0		U	0.11	1.0	
Bromodichlorome	thane	1.0		U	0.32	1.0	
Isopropylbenzene		1.0		U	0.11	1.0	
Methyl acetate		1.0		U	0.32	1.0	
Methylcyclohexan	e	1.0		U	0.10	1.0	
Surrogate		%	Rec		Acceptance Lin	nits	
	14.40		100		70 420		

Surrogate	% Rec	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	103	70 - 130	
Toluene-d8 (Surr)	96	70 - 130	
Bromofluorobenzene	89	70 - 130	
Dibromofluoromethane (Surr)	99	70 - 130	

Job Number: 460-59907-1 Client: Alprof Realty LLC

Lab Control Sample - Batch: 460-173534

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 460-173534/4 Client Matrix: Water Dilution: 1.0 Analysis Date:

07/31/2013 0945 07/31/2013 0945

Leach Date: N/A

Prep Date:

Analysis Batch: 460-173534 Prep Batch: N/A Leach Batch: N/A Units: ug/L

Instrument ID: CVOAMS13 Lab File ID: P73101.D Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Chloromethane	20.0	16.3	82	58 - 146	
Bromomethane	20.0	25.9	130	55 - 153	
Vinyl chloride	20.0	20.2	101	61 - 144	
Chloroethane	20.0	28.3	141	69 - 145	
Methylene Chloride	20.0	19.1	95	79 - 119	
Acetone	100	118	118	45 - 156	
Carbon disulfide	20.0	19.2	96	58 - 139	
Trichlorofluoromethane	20.0	23.9	119	69 - 147	
1,1-Dichloroethene	20.0	18.5	93	56 - 139	
1,1-Dichloroethane	20.0	19.7	98	78 - 122	
trans-1,2-Dichloroethene	20.0	19.3	97	75 - 122	
cis-1,2-Dichloroethene	20.0	17.1	86	80 - 120	
Chloroform	20.0	18.1	90	82 - 123	
1,2-Dichloroethane	20.0	21.3	107	74 - 118	
2-Butanone	100	80.1	80	65 - 1 14	
1,1,1-Trichloroethane	20.0	18.9	94	74 - 128	
Carbon tetrachloride	20.0	18.6	93	73 - 120	
Benzene	20.0	19.0	95	83 - 124	
Bromoform	20.0	17.3	86	73 - 123	
2-Hexanone	100	101	101	53 - 121	
Trichloroethene	20.0	17.6	88	78 - 1 1 9	
Toluene	20.0	18.9	94	80 - 120	
Chlorobenzene	20.0	18.6	93	81 - 121	
trans-1,3-Dichloropropene	20.0	20.3	102	78 - 118	
4-Methyl-2-pentanone	100	106	106	53 - 120	
Ethylbenzene	20.0	18.4	92	79 - 126	
cis-1,3-Dichloropropene	20.0	19.1	95	80 - 120	
Styrene	20.0	18.4	92	69 - 112	
m&p-Xylene	20.0	18.4	92	76 - 120	
o-Xylene	20.0	18.0	90	78 - 118	
Freon TF	20.0	19.4	97	47 - 139	
MTBE	20.0	21.1	106	71 - 115	
	20.0	16.6	83	58 - 133	
Cyclohexane	20.0	17.9	90	80 - 120	
1,2-Dichloropropane	20.0	18.3	91	81 - 126	
1,3-Dichlorobenzene					
Tetrachloroethene	20.0 20.0	17.1	85	68 - 139	
1,4-Dichlorobenzene		18.6	93	83 - 123	
1,2-Dichlorobenzene	20.0	18.5	93	82 - 122	
1,1,2,2-Tetrachloroethane	20.0	21.3	107	74 - 126	
1,1,2-Trichloroethane	20.0	19.7	98	79 - 119	
1,2,4-Trichlorobenzene	20.0	18.2	91	66 - 120	
Dibromochloromethane	20.0	19.3	96	80 - 120	
1,2-Dibromoethane	20.0	19.6	98	78 - 118	
1,4-Dioxane	400	383	96	52 - 126	
1,2,3-Trichlorobenzene	20.0	18.7	94	76 - 123	
Dichlorodifluoromethane	20.0	20.9	104	46 - 145	

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample - Batch: 460-173534

Method: 8260B Preparation: 5030B

CVOAMS13 460-173534 Instrument ID: Lab Sample ID: LCS 460-173534/4 Analysis Batch: Prep Batch: Lab File ID: P73101.D Client Matrix: N/A Water Initial Weight/Volume: 5 mL Dilution: Leach Batch: N/A 1.0 Analysis Date: 07/31/2013 0945 Units: ug/L Final Weight/Volume: 5 mL 07/31/2013 0945 Prep Date:

Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,2-Dibromo-3-Chloropropane	20.0	26.0	130	70 - 116	*
Bromochloromethane	20.0	16.7	83	80 - 121	
Bromodichloromethane	20.0	18.2	91	79 - 119	
Isopropylbenzene	20.0	18.6	93	80 - 125	
Methyl acetate	100	93.0	93	50 - 151	
Methylcyclohexane	20.0	16.7	83	61 - 129	
Surrogate	% Rec		Α	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	1	12	70 - 130		
Toluene-d8 (Surr)	1	05	70 - 130		
Bromofluorobenzene	g	1	70 - 130		
Dibromofluoromethane (Surr)	g	9	70 - 130		

Client: Alprof Realty LLC Job Number: 460-59907-1

QC Association Summary

	-	Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
- Analysis Batch:460-173471	1				
LCS 460-173471/6	Lab Control Sample	Т	Solid	8260B	
MB 460-173471/9	Method Blank	T	Solid	8260B	
460-59907-4MS	Matrix Spike	T	Solid	8260B	460-172288
460-59907-4MSD	Matrix Spike Duplicate	T	Solid	8260B	460-172288
460-59907-5	RIB-2 (13-15)	T	Solid	8260B	460-172288
460-59907-8	RIB-3 (0-4)	Т	Solid	8260B	460-172288
460-59907-9	RIB-3 (13-15)	Т	Solid	8260B	460-172288
Analysis Batch:460-173520					
LCS 460-173520/4	Lab Control Sample	Т	Water	8260B	
MB 460-173520/6	Method Blank	Т	Water	8260B	
460-59907-11FB	FB0722	Т	Water	8260B	
460-59907-12TB	TB0722	Τ	Water	8260B	
Analysis Batch:460-173534					
LCS 460-173534/4	Lab Control Sample	Т	Water	8260B	
MB 460-173534/6	Method Blank	T	Water	8260B	
460-60086-4FB	FB0724	Τ	Water	8260B	
460-60086-5TB	TB0724	Т	Water	8260B	
Analysis Batch:460-173540)				
LCS 460-173540/5	Lab Control Sample	Т	Water	8260B	
MB 460-173540/7	Method Blank	Τ	Water	8260B	
460-59987-8TB	TB0723	T	Water	8260B	
460-59987-9FB	FB0723	Т	Water	8260B	
Analysis Batch:460-173716	3				
LCS 460-173716/3	Lab Control Sample	Т	Solid	8260B	
LCSD 460-173716/4	Lab Control Sample Duplicate	Т	Solid	8260B	
MB 460-173716/7	Method Blank	Т	Solid	8260B	
460-59987-1	RIB-4 (1-3)	Т	Solid	8260B	460-172549
460-59987-2	RIB-4 (7-8)	Т	Solid	8260B	460-172549
460-59987-3	RIB-4 (8-10)	Ŧ	Solid	8260B	460-172549
460-59987-4	RIB-5 (1-3)	Τ	Solid	8260B	460-172549
460-59987-5	RIB-S5 (1-3)	Т	Solid	8260B	460-172549
460-59987-7	RIB-5 (10-12)	Т	Solid	8260B	460-172549
Analysis Batch:460-173743	3				
LCS 460-173743/4	Lab Control Sample	Т	Solid	8260B	
LCSD 460-173743/5	Lab Control Sample Duplicate	Т	Solid	8260B	
MB 460-173743/8	Method Blank	Т	Solid	8260B	
460-60086-2	RIB-6 (7-8)	Т	Solid	8260B	460-172828
460-60086-3	RIB-6 (5-7)	Т	Solid	8260B	460-172828
	• •				

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison	Job No.: 460-59907-1
SDG No.:	
Client Sample ID: FB0724	Lab Sample ID: 460-60086-4
Matrix: Water	Lab File ID: P73108.D
Analysis Method: 8260B	Date Collected: 07/24/2013 11:00
Sample wt/vol: 5(mL)	Date Analyzed: 07/31/2013 12:39
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 173534	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ū	1.0	0.10
74-83-9	Bromomethane	1.0	0	1.0	0.18
75-01-4	Vinyl chloride	1.0	Ū	1.0	0.14
75-00-3	Chloroethane	1.0	Ü	1.0	0.17
75-09-2	Methylene Chloride	1.0	U	1.0	0.18
67-64-1	Acetone	5.0	Ü	5.0	2.7
75-15-0	Carbon disulfide	1.0	Ū	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.18
67-66-3	Chloroform	1.0	Ū	1.0	0.080
78-93-3	2-Butanone	5.0	U	5.0	2.3
107-06-2	1,2-Dichloroethane	1.0	Ü	1.0	0.19
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
71-43-2	Benzene	1.0	U	1.0	0.080
75-25-2	Bromoform	1.0	U	1.0	0.19
100-42-5	Styrene	1.0	n -	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
108-90-7	Chlorobenzene	1.0	Ū	1.0	0.11
110-82-7	Cyclohexane	1.0	ŋ	1.0	0.16
98-82-8	Isopropylbenzene	1.0	Ü	1.0	0.080
591-78-6	2-Hexanone	5.0	U	5.0	0.50
1634-04-4	MTBE	1.0	Ū	1.0	0.14
76-13-1	Freon TF	1.0	U	1.0	0.080
79-20-9	Methyl acetate	2.0	U	2.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
79-01-6	Trichloroethene	1.0	U	1.0	0.090
108-88-3	Toluene	1.0	U	1.0	0.15
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison Job No.: 460-59907-1 SDG No.: Client Sample ID: FB0724 Lab Sample ID: 460-60086-4 Matrix: Water Lab File ID: P73108.D Date Collected: 07/24/2013 11:00 Analysis Method: 8260B Sample wt/vol: 5(mL) Date Analyzed: 07/31/2013 12:39 ____ Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 173534 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	1.0	σ	1.0	0.21
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.23
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	1.0	0.34
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
108-87-2	Methylcyclohexane	1.0	U	1.0	0.14
127-18-4	Tetrachloroethene	1.0	U 🚁	1.0	0.10
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
79-34-5	1,1,2,2-Tetrachloroethane	1.0	ū	1.0	0.16
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
74-97-5	Bromochloromethane	1.0	υ	1.0	0.27
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	111		70-130
2037-26-5	Toluene-d8 (Surr)	103		70-130
460-00-4	Bromofluorobenzene	85		70-130
1868-53-7	Dibromofluoromethane (Surr)	95		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison	Job No.: 460-59907-1
SDG No.:	
Client Sample ID: TB0724	Lab Sample ID: 460-60086-5
Matrix: Water	Lab File ID: P73109.D
Analysis Method: 8260B	Date Collected: 07/24/2013 07:30
Sample wt/vol: 5(mL)	Date Analyzed: 07/31/2013 13:02
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 173534	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	U	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.0	U	1.0	0.14
75-00-3	Chloroethane	1.0	U	1.0	0.17
75-09-2	Methylene Chloride	1.0	U	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	1.0	U	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.18
67-66-3	Chloroform	1.0	σ	1.0	0.080
78-93-3	2-Butanone	5.0	ū	5.0	2.3
107-06-2	1,2-Dichloroethane	1.0	Ū	1.0	0.19
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
71-43-2	Benzene	1.0	U	1.0	0.080
75-25-2	Bromoform	1.0	U	1.0	0.19
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
110-82-7	Cyclohexane	1.0	U	1.0	0.16
98-82-8	Isopropylbenzene	1.0	U	1.0	0.080
591-78-6	2-Hexanone	5.0	Ū	5.0	0.50
1634-04-4	МТВЕ	1.0	Ū	1.0	0.14
76-13-1	Freon TF	1.0	U	1.0	0.080
79-20-9	Methyl acetate	2.0	U	2.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
79-01-6	Trichloroethene	1.0	U	1.0	0.090
108-88-3	Toluene	1.0	U	1.0	0.15
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison	Job No.: 460-59907-1
SDG No.:	
Client Sample ID: TB0724	Lab Sample ID: 460-60086-5
Matrix: Water	Lab File ID: P73109.D
Analysis Method: 8260B	Date Collected: 07/24/2013 07:30
Sample wt/vol: 5(mL)	Date Analyzed: 07/31/2013 13:02
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 173534	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	υ	1.0	0.23
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
108-87-2	Methylcyclohexane	1.0	U	1.0	0.14
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
79-00-5	1,1,2-Trichloroethane	1.0	Ü	1.0	0.19
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
106-93-4	1,2-Dibromoethane	1.0	Ū	1.0	0.28
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	115	1	70-130
2037-26-5	Toluene-d8 (Surr)	104		70-130
460-00-4	Bromofluorobenzene	92		70-130
1868-53-7	Dibromofluoromethane (Surr)	99		70-130

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample/ Method: 8260B Lab Control Sample Duplicate Recovery Report - Batch: 460-173315 Preparation: N/A

LCS Lab Sample ID: LCS 460-173315/4 Analysis Batch: 460-173315 Instrument ID: CVOAMS4 Client Matrix: Solid Prep Batch: N/A Lab File (D: D35110.D Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 5 mL 07/30/2013 0347 Analysis Date: Units: Final Weight/Volume: 5 mL ug/Kg

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 460-173315/5 Analysis Batch: 460-173315 Instrument ID: CVOAMS4 Lab File ID: D35111.D Client Matrix: Solid Prep Batch: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

07/30/2013 0411 Analysis Date: Units: ug/Kg

N/A Prep Date: Leach Date: N/A

Bromomethane			V Doe					
Chloromethane 108 108 50 - 151 0 30 Bromomethane 102 102 54 - 142 0 30 Viryl choride 108 109 67 - 133 1 30 Chloroethane 100 97 56 - 146 3 3 30 Chloroethane 100 97 56 - 146 3 3 30 Chloroethane 100 108 74 - 137 2 30 Acetone 106 108 72 - 164 3 3 30 Carbon disulfide 116 120 72 - 128 4 30 Carbon disulfide 116 120 72 - 128 4 30 Carbon disulfide 116 120 72 - 128 4 30 Carbon disulfide 110 102 61 - 139 1 30 Carbon disulfide 110 102 61 - 139 1 30 Carbon disulfide 110 117 71 - 126 6 30 Carbon disulfide 110 117 77 - 126 6 30 Carbon disulfide 110 117 77 - 126 6 30 Carbon disulfide 110 117 77 - 126 6 30 Carbon disulfide 110 117 77 - 126 6 30 Carbon disulfide 110 117 77 - 120 6 30 Carbon disulfide 110 117 75 - 122 6 30 Carbon disulfide 110 117 77 - 120 6 30 Carbon disulfide 111 117 77 - 120 6 30 Carbon disulfide 111 117 77 - 120 6 30 Carbon disulfide 111 117 77 - 120 6 30 Carbon disulfide 111 117 77 - 120 6 30 Carbon disulfide 111 117 77 - 120 6 30 Carbon disulfide 111 117 77 - 120 6 30 Carbon disulfide 111 117 77 - 120 6 30 Carbon disulfide 111 117 77 - 120 7 30 Carbon disulfide 111 117 77 - 120 7 30 Carbon disulfide 111 117 77 - 120 7 30 Carbon disulfide 111 117 78 - 117 5 30 Carbon	6 -1 4-			1 ::4	DDD	DDD Limit	1.00.0	10000
Bromomethane	Analyte	LCS	LCSD	Limit	RPD	RPD LIMIT	LCS Quai	LCSDC
Viryl chloride 108 109 67 - 133 1 30 Chloroethane 100 97 56 - 146 3 30 Methylene Chloride 106 108 74 - 137 2 30 Acetone 106 103 27 - 164 3 30 Carbon disulfide 116 120 72 - 128 4 30 Trichlorofluoromethane 101 102 66 - 139 1 30 1,1-Dichloroethane 110 117 71 - 126 6 30 1,1-Dichloroethane 108 113 76 - 125 4 30 trans-1,2-Dichloroethane 106 112 80 - 120 5 30 chloroform 107 111 77 - 120 4 30 1,2-Dichloroethane 106 76 - 118 3 30 2-Butanone 105 97 77 - 117 7 30 2-Butanone 105 97 77 - 117 7 30	Chloromethane	108	108	50 - 151	0	30		
Chloroethane	Bromomethane	102	102	54 - 142	0	30		
Methylene Chloride 106 108 74 - 137 2 30 Acetone 106 103 27 - 164 3 30 Carbon disulfide 116 120 72 - 128 4 30 Trichlorofluorementame 101 102 61 - 139 1 30 1,1-Dichloroethene 110 117 71 - 126 6 30 1,1-Dichloroethane 108 113 76 - 125 4 30 trans-1,2-Dichloroethene 110 117 75 - 122 6 30 cis-1,2-Dichloroethene 106 112 80 - 120 5 30 Chloroform 107 111 77 - 120 4 30 1,2-Dichloroethane 104 106 76 - 118 3 30 2-Butanone 105 97 77 - 117 7 30 1,1,1-Trichloroethane 112 117 78 - 117 5 30 Benzene 102 107 77 - 117 <th< td=""><td>Vinyl chloride</td><td>108</td><td>109</td><td>67 - 133</td><td>1</td><td>30</td><td></td><td></td></th<>	Vinyl chloride	108	109	67 - 133	1	30		
Acetone 106 103 27 - 164 3 3 30 Carbon disulfide 116 120 72 - 128 4 30 Trichlorofluoromethane 101 102 61 - 139 1 30 1,1-Dichloroethene 110 117 71 - 126 6 30 1,1-Dichloroethane 108 113 76 - 125 4 30 Trans-1,2-Dichloroethene 110 117 75 - 122 6 30 30 1,1-Dichloroethene 110 117 75 - 122 6 30 30 1,1-Dichloroethene 106 112 80 - 120 5 30 10 1,1-Dichloroethene 106 112 80 - 120 5 30 10 1,1-Dichloroethane 106 112 80 - 120 5 30 10 1,1-Dichloroethane 106 112 80 - 120 5 30 10 1,1-Dichloroethane 107 111 77 - 120 4 30 10 1,1-Dichloroethane 108 108 113 77 - 117 7 30 1,1,1-Trichloroethane 105 97 77 - 117 7 30 1,1,1-Trichloroethane 112 117 78 - 117 5 30 10 1,1-Dichloroethane 112 117 78 - 117 5 30 10 10 10 10 10 10 10 10 10 10 10 10 10	Chloroethane	100	97	56 - 146	3	30		
Acetone 106 103 27 - 164 3 3 30 Carbon disulfide 116 120 72 - 128 4 30 Trichlorofluoromethane 101 102 61 - 139 1 30 1,1-Dichloroethane 110 117 71 - 126 6 30 1,1-Dichloroethane 110 117 71 - 126 6 30 1,1-Dichloroethane 110 117 75 - 122 6 30 30 1,1-Dichloroethene 110 117 75 - 122 6 30 30 1,1-Dichloroethene 110 117 75 - 122 6 30 30 1,1-Dichloroethane 106 112 80 - 120 5 30 1,1-Dichloroethane 106 112 80 - 120 5 30 1,1-Dichloroethane 107 111 77 - 120 4 30 1,1-Dichloroethane 107 111 77 - 120 4 30 1,1-Dichloroethane 104 106 76 - 118 3 30 2-2-Butanone 105 97 77 - 117 7 30 1,1,1-Trichloroethane 112 117 78 - 117 5 30 1,1,1-Trichloroethane 112 117 78 - 117 5 30 1,1,1-Trichloroethane 113 119 79 - 118 5 30 1 1,1,1-Trichloroethane 110 103 107 77 - 117 5 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Methylene Chloride	106	108	74 - 137	2	30		
Carbon disulfide 116 120 72 - 128 4 30 Trichlorofluoromethane 101 102 61 - 139 1 30 1,1-Dichloroethene 110 117 71 - 126 6 30 1,1-Dichloroethane 108 113 76 - 125 4 30 trans-1,2-Dichloroethane 110 117 75 - 122 6 30 cis-1,2-Dichloroethane 106 112 80 - 120 5 30 Chloroform 107 111 77 - 120 4 30 1,2-Dichloroethane 104 106 76 - 118 3 30 2-Butanone 105 97 77 - 117 7 30 2-Butanone 105 97 77 - 117 7 30 Carbon tetrachloride 113 119 79 - 118 5 30 Benzene 102 107 77 - 117 5 30 Bromoform 103 107 59 - 125 4	•	106	103	27 - 164	3	30		
1,1-Dichloroethene 110 117 71 - 126 6 30 1,1-Dichloroethane 108 113 76 - 125 4 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		116	120	72 ~ 128	4	30		
1,1-Dichloroethane 1,1-Dichloroethana 1,1-Dichloroe	Trichlorofluoromethane	101	102	61 - 139	1	30		
1,1-Dichloroethane 108 113 76 - 125 4 30 trans-1,2-Dichloroethene 110 117 75 - 122 6 30 cis-1,2-Dichloroethene 106 112 80 - 120 5 30 Chloroform 107 111 77 - 120 4 30 1,2-Dichloroethane 104 106 76 - 118 3 30 2-Butanone 105 97 77 - 117 7 30 2-Butanone 112 117 78 - 117 5 30 2-Butanone 102 117 78 - 117 5 30 2-Butanone 102 107 77 - 117 7 30 Carbon tetrachloride 113 119 79 - 119 5 30 Benzene 102 107 77 - 117 5 30 Bromoform 103 107 59 - 125 4 30 2-Hexanone 89 87 70 - 122 2 30 Trickloroethene 108 109 79 - 119 1 30 </td <td>1,1-Dichloroethene</td> <td>110</td> <td>117</td> <td>71 - 126</td> <td>6</td> <td>30</td> <td></td> <td></td>	1,1-Dichloroethene	110	117	71 - 126	6	30		
trans-1,2-Dichloroethene 110 117 75 - 122 6 30 cis-1,2-Dichloroethene 106 112 80 - 120 5 30 Chloroform 107 111 77 - 120 4 30 1,2-Dichloroethane 104 106 76 - 118 3 30 2-Butanone 105 97 77 - 117 7 30 1,1,1-Trichloroethane 112 117 78 - 117 5 30 Carbon tetrachloride 113 119 79 - 118 5 30 Benzene 102 107 77 - 117 5 30 Bernomoform 103 107 59 - 125 4 30 2-Hexanone 89 87 70 - 122 2 30 Trichloroethene 108 109 79 - 119 1 30 Tolloure 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 96 99 67 - 121 4 30	•	108	113	76 - 125	4	30		
Cis-1,2-Dichloroethene 106	•	110	117	75 - 122	6	30		
Chloroform 107 111 77 - 120 4 30 1,2-Dichloroethane 104 106 76 - 118 3 30 2-Butanone 105 97 77 - 117 7 30 1,1,1,1-Trichloroethane 112 117 78 - 117 5 30 Carbon tetrachloride 113 119 79 - 118 5 30 Benzene 102 107 77 - 117 5 30 Bromoform 103 107 59 - 125 4 30 2-Hexanone 89 87 70 - 122 2 30 Trichloroethane 108 109 79 - 119 1 30 Trichloroethane 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 96 99 67 - 121 4 30 Chlorobenzene 98 103 81 - 121 5 30 Ethylbenzene 98 103 81 - 121 5 30 Styrene 99 103 81 - 121 5 30 Styrene 99 103 81 - 121 4 30 O-Xylene 99 103 81 - 121 4 30 O-Xylene 96 100 80 - 120 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 Cyclohexane 111 117 80 - 121 5 30 Cycloheropopene 100 4 107 82 - 122 3 30 Cycloheropopene 111 117 80 - 121 5 30	•	106	112	80 - 120	5	30		
2-Butanone 105 97 77 - 117 7 30 1,1,1-Trichloroethane 112 117 78 - 117 5 30 Carbon tetrachloride 113 119 79 - 118 5 30 Benzene 102 107 77 - 117 5 30 Bromoform 103 107 59 - 125 4 30 2-Hexanone 89 87 70 - 122 2 30 Trichloroethene 108 109 79 - 119 1 30 Toluene 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 98 103 81 - 121 4 30 Ethylbenzene 98 103 81 - 121 5 30 Styrene 97 102 82 - 122 5 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 96 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 Cyclohexane 111 117 80 - 121 5 30 Label 106 110 78 - 120 6 30	•	107	111	77 - 120	4	30		
2-Butanone 105 97 77 - 117 7 30 1,1,1-Trichloroethane 112 117 78 - 117 5 30 Carbon tetrachloride 113 119 79 - 118 5 30 Benzene 102 107 77 - 117 5 30 Benzene 103 107 59 - 125 4 30 2-Hexanone 89 87 70 - 122 2 30 Trichloroethene 108 109 79 - 119 1 30 Toluene 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 96 99 67 - 121 4 30	1.2-Dichloroethane	104	106	76 - 118	3	30		
Carbon tetrachloride 113 119 79 - 118 5 30 Benzene 102 107 77 - 117 5 30 Bromoform 103 107 59 - 125 4 30 2-Hexanone 89 87 70 - 122 2 30 Trichloroethene 108 109 79 - 119 1 30 Tolluene 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon		105	97	77 - 117	7	30		
Carbon tetrachloride 113 119 79 - 118 5 30 Benzene 102 107 77 - 117 5 30 Bromoform 103 107 59 - 125 4 30 2-Hexanone 89 87 70 - 122 2 30 Trichloroethene 108 109 79 - 119 1 30 Toluene 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon T	1.1.1-Trichloroethane	112	117	78 - 117	5	30		
Benzene 102 107 77 - 117 5 30 Bromoform 103 107 59 - 125 4 30 2-Hexanone 89 87 70 - 122 2 30 Trichloroethene 108 109 79 - 119 1 30 Toluene 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE <td< td=""><td>Name and the second sec</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td></td<>	Name and the second sec							*
2-Hexanone 89 87 70 - 122 2 30 Trichloroethene 108 109 79 - 119 1 30 Toluene 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 Chlorobenzene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene<	Benzene			77 - 117				
Trichloroethene 108 109 79 - 119 1 30 Toluene 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 trans-1,3-Dichloropropene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 Ty2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 120 6 30 <td>Bromoform</td> <td>103</td> <td>107</td> <td>59 - 125</td> <td>4</td> <td>30</td> <td></td> <td></td>	Bromoform	103	107	59 - 125	4	30		
Toluene 97 101 75 - 115 4 30 Chlorobenzene 95 99 80 - 120 4 30 trans-1,3-Dichloropropene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 120 6 30	2-Hexanone	89	87	70 - 122	2	30		
Chlorobenzene 95 99 80 - 120 4 30 trans-1,3-Dichloropropene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30	Trichloroethene	108	109	79 - 119	1	30		
Chlorobenzene 95 99 80 - 120 4 30 trans-1,3-Dichloropropene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30	Toluene	97	101	75 - 115	4	30		
trans-1,3-Dichloropropene 96 99 67 - 121 4 30 4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30	Chlorobenzene			80 - 120	4	30		
4-Methyl-2-pentanone 92 92 68 - 120 0 30 Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30	trans-1,3-Dichloropropene	96		67 - 121	4	30		
Ethylbenzene 98 103 81 - 121 5 30 cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30			92	68 - 120	0	30		
cis-1,3-Dichloropropene 96 100 80 - 123 3 30 Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30	•		103	81 - 121	5	30		
Styrene 97 102 82 - 122 5 30 m&p-Xylene 99 103 81 - 121 4 30 b-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30	-	96	100	80 - 123	3	30		
m&p-Xylene 99 103 81 - 121 4 30 o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30		97	102	82 - 122	5	30		
o-Xylene 96 103 82 - 122 8 30 Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30				81 - 121		30		
Freon TF 114 120 73 - 123 5 30 MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30		96	103	82 - 122	8	30		
MTBE 106 110 78 - 120 3 30 1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30	•			73 - 123				
1,2-Dichloropropane 104 107 82 - 122 3 30 Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30		106		78 - 120		30		
Cyclohexane 111 117 80 - 121 5 30 1,3-Dichlorobenzene 99 105 80 - 120 6 30								
1,3-Dichlorobenzene 99 105 80 - 120 6 30		111	117	80 - 121		30		
	•		105					
	Tetrachloroethene	103	109					

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample/ Method: 8260B Lab Control Sample Duplicate Recovery Report - Batch: 460-173315 Preparation: N/A

CVOAMS4 LCS Lab Sample ID: LCS 460-173315/4 Analysis Batch: 460-173315 Instrument ID: D35110.D Client Matrix: Solid Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 07/30/2013 0347 Analysis Date: Units: Final Weight/Volume: 5 mL ug/Kg

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 460-173315/5 Analysis Batch: 460-173315 Instrument ID: CVOAMS4 Client Matrix: Solid Prep Batch: N/A Lab File ID: D35111.D Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

07/30/2013 0411 Analysis Date: Units: ug/Kg

Prep Date: N/A Leach Date: N/A

	9	% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,4-Dichlorobenzene	94	96	80 - 120	2	30		
1,1,2,2-Tetrachloroethane	80	101	79 - 122	23	30		
1,2-Dichlorobenzene	98	105	80 - 120	7	30		
1,1,2-Trichloroethane	96	99	73 - 118	4	30		
1,2,4-Trichlorobenzene	91	102	80 - 120	11	30		
Dibromochloromethane	101	106	68 - 120	5	30		
1,2-Dibromoethane	101	104	75 - 117	3	30		
1,4-Dioxane	106	96	69 - 131	9	30		
1,2,3-Trichlorobenzene	94	103	75 ~ 121	9	30		
Dichlorodifluoromethane	121	123	52 - 144	1	30		
1,2-Dibromo-3-Chloropropane	92	91	74 - 118	1	30		
Bromochloromethane	109	109	74 - 125	0	30		
Bromodichloromethane	104	108	79 - 119	4	30		
Isopropylbenzene	95	105	65 - 129	9	30		
Methyl acetate	102	104	73 - 137	2	30		
Methylcyclohexane	110	119	78 - 118	8	30		*
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
1,2-Dichloroethane-d4 (Surr)	1	04	102		7	0 - 130	
Toluene-d8 (Surr)	9	9	101		7	0 ~ 130	
Bromofluorobenzene	9	9	102		7	0 - 130	
Dibromofluoromethane (Surr)	1	10	108		7	0 - 130	

Job Number: 460-59907-1 Client: Alprof Realty LLC

Laboratory Control/

Laboratory Duplicate Data Report - Batch: 460-173315

Method: 8260B Preparation: N/A

LCS Lab Sample ID:

LCS 460-173315/4

Units: ug/Kg

LCSD Lab Sample ID: LCSD 460-173315/5

Client Matrix:

Solid

Client Matrix: Solid

Dilution:

1.0

1.0 Dilution:

Analysis Date:

07/30/2013 0347

Analysis Date:

07/30/2013 0411

Prep Date: Leach Date: N/A N/A Prep Date: Leach Date: N/A N/A

Bromomethane 20.0 20.0 20.4 20.5 Viryl chloride 20.0 20.0 21.7 21.9 Chloroethane 20.0 20.0 19.9 19.4 Methylene Chloride 20.0 20.0 21.1 21.6 Acetone 100 100 106 103 Carbon disulfide 20.0 20.0 22.3 22.5 Trichlorofluoromethane 20.0 20.0 22.0 23.4 1,1-Dichloroethane 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 20.7 21.3 22.4 Chloroform 20.0 20.0 20.7 21.3 2.2-Butanone 100 100 105 97.4 1,1-Trichloroethane 20.0	Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
Vinyl chloride 20.0 20.0 21.7 21.9 Chloroethane 20.0 20.0 19.9 19.4 Methylene Chloride 20.0 20.0 21.1 21.6 Acetone 100 100 106 103 Carbon disulfide 20.0 20.0 23.1 24.0 Trichlorofuloromethane 20.0 20.0 23.1 24.0 Trichloroethane 20.0 20.0 22.0 23.4 1,1-Dichloroethane 20.0 20.0 21.6 22.5 trans-1,2-Dichloroethane 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 21.3 2-Butanone 100 100 105 97.4 4.1.1-Trichloroethane 20.0 20.0 22.6 23.7 2-Butanone 100 100 105 97.4 4.1.1,1-Trichloroethane 20.0 20.0 22.3 <td>Chloromethane</td> <td>20.0</td> <td>20.0</td> <td>21.6</td> <td>21.6</td>	Chloromethane	20.0	20.0	21.6	21.6
Chloroethane 20.0 20.0 19.9 19.4 Methylene Chloride 20.0 20.0 21.1 21.6 Acatone 100 100 106 103 21.1 21.6 Acatone 20.0 20.0 20.0 21.1 21.6 Acatone 20.0 20.0 20.0 23.1 24.0 Trichlorofluoromethane 20.0 20.0 20.0 23.1 24.0 Trichlorofluoromethane 20.0 20.0 20.0 20.3 20.5 11.1-Dichloroethane 20.0 20.0 20.0 22.0 23.4 21.1-Dichloroethane 20.0 20.0 20.0 21.6 22.5 trans-1,2-Dichloroethane 20.0 20.0 20.0 21.6 22.5 trans-1,2-Dichloroethane 20.0 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 11,2-Dichloroethane 20.0 20.0 20.0 21.5 22.2 11,2-Dichloroethane 20.0 20.0 20.0 21.5 22.2 21.1,2-Dichloroethane 20.0 20.0 20.0 20.7 21.3 22.4 Chloroform 20.0 20.0 20.0 20.7 21.3 22.8 Unitable 20.0 20.0 20.0 20.0 20.3 23.5 Carbon tetrachloride 20.0 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 20.0 22.6 23.7 Ebranone 10.0 10.0 10.0 88.9 87.5 Trichloroethane 20.0 20.0 20.0 20.3 21.4 Ebromoform 20.0 20.0 20.0 20.6 21.5 21.7 Tollolene 20.0 20.0 20.0 21.5 21.7 Tollolene 20.0 20.0 19.4 20.1 Chlorobehne 20.0 20.0 19.4 20.1 Elfhylbenzene 20.0 20.0 19.4 20.1 Elfhylbenzene 20.0 20.0 19.4 20.1 Elfhylbenzene 20.0 20.0 19.4 20.4 Elfhylbenzene 20.0 20.0 20.0 19.4 20.4 Elfhylbenzene 20.0 20.0 20.0 19.7 20.6 20.0 20.0 20.0 19.4 20.4 Elfhylbenzene 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.	Bromomethane	20.0	20.0	20.4	20.5
Chloroethane	Vinyl chloride	20.0	20.0	21.7	21.9
Acetone 100 100 106 103 Carbon disulfide 20.0 20.0 23.1 24.0 Trichlorofluoromethane 20.0 20.0 20.3 20.5 1,1-Dichloroethene 20.0 20.0 22.0 23.4 1,1-Dichloroethane 20.0 20.0 21.6 22.5 trans-1,2-Dichloroethene 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 21.5 22.2 1,1-Trichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 20.3 21.4 Bromoform 20.0	Chloroethane	20.0	20.0	19.9	19.4
Carbon disulfide 20.0 20.0 23.1 24.0 Trichlorofluoromethane 20.0 20.0 20.3 20.5 1,1-Dichloroethane 20.0 20.0 22.0 23.4 1,1-Dichloroethane 20.0 20.0 21.6 22.5 trans-1,2-Dichloroethene 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 20.3 21.4 Bromeform 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.3 21.5 Trichloroethene 20.0	Methylene Chloride	20.0	20.0	21.1	21.6
Trichlorofluoromethane 20.0 20.0 20.3 20.5 1,1-Dichloroethene 20.0 20.0 22.0 23.4 1,1-Dichloroethane 20.0 20.0 21.6 22.5 trans-1,2-Dichloroethene 20.0 20.0 22.0 23.4 cis-1,2-Dichloroethene 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 20.7 21.3 2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon letrachloride 20.0 20.0 22.6 23.7 Benzene 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.3 21.5 Trichloroethene 20.0 20.0 19.4 20.1 Trichloroethene 20.0	Acetone	100	100	106	103
1,1-Dichloroethene 20.0 20.0 22.0 23.4 1,1-Dichloroethane 20.0 20.0 21.6 22.5 trans-1,2-Dichloroethene 20.0 20.0 22.0 23.4 cis-1,2-Dichloroethene 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon letrachloride 20.0 20.0 22.6 23.7 Benzene 20.0 20.0 20.0 22.6 23.7 Bersomoform 20.0 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.2 19.9 trans-1,3-Dichloropropene	Carbon disulfide	20.0	20.0	23.1	24.0
1,1-Dichloroethane 20.0 20.0 21.6 22.5 trans-1,2-Dichloroethene 20.0 20.0 22.0 23.4 cis-1,2-Dichloroethene 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.3 23.7 Benzene 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.6 21.5 21.7 Tokuene 20.0 20.0 20.0 21.5 21.7 Tokuene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0	Trichlorofluoromethane	20.0	20.0	20.3	20.5
trans-1,2-Dichloroethene 20.0 20.0 22.0 23.4 cis-1,2-Dichloroethene 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.6 23.7 Benzene 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Tokluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0	1,1-Dichloroethene	20.0	20.0	22.0	23.4
trans-1,2-Dichloroethene 20.0 20.0 22.0 23.4 cis-1,2-Dichloroethene 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.6 23.7 Benzene 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0	1.1-Dichloroethane	20.0	20.0	21.6	22.5
cis-1,2-Dichloroethene 20.0 20.0 21.3 22.4 Chloroform 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 20.3 21.4 Benzene 20.0 20.0 20.3 21.4 Beromoform 20.0 20.0 20.3 21.4 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 <t< td=""><td>·</td><td>20.0</td><td>20.0</td><td>22.0</td><td>23.4</td></t<>	·	20.0	20.0	22.0	23.4
Chloroform 20.0 20.0 21.5 22.2 1,2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.6 23.7 Benzene 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 <t< td=""><td></td><td></td><td>20.0</td><td>21.3</td><td>22.4</td></t<>			20.0	21.3	22.4
1,2-Dichloroethane 20.0 20.0 20.7 21.3 2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.6 23.7 Benzene 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.4 20.4 m&P.Xylene 20.0 20.0 <t< td=""><td>•</td><td>20.0</td><td>20.0</td><td>21,5</td><td>22.2</td></t<>	•	20.0	20.0	21,5	22.2
2-Butanone 100 100 105 97.4 1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.6 23.7 Benzene 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.0 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.3 20.0 oxylene 20.0 20.0 19.7 20.6 o-xylene 20.0 20.0 19.1 20.7 <td></td> <td></td> <td></td> <td></td> <td>21.3</td>					21.3
1,1,1-Trichloroethane 20.0 20.0 22.3 23.5 Carbon tetrachloride 20.0 20.0 22.6 23.7 Benzene 20.0 20.0 20.3 21.4 Beromoform 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.0 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 e-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 20.1 21	,			105	97.4
Carbon tetrachloride 20.0 20.0 20.0 20.3 21.4 Benzene 20.0 20.0 20.3 21.4 Bromoform 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 21					23.5
Benzene 20.0 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 21.3 22.0 MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8				22.6	
Bromoform 20.0 20.0 20.6 21.5 2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 21.3 22.0 M7BE 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 20.8 21.5					21.4
2-Hexanone 100 100 88.9 87.5 Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 19.8					21.5
Trichloroethene 20.0 20.0 21.5 21.7 Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.7 <					87.5
Toluene 20.0 20.0 19.4 20.1 Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 co-Xylene 20.0 20.0 19.7 20.6 co-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.					
Chlorobenzene 20.0 20.0 19.0 19.9 trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 21.3 22.0 MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 18.8 19.3 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,4-Dichlorobethane 20.0 20.0 18					20.1
trans-1,3-Dichloropropene 20.0 20.0 19.2 19.9 4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
4-Methyl-2-pentanone 100 100 92.5 92.1 Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 18.8 19.3 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
Ethylbenzene 20.0 20.0 19.6 20.6 cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 20.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
cis-1,3-Dichloropropene 20.0 20.0 19.3 20.0 Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 20.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 18.8 19.3 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1	* '				
Styrene 20.0 20.0 19.4 20.4 m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1	-				
m&p-Xylene 20.0 20.0 19.7 20.6 o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
o-Xylene 20.0 20.0 19.1 20.7 Freon TF 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
Freon TF 20.0 20.0 22.9 24.0 MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
MTBE 20.0 20.0 21.3 22.0 1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1	,				
1,2-Dichloropropane 20.0 20.0 20.8 21.5 Cyclohexane 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
Cyclohexane 20.0 20.0 22.2 23.4 1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
1,3-Dichlorobenzene 20.0 20.0 19.8 21.0 Tetrachloroethene 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1	. , ,				
Tetrachloroethene 20.0 20.0 20.7 21.9 1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1	•				
1,4-Dichlorobenzene 20.0 20.0 18.8 19.3 1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
1,1,2,2-Tetrachloroethane 20.0 20.0 16.0 20.1					
	,,				
	1,1,2,2-Tetrachioroethane 1,2-Dichlorobenzene	20.0	20.0	19.6	21.1

Client: Alprof Realty LLC Job Number: 460-59907-1

Laboratory Control/ Method: 8260B
Laboratory Duplicate Data Report - Batch: 460-173315 Preparation: N/A

LCS Lab Sample ID: LCS 460-173315/4 Units: ug/Kg LCSD Lab Sample ID: LCSD 460-173315/5

Client Matrix:SolidClient Matrix:SolidDilution:1.0Dilution:1.0

Analysis Date: 07/30/2013 0347 Analysis Date: 07/30/2013 0411

 Prep Date:
 N/A
 Prep Date:
 N/A

 Leach Date:
 N/A
 Leach Date:
 N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
1,1,2-Trichloroethane	20.0	20.0	19.1	19.8
1,2,4-Trichlorobenzene	20.0	20.0	18.3	20.4
Dibromochloromethane	20.0	20.0	20.1	21.2
1,2-Dibromoethane	20.0	20.0	20.2	20.7
1,4-Dioxane	400	400	422	384
1,2,3-Trichlorobenzene	20.0	20.0	18.9	20.6
Dichlorodifluoromethane	20.0	20.0	24.2	24.5
1,2-Dibromo-3-Chloropropane	20.0	20.0	18.4	18.1
Bromochloromethane	20.0	20.0	21.7	21.8
Bromodichloromethane	20.0	20.0	20.8	21.6
sopropylbenzene	20.0	20.0	19.1	21.0
Viethyl acetate	100	100	102	104
Methylcyclohexane	20.0	20.0	22.1	23.8 *

Client: Alprof Realty LLC

Job Number: 460-59907-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Prep Batch: 460-172280					
460-59907-6	RIB-2 (20-22)	Т	Solid	5035	
460-59907-7DL	RIB-2 (37-39)	Т	Solid	5035	
Prep Batch: 460-172288					
460-59907-1	RIB-1(4-5)	T	Solid	5035	
460-59907-2	RIB-1 (10-12)	T	Solid	5035	
460-59907-3	RIB-1 (35-37)	Т	Solid	5035	
460-59907-4	RIB-2 (0-5)	T	Solid	5035	
460-59907-4MS	Matrix Spike	Т	Solid	5035	
460-59907-4MSD	Matrix Spike Duplicate	Т	Solid	5035	
460-59907-5	RIB-2 (13-15)	Т	Solid	5035	
460-59907-7	RIB-2 (37-39)	Т	Solid	5035	
460-59907-8	RIB-3 (0-4)	Т	Solid	5035	
460-59907-9	RIB-3 (13-15)	Υ	Solid	5035	
460-59907-10	RIB-3 (21-22)	Т	Solid	5035	
Prep Batch: 460-172549					
460-59987-1	RIB-4 (1-3)	Т	Solid	5035	
460-59987-2	RIB-4 (7-8)	Т	Solid	5035	
460-59987-3	RIB-4 (8-10)	Τ	Solid	5035	
460-59987-4	RIB-5 (1-3)	Т	Solid	5035	
460-59987-5	RIB-S5 (1-3)	Т	Solid	5035	
460-59987-6	RIB-5 (5-7)	Ť	Solid	5035	
460-59987-7	RIB-5 (10-12)	Ť	Solid	5035	
Prep Batch: 460-172828					
460-60086-1	RIB-6 (1-3)	Т	Solid	5035	
460-60086-2	RIB-6 (7-8)	Т	Solid	5035	
460-60086-3	RIB-6 (5-7)	Τ	Solid	5035	
Analysis Batch:460-173182					
LCS 460-173182/3	Lab Control Sample	Т	Solid	8260B	
MB 460-173182/4	Method Blank	Т	Solid	8260B	
460-59907-6	RIB-2 (20-22)	Т	Solid	8260B	460-172280
Analysis Batch:460-173315					
LCS 460-173315/4	Lab Control Sample	T	Solid	8260B	
LCSD 460-173315/5	Lab Control Sample Duplicate	Υ	Solid	8260B	
MB 460-173315/8	Method Blank	T	Solid	8260B	
460-59907-3	RIB-1 (35-37)	T	Solid	8260B	460-172288
460-59907-4	RIB-2 (0-5)	Т	Solid	8260B	460-172288

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison Job No.: 460-59907-1

SDG No.:

Client Sample ID: RIB-1 (35-37) Lab Sample ID: 460-59907-3

Matrix: Solid Lab File ID: D35121.D

Analysis Method: 8260B Date Collected: 07/22/2013 11:30

Sample wt/vol: 6.194(g) Date Analyzed: 07/30/2013 08:27

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm)

% Moisture: 26.1 Level: (low/med) Low

Analysis Batch No.: 173315 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.1	Ū	1.1	0.17
74-83-9	Bromomethane	1.1	U	1.1	0.47
75-01-4	Vinyl chloride	1.2		1.1	0.37
75-00-3	Chloroethane	1.1	U	1.1	0.36
75-09-2	Methylene Chloride	4.1	- 3	1.1	0.16
67-64-1	Acetone	22	Alacada	11	1.8
75-15-0	Carbon disulfide	6.4	R-182.	1.1	0.16
75-69-4	Trichlorofluoromethane	1.1	U	1.1	0.17
75-35-4	1,1-Dichloroethene	1.1	Ü	1.1	0.21
75-34-3	1,1-Dichloroethane	1.1	Ū	1.1	0.12
156-60-5	trans-1,2-Dichloroethene	1.1	U	1.1	0.14
156-59-2	cis-1,2-Dichloroethene	0.39	J	1.1	0.12
67-66-3	Chloroform	1.1	U	1.1	0.26
107-06-2	1,2-Dichloroethane	1.1	ū	1.1	0.20
78-93-3	2-Butanone	11	U	11	0.69
71-55-6	1,1,1-Trichloroethane	1.1	U	1.1	0.14
56-23-5	Carbon tetrachloride	1.1	U	1.1	0.16
75-27-4	Bromodichloromethane	1.1	U	1.1	0.35
78-87-5	1,2-Dichloropropane	1.1	U	1.1	0.16
10061-01-5	cis-1,3-Dichloropropene	1.1	ט	1.1	0.15
79-01-6	Trichloroethene	1.1	U	1.1	0.13
124-48-1	Dibromochloromethane	1.1	ū	1.1	0.11
79-00-5	1,1,2-Trichloroethane	1.1	U	1.1	0.15
71-43-2	Benzene	1.1	U	1.1	0.16
10061-02-6	trans-1,3-Dichloropropene	1.1	U	1.1	0.11
75-25-2	Bromoform	1.1	U	1.1	0.19
108-10-1	4-Methyl-2-pentanone	11	ū	11	0.22
591-78-6	2-Hexanone	11	U	11	0.14
127-18-4	Tetrachloroethene	1.1	U	1.1	0.13
79-34-5	1,1,2,2-Tetrachloroethane	1.1	U	1.1	0.098
108-88-3	Toluene	1.1	U	1.1	0.15
108-90-7	Chlorobenzene	1.1	U	1.1	0.20
100-41-4	Ethylbenzene	1.1	U	1.1	0.19
100-42-5	Styrene	1.1	Ü	1.1	0.31
179601-23-1	m&p-Xylene	2.2	U	2.2	0.64
95-47-6	o-Xylene	1.1	U	1.1	0.21

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison Job No.: 460-59907-1 SDG No.: Client Sample ID: RIB-1 (35-37) Lab Sample ID: 460-59907-3 Lab File ID: D35121.D Matrix: Solid Date Collected: 07/22/2013 11:30 Analysis Method: 8260B Date Analyzed: 07/30/2013 08:27 Sample wt/vol: 6.194(g) Soil Aliquot Vol: _____ Dilution Factor: 1 Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) Level: (low/med) Low % Moisture: 26.1 Analysis Batch No.: 173315 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.1	Ü	1.1	0.12
1634-04-4	MTBE	0.17	J	1.1	0.12
110-82-7	Cyclohexane	1.1	U	1.1	0.14
106-93-4	1,2-Dibromoethane	1.1	U	1.1	0.16
541-73-1	1,3-Dichlorobenzene	1.1	U	1.1	0.17
106-46-7	1,4-Dichlorobenzene	1.1	U	1.1	0.12
95-50-1	1,2-Dichlorobenzene	1.1	U	1.1	0.11
75-71-8	Dichlorodifluoromethane	1.1	υ	1.1	0.24
120-82-1	1,2,4-Trichlorobenzene	1.1	U	1.1	0.21
123-91-1	1,4-Dioxane	55	U	55	14
87-61-6	1,2,3-Trichlorobenzene	1.1	U	1.1	0.17
96-12-8	1,2-Dibromo-3-Chloropropane	1.1	U	1.1	0.48
74-97-5	Bromochloromethane	1.1	Ū	1.1	0.12
98-82-8	Isopropylbenzene	1.1	U	1.1	0.12
79-20-9	Methyl acetate	1.1	U	1.1	0.35
108-87-2	Methylcyclohexane	1.1	U	1.1	0.11

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		70-130
2037-26-5	Toluene-d8 (Surr)	99		70-130
460-00-4	Bromofluorobenzene	96		70-130
1868-53-7	Dibromofluoromethane (Surr)	119		70-130

Lab Name: TestAmerica Edison	Job No.: 460-59907-1
SDG No.:	
Client Sample ID: RIB-2 (0-5)	Lab Sample ID: 460-59907-4
Matrix: Solid	Lab File ID: D35122,D
Analysis Method: 8260B	Date Collected: 07/22/2013 12:15
Sample wt/vol: 4.067(g)	Date Analyzed: 07/30/2013 08:51
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture: 7.0	Level: (low/med) Low
Analysis Batch No.: 173315	Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.3	U	1.3	0.21
74-83-9	Bromomethane	1.3	U	1.3	0.57
75-01-4	Vinyl chloride	1.3	U	1.3	0.45
75-00-3	Chloroethane	1.3	U	1.3	0.44
75-09-2	Methylene Chloride	2.5		1.3	0.20
67-64-1	Acetone	13	U	13	2.2
75-15-0	Carbon disulfide	1.3	ū	1.3	0.20
75-69-4	Trichlorofluoromethane	1.3	U	1.3	0.21
75-35-4	1,1-Dichloroethene	1.3	U	1.3	0.25
75-34-3	1,1-Dichloroethane	1.3	υ	1.3	0.15
156-60-5	trans-1,2-Dichloroethene	1.3	υ	1.3	0.17
156-59-2	cis-1,2-Dichloroethene	1.3	Ū	1.3	0.15
67-66-3	Chloroform	1.3	U	1.3	0.32
107-06-2	1,2-Dichloroethane	1.3	Ū	1.3	0.24
78-93-3	2-Butanone	13	U	13	0.83
71-55-6	1,1,1-Trichloroethane	1.3	Ū	1.3	0.17
56-23-5	Carbon tetrachloride	1.3	U	1.3	0.20
75-27-4	Bromodichloromethane	1.3	U	1.3	0.42
78-87-5	1,2-Dichloropropane	1.3	Ū	1.3	0.20
10061-01-5	cis-1,3-Dichloropropene	1.3	U	1.3	0.19
79-01-6	Trichloroethene	1.3	Ü	1.3	0.16
124-48-1	Dibromochloromethane	1.3	ū	1.3	0,13
79-00-5	1,1,2-Trichloroethane	1.3	Ü	1.3	0.19
71-43-2	Benzene	1.3	U	1.3	0.20
10061-02-6	trans-1,3-Dichloropropene	1.3	U	1.3	9.13
75-25-2	Bromoform	1.3	U	1.3	0.22
108-10-1	4-Methyl-2-pentanone	13	Ū	13	0.26
591-78-6	2-Hexanone	13	U	13	0.17
127-18-4	Tetrachloroethene	1.3	U	1.3	0.16
79-34-5	1,1,2,2-Tetrachloroethane	1.3	n	1.3	0.12
108-88-3	Toluene	1.3	U	1.3	0.19
108-90-7	Chlorobenzene	1.3	U	1.3	0.24
100-41-4	Ethylbenzene	1.3	Ü	1.3	0.22
100-42-5	Styrene	1.3	U	1.3	0.37
179601-23-1	m&p-Xylene	2.6	ū	2.6	0.78
95-47-6	o-Xylene	1.3	U	1.3	0.25

Lab Name: TestAmerica Edison	Job No.: 460-59907-1
SDG No.:	
Client Sample ID: RIB-2 (0-5)	Lab Sample ID: 460-59907-4
Matrix: Solid	Lab File ID: D35122.D
Analysis Method: 8260B	Date Collected: 07/22/2013 12:15
Sample wt/vol: 4.067(g)	Date Analyzed: 07/30/2013 08:51
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture: 7.0	Level: (low/med) Low
Analysis Ratch No · 173315	Units: na/Ka

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.3	ט	1.3	0.15
1634-04-4	MTBE	1.3	Ü	1.3	0.15
110-82-7	Cyclohexane	1.3	U	1.3	0.17
106-93-4	1,2-Dibromoethane	1.3	U	1.3	0.20
541-73-1	1,3-Dichlorobenzene	1.3	Ü	1.3	0.21
106-46-7	1,4-Dichlorobenzene	1.3	U	1.3	0.15
95-50-1	1,2-Dichlorobenzene	1.3	U	1.3	0.13
75-71-8	Dichlorodifluoromethane	1.3	U	1.3	0.29
120-82-1	1,2,4-Trichlorobenzene	1.3	U	1.3	0.25
123-91-1	1,4-Dioxane	66	U	66	17
87-61-6	1,2,3-Trichlorobenzene	1.3	U	1.3	0.21
96-12-8	1,2-Dibromo-3-Chloropropane	1.3	U	1.3	0.58
74-97-5	Bromochloromethane	1.3	υ	1.3	0.15
98-82-8	Isopropylbenzene	1.3	υ	1.3	0.15
79-20-9	Methyl acetate	1.3	u /	1.3	0.42
108-87-2	Methylcyclohexane	1.3	U	1.3	0.13

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	114		70-130
2037-26-5	Toluene-d8 (Surr)	106		70-130
460-00-4	Bromofluorobenzene	105		70-130
1868-53-7	Dibromofluoromethane (Surr)	121		70-130

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample/ Method: 8260B Lab Control Sample Duplicate Recovery Report - Batch: 460-173997 Preparation: N/A

LCS Lab Sample ID: LCS 460-173997/3 Analysis Batch: 460-173997 Instrument ID: CVOAMS12 Client Matrix: Solid Prep Batch: N/A Lab File ID: O76333.D Dilution: Leach Batch: Initial Weight/Volume: 1.0 N/A 5 g 08/02/2013 0538 Analysis Date: Final Weight/Volume: Units: ug/Kg 5 mL

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 460-173997/5 Analysis Batch: 460-173997 Instrument ID: CVOAMS12 Solid Client Matrix: Prep Batch: N/A Lab File ID: O76335.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 g 5 mL

08/02/2013 0656 Analysis Date: Final Weight/Volume: Units: ug/Kg

Prep Date: N/A Leach Date: N/A

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Chloromethane 82 92 50 - 151 11 30 30 Bromomethane 106 101 54 - 142 5 102 99 2 30 Vinyl chloride 67 - 133 98 95 30 Chloroethane 56 - 146 3 105 103 74 - 137 30 Methylene Chloride 2 Acetone 91 86 27 - 164 6 30 Carbon disulfide 117 116 72 - 128 1 30 Trichlorofluoromethane 93 91 61 - 139 2 30 1,1-Dichloroethene 112 109 71 - 126 3 30 76 - 125 95 96 30 1,1-Dichloroethane 1 75 - 122 trans-1,2-Dichloroethene 113 3 30 116 108 80 - 120 30 cis-1,2-Dichloroethene 110 1 Chloroform 108 107 77 - 120 1 30 1,2-Dichloroethane 98 93 76 - 118 6 30 103 97 77 - 117 6 30 2-Butanone 1.1.1-Trichloroethane 113 111 78 - 117 2 30 Carbon tetrachloride 119 119 79 - 118 0 30 89 88 77 - 117 0 30 Benzene 113 112 59 - 125 30 Bromoform 1 2-Hexanone 80 75 70 - 122 6 30 Trichloroethene 107 108 79 - 119 1 30 Toluene 94 92 75 - 115 2 30 97 80 - 120 Chlorobenzene 98 2 30 trans-1,3-Dichloropropene 87 87 67 - 121 0 30 73 68 - 120 7 30 4-Methyl-2-pentanone 78 97 81 - 121 98 2 30 Ethylbenzene 87 86 80 - 123 30 cis-1,3-Dichloropropene 1 Styrene 95 95 82 - 122 1 30 m&p-Xylene 95 94 81 - 121 1 30 o-Xylene 92 94 82 - 122 2 30 Freon TF 114 113 73 - 123 0 30 MTBE 90 90 78 - 120 0 30 98 92 30 82 - 122 7 1,2-Dichloropropane 99 98 80 - 121 1 30 Cyclohexane 95 93 1,3-Dichlorobenzene 80 - 120 2 30 Tetrachloroethene 108 104 80 - 120 4 30

Job Number: 460-59907-1 Client: Alprof Realty LLC

Lab Control Sample/ Method: 8260B Lab Control Sample Duplicate Recovery Report - Batch: 460-173997 Preparation: N/A

1,4-Dichlorobenzene		93	92	80 - 120	0	30		
Analyte		<u>% I</u> LCS	Rec. LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD
Leach Date:	N/A							
	N/A							
, maryoro Dato.	08/02/2013 0656	Units:		ug/Kg	Final Weig	ht/Volume:	5 mL	
	1.0	Leach Ba	atch:	N/A	Initial Weig		5 g	
Client Matrix:	Solid	Prep Bat	ch:	N/A	Lab File ID	:	O76335.D	
LCSD Lab Sample ID	: LCSD 460-173997/5	Analysis	Batch:	460-173997	Instrument	ID:	CVOAMS12	2
Leach Date:	N/A							
Prep Date:	N/A							
Analysis Date:	08/02/2013 0538	Units:		ug/Kg	Final Weig	ht/Volume:	5 mL	
Dilution:	1.0	Leach Ba	atch:	N/A	Initial Weig	ht/Volume:	5 g	
Client Matrix:	Solid	Prep Bat	ch:	N/A	Lab File ID	:	O76333.D	
LCS Lab Sample ID:	LCS 460-173997/3	Analysis	Batch:	460-173997	Instrument	ID:	CVOAMS12	2

	9	% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,4-Dichlorobenzene	93	92	80 - 120	0	30		
1,1,2,2-Tetrachloroethane	85	82	79 - 122	4	30		
1,2-Dichlorobenzene	93	95	80 - 120	1	30		
1,1,2-Trichloroethane	87	86	73 - 118	1	30		
1,2,4-Trichlorobenzene	97	95	80 - 120	3	30		
Dibromochloromethane	106	103	68 - 120	2	30		
1,2-Dibromoethane	94	91	75 - 117	3	30		
1,4-Dioxane	91	80	69 - 131	13	30		
1,2,3-Trichlorobenzene	93	92	75 - 121	1	30		
Dichlorodifluoromethane	95	92	52 - 144	3	30		
1,2-Dibromo-3-Chloropropane	79	75	74 - 118	6	30		
Bromochloromethane	122	118	74 - 125	3	30		
Bromodichloromethane	111	106	79 - 119	5	30		
Isopropylbenzene	102	102	65 - 129	0	30		
Methyl acetate	81	79	73 - 137	3	30		
Methylcyclohexane	111	109	78 - 118	2	30		
Surrogate	LCS % Rec		LCSD %	Rec	Accep	tance Limits	
1,2-Dichloroethane-d4 (Surr)	1	03	104		7	0 - 130	
Toluene-d8 (Surr)	1	00	100		7	0 - 130	
Bromofluorobenzene	1	12	115		7	0 - 130	
Dibromofluoromethane (Surr)	1	19	119		7	0 - 130	

Client: Alprof Realty LLC Job Number: 460-59907-1

Method: 8260B

Preparation: N/A

Laboratory Control/

Laboratory Duplicate Data Report - Batch: 460-173997

LCS Lab Sample ID: LCS 460-173997/3 Units: ug/Kg LCSD Lab Sample ID: LCSD 460-173997/5

Client Matrix:SolidClient Matrix:SolidDilution:1.0Dilution:1.0

Analysis Date: 08/02/2013 0538 Analysis Date: 08/02/2013 0656

 Prep Date:
 N/A
 Prep Date:
 N/A

 Leach Date:
 N/A
 Leach Date:
 N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
Chloromethane	20.0	20.0	16.4	18.4
Bromomethane	20.0	20.0	21.2	20.2
Vinyl chloride	20.0	20.0	20.3	19.9
Chloroethane	20.0	20.0	19.6	19.1
Methylene Chloride	20.0	20.0	21.0	20.6
Acetone	100	100	90.9	85.7
Carbon disulfide	20.0	20.0	23.4	23.2
Trichlorofluoromethane	20.0	20.0	18.5	18.2
1,1-Dichloroethene	20.0	20.0	22.5	21.8
1,1-Dichloroethane	20.0	20.0	19.0	19.1
trans-1,2-Dichloroethene	20.0	20.0	23.3	22.6
cis-1,2-Dichloroethene	20.0	20.0	21.9	21.7
Chloroform	20.0	20.0	21.6	21.4
1,2-Dichloroethane	20.0	20.0	19.7	18.6
2-Butanone	100	100	103	96.6
1,1,1-Trichloroethane	20.0	20.0	22.6	22.1
Carbon tetrachloride	20.0	20.0	23.9 *	23.8 *
Benzene	20.0	20.0	17.7	17.6
Bromoform	20.0	20.0	22.6	22.4
2-Hexanone	100	100	80.1	75.4
Trichloroethene	20.0	20.0	21.3	21.5
Toluene	20.0	20.0	18.7	18.4
Chlorobenzene	20.0	20.0	19.6	19.3
trans-1,3-Dichloropropene	20.0	20.0	17.4	17.4
4-Methyl-2-pentanone	100	100	77.8	72.8
Ethylbenzene	20.0	20.0	19.7	19.4
cis-1,3-Dichloropropene	20.0	20.0	17.4	17.2
Styrene	20.0	20.0	19.1	19.0
m&p-Xylene	20.0	20.0	19.1	18.9
o-Xylene	20.0	20.0	18.3	18.8
Freon TF	20.0	20.0	22.7	22.7
МТВЕ	20.0	20.0	18.0	17.9
1,2-Dichloropropane	20.0	20.0	19.6	18.3
Cyclohexane	20.0	20.0	19.8	19.7
1,3-Dichlorobenzene	20.0	20.0	18.9	18.6
Tetrachloroethene	20.0	20.0	21.7	20.7
1,4-Dichlorobenzene	20.0	20.0	18.5	18.5
1,1,2,2-Tetrachloroethane	20.0	20.0	17.0	16.3
1,2-Dichlorobenzene	20.0	20.0	18.7	18.9

Job Number: 460-59907-1 Client: Alprof Realty LLC

Laboratory Control/

Laboratory Duplicate Data Report - Batch: 460-173997

Method: 8260B Preparation: N/A

LCS Lab Sample ID:

LCS 460-173997/3

Units: ug/Kg

LCSD Lab Sample ID: LCSD 460-173997/5

Client Matrix:

Solid

Client Matrix:

Solid

Dilution:

Dilution:

1.0

Analysis Date:

1.0 08/02/2013 0538

Analysis Date:

08/02/2013 0656

Prep Date: Leach Date: N/A N/A Prep Date: Leach Date:

N/A N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
1,1,2-Trichloroethane	20.0	20.0	17.4	17.1
1,2,4-Trichlorobenzene	20.0	20.0	19.5	18.9
Dibromochloromethane	20.0	20.0	21.2	20.7
1,2-Dibromoethane	20.0	20.0	18.8	18.2
f,4-Dioxane	400	400	363	319
1,2,3-Trichlorobenzene	20.0	20.0	18.6	18.5
Dichlorodifluoromethane	20.0	20.0	19.0	18.4
1,2-Dibromo-3-Chloropropane	20.0	20.0	15.8	14.9
Bromochloromethane	20.0	20.0	24.3	23.6
Bromodichloromethane	20.0	20.0	22.2	21.2
sopropylbenzene	20.0	20.0	20.5	20.5
Methyl acetate	100	100	81.3	79.2
Methylcyclohexane	20.0	20.0	22.2	21.7

Client: Alprof Realty LLC Job Number: 460-59907-1

QC Association Summary

		Report			
_ab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:460-173762					
CS 460-173762/3	Lab Control Sample	Т	Solid	8260B	
CSD 460-173762/4	Lab Control Sample Duplicate	Т	Solid	8260B	
1B 460-173 7 62/7	Method Blank	Т	Solid	8260B	
60-59987-6	RIB-5 (5-7)	Т	Solid	8260B	460-172549
Analysis Batch:460-173949					
CS 460-173949/4	Lab Control Sample	Т	Solid	8260B	
CSD 460-173949/5	Lab Control Sample Duplicate	Т	Solid	8260B	
IB 460-173949/8	Method Blank	T	Solid	8260B	
60-60086-1	RIB-6 (1-3)	Т	Solid	8260B	460-172828
Analysis Batch:460-173997					
CS 460-173997/3	Lab Control Sample	Т	Solid	8260B	
CSD 460-173997/5	Lab Control Sample Duplicate	Т	Solid	8260B	
IB 460-173997/8	Method Blank	Т	Solid	8260B	
60-59907-2	RIB-1 (10-12)	T	Solid	8260B	460-172288
Analysis Batch:460-174179					
CS 460-174179/3	Lab Control Sample	Т	Solid	8260B	
CSD 460-174179/4	Lab Control Sample Duplicate	T	Solid	8260B	
IB 460-174179/7	Method Blank	Ť	Solid	8260B	
60-59907-1	RIB-1(4-5)	Ť	Solid	8260B	460-172288
60-59907-7	RIB-2 (37-39)	T	Solid	8260B	460-172288
60-59907-10	RIB-3 (21-22)	T	Solid	8260B	460-172288
Analysis Batch:460-174454					
CS 460-174454/3	Lab Control Sample	Т	Solid	8260B	
IB 460-174454/4	Method Blank	Т	Solid	8260B	
60-59907-7DL	RIB-2 (37-39)	T	Solid	8260B	460-172280

Report Basis

T = Total

Lab Name: TestAmerica Edison Job No.: 460-59907-1

SDG No.:

Client Sample ID: RIB-1 (10-12) Lab Sample ID: 460-59907-2

Matrix: Solid Lab File ID: 076352.D

Analysis Method: 8260B Date Collected: 07/22/2013 09:20

Sample wt/vol: 5.997(g) Date Analyzed: 08/02/2013 14:01

Soil Aliquot Vol: _____ Dilution Factor: 1

Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm)

% Moisture: 11.5 Level: (low/med) Low

Analysis Batch No.: 173997 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	0.94	ט	0.94	0.15
74-83-9	Bromomethane	0.94	Ū	0.94	0.41
75-01-4	Vinyl chloride	6.5		0.94	0.32
75-00-3	Chloroethane	0.94	ū	0.94	0.31
75-09-2	Methylene Chloride	0.94	U	0.94	0.14
67-64-1	Acetone	2.9	Ĵ	9.4	1.6
75-15-0	Carbon disulfide	2.1		0.94	0.14
75-69-4	Trichlorofluoromethane	0.94	U	0.94	0.15
75-35-4	1,1-Dichloroethene	0.94	U	0.94	0.18
75-34-3	1,1-Dichloroethane	0.94	U	0.94	0.10
156-60-5	trans-1,2-Dichloroethene	0.16	J	0.94	0.12
156-59-2	cis-1,2-Dichloroethene	1.4	-	0.94	0.10
67-66-3	Chloroform	0.94	U	0.94	0.23
107-06-2	1,2-Dichloroethane	0.94	Ū	0.94	0.17
78-93-3	2-Butanone	9.4	U	9.4	0.59
71-55-6	1,1,1-Trichloroethane	0.94	U	0.94	0.12
56-23-5	Carbon tetrachloride	0.94	U	0.94	0.14
75-27-4	Bromodichloromethane	0.94	U	0.94	0.30
78-87-5	1,2-Dichloropropane	0.94	U	0.94	0.14
10061-01-5	cis-1,3-Dichloropropene	0.94	Ü	0.94	0.13
79-01-6	Trichloroethene	6.3		0.94	0.11
124-48-1	Dibromochloromethane	0.94	U	0.94	0.094
79-00-5	1,1,2-Trichloroethane	0.94	U	0.94	0.13
71-43-2	Benzene	0.23	J	0.94	0.14
10061-02-6	trans-1,3-Dichloropropene	0.94	Ū	0.94	0.094
75-25-2	Bromoform	0.94	ū	0.94	0.16
108-10-1	4-Methyl-2-pentanone	9.4	U	9.4	0.19
591-78-6	2-Hexanone	9.4	Ü	9.4	0.12
127-18-4	Tetrachloroethene	0.94	U	0.94	0.11
79-34-5	1,1,2,2-Tetrachloroethane	0.94	U	0.94	0.085
108~88-3	Toluene	0.44	J	0.94	0.13
108-90-7	Chlorobenzene	0.94	Ū	0.94	0.17
100-41-4	Ethylbenzene	0.94	U	0.94	0.16
100-42-5	Styrene	0.94	U	0.94	0.26
179601-23-1	m&p-Xylene	1.9	U	1.9	0.56
95-47-6	o-Xylene	0.94	U	0.94	0.18

Lab Name: TestAmerica Edison Job No.: 460-59907-1

SDG No.:

Client Sample ID: RIB-1 (10-12) Lab Sample ID: 460-59907-2

Matrix: Solid Lab File ID: 076352.D

Analysis Method: 8260B Date Collected: 07/22/2013 09:20

Sample wt/vol: 5.997(g) Date Analyzed: 08/02/2013 14:01

Soil Aliquot Vol: _____ Dilution Factor: 1

Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm)

% Moisture: 11.5 Level: (low/med) Low

Analysis Batch No.: 173997 Units: ug/Kg

					MAT	
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL	
76-13-1	Freon TF	0.94	U	0.94	0.10	
1634-04-4	MTBE	0.94	U	0.94	0.10	
110-82-7	Cyclohexane	0.94	U	0.94	0.12	
106-93-4	1,2-Dibromoethane	0.94	U	0.94	0.14	
541-73-1	1,3-Dichlorobenzene	0.94	Ū	0.94	0.15	
106-46-7	1,4-Dichlorobenzene	0.26	J	0.94	0.10	
95-50-1	1,2-Dichlorobenzene	0.94	Ū	0.94	0.094	
75-71-8	Dichlorodifluoromethane	0.94	Ü	0.94	0.21	
120-82-1	1,2,4-Trichlorobenzene	0.94	U	0.94	0.18	
123-91-1	1,4-Dioxane	47	U	47	12	
87-61-6	1,2,3-Trichlorobenzene	0.94	Ü	0.94	0.15	
96-12-8	1,2-Dibromo-3-Chloropropane	0.94	U	0.94	0.41	
74-97-5	Bromochloromethane	0.94	U	0.94	0.10	
98-82-8	Isopropylbenzene	0.94	U	0.94	0.10	
79-20-9	Methyl acetate	0.94	U	0.94	0.30	
108-87-2	Methylcyclohexane	0.94	U	0.94	0.094	

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	106		70-130
2037-26-5	Toluene-d8 (Surr)	98		70-130
460-00-4	Bromofluorobenzene	110		70~130
1868-53-7	Dibromofluoromethane (Surr)	114		70-130

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample - Batch: 460-173129

Method: 8270C Preparation: 3541

Analyte	Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 460-173129/2-A Solid 1.0 07/31/2013 0825 07/29/2013 0840 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-173514 460-173129 N/A ug/Kg	Instrument Lab File ID Initial Weig Final Weigl Injection Vo	: ht/Volume: ht/Volume:	CBNAMS10 p38649.D 15.00 g 1 mL 1 uL
Bis(2-chloroethyl)elher 3330 2390 72	Analyte		Spike Amount	Result	% Rec.	Limit	Qual
1.3-Dichlorobenzene 3330 2460 74 47 - 84 1.4-Dichlorobenzene 3330 2480 74 47 - 85 1.2-Dichlorobenzene 3330 2890 90 48 - 87 1.3-Dichlorobenzene 3330 2290 69 45 - 90 1.4-Dichlorobenzene 3330 2780 83 42 - 106 1.3-Dichlorobenzene 3330 2780 83 42 - 106 1.3-Dichlorobenzene 3330 2770 81 48 - 97 1.2-Dichlorobenzene 3330 2770 81 48 - 94 1.2-Dichlorobenzene 3330 3202 91 53 - 94 4-Chloroaniline 3330 3700 51 10 - 96 Hexachlorobuddiene 3330 3030 91 51 - 98 2-Methylnaphthalene 3330 3330 2740 82 24 - 98 2-Methylnaphthalene 3330 2390 72 51 - 102 2-Nitroaniline 3330 2390 72 51 - 102 2-Nitroaniline 3330 3330 2580 78 51 - 109 Dimethyl phihalate 3330 3300 39 52 - 112 Acenaphthylene 3330 2770 83 51 - 103 2-Polintrololuene 3330 2770 83 51 - 103 2-Polintrololuene 3330 2920 88 51 - 115 Acenaphthylene 3330 3909 93 52 - 112 Acenaphthylene 3330 2920 88 51 - 116 Acenaphthylene 3330 2920 88 46 - 100 Dibenzofuran 3330 2860 86 52 - 114 4-Chlorophenyl phenyl ether 3330 2860 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3000 91 51 - 108 4-Richlorobenzene 3330 3000 93 49 - 104 4-Richlorobenzene 3330 3000 90 49	-	other	•				
1.4-Dichlorobenzene 3330 2480 74 47.85 1.2-Dichlorobenzene 3330 2990 90 48.87 1.2-Dichlorobenzene 3330 2840 85 42.107 1-Exachloroethane 3330 2290 69 45.90 1-Exachloroethane 3330 2780 83 42.106 1-Exachloroethane 3330 2780 83 42.106 1-Exachloroethane 3330 2790 86 48.97 1-Exachloroethane 3330 2710 81 48.94 1-Exachloroethane 3330 2710 81 48.94 1-Exachloroethane 3330 3020 91 53.94 1-Exachloroethane 3330 3020 91 53.94 1-Exachloroethane 3330 3030 91 51.98 1-Exachloroethane 3330 3300 91 51.98 1-Exachloroethane 3330 3300 91 51.98 1-Exachloroethane 3330 2740 82 24.98 2-Chloronaphthalene 3330 2390 72 51.102 2-Nitroaniline 3330 2390 72 51.102 2-Nitroaniline 3330 2580 78 51.109 Dimetryl phinalate 3330 3080 93 52.112 Acenaphthylene 3330 2770 83 51.103 2-E-Dinitrofoluene 3330 2920 88 51.115 3-Nitroaniline 3330 3900 93 52.104 Acenaphthene 3330 2920 88 46.100 Dibenzofuran 3330 2920 88 46.100 Dibenzofuran 3330 2880 86 52.114 Achierophenyl phenyl ether 3330 3300 91 51.108 4-E-Dinitrofoluene 3330 2880 86 52.114 A-Chlorophenyl phenyl ether 3330 3300 91 51.108 A-Holirotoluene 3330 2880 86 52.114 A-Chlorophenyl phenyl ether 3330 3300 91 51.108 A-Holirotoluene 3330 2880 86 52.114 A-Chlorophenyl phenyl ether 3330 3300 91 51.108 A-Holirotoluene 3330 3900 93 52.106 A-Hol	. ,						
1.2-Dichlorobenzene 3330 2990 90 48 - 87							
N-Nitrosodin-propylamine 3330 2840 85 42 - 107 -Hexachloroethane 3330 2290 69 45 - 90							
Hexachloroethane	The state of the s						
Nitrobenzene 3330 2780 83 42 - 106 Isophorone 3330 2860 86 48 - 97 Isophorone 3330 2770 81 48 - 94 Isophorone 3330 2710 81 48 - 94 Isophorone 3330 2710 81 48 - 94 Isophorone 3330 2710 81 48 - 94 Isophorone 3330 3020 91 53 - 94 4-Chloroaniline 3330 3020 91 51 - 98 Hexachlorobutadiene 3330 3030 91 51 - 98 Hexachlorocyclopentadiene 3330 3300 91 51 - 98 Hexachlorocyclopentadiene 3330 2740 82 24 - 98 2-Chloronaphthalene 3330 2390 72 51 - 102 2-Nitroaniline 3330 3300 93 52 - 110 2-Chloronaphthalene 3330 3080 93 52 - 110 2-Chloronaphthalene 3330 3080 93 52 - 110 2-Dimitryl phthalate 3330 3080 93 52 - 110 2-Dimitryl phthalate 3330 3080 93 52 - 110 2-C-Dimitrolulene 3330 3900 93 52 - 110 2-C-Dimitrolulene 3330 3900 93 52 - 100 2-C-Dimitrolulene 3330 3900 93 52 - 100 2-C-Dimitrolulene 3330 3900 93 52 - 106 2-C-Dimitrolulene 3330 3900 93 52 - 106 2-C-Dimitrolulene 3330 3090 93 52 - 106 2-C-Dimitrolulene 3330 3000 91 50 - 106 3-Dimentral 3330 3000 91 50 - 106 3-Dimentral 3330 3000 91 43 - 104 3-Dimentral 3330 3000 91 43 - 104 3-Dimentral 3330 3000 90 49 - 108 3-Dimentral 3330 3000 90 49 - 108		•					
Sophorone 3330 2860 86 48 - 97 8162 2730 82 51 - 100 1.2,4-Trichlorobenzene 3330 2730 82 51 - 100 1.2,4-Trichlorobenzene 3330 2730 82 51 - 100 1.2,4-Trichlorobenzene 3330 3300 91 53 - 94 42 - 42 - 42 - 42 - 42 - 42 - 42 - 4							
Bis(2-chloroethoxy)methane 3330 2730 82 51 - 100 1,2,4-Trichlorobenzene 3330 3020 91 53 - 94 A-Chloroaniline 3330 3020 91 53 - 94 4-Chloroaniline 3330 2690 81 45 - 98 I-wachlorobutadiene 3330 2690 81 45 - 98 2-Methylnaphthalene 3330 3030 91 51 - 98 Hexachlorocyclopentadiene 3330 2740 82 24 - 98 2-Chloronaphthalene 3330 2390 72 51 - 102 2-Chloronaphthalene 3330 2380 78 51 - 109 Dimethyl phthalate 3330 3080 93 52 - 112 Acenaphthylone 3330 2920 88 51 - 115 3-Nitroaniline 3330 1940 58 32 - 104 Acenaphthylne 3330 2920 88 6 - 100 Dibenzoluran 3330 390 93 52 - 106 2,4							
1.2.4-Trichlorobenzene 3330 2710 81 48 - 94 Naphthalene 3330 3020 91 53 - 94 4-Chloroaniline 3330 1700 51 10 - 96 Hexachlorobutadiene 3330 2690 81 45 - 98 E-Methylnaphthalene 3330 2740 82 24 - 98 E-Methylnaphthalene 3330 2740 82 24 - 98 E-Schioroaphthalene 3330 2390 72 51 - 102 E-Chloroaphthalene 3330 2390 72 51 - 102 E-Nitroaniline 3330 2890 78 51 - 109 Dimethyl phthalate 3330 3080 93 52 - 112 Acenaphthylene 3330 2770 83 51 - 103 E-Chlintrotoluene 3330 2920 88 51 - 115 3-Nitroaniline 3330 2920 88 51 - 115 3-Nitroaniline 3330 3940 58 32 - 104 Acenaphthene 3330 2920 88 46 - 100 Dibenzofuran 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 2880 89 53 - 110 Diethyl phthalate 3330 3000 91 51 - 106 Fluorene 3330 3000 91 51 - 106 Fluorene 3330 3200 91 51 - 106 A-Biromophenyl phenyl ether 3330 2800 80 44 - 102 Hexachlorobenzene 3330 3000 91 43 - 104 A-Biromophenyl phenyl ether 3330 2880 86 50 - 107 Carbazole 3330 3000 93 49 - 106 Phenanthrene 3330 330 340 91 43 - 104 Phenanthrene 3330 330 3000 93 49 - 106 Phenanthrene 3330 3300 3000 93 49 - 106 Pyrene 3330 3000 92 49 - 117 Salventantene 3330 3000 93 49 - 104 Di-h-butyl phthalate 3330 3000 92 49 - 117 Salventantene 3330 3000 93 49 - 104 Di-h-cutyl phthalate 3330 3000 90 49 - 108 Pyrene 3330 3010 90 49 - 108 Pyrene 3330 3010 90 49 - 108 Pyrene 3330 3010 90 49 - 108 Pyrene 3330 3000 90 49 - 108 Pyrene 3330 3000 90 49 - 108 Pyrene 3330 3000 90)methane					
4-Chloroaniline 3330 1700 51 10 - 96 Hexachlorobutadiene 3330 2690 81 45 - 98 2-Methylnaphtalene 3330 3030 91 51 - 98 Hexachlorocyclopentadiene 3330 2740 82 24 - 98 2-Chloronaphthalene 3330 2390 72 51 - 102 2-Chlirroaniline 3330 2380 78 51 - 109 Dimethyl phthalate 3330 2770 83 51 - 103 2,6-Dintroloure 3330 2770 83 51 - 103 2,6-Dintroloure 3330 2920 88 51 - 115 3-Nitroaniline 3330 2920 88 51 - 115 3-Nitroaniline 3330 2920 88 46 - 100 Dibenzofuran 3330 2920 88 46 - 100 Dibenzofuran 3330 2880 89 53 - 110 Pithyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl	1,2,4-Trichloroben	zene	3330		81	48 - 94	
Hexachlorobutadiene	Naphthalene		3330	3020	91	53 - 94	
2-Methylnaphthalene 3330 3030 91 51 - 98 Hexachlorocyclopentadiene 3330 2740 82 24 - 98 2-Chloronaphthalene 3330 2390 72 51 - 102 2-Nitroaniline 3330 3580 78 51 - 109 Dimethyl phthalate 3330 3080 93 52 - 112 Acenaphthylene 3330 2770 83 51 - 103 2,6-Dinitrotoluene 3330 2920 88 51 - 115 3-Nitroaniline 3330 1940 58 32 - 104 Acenaphthene 3330 2920 88 46 - 100 Dibenzofuran 3330 3990 93 52 - 106 2,4-Dinitrotoluene 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorane 3330 3020 91 51 - 108 4-Nitrosodip	4-Chloroaniline		3330	1700	51	10 ~ 96	
Hexachlorocyclopentadiene 3330 2740 82 24 - 98	Hexachlorobutadie	ene	3330	2690	81	45 - 98	
2-Chloronaphthalene 3330 2390 72 51 - 102 2-Nitroaniline 3330 2580 78 51 - 109 Dimethyl phthalate 3330 3080 93 52 - 112 Acenaphthylene 3330 2770 83 51 - 103 2,6-Dinitrotoluene 3330 2920 88 51 - 115 3-Nitroaniline 3330 2920 88 46 - 100 Dibenzofuran 3330 2920 88 46 - 100 Dibenzofuran 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 106 2,4-Dinitrotoluene 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3020 91 51 - 108 4-Nitroaniline 3330 250 75 45 - 106 N-Nitrosodiphenylamine 3330 2970 89 44 - 102	2-Methylnaphthale	ne	3330	3030	91	51 - 98	
2-Nitroaniline 3330 2580 78 51 - 109	Hexachlorocyclope	entadiene	3330	2740	82	24 ~ 98	
Dimethyl phthalate 3330 3080 93 52 - 112 Acenaphthylene 3330 2770 83 51 - 103 2,6-Dinitrotoluene 3330 2920 88 51 - 115 3-Nitroaniline 3330 1940 58 32 - 104 Acenaphthene 3330 2920 88 46 - 100 Dibenzofuran 3330 3090 93 52 - 106 2,4-Dinitrotoluene 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorene 3330 3020 91 51 - 108 4-Nitroaniline 3330 3020 91 51 - 108 4-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 3040 91 43 - 104 Phenanthrene 3330 280 86 48 - 108 Anthracene <td>2-Chloronaphthale</td> <td>ne</td> <td>3330</td> <td>2390</td> <td>72</td> <td>51 - 10</td> <td>2</td>	2-Chloronaphthale	ne	3330	2390	72	51 - 10	2
Acenaphthylene 3330 2770 83 51 - 103 2,6-Dinitrotoluene 3330 2920 88 51 - 115 3-Nitroaniline 3330 1940 58 32 - 104 Acenaphthene 3330 2920 88 46 - 100 Dibenzofuran 3330 3090 93 52 - 106 2,4-Dinitrotoluene 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorene 3330 3020 91 51 - 108 4-Nitroaniline 3330 3030 91 50 - 106 Fluorene 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Antiracene	2-Nitroaniline		3330	2580	78	51 - 10	9
2,6-Dinitrotoluene 3330 2920 88 51 - 115 3-Nitroaniline 3330 1940 58 32 - 104 Acenaphthene 3330 2920 88 46 - 100 Dibenzofuran 3330 3090 93 52 - 106 2,4-Dinitrotoluene 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorene 3330 3030 91 50 - 106 Fluorene 3330 2500 75 45 - 106 N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 107 Carbazole	Dimethyl phthalate	!		3080	93	52 - 11	2
3-Nitroaniline 3330 1940 58 32 - 104	Acenaphthylene					51 - 10	3
Acenaphthene 3330 2920 88 46 - 100 Dibenzofuran 3330 3090 93 52 - 106 2,4-Dinitrotoluene 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorene 3330 3020 91 51 - 108 4-Nitroaniline 3330 2500 75 45 - 106 N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 33 49 - 104 Di-n-bulyl phthalate 3330 300 90 49 - 108 Fluoranthene 3330 300 90 49 - 108 Pyrene 330						51 - 11	5
Dibenzofuran 3330 3090 93 52 - 106 2,4-Dinitrotoluene 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorene 3330 3020 91 51 - 108 4-Nitroaniline 3330 2500 75 45 - 106 N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 48 - 108 Anthracene 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3000 90 49 - 108 Fluoranthene 3330 3000 90 49 - 116 Butyl benzyl phthal							
2,4-Dinitrotoluene 3330 2980 89 53 - 110 Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorene 3330 3020 91 51 - 108 4-Nitroaniline 3330 2500 75 45 - 106 N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 300 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 2150 65 24 - 105 Benzo[a]anthracene </td <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	·						
Diethyl phthalate 3330 2880 86 52 - 114 4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorene 3330 3020 91 51 - 108 4-Nitroaniline 3330 2500 75 45 - 106 N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 2710 84 46 - 112 Chysene <							
4-Chlorophenyl phenyl ether 3330 3030 91 50 - 106 Fluorene 3330 3020 91 51 - 108 4-Nitrosodiphenylamine 3330 2500 75 45 - 106 N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl							
Fluorene 3330 3020 91 51 - 108 4-Nitroaniline 3330 2500 75 45 - 106 N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3010 90 45 - 114 Bis(2-ethylhex		1 . 41					
4-Nitroaniline 3330 2500 75 45 - 106 N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Be		enyi etner					
N-Nitrosodiphenylamine 3330 3400 102 49 - 106 4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]							
4-Bromophenyl phenyl ether 3330 2970 89 44 - 102 Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluo		amin a					
Hexachlorobenzene 3330 3040 91 43 - 104 Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115							
Phenanthrene 3330 2880 86 48 - 108 Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115	, , ,	•					
Anthracene 3330 2880 86 50 - 107 Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115		ic .					
Carbazole 3330 3090 93 49 - 104 Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115							
Di-n-butyl phthalate 3330 3120 93 50 - 108 Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115							
Fluoranthene 3330 3000 90 49 - 108 Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115		e					
Pyrene 3330 2810 84 49 - 116 Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115	• ,						
Butyl benzyl phthalate 3330 3070 92 49 - 117 3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115							
3,3'-Dichlorobenzidine 3330 2150 65 24 - 105 Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115	•	late					
Benzo[a]anthracene 3330 2800 84 46 - 112 Chrysene 3330 3010 90 45 - 114 Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115	3,3'-Dichlorobenzio	dine					
Bis(2-ethylhexyl) phthalate 3330 3080 92 49 - 119 Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115	Benzo[a]anthracen	ne			84	46 - 11	2
Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115	Chrysene		3330	3010	90	45 - 11	4
Di-n-octyl phthalate 3330 2730 82 40 - 106 Benzo[b]fluoranthene 3330 2710 81 33 - 96 Benzo[k]fluoranthene 3330 2920 88 35 - 115		hthalate		3080	92	49 - 11	9
Benzo[k]fluoranthene 3330 2920 88 35 - 115	Di-n-octyl phthalate	e	3330	2730	82	40 - 10	6
	Benzo[b]fluoranthe	ene	3330	2710	81	33 - 96	
Benzo[a]pyrene 3330 2930 88 36 - 89	Benzo(k)fluoranthe	ene	3330	2920	88	35 - 11	5
	Benzo[a]pyrene		3330	2930	88	36 - 89	

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample - Batch: 460-173129

2-Fluorobiphenyl

Method: 8270C Preparation: 3541

40 - 109

Lab Sample ID:	LCS 460-173129/2-A	Analysis Batch:	460-173514	Instrument	ID:	CBNAMS10	
Client Matrix:	Solid	Prep Batch:	460-173129	Lab File ID:		p38649.D	
Dilution:	1.0	Leach Batch:	N/A	Initial Weigi	nt/Volume:	15.00 g	
Analysis Date:	07/31/2013 0825	Units:	ug/Kg	Final Weigh	nt/Volume:	1 mL	
Prep Date:	07/29/2013 0840			Injection Vo	lume:	1 uL	
Leach Date:	N/A			•			
Analyte		Spike Amount	Result	% Rec.	Limit		Qual
Indeno[1,2,3-cd]py	rrene	3330	2780	83	43 -	109	
Dibenz(a,h)anthrad	cene	3330	2970	89	43 -	107	
Benzo[g,h,i]peryler	ne	3330	2950	88	43 -	106	
bis (2-chloroisopro	pyl) ether	3330	2560	77	45 -	102	
Surrogate		%	Rec	А	cceptance Li	mits	
Nitrobenzene-d5		7	'6		38 - 105		
Terphenyl-d14		8	30		16 - 151		

75

Client: Alprof Realty LLC Job Number: 460-59907-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 460-172249					
MB 460-172249/1-A	Method Blank	Т	Water	3510C	
460-59907-11FB	FB0722	τ	Water	3510C	
Prep Batch: 460-172827					
LCS 460-172827/2-A	Lab Control Sample	T	Water	3510C	
LCSD 460-172827/3-A	Lab Control Sample Duplicate	T	Water	3510C	
MB 460-172827/1-A	Method Blank	Т	Water	3510C	
460-59987-9FB	FB0723	Т	Water	3510C	
Analysis Batch:460-17292	24				
MB 460-172249/1-A	Method Blank	Т	Water	8270C	460-172249
Prep Batch: 460-172940					
LCS 460-172940/2-A	Lab Control Sample	Т	Water	3510C	
LCSD 460-172940/3-A	Lab Control Sample Duplicate	Т	Water	3510C	
MB 460-172940/1-A	Method Blank	Т	Water	3510C	
460-60086-4FB	FB0724	Т	Water	3510C	
Analysis Batch:460-17306					
LCS 460-172940/2-A	Lab Control Sample	Τ	Water	8270C	460-172940
MB 460-172940/1-A	Method Blank	Т	Water	8270C	460-172940
Prep Batch: 460-173129					
LCS 460-173129/2-A	Lab Control Sample	Т	Solid	3541	
MB 460-173129/1-A	Method Blank	Т	Solid	3541	
460-59907-1	RIB-1(4-5)	т	Solid	3541	
460-59907-4	RIB-2 (0-5)	Т	Solid	3541	
460-59907-4MS	Matrix Spike	Т	Solid	3541	
460-59907-4MSD	Matrix Spike Duplicate	Т	Solid	3541	
460-59907-8	RIB-3 (0-4)	Т	Solid	3541	
Prep Batch: 460-173133					
LCS 460-173133/2-A	Lab Control Sample	Τ	Solid	3541	
MB 460-173133/1-A	Method Blank	Ŧ	Solid	3541	
460-60086-1	RIB-6 (1-3)	Т	Solid	3541	
Prep Batch: 460-173160					
LCS 460-173160/2-A	Lab Control Sample	Т	Solid	3541	
MB 460-173160/1-A	Method Blank	Т	Solid	3541	
460-59987-1	RIB-4 (1-3)	Т	Solid	3541	
460-59987-4	RIB-5 (1-3)	Т	Solid	3541	
460-59987-5	RIB-S5 (1-3)	Т	Solid	3541	

Lab Name: TestAmerica Edison Job No.: 460-59907-1 SDG No.: Client Sample ID: RIB-1(4-5) Lab Sample ID: 460-59907-1 Matrix: Solid Lab File ID: p38612.D Analysis Method: 8270C Date Collected: 07/22/2013 08:55 Extract. Method: 3541 Date Extracted: 07/29/2013 08:40 Sample wt/vol: 15.00(g) Date Analyzed: 07/30/2013 04:20 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Level: (low/med) Low Injection Volume: 1(uL) % Moisture: 16.1 GPC Cleanup: (Y/N) N

Analysis Batch No.: 173298 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
111-44-4	Bis(2-chloroethyl)ether	39	U	39	5.4
541-73-1	1,3-Dichlorobenzene	390	U	390	36
106-46-7	1,4-Dichlorobenzene	390	0 0	390	44
95-50-1	1,2-Dichlorobenzene	390	U	390	46
621-64-7	N-Nitrosodi-n-propylamine	39	U	39	6.6
67-72-1	Hexachloroethane	39	U	39	4.4
98-95-3	Nitrobenzene	39	υ	39	5.6
78-59-1	Isophorone	390	U	390	48
111-91-1	Bis(2-chloroethoxy)methane	390	ט	390	51
120-82-1	1,2,4-Trichlorobenzene	39	U	39	4.5
91-20-3	Naphthalene	390	u	390	46
106-47-8	4-Chloroaniline	390	U	390	100
87-68-3	Hexachlorobutadiene	80	U	80	9.6
91-57-6	2-Methylnaphthalene	390	U	390	51
77-47-4	Hexachlorocyclopentadiene	390	U	390	46
91-58-7	2-Chloronaphthalene	390	U	390	44
138-74-4	2-Nitroaniline	800	U	800	160
131-11-3	Dimethyl phthalate	390	Ū	390	47
208-96-8	Acenaphthylene	390	U	390	47
606-20-2	2,6-Dinitrotoluene	80	Ū	80	12
99-09-2	3-Nitroamiline	800	ū	800	140
83-32-9	Acenaphthene	390	ū	390	5/7
132-64-9	Dibenzofuran	390	ū	390	4.6
121-14-2	2,4-Dinitrotoluene	80	U	80	13
84-66-2	Diethyl phthalate	390	U	390	47
7005-72-3	4-Chlorophenyl phenyl ether	390	Ü	390	46
86-73-7	Fluorene	390	U	390	50
100-01-6	4-Nitroaniline	800	σ	800	120
86-30-6	N-Nitrosodiphenylamine	390	U	390	39
101-55-3	4-Bromophenyl phenyl ether	390	U	390	39
118-74-1	Hexachlorobenzene	39	U	39	5.4
85-01-8	Phenanthrene	390	U	390	50
120-12-7	Anthracene	390	U	390	48
86-74-8	Carbazole	390	U	390	47

Lab Name: TestAmerica Edison Job No.: 460-59907-1 SDG No.: Lab Sample ID: 460-59907-1 Client Sample ID: RIB-1(4-5) Matrix: Solid Lab File ID: p38612.D Date Collected: 07/22/2013 08:55 Analysis Method: 8270C Extract. Method: 3541 Date Extracted: 07/29/2013 08:40 Sample wt/vol: 15.00(g) Date Analyzed: 07/30/2013 04:20 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Level: (low/med) Low Injection Volume: 1(uL) % Moisture: 16.1 GPC Cleanup: (Y/N) N

Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
84-74-2	Di-n-butyl phthalate	390	Ū	390	49
206-44-0	Fluoranthene	390	U	390	53
129-00-0	Pyrene	390	Ŭ	390	33
85-68-7	Butyl benzyl phthalate	390	ū	390	36
91-94-1	3,3'-Dichlorobenzidine	800	U	800	140
56-55-3	Benzo(a)anthracene	39	U	39	2.8
218-01-9	Chrysene	390	υ	390	46
117-81-7	Bis(2-ethylhexyl) phthalate	390	U	390	130
117-84-0	Di-n-octyl phthalate	390	U	390	25
205-99-2	Benzo[b] fluoranthene	39	U	39	2.5
207-08-9	Benzo(k)fluoranthene	39	Ü	39	3.0
50-32-8	Benzo[a]pyrene	39	U	39	2.8
193-39-5	Indeno(1,2,3-cd)pyrene	39	Ū	39	7.3
53-70-3	Dibenz(a,h)anthracene	39	Ü	39	5.0
191-24-2	Benzo[g,h,i]perylene	390	U	390	29
108-60-1	bis (2-chloroisopropyl) ether	390	U	390	44

CAS NO.	SURROGATE	%REC	Q LIMITS
321-60-8	2-Fluorobiphenyl	73	40-109
4165-60-0	Nitrobenzene-d5	73	38-105
1718-51-0	Terphenyl-d14	78	16-151

Analysis Batch No.: 173298

Lab Name: TestAmerica Edison Job No.: 460-59907-1

SDG No.:

Client Sample ID: RIB-2 (0-5) Lab Sample ID: 460-59907-4

Matrix: Solid Lab File ID: p38625.D

Analysis Method: 8270C Date Collected: 07/22/2013 12:15

Extract. Method: 3541 Date Extracted: 07/29/2013 08:40

Sample wt/vol: 15.02(g) Date Analyzed: 07/30/2013 09:47

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 7.0 GPC Cleanup:(Y/N) N

Analysis Batch No.: 173298 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
111-44-4	Bis(2-chloroethyl)ether	35	ū	35	4.8
541-73-1	1,3-Dichlorobenzene	350	ū	350	32
106-46-7	1,4-Dichlorobenzene	350	U	350	40
95-50-1	1,2-Dichlorobenzene	350	0	350	41
621-64-7	N-Nitrosodi-n-propylamine	35	0	35	5.9
67-72-1	Hexachloroethane	35	σ	35	4.0
98-95-3	Nitrobenzene	35	U	35	5.0
78-59-1	Isophorone	350	U	350	43
111-91-1	Bis(2-chloroethoxy)methane	350	U	350	46
120-82-1	1,2,4-Trichlorobenzene	35	U	35	4.0
91-20-3	Naphthalene	350	U	350	41
106-47-8	4-Chloroaniline	350	Ū	350	94
87-68-3	Hexachlorobutadiene	72	υ	72	8.7
91-57-6	2-Methylnaphthalene	350	U	350	46
77-47-4	Hexachlorocyclopentadiene	350	U	35/0	42
91-58-7	2-Chloronaphthalene	350	U	350	40
88-74-4	2-Nitroaniline	720	U	720	150
131-11-3	Dimethyl phthalate	350	U	3,50	42
208-96-8	Acenaphthylene	350	Ü	3,50	42
606-20-2	2,6-Dinitrotoluene	72	U	72	11
99-09-2	3-Nitroaniline	720	U	720	130
83-32-9	Acenaphthene	350	U	350	52
132-64-9	Dibenzofuran	350	U	350	42
121-14-2	2,4-Dinitrotoluene	72	U	72	12
84-66-2	Diethyl phthalate	350	ū	350	42
7005-72-3	4-Chlorophenyl phenyl ether	350	U	350	42
86-73-7	Fluorene	350	Ū	350	45
100-01-6	4-Nitroaniline	720	U	720	110
86-30-6	N-Nitrosodiphenylamine	350	D	350	35
101-55-3	4-Bromophenyl phenyl ether	350	U	350	35
118-74-1	Hexachlorobenzene	35	U	35	4.9
85-01-8	Phenanthrene	440		350	45
120-12-7	Anthracene	110	J	350	43
86-74-8	Carbazole	350	U	350	42

Lab Name: TestAmerica Edison Job No.: 460-59907-1 SDG No.: Client Sample ID: RIB-2 (0-5) Lab Sample ID: 460-59907-4 Lab File ID: p38625.D Matrix: Solid Analysis Method: 8270C Date Collected: 07/22/2013 12:15 Extract. Method: 3541 Date Extracted: 07/29/2013 08:40 Sample wt/vol: 15.02(g) Date Analyzed: 07/30/2013 09:47 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Level: (low/med) Low Injection Volume: 1(uL) % Moisture: 7.0 GPC Cleanup: (Y/N) N Analysis Batch No.: 173298 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
84-74-2	Di-n-butyl phthalate	350	Ü	350	44
206-44-0	Fluoranthene	1100		350	47
129-00-0	Pyrene	840		350	30
85-68-7	Butyl benzyl phthalate	1300		350	33
91-94-1	3,3'-Dichlorobenzidine	720	ΰ	720	120
56-55-3	Benzo(a)anthracene	600		35	2.5
218-01-9	Chrysene	670		350	41
117-81-7	Bis(2-ethylhexyl) phthalate	160	J	350	120
117-84-0	Di-n-octyl phthalate	350	Ü	350	23
205-99-2	Benzo[b] fluoranthene	840	1333	35	2.2
207-08-9	Benzo[k] fluoranthene	310		35	2.7
50-32-8	Benzo[a]pyrene	680		35	2.5
193-39-5	Indeno(1,2,3-cd)pyrene	640		35	6.6
53-70-3	Dibenz(a,h)anthracene	140		35	4.5
191-24-2	Benzo(g,h,i)perylene	670		350	26
108-60-1	bis (2-chloroisopropyl) ether	350	U	350	39

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	80		40-109
4165-60-0	Nitrobenzene-d5	75	75	
1718-51-0	Terphenyl-d14	66		16-151

Lab Name: TestAmerica Edison Job No.: 460-59907-1

SDG No.:

Client Sample ID: RIB-3 (0-4) Lab Sample ID: 460-59907-8

Matrix: Solid Lab File ID: p38621.D

Analysis Method: 8270C Date Collected: 07/22/2013 14:30

Extract. Method: 3541 Date Extracted: 07/29/2013 08:40

Sample wt/vol: 15.04(g) Date Analyzed: 07/30/2013 08:06

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 8.5 GPC Cleanup:(Y/N) N

Analysis Batch No.: 173298 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
111-44-4	Bis(2-chloroethyl)ether	36	Ū	36	4.9
541-73-1	1,3-Dichlorobenzene	360	U	360	33
106-46-7	1,4-Dichlorobenzene	360	U	360	41
95-50-1	1,2-Dichlorobenzene	360	09	360	42
621-64-7	N-Nitrosodi-n-propylamine	36	U	36	6.0
67-72-1	Hexachloroethane	36	U	36	4.0
98-95-3	Nitrobenzene	36	U	36	5.1
78-59-1	Isophorone	360	U	360	44
111-91-1	Bis(2-chloroethoxy)methane	360	U	360	47
120-82-1	1,2,4-Trichlorobenzene	36	U	36	4.1
91-20-3	Naphthalene	360	U	360	42
106-47-8	4-Chloroaniline	360	Ū	360	96
87-68-3	Hexachlorobutadiene	73	Ū	73	8.8
91-57-6	2-Methylnaphthalene	360	Ū	360	46
77-47-4	Hexachlorocyclopentadiene	360	υ	360	42
91-58-7	2-Chloronaphthalene	360	υ	360	40
88~74-4	2-Nitroaniline	730	υ	730	150
131-11-3	Dimethyl phthalate	360	Ü	360	43
208-96-8	Acenaphthylene	360	U	360	43
606-20-2	2,6-Dinitrotoluene	73	U	73	11
99-09-2	3-Nitroaniline	730	Ū	730	130
83-32-9	Acenaphthene	360	Ū	360	53
132-64-9	Dibenzofuran	360	Ü	360	42
121-14-2	2,4-Dinitrotoluene	73	U	73	12
84-66-2	Diethyl phthalate	360	U	360	43
7005-72-3	4-Chlorophenyl phenyl ether	360	U	360	42
86-73-7	Fluorene	360	U	360	46
100-01-6	4-Nitroaniline	730	Ū	730	110
86-30-6	N-Nitrosodiphenylamine	360	U	360	36
101-55-3	4-Bromophenyl phenyl ether	360	U	360	36
118-74-1	Hexachlorobenzene	36	U	36	4.9
85-01-8	Phenanthrene	360	U	360	46
120-12-7	Anthracene	360	U	360	44
86-74-8	Carbazole	360	Ū	360	43

Lab Name: TestAmerica Edison Job No.: 460-59907-1

SDG No.:

Client Sample ID: RIB-3 (0-4) Lab Sample ID: 460-59907-8

Matrix: Solid Lab File ID: p38621.D

Analysis Method: 8270C Date Collected: 07/22/2013 14:30

Extract. Method: 3541 Date Extracted: 07/29/2013 08:40

Sample wt/vol: 15.04(g) Date Analyzed: 07/30/2013 08:06

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 1(uL) Level: (low/med) Low

% Moisture: 8.5 GPC Cleanup:(Y/N) N

Analysis Batch No.: 173298 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
84-74-2	Di-n-butyl phthalate	360	U	360	44
206-44-0	Fluoranthene	48	J	360	48
129-00-0	Pyrene	47	J	360	30
85-68-7	Butyl benzyl phthalate	360	U	360	33
91-94-1	3,3'-Dichlorobenzidine	730	Ü	730	130
56-55-3	Benzo(a)anthracene	34	J	36	2.5
218-01-9	Chrysene	360	Ü	360	42
117-81-7	Bis(2-ethylhexyl) phthalate	360	Ū	360	120
117-84-0	Di-n-octyl phthalate	360	U	360	23
205-99-2	Benzo[b] fluoranthene	37	-	36	2.3
207-08-9	Benzo[k] fluoranthene	19	J ·	36	2.7
50-32-8	Benzo[a]pyrene	44		36	2.6
193-39-5	Indeno[1,2,3-cd]pyrene	36	U	36	6.7
53-70-3	Dibenz(a,h)anthracene	36	IJ	36	4.5
191-24-2	Benzo[g,h,i]perylene	360	Ū	360	27
108-60-1	bis (2-chloroisopropyl) ether	360	Ū	360	40

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	79		40-109
4165~60-0	Nitrobenzene-d5	78		38-105
1718-51-0	Terphenyl-d14	81		16-151

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample/
Lab Control Sample Duplicate Recovery Report - Batch: 460-172827

Method: 8270C
Preparation: 3510C

LCS Lab Sample ID Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	: LCS 460-172827/2-A Water 1.0 08/02/2013 1119 07/26/2013 1347 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-174061 460-172827 N/A ug/L	Instrument ID: Lab Fife ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CBNAMS6 M68041.D 250 mL 2 mL 5 uL
LCSD Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: LCSD 460-172827/3-A Water 1.0 08/02/2013 1336 07/26/2013 1347 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-174061 460-172827 N/A ug/L	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CBNAMS6 M68047.D 250 mL 2 mL 5 uL

		% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Bis(2-chloroethyl)ether	85	78	62 - 108	8	30		
1,3-Dichlorobenzene	76	77	54 - 97	2	30		
1,4-Dichlorobenzene	77	77	56 - 98	0	30		
1,2-Dichlorobenzene	74	77	57 - 98	4	30		
N-Nitrosodi-n-propylamine	87	84	70 - 109	3	30		
Hexachloroethane	78	82	50 - 99	6	30		
Nitrobenzene	87	80	66 - 106	9	30		
Isophorone	82	74	68 - 108	10	30		
Bis(2-chloroethoxy)methane	88	78	69 - 108	12	30		
1,2,4-Trichlorobenzene	84	80	58 - 98	5	30		
Naphthalene	88	80	63 - 101	9	30		
4-Chloroaniline	80	71	58 - 105	13	30		
Hexachlorobutadiene	84	81	52 - 99	3	30		
2-Methylnaphthalene	89	88	66 - 102	1	30		
Hexachlorocyclopentadiene	58	57	40 - 105	2	30		
2-Chloronaphthalene	88	83	65 - 107	6	30		
2-Nitroaniline	112	80	73 - 116	33	30		*
Dimethyl phthalate	97	94	69 - 111	3	30		
Acenaphthylene	88	84	67 - 107	4	30		
2,6-Dinitrotoluene	99	91	68 - 114	8	30		
3-Nitroaniline	93	85	59 - 108	10	30		
Acenaphthene	89	88	66 - 108	1	30		
Dibenzofuran	91	87	68 - 105	4	30		
2,4-Dinitrotoluene	99	90	65 - 113	9	30		
Diethyl phthalate	95	94	66 - 109	2	30		
4-Chlorophenyl phenyl ether	92	86	68 - 105	6	30		
Fluorene	89	86	68 - 105	4	30		
4-Nitroaniline	97	87	49 ~ 119	11	30		
N-Nitrosodiphenylamine	94	89	71 - 121	5	30		
4-Bromophenyl phenyl ether	89	85	66 - 110	4	30		
Hexachiorobenzene	92	85	65 - 107	7	30		
Phenanthrene	89	83	68 - 110	7	30		
Anthracene	88	82	68 - 108	7	30		
Carbazole	87	85	67 - 110	3	30		
Di-n-butyl phthalate	95	88	68 - 111	8	30		
Fluoranthene	91	83	68 - 108	9	30		
	5.			-			

72 - 130

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample/ Method: 8270C
Lab Control Sample Duplicate Recovery Report - Batch: 460-172827 Preparation: 3510C

LCS Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 460-172827/2-A Water 1.0 08/02/2013 1119 07/26/2013 1347 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-174061 460-172827 N/A ug/L	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	CBNAMS6 M68041.D 250 mL 2 mL 5 uL
LCSD Lab Sample II Client Matrix:	D: LCSD 460-172827/3-A Water	Analysis Batch: Prep Batch:	460-174061 460-172827	Instrument ID: Lab File ID:	CBNAMS6 M68047.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	250 mL
Analysiş Date:	08/02/2013 1336	Units:	ug/L	Final Weight/Volume:	2 mL
Prep Date:	07/26/2013 1347			Injection Volume:	5 uL
Leach Date:	N/A				

% Rec. LCS RPD RPD Limit LCS Qual LCSD Qual Analyte LCSD Limit Pyrene 92 81 61 - 110 13 30 97 88 66 - 115 10 30 Butyl benzyl phthalate 3,3'-Dichlorobenzidine 93 85 69 - 129 9 30 83 83 30 Benzo[a]anthracene 65 - 106 1 86 30 Chrysene 92 68 - 112 7 Bis(2-ethylhexyl) phthalate 95 92 66 - 114 3 30 Di-n-octyl phthalate 92 90 51 - 115 2 30 Benzo[b]fluoranthene 88 89 65 - 111 1 30 95 83 66 - 114 13 30 Benzo[k]fluoranthene 95 87 58 - 101 10 30 Benzo[a]pyrene 99 68 - 121 30 102 3 Indeno[1,2,3-cd]pyrene 30 67 - 124 103 92 11 Dibenz(a,h)anthracene 30 100 92 65 - 134 9 Benzo(g,h,i)perylene 30 bis (2-chloroisopropyl) ether 82 77 68 - 107 6 LCS % Rec LCSD % Rec Acceptance Limits Surrogate 60 - 114 Nitrobenzene-d5 85 77 50 - 120 84 80 2-Fluorobiphenyl

78

88

Terphenyl-d14

Client: Alprof Realty LLC Job Number: 460-59907-1

Units: ug/L

Laboratory Control/

Laboratory Duplicate Data Report - Batch: 460-172827

Method: 8270C Preparation: 3510C

LCS Lab Sample ID:

LCS 460-172827/2-A

LCSD Lab Sample ID: LCSD 460-172827/3-A

Client Matrix:

Water

Client Matrix:

Water 1.0

Dilution:

1.0

Dilution: Analysis Date:

08/02/2013 1336

Analysis Date: Prep Date:

08/02/2013 1119

Prep Date:

07/26/2013 1347

Leach Date:

07/26/2013 1347 N/A

Leach Date: N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
Bis(2-chloroethyl)ether	80.0	80.0	67.6	62.6
1,3-Dichlorobenzene	80.0	80.0	60.5	61.6
1,4-Dichlorobenzene	80.0	80.0	61.3	61.5
1,2-Dichlorobenzene	80.0	80.0	59.5	61.8
N-Nitrosodi-n-propylamine	80.0	80.0	69.6	67.6
Hexachloroethane	80.0	80.0	62.1	65.9
Nitrobenzene	80.0	80.0	69.9	63.6
Isophorone	80.0	80.0	65.4	59.0
Bis(2-chloroethoxy)methane	80.0	80.0	70.3	62.6
1,2,4-Trichlorobenzene	80.0	0.08	67.5	64.1
Naphthalene	80.0	80.0	70.2	64.3
4-Chloroaniline	80.0	80.0	64.1	56.4
Hexachlorobutadiene	80.0	80.0	66.8	64.9
2-Methylnaphthalene	80.0	80.0	71.4	70.5
Hexachiorocyclopentadiene	80.0	80.0	46.3	45.3
2-Chloronaphthalene	80.0	80.0	70.6	66.2
2-Nitroaniline	80.0	80.0	89.6	63.9 *
Dimethyl phthalate	80.0	80.0	77.4	75.3
Acenaphthylene	80.0	80.0	70.1	67.4
2,6-Dinitrotoluene	80.0	80.0	79.3	72.9
3-Nitroaniline	80.0	80.0	74.7	67.6
Acenaphthene	80.0	80.0	71.0	70.5
Dibenzofuran	80.0	80.0	72.6	69.8
2,4-Dinitrotoluene	80.0	80.0	78.8	71.8
Diethyl phthalate	80.0	80.0	76.2	74.8
4-Chlorophenyl phenyl ether	80.0	80.0	73.3	68.8
Fluorene	80.0	80.0	71.5	68.6
4-Nitroaniline	80.0	80.0	77.7	69.9
N-Nitrosodiphenylamine	80.0	80.0	74.8	71.0
4-Bromophenyl phenyl ether	80.0	80.0	71.0	68.2
Hexachlorobenzene	80.0	80.0	73.3	68.2
Phenanthrene	80.0	80.0	71.0	66.4
Anthracene	80.0	80.0	70.1	65.3
Carbazole	80.0	80.0	69.4	67.6
Di-n-butyl phthalate	0.08	80.0	76.1	70.4
Fluoranthene	80.0	80.0	72.6	66.1
Pyrene	80.0	80.0	73.7	64.8
Butyl benzyl phthalate	0.08	0.08	77.7	70.3
3,3'-Dichlorobenzidine	0.08	0.08	74.4	68.1

Client: Alprof Realty LLC Job Number: 460-59907-1

Laboratory Control/ Method: 8270C
Laboratory Duplicate Data Report - Batch: 460-172827 Preparation: 3510C

LCS Lab Sample ID: LCS 460-172827/2-A Units: ug/L LCSD Lab Sample ID: LCSD 460-172827/3-A

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

 Analysis Date:
 08/02/2013 1119
 Analysis Date:
 08/02/2013 1336

 Prep Date:
 07/26/2013 1347
 Prep Date:
 07/26/2013 1347

Leach Date: N/A Leach Date: N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
Benzo[a]anthracene	80.0	80.0	66.7	66.3
Chrysene	80.0	80.0	73.5	68.5
Bis(2-ethylhexyl) phthalate	80.0	80.0	75.6	73.3
Di-n-octyl phthalate	80.0	80.0	73.5	71.7
Benzo[b]fluoranthene	80.0	80.0	70.4	71.4
Benzo[k]fluoranthene	80.0	80.0	76.2	66.6
Benzo[a]pyrene	80.0	80.0	76.3	69.3
ndeno[1,2,3-cd]pyrene	80.0	80.0	81.8	79.2
Dibenz(a,h)anthracene	80.0	80.0	82.2	73.9
Benzo[g,h,i]perylene	80.0	80.0	80.3	73.4
bis (2-chloroisopropyl) ether	80.0	80.0	65.3	61.8

Client: Alprof Realty LLC Job Number: 460-59907-1

QC Association Summary

4 • • • • • • • • • • • • • • • • • • •	•	Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 460-172249					
MB 460-172249/1-A	Method Blank	Т	Water	3510C	
460-59907-11FB	FB0722	Т	Water	3510C	
Prep Batch: 460-172827					
LCS 460-172827/2-A	Lab Control Sample	Т	Water	3510C	
LCSD 460-172827/3-A	Lab Control Sample Duplicate	Τ	Water	3510C	
MB 460-172827/1-A	Method Blank	I	Water	3510C	
460-59987-9FB	FB0723	T	Water	3510C	
Analysis Batch:460-172924					
MB 460-172249/1-A	Method Blank	Т	Water	8270C	460-172249
Prep Batch: 460-172940					
LCS 460-172940/2-A	Lab Control Sample	Т	Water	3510C	
LCSD 460-172940/3-A	Lab Control Sample Duplicate	Т	Water	3510C	
MB 460-172940/1-A	Method Blank	T	Water	3510C	
460-60086-4FB	FB0724	Т	Water	3510C	
Analysis Batch:460-173069	•				
LCS 460-172940/2-A	Lab Control Sample	T	Water	8270C	460-172940
MB 460-172940/1-A	Method Blank	Т	Water	8270C	460-172940
Prep Batch: 460-173129					
LCS 460-173129/2-A	Lab Control Sample	Т	Solid	3541	
MB 460-173129/1-A	Method Blank	Т	Solid	3541	
460-59907-1	RIB-1(4-5)	Т	Solid	3541	
460-59907-4	RIB-2 (0-5)	Т	Solid	3541	
460-59907-4MS	Matrix Spike	T	Solid	3541	
460-59907-4MSD	Matrix Spike Duplicate	Ť	Solid	3541	
460-59907-8	RIB-3 (0-4)	Т	Solid	3541	
Prep Batch: 460-173133					
LCS 460-173133/2-A	Lab Control Sample	Т	Solid	3541	
MB 460-173133/1-A	Method Blank	T	Solid	3541	
460-60086-1	RIB-6 (1-3)	Т	Solid	3541	
Prep Batch: 460-173160					
LCS 460-173160/2-A	Lab Control Sample	Т	Solid	3541	
MB 460-173160/1-A	Method Blank	T	Solid	3541	
460-59987-1	RIB-4 (1-3)	T	Solid	3541	
460-59987-4	RIB-5 (1-3)	<u>T</u>	Solid	3541	
460-59987-5	RIB-S5 (1-3)	Т	Solid	3541	

Job No.: 460-59907-1 Lab Name: TestAmerica Edison SDG No.: Client Sample ID: FB0723 Lab Sample ID: 460-59987-9 Lab File ID: M68087.D Matrix: Water Analysis Method: 8270C Date Collected: 07/23/2013 15:00 Extract. Method: 3510C Date Extracted: 07/26/2013 13:47 Sample wt/vol: 240(mL) Date Analyzed: 08/03/2013 06:36 Con. Extract Vol.: 2(mL) Dilution Factor: 1 Injection Volume: 5(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 174194 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
111-44-4	Bis(2-chloroethyl)ether	1.0	U	1.0	0.31
541-73-1	1,3-Dichlorobenzene	10	U	10	1.7
106-46-7	1,4-Dichlorobenzene	10	U	10	2.0
95-50-1	1,2-Dichlorobenzene	10	U	10	1.4
621-64-7	N-Nitrosodi-n-propylamine	1.0	U	1.0	0.28
67-72-1	Hexachloroethane	1.0	U	1.0	0.16
98-95-3	Nitrobenzene	1.0	U	1.0	0.35
78-59-1	Isophorone	10	U	10	1.4
111-91-1	Bis(2-chloroethoxy)methane	10	U	10	1.0
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.20
91-20-3	Naphthalene	10	U	10	2.1
106-47-8	4-Chloroaniline	1.0	U	1.0	0.33
87-68-3	Hexachlorobutadiene	2.1	U	2.1	0.71
91-57-6	2-Methylnaphthalene	10	Ū	10	1.6
77-47-4	Hexachlorocyclopentadiene	10	ū	10	1.6
91-58-7	2-Chloronaphthalene	10	U	10	1.4
88-74-4	2-Nitroaniline	21	U 9	21	2.1
131-11-3	Dimethyl phthalate	10	U	10	1.1
208-96-8	Acenaphthylene	10	Ū	10	1.9
606-20-2	2,6-Dinitrotoluene	2.1	U	2.1	0.28
99-09-2	3-Nitroaniline	21	U	21	3.0
83-32-9	Acenaphthene	10	U	10	1.1
132-64-9	Dibenzofuran	10	U	10	1.6
121-14-2	2,4-Dinitrotoluene	2.1	Ū	2.1	0.29
84-66-2	Diethyl phthalate	10	U	10	1.5
7005-72-3	4-Chlorophenyl phenyl ether	10	υ	10	1.6
86-73-7	Fluorene	10	U	10	1.8
100-01-6	4-Nitroaniline	21	U	21	3.0
86-30-6	N-Nitrosodiphenylamine	10	U	10	1.0
101-55-3	4-Bromophenyl phenyl ether	10	ū	10	1.1
118-74-1	Hexachlorobenzene	1.0	U	1.0	0.21
85-01-8	Phenanthrene	10	U	10	1.3
120-12-7	Anthracene	10	U	10	0.89
86-74-8	Carbazole	10	U	10	1.3

Lab Name: TestAmerica Edison Job No.: 460-59907-1

SDG No.:

Client Sample ID: FB0723 Lab Sample ID: 460-59987-9

Matrix: Water Lab File ID: M68087.D

Analysis Method: 8270C Date Collected: 07/23/2013 15:00

Extract. Method: 3510C Date Extracted: 07/26/2013 13:47

Sample wt/vol: 240(mL) Date Analyzed: 08/03/2013 06:36

Con. Extract Vol.: 2(mL) Dilution Factor: 1

Injection Volume: 5(uL) Level: (low/med) Low

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 174194 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
84-74-2	Di-n-butyl phthalate	10	Ü	10	1.0
206-44-0	Fluoranthene	10	U	10	1.1
129-00-0	Pyrene	10	U	10	1.1
85-68-7	Butyl benzyl phthalate	10	Ü	10	1.5
91-94-1	3,3'-Dichlorobenzidine	21	ΰ	21	3.3
56-55-3	Benzo[a]anthracene	1.0	ū	1.0	0.19
218-01-9	Chrysene	10	U	10	1.5
117-81-7	Bis(2-ethylhexyl) phthalate	10	U	10	0.84
117-84-0	Di-n-octyl phthalate	10	U	10	0.92
205-99-2	Benzo(b) fluoranthene	1.0	Ü	1.0	0.22
207-08-9	Benzo(k) fluoranthene	1.0	Ü	1.0	0.15
50-32-8	Benzo[a]pyrene	1.0	U	1.0	0.15
193-39-5	Indeno[1,2,3-cd]pyrene	1.0	U	1.0	0.11
53-70-3	Dibenz(a, h) anthracene	1.0	U	1.0	0.17
191-24-2	Benzo(g,h,i)perylene	10	U	10	0.97
108-60-1	bis (2-chloroisopropyl) ether	10	U	10	1.4

CAS NO.	SURROGATE	%REC	Q	LIMITS
4165-60-0	Nitrobenzene-d5	104		60-114
1718-51-0	Terphenyl-d14	117		72-130
321-60-8	2-Fluorobiphenyl	104		50-120

5 uL

Client: Alprof Realty LLC Job Number: 460-59907-1

Injection Volume:

Lab Control Sample/
Lab Control Sample Duplicate Recovery Report - Batch: 460-172940

Method: 8270C
Preparation: 3510C

LCS Lab Sample ID:	LCS 460-172940/2-A	Analysis Batch:	460-173069	Instrument ID:	CBNAMS6
Client Matrix:	Water	Prep Batch:	460-172940	Lab File ID:	M67882.D
Dílution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	250 mL
Analysis Date:	07/29/2013 0228	Units:	ug/L	Final Weight/Volume:	2 mL
Prep Date:	07/27/2013 0805			Injection Volume:	5 uL
Leach Date:	N/A				
LCSD Lab Sample ID	D: LCSD 460-172940/3-A	Analysis Batch:	460-173384	Instrument ID:	CBNAMS6
		•			
Client Matrix:	Water	Prep Batch:	460-172940	Lab File ID:	M67930.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	250 mL
Analysis Date:	07/30/2013 1638	Units:	ug/L	Final Weight/Volume:	2 mL

Leach Date: N/A

07/27/2013 0805

Prep Date:

	-	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Bis(2-chloroethyl)ether	80	80	62 - 108	0	30		
1,3-Dichlorobenzene	86	86	54 ~ 97	0	30		
1,4-Dichlorobenzene	87	90	56 - 98	4	30		
1,2-Dichlorobenzene	86	88	57 - 98	2	30		
N-Nitrosodi-n-propylamine	92	88	70 - 109	4	30		
Hexachloroethane	89	89	50 - 99	0	30		
Nitrobenzene	80	86	66 - 106	6	30		
Isophorone	80	85	68 - 108	6	30		
Bis(2-chloroethoxy)methane	85	89	69 - 108	4	30		
1,2,4-Trichlorobenzene	82	92	58 - 98	11	30		
Naphthalene	83	89	63 - 101	8	30		
4-Chloroaniline	73	82	58 - 105	12	30		
Hexachlorobutadiene	90	99	52 - 99	10	30		
2-Methylnaphthalene	83	90	66 - 102	8	30		
Hexachlorocyclopentadiene	77	79	40 - 105	2	30		
2-Chloronaphthalene	96	95	65 - 107	1	30		
2-Nitroaniline	100	92	73 - 116	9	30		
Dimethyl phthalate	100	98	69 - 111	3	30		
Acenaphthylene	93	92	67 - 107	1	30		
2,6-Dinitrotoluene	100	109	68 - 114	8	30		
3-Nitroaniline	103	107	59 - 108	3	30		
Acenaphthene	87	90	66 - 108	3	30		
Dibenzofuran	94	93	68 - 105	1	30		
2,4-Dinitrotoluene	105	112	65 - 113	7	30		
Diethyl phthalate	96	99	66 - 109	3	30		
4-Chlorophenyl phenyl ether	97	100	68 - 105	3	30		
Fluorene	96	100	68 - 105	4	30		
4-Nitroaniline	102	122	49 - 119	18	30		*
N-Nitrosodiphenylamine	101	101	71 - 121	0	30		
4-Bromophenyl phenyl ether	101	94	66 - 110	7	30		
Hexachlorobenzene	96	99	65 - 107	4	30		
Phenanthrene	92	96	68 - 110	4	30		
Anthracene	92	102	68 - 108	10	30		
Carbazole	96	101	67 - 110	6	30		
Di-n-butyl phthalate	91	103	68 - 111	12	30		
Fluoranthene	95	100	68 - 108	5	30		
i idotatitiette	90	100	00 - 100	J	ψÜ		

60 - 114

50 - 120

72 - 130

Client: Alprof Realty LLC Job Number: 460-59907-1

Lab Control Sample/
Lab Control Sample Duplicate Recovery Report - Batch: 460-172940

Method: 8270C

Preparation: 3510C

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

LCS Lab Sample ID): LCS 460-172940/2-A	Analy	sis Batch:	460-173069	Instrume	ent ID:	CBNAMS6	
Client Matrix:	Water	,	Batch:	460-172940	Lab File		M67882.D	
Dilution:	1.0		n Batch:	N/A	Initial W	eight/Volume:	250 mL	
Analysis Date:	07/29/2013 0228	Units:		ug/L		eight/Volume:	2 mL	
Prep Date:	07/27/2013 0805	0,,,,,		- J		Volume:	5 uL	
Leach Date:	N/A				joolio	voidino.	0 0=	
LCSD Lab Sample	ID: LCSD 460-172940/3-A	Analy	sis Batch:	460-173384	Instrume	ent ID:	CBNAMS6	
Client Matrix:	Water	Prep	Batch:	460-172940	Lab File	ID:	M67930.D	
Dilution:	1.0	Leach	n Batch:	N/A	Initial W	eight/Volume:	250 mL	
Analysis Date:	07/30/2013 1638	Units:		ug/L		eight/Volume:	2 mL	
Prep Date:	07/27/2013 0805			•		Volume:	5 uL	
Leach Date:	N/A				,			
			% Rec.					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qua
Pyrene		89	86	61 - 110	4	30		
Butyl benzyl phthala	ate	94	91	66 - 115	3	30		
3,3'-Dichlorobenzidi	ine	96	95	69 - 129	2	30		
Benzo[a]anthracene	•	85	87	65 - 106	2	30		
Chrysene		88	91	68 - 112	4	30		
Bis(2-ethylhexyl) ph	thalate	96	94	66 - 114	2	30		
Di-n-octyl phthalate		97	93	51 - 115	4	30		
Benzo(b)fluoranther		87	87	65 - 111	0	30		
Benzo[k]fluoranther	ne	93	85	66 - 114	10	30		
Benzo[a]pyrene		93	96	58 - 101	2	30		
indeno[1,2,3-cd]pyr	ene	90	94	68 - 121	4	30		
Dibenz(a,h)anthrac	ene	93	97	67 - 124	4	30		
Benzo[g,h,i]perylen	e	90	87	65 - 134	3	30		
bis (2-chloroisoprop	yl) ether	91	89	68 - 107	2	30		
Surrogate		L	.CS % Rec	LCSD %	Rec	Accept	tance Limits	

82

92

89

94

90

89

Client: Alprof Realty LLC Job Number: 460-59907-1

Units: ug/L

Laboratory Control/

Laboratory Duplicate Data Report - Batch: 460-172940

LCSD Lab Sample ID: LCSD 460-172940/3-A

Client Matrix: Water Dilution: 1.0

Method: 8270C

Preparation: 3510C

Analysis Date: 07/30/2013 1638 Prep Date: 07/27/2013 0805

Leach Date: N/A

LCS Lab Sample ID: LCS 460-172940/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 07/29/2013 0228 Prep Date: 07/27/2013 0805

Leach Date: N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
Bis(2-chloroethyl)ether	80.0	80.0	64.1	64.1
1,3-Dichlorobenzene	0.08	80.0	68.6	68.6
1,4-Dichlorobenzene	80.0	80.0	69.3	71.9
1,2-Dichlorobenzene	80.0	80.0	69.1	70.4
N-Nitrosodi-n-propylamine	80.0	80.0	73.3	70.3
Hexachloroethane	80.0	80.0	71.1	71.2
Nitrobenzene	80.0	80.0	64.2	68.4
Isophorone	0.08	80.0	64.0	67.6
Bis(2-chloroethoxy)methane	80.0	80.0	67.8	70.9
1,2,4-Trichlorobenzene	0.08	80.0	65.8	73.8
Naphthalene	0.08	80.0	66.0	71.6
4-Chloroaniline	80.0	80.0	58.1	65.4
Hexachlorobutadiene	80.0	80.0	71.8	79.3
2-Methylnaphthalene	80.0	80.0	66.3	72.0
Hexachlorocyclopentadiene	80.0	80.0	62.0	62.9
2-Chloronaphthalene	0.08	80.0	76.9	76.1
2-Nitroaniline	80.0	80.0	80.3	73.6
Dimethyl phthalate	80.0	80.0	80.1	78.0
Acenaphthylene	0.08	80.0	74.5	73.9
2,6-Dinitrotoluene	80.0	0.08	80.4	87.1
3-Nitroaniline	80.0	0.08	82.8	85.4
Acenaphthene	80.0	80.0	69.4	71.7
Dibenzofuran	0.08	80.0	75.3	74.4
2,4-Dinitrotoluene	80.0	80.0	83.7	89.5
Diethyl phthalate	80.0	80.0	77.0	79.0
4-Chlorophenyl phenyl ether	80.0	80.0	77.6	79.7
Fluorene	80.0	80.0	76.5	79.9
4-Nitroaniline	80.0	80.0	81.8	97.6
N-Nitrosodiphenylamine	80.0	80.0	80.9	81.0
4-Bromophenyl phenyl ether	80.0	0.08	81.1	75.5
Hexachlorobenzene	0.08	80.0	76.4	79.5
Phenanthrene	80.0	80.0	73.8	77.2
Anthracene	80.0	80.0	73.7	81.5
Carbazole	80.0	0.08	76.4	81.0
Di-n-butyl phthalate	80.0	80.0	72.9	82.5
Fluoranthene	80.0	80.0	76.3	80.0
Pyrene	80.0	80.0	71.3	68.6
Butyl benzyl phthalate	0.08	80.0	75.3	73.1
3,3'-Dichlorobenzidine	80.0	80.0	77.0	75.7

Client: Alprof Realty LLC Job Number: 460-59907-1

Laboratory Control/ Method: 8270C
Laboratory Duplicate Data Report - Batch: 460-172940 Preparation: 3510C

LCS Lab Sample ID: LCS 460-172940/2-A Units: ug/L LCSD Lab Sample ID: LCSD 460-172940/3-A

 Client Matrix:
 Water
 Client Matrix:
 Water

 Difution:
 1.0
 Dilution:
 1.0

 Analysis Date:
 07/29/2013 0228
 Analysis Date:
 07/30/2013 1638

 Prep Date:
 07/27/2013 0805
 Prep Date:
 07/27/2013 0805

Leach Date: N/A Leach Date: N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Quat	LCSD Result/Qual
Benzo[a]anthracene	80.0	80.0	68.3	69.9
Chrysene	80.0	80.0	70.1	73.1
Bis(2-ethylhexyl) phthalate	80.0	80.0	76.6	74.9
Di-n-octyl phthalate	80.0	80.0	77.8	74.8
Benzo[b]fluoranthene	80.0	80.0	69.6	69.9
Benzo[k]fluoranthene	80.0	80.0	74.5	67.7
Benzo[a]pyrene	80.0	80.0	74.8	76.5
Indeno[1,2,3-cd]pyrene	80.0	80.0	72.3	75.0
Dibenz(a,h)anthracene	80.0	80.0	74.7	77.6
Benzo[g,h,i]perylene	80.0	80.0	71.6	69.5
bis (2-chloroisopropyl) ether	80.0	80.0	72.7	71.0

Client: Alprof Realty LLC Job Number: 460-59907-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 460-172249					
MB 460-172249/1-A	Method Blank	Т	Water	3510C	
60-59907-11FB	F80722	Т	Water	3510C	
Prep Batch: 460-172827					
_CS 460-172827/2-A	Lab Control Sample	Т	Water	3510C	
CSD 460-172827/3-A	Lab Control Sample Duplicate	Т	Water	3510C	
/IB 460-172827/1-A	Method Blank	Ť	Water	3510C	
160-59987-9FB	FB0723	Т	Water	3510C	
Analysis Batch:460-172924		_			
ИВ 460-1722 4 9/1-A	Method Blank	Т	Water	8270C	460-172249
Prep Batch: 460-172940					
.CS 460-172940/2-A	Lab Control Sample	T	Water	3510C	
CSD 460-172940/3-A	Lab Control Sample Duplicate	<u>т</u>	Water	3510C	
MB 460-172940/1-A	Method Blank	T	Water	3510C	
60-60086-4FB	FB0724	Т	Water	3510C	
Analysis Batch:460-173069					
.CS 460-172940/2-A	Lab Control Sample	Т	Water	8270C	460-172940
//B 460-172940/1-A	Method Blank	Т	Water	8270C	460-172940
Prep Batch: 460-173129					
.CS 460-173129/2-A	Lab Control Sample	Т	Solid	3541	
/IB 460-173129/1-A	Method Blank	Т	Solid	3541	
60-59907-1	RIB-1(4-5)	Т	Solid	3541	
60-59907-4	RIB-2 (0-5)	τ	Solid	3541	
60-59907-4MS	Matrix Spike	Т	Solid	3541	
60-59907-4MSD	Matrix Spike Duplicate	Υ	Solid	3541	
60-59907-8	RIB-3 (0-4)	Т	Solid	3541	
Prep Batch: 460-173133					
CS 460-173133/2-A	Lab Control Sample	Т	Solid	3541	
//B 460-173133/1-A	Method Blank	Т	Solid	3541	
60-60086-1	RIB-6 (1-3)	Т	Solid	3541	
Prep Batch: 460-173160					
.CS 460-173160/2-A	Lab Control Sample	τ	Solid	3541	
/IB 460-173160/1-A	Method Blank	Т	Solid	3541	
60-59987-1	RIB-4 (1-3)	Т	Solid	3541	
60-59987-4	RIB-5 (1-3)	Т	Solid	3541	
60-59987-5	RIB-S5 (1-3)	Т	Solid	3541	

Lab Name: TestAmerica Edison Job No.: 460-59907-1

SDG No.:

Analysis Batch No.: 174231

Client Sample ID: FB0724 Lab Sample ID: 460-60086-4

Matrix: Water Lab File ID: M68112.D

Analysis Method: 8270C Date Collected: 07/24/2013 11:00

Extract. Method: 3510C Date Extracted: 07/27/2013 08:05

Sample wt/vol: 240(mL) Date Analyzed: 08/03/2013 19:38

Con. Extract Vol.: 2(mL) Dilution Factor: 1

Injection Volume: 5(uL) Level: (low/med) Low

% Moisture: GPC Cleanup: (Y/N) N

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
111-44-4	Bis(2-chloroethyl)ether	1.0	U	1.0	0.31
541-73-1	1,3-Dichlorobenzene	10	U	10	1.7
106-46-7	1,4-Dichlorobenzene	10	U	10	2.0
95-50-1	1,2-Dichlorobenzene	10	Ū	10	1.4
621-64-7	N-Nitrosodi-n-propylamine	1.0	U	1.0	0.28
67-72-1	Hexachloroethane	1.0	Ū	1.0	0.16
98-95-3	Nitrobenzene	1.0	U	1.0	0.35
78-59-1	Isophorone	10	U	10	1.4
111-91-1	Bis(2-chloroethoxy)methane	10	Ū	10	1.0
120-82-1	1,2,4-Trichloropenzene	1.0	U	1.0	0.20
91-20-3	Naphthalene	10	U	10	2.1
106-47-8	4-Chloroaniline	1.0	U	1.0	0.33
87-68-3	Hexachlorobutadiene	2.1	U	2.1	0.71
91-57-6	2-Methylnaphthalene	10	Ü	10	1.6
77-47-4	Hexachlorocyclopentadiene	10	U	10	1.6
91-58-7	2-Chloronaphthalene	10	U	10	1.4
88-74-4	2-Nitroaniline	21	U	21	2.1
131-11-3	Dimethyl phthalate	10	U	10	1.1
208-96-8	Acenaphthylene	10	U	10	1.9
606-20-2	2,6-Dinitrotoluene	2.1	U	2.1	0.28
99~09-2	3-Nitroaniline	21	U	21	3.0
83-32-9	Acenaphthene	10	U	10	1.1
132-64-9	Dibenzofuran	10	U	10	1.6
121-14-2	2,4-Dinitrotoluene	2.1	Ū	2.1	0.29
84-66-2	Diethyl phthalate	10	U	10	1.5
7005-72-3	4-Chlorophenyl phenyl ether	10	U	10	1.6
86-73-7	Fluorene	10	U	10	1.8
100-01-6	4-Nitroaniline	21	U/*	21	3.0
86-30-6	N-Nitrosodiphenylamine	10	U	10	1.0
101-55-3	4-Bromophenyl phenyl ether	10	U	10	1.1
118-74-1	Hexachlorobenzene	1.0	U	1.0	0.21
85-01-8	Phenanthrene	10	U	10	1.3
120-12-7	Anthracene	10	U	10	0.89
86-74-8	Carbazole	10	U	10	1.3

Lab Name: TestAmerica Edison Job No.: 460-59907-1 SDG No.: Lab Sample ID: 460-60086-4 Client Sample ID: FB0724 Lab File ID: M68112.D Matrix: Water Date Collected: 07/24/2013 11:00 Analysis Method: 8270C Extract. Method: 3510C Date Extracted: 07/27/2013 08:05 Sample wt/vol: 240(mL) Date Analyzed: 08/03/2013 19:38 Con. Extract Vol.: 2(mL) Dilution Factor: 1 Injection Volume: 5(uL) Level: (low/med) Low GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 174231 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
84-74-2	Di-n-butyl phthalate	10	U	10	1.0
206-44-0	Fluoranthene	10	U	10	1.1
129-00-0	Pyrene	10	Ū	10	1.1
85-68-7	Butyl benzyl phthalate	10	U	10	1.5
91-94-1	3,3'-Dichlorobenzidine	21	Ü	21	3.3
56-55-3	Benzo[a]anthracene	1.0	σ	1.0	0.19
218-01-9	Chrysene	10	U	10	1.5
117-81-7	Bis(2-ethylhexyl) phthalate	10	υ	10	0.84
117-84-0	Di-n-octyl phthalate	10	U	10	0.92
205-99-2	Benzo[b] fluoranthene	1.0	Ū	1.0	0.22
207-08-9	Benzo[k] fluoranthene	1.0	Ū	1.0	0.15
50-32-8	Benzo[a]pyrene	1.0	υ	1.0	0.15
193-39-5	Indeno[1,2,3-cd]pyrene	1.0	Ū	1.0	0.11
53-70-3	Dibenz(a,h)anthracene	1.0	Ü	1.0	0.17
191-24-2	Benzo[g,h,i]perylene	10	σ	10	0.97
108-60-1	bis (2-chloroisopropyl) ether	10	Ū	10	1.4

CAS NO.	SURROGATE	%REC	Q	LIMITS
4165-60-0	Nitrobenzene-d5	101		60-114
1718-51-0	Terphenyl-d14	109		72-130
321-60-8	2-Fluorobiphenyl	95		50-120

34-11 BEACH CHANNAL DRIVE DATA USABILITY SUMMARY REPORT September 30 and October 1, 2013 Soil Sampling (SDG No. 63945) Lab Report #460-63945-1

This data usability summary report (DUSR) was prepared in accordance with *Appendix 2B* of New York State Department of Environmental Conservation (NYSDEC) DER-10 using the entire original laboratory report, including the sample data summary report and the extended data package. The sampling event included seven primary environmental soil samples and associated quality assurance / quality control (QA / QC) samples collected on September 30 and October 1, 2013.

Sample Collection

The samples were collected in labeled laboratory-provided sample containers; no issues with sample containers or labeling were reported by the laboratory. Sampling procedures, including collection of field QA / QC samples, were reported to have been in accordance with the procedures presented in the NYSDEC-approved Quality Assurance Project Plan (April 2013 for this project. All sample collection was conducted under Chain of Custody (COC) procedures.

Field QA / QC samples, including a blind duplicate sample, field blanks (equipment rinsate blanks) and trip blanks samples, were collected to evaluate field sampling methods and laboratory procedures. Extra volume was also provided for a site-specific matrix spike / matrix spike duplicate (MS / MSD) QA / QC sample.

Sample Analyses

The samples were transmitted to and analyzed by TestAmerica Laboratories, Inc. at their Edison, New Jersey facility, which is New York State Department of Health-certified for the analyses performed. The samples were prepared and analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) using Methods 5035 / 8260C. The analytical methods and analytes are appropriate for the intended use of the data. The sample holding times were met and no problems with sample receipt or handling were reported by the laboratory.

None of the samples analyzed for VOCs required dilution.

QA / QC Results

Equipment Blank Samples

Rinsate (equipment) blank samples were collected on 9/30 and 10/1 and were analyzed for all project analytes to evaluate potential contamination from field sampling procedures. Both the blanks contained the same suite of VOCs, including: methylene chloride (up to 0.75 micrograms per liter [ug/liter]), chloroform (up to 3.7 ug/l) and bromodichloromethane (up to 0.77 ug/l). As methylene chloride is a common laboratory contaminant and was not detected in soil samples approaching regulatory thresholds of concern, its presence in the two rinsate blanks is

not believed to represent a significant QA / QC excursion. As neither chloroform or bromodichloromethane were detected in associated field samples, their presence in the two rinsate samples is not believed to be significant.

Both non-detect values for cyclohexane and methylcyclohexane were flagged with an "*" due to laboratory control sample (LCS) issues. However, the associated matrix spike / matrix spike duplicate (MS / MSD) were within acceptance limits and no mitigation measures were required.

Based upon these rinsate blank data, cross-contamination from field sampling procedures does not appear to be of concern in this data set.

Surrogate Samples

Surrogate recoveries and internal standard responses in each of the samples for all analytes were within acceptance limits, with the following exceptions:

• Internal standard (ISTD) response and bromofluorobenzene (Surr) recovery for the following sample was outside control limits: R1B-9 (15-16) (460-64063-6). The sample was re-analyzed with concurring results in Batch 185479. The original set of data has been reported and no further action by the laboratory was required.

Trip Blanks

Trip blank samples were collected on 9/30 and 10/1 which were transported with the cooler containing the VOC samples. Trip blank samples are used to verify that cross-contamination between samples did not occur in the field, in transit or in the laboratory. No VOCs were detected in any of the two trip blanks; therefore, cross-contamination issues were not of concern.

On minor issue identified with the trip blanks in that that the non-detect values for cyclohexane and methylcyclohexane for both samples were flagged with an "*" due to LCS issues. This is not believed to represent a significant QA / QC issue as neither VOC was detected in any of the field samples. ¹

Blind Duplicate Samples

A blind duplicate sample was collected and utilized to evaluate the precision of the laboratory analyses. The results from the duplicate sample (RIB-8D (15-16)) and the associated parent sample (RIB-8 (15-16)) are very similar for the VOCs analyses. Based on the blind duplicate sample results, the laboratory results are likely to be precise.

MS / MSD Samples

An MS / MSD sample was prepared to evaluate the effect of the matrix on the reliability of the analytical results. Spiking occurs in the laboratory prior to sample preparation and analysis. One MS / MSD sample was collected and included in this sample delivery group (SDG), which

¹ The associated Form 1s for these samples are provided as part of the LCS discussion below.

-2-

was analyzed in several batches. Based on information provided by the analytical laboratory, the MS / MSD results were all within QC limits except as follows:

Based on these results, matrix-related effects have not significantly affected the analytical results.

- The ISTD response for the following MS) was outside control limits: R1B-8(17-19) (460-64063-4 MS). The MS was re-analyzed with concurring results in Batch 185479. The original set of data has been reported.
- Several analytes failed the recovery criteria low for the MS of sample 460-64063-4 in Batch 460-185406. 1,1,2,2-Tetrachloroethane, 1,4-dioxane and benzene failed the recovery criteria high.
- The MSD of sample 460-64063-4 in Batch 460-185406 failed the recovery criteria low for several analytes .1,1,2,2-tetrachloroethane and 1,4-dioxane failed the recovery criteria high. Also, cis-1,3-dichloropropene and trans-1,3-dichloropropeneexceeded the relative percent difference (RPD) limit.

Based upon these results, matrix-related effects have not significantly affected the analytical results.

Method Blank Samples

Method blank (MB) samples were analyzed by the laboratory to evaluate the potential for cross-contamination associated with the sample preparation and analysis. The MB results did not show concentrations of analytes above their method detection limits and / or the reporting limits except as follows:

 Acetone was detected in Method Blank MB 460-185406/6 at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

Laboratory Control Samples and Duplicates

Laboratory control samples (LCSs) and duplicates (LCSDs) were used by the laboratory to verify the accuracy and precision of the analyses. The LCS / LCSD results were all within established guidelines, with the following exceptions:

 The LCS associated with Batch 185055 was outside acceptance criteria (low) for cyclohexane and methylcyclohexane. The batch MS / MSD was within acceptance limits and may be used to evaluate matrix performance.

Based on these results, the data do not appear to have been significantly affected by laboratory-related accuracy or precision issues.

Questions and Responses as per DER-10

1. Is the data package complete as defined under the current requirements for the NYSDEC ASP Category B or USEPA CLP deliverables?

The data package is complete. The external and internal chain of custody forms are present and complete. The case narrative and sample analysis summaries are present and complete. The analytical QA /Q C summary forms, including surrogate recovery forms, LCS forms, IDL forms, initial and continuing calibration summary forms, standards raw data, tuning criteria report, and MB data are all present and complete. The data report forms, including sample prep logs, injection logs, and examples of the calculations used to determine the sample concentrations are all present and complete. The raw data used to identify and quantify the contract-specified analytes are present and complete.

2. Have all holding times been met?

All samples were received and analyzed within the EPA-recommended holding times for the analyses performed.

3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data, fall within the protocol-required limits and specifications?

No – Although the majority of QC data were found to fall within the protocol-required limits and specifications, minor exceptions were noted above; however, these exceptions do not appear to significantly affect the data set.

4. Have all of the data been generated using established and agreed-upon analytical protocols?

Yes - all of the data were generated using TCL VOCs using Methods 5035 / 8260C.

5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?

Yes – a representative number of raw data results were compared with the reported data results to confirm that the reported analytical results (identification and quantification) are substantiated by the raw data.

6. Have the correct data qualifiers been used?

Yes – results below the quantitation limit and above the method detection limit have been J-qualified, analytes detected in associated MBs are B-qualified, asterisks have been applied where LCS results exceed the control limits, and results analyzed for but not detected have been U-qualified. No other qualifiers were indicated or applied.

7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?

Yes – exceedances have been noted in the DUSR and the corresponding QC summary sheets are attached.

Conclusions

The soil samples were reported to have been collected in accordance with the NYSDEC-approved QAPP for this project. No field or laboratory conditions occurred that would result in non-valid analytical data other than as noted above. The data appear to be adequate for their intended purpose.

Attachments

CASE NARRATIVE

Client: Alprof Realty LLC

Project: Alprof Realty

Report Number: 460-63945-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 10/1/2013 2:40 PM and 10/2/2013 2:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.8° C and 2.0° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

Acetone was detected in method blank MB 460-185406/6 at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been "B" flagged.

Refer to the QC report for details.

VOLATILE ORGANICS

Samples 460-64063-1 through 460-64063-6 were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C.

Samples 460-63945-1 and 460-63945-2 were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C.

The samples were prepared on 10/03/2013 and analyzed on 10/08/2013.

Internal standard (ISTD) response and Bromofluorobenzene (Surr) recovery for the following sample was outside control limits: R1B-9(15-16) (460-64063-6). The sample was re-analyzed with concurring results in batch 185479. The original set of data has been reported.

Internal standard (ISTD) response for the following matrix spike (MS) was outside control fimits; R1B-8(17-19) (460-64063-4 MS). The MS was re-analyzed with concurring results in batch 185479. The original set of data has been reported.

Several analytes failed the recovery criteria low for the matrix spike (MS) of sample 460-64063-4 in batch 460-185406. 1,1,2,2-Tetrachloroethane, 1,4-Dioxane and Benzene failed the recovery criteria high.

The matrix spike duplicate (MSD) of sample 460-64063-4 in batch 460-185406 failed the recovery criteria low for several analytes . 1,1,2,2-Tetrachloroethane and 1,4-Dioxane failed the recovery criteria high. Also, cis-1,3-Dichloropropene and trans-1,3-Dichloropropene exceeded the rpd limit.

The laboratory control sample (LCS) recovery in batch 185406 met acceptance criteria.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile organics analyses.

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANICS

Samples 460-64063-7 and 460-64063-8 were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C.

Samples 460-63945-3 and 460-63945-4 were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C.

The samples were analyzed on 10/07/2013.

The laboratory control sample (LCS) associated with batch 185055 was outside acceptance criteria for Cyclohexane and Methylcyclohexane. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Refer to the QC report for details.

No other difficulties were encountered during the Volatile organics analyses.

All other quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE PERCENT SOLIDS/PERCENT MOISTURE

Samples 460-64063-1 through 460-64063-6 were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D).

Samples 460-63945-1 and 460-63945-2 were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D).

The samples were analyzed on 10/02/2013, 10/03/2013 and 10/05/2013.

No difficulties were encountered during the %solids/moisture analyses.

All quality control parameters were within the acceptance limits.

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID:

FB0930

Lab Sample ID:

460-63945-3FB

Client Matrix:

Water

Date Sampled: 09/30/2013 1500 Date Received: 10/01/2013 1440

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C 5030C Analysis Batch: Prep Batch:

460-185055 N/A

Instrument ID: Lab File ID:

Initial Weight/Volume:

Final Weight/Volume:

CVOAMS13 P75930.D 5 mL

5 mL

Analysis Date:

1,2,4-Trichlorobenzene

1,4-Dioxane

Dilution:

1.0

10/07/2013 1633 Prep Date: 10/07/2013 1633

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Chloromethane	1.0	Ú	0.10	1.0	
Bromomethane	1.0	U	0.18	1.0	
Vinyl chloride	1.0	U	0.14	1.0	
Chloroethane	1.0	U	0.17	1.0	
Methylene Chloride	0.75	J	0.18	1.0	
Acetone	5.0	U	2.7	5.0	
Carbon disulfide	1.0	U	0.13	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
1,1-Dichloroethene	1.0	IJ	0.090	1.0	
1,1-Dichloroethane	1.0	U	0.13	1.0	
trans-1,2-Dichloroethene	1.0	U	0.13	1.0	
cis-1,2-Dichloroethene	1.0	U	0.18	1.0	
Chloroform	3.7		0.080	1.0	
1,2-Dichloroethane	1.0	U	0.19	1.0	
2-Butanone	5.0	U	2.3	5.0	
1,1,1-Trichloroethane	1.0	U	0.060	1.0	
Carbon tetrachloride	1.0	U	0.060	1.0	
Bromodichloromethane	0.77	J	0.12	1.0	
1,2-Dichloropropane	1.0	U	0.090	1.0	
cis-1,3-Dichloropropene	1.0	U	0.18	1.0	
Trichloroethene	1.0	υ	0.090	1.0	
Dibromochloromethane	1.0	U	0.20	1.0	
1,1,2-Trichloroethane	1.0	U	0.19	1.0	
Benzene	1.0	U	0.080	1.0	
trans-1,3-Dichloropropene	1.0	U	0.24	1.0	
Bromoform	1.0	U	0.19	1.0	
4-Methyl-2-pentanone	5.0	U	0.99	5.0	
2-Hexanone	5.0	U	0.50	5.0	
Tetrachloroethene	1.0	U	0.10	1.0	
1,1,2,2-Tetrachloroethane	1.0	U	0.16	1.0	
Toluene	1.0	U	0.15	1.0	
Chlorobenzene	1.0	U	0.11	1.0	
Ethylbenzene	1.0	U	0.10	1.0	
Styrene	1.0	U	0.12	1.0	
m&p-Xylene	2.0	U	0.25	2.0	
o-Xylene	1.0	U	0.13	1.0	
Freon TF	1.0	U	0.080	1.0	
MTBE	1.0	U	0.14	1.0	
Cyclohexane	1.0	U *	0.16	1.0	
1,2-Dibromoethane	1.0	U	0.28	1.0	
1,3-Dichlorobenzene	1.0	Ü	0.14	1.0	
1,4-Dichlorobenzene	1.0	Ü	0.23	1.0	
1,2-Dichlorobenzene	1.0	Ü	0.21	1.0	
Dichlorodifluoromethane	1.0	Ü	0.22	1.0	
40 4 T 1 1 1 h	4.0	1.1	0.04	4.0	

1.0

50

U

0.34

36

1.0

50

Client: Alprof Realty LLC

Job Number: 460-63945-1

Client Sample ID:

FB0930

Lab Sample ID:

460-63945-3FB

Client Matrix:

Water

Date Sampled: 09/30/2013 1500

Date Received: 10/01/2013 1440

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method:

8260C 5030C Analysis Batch:

460-185055

Instrument ID: Lab File ID:

CVOAMS13 P75930.D

Dilution:

1.0

Prep Batch:

N/A

Initial Weight/Volume:

Analysis Date:

Final Weight/Volume:

5 mL 5 mL

Prep Date:

Analyte

10/07/2013 1633 10/07/2013 1633

> Result (ug/L) Qualifier MDL RL 1.0 Ū 0.51 1.0 1.0 U 0.40

1,2,3-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 1.0 Bromochloromethane 1.0 U 0.27 1.0 Isopropylbenzene U 1.0 0.080 1.0 Methyl acetate 5.0 U 0.34 5.0 Methylcyclohexane 1.0 U * 0.14 1.0

Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 74 70 - 130 Toluene-d8 (Surr) 72 70 - 130 Bromofluorobenzene 91 70 - 130 Dibromofluoromethane (Surr) 77 70 - 130

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID:

FB1001

Lab Sample ID:

460-64063-8FB

Client Matrix:

Water

Date Sampled: 10/01/2013 1400 Date Received: 10/02/2013 1445

8260C Volatile Organic Compounds by GC/MS

Analysis Method: Prep Method: 8260C 5030C Analysis Batch: Prep Batch: 460-185055 N/A Instrument ID: Lab File ID:

Initial Weight/Volume:

Final Weight/Volume:

CVOAMS13 P75931.D 5 mL

5 mL

Dilution:

1.0

Analysis Date: 10/07/2013 1656 Prep Date: 10/07/2013 1656

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloromethane	1.0	Ü	0.10	1.0
Bromomethane	1.0	U	0.18	1.0
Vinyl chloride	1.0	U	0.14	1.0
Chloroethane	1.0	U	0.17	1.0
Methylene Chloride	0.72	J	0.18	1.0
Acetone	5.0	U	2.7	5.0
Carbon disulfide	1.0	U	0.13	1.0
Trichlorofluoromethane	1.0	U	0.15	1.0
1,1-Dichloroethene	1.0	U	0.090	1.0
1,1-Dichloroethane	1.0	U	0.13	1.0
trans-1,2-Dichloroethene	1.0	U	0.13	1.0
cis-1,2-Dichloroethene	1.0	U	0.18	1.0
Chloroform	3.2		0.080	1.0
1,2-Dichloroethane	1.0	U	0.19	1.0
2-Butanone	5.0	U	2.3	5.0
1,1,1-Trichloroethane	1.0	U	0.060	1.0
Carbon tetrachloride	1.0	U	0.060	1.0
B <mark>romodichloromet</mark> hane	0.67	J	0.12	1.0
1,2-Dichloropropane	1.0	U	0.090	1.0
cis-1,3-Dichloropropene	1.0	U	0.18	1.0
Trichloroethene	1.0	U	0.090	1.0
Dibromochloromethane	1.0	U	0.20	1.0
1,1,2-Trichloroethane	1.0	U	0.19	1.0
Benzene	1.0	U	0.080	1.0
trans-1,3-Dichloropropene	1.0	U	0.24	1.0
Bromoform	1.0	U	0.19	1.0
4-Methyl-2-pentanone	5.0	U	0.99	5.0
2-Hexanone	5.0	U	0.50	5.0
Tetrachloroethene	1.0	U	0.10	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.16	1.0
Toluene	1.0	U	0.15	1.0
Chlorobenzene	1.0	U	0.11	1.0 1.0
Ethylbenzene	1.0	U U	0.10 0.12	1.0
Styrene	1.0 2.0	U	0.12	2.0
m&p-Xylene		U	0.25	1.0
o-Xylene Freon TF	1.0 1.0	Ü	0.080	1.0
MTBE	1.0	U	0.080	1.0
	1.0	U*	0.14	1.0
Cyclohexane 1,2-Dibromoethane	1.0	U	0.18	1.0
•	1.0	Ü	0.14	1.0
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1.0	U	0.14	1.0
1,4-Dichlorobenzene	1.0	U	0.23	1.0
Dichlorodifluoromethane	1.0	U	0.22	1.0
1,2,4-Trichlorobenzene	1.0	U	0.22	1.0
1,4-Dioxane	50	U	36	50
1,4-Dioxatic	30	0	00	30

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID: FB1001

Lab Sample ID: 460-64063-8FB Date Sampled: 10/01/2013 1400

Client Matrix: Water Date Received: 10/02/2013 1445

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C 460-185055 Analysis Batch: CVOAMS13 Instrument ID: Prep Batch: Prep Method: 5030C N/A Lab File ID: P75931.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 10/07/2013 1656 Final Weight/Volume: 5 mL

Prep Date: 10/07/2013 1656

Analyte	Result (ug/L)	Qualifier	MDL	RL	
1,2,3-Trichlorobenzene	1.0	Ü	0.51	1.0	
1,2-Dibromo-3-Chloropropane	1.0	IJ	0.40	1.0	
Bromochloromethane	1.0	U	0.27	1.0	
Isopropylbenzene	1.0	U	0.080	1.0	
Methyl acetate	5.0	U	0.34	5.0	
Methylcyclohexane	1.0	U *	0.14	1.0	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	79	•	70 - 130
Toluene-d8 (Surr)	79		70 - 130
Bromofluorobenzene	101		70 - 130
Dibromofluoromethane (Surr)	83		70 - 130

Client: Alprof Realty LLC Job Number: 460-63945-1

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Solid

Lab Sample ID	Client Sample ID	DBFM %Rec	DCA %Rec	TOL %Rec	BFB %Rec
Lab Sample ID	Client Sample ID	%Rec	76Rec	76Rec	
460-63945-1	RIB-7 (9-10)	104	104	101	103
460-63945-2	RIB-7 (12-13)	109	111	103	108
460-64063-1	R1B-8(7-8)	108	104	107	110
460-64063-2	R1B-8(15-16)	103	99	101	102
460-64063-3	R1B-8D(15-16)	105	101	104	106
460-64063-4	R1B-8(17-19)	104	103	110	117
460-64063-5	R1B-9(8-9)	101	98	101	103
460-64063-6	R1B-9(15-16)	107	105	115	134*
MB 460-185406/6		103	102	101	101
LCS 460-185406/3		100	100	101	100
LCSD 460-185406/4		102	103	103	100
460-64063-4 MS	R1B-8(17-19) MS	103	100	117	130*
460-64063-4 MSD	R1B-8(17-19) MSD	103	99	115	127

Acceptance Limits
70-130
70-130
70-130
70-130

Client: Alprof Realty LLC Job Number: 460-63945-1

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Solid

		DBFM	DCA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec_	%Rec	%Rec
460-63945-1	RIB-7 (9-10)	104	104	101	103
460-63945-2	RIB-7 (12-13)	109	111	103	108
460-64063-1	R1B-8(7-8)	108	104	107	110
460-64063-2	R1B-8(15-16)	103	99	101	102
460-64063-3	R1B-8D(15-16)	105	101	104	106
460-64063-4	R1B-8(17-19)	104	103	110	117
460-64063-5	R1B-9(8-9)	101	98	101	103
460-64063-6	R1B-9(15-16)	107	105	115	134*
MB 460-185406/6		103	102	101	101
LCS 460-185406/3		100	100	101	100
LCSD 460-185406/4		102	103	103	100
460-64063-4 MS	R1B-8(17-19) MS	103	100	117	130*
460-64063-4 MSD	R1B-8(17-19) MSD	103	99	115	127

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	70-130
DCA = 1,2-Dichloroethane-d4 (Surr)	70-130
TOL = Toluene-d8 (Surr)	70-130
BFB = Bromofluorobenzene	70-130

TestAmerica Edison

Target Compound Quantitation Report

Data File: \EDICHROM\ChromData\CVOAMS4\20131008-5488.b\D363864.D

Lims iD: 460-64063-B-6-A Lab Sample ID:

Client ID: R1B-9(15-16)

Sample Type: Client

Inject. Date: 08-Oct-2013 23:53:30 ALS Bottle#: 24 Worklist Smp#: 25

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: 460-64063-B-6-A Misc. Info.: 460-0005488-025

Operator ID: Instrument ID: CVOAMS4

Method: \\EDICHROM\ChromData\CVOAMS4\20131008-5488.b\8260S_4.m

Limit Group: VOA - 8260C Water and Solid

Last Update: 09-Oct-2013 17:02:09 Calib Date: 08-Oct-2013 10:34:30 Integrator: RTE ID Type: Deconvolution ID Quant Method: Internal Standard Quant By: Initial Calibration

Last ICal File: \\EDICHROM\ChromData\CVOAMS4\20131008-5469.b\\D363834.D

Column 1: Rtx-624 (0.25 mm) Detector MS SCAN

Process Host: XAWRK031

First Level Reviewer: tupayachia Date: 09-Oct-2013 05:38:14

Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	On-Col Amt ug/l	Flags
21 Carbon disulfide	76	2.020	2.025	-0.005	99	529721	32.2	NT.
25 Methylene Chloride	84	2.391	2.391	0.0	85	7767	2.17	
19 Acetone	43	2.434	2.434	0.0	86	17776	26.1	
* 151 TBA-d9 (IS)	65	2.656	2.651	0.005	87	161965	1000.0	
\$ 152 Dibromofluoromethane (Surr)	113	3.725	3.715	0.010	94	123393	53.4	
\$ 54 1,2-Dichloroethane-d4 (Surr)	65	4.168	4.163	0.005	99	103837	52.3	
* 59 Fluorobenzene	96	4.428	4.423	0.005	99	420997	50.0	
* 150 1,4-Dioxane-d8	96	5.401	5.391	0.010	1	11246	1000.0	
\$ 76 Toluene-d8 (Surr)	98	6.089	6.084	0.005	99	441636	57.7	
* 87 Chlorobenzene-d5	117	7.784	7.779	0.005	85	320489	50.0	
\$ 99 4-Bromofluorobenzene	174	8.863	8.863	0.0	90	98112	67.1	
* 116 1,4-Dichlorobenzene-d4	152	9.730	9.725	0.005	95	113215	50.0	S

QC Flag Legend

Processing Flags

s - Failed ISTD Recovery Test

Data File: \\EDICHROM\ChromData\CVOAMS4\20131008-5488.b\D363860.D

Compound	Sig	RT (min.)	Exp RT (min.)	Dlt RT (min.)	Q	Response	On-Col Amt ug/l	Flags
----------	-----	--------------	---------------	------------------	---	----------	--------------------	-------

S 139 Total BTEX 1 0 118.8

QC Flag Legend

Processing Flags

s - Failed ISTD Recovery Test

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID:

R1B-9(15-16)

Lab Sample ID:

460-64063-6

Client Matrix:

Solid

% Moisture:

31.7

Date Sampled: 10/01/2013 1245

Date Received: 10/02/2013 1445

		8260C Volatile Organ	ic Compounds by GC	/MS	
Analysis Method: Prep Method: Dilution: Analysis Date:	8260C 5035 1.0 10/08/2013 2353	Analysis Batch: Prep Batch:	460-185406 460-184606	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS4 D363864.D 5.409 g 5 mL
Prep Date:	10/03/2013 1733				
Analyte	DryWt Corrected:	Y Result (ug	ı/Kg) Qualifi	er MDL	RL
Chloromethane	Dijvit Obliodiod.	1.4	U Gallini	0.22	1.4
Bromomethane		1.4	Ü	0.58	1.4
Vinyl chloride		1.4	Ü	0.46	1.4
Chloroethane		1.4	Ü	0.45	1.4
Methylene Chloride		2.9	·	0.20	1.4
Acetone		35	В	2.3	6.8
Carbon disulfide		44		0.20	1.4
Trichlorofluorometha	ane	1.4	U	0.22	1.4
1,1-Dichloroethene		1,4	U	0.26	1.4
1,1-Dichloroethane		1.4	U	0.15	1.4
trans-1.2-Dichloroet	hene	1.4	U	0.18	1.4
cis-1,2-Dichloroethe	ne	1.4	U	0.15	1.4
Chloroform		1.4	U	0.33	1.4
1,2-Dichloroethane		1.4	U	0.24	1.4
2-Butanone		6.8	U	0.85	6.8
1,1,1-Trichloroethan	e	1.4	U	0.18	1.4
Carbon tetrachloride		1.4	U	0.20	1.4
Bromodichlorometha	ane	1.4	U	0.43	1.4
1,2-Dichloropropane	:	1.4	U	0.20	1.4
cis-1,3-Dichloroprop	ene	1.4	U	0.19	1.4
Trichloroethene		1.4	U	0.16	1.4
Dibromochlorometha	ane	1.4	U	0.14	1.4
1,1,2-Trichloroethan	e	1.4	U	0.19	1.4
Benzene		1.4	U	0.20	1.4
trans-1,3-Dichloropre	opene	1.4	U	0.14	1.4
Bromoform		1.4	U	0.23	1.4
4-Methyl-2-pentanor	ne	6.8	U	0.27	6.8
2-Hexanone		6.8	U	0.18	6.8
Tetrachloroethene		1.4	U	0.16	1.4
1,1,2,2-Tetrachloroe	thane	1.4	U *	0.12	1.4
Toluene		1.4	U	0.19	1.4
Chlorobenzene		1.4	U	0.24	1.4
Ethylbenzene		1.4	U	0.23	1.4
Styrene		1.4	U	0.38	1.4
m&p-Xylene		2.7	U	0.80	2.7
o-Xylene		1.4	U	0.26	1.4
Freon TF		1.4	U	0.15	1.4
MTBE		1.4	U	0.15	1.4
Cyclohexane		1.4	U	0.18	1.4
1,2-Dibromoethane		1.4	U	0.20	1.4
1,3-Dichlorobenzene		1.4	U*	0.22	1.4
1,4-Dichlorobenzene		1.4	U *	0.15	1.4
1,2-Dichlorobenzene		1.4	U *	0.14	1.4
Dichlorodifluorometh		1.4	U	0.30	1.4
1,2,4-Trichlorobenze	ene	1.4	U *	0.26	1.4
1,4-Dioxane		27	U	17	27

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID:

R1B-9(15-16)

Lab Sample ID:

460-64063-6

Client Matrix:

Solid

% Moisture:

31.7

Date Sampled: 10/01/2013 1245

Date Received: 10/02/2013 1445

8260C Volatile	Organic	Compounds	by GC/MS

Analysis Method: 8260C Prep Method: 5035 Dilution: 1.0 Analysis Date: 10/08/2013 2353 Prep Date: 10/03/2013 1733 Analysis Batch: 460-185406 Prep Batch: 460-184606

Instrument ID: Lab File ID:

CVOAMS4 D363864.D

Initial Weight/Volume: Final Weight/Volume:

5.409 g

5 mL

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL
1,2,3-Trichlorobenzene		1.4	Ü*	0.22	1.4
1,2-Dibromo-3-Chloropropar	ne	1.4	U *	0.60	1.4
Bromochloromethane		1.4	U	0.15	1.4
Isopropylbenzene		1.4	U	0.15	1.4
Methyl acetate		1.4	U	0.43	1.4
Methylcyclohexane		1.4	U	0.14	1.4

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	105		70 - 130
Toluene-d8 (Surr)	115		70 - 130
Bromofluorobenzene	134	*	70 - 130
Dibromofluoromethane (Surr)	107		70 - 130

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID:

TB0930

Lab Sample ID:

460-63945-4TB

1,4-Dioxane

Date Sampled: 09/30/2013 0900

Lab Sample ID: Client Matrix:	460-63945-41B Water				Date Sampled: 09/30/2013 0900 Date Received: 10/01/2013 1440
		8260C Volatile Organ	nic Compounds by GC	C/MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 10/07/2013 1610 10/07/2013 1610	Analysis Batch: Prep Batch:	460-185055 N/A	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	
·	7070712010	D 11 (MBI	Di
Analyte		Result (u			RL
Chloromethane		1.0	U	0.10	1.0
Bromomethane		1.0	U	0.18	1.0
Vinyl chloride		1.0	U	0.14	1.0
Chloroethane		1.0	U	0.17	1.0
Methylene Chloride)	1.0	U ·	0.18	1.0
Acetone		5.0	U	2.7	5.0
Carbon disulfide		1.0	U	0.13	1.0
Trichlorofluorometh		1.0	U	0.15	1.0
1,1-Dichloroethene		1.0	U	0.090	1.0
1,1-Dichloroethane		1.0	U	0.13	1.0
trans-1,2-Dichloroe		1.0	U	0.13	1.0
cis-1,2-Dichloroeth	ene	1.0	U	0.18	1.0
Chloroform		1.0	U	0.080	1.0
1,2-Dichloroethane		1.0	U	0.19	1.0
2-Butanone		5.0	U	2.3	5.0
1,1,1-Trichloroetha	ne	1.0	U	0.060	1.0
Carbon tetrachlorid	e	1.0	U	0.060	1.0
Bromodichlorometh	nane	1.0	U	0.12	1.0
1,2-Dichloropropan	e	1.0	U	0.090	1.0
cis-1,3-Dichloropro	pene	1.0	U	0.18	1.0
Trichloroethene		1.0	U	0.090	1.0
Dibromochlorometh	nane	1.0	υ	0.20	1.0
1,1,2-Trichloroetha	ne	1.0	U	0.19	1.0
Benzene		1.0	U	0.080	1.0
trans-1,3-Dichlorop	ropene	1.0	U	0.24	1.0
Bromoform		1.0	U	0.19	1.0
4-Methyl-2-pentano	one	5.0	U	0.99	5.0
2-Hexanone		5.0	U	0.50	5.0
Tetrachloroethene		1.0	U	0.10	1.0
1,1,2,2-Tetrachloго	ethane	1.0	U	0.16	1.0
Toluene		1.0	U	0.15	1.0
Chlorobenzene		1.0	U	0.11	1.0
Ethylbenzene		1.0	U	0.10	1.0
Styrene		1.0	U	0.12	1.0
m&p-Xylene		2.0	U	0.25	2.0
o-Xylene		1.0	U	0.13	1.0
Freon TF		1.0	U	0.080	1.0
MTBE		1.0	U	0.14	1.0
Cyclohexane		1.0	U*	0.16	1.0
1,2-Dibromoethane		1.0	U	0.28	1.0
1,3-Dichlorobenzer	ne	1.0	U	0.14	1.0
1,4-Dichlorobenzer	ne	1.0	U	0.23	1.0
1,2-Dichlorobenzer		1.0	U	0.21	1.0
Dichlorodifluorome	thane	1.0	U	0.22	1.0
1,2,4-Trichlorobenz	rene	1.0	U	0.34	1.0
4 . 61		50	1.1	0.0	FO

36

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID:

TB0930

Lab Sample ID:

460-63945-4TB

Client Matrix:

Water

Date Sampled: 09/30/2013 0900

Date Received: 10/01/2013 1440

——————————————————————————————————————						
		8260C Volatile Organ	nic Compounds	s by GC/N	is	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5030C 1.0 10/07/2013 1610 10/07/2013 1610	Analysis Batch: Prep Batch:	460-185055 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS13 P75929.D 5 mL 5 mL
Analyte 1,2,3-Trichlorobenz 1,2-Dibromo-3-Chlo Bromochlorometha Isopropylbenzene Methyl acetate Methylcyclohexane	oropropane ne	Result (u 1.0 1.0 1.0 1.0 5.0	g/L)	Qualifier U U U U U U U U	MDL 0.51 0.40 0.27 0.080 0.34 0.14	RL 1.0 1.0 1.0 1.0 5.0
Surrogate 1,2-Dichloroethane Toluene-d8 (Surr) Bromofluorobenzer Dibromofluorometh	ne	%Rec 83 82 104 85		Qualifier	Acceptar 70 - 130 70 - 130 70 - 130 70 - 130	nce Limits

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID:

TB1001

Lab Sample ID:

460-64063-7TB

Client Matrix:

Water

Date Sampled: 10/01/2013 0900 Date Received: 10/02/2013 1445

Client Matrix:	Water			Date	Received: 10/02/2013
		8260C Volatile Organ	nic Compounds by G	C/MS	
Analysis Method: Prep Method:	8260C 5030C	Analysis Batch: Prep Batch:	460-185055 N/A	Instrument ID: Lab File ID:	CVOAMS13 P75932.D
Dilution:	1.0			Initial Weight/Volume:	5 mL
Analysis Date:	10/07/2013 1719			Final Weight/Volume:	5 mL
Prep Date:	10/07/2013 1719			i mai vveigno voidine.	3 IIIE
Analyte		Result (u	g/L) Qualit	ier MDL	RL
Chloromethane		1.0	U	$0.\overline{10}$	1.0
Bromomethane		1.0	U	0.18	1.0
Vinyl chloride		1.0	U	0.14	1.0
Chloroethane		1.0	U	0.17	1.0
Methylene Chloride	9	1.0	U	0.18	1.0
Acetone		5.0	U	2.7	5.0
Carbon disulfide		1.0	U	0.13	1.0
Trichlorofluorometh	nane	1.0	U	0.15	1.0
1,1-Dichloroethene	:	1.0	U	0.090	1.0
1,1-Dichloroethane	;	1.0	U	0.13	1.0
trans-1,2-Dichloroe	ethene	1.0	U	0.13	1.0
cis-1,2-Dichloroeth	ene	1.0	U	0.18	1.0
Chloroform		1.0	U	0.080	1.0
1,2-Dichloroethane	:	1.0	U	0.19	1.0
2-Butanone		5.0	IJ	2.3	5.0
1,1,1-Trichloroetha	ine	1.0	U	0.060	1.0
Carbon tetrachlorid		1.0	U	0.060	1.0
Bromodichlorometh	hane	1.0	U	0.12	1.0
1,2-Dichloropropan	ne	1.0	U	0.090	1.0
cis-1,3-Dichloropro	pene	1.0	U	0.18	1.0
Trichloroethene	•	1.0	U	0.090	1.0
Dibromochlorometh	hane	1.0	U	0.20	1.0
1,1,2-Trichloroetha	ine	1.0	U	0.19	1.0
Benzene		1.0	U	0.080	1.0
trans-1,3-Dichlorop	propene	1.0	υ	0.24	1.0
Bromoform	•	1.0	U	0.19	1.0
4-Methyl-2-pentano	one	5.0	U	0.99	5.0
2-Hexanone		5.0	U	0.50	5.0
Tetrachloroethene		1.0	U	0.10	1.0
1,1,2,2-Tetrachloro	ethane	1.0	U	0.16	1.0
Toluene		1.0	U	0.15	1.0
Chlorobenzene		1.0	U	0.11	1.0
Ethylbenzene		1.0	U	0.10	1.0
Styrene		1.0	U	0.12	1.0
m&p-Xylene		2.0	U	0.25	2.0
o-Xylene		1.0	U	0.13	1.0
Freon TF		1.0	U	0.080	1.0
MTBE		1.0	U	0.14	1.0
Cyclohexane		1.0	U*	0.16	1.0
1,2-Dibromoethane	•	1.0	U	0.28	1.0
1,3-Dichlorobenzer		1.0	U	0.14	1.0
1,4-Dichlorobenzer		1.0	Ū	0.23	1.0
1,2-Dichlorobenzer		1.0	Ū	0.21	1.0
Dichlorodifluorome		1.0	Ü	0.22	1.0
1,2,4-Trichlorobenz		1.0	U	0.34	1.0
, _,		50	Ū	36	50

Client: Alprof Realty LLC Job Number: 460-63945-1

Client Sample ID:

TB1001

Lab Sample ID:

460-64063-7TB

Client Matrix:

Prep Date:

Water

10/07/2013 1719

Date Sampled: 10/01/2013 0900 Date Received: 10/02/2013 1445

92600	Malatila	Organia	Compounds	by GC/I	244

Analysis Method: 8260C Analysis Batch: 460-185055 Prep Method: 5030C Prep Batch: N/A Dilution: 1.0 Analysis Date: 10/07/2013 1719

Instrument ID: Lab File ID:

CVOAMS13 P75932.D

Initial Weight/Volume: Final Weight/Volume: 5 mL

5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2,3-Trichlorobenzene	1.0	Ū	0.51	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.40	1.0
Bromochloromethane	1.0	U	0.27	1.0
Isopropylbenzene	1.0	U	0.080	1.0
Methyl acetate	5.0	U	0.34	5.0
Methylcyclohexane	1.0	U *	0.14	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	84		70 - 130	
Toluene-d8 (Surr)	82		70 - 130	
Bromofluorobenzene	102		70 - 130	
Dibromofluoromethane (Surr)	89		70 - 130	

Client: Alprof Realty LLC Job Number: 460-63945-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 460-184606 Preparation: 5035

MS Lab Sample ID: 460-64063-4
Client Matrix: Solid
Dilution: 1.0

Analysis Date: 10/08/2013 2217 Prep Date: 10/03/2013 1730

Leach Date: N/A

MSD Lab Sample ID: 460-64063-4 Client Matrix: Solid

Dilution: 1.0 Analysis Date: 10/08/2013 2241

Prep Date: 10/03/2013 1731

Leach Date: N/A

Analysis Batch: 460-185406 Instrument ID: CVOAMS4
Prep Batch: 460-184606 Lab File ID: D363860.D
Leach Batch: N/A Initial Weight/Volume: 5.413 g
Final Weight/Volume: 5 mL

Analysis Batch: 460-185406 Instrument ID: CVOAMS4
Prep Batch: 460-184606 Lab File ID: D363861.D
Leach Batch: N/A Initial Weight/Volume: 5.65 g

Final Weight/Volume: 5.65 g

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Quai	MSD Qual
Chloromethane	93	89	50 - 151	6	30		
Bromomethane	64	69	54 - 142	26	30		
Vinyl chloride	94	96	67 - 133	6	30		
Chloroethane	111	111	56 - 146	9	30		
Methylene Chloride	93	97	74 - 137	9	30		
Acetone	75	84	27 - 164	27	30		
Carbon disulfide	59	70	72 - 128	16	30	*	*
Trichlorofluoromethane	114	115	61 - 139	11	30		
1,1-Dichloroethene	109	114	71 - 126	19	30		
1,1-Dichloroethane	105	113	76 - 125	13	30		
trans-1,2-Dichloroethene	85	96	75 - 122	18	30		
cis-1,2-Dichloroethene	93	101	80 - 120	14	30		
Chloroform	103	110	77 - 120	11	30		
,2-Dichloroethane	93	99	76 - 118	12	30		
2-Butanone	74	90	77 - 117	16	30	*	
I,1,1-Trichloroethane	94	101	78 - 117	14	30		
Carbon tetrachloride	55	77	79 - 1 1 8	24	30	*	*
3romodichloromethane	76	86	79 - 119	20	30	*	
1,2-Dichloropropane	98	108	82 - 122	10	30		
cis-1,3-Dichloropropene	54	66	80 - 123	38	30	*	*
Frichloroethene	86	96	79 - 119	12	30		
Dibromochloromethane	79	90	68 - 120	20	30		
1,1,2-Trichloroethane	100	109	73 - 118	3	30		
Benzene	127	64	77 - 117	20	30	*	*
rans-1,3-Dichloropropene	57	68	67 - 121	39	30	*	*
Bromoform	56	73	59 - 125	18	30	*	
1-Methyl-2-pentanone	105	109	68 - 120	5	30		
2-Hexanone	89	91	70 - 122	6	30		
Tetrachloroethene	93	101	80 - 120	8	30		
1,1,2,2-Tetrachloroethane	133	143	79 - 122	11	30	*	*
Toluene	102	108	75 - 115	14	30		
Chlorobenzene	87	96	80 - 120	12	30		
Ethylbenzene	92	101	81 - 121	11	30		

Client: Alprof Realty LLC Job Number: 460-63945-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 460-184606 Preparation: 5035

MS Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	460-64063-4 Solid 1.0 10/08/2013 2217 10/03/2013 1730 N/A	Analysis Batch: Prep Batch: Leach Batch:	460-185406 460-184606 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS4 D363860.D 5.413 g 5 mL
MSD Lab Sample II Client Matrix: Dilution: Analysis Date: Prep Date:	O: 460-64063-4 Solid 1.0 10/08/2013 2241 10/03/2013 1731	Analysis Batch: Prep Batch: Leach Batch:	460-185406 460-184606 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	CVOAMS4 D363861.D 5.65 g 5 mL

Prep Date: 10/0 Leach Date: N/A

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Styrene	55	65	82 - 122	28	30	*	*
m&p-Xylene	87	99	81 - 121	10	30		
o-Xylene	91	101	82 - 122	6	30		
Freon TF	111	122	73 - 123	13	30		
MTBE	100	106	78 - 120	4	30		
Cyclohexane	90	103	80 - 121	5	30		
1,2-Dibromoethane	84	94	75 - 117	12	30		
1,3-Dichlorobenzene	86	101	80 - 120	9	30	*	
1,4-Dichlorobenzene	88	100	80 - 120	9	30	*	
1,2-Dichlorobenzene	83	96	80 - 120	6	30	*	
Dichlorodifluoromethane	89	93	52 - 144	2	30		
1,2,4-Trichlorobenzene	41	49	80 - 120	1	30	*	*
1,4-Dioxane	133	168	69 - 131	20	30	*	*
1,2,3-Trichlorobenzene	38	47	75 - 121	2	30	*	*
1,2-Dibromo-3-Chloropropane	101	116	74 - 118	1	30	*	
Bromochloromethane	91	96	74 - 125	9	30		
Isopropylbenzene	87	96	65 - 129	6	30		
Methyl acetate	98	103	73 - 137	8	30		
Methylcyclohexane	69	85	78 - 118	2	30	*	
Surrogate		MS % Rec	MSD %	6 Rec	Acc	eptance Limit	S
1,2-Dichloroethane-d4 (Surr)		100	99			70 - 130	
Toluene-d8 (Surr)		117	115			70 - 130	
Bromofluorobenzene		130	* 127		-	70 - 130	

Client: Alprof Realty LLC Job Number: 460-63945-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 460-184606 Preparation: 5035

Units: ug/Kg

MS Lab Sample ID: 460-64063-4

Client Matrix: Solid Dilution: 1.0

Analysis Date: 10/08/2013 2217 Prep Date: 10/03/2013 1730

Leach Date: N/A

MSD Lab Sample ID: 460-64063-4

Client Matrix: Solid
Dilution: 1.0

Analysis Date: 10/08/2013 2241 Prep Date: 10/03/2013 1731

Leach Date: N/A

	Sample		MS Spike	MSD Spike	MS		MSD	
Analyte	Result/Q	ual	Amount	Amount	Result/Q	ual	Result/Qua	1
Chloromethane	1.5	U	29.1	27.9	27.1		24.7	
Bromomethane	1.5	U	29.1	27.9	18.6		19.3	
Vinyl chloride	1.5	U	29.1	27.9	27.4		26.7	
Chloroethane	1.5	U	29.1	27.9	32.2		31.1	
Methylene Chloride	2.0		29.1	27.9	29.0		29.1	
Acetone	34		146	139	143		151	
Carbon disulfide	34		29.1	27.9	51.1	*	53.3	*
Trichlorofluoromethane	1.5	U	29.1	27.9	33.0		32.0	
1,1-Dichloroethene	1.5	U	29.1	27.9	31.8		31.7	
1,1-Dichloroethane	1.5	U	29.1	27.9	30.5		31.5	
trans-1,2-Dichloroethene	1.5	U	29.1	27.9	24.9		26.7	
cis-1,2-Dichloroethene	1.5	U	29.1	27.9	27.1		28.2	
Chloroform	1.5	U	29.1	27.9	29.9		30.6	
1,2-Dichloroethane	1.5	U	29.1	27.9	27.2		27.7	
2-Butanone	7.5	U	146	139	107	*	125	
1,1,1-Trichloroethane	1.5	U	29.1	27.9	27.3		28.1	
Carbon tetrachloride	1.5	U	29.1	27.9	16.0	*	21.5	*
Bromodichloromethane	1.5	IJ	29.1	27.9	22.1	*	23.9	
1,2-Dichloropropane	1.5	U	29.1	27.9	28.7		30.0	
cis-1,3-Dichloropropene	1.5	U	29.1	27.9	15.8	*	18.4	*
Trichloroethene	1.5	U	29.1	27.9	25.1		26.8	
Dibromochloromethane	1.5	U	29.1	27.9	22.9		25.0	
1,1,2-Trichloroethane	1.5	IJ	29.1	27.9	29.0		30.5	
Benzene	24		29.1	27.9	61.4	*	42.1	*
trans-1,3-Dichloropropene	1.5	U	29.1	27.9	16.6	*	19.0	*
Bromoform	1.5	U	29.1	27.9	16.3	*	20.3	
4-Methyl-2-pentanone	7.5	U	146	139	153		152	
2-Hexanone	7.5	U	146	139	129		127	
Tetrachloroethene	1.5	U	29.1	27.9	27.1		28.3	
1,1,2,2-Tetrachloroethane	1.5	U	29.1	27.9	38.6	*	39.9	*
Toluene	0.63	J	29.1	27.9	30.4		30.8	
Chlorobenzene	1.5	U	29.1	27.9	25.2		26.7	
Ethylbenzene	0.36	J	29.1	27.9	27.2		28.5	
Styrene	1.5	U	29.1	27.9	15.9	*	18.0	*
m&p-Xylene	1.3	J	29.1	27.9	26.7		29.0	
o-Xylene	1.0	J	29.1	27.9	27.4		29.1	
Freon TF	1.5	U	29.1	27.9	32.4		33.9	
MTBE	0.91	J	29.1	27.9	29.9		30.6	
Cyclohexane	1.5	U	29.1	27.9	26.2		28.7	
1,2-Dibromoethane	1.5	U	29.1	27.9	24.4	_	26.1	
1,3-Dichlorobenzene	1.5	U	29.1	27.9	25.0	*	28.2	
1,4-Dichlorobenzene	1.2	J	29.1	27.9	26.9	*	29.0	
1,2-Dichlorobenzene	1.5	U	29.1	27.9	24.2	*	26.7	

Client: Alprof Realty LLC Job Number: 460-63945-1

Method Blank - Batch: 460-185406

Method: 8260C Preparation: N/A

CVOAMS4 Lab Sample ID: MB 460-185406/6 Analysis Batch: 460-185406 Instrument ID: Client Matrix: Solid Prep Batch: N/A Lab File ID: D363845.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 10/08/2013 1617 Units: Final Weight/Volume: 5 mL Analysis Date: ug/Kg

Prep Date: N/A Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Chloromethane	1.0	U	0.16	1.0
Bromomethane	1.0	U	0.43	1.0
Vinyl chloride	1.0	U	0.34	1.0
Chloroethane	1.0	U	0.33	1.0
Methylene Chloride	1.0	U	0.15	1.0
Acetone	7.64		1.7	5.0
Carbon disulfide	1.0	U	0.15	1.0
Trichlorofluoromethane	1.0	U	0.16	1.0
1,1-Dichloroethene	1.0	U	0.19	1.0
1,1-Dichloroethane	1.0	U	0.11	1.0
trans-1,2-Dichloroethene	1.0	U	0.13	1.0
cis-1,2-Dichloroethene	1.0	U	0.11	1.0
Chloroform	1.0	U	0.24	1.0
1,2-Dichloroethane	1.0	U	0.18	1.0
2-Butanone	5.0	U	0.63	5.0
1,1,1-Trichloroethane	1.0	U	0.13	1.0
Carbon tetrachloride	1.0	U	0.15	1.0
Bromodichloromethane	1.0	U	0.32	1.0
1,2-Dichloropropane	1.0	U	0.15	1.0
cis-1,3-Dichloropropene	1,0	U	0.14	1.0
Trichloroethene	1.0	U	0.12	1.0
Dibromochloromethane	1.0	U	0.10	1.0
1,1,2-Trichloroethane	1.0	U	0.14	1.0
Benzene	1.0	U	0.15	1.0
trans-1,3-Dichloropropene	1.0	U	0.10	1.0
Bromoform	1.0	U	0.17	1.0
4-Methyl-2-pentanone	5.0	U	0.20	5.0
2-Hexanone	5.0	V	0.13	5.0
Tetrachloroethene	1.0	U	0.12	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.090	1.0
Toluene	1.0	Ü	0.14	1.0
Chlorobenzene	1.0	U	0.18	1.0
Ethylbenzene	1.0	Ü	0.17	1.0
Styrene	1.0	U	0.28	1.0
m&p-Xylene	2.0	U	0.59	2.0
o-Xylene	1.0	Ü	0.19	1.0
Freon TF	1.0	U	0.11	1.0
MTBE	1.0	บ	0.11	1.0
Cyclohexane	1.0	Ū	0.13	1.0
1,2-Dibromoethane	1.0	Ü	0.15	1.0
1,3-Dichlorobenzene	1.0	U	0.16	1.0
1,4-Dichlorobenzene	1.0	Ü	0.11	1.0
1,2-Dichlorobenzene	1.0	Ü	0.10	1.0
Dichlorodifluoromethane	1.0	U	0.22	1.0
1,2,4-Trichlorobenzene	1.0	U	0.19	1.0
1,2,7-111011010001120110	1.0	•	0.10	

Client: Alprof Realty LLC Job Number: 460-63945-1

Method Blank - Batch: 460-185406 Method: 8260C

				Prepa	ration: N/A	
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 460-185406/6 Solid 1.0 10/08/2013 1617 N/A N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-185406 N/A N/A ug/Kg	Lab Fi Initial I	nent ID: le ID: Veight/Volume: Veight/Volume:	CVOAMS4 D363845.D 5 mL 5 mL
Analyte		Res	ult	Qual	MDL	RL
1,4-Dioxane		20		U	13	20
1,2,3-Trichlorober	izene	1.0		Ų	0.16	1.0
1,2-Dibromo-3-Ch	loropropane	1.0		U	0.44	1.0
Bromochlorometh	ane	1.0		U	0.11	1.0
Isopropylbenzene		1.0		U	0.11	1.0
Methyl acetate		1.0		U	0.32	1.0
Methylcyclohexan	e	1.0		U	0.10	1.0
Surrogate		% Rec Acceptance Limits		nits		
1,2-Dichloroethan	e-d4 (Surr)	1	02	70 - 130		
Toluene-d8 (Surr)	. ,	101			70 - 130	
Bromofluorobenze	ene	1	01		70 - 130	
Dibromofluoromet	hane (Surr)	1	03		70 - 130	

Client: Alprof Realty LLC Job Number: 460-63945-1

Lab Control Sample - Batch: 460-185055

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 460-185055/5
Client Matrix: Water
Dilution: 1.0

Analysis Date: 10/07/2013 0947 Prep Date: 10/07/2013 0947

Leach Date: N/A

Instrument ID: CVOAMS13 Analysis Batch: 460-185055 Prep Batch: N/A Lab File ID: P75913.D Leach Batch: N/A Initial Weight/Volume: 5 mL Units: Final Weight/Volume: 5 mL ug/L

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Chloromethane	20.0	21.1	106	58 - 146	
Bromomethane	20.0	25.2	126	55 - 153	
√inyl chloride	20.0	17.2	86	61 - 144	
Chloroethane	20.0	20.5	102	69 - 145	
Methylene Chloride	20.0	21.9	110	79 - 119	
Acetone	100	92.6	93	45 - 156	
Carbon disulfide	20.0	16.7	83	58 - 139	
Trichlorofluoromethane	20.0	20.1	100	69 - 147	
1,1-Dichloroethene	20.0	18.2	91	56 - 139	
1,1-Dichloroethane	20.0	21.3	107	78 - 122	
rans-1,2-Dichloroethene	20.0	20.8	104	75 - 122	
cis-1,2-Dichloroethene	20.0	21.1	106	80 - 120	
Chloroform	20.0	22.5	113	82 - 123	
1,2-Dichloroethane	20.0	22.7	113	74 - 118	
2-Butanone	100	109	109	65 - 114	
1,1,1-Trichloroethane	20.0	18.6	93	74 - 128	
Carbon tetrachloride	20.0	16.5	83	73 - 120	
Bromodichloromethane	20.0	20.8	104	79 - 119	
1,2-Dichloropropane	20.0	21.0	105	80 - 120	
cis-1,3-Dichloropropene	20.0	18.6	93	80 - 120	
Frichloroethene	20.0	19.3	97	78 - 119	
Dibromochloromethane	20.0	19.6	98	80 - 120	
1,1,2-Trichloroethane	20.0	20.3	101	79 - 119	
Benzene	20.0	20.5	103	83 - 124	
rans-1,3-Dichloropropene	20.0	18.7	94	78 - 118	
Bromoform	20.0	17.3	87	73 - 123	
4-Methyl-2-pentanone	100	94.1	94	53 - 120	
2-Hexanone	100	90.1	90	53 - 121	
Tetrachloroethene	20.0	16.8	84	68 - 139	
1,1,2,2-Tetrachloroethane	20.0	19.4	97	74 - 126	
Toluene	20.0	20.3	102	80 - 120	
Chlorobenzene	20.0	20.3	101	81 - 121	
Ethylbenzene	20.0	18.8	94	79 - 126	
Styrene	20.0	19.9	99	69 - 112	
n&p-Xylene	20.0	18.8	94	76 - 120	
o-Xylene	20.0	19.2	96	78 - 118	
Freon TF	20.0	13.4	67	47 - 139	
MTBE	20.0	20.8	104	71 - 115	
Cyclohexane	20.0	11.2	56	58 - 133	*
1,2-Dibromoethane	20.0	20.0	100	78 - 118	
1,3-Dichlorobenzene	20.0	19.1	95	81 - 126	
1,4-Dichlorobenzene	20.0	19.6	98	83 - 123	
	20.0	19.9	99	82 - 122	
1,2-Dichlorobenzene Dichlorodifluoromethane	20.0	14.2	71	46 - 145	
	20.0	14.2	90	66 - 120	
1,2,4-Trichlorobenzene					
1,4-Dioxane	400	455	114	52 - 126	

Client: Alprof Realty LLC Job Number: 460-63945-1

Lab Control Sample - Batch: 460-185055

Method: 8260C Preparation: 5030C

Lab Sample ID:	LCS 460-185055/5	Analysis Batch:	460-185055	Instrument	ID:	CVOAMS13	
Client Matrix:	Water	Prep Batch:	N/A	Lab File (D:	:	P75913.D	
Dilution:	1.0	Leach Batch:	N/A	Initial Weig	ht/Volume:	5 mL	
Analysis Date:	10/07/2013 0947	Units:	ug/L	Final Weigh	nt∕Volume:	5 mL	
Prep Date:	10/07/2013 0947						
Leach Date:	N/A						
Analyte		Spike Amount	Result	% Rec.	Limit		Qua
1,2,3-Trichlorober	izene	20.0	17.7	88	76 - ⁻	123	
1,2-Dibromo-3-Ch	loropropane	20.0	16.1	81	70 - 1	116	
Bromochlorometh	ane	20.0	22.5	112	80 - 1	121	
Isopropylbenzene		20.0	18.2	91	80 - 1	125	
Methyl acetate		100	89.2	89	50 - 1	151	
Methylcyclohexan	e	20.0	10.3	51	61 - 1	129	*
Surrogate		%	Rec	Acceptance Limits		nits	
1,2-Dichloroethan	e-d4 (Surr)	7	72	70 - 130			
Toluene-d8 (Surr)		7	73	70 - 130			
Bromofluorobenze	ene	g	92	70 - 130			

Job Number: 460-63945-1 Client: Alprof Realty LLC

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Prep Batch: 460-184606					
460-63945-1	RIB-7 (9-10)	Т	Solid	5035	
460-63945-2	RIB-7 (12-13)	Т	Solid	5035	
460-64063-1	R1B-8(7-8)	Υ	Solid	5035	
460-64063-2	R1B-8(15-16)	Т	Solid	5035	
460-64063-3	R1B-8D(15-16)	Т	Solid	5035	
460-64063-4	R1B-8(17-19)	Т	Solid	5035	
460-64063-4MS	Matrix Spike	Т	Solid	5035	
460-64063-4MSD	Matrix Spike Duplicate	Τ	Solid	5035	
460-64063-5	R1B-9(8-9)	Т	Solid	5035	
460-64063-6	R1B-9(15-16)	Τ	Solid	5035	
Analysis Batch:460-1850	055				
LCS 460-185055/5	Lab Control Sample	Т	Water	8260C	
MB 460-185055/7	Method Blank	Т	Water	8260C	
460-63713-B-2 MS	Matrix Spike	Т	Water	8260C	
460-63713-B-2 MSD	Matrix Spike Duplicate	Ť	Water	8260C	
460-63945-3FB	FB0930	Т	Water	8260C	
460-63945-4TB	TB0930	Т	Water	8260C	
460-64063-7TB	TB1001	Т	Water	8260C	
460-64063-8FB	FB1001	Т	Water	8260C	
Analysis Batch:460-1854	106				
LCS 460-185406/3	Lab Control Sample	T	Solid	8260C	
LCSD 460-185406/4	Lab Control Sample Duplicate	Т	Solid	8260C	
MB 460-185406/6	Method Blank	Τ	Solid	8260C	
460-63945-1	RIB-7 (9-10)	Т	Solid	8260C	460-184606
460-63945-2	RJB-7 (12-13)	Т	Solid	8260C	460-184606
460-64063-1	R1B-8(7-8)	Υ	Solid	8260C	460-184606
460-64063-2	R1B-8(15-16)	Т	Solid	8260C	460-184606
460-64063-3	R1B-8D(15-16)	Т	Solid	8260C	460-184606
460-64063-4	R1B-8(17-19)	Т	Solid	8260C	460-184606
460-64063-4MS	Matrix Spike	Т	Solid	8260C	460-184606
460-64063-4MSD	Matrix Spike Duplicate	Т	Solid	8260C	460-184606
460-64063-5	R1B-9(8-9)	Т	Solid	8260C	460-184606
460-64063-6	R1B-9(15-16)	Ť	Solid	8260C	460-184606

Report Basis T = Total

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison Job No.: 460-63945-1 SDG No.: Client Sample ID: FB0930 Lab Sample ID: 460-63945-3 Lab File ID: P75930.D Matrix: Water Date Collected: 09/30/2013 15:00 Analysis Method: 8260C Date Analyzed: 10/07/2013 16:33 Sample wt/vol: 5(mL) Soil Aliquot Vol: _____ Dilution Factor: 1 GC Column: Rtx~624 ID: 0.25(mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 185055 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	U	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.0	U	1.0	0.14
75-00-3	Chloroethane	1.0	U	1.0	0.17
75-09-2	Methylene Chloride	0.75	J	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	1.0	U	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	Ü	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	ū	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	1.0	Ū	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.18
67-66-3	Chloroform	3.7		1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	Ü	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	0.77	J	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	1.0	U	1.0	0.090
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	υ	1.0	0.19
71-43-2	Benzene	1.0	U	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	Ū	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	ū	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	ū	1.0	0.16
108-88-3	Toluene	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	1.0	Ū	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	Ü	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison	Job No.: 460-63945-1				
SDG No.:					
Client Sample ID: FB0930	Lab Sample ID: 460-63945-3				
Matrix: Water	Lab File ID: P75930.D				
Analysis Method: 8260C	Date Collected: 09/30/2013 15:00				
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2013 16:33				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 185055	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	Ü	1.0	0.080
1634-04-4	MTBE	1.0	U	1.0	0.14
110-82-7	Cyclohexane	1.0	U/ 2	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	Ū	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	ū	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	U 9 (2	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	74		70-130
2037-26-5	Toluene-d8 (Surr)	72		70-130
460-00-4	Bromofluorobenzene	91		70-130
1868-53-7	Dibromofluoromethane (Surr)	77		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison	Job No.: 460-63945-1				
SDG No.:					
Client Sample ID: FB1001	Lab Sample ID: 460-64063-8				
Matrix: Water	Lab File ID: P75931.D				
Analysis Method: 8260C	Date Collected: 10/01/2013 14:00				
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2013 16:56				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 185055	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	ū	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.0	υ	1.0	0.14
75-00-3	Chloroethane	1.0	U	1.0	0.17
75-09-2	Methylene Chloride	0.72	J	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	1.0	Ū	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	1.0	Ū	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0	U	1.0	0.18
67-66-3	Chloroform	3.2		1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	ū	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	0.67	J	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	1.0	U	1.0	0.090
124-48-1	Dibromochloromethane	1.0	Ü	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	Ū	1.0	0.19
71-43-2	Benzene	1.0	U	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
108-88-3	Toluene	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab 1	Vame:	TestAmerica	Edison	Job No.:	460-63945-1

SDG No.:

Client Sample ID: FB1001 Lab Sample ID: 460-64063-8

Matrix: Water Lab File ID: P75931.D

Analysis Method: 8260C Date Collected: 10/01/2013 14:00

Sample wt/vol: 5(mL) Date Analyzed: 10/07/2013 16:56

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 185055 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	U	1.0	0.080
1634-04-4	MTBE	1.0	U	1.0	0.14
110-82-7	Cyclohexane	1.0	Day 6	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	σ	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	Ü	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	U	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	UPR	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	79		70-130
2037-26-5	Toluene-d8 (Surr)	79		70-130
460-00-4	Bromofluorobenzene	101		70-130
1868-53-7	Dibromofluoromethane (Surr)	83		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Sample ID: 460-63945-4 Matrix: Water	Lab Name: TestAmerica Edison	Job No.: 460-63945-1
Matrix: Water Lab File ID: P75929.D Analysis Method: 8260C Date Collected: 09/30/2013 09:00 Sample wt/vol: 5(mL) Date Analyzed: 10/07/2013 16:10 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) & Moisture: Level: (low/med) Low	SDG No.:	
Analysis Method: 8260C Date Collected: 09/30/2013 09:00 Sample wt/vol: 5(mL) Date Analyzed: 10/07/2013 16:10 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) Moisture: Level: (low/med) Low	Client Sample ID: TB0930	Lab Sample ID: 460-63945-4
Sample wt/vol: 5(mL) Date Analyzed: 10/07/2013 16:10 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) & Moisture: Level: (low/med) Low	Matrix: Water	Lab File ID: P75929.D
Soil Aliquot Vol: Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) Moisture: Level: (low/med) Low	Analysis Method: 8260C	Date Collected: 09/30/2013 09:00
Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) Moisture: Level: (low/med) Low	Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2013 16:10
Moisture: Level: (low/med) Low	Soil Aliquot Vol:	Dilution Factor: 1
	Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
	% Moisture:	Level: (low/med) Low
Analysis Batch No.: 185055 Units: ug/L	Analysis Batch No.: 185055	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	U	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.0	Ü	1.0	0.14
75-00-3	Chloroethane	1.0	Ü	1.0	0.17
75-09-2	Methylene Chloride	1.0	υ	1.0	0.18
67-64-1	Acetone	5.0	υ	5.0	2.7
75-15-0	Carbon disulfide	1.0	Ü	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0	0	1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	U	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	ū	1.0	0.060
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	1.0	U	1.0	0.090
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
71-43-2	Benzene	1.0	U	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	υ	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	Ü	5.0	0.50
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ū	1.0	0.16
108-88-3	Toluene	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison	Job No.: 460-63945-1
SDG No.:	
Client Sample ID: TB0930	Lab Sample ID: 460-63945-4
Matrix: Water	Lab File ID: P75929.D
Analysis Method: 8260C	Date Collected: 09/30/2013 09:00
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2013 16:10
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 185055	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	U	1.0	0.080
1634-04-4	MTBE	1.0	υ	1.0	0.14
110-82-7	Cyclohexane	1.0	0 6	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	υ	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	Ü	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	Ü	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	UPL	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	83		70-130
2037-26-5	Toluene-d8 (Surr)	82		70-130
460-00-4	Bromofluorobenzene	104		70-130
1868-53-7	Dibromofluoromethane (Surr)	85		70-130

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Edison	Job No.: 460-63945-1
SDG No.:	
Client Sample ID: TB1001	Lab Sample ID: 460-64063-7
Matrix: Water	Lab File ID: P75932.D
Analysis Method: 8260C	Date Collected: 10/01/2013 09:00
Sample wt/vol: 5(mL)	Date Analyzed: 10/07/2013 17:19
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 185055	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ü	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.0	U	1.0	0.14
75-00-3	Chloroethane	1.0	U	1.0	0.17
75-09-2	Methylene Chloride	1.0	U	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	1.0	U	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	O.	1.0	0.13
156-60-5	trans-1,2~Dichloroethene	1.0	U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.0	Ū	1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	U	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	υ	1.0	0.060
75-27-4	Bromodichloromethane	1.0	ū	1.0	0.12
78-87-5	1,2~Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	1.0	U	1.0	0.090
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
71-43-2	Benzene	1.0	υ	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	a	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ū	1.0	0.16
108-88-3	Toluene	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

 SDG No.:

 Client Sample ID: TB1001
 Lab Sample ID: 460-64063-7

 Matrix: Water
 Lab File ID: P75932.D

 Analysis Method: 8260C
 Date Collected: 10/01/2013 09:00

Sample wt/vol: 5(mL) Date Analyzed: 10/07/2013 17:19

Soil Aliquot Vol: _____ Dilution Factor: 1

Lab Name: TestAmerica Edison Job No.: 460-63945-1

Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 185055 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	U	1.0	0.080
1634-04-4	MTBE	1.0	U	1.0	0.14
110-82-7	Cyclohexane	1.0	U D	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	Ū	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	ט	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	Ula	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	84	-	70-130
2037-26-5	Toluene-d8 (Surr)	82		70-130
460-00-4	Bromofluorobenzene	102		70-130
1868-53-7	Dibromofluoromethane (Surr)	89		70-130

34-11 BEACH CHANNAL DRIVE DATA USABILITY SUMMARY REPORT October 9, 2013 Groundwater Sampling (SDG No. 64621) Lab Report #460-64621-1

This data usability summary report (DUSR) was prepared in accordance with *Appendix 2B* of New York State Department of Environmental Conservation (NYSDEC) DER-10 using the entire original laboratory report, including the sample data summary report and the extended data package. The sampling event included 18 primary environmental groundwater samples and associated quality assurance / quality control (QA / QC) samples collected on October 9, 2013.

Sample Collection

The samples were collected in labeled laboratory-provided sample containers; no issues with sample containers or labeling were reported by the laboratory. Sampling procedures, including collection of field QA / QC samples, were reported to have been in accordance with the procedures presented in the NYSDEC-approved Quality Assurance Project Plan (April 2013 for this project. All sample collection was conducted under Chain of Custody (COC) procedures.

Field QA / QC samples, including a blind duplicate sample, a field blank (equipment rinsate blank) and a trip blank sample, were collected to evaluate field sampling methods and laboratory procedures. Extra volume was also provided for a site-specific matrix spike / matrix spike duplicate (MS / MSD) QA / QC sample.

Sample Analyses

The samples were transmitted to and analyzed by TestAmerica Laboratories, Inc. at their Edison, New Jersey facility, which is New York State Department of Health-certified for the analyses performed. The samples were prepared and analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) using Methods 5030C / 8260C. The analytical methods and analytes are appropriate for the intended use of the data. The sample holding times were met and no problems with sample receipt or handling were reported by the laboratory.

The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-2! (460-64621-4) (5X for vinyl chloride only), MW-2S (460-64621-3) (20X all analytes). Elevated reporting limits (RLs) are provided.

QA / QC Results

Equipment Blank Samples

A rinsate (equipment) blank sample was collected on 10/09 and was analyzed for all project analytes to evaluate potential contamination from field sampling procedures.

The blank contained the following VOCs: methylene chloride (0.68 micrograms per liter [ug/liter]), chloroform (3.5 ug/l) and bromodichloromethane (0.70 ug/l). As methylene chloride is a common laboratory contaminant and was not detected in any of the groundwater \ samples, its presence in the rinsate blank is not believed to represent a significant QA / QC excursion. As neither chloroform or bromodichloromethane were detected in associated field samples or, in the case of cholororm at a very low concentration in only one sample, their presence in the rinsate sample is not believed to be significant.

Based upon these rinsate blank data, cross-contamination from field sampling procedures does not appear to be of concern in this data set.

Surrogate Samples

Surrogate recoveries and internal standard responses in each of the samples for all analytes were within acceptance limits.

Trip Blanks

A trip blank samples was collected on 10/9 which was transported with the cooler containing the VOC samples. Trip blank samples are used to verify that cross-contamination between samples did not occur in the field, in transit or in the laboratory. No VOCs were detected in the trip blank; therefore, cross-contamination issues were not of concern.

Blind Duplicate Samples

A blind duplicate sample was collected and utilized to evaluate the precision of the laboratory analyses. The results from the duplicate sample (MW-22S) and the associated parent sample (MW-2S) are very similar for the VOCs analyses. Based on the blind duplicate sample results, the laboratory results are likely to be precise.

Continuing Calibration Verification

Continuing calibration verification standards (CCVs) are midrange calibration standards that are analyzed in order to verify that the calibration of the analytical system is still acceptable and instrument calibration drift has not occurred.

- The continuing calibration verification (CCV) for analytical Batch 186752 recovered outside control limits for bromomethane and 2-butanone. The data have been qualified and reported.
- The CCV for analytical Batch 187210 recovered outside control limits for bromomethane.
 This analyte was not detected in the associated sample. The data have been qualified and reported.
- The CCV for analytical Batch 186972 recovered outside control limits for carbon disulfide, cyclohexane, bromoform, and 1,2-dibromo-3-chloropropane. The data have been qualified and reported.

With the exception of carbon disulfide, none of the aforementioned VOCs were detected in any of the field samples. Carbon disulfide was detected in several of the groundwater samples; however, at concentration two orders of magnitude below its respective regulatory threshold. Therefore, these CCV issues are not believed to impact the overall quality of the data set.

MS / MSD Samples

An MS / MSD sample was prepared to evaluate the effect of the matrix on the reliability of the analytical results. Spiking occurs in the laboratory prior to sample preparation and analysis. One MS / MSD sample was collected and included in this sample delivery group (SDG), which was analyzed in several batches. Based on information provided by the analytical laboratory, the MS / MSD results were all within QC limits except as follows:

The MS recovery of chloromethane was outside control limits in Batch 186972.
 However, the associated LCS recovery met acceptance criteria.

Based upon these results, matrix-related effects have not significantly affected the analytical results.

Method Blank Samples

Method blank (MB) samples were analyzed by the laboratory to evaluate the potential for cross-contamination associated with the sample preparation and analysis. The MB results did not show concentrations of analytes above their method detection limits and / or the reporting limits.

<u>Laboratory Control Samples and Duplicates</u>

Laboratory control samples (LCSs) and duplicates (LCSDs) were used by the laboratory to verify the accuracy and precision of the analyses. The LCS / LCSD results were all within established guidelines, with the following exceptions:

 The LCS for Batch 186752 recovered outside control limits for the following analytes: 1,2-dichloroethane and 2-butanone. These analytes were biased high in the LCS. The associated sample data has been flagged and reported..

Based on these results, the data do not appear to have been significantly affected by laboratory-related accuracy or precision issues.

Questions and Responses as per DER-10

1. Is the data package complete as defined under the current requirements for the NYSDEC ASP Category B or USEPA CLP deliverables?

The data package is complete. The external and internal chain of custody forms are present and complete. The case narrative and sample analysis summaries are present and complete. The analytical QA /Q C summary forms, including surrogate recovery forms, LCS forms, IDL forms, initial and continuing calibration summary forms, standards raw data, tuning criteria report, and MB data are all present and complete. The data report forms, including sample prep logs, injection logs, and examples of the calculations used to

determine the sample concentrations are all present and complete. The raw data used to identify and quantify the contract-specified analytes are present and complete.

2. Have all holding times been met?

All samples were received and analyzed within the EPA-recommended holding times for the analyses performed.

- 3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data, fall within the protocol-required limits and specifications?
 - No Although the majority of QC data were found to fall within the protocol-required limits and specifications, minor exceptions were noted above; however, these exceptions do not appear to significantly affect the data set.
- 4. Have all of the data been generated using established and agreed-upon analytical protocols?
 - Yes all of the data were generated using TCL VOCs using Methods 5035 / 8260B.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?
 - Yes a representative number of raw data results were compared with the reported data results to confirm that the reported analytical results (identification and quantification) are substantiated by the raw data.
- 6. Have the correct data qualifiers been used?
 - Yes results below the quantitation limit and above the method detection limit have been J-qualified, analytes detected in associated MBs are B-qualified, asterisks have been applied where LCS results exceed the control limits, and results analyzed for but not detected have been U-qualified. No other qualifiers were indicated or applied.
- 7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?

Yes – exceedances have been noted in the DUSR and the corresponding QC summary sheets are attached.

Conclusions

The groundwater samples were reported to have been collected in accordance with the NYSDEC-approved QAPP for this project. No field or laboratory conditions occurred that would result in non-valid analytical data other than as noted above. The data appear to be adequate for their intended purpose.

Attachments

CASE NARRATIVE

Client: Alprof Realty LLC

Project: Alprof Realty

Revised Report Number: 460-64621-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

REVISED REPORT

The following report required a revision: 460-64621-1. Details are as follow: Batch QC references were included in the job narrative; however, batch QC was not reported per client request. The job narrative was revised on 5/1/14 to remove these references.

RECEIPT

The samples were received on 10/10/2013; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.1 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANICS

Samples 460-64621-1 through 460-64621-21 were analyzed for Volatile organics in accordance with EPA SW-846 Methods 8260C. The samples were analyzed on 10/16/2013, 10/17/2013 and 10/18/2013.

The continuing calibration verification (CCV) for analytical batch 186752 recovered outside control limits for Bromomethane and 2-Butanone. The data have been qualified and reported.

The laboratory control sample (LCS) for batch 186752 recovered outside control limits for the following analytes: 1,2-Dichloroethane and 2-Butanone. These analytes were biased high in the LCS. The associated sample data has been flagged and reported.

The continuing calibration verification (CCV) for analytical batch 187210 recovered outside control limits for Bromomethane. This analyte was not detected in the associated sample. The data have been qualified and reported.

The matrix spike (MS) recovery of Chloromethane was outside control limits in batch 186972. The associated laboratory control sample (LCS) recovery met acceptance criteria.

The continuing calibration verification (CCV) for analytical batch 186972 recovered outside control limits for Carbon Disulfide, Cyclohexane, Bromoform, and 1,2-Dibromo-3-chloropropane. The data have been qualified and reported.

Refer to the QC report for details.

The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-2I (460-64621-4), MW-2S (460-64621-3). Elevated reporting limits (RLs) are provided.

Samples 460-64621-3(5X) and 460-64621-4(20X) required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the Volatile organics analyses.

All other quality control parameters were within the acceptance limits.

DRAFT

TABLE 3 - GROUNDWATER SAMPLING RESULTS - OCTOBER 2013 34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK

ONSITE WELLS

Sample Location	MW-1S	MW-1I	MW-2S	MW-2S (Duplicate)	MW-2I	MW-3S	MW-3I	MW-4S	MW-4I	MW-5S	MW-5I	MW-6S	MW-6I	NYSDEC Class
Sample Location	10100-10	1414.4- 11	14144-20	WWW-23 (Duplicate)	1010 0-21	10104-22	14144-21	10100-43	1414.4-44	IVIVV-55	IC-PAIN	10104-02	10100-01	GA Ambient
Screen Interval (feet)	4 to 15	31 to 36	4 to 19	4 to 19	33 to 38	4 to 21	31 to 36	3 to 8	31 to 36	3 to 10	31 to 36	2 to 7	31 to 36	Water Quality
Stratigraphic Interval	Shallow Sand	Inter, Sand	Shallow Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter, Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter, Sand	Standard
Volatile Organic Compounds (ug/L)														
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1-Dichloroethene	ND _	ND	ND	ND	10 J	0.83 J	0.84 J	ND	ND	ND	0.25 J	ND	ND	5
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND _	ND	ND	ND	ND	NĐ	ND	ND	1
1.2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	50
Benzene	1.6	ND	1.1	1.0	4.4 J	0.38 J	6.0	ND	3.7	ND	0.28 J	ND	4.4	1
Carbon disulfide	ND	0.20 J	ND	0.32 J	ND	ND	0.19 J	0.61 J	ND	0.15 J	0.35 J	ND	ND	50
Chlorobenzene	ND	ND	ND	0.19 3	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	2.8	ND	ND	ND	ND	ND	54	NĐ	ND	ND	ND	ND	ND	5
Chloroform	ND	ND	ND	ND	ND	NĐ	ИD	ND	ND	ND	ND	0.20 J	ND	7
cis-1,2-Dichloroethene	3.9	4.2	150	110	4,800	100	260	4.5	5.4	6.5	50	1.6	2.9	5
Ethylbenzene	0.50 J	ND	ND	0.13 J	ND	ND	0.54 J	ND	0.28 J	ND	ND	ND	0.52 J	5
Isopropylbenzene	ND	ND	ND	ND	ND	ND	0.10 J	ND	ND	ND	ND	ND	ND	5
m&p-Xylene	0.79 J	ND	ND	ND	ND	NĎ	0.77 J	ND	0.62 J	ND	ND	ND	0.77 J	5
Methyl ethyl ketone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4Ĉ/ J	6.4	ND	50
Methyl isobutyl ketone	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND	ND	ND	ND	50
MTBE	ND	6.7	ND	ND	ND	ND	ND	ND	0.24 J	ND	11	ND	0.62 J	10
o-Xylene	0.41 J	ND	ND	ND	ND	ΝĎ	0.23 J	ND	0.38 J	ND	ND	ND	0.33 J	5
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.39 J	ND	2.7	ND	5
Toluene	2.2	ND	0.65 J	0.59 J	ND	ND	7.3	ND	0.76 J	ND	0.32 J	ND	7.7	5
trans-1,2-Dichloroethene	4.1	0.39 J	6.3	6.0	100	1.2	44	ND	2.3	0.17 J	0.82 J	ND	9.0	5
Trichloroethene	4.3	0.79 J	0.66 J	0.17 J	310	41	16	1.8	0.63 J	0.29 J	2.4	0.25 J	0.52 J	5
Vinyl chloride	1.4	23	340	440	420	2.7	180	1.6	1,1	1,2	6.9	0.30 J	1.8	2

OFFSITE WELLS

Sample Location	MW-7S	MW-7I	MW-8S	MW-81	MW-9S	MW-91	NYSDEC Class GA
Screen Interval (feet)	2 to 12	36 to 41	2 to 8	30 to 35	2 to 9	31 to 36	Ambient Water Quality
Stratigraphic Interval	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Shallow Sand	Inter. Sand	Standard
Volatile Organic Compounds (ug/L)					1711520	V 2000 1000	
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.36 J	5
1,1-Dichloroethene	ND	ND	ND	0.18 J	ND	0.15 J	5
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.20 J	1
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.26 J	1
Acetone	31	530	820	5.6	39	55	50
Benzene	0.10 J	0.20 J	0.39 J	0.59 J	ND	15	1
Carbon disulfide	ND	0.58 J	ND	ND	ND	ND	50
Chlorobenzene	ND	ND	ND	ND	ND	0.29 J	5
Chloroethane	ND	ND	ND	ND	ND	NĐ	5
Chloroform	ND	ND	ND	ND	ND	ND	7
cis-1,2-Dichloroethene	ND	0.28 J	ND	12	0.24 J	79	5
Ethylbenzene	ND	ND	ND	ND	ND	0.70 J	5
Isopropylbenzene	ND	ND _	ND	ND	ND	0.086 J	5
m&p-Xylene	ND	ND	ND	ND	ND	1.5 J	5
Methyl ethyl ketone	ND	1,000	2,200	15	83	32	50
Methyl isobutyl ketone	ND	ND	ND	ND	ND	1.6 J	50
MTBE	ND	ND	ND	1.6	ND	2.1	10
o-Xylene	ND	ND	ND	ND	" ND	0.97 J	5
Tetrachloroethene	ND	ND	ND	ND	ND	ND	5
Toluene	ND	0.24 J	ND	0.22 J	ND	4.1	5
trans-1,2-Dichloroethene	ND	ND	ND	0.26 J	ND	29	5
Trichloroethene	ND	ND	ND	0.61 J	ND	ND	5
Vinyl chloride	ND	ND	ND	12	ND	85	2

Notes:

J = Estimated concentration greater than the Method Detection Limit (MDL) and less than the Reporting Limit (RL).

Bold shaded values indicate exceedances of the NYSDEC Class GA Ambient Water Quality Standards.

ND = Not detected

^{* =} Associated laboratory QA/QC sample exceeded control limits Only compounds detected in one or more samples are reported. See lab report for complete data.

Client Sample ID: MW-2S

 Lab Sample ID:
 460-64621-3
 Date Sampled: 10/09/2013 1020

 Client Matrix:
 Water
 Date Received: 10/10/2013 1430

8260C Volatile Organic Compounds by GC/MS

Analysis Method:

8260C 5030C Analysis Batch: Prep Batch: 460-186752

Instrument ID: Lab File ID: CVOAMS13 P76438.D

Prep Method: Dilution:

1.0

ep Batch:

N/A

Initial Weight/Volume: Final Weight/Volume:

P76438.D 5 mL

5 mL

Analysis Date: Prep Date: 10/16/2013 2048 10/16/2013 2048

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloromethane	1.0	U	0.10	1.0
Bromomethane	1.0	U	0.18	1.0
Vinyl chloride	570	E	0.14	1.0
Chloroethane	1.0	U	0.17	1.0
Methylene Chloride	1.0	U	0.18	1.0
Acetone	5.0	U	2.7	5.0
Carbon disulfide	1.0	U	0.13	1.0
Trichlorofluoromethane	1.0	U	0.15	1.0
1,1-Dichloroethene	1.0	U	0.090	1.0
1,1-Dichloroethane	1.0	U	0.13	1.0
trans-1,2-Dichloroethene	6.3		0.13	1.0
cis-1,2-Dichloroethene	150		0.18	1.0
Chloroform	1.0	U	0.080	1.0
1,2-Dichloroethane	1.0	U *	0.19	1.0
2-Butanone	5.0	U *	2.3	5.0
1,1,1-Trichloroethane	1.0	U	0.060	1.0
Carbon tetrachloride	1.0	U	0.060	1.0
Bromodichloromethane	1.0	U	0.12	1.0
1,2-Dichtoropropane	1.0	U	0.090	1.0
cis-1,3-Dichloropropene	1.0	U	0.18	1.0
Trichloroethene	0.66	J	0.090	1.0
Dibromochloromethane	1.0	U	0.20	1.0
1,1,2-Trichloroethane	1.0	U	0.19	1.0
Benzene	1.1		0.080	1.0
trans-1,3-Dichloropropene	1.0	U	0.24	1.0
Bromoform	1.0	U	0.19	1.0
4-Methyi-2-pentanone	5.0	U	0.99	5.0
2-Hexanone	5.0	U	0.50	5.0
Tetrachloroethene	1.0	U	0.10	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.16	1.0
Toluene	0.65	J	0.15	1.0
Chlorobenzene	1.0	Ü	0.11	1.0
Ethylbenzene	1.0	U	0.10	1.0
Styrene	1.0	U	0.12	1.0
m&p-Xylene	2.0	U	0.25	2.0
o-Xylene	1.0	U	0.13	1.0
Freon TF	1.0	Ü	0.080	1.0
MTBE	1.0	U	0.14	1.0
Cyclohexane	1.0	Ü	0.16	1.0
1,2-Dibromoethane	1.0	Ü	0.28	1.0
1,3-Dichlorobenzene	1.0	Ū	0.14	1.0
1,4-Dichlorobenzene	1.0	Ü	0.23	1.0
1,2-Dichlorobenzene	1.0	Ü	0.21	1.0
Dichlorodifluoromethane	1.0	Ü	0.22	1.0
1,2,4-Trichlorobenzene	1.0	Ŭ	0.34	1.0
1,4-Dioxane	50	Ŭ	36	50
1,4 DIVAGIIC	30	0	00	•

Analytical Data

Client: Alprof Realty LLC Job Number: 460-64621-1

Client Sample ID:

MW-2S

Lab Sample ID:

460-64621-3

Client Matrix:

Water

Date Sampled: 10/09/2013 1020

Date Received: 10/10/2013 1430

8260C Volatile Organic Compounds by

Analysis Method:

8260C 5030C

Analysis Batch:

460-186752

Instrument ID: Lab File ID:

CVOAMS13

Prep Method: Dilution:

1.0

Prep Batch:

N/A

Initial Weight/Volume:

P76438.D 5 mL

Analysis Date:

10/16/2013 2048

Final Weight/Volume:

5 mL

Prep Date:

10/16/2013 2048

Result (ug/L)	Qualifier	MDL	RL
1.0	Ü	0.51	1.0
1.0	U	0.40	1.0
1.0	U	0.27	1.0
1.0	U	0.080	1.0
5.0	U	0.34	5.0
1.0	U	0.14	1.0
	1.0 1.0 1.0 1.0 5.0	1.0 Ü 1.0 U 1.0 U 1.0 U 5.0 U	1.0 U 0.51 1.0 U 0.40 1.0 U 0.27 1.0 U 0.080 5.0 U 0.34

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2~Dichloroethane-d4 (Surr)	81		70 - 130
Toluene-d8 (Surr)	80		70 - 130
Bromofluorobenzene	92		70 - 130
Dibromofluoromethane (Surr)	84		70 ~ 130

Analytical Data

Client: Alprof Realty LLC Job Number: 460-64621-1

Client Sample ID:

MW-2S

Lab Sample ID:

460-64621-3

Client Matrix:

Water

Date Sampled: 10/09/2013 1020 Date Received: 10/10/2013 1430

8260C Volatile Organic C	compounds by GC/MS
--------------------------	--------------------

DL

Analysis Method: Prep Method:

8260C

5.0

Dilution: Analysis Date: 10/17/2013 2044 Prep Date:

5030C

10/17/2013 2044

Analysis Batch: Prep Batch:

Run Type:

460-186972

N/A

Instrument ID:

CVOAMS13 Lab File ID: P76495.D

Initial Weight/Volume: 5 mL Final Weight/Volume:

5 mL

Analyte Vinyl chloride Result (ug/L) 340

Qualifier

MDL 0.70

RL 5.0

Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 89 70 - 130 Toluene-d8 (Surr) 88 70 - 130 Bromofluorobenzene 102 70 - 130 Dibromofluoromethane (Surr) 91 70 - 130

Client Sample ID:

MW-21

Lab Sample ID: 460-64621-4

Client Matrix: Water Date Sampled: 10/09/2013 1020 Date Received: 10/10/2013 1430

5 mL

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-186972 Instrument ID: CVOAMS13 Prep Method: 5030C Prep Batch: N/A Lab File ID: P76496.D Dilution: 20 Initial Weight/Volume: 5 mL Final Weight/Volume:

Analysis Date: 10/17/2013 2107

Prep Date: 10/17/2013 2107 Analyte Result (ug/L) Qualifier MDL RL Chloromethane 2Ō U 2.0 20 Bromomethane 20 U 3.6 20 Vinyl chloride 420 2.8 20 Chloroethane 20 U 3.4 20 Methylene Chloride 20 U 3.6 20 Acetone 100 U 54 100 Carbon disulfide 20 U 2.6 20 Trichlorofluoromethane 20 U 20 3.0 1,1-Dichloroethene 10 J 1.8 20 1,1-Dichloroethane 20 20 U 2.6 trans-1,2-Dichloroethene 100 20 2.6 cis-1,2-Dichloroethene 4800 20 3.6 Chloroform 20 IJ 20 1.6 1,2-Dichloroethane 20 U 3.8 20 2-Butanone 100 100 U 46 1,1,1-Trichloroethane 20 U 1.2 20 Carbon tetrachloride 20 20 U 1.2 Bromodichloromethane 20 20 U 2.4 1,2-Dichloropropane 20 U 1.8 20 cis-1,3-Dichloropropene 20 U 3.6 20 Trichloroethene 310 1.8 20 Dibromochloromethane U 20 20 4.0 1,1,2-Trichloroethane 20 U 3.8 20 Benzene 4.4 J 20 1.6 trans-1,3-Dichloropropene 20 u 4.8 20 Bromoform 20 U 3.8 20 4-Methyl-2-pentanone 100 U 20 100 2-Hexanone 100 U 10 100 Tetrachloroethene 20 U 2.0 20 1,1,2,2-Tetrachloroethane 20 U 3.2 20 Toluene 20 U 3.0 20 Chlorobenzene 20 U 20 22 Ethylbenzene 20 U 20 2.0 Styrene 20 U 20 24 m&p-Xylene 40 U 40 5.0 o-Xylene 20 U 2.6 20 Freon TF 20 U 1.6 20 MTBE 20 U 20 2.8 Cyclohexane 20 U 20 3.2 1,2-Dibromoethane 20 U 20 5.6 1,3-Dichlorobenzene 20 U 20 2.8 1,4-Dichlorobenzene 20 U 4.6 20 1,2-Dichlorobenzene 20 U 20 4.2 Dichlorodifluoromethane 20 20 IJ 4.4 1,2,4-Trichlorobenzene 20 20 U 6.8 1,4-Dioxane 1000 1000 U 720

Analytical Data

Client: Alprof Realty LLC Job Number: 460-64621-1

Client Sample ID:

MW-2!

Lab Sample ID:

460-64621-4

Client Matrix:

Water

Date Sampled: 10/09/2013 1020 Date Received: 10/10/2013 1430

8260C Volatile	Organic	Compounds	by GC/MS

Analysis Method: Prep Method:

8260C 5030C

20

Analysis Batch: Prep Batch:

460-186972 N/A

Instrument ID: Lab File ID:

CVOAMS13 P76496.D

Dilution:

10/17/2013 2107

Initial Weight/Volume: Final Weight/Volume:

5 mL 5 mL

Analysis Date: Prep Date:

10/17/2013 2107

Analyte Result (ug/L) Qualifier MDL RĹ 1,2,3-Trichlorobenzene 20 U 10 20 1,2-Dibromo-3-Chloropropane U 20 0.8 20 Bromochloromethane U 20 20 5.4 Isopropylbenzene 20 U 20 1.6 Methyl acetate U 100 6.8 100 Methylcyclohexane 20 U 20 2.8

Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 91 70 - 130 Toluene-d8 (Surr) 70 - 130 92 Bromofluorobenzene 70 - 130 105 Dibromofluoromethane (Surr) 95 70 - 130

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Water

Lab Sample ID	Client Sample ID	DBFM %Rec	DCA %Rec	TOL %Rec	BFB %Rec
460-64621-1	MW-1S	95	92	92	105
460-64621-2	MW-1I	100	95	94	105
460-64621-3	MW-2S	84	81	80	92
460-64621-3 DL	MW-2S DL	91	89	88	102
460-64621-4	MW-2I	95	91	92	105
460-64621-5	MW-3S	93	91	89	101
460-64621-6	MW-3I	91	89	90	103
460-64621-7	MW-4S	94	90	90	103
460-64621-8	MW-4I	94	90	90	100
460-64621-9	MW-5S	89	86	85	97
460-64621-10	MW-5I	92	91	90	102
460-64621-11	MW-6S	82	81	78	89
460-64621-12	MW-6I	94	91	90	102
460-64621-13	MW-7S	91	88	89	102
460-64621-14	MW-70	93	88	90	102
460-64621-15	MW-8S	92	86	86	97
460-64621-16	MW-8I	86	83	83	95
460-64621-17	MW-9S	94	88	86	101
460-64621-18	MW-9I	90	87	87	102
460-64621-19	MW-22S	89	85	84	97
460-64621-20	FB1009	96	89	89	103
460-64621-21	TB1009	93	89	89	102
MB 460-186752/6		100	98	98	112
MB 460-186972/7		92	89	88	102
MB 460-187210/6		91	89	89	103
LCS 460-186752/4		95	89	93	109
LCS 460-186972/5		92	85	90	104
LCS 460-187210/4		92	88	92	108
460-64621-16 MS	MW-8I MS	89	86	87	100

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	70-130
DCA = 1,2-Dichloroethane-d4 (Surr)	70-130
TOL = Toluene-d8 (Surr)	70-130
BFB = Bromofluorobenzene	70-130

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Water

		DBFM	DÇA	TOL	BFB
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
460-64621-16 MSD	MW-8I MSD	89	85	87	102

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	70-130
DCA = 1,2-Dichloroethane-d4 (Surr)	70-130
TOL = Toluene-d8 (Surr)	70-130
BFB = Bromofluorobenzene	70-130

Client Sample ID:

TB1009

Lab Sample ID:

460-64621-21TB

Client Matrix:

Water

Date Sampled: 10/09/2013 0830

Date Received: 10/10/2013 1430

8260C Volatile Organic Compounds by GC/MS										
Analysis Method: 8260C Prep Method: 5030C Dilution: 1.0 Analysis Date: 10/17/2013 1737 Prep Date: 10/17/2013 1737		Analysis Batch: Prep Batch:	460-186972 N/A	Instrument ID: Lab File ID; Initial Weight/Volume: Final Weight/Volume:	CVOAMS13 P76487.D 5 mL 5 mL					
Analyte		Result (u			RL					
Chloromethane		1.0	Ū	0.10	1.0					
Bromomethane		1.0	U	0.18	1.0					
√inyl chloride		1.0	U	0.14	1.0					
Chloroethane		1.0	U	0.17	1.0					
Methylene Chloride		1.0	U	0.18	1.0					
Acetone		5.0	U	2.7	5.0					
Carbon disulfide		1.0	υ	0.13	1.0					
Trichlorofluorometha	ane	1.0	U	0.15	1.0					
1,1-Dichloroethene		1.0	U	0.090	1.0					
1,1-Dichloroethane		1.0	U	0.13	1.0					
rans-1,2-Dichloroetl		1.0	U	0.13	1.0					
sis-1,2-Dichloroethe	ne	1.0	U	0.18	1.0					
Chloroform		1.0	U	0.080	1.0					
1,2-Dichloroethane		1.0	U	0.19	1.0					
2-Butanone		5.0	U	2.3	5.0					
,1,1-Trichloroethan	e	1.0	U	0.060	1.0					
Carbon tetrachforide	;	1.0	U	0.060	1.0					
Bromodichlorometha	ane	1.0	U	0.12	1.0					
,2-Dichloropropane	!	1.0	U	0.090	1.0					
is-1,3-Dichloroprop	ene	1.0	U	0.18	1.0					
richloroethene		1.0	U	0.090	1.0					
Dibromochlorometha	ane	1.0	U	0.20	1.0					
,1,2-Trichloroethan	е	1.0	U	0.19	1.0					
Benzene		1.0	U	0.080	1.0					
rans-1,3-Dichloropre	opene	1.0	U	0.24	1.0					
Bromoform	•	1.0	U	0.19	1.0					
-Methyl-2-pentanor	ne	5.0	U	0.99	5.0					
2-Hexanone		5.0	Ū	0.50	5.0					
Tetrachloroethene		1.0	Ū	0.10	1.0					
,1,2,2-Tetrachloroe	thane	1.0	Ü	0.16	1.0					
Foluene	•	1.0	Ū	0.15	1.0					
Chlorobenzene		1.0	Ü	0.11	1.0					
Ethylbenzene		1.0	Ü	0.10	1.0					
Styrene		1.0	Ū	0.12	1.0					
n&p-Xylene		2.0	Ŭ	0.25	2.0					
-Xylene		1.0	Ü	0.13	1.0					
reon TF		1.0	ŭ	0.080	1.0					
ATBE		1.0	Ü	0.14	1.0					
Cyclohexane		1.0	Ŭ	0.16	1.0					
,2-Dibromoethane		1.0	U	0.28	1.0					
1,3-Dichlorobenzene	2	1.0	U	0.14	1.0					
,3-Dichlorobenzene		1.0	U	0.23	1.0					
,		1.0	U	0.23	1.0					
2-Dichlorohenzens	,	1.0	Q	0.21	1.0					
•	ane	1.0	1.1	ດ ວວ	1.0					
1,2-Dichlorobenzene Dichlorodifluorometh 1,2,4-Trichlorobenze		1.0 1.0	U U	0.22 0.34	1.0 1.0					

Analytical Data

Client: Alprof Realty LLC Job Number: 460-64621-1

Client Sample ID:

TB1009

Lab Sample ID:

460-64621-21TB

Client Matrix:

Water

Date Sampled: 10/09/2013 0830

Date Received: 10/10/2013 1430

8260C Vol:	atile Organic	Compounds	by GC/MS

Analysis Method: Prep Method:

8260C 5030C Analysis Batch: Prep Batch:

460-186972 N/A

Instrument ID:

CVOAMS13 Lab File ID: P76487.D

Dilution:

1.0

Initial Weight/Volume:

5 mL

Analysis Date:

10/17/2013 1737

Final Weight/Volume:

5 mL

Prep Date:

10/17/2013 1737

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2,3-Trichlorobenzene	1.0	Ú	0.51	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.40	1.0
Bromochloromethane	1.0	U	0.27	1.0
Isopropylbenzene	1.0	U	0.080	1.0
Methyl acetate	5.0	U	0.34	5.0
Methylcyclohexane	1.0	U	0.14	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	89		70 - 130
Toluene-d8 (Surr)	89		70 - 130
Bromofluorobenzene	102		70 - 130
Dibromofluoromethane (Surr)	93		70 - 130

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.:

Lab Sample ID: CCVIS 460-187210/3 Calibration Date: 10/18/2013 09:02

Instrument ID: CVOAMS13 Calib Start Date: 09/26/2013 02:45

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/26/2013 07:27

Lab File ID: P76525.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3661	0.3201	0.1000	17.5	20.0	-12.6	20.0
Chloromethane	Ave	0.3262	0.3304	0.1000	20.3	20.0	1.3	20.0
Vinyl chloride	Ave	0.4228	0.3958	0.1000	18,7	20.0	-6.4	20.0
Bromomethane	Qua		0.0733*	0.1000	12.9	20.0	-35.7*	20.0
Chloroethane	Ave	0.2794	0.2892	0.1000	20.7	20.0	3.5	20.0
Trichlorofluoromethane	Ave	0.4687	0.4695	0.1000	20.0	20.0	0.2	20.0
Dichlorofluoromethane	Ave	0.6716	0.6230		18.6	20.0	-7.2	20.0
2-Methyl-1,3-butadiene	Ave	0.5269	0.4834		18.3	20.0	-8.3	20.0
Ethyl ether	Ave	0.3463	0.3453		19.9	20.0	-0.3	20.0
Ethanol	Ave	0.0824	0.0980		1190	1000	18.9	20.0
1,1-Dichloroethene	Ave	0.2942	0.2567	0.1000	17.5	20.0	-12.7	20.0
Carbon disulfide	Ave	1.040	0.9104	0.1000	17.5	20.0	-12.5	20.0
Freon TF	Ave	0.2743	0.2509	0.1000	18.3	20.0	-8.5	20.0
Iodomethane	Qua		0.0770		12.0	20.0	-40.2*	20.0
Cyclopentene	Ave	0.9393	0.8515		18.1	20.0	-9.4	20.0
Acrolein	Ave	0.7082	1.118		63.2	40.0	57.9*	20.0
Isopropyl alcohol	Ave	1.119	1.143		204	200	2.2	20.0
Methylene Chloride	Ave	0.3426	0.3495	0.1000	20.4	20.0	2.0	20.0
Acetone	Lin2		0.1836	0.1000	115	100	15.2	20.0
trans-1,2-Dichloroethene	Ave	0.3192	0.3071	0.1000	19.2	20.0	-3.8	20.0
Methyl acetate	Ave	0.4488	0.4358	0.1000	97.1	100	-2.9	20.0
Hexane	Ave	0.5729	0.5348		18.7	20.0	-6.6	20.0
MTBE	Ave	1.088	1.025	0.1000	18.9	20.0	-5.7	20.0
2-Methyl-2-propanol	Qua		1.547		218	200	9.0	20.0
Acetonitrile	Qua		0.0654		197	200	-1.3	20.0
Isopropyl ether	Ave	1.358	1.323		19.5	20.0	-2.6	20.0
2-Chloro-1,3-butadiene	Ave	0.2809	0.2655		18.9	20.0	-5.5	20.0
1,1-Dichloroethane	Ave	0.6661	0.6411	0.2000	19.2	20.0	-3.8	20.0
Acrylonitrile	Ave	0.1520	0.1485		195	200	-2.3	20.0
Allyl alcohol	Ave	0.6217	0.6432		517	500	3.5	20.0
Tert-butyl ethyl ether	Ave	1.173	1.098		18.7	20.0	-6.4	20.0
Vinyl acetate	Ave	0.7574	0.7250		38.3	40.0	-4.3	20.0
cis-1,2-Dichloroethene	Ave	0.3446	0.3222	0.1000	18.7	20.0	-6.5	20.0
2,2-Dichloropropane	Ave	0.4890	0.4155		17.0	20.0	-15.0	20.0
Cyclohexane	Ave	0.6209	0.5298	0.1000	17.1	20.0	-14.7	20.0
Bromochloromethane	Ave	0.1496	0.1505		20.1	20.0	0.6	20.0
Chloroform	Ave	0.5581	0.5729	0.2000	20.5	20.0	2.6	20.0
Carbon tetrachloride	Ave	0.3705	0.3394	0.1000	18.3	20.0	-8.4	20.0
Ethyl acetate	Ave	0.4396	0.4490		40.9	40.0	2.1	20.0
Tetrahydrofuran	Ave	4.981	5.476		44.0	40.0	9.9	20.0
1,1,1-Trichloroethane	Ave	0.4831	0.4491	0.1000	18.6	20.0	-7.0	20.0

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.:

Lab Sample ID: CCVIS 460-187210/3 Calibration Date: 10/18/2013 09:02

Instrument ID: CVOAMS13 Calib Start Date: 09/26/2013 02:45

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/26/2013 07:27

Lab File ID: P76525.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF '	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1-Dichloropropene	Ave	0.4367	0.4075		18.7	20.0	-6.7	20.0
2-Butanone	Ave	5.733	6.211	0.1000	108	100	8.3	20.0
n-Heptane	Ave	0.2422	0.2349		19.4	20.0	-3.1	20.0
Benzene	Ave	1.849	1.882	0.5000	20.3	20.0	1.7	20.0
Propionitrile	Ave	1.546	1.834		237	200	18.6	20.0
Methacrylonitrile	Ave	0.1579	0.1625		206	200	2.9	20.0
Tert-amyl methyl ether	Ave	0.9890	0.9102		18.4	20.0	-8.0	20.0
1,2-Dichloroethane	Ave	0.4830	0.4939	0.1000	20.4	20.0	2.2	20.0
Isobutyl alcohol	Ave	0.6366	0.6087		478	500	-4.4	20.0
2,4,4-Trimethyl-1-pentene	Ave	0.9367	0.8490	<u> </u>	36.3	40.0	-9.4	20.0
Isopropyl acetate	Ave	0.8665	0.7773		17.9	20.0	-10.3	20.0
Methylcyclohexane	Ave	0.5218	0.4956	0.1000	19.0	20.0	-5.0	20.0
Trichloroethene	Ave	0.3419	0.3273	0.2000	19.1	20.0	-4.3	20.0
n-Butanol	Ave	0.4014	0.3299		411	500	-17.8	20.0
Dibromomethane	Ave	0.2044	0.2030		19.9	20.0	-0.7	20.0
1,2-Dichloropropane	Ave	0.3839	0.3682	0.1000	19.2	20.0	-4.1	20.0
Ethyl acrylate	Ave	0.5458	0.4826		17.7	20.0	-11.6	20.0
Bromodichloromethane	Ave	0.4334	0.4167	0.2000	19.2	20.0	-3.9	20.0
Methyl methacrylate	Ave	0.1002	0.0951		38.0	40.0	-5.1	20.0
1,4-Dioxane	Ave	1.573	1.640		417	400	4.3	20.0
n-Propyl acetate	Ave	0.6877	0.6040		17.6	20.0	-12.2	20.0
2-Chloroethyl vinyl ether	Ave	0.2765	0.2388		17.3	20.0	-13.6	20.0
cis-1,3-Dichloropropene	Ave	0.7693	0.6898	0.2000	17.9	20.0	-10.3	20.0
Toluene	Ave	1.901	1.936	0.4000	20.4	20.0	1.8	20.0
Epichlorohydrin	Ave	0.0632	0.0544		345	400	-13.8	20.0
2-Nitropropane	Ave	0.1171	0.0916		31.3	40.0	-21.8*	20.0
Tetrachloroethene	Ave	0.4402	0.4194	0.2000	19.1	20.0	-4.7	20.0
4-Methyl-2-pentanone	Ave	0.6185	0.5818	0.1000	94.1	100	-5.9	20.0
trans-1,3-Dichloropropene	Ave	0.6802	0.6318	0.1000	18.6	20.0	-7.1	20.0
1,1,2-Trichloroethane	Ave	0.3573	0.3556	0.1000	19.9	20.0	-0.5	20.0
Ethyl methacrylate	Ave	0.5054	0.4226		16.7	20.0	-16.4	20.0
Dibromochloromethane	Ave	0.3980	0.3859	0.1000	19.4	20.0	-3.1	20.0
1,3-Dichloropropane	Ave	0.7513	0.7418		19.7	20.0	-1.3	20.0
1,2-Dibromoethane	Ave	0.4125	0.3947	0.1000	19.1	20.0	-4.3	20.0
n-Butyl acetate	Ave	0.9389	0.8420		17.9	20.0	-10.3	20.0
2-Hexanone	Ave	0.4665	0.4397	0.1000	94.3	100	-5.7	20.0
Chlorobenzene	Ave	1.230	1.257	0.5000	20.4	20.0	2.2	20.0
Ethylbenzene	Ave	0.6670	0.6572	0.1000	19.7	20.0	-1.5	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3985	0.3775		18.9	20.0	-5.3	20.0
m&p-Xylene	Ave	0.8366	0.8129	0.1000	19.4	.20.0	-2.8	20.0
o-Xylene	Ave	0.8102	0.7838	0.3000	19.3	20.0	-3.3	20.0

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.:

Lab Sample ID: CCVIS 460-187210/3 Calibration Date: 10/18/2013 09:02

Instrument ID: CVOAMS13 Calib Start Date: 09/26/2013 02:45

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/26/2013 07:27

Lab File ID: P76525.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Bromoform	Ave	0.2716	0.2410	0.1000	17.7	20.0	-11.3	20.0
Styrene	Ave	1.404	1.346	0.3000	19.2	20.0	-4.1	20.0
n-Butyl acrylate	Ave	0.4103	0.3137		15.3	20.0	-23.5*	20.0
Isopropylbenzene	Ave	2.096	2.070	0.1000	19.8	20.0	-1.2	20.0
Camphene	Ave	0.2353	0.2127		18.1	20.0	-9.6	20.0
Amyl acetate (mixed isomers)	Ave	2.180	1.719		15.8	20.0	-21.1*	20.0
Bromobenzene	Ave	0.9702	0.8999		18.6	20.0	-7.2	20.0
N-Propylbenzene	Ave	4.728	4.508		19.1	20.0	-4.7	20.0
1,1,2,2-Tetrachloroethane	Ave	1.058	0.9410	0.3000	17.8	20.0	-11.1	20.0
2-Chlorotoluene	Ave	3.315	3.101		18.7	20.0	-6.5	20.0
4-Ethyltoluene	Ave	4.167	3.879		18.6	20.0	-6.9	50.0
1,2,3-Trichloropropane	Ave	0.3236	0.2949		18.2	20.0	-8.9	20.0
1,3,5-Trimethylbenzene	Ave	3.362	3.204		19.1	20.0	-4.7	20.0
trans-1,4-Dichloro-2-butene	Ave	0.3850	0.3368		17.5	20.0	-12.5	20.0
4-Chlorotoluene	Ave	3.060	2.893		18.9	20.0	-5.5	20.0
tert-Butylbenzene	Ave	2.812	2,603		18.5	20.0	-7.4	20.0
Butyl Methacrylate	Ave	1.254	0.998		15.9	20.0	-20.5*	20.0
1,2,4-Trimethylbenzene	Ave	3.546	3.383		19.1	20.0	-4.6	20.0
sec-Butylbenzene	Ave	4.121	4.055		19.7	20.0	-1.6	20.0
1,3-Dichlorobenzene	Ave	1.905	1.841	0.6000	19.3	20.0	-3.3	20.0
4-Isopropyltoluene	Ave	3.694	3.503		19.0	20.0	-5.2	20.0
1,4-Dichlorobenzene	Ave	1.927	1.850	0.5000	19.2	20.0	-4.0	20.0
Indan	Ave	3.586	3.474		19.4	20.0	-3.1	20.0
Benzyl chloride	Ave	2.732	2,113		15.5	20.0	-22.7*	20.0
n-Butylbenzene	Ave	3.350	3.407		20.3	20.0	1.7	20.0
1,2-Dichlorobenzene	Ave	1.825	1.795	0.4000	19.7	20.0	-1.7	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.2314	0.1891	0.0500	16.3	20.0	-18.3	20.0
1,3,5-Trichlorobenzene	Ave	1.495	1.497		20.0	20.0	0.1	20.0
1,2,4-Trichlorobenzene	Ave	1.426	1.304	0.2000	18.3	20.0	-8.5	20.0
Hexachlorobutadiene	Ave	0.6091	0.6363		20.9	20.0	4.5	20.0
Camphor	Ave	0.1631	0.1080		66.2	100	-33.8*	20.0
Naphthalene	Ave	3.012	2.688		17.8	20.0	-10.8	20.0
1,2,3-Trichlorobenzene	Ave	1.288	1.216		18.9	20.0	~5.6	20.0
Dibromofluoromethane (Surr)	Ave	0.2069	0.1864		45.0	50.0	-9.9	20.0
1,2-Dichloroethane-d4 (Surr)	Āve	0.2975	0.2572		43.2	50.0	-13.5	20.0
Toluene-d8 (Surr)	Ave	1.241	1.123		45.2	50.0	-9.5	20.0
Bromofluorobenzene	Ave	0.3796	0.4003		52.7	50.0	5.4	20.0

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.:

Lab Sample ID: CCVIS 460-186972/3 Calibration Date: 10/17/2013 10:41

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/26/2013 07:27

Lab File ID: P76471.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.3661	0.3383	0.1000	18.5	20.0	-7.6	20.0
Chloromethane	Ave	0.3262	0.3717	0.1000	22.8	20.0	14.0	20.0
Vinyl chloride	Ave	0.4228	0.3907	0.1000	18.5	20.0	-7.6	20.0
Bromomethane	Qua		0.1029	0.1000	18.0	20.0	-10.2	20.0
Chloroethane	Ave	0.2794	0.2919	0.1000	20.9	20.0	4.5	20.0
Trichlorofluoromethane	Ave	0.4687	0.4521	0.1000	19.3	20.0	-3.5	20.0
Dichlorofluoromethane	Ave	0.6716	0.6353		18.9	20.0	-5.4	20,0
2-Methyl-1,3-butadiene	Ave	0.5269	0.5807		22.0	20.0	10.2	20.0
Ethyl ether	Ave	0.3463	0.3180		18.4	20.0	-8.2	20.0
Ethanol	Ave	0.0824	0.1077		1310	1000	30.6*	20.0
1,1-Dichloroethene	Ave	0.2942	0.2374	0.1000	16.1	20.0	-19.3	20.0
Carbon disulfide	Ave	1.040	0.7792	0.1000	15.0	20.0	-25.1*	20.0
Freon TF	Ave	0.2743	0.2287	0.1000	16.7	20.0	-16.6	20.0
Iodomethane	Qua		0.1191	-7-07	15.2	20.0	-24.1*	20.0
Cyclopentene	Ave	0.9393	1.018	William St	21.7	20.0	8.3	20.0
Acrolein	Ave	0.7082	1.167		65.9	40.0	64.8*	20.0
Isopropyl alcohol	Ave	1.119	1.317		235	200	17.7	20.0
Methylene Chloride	Ave	0.3426	0.3251	0.1000	19.0	20.0	-5.1	20.0
Acetone	Lin2		0.1488	0,1000	92.7	100	-7.3	20.0
trans-1,2-Dichloroethene	Ave	0.3192	0.2720	0.1000	17.0	20.0	-14.8	20.0
Methyl acetate	Ave	0.4488	0.3739	0.1000	83.3	100	-16.7	20.0
Hexane	Ave	0.5729	0.4017		14.0	20.0	-29.9*	20,0
MTBE	Ave	1.088	0.9694	0.1000	17.8	20.0	-10.9	20,0
2-Methyl-2-propanol	Qua		1.478		208	200	3.9	20.0
Acetonitrile	Qua		0.0770		236	200	17.9	20.0
Isopropyl ether	Ave	1.358	1.703		25.1	20.0	25.4*	20.0
2-Chloro-1,3-butadiene	Ave	0.2809	0.3268		23.3	20.0	16.4	20.0
1,1-Dichloroethane	Ave	0.6661	0.6095	0.2000	18.3	20.0	-8.5	20.0
Acrylonitrile	Ave	0.1520	0.1367		180	200	-10.1	20.0
Allyl alcohol	Ave	0.6217	0.7645		615	500	23.0*	20.0
Tert-butyl ethyl ether	Ave	1,173	1.331		22.7	20.0	13.4	20.0
Vinyl acetate	Ave	0.7574	0.8201		43.3	40.0	8.3	20.0
cis-1,2-Dichloroethene	Ave	0.3446	0.3075	0.1000	17.8	20.0	-10.8	20.0
2,2-Dichloropropane	Ave	0.4890	0.4227		17.3	20.0	-13.6	20.0
Cyclohexane	Ave	0.6209	0.4782	0.1000	15.4	20.0	-23.0 *	20.0
Bromochloromethane	Ave	0.1496	0.1450		19.4	20.0	-3.0	20.0
Chloroform	Ave	0.5581	0.5251	0.2000	18.8	20.0	-5.9	20.0
Carbon tetrachloride	Ave	0.3705	0.3109	0.1000	16.8	20.0	-16.1	20.0
Ethyl acetate	Ave	0.4396	0.5212		47.4	40.0	18.6	20.0
Tetrahydrofuran	Ave	4.981	5.545		44.5	40.0	11.3	20.0
1,1,1-Trichloroethane	Ave	0.4831	0.4095	0.1000	17.0	20.0	-15.2	20.0

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.: ___

Lab Sample ID: CCVIS 460-186972/3 Calibration Date: 10/17/2013 10:41

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/26/2013 07:27

Lab File ID: P76471.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	% D	MAX %D
1,1-Dichloropropene	Ave	0.4367	0.3769		17.3	20.0	-13.7	20.0
2-Butanone	Ave	5.733	6.013	0.1000	105	100	4.9	20.0
n-Heptane	Ave	0.2422	0.1842		15.2	20.0	-24.0*	20.0
Benzene	Ave	1.849	1.758	0.5000	19.0	20.0	-5.0	20.0
Propionitrile	Ave	1.546	2.188		283	200	41.5*	20.0
Methacrylonitrile	Ave	0.1579	0.1863		236	200	18.0	20.0
Tert-amyl methyl ether	Ave	0.9890	1.090		22.0	20.0	10.2	20.0
1,2-Dichloroethane	Ave	0.4830	0.4723	0.1000	19.6	20.0	-2.2	20.0
Isobutyl alcohol	Ave	0.6366	0.5739		451	500	-9.8	20.0
2,4,4-Trimethyl-l-pentene	Ave	0.9367	1.025		43.8	40.0	9.4	20.0
Isopropyl acetate	Ave	0.8665	0.9079		21.0	20.0	4.8	20.0
Methylcyclohexane	Ave	0.5218	0.4231	0.1000	16.2	20.0	-18.9	20.0
Trichloroethene	Ave	0.3419	0.2926	0.2000	17.1	20.0	-14.4	20.0
n-Butanol	Ave	0.4014	0.4079		508	500	1.6	20.0
Dibromomethane	Ave	0.2044	0.1849		18.1	20.0	-9.5	20.0
1,2-Dichloropropane	Ave	0.3839	0.3591	0.1000	18.7	20.0	-6.5	20.0
Ethyl acrylate	Ave	0.5458	0.5795		21.2	20.0	6.2	20.0
Bromodichloromethane	Ave	0.4334	0.3901	0.2000	18.0	20.0	-10.0	20.0
Methyl methacrylate	Ave	0.1002	0.1079		43.1	40.0	7.6	20.0
1,4-Dioxane	Ave	1.573	1.553		395	400	-1.3	20.0
n-Propyl acetate	Ave	0.6877	0.6937		20.2	20.0	0.9	20.0
2-Chloroethyl vinyl ether	Ave	0.2765	0.2849		20.6	20.0	3.0	20.0
cis-1,3-Dichloropropene	Ave	0.7693	0.6591	0.2000	17.1	20.0	-14.3	20.0
Toluene	Ave	1.901	1.780	0.4000	18.7	20.0	-6.3	20.0
Epichlorohydrin	Ave	0.0632	0.0476		302	400	-24.6*	20.0
2-Nitropropane	Ave	0.1171	0.1040		35.5	40.0	-11.2	20.0
Tetrachloroethene	Ave	0.4402	0.3872	0.2000	17.6	20.0	-12.1	20.0
4-Methyl-2-pentanone	Ave	0.6185	0.5289	0.1000	85.5	100	-14.5	20.0
trans-1,3-Dichloropropene	Ave	0.6802	0.5921	0.1000	17.4	20.0	-12.9	20.0
1,1,2-Trichloroethane	Ave	0.3573	0.3251	0.1000	18.2	20.0	-9.0	20.0
Ethyl methacrylate	Ave	0.5054	0.3966		15.7	20.0	-21.5+	20,0
Dibromochloromethane	Ave	0.3980	0.3617	0.1000	18.2	20.0	-9.1	20.0
1,3-Dichloropropane	Ave	0.7513	0.7002	- FIF	18.6	20.0	-6.8	20.0
1,2-Dibromoethane	Ave	0.4125	0.3640	0.1000	17.6	20.0	-11.8	20.0
n-Butyl acetate	Ave	0.9389	0.9772		20.8	20.0	4.1	20.0
2-Hexanone	Ave	0.4665	0.3948	0.1000	84.6	100	-15.4	20.0
Chlorobenzene	Ave	1.230	1.182	0.5000	19.2	20.0	-3.9	20.0
Ethylbenzene	Ave	0.6670	0.6084	0.1000	18.2	20.0	-8.8	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3985	0.3601		18.1	20.0	-9.6	20.0
m&p-Xylene	Ave	0.8366	0.7428	0.1000	17.8	20.0	-11.2	20.0
o-Xylene	Ave	0.8102	0.7295	0.3000	18.0	20.0	-10.0	20.0

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.:

Lab Sample ID: CCVIS 460-186972/3 Calibration Date: 10/17/2013 10:41

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/26/2013 07:27

Lab File ID: P76471.D Conc. Units: ug/L Heated Purge: (Y/N)

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Bromoform	Ave	0.2716	0.2164	0.1000	15.9	20,0	-20.3*	20.0
Styrene	Ave	1.404	1.268	0.3000	18.1	20.0	-9.7	20.0
n-Butyl acrylate	Ave	0.4103	0.3781		18.4	20.0	-7.8	20.0
Isopropylbenzene	Ave	2.096	1.917	0.1000	18.3	20.0	-8.5	20.0
Camphene	Ave	0.2353	0.2509		21.3	20.0	6.6	20.0
Amyl acetate (mixed isomers)	Ave	2.180	2.012		18.5	20.0	-7.7	20.0
Bromobenzene	Ave	0.9702	0.8545	·	17.6	20.0	-11.9	20.0
N-Propylbenzene	Ave	4.728	4.144		17.5	20.0	~12.3	20.0
1,1,2,2-Tetrachloroethane	Ave	1.058	0.9173	0.3000	17.3	20.0	-13.3	20.0
2-Chlorotoluene	Ave	3.315	3.024		18.2	20.0	-8.8	20.0
4-Ethyltoluene	Ave	4.167	4.559		21.9	20.0	9.4	50.0
1,2,3-Trichloropropane	Ave	0.3236	0.2659	110.00	16.4	20.0	-17.8	20.0
1,3,5-Trimethylbenzene	Ave	3.362	2.881		17.1	20.0	-14.3	20.0
trans-1,4-Dichloro-2-butene	Ave	0.3850	0.3062		15.9	20.0	-20.4*	20.0
4-Chlorotoluene	Ave	3.060	2.703		17.7	20.0	-11.7	20.0
tert-Butylbenzene	Ave	. 2.812	2.370		16.9	20.0	-15.7	20.0
Butyl Methacrylate	Ave	1.254	1.167		18.6	20.0	-7.0	20.0
1,2,4-Trimethylbenzene	Ave	3.546	3.138		17,7	20.0	-11.5	20.0
sec-Butylbenzene	Ave	4.121	3.554		17.2	20.0	-13.8	20.0
1,3-Dichlorobenzene	Ave	1.905	1.694	0.6000	17.8	20.0	-11.1	20.0
4-Isopropyltoluene	Ave	3.694	3.172		17.2	20.0	-14.1	20.0
1,4-Dichlorobenzene	Ave	1.927	1.755	0.5000	18.2	20.0	-8.9	20.0
Indan	Ave	3.586	4.007		22.3	20.0	11.7	20.0
Benzyl chloride	Ave	2.732	2.609		19.1	20.0	-4.5	20.0
n-Butylbenzene	Ave	3.350	3.016		18.0	20.0	-10.0	20.0
1,2-Dichlorobenzene	Ave	1.825	1.670	0.4000	18.3	20.0	-8.5	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.2314	0.1667	0.0500	14.4	20.0	-28.0×	20.0
1,3,5-Trichlorobenzene	Ave	1.495	1,763		23.6	20.0	17.9	20.0
1,2,4-Trichlorobenzene	Ave	1.426	1.213	0.2000	17.0	20.0	-15.0	20.0
Hexachlorobutadiene	Ave	0.6091	0.5112		16.8	20.0	-16.1	20.0
Camphor	Ave	0.1631	0.1243		76.2	100	-23.8*	20.0
Naphthalene	Ave	3.012	2.461		16.3	20.0	-18.3	20.0
1,2,3-Trichlorobenzene	Ave	1.288	1.095		17.0	20.0	-15.0	20.0
Dibromofluoromethane (Surr)	Ave	0.2069	0.1902		46.0	50.0	-8.1	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2975	0.2543		42.7	50.0	-14.5	20.0
Toluene-d8 (Surr)	Ave	1.241	1.124		45.3	50.0	-9.4	20.0
Bromofluorobenzene	Ave	0.3796	0.4035		53.1	50.0	6.3	20.0

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.:

Lab Sample ID: CCVIS 460-186752/2 Calibration Date: 10/16/2013 10:44

Instrument ID: CVOAMS13 Calib Start Date: 09/26/2013 02:45

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/26/2013 07:27

Lab File ID: P76414.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	% D	MAX %D
	TIPE				AMOUNT	AMOUNT		₹D
Dichlorodifluoromethane	Ave	0.3661	0.2964	0.1000	16.2	20.0	-19.0	20.0
Chloromethane	Ave	0.3262	0.3487	0.1000	21.4	20.0	6.9	20.0
Vinyl chloride	Ave	0.4228	0.3643	0.1000	17.2	20.0	-13.8	20.0
Bromomethane	Qua		0.0709*	0.1000	12.4	20.0	-37.8+	20.0
Chloroethane	Ave	0.2794	0.2746	0.1000	19.7	20.0	-1.7	20.0
Trichlorofluoromethane	Ave	0.4687	0.4398	0.1000	18.8	20.0	-6.2	20.0
Dichlorofluoromethane	Ave	0.6716	0.6408		19.1	20.0	-4.6	20.0
2-Methyl-1,3-butadiene	Ave	0.5269	0.4892		18.6	20.0	-7.2	20.0
Ethyl ether	Ave	0.3463	0.3617		20.9	20.0	4.4	20.0
Ethanol	Ave	0.0824	0.0894		1080	1000	8.4	20.0
1,1-Dichloroethene	Ave	0.2942	0.2856	0.1000	19.4	20.0	-2.9	20.0
Carbon disulfide	Ave	1.040	0.9519	0.1000	18.3	20.0	-8.5	20.0
Freon TF	Ave	0.2743	0.2614	0.1000	19.1	20.0	-4.7	20.0
Iodomethane	Qua		0.0905		13.0	20.0	-35.0*	20.0
Cyclopentene	Ave	0.9393	0.8784		18.7	20.0	-6.5	20.0
Acrolein	Ave	0.7082	1.149		64.9	40.0	62.3*	20.0
Isopropyl alcohol	Ave	1.119	1.082		193	200	-3.3	20.0
Methylene Chloride	Ave	0.3426	0.3796	0.1000	22.2	20.0	10.8	20.0
Acetone	Lin2		0.1591	0.1000	99.4	100	-0.6	20.0
trans-1,2-Dichloroethene	Ave	0.3192	0.3309	0.1000	20.7	20.0	3.7	20.0
Methyl acetate	Ave	0.4488	0.4381	0.1000	97.6	100	-2.4	20.0
Hexane	Ave	0.5729	0.5310		18.5	20.0	-7.3	20.0
MTBE	Ave	1.088	1.110	0.1000	20.4	20.0	2.1	20.0
2-Methyl-2-propanol	Qua		1.784		253	200	26.6*	20.0
Acetonitrile	Qua		0.0620	_	186	200	-6.9	20.0
Isopropyl ether	Ave	1.358	1.283		18.9	20.0	-5.6	20.0
2-Chloro-1,3-butadiene	Ave	0.2809	0.2632		18.7	20.0	-6.3	20.0
1,1-Dichloroethane	Ave	0.6661	0.7027	0.2000	21.1	20.0	5.5	20.0
Acrylonitrile	Ave	0.1520	0.1563		206	200	2.8	20.0
Tert-butyl ethyl ether	Ave	1.173	1.059		18.0	20.0	-9.8	20.0
Allyl alcohol	Ave	0.6217	0.6715		540	500	8.0	20.0
Vinyl acetate	Ave	0.7574	0.5589		29.5	40.0	-26.2*	20.0
cis-1,2-Dichloroethene	Ave	0.3446	0.3640	0.1000	21.1	20.0	5.6	20.0
2,2-Dichloropropane	Ave	0.4890	0.4149		17.0	20.0	-15.1	20.0
Cyclohexane	Ave	0.6209	0.5701	0.1000	18.4	20.0	-8.2	20.0
Bromochloromethane	Ave	0.1496	0.1713		22.9	20.0	14.5	20.0
Chloroform	Ave	0.5581	0.6227	0.2000	22.3	20.0	11.6	20.0
Carbon tetrachloride	Ave	0.3705	0.3750	0.1000	20.2	20.0	1.2	20.0
Ethyl acetate	Ave	0.4396	0.4033		36.7	40.0	-8.3	20.0
Tetrahydrofuran	Ave	4.981	5.943		47.7	40.0	19.3	20.0
1,1,1-Trichloroethane	Ave	0.4831	0.4883	0.1000	20.2	20.0	1.1	20.0

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.:

Lab Sample ID: CCVIS 460-186752/2 Calibration Date: 10/16/2013 10:44

Instrument ID: CVOAMS13 Calib Start Date: 09/26/2013 02:45

Lab File ID: P76414.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1-Dichloropropene	Ave	0.4367	0.4526		20.7	20.0	3.6	20.0
2-Butanone	Ave	5.733	7.025	0.1000	123	100	22.5*	20.0
n-Heptane	Ave	0.2422	0.2299	150 10000	19.0	20.0	-5.1	20.0
Benzene	Ave	1.849	2.065	0.5000	22.3	20.0	11.7	20.0
Propionitrile	Ave	1.546	1.797		232	200	16.2	20.0
Methacrylonitrile	Ave	0.1579	0.1477		187	200	-6.5	20.0
Tert-amyl methyl ether	Ave	0.9890	0.8767		17.7	20.0	-11.4	20.0
1,2-Dichloroethane	Ave	0.4830	0.5655	0.1000	23.4	20.0	17.1	20.0
Isobutyl alcohol	Ave	0.6366	0.6552		515	500	2.9	20.0
2,4,4-Trimethyl-1-pentene	Ave	0.9367	0.8942		38.2	40.0	-4.5	20.0
Isopropyl acetate	Ave	0.8665	0.6849		15.8	20.0	-21.0*	20.0
Methylcyclohexane	Ave	0.5218	0.5257	0,1000	20.2	20.0	0.8	20.0
Trichloroethene	Ave	0.3419	0.3934	0.2000	23.0	20.0	15.1	20.0
n-Butanol	Ave	0.4014	0.3337		416	500	-16.9	20.0
Dibromomethane	Ave	0.2044	0.2204		21.6	20.0	7.9	20.0
1,2-Dichloropropane	Ave	0.3839	0.4072	0.1000	21.2	20.0	6.1	20.0
Ethyl acrylate	Ave	0.5458	0.4463		16.4	20.0	-18.2	20.0
Bromodichloromethane	Av∈	0.4334	0.4677	0.2000	21.6	20.0	7.9	20.0
Methyl methacrylate	Ave	0.1002	0.0858		34.3	40.0	-14.3	20.0
1,4-Dioxane	Ave	1.573	1.681		427	400	6.8	20.0
n-Propyl acetate	Ave	0.6877	0.5313		15.5	20.0	-22.7*	20.0
2-Chloroethyl vinyl ether	Ave	0.2765	0.2199		15.9	20.0	-20.5*	20.0
cis-1,3-Dichloropropene	Ave	0.7693	0.7705	0.2000	20.0	20.0	0.2	20.0
Toluene	Ave	1,901	2.114	0.4000	22.2	20.0	11.2	20.0
Epichlorohydrin	Ave	0.0632	0.0562		356	400	-11.1	20.0
2-Nitropropane	Ave	0.1171	0.0778		26.6	40.0	-33.5*	20.0
Tetrachloroethene	Ave	0.4402	0.4742	0.2000	21.5	20.0	7.7	20.0
4-Methyl-2-pentanone	Ave	0.6185	0.6049	0.1000	97.8	100	-2.2	20.0
trans-1,3-Dichloropropene	Ave	0.6802	0.6777	0.1000	19.9	20.0	-0.4	20.0
1,1,2-Trichloroethane	Ave	0.3573	0.3902	0.1000	21.8	20.0	9.2	20.0
Ethyl methacrylate	Ave	0.5054	0.4664	32	18.5	20.0	-7.7	20.0
Dibromochloromethane	Ave	0.3980	0.4316	0.1000	21.7	20.0	8.4	20.0
1,3-Dichloropropane	Ave	0.7513	0.8195	200	21.8	20.0	9.1	20.0
1,2-Dibromoethane	Ave	0.4125	0.4351	0.1000	21.1	20.0	5.5	20.0
n-Butyl acetate	Ave	0.9389	0.7429		15.8	20.0	-20.9*	20.0
2-Hexanone	Ave	0.4665	0.4412	0.1000	94.6	100	-5.4	20.0
Chlorobenzene	Ave	1.230	1.447	0.5000	23.5	20.0	17.6	20.0
Ethylbenzene	Ave	0.6670	0.7505	0.1000	22.5	20.0	12.5	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3985	0.4274		21.4	20.0	7.2	20.0
m&p-Xylene	Ave	0.8366	0.9138	0.1000	21.8	20.0	9.2	20.0
o-Xylene	Ave	0.8102	0.8697	0.3000	21.5	20.0	7.3	20.0

Lab Name: TestAmerica Edison Job No.: 460-64621-1

SDG No.:

Lab Sample ID: CCVIS 460-186752/2 Calibration Date: 10/16/2013 10:44

Instrument ID: CVOAMS13 Calib Start Date: 09/26/2013 02:45

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/26/2013 07:27

Lab File ID: P76414.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Bromoform	Ave	0.2716	0.2706	0.1000	19.9	20.0	-0.3	20.0
Styrene	Ave	1.404	1.499	0.3000	21.4	20.0	6.8	20.0
n-Butyl acrylate	Ave	0.4103	0.2918		14.2	20.0	-28.9*	20.0
Isopropylbenzene	Ave	2.096	2.322	0.1000	22.2	20.0	10.8	20.0
Camphene	Ave	0.2353	0.2164		18.4	20.0	-8.0	20.0
Amyl acetate (mixed isomers)	Ave	2.180	1.532		14.1	20.0	-29.7*	20.0
Bromobenzene	Ave	0.9702	1.010		20.8	20.0	4.1	20.0
N-Propylbenzene	Ave	4.728	5.060		21.4	20.0	7.0	20.0
1,1,2,2-Tetrachloroethane	Ave	1.058	0.9675	0.3000	18.3	20.0	-8.6	20.0
2-Chlorotoluene	Ave	3.315	3.405		20.5	20.0	2.7	20.0
4-Ethyltoluene	Ave	4.167	3.715		17.8	20.0	-10.8	50.0
1,2,3-Trichloropropane	Ave	0.3236	0.3169		19.6	20.0	-2.1	20.0
1,3,5-Trimethylbenzene	Ave	3.362	3.573		21.3	20.0	6.3	20.0
trans-1,4-Dichloro-2-butene	Ave	0.3850	0.3399		17.7	20.0	-11.7	20.0
4-Chlorotoluene	Ave	3.060	3.193		20.9	20.0	4.4	20.0
tert-Butylbenzene	Ave	2.812	2.976		21.2	20.0	5.8	20.0
Butyl Methacrylate	Ave	1.254	0.9381		15.0	20.0	-25.2*	20.0
1,2,4-Trimethylbenzene	Ave	3.546	3.740		21.1	20.0	5.5	20.0
sec-Butylbenzene	Ave	4.121	4.528		22.0	20.0	9.9	20.0
1,3-Dichlorobenzene	Ave	1.905	2.025	0.6000	21.3	20.0	6.3	20.0
4-Isopropyltoluene	Ave	3.694	3.915		21.2	20.0	6.0	20.0
1,4-Dichlorobenzene	Ave	1.927	2.076	0.5000	21.6	20.0	7.8	20.0
Indan	Ave	3.586	3.258		18.2	20.0	-9.2	20.0
Benzyl chloride	Ave	2.732	1.783		13.0	20.0	-34.8*	20.0
n-Butylbenzene	Ave	3.350	3.783	_	22.6	20.0	12.9	20.0
1,2-Dichlorobenzene	Ave	1.825	1.982	0.4000	21.7	20.0	8.6	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.2314	0.2048	0.0500	17.7	20.0	-11.5	20.0
1,3,5-Trichlorobenzene	Ave	1.495	1.442	-	19.3	20.0	-3.6	20.0
1,2,4-Trichlorobenzene	Ave	1.426	1.447	0.2000	20.3	20.0	1.5	20.0
Hexachlorobutadiene	Ave	0.6091	0.6896		22.6	20.0	13.2	20.0
Camphor	Ave	0.1631	0.0888	=	54.5	100	-45.5	20.0
Naphthalene	Ave	3.012	2.841		18.9	20.0	-5.7	20.0
1,2,3-Trichlorobenzene	Ave	1.288	1.302	20-22	20.2	20.0	1.1	20,0
Dibromofluoromethane (Surr)	Ave	0.2069	0.1800		43.5	50.0	-13.0	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2975	0.2484		41.7	50.0	-16.5	20.0
Toluene-d8 (Surr)	Ave	1.241	1.066		42.9	50.0	-14.1	20.0
Bromofluorobenzene	Ave	0.3796	0.3849		50.7	50.0	1.4	20.0

Client: Alprof Realty LLC Job Number: 460-64621-1

Matrix Spike/ Method: 8260C

Matrix Spike Duplicate Recovery Report - Batch: 460-186972 Preparation: 5030C

Leach Date:

Leach Date:

N/A

N/A

MS Lab Sample ID: 460-64621-16 Analysis Batch: 460-186972 Instrument ID: CVOAMS13 Client Matrix: Water Prep Batch: N/A Lab File ID: P76483.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 5 mL

Analysis Date: 10/17/2013 1604 Final Weight/Volume: 5 r
Prep Date: 10/17/2013 1604

MSD Lab Sample ID: 460-64621-16 Analysis Batch: 460-186972 Instrument ID: CVOAMS13

Client Matrix: Water Prep Batch: N/A Initial Weight/Volume: 5 mL

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 10/17/2013 1627 Final Weight/Volume: 5 mL

Prep Date: 10/17/2013 1627

% Rec. Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual Chloromethane 150 139 58 - 146 8 30 Bromomethane 122 55 - 153 30 117 4 Vinyl chloride 118 108 61 - 144 6 30 106 69 - 145 Chloroethane 115 8 30 79 - 119 Methylene Chloride 98 30 94 Acetone 84 78 45 - 156 7 30 Carbon disulfide 92 87 58 - 139 6 30 30 Trichlorofluoromethane 126 116 69 - 147 8 1,1-Dichloroethene 93 85 56 - 139 8 30 1.1-Dichloroethane 97 92 78 - 122 5 30 trans-1,2-Dichloroethene 101 92 75 - 122 9 30 cis-1,2-Dichloroethene 93 88 80 - 120 3 30 Chloroform 97 94 82 - 123 30 4 1,2-Dichloroethane 101 95 74 - 118 6 30 2-Butanone 99 90 65 - 114 30 1.1.1-Trichloroethane 96 90 74 - 128 7 30 Carbon tetrachloride 101 93 73 - 120 8 30 30 Bromodichloromethane 95 88 79 - 119 8 94 90 5 30 1,2-Dichloropropane 80 - 120 cis-1,3-Dichloropropene 88 84 80 - 120 5 30 Trichloroethene 95 89 78 - 119 7 30 90 80 - 120 30 Dibromochloromethane 94 4 1,1,2-Trichloroethane 94 88 79 - 119 6 30 Benzene 98 94 83 - 124 4 30 96 89 7 trans-1,3-Dichloropropene 78 - 118 30 Bromoform 85 80 73 - 123 6 30 86 53 - 120 7 30 4-Methyl-2-pentanone 92 2-Hexanone 87 81 53 - 121 7 30 96 92 68 - 139 4 30 Tetrachloroethene 1,1,2,2-Tetrachloroethane 91 84 30 74 - 126 g Toluene 99 92 80 - 120 7 30 Chlorobenzene 98 92 81 - 121 6 30 Ethylbenzene 96 91 79 - 126 5 30

Client: Alprof Realty LLC Job Number: 460-64621-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 460-186972 Preparation: 5030C

MS Lab Sample ID:	460-64621-16	Analysis Batch:	460-186972	Instrument ID:	CVOAMS13
Client Matrix:	Water	Prep Batch:	N/A	Lab File ID:	P76483.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	5 mL
Analysis Date:	10/17/2013 1604			Final Weight/Volume:	5 mL
Prep Date:	10/17/2013 1604				
Leach Date:	N/A				

MSD Lab Sample	ID: 460-64621-16	Analysis Batch:	460-186972	Instrument ID:	CVOAMS13
Client Matrix:	Water	Prep Batch:	N/A	Lab File ID:	P76484.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	5 mL
Analysis Date:	10/17/2013 1627			Final Weight/Volume:	5 mL
Prep Date:	10/17/2013 1627				

Leach Date:

N/A

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Styrene	91	86	69 - 112	6	30		
m&p-Xylene	95	91	76 - 120	4	30		
o-Xylene	94	89	78 - 118	5	30	•	
Freon TF	104	99	47 - 139	5	30		
MTBE	93	88	71 - 115	5	,30		
Cyclohexane	99	94	58 - 133	5	30		
1,2-Dibromoethane	92	85	78 - 118	8	30		
1,3-Dichlorobenzene	94	87	81 - 126	7	30		
1,4-Dichlorobenzene	96	90	83 - 123	7	30		
1,2-Dichlorobenzene	97	91	82 - 122	6	30		
Dichlorodifluoromethane	135	124	46 - 145	9	30		
1,2,4-Trichlorobenzene	90	85	66 - 120	5	30		
1,4-Dioxane	97	91	52 - 126	6	30		
1,2,3-Trichlorobenzene	90	86	76 - 123	5	30		
1,2-Dibromo-3-Chloropropane	82	78	70 - 116	5	30		
Bromochloromethane	101	94	80 - 121	7	30		
Isopropylbenzene	97	93	80 - 125	4	30		
Methyl acetate	74	71	50 - 151	5	30		
Methylcyclohexane	105	99	61 - 129	5	30		

MS % Rec	MSD % Rec	Acceptance Limits
86	85	70 - 130
87	87	70 - 130
100	102	70 - 130
	86 87	86 85 87 87

Job Number: 460-64621-1 Client: Alprof Realty LLC

Units: ug/L

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 460-186972 Method: 8260C Preparation: 5030C

MS Lab Sample ID:

460-64621-16

Client Matrix:

Water

MSD Lab Sample ID: 460-64621-16 Water

Dilution:

1.0

Client Matrix: Dilution: 1.0

Analysis Date:

10/17/2013 1604

Analysis Date:

10/17/2013 1627 10/17/2013 1627

Prep Date:

10/17/2013 1604

Prep Date: Leach Date:

N/A

Leach Date: N/A

	Sample		MS Spike	MSD Spike	MS	MSD
Analyte	Result/Q	ual	Amount	Amount	Result/Qual	Result/Qual
Chloromethane	1.0	U	20.0	20.0	30.1 *	27.7
Bromomethane	1.0	U	20.0	20.0	24.5	23.4
Vinyl chloride	12		20.0	20.0	35.7	33.8
Chloroethane	1.0	U	20.0	20.0	22.9	21.1
Methylene Chloride	1.0	Ų	20.0	20.0	19.5	18.8
Acetone	5.6		100	100	89.8	83.5
Carbon disulfide	1.0	U	20.0	20.0	18.5	17.5
Trichlorofluoromethane	1.0	U	20.0	20.0	25.1	23.3
1,1-Dichloroethene	0.18	J	20.0	20.0	18.8	17.3
1,1-Dichloroethane	1.0	U	20.0	20.0	19.5	18.5
rans-1,2-Dichloroethene	0.26	J	20.0	20.0	20.4	18.7
cis-1,2-Dichloroethene	12		20.0	20.0	30.5	29.6
Chloroform	1.0	U	20.0	20.0	19.4	18.7
1,2-Dichloroethane	1.0	U	20.0	20.0	20.2	19.0
2-Butanone	15		100	100	113	105
1,1,1-Trichloroethane	1.0	U	20.0	20.0	19.2	17.9
Carbon tetrachloride	1.0	U	20.0	20.0	20.2	18.6
Bromodichloromethane	1.0	U	20.0	20.0	19.1	17.6
,2-Dichloropropane	1.0	U	20.0	20.0	18.8	18.0
cis-1,3-Dichloropropene	1.0	U	20.0	20.0	17.6	16.7
Frichloroethene	0.61	J	20.0	20.0	19.7	18.4
Dibromochloromethane	1.0	U	20.0	20.0	18.8	18.0
1,1,2-Trichloroethane	1.0	U	20.0	20.0	18.9	17.7
Benzene	0.59	J	20.0	20.0	20.2	19.3
rans-1,3-Dichloropropene	1.0 .	U	20.0	20.0	19.2	17.9
Bromoform	1.0	U	20.0	20.0	17.1	16.1
4-Methyl-2-pentanone	5.0	U	100	100	92.4	86.1
2-Hexanone	5.0	U	100	100	86.7	81.2
Tetrachloroethene	1.0	U	20.0	20.0	19.3	18.5
1,1,2,2-Tetrachloroethane	1.0	U	20.0	20.0	18.2	16.8
Toluene	0.22	J	20.0	20.0	20.0	18.7
Chlorobenzene	1.0	U	20.0	20.0	19.6	18.5
Ethylbenzene	1.0	U	20.0	20.0	19.2	18.1
Styrene	1.0	Ū	20.0	20.0	18.2	17.1
m&p-Xylene	2.0	Ü	20.0	20.0	18.9	18.1
o-Xylene	1.0	Ü	20.0	20.0	18.8	17.9
Freon TF	1.0	Ü	20.0	20.0	20.9	19.9
MTBE	1.6	-	20.0	20.0	20.2	19.2
Cyclohexane	1.0	U	20.0	20.0	19.8	18.8
1,2-Dibromoethane	1.0	Ü	20.0	20.0	18.4	17.0
1,3-Dichlorobenzene	1.0	Ü	20.0	20.0	18.7	17.5
1,4-Dichlorobenzene	1.0	Ü	20.0	20.0	19.2	17.9
1,2-Dichlorobenzene	1.0	Ŭ	20.0	20.0	19.4	18.2

Client: Alprof Realty LLC Job Number: 460-64621-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 460-186972

Method: 8260C Preparation: 5030C

MS Lab Sample ID:

460-64621-16

Units: ug/L

MSD Lab Sample ID:

460-64621-16

Client Matrix:

Water

Client Matrix:

Water

Dilution:

1.0

Dilution:

1.0

Analysis Date:

10/17/2013 1604

Analysis Date: Prep Date: 10/17/2013 1627 10/17/2013 1627

Prep Date: Leach Date: 10/17/2013 1604 N/A

Leach Date: N/A

Analyte	Sample Result/C	Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Dichlorodifluoromethane	1.0	U	20.0	20.0	27.0	24.8
1,2,4-Trichlorobenzene	1.0	U	20.0	20.0	18.0	17.0
I,4-Dioxane	50	U	400	400	387	366
1,2,3-Trichlorobenzene	1.0	U	20.0	20.0	18.0	17.1
1,2-Dibromo-3-Chloropropane	1.0	U	20.0	20.0	16.5	15.6
Bromochloromethane	1.0	Ų	20.0	20.0	20.2	18.9
sopropylbenzene	1.0	U	20.0	20.0	19.4	18.7
Methyl acetate	5.0	U	100	100	74.0	70.6
Methylcyclohexane	1.0	U	20.0	20.0	20.9	19.9

CVOAMS13

P76418.D

Job Number: 460-64621-1 Client: Alprof Realty LLC

Analysis Batch: 460-186752

Prep Batch: N/A

Method Blank - Batch: 460-186752

MB 460-186752/6

Lab Sample ID:

Client Matrix: Water

Method: 8260C Preparation: 5030C

Instrument ID:

Lab File ID:

Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:		5 mL	
Analysis Date:	10/16/2013 1301	Units:	ug/L		Veight/Volume:	5 mL	
Prep Date:	10/16/2013 1301		3-				
Leach Date:	N/A						
Ecacii Dale.	1071						
Analyte		Re	sult	Qual	MDL	RL	
Chloromethane		1.0)	U	0.10	1.0	
Bromomethane		1.0	1	U	0.18	1.0	
Vinyl chloride		1.0		U	0.14	1.0	
Chloroethane		1.0		U	0.17	1.0	
Methylene Chloride	•	1.0		U	0.18	1.0	
Acetone		5.0		U	2.7	5.0	
Carbon disulfide		1.0		U	0.13	1.0	
Trichforofluorometh	ane	1.0		U	0.15	1.0	
1,1-Dichloroethene		1.0		U	0.090	1.0	
1,1-Dichloroethane		1.0		U	0.13	1.0	
trans-1,2-Dichloroe	thene	1.0		U	0.13	1.0	
cis-1,2-Dichloroethe	ene	1.0		U	0.18	1.0	
Chloroform		1.0		U	0.080	1.0	
1,2-Dichloroethane		1.0		U	0.19	1.0	
2-Butanone		5.0		U	2.3	5.0	
1,1,1-Trichloroetha	ne	1.0		U	0.060	1.0	
Carbon tetrachlorid	e	1.0		U	0.060	1.0	
Bromodichlorometh	ane	1.0		U	0.12	1.0	
1,2-Dichloropropan	e	1.0		U	0.090	1.0	
cis-1,3-Dichloropro	pene	1.0		U	0.18	1.0	
Trichloroethene		1.0		U	0.090	1.0	
Dibromochlorometh	nane	1.0		U	0.20	1.0	
1,1,2-Trichloroetha	ne	1.0		U	0.19	1.0	
Benzene		1.0		U	0.080	1.0	
trans-1,3-Dichlorop	ropene	1.0		U	0.24	1.0	
Bromoform		1.0		U	0.19	1.0	
4-Methyl-2-pentano	one	5.0		υ	0.99	5.0	
2-Hexanone		5.0		U	0.50	5.0	
Tetrachloroethene		1.0		U	0.10	1.0	
1,1,2,2-Tetrachloro	ethane	1.0		U	0.16	1.0	
Toluene		1.0		U	0.15	1.0	
Chlorobenzene		1.0		U	0.11	1.0	
Ethylbenzene		1.0		U	0.10	1.0	
Styrene		1.0		U .	0.12	1.0	
m&p-Xylene		2.0		U	0.25	2.0	
o-Xylene		1.0		U	0.13	1.0	
Freon TF		1.0		U	0.080	1.0	
MTBE		1.0		U	0.14	1.0	
Cyclohexane		1.0		U	0.16	1.0	
1,2-Dibromoethane		1.0		U	0.28	1.0	
1,3-Dichlorobenzer		1.0		U	0.14	1.0	
1,4-Dichlorobenzer	ie	1.0		U	0.23	1.0	
1,2-Dichlorobenzer	ne	1.0		U	0.21	1.0	
Dichlorodifluoromet	thane	1.0		U	0.22	1.0	
1,2,4-Trichlorobenz	ene	1.0		U	0.34	1.0	

Client: Alprof Realty LLC Job Number: 460-64621-1

Method Blank - Batch: 460-186752 Method: 8260C

				Prep	aration: 5030C	
Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 460-186752/6 Water 1.0 10/16/2013 1301 10/16/2013 1301 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-186752 N/A N/A ug/L	Lab I Initia	ument ID: File ID: Weight/Volume: Weight/Volume:	CVOAMS13 P76418.D 5 mL 5 mL
Analyte		Res	ult	Qual	MDL	RL
1,4-Dioxane		50		U	36	50
1,2,3-Trichlorobenz	zene	1.0		U	0.51	1.0
1,2-Dibromo-3-Chle	огоргорапе	1.0		U	0.40	1.0
Bromochlorometha	ne	1.0		U	0.27	1.0
Isopropylbenzene		1.0		υ	0.080	1.0
Methyl acetate		5.0		U	0.34	5.0
Methylcyclohexane	•	1.0		U	0.14	1.0
Surrogate		%	Rec		Acceptance Limi	ts
1,2-Dichloroethane	-d4 (Surr)	9	8		70 - 130	
Toluene-d8 (Surr)		9	8		70 ~ 130	
Bromofluorobenzer	ne	1	12		70 - 130	
Dibromofluorometh	ane (Surr)	1	00		70 - 130	

CVOAMS13

P76475.D

Client: Alprof Realty LLC Job Number: 460-64621-1

460-186972

N/A

Analysis Batch:

Prep Batch:

Method Blank - Batch: 460-186972

Water

MB 460-186972/7

Lab Sample ID:

Client Matrix:

Method: 8260C Preparation: 5030C

Instrument ID:

Lab File ID:

Chefit Matrix.	vvater	Prep Batch.	IWA	Lab File		P/04/5.D
Dilution:	1.0	Leach Batch:	N/A	Initial V	/eight/Volume:	5 mL
Anatysis Date:	10/17/2013 1257	Units:	ug/L	Final W	/eight/Volume:	5 mL
Prep Date:	10/17/2013 1257					
Leach Date:	N/A					
Analyte		Re	sult	Qual	MDL	RL
Chloromethane		1.0	ı	U	0.10	1.0
Bromomethane		1.0		U	0.18	1.0
Vinyl chloride		1.0	ı	U	0.14	1.0
Chloroethane		1.0		U	0.17	1.0
Methylene Chlorid	e	1.0		U	0.18	1.0
Acetone		5.0		U	2.7	5.0
Carbon disulfide		1.0		U	0.13	1.0
Trichlorofluoromet	hane	1.0		U	0.15	1.0
1,1-Dichloroethen	e	1.0		U	0.090	1.0
1,1-Dichloroethan	е	1.0		U	0.13	1.0
trans-1,2-Dichloro	ethene	1.0		U	0.13	1.0
cis-1,2-Dichloroeth	nene	1.0		U	0.18	1.0
Chloroform		1.0		U	0.080	1.0
1,2-Dichloroethan	e	1.0		U	0.19	1.0
2-Butanone		5.0		U	2.3	5.0
1,1,1-Trichloroetha	ane	1.0		U	0.060	1.0
Carbon tetrachlori	de	1.0		U	0.060	1.0
Bromodichloromet	thane	1.0		U	0.12	1.0
1,2-Dichloropropa	ne	1.0		U	0.090	1.0
cis-1,3-Dichloropro	opene	1.0		U	0.18	1.0
Trichloroethene		1.0		U	0.090	1.0
Dibromochloromet		1.0		U	0.20	1.0
1,1,2-Trichloroetha	ane	1.0		U	0.19	1.0
Benzene		1.0		Ų	0.080	1.0
trans-1,3-Dichloro	propene	1.0		U	0.24	1.0
Bromoform		1.0		U	0.19	1.0
4-Methyl-2-pentan	ione	5.0		U	0.99	5.0
2-Hexanone		5.0		U	0.50	5.0
Tetrachloroethene		1.0		U	0.10	1.0
1,1,2,2-Tetrachlor	oethane	1.0		U	0.16	1.0
Toluene		1.0		U	0.15	1.0
Chlorobenzene		1.0		U	0.11	1.0
Ethylbenzene		1.0		U	0.10	1.0
Styrene		1.0		U	0.12	1.0
m&p-Xylene		2.0		U	0.25	2.0
o-Xylene		1.0		U	0.13	1.0
Freon TF MTBE		1.0		U	0.080	1.0
		1.0		U	0.14	1.0
Cyclohexane	•	1.0		N	0.16	1.0
1,2-Dibromoethan 1,3-Dichlorobenze		1.0 1.0		U	0.28	1.0
1,3-Dichlorobenze		1.0		U	0.14 0.23	1.0
1,2-Dichlorobenze		1.0		U	0.23	1.0 1.0
Dichlorodifluorome		1.0		U	0.21	1.0
1,2,4-Trichloroben		1.0		U	0.34	1.0
1,2,7-110110100001	ZONO	1.0		O	0.34	1.0

Client: Alprof Realty LLC Job Number: 460-64621-1

Method Blank - Batch: 460-186972

Method: 8260C Preparation: 5030C

			Prepar	ation: 5030C	
MB 460-186972/7 Water 1.0 10/17/2013 1257 10/17/2013 1257 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-186972 N/A N/A ug/L	Lab File Initial W	e ID: /eight/Volume:	CVOAMS13 P76475.D 5 mL 5 mL
	Res	ult	Qual	MDL	RL
	50		U	36	50
zene	1.0		U	0.51	1.0
oropropane	1.0		U	0.40	1.0
ine	1.0		U	0.27	1.0
	1.0		U	0.080	1.0
	5.0		U	0.34	5.0
:	1.0		U	0.14	1.0
	%	Rec		Acceptance Lim	its
-d4 (Surr)	8	19		70 - 130	
	8	88		70 - 130	
ne	1	02		70 - 130	
ane (Surr)	9	12		70 - 130	
	Water 1.0 10/17/2013 1257 10/17/2013 1257 N/A zene propropane ne	Water Prep Batch: 1.0 Leach Batch: 10/17/2013 1257 Units: 10/17/2013 1257 N/A Res tene 1.0 tropropane 1.0 to 1.0	Water Prep Batch: N/A 1.0 Leach Batch: N/A 10/17/2013 1257 Units: ug/L 10/17/2013 1257 N/A Result 50 2ene 1.0 50 1.0 1.0 5.0 1.0 5.0 1.0 % Rec -d4 (Surr) 89 88 ne 88	MB 460-186972/7 Analysis Batch: 460-186972 Instrum Water Prep Batch: N/A Lab File 1.0 Leach Batch: N/A Initial W 10/17/2013 1257 Units: ug/L Final W 10/17/2013 1257 N/A Result Qual 50 U tene 1.0 U propropane 1.0 U 1.0 U 1.0 U 5.0 U 4.0 U 5.0 U 7.0 U 8.0 U 1.0 U	Water Prep Batch: N/A Lab File ID: 1.0 Leach Batch: N/A Initial Weight/Volume: 10/17/2013 1257 Units: ug/L Final Weight/Volume: 10/17/2013 1257 N/A Final Weight/Volume: N/A Result Qual MDL Seene 1.0 U 36 Seene 1.0 U 0.51 Propropane 1.0 U 0.40 Ine 1.0 U 0.27 1.0 U 0.080 5.0 U 0.34 1.0 U 0.14 MRec Acceptance Lim Acceptance Lim Acceptance Lim Acceptance 100 100 B8 70 - 130 B8 70 - 130 B8 70 - 130 B8 70 - 130 B9 70 - 130 B1 100 B1 100 B2 100 B1

CVOAMS13

Client: Alprof Realty LLC Job Number: 460-64621-1

460-187210

Analysis Batch:

Method Blank - Batch: 460-187210

MB 460-187210/6

Lab Sample ID:

Method: 8260C Preparation: 5030C

Instrument ID:

Client Matrix:	Water	Prep Batch:	N/A	Lab File	ID:	P76528.D
Dilution:	1.0	Leach Batch: N/A			Initial Weight/Volume:	
Analysis Date:	10/18/2013 1032	Units:	ug/L		eight/Volume:	5 mL 5 mL
Prep Date:	10/18/2013 1032	OTINO.	og.c	, mai vic	ngrio volunio.	02
Leach Date:	N/A					
Leadii Date.	19/29					
Analyte		Res	sult	Qual	MDL	RL
Chloromethane		1.0		U	0.10	1.0
Bromomethane		1.0		U	0.18	1.0
Vinyl chloride		1.0		U	0.14	1.0
Chloroethane		1.0		U	0.17	1.0
Methylene Chloride	е	1.0		U 0.18		1.0
Acetone		5.0		U 2.7		5.0
Carbon disulfide		1.0		U 0.13		1.0
Trichlorofluoromet	hane	1.0		U 0.15		1.0
1,1-Dichloroethene		1.0		IJ	0.090	1.0
1,1-Dichloroethane		1.0		U	0.13	1.0
trans-1,2-Dichloroe	ethene	1.0		U	0.13	1.0
cis-1,2-Dichloroeth	nene	1.0		U	0.18	1.0
Chloroform		1.0		U	0.080	1.0
1,2-Dichloroethane	9	1.0		U	0.19	1.0
2-Butanone		5.0		U	2.3	5.0
1,1,1-Trichloroetha	ane	1.0		U	0.060	1.0
Carbon tetrachlorid	de	1.0		U	0.060	1.0
Bromodichloromet	hane	1.0		U	0.12	1.0
1,2-Dichloropropar	ne	1.0		U	0.090	1.0
cis-1,3-Dichloropro	pene	1.0		U	0.18	1.0
Trichloroethene		1.0		U	0.090	1.0
Dibromochloromet	hane	1.0		U	0.20	1.0
1,1,2-Trichloroetha	ane	1.0		U	0.19	1.0
Benzene		1.0		U	0.080	1.0
trans-1,3-Dichlorop	propene	1.0		U	0.24	1.0
Bromoform		1.0		U	0.19	1.0
4-Methyl-2-pentan	one	5.0		U	0.99	5.0
2-Hexanone		5.0		U	0.50	5.0
Tetrachloroethene		1.0		U	0.10	1.0
1,1,2,2-Tetrachlord	pethane	1.0		U	0.16	1.0
Toluene		1.0		U	0.15	1.0
Chlorobenzene		1.0		U	0.11	1.0
Ethylbenzene		1.0		U	0.10	1.0
Styrene		1.0		U	0.12	1.0
m&p-Xylene		2.0		U	0.25	2.0
o-Xylene		1.0		U	0.13	1.0
Freon TF		1.0		U	0.080	1.0
MTBE		1.0		U	0.14	1.0
Cyclohexane		1.0		U	0.16	1.0
1,2-Dibromoethan		1.0		U	0.28	1.0
1,3-Dichlorobenze		1.0		U	0.14	1.0
1,4-Dichlorobenze		1.0		U	0.23	1.0
1,2-Dichlorobenze		1.0		U	0.21	1.0
Dichlorodifluorome		1.0		U	0.22	1.0
1,2,4-Trichloroben	zene	1.0		U	0.34	1.0

Client: Alprof Realty LLC Job Number: 460-64621-1

Method Blank - Batch: 460-187210

Method: 8260C Preparation: 5030C

				Preparation: 5030C			
Lab Sample ID: Client Matrix: Dilution: Analysis Date; Prep Date: Leach Date:	MB 460-187210/6 Water 1.0 10/18/2013 1032 10/18/2013 1032 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-187210 N/A N/A ug/L	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume		CVOAMS13 P76528.D 5 mL 5 mL	
Analyte		Res	ult	Qual	MDL	RL	
1,4-Dioxane		50		U	36	50	
1,2,3-Trichlorobenzene		1.0		U	0.51	1.0	
1,2-Dibromo-3-Chloropropane		1.0		U	0.40	1.0	
Bromochloromethane		1.0		U	0.27	1.0	
Isopropylbenzene		1.0	1.0		0.080	1.0	
Methyl acetate		5.0			0.34	5.0	
Methylcyclohexane	e	1.0		U	0.14	1.0	
Surrogate		% Rec			Acceptance Limits		
1,2-Dichloroethane-d4 (Surr)		89		70 - 130			
Toluene-d8 (Surr)		8	89		70 - 130		
Bromofluorobenzene		1	103 70 - 130				
Dibromofluoromethane (Surr)		91 70 - 130					

CVOAMS13

Client: Alprof Realty LLC Job Number: 460-64621-1

460-186752

Analysis Batch:

Lab Control Sample - Batch: 460-186752

LCS 460-186752/4

Lab Sample ID:

Method: 8260C Preparation: 5030C

Instrument ID:

Lab Sample ID.	LC3 400-1007 32/4	Allalysis battil.	400-100/02	motivation	ID.	CVUAIVIST	3
Client Matrix:	Water	Prep Batch:	N/A	Lab File ID:		P76416.D	
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:		5 mL	
Analysis Date:	10/16/2013 1155	Units:	ug/L	Final Weigh		5 mL	
Prep Date:	10/16/2013 1155	511115.	-5/-	a. 110.g.	io voidino.	02	
Leach Date:	N/A						
Leach Date.	N/A						
Analyte		Spike Amount	Result	% Rec.	Limit		Qual
Chloromethane		20.0	22.6	113	58 - 1	146	
Bromomethane		20.0	15.6	78	55 - ⁻		
Vinyl chloride		20.0	17.4	87	61 - 1		
Chloroethane		20.0	20.4	102	69 - ·	145	
Methylene Chloride	e	20.0	23.2	116	79 -	119	
Acetone		100	105	105	45 - 1		
Carbon disulfide		20.0	18.4	92	58 - 1		
Trichlorofluoromet	hane	20.0	18.1	91	69 - 1		
1,1-Dichloroethene		20.0	19.6	98	56 - ⁻		
1,1-Dichloroethane		20.0	21.9	110	78 - ⁻		
trans-1,2-Dichloroe		20.0	20.9	105	75 - ⁻		
cis-1,2-Dichloroeth		20.0	22.0	110	80 - 1		
Chloroform	iene	20.0	23.4	117	82 - 1		
1,2-Dichloroethane		20.0	24.1	121	74 - 1		*
2-Butanone		100	132	132	65 - 1		*
1,1,1-Trichloroetha	200	20.0	21.1	106	74 - 1		
Carbon tetrachloric		20.0	20.4	102	73 - 1		
Bromodichloromet		20.0	22.6	113	79 - 1		
1,2-Dichloropropar		20.0	22.3	112	80 - 1		
		20.0	21.2	106	80 - 1		
cis-1,3-Dichloropro Trichloroethene	pperie	20.0	23.2	116	78 - 1		
Dibromochloromet	hana	20.0	23.2 22. 9	114	80 - 1		
		20.0	22.8		79 - 1		
1,1,2-Trichloroetha	ine .			114			
Benzene		20.0	23.2	116	83 - 1		
trans-1,3-Dichlorop	properie	20.0	21.0	105	78 - 1		
Bromoform		20.0	20.8	104	73 - 1		
4-Methyl-2-pentan	one	100	105	105	53 - 1		
2-Hexanone		100	102	102	53 - 1		
Tetrachloroethene		20.0	22.0	110	68 - 1		
1,1,2,2-Tetrachloro Toluene	petnane	20.0	19.3	96 446	74 - 1		
		20.0	23.2	116 .	80 - 1		
Chlorobenzene		20.0	24.0	120	81 - 1		
Ethylbenzene		20.0	22.7	113	79 - 1		
Styrene		20.0	22.3	112	69 - 1		
m&p-Xylene		20.0	22.4	112	76 - 1		
o-Xylene		20.0	22.6	113	78 - 1		
Freon TF		20.0	18.4	92	47 - 1		
MTBE		20.0	21.8	109	71 - 1		
Cyclohexane		20.0	18.6	93	58 - 1		
1,2-Dibromoethane		20.0	22.4	112	78 - 1		
1,3-Dichlorobenze		20.0	22.4	112	81 - 1		
1,4-Dichlorobenze		20.0	22.7	114	83 - 1		
1,2-Dichlorobenze		20.0	22.9	115	82 - 1		
Dichlorodifluorome		20.0	15.9	80	46 - 1		
1,2,4-Trichloroben	zene	20.0	21.5	107	66 - 1		
1,4-Dioxane		400	494	124	52 - 1	126	

Client: Alprof Realty LLC Job Number: 460-64621-1

Lab Control Sample - Batch: 460-186752

Method: 8260C Preparation: 5030C

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	LCS 460-186752/4 Water 1.0 10/16/2013 1155 10/16/2013 1155 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-186752 N/A N/A ug/L	Instrument Lab File ID: Initial Weigl Final Weigh	ht/Volume:	CVOAMS1 P76416.D 5 mL 5 mL	3
Analyte		Spike Amount	Result	% Rec.	Limit		Qual
1,2,3-Trichloroben	zene	20.0	22.0	110	76 - 1	23	
1,2-Dibromo-3-Ch	loropropane	20.0	18.3	91	70 - 1	16	
Bromochlorometh	ane	20.0	23.9	119	80 - 1	21	
Isopropylbenzene		20.0	22.8	114	80 - 1	25	
Methyl acetate		100	102	102	50 - 1	51	
Methylcyclohexan	e	20.0	19.7	99	61 - 1	29	
Surrogate		%	Rec	Α	cceptance Lin	nits	
1,2-Dichloroethane	e-d4 (Surr)		39		70 - 130		
Toluene-d8 (Surr)		Ç	93		70 - 130		
Bromofluorobenze	ne		109		70 - 130		

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:4 <mark>60-18</mark>				03-55.7	
LCS 460-186752/4	Lab Control Sample	T	Water	8260C	
MB 460-186752/6	Method Blank	Т	Water	8260C	
460-64621-1	MW-1S	Т	Water	8260C	
460-64621-2	MW-11	Т	Water	8260C	
460-64621-3	MW-2S	Т	Water	8260C	
460-64621-5	MW-3S	Τ	Water	8260C	
460-64621-6	MW-3I	Т	Water	8260C	
460-64621-7	MW-4S	Т	Water	8260C	
460-64621-8	MW-4I	Т	Water	8260C	
460-64621-9	MW-5S	T	Water	8260C	
460-64621-10	MW-51	Ŧ	Water	8260C	
460-64621-11	MW-6S	Т	Water	8260C	
460-64621-12	MW-6I	Т	Water	8260C	
Analysis Batch:460-18	6972				
LCS 460-186972/5	Lab Control Sample	Т	Water	8260C	
MB 460-186972/7	Method Blank	Т	Water	8260C	
460-64621-3DL	MW-2S	Т	Water	8260C	
460-64621-4	MW-2I	Т	Water	8260C	
460-64621-13	MW-7S	Т	Water	8260C	
460-64621-14	MW-7I	Т	Water	8260C	
460-64621-15	MW-8S	Т	Water	8260C	
460-64621-16	MW-8I	Т	Water	8260C	
460-64621-16MS	Matrix Spike	Т	Water	8260C	
460-64621-16MSD	Matrix Spike Duplicate	Т	Water	8260C	
460-64621-17	MW-9S	Т	Water	8260C	
460-64621-18	MW-9I	Т	Water	8260C	
460-64621-19	MW-22S	Т	Water	8260C	
460-64621-21TB	TB1009	Т	Water	8260C	
Analysis Batch:460-18	7210				
LCS 460-187210/4	Lab Control Sample	Т	Water	8260C	
MB 460-187210/6	Method Blank	Ť	Water	8260C	
	**************************************	Ť ·	Water	8260C	

Report Basis

T = Total

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-1S	Lab Sample ID: 460-64621-1
Matrix: Water	Lab File ID: P76427.D
Analysis Method: 8260C	Date Collected: 10/09/2013 09:20
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 16:31
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ü	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.4		1.0	0.14
75-00-3	Chloroethane	2.8		1.0	0.17
75-09-2	Methylene Chloride	1.0	Ü	1.0	0.18
67-64-1	Acetone	5.0	Ü	5.0	2.7
75-15-0	Carbon disulfide	1.0	Ü	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1, 2-Dichloroethene	4.1	1	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	3.9		1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U.J	1.0	0.19
78-93-3	2-Butanone	5.0	U	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	Ū	1.0	0.060
75-27-4	Bromodichloromethane	1.0	υ	1.0	0.12
78~87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	4.3		1.0	0.090
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	Ū	1.0	0.19
71-43-2	Benzene	1.6	1000	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	Ū	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	ū	5.0	0.99
591-78-6	2-Hexanone	5.0	Ū	5.0	0.50
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ü	1.0	0.16
108-88-3	Toluene	2.2		1.0	0.19
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	0.50	J	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	0.79	J	2.0	0.25
95-47-6	o-Xylene	0.41	J	1.0	0.13

Lab Name: TestAmerica Edison Job No.: 460-64621-1 SDG No.: Client Sample ID: MW-1S Lab Sample ID: 460-64621-1 Lab File ID: P76427.D Matrix: Water Date Collected: 10/09/2013 09:20 Analysis Method: 8260C Date Analyzed: 10/16/2013 16:31 Sample wt/vol: 5(mL) Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 186752 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	U	1.0	0.080
1634-04-4	MTBE	1.0	U	1.0	0.14
110-82-7	Cyclohexane	1.0	Ū	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	Ū	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	Ū	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	ū	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	0	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	Ū	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	Ü	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	Ω	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	92		70-130
2037-26-5	Toluene-d8 (Surr)	92		70-130
460-00-4	Bromofluorobenzene	105		70-130
1868-53-7	Dibromofluoromethane (Surr)	95		70-130

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-1I	Lab Sample ID: 460-64621-2
Matrix: Water	Lab File ID: P76428.D
Analysis Method: 8260C	Date Collected: 10/09/2013 09:25
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 16:55
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Ratch No · 196752	Units: na/I

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	U	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	23		1.0	0.14
75-00-3	Chloroethane	1.0	υ	1.0	0.17
75-09-2	Methylene Chloride	1.0	U	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	0.20	J	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	Ū	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	0.39	J	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	4.2		1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	U	5.0	2,3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	0.79	J	1.0	0.090
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
71-43-2	Benzene	1.0	U	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	. 5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ū	1.0	0.16
108-88-3	Toluene	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	υ	1.0	0.13

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-1I	Lab Sample ID: 460-64621-2
Matrix: Water	Lab File ID: P76428.D
Analysis Method: 8260C	Date Collected: 10/09/2013 09:25
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 16:55
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	Ū	1.0	0.080
1634-04-4	MTBE	6.7	1	1.0	0.14
110-82-7	Cyclohexane	1.0	U	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	Ū	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	ΰ	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	σ	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	Ü	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	U	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	U	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		70-130
2037-26-5	Toluene-d8 (Surr)	94		70-130
460-00-4	Bromofluorobenzene	105		70-130
1868-53-7	Dibromofluoromethane (Surr)	100		70-130

 Lab Name: TestAmerica Edison
 Job No.: 460-64621-1

 SDG No.:
 Client Sample ID: MW-2S
 Lab Sample ID: 460-64621-3

 Matrix: Water
 Lab File ID: P76438.D

 Analysis Method: 8260C
 Date Collected: 10/09/2013 10:20

 Sample wt/vol: 5(mL)
 Date Analyzed: 10/16/2013 20:48

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: Rtx-624
 ID: 0.25(mm)

 % Moisture:
 Level: (low/med) Low

Analysis Batch No.: 186752 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ū	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	570	E	1.0	0.14
75-00-3	Chloroethane	1.0	a	1.0	0.17
75-09-2	Methylene Chloride	1.0	U	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	1.0	U	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	Ü	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	6.3	2020000	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	150		1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	ij.×9	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	Ü	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	0.66	Ĵ	1.0	0.090
124-48-1	Dibromochloromethane	1.0	υ	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	Ü	1.0	0.19
71-43-2	Benzene	1.1		1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	u	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	O I	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
108-88-3	Toluene	0.65	J	1.0	0.15
108-90-7	Chlorobenzene	1.0	Ü	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	Ü	1.0	0.13

Lab Name: TestAmerica Edison Job No.: 460-64621-1			
SDG No.:			
Client Sample ID: MW-2S	Lab Sample ID: 460-64621-3		
Matrix: Water	Lab File ID: P76438.D		
Analysis Method: 8260C	Date Collected: 10/09/2013 10:20		
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 20:48		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 186752	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	Ū	1.0	0.080
1634-04-4	MTBE	1.0	U	1.0	0.14
110-82-7	Cyclohexane	1.0	U	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	Ü	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	Ū	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	U	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	U	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	81		70-130
2037-26-5	Toluene-d8 (Surr)	80		70-130
460-00-4	Bromofluorobenzene	92		70-130
1868-53-7	Dibromofluoromethane (Surr)	84		70-130

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-3S	Lab Sample ID: 460-64621-5
Matrix: Water	Lab File ID: P76435.D
Analysis Method: 8260C	Date Collected: 10/09/2013 11:25
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 19:38
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ū	1.0	0.10
74-83-9	Bromomethane	1.0	Ū	1.0	0.18
75-01-4	Vinyl chloride	2.7		1.0	0.14
75-00-3	Chloroethane	1.0	Ū	1.0	0.17
75-09-2	Methylene Chloride	1.0	υ	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	1.0	σ	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	0.83	J	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	1.2	Distance	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	100		1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	US	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	1.0	σ	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	41		1.0	0.090
124-48-1	Dibromochloromethane	1.0	Ü	1.0	0.20
79-00-5	1,1,2-Trichlorgethane	1.0	υ	1.0	0.19
71-43-2	Benzene	0.38	J	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
108-88-3	Toluene	1.0	U	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13

Lab Name: <u>TestAmerica Edison</u>	Job No.: 460-64621-1		
SDG No.:			
Client Sample ID: MW-3S	Lab Sample ID: 460-64621-5		
Matrix: Water	Lab File ID: P76435.D		
Analysis Method: 8260C	Date Collected: 10/09/2013 11:25		
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 19:38		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 186752	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	Ü	1.0	0.080
1634-04-4	MTBE	1.0	U	1.0	0.14
110-82-7	Cyclohexane	1.0	U	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	Ū	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	υ	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	Ü	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	ū	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	ū	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	U	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	Ū	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		70-130
2037-26-5	Toluene-d8 (Surr)	89		70-130
460-00-4	Bromofluorobenzene	101		70-130
1868-53-7	Dibromofluoromethane (Surr)	93		70-130

Lab Name: TestAmerica Edison Job No.: 460-64621-1	
SDG No.:	
Client Sample ID: MW-31	Lab Sample ID: 460-64621-6
Matrix: Water	Lab File ID: P76436.D
Analysis Method: 8260C	Date Collected: 10/09/2013 11:20
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 20:02
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 186752	Units: ua/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ū	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	180		1.0	0.14
75-00-3	Chloroethane	54		1.0	0.17
75-09-2	Methylene Chloride	1.0	U	1.0	0.18
67-64-1	Acetone	5.0	υ	5.0	2.7
75-15-0	Carbon disulfide	0.19	J	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	0.84	J	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	44		1.0	0.13
156-59-2	cis-1,2-Dichloroethene	260		1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	0	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	16		1.0	0.090
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
71-43-2	Benzene	6.0		1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	σ	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
108-88-3	Toluene	7.3		1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	0.54	J	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	0.77	J	2.0	0.25
95-47-6	o-Xylene	0.23	J	1.0	0.13

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-3I	Lab Sample ID: 460-64621-6
Matrix: Water	Lab File ID: P76436.D
Analysis Method: 8260C	Date Collected: 10/09/2013 11:20
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 20:02
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	Ū	1.0	0.080
1634-04-4	MTBE	1.0	Ū	1.0	0.14
110-82-7	Cyclohexane	1.0	Ū	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	Ū	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	Ü	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	Ū	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	Ü	1.0	0.34
123-91-1	1,4-Dioxane	50	Ū	50	36
87~61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	υ	1.0	0.40
74-97-5	Bromochloromethane	1.0	Ū	1.0	0.27
98-82-8	Isopropylbenzene	0.10	J	1.0	0.080
79-20-9	Methyl acetate	5.0	Ū	5.0	0.34
108-87-2	Methylcyclohexane	1.0	Ū	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		70-130
2037-26-5	Toluene-d8 (Surr)	90		70-130
460-00-4	Bromofluorobenzene	103	_	70-130
1868-53-7	Dibromofluoromethane (Surr)	91		70-130

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-4S	Lab Sample ID: 460-64621-7
Matrix: Water	Lab File ID: P76429.D
Analysis Method: 8260C	Date Collected: 10/09/2013 12:05
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 17:18
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	υ	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.6		1.0	0.14
75-00-3	Chloroethane	1.0	U	1.0	0.17
75-09-2	Methylene Chloride	1.0	0	1.0	0.18
67-64-1	Acetone	5.0	ū	5.0	2.7
75-15-0	Carbon disulfide	0.61	J	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	υ	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	Ű	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	1.0	U	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	4.5		1.0	0.18
67-66-3	Chloroform	1.0	ט	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	0 3	1.0	0.19
78-93-3	2-Butanone	5.0	UZE	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	1.8		1.0	0.090
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
71-43-2	Benzene	1.0	ū	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	Ü	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	Ü	5.0	0.99
591-78-6	2-Hexanone	5.0	Ū	5.0	0.50
127-18-4	Tetrachloroethene	1.0	ט	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.15
108-88-3	Toluene	1.0	σ	1.0	0.15
108-90-7	Chlorobenzene	1.0	Ū	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	Ü	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13

Lab Name: TestAmerica Edison	Job No.: 460-64621-1		
SDG No.:			
Client Sample ID: MW-4S	Lab Sample ID: 460-64621-7		
Matrix: Water	Lab File ID: P76429.D		
Analysis Method: 8260C	Date Collected: 10/09/2013 12:05		
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 17:18		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 186752	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	U	1.0	0.080
1634-04-4	MTBE	1.0	υ	1.0	0.14
110-82-7	Cyclohexane	1.0	U	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	Ū	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	υ	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	a	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	1.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	Ū	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	Ū	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	U	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	Ū	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		70-130
2037-26-5	Toluene-d8 (Surr)	90		70-130
460-00-4	Bromofluorobenzene	103		70-130
1868-53-7	Dibromofluoromethane (Surr)	94	-	70-130

Lab Name: <u>TestAmerica Edison</u>	Job No.: 460-64621-1		
SDG No.:			
Client Sample ID: MW-4I	Lab Sample ID: 460-64621-8		
Matrix: Water	Lab File ID: P76430.D		
Analysis Method: 8260C	Date Collected: 10/09/2013 12:00		
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 17:41		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 186752	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ū	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.1		1.0	9.14
75-00-3	Chloroethane	1.0	Ū	1.0	9.17
75-09-2	Methylene Chloride	1.0	Ü	1.0	0.18
67-64-1	Acetone	5,0	ū	5.0	2.7
75-15-0	Carbon disulfide	1.0	U	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	Ū	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	2.3		1.0	0.13
156-59-2	cis-1,2-Dichloroethene	5.4		1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	0 3	1.0	0.19
78-93-3	2-Butanone	5.0	11 30	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	0.63	J	1.0	0.090
124-48-1	Dibromochloromethane	1.0	Ū	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	Ü	1.0	0.19
71-43-2	Benzene	3.7		1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75~25-2	Bromoform	1.0	Ü	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
108-88-3	Toluene	0.76	J	1.0	0.15
108-90-7	Chlorobenzene	1.0	Ū	1.0	0.11
100-41-4	Ethylbenzene	0.28	J	1.0	0.10
100-42-5	Styrene	1.0	Ū	1.0	0.12
179601-23-1	m&p-Xylene	0.62	J	2.0	0.25
95-47-6	o-Xylene	0.38	J	1.0	0.13

Lab Name: TestAmerica Edison	Job No.: 460-64621-1				
SDG No.:					
Client Sample ID: MW-4I	Lab Sample ID: 460-64621-8				
Matrix: Water	Lab File ID: P76430.D				
Analysis Method: 8260C	Date Collected: 10/09/2013 12:00				
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 17:41				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 186752	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	U	1.0	0.080
1634-04-4	MTBE	0.24	J	1.0	0.14
110-82-7	Cyclohexane	1.0	Ü	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	U	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	σ	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	Ü	1.0	0.27
98-82-8	Isopropylbenzene	1.0	U	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	Ü	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		70-130
2037-26-5	Toluene-d8 (Surr)	90		70-130
460-00-4	Bromofluorobenzene	100		70-130
1868-53-7	Dibromofluoromethane (Surr)	94		70-130

Lab Name: TestAmerica Edison	Job No.: 460-64621-1		
SDG No.:			
Client Sample ID: MW-5S	Lab Sample ID: 460-64621-9		
Matrix: Water	Lab File ID: P76431.D		
Analysis Method: 8260C	Date Collected: 10/09/2013 12:50		
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 18:05		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 186752	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ū	1.0	0.10
74-83-9	Bromomethane	1.0	O	1.0	0.18
75-01-4	Vinyl chloride	1.2		1.0	0.14
75-00-3	Chloroethane	1.0	U	1.0	0.17
75-09-2	Methylene Chloride	1.0	Ü	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	0.15	J	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	Ü	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	0.17	J	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	6.5		1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	U	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	Ü	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	Ü	1.0	0.060
75-27-4	Bromodichloromethane	1.0	υ	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	0.29	J	1.0	0.090
124-48-1	Dibromochloromethane	1.0	Ū	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
71-43-2	Benzene	1.0	U	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	ū	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	0.39	J	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
108-88-3	Toluene	1.0	Ū	1.0	0.19
108-90-7	Chlorobenzene	1.0	Ü	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	U	1.0	0.13

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-5S	Lab Sample ID: 460-64621-9
Matrix: Water	Lab File ID: P76431.D
Analysis Method: 8260C	Date Collected: 10/09/2013 12:50
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 18:05
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	Ū	1.0	0.080
1634-04-4	MTBE	1.0	Ü	1.0	0.14
110-82-7	Cyclohexane	1.0	U	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	υ	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	υ	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	ש	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	U	1.0	0.34
123-91-1	1,4-Dioxane	50	υ	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	Ū	1.0	0.27
98~82-8	Isopropylbenzene	1.0	U	1.0	0.080
79-20-9	Methyl acetate	5.0	Ū	5.0	0.34
108~87-2	Methylcyclohexane	1.0	υ	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	86		70-130
2037-26-5	Toluene-d8 (Surr)	85	- T	70-130
460-00-4	Bromofluorobenzene	97		70-130
1868-53-7	Dibromofluoromethane (Surr)	89		70-130

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-51	Lab Sample ID: 460-64621-10
Matrix: Water	Lab File ID: P76432.D
Analysis Method: 8260C	Date Collected: 10/09/2013 12:55
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 18:28
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 186752	Units: wa/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	0	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	6.9	1	1.0	0.14
75-00-3	Chloroethane	1.0	U	1.0	0.17
75-09-2	Methylene Chloride	1.0	U	1.0	0.18
67-64-1	Acetone	28		5.0	2.7
75-15-0	Carbon disulfide	0.35	J	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	0.25	J	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1, 2-Dichloroethene	0.82	J	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	50		1.0	0.18
67-66-3	Chloroform	1.0	υ	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	46	95	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	2.4		1.0	0.090
124-48-1	Dibromochloromethane	1.0	a	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	Ū	1.0	0.19
71-43-2	Benzene	0.28	J	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	Ü	1.0	0.24
75-25-2	Bromoform	1.0	υ	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	0	5.0	0.50
127-18-4	Tetrachloroethene	1.0	U	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ü	1.0	0.16
108-88-3	Toluene	0.32	J	1.0	0.15
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	Ū	1.0	0.12
179601-23-1	m&p-Xylene	2.0	U	2.0	0.25
95-47-6	o-Xylene	1.0	υ	1.0	0.13

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-5I	Lab Sample ID: 460-64621-10
Matrix: Water	Lab File ID: P76432.D
Analysis Method: 8260C	Date Collected: 10/09/2013 12:55
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 18:28
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	Ü	1.0	0.080
1634-04-4	MTBE	11		1.0	0.14
110-82-7	Cyclohexane	1.0	Ü	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	Ū	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	Ü	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	Ū	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	Ü	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	Ū	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	Ū	1.0	0.34
123-91-1	1,4-Dioxane	50	Ū	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	Ü	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	ŭ	1.0	0.40
74-97-5	Bromochloromethane	1.0	Ü	1.0	0.27
98-82-8	Isopropylbenzene	1.0	Ü	1.0	0.080
79-20-9	Methyl acetate	5.0	Ü	5.0	0.34
108-87-2	Methylcyclohexane	1.0	U	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		70-130
2037-26-5	Toluene-d8 (Surr)	90		70-130
460-00-4	Bromofluorobenzene	102		70-130
1868-53-7	Dibromofluoromethane (Surr)	92		70-130

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-6S	Lab Sample ID: 460-64621-11
Matrix: Water	Lab File ID: P76433.D
Analysis Method: 8260C	Date Collected: 10/09/2013 13:25
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 18:51
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	U	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	0.30	J	1.0	0.14
75-00-3	Chloroethane	1.0	U	1.0	0.17
75-09-2	Methylene Chloride	1.0	U	1.0	0.18
67-64-1	Acetone	5.0	U	5.0	2.7
75-15-0	Carbon disulfide	1.0	U	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	U	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	U	1.0	0.13
156-60-5	trans-1,2-Dichloroethene	1.0	บ	1.0	0.13
156-59-2	cis-1,2-Dichloroethene	1.6		1.0	0.18
67-66-3	Chloroform	0.20	J	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	6.4	15	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1,0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.060
75-27-4	Bromodichloromethane	1.0	U	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	U	1.0	0.18
79-01-6	Trichloroethene	0.25	J	1.0	0.090
124-48-1	Dibromochloromethane	1.0	U	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
71-43-2	Benzene	1.0	U	1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	U	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-786	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	2.7		1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
108-88-3	Toluene	1.0	U	1.0	0.1!5
108-90-7	Chlorobenzene	1.0	U	1.0	0.11
100-41-4	Ethylbenzene	1.0	U	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	2.0	υ	2.0	0.25
95-47-5	o-Xylene	1.0	Ü	1.0	0.13

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-6S	Lab Sample ID: 460-64621-11
Matrix: Water	Lab File ID: P76433.D
Analysis Method: 8260C	Date Collected: 10/09/2013 13:25
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 18:51
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: na/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	U	1.0	0.080
1634-04-4	MTBE	1.0	Ū	1.0	0.14
110-82-7	Cyclohexane	1.0	Ü	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	ΰ	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	Ū	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	U	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	U	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	Ü	1.0	0.34
123-91-1	1,4-Dioxane	50	U	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	Ū	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	υ	1.0	0.080
79-20-9	Methyl acetate	5.0	U	5.0	0.34
108-87-2	Methylcyclohexane	1.0	U	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	81		70-130
2037-26-5	Toluene-d8 (Surr)	78		70-130
460-00-4	Bromofluorobenzene	89		70-130
1868-53-7	Dibromofluoromethane (Surr)	82		70-130

Lab Name: TestAmerica Edison	Job No.: 460-64621-1
SDG No.:	
Client Sample ID: MW-61	Lab Sample ID: 460-64621-12
Matrix: Water	Lab File ID: P76434.D
Analysis Method: 8260C	Date Collected: 10/09/2013 13:30
Sample wt/vol: 5(mL)	Date Analyzed: 10/16/2013 19:15
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 186752	Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
74-87-3	Chloromethane	1.0	Ū	1.0	0.10
74-83-9	Bromomethane	1.0	U	1.0	0.18
75-01-4	Vinyl chloride	1.8	 +	1.0	0.14
75-00-3	Chloroethane	1.0	ט	1.0	0.17
75-09-2	Methylene Chloride	1.0	Ū	1.0	0.18
67-64-1	Acetone	5.0	Ü	5.0	2.7
75-15-0	Carbon disulfide	1.0	U	1.0	0.13
75-69-4	Trichlorofluoromethane	1.0	U	1.0	0.15
75-35-4	1,1-Dichloroethene	1.0	ш	1.0	0.090
75-34-3	1,1-Dichloroethane	1.0	u (1.0	0.13
156-60-5	trans-1,2-DichlorOethene	9.0		1.0	0.13
156-59-2	cis-1,2-Dichloroethene	2.9		1.0	0.18
67-66-3	Chloroform	1.0	U	1.0	0.080
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.19
78-93-3	2-Butanone	5.0	U	5.0	2.3
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.060
56-23-5	Carbon tetrachloride	1.0	Ū	1.0	0.060
75-27-4	Bromodichloromethane	1.0	Ū .	1.0	0.12
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.090
10061-01-5	cis-1,3-Dichloropropene	1.0	u i	1.0	0.18
79-01-6	Trichloroe thene	0.52	J	1.0	0.090
124-48-1	Dibromochloromethane	1.0	Ü	1.0	0.20
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.19
71-43-2	Benzene	4.4		1.0	0.080
10061-02-6	trans-1,3-Dichloropropene	1.0	U	1.0	0.24
75-25-2	Bromoform	1.0	IJ	1.0	0.19
108-10-1	4-Methyl-2-pentanone	5.0	U	5.0	0.99
591-78-6	2-Hexanone	5.0	U	5.0	0.50
127-18-4	Tetrachloroethene	1.0	Ū	1.0	0.10
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.16
108-88-3	Toluene	7.7		1.0	0.15
108-90-7	Chlorobenzene	1.0	Ü	1.0	0.11
100-41-4	Ethylbenzene	0.52	J	1.0	0.10
100-42-5	Styrene	1.0	U	1.0	0.12
179601-23-1	m&p-Xylene	0.77	J	2.0	0.25
95-47-6	o-Xylene	0,33	J	1.0	0.13

Lab Name: TestAmerica Edison		Job No.: 460-64621-1
SDG No.:		
Client Sample ID: MW-6I		Lab Sample ID: 460-64621-12
Matrix: <u>Water</u>	0 1	Lab File ID: P76434.D
Analysis Method: 8260C		Date Collected: 10/09/2013 13:30
Sample wt/vol: 5 (mL)		Date Analyzed: 10/16/2013 19:15
Soil Aliquot Vol:		Dilution Factor: 1
Soil Extract Vol.:		GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:		Level: (low/med) Low
Analysis Batch No.: 186752		Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
76-13-1	Freon TF	1.0	Ū	1.0	0.080
1634-04-4	MTBE	0.62	J	1.0	0.14
110-82-7	Cyclohexane	1.0	U	1.0	0.16
106-93-4	1,2-Dibromoethane	1.0	U	1.0	0.28
541-73-1	1,3-Dichlorobenzene	1.0	U	1.0	0.14
106-46-7	1,4-Dichlorobenzene	1.0	ט	1.0	0.23
95-50-1	1,2-Dichlorobenzene	1.0	Ü	1.0	0.21
75-71-8	Dichlorodifluoromethane	1.0	Ü	1.0	0.22
120-82-1	1,2,4-Trichlorobenzene	1.0	Ü	1.0	0.34
123-91-1	1,4-Dioxane	50	Ū	50	36
87-61-6	1,2,3-Trichlorobenzene	1.0	U	1.0	0.51
96-12-8	1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.40
74-97-5	Bromochloromethane	1.0	U	1.0	0.27
98-82-8	Isopropylbenzene	1.0	Ū	1.0	0.080
79-20-9	Methyl acetate	5.0	σ	5.0	0.34
108-87-2	Methylcyclohexane	1.0	Ü	1.0	0.14

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		70-130
2037-26-5	Toluene-d8 (Surr)			70-130
460-00-4	Bromofluorobenzene	102		70-130
1868-53-7	Dibromofluoromethane (Surr)	94		70-130

34-11 BEACH CHANNAL DRIVE DATA USABILITY SUMMARY REPORT October 2, 2013 Soil Vapor Sampling (SDG No. C1310037) Lab Report #C1310037

This data usability summary report (DUSR) was prepared in accordance with *Appendix 2B* of New York State Department of Environmental Conservation (NYSDEC) DER-10 using the entire original laboratory report, including the sample data summary report and the extended data package. The sampling event included three primary soil vapor samples and associated quality assurance / quality control (QA / QC) samples collected on October 2, 2013.

Sample Collection

The samples were collected in labeled laboratory-provided sample containers; no issues with sample containers or labeling were reported by the laboratory except for minor labeling issues that were resolved. All of the sample canisters exhibited measurable vacuums at the end of the sampling period.

Sampling procedures, including collection of field QA / QC samples, were reported to have been in accordance with the procedures presented in the NYSDEC-approved Quality Assurance Project Plan (April 2013) for this project. All sample collection was conducted under Chain of Custody (COC) procedures.

Field QA / QC samples, including a blind duplicate sample and a trip blank sample, were collected to evaluate field sampling methods and laboratory procedures.

Sample Analyses

The samples were transmitted to and analyzed by Centek Laboratories, LLC at their Syracuse, New York facility, which is New York State Department of Health-certified for the analyses performed. The samples were prepared and analyzed for volatile organic compounds (VOCs) (including isopropyl alcohol [IPA]) using Methods TO-15. The analytical method and analytes are appropriate for the intended use of the data. The sample holding times were met and no problems with sample receipt or handling were reported by the laboratory.

All of the field samples required dilution for acetone and many of the samples required dilution for 1,2,4-trimethylbenzene, 1,4-dichlorobenzene, 2,2,4-trimethylpentane, , benzene, carbon disulfide, ethylbenzene, 4-ethyltoluene, heptane, hexane, xylenes, methyl ethyl ketone (MEK), propylene, cyclohexane, 1,1,1-trichloroethane, trichloroethene and / or toluene. The reporting limits have been adjusted accordingly.

QA / QC Results

Surrogate Samples

Surrogate recoveries and internal standard responses in each of the samples were within acceptance limits for all samples. These results indicate that the data are anticipated to be

accurate.

Trip Blanks

A trip blank sample was collected on 10/2/13 which was transported with the project sample canisters. Trip blank samples are used to verify that cross-contamination between samples did not occur in the field, in transit or in the laboratory. No VOCs were detected at concentrations exceeding their respective RLs in the trip blank sample. These data indicated that cross contamination between samples did not occur and affect the overall quality of the data set.

Blind Duplicate Samples

A blind duplicate sample was collected and utilized to evaluate the precision of the laboratory analyses. The results from the duplicate sample (RISV-1D) and the associated parent sample (RISV-1) are very similar for the VOCs.

Based on the blind duplicate sample results, the laboratory results are likely to be precise for the remaining VOCs.

Method Blank Samples

Method blank (MB) samples were analyzed by the laboratory to evaluate for the potential for cross contamination associated with the sample preparation and analysis. The MB results did not show concentrations of analytes above their method detection limits and / or the reporting limits. Based upon the MB data, cross contamination associated with sample preparation and analysis does not appear to present a concern.

Laboratory Control Samples and Duplicates

Laboratory control samples (LCSs) and duplicates (LCSDs) were used by the laboratory to verify the accuracy and precision of the analyses. The LCS / LCSD results were all within established guidelines, with the following exception:

- The spike recovery failed low and / or the RPD failed low in samples ALCS1UG-100913, ALCS1UGD-092613 and ALCS1UGD-10037 for several VOCs, including: ethybenzene, hexane, 1,4-dioxane, 1,2,4-trimethylbenzene, methyl butyl ketone and / or methyl isobutyl ketone; and,
- The spike recovery failed high and / or the RPD failed high in samples ALCS1UG-100913, ALCS1UG-100813, ALCS1UGD-092613 and ALCS1UGD-10037 for several VOCs, Including: 1,1,1-trichloroethane, carbon tetrachloride, bromodichloromethane, bromoform and / or trans-1,2-dichloroethene. A "J" qualifier must be applied to the detections of these VOCs in the associated samples.

According to the laboratory narrative, the failure of the LCSD criteria was a function of the independent canister versus the separate continuing calibration canister and no immediate actions were required.

Based on these results, the data do not appear to have been significantly affected by laboratory-related accuracy or precision issues.

Continuing Calibration Verification

Continuing calibration verification standards (CCVs) are midrange calibration standards that are analyzed in order to verify that the calibration of the analytical system is still acceptable and instrument calibration drift has not occurred.

- The continuing calibration for the dilution run on 10/8 failed for carbon tetrachloride and for several VOCs for the 10/9 dilution run. As none of these dilution runs required reporting, this excursion does not impact the quality of the data set.
- The continuing calibration on 10/7 failed for carbon tetrachloride. As this
 results in a high-biased condition and carbon tetrachloride was not
 detected in the associated samples, this excursion does not impact the
 quality of the data set.

Questions and Responses as per DER-10

1. Is the data package complete as defined under the current requirements for the NYSDEC ASP Category B or USEPA CLP deliverables?

The data package is complete. The external and internal chain of custody forms are present and complete. The case narrative and sample analysis summaries are present and complete. The analytical QA / QC summary forms, including surrogate recovery forms, LCS forms, IDL forms, initial and continuing calibration summary forms, standards raw data, tuning criteria report, and MB data are all present and complete. The data report forms, including sample prep logs, injection logs, and examples of the calculations used to determine the sample concentrations are all present and complete. The raw data used to identify and quantify the contract-specified analytes are present and complete.

2. Have all holding times been met?

All samples were received and analyzed within the EPA-recommended holding times for the analyses performed.

3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data, fall within the protocol-required limits and specifications?

No – Although the majority of QC data were found to fall within the protocol-required limits and specifications, minor exceptions were noted above; however, these exceptions do not appear to significantly affect the data set.

- 4. Have all of the data been generated using established and agreed-upon analytical protocols?
 - Yes all of the data were generated using TO-15 for VOCs.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?
 - Yes a representative number of raw data results were compared with the reported data results to confirm that the reported analytical results (identification and quantification) are substantiated by the raw data.
- 6. Have the correct data qualifiers been used?
 - Yes results below the quantitation limit and above the method detection limit have been J-qualified, J qualifiers have been applied where LCS results exceed the control limits, and results analyzed for but not detected have been U-qualified.
- 7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?
 - Yes exceedances have been noted in the DUSR and the corresponding QC summary sheets are attached.

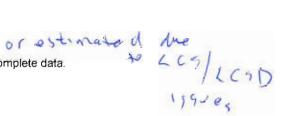
Conclusions

The soil vapor samples were reported to have been collected in accordance with the NYSDEC-approved QAPP for this project. No field or laboratory conditions occurred that would result in non-valid analytical data other than as noted above. The data appear to be adequate for their intended purpose.

Attachments

DRAFT

TABLE 4 - SOIL VAPOR SAMPLING RESULTS 34-11 BEACH CHANNEL DRIVE SITE FAR ROCKAWAY, QUEENS, NEW YORK


Sample Name	RISV-1	(Duplicate)		RISV-3
Volatile Organic Compounds (n	nicrograms per	cubic meter)		
1,1,1-Trichloroethane	2.6	2.1	4.9	19 5
1,2,4-Trimethylbenzene	8.5	7.5 3	16 🔼	12 J
1,3,5-Trimethylbenzene	4.5	4.5	5.3	4.8
1,4-Dichlorobenzene	130	120	ND	ND
2,2,4-trimethylpentane	19	19	26	16
4-ethyltoluene	5.4	5.4	11 J	11
Acetone	870	880	15,000	2,300
Benzene	9.1	10	20	13
Carbon disulfide	10	9.5	2.8	1.9
Chloroform	2.0	2.0	1.5	2.2
Cyclohexane	4.3	5.6	14	6.6
Ethylbenzene	19 🦪	18 7	41 J	33
Freon 11	2.2	2.1	2.2	2.1
Freon 113	ND	ND	0.86 J	0.78 J
Freon 12	0.90	1.4	2.5	2.2
Heptane	23	14	98	37
Hexane	7.5 🗓	12 3	ND	ND
m&p-Xylene	74	68	150	120
Methyl ethyl ketone	35	28	130	55
Methylene chloride	ND	ND	1.7	0.95
o-Xylene	15	14	25	19
Styrene	2.7	2.5	3.3	ND
Tetrachloroethylene	1.4	0.90 J	3.7	1.4
Toluene	76	72	190	110
Trichloroethene	ND	ND	19	ND

Notes:

ND = Analyte not detected above indicated reporting limit (RL).

J = Analyte detected at or below RL but above the method detection limit (MDL).

Only compounds detected in one or more samples are reported. See lab report for complete data.

Date: 18-Nov-13

CLIENT:

ALPROF Realty LLC

Project:

1087g-13-05

Lab Order:

C1310037

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999 and Centek Laboratories, LLC SOP TS-80:

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

See Corrective Action: [2929] Continuing calibration did not meet criteria.

See Corrective Action: [2930] LCSD did not meet criteria. See Corrective Action: [2931] CC did not meet criteria. See Corrective Action: [2932] CC did not meet criteria.

Corrective Action Report

Date Initiated: 07-Oct-13

Corrective Action Report ID: 2929

Initiated By:

Russell Pellegrino

Department: MSVOA

Corrective Action Description

CAR Summary:

Continuing calibration did not meet criteria.

Description of Nonconformance:

Continuing calibration did not meet criteria on 10/7/13 for carbon tetrachloride. The compound was more sensitive. However, the compound was not found for the

associated samples.

Description of Corrective Action:

Since the compound was more sensitive and not detected for the associated samples, continue with analysis. The results would have been blased high. If compound remains

outside criteria perform system calibration.

Performed By:

Russell Pellegrino

Completion Date: 08-Oct-13

Client Notification

Client Notification Required: No

Notified By:

Comment:

Quality Assurance Review

Nonconformance Type:

Deficiency

Further Action

At this time no further corrective action taken. All sets of data submitted. Recalibrate the

required by QA: system ASAP.

Approval and Closure

Technical Director /

Deputy Tech. Dir.:

Close Date: 09-Oct-13

QA Officer Approval:

Nick Scala

QA Date: 08-Oct-13

Last Updated BY RUSS

Updated:

-18-Nov-2013 1:57 PM

Reported: 18-Nov-2013 1:57 PM

Corrective Action Report

Date Initiated: 07-Oct-13 Corrective Action Report ID: 2930

Initiated By: Russell Pellegrino Department: MSVOA

Corrective Action Description

CAR Summary: LCSD did not meet criteria.

Description of ALCS1UGD-100713 did not meet criteria for % recoveries for several compounds. All

Nonconformance: other QC required met criteria. The LCS 6 Liter canister was independent of the 6 Liter

continuing calibration canister.

Description of Since the LCS 6 Liter canister was independent of the 6 Liter continuing calibration Corrective Action: canister, then continue with analysis, if results continue outside established limits then

recalibrate system. All sets of data submitted.

Performed By: Russell Pellegrino Completion Date: 08-Oct-13

Client Notification

Client Notification Required: No Notified By:

Comment:

Quality Assurance Review

Nonconformance Type: Deficiency

Further Action If results continue outside established limits then make new LCS standard and perform

required by QA: system calibration.

Approval and Closure

Technical Director /

Deputy Tech. Dir.:

William Dobbin

QA Officer Approval:

Nick Scala

Close Date: 09-Oct-13

QA Date: 08-Oct-13

Last Updated BY RUSS

Updated:

18-Nov-2013 2:22 PM

The second secon

Reported: 18-Nov-2013 2:22 PM

Corrective Action Report

Date Initiated: 08-Oct-13

Corrective Action Report ID: 2931

Initiated By:

Russell Pellegrino

Department: MSVOA

Corrective Action Description

CAR Summary:

CC did not meet criteria.

Description of Nonconformance:

Continuing calibration did not meet criteria on 10/8/13 for carbon tetrachloride. The compound was more sensitive. However, the compound was not needed for the

associated sample dilutions.

Description of Corrective Action: Since the compound was not needed for the associated sample dilutions then continue

with analysis. If compound remains outside criteria perform system calibration.

Performed By:

Russell Pellegrino

Completion Date: 09-Oct-13

Client Notification

Client Notification Required: No

Notified By:

Comment:

Quality Assurance Review

Nonconformance Type:

Deficiency

Further Action required by QA: At this time no further corrective action taken. All sets of data submitted. Recalibrate the

system ASAP.

Approval and Closure

Technical Director /

Deputy Tech. Dir.:

Close Date: 10-Oct-13

QA Officer Approval:

William Dobbig

QA Date: 09-Oct-13

Last Updated BY RUSS

Updated:

18-Nov-2013 3:17 PM

Reported: 18-Nov-2013 3:17 PM

Corrective Action Report

Date Initiated:	09-Oct-13	Corrective Action Report ID:	2932
Initiated By:	Russell Pellegrino	Department:	MSVOA

Corrective Action Description

CAR Summary:

CC did not meet criteria.

Description of Nonconformance: Continuing calibration did not meet criteria on 10/9/13 for several compounds. However,

the compounds were not needed for the associated sample dilutions.

Description of Corrective Action: Since the compounds were not needed for the associated sample dilutions then

continue with analysis. If compounds remain outside criteria perform system calibration.

Performed By:

Russell Pellegrino

Completion Date: 10-Oct-13

Client Notification

Client Notification Required: No

Notified By:

Comment:

Quality Assurance Review

Nonconformance Type: Deficiency

At this time no further corrective action taken. All sets of data submitted. Recalibrate the Further Action

system ASAP. required by QA:

Approval and Closure

Technical Director /

Deputy Tech. Dir.:

Close Date: 11-Oct-13

QA Officer Approval:

QA Date: 10-Oct-13

Last Updated BY RUSS

Updated:

18-Nov-2013 3:20 PM

Reported: 18-Nov-2013 3:21 PM

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-001A

Client Sample ID: RISV-1

Tag Number: 202,,66 Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual I	Inits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		тс)-15			Analyst: RJP
1,1,1-Trichloroethane	2.6	0.83	ti	ıg/m3	1	10/8/2013 6:09:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	U	ıg/m3	1	10/8/2013 6:09:00 AM
1,1,2-Trichloroethane	< 0.83	0.83	u	ıg/m3	1	10/8/2013 6:09:00 AM
1,1-Dichloroethane	< 0,62	0,62	u	ıg/m3	1	10/8/2013 6:09:00 AM
1,1-Dichloroethene	< 0.60	0.60	u	ıg/m3	1	10/8/2013 6:09:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ដ	ıg/m3	1	10/8/2013 6:09:00 AM
1,2,4-Trimethylbenzene	8.5	7.5	u	ıg/m3	10	10/9/2013 7:35:00 AM
1,2-Dibromoethane	< 1.2	1.2	u	ıg/m3	1	10/8/2013 6:09:00 AM
1,2-Dichlorobenzene	< 0.92	0.92	u	g/m3	1	10/8/2013 6:09:00 AM
1,2-Dichloroethane	< 0.62	0.62	u	g/m3	1	10/8/2013 6:09:00 AM
1,2-Dichloropropane	< 0.70	0.70	u	g/m3	1	10/8/2013 6:09:00 AM
1,3,5-Trimethylbenzene	4.5	0.75	u	g/m3	1	10/8/2013 6:09:00 AM
1,3-butadiene	< 0.34	0.34	u	g/m3	1	10/8/2013 6:09:00 AM
1,3-Dichlorobenzene	< 0.92	0.92	u	g/m3	1	10/8/2013 6:09;00 AM
1,4-Dichlorobenzene	130	9.2	и	g/m3	10	10/9/2013 7:35:00 AM
1,4-Dioxane	< 1.1	1.1	П	g/m3	1	10/8/2013 6:09;00 AM
2,2,4-trimethylpentane	19	7.1	и	g/m3	10	10/9/2013 7:35:00 AM
4-ethyltoluene	5.4	0.75	u	g/m3	1	10/8/2013 6:09:00 AM
Acetone	870	200	u	g/m3	270	10/9/2013 6:07:00 PM
Allyl chloride	< 0.48	0.48	u	g/m3	1	10/8/2013 6:09:00 AM
Benzene	9.1	4.9	ប	g/m3	10	10/9/2013 7:35:00 AM
Benzyl chloride	< 0.88	0.88	u	g/m3	1	10/8/2013 6:09:00 AM
Bromodichloromethana	< 1.0	1.0	u	g/m3	1	10/8/2013 6:09:00 AM
Bromoform	< 1,6	1.6	u	g/m3	1	10/8/2013 6:09:00 AM
Bromomethane	< 0.59	0.59	u	g/m3	1	10/8/2013 6:09:00 AM
Carbon disulfide	10	4.7	u	g/m3	10	10/9/2013 7:35:00 AM
Carbon tetrachlorida	< 0.96	0.96	u	g/m3	1	10/8/2013 6:09:00 AM
Chlorobenzene	< 0.70	0.70	u	g/m3	1	10/8/2013 6:09:00 AM
Chloroethane	< 0.40	0.40	u	g/m3	1	10/8/2013 6:09:00 AM
Chloroform	2.0	0.74		g/m3	1	10/8/2013 6:09:00 AM
Chloromethane	.< 0.31	0.31	Ш	g/m3	1	10/8/2013 6:09:00 AM
cis-1,2-Dichloroethene	< 0.60	0.60		_ g/m3	1	10/8/2013 6:09:00 AM
cls-1,3-Dichloropropene	< 0.69	0.69	u	g/m3	1	10/8/2013 6:09:00 AM
Cyclohexane	4.3	0.52		g/m3	1	10/8/2013 6:09:00 AM
Dibromochloromethane	< 1.3	1.3		g/m3	1	10/8/2013 6:09:00 AM
Ethyl acetale	< 0.92	0,92		g/m3	1	10/8/2013 6:09:00 AM
Ethylbenzene	19	6.6		g/m3	10	10/9/2013 7:35:00 AM
Frean 11	2.2	0.86		g/m3	1	10/8/2013 6:09:00 AM
Freon 113	< 1.2	1.2		g/m3	1	10/8/2013 6:09:00 AM
Freon 114	< 1.1	1.1		g/m3	1	10/8/2013 6:09:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 1 of 10

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project: Lab ID:

1087g-13-05 C1310037-001A Client Sample ID: RISV-1

Collection Date: 10/2/2013

Tag Number: 202,,66

Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15		Analyst: RJP
Freon 12	0.90	0.75	រ g/m3	1	10/8/2013 6:09:00 AM
Heptane	23	6.2	ug/m3	10	10/9/2013 7:35:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/8/2013 6:09:00 AM
Hexane	7.5	5.4	ug/m3	10	10/9/2013 7:35:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	10/8/2013 6:09:00 AM
m&p-Xylene	74	13	ug/m3	10	10/9/2013 7:35:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/8/2013 6:09:00 AM
Methyl Ethyl Ketone	35	0.90	ug/m3	1	10/8/2013 6:09:00 AM
Methyl Ethyl Ketone	29	9.0	ug/m3	10	10/9/2013 7:35:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	10/8/2013 6:09;00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	10/8/2013 6:09:00 AM
Methylene chloride	< 0.53	0.53	ug/m3	1	10/8/2013 6:09:00 AM
o-Xylene	15	6,6	ug/m3	10	10/9/2013 7:35:00 AM
Propylene	< 0.26	0.26	ug/m3	1	10/8/2013 6:09:00 AM
Styrene	2.7	0.65	ug/m3	1	10/8/2013 6:09:00 AM
Tetrachloroethylene	1.4	1.0	ug/m3	1	10/8/2013 6:09:00 AM
Tetrahydrofuran	< 0.45	0.45	⊔g/m3	1	10/8/2013 6:09:00 AM
Toluene	76	5.7	ug/m3	10	10/9/2013 7:35:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 6:09:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	10/8/2013 6:09:00 AM
Trichloroethene	< 0.82	0.82	ug/m3	1	10/8/2013 6:09:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	10/8/2013 6:09:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	10/8/2013 6:09:00 AM
Viny! chloride	< 0.39	0.39	⊔g/m3	1	10/8/2013 6:09:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Ε Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 10

ALPROF Realty LLC

Lab Order: C1310037

Project: 1087g-13-05

CLIENT:

Lab ID: C1310037-002A

Date: 17-Nov-13

Client Sample ID: RISV-1D

Tag Number: 366,147 Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJF
1,1,1-Trichloroethane	2.1	0.83	ug/m3	1	10/8/2013 6:45:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/8/2013 6:45:00 AM
1,1,2-Trichloroethane	< 0.83	0.83	⊔g/m3	1	10/8/2013 6:45:00 AM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	10/8/2013 6:45:00 AM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 5:45:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/8/2013 6:45:00 AM
1,2,4-Trimethylbenzene	7.5	7.5	ug/m3	10	10/9/2013 8:09:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/8/2013 6:45:00 AM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	10/8/2013 6:45:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	10/8/2013 6:45:00 AM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	10/8/2013 6:45:00 AM
1,3,5-Trimethylbenzene	4.5	0.75	ug/m3	1	10/8/2013 6:45:00 AM
1,3-butadiene	< 0.34	0.34	ug/m3	1	10/8/2013 6:45:00 AM
1,3-Dichiorobenzene	< 0.92	0.92	ug/m3	1	10/8/2013 6:45:00 AM
1,4-Dichlorobenzene	120	9.2	ug/m3	10	10/9/2013 B:09:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	10/8/2013 5:45:00 AM
2,2,4-trimethylpentane	19	7.1	ug/m3	10	10/9/2013 8:09:00 AM
4-ethyltoluene	5.4	0.75	ug/m3	1	10/8/2013 6:45:00 AM
Acatone	880	200	աց/m3	270	10/9/2013 6:41:00 PM
Allyl chloride	< 0.48	0.48	ug/m3	1	10/8/2013 6:45:00 AM
Benzene	10	4.9	ug/m3	10	10/9/2013 8:09:00 AM
Benzyl chloride	< 0.88	88.0	ug/m3	1	10/8/2013 6:45:00 AM
Bromodichloromethana	< 1.0	1.0	ug/m3	1	10/8/2013 6:45:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	10/8/2013 6:45:00 AM
Bromomethane	< 0.59	0,59	ug/m3	1	10/8/2013 6:45:00 AM
Carbon disulfide	9.5	4.7	ug/m3	10	10/9/2013 B:09:00 AM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	10/8/2013 6:45:00 AM
Chlorobenzene	< 0.70	0.70	ug/m3	1	10/8/2013 6:45:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	10/8/2013 6:45:00 AM
Chloroform	2.0	0.74	ug/m3	1	10/8/2013 6:45:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	10/8/2013 6:45:00 AM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 6:45:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	10/8/2013 6:45:00 AM
Cyclohexane	5.6	0,52	ug/m3	1	10/B/2013 6:45:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/8/2013 6:45:00 AM
Ethyl acetate	< 0.92	0.92	ug/m3	1	10/8/2013 6:45:00 AM
Ethylbenzene	18	6.6	ug/m3	10	10/9/2013 8:09:00 AM
Freon 11	2.1	0.86	ug/m3	1	10/8/2013 6:45:00 AM
Freon 113	< 1.2	1.2	ug/m3	1	10/8/2013 6:45:00 AM
Freon 114	< 1.1	1.1	ug/m3	1	10/8/2013 6:45:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 10

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-002A

Client Sample ID: RISV-1D

Tag Number: 366,147

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	-15			Analyst: RJP
Freon 12	1.4	0.75		ug/m3	1	10/8/2013 6:45:00 AM
Heptane	14	6.2		ug/m3	10	10/9/2013 8:09:00 AM
Hexachloro-1,3-butadlene	< 1.6	1.6		ug/m3	1	10/8/2013 6:45:00 AM
Hexane	12	5.4		ug/m3	10	10/9/2013 8:09:00 AM
Isopropyl alcohol	< 0.37	0.37		ug/m3	1	10/8/2013 6:45:00 AM
m&p-Xylene	68	13		ug/m3	10	10/9/2013 8:09:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	10/8/2013 5:45:00 AM
Methyl Ethyl Ketone	28	9.0		ug/m3	10	10/9/2013 8:09:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		и g/m 3	1	10/8/2013 6:45:00 AM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	10/8/2013 6:45:00 AM
Methylene chloride	< 0.53	0.53		ug/m3	1	10/8/2013 6:45:00 AM
o-Xylene	14	6.6		ид/т3	10	10/9/2013 8:09;00 AM
Propylene	< 0.26	0.26		ug/m3	1	10/8/2013 6:45:00 AM
Styrene	2.5	0.65		ug/m3	1	10/8/2013 6:45:00 AM
Tetrachloroethylene	0.90	1.0	J	ug/m3	1	10/8/2013 6:45:00 AM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	10/8/2013 6:45:00 AM
Toluene	72	5.7		ug/m3	10	10/9/2013 B:09:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/B/2013 6:45:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	10/8/2013 6:45:00 AM
Trichloroethene	< 0.82	0.82		ug/m3	1	10/8/2013 6:45:00 AM
Vinyl acetate	< 0.54	0.54		ug/m3	1	10/8/2013 6:45:00 AM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	1D/8/2013 6:45:00 AM
. Vinyl chloride	< 0.39	0.39		ug/m3	1	10/8/2013 6:45:00 AM

Qualifiers:

- Reporting Limit
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- М Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 10

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-003A

Client Sample ID: RISV-2

Tag Number: 130,175

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	•	TC)-15			Analyst: RJP
1,1,1-Trichloroethane	4.9	0.83		ug/m3	1	10/8/2013 7:22:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/8/2013 7:22:00 AM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	10/8/2013 7:22:00 AM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 7:22:00 AM
1,1-Dichioroethene	< 0.60	0.60		ug/m3	1	10/8/2013 7:22:00 AM
1,2,4-Trichiorobenzene	< 1.1	1.1		ug/m3	1	10/8/2013 7:22:00 AM
1,2,4-Trimethylbenzene	1 6	15		ug/m3	20	10/9/2013 8:43:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/8/2013 7:22:00 AM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 7:22;00 AM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 7:22:00 AM
1,2-Dichloropropane	< 0.70	0.70		ид/т3	1	10/8/2013 7:22:00 AM
1,3,5-Trimethylbenzene	5.3	0.75		ug/m3	1	10/8/2013 7:22:00 AM
1,3-butadiene	< 0.34	0.34		ug/m3	1	10/8/2013 7:22:00 AM
1,3-Dichlorobenzene	< 0.92	0,92		ug/m3	1	10/8/2013 7:22:00 AM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 7:22:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/8/2013 7:22:00 AM
2,2,4-trimethylpentane	26	14	•	ug/m3	20	10/9/2013 8:43:00 AM
4-ethyltoluene	11	15	J	ug/m3	20	10/9/2013 B:43:00 AM
Acetone	15000	1800		ug/m3	2430	10/9/2013 7:15:00 PM
Allyl chloride	< 0.48	0.48		ug/m3	1	10/8/2013 7:22:00 AM
Benzene	20	9.7		ug/m3	20	10/9/2013 8:43:00 AM
Benzyl chloride	< 0.88	0.88		սց/m3	1	10/8/2013 7:22:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/8/2013 7:22:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	10/8/2013 7:22:00 AM
Bromomethane	< 0.59	0.59		ug/m3	1	10/8/2013 7:22:00 AM
Carbon disulfide	2.8	0.47		ug/m3	1	10/8/2013 7:22:00 AM
Carbon tetrachloride	< 0.96	0,96		ug/m3	1	10/8/2013 7:22:00 AM
Chlorobenzene	< 0.70	0.70		ug/m3	1	10/8/2013 7:22:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	10/8/2013 7:22:00 AM
Chloroform	1.5	0.74		ug/m3	1	10/8/2013 7:22:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	10/8/2013 7:22:00 AM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 7:22:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	10/8/2013 7:22:00 AM
Cyclohexane	14	10		ug/m3	20	10/9/2013 8:43:00 AM
Dibromochloromethane	< 1.3	1.3		ид/т3	1	10/8/2013 7:22:00 AM
Ethyl acetate	< 0.92	0.92		ug/m3	1	10/8/2013 7:22;00 AM
Ethylbenzene	41	13		ug/m3	20	10/9/2013 B:43:00 AM
Freon 11	2.2	0.86		ug/m3	1	10/8/2013 7:22:00 AM
Freon 113	0.86	1.2	J	ug/m3	1	10/8/2013 7:22:00 AM
Freon 114	< 1.1	1.1		ug/m3	1	10/8/2013 7:22:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 10

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project: Lab ID: 1087g-13-05 C1310037-003A Client Sample ID: RISV-2

Tag Number: 130,175

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit Qua	ıl Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 12	2.5	0.75	ug/m3	1	10/8/2013 7:22:00 AM
Heptane	98	12	ug/m3	20	10/9/2013 8:43:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/8/2013 7:22:00 AM
Hexane	< 0.54	0.54	ug/m3	1	10/8/2013 7:22:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	10/8/2013 7:22:00 AM
m&p-Xylene	150	26	ug/m3	20	10/9/2013 8:43:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/8/2013 7:22:00 AM
Methyl Ethyl Ketone	130	18	ug/m3	20	10/9/2013 8:43:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	10/8/2013 7:22:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	10/8/2013 7:22:00 AM
Methylene chloride	1.7	0.53	ug/m3	1	10/8/2013 7:22:00 AM
o-Xylene	25	13	ug/m3	20	10/9/2013 8:43:00 AM
Propylene	< 0.26	0.26	ug/m3	1	10/8/2013 7:22:00 AM
Styrene	3.3	0.65	иg/m3	1	10/8/2013 7:22:00 AM
Tetrachloroethylene	3.7	1.0	ug/m3	1	10/8/2013 7:22:00 AM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	10/8/2013 7:22:00 AM
Toluene	190	11	ug/m3	20	10/9/2013 8:43:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 7:22:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	10/8/2013 7:22:00 AM
Trichloroethene	19	16	ug/m3	20	10/9/2013 8:43:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	10/8/2013 7:22:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	10/8/2013 7:22:00 AM
Vinyl chloride	< 0.39	0.39	ug/m3	1	10/8/2013 7:22:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Е Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 6 of 10

ALPROF Realty LLC

CLIENT: Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

CI310037-004A

Date: 17-Nov-13

Client Sample ID: RISV-3

Tag Number: 201,78

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJF
1,1,1-Trichloroethane	19	17		ug/m3	20	10/9/2013 9:16:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/8/2013 7:58:00 AM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	10/8/2013 7:58:00 AM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 7:58:00 AM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 7:58:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	10/8/2013 7:58:00 AM
1,2,4-Trimethylbenzene	12	15	J	ug/m3	20	10/9/2013 9:16:00 AM
1,2-Dibromoethane	< 1.2	1,2		ug/m3	1	10/8/2013 7:58:00 AM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 7:58:00 AM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 7:58:00 AM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	10/8/2013 7:58:00 AM
1,3,5-Trimethylbenzene	4.8	0.75		ug/m3	1	10/8/2013 7:58:00 AM
1,3-butadiene	< 0.34	0.34		ug/m3	1	10/8/2013 7:58:00 AM
1,3-Dichforobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 7:58:00 AM
1,4-Dichlorobenzene	< 0.92	0.92		Em/gu	1	10/8/2013 7:58:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/8/2013 7:58:00 AM
2,2,4-trimethylpentane	15	14		ug/m3	20	10/9/2013 9:16:00 AM
4-ethyltoluene	11	0.75		ug/m3	1	10/8/2013 7:58:00 AM
Acetone	2300	580		ug/m3	810	10/9/2013 7:50:00 PM
Allyl chloride	< 0.48	0.48		ug/m3	1	10/8/2013 7:58:00 AM
Benzene	13	9.7		ug/m3	20	10/9/2013 9:16:00 AM
Benzyl chloride	< 0.88	88.0		ug/m3	1	10/8/2013 7:58:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/8/2013 7:58:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	10/8/2013 7:58:00 AM
Bromomethane	< 0.59	0.59		ug/m3	1	10/8/2013 7:58:00 AM
Carbon disulfide	1.9	0.47		ug/m3	1	10/8/2013 7:58:00 AM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	10/8/2013 7:58:00 AM
Chlorobenzene	< 0.70	0.70		ug/m3	1	10/8/2013 7:58:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	10/8/2013 7:58:00 AM
Chloroform	2.2	0.74		ug/m3	1	. 10/8/2013 7:58:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	10/8/2013 7:58:00 AM
cis-1,2-Dichloroethene	< 0.60	0.60		ид/т3	1	10/8/2013 7:58:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	10/8/2013 7:58:00 AM
Cyclohexane	6.6	0.52		ug/m3	1	10/8/2013 7:58:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/8/2013 7:58:00 AM
Ethyl acetate	< 0.92	0.92		ug/m3	1	10/8/2013 7:58:00 AM
Ethylbenzene	33	13		ug/m3	20	10/9/2013 9:16:00 AM
Freon 11	2.1	0.86		ug/m3	1	10/8/2013 7:58:00 AM
Freon 113	0.78	1.2	J	ug/m3	1	10/8/2013 7:58:00 AM
Freon 114	< 1.1	1.1		ug/m3	1	10/8/2013 7:58:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 10

ALPROF Realty LLC

CLIENT: Lab Order:

C1310037

Project: Lab ID:

1087g-13-05 C1310037-004A Date: 17-Nov-13

Client Sample ID: RISV-3

Tag Number: 201,78

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		TO-15	i		Analyst: RJP
Freon 12	2.2	0.75	ug/m3	1	10/8/2013 7:58:00 AM
Heptane	37	12	ug/m3	20	10/9/2013 9:16:00 AM
Hexachloro-1,3-butadiene	< 1,6	1.6	ug/m3	1	10/8/2013 7:58:00 AM
Hexane	< 0.54	0.54	ug/m3	1	10/8/2013 7:58:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	10/8/2013 7:58:00 AM
m&p-Xylene	120	25	ug/m3	20	10/9/2013 9:16:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/8/2013 7:58:00 AM
Methyl Ethyl Ketone	55	18	иg/m3	20	10/9/2013 9:16:00 AM
Methyl Isobutyl Ketone	< 1,2	1.2	ug/m3	1	10/8/2013 7:58:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	10/8/2013 7:58:00 AM
Methylene chloride	0.95	0.53	ug/m3	1	10/8/2013 7:58:00 AM
o-Xylene	19	13	ug/m3	20	10/9/2013 9:16:00 AM
Propylene	< 0.26	0.26	ug/m3	1	10/8/2013 7:58:00 AM
Styrene	< 0.65	0.65	ug/m3	1	10/8/2013 7:58:00 AM
Tetrachioroethylene	1.4	1.0	ug/m3	1	10/8/2013 7:58:00 AM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	10/8/2013 7:58:00 AM
Toluene	110	11	ug/m3	20	10/9/2013 9:16:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 7:58:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	10/8/2013 7:58:00 AM
Trichloroethene	< 0.82	0.82	ug/m3	1	10/8/2013 7:58:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	10/8/2013 7:58:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	10/8/2013 7:58:00 AM
Vinyl chloride	< 0.39	0.39	ug/m3	1	10/8/2013 7:58:00 AM

Qualifiers:

- Reporting Limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Value above quantitation range Е
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 8 of 10

Date: 17-Nov-13

QC SUMMARY REPORT SURROGATE RECOVERIES

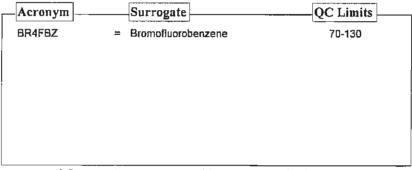
CLIENT:

ALPROF Realty LLC

Work Order:

C1310037

Project:


1087g-13-05

Test No:

TO-15

Matrix: A

Sample ID	BR4FBZ	
ALCSIUG-100713	98.0	
ALCS1UG-100813	97.0	
ALCS1UG-100913	96.0	
ALCS1UGD-092613	99.0	
ALCS1UGD-100713	94.0	
AMB1UG-100713	83.0	
AMB1UG-100813	78.0	
AMB1UG-100913	77.0	
C1310037-001A	96.0	
C1310037-002A	98.0	
C1310037-003A	122	
C1310037-004A	106	
C1310037-005A	78.0	

* Surrogate recovery outside acceptance limits

Certifichtes Cklipport

Tune File : C:\HPCHEM\1\DATA\AK100704.D
Tune Time : 7 Oct 2013 3:11 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AK100704.D

(IS1) (IS2) (IS3) 27112 101284 101028 (BFB)

File Sample	_	ate Recovery % Interna	l Standard Responses	
AK100705.D AMBLU		26385	97201 87279	
AK100706.D ALCSI		26957	99337 99279	
AK100719.D C13100	037-005A 78	24063	83207 75290	
AK100728.D C13100	037-001A 96	27573	111109 124566	
AK100729.D C13100	037-002A 98	28049	114391 126765	
AK100730.D C13100	037-003A 122	28572		
AK100731.D C13100		30509	139012 127631	
AK100732.D ALCS1	UGD-100713 94	32750	140801 142603	

t - fails 24hr time check * - fails criteria

Created: Sun Nov 17 10:06:28 2013 MSD #1/

Centek MEan or & Orles, ok Leport

Tune File : C:\HPCHEM\1\DATA\AK100803.D
Tune Time : 8 Oct 2013 1:02 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AK100803.D

(BFB) (IS1) (IS2) (IS3) 26392 95537 96144

					20222	200	, 30111	
File	Sample		-	Recovery %		Standard	-	
AK100804.D	ALCS1UG-100813	3	97		26372	9559	3 94674	
	AMB1UG-100813		78		25134	8667		
AK100835.D	C1310037-001A	10X	117		21230	6695	5 84990	
AK100836.D	C1310037-002A	10X			20563	6828	8 82355	
AK100837.D	C1310037-003A	20X			25239	8603		
AK100838.D	C1310037-004A	20X	124		20479	6412	8 91006	

t - fails 24hr time check * - fails criteria

Created: Sun Nov 17 10:08:24 2013 MSD #1/

CenfekMEaBorafones,ckL@port

Tune File : C:\HPCHEM\1\DATA\AK100903.D
Tune Time : 9 Oct 2013 12:44 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AK100903.D

(BFB) (IS2) 77509 (IS3) (IS1) 23376 80409

File	Sample	DL		Recovery %		Standard Resp	
	ALCS1UG-10091		96		22822	74467	77006
AK100905.D	AMB1UG-100913		77		22855	70133	64776
AK100912.D	C1310037-001A	270X	78		23350	69193	67619
AK100913.D	C1310037-002A	270X	88		22510	67408	66437
AK100914.D	C1310037-003A	2430X	84		22187	67920	66453
AK100915.D	C1310037-004A	810X	84		22237	66869	66241
AK100926.D	ALCS1UGD-0926	13	99		23005	69119	71617

t - fails 24hr time check * - fails criteria

Created: Sun Nov 17 10:10:03 2013 MSD #1/

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-005A

Client Sample ID: Trip Blank

Tag Number: 217

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	10/8/2013 12:28:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/8/2013 12:28:00 AM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	10/8/2013 12:28:00 AM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	10/8/2013 12:28:00 AM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 12:28:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/8/2013 12:28:00 AM
1,2,4-Trimethylbenzene	< 0.75	0.75	ug/m3	1	10/8/2013 12:28:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/8/2013 12:28:00 AM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	10/8/2013 12:28:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	10/8/2013 12:28:00 AM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	10/8/2013 12:28:00 AM
1,3,5-Trimethylbenzene	< 0.75	0.75	ug/m3	1	10/8/2013 12:28:00 AM
1,3-butadiene	< 0.34	0.34	ug/m3	1	10/8/2013 12:28:00 AM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	10/8/2013 12:28:00 AM
1,4-Dichlorobanzene	< 0.92	0.92	ug/m3	1	10/8/2013 12:28:00 AM
1,4-Dioxane	< 1.1	1.1	ид/т3	1	10/B/2013 12:28:00 AM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	10/8/2013 12:28:00 AM
4-ethyltoluene	< 0.75	0.75	ug/m3	1	10/8/2013 12:28:00 AM
Acetone	< 0.72	0.72	ug/m3	1	10/8/2013 12:28:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	10/8/2013 12:28:00 AM
Benzene	< 0.49	0.49	ug/m3	1	10/8/2013 12:28:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	10/8/2013 12:28:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/8/2013 12:28:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	10/8/2013 12:28:00 AM
Bromomethane	< 0.59	0.59	ug/m3	1 -	10/8/2013 12:28:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	10/8/2013 12:28:00 AM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	10/8/2013 12:28:00 AM
Chlorobenzene	< 0.70	0.70	ug/m3	1	10/8/2013 12:28:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	10/8/2013 12:28:00 AM
Chloroform	< 0.74	0.74	ug/m3	1	10/8/2013 12:28:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	10/8/2013 12:28:00 AM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 12:28:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1 .	10/8/2013 12:28:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	10/8/2013 12:28:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/8/2013 12:28:00 AN
Ethyl acetate	< 0,92	0.92	ug/m3	1	10/8/2013 12:28:00 AM
Ethylbenzene	< 0.66	0.66	ug/m3	1	10/8/2013 12:28:00 AM
Freon 11	< 0.86	0.86	ug/m3	1	10/8/2013 12:28:00 AM
Freon 113	< 1,2	1.2	ug/m3	1	10/8/2013 12:28:00 AM
Freon 114	< 1.1	1.1	ug/m3	1	10/8/2013 12:28:00 AM

Qualifiers:

- Reporting Limit
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded H
- W Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Ε Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 9 of 10

Date: 17-Nov-13

CLIENT: ALPROF

ALPROF Realty LLC

C1310037

Project: Lab ID:

Lab Order:

1087g-13-05

C1310037-005A

Client Sample ID: Trip Blank

Tag Number: 217

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
Freon 12	< 0.75	0.75	ug/m3	1	10/8/2013 12:28:00 AM
Heptane	< 0.62	0.62	и д/m 3	1	10/8/2013 12:28:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/8/2013 12:28:00 AM
Нехапе	< 0.54	0.54	ug/m3	1	10/8/2013 12:28:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	10/8/2013 12:28:00 AM
m&p-Xylene	< 1.3	1.3	ug/m3	1	10/8/2013 12:28:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/8/2013 12:28:00 AM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	10/8/2013 12:28:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	10/8/2013 12:28:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	10/8/2013 12:28:00 AM
Methylene chloride	< 0.53	0.53	ug/m3	1	10/8/2013 12:28:00 AM
o-Xylene	< 0.66	0.66	ug/m3	1	10/8/2013 12:28:00 AM
Propylene	< 0.26	0.26	ug/m3	1	10/8/2013 12:28:00 AM
Styrene	< 0.65	0.65	ug/m3	1	10/8/2013 12:28:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	10/8/2013 12:28:00 AM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	10/8/2013 12:28:00 AM
Toluene	< 0.57	0.57	ug/m3	1	10/8/2013 12:28:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 12:28:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	10/8/2013 12:28:00 AM
Trichloroethene	< 0.82	0.82	ug/m3	1	10/8/2013 12:28:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	10/8/2013 12:28:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	10/8/2013 12:28:00 AM
Vinyi chloride	< 0.39	0.39	ug/m3	1	10/8/2013 12:28:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ${\sf JN}$ Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 10 of 10

Spike Recovery outside accepted recovery limits Analyte detected at or below quantitation limits

ANALYTICAL QC SUMMARY REPORT

Date: 17-Nov-13

ALPROF Realty LLC CLIENT:

C1310037 Work Order:

Project:

TestCode: 1ugM3_TO15 1087g~13-05

Client ID: 77777	Samplype: MBLK	TestCode	TestCode: 1ugM3_TO15 Units: ppbV	Prep Date:		RunNo: 7534
	Batch ID: R7534	TestNo	TestNo: TO-15	Analysis Date:	10/9/2013	SeqNo: 89795
Analyte	Result	Pol	SPK value SPK Ref Val	%REC LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	< 0.15	0.15				
1,1,2,2-Tetrachloroethane	< 0,15	0.15				
1,1,2-Trichloroethane	< 0.15	0.15				
I,1-Dichloroethane	< 0.15	0.15				
1,1-Dichloroethene	< 0.15	0.15				
1,2,4-Trichforobenzene	< 0.15	0.15				
1,2,4-Trimethylbenzene	< 0.15	0.15				
1,2-Dibromoethane	< 0.15	0.15				
,2-Dichlorobenzene	< 0,15	0.15				
,2-Dichloroethane	< 0.15	0.15				
,2-Dichloropropane	< 0.15	0.15				
1,3,5-Trimethylbenzene	< 0.15	0.15				
l,3-butadiene	< 0.15	0.15				
,3-Dichlorobenzene	< 0.15	0.15				
1,4-Dichiorobenzene	< 0.15	0.15				
1,4-Dioxane	< 0.30	0.30				
2,2,4-trimethylpentane	< 0.15	0,15				
4-ethyltoluene	< 0.15	0.15				
Acetone	< 0.30	0.30				
Allyl chloride	< 0.15	0.15				
Велгеле	< 0.15	0.15				
Benzył chloride	< 0.15	0.15				
Bromodichloromethane	< 0.15	0.15				
Вютобот	< 0.15	0.15				
Bromomethane	< 0.15	0.15				
Qualifiers: Results repo	Results reported are not blank corrected	į	E Value above quantitation range) Julie	H Holding times for	Holding times for preparation or analysis exceeded
-	Analyte detected at or below magnitation limits	ž.	Not Defected at the Reporting Limit	imit at		RPD outside accepted recovery limits

Real
ALPROF Realty LLC C1310037
CLIENT: Work Order:

TestCode: 1ugM3_TO15

Baltin D. 187584 TestMor. TO-16 Te	Sample ID AMB1UG-100913	SampType: MBLK	TestCode:	1uaM3 TO	TestCode: 1uaM3 TO15 Units: ppbV		Pren Date:			RipNo. 7534		
										Service Service	ŧ	
Second Second Second Service Carol Service		Batch (D: R7534	TestNo:	TO-15		Ans		10/9/201	en	SegNo: 897	95	
C 0.15 0.15	Analyte	Result		SPK value	SPK Ref Val				RPD Ref Val	%RPD	RPDLimit	Qual
C C C C C C C C C C	Carbon disulfide	< 0.15	0.15									
0,15 0,15	Carbon tetrachloride	< 0.15	0.15									
Control of the cont	Chlorobenzene	< 0.15	0.15									
Continue of the continue of	Chloroethane	< 0.15	0.15									
Continue of the continue of	Chloroform	< 0.15	0.15									
Continue	Chforomethane	< 0.15	0.15									
Continue	cis-1,2-Dichloroethene	< 0.15	0.15									
1	cis-1,3-Dichloropropene	< 0.15	0.15									
 4 0,15 6 0,15 7 0,15 8 0,15 8 0,15 9 0,10 9 0,10 9 0,15 9 0,1	Cyclohexane	< 0.15	0.15									
< 0.25 0.25 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.16 0.15 < 0.20 0.30 < 0.30 0.30 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 0.15 < 0.15 </td <td>Dibromochloromethane</td> <td>< 0.15</td> <td>0.15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dibromochloromethane	< 0.15	0.15									
 < 0,15 < 0,15	Ethyl acetate	< 0.25	0.25									
 6.0.15 0.15 0.10 0.15 <	Ethylbenzene	< 0.15	0.15									
< 0.15	Freon 11	< 0.15	0.15									
< 0.15	Frean 113	< 0.15	0.15									
< 0.15 0.15 Accordant to blank covery limits Accordant to the covery limits <th< td=""><td>Freon 114</td><td>< 0.15</td><td>0.15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Freon 114	< 0.15	0.15									
 < 0.15 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.13 < 0.13 < 0.13 < 0.15 < 0.15	Freon 12	< 0.15	0.15									
 < 0.15 < 0.20 < 0.30 < 0.45 < 0.40 < 0.45 < 0.40 < 0.40	Heptane	< 0.15	0.15									
 20.15 0.15 20.15 0.15 20.10 0.30 20.30 0.30 20.30 0.30 20.30 0.30 20.15 0.15 20.16 0.15 20.17 0.15 20.18 0.15 20.19 0.15 20.10 0.15	Hexachloro-1,3-butadiene	< 0.15	0.15									
 c 0.15 c 0.30 c 0.30 c 0.30 c 0.30 c 0.15 d 0.15 d 0.15 e 0.15	Hexane	< 0.15	0.15									
< 0.30	Isopropyi alcohol	< 0.15	0.15									
 < 0.30 < 0.30 < 0.30 < 0.15 < 0.15	m&p-Xylene	< 0.30	0.30									
 < 0.30 < 0.15 < 0.15	Methyl Butyl Ketone	< 0.30	0.30									
< 0.30	Methyl Ethyl Ketone	< 0.30	0.30									
chine	Methyl Isobutyl Ketone	< 0.30	0.30									
col.15 0.15	Methyl tert-butyl ether	< 0.15	0.15									
 < 0.15 <	Methylene chloride	< 0.15	0.15									
 < 0.15 < <p>Analyte detected at or below quantitation limits </p> Analyte detected at or below quantitation limits S Spike Recovery outside accepted recovery limits S Spike Recovery outside accepted recovery limits 	a-Xylene	< 0.15	0.15									
 < 0.15 < 0.15 < 0.15 < 0.15 Results reported are not blank corrected Analyte detected at or below quantitation limits S pike Recovery outside accepted recovery limits ND Not Detected at the Reporting Limit S Spike Recovery outside accepted recovery limits	Propylene	< 0.15	0.15									
 < 0.15 < 0.15 Results reported are not blank corrected Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits Not Detected at the Reporting Limit Recovery outside accepted recovery limits	Styrene	< 0.15	0.15									
Results reported are not blank corrected J. Analyte detected at or below quantitation limits N. D. Not Detected at the Reporting Limit S. Spike Recovery outside accepted recovery limits S. Spike Recovery outside accepted recovery limits	Tetrachlordethylene	< 0.15	0.15									
Results reported are not blank corrected E Value above quantitation range H Holding times for preparation or analysis exce J Analyte detected at or below quantitation limits S Spike Recovery outside accepted recovery limits	Tetrahydrofuran	< 0.15	0.15									
Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit Recovery outside accepted recovery limits Spike Recovery outside accepted recovery limits		orted are not blank corrected			above quantitation rang	2			olding times for p	reparation or a	nalysis exceed	þ
Spike Recovery outside accepted recovery limits		ected at or below quantitation lin			stected at the Reporting	Limit			PD outside accept	ted recovery lir	nits	
		very outside accepted recovery lis	nits								Q	Page 2 of 7

CLIENT: ALPROF Re Work Order: C1310037 Project: 1087g-13-05	ALPROF Realty LLC C1310037 1087g-13-05				TestCode:	1ugM3_T015	}
Sample ID AMB1UG-100913 Client ID: ZZZZZ	SampType: MBLK Batch ID: R7534	TestCode: 1ugM? TestNo: TO-15	TestCode: 1ugM3_TO15 Units: ppbV TestIvo: TO-15	Prep Date: Analysis Date:	ate: 10/9/2013	Runno: 7534 Sequo: 89795	
Analyte	Result	PQL SP	SPK value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	RRPD RPDLimit	Qual
Toluene	< 0.15	0.15					
trans-1,2-Dichloroethene	< 0.15	0.15					
trans-1,3-Dichloropropene	< 0.15	0.15					
Trichloroethene	< 0.15	0.15					
Vinyi acetate	< 0.15	0.15					
Vinyl Bromide	< 0.15	0.15					
Vinyl chloride	< 0.15	0.15					
Sample ID AMB1UG-100713	SampType: MBLK	TestCode: 1	TestCode: 1ugM3_TO15 Units: ppbV	Prep Date:	ate:	RunNo: 7535	
Client ID: ZZZZZ	Batch ID: R7535	TestNo: TO-15	0-15	Analysis Date:	ate: 10/7/2013	SeqNo: 89802	
Analyte	Result	PQL SP	SPK value SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	I %RPD RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15					
1,1,2,2-Tetrachloroethane	< 0.15	0.15					
1,1,2-Trichloroethane	< 0.15	0.15					
1,1-Dichloroethane	< 0.15	0.15					
1,1-Dichloroethene	< 0.15	0.15					
1,2,4-Trichlorobenzene	< 0.15	0.15					
1,2,4-Trimethylbenzene	< 0.15	0.15					
1,2-Dibromoethane	< 0.15	0.15					
1,2-Dichlorobenzene	< 0.15	0.15					
1,2-Dichloroethane	< 0.15	0.15					
1,2-Dichloropropane	< 0.15	0.15					
1,3,5-Trimethylbenzene	< 0.15	0.15					
1,3-butadiene	< 0.15	0.15					
1,3-Dichlorobenzene	< 0.15	0.15					
1,4-Dichlorobenzene	< 0.15	0.15					
1,4-Dioxane	< 0.30	0.30					
2,2,4-trimethylpentane	< 0.15	0.15					
4-ethyltoluene	< 0.15	0.15					
Qualifiers: Results repo	Results reported are not blank corrected	 	Value above quantitation range	180	H Holding times	Holding times for preparation or analysis exceeded	led
	Analyte detected at or below quantitution limits	its ND	O Not Detected at the Reporting Limit	1g Limit	R RPD outside a	RPD outside accepted recovery fimits	
S Spike Recov	Spike Recovery putside accepted recovery limits	nits				7	Page 3 of 7

CLIENT:	ALPROF Realty LLC
Work Order:	C1310037
Project:	1087g-13-05

TestCode: 1ugM3_TO15

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits		Η Μ	Valuc above quantitation range Not Detected at the Reporting Limit	E V	imits	Results reported are not blank corrected Analyte detected at or below quantitation limits Stales Browner outside accorded proposery limits	Quafffiers: Results repor J Analyte detect Saile Beroor
					0:30	< 0.30	Methyl Isobutyl Ketone
					0.30	< 0.30	Methyl Ethyl Ketone
					0.30	< 0.30	Methyl Butyl Ketone
					0.30	< 0.30	m&p-Xylene
					0.15	< 0.15	Isopropyl alcohol
					0.15	< 0.15	Hexane
					0.15	< 0.15	Hexachloro-1,3-butadiene
					0,15	< 0.15	Нертапе
					0.15	< 0.15	Freon 12
					0.15	< 0.15	Frean 114
					0.15	< 0.15	Frean 113
					0.15	< 0.15	Freon 11
					0.15	< 0.15	Ethylbenzene
					0.25	< 0.25	Ethyl acetate
					0.15	< 0.15	Dibromochloromethane
					0.15	< 0.15	Cyclohexane
					0.15	< 0.15	cis-1,3-Dichloropropene
					0.15	< 0.15	cis-1,2-Dichloroethene
					0.15	< 0.15	Chloromethane
					0.15	< 0.15	Chloraform
					0,15	< 0.15	Chloroethane
					0.15	< 0.15	Chlorobenzene
					0.15	< 0.15	Carbon tetrachloride
					0.15	< 0.15	Carbon disulfide
					0.15	< 0.15	Bromomethane
					0.15	< 0.15	Вготогот
					0,15	< 0.15	Bromodichloromethane
					0.15	< 0.15	Benzyl chlaride
					0.15	< 0.15	Benzene
					0.15	< 0.15	Allyl chlaride
i					0:30	< 0.30	Acetone
%RPD RPDLimit Qual	nit RPD Ref Val	LowLimit HighLimit	8 SPK Ref Val %REC	SPK value	Pal	Result	Analyte
SeqNo: 8980Z	10/7/2013	Analysis Date: 10/		TestNo: TO-15	TestN	Batch ID: R7535	Cllent ID: ZZZZZ
RunNo: 7535		Prep Date:	TO16 Units: ppbV	TestCode: 1ugM3_TO15	TestCod	SampType: MBLK	Sample ID AMB1UG-100713

CLIENT: ALPROF F	ALPROF Realty LLC C1310037									
Project: 1087g-13-05	50						TestCode: 1	lugM3_TO15	S)	
Sample ID AMB1UG-100713	SampType: MBLK	TestCod	TestCode: 1ugM3_TO15	715 Units: ppbV	P. P.	Prep Date:		RunNo: 7535		
Client ID: ZZZZZ	Batch ID: R7535	TestN	TestNo: TO-15		Analys	Analysis Date: 10/7/2013	2013	SeqNo: 89802	12	
Analyte	Result	PQL	SPK value	SPK Ref Val	WREC Lowl	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	< 0.15	0,15								
Methylane chloride	< 0.15	0.15								
o-Xylene	< 0.15	0.15								
Propylene	< 0.15	0.15								
Styrene	< 0.15	0.15								
Tetrachloroethylene	< 0,15	0.15								
Tetrahydrofuran	< 0.15	0.15								
Toluene	< 0.15	0.15								
trans-1,2-Dichloroethene	< 0,15	0.15								
trans-1,3-Dichloropropene	< 0.15	0.15								
Trichlaroethene	< 0.15	0,15								
Vinyl acetate	< 0.15	0.15								
Vinyl Bromide	< 0.15	0.15								
Vinyl chloride	< 0.15	0.15								
Sample ID AMB1UG-100813	SampType: MBLK	TestCod	TestCode: 1ugM3_TO15	015 Units: ppbV	h	Prep Date:		RunNa: 7536	g	
Client ID: ZZZZZ	Batch ID: R7536	TestN	TestNo: TO-15		Analys	Analysis Date: 10/8/2013	2013	SegNo: 89818	18	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC Low	LowLimit HighLimit	: RPD Ref Val	%RPD	RPOLimit	Quai
1,1,1-Trichloroethane	< 0.15	0.15								
1,1,2,2-Tetrachloroethane	< 0.15	0.15								
1,1,2-Trichloroethane	< 0.15	0.15								
1,1-Dichloroethane	< 0.15	0.15								
1,1-Dichloroethene	< 0.15	0.15								
1,2,4-Trichlorobenzene	< 0.15	0.15								
1,2,4-Trimethylbenzene	< 0.15	0.15								
1,2-Dibromoethane	< 0.15	0.15								
1,2-Dichlorobenzene	< 0.15	0.15								
1,2-Dichloroethane	< 0,15	0.15								
1,2-Dichloropropane	< 0.15	0.15								
Qualifiers: Results repo	Results reported are not blank corrected		1	Value above quantitation range	ခ _င ်	I	Holding times for preparation or analysis exceeded	preparation or an	alysis exceede	-B
•	Analyte detected at or below quantitation limits	s,	ND Not D	Not Detected at the Reporting Limit	Limit	x	RPD outside accepted recovery limits	pted recovery lim	its	
S Spike Recov	Spike Recovery outside accepted recovery limits	ภิ							Pa	Page 5 of 7

Project: 1087g-13-05	-05				TestCode: 1	1ugM3_T015	
Sample ID AMB1UG-100813 Client ID: ZZZZZ	SampType: MBLK Batch ID: R7536	TestCode: 1ugM: TestNo: TO-15	TestCode: 1ugM3_TO15 Units: ppbV TestNo: TO-15	Prep Date: Analysis Date: 10/8	10/8/2013	RunNo: 7536 SeqNo: 89818	ľ
Analyte	Result	Pol	SPK value SPK Ref Val	%REC LowLimit HighLimit	iif RPD Ref Va	%RPD RPDLinit	Qual
1,3,5-Trimethylbenzene	< 0.15	0.15					
1,3-butadiene	< 0.15	0.15					
1,3-Dichlorobenzene	< 0.15	0.15					
1,4-Dichlorobenzene	< 0.15	0.15					
1,4-Dіохале	< 0.30	0.30					
2,2,4-trimethy/pentane	< 0.15	0.15					
4-ethyltoluene	< 0.15	0.15					
Acetone	< 0.30	0.30					
Allyl chloride	< 0.15	0.15					
Benzene	< 0.15	0.15					
Benzyi chloride	< 0.15	0.15					
Bromodichloromethane	< 0.15	0.15					
Bramoform	< 0,15	0.15					
Bromomethane	< 0.15	0.15					
Carbon disuifide	< 0.15	0.15					
Carbon tetrachloride	< 0.15	0.15					
Chlorobenzene	< 0.15	0.15					
Chloroethane	< 0.15	0.15					
Chloroform	< 0.15	0.15					
Chloromethane	< 0.15	0.15					
cis-1,2-Dichloroethene	< 0.15	0.15					
cis-1,3-Dichloropropene	< 0.15	0.15					
Cyclohexane	< 0.15	0.15					
Dibromochloromethane	< 0.15	0.15					
Ethyl acetate	< 0.25	0.25					
Ethylbenzene	< 0.15	0.15					
Freon 11	< 0.15	0.15					
Freon 113	< 0.15	0.15					
Freon 114	< 0.15	0.15		-			
Freon 12	< 0.15	0.15					
Heptane	< 0.15	0.15					
Qualifiers: Results rep	Results reported are not blank corrected		l		Holding times for	Holding times for preparation or analysis exceeded	pa
	Analyte detected at or below quantitation limits	imits	ND Not Detected at the Reporting Limit	Limit	RPD outside nece	RPD outside accepted recovery limits	
	:					•	

ALPROF Realty LLC

CLIENT:

HK

E Value above quantitation range ND Not Detected at the Reporting Limit

> Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Qualifiers;

	ALPROF Realty LLC										
Work Order: C1310037 Project: 1087g-13-05	5							TestCode: 1ugM3_TO15	1ugM3_T(315	
Sample ID AMB1UG-100813 Client ID: ZZZZZ	SampType: MBLK Batch ID: R7536	TestCor	estCode: 1ugM3_ TestNo: TO-16	TestCode: 1ugM3_TO15 Units: ppbV TestNo: TO-16		Prep Date: Analysis Date: 10/8/2013	ite: 10/8/2	2013	RunNo: 7536 SeqNo: 89818	536 9818	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Quai
Hexachloro-1,3-butadiene	< 0.15	0.15			İ						
Нехапе	< 0.15	0.15									
Isopropyl alcohol	< 0.15	0.15									
m&p-Xylene	< 0.30	0.30									
Methyl Butyl Ketone	< 0.30	0.30									
Methyl Ethyl Ketone	< 0.30	0.30									
Methyl Isobutyl Ketone	< 0.30	0.30									
Methyl tert-butyl ether	< 0.15	0.15									
Methylene chloride	< 0.15	0.15									
o-Xylene	< 0.15	0.15									
Propylene	< 0.15	0.15									
Styrene	< 0.15	0.15									
Tetrachloroethylene	< 0.15	0.15									
Tetrahydrofuran	< 0.15	0.15									
Toluene	< 0,15	0.15									
trans-1,2-Dichloroethene	< 0.15	0.15									
trans-1,3-Dichloropropane	< 0.15	0.15									
Trichloroethene	< 0.15	0.15									
Vinyl acetate	< 0.15	0.15									
Vinyl Bromide	< 0.15	0.15									
Vinus chlorida	< 0.15	7.1									

Page	49	of	298	
------	----	----	-----	--

Centek Laboratories all Late Continuing Calibration Report

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Sun Nov 17 10:00:45 2013 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1 I	Bromochloromethane	1.000	1.000	0.0	100	0.00
2 T	Freon 22	1.627	1.803	-10.8	116	0.00
3 T	Propylene	0.736	0.751	-2.0	112	0.00
4 T	Freon 12	2.981	3.228	-8.3	110	0.00
5 T	Chloromethane	0.715	0.765	-7.0	117	0.00
бТ	Freon 114	2.010	2.233	-11.1	114	0.00
7 T	Vinyl Chloride	0.666	0.691	-3.8	114	0.00
8 T	1,3-butadiene	0.526	0.564	-7.2	113	0.00
9 T	Bromomethane	0.922	0.989	-7.3	114	0.00
10 T	Ethanol	0.176		-22.2	131	0.00
11 T	Acrolein	0.176	0.189	-7.4	114	0.00
12 T	Chloroethane	0.320	0.347	-8.4	109	0.00
13 T	Vinyl Bromide	0.838	0.909	-8.5	112	0.00
14 T	Freon 11	2.501	2.775	-11.0	114	0.00
15 T	Acetone	0.297	0.278	6.4	98	0.00
16 T	Isopropyl alcohol	0.792	0.751	5.2	98	0.00
17 T	1,1-dichloroethene	0.818		-0.7	100	0.00
18 T	Freon 113	1.837	2.041	-11.1	114	0.00
19 t	t-Butyl alcohol	1.189	1.093	8.1		0.00
20 T	Methylene chloride	0.651	0.694	-6.6	111	0.00
21 T	Allyl chloride	0.782	0.867	-10. 9	110	0.00
22 T	Carbon disulfide	2.150	2.201	-2.4	108	0.00
23 T	trans-1,2-dichloroethene	0.902		-26.3	130	0.00
24 T	methyl tert-butyl ether			9.1	100	0.00
25 T	1,1-dichloroethane	2.088	2.162	-3.5	105	0.00
26 T	Vinyl acetate	1.785	1.673	6.3	91	0.00
27 T	Methyl Ethyl Ketone	0.483		16.4	81	0.00
28 T	cis-1,2-dichloroethene	1.433	1.351	5.7		0.00
29 T	Hexane	1.619	1.304	19.5	80	0.00
30 T	Ethyl acetate	1.748		14.8	85	0.00
31 T	Chloroform	2.631	2.725	-3.6	105	0.00
32 T	Tetrahydrofuran	2.631 1.004 1.473	0.820	18.3		0.00
33 T	1,2-dichloroethane	1.473	1.490	-1.2	102	0.00
34 I	1,4-difluorobenzene	1.000	1.000	0.0	81	0.00
35 T	1,1,1-trichloroethane	0.525	0.659	-25.5	103	0.00
36 T	Cyclohexane	0.364	0.371	-1.9	84	0.00
37 T	Carbon tetrachloride		0.803	-46.5#		0.00
38 T	Benzene		0.945	-15.8		0.00
39 T	Methyl methacrylate	0.220	0.205	6.8		0.00
40 T	1,4-dioxane	0.142	0.141	0.7	82	0.00
41 T	2,2,4-trimethylpentane		1.265	-11.3		0.00
42 T	Heptane	0.370	0.367	8.0	81	0.00
43 T	Trichloroethene	0.405	0.499	-23.2	102	0.00
44 T	1,2-dichloropropane	0.299	0.360	-20.4	98	0.00
45 T	Bromodichloromethane	0.605	0.754	-24.6	101	0.00
46 T	cis-1,3-dichloropropene	0.403	0.476 0.375		97	0.00
47 T	trans-1,3-dichloropropene	0.293	0.375	-28.0	106	0.00
48 T	1,1,2-trichloroethane	0.371	0.480	-29.4	105	0.00
49 I	Chlorobenzene-d5	1.000	1.000	0.0	88	

^{(#) =} Out of Range

MSD1

Centek Laboratoriesaltu@te Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AK100704.D Vial: 4 Acq On : 7 Oct 2013 3:11 pm Sample : A1UG 1.0 Misc : A921_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Nov 17 10:00:46 2013

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
50	T	Toluene	0.631	0.625	1.0	87	0.00
51	T	Methyl Isobutyl Ketone	0.522	0.475	9.0	79	0.00
52	${f T}$	Dibromochloromethane	0.695	0.804	-15.7		0.00
53	T	Methyl Butyl Ketone	0.446	0.423	5.2	74	0.00
54		1,2-dibromoethane	0.599	0.702	-17.2	103	0.00
55	T	Tetrachloroethylene	0.500	0.563	-12.6	103	0.00
56	T	Chlorobenzene	0.891	0.986	-10.7		0.00
57	${f T}$	Ethylbenzene	1.349	1.244	7.8	80	0.00
58	\mathbf{T}	m&p-xylene	1.036	1.050	-1.4	87	0.00
59		Styrene	0.791	0.822	-3.9	89	0.00
60		Bromoform	0.672	0.810	-20.5	108	0.00
61		o-xylene	1.245	1.388	-11.5	97	0.00
62	S	Bromofluorobenzene	0.627	0.608	3.0	82	0.00
63		1,1,2,2-tetrachloroethane	0.893	1.018	-14.0	101	0.00
64		2-Chlorotoluene	1.473	1.392	5.5	88	0.00
65	T	4-ethyltoluene	1.350	1.254	7.1	80	0.00
66		1,3,5-trimethylbenzene	1.503	1.545	-2.8		0.00
67		1,2,4-trimethylbenzene	1.288	1.049	18.6	70	0.00
68		1,3-dichlorobenzene	0.877	0.914	-4.2		0.00
69	T	benzyl chloride	0.412	0.504	-22.3	106	0.00
70		1,4-dichlorobenzene	0.869	0.872	-0.3	89	0.00
71		1,2,3-trimethylbenzene	1.315		2.2		0.00
72		1,2-dichlorobenzene	0.916	0.942	-2.8		0.00
73	T	1,2,4-trichlorobenzene	0.625	0.514	17.8	73	0.00
74		Naphthalene	1.532	1.097	28.4	65	0.00
75	T	Hexachloro-1,3-butadiene	0.832	0.948	-13.9	98	0.00

Centek Laboratories, Locantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AK100704.D Vial: 4 Acq On : 7 Oct 2013 3:11 pm Sample : A1UG_1.0 Misc : A921_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Oct 07 15:43:15 2013 Quant Results File: A921_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Sep 22 09:13:41 2013
Response via : Initial Calibration

DataAcq Meth : 1UG_T015

Dacan	ed ween . Ind_iois							
Inte	rnal Standards	R.T.		Response	Conc U	nits	Dev	(Min)
1)	Bromochloromethane	9.36	128	27112	1.00	ppb		0.01
34)	1,4-difluorobenzene	11.67	114	101284	1.00	ppb		0.01
49)	Chlorobenzene-d5	16.11		101028		ppb		0.01
62)	em Monitoring Compounds Bromofluorobenzene	17.61			0.97	ppb		0.01
Sp	iked Amount 1.000	Range 70	- 130	Recover	xy =	97	.00%	
_							_	4
	et Compounds							alue
	Freon 22	3.89				ppb	#	
	Propylene	3.89			1.02			
4)	Freon 12	3.94	85 50	87525	1.08	ppb		100
5)	Chloromethane	4.12	50	20730	1.07	dqq		96
6)	Freon 114	4.12	85	60535		ppb		90
	Vinyl Chloride	4.31	62	18740		ppb		99
	1,3-butadiene	4.40	39	15299		ppb		80
	Bromomethane	4.73		15299 26818	1 07	ppb		94
		5.08	75	20010	1.07			
•	Ethanol			5842		ppb		
	Acrolein	5.61	56	5111 9404		ppb		52
	Chloroethane	4.89			1.09			97
	Vinyl Bromide	5.21	106	24648	1.09	ppb		99
14)	Freon 11	5.47	101	24648 75249 7526 20354	1.11	ppb		97
15)	Acetone	5.75	58	7526	0.93	ppb	#	100
16)	Isopropyl alcohol	5.87	45	20354	0.95			100
	1,1-dichloroethene		96	22329		ppb		94
	Freon 113	6.41		55333	1.11			99
	t-Butyl alcohol	6.60	59	29637	0.92			95
			84	18805	1.06		13	90
20)	Methylene chloride	6.64	84 41	10007				94
	Allyl chloride			23500	1.11			
	Carbon disulfide	6.81			1.02	ppb		97
	trans-1,2-dichloroethene				1.26	bbp		
	methyl tert-butyl ether	7.70 8.00	73 63	61485	0.91			81
	1,1-dichloroethane			58613	1.04			9 B
26)	Vinyl acetate	8.05	43	45361				93
27)	Methyl Ethyl Ketone	0.63		10945	0.84	ppb	#	70
28)	cis-1,2-dichloroethene	B.92	61	36624	0.94	ppb		96
	Hexane	8.53		35362	0.81			85
	Ethyl acetate	9.19	43	40405	0.85			88
	Chloroform	9.52	43 83 42	73888	1.04			99
	Tetrahydrofuran	9.86	42	22237m	0.82			
32)	1,2-dichloroethane	10.64	62	40395	1.01	ppp		100
	1,1,1-trichloroethane	10.34	97	66779m				100
				37619	1.26			0.1
36)		11.05	56		1.02			91
37)	Carbon tetrachloride	10.99	117	81284m	1.46			
38)		10.96	78	95737	1.16			95
39)	Methyl methacrylate	12.60	41	20719	0.93			92
40)	1,4-dioxane	12.76	88	14274m	0.99			
41)	2,2,4-trimethylpentane	11.83	57	128104	1.11			89
42)	Heptane	12.18	43	37125	0.99			92
43)	Trichloroethene	12.30	130	5056 9	1.23			96
44)	1,2-dichloropropane	12.40	63	36464	1.21			100
	Bromodichloromethane	12.72	83	76401m 🗸	1.25			
				·				

(#) = qualifier out of range (m) = manual integration MSD1

AK100704.D A921 lUG.M Sun Nov 17 10:05:49 2013

Centek Laboratories, LDCantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AK100704.D Vial: 4 Acq On : 7 Oct 2013 3:11 pm Operator: RJP Sample : A1UG_1.0 Misc : A921_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Oct 07 15:43:15 2013 Quant Results File: A921_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Sep 22 09:13:41 2013 Response via : Initial Calibration

DataAcq Meth : 1UG_T015

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	cis-1,3-dichloropropene	13.51	7 5	48174	1.18 ppb	99
47)	trans-1,3-dichloropropene	14.23	75	37957	1.28 ppb	96
48)		14.51	97	48649	1.29 ppb	97
50)	Toluene	14.28	92	63156	0.99 ppb	96
51)	Methyl Isobutyl Ketone	13.52	43	47953 (71
52)	Dibromochloromethane	15.16	129	81250m ~	1.16 ppb	
53)	Methyl Butyl Ketone	14.77	43	42743m	0.95 ppb	
54)		15.40	107	70934	1.17 ppb	98
55)	Tetrachloroethylene	15.24	164	56878	1.13 ppb	99
56)	Chlorobenzene	16.15	112	99565	1.11 ppb	99
57)	Ethylbenzene	16.39	91	12571B	0.92 ppb	100
58)	m&p-xylene	16.58	91	212167	2.03 ppb	98
59)	Styrene	16.97	104	82999	1.04 ppb	92
60)	Bromoform	17.07	173	81784m	1.21 ppb	
61)	o-xylene	17.00	91	140223	1.11 ppb	92
63)	1,1,2,2-tetrachloroethane	17.40	83	102871	1.14 ppb	99
64)	2-Chlorotoluene	18.02	91	140661m	0.95 ppb	
65)	4-ethyltoluene	18.14	105	126661m	0.93 ppb	
66)	1,3,5-trimethylbenzene	18.19	105	156109m	1.03 ppb	
67)	1,2,4-trimethylbenzene	18.58	105	105968	0.81 ppb	96
68)	1,3-dichlorobenzene	18.83	146	92382	1.04 ppb	98
69)	benzyl chloride	18.89	91	50947m	1.22 ppb	
70)	1,4-dichlorobenzene	18.94	146	88065	1.00 ppb	99
71)	1,2,3-trimethylbenzene	18.98	105	129927	0.98 ppb	97
72)	1,2-dichlorobenzene	19.21	146	95130	1.03 ppb	98
73)	1,2,4-trichlorobenzene	20.77	180	51947m (. 0.82 ppb	
74)	Naphthalene	20.93	128	110786m `	0.72 ppb	
75)	Hexachloro-1,3-butadiene	21.00	225	95789	1.14 ppb	99

Centek Laboratories, allure Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AK100803.D Vial: 3 Acq On : 8 Oct 2013 1:02 pm Operator: RJP Sample : A1UG_1.0 Misc : A921_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator) Method Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Nov 17 10:00:46 2013

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1 I 2 T	Bromochloromethane Freon 22	1.000 1.627	1.000	0.0	112	0.00
3 T 4 T	Propylene Freon 12	0.736 2.981	0.730 3.193	0.8 -7.1		0.00
5 T	Chloromethane	0.715	0.738	-3.2		0.00
6 T	Freon 114	2.010	2.185	-8.7		0.00
7 T	Vinyl Chloride	0.666	0.674	-1.2		0.00
ВТ	1,3-butadiene	0.526	0.540	-2.7		0.00
9 T	Bromomethane	0.922	1.022	-10.8		0.00
10 T 11 T	Ethanol Acrolein	0.176 0.176	0.183 0.179	-4.0 -1.7		0.00
12 T	Chloroethane	0.320	0.336	-5.0		0.00
13 T	Vinyl Bromide	0.838		~3.9		0.00
14 T	Freon 11	2.501	2.747	-9.8	110	0.00
15 T	Acetone	0.297	0.323	-8.8	111	-0.02
16 T	Isopropyl alcohol	0.792	0.703	11.2		-0.02
17 T	1,1-dichloroethene	0.818		-5.9		0.00
18 T	Freon 113	1.837	1.960	-6.7		-0.02
19 t 20 T	t-Butyl alcohol Methylene chloride	1.189 0.651	1.104 0.674	7.1 -3.5		0.00
20 T	Allyl chloride	0.782	0.885	-13.2		0.00
22 T	Carbon disulfide	2.150	2.161	-0.5		0.00
23 T	trans-1,2-dichloroethene	0.902	0.925	-2.5	102	-0.01
24 T	methyl tert-butyl ether		1.800	27.9	77	0.00
25 T	1,1-dichloroethane	2.088	2.116	-1.3		0.00
26 T	Vinyl acetate	1.785	1.612	9.7		-0.01
27 T	Methyl Ethyl Ketone	0.483	0.386	20.1	75	-0.02
28 T 29 T	cis-1,2-dichloroethene	1.433 1.619	1.293	9.8 13.7	90 83	0.00
30 T	Hexane Ethyl acetate	1.748	1.397 1.402	19.8		0.00 -0.02
31 T	Chloroform	2.631	2.670	-1.5		0.00
32 T	Tetrahydrofuran	1.004	0.749	25.4		-0.02
33 T	1,2-dichloroethane	1.473	1.442	2.1	96	0.00
34 I	1,4-difluorobenzene	1.000	1.000	0.0	77	0.00
35 T	1,1,1-trichloroethane	0.525	0.673	-28.2		0.00
36 T	Cyclohexane	0.364	0 267	0.3		0.00
37 T	Carbon tetrachloride	0.548	0.871	-58.9		0.00
38 T	Benzene	0.816	0.741	-16.1		0.00
39 T	Methyl methacrylate	0.220	0.180	18.2		0.00
40 T	1,4-dioxane	0.142	0.151	-6.3 -6.9	83	-0.03
41 T 42 T	2,2,4-trimethylpentane Heptane	1.137 0.370	1.215 0.369	0.3	77	0.00
42 T	Trichloroethene	0.405	0.489	-20.7		0.00
44 T	1,2-dichloropropane	D.299	0.358	-19.7		0.00
45 T	Bromodichloromethane	0.605	0.733	-21.2	93	0.00
46 T	cis-1,3-dichloropropene			-19.4	92	0.00
47 T	trans-1,3-dichloropropene	0.403 0.293	0.376	-28.3	100	0.00
48 T	1,1,2-trichloroethane	0.371	0.477	-28.6	98	0.00
	Chlorobenzene-d5	1.000	1.000	0.0	84	

Centek Laboratories alter Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AK100803.D Acq On : 8 Oct 2013 1:02 pm Operator: RJP Sample : A1UG_1.0 Misc : A921_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\l\METHODS\A921_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Nov 17 10:00:46 2013
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
50	T	Toluene	0.631	0.598	5.2	79	0.00
51	T	Methyl Isobutyl Ketone	0.522	0.621	-19.0	98	0.00
52	T	Dibromochloromethane	0.695	0.892	-28.3	106	0.00
53	T	Methyl Butyl Ketone	0.446	0.394	11.7	66	0.00
54	${f T}$	1,2-dibromoethane	0.599	0.691	-15.4	97	0.00
55	T	Tetrachloroethylene	0.500	0.561	-12.2	98	0.00
56	${f T}$	Chlorobenzene	0.891	0.954	-7.1	90	0.00
57		Ethylbenzene	1.349	1.177	12.8	72	0.00
58	${f T}$	m&p-xylene	1.036 .	1.006	2.9	79	0.00
59	${f T}$	Styrene	0.791	0.787	0.5	82	0.00
60	${f T}$	Bromoform	0.672	0.854	-27.1	108	0.00
61	${f T}$	o-xylene	1.245	1.350	-8.4	90	0.00
62	S	Bromofluorobenzene	0.627	0.620	1.1	79	0.00
63	${f T}$	1,1,2,2-tetrachloroethane	0.893	1.025	-14.8	97	0.00
64	${f T}$	2-Chlorotoluene	1.473	1.393	5.4		0.00
65	T	4-ethyltoluene	1.350	1.207	10.6		0.00
66		1,3,5-trimethylbenzene	1.503	1.348	10.3		0.00
67	${f T}$	1,2,4-trimethylbenzene	1.288	0.959	25.5		0.00
68	T	1,3-dichlorobenzene	0.877	0.899	-2.5	84	0.00
69		benzyl chloride	0.412	0.520	-26.2	104	0.00
70	T	1,4-dichlorobenzene	0.869	0.867	0.2		0.00
71	T	1,2,3-trimethylbenzene	1.315	1.193	9.3	73	0.00
72	T	1,2-dichlorobenzene	0.916	0.930	-1.5		0.00
73	T	1,2,4-trichlorobenzene	0.625	0.479	23.4		0.00
74	T	Naphthalene	1.532	0.822	46.3		0.00
75	T	Hexachloro-1,3-butadiene	0.832	0.909	-9.3	90	0.00

Centek Laboratories, L@Cantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AK100803.D Vial: 3 Acq On : 8 Oct 2013 1:02 pm Sample : AlUG_1.0 Misc : A921_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A921_1UG.RES Quant Time: Oct 10 07:00:45 2013

Quant Method : C:\HPCHEM\1\METHODS\A921 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sun Sep 22 09:13:41 2013

Response via : Initial Calibration

DataAcq Meth : 1UG_T015

DataAcq Mecii : 100_1015							
	R.T.		Response (
1) Bromochloromethane	9.36	128	26392		ppb		0.00
34) 1,4-difluorobenzene	11.67	114	95537	1.00	ppb		0.01
49) Chlorobenzene-d5	16.11	117	96144				0.01
System Monitoring Compounds 62) Bromofluorobenzene	17.60	95	59652	0.99	daa		0.00
	Range 70		Recovery				
Target Compounds							lue
2) Freon 22	3.88	-	47555				
Propylene	3.88	41	19258	0.99			100
4) Freon 12	3.93	85	84260	1.07	ppb		99
Chloromethane	4.12	50	19465	1.03	ppb		94
6) Freon 114	4.12	85	57662	1.09			93
7) Vinyl Chloride	4.30	62	17799	1.01			99
B) 1,3-butadiene	4.40	39	14244	1.03			66
9) Bromomethane	4.72		14244 26969	1.11			92
10) Ethanol	5.08	45	4825	1.04			86
11) Acrolein	5.60			1.02	ppb	#	61
12) Chloroethane	4.88		8876	1.05			94
13) Vinyl Bromide	5.20	106	22990	1.04			98
14) Freon 11	5.47		72505		ppb		97
•	5.73		72505 8519	1.09	PPD	#	100
15) Acetone	5.86	45	10562		ppp	#	100
16) Isopropyl alcohol		45	18565	0.89			
17) 1,1-dichloroethene			22854	1.06			89
18) Freon 113	6.39	101		1.07			97
19) t-Butyl alcohol	6.57				ppp	#	97
20) Methylene chloride	6.65	84	17782 23363	1.03	ggg		91
21) Allyl chloride	6.63	41	23363				93
22) Carbon disulfide	6.80			1.01			98
23) trans-1,2-dichloroethene	7.57	61	24410 47496m /	1.03			85
24) methyl tert-butyl ether 25) 1,1-dichloroethane	7.69	73	47496m Y	0.72			
25) 1,1-dichloroethane		63		1.01			97
26) Vinyl acetate	8.04	43	42556	0.90			93
27) Methyl Ethyl Ketone	8.61	7 2 .	10190	0.80			1
28) cis-1,2-dichloroethene			34121	0.90			93
29) Hexane	8.52		36858	0.86			78
30) Ethyl acetate	9.18	43 83	37004	0.80	ppb		88
31) Chloroform	9.52	83	70460	1.01	ppb		99
32) Tetrahydrofuran	9.84	42	19765m	0.75	ppb		
33) 1,2-dichloroethane	10.63	62	38046	0.98	ppb		99
35) 1,1,1-trichloroethane	10.33	97	64251m	1.28			
36) Cyclohexane	11.04	56	34654	1.00			90
37) Carbon tetrachloride	10.98	117	83184	1.59	daa		99
38) Benzene	10.96	78	90469	1.16			96
39) Methyl methacrylate	12.59	41	17238	0.82			90
40) 1,4-dioxane	12.73	88	14460	1.07		#	1
41) 2,2,4-trimethylpentane	11.83	57	116043	1.07		,,	90
42) Heptane	12.17	43	35280	1.00			96
43) Trichloroethene	12.29	130	46729	, 1.21			97
44) 1,2-dichloropropane	12.40	63	34200	1.20			99
45) Bromodichloromethane	12.72	83	69986m	1.21			
							

^{(#) =} qualifier out of range (m) = manual integration AK100803.D A921 lUG.M Sun Nov 17 10:07:48 2013 MSD1

Centek Laboratories, alluete Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AK100903.D Acq On : 9 Oct 2013 12:44 pm Sample : A1UG_1.0 Misc : A921_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Nov 17 10:00:46 2013

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I	Bromochloromethane			0.0 86 0.00
2 T	Freon 22	1.627		14.9 76 0.00
3 T	Propylene	0.736		27.2 69 0.00
4 T	Freon 12	2.981		17.9 72 0.00
5 T	Chloromethane	0.715		11.2 84 0.00
6 T	Freon 114	2.010		9.9 79 0.00
7 T	Vinyl Chloride	0.666		11.7 83 0.00
вт	1,3-butadiene	0.526		17.7 75 0.00
9 T	Bromomethane	0.922	0.789	14.4 79 0.00
10 T	Ethanol	0.176	0.174	1.1 91 0.00
11 T	Acrolein	0.176	0.169	4.0 88 0.00
12 T	Chloroethane	0.320	0.286	10.6 78 0.00
13 T	Vinyl Bromide	0.838	0.682	18.6 72 0.00
14 T	Freon 11	2.501		11.5 78 0.00
15 T	Acetone	0.297	0.297	0.0 91 0.00
16 T	Isopropyl alcohol	0.792	0.895	-13.0 101 -0.02
17 T	1,1-dichloroethene	0.818	0.673	17.7 71 0.00
18 T	Freon 113	1.837	1.568	14.6 75 -0.01
19 t	t-Butyl alcohol	1.189	1.556	-30.9# 119 -0.03
20 T	Methylene chloride	1.189 0.651	0.539	17.2 74 0.00
21 T	Allyl chloride	0.782	1.011	-29.3 110 0.00
22 T	Carbon disulfide	2.150	1.700	20.9 72 0.00
23 T	trans-1,2-dichloroethene	0.902	0.733	18.7 72 0.00
24 T	methyl tert-butyl ether	2.496	1.900	23.9 72 0.00
25 T	1,1-dichloroethane	2.088		16.1 73 -0.01
26 T	Vinyl acetate	1.785	1.471	17.6 69 0.00
27 T	Vinyl acetate Methyl Ethyl Ketone	0.483	0.461	4.6 80 -0.03
28 T	cis-1,2-dichloroethene			8.4 81 0.00
29 T	Hexane	1.619 1.748	1.133	30.0# 60 -0.01
30 T	Ethyl acetate			8.2 79 -0.01
31 T		2.631		22.6 68 0.00
32 T		1.004		17.2 75 -0.03
33 T	1,2-dichloroethane	1.473	1.082	26.5 64 0.00
34 I	1,4-difluorobenzene	1.000	1.000	0.0 62 0.00
35 T	1,1,1-trichloroethane	0.525		-10.9 70 -0.01
36 T	Cyclohexane	0.364		29.4 45# -0.01
37 T	Carbon tetrachloride	0.548		
38 T	Benzene		0.738	9.6 57 0.00
39 T	Methyl methacrylate		0.209	5.0 56 -0.02
40 T	1,4-dioxane	0.142	0.250	-76.1# 112 -0.06
41 T	2,2,4-trimethylpentane		0.887	22.0 49# 0.00
42 T	Heptane	0.370	0.302	18.4 51 0.00
43 T	Trichloroethene	0.405	0.374	7.7 58 0.00
44 T	1,2-dichloropropane	0.299	0.294	1.7 61 0.00
45 T	Bromodichloromethane	0.605	0.690	-14.0 71 0.00
46 T	cis-1,3-dichloropropene	0.403		-8.2 68 0.00
47 T	trans-1,3-dichloropropene	0.293		1.7 62 0.00
48 T	1,1,2-trichloroethane	0.371	0.394	-6.2 66 0.00
49 I	Chlorobenzene-d5	1.000	1.000	0.0 70 0.00

^{(#) =} Out of Range

Centek Laboratories alluste Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AK100903.D Vial: 37 Acq On : 9 Oct 2013 12:44 pm Operator: RJP Sample : AlUG_1.0 Misc : A921_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Nov 17 10:00:46 2013
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	rea% 1	Dev(min)
50 51	${f T}$	Toluene Methyl Isobutyl Ketone	0.631	0.474 1.908	24.9 -265.5#		0.00
52	T	Dibromochloromethane	0.695	0.742	-6.8	74	0.00
53		Methyl Butyl Ketone	0.446	2.194	-391.9#		
54		1,2-dibromoethane	0.599	0.541	9.7	63	0.00
55		Tetrachloroethylene	0.500	0.429	14.2	62	0.00
56	T	Chlorobenzene	0.891	0.734	17.6	58	0.00
57	\mathbf{T}	Ethylbenzene	1.349	0.844	37.4#		0.00
58	\mathbf{T}	m&p-xylene	1.036	0.767	26.0	51	0.00
59	T	Styrene	0.791	0.564	28.7	49#	0.00
60	T	Bromoform	0.672	0.748	-11.3	79	0.00
61	\mathbf{T}	o-xylene	1.245	1.039	16.5	58	0.00
62	S	Bromofluorobenzene	0.627	0.597	4.8	64	0.00
63	\mathbf{T}	1,1,2,2-tetrachloroethane	0.893	0.921	-3.1	73	0.00
б4	T	2-Chlorotoluene	1.473	1.416	3.9	71	-0.03
65	T	4-ethyltoluene	1.350	1.002	25.8	51	0.00
66	T	1,3,5-trimethylbenzene	1.503	1.136	24.4	53	0.00
67	T	1,2,4-trimethylbenzene	1.288	0.941	26.9	50#	0.00
бВ	T	1,3-dichlorobenzene	0.877	0.729	16.9	57	0.00
69	\mathbf{T}	benzyl chloride	0.412	0.623	-51.2# I	L04	0.00
70	\mathbf{T}	1,4-dichlorobenzene	0.869	0.720	17.1	58	0.00
71	\mathbf{T}	1,2,3-trimethylbenzene	1.315	1.088	17.3	56	0.00
72	T	1,2-dichlorobenzene	0.916	0.855	6.7	64	0.00
73	\mathbf{T}	1,2,4-trichlorobenzene	0.625	0.506	19.0	57	0.00
74	T	Naphthalene	1.532	1.628	-6.3	77	0.00
75	T	Hexachloro-1,3-butadiene	0.832	1.068	-28.4	88	0.00

Centek Laboratories, LQQantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AK100903.D Vial: 37 Acq On : 9 Oct 2013 12:44 pm Operator: RJP Sample : AlUG_1.0 Misc : A921_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Oct 09 13:33:27 2013 Quant Results File: A921_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Sep 22 09:13:41 2013
Response via : Initial Calibration
DataAcq Meth : 1UG_T015

Internal Standards		QIon	Response	Conc	Units	Dev(Min)
 Bromochloromethane 	9.36	128	23376			0.00
34) 1,4-difluorobenzene	11.67	114	77509			0.01
49) Chlorobenzene-d5	16.10	117	80409	1.	00 ppb	0.00
System Monitoring Compounds						
62) Bromofluorobenzene	17.60	95	47988	0	95 ppb	0.00
•	Range 70					
opined mount			100000	Y		. 0 0 5
Target Compounds						Qvalue
2) Freon 22	3.88	51	32341	٥.	85 ppb	
Propylene	3.88	41	12537	0.	73 ppb	# 100
4) Freon 12	3.93	85	57223		B2 ppb	
5) Chloromethane	4.12	50			dqq e8	92
6) Freon 114	4.12	50 85	14833 42324	0.	90 ppb	
7) Vinyl Chloride	4.30	62	13735	0.	dqq 88	
8) 1,3-butadiene	4.40	39	10116	0.	82 ppb	77
9) Bromomethane	4.40 4.73	39 94	18450	٥.	86 ppb	98
10) Ethanol	5.08	45	4072		99 ppb	
11) Acrolein	5.61	56	3944		96 ppb	
12) Chloroethane	4.89	64	6684		89 ppb	
13) Vinyl Bromide	5.21	106	15935		81 ppb	
14) Freon 11	5.47	101		٥.	89 ppb	
15) Acetone	5.75	58	6951	1.	dqq 00	# 100
16) Isopropyl alcohol	5.85	45	20910	1.	13 ppb	
17) 1,1-dichloroethene	6.21				82 ppb	
18) Freon 113	6.39	96 101 59	36644		85 ppb	
19) t-Butyl alcohol	6.57	59	36378m ¹	1.	31 ppb	
20) Methylene chloride	6.65	84	12608		dqq E8	94
21) Allyl chloride	6 63	41	23641	1 1.	29 ppb	77
22) Carbon disulfide	6.80	41 76	39729		79 ppb	
23) trans-1,2-dichloroethene	7.57	61	17140	0.	81 ppb	94
24) methyl tert-butyl ether				0.	76 ppb	
25) 1,1-dichloroethane	7.98	73 63	40942m	0.	84 ppb	
26) Vinyl acetate	8.04	43	34388m		82 ppb	
27) Methyl Ethyl Ketone	8.60	72	10788		96 ppb	
28) cis-1,2-dichloroethene	8.91	61	30676m		92 ppb	
29) Hexane	8.51	57	26492m	0.	70 ppb	
30) Ethyl acetate	9.18	43	37529	0.	92 ppb	90
31) Chloroform	9.51	43 83 42	47628	0.	77 ppb	99
32) Tetrahydrofuran	9.84	42	19425m	0.	83 ppb	
33) 1,2-dichloroethane	10.64	62	25296	0.	73 ppb	97
35) 1,1,1-trichloroethane	10.33	97	45083	1.	11 ppb	100
36) Cyclohexane	11.04	56	19929	0.	71 ppb	95
37) Carbon tetrachloride	10.99	117	53138m	1.	25 ppb	
38) Benzene	10.96	78	57211		90 ppb	98
39) Methyl methacrylate	12.59	41	16235	0.	95 ppb	85
40) 1,4-dioxane	12.70	88	19376m	1.	76 ppb	
41) 2,2,4-trimethylpentane	11.83	57	68773		78 ppb	94
42) Heptane	12.18	43	23443m \		82 ppb	
43) Trichloroethene	12.29	130	28975		92 ppb	98
44) 1,2-dichloropropane	12.40	63	22785		98 ppb	100
45) Bromodichloromethane	12.71	83	53460	1.	14 ppb	97

(#) = qualifier out of range (m) = manual integration AK100903.D A921_1UG.M Sun Nov 17 10:09:28 2013

MSD1

Centek Laboratories, LQ@antitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AK100903.D Vial: 37 Acq On : 9 Oct 2013 12:44 pm Operator: RJP Sample : AlUG_1.0 Misc : A921_lUG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Oct 09 13:33:27 2013 Quant Results File: A921_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A921_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Sep 22 09:13:41 2013
Response via : Initial Calibration

DataAcq Meth : 1UG_T015

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	cis-1,3-dichloropropene	13.51	75	33791	1.08 ppb	98
47)		14.22	75	22306	0.98 ppb	99
48)		14.51	97	30576	1.06 ppb	96
50)		14.28	92	38137m	0.75 ppb	
51)	Methyl Isobutyl Ketone	13.49	43	153411	3.66 ppb	70
52)		15.16	129	59681	1.07 ppb	95
53)	Methyl Butyl Ketone	14.74	43	176390	4.92 ppb	# 42
54)		15.40	107	43486	0.90 ppb	99
55)		15.24	164	34482	0.86 ppb	99
56)	Chlorobenzene	16.15	112	59022	0.82 ppb	98
57)	Ethylbenzene	16.38	91	67903m	0.63 ppb	
58)	m&p-xylene	16.57	91	1.23293m	1.48 ppb	
59)	Styrene	16.97	104	45376	0.71 ppb	93
60)	Bromoform	17.07	173	60168	1.11 ppb	99
61)	o-xylene	16.99	91	83540	0.83 ppb	94
63)	1,1,2,2-tetrachloroethane	17.40	83	74027	1.03 ppb	99
64)		18.00	91	113850m	0.96 ppb	
65)	4-ethyltoluene	18.14	105	80548m	0.74 ppb	
66)	1,3,5-trimethylbenzene	18.18	105	91338	0.76 ppb	89
	1,2,4-trimethylbenzene	18.57	105	75657m	0.73 ppb	
68)	1,3-dichlorobenzene	18.83	146	58584	0.83 ppb	97
69)	benzyl chloride	18.89	91	50061m	1.51 ppb	
70)	1,4-dichlorobenzene	18.94	146	57931	0.83 ppb	97
71)	1,2,3-trimethylbenzene	18.97	105	87446	0.83 ppb	98
72)	1,2-dichlorobenzene	19.21	146	68710	0.93 ppb	97
73)	1,2,4-trichlorobenzene	20.76	180	40675	0.81 ppb	100
74)	Naphthalene	20.92	128	130900	¥ 1.06 ppb	99
75)	Hexachloro-1,3-butadiene	21.00	225	85869m	1.28 ppb	

Spike Recovery autside accepted recovery limits Analyte detected at or below quantitation limits Results reported are not blank corrected

ALPROF Realty LLC
CLIENT:

C1310037 Work Order:

1087g-13-05 Project:

Sample ID	iample ID ALCS1UG-100713	SampType: LCS	TestCode: 1ug	TestCode: 1ugM3_T015 Units: ppbV	λς.	Prep Date:		RunNo: 7535	
Client ID:	77,777	Batch ID: R7535	TestNo: TO-15	15		Analysis Date: 10/7/2013	10/7/2013	SeqNo: 89803	
Analyte		Result	POL SPK	SPK value SPK Ref Val	%REC	LowLimit H	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Limit

TestCode: 1ugM3_T015

Sample 10 A1 CS-111G-100713	SampType: 1 CS	TestCode: 4:25M3 TO45	4 unaffit Tr	MA Uniter notiv		Dron Date:		Duskle: 709		
	201		1			200		Nullan, 1939		
Client ID: ZZZZZ	Batch ID: R7535	TestNo: TO-15	TO-15		•	Analysis Date:	: 10/7/2013V	SeqNo: 89803	53	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qua)
Acetone	0,9700	0:30	-	0	97.0	70	130			
Allyl chloride	1.070	0.15	-	0	107	22	130			
Вепzепе	1.160	0.15	-	a	116	70	130			
Benzyl chloride	1.120	0.15	-	0	112	20	130			
Bromodichloromethane	1.260	0.15	-	D	126	2	130			
Bromoform	1.220	0.15	-	0	122	20	130			
Bromomethane	1.020	0.15	-	0	102	70	130			
Carbon disulfide	1.030	0.15	-	0	103	70	130			
Carbon tetrachloride	1,600	0.15	-	0	160	70	130			S
Chlorobenzene	1.100	0.15	-	0	110	2	130			
Chloroethane	1.080	0.15	_	0	108	20	130			
Chloroform	1.040	0.15	-	0	104	70	130			
Chloromethane	1.110	0.15	-	a	111	70	130			
cis-1,2-Dichloroethene	0.9300	0.15	Υ-	0	93.0	20	130			
cis-1,3-Dichloropropene	1.190	0.15	-	0	119	70	130			
Cyclohexane	1.010	0.15	-	0	101	70	130			
Dibromochloromethane	1,290	0.15	-	0	129	70	130			
Ethyl acetate	0.8200	0.25	-	0	82.0	70	130			
Ethylbenzene	0.8800	0.15	-	0	88.0	70	130			
Freon 11	1,120	0.15	•	0	112	70	130			
Freon 113	1.090	0.15	-	0	109	70	130			
Freon 114	1,100	0.15	-	o	110	70	130			
Freon 12	1.090	0.15	-	0	109	70	130			
Heptane	1.000	0.15	-	O	100	70	130			
Hexachloro-1,3-butadiene	1.120	0.15	-	0	112	70	130			
Hexane	0.8000	0.15		0	80.0	70	130			
Isopropyl alcohof	0.9100	0.15	•	0	91,0	70	130			
m&p-Xylene	1.940	0.30	2	0	97.0	70	130			
Methyl Butyl Ketone	0.9300	0.30	τ-	0	93.0	70	130			
Methyi Ethyl Ketone	0.8300	0.30	-	0	83.0	70	130			
Methyl Isobutyl Ketone	0.8200	0.30	-	0	82,0	2	130			
Qualifiers: Results report	Results reported are not blank corrected		E Value	Value above quantitation range	98		H Holding times	Holding times for preparation or analysis exceeded	ilysis exceede	70
J Analyte detec	Analyte detected at or below quantitation limits		ND Not De	Not Detected at the Reporting Limit	r Limit			RPD outside recented recovery limits	1	
Section 9								tin to an and and	3	

CLIENT: ALPROF Realty LLC Work Order: C1310037 Project: 1087g-13-05	tealty LLC						TestCode:	ode: lugM3_TO15	ro15	
Sample ID ALCS1UG-100713	SampType: LCS	TestCoc	TestCode: 1ugM3 TO15	O15 Units: ppbV		Prep Date:	ini	RunNo: 7535	7535	
	Batch ID: R7535	Testh	TestNo: TO-15			Analysis Date:	e: 10/7/2013 √	SeqNo: 89803	89803	-
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LawLimit	HighLimit RPD	RPD Ref Val %RPD	PD RPDLimit	Qual
Methyl tert-butyl ether	0.9300	0.15	-	0	93.0	70	130			
Methylene chloride	1.050	0.15	τ-	0	105	20	130			
о-Хујепе	1.030	0.15	-	0	103	70	130			
Propylene	0.9700	0.15	*-	0	97.0	70	130			
Styrene	0.9300	0.15	Υ-	0	93.0	70	130			
Tetrachloroethylene	1,150	0.15	-	٥	115	70	130			
Tetrahydrofuran	0.7900	0.15	•	0	79.0	70	130			
Toluene	0.9700	0,15	*	0	97.0	70	130			
trans-1,2-Dichloroethene	1.160	0.15	-	0	116	20	130			
trans-1,3-Dìchloropropene	1,020	0.15	-	O	102	70	130			
Trichloroethene	1.230	0,15	-	0	123	70	130			
Vinyl acetate	0.9000	0.15	-	0	90.0	70	130			
Vinyl Bromide	1.080	0.15	*	0	108	70	130			
Vinyl chloride	1.020	0.15	•	0	102	70	130			
Sample ID ALCS1UG-100813	SampType: LCS	TestCoc	TestCode: 1ugM3_TO15	015 Units: ppbV		Prep Date:	ài	RunNo:	7536	
Client ID: ZZZZZ	Batch ID: R7536	Test	TestNo: TO-15			Anafysis Date:	e: 10/8/2013 /	SeqNo:	SeqNo: 89819	
Analyte	Result	Pat	SPK value	SPK Ref Val	%REC	LawLimit	HighLimit RPD	RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	1.290	0.15	~	۵	129	70	130			
1,1,2,2-Tetrachloroethane	1.140	0.15	-	D	114	70	130			
1,1,2-Trichlorosthane	1,270	0.15	-	0	127	70	130			
1,1-Dichtoroethane	1.000	0.15	•	0	100	70	130			
1,1-Dichforoethene	1.020	0.15	•	0	102	70	130			
1,2,4-Trichlorobenzene	0.7400	0.15	-	o	74.0	70	130			
1,2,4-Trimethylbenzene	0.7100	0.15	-	O	71.0	20	130			
1,2-Dibromoethane	1.150	0.15	-	O	115	70	130			
1,2-Dichlorobenzene	0.9800	0.15	•	0	98.0	70	130			
1,2-Dichloroethane	0.9700	0.15	-	0	97.0	70	130			
1,2-Dichlaropropane	1.210	0.15	-	0	121	20	130			
Qualifiers: Results repor	Results reported are not blank corrected		E Value	Value above quantitation range	ogi			Holding times for preparation or analysis exceeded	n or analysis exceed	pə
	Analyte detected at or below quantitation limits	is	ND Not I	Not Detected at the Reporting Limit	g Limit		R RPD or	RPD outside accepted recovery limits	ary limits	
S Spike Recov	Spike Recovery outside accepted recovery limits	nits							4	Page 5 of 7

TestCode: 1ugM3_TO15

				11						
Sample to ALCSTUG-190813	Sampiype: LCS	estod	estcode: 1ugm3_1015	vada :siino etr		Prep Date		Kun	Kunna: 7536	
Clent ID: ZZZZZ	Batch ID: R7536	Test	TestNo: TO-15			Analysis Date:	10/8/2013	Seq	SeqNo: 89819	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Vai	%RPD RPDLimit	it Qual
1,3,5-Trimethylbanzana	0.9600	0.15	-	0	96.0	92	130			
1,3-butadiene	0.9600	0.15	-	0	96.0	20	130			
1,3-Dichlorobenzene	1.010	0.15	-	0	101	70	130			
1,4-Dichlorobenzene	0,9700	0.15	-	0	97.0	70	130			
1,4-Dioxane	0.8500	0.30	_	0	85.0	20	130			
2,2,4-trimethylpentane	1,050	0.15	-	0	105	20	130			
4-ethyltoluene	0.8900	0.15	+	0	89.0	70	130			
Acetone	0.9700	0.30	~	0	97.0	70	130			
Allyl chloride	1,100	0.15	-	0	110	70	130			
Вепzепе	1.140	0.15	-	0	114	20	130			
Benzyl chloride	1,230	0.15	-	0	123	20	130			
Bromodichloromethane	1.260	0.15	-	0	126	70	130			
Вготобот	1.270	0,15	~	0	127	70	130			
Bromomethane	1,030	0.15	~	0	103	20	130			
Carbon disulfide	0.9700	0.15	**	0	0.76	70	130			
Carbon tetrachloride	1.560	0.15	-	0	156	20	130			S
Chlorobenzene	1.080	0.15		0	108	70	130			
Chloroethane	1.070	0.15		0	107	70	130			
Chlaroform	1.010	0.15	-	a	101	70	130			
Chloromethane	1.070	0.15	~~	0	107	70	130			
cls-1,2-Dichloraethene	0.8900	0.15	•	Đ	89.0	70	130			
cis-1,3-Dichlorapropene	1,130	0.15	-	0	113	70	130			
Cyclohexane	0.9800	0.15	-	0	98.0	70	130			
Dibromochloromethane	1,270	0,15	-	0	127	70	130			
Ethyl acetate	0.7400	0,25		0	74.0	22	130			
Ethylbenzene	0.8700	0.15	-	0	87.0	70	130			
Freon 11	1.080	0,15	-	٥	108	70	130			
Freon 113	1.070	0.15	-	0	107	70	130			
Freon 114	1.080	0.15	-	0	108	20	130			
Freon 12	1.070	0.15	-	0	107	70	130			
Heptane	0.9900	0.15	1	0	0.66	70	130			
Qualifiers: Results repor	Results reported are not blank corrected		E Value	Value above quantitation range	36		H Hold	Holding times for preparation or analysis exceeded	ion or analysis ex	papaa
	Analyte detected at or below quantitation limits	1S	ND Not De	Not Detected at the Reporting Limit	Limit		R RPD	RPD outside accepted recovery limits	overy limits	
S Spike Recove	Spike Recovery outside accepted recovery limits	ifts								Page 6 of 7

ALPROF Realty LLC C1310037 1087g-13-05

CLIENT: Work Order: Project:

TestCode: 1ugM3_TO15

Sample ID ALCS1UG-100813	SampType: LCS	TestCo	de: 1ugM3_TO1	TestCode: 1ugM3_TO16 Units: ppbV		Prep Date:		RunNo: 7536	"	
Client ID: 72772	Batch ID: R7536	Test	TestNo: TO-15			Analysis Date: 10/8/2013	10/8/2013 🗸	SeqNo: 89819	6	
Analyte	Result	Pat	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD	RPOLimit	Qual
Hexachloro-1,3-butadiene	1.050	0.15	-	0	105	202	130			
Hexane	0.8600	0.15	-	0	86.0	70	130			
Isopropyl alcohol	0.7400	0.15	-	0	74.0	70	130			
т&р-Хуlеле	1,930	0.30	2	0	36.5	70	130			
Methyl Butyl Ketone	0.8800	0.30	•	0	88.0	70	130			
Methyl Ethyl Ketone	0.7300	0.30		0	73.0	22	130			
Methyl Isobutyl Ketone	0.7900	0.30	-	0	79.0	70	130			
Methyl tert-butyl ether	0.7300	0.15	-	0	73.0	70	130			
Methylane chloride	1,020	0.15	-	0	102	20	130			
o-Xylene	1.060	0.15	-	0	106	70	130			
Propylene	0.9800	0.15	•	0	98.0	70	130			
Styrene	1.000	0.15	-	٥	100	70	130			
Tetrachloroethylene	1.100	0.15	-	0	110	70	130			
Tetrahydrofuran	0.7600	0.15	-	٥	76.0	70	130			
Toluene	0.9500	0.15	-	0	95.0	70	130			
trans-1,2-Dichloroethene	1.060	0.15	~	0	106	70	130			
trans-1,3-Dichloropropene	1,270	0.15	-	0	127	70	130			
Trichloroethene	1.220	0.15	-	0	122	70	130			
Vinyl acetate	0.9400	0.15	-	0	94.0	70	130			
Vinyl Bromide	1,060	0.15	₹~	0	106	70	130			
Vinyl chloride	1,000	0.15	-	0	100	70	130			

ALPROF Realty LLC

C1310037 1087g-13-05

CLIENT: Work Order:

Project:

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

H &

E Value above quantilation range ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits Analyte detected at or below quantitation limits Results reported are not blank corrected

Qualifiers:

7
Ţ
<u>2</u>
Real
_
80
ď
7
۔ <u>ت</u>
Z
LIE
C

C1310037 Work Order: 1087g-13-05 Project

TestCode: lugM3_TO15

Sample ID ALCS1UGD-100713	SampType: LCSD	TestCo	ide: 1uaM3 TC	TestCode: 1ugM3 TO15 Units: ppbV		Prep Date:			RunNo: 7535	1 15	
		ŀ				1		1			
Cilent ID: 2222	Batch ID: R7535	lesi	lestNo: 10-15			Analysis Date:	10/8/2013	<u>.</u>	SeqNo: 89804	7	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	1.230	0.30	-	0	123	20	130	0.97	23.6	30	}
Allyl chloride	0.9400	0.15	-	0	94.0	70	130	1.07	12.9	30	
Benzene	1.090	0.15	-	0	109	70	130	1.16	6.22	30	
Benzyl chloride	1.040	0.15	-	0	104	70	130	1.12	7.41	30	
Bromodichloromethane	1.120	0.15	-	a	112	20	130	1.26	11.8	30	
Bromoform	1.100	0.15	-	0	110	70	130	1.22	10.3	30	
Bromomethane	1.020	0,15	Ψ-	O	102	70	130	1.02	O.	30	
Carbon disulfide	0.9700	0.15	-	0	97.0	70	130	1.03	6.00	30	
Carbon tetrachioride	1.270	0,15	-	0	127	70	130	1.6	23.0	30	
Chlorobenzene	1.100	0,15	-	0	110	70	130	1:1	0	30	
Chloroethane	1.060	0.15	-	0	106	70	130	1.08	1.87	30	
Chloroform	1.020	0.15	•	0	102	70	130	1.04	1.94	30	
Chloromethane	1.030	0.15	-	0	103	70	130	1.11	7.48	8	
cfs-1,2-Dichloroethene	0.8900	0.15	-	0	99.0	70	130	0.93	6.25	8	
cis-1,3-Dichlaropropene	1,110	0.15	-	0	11	70	130	1.19	96.9	30	
Cyclohexane	0.9900	0.15	-	0	99.0	70	130	1.01	2.00	30	
Dibromochloromethane	1.110	0.15	τ-	0	111	70	130	1.29	15.0	30	
Ethyl acetate	0.9100	0.25	•	0	91.0	70	130	0.82	10.4	8	
Ethylbenzene	1.020	0.15	-	0	102	70	130	0.88	14.7	30	
Freon 11	1.010	0.15	-	0	101	70	130	1.12	10.3	30	
Freon 113	1.010	0.15	•	0	101	70	130	1.09	7.62	30	
Freon 114	1.040	0.15	•	o	104	70	130	1.1	5.61	30	
Frean 12	1.020	0.15	-	0	102	70	130	1.09	6.64	30	
Heptane	1.030	0,15	-	0	103	70	130	-	2,96	30	
Hexachloro-1,3-butadlene	0.8700	0.15	-	0	0.78	70	130	1,12	25.1	30	
Hexane	0.9700	0.15	-	O	97.0	70	130	9.0	19.2	30	
Isopropyl alcohol	0.8300	0.15	-	0	83.0	70	130	0.91	9.20	30	
m&p-Xylene	2.040	0.30	2	0	102	70	130	1.94	5.03	30	
Methyl Butyl Ketone	0.6700	0.30	-	0	67.0	02	130	0.93	32.5	30	SR
Methyl Ethyl Ketone	0.7600	0.30	-	0	76.0	70	130	0.83	8.81	30	
Methyl Isobutyl Ketone	0.7300	0.30	***	0	73.0	20	130	0.82	11.6	30	

TestCode: lugM3_TO15

Sample ID ALCS1UGD-100713 SampType: LCSD	SampType: LCSD	TestCo	TestCode: 1ugM3_T015	ots Units: ppbV		Prep Date:	ë		RunNo: 7535	35	
Client ID: ZZZZZ	Batch ID: R7535	Test	TestNo; TO-15			Analysis Date: 10/8/2013	e: 10/8/20	713 /	SeqNo: 89804	804	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	0.9400	0.15	-	0	94.0	22	130	0.93	1.07	93	
Methylene chloride	1.020	0.15	-	0	102	70	130	1.05	2.90	30	
o-Xylene	1,010	0.15	τ	0	101	70	130	1.03	1.96	30	
Propylene	0.9800	0.15	-	0	98.0	70	130	0.97	1.03	30	
Styrene	1.010	0.15	-	0	101	70	130	0.93	8,25	8	
Tetrachloroethylene	1.060	0.15	-	. 0	106	70	130	1.15	8.14	30	
Tetrahydrofuran	0.8300	0.15	-	0	83.0	20	130	0.79	4.94	30	
Toluene	1.040	0.15	₹***	a	104	70	130	79.0	6.97	30	
trans-1,2-Dichloroethene	1,390	0.15	~	0	139	70	130	1.16	18.0	30	S
trans-1,3-Dichloropropene	1,250	0.15	4	0	125	70	130	1.02	20.3	30	
Trichloroethene	1.150	0.15	1	0	115	70	130	1.23	6.72	30	
Vinyl acetate	1.040	0.15	-	0	104	70	130	0.9	14.4	30	
Vinyl Bromide	1,080	0.15	-	0	108	70	130	1.08	O	30	
Vinyl chloride	1.020	0,15	۲	0	102	70	130	1.02	0	30	

ALPROF Realty LLC

C1310037 1087g-13-05

Project:

Work Order:

CLIENT:

TestCode: 1ugM3_TO15

ANALYTICAL QC SUMMARY REPORT

Date: 17-Nov-13

ALPROF Realty LLC CLIENT

C1310037 Work Order:

1087g-13-05 Project:

Sample 1D ALCS1UG-100913	SampType: LCS	TestCo	de: 1ugM3_TC	TestCode: 1ugM3_TO15 Units: ppbV		Prep Dale;			RunNo: 7534		
Client ID: ZZZZZ	Batch ID: R7534	Test	TestNa: TO-15			Analysis Date:	10/9/2013	13 💉	SeqNo: 89796		
Analyte	Result	절	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPDLimit	Qual
1,1,1-Frichloroethane	1.210	0.15	_	0	121	70	130				
1,1,2,2-Tetrachloroethane	1.060	0.15	1	0	406	70	130				
1,1,2-Trichloroethane	1.120	0.15	-	a	112	70	130				
1,1-Dichloroethane	0.8500	0.15	τ-	0	85.0	70	130				
1,1-Dichloroethene	0.8800	0.15	-	0	88.0	70	130				
1,2,4-Trichlorobenzene	0.7900	0.15	~	0	79.0	70	130				
1,2,4-Trimethylbenzene	0.6700	0.15	•	0	67.0	0.2	130				S
1,2-Dibromoethane	0.9200	0.15	•	0	92.0	70	130				
1,2-Dichlarobenzene	0.8900	0.15	-	0	89.0	70	130				
1,2-Dichtoroethane	0.7900	0.15	-	0	79.0	70	130				
1,2-Dichloropropane	1.050	0.15	٣	0	105	70	130				
1,3,5-Trimethylbenzene	0.8600	0,15	~	0	86.0	70	130				
1,3-butadiene	0.8800	0.15	τ-	0	88.0	70	130				
1,3-Dichlorobenzene	0.8100	0.15	-	0	81.0	70	130				
1,4-Dichlorobenzene	0.7800	0.15	-	0	78.0	70	130				
1,4-Dіохапе	0.9200	0.30	τ-	0	92.0	70	130				
2,2,4-trimethylpentane	0.8200	0.15	-	0	82.0	70	130				
4-ethyltoluene	0.7600	0.15	-	0	76.0	70	130				
Acetone	0.9200	0.30	Ψ-	0	92.0	70	130				
Allyl chloride	0.9700	0.15	-	0	97.0	70	130				
Вепzепе	0.9800	0.15	-	۵	98.0	20	130				
Benzyl chloride	1.210	0.15	-	۵	121	20	130				
Bromodichloromethane	1.170	0.15	-	٥	117	20	130				
Bromoform	1,200	0.15	-	0	120	70	130				
Bromomethane	0,9400	0.15	-	0	94.0	70	130				

preparation or analysis exceeded	recovery limits	Page
Holding times for	RPD outside accepted recovery limits	
Н	~	
Value above quantitation range	ND Not Detected at the Reporting Limit	
ш	Q	
Results reported are not blank corrected	Analyte detected at or below quantitation limits	Spike Recovery outside accepted recovery limits
	Ь.	S
Qualifiers:		

TestCode: 1ugM3_T015

ALPROF Realty LLC	
CLIENT:	

1087g-13-05 C1310037 Work Order: Project:

4 0		F			:					
Sample to ALCSTUG-100313	s samplype: LCS	l estcode;	TOI_smgn1	lesicade: 1ugms_1015 Units: ppav		Prep Date:		Kunno: 7534	7534	
Client ID: ZZZZZ	Batch ID: R7534	TestNo: TO-15	TO-15			Analysis Date:	10/9/2013	SeqNo: 89796	89796	
Anaíyte	Result	PQL SI	SPK value S	SPK Ref Val	%REC	Low[im]t HI	HighLimit RPD Ref Val	if Val %RPD	PD RPDLIMIC	imit Qual
Carbon disulfide	0.8700	0.15	-	0	87.0	70	130			
Carbon tetrachloride	1.300	0.15	-	0	130	70	130			
Chlorobenzene	0.8400	0.15	-	0	84.0	70	130			
Chforoethane	0.9500	0.15	-	0	95.0	70	130			
Chloraform	0.8200	0.15		0	82.0	20	130			
Chloromethane	0.9800	0.15	-	0	98.0	70	130			
cís-1,2-Dlchloroethane	0.7100	0.15		O	71.0	20	130			
cis-1,3-Dichloropropene	0.9300	0.15		0	93.0	70	130			
Cyclohexane	0.7600	0.15	₩.	0	76.0	70	130			
Dibromochloromethane	1.080	0.15	-	0	108	70	130			
Ethyl acetate	0.8100	0.25	-	0	81.0	70	130			
Ethylbenzene	0,6600	0.15	-	0	66.0	2	130			S
Freon 11	0.9500	0.15	τ-	0	95.0	70	130			
Fraon 113	0.9200	0.15	_	0	92.0	70	130			
Freon 114	0.9300	0.15	-	0	93.0	70	130			
Freon 12	0.8900	0.15	-	0	89.0	70	130			
Heptane	0.7500	0.15	-	0	75.0	70	130			
Hexachloro-1,3-butadlene	1.170	0.15	-	0	117	70	130			
Hexane	0.6500	0.15	-	0	65.0	20	130			S
Isaprapyl alcohol	1.000	0.15	-	0	100	70	130			
m&p-Xylene	1.500	0.30	2	0	75.0	70	130			
Methyl Butyl Ketone	0.9500	0.30	-	0	95.0	70	130			
Methyl Ethyl Ketone	0.8200	0.30	-	Ð	82.0	70	130			
Methyl Isobutyl Ketone	0.9000	0.30	-	0	90.0	20	130			
Methyl tert-butyl ether	0.7000	0.15	-	0	70.0	70	130			
Methylene chloride	0.9000	0.15		0	90.0	70	130			
o-Xylene	0,8600	0.15	-	D	96.0	70	130			
Propylene	0.8000	0.15	-	0	80.0	70	130			
Styrene	0.7200	0.15	•	0	72.0	70	130			
Tetrachloroethylene	0.8700	0.15	τ-	0	87.0	70	130			
Tetrahydrofuran	0.7400	0,15	1	0	74.0	20	130			
Qualifiers: Results re	Results reported are not blank corrected	_	E Value abo	Value above quantitation range	อธิ			Holding times for preparation or analysis exceeded	or analysis e	xceeded
	Analyte detected at or below quantitation limits		ND Not Deter	Not Detected at the Reporting Limit	g Limit		R RPD outsi	RPD outside accepted recovery limits	ry límits	
S Spike Reo	Spike Recovery outside accepted recovery limits	ils								Page 2 of 7

TestCode	CLIENT: ALPROFI Work Order: C1310037	ALPROF Realty LLC C1310037									
Control Cont		-05						Tes		ugM3 TO15	
ALCOSTUDE Sauth Dippe. LGS TeatConter trapMAI_TOTS Lulls. ppbM Annabies beat and pype. LGS TeatConter trapMAI_TOTS Lulls. ppbM Annabies beat and pype. LGS TeatConter trapMAI_TOTS Lulls. ppbM Annabies beat and pype. LGS TeatConter trapMAI_TOTS Lulls. ppcM TeatConter trapMAI_TOTS Lulls. ppcM TeatConter trapMAI_TOTS Lulls. ppcM TeatConter trapMAI_TOTS TeatConter trapMAI_								2) 	
Patich IC R7534 TestNo: TO-15 Analysis Date: 109/2013 Seque: 85796 Septication of the control of th			TestCode	1ugM3_T015	Units: ppbV		Prep Date	iri			
Part		Batch ID: R7534	TestNo	: T0-15			Analysis Dat			SeqNo: 89796	
D.7100 D.15	Analyte	Result	Pal		K Ref Val	%REC	LawLimit		PD Ref Val		Qua
1,200 0.15 1 0 87.0 70 130	Toluene	0.7100	0.15	-	0	71.D	5	130			
1,000 0.15 1 0 100 70 130	trans-1,2-Dichloroethene	0.8700	0.15	F	0	87.0	70	130			
SampTyper: LCS 1 0 98.0 70 130 Bartel ID: R7835 TestCode: 1ug/M3_1To16 Unlis: ppbV NREC 130 Bartel ID: R7835 TestRo: 1ug/M3_1To16 Unlis: ppbV NREC 130 Bartel ID: R7835 TestRo: 10-15 1 0 91.0 70 130 Bartel ID: R7835 TestRo: 10-15 1 0 91.0 70 130 L1310 0.15 1 0 0 112 70 130 L1320 0.15 1 0 0 105 70 130 L1320 0.15 1 0 0	trans-1,3-Dichloropropene	1.000	0.15	-	0	100	70	130			
Degree Current Curre	Trichloroethene	0.9800	0,15	~	0	98.0	70	130			
SampTyper: LCS	Vinyl acetate	0.8000	0.15		0	80.0	70	130			
Samp Typer: LCS TestCode: rugM3_TO16 Units: ppbV Ppe Date: Ppb	Vinyl Bromide	0.8900	0.15	-	0	89.0	70	130			
Samptigue: LCS TestCode: fugM3_17016 Units: ppbV Analysis Date: 107/2013 SeqNor: 98803 Batch ID: R7836 TestINo: TO-16 Analysis Date: 107/2013 SeqNor: 98803 1.330 0.15 1 0 130 Analysis Date: 107/2013 SeqNor: 98803 1.130 0.15 1 0 112 70 130 Analysis Date: PADLinit 1.120 0.15 1 0 116 70 130 Analysis Date: PADLinit 1.120 0.15 1 0 116 70 130 Analysis Date: PADLinit 1.120 0.15 1 0 102 70 130 Analysis Date:	Vinyî chlorîde	0.9100	0.15	-	o l	91.0	70	130			
Pack	Sample ID ALCS1UG-100713		TestCode	: 1ugM3_T016	1		Prep Date	à		RunNo: 7535	
Possible		Batch ID: R7535	TestNo	: TO-15			Analysis Dat			SeqNo: 89803	
1.310 0.15 1 0 131 70 130	Analyte	Result	Pal		ነK Ref Val	%REC	LowLimit		PD Ref Val		Qual
nne 1,120 0,15 1 0 112 70 130 1,160 0,15 1 0 116 70 130 1,020 0,15 1 0 105 70 130 1,020 0,15 1 0 105 70 130 0,7300 0,15 1 0 105 70 130 0,8900 0,15 1 0 102 70 130 0,8900 0,15 1 0 102 70 130 1,010 0,15 1 0 126 70 130 1,020 0,15 1 0 126 70 130 1,020 0,15 1 0 126 70 130 1,080 0,15 1 0 126 70 130 0,990 0,15 1 0 130 130 0,800 0,15 1 <td>1,1,1-Trichloroethane</td> <td>1.310</td> <td>0.15</td> <td>-</td> <td>0</td> <td>131</td> <td>70</td> <td>130</td> <td></td> <td></td> <td>S</td>	1,1,1-Trichloroethane	1.310	0.15	-	0	131	70	130			S
1.150 0.15 1 1 0 116 70 130 130 140 150 150 150 150 150 150 105 105 105 10	1,1,2,2-Tetrachloroethane	1,120	0.15	-	0	112	70	130			
1.020 0.15 1 0 0.15 1 0 0 105 70 130 130 105 0.15 1 0 0.1	1,1,2-Trichloroethane	1.160	0,15	-	0	116	70	130			
1,050 0.15 1 0 0.15 1 0 105 70 130 0,030 0.15 1 0 0 83.0 70 130 1,020 0.15 1 0 0 102 70 130 1,020 0.15 1 0 0 102 70 130 1,020 0.15 1 0 0 102 70 130 1,080 0.15 1 0 0 108 70 130 0,890 0.15 1 0 0 89.0 70 130 0,800 0.15 1 0 0 89.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 0,800 0.15 1 0 0 82.0 70 130 1,000 0.15 1 0 0 82.0 70 130 1,000 0.15 1 0 0 82.0 70 130 1,000 0.15 1 0 0 82.0 70 130 1,000 0.15 1 0 0 82.0 70 130 1,000 0.15 1 0 0 0 100 100 100 100 100 100 100 1	1,1-Dichloroethane	1.020	0.15	- -	0	102	70	130			
0.7300 0.15 1 0 83.0 70 130 1.020 0.15 1 0 73.0 70 130 1.020 0.15 1 0 102 70 130 1.020 0.15 1 0 101 70 130 1.020 0.15 1 0 141 70 130 1.020 0.15 1 0 142 70 130 1.080 0.15 1 0 140 70 130 0.8900 0.15 1 0 89.0 70 130 0.8900 0.15 1 0 89.0 70 130 0.8000 0.15 1 0 89.0 70 130 0.8000 0.15 1 0 89.0 70 130 0.8000 0.15 1 0 109 70 130 0.8000 0.15	1,1-Dichloroethene	1.050	0.15	-	0	105	20	130			
1,020 0,15	1,2,4-Trichlorobenzene	0.8300	0.15	₩.	0	83.0	20	130			
1.020 0.15 1 0 102 70 130 0.8900 0.15 1 0 102 70 130 1.010 0.15 1 0 101 70 130 1.250 0.15 1 0 126 70 130 1.080 0.15 1 0 126 70 130 0.8900 0.15 1 0 108 70 130 0.8900 0.15 1 0 89.0 70 130 0.8200 0.30 1 0 82.0 70 130 0.8600 0.15 1 0 86.0 70 130 0.8600 0.15 1 0 86.0 70 130 0.8600 0.15 1 0 86.0 70 130 0.8600 0.15 1 0 86.0 70 130 0.8600 0.15 1 0 86.0 70 130 0.8600 0.15 1 0 109 80.0 70 130 0.8600 0.15 1 0 86.0 70 130 0.8000 0.15 1 0 0 86.0 70 130 0.8000 0.15 1 0 0 86.0 70 130 0.8000 0.15 1 0 100 86.0 70 1	1,2,4-Trimethylbenzene	0.7300	0.15	Y -	0	73.0	20	130			
0.8900 0.15 1 0 89.0 70 130 1.010 0.15 1 0 101 70 130 1.250 0.15 1 0 126 70 130 1.080 0.15 1 0 84.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.8900 0.15 1 0 89.0 70 130 0.8900 0.15 1 0 89.0 70 130 0.8200 0.15 1 0 89.0 70 130 0.8200 0.15 1 0 82.0 70 130 0.8600 0.15 1 0 86.0 70 130 0.8600 0.15 1 0 86.0 70 130 0.8600 0.15 1 0 130 130 0.8600 0.15 1	1,2-Dibromoethane	1.020	0.15	τ-	0	102	70	130			
1.010 0.15 1 0 101 70 130 130 130 130 130 130 130 130 130 13	1,2-Dichlorobenzene	0.8900	0.15	-	0	89.0	20	130			
1,260 0,15 1 0 126 70 130 130 1408 0,15 1 0 84.0 70 13	1,2-Dichloroethane	1.010	0.15	-	0	101	70	130			
1,080 0,15 1 0 64,0 70 130 130 1080 0,15 1 0 108 70 13	1,2-Dichloropropane	1,260	0.15	-	0	126	70	130			
1.080 0.15 1 0 108 70 130 0.8900 0.15 1 0 99.0 70 130 0.8200 0.30 1 0 82.0 70 130 1.090 0.15 1 0 82.0 70 130 1.090 0.15 1 0 82.0 70 130 2.8600 0.15 1 0 86.0 70 130 2.8600 0.15 1 0 86.0 70 130 3.86.0 1 1 0 86.0 70 130 3.86.0 1 1 130 3.86.0 1 1 130 3.86.0 1 1 130 3.86.0 1 1 130 3.86.0	1,3,5-Trimethylbenzene	0.8400	0.15	-	Q	84.0	20	130			
0.9900 0.15 1 0 99.0 70 130 0.8900 0.15 1 0 89.0 70 130 0.8200 0.30 1 0 82.0 70 130 1.090 0.15 1 0 46.0 70 130 esults reported are not blank corrected E Value above quantitation range H Holding times for preparation or analysis exceed natyle detected at or below quantitation limits nike Recovery outside accepted recovery limits ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits	1,3-butadiene	1.080	0.15	-	0	108	70	130			
0.8900 0.15 1 0 89.0 70 130 0.8200 0.30 1 0 82.0 70 130 1.090 0.15 1 0 409 70 130 esults reported are not blank corrected an or below quantitation limits E Value above quantitation range H Holding times for preparation or analysis exect analyse detected at the Reporting Limit nalyte Recovery outside accepted recovery limits ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits	1,3-Dichlorobenzene	0.9900	0.15	₩.	0	0.66	70	130			
0.8200 0.30 1 0 82.0 70 130 1.090 0.15 1 0 109 70 130 esults reported are not blank corrected an or below quantitation limits E Value above quantitation range H Holding times for preparation or analysis exect analyse detected at the Reporting Limit nalyte Recovery outside accepted recovery limits Not Detected at the Reporting Limit R RPD outside accepted recovery limits	1,4-Dichlorobenzene	0.8900	0.15	-	0	89.0	70	130			
1.090 0.15 1 0 109 70 130 0.8600 0.15 1 0 86.0 70 130 estils reported are not blank corrected nalyte detected at or below quantitation limits ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits R RPD outside accepted recovery limits	1,4-Dioxane	0.8200	0.30	-	0	82.0	70	130			
Results reported are not blank corrected Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits 1 0 86.0 70 130 H Holding times for preparation or analysis excect the second of the	2,2,4-trimethylpentane	1.090	0.15		0	109	70	130			
. Results reported are not blank corrected E Value above quantifiation range H Holding times for preparation or analysis excected at or below quantitation limits ND Not Detected at the Reporting Limit RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits	4-ethyltoluene	0.8600	0.15	-	0	86.0	70	130			
Spike Recovery outside accepted recovery limits		ported are not blank corrected	zimi		ve quantitation ra	nge ng Limit			lding times for D outside acce	preparation or analysis execed	po
		overy outside accepted recovery	limits		•)					Page 3 of 7

Spike Recovery outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

Date: 17-Nov-13

CLIENT: ALPROF Realty LLC

Work Order: C1310037											
Project: 1087g-13-05	35						Te	stCode: 1	TestCode: 1ugM3_TO15	ın.	
Sample ID ALCS1UGD-092613	SampType: LCSD	TestCode	estCode: 1ugM3_TO15	115 Units: ppbV		Prep Date:			RunNo: 7534		
Client ID: ZZZZZ	Batch ID: R7534	TestNo	TestNo: TO-15		*	Analysis Date:	10/10/2013	13	SeqNo: 89797	26	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LawLimit 1	HighLimit F	RPD Ref Val	%RPD	RPDLímit	Qual
1,1,1-Trichloroethane	1.400	0,15		0	140	70	130	1.21	14.6	30	S
1,1,2,2-Tetrachloroethane	1,240	0.15	-	0	124	20	130	1.06	15.7	30	
1,1,2-Trichloroethane	1.180	0.15	-	0	118	22	130	1.12	5.22	30	
1,1-Dichloroethana	0.9100	0.15	-	a	91.0	70	130	0.85	6.82	30	
1,1-Dichloroethene	1.000	0.15	-	0	100	70	130	0.88	12.8	30	
1,2,4-Trichlorobenzene	0.7000	0.15	*	0	70.0	70	130	0.79	12.1	30	
1,2,4-Trimethylbenzene	0,6600	0.15	Ψ-	0	66.0	70	130	0.67	1.50	30	S
1,2-Dibromoethane	1.100	0.15	٣-	0	110	70	130	0.92	17.8	30	
1,2-Dichlorobenzene	0.9600	0.15	Ψ-	0	96.0	70	130	0.89	7.57	30	
1,2-Dichloroethane	0.9100	0.15	-	0	91.0	20	130	0.79	14.1	30	
1,2-Dichloropropane	1.270	0.15	•	0	127	70	130	1.05	19.0	30	
1,3,5-Trimethylbenzene	0.9100	0.15	-	D	91.0	70	130	0.86	5.65	30	
1,3-butadiene	0.9500	0.15	Ψ-	0	95.0	70	130	0.88	7.65	30	
1,3-Dichlorobenzene	0.9400	0.15	τ-	0	94.0	70	130	0.81	14.9	30	
1,4-Dichlorobenzene	0.9200	0.15	τ-	0	92.0	70	130	0.78	16.5	30	
1,4-Dioxane	0.2300	0.30	•	O	23.0	70	130	0.92	0	30	SF
2,2,4-trimethylpentane	0.9900	0.15	-	0	0.66	70	130	0.82	18.8	30	
4-ethylfolusne	0.8300	0.15	•	0	83.0	70	130	0,76	8.81	30	
Acetone	1,110	0.30	•	0	11	70	130	0.92	18.7	30	
Allyl chloride	0,8100	0.15	-	0	81.0	7.0	130	76.0	18.0	30	
Benzene	1.180	0,15		0	118	70	130	0.98	18.5	30	
Benzyl chloride	1,230	0,15	•	0	123	70	130	1.21	1.64	30	
Bromodichloromethane	1.390	0,15	•	0	139	70	130	1.17	17.2	30	Ø
Bramofam	1.360	0.15	_	0	136	70	130	12	12.5	30	S
Bromomethane	1.020	0.15	~-	0	102	70	130	0.94	8.16	30	
Oualifiers: Results report	Results reported are not blank corrected		E Value	Value above quantitation mage	251		H	olding times for	Holding times for preparation or analysis exceeded	alvsis exceede	
	Analyte detected at or helow opportunity limits	į	_	Not Detected at the Reporting 1 (mit	o Limit			The action	R PD outside accepted recovery limits	ite	ļ
יייים יונוווען ר	פוכח שו סו ספוסא אחשוחשיייייייייייייייייייייייייייייייייי	2117		מפקינים מו חודי ניישלים:				יייים ייונטווע ע	ווכת וכיטינים זיייי	2	

Ξ×

E Value above quantitation range ND Not Detected at the Reporting Limit

Results reported are not blank corrected
Analyte detected at or below quantitation limits
Spike Recovery outside accepted recovery limits

Qualifiers:

PROF
CLIENT

Work Order: C1310037

Project: 1087g-13-05

TestCode: 1ugM3_T015

Sample ID ALCS1UGD-092613	SampType: LCSD	TestCo	TestCode: 1ugM3_T015	15 Units: ppbV		Prep Date:			RunNo: 7534	4	
Client ID: ZZZZZ	Batch ID: R7534	Test	TestNo: TO-15			Analysis Date:	10/10/2013	13	SeqNo: 89797	25	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit	RPD Ref Val	%RPD	RPDLímit	Qual
Carbon disulfide	1.000	0.15	+	0	100	70	130	0.87	13.9	30	
Carbon tetrachloride	1.640	0.15	-	0	164	70	130	1.3	23.1	30	တ
Chlorobenzene	1.000	0.15	-	0	100	70	130	0.84	17.4	30	
Chloroethane	1.000	0.15		0	9	70	130	0.95	5.13	30	
Chloroform	0.9500	0.15		0	95.0	70	130	0.82	14.7	30	
Chloromethane	1.020	0.15		o	102	70	130	0.98	4.00	30	
cis-1,2-Dichloroethene	0.7600	0.15	٣	0	76.0	70	130	0.71	6.80	30	
cis-1,3-Dichloropropene	1.000	0.15	-	0	90	7.0	130	0.93	7.25	30	
Cyclohexane	0.9000	0.15	-	0	90.0	70	130	0.76	16.9	33	
Dibromochloromethane	1.240	0,15	-	0	124	70	130	1.08	13.8	30	
Ethyl acetate	0.7800	0.25	-	0	78.0	70	130	0.81	3.77	30	
Ethylbanzene	0.7200	0.15	-	0	72.0	70	130	0.66	8.70	30	
Freon 11	1.080	0.15	-	0	108	70	130	0.95	12.8	8	
Freon 113	1.040	0.15	-	Ö	104	70	130	0.92	12.2	30	
Freon 114	1.040	0,15	-	0	104	70	130	0.93	11.2	30	
Freon 12	1.000	0.15		a	100	70	130	0.89	11.6	30	
Heptane	0.8800	0.15	-	0	88.0	70	130	0.75	16.0	30	
Hexachloro-1,3-butadiene	1.180	0.15	~	0	118	70	130	1.17	0.851	30	
Hexane	0.7000	0.15	-	0	70.0	70	130	0.65	7.41	30	
(sopropyl alcohol	0.7700	0,15	-	D	77.0	70	130	-	26.0	30	
m&p-Xylene	1.640	0.30	8	0	82.0	20	130	1.5	8.92	30	
Methyl Butyl Ketone	0.1700	0.30	-	0	17.0	70	130	0.95	0	30	SI
Methyl Ethyl Ketone	0.7100	0.30	~	0	71.0	70	130	0.82	14.4	30	
Methyl Isobutyl Ketone	0.2500	0.30	*	Ф	25.0	70	130	0.9	٥	30	35
Methyl tert-butyl ether	0.7200	0.15	-	o	72.0	70	130	0.7	2.82	30	
Methylane chloride	1.020	0.15	-	0	102	70	130	0.9	12.5	30	
o-Xylene	1.040	0.15	-	0	104	70	130	0.86	18,9	30	
Propylene	0.8400	0.15	Ψ-	0	84.0	70	130	0.8	4.88	30	
Styrene	0.8600	0.15	-	0	86.0	70	130	0.72	17.7	30	
Tetrachloroethylene	1.100	0.15	-	0	110	70	130	0.87	23.4	8	
Tetrahydrofuran	0.7200	0.15	1	0	72.0	70	130	0.74	2.74	30	

		TestCode: lugM3_TO15
ALPROF Realty LLC	C1310037	1087g-13-05
CLIENT:	Work Order:	Project:

Clark ID:	Sample ID ALCS1UGD-092613	SampType: LCSD	TestCode	1 TugM3_TO1	TestCode: 1ugM3_T015 Units: ppbV		Prep Dale;	.,		RunNo: 7534	34	
Pige		Batch ID: R7534	TestNo	: TO-15			Analysis Date		013	SeqNo: 89	797	
1,1200 0,150 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15 1 0 0,15	. Analyte	Result	Pal		SPK Ref Val	%REC		HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,120 0,15 1,120 0,15 1,120 0,15 1,120	Toluene	0.8200	0.15	-	o	82.0	20	130	0.71	14.4	8	
1.180 0.15	trans-1,2-Dichloroethene	1,020	0,15	τ-	0	102	70	130	0.87	15.9	30	
1,121 0,15 1,221 0,15 1 1 1 1 1 1 1 1 1	trans-1,3-Dichloropropene	1.160	0.15	-	0	116	70	130	-	14.8	99	
1,020 0,15 1,020 0,15 1 0 82,0 70 130 0,89 135 39 39 34 39 39 39 39 39	Trichloroethene	1,210	0.15	₩.	0	121	70	130	0.98	21.0	30	
ALCSTHOGD-100773 SampType: LCSD	Vinyl acetate	0.8200	0.15	۳	a	82.0	20	130	0.8	2.47	30	
Page	Vinyl Bromide	1.020	0.15	۴	0	102	20	130	0.89	13.6	30	
Auto-colour	Vinyl chloride	0.9500	0.15	-	0	95.0	70	130	0.91	4.30	30	
Part	Sample ID ALCS1UGD-100713	ll .	TestCode	1ugM3_TO1	ll .		Prep Date			RunNa: 75	35	
Charles Fig. 11 Fig. SPK Ret Val S		Batch ID: R7535	TestNo	: T0-15			^nalysis Date		13	SeqNo: 89	804	
1.130 0.15 1.13	Analyte	Result	Pal		SPK Ref Val	%REC		HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
1,040 2,15 1	1,1,1-Trichloroethane	1.130	0.15	-	٥	113	22	130	1:31	14.8	30	
1,130 0,15 1,1 0 1,13 1,1 0 1,13 1,1 0 1,15 1,1 0 1,15 1,1 0 1,15 1,1 0 1,15 1,1 0 0,1	1,1,2,2-Tetrachloroethane	1.040	0.15	-	0	104	70	130	1.12	7.41	30	
oethane 1,020 0.15 1 102 70 130 1,02 0 30 outherne 1,000 0.15 1 0 100 70 130 1,02 4.88 30 ortobenzene 0,6700 0.15 1 0 89.0 70 130 0.73 19.8 30 othorizene 0,6700 0.15 1 0 89.0 70 130 0.73 19.8 30 othorizene 0,9800 0.15 1 0 98.0 70 130 0.73 19.4 30 othorizene 0,9800 0.15 1 0 98.0 70 130 0.73 19.4 30 othorizene 0,9800 0.15 1 0 98.0 70 130 0.84 1.20 30 othorizene 0,9800 0.15 1 0 98.0 70 130 0.84 1.82 30	1,1,2-Trichloroethane	1.130	0.15	-	0	113	70	130	1.16	2.62	30	
oethere 1,000 0.15 1 0 100 70 130 1,05 4.8B 39 orthobenzerie 0,6700 0.15 1 0 670 70 130 0.83 21.3 30 sthybenzerie 0,8900 0.15 1 0 89.0 70 130 0.83 21.3 30 oethrarie 0,9800 0.15 1 0 96.0 70 130 0.83 6.52 30 oppoperation 0.15 1 0 98.0 70 130 0.83 6.52 30 oppoperation 0.15 1 0 98.0 70 130 0.84 1.20 30 sthybenzane 0.9800 0.15 1 0 83.0 70 130 0.84 1.20 30 dubingenzane 0.9800 0.15 1 0 83.0 70 130 0.84 1.20 30 du	1,1-Dichloroethane	1.020	0.15	-	0	102	70	130	1.02	Ф	30	
corrobenzerie 0.65700 0.15 1 0 67.0 70 130 0.83 21.3 39 sthylbenzerie 0.8900 0.15 1 0 89.0 70 130 0.73 19.8 30 oethane 0.0900 0.15 1 0 95.0 70 130 0.73 19.8 30 optimizerie 0.9900 0.15 1 0 98.0 70 130 0.89 1.26 1.94 30 optimizerie 0.9900 0.15 1 0 98.0 70 130 0.84 1.74 30 obenzerie 0.9900 0.15 1 0 99.0 70 130 0.84 1.74 30 obenzerie 0.9900 0.15 1 0 90.0 70 130 0.84 1.74 30 e. 0.9900 0.15 1 0 90.0 70 130 0.82 17	1,1-Dichloroethene	1.000	0.15	-	0	100	2	130	1.05	4.8B	30	
ethylbenzene 0.8900 0.15 1 0 89.0 70 130 0.73 19.8 30 oethane 1.040 0.15 1 0 104 70 130 1.02 1.94 30 obenzene 0.9800 0.15 1 0 95.0 70 130 1.01 3.02 30 obenzene 0.9800 0.15 1 0 98.0 70 130 1.01 3.02 30 ethylbenzene 0.0900 0.15 1 0 98.0 70 130 1.01 3.02 30 obenzene 0.9900 0.15 1 0 98.0 70 130 0.98 7 30 e 0.9400 0.15 1 0 94.0 70 130 0.89 5.46 30 e 0.9600 0.15 1 0 94.0 70 130 0.89 1.03 30	1,2,4-Trichlorobenzene	0.6700	0.15	- .	0	67.0	02	130	0.83	21.3	30	S
obeltharie 1,040 0,15 1 0 104 70 130 1,02 1,94 30 obenzarie 0,9500 0,15 1 0 95,0 70 130 0,89 6,52 30 optharia 0,9800 0,15 1 0 98,0 70 130 1,01 3,02 30 ethylbenzarie 0,9800 0,15 1 0 98,0 70 130 1,01 3,02 30 ethylbenzarie 0,8300 0,15 1 0 103 70 130 0,84 1,20 30 binenzarie 0,9900 0,15 1 0 98,0 70 130 0,84 1,74 30 binenzarie 0,9900 0,15 1 0 98,0 70 130 0,89 5,46 37 example 0,9800 0,15 1 0 98,0 70 130 0,89 1,92 3	1,2,4-Trimethylbenzene	0.8900	0.15	-	0	89.0	02	130	0.73	19.8	30	
obenzene 0.9500 0.15 1 0 95.0 70 130 0.89 6.52 30 optropane 1.100 0.15 1 0 98.0 70 130 1.01 3.02 30 ethylbenzene 0.9800 0.15 1 0 83.0 70 130 1.26 13.6 30 30 ethylbenzene 0.08300 0.15 1 0 83.0 70 130 0.84 1.20 30 sine 1.030 0.15 1 0 99.0 70 130 0.84 1.20 30 obenzene 0.9900 0.15 1 0 99.0 70 130 0.89 5.46 30 ethylbentane 0.5600 0.15 1 0 94.0 70 130 0.89 5.46 30 eth 1.110 0.15 1 0 94.0 70 130 0.89 1.02	1,2-Dibromoethane	1.040	0.15	-	0	104	70	130	1.02	1.94	30	
oethane 0.9800 0.15 1 0 98.0 70 130 1.01 3.02 30 opropane 1.100 0.15 1 0 110 70 130 1.26 13.6 30	1,2-Dichlorobenzene	0.9500	0.15	-	0	95.0	20	130	0.89	6.52	30	
optropane 1.100 0.15 1 0 110 70 130 1.26 136 33 sthylbenzene 0.83300 0.15 1 0 83.0 70 130 0.84 1.20 30 nne 1.030 0.15 1 0 103 70 130 0.84 1.20 30 obenzene 0.9400 0.15 1 0 99.0 70 130 0.89 0 36 e 0.9400 0.15 1 0 94.0 70 130 0.89 5.46 30 thylpentane 0.3600 0.15 1 0 96.0 70 130 0.82 37.7 30 she Results reported arc not blank corrected 1 0 98.0 70 130 0.86 13.0 30 and Results reported arc blow quantitation limits B Not Detected at the Reporting Limits Not Detected at the Reporting Limit R R	1,2-Dichloroethane	0.9800		-	0	98.0	70	130	1.01	3.02	33	
ethylbenzene 0.08300 0.15 1 0 83.0 70 130 0.84 1.20 30 nne 1.030 0.15 1 0 103 70 130 0.84 1.20 30 obenzene 0.9900 0.15 1 0 99.0 70 130 0.99 0 30 obenzene 0.9400 0.15 1 0 94.0 70 130 0.89 0 30 thylpentane 1.110 0.15 1 0 96.0 70 130 0.82 37.7 36 thylpentane 1.110 0.15 1 0 98.0 70 130 0.82 37.7 36 she A Malyte detected are not blank corrected E Value above quantitation range times 70 130 0.36 130 0.36 130 0.36 130 0.36 130 0.36 130 0.36 130 0.36 0.36	1,2-Dichloropropane	1.100		7	0	110	20	130	1.26	13.6	30	
1,030 0.15 1 0 103 70 130 1.08 4.74 30 30 30 30 30 30 30 3	1,3,5-Trimethylbenzene	0.8300	0.15	-	0	83.0	70	130	0.84	1.20	30	
Obenizene 0.9900 0.15 1 0 99.0 70 130 0.99 0 36 Obenizene 0.9400 0.15 1 0 94.0 70 130 0.89 5.46 30 thylpentane 0.5500 0.15 1 0 56.0 70 130 0.82 37.7 30 she 0.9800 0.15 1 0 98.0 70 130 0.86 1.82 37.7 30 she Analyte detected at not blank corrected E Value above quantitation range H Holding times for preparation or analysis excess 3 Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit R Public accepted recovery limits 3 Spike Recovery outside accepted recovery limits ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits	1,3-butadiene	1.030	0.15	-	0	103	70	130	1.08	4.74	30	
obenzene 0.9400 0.15 1 0 94,0 70 130 0.89 5.46 36 ethylpentane 0.5600 0.30 1 0 66.0 70 130 0.82 3.77 36 thylpentane 0.9800 0.15 1 0 111 70 130 1.82 36 ane 0.9800 0.15 1 0 98.0 70 130 0.86 13.0 36 ane Nablate detected at or below quantitation limits B Value above quantitation range H Holding times for preparation or analysis excess y Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits	1,3-Dichlorobenzene	0.9900			0	99.0	20	130	0.99	Ö	30	
thylpentane	1,4-Dichlorobenzene	0.9400	0.15	-	0	94.0	20	130	0.89	5.46	30	
thylpentane 1.110 0.15 1 0 111 70 130 1.09 1.82 36 ane 0.9800 0.15 1 0 98.0 70 130 0.86 13.0 30 and yet detected at or below quantitation limits B Value above quantitation range B Value above quantitation or analysis exceed Analyse detected at or below quantitation imits ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits R RPD outside accepted recovery limits	1,4-Dioхвпе	0.5600	0.30		0	56.0	2	130	0.82	37.7	30	SR
. Results reported are not blank corrected Janus and Jan	2,2,4-trimethylpentane	1.110	0.15		0	11	70	130	1.09	1.82	30	
. Results reported are not blank corrected E Value above quantitation range H Holding times for preparation or analysis excellent of the second and the Reporting Limit RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits	4-ethyltoluene	0.9800		r-	0	98.0	70	130	0.86	13.0	33	
Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit RPD outside accepted recovery limits		rted are not blank corrected			oove quantitation rar	ා සිර			dolding times for	r preparation or	ınalysis excee	led
Spike Recovery outside accepted recovery limits	J Analyte deter	cted at or below quantitation li	mits		ceted at the Reportir	g Limit			VPD outside acc	spted recovery li	mits	
		ery outside accepted recovery l	imits								1	Page 3 of 5

ALPROF Realty LLC

CLIENT: Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-001A

Date: 17-Nov-13

Client Sample ID: RISV-1

Tag Number: 202,,66

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	15		Analyst: RJP
1,1,1-Trichloroethene	2,6	0.83	ug/m3	1	10/8/2013 6:09:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/ m 3	1	10/8/2013 6:09:00 AM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	10/8/2013 6:09:00 AM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	10/8/2013 6:09:00 AM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 6:09:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/8/2013 6:09:00 AM
1,2,4-Trimethylbenzene	8.5	7.5	√ ug/m3	10	10/9/2013 7:35:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/8/2013 6:09:00 AM
1,2-Dichlorobenzeле	< 0,92	0.92	ug/m3	1	10/8/2013 6:09:00 AM
1,2-Dichleroethane	< 0.62	0.62	ug/m3	1	10/8/2013 6:09:00 AM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	10/8/2013 6:09:00 AM
1,3,5-Trimethylbenzene	4.5	0.75	ug/m3	1	10/8/2013 6:09:00 AM
1,3-butadiene	< 0.34	0.34	ug/m3	1	10/8/2013 6:09:00 AM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	10/8/2013 6:09:00 AM
1,4-Dichlorobenzane	130	9.2	ug/m3	10	10/9/2013 7:35:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	10/8/2013 6:09:00 AM
2,2,4-trimethylpentane	19	7.1	ug/m3	10	10/9/2013 7:35:00 AM
4-ethyltoluene	5.4	0.75	ug/m3	1	10/8/2013 6:09:00 AM
Acetone	870	200	ug/m3	270	10/9/2013 6:07:00 PM
Ally! ch!aride	< 0.48	0.48	ug/m3	1	10/8/2013 6:09:00 AM
Benzene	9.1	4.9	ug/m3	10	10/9/2013 7:35:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	10/8/2013 6:09:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/8/2013 6:09:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	10/8/2013 6:09:00 AM
Bromomethane	< 0.59	0.59	ug/m3	1	10/8/2013 6:09:00 AM
Carbon disulfide	10	4.7	ug/m3	10	10/9/2013 7:35:00 AM
Carbon tetrachioride	< 0.96	0.96	ug/m3	1	10/8/2013 6:09:00 AM
Chiorobenzene	< 0.70	0.70	ug/m3	1	10/8/2013 6:09:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	10/8/2013 6:09:00 AM
Chloroform	2.0	0.74	ug/m3	1	10/8/2013 6:09:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	10/8/2013 6:09:00 AM
cls-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 6:09:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	10/8/2013 6:09:00 AM
Cyclohexane	4.3	0.52	ug/m3	1	10/8/2013 6:09:00 AM
Dibromochioromethane	< 1.3	1.3	ug/m3	1	10/8/2013 6:09:00 AM
Ethyl acetale	< 0.92	0.92	ug/m3	1	10/8/2013 6:09:00 AM
Ethylbenzene	19	6.6	J ug/m3	10	10/9/2013 7:35:00 AM
Freon 11	2.2	0.86	ug/m3	1	10/8/2013 6:09:00 AM
Freon 113	< 1.2	1.2	ug/m3	1	10/8/2013 6:09:00 AM
Freon 114	< 1.1	1.1	ug/m3	1	10/8/2013 6:09:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Е Value above quantitation range
- Analyte detected at or below quantitation limits
- Not Detected at the Reporting Limit

Page 1 of 10

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-001A

Client Sample ID: RISV-1

Tag Number: 202,,66

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		. то	-15			Analyst: RJP
Freon 12	0.90	0.75		រេg/m3	1	10/8/2013 6:09:00 AM
Heptane	23	6.2		ug/m3	10	10/9/2013 7:35:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	10/8/2013 6:09:00 AM
Hexane	7.5	5.4	J	ug/m3	10	10/9/2013 7:35:00 AM
tsopropyl alcohol	< 0.37	0.37		ug/m3	1	10/8/2013 6:09:00 AM
m&p-Xylene	74	13	N	ug/m3	10	10/9/2013 7:35:00 AM
Methyl Butyl Ketone	< 1.2	1.2	R	ug/m3	1	10/8/2013 6:09:00 AM
Methyl Ethyl Ketone	35	0.90		ug/m3	1	10/8/2013 6:09:00 AM
Methyl Ethyl Ketone	29	9.0		ug/m3	10	10/9/2013 7:35:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	10/8/2013 6:09:00 AM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	10/8/2013 6:09:00 AM
Methylene chloride	< 0.53	0.53		ug/m3	1	10/8/2013 6:09:00 AM
o-Xylene	15	6.6		ug/m3	10	10/9/2013 7:35:00 AM
Propylene	< 0.26	0.26		ug/m3	1	10/8/2013 6:09:00 AM
Styrene	2.7	0.65		ug/m3	1	10/8/2013 6:09:00 AM
Tetrachloroethylene	1.4	1.0		ug/m3	1	10/8/2013 6:09:00 AM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	10/8/2013 6:09:00 AM
Toluene	76	5.7		ug/m3	10	10/9/2013 7:35:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 6:09:00 AM
trans-1,3-Dichleropropene	< 0.69	0.69		ug/m3	1	10/8/2013 5:09:00 AM
Trichloroethene	< 0.82	0.82		ug/m3	1	10/8/2013 6:09:00 AM
Vinyl acetate	< 0.54	0.54		ug/m3	1	10/8/2013 6:09:00 AM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	10/8/2013 6:09:00 AM
Vinyl chloride	< 0.39	0.39		⊔g/m3	1	10/8/2013 6:09:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 2 of 10

Date: 17-Nov-13

CLIENT: ALPROF Realty LLC

Lab Order:

C1310037

Project:

I087g-13-05

Lab ID:

C1310037-002A

Client Sample ID: RISV-ID

Tag Number: 366,147 Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 BY METHOD TO15		TO	-15			Analyst: RJP
1,1,1-Trichloroethane	2.1	0.83		ug/m3	1	10/8/2013 6:45:00 AM
1,1,2,2-Tetrachioroethane	< 1.0	1.0		ug/m3	1	10/8/2013 6:45:00 AM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	10/8/2013 6;45;00 AM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 6:45:00 AM
1,1-Dichloraethene	< 0.60	0.60		ug/m3	1	10/8/2013 6:45:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	10/8/2013 6:45:00 AM
1,2,4-Trimethylbenzene	7.5	7.5	J	ug/m3	10	10/9/2013 8:09:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/8/2013 6:45:00 AM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 6:45:00 AM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 6:45:00 AM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	10/8/2013 6:45:00 AM
1,3,5-Trimethylberizene	4.5	0.75		ug/m3	1	10/8/2013 5:45:00 AM
1,3-butadiene	< 0.34	0.34		ug/m3	1	10/8/2013 6:45:00 AM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 6:45:00 AM
1,4-Dichlorobenzene	120	9.2		ug/m3	10	10/9/2013 8:09:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	10/8/2013 6:45:00 AM
2,2,4-trimethylpentane	19	7.1		ug/m3	10	10/9/2013 8:09:00 AM
4-ethyltoluene	5.4	0.75		ug/m3	1	10/8/2013 6:45:00 AM
Acetone	880	200		ug/m3	270	10/9/2013 6:41:00 PM
Allyl chloride	< 0.48	0.48		ug/m3	1	10/8/2013 6:45:00 AM
Benzene	10	4.9		ug/m3	10	10/9/2013 8:09:00 AM
Benzyl chloride	< 0.88	0.88		ug/m3	1	10/8/2013 6:45:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/8/2013 6:45:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	10/8/2013 6;45:00 AM
Bromomethane	< 0.59	0.59		ug/m3	1	10/8/2013 6:45:00 AM
Carbon disulfide	9.5	4.7		ug/m3	10	10/9/2013 8;09:00 AM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	10/8/2013 6:45:00 AM
Chlorobenzene	< 0.70	0.70		ид/m3	1	10/8/2013 6:45:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	10/8/2013 6:45:00 AM
Chloroform	2.0	0.74		ug/m3	1	10/8/2013 6:45:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	10/8/2013 6:45:00 AM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 6:45:00 AM
cls-1,3-Dichloropropene	< 0.69	0,69		ug/m3	1	10/8/2013 6:45:00 AM
Cyclohexane	5.6	0,52		ug/m3	1	10/8/2013 6:45:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/8/2013 6:45:00 AM
Ethyl acetate	< 0.92	0.92		ug/m3	1	10/8/2013 6:45:00 AM
Ethylbenzene	18	6.6	J	ug/m3	10	10/9/2013 B:09:00 AM
Freen 11	2.1	0.86		ug/m3	1	10/8/2013 6:45:00 AM
Freon 113	< 1.2	1.2		ug/m3	1	10/8/2013 6:45:00 AM
Freon 114	< 1.1	1.1		ug/m3	1	10/8/2013 6:45:00 AM

Qualifiers:

- Reporting Limit
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded ŀĬ
- Non-routine analyte. Quantitation estimated. ЛV
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 3 of 10

ALPROF Realty LLC

CLIENT: Lab Order:

C1310037

Project: Lab ID: 1087g-13-05 C1310037-002A Date: 17-Nov-13

Client Sample ID: RISV-1D

Tag Number: 366,147 Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		тс	-15	_		Analyst: RJP
Freon 12	1.4	0.75		ug/m3	1	10/8/2013 6:45:00 AM
Heptane	14	6.2		ug/m3	10	10/9/2013 8:09:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	-	ug/m3	1	10/8/2013 6:45:00 AM
Hexane	12	5.4	J	ug/m3	10	10/9/2013 8:09:00 AM
Isopropyl alcohol	< 0.37	0.37		ug/m3	1	10/8/2013 6:45:00 AM
m&p-Xylene	68	13		ug/m3	10	10/9/2013 8:09:00 AM
Methyl Butyl Ketone	< 1.2	1.2	R	ug/m3	1	10/8/2013 6:45:00 AM
Methyl Ethyl Ketone	28	9.0		ug/m3	10	10/9/2013 8:09:00 AM
Methyl (sobuty) Ketone	< 1.2	1.2		ug/m3	1	10/8/2013 6:45:00 AM
Methyl tert-butyl ether	< 0.55	0,55		ug/m3	1	10/8/2013 6:45:00 AM
Methylene chloride	< 0.53	0.53		ug/m3	1	10/8/2013 6:45:00 AM
o-Xylene	14	6.6		ug/m3	10	10/9/2013 B:09:00 AM
Propylene	< 0.26	0,26		ug/m3	1	10/8/2013 6:45:00 AM
Styrene	2.5	0.65		ug/m3	1	10/8/2013 6:45:00 AM
Tetrachloroethylene	0.90	1.0	L	ug/m3	1	10/8/2013 6:45:00 AM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	10/8/2013 6:45:00 AM
Toluene	72	5.7		ug/m3	10	10/9/2013 B:09:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 6:45:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	10/B/2013 6:45:00 AM
Trichloroethene	< 0.82	0.82		ug/m3	1	10/8/2013 6:45:00 AM
Vinyl acetate	< 0.54	0.54		ug/m3	1	10/8/2013 6:45:00 AM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	10/8/2013 6;45:00 AM
Vinyl chloride	< 0.39	0.39		ug/m3	1	10/8/2013 6:45:00 AM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 4 of 10

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-003A

Client Sample ID: RISV-2

Tag Number: 130,175 Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 BY METHOD TO15		TC)-15			Analyst: RJF
1,1,1-Trichloroethane	4.9	0.83		սց/m3	1	10/8/2013 7:22:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1,0		ug/ m 3	1	10/8/2013 7:22:00 AM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	10/8/2013 7:22:00 AM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 7:22:00 AM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 7:22:00 AM
1,2,4-Trichlorobenzene	< 1 .1	1.1		ug/m3	1	10/8/2013 7:22:00 AM
1,2,4-Trimethylbenzene	16	15	J	ug/m3	20	10/9/2013 8:43:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/8/2013 7:22:00 AM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 7;22:00 AM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 7:22:00 AM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	10/8/2013 7:22:00 AM
1,3,5-Trimethylbenzene	5.3	0.75		ug/m3	1	10/8/2013 7:22:00 AM
1,3-butadiene	< 0.34	0.34		ug/m3	1	10/8/2013 7:22:00 AM
1,3-Dichlorobenzene	< 0.92	0,92		ug/m3	1	10/8/2013 7:22:00 AM
1,4-Dichlorobenzene	< 0.92	0,92		ug/m3	1	10/8/2013 7:22:00 AM
1.4-Dioxane	< 1,1	1.1		ug/m3	1	10/8/2013 7:22:00 AM
2,2,4-trimethylpentane	26	14		ug/m3	20	10/9/2013 8:43:00 AM
4-ethyltoluene	11	15	J	ug/m3	20	10/9/2013 8:43:00 AM
Acetone	15000	1800		บg/m3	2430	10/9/2013 7:15:00 PM
Allyl chloride	< 0.48	0.48		ug/m3	1	10/8/2013 7:22:00 AM
Benzene	20	9.7		ug/m3	20	10/9/2013 8:43:00 AM
Benzyl chloride	< 0.88	0.88		ug/m3	1	10/8/2013 7:22:00 AM
Bromodichloromethane	< 1,0	1.0		ug/m3	1	10/8/2013 7:22:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	10/8/2013 7:22:00 AM
Bromomethane	< 0.59	0.59		ug/m3	1	10/8/2013 7:22:00 AM
Carbon disulfide	2,8	0.47		ug/m3	1	10/8/2013 7:22:00 AM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	10/8/2013 7:22:00 AM
Chlorobenzene	< 0.70	0.70		ug/m3	1	10/8/2013 7:22:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	10/8/2013 7:22:00 AM
Chloroform	1.5	0.74		ug/m3	1	10/8/2013 7:22:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	10/8/2013 7:22:00 AM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 7:22:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	10/8/2013 7:22:00 AM
Cyclohexane	14	10		ug/m3	20	10/9/2013 8:43:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/8/2013 7:22:00 AM
Ethyl acetate	< 0.92	0.92		ug/m3	1	10/8/2013 7:22:00 AM
Ethylbenzene	41	13	5	ug/m3	20	10/9/2013 8:43:00 AM
Freon 11	2.2	0.86		ug/m3	1	10/8/2013 7:22:00 AM
Freon 113	0.86	1.2	J	ug/m3	1	10/8/2013 7:22:00 AM
Freon 114	< 1.1	1.1	•	ug/m3	1	10/8/2013 7:22:00 AM

Qualifiers:

- Analyte detected in the associated Method Blank В
-]-[Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 5 of 10

Date: 17-Nov-13

CLIENT:

Lab Order:

ALPROF Realty LLC C1310037

Project:

Lab ID:

1087g-13-05 C1310037-003A

Client Sample ID: RISV-2

Tag Number: 130,175 Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		то.	-15		Analyst: RJP
Freon 12	2.5	0.75	ug/m3	1	10/8/2013 7:22:00 AM
Heptane	98	12	ug/m3	20	10/9/2013 B:43:00 AM
Hexachloro-1,3-butadlene	< 1.6	1.6	ug/m3	1	10/8/2013 7:22:00 AM
Hexane	< 0.54	0.54	b ug/m3	_ 1	10/8/2013 7:22:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	10/8/2013 7:22:00 AM
m&p-Xylene	150	26	ug/m3	20	10/9/2013 8:43:00 AM
Methyl Butyl Ketone	< 1.2	1.2	L ug/m3	1	10/8/2013 7:22:00 AM
Methyl Ethyl Ketone	130	18	ug/m3	20	10/9/2013 8:43:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	10/8/2013 7:22:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	10/8/2013 7:22:00 AM
Methylene chloride	1.7	0.53	ug/m3	1	10/8/2013 7:22:00 AM
o-Xylene	25	13	ug/m3	20	10/9/2013 8:43:00 AM
Propylene	< 0.26	0.26	ug/m3	1	10/8/2013 7:22:00 AM
Styrene	3.3	0.65	ug/m3	1	10/8/2013 7:22:00 AM
Tetrachloroethylene	3.7	1.0	ug/m3	1	10/8/2013 7:22:00 AM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	10/8/2013 7:22:00 AM
Toluene	190	11	ug/m3	20	10/9/2013 8:43:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 7:22:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	10/8/2013 7:22:00 AM
Trichloroethene	19	16	ug/m3	20	10/9/2013 8:43:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	10/8/2013 7:22:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	10/B/2013 7:22:00 AM
Vinyl chloride	< 0.39	0.39	ug/m3	1	10/8/2013 7:22:00 AM

Qualifiers:

- Reporting Limit
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Е Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 6 of 10

Date: 17-Nov-13

CLIENT:

ALPROF Realty LLC

Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-004A

Client Sample ID: RISV-3

Tag Number: 201,78

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 BY METHOD TO15			-15			Analyst: RJP
1,1,1-Trichloroethane	19	17	3	ug/m3	20	10/9/2013 9:16:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/8/2013 7:58:00 AM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	10/8/2013 7:58:00 AM
1,1-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 7:58:00 AM
1,1-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 7:58:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	10/8/2013 7:58:00 AM
1,2,4-Trimethylbenzene	12	15	J	ug/m3	20	10/9/2013 9:16:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	10/8/2013 7:58:00 AM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 7:58:00 AM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	10/8/2013 7:58:00 AM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	10/8/2013 7:58:00 AM
1,3,5-Trimethylbenzene	4.8	0.75		ug/m3	1	10/8/2013 7:58:00 AM
1,3-butadiene	< 0.34	0,34		ug/m3	1	10/8/2013 7:58:00 AM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	10/8/2013 7:58:00 AM
1,4-Dichlorobenzene	< 0.92	0.92		u g/ m3	1	10/8/2013 7:5B:00 AM
1,4-Dloxane	< 1.1	1.1		ug/m3	1	10/8/2013 7:58:00 AM
2,2,4-trimethylpentane	16	14		ug/m3	20	10/9/2013 9:16:00 AM
4-ethyltoluene	11	0.75		ug/m3	1	10/8/2013 7:58:00 AM
Acetone	2300	580		ug/m3	810	10/9/2013 7:50:00 PM
Ally! chloride	< 0.48	0.48		ug/m3	1	10/8/2013 7:58:00 AM
Benzene	13	9.7		ug/m3	20	10/9/2013 9:16:00 AM
Benzyl chloride	< 0.88	0.88		ug/m3	1	10/8/2013 7:58:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/8/2013 7:58:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	10/8/2013 7:58:00 AM
Bromomethane	< 0.59	0.59		ug/m3	1	10/8/2013 7:58:00 AM
Carbon disulfide	1.9	0.47		ug/m3	1	10/8/2013 7:58:00 AM
Carbon tetrachloride	< 0.96	0.96		ug/m3	1	10/8/2013 7:58:00 AM
Chlorobenzene	< 0.70	0.70		ug/m3	1	10/8/2013 7:58:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	10/8/2013 7:58:00 AM
Chloroform	2.2	0.74		ug/m3	1	10/8/2013 7:58:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	10/8/2013 7:58:00 AM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 7:58:00 AM
dis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	10/8/2013 7:58:00 AM
Cyclohexane	6.6	0.52		ug/m3	1	10/8/2013 7:58:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/8/2013 7:58:00 AM
Ethyl acetate	< 0.92	0.92		ug/m3	1	10/8/2013 7:58:00 AM
Ethylbenzene	33	13	5	ug/m3	20	10/9/2013 9:16:00 AM
Freon 11	2.1	0.86		ug/m3	1	10/8/2013 7:58:00 AM
Freon 113	0.78	1.2	J	ug/m3	1	10/8/2013 7:58:00 AM
Freon 114	< 1.1	1.1	_	ug/m3	1	10/8/2013 7:58:00 AM

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 7 of 10

Date: 17-Nov-13

CLIENT: ALPROF Realty LLC

Lab Order: C1310037

Project: 1087g-13-05 Lab ID: C1310037-004A Client Sample ID: RISV-3 Tag Number: 201,78

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		то	-15		_	Analyst: RJP
Freon 12	2.2	0.75		ug/m3	1	10/8/2013 7:58:00 AM
Heptane	37	12		ug/m3	20	10/9/2013 9:16:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	10/8/2013 7:58:00 AM
Hexane	< 0.54	0.54		ug/m3	1	10/8/2013 7:58:00 AM
Isopropyl alcohol	< 0.37	0.37		ug/m3	1	10/8/2013 7:58:00 AM
m&p-Xylene	120	. 26		ug/m3	20	10/9/2013 9:16:00 AM
Methyl Butyl Ketone	< 1.2	1.2	1	ug/m3	1	10/8/2013 7:58:00 AM
Methyl Ethyl Ketone	55	18	e.	ug/m3	20	10/9/2013 9:16:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	10/8/2013 7:58:00 AM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	10/8/2013 7:58:00 AM
Methylene chloride	0.95	0.53		ug/m3	1	10/8/2013 7:58:00 AM
o-Xylene	19	13		ug/m3	20	10/9/2013 9:16:00 AM
Ргорујеле	< 0.26	0.26		ug/m3	1	10/8/2013 7:58:00 AM
Styrene	< 0.65	0.65		ug/m3	1	10/8/2013 7:58:00 AM
Tetrachloroethylene	1.4	1.0		ug/m3	1	10/8/2013 7:58:00 AM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	10/8/2013 7:58:00 AM
Toluene	110	11		ug/m3	20	10/9/2013 9:16:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 7:58:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	10/8/2013 7:58:00 AM
Trichloroethene	< 0.82	0.82		ug/m3	1	10/8/2013 7:58:00 AM
Vinyl acetate	< 0.54	0.54		ug/m3	1	10/8/2013 7:58:00 AM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	10/8/2013 7:58:00 AM
Vinyl chloride	< 0.39	0.39		ug/m3	1	10/8/2013 7:58:00 AM

Qualifiers:

- Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 8 of 10

ALPROF Realty LLC

CLIENT: Lab Order:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-005A

Date: 17-Nov-13

Client Sample ID: Trip Blank

Tag Number: 217

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		TC		Analyst: RJP	
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	10/8/2013 12:28:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/8/2013 12:28:00 AM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	10/8/2013 12:28:00 AN
1,1-Dichloroethane	< 0.62	0.62	иg/m3	1	10/8/2013 12:28:00 AN
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 12:28:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/8/2013 12:28:00 AM
1,2,4-Trimethylbenzene	< 0.75	0.75	ug/m3	1	10/8/2013 12:28:00 AM
1,2-Dibromoethane	< 1,2	1.2	ug/m3	1	10/8/2013 12:28:00 AN
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	10/8/2013 12:28:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	10/8/2013 12:28:00 AM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	10/8/2013 12:28:00 AM
1,3,5-Trimethylbenzene	< 0.75	0.75	ug/m3	1	10/8/2013 12:28:00 AN
1,3-butadiene	< 0.34	0.34	ид/т3	1	10/8/2013 12:28:00 AN
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	10/8/2013 12:28:00 AM
1,4-Dichlorobenzene	< 0.92	0.92	սց/m3	1	10/8/2013 12:28:00 AN
1,4-Dioxane	< 1.1	1.1	ид/m3	1	10/8/2013 12:28:00 AN
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	10/8/2013 12:28:00 AM
4-ethyltoluene	< 0.75	0.75	ug/m3	1	10/8/2013 12:28:00 AN
Acetone	< 0.72	0.72	ug/m3	1	10/8/2013 12:28:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	10/8/2013 12:28:00 AN
Benzene	< 0.49	0.49	⊔g/m3	1	10/8/2013 12:28:00 AN
Benzyl chloride	< 0.88	0.88	ug/m3	1	10/8/2013 12:28:00 AN
Bromodichloromethane	< 1.0	1.0	ц g/m 3	1	10/8/2013 12:28:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	10/8/2013 12:28:00 AN
Bromomethane	< 0.59	0.59	ug/m3	1	10/8/2013 12:28:00 AN
Carbon disulfide	< 0.47	0.47	ug/m3	1	10/8/2013 12:28:00 AN
Carbon tetrachloride	< 0.96	0.96	ug/m3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/8/2013 12:28:00 AM
Chlorobenzene	< 0.70	0.70	ug/m3	1	10/8/2013 12:28:00 AN
Chloroethane	< 0.40	0.40	ug/m3	1	10/8/2013 12:28:00 AM
Chloroform	< 0.74	0.74	ug/m3	1	10/8/2013 12:28:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	10/8/2013 12:28:00 AN
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	10/8/2013 12:28:00 AN
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	10/8/2013 12:28:00 AN
Cyclohexane	< 0.52	0.52	ug/m3	1	10/8/2013 12:28:00 AN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/8/2013 12:28:00 AM
Ethyl acetate	< 0,92	0.92	ug/m3	1	10/8/2013 12:28:00 AM
Ethylbenzene	< 0.66	0.66	ug/m3	1	10/8/2013 12:28:00 AM
Freon 11	< 0.86	0.86	ug/m3	1	10/8/2013 12:28:00 AM
Freon 113	< 1.2	1.2	ug/m3	1	10/8/2013 12:28:00 AM
Freon 114	< 1.1	1.1	ug/m3	1	10/8/2013 12:28:00 AN

Qualifiers:

- ** Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 9 of 10

ALPROF Realty LLC

Lab Order:

CLIENT:

C1310037

Project:

1087g-13-05

Lab ID:

C1310037-005A

Date: 17-Nov-13

Client Sample ID: Trip Blank

Tag Number: 217

Collection Date: 10/2/2013

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15			Analyst: RJP
Freon 12	< 0.75	0.75		ug/m3	1	10/8/2013 12:28:00 AM
Heplane	< 0.62	0.62		ug/m3	1	10/8/2013 12:28:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	10/8/2013 12:28:00 AM
Нехапе	< 0.54	0.54		ug/m3	1	10/8/2013 12:28:00 AM
Isopropy! alcohol	< 0.37	0.37		ug/m3	1	10/8/2013 12:28:00 AM
m&p-Xylene	< 1.3	1.3		ug/m3	1	10/8/2013 12:28:00 AM
Methyl Butyl Ketone	< 1.2	1.2	R	ид/т3	1	10/8/2013 12:28:00 AM
Methyl Ethyl Ketone	< 0.90	0.90	V	ug/m3	1	10/8/2013 12:28:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	10/8/2013 12;28:00 AM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	10/8/2013 12:28:00 AM
Methylene chloride	< 0.53	0.53		ug/m3	1	10/8/2013 12:28:00 AM
o-Xylene	< 0.66	0.66		ug/m3	1	10/8/2013 12:28:00 AM
Propylene	< 0.26	0.26		ug/m3	1	10/8/2013 12:28:00 AM
Styrene	< 0.65	0.65		աց/m3	1	10/8/2013 12:28:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	10/8/2013 12:28:00 AM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	10/8/2013 12;28:00 AM
Toluene	< 0.57	0.57		ug/m3	1	10/8/2013 12:28:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	10/8/2013 12:28:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	10/8/2013 12;28:00 AM
Trichloroethene	< 0.82	0.82		ug/m3	1	10/8/2013 12;28:00 AM
Vinyl acetate	< 0.54	0.54		ug/m3	1	10/8/2013 12:28:00 AM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	10/8/2013 12:28:00 AM
Vinyl chloride	< 0.39	0.39		ug/m3	1	10/8/2013 12:28:00 AM

Qualifiers:

- * Reporting Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range
- J Analyte detected at or below quantitation limits
- ND Not Detected at the Reporting Limit

Page 10 of 10