

2018 FIRST QUARTERLY GROUNDWATER MONITORING REPORT

Former Hygrade Polishing and Plating Company 22-07 41st Avenue Long Island City, NY 11101 BCP Site No. C241148

June 18, 2018

Prepared for:

Stalingrad Ventures, LLC 100 Field Street West Babylon, NY 11704

Prepared by:

Amec E&E, PC 214-25 42nd Avenue, Suite 3R Bayside, NY 11361

(347) 836-4445

Amec E&E, PC Project No. 3612162331

June 18, 2018

email: wendi.zheng@dec.ny.gov

phone: 718-482-7541

New York State Department of Environmental Conservation

Division of Environmental Remediation 1 Hunter's Point Plaza 47-40 21st Street Long Island City, NY 11101-5407

Attn: Wendi Zheng

Re: 2018 First Quarterly Groundwater Monitoring Report

Former Hygrade Polishing and Plating Co.

22-07 41st Avenue

Long Island City, NY 11101 BCP Site No.: C241148

Dear Ms. Zheng:

Amec Environment & Engineering, PC is pleased to present this quarterly monitoring report for the first round of quarterly groundwater sampling at the above-referenced facility. The sampling occurred in April 2018. The following report details the field activities and results associated with this event.

If you have any questions, please do not hesitate to call our Office.

Respectfully,

Amec Environment & Engineering, PC

Jazmin Logan Project Geologist

Joznin Logan

Eric A. Weinstock Principal Scientist

Eric Verstock

TABLE OF CONTENTS

_		UARTERLY GROUNDWATER MONITORING REPORT	
1.0	INTRODU		
		SITE DESCRIPTION1	
		BACKGROUND1	
	1.3	CONTAMINANTS OF CONCERNS2)
		ROCEDURES2	
3.0		TORY ANALYTICAL DATA3	
	3.1	/OLATILE ORGANIC COMPOUNDS3	j
	3.2	ΓAL METALS5	,
	3.3 F	PFAS6	,
4.0		ion7	
		SION8	
FIG	URES		
4		Cita Lagation Man	
1		Site Location Map	
2		Groundwater Monitoring Well Locations Map	
3		VOCs Concentration Maps	
4		Metals Concentration Maps	
5		PFAS Concentration Maps	
6		Site-Specific Water Table Map	
TAE	BLES		
1		Groundwater VOCs Analytical Results	
2		Groundwater Metals Analytical Results	
3		Groundwater PFAS Analytical Results	
4		Previous Investigations Results for VOC Contaminants of Concern	
5		Previous Investigations Results for Metal Contaminants of Concern	
6		Elevations of Monitoring Wells and Water Table	

APPENDICES

Appendix A – Field Forms Appendix B – Manifest Appendix C – Certified Laboratory Analytical Reports and Data Usability Summary Reports

LIST OF ACRONYMS AND ABBREVIATIONS

Amec Environment & Engineering, PC

BCP Brownfield Cleanup Program
BMW Basement Monitoring Well

Cis 1,2-DCE Cis 1,2-Dichloroethene COC Contaminants of Concern

ft² square feet

Hygrade Polishing and Plating

IRM Interim Remedial measure

NYS
New York State
NYCDEP
New York City Department of Environmental Protection
NYSDEC
NYSDOH
New York State Department of Environmental Conservation
New York State Department of Health

MW Monitoring Well

PCB Polychlorinated Biphenyls
PCE Perchloroethene (a.k.a. Tetrachloroethene)

SVOCs Semi Volatile Organic Compound

TAL Target Analyte List
TCE Trichloroethene
TOGS Technical & Operational Guidance Series

VOCs Volatile Organic Compound

1.0 INTRODUCTION

Amec Environment & Engineering, PC (Amec) prepared this Quarterly Groundwater Monitoring Report on behalf of Stalingrad Ventures, LLC for the former Hygrade Polishing and Plating (Hygrade) property located in at 22-07 41st Avenue, Long Island City, NY (the Site). The site location is shown on Figure 1. This monitoring program was completed in accordance with an Interim Remedial Measures (IRM) Work Plan dated May 17, 2017 (Ref. 1) and approved by the New York State Department of Environmental Conservation (NYSDEC).

1.1 SITE DESCRIPTION

The Site currently encompasses a 100 foot by 25 foot property developed with a four-story office building and basement level that covers the entirety of the lot. The NYC Tax Map designates the Site as Queens County; Block: 409; Lot: 6. The neighborhood surrounding the subject property consists of a highly urbanized area of Long Island City with adjacent properties consisting of commercial and industrial land use.

1.2 BACKGROUND

The subject property was first developed with the current building circa 1920s. In 1962, Hygrade purchased the subject property to operate their metal polishing and electroplating facility. The operations consisted of plating finishes performed at the former Hygrade facility included chromium, brass (copper & zinc), nickel, and zinc. This process involved gathering parts placed in baskets or hung on racks. The parts would then be dipped in various baths containing alkaline, plating solutions, stripping solutions, and rinses. As a result of these processes, wastewater was generated. The wastewater was treated onsite using a wastewater treatment unit. The treated wastewater was then discharged to the New York City municipal sewer system.

Plating and polishing operations ceased around March 2013 when Stalingrad Ventures, LLC (the current owner) purchased the property. Upon purchase of the subject property, the current owner performed a cleanup of the Hygrade facility under a New York City Department of Environmental Protection (NYCDEP) Commissioner's Order that had been issued to the former owner.

Stalingrad Ventures, LLC continued cleaning up and restoring the building after the NYCDEP Commissioner's Order was satisfied. This included removing the concrete surfacing from the walls, washing and resurfacing the floors, removal of approximately 581 tons of soil from the

basement and replacing it with sand. In 2015, Stalingrad Ventures, LLC entered into a Brownfield Cleanup Agreement for the site.

A Remedial Investigation completed under this program revealed that elevated levels of chlorinated Volatile Organic Compounds (VOCs) and metals were present in the groundwater beneath the building and isolated to the shallow water table. Furthermore, previous investigations (by Amec and others) identified the northerly portion of the Site (in the area of wells of BMW-1 and BMW-2) as containing the highest concentration of metal contaminants and the southerly portion of the Site (in the area of wells of BMW-3 and BMW-4) as containing the highest concentration of VOCs contaminants. The remedial investigation established that the groundwater contamination decreased significantly in off-site groundwater wells collected on the northeast corner of 22nd Street and 41st Avenue.

In December 2017, as part of the NYSDEC-approved IRM, Amec treated the groundwater beneath the basement floor using in-situ injections. The injections consisted of two different bio-remediation products. In the northerly portion of the Site, where the metals were prevalent, Peroxychem Metafix® was applied as part of the injection program. In the southerly portion of the Site, where the VOCs were prevalent, Peroxychem EHC® was applied as part of the injection program. Details of the injection program are described in the IRM Construction Completion Report which is currently in preparation. As part of the injection program, wells BMW-1 through BMW-4 were abandoned to prevent any short circuiting of the injection products. These wells were re-installed after the completion of the injection program.

1.3 CONTAMINANTS OF CONCERNS

The contaminants of concern (COCs) in the groundwater below the Site are the VOCs which are identified as tetrechloroethene (PCE), trichloroethene (TCE), cis-1,2 dichloroethene (cis 1,2-DCE), and vinyl chloride. With respect to metals, the COCs at the Site are identified as Cadmium, Chromium, and to a lesser degree, Nickel.

2.0 FIELD PROCEDURES

An Amec field crew mobilized to the Site on April 26 and 27, 2018 to complete this quarterly groundwater sampling event. The groundwater monitoring wells were sampled using low-flow sampling procedures. A GeotechTM brand peristaltic pump was used to evacuate the water from

the wells. New high density polyethylene (HDPE) tubing was used for the collection of each sample. The wells were purged at a rate of 100 and 500 ml per minute. Temperature, specific conductance, pH, dissolved oxygen, turbidity and redox were recorded as the well was pumped. These readings were logged on field forms and are included in Appendix A. The purged water was contained in 5-gallon plastic pails and staged in the basement for proper disposal. The manifest is included in Appendix B.

Water level indicators were decontaminated with Alconox and laboratory-issued contaminant and PFAS-free certified water after use at each monitoring well location. All other downhole equipment/material were designated for each monitoring well location.

Groundwater samples collected from the on-site basement wells include BMW-1. BMW-2, BMW-3, and BMW-4. Groundwater collected from the downgradient off-site wells include MW-5, MW-6S, and MW-6D. Lastly, a groundwater sample was collected from the upgradient monitoring well MW-E. A sample location map depicting the locations of the groundwater monitoring wells is included in Figure 2.

3.0 LABORATORY ANALYTICAL DATA

Amec subcontracted analytical laboratory, Alpha Analytical of Westborough, MA (an ELAP-certified laboratory) for analysis of Volatile Organic Compounds (VOCs) and TAL Metals (both dissolved and total). At the request of the NYSDEC, Per and Polyfluoroalkyl Substances (PFAS) were added to this round of sampling. (1,4 dioxane was included in the previous round of sampling and was not detected in the samples.) All groundwater samples remained in a cooler with ice until delivered to the laboratory.

The laboratory analytical results were tabulated and compared to the NYSDEC Technical Operational TOGS Ambient Water Quality Standards (NY TOGS standard). The following sections summarizes the results.

3.1 VOLATILE ORGANIC COMPOUNDS

<u>Basement Sample Locations</u> – The laboratory report indicates that the site-related VOCs contaminants are still present in the basement, but at significantly lower concentrations than before the bio-remediation injection program. Using EPA method 8260C, PCE, TCE, cis 1,2-DCE

and vinyl chloride were detected in the water samples collected from the four basement monitoring wells. However, the detections of PCE in all four wells were below NY TOGS groundwater standards. The remaining three VOC COCs were detected above the NY TOGS standards in three of the four basement monitoring wells. There were no exceedances of the TOGS Standards in one of the wells. The following summarizes the concentrations of VOC contaminants for the basement monitoring wells. The laboratory results for VOCS are tabulated on Table 1. A map depicting the concentrations of contaminants of concern for VOCs at each monitoring well location is included as Figure 3.

- PCE was detected in water samples collected from wells BMW-1 and BMW-2 at concentrations below the NY TOGS standard of 5 ug/l. It was not detected in wells BMW-3 and BMW-4, the wells that initially had the highest concentrations of these compounds. For comparison, the groundwater from basement monitoring well BMW-3 had a concentration of 20,700 ug/l of PCE on March 27, 2014 and on April 27, 2018 had a value of non-detect.
- TCE was detected in wells BMW-1, BMW-2, and BMW-3, with detections exceeding the NY TOGS standard of 5 ug/l in only well, the water sample collected from well BMW-2. That sample displayed a concentration of 5.4 ug/l. For comparison, the groundwater from well BMW-3 had a concentration of 2,600 ug/l of TCE on February 19, 2014 and on April 27, 2018 had a value of non-detect.
- Cis 1,2-DCE was detected in water samples collected from all four basement monitoring wells with exceedances above the NY TOGS standard of 5 ug/l in the water samples collected at BMW-2, BMW-3, and BMW-4. For comparison, the groundwater from well BMW-3 had a cis 1,2-DCE concentration of 2,600 ug/l on February 19, 2014 and on April 27, 2018 had a value of 71 ug/l.
- Vinyl Chloride was detected in water samples collected from all four basement monitoring wells with exceedances above the NY TOGS standard for BMW-2, BMW-3, and BMW-4. For comparison, the groundwater from well BMW-3 had a concentration of 1,070 ug/l of VC on February 19, 2014 and on April 27, 2018 had a value of 34 ug/l.
- 2-Butanone (also known as Methyl Ethyl Ketone or MEK) was detected above the NY TOGS standards for water samples collected from BMW-3 and BMW-4. However, this is believed to be attributed to the PVC glue used to repair these wells after the EHC injection process was completed.

Acetone was detected for samples collected at BMW-3 and BMW-4 but this may be attributed to a laboratory cleaning agents or to the PVC glue used at the site.

<u>Sidewalk Sample Locations</u> – The site-related VOCs contaminants, PCE, TCE, and cis 1.2-DCE, were detected in the water samples from the downgradient monitoring wells located in the sidewalk at low concentrations and below the NY TOG Standards in wells MW-5 and MW-6D. Vinyl Chloride was not detected in any of the downgradient sidewalk monitoring wells. The VOCs PCE, TCE, and cis 1.2-DCE, were detected at concentrations exceeding the NY TOGS Standard for the sample collected from well MW-6S. Well MW-6S is a water table well located directly downgradient of basement monitoring well BMW-3, the well that has historically displayed the highest levels of VOC contamination. There were no detections above the NY TOGS standards for the upgradient monitoring well, MW-E.

3.2 TAL METALS

<u>Basement Sample Locations</u> – The laboratory data indicates site-related metal contaminants are still present in the basement, but at significantly lower concentrations than before the bioremediation injection program. Cadmium was only detected in excess of the NY TOGS standard of 5 ug/l in the water sample collected from well BMW-2. Nickel was only detected in excess of the NY TOGS standard of 100 ug/l in the water samples collected from BMW-2 and BMW-3. Chromium was not detected in excess of the NY TOGS of 50 ug/l in any of the water samples collected from the basement monitoring wells. For comparison, the groundwater from well BMW-2 had a Chromium concentration of 4,120 ug/l on March 27, 2014 and on April 26, 2018 had a value of 2.03 ug/l.

The naturally occurring metals iron, magnesium, manganese, and sodium were detected at concentrations in excess of the NY TOGS standards in the water samples collected from the basement monitoring wells. This is typical in urban areas like Queens.

<u>Sidewalk Sample Locations</u> – The same naturally occurring metals detected above NY TOGS standards in the water samples collected from the basement monitoring wells – iron, magnesium, manganese and sodium -- were also detected in the wells located in the sidewalk. The site-related metal contaminants, cadmium, chromium and nickel, were not detected above the NY TOGS standards in the samples collected from the downgradient and upgradient sidewalk wells.

The laboratory results for TAL metals are tabulated on Table 2. A map depicting the concentrations of contaminants of concern for TAL Metals at each monitoring well location is included as Figure 4.

3.3 PFAS

At the request of the NYSDEC, PFAS analysis was included in this sample round. As of the date of this report, there are no applicable New York State standard in which to compare PFAS levels to. In May 2016, the United States Environmental Protection Agency (EPA) established drinking water health advisory of 0.07 ppb for the combined concentrations of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) and 400 ppb for Perfluorobutane Sulfonate (PFBS). The concertation of the combined value of PFOA and PFOS exceeded the EPA drinking water advisory in water samples collected from all monitoring well locations with the exception of the upgradient well. The greatest concentrations were detected below the building in samples collected from basement monitoring wells BMW-3 and BMW-4, the wells that had historically displayed the highest VOC detections. None of the groundwater results exceed the EPA drinking water advisory for PFBS.

The laboratory results for PFAS are tabulated on Table 3. A map depicting the concentrations of PFOA, PFOS, and PFBS concentration at each monitoring well location is included as Figure 5.

3.4 BACTERIA ANALYSIS

A water sample was collected from BMW-3 for the bacterial analysis of Dehalococcoides (DHC) and the associated functional genes (BVC, TCR, and VCR), bacteria that have been shown to degrade chlorinated solvents. The sample was submitted to Microbial Insights, Inc. of Knoxville, Tennessee. Generally, the presence of the afore-mentioned bacteria indicates the reduction of various chlorinated VOCs such as PCE, TCE, and vinyl chloride through bacterial consumption. The laboratory report indicated that the DHC and the corresponding functional genes were not detected at a detection level of 5.0 x 10⁻¹ cells/mL. For comparison, the water sample collected from BMW-3 in November 2016, detected DHC and BVC at 0.3 cells/mL (TCR and VCR were non-detect).

4.0 DISCUSSION

VOCs and TAL Metals:

Tables 4 and 5 summarizes the concentration of site-related contaminants from previous groundwater investigations (by Amec and others) performed at the subject property. As shown, the COCs have decreased significantly since the first round of sampling in February 2014. On December 11, 2017, groundwater samples were collected just prior to the injection program. The laboratory results for the groundwater sampling performed in April 2018 (after the injection program), displays a significant decrease in COC concentration. Many of the COCs decreased to concentrations below the NY TOGS standard and some were not detected. For comparison, the groundwater from basement monitoring well BMW-3 had a concentration of 20,700 ug/l of PCE on March 27, 2014 and on April 27, 2018 had a value of non-detect. This is a strong indication that natural bio-degradation of the VOCs has been occurring and was accelerated by the addition of EHC. Similarly, the groundwater from well BMW-2 had a Chromium concentration of 4,120 ug/l on March 27, 2014 and on April 26, 2018 had a value of 2.03 ug/l which is below the NY TOGS Standard. This data suggests that Metafix was successful in reducing the concentrations of these contaminants.

Bacteria

The reason for the decrease of the DHC bacteria and associated functional genes in the groundwater from BMW-3 is unknown at this time. It is possible that the section of the aquifer where the monitoring wells were re-installed was disturbed. Once the groundwater around the re-installed well assimilates the bacteria count may increase. This will be track during future sampling rounds.

PFAS

The April 2018 groundwater sampling event was the first time at this site where water samples were collected for the purposes of PFAS analysis. The analytical data revealed that PFAS is present in the groundwater below the site at concentrations above the EPA drinking water health advisory. Further, PFAS levels are highest underneath the basement and decreases in the direction of the downgradient wells.

The EPA guidance value serves as an advisory for drinking water supplies. However, this area of Queens is serviced by the NYCDEP municipal water supply which derives its water from

reservoirs located in upstate New York. As such, there are no pathways for the PFAS in the groundwater to present a negative impact to human health or the environment. The basement was recently finished with a new concrete slab that is 8-inchs thick. There are no known groundwater supply wells in the area of Queens.

Direction of Ground Water Flow

Based on the elevation of the groundwater measured in the upgradient and downgradient monitoring wells, the direction of groundwater flow is to the west. The measured water table elevation are included on Table 6. A site-specific water table map is indicated on Figure 6.

5.0 CONCLUSION

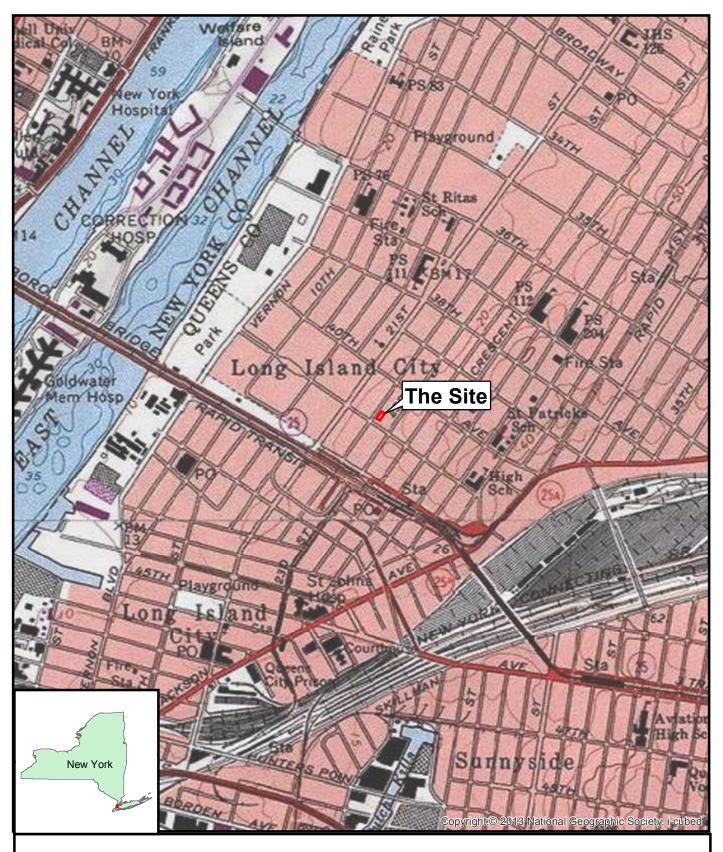
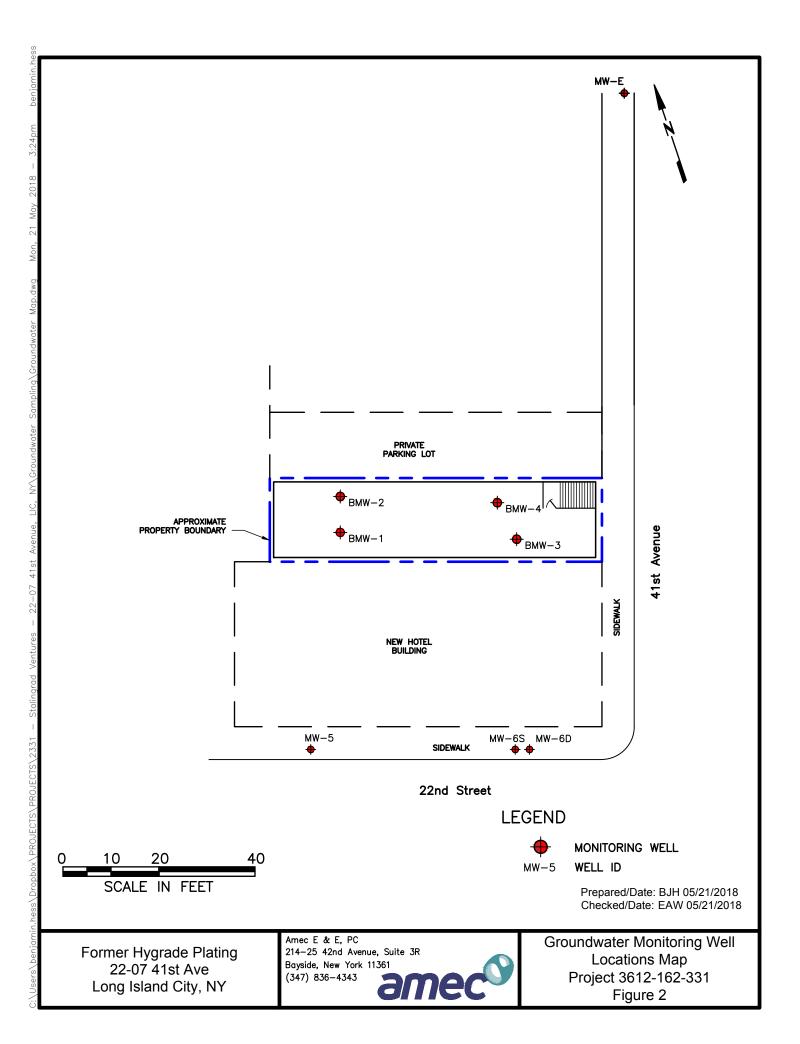
Laboratory analytical results collected during this quarterly round of monitoring indicate the December 2017 bio-remediation injection program was very effective in addressing the VOCs and Metal contamination at the subject property. The concentrations of both the VOCs and Metals in the groundwater have decreased significantly since the products were injected. Continued monitoring is recommend to confirm that these constituents continue to decrease in concentration over time.

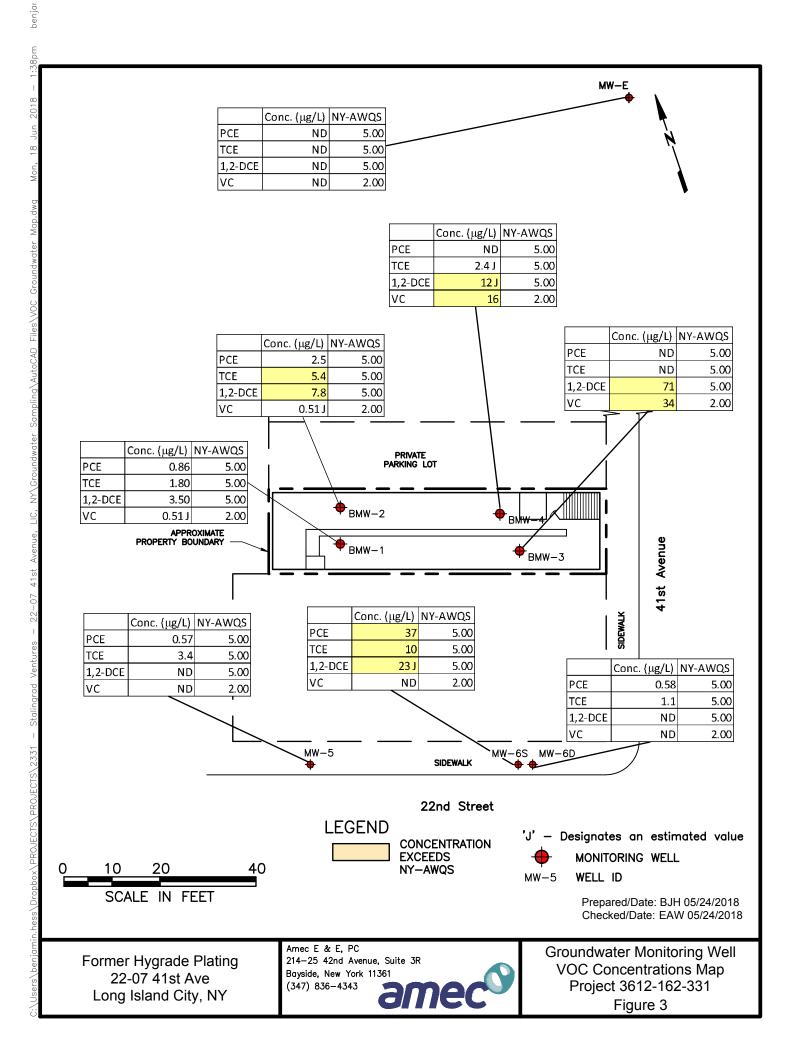
PFAS constituents were detected in all of the site wells at varying concentrations. These concentrations are relatively low with the highest reading detected at just over 5 ug/l. Although these detections exceed the EPA's advisory for drinking water supplies, this area of Queens is serviced by reservoirs located in upstate New York and the basement is sealed with a new 8-inch thick concrete slab. As such, continued monitoring is recommended at this time as there are no receptors affected by the presence of PFAS at this site.

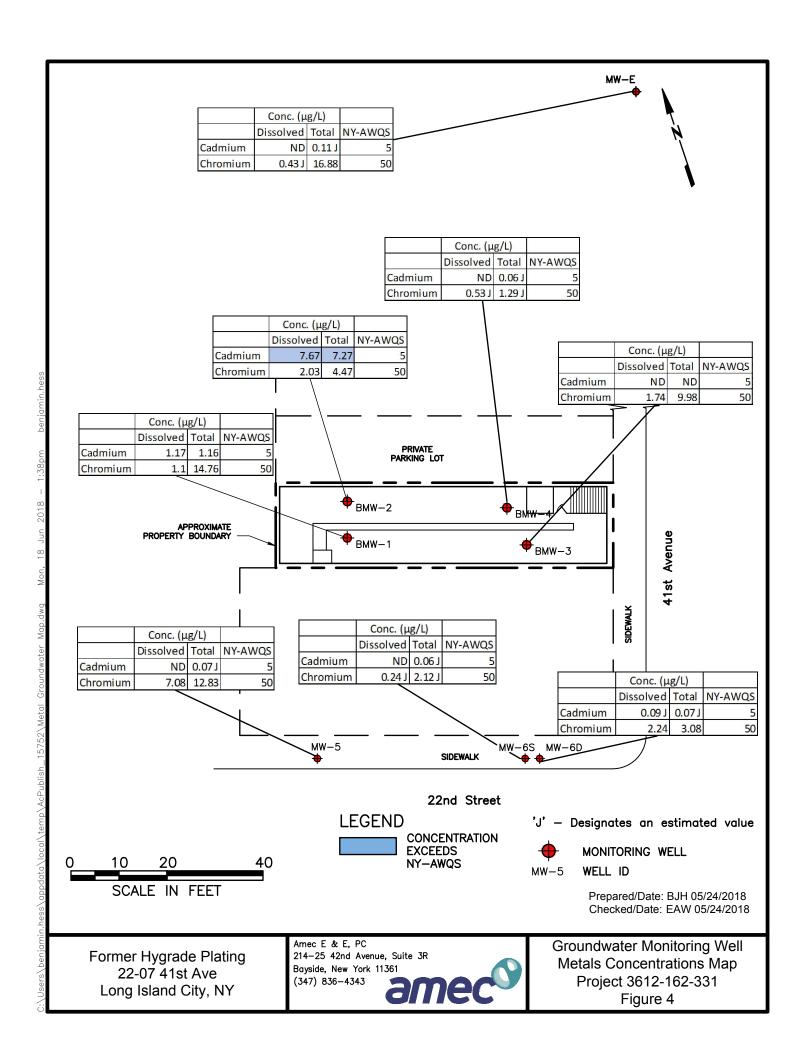
REFERENCES

- 1. Amec (May 2017) Interim Remedial Measure Plan, Former Hygrade Polishing and Plating Co., 22-07 41st Avenue, Long Island City, NY 11101
- 2. CA RICH (June 2016) Remedial Investigation Work Plan, Former Hygrade Polishing and Plating Site, 22-07 41st Avenue, Long Island City, NY BCP Site No.: C241148.
- 3. Julian Soren (February 1978) Subsurface Geology and Paleogeogrphy of Queens County, Long Island, NY USGS Water-Resources Investigation 77-34, Open-File Report.
- 4. NYSDEC (June 1998) Technical Operational TOGS Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations
- 5. US EPA (May 2016) Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)

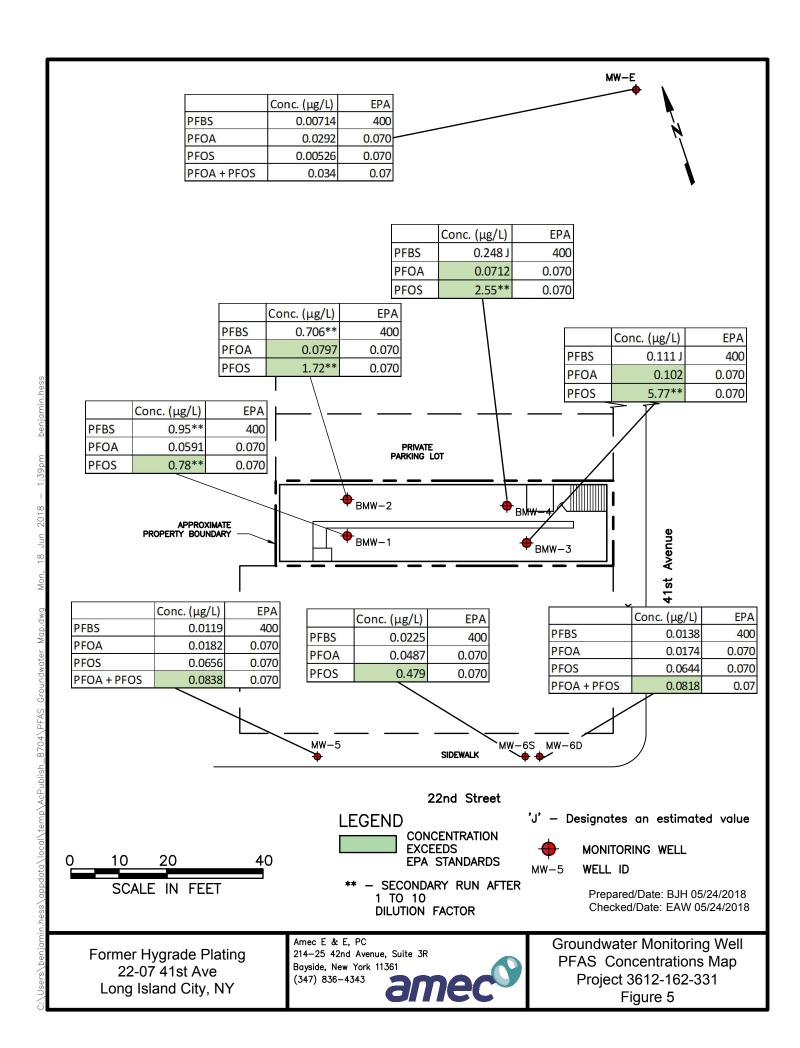
FIGURES




Figure 1 **Site Location Map**

22-07 41st Avenue Long Island City, New York



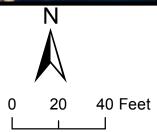


Figure 6
Site-Specific Water Table Map

22-07 41st Avenue Long Island City, New York

Prepared By: JCL 06/07/18

Checked By: EAW 06/07/18

TABLES

TABLE 1: GROUNDWATER VOCs ANALYTICAL RESULTS 22-07 41st Avenue, Long Island City, NY

PAGE 1 OF 2

SAMPLE ID: COLLECTION DATE: LOCATION: DEPTH (ft): SAMPLE MATRIX:		BMW- 4/26/20 BASEMI 1-6 GROUNDV	D18 ENT	BMW- 4/26/20 BASEMI 2.5-7. GROUNDV	118 ENT 5	BMW- 4/26/20 BASEMI 3.5-8. GROUNDV	018 ENT .5	BMW- 4/26/20 BASEME 3.5-8. GROUNDW	18 ENT 5	MW-5 4/27/20 SIDEWAI 8-18 GROUNDW	18 LK -	MW-6: 4/27/20 SIDEWAI 8-18 GROUNDW	18 _K -	MW-6 4/27/20 SIDEWA 26-31 GROUNDW)18 LK - 1	MW-I 4/27/20 SIDEWA 8-18 GROUNDV	018 .LK - 3	DUPLIC 4/26/20 BASEM 3.5-8 GROUND	018 ENT 3.5
ANALYTE (ppb)	NY-AWQS	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
Volatile Organics by GC/MS-8260	ı	1		1		1		1											
Methylene chloride	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,1-Dichloroethane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Chloroform	7	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Carbon tetrachloride	5	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	0.5	U	0.5	U	5	U
1,2-Dichloropropane	1	1	U	1	U	10	U	10	U	1	U	10	U	1	U	1	U	10	U
Dibromochloromethane	50	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	0.5	U	0.5	U	5	U
1,1,2-Trichloroethane	1	1.5	U	1.5	U	15	U	15	U	1.5	U	15	U	1.5	U	1.5	U	15	U
Tetrachloroethene	5	0.86		2.5		5	U	5	U	0.57		37		0.58		0.5	U	5	U
Chlorobenzene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Trichlorofluoromethane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,2-Dichloroethane	0.6	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	0.5	U	0.5	U	5	U
1,1,1-Trichloroethane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Bromodichloromethane	50	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	0.5	U	0.5	U	5	U
trans-1,3-Dichloropropene	0.4	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	0.5	U	0.5	U	5	U
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	5	U	5	C	0.5	С	5	U	0.5	C	0.5	U	5	U
1,3-Dichloropropene, Total	NS	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	0.5	U	0.5	U	5	U
1,1-Dichloropropene	5	2.5	U	2.5	U	25	U	25	C	2.5	С	25	U	2.5	С	2.5	U	25	U
Bromoform	50	2	U	2	U	20	U	20	C	2	U	20	U	2	U	2	U	20	U
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	5	U	5	C	0.5	С	5	U	0.5	С	0.5	U	5	U
Benzene	1	0.5	U	0.19	J	12		2.3	_	0.5	С	5	U	0.5	С	0.5	U	2.3	J
Toluene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Ethylbenzene	5	2.5	U	2.5	U	25	U	25	C	2.5	С	25	U	2.5	С	2.5	U	25	U
Chloromethane	NS	2.5	U	2.5	U	25	U	25	С	2.5	С	25	U	2.5	C	2.5	U	25	U
Bromomethane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Vinyl chloride	2	0.51	J	3.1		34		16		1	С	10	U	1	C	1	U	15	
Chloroethane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,1-Dichloroethene	5	0.5	U	0.5	U	5	U	5	U	0.5	U	5	U	0.5	U	0.5	U	5	U
trans-1,2-Dichloroethene	5	2.5	U	2.5	U	25	U	7.2	J	2.5	U	25	U	2.5	U	2.5	U	7.7	J
Trichloroethene	5	1.8		5.4		5	U	2.4	J	3.4		10		1.1		0.5	U	2.1	J
1,2-Dichlorobenzene	3	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,3-Dichlorobenzene	3	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,4-Dichlorobenzene	3	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Methyl tert butyl ether	10	2.5	U	2.5	U	25	U	25	U	2.5	U	1100		2.5	U	2.5	U	25	U
p/m-Xylene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
o-Xylene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Xylenes, Total	NS	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
cis-1,2-Dichloroethene	5	3.5		7.8		71	T .	12	J	2.5	U	23	ı	2.5	U	2.5	U	11	j
1,2-Dichloroethene, Total	NS	3.5		7.8		71		19	J	2.5	U	23	J	2.5	U	2.5	U	19	J
Notes:									-		-				-				-

parts per billions Analyte detected for sample ppb **Bold**

NS No Standard

indicates estimated value; concentration is below the reporting limit but above the minimum detection limit

New York Ambient Water Quality Standards Duplicate was collected with the BMW-4-0418 sample

TABLE 1: GROUNDWATER VOCs ANALYTICAL RESULTS 22-07 41st Avenue, Long Island City, NY

PAGE 2 OF 2

SAMPLE ID: COLLECTION DATE: LOCATION: DEPTH (ft): SAMPLE MATRIX:		BMW- 4/26/20 BASEMI 1-6 GROUNDV	D18 ENT	BMW 4/26/20 BASEMI 2.5-7. GROUND	018 ENT .5	BMW- 4/26/20 BASEME 3.5-8. GROUNDW	118 ENT 5	BMW- 4/26/20 BASEME 3.5-8.4 GROUNDW	18 NT 5	MW-5 4/27/20 SIDEWAL 8-18 GROUNDW	18 _K -	MW-63 4/27/20 SIDEWAL 8-18 GROUNDW	18 _K -	MW-6i 4/27/20 SIDEWAI 26-31 GROUNDW	18 LK -	4/27/ SIDEW	18	DUPLIO 4/26/2 BASEN 3.5-4 GROUND	2018 MENT 8.5
ANALYTE (ppb)	NY-AWQS	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
Volatile Organics by GC/MS-8260	1	1																1	
Dibromomethane	5	5	U	5	U	50	U	50	U	5	U	50	U	5	U	5	U	50	U
1,2,3-Trichloropropane	0.04	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Acrylonitrile	5	5	U	5	U	50	U	50	U	5	U	50	U	5	U	5	U	50	U
Styrene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Dichlorodifluoromethane	5	5	U	5	U	50	U	50	U	5	U	50	U	5	U	5	U	50	U
Acetone	50	5	U	5	U	1000		380		5	U	50	U	5	U	5	U	380	
Carbon disulfide	60	5	U	5	U	50	U	50	U	5	U	50	U	5	U	5	U	50	U
2-Butanone	50	5	U	5	U	1700		1400		5	U	50	U	5	U	5	U	1400	
Vinyl acetate	NS	5	U	5	U	50	U	50	U	5	U	50	U	5	U	5	U	50	U
4-Methyl-2-pentanone	NS	5	U	5	U	50	U	50	U	5	U	50	U	5	U	5	U	50	U
2-Hexanone	50	5	U	5	U	50	U	50	U	5	U	50	U	5	U	5	U	50	U
Bromochloromethane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
2,2-Dichloropropane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,2-Dibromoethane	0.0006	2	U	2	U	20	U	20	U	2	U	20	U	2	U	2	U	20	U
1,3-Dichloropropane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	С	25	U
1,1,1,2-Tetrachloroethane	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Bromobenzene	5	2.5	U	2.5	U	25	U	25	C	2.5	U	25	U	2.5	U	2.5	C	25	U
n-Butylbenzene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
sec-Butylbenzene	5	2.5	U	2.5	U	25	U	25	C	2.5	U	25	U	2.5	U	2.5	C	25	U
tert-Butylbenzene	5	2.5	U	2.5	U	25	U	25	C	2.5	U	25	U	2.5	U	2.5	C	25	U
o-Chlorotoluene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
p-Chlorotoluene	5	2.5	U	2.5	U	25	U	25	C	2.5	U	25	U	2.5	U	2.5	C	25	U
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Hexachlorobutadiene	0.5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Isopropylbenzene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
p-Isopropyltoluene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Naphthalene	10	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
n-Propylbenzene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
1,4-Dioxane	0.035	250	U	250	U	2500	U	2500	U	250	U	2500	U	250	U	250	U	2500	U
p-Diethylbenzene	NS	2	U	2	U	20	U	20	U	2	U	20	U	2	U	2	U	20	U
p-Ethyltoluene	NS	2	U	2	U	20	U	20	U	2	U	20	U	2	U	2	U	20	U
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	20	U	20	U	2	U	20	U	2	U	2	U	20	U
Ethyl ether	NS	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
trans-1,4-Dichloro-2-butene	5	2.5	U	2.5	U	25	U	25	U	2.5	U	25	U	2.5	U	2.5	U	25	U
Notes:							-												

ppb parts per billions **Bold** Analyte detected for sample

NS No Standard

J indicates estimated value; concentration is below the reporting limit but above the minimum detection limit

NY-AWQS New York Ambient Water Quality Standards

* Duplicate was collected with the BMW-4-0418 sample

TABLE 2: GROUNDWATER METALS ANALYTICAL RESULTS 22-07 41st Avenue, Long Island City, NY

PAGE 1 OF 2

SAMPLE COLLECTION DA LOCATI DEPTH SAMPLE MATF	TE: ON: (ft):	BMW- 4/26/20 BASEMI 1-6 GROUND	018 ENT	BMW- 4/26/20 BASEMI 2.5-7: GROUNDV)18 ENT .5	BMW- 4/26/20 BASEME 3.5-8. GROUNDV	18 ENT 5	BMW- 4/26/20 BASEME 3.5-8. GROUNDW	18 :NT 5	MW-5 4/27/20 SIDEWA 8-18 GROUNDW	118 LK -	MW-6: 4/27/20 SIDEWAI 8-18 GROUNDW	18 _K -	MW-6 4/27/20 SIDEWA 26-3 GROUNDY)18 LK - 1	MW- 4/27/20 SIDEWA 8-18 GROUNDV	018 ALK - 3	DUPLICA 4/26/20 BASEMI 3.5-8 GROUNDV	018 ENT .5
ANALYTE (ppb)	NY-AWQS	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
Dissolved Metals																			
Aluminum, Dissolved	NS	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Antimony, Dissolved	3	4	U	4	U	4	U	4	U	4	U	4	U	4	U	4	U	4	U
Arsenic, Dissolved	25	1.06		0.51		2.66		5.35		0.22	J	1.06		0.29	J	0.6		4.88	
Barium, Dissolved	1000	103.6		124.8		201.5		147.1		109.2		194.8		105.7		84.07		143.4	
Beryllium, Dissolved	3	0.5	U	0.5	U	0.5	U	0.5	С	0.5	С	0.5	U	0.5	U	0.5	U	0.5	U
Cadmium, Dissolved	5	1.17		7.67		0.2	U	0.2	U	0.2	U	0.2	U	0.09	J	0.2	U	0.2	U
Calcium, Dissolved	NS	264000		307000		275000		269000		201000		253000		211000		109000		263000	
Chromium, Dissolved	50	1.1		2.03		1.74		0.53	J	7.08		0.24	J	2.24		0.43	J	0.56	J
Cobalt, Dissolved	NS	14.04		13.79		11.28		22.42		0.65		3.12		0.47	J	0.22	J	20.82	
Copper, Dissolved	200	3.3		3.67		1	U	1	U	1.53		1.36		2.1		0.67	J	0.53	J
Iron, Dissolved	300	28.5	J	24.9	J	8360		350	J	26.9	J	20.3	J	39.2	J	50	U	126	j
Lead, Dissolved	25	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Magnesium, Dissolved	35000	30000		41300		40200		55700		13700		81400		18500		17200		51200	
Manganese, Dissolved	300	3816		5380		4685		8175		6.47		4112		59.63		271		8132	
Mercury, Dissolved	0.7	0.2	U	0.2	U	0.2	U	0.2	C	0.2	C	0.2	U	0.2	U	0.2	U	0.2	U
Nickel, Dissolved	100	83.19		123.6		368.8		59.69		5.51		32.64		3.72		1.12	J	56.04	
Potassium, Dissolved	NS	44400		38500		63400		47900		26400		16900		23700		20500		48600	
Selenium, Dissolved	10	5	U	5	U	5	U	5	U	8.46		5	U	4.84	J+	4.49	J	5	U
Silver, Dissolved	50	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U
Sodium, Dissolved	20000	203000		161000		230000		207000		192000		130000		113000		89800		196000	
Thallium, Dissolved	0.5	0.3	J	0.14	J	0.5	U	0.5	C	0.5	C	0.5	U	0.5	U	0.5	U	0.5	U
Vanadium, Dissolved	NS	5	U	5	U	5	U	5	U	5	U	5	U	1.88	J	5	U	5	U
Zinc, Dissolved	2000	10	U	10	U	10	U	10	U	3.69	J	10.48		10	U	10	U	10	U

parts per billions Bold Analyte detected for sample

No Standard

indicates estimated value; concentration is below the reporting limit but above the minimum detection limit

indicates estimated value and potentially biased high; concentration is below the reporting limit but above the minimum detection limit

New York Ambient Water Quality Standards

Duplicate was collected with the BMW-4-0418 sample

TABLE 2: GROUNDWATER METALS ANALYTICAL RESULTS 22-07 41st Avenue, Long Island City, NY

PAGE 2 OF 2

SAMPLE ID: COLLECTION DATE: LOCATION DEPTH (ft). SAMPLE MATRIX.		BMW- 4/26/20 BASEMI 1-6 GROUND	018 ENT	BMW- 4/26/20 BASEMI 2.5-7: GROUNDY)18 ENT .5	BMW- 4/26/20 BASEME 3.5-8. GROUNDY	18 ENT 5	BMW- 4/26/20 BASEME 3.5-8. GROUNDV	18 :NT 5	MW-3 4/27/20 SIDEWA 8-18 GROUNDY)18 LK -	MW-6 4/27/20 SIDEWA 8-18 GROUNDV	118 LK -	MW-6 4/27/20 SIDEWA 26-3 GROUNDY)18 LK - 1	MW-1 4/27/20 SIDEWA 8-18 GROUNDY)18 LK -	DUPLICA 4/26/20 BASEME 3.5-8.4 GROUNDW	18 :NT 5
ANALYTE (ppb)	NY-AWQS	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
Total Metals																			
Aluminum, Total	NS	13.2		70.7		403		23.2		175		212		130		4830		12.1	
Antimony, Total	3	4	U	4	U	4	U	4	U	4	U	4	U	4	U	4	U	4	U
Arsenic, Total	25	1.25		0.8		21.26		23.36		0.31	J	1.57		0.46	J	9.99		23.48	
Barium, Total	1000	102.5		114.6		348.7		220.1		112.5		196.3		107.3		205.8		230.1	
Beryllium, Total	3	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.48	J	0.5	U
Cadmium, Total	5	1.16		7.27		0.2	U	0.06	J	0.07	J	0.06	J	0.07	J	0.11	J	0.2	U
Calcium, Total	NS	258000		284000		281000		267000		201000		251000		204000		118000		261000	
Chromium, Total	50	14.76		4.47		9.98		1.29	J	12.83		2.12	J	3.08		16.88		1.24	J
Cobalt, Total	NS	13.13		14.89		13.13		22.53		0.78		3.06		0.56		8.7		21.1	
Copper, Total	200	3.66	J	4	J	4.11	J	0.63	J	1.55	J	2.22	J	2.88	J	24.03		0.65	J
Iron, Total	300	464		445		80000		30200		332		482		233		15600		30600	
Lead, Total	25	0.44	J	1	U	0.81	J	1	U	2.3		1.89		0.62	J	7.33		1	U
Magnesium, Total	35000	29800		40700		40800		52500		14000		74600		18100		22200		50200	
Manganese, Total	300	3659		5743		5194		8368		8		4051		47.49		2088		8359	
Mercury, Total	0.7	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Nickel, Total	100	79.21		136.9		383		57.9		4.19		31.38		4.07		17.42		55.86	
Potassium, Total	NS	43600		34300		64600		45900		26800		16500		23900		22500		47600	
Selenium, Total	10	1.81	J	5	U	5	U	5	U	8.7		5	U	4.63	J	5.55		5	U
Silver, Total	50	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U
Sodium, Total	20000	204000		162000		229000		196000		196000		125000		110000		92200		192000	
Thallium, Total	0.5	0.29	J	0.15	J	0.5	U	0.5	U	0.5	U	0.5	U	0.14	J	0.5	U	0.5	U
Vanadium, Total	NS	5	U	5	U	5.42		5	U	5	U	5	U	2.6	J	18.56		5	U
Zinc, Total	2000	10	U	10	U	13.42		10	U	10	U	16.09		10	U	49.41		10	U
Notes:		•				•								•					

parts per billions Bold Analyte detected for sample

No Standard

indicates estimated value; concentration is below the reporting limit but above the minimum detection limit

indicates estimated value and potentially biased high; concentration is below the reporting limit but above the minimum detection limit

New York Ambient Water Quality Standards

Duplicate was collected with the BMW-4-0418 sample

TABLE 3: GROUNDWATER PFOAS ANALYTICAL RESULTS 22-07 41st Avenue, Long Island City, NY

PAGE 1 OF 1

SAMPLE ID: COLLECTION DATE: LOCATION: DEPTH (ft): SAMPLE MATRIX:		BMW- 4/26/20 BASEME 1-6 GROUNDW	18 :NT	BMW- 4/26/20 BASEME 2.5-7. GROUNDW	18 ENT 5	BMW- 4/26/20 BASEME 3.5-8. GROUNDW	118 ENT .5	BMW 4/26/20 BASEMI 3.5-8. GROUNDV	018 ENT .5	MW-: 4/27/20 SIDEWA 8-18 GROUNDW	118 LK -	MW-63 4/27/20 SIDEWAL 8-18 GROUNDW	18 _K -	MW-6i 4/27/20 SIDEWAI 26-31 GROUNDW	18 _K -	MW-E 4/27/201 SIDEWAL 8-18 GROUNDW	8 K -	DUPLICAT 4/26/20 BASEME 3.5-8.9 GROUNDW	118 ENT 5
ANALYTE (ug/L) Perfluorinated Alkyl Acids by Isotope Dilution	EPA	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual	Conc	Qual
Perfluorinated Aikyr Acids by Isotope Dilution Perfluorobutanoic Acid (PFBA)	NSG	0.0302		0.0298		0.0289		0.031		0.00862		0.0127		0.00624		0.026		0.0304	
Perfluoropentanoic Acid (PFPA) Perfluoropentanoic Acid (PFPA)	NSG	0.0302		0.0298		0.0289	J	0.031		0.00862		0.0127		0.00524		0.026		0.0304	$\overline{}$
Perfluorobutanesulfonic Acid (PFBS)	400	0.95	**	0.706	**	0.111	1	0.0323	1	0.00878		0.00742		0.00301		0.00714		0.286	\neg
Perfluorohexanoic Acid (PFHxA)	NSG	0.0722		0.0457		0.104		0.104		0.00814		0.00696		0.00603		0.0723		0.099	
Perfluoroheptanoic Acid (PFHpA)	NSG	0.0233		0.0201		0.0262		0.0232		0.00482		0.00569		0.00402		0.00933		0.0227	
Perfluorohexanesulfonic Acid (PFHxS)	NSG	0.148		0.322		0.0971	J	0.106	J	0.00481		0.0302		0.00275		0.0017		0.108	
Perfluorooctanoic Acid (PFOA)*	0.070	0.0591		0.0797		0.102		0.0712		0.0182		0.0487		0.0174		0.0292		0.073	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	NSG	0.000721	J	0.001	J	0.00343	J	0.00185	J	0.00178	U	0.00526	J	0.00185	UJ	0.017		0.0018	J
Perfluoroheptanesulfonic Acid (PFHpS)	NSG	0.0481		0.0832		0.115		0.075		0.00178	U	0.0114		0.000744	J	0.00167	U	0.0859	
Perfluorononanoic Acid (PFNA)	NSG	0.00484		0.00343		0.0041		0.00303		0.000628	J	0.00248		0.00136	J	0.000887	J	0.00301	
Perfluorooctanesulfonic Acid (PFOS)*	0.070	0.78	**	1.72	**	5.77	**	2.55	**	0.0656		0.479		0.0644		0.00526		3.95	E
Perfluorodecanoic Acid (PFDA)	NSG	0.00128	J	0.00122	J	0.000972	J	0.00117	J	0.00178	U	0.000852	J	0.000481	J	0.000843	J	0.000589	J
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	NSG	0.00172	UJ	0.00192	UJ	0.00172	UJ	0.00192	UJ	0.00178	U	0.00172	U	0.00185	U	0.00167	U	0.00185	UJ
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	NSG	0.00172	U	0.00192	U	0.00172	U	0.00192	U	0.00178	U	0.00172	U	0.00185	U	0.00167	U	0.00185	U
Perfluoroundecanoic Acid (PFUnA)	NSG	0.00172	U	0.00192	U	0.00172	U	0.000704	J	0.00178	U	0.00172	U	0.00185	U	0.00167	U	0.00185	U
Perfluorodecanesulfonic Acid (PFDS)	NSG	0.00172	U	0.00192	U	0.00172	U	0.00115	J	0.00178	U	0.00172	U	0.00185	U	0.00167	U	0.00185	UJ
Perfluorooctanesulfonamide (FOSA)	NSG	0.00172	UJ	0.00192	UJ	0.00172	UJ	0.00192	UJ	0.00178	UJ	0.00172	UJ	0.00185	UJ	0.00167	UJ	0.00185	U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	NSG	0.00172	U	0.00192	U	0.00172	U	0.000515	J	0.00178	U	0.00172	U	0.00185	U	0.00167	U	0.00185	U
Perfluorododecanoic Acid (PFDoA)	NSG	0.00172	U	0.00192	U	0.00172	U	0.000762	J	0.00178	U	0.00172	U	0.00185	U	0.00167	U	0.00185	U
Perfluorotridecanoic Acid (PFTrDA)	NSG	0.00172	U	0.00192	U	0.00172	U	0.000646	J	0.00178	U	0.00172	U	0.00185	U	0.00167	U	0.00185	U
Perfluorotetradecanoic Acid (PFTA)	NSG	0.00172	U	0.00192	U	0.00172	U	0.000638	J	0.00178	U	0.00172	UJ	0.00185	U	0.00167	U	0.00185	U
PFOA + PFOS (combined value)	0.070					-				0.0838		-		0.0818		0.034		-	

Motoo	

Bold	Analyte detected for sample
E	Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
NSG	No Standard Given
J	indicates estimated value; concentration is below the reporting limit but above the minimum detection limit
EPA	EPA drinking water guideline, May 2016
*	Guideline value for combined concentrations of PFOS and PFOA
**	Due to analyte exceedance above laboratory instrument, the tabulated value is from second laboratory run after a 1 to 10 dilution factor
***	Duplicate was callected with the PMIN 4 0419 comple

Table 4: Previous investigation results for contaminants of concern - VOCs 22-07 41st avenue, long island city, ny

Former Hygrade Plating GW Results in ug/l

VOCs in ug/l

				BMW-1			
Date:		2/19/2014	3/27/2014	11/10/2016	12/11/2017	4/26/2018	NY-AWQS
	PCE in ug/l	3.74	18.30	7.50	2.90	0.86	5.00
	TCE	10.10	5.37	8.00	6.80	1.80	5.00
	c-1,2-DCE	27.70	11.70	16.00	9.80	3.50	5.00
	VC	ND	ND	1.40	0.56	0.51 J	2.00

				BMW-2			
Date:		2/19/2014	3/27/2014	11/10/2016	12/11/2017	4/26/2018	NY-AWQS
	PCE in ug/l	6.56	4.59	17.00	3.10	2.50	5.00
	TCE	12.70	5.30	11.00	7.10	5.40	5.00
	c-1,2-DCE	15.30	8.07	14.00	6.90	7.80	5.00
	VC	ND	ND	1.20	0.26	3.10	2.00

				BMW-3			
Date:		2/19/2014	3/27/2014	11/10/2016	12/11/2017	4/26/2018	NY-AWQS
	PCE in ug/l	11,900.00	20,700.00	3,300.00	960.00	ND	5.00
	TCE	2,600.00	910.00	290.00	130.00	ND	5.00
	c-1,2-DCE	4,150.00	2,730.00	450.00	210.00	71.00	5.00
	VC	1,070.00	818.00	140.00	46.00	34.00	2.00

				BMW-4			
Date:	2/19/20	14 3	/27/2014	11/10/2016	12/11/2017	4/26/2018	NY-AWQS
PCE in u	g/l 464	00	449.00	720.00	340.00	ND	5.00
Т	CE 56	90	50.50	62.00	52.00	2.4 J	5.00
c-1,2-D	CE 33	70	26.70	240.00	86.00	12 J	5.00
	VC 6	96	11.20	66.00	34.00	16.00	2.00

MW-5					
Date:		5/4/2017	4/27/2018	NY-AWQS	
	PCE in ug/l	0.53	0.57	5.00	
	TCE	2.70	3.40	5.00	
	c-1,2-DCE	ND	ND	5.00	
	VC	ND	ND	2.00	

MW-6S					
Date:	5/4/2017	4/27/2018	NY-AWQS		
PCE in ug/l	0.46	37	5.00		
TCE	0.75	10	5.00		
c-1,2-DCE	ND	23	5.00		
VC	ND	ND	2.00		

MW-6D					
Date:	5/4/2017	4/27/2018	NY-AWQS		
PCE in ug/l	43	0.58	5.00		
TCE	13	1.1	5.00		
c-1,2-DCE	ND	ND	5.00		
VC	ND	ND	2.00		

MW-E					
Date:		5/4/2017	4/27/2018	NY-AWQS	
	PCE in ug/l	0.31	ND	5.00	
	TCE	ND	ND	5.00	
	c-1,2-DCE	ND	ND	5.00	
	VC	ND	ND	2.00	

Table 5: Previous investigation results for contaminants of concern - metals 22-07 41st avenue, long island city, ny

Former Hygrade Plating GW Results in ug/l

Dissolved Metals in ug/l

	BMW-1					
Date:	2/19/2014	3/27/2014	11/10/2016	4/26/2018	NY-AWQS	
Cadmium	1.90	0.15	7.80	1.17	5.00	
Chromium	1,000.00	150.00	679.60	1.10	50.00	
Hex Chromium	240.00	190.00	593.00		50.00	

BMW-2					
Date:	2/19/2014	3/27/2014	11/10/2016	4/26/2018	NY-AWQS
Cadmium	25.00	27.00	27.30	7.60	5.00
Chromium	2,380.00	4,120.00	775.10	2.03	50.00
Hex Chromium	2,410.00	2,630.00	81.00		50.00

BMW-3					
Date:	2/19/2014	3/27/2014	11/10/2016	4/26/2018	NY-AWQS
Cadmium	0.60	0.50	ND	0.20	5.00
Chromium	57.00	31.00	ND	1.40	50.00
Hex Chromium	ND	ND	ND		50.00

BMW-4					
Date:	2/19/2014	3/27/2014	11/10/2016	4/26/2018	NY-AWQS
Cadmium	ND	ND	0.30	0.2	5.00
Chromium	12.00	11.00	12.50	0.23	50.00
Hex Chromium	ND	ND	16.00		50.00

MW-5						
Date:	5/4/2017	4/27/2018	NY-AWQS			
Cadmium	0.11	ND	5.00			
Chromium	ND	7.08	50.00			
Hex Chromium	ND	NA	50.00			

MW-6S					
Date:	NY-AWQS				
Cadmium	0.16	ND	5.00		
Chromium	ND	0.24	50.00		
Hex Chromium	ND	NA	50.00		

MW-6D					
Date:	NY-AWQS				
Cadmium	ND	0.09	5.00		
Chromium	ND	2.24	50.00		
Hex Chromium	ND	NA	50.00		

MW-E					
Date: 5/4/2017 4/27/2018 NY-AWQS					
Cadmium	ND	ND	5.00		
Chromium	ND	0.43	50.00		
Hex Chromium	ND	NA	50.00		

TABLE 6: ELEVATIONS OF MONITORING WELLS AND WATER TABLE FORMER HYGRADE LONG ISLAND CITY, NEW YORK

Well ID Number	Elevation of Top of Casing (ft. MSL)	Depth to Water (ft.) in April 2018	Water Table Elevation (ft. MSL)	Depth to Top of Screen Interval (ft.)	Depth to Bottom of Screen Interval (ft.)	Elevation of Top of Screen (ft. MSL)	Elevation of Bottom of Screen Interval (ft. MSL)
MW-E	16.21	8.90	7.31	5	15	11.2	1.2
BMW-1	*	1.17	NA	1	6	NA	NA
BMW-2	*	1.10	NA	2.5	7.5	NA	NA
BMW-3	*	2.67	NA	3.5	8.5	NA	NA
BMW-4	*	1.10	NA	4.6	9.6	NA	NA
MW-5	14.50	8.12	6.38	8	18	6.5	-3.5
MW-6S	14.09	7.85	6.24	8.5	18.5	5.6	-4.4
MW-6D	14.18	7.84	6.34	26.5	31.5	-12.3	-17.3

^{*} Wells were replaced after injection program. Casing elevations are not avalaible.

APPENDIX A – FIELD FORMS

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING					
PROJECT	Stalingrad Ve	entures		FIELD SAM	FIELD SAMPLE NUMBER 3MW -1-0418				JOB No.	3612162331	
Location	22-07 41st A	venue, Long Is	sland City, NY		SITE TYPE WELL - PSMV-1			\mathcal{T}	DATE	04172	18
ACTIVITY	START \\3	O ENI	D 1330	SAMPLE T	IME	15.32	*****				
WATER LI	EVEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE		**	CASING / WEL DIFFER.	1 O.112	FT
INITIAL DE		17		P OF PROTECTIVE	CASING	(FROM GROU		FT	WELL [
FINAL DE	PTH	1.31	WELL DEP (TOR)	6.5	FT	PID AMBIENT AIR PI			DIAM.	9	IN
TO WA	TER	1,43/	SCREE	n 5		PID WELL			WELL INTERG	GRITY: 'ES NO	N/A
DRAWDO	JME 0		LENGT	н [FT	MOUTH PPM			CAP CASING		
		ch} or x 0.65 {4-in		OF DRAWDOWN V OTAL VOLUME PUR		PRESSURE TO PUMP		PSI	LOCKED COLLAR		
TOTAL \	GED -		GAL	360.625		REFILL			DISCHARGE		
		per minute) x tim	ne duration (minu	tes) x 0.00026 gal/m	illiliter)	SETTING			SETTING	L	
PURGE DA	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	SPECIFIC CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	3 N	COMMENTS	
1205	/'3j	≤ 500 ml/m	≤3% \(\;\;\;\;\;\;\;\)	2 URQ	≤0.1 units	0.16	≤ 50 ntu	≤ 10 units	S		
1910	1/93	250	16.45	2,490	7,03	0.40	174	-58.5			
1215	1,23	250	16.43	2,478	7.03	0.54	Poff	-45.3			
1530	1.93	220	16'1-13	2.456	7.04	0.53	234	-34.1		\$	
1992	1.93	250	16.41	2,434	7.04	0.51	140	-35.6			-
1930	1124	250	16.4	2.415	7,04	0.60	\$.80	-30.0 -29.0)		
1535	1,24	250	16.38	3,407	7,04	0.63	6.43	41,9			
									. 0		-
		a		***************************************							
					2			e a			
	NT DOCUMEN	TATION									
	<u>OF PUMP</u> EOPUMP (perista	altic)	TYPE OF TUBI	<u>ng</u> R teflon lined	1 <u>17P</u>	TYPE OF PUMP MATERIAL Polyvinyl chloride TYPE OF BLADDER MATERIAL TYPE OF BLADDER MATERIAL TEFLON					
	CO BLADDER	,	=	SITY POLYETHYLE	NE _	STAINLESS STEEL			Other		
-	ADDER	TDC	OTHER_		-	OTHER			4		
	CAL PARAMET Scheduled for Collect			THOD MBER		SERVATION IETHOD	VOLUME REQUIRED	SAMPLE	ED Check if collec		
₹ VO			US	EPA-8260B EPA 8270C	HCL	. / 4 DEG. C EG. C	3 X 40 mL				
				A 1625		S2O3 4 ° c	2 X 1 LAG 2 X 1 LAG		K= 5.3		
NDI	MA L Metals	,		A 625 6010B/6020/Hg 747		S2O3 4° c 🧶 2 HNO3 4°C	2 X 1 LAG 1 X 500 mL		1= D'16	17 th	
Hex	k-Chromium		US	EPA 7196A	4 DE	EG. C	1 X 500 mL		1.01 m= v	1647×5.23	
, ==	ate, nitrate, chlor LFIDE	ide, sulfate		EPA 300 EPA-376.1		EG. C Acetate/NaOH	1 x 500 mL 1 X 250 mL	P	V=0,45	164 ft3	
ALKALINITY SO USEPA				EPA-310.1 EPA-350.1		EG. C 2 H2SO4 4° c	W/SULFAT	E 🔲			
	monia		03:	EFA-330.1	pri~		1 X 1L poly			Q6	
l H											
_	servations		. Or ear			LOCATION	SKETCH			1	
Purge Wate Conatinerize	ed yes no		Number of Gallo Generated	2.5							0
	-								an	nec	
	_)
SIGNATUR	E				1						

BMW-Z

FIELD	DATA REC	ORD - LO	W FLOW (ROUNDWA	ATER SA	MPLING				
PROJECT	Stalingrad Ventures			FIELD SAM	IPLE NUMBER	ER BMW - 2-0419			JOB No.	3612162331
Location	22-07 41st Ave	enue, Long Is	sland City, NY		SITE TYPE	WEL	L		DATE	4/26/18
ACTIVITY	START \\3	O END)	SAMPLE T	ME	131	0			
WATER LE	VEL / PUMP SE	TTINGS	Constant of the last of the la	EMENT POINT		PROTECTIVE			CASING / WEL	
INITIAL DEF TO WAT		10		OF WELL RISER OF PROTECTIVE	CASING	CASING STIC (FROM GROUPID		FT,	DIFFER. WELL DIAM.	2 IN
FINAL DEF TO WAT		¥ 8	(TOR) FT SCREEN	8	FT AMBIENT AIR PPM WELL INTERGRITY:					
DRAWDO' VOLUI (initial - f	1 1 1		LENGTH Ch}) RATIO C	F DRAWDOWN V	FT OLUME	MOUTH PRESSURE		PPM	CAP CASING LOCKED	ES NO N/A
TOTAL V PURG (purge vi	GED 4		SAL	TAL VOLUME PUR	7	TO PUMP REFILL SETTING			COLLAR DISCHARGE SETTING	
PURGE DA				SPECIFIC						
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS
1155	1.10	280	tupi	na ke	0+51)	ting	40	,		
1225	Beer	280	rynny	agen	n	- 0	•		in.	
1235	1.20	280	16.12	2.435	6.96	0.82	914	-12.1		
1245	124	280	16.10	2.533	6.96	068	177	7.3		
1250	124	280	16.11	2.519	6.98	0.58	80.5	-8.2		
1255	1.24	280		2.503	6.98	0.50	36 8	~8 O		
1300		280	16.11	2,501	6.98	0.38	24.8	-8.4		The water and a constraint of the constraint of
1305	1.24	280	(6,1)	2.504	6.98	0.35	17.3	-9.0		
EQUIPMEN	NT DOCUMENTA	ATION								
	F PUMP		TYPE OF TUBING			OF PUMP M				DDER MATERIAL
	EOPUMP (peristalti CO BLADDER	ic) [TEFLON OR	TEFLON LINED TY POLYETHYLEI		Polyvinyl chlo			TEFLON	
	ADDER	I	OTHER_	IT POLTETHYLE	NE	STAINLESS OTHER	SIEEL	'	Other	
THE PROPERTY CONTINUES OF SPECIAL TRACE	AL PARAMETE		NACTI	100	PPEO	EDVATION.	VOLUME	OAMB! E		
VOC	scheduled for Collection	1	METI NUM	<u>BER</u>	M	ERVATION ETHOD			D Check if collect	
svc				PA-8260B PA 8270C	4 DE	/ 4 DEG. C G. C	3 X 40 mL 2 X 1 LAG		69'=	water colum
NDN			EPA EPA			203 4° c 203 4° c	2 X 1 LAG 2 X 1 LAG		117 =	aulas
▼ TAL	. Metals			010B/6020/Hg 747		2 HNO3 4°C	1 X 500 mL	X	1.1 4	souther column gallons 30×0.00026
1	-Chromium ate, nitrate, chloride	e, sulfate		PA 7196A PA 300	4 DE 4 DE		1 X 500 mL 1 x 500 mL		286×	30×0,00026
SUL	FIDE		USEF	PA-376.1	Zinc	Acetate/NaOH	1 X 250 mL	Р 🔲	= 2.	1841 gall
Amn	ALINITY monia			PA-310.1 PA-350.1	4 DE pH<2	G. C 2 H2SO4 4° c	W/SULFAT 1 X 1L poly			gan
PX VE	PAS							Z		
Purge Obs Purge Water	r /		Number of Gallon	s 3		LOCATION				
Conatinerize			Generated			, gosolin	l ooor			
	Λ	4			Ve	my sil	ty		an	nec
SIGNATURE	- Haz	N Y	rem							

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING										
PROJECT	Stalingrad Ve	entures	FIELD SAM	PLE NUMBER	S BWI	n-3-0-11	3	JOB No. 3612162331		
Location	22-07 41st A	venue, Long Is	sland City, NY		SITE TYPE	E WELI	-BMN	1-3	DATE 4125/18	
ACTIVITY	START O74	S EN	D 1500	SAMPLE TI	SAMPLE TIME HO					
WATER LE	VEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE			SING/WELL DESC FT	
INITIAL DEF	1 1	67		P OF PROTECTIVE	CASING	(FROM GROU		FT	ELL O	ר ר
FINAL DEF	отн Гу	1	WELL DEPT	8.9	FT	PID AMBIENT AIR			AM. AM.	ı
TO WAT	A	7	FT SCREE			PID WELL			ELL INTERGRITY: YES NO N/A	4
DRAWDO VOLU		(GAL	1 2	FT	MOUTH			CAP	-
(initial - f	final x 0.16 {2-inc	h} or x 0.65 {4-in		OF DRAWDOWN VO		PRESSURE TO PUMP		and the second s	OCKED	-
TOTAL V		5 (GAL	A CONTRACTOR OF THE CONTRACTOR		REFILL			SCHARGE	- 7
- " -		per minute) x tim	ne duration (minut	es) x 0.00026 gal/mi	lliliter)	SETTING		SE	ETTING	<u></u>
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pН	DISS. O2	TURBIDITY	REDOX		
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤ 500 ml/m	(deg. c) ≤ 3%	(umho/cm) ≤ 3%	(units) ≤0.1 units	(mg/L) ≤ 10%	(ntu) ≤ 50 ntu	(mv) ≤ 10 units	COMMENTS	
1055	5,47	900	16.97	3,897	6.59	0.41	184	-105.4		
1100	6.85	300	16.97	3.614	6.69	2.55	342	-110.4		
1105	8.32	500	17.0Y	3.860	6.73	3.83	858	-44.0	1 2 1 2 1 2 2 2 2	
1110	-								hell con get Lectural	
1415	7,21	250	16.94	1,705	6.81	9,55	142	406.4	enough water left for	
		- 30	10.1	4 70 5	O. VI	0.33		100.	one rouling	
									3	
* =									,	
				-						
EQUIPMEN	NT DOCUMEN	TATION				<u> </u>		i		
TYPE O			TYPE OF TUBIN		TYPI	E OF PUMP M			PE OF BLADDER MATERIAL	
	OPUMP (perista	altic)	=	R TEFLON LINED SITY POLYETHYLEN	NF	Polyvinyl chloride STAINLESS STEEL			EFLON ther	
	ADDER		OTHER_			OTHER				
The second contract the second contract to th	AL PARAMET cheduled for Collecti		ME	THOD	PRES	ERVATION	VOLUME	SAMPLE		
Voc			NUM	<u>//BER</u> EPA-8260B	. <u>M</u>	<u>ETHOD</u> / 4 DEG. C	REQUIRED 3 X 40 mL	COLLECTED	Check if collected	
SVC				PA 8270C	4 DE	G. C S2O3 4° c	2 X 1 LAG 2 X 1 LAG			
NDN	ИΑ			625		S2O3 4° C	2 X 1 LAG			
✓ TAL Hex-	Metals -Chromium	H		6010B/6020/Hg 7470 EPA 7196A	S	2 HNO3 4°C :G. C	1 X 500 mL 1 X 500 mL			
	ate, nitrate, chlori .FIDE	de, sulfate		EPA 300 EPA-376.1	4 DE	G. C Acetate/NaOH	1 x 500 mL 1 X 250 mL			
ALK	ALINITY		USE	EPA-310.1	4 DE	G. C	W/SULFAT	E 🗀		
	nonia 'R'S		USE	EPA-350.1	pH<2	2 H2SO4 4° c	1 X 1L poly	H		
								H		
Purge Obs	ervations		19			LOCATION	SKETCH		5	
Purge Water Conatinerize			Number of Gallo Generated	ns 1.5 galla	5		•			h
									amec	7
6										
SIGNATURE	E:				- 1					

-		20 2							I_{i}	Bmw	-4
FIELD	DATA REC	CORD - LO	OW FLOW	GROUNDWA	ATER SA	MPLING			1		
PROJECT	Stalingrad Ve	entures		FIELD SAM	FIELD SAMPLE NUMBER BMW-4-0-118			418	JOB No.	361216233	31
Location	22-07 41st A	venue, Long	Island City, NY		SITE TYPE WELL			DATE	4/26	118	
ACTIVITY	START	EN	ID	SAMPLE T	IME	<u>Ilc</u>	100				
	EVEL / PUMP S	SETTINGS	то	REMENT POINT P OF WELL RISER		PROTECTIVE CASING STIC		\	CASING / WELL DIFFER.	1 0.4	15 FT
INITIAL DE TO WA		1.10	FT	P OF PROTECTIVE	CASING	(FROM GROU	JND) L() FT	WELL	7	
FINAL DE TO WA		.61	WELL DEP (TOR) FT	тн	FT	PID AMBIENT AIR		PPM	DIAM. WELL INTERO	GRITY:	IN
DRAWDO	11 1 12	81b	SCREE LENGT		FT	PID WELL MOUTH	/	PPM		YES NO	N/A
	final x 0.16 {2-inc		nch}) RATIO	OF DRAWDOWN V		PRESSURE TO PUMP		PSI	LOCKED	マニ	
TOTAL		5.06	GAL	OTAL VOLUMET OF		REFILL		7 01	DISCHARGE		
(purge	volume (milliliters			tes) x 0.00026 gal/m	illiliter)	SETTING			SETTING		
PURGE D	ATA DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units		COMMENTS	
1007	1.10	Sto	rt Pun	0 -0	SULT UTIES	\$ 10%	3 00 Htd	2 10 unit	5		
	320			. 0							
1020	5206)	16.27	2.695	6.93	0.82	16.7	-100.0			
1025	1.65	320	16.28	2112	7.01	0.90	11.0	11-10	9		8
1030	1.6+	320	11.28	2700	1.05	0.78	3.96	-136.	+	***************************************	
1040	161	300	16.20	2759	106	h 42	3.19	-12b.	<u> </u>	***	
1045	1.61	300	16.29	2.726	7.09	029	2.21	7476	4		waste and the second second second
1050	1.61	300	16.29	2.700	7.10	0.35	1.68-	149.6	2		
1055	1.61	300	16.29	2.650	7.11	0.31	1.29	-150.	4		
									•		
	NE BOOKINES										
1	NT DOCUMENT OF PUMP	TATION	TYPE OF TUBIN	NG	TYPE	OF PUMP MA	ATERIAL		TYPE OF BLAI	DDER MATER	RIAL
	EOPUMP (perista	altic)		R TEFLON LINED		Polyvinyl chlor			TEFLON	_	
	CO BLADDER			SITY POLYETHYLE	NE	STAINLESS	STEEL	X	Other	NA	
	ADDER CAL PARAMET	ERS	OTHER_			OTHER	VIT 7				
	Scheduled for Collecti		NUI	THOD <u>MBER</u> EPA-8260B	M	ERVATION ETHOD / 4 DEG. C	VOLUME REQUIRED 3 X 40 mL	SAMPLE COLLECT	ED Check if colle	ected and	ter
SV				EPA 8270C	4 DE		2 X 1 LAG		7	9 vol	me
ND				A 1625 A 625		2O3 4° c 2O3 4° c	2 X 1 LAG 2 X 1 LAG			2 0 00	- Contraction of the Contraction
	L Metals k-Chromium			6010B/6020/Hg 747 EPA 7196A	0A pH<2 4 DE	HNO3 4°C	1 X 500 mL 1 X 500 mL		-	2 g on	1
Nitr	ate, nitrate, chlori	de, sulfate	USE	EPA 300	4 DE	G. C	1 x 500 mL	Р 🗀		Volc	me
	lfide Kalinity			EPA-376.1 EPA-310.1	Zinc A 4 DE	Acetate/NaOH G. C	1 X 250 mL W/SULFAT	<u></u>	Total VE	_	
	monia		USE	EPA-350.1	pH<2	H2SO4 4° c	1 X 1L poly		pary		
	ron								mymin	XMMX	0.00026
				7	Deplicat	re Say	np le			2.88	
Purge Obs	servations					LOCATION	SKETCH				0
Purge Wate Conatinerize	er ves no		Number of Gallo Generated	ns 3.5	W	oter is	grayis)	h			
									20	ne	
		- U									
SIGNATUR	E: Kazy	w dog	zm	-	-						

MW -05

Purge Obs Purge Water Conatinerize	red (es no	nin b	Number of Gall Generated	3.12		LOCATION	SKETCH		ar	nec	•
Check if S VOO SVO NDP NDP TAL Hex SUL And	DC MA MA	ion	USEP/ USEP/	ETHOD IMBER SEPA-8260B SEPA 8270C PA 1625 A 6010B/6020/Hg 747 SEPA 7196A SEPA 300 SEPA-376.1 SEPA-350.1	MHCL 4 DE Na2S Na2S 10A PH<2 4 DE 4 DE Zinc 4 DE	32O3 4° c 32O3 4° c 9. HNO3 4°C G. C G. C Acetate/NaOH	VOLUME REQUIRED 3 X 40 mL 2 X 1 LAG 2 X 1 LAG 1 X 500 mL 1 X 500 mL 1 X 500 mL 1 X 250 mL W/SULFAT 1 X 1L poly		ED Check if coll	gallon Ime	
TYPE C	NT DOCUMEN OF PUMP EOPUMP (perista CO BLADDER ADDER			ING OR TEFLON LINED ISITY POLYETHYLE		E OF PUMP M Polyvinyl chlo STAINLESS OTHER	ride		TYPE OF BLA TEFLON Other	ADDER MATERIA	<u>AL</u>
				7							
							,				
1005	Colle	ex-	Samp	e							
000	8.54	400	12.42	2069	6.54	0.14	15.5	199.8			
1950	8.54	400	12.39	2.058	6.54	076	30.4	200.1			
0945	8.54	400	1241	2.013	6.54	0.80	36.8	201.1	0		
09-10	8.54	400	12.34	2061	6.53	0.9)	38.5	2018	5		4"
0930	< 0.33 ft	≤ 500 ml/m	≤3%	_ ≤ 3%	≤ 0.1 units	≤ 10%	≤ 50 ntu	≤ 10 units	S		
PURGE DA	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP.	SPECIFIC CONDUCTANCE (umho/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS	
(purge v	olume (milliliters			utes) x 0.00026 gal/m	illiliter)	SETTING	20		SETTING		
TOTAL \		3.12	GAL TO	TOTAL VOLUME PUI	RGED	TO PUMP		PSI	COLLAR		
VOLU (initial -	IME U. (final x 0.16 {2-inc		GAL nch}) RATIO	O OF DRAWDOWN V	OLUME	PRESSURE		,	CASING LOCKED	シニ	***************************************
DRAWDO		.04	SCREI		FT	PID WELL MOUTH		PPM	CAP	RGRITY: YES NO	N/A
FINAL DE		611	WELL DEF (TOR)	PTH B.5	FT N	PID AMBIENT AIR	?	PPM	DIAM.		IN
INITIAL DE		5.12		OP OF WELL RISER OP OF PROTECTIVE		CASING STIC (FROM GRO		3 FT	DIFFER. WELL		FT
	EVEL / PUMP S		MEAS	UREMENT POINT		PROTECTIVI	E		CASING / WE	ILL M	
Location	START	venue, Long Is		SAMPLE T	SITE TYPI		005		DATE	1/4/	2010
,	Stalingrad Ve		1 107 10		MPLE NUMBÉI			118	JOB No.	361216233	1000
			OW FLOW	GROUNDW	ATER SA			1 P -	k	<u> </u>	

FIELD	DATA REC	CORD - LC	W FLOW	GROUNDWA	ATER SA	MPLING			o 8		
PROJECT	Stalingrad Ve	entures	FIELD SAM	IPLE NUMBER	BM	4-65-0419	4	JOB No. 3612162331			
Location	22-07 41st A	venue, Long Is		SITE TYPE	WELI	L-BMV-E	55	DATE C	9142719		
ACTIVITY	START	EN	D	SAMPLE T	IME	850					
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE	-		ASING / WELL	B	
INITIAL DE		85	FT TO	P OF WELL RISER P OF PROTECTIVE	CASING	(FROM GROU		FT v	VELL	1 000	<u>FT</u>]
FINAL DE		. 18	WELL DEPT (TOR) FT	H 18.5	FT	PID AMBIENT AIR PPM WELL INTERGRITY:					IN
DRAWDO	OWN		SCREE		FT	PID WELL YES NO CAP CASING					N/A
VOLU (initial -	IME final x 0.16 {2-inc			OF DRAWDOWN V		PRESSURE TO PUMP					
TOTAL \				STAL VOLUME FOR	\(\frac{\lambda C D}{\lambda}\)				COLLAR		
			GAL L ne duration (minut	es) x 0.00026 gal/m	illiliter)	REFILL SETTING	F		ETTING		
PURGE DA				SPECIFIC			l miname i		1		
TIME	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤ 0.1 units	DISS. O2 (mg/L) ≤ 10%	TURBIDITY (ntu) ≤ 50 ntu	REDOX (mv) ≤ 10 units	cc	OMMENTS	
755	F6,01	300	-9,99 z	-6.82	6.44	-37.65?	4,58	216.6	YSI see	ms 595	
800	11.73	300	-d'dd 5	-6.48	6.91	-32.45	17.4	1.705	Still Neg. to	CO per Igns	
925	13.00	300	-9,99	8.180	6.41	1,14	19.0	531.1		se from se	となって
830	14.58	300	-9,99	1,973	6.35	1.03	14.8	537.7	40350		
\$33	16.18	300	-9,99	2.083	6.91	0.95	7.16	5348			
8-10	17.60	250	-9.29	2.090	6.84	0.81	6.24	218.1			
845	17.35	250	-9.99	2.100	6.83	0.78	5.74	711.7			
850	14.69	£20	-999	5.082	6.53	0:34	4.67	508.7	samplin	<u>~</u>	
	_										
	3810										
										Annual Control of the	
EQUIPME	NT DOCUMEN	TATION			<u> </u>	L	L		1		
TYPE C	F PUMP		TYPE OF TUBIN	<u>IG</u>	TYP	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIA					
	EOPUMP (perista	altic)		R TEFLON LINED		Polyvinyl chlo			TEFLON		
	CO BLADDER ADDER		OTHER	SITY POLYETHYLE	NE	STAINLESS STEEL OTHER			Other		
	AL PARAMET	ERS	OTTLEN			JOTHER			GP =	758.5	
Check if S	Scheduled for Collect	ion		THOD MBER		ERVATION ETHOD	VOLUME REQUIRED	SAMPLE COLLECTED	Check if collected	0 3	
☑ vo			USE	PA-8260B PA 8270C		/ 4 DEG. C	3 X 40 mL 2 X 1 LAG		_		
NDI				1625		S2O3 4° c	2 X 1 LAG	H			
NDI				625		S2O3 4° c	2 X 1 LAG				
TAL Hex	_ Metals <-Chromium			6010B/6020/Hg 747 EPA 7196A	2007 10	2 HNO3 4°C :G. C	1 X 500 mL 1 X 500 mL				
. =	ate, nitrate, chlor	ide, sulfate		PA 300		G. C	1 x 500 mL				
	LFIDE KALINITY			EPA-376.1 EPA-310.1		Acetate/NaOH :G. C	1 X 250 mL W/SULFAT				
				PA-350.1	pH<	2 H2SO4 4° c	1 X 1L poly				
`	11/2							H			
					— т						
Purge Obs			Number of Gallo	ns		LOCATION	SKETCH				
	ed yes no		Generated								0
									an	nec	
SIGNATUR	- -										

		7				•		ø		A	M . (
FIELD	DATA RE	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLING	3				MW-(
PROJECT	Stalingrad V	entures		FIELD SA	MPLE NUMBI	ER M	W-60-	04185	JOB No.	3612162	2331
Location	22-07 41st A	venue, Long	Island City, N	Υ	SITE TY	PE WEL	L		DATE	4/2	7/18
ACTIVITY	START	EN	ID.	SAMPLE	TIME	089	56				
WATER L	EVEL / PUMP	SETTINGS		UREMENT POINT OP OF WELL RISEF	•	PROTECTIV CASING STI			CASING / WE		\cap
INITIAL DE TO WA		7.84		OP OF PROTECTIV		(FROM GRO	OUND) O.	L) FT	WELL		<u> </u>
FINAL DE TO WA		7.92	(TOR)	54	FT	AMBIENT AI	R	PPM	DIAM. WELL INTER	LRGRITY:	, IN
DRAWDO VOLU (initial -			SCRE LENG GAL nch}) RATIO		FT VOLUME	PID WELL MOUTH PRESSURE		РРМ	CAP CASING LOCKED	YES NO	O N/A
TOTAL \	GED 🗸	2.86	GAL	TOTAL VOLUME PL		TO PUMP		PSI	COLLAR	7 =	
THE RESIDENCE OF THE PARTY NAMED IN	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME	s per minute) x tir	me duration (min	utes) x 0.00026 gal/n	nilliliter)	SETTING			SETTING		
PURGE DA	DEPTH TO WATER (ft) < 0.33 ft	PURGE RATE (ml/m) ≤ 500 ml/m	TEMP. (deg. c) ≤ 3%	SPECIFIC CONDUCTANCE (umho/cm) ≤ 3%	pH (units) ≤0.1 units	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMEN	тѕ
0755	J.55 K	Stan	Riva	DOCX	SO.1 units	≤ 10%	≤ 50 ntu	≤ 10 units		-	
0810	7.92	200	13.23	1.407	6.85	1.54	78.6	2141.6	2		
0815	7.92	200	13.20	1.403	6.84	1.19	49.2	213.7	-		-
0850	7.92	200	13.20	1.397	6.85	1.01	41.5	212.8			
0825	7.92	200	13.22	1.405	6.85	1.01	48.6	211,9			
0850	1.92	200	13.195	1,436	6.85	1.15	39.4	209.8			
0855	192	750	13.12	1,405	6.86	161	26.9	209.3	3		
0540	7.42	700	13.10	1.51	6.0	1.37	160	2088			
AGCE	1.72	700	15.10	1.539	6.87	1.18	11.6	208.4			
0850	Collec	+ Sar	nyle								
									 	1	***
EQUIPME	NT DOCUMEN	TATION		<u> </u>	<u> </u>	1		L			
1	F PUMP		TYPE OF TUBI	<u>NG</u>	TYP	E OF PUMP M	ATERIAL	T	PE OF BLA	DDER MATI	ERIAL
	OPUMP (perista	altic)		R TEFLON LINED		Polyvinyl chlor			EFLON	Λ.	
	CO BLADDER ADDER		OTHER	SITY POLYETHYLE	NE _	STAINLESS OTHER		<u></u> 0	therN	1	-
	AL PARAMET	ERS	OITEN			OTHER	413	-			
Check if S	cheduled for Collecti	ion		THOD MBER		SERVATION IETHOD	VOLUME REQUIRED	SAMPLE COLLECTED			
Voc			US	EPA-8260B EPA 8270C	HCL	./4 DEG. C	3 X 40 mL	X X	Check it colle	cted	# 0
NDN				A 1625		EG. C S2O3 4° c	2 X 1 LAG 2 X 1 LAG		24.1	6-1	ength
NDN				A 625	Na ₂ S	S2O3 4° c	2 X 1 LAG		20		
	Metals -Chromium			. 6010B/6020/Hg 747 EPA 7196A		2 HNO3 4°C EG. C	1 X 500 mL 1 X 500 mL	X	5.9		
Nitra	ate, nitrate, chlori	de, sulfate	US	EPA 300		G. C	1 x 500 mL	Р 📙	= 1 +	8	
_	ALINITY			EPA-376.1 EPA-310.1		Acetate/NaOH G. C	1 X 250 mL W/SULFATI		= 2.0		
	nonia) A >		US	EPA-350.1		2 H2SO4 4° c	1 X 1L poly		J 10,	lune)
	Ju /		1	ms Ims	\mathcal{O}			<u> </u>			
			+	Jus line	V			님			
					4 4 30	days and the same of the same			j		
Purge Obs			N			LOCATION	SKETCH			350	
Purge Water Conatinerize			Number of Gallo Generated	ons							
									20		CO
			J								
SIGNATURE	- Al	230W	Zon	A							

FIELD	DATA RE	CORD - LO)W	FLOW	GROUNDW	ATER	SA	MPLING						
PROJECT	Stalingrad V	entures		omer same	FIELD SAM	IPLE NUM	1BER			0418)	JOB No.	3612162	2331
Location	22-07 41st A	venue, Long I	slan	d City, NY		SITE TYPE WELL -MWE						DATE	34/6	81 FR
ACTIVITY	START	SAMPLE T	IME _	1	030									
WATER L	EVEL / PUMP	SETTINGS			REMENT POINT P OF WELL RISER			PROTECTIVE			-	CASING / WE	ELL	
INITIAL DE TO WA		OPea	FT		P OF PROTECTIVE	CASING		CASING STIC (FROM GROU		L	FT	DIFFER. WELL		FT
FINAL DE	1 11 1	30		WELL DEPT (TOR)	ГН	FT		PID AMBIENT AIR			PPM	DIAM.		IN
DRAWDO		20	FT	SCREE	6000	FT		PID WELL MOUTH			PPM	WELL INTER	RGRITY: YES NO	O N/A
VOLU (initial -	and the same of th	ch} or x 0.65 {4-ir	GAL ich})		OF DRAWDOWN V			PRESSURE				CASING LOCKED		
TOTAL				TO TO	OTAL VOLUME PUI	RGED		TO PUMP	L		PSI			
PUR(purge v			GAL ne du	ration (minut	es) x 0.00026 gal/m	illiliter)		REFILL SETTING				DISCHARGE SETTING		
PURGE D	ATA DEPTH TO	l purge	ı	TEMP	SPECIFIC	l::	1	DIGG 00		DIDIT!	l proov			
TIME	WATER (ft) < 0.33 ft	RATE (ml/m) ≤500 ml/m		TEMP. (deg. c) ≤ 3%	CONDUCTANCE (umho/cm) ≤ 3%	pH (units ≤0.1 un		DISS. O2 (mg/L) ≤ 10%	(tBIDITY ntu) 50 ntu	REDOX (mv) ≤ 10 unit		COMMEN	ITS
CCO_j	12,14	250	11	105	-0.30	7.30		0,0	94		164.0			
1005	4.3	2										Meli	for de	F
1030	9.37											SU	willan	3
							_			29			· /	
×			_											##i
							\dashv							
							1				2 .			
 														
							\dashv							
							\dashv	2)						
EQUIPME	NT DOCUMEN	TATION									6			
	F PUMP	-te-v	$\overline{}$	PE OF TUBIN	 ,	Ī	\neg	OF PUMP MA		<u>AL</u>		TYPE OF BLA	DDER MAT	FERIAL
1	EOPUMP (perista CO BLADDER	aitic)			TEFLON LINED	NE [_	Polyvinyl chlor STAINLESS			-	TEFLON Other		
	ADDER			OTHER		. [OTHER						
	CAL PARAMET			MET	HOD	PE	RESE	RVATION	V	OLUME	SAMPLE	- 25		
-£ VO				NUN	MBER PA-8260B		ME	THOD 4 DEG. C	RE			ED Check if coll	ected	
svo	oc			USE	PA 8270C	4	DEG	G. C		(1 LAG				
					. 1625 . 625			2O3 4° c 2O3 4° c		(1 LAG (1 LAG				
	. Metals	10		USEPA	6010B/6020/Hg 747	0A p	H<2	HNO₃ 4°C	1 2	< 500 mL				
<u> </u>	c-Chromium ate, nitrate, chlor	ide, sulfate			PA 7196A PA 300		DEG			< 500 mL < 500 mL l	h			
	_FIDE (ALINITY				PA-376.1			cetate/NaOH		(250 mL				
	monia				PA-310.1 PA-350.1		DEG H<2	5. C H2SO4 4° c		SULFATE (1L poly	• H			
$ \Box g_i$	F145										□			
											H			
		:									□			
Purge Obs							1	LOCATION	SKET	СН	et .			
Purge Water Conatinerize	r ed yes no			nber of Gallor erated	ns									
					7								ME	CO
SIGNATURE	E:					1								

APPENDIX B – MANIFEST

نند					n	
Á		3. Emergency Response Pho	one 4. Waste	Tracking Num		*
		(267) 406-0083	1		1235	
	Double "E" Plaing Co DBA Hygrade Polishing 22-07 41st Avenue Long Island City NY 11101	Generator's Site Address (if di	different than mailing add	iress)		
	Generator's Phone: 531 293-1998 6. Transporter 1 Company Name		U.S. EPA II	Number	*****	
	Innovative Recycling Technologies, Inc.) 1 3 4 9	4 0
	7. Transporter 2 Company Name		U.S. EPA II		/ -/	/ 40 10
	Republic Environmental Systems (Trans Group)LLC				26613	1 1 1
	8. Designated Facility Name and Site Address Republic Environmental Systems (PA), LLC 2869 Sandstone Drive Hatfield PA 19440		U.S. EPÁ IC		in that war in	े देशी व
	Facility's Phone: 215 822-8895		PAI	0 6 5	6905	9 2
	9. Waste Shipping Name and Description	10. Containers		12. Unit Wt./Vol.		
ATOR -	Non Hazardous Development & Purge Water Non-DOT Regulated			3*6		
GENERATOR	2.		ом 350	P		
	3.					
	J.					
	4.					
	13. Special Handling Instructions and Additional Information 9.1) 847016 - purge www. 1x55gd					
	Doc# Doc#					
	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are f marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable	fully and accurately described	d above by the proper st	nipping name, a	and are classified, p	oackaged,
¥	Generator's/Offeror's Printed/Typed Name ON Renalf of Signat JOHN DULL for Lobert Birn baum		U		Month [Day Year 5 18
INT'L	Transporter Signature (for exports only): Export from U.S. Export from U.S.	S. Port of entry/exi				
EB		111				
TRANSPORTER	Transporter 1 Printed/Typed Name Signat Ton Dul I Transporter 2 Printed/Typed Name Signat	MU			106/	S IZ
TRA	Transporter 2 Printed/Typed Name Signat	ure	1		Month E	Day Year
A	17. Discrepancy					
	17a. Discrepancy Indication Space Quantity Type	Residue Manifest Reference Number	Partial Re	jection	☐ Full I	Rejection
FACILITY	17b. Alternate Facility (or Generator)	THAI THOUSE THE STATE OF THE ST	U.S. EPA ID	Number		
	Facility's Phone:		1	-		
ESIGNATED	17c. Signature of Alternate Facility (or Generator)				Month D	Day Year
						·
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as	s noted in Item 17a				
1	Printed/Typed Name Signatu	ure			Month D	ay Year

APPENDIX C – CERTIFIED LABORATORY ANALYTICAL REPORTS AND DATA USABILITY SUMMARY REPORTS

Project No. 3612162331

DATA USABILITY SUMMARY REPORT APRIL 2018 GROUNDWATER SAMPLING EVENT FORMER HYGRADE POLISHING AND PLATING COMPANY LONG ISLAND CITY, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected at the Former Hygrade site in April 2018 and
submitted to Alpha Analytical Laboratories located in Mansfield, Massachusetts, and
Westborough, Massachusetts, for analysis. Samples were analyzed by the following
methods:

) \	Volatile Organic Compounds (VOCs) by USEPA Method 8260C
	Per- and Polyfluorinated Alkyl Substances (PFAS) by USEPA Method 537(M)
-	Total and Dissolved Metals by USEPA Methods 6020A/7470A
Results	were reported in the following sample delivery groups (SDGs):

J L1815070 *J* L1815079

A Data Usability Summary Report (DUSR) review was completed based on the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation guidance (NYSDEC, 2010). Sample event information included in this DUSR is presented in the following tables:

Table 1 – Summary of Samples and Analytical Methods
Table 2 – Summary of Analytical Results
Table 3 – Qualification Action Summary

Laboratory deliverables included:

Category B deliverables as defined in the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

The DUSR review included the following evaluations. A table of the project control limits for VOCs and metals is presented in Attachment A. Control limits specified by the laboratory and in Method 537 were used for PFAS review. DUSR review checklists and applicable laboratory QC summary forms are included in Attachment B to document QC outliers associated with qualification actions.

ļ	Lab Report Narrative Review
J	Data Package Completeness and COC records (Table 1 verification)
	Sample Preservation and Holding Times
	Instrument Calibration (report narrative/lab-qualifier evaluation)
J	QC Blanks
	Laboratory Control Samples (LCS)
	Matrix Spike/Matrix Spike Duplicates (MS/MSD)
Ĵ	Surrogate Spikes (if applicable)

Project No. 3612162331

J	Internal Standards (if applicable)
Ĵ	Field Duplicates
Ĵ	Target Analyte Identification and Quantitation
Ĵ	Raw Data (chromatograms), Calculation Checks and Transcription Verifications
Ĵ	Reporting Limits
Ĵ	Electronic Data Qualification and Verification

The following laboratory or data review qualifiers are used in the final data presentation:

U = target analyte is not detected above the reported detection limit
 J = concentration is estimated
 J+ = concentration is estimated and potentially biased high

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 EXECUTIVE SUMMARY

Based on the DUSR review the analytical data meet the data quality objectives, and the majority of sample results are interpreted to be usable as reported by the laboratory. Results for a subset of samples were qualified due to blank contamination, internal standard recoveries, MS/MSD recoveries, and/or field duplicate precision.

3.0 DATA QUALIFICATION ACTIONS AND OBSERVATIONS

Sample Receipt

Sample MW-5-0418 was incorrectly logged into the laboratory (Alpha – Mansfield) as MW-S-0418. The sample identification was corrected during data validation.

VOCs

Low concentration acetone detections less than the reporting limit in a subset of samples were qualified non-detect (U) based on detection in the trip blank. Qualified results are summarized in Table 3 with reason code BL2.

The following samples were analyzed at ten-fold dilutions due to high concentrations of target analytes. Reporting limits for non-detect analytes are elevated (10X):

BMW-3-0418 BMW-4-0418 MW-6S-0418 DUPLICATE

A MS/MSD was performed for sample MW-6D-0418. MS/MSD percent recoveries and relative percent differences (RPDs) were within control limits for VOCs.

A field duplicate (DUPLICATE) was collected at location BMW-4. Results matched well for all VOCs.

PFAS

For all PFAS samples, percent recoveries of one or more extracted internal standards were outside the 50-150 control limits specified by the laboratory. Positive and non-detect results for target compounds associated with internal standards outside control limits were qualified estimated (J). Qualified results are summarized in Table 3 with reason code IS-L or IS-H as applicable.

A MS/MSD was performed for sample MW-6D-0418. MS/MSD percent recoveries and relative percent differences (RPDs) were within control limits for PFAS compounds.

A field duplicate (DUPLICATE) was collected at location BMW-4. Results matched well for all PFAS compounds.

Metals

Detections of total and dissolved antimony were qualified non-detect (U) in all samples based on detections in the method blanks and field blanks. Detections of dissolved aluminum in a subset of samples were qualified non-detect (U) based on detection in the associated method blank. Detections of total chromium and total copper in a subset of samples were qualified estimated (J) based on detections in the field blank. Qualified results are summarized in Table 3 with reason codes BL1 and/or BL2.

A MS/MSD was performed for sample MW-6D-0418. MS/MSD percent recoveries and relative percent differences (RPDs) were within control limits for total metals, and all dissolved metals except selenium (128). The detection of dissolved selenium in sample MW-6D-0418 was qualified estimated (J+) and may represent a potential high bias. The qualified result is included in Table 3 with reason code MS-H.

A field duplicate (DUPLICATE) was collected at location BMW-4. Results matched well for all total metals, and all dissolved metals except iron. Sample and field duplicate results for dissolved iron had an RPD of 94, which is greater than the control limit of 20. Positive results for dissolved iron in sample BMW-4-0418 and associated field duplicate (DUPLICATE) were qualified estimated (J). Qualified results are included in Table 3 with reason code FD.

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2012. "ICP-AES Data Validation"; USEPA Region II; SOP # HW-2a, Revision 15; Hazardous Waste Support Section; December 2012.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B"; USEPA Region II; SOP # HW-24, Revision 4; Hazardous Waste Support Section; September 2014.

Data Validator: Julie Ricardi

Julii Ricardi June 14, 2018

Reviewed by:

June 15, 2018

						Method	8260C	537(M)	6020A	6020A	7470A	7470A
						Class	VOC	PFAS	Metals	Metals	Mercury	Mercury
						Fraction	Т	T	Т	D	Т	D
SDG	Location	Field Sample ID	Sample Date	Media	Lab Sample ID	QC Code						
L1815070	BMW-1	BMW-1-0418	4/26/2018	GW	L1815070-01	FS	76		22	22	1	1
L1815070	BMW-2	BMW-2-0418	4/26/2018	GW	L1815070-02	FS	76		22	22	1	1
L1815070	BMW-3	BMW-3-0418	4/26/2018	GW	L1815070-03	FS	76		22	22	1	1
L1815070	BMW-4	BMW-4-0418	4/26/2018	GW	L1815070-04	FS	76		22	22	1	1
L1815070	BMW-4	DUPLICATE	4/26/2018	GW	L1815070-09	FD	76		22	22	1	1
L1815070	MW-6D	MW-6D-0418	4/27/2018	GW	L1815070-05	FS	76		22	22	1	1
L1815070	MW-6S	MW-6S-0418	4/27/2018	GW	L1815070-06	FS	76		22	22	1	1
L1815070	MW-E	MW-E-0418	4/27/2018	GW	L1815070-08	FS	76		22	22	1	1
L1815070	MW-5	MW-5-0418	4/27/2018	GW	L1815070-07	FS	76		22	22	1	1
L1815070	QC	FIELD BLANK	4/26/2018	BW	L1815070-10	FB	76		22	22	1	1
L1815070	QC	TRIP BLANK	4/26/2018	BW	L1815070-11	TB	76					
L1815079	BMW-1	BMW-1-0418	4/26/2018	GW	L1815079-01	FS		21				
L1815079	BMW-2	BMW-2-0418	4/26/2018	GW	L1815079-02	FS		21				
L1815079	BMW-3	BMW-3-0418	4/26/2018	GW	L1815079-03	FS		21				
L1815079	BMW-4	BMW-4-0418	4/26/2018	GW	L1815079-04	FS		21				
L1815079	BMW-4	DUPLICATE	4/26/2018	GW	L1815079-09	FD		21				
L1815079	MW-5	MW-5-0418	4/27/2018	GW	L1815079-07	FS		21				
L1815079	MW-6D	MW-6D-0418	4/27/2018	GW	L1815079-05	FS		21				
L1815079	MW-6S	MW-6S-0418	4/27/2018	GW	L1815079-06	FS		21				
L1815079	MW-E	MW-E-0418	4/27/2018	GW	L1815079-08	FS		21				
L1815079	QC	FIELD BLANK	4/26/2018	BW	L1815079-10	FB		21				

GW = groundwater	VOC = volatile organic compound
FS = field sample	PFAS = per-/polyfluorinated alkyl substance
FD = field duplicate	T = total
FB = field blank	D = dissolved
TB = trip blank	Number = number of analytes reported

			SDG:	L1815070	L1815070	L1815070	L1815070	L1815070
			Location:	BMW-1	BMW-2	BMW-3	BMW-4	BMW-4
			Date Collected:	04/26/18	04/26/18	04/26/18	04/26/18	04/26/18
			Sample ID:	BMW-1-0418	BMW-2-0418	BMW-3-0418	BMW-4-0418	DUPLICATE
			Туре:	FS	FS	FS	FS	FD
	Fraction	Unit	Parameter	Result Qualifier				
8260C	N	UG/L	1,1,1,2-Tetrachloroethane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,1,1-Trichloroethane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	5 U	5 U	5 U
8260C	N	UG/L	1,1,2-Trichloroethane	1.5 U	1.5 U	15 U	15 U	15 U
8260C	N	UG/L	1,1-Dichloroethane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,1-Dichloroethene	0.5 U	0.5 U	5 U	5 U	5 U
8260C	N	UG/L	1,1-Dichloropropene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,2,3-Trichlorobenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,2,3-Trichloropropane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,2,4-Trichlorobenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,2,4-Trimethylbenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,2-Dibromo-3-chloropropane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,2-Dibromoethane	2 U	2 U	20 U	20 U	20 U
8260C	N	UG/L	1,2-Dichlorobenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,2-Dichloroethane	0.5 U	0.5 U	5 U	5 U	5 U
8260C	N	UG/L	1,2-Dichloroethene (total)	3.5	7.8	71	19 J	19 J
8260C	N	UG/L	1,2-Dichloropropane	1 U	1 U	10 U	10 U	10 U
8260C	N	UG/L	1,3,5-Trimethylbenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,3-Dichlorobenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,3-Dichloropropane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,3-Dichloropropene (total)	0.5 U	0.5 U	5 U	5 U	5 U
8260C	N	UG/L	1,4-Dichlorobenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	1,4-Dioxane	250 U	250 U	2500 U	2500 U	2500 U
8260C	N	UG/L	2,2-Dichloropropane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	2-Butanone	5 U	5 U	1700	1400	1400
8260C	N	UG/L	2-Chlorotoluene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	2-Hexanone	5 U	5 U	50 U	50 U	50 U
8260C	N	UG/L	4-Chlorotoluene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	4-Ethyltoluene	2 U	2 U	20 U	20 U	20 U
8260C	N	UG/L	4-iso-Propyltoluene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	4-Methyl-2-pentanone	5 U	5 U	50 U	50 U	50 U
8260C	N	UG/L	Acetone	5 U	5 U	1000	380	380

-				14045070	14045070	14045050	14045050	14045050
			SDG:	L1815070	L1815070	L1815070	L1815070	L1815070
			Location:	BMW-1	BMW-2	BMW-3	BMW-4	BMW-4
			Date Collected:	04/26/18	04/26/18	04/26/18	04/26/18	04/26/18
			Sample ID:	BMW-1-0418	BMW-2-0418	BMW-3-0418	BMW-4-0418	DUPLICATE
			Type:	FS	FS	FS	FS	FD
	Fraction	Unit	Parameter	Result Qualifier				
8260C	N	UG/L	Acrylonitrile	5 U	5 U	50 U	50 U	50 U
8260C	N	UG/L	Benzene	0.5 U	0.19 J	12	2.3 J	2.3 J
8260C	N	UG/L	Benzene, 1,2,4,5-tetramethyl	2 U	2 U	20 U	20 U	20 U
8260C	N	UG/L	Bromobenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Bromochloromethane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Bromodichloromethane	0.5 U	0.5 U	5 U	5 U	5 U
8260C	N	UG/L	Bromoform	2 U	2 U	20 U	20 U	20 U
8260C	N	UG/L	Bromomethane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Carbon disulfide	5 U	5 U	50 U	50 U	50 U
8260C	N	UG/L	Carbon tetrachloride	0.5 U	0.5 U	5 U	5 U	5 U
8260C	N	UG/L	Chlorobenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Chloroethane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Chloroform	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Chloromethane	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Cis-1,2-Dichloroethene	3.5	7.8	71	12 J	11 J
8260C	N	UG/L	Cis-1,3-Dichloropropene	0.5 U	0.5 U	5 U	5 U	5 U
8260C	N	UG/L	Dibromochloromethane	0.5 U	0.5 U	5 U	5 U	5 U
8260C	N	UG/L	Dibromomethane	5 U	5 U	50 U	50 U	50 U
8260C	N	UG/L	Dichlorodifluoromethane	5 U	5 U	50 U	50 U	50 U
8260C	N	UG/L	Diethyl ether	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Ethylbenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Hexachlorobutadiene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Isopropylbenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Methyl Tertbutyl Ether	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Methylene chloride	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	n-Butylbenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Naphthalene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	p-Diethylbenzene	2 U	2 U	20 U	20 U	20 U
8260C	N	UG/L	Propylbenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	sec-Butylbenzene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	Styrene	2.5 U	2.5 U	25 U	25 U	25 U
8260C	N	UG/L	tert-Butylbenzene	2.5 U	2.5 U	25 U	25 U	25 U
1		-	•					L

			SDG:	L1815	070	L181	5070	L181	5070	L181	5070	L1815	070
			Location:	BMV	V-1	BM	W-2	ВМ	W-3	BM	W-4	BMW	<i>I</i> -4
			Date Collected:	04/26	04/26/18		6/18	04/2	6/18	04/2	6/18	04/26	/18
			Sample ID:	BMW-1	-0418	BMW-	2-0418	BMW-	3-0418	BMW-4-0418		DUPLIC	CATE
			Type:	FS	;		S	F	:S	F	S	FD)
Method	Fraction	Unit	Parameter	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
8260C	N	UG/L	Tetrachloroethene	0.86		2.5		5	U	5	U	5 L	J
8260C	N	UG/L	Toluene	2.5 L	J	2.5	U	25	U	25	U	25 L	J
8260C	N	UG/L	trans-1,2-Dichloroethene	2.5 L	J	2.5	U	25		7.2		7.7 J	
8260C	N	UG/L	trans-1,3-Dichloropropene	0.5 L	J	0.5	U	5	U	5	U	5 L	J
8260C	N	UG/L	trans-1,4-Dichloro-2-butene	2.5 L	J	2.5	U	25		25		25 L	J
8260C	N	UG/L	Trichloroethene	1.8		5.4		5		2.4		2.1 J	
8260C	N	UG/L	Trichlorofluoromethane	2.5 L		2.5		25		25		25 L	J
8260C	N	UG/L	Vinyl acetate	5 L		5	U	50	U	50	U	50 L	J
8260C	N	UG/L	Vinyl chloride	0.51 J		3.1		34		16		15	
8260C	N	UG/L	Xylene, o	2.5 L		2.5	U	25		25		25 L	J
8260C	N	UG/L	Xylenes (m&p)	2.5 L	J	2.5	U	25	U	25	U	25 L	J
8260C	N	UG/L	Xylenes, Total	2.5 \	J	2.5	U	25	U	25	U	25 L	J
6020A	Т	MG/L	Aluminum	0.0132		0.0707		0.403		0.0232		0.0121	
6020A	T	MG/L	Antimony	0.004 \	J	0.004	U	0.004	U	0.004	U	0.004 L	J
6020A	T	MG/L	Arsenic	0.00125		0.0008		0.02126		0.02336		0.02348	
6020A	T	MG/L	Barium	0.1025		0.1146		0.3487		0.2201		0.2301	
6020A	T	MG/L	Beryllium	0.0005 L	J	0.0005	U	0.0005	U	0.0005	U	0.0005 U	J
6020A	T	MG/L	Cadmium	0.00116		0.00727		0.0002	U	0.00006	J	0.0002 U	J
6020A	Т	MG/L	Calcium	258		284		281		267		261	
6020A	T	MG/L	Chromium	0.01476		0.00447		0.00998		0.00129	J	0.00124 J	
6020A	T	MG/L	Cobalt	0.01313		0.01489		0.01313		0.02253		0.0211	
6020A	Т	MG/L	Copper	0.00366 J		0.004	J	0.00411	J	0.00063	J	0.00065 J	
6020A	Т	MG/L	Iron	0.464		0.445		80		30.2		30.6	
6020A	T	MG/L	Lead	0.00044 J		0.001	U	0.00081	J	0.001	U	0.001 U	J
6020A	T	MG/L	Magnesium	29.8		40.7		40.8		52.5		50.2	
6020A	T	MG/L	Manganese	3.659		5.743		5.194		8.368		8.359	
6020A	T	MG/L	Nickel	0.07921		0.1369		0.383		0.0579		0.05586	
6020A	T	MG/L	Potassium	43.6		34.3		64.6		45.9		47.6	
6020A	T	MG/L		0.00181 J		0.005		0.005		0.005		0.005 U	
6020A	T		Silver	0.0004 L	J	0.0004	U	0.0004	U	0.0004	U	0.0004 U	J
6020A	T		Sodium	204		162		229		196		192	
6020A	T	MG/L	Thallium	0.00029 J		0.00015	J	0.0005	U	0.0005	U	0.0005 L	J

LONG ISLAND CITY, NEW YORK

			SDO	G: L1815070	L1815070	L1815070	L1815070	L1815070	
			Location	n: BMW-1	BMW-2	BMW-3	BMW-4	BMW-4	
			Date Collected	d: 04/26/18	04/26/18	04/26/18	04/26/18	04/26/18	
			Sample II): BMW-1-0418	BMW-2-0418	BMW-3-0418	BMW-4-0418	DUPLICATE	
			Тур		FS	FS	FS	FD	
Method	Fraction	Unit	Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
6020A	T	MG/L	Vanadium	0.005 U	0.005 U	0.00542	0.005 U	0.005 U	
6020A	T	MG/L	Zinc	0.01 U	0.01 U	0.01342	0.01 U	0.01 U	
7470A	T	MG/L	Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	
6020A	D	MG/L	Aluminum	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	
6020A	D	MG/L	Antimony	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	
6020A	D	MG/L	Arsenic	0.00106	0.00051	0.00266	0.00535	0.00488	
6020A	D	MG/L	Barium	0.1036	0.1248	0.2015	0.1471	0.1434	
6020A	D	MG/L	Beryllium	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	
6020A	D	MG/L	Cadmium	0.00117	0.00767	0.0002 U	0.0002 U	0.0002 U	
6020A	D	MG/L	Calcium	264	307	275	269	263	
6020A	D	MG/L	Chromium	0.0011	0.00203	0.00174	0.00053 J	0.00056 J	
6020A	D	MG/L	Cobalt	0.01404	0.01379	0.01128	0.02242	0.02082	
6020A	D	MG/L	Copper	0.0033	0.00367	0.001 U	0.001 U	0.00053 J	
6020A	D	MG/L	Iron	0.0285 J	0.0249 J	8.36	0.35 J	0.126 J	
6020A	D	MG/L	Lead	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	
6020A	D	MG/L	Magnesium	30	41.3	40.2	55.7	51.2	
6020A	D	MG/L	Manganese	3.816	5.38	4.685	8.175	8.132	
6020A	D	MG/L	Nickel	0.08319	0.1236	0.3688	0.05969	0.05604	
6020A	D	MG/L	Potassium	44.4	38.5	63.4	47.9	48.6	
6020A	D	MG/L	Selenium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	
6020A	D	MG/L	Silver	0.0004 U	0.0004 U	0.0004 U	0.0004 U	0.0004 U	
6020A	D	MG/L	Sodium	203	161	230	207	196	
6020A	D	MG/L	Thallium	0.0003 J	0.00014 J 0.0005 U 0.0005 U		0.0005 U	0.0005 U	
6020A	D	MG/L	Vanadium	0.005 U	0.005 U 0.005 U		0.005 U	0.005 U	
6020A	D	MG/L	Zinc	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	
7470A	D	MG/L	Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	

Notes:

U = undetected

J = estimated value

FS = field sample

FD = field duplicate

N, T = total

			22.0	14045070	14045070	14045070	14045070	14045070
			SDG:	L1815070	L1815070	L1815070	L1815070	L1815070
			Location:	MW-5	MW-6D	MW-6S	MW-E	QC
			Date Collected:	04/27/18	04/27/18	04/27/18	04/27/18	04/26/18
			Sample ID:	MW-5-0418	MW-6D-0418	MW-6S-0418	MW-E-0418	TRIP BLANK
			Type:	FS	FS	FS	FS	ТВ
	Fraction	Unit	Parameter	Result Qualifier				
8260C	N	UG/L	1,1,1,2-Tetrachloroethane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,1,1-Trichloroethane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	1,1,2-Trichloroethane	1.5 U	1.5 U	15 U	1.5 U	1.5 U
8260C	N	UG/L	1,1-Dichloroethane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,1-Dichloroethene	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	1,1-Dichloropropene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,2,3-Trichlorobenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,2,3-Trichloropropane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,2,4-Trichlorobenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,2,4-Trimethylbenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,2-Dibromo-3-chloropropane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,2-Dibromoethane	2 U	2 U	20 U	2 U	2 U
8260C	N	UG/L	1,2-Dichlorobenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,2-Dichloroethane	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	1,2-Dichloroethene (total)	2.5 U	2.5 U	23 J	2.5 U	2.5 U
8260C	N	UG/L	1,2-Dichloropropane	1 U	1 U	10 U	1 U	1 U
8260C	N	UG/L	1,3,5-Trimethylbenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,3-Dichlorobenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,3-Dichloropropane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,3-Dichloropropene (total)	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	1,4-Dichlorobenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	1,4-Dioxane	250 U	250 U	2500 U	250 U	250 U
8260C	N	UG/L	2,2-Dichloropropane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	2-Butanone	5 U	5 U	50 U	5 U	5 U
8260C	N	UG/L	2-Chlorotoluene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	2-Hexanone	5 U	5 U	50 U	5 U	5 U
8260C	N	UG/L	4-Chlorotoluene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	4-Ethyltoluene	2 U	2 U	20 U	2 U	2 U
8260C	N	UG/L	4-iso-Propyltoluene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	4-Methyl-2-pentanone	5 U	5 U	50 U	5 U	5 U
8260C	N	UG/L	Acetone	5 U	5 U	50 U	5 U	4.7 J

				14045050	14045050	14045050	14045050	14045050
			SDG:	L1815070	L1815070	L1815070	L1815070	L1815070
			Location:	MW-5	MW-6D	MW-6S	MW-E	QC
			Date Collected:	04/27/18	04/27/18	04/27/18	04/27/18	04/26/18
			Sample ID:	MW-5-0418	MW-6D-0418	MW-6S-0418	MW-E-0418	TRIP BLANK
			Type:			FS	FS	ТВ
	Fraction	Unit	Parameter	Result Qualifier				
8260C	N	UG/L	Acrylonitrile	5 U	5 U	50 U	5 U	5 U
8260C	N	UG/L	Benzene	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	Benzene, 1,2,4,5-tetramethyl	2 U	2 U	20 U	2 U	2 U
8260C	N	UG/L	Bromobenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Bromochloromethane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Bromodichloromethane	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	Bromoform	2 U	2 U	20 U	2 U	2 U
8260C	N	UG/L	Bromomethane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Carbon disulfide	5 U	5 U	50 U	5 U	5 U
8260C	N	UG/L	Carbon tetrachloride	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	Chlorobenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Chloroethane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Chloroform	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Chloromethane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Cis-1,2-Dichloroethene	2.5 U	2.5 U	23 J	2.5 U	2.5 U
8260C	N	UG/L	Cis-1,3-Dichloropropene	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	Dibromochloromethane	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	Dibromomethane	5 U	5 U	50 U	5 U	5 U
8260C	N	UG/L	Dichlorodifluoromethane	5 U	5 U	50 U	5 U	5 U
8260C	N	UG/L	Diethyl ether	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Ethylbenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Hexachlorobutadiene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Isopropylbenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Methyl Tertbutyl Ether	2.5 U	2.5 U	1100	2.5 U	2.5 U
8260C	N	UG/L	Methylene chloride	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	n-Butylbenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Naphthalene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	p-Diethylbenzene	2 U	2 U	20 U	2 U	2 U
8260C	N	UG/L	Propylbenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	sec-Butylbenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Styrene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	tert-Butylbenzene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
			*					

					<u> </u>			L1815070
SDG: L1815070 L1815070 L1815070 L1815070 L1815070								
			Location:	MW-5	MW-6D	MW-6S	MW-E	QC
			Date Collected:	04/27/18	04/27/18	04/27/18	04/27/18	04/26/18
			Sample ID:	MW-5-0418	MW-6D-0418	MW-6S-0418	MW-E-0418	TRIP BLANK
			Type:	FS	FS	FS	FS	ТВ
Method	Fraction	Unit	Parameter	Result Qualifier				
8260C	N	UG/L	Tetrachloroethene	0.57	0.58	37	0.5 U	0.5 U
8260C	N	UG/L	Toluene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	trans-1,2-Dichloroethene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	trans-1,3-Dichloropropene	0.5 U	0.5 U	5 U	0.5 U	0.5 U
8260C	N	UG/L	trans-1,4-Dichloro-2-butene	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Trichloroethene	3.4	1.1	10	0.5 U	0.5 U
8260C	N	UG/L	Trichlorofluoromethane	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Vinyl acetate	5 U	5 U	50 U	5 U	5 U
8260C	N	UG/L	Vinyl chloride	1 U	1 U	10 U	1 U	1 U
8260C	N	UG/L	Xylene, o	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Xylenes (m&p)	2.5 U	2.5 U	25 U	2.5 U	2.5 U
8260C	N	UG/L	Xylenes, Total	2.5 U	2.5 U	25 U	2.5 U	2.5 U
6020A	T	MG/L	Aluminum	0.175	0.13	0.212	4.83	
6020A	Т	MG/L	Antimony	0.004 U	0.004 U	0.004 U	0.004 U	
6020A	Т	MG/L	Arsenic	0.00031 J	0.00046 J	0.00157	0.00999	
6020A	T	MG/L	Barium	0.1125	0.1073	0.1963	0.2058	
6020A	Т	MG/L	Beryllium	0.0005 U	0.0005 U	0.0005 U	0.00048 J	
6020A	T	MG/L	Cadmium	0.00007 J	0.00007 J	0.00006 J	0.00011 J	
6020A	Т	MG/L	Calcium	201	204	251	118	
6020A	Т	MG/L	Chromium	0.01283	0.00308	0.00212 J	0.01688	
6020A	T	MG/L	Cobalt	0.00078	0.00056	0.00306	0.0087	
6020A	Т	MG/L	Copper	0.00155 J	0.00288 J	0.00222 J	0.02403	
6020A	Т	MG/L		0.332	0.233	0.482	15.6	
6020A	T	MG/L	Lead	0.0023	0.00062 J	0.00189	0.00733	
6020A	T	MG/L	Magnesium	14	18.1	74.6	22.2	
6020A	T	MG/L	Manganese	0.008	0.04749	4.051	2.088	
6020A	T	MG/L	Nickel	0.00419	0.00407	0.03138	0.01742	
6020A	T	MG/L	Potassium	26.8	23.9	16.5	22.5	
6020A	T	MG/L	Selenium	0.0087	0.00463 J	0.005 U	0.00555	
6020A	T	MG/L	Silver	0.0004 U	0.0004 U	0.0004 U	0.0004 U	
6020A	T	MG/L	Sodium	196	110	125	92.2	
6020A	T	MG/L	Thallium	0.0005 U	0.00014 J	0.0005 U	0.0005 U	
•						•		

LONG ISLAND CITY, NEW YORK

			SI	G: L181	L1815070		5070	L1815070		L1815070		L1815070	
			Locatio		N-5	MW	/-6D	M۱	V-6S		W-E		QC
			Date Collect		27/18		7/18		27/18		27/18		/26/18
			Sample	-	5-0418	-	D-0418		SS-0418	-	E-0418	-	BLANK
			Ту		FS		:S	FS		FS			ТВ
Method	Fraction	Unit	Parameter	Result	Qualifier	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier
6020A	Т	MG/L	Vanadium	0.005		0.0026		0.005 U		0.01856			
6020A	T	MG/L	Zinc	0.01	U	0.01	U	0.01609		0.04941			
7470A	T	MG/L	Mercury	0.0002	U	0.0002	U	0.0002	U	0.0002	U		
6020A	D	MG/L	Aluminum	0.01	U	0.01	U	0.01	U	0.01	U		
6020A	D	MG/L	Antimony	0.004	U	0.004	U	0.004	U	0.004	U		
6020A	D	MG/L	Arsenic	0.00022	J	0.00029	J	0.00106		0.0006			
6020A	D	MG/L	Barium	0.1092		0.1057		0.1948		0.08407			
6020A	D	MG/L	Beryllium	0.0005	U	0.0005	U	0.0005	U	0.0005 U			
6020A	D	MG/L	Cadmium	0.0002	U	0.00009	J	0.0002 U		0.0002 U			
6020A	D	MG/L	Calcium	201		211		253	253		109		
6020A	D	MG/L	Chromium	0.00708		0.00224		0.00024	J	0.00043 J			
6020A	D	MG/L	Cobalt	0.00065		0.00047	J	0.00312		0.00022 J			
6020A	D	MG/L	Copper	0.00153		0.0021		0.00136		0.00067 J			
6020A	D	MG/L	Iron	0.0269	J	0.0392	J	0.0203	J	0.05	C		
6020A	D	MG/L	Lead	0.001	U	0.001	U	0.001	U	0.001	U		
6020A	D	MG/L	Magnesium	13.7		18.5		81.4		17.2			
6020A	D	MG/L	Manganese	0.00647		0.05963		4.112		0.271			
6020A	D	MG/L	Nickel	0.00551		0.00372		0.03264		0.00112	J		
6020A	D	MG/L	Potassium	26.4		23.7		16.9		20.5			
6020A	D	MG/L	Selenium	0.00846		0.00484	J+	0.005	U	0.00449	J		
6020A	D	MG/L	Silver	0.0004	U	0.0004	U	0.0004		0.0004	U		
6020A	D	MG/L	Sodium	192		113		130		89.8			
6020A	D	MG/L	Thallium	0.0005	0.0005 U		U	0.0005	0005 U 0.00		U	-	
6020A	D	MG/L	Vanadium	0.005 U		0.00188	0.00188 J		0.005 U 0.005 U				
6020A	D	MG/L	Zinc	0.00369 J		0.01	U	0.01048		0.01 U			
7470A	D	MG/L	Mercury	0.0002	0.0002 U		U	0.0002	U	0.0002	U		

Notes:

U = undetected

J = estimated value

FS = field sample

FD = field duplicate

N, T = total

			SDG:	L1815070
			Location:	QC
			Date Collected:	04/26/18
			Sample ID:	FIELD BLANK
			Type:	FB
	Fraction	Unit	Parameter	Result Qualifier
8260C	N	UG/L	1,1,1,2-Tetrachloroethane	2.5 U
8260C	N	UG/L	1,1,1-Trichloroethane	2.5 U
8260C	N	UG/L	1,1,2,2-Tetrachloroethane	0.5 U
8260C	N	UG/L	1,1,2-Trichloroethane	1.5 U
8260C	N	UG/L	1,1-Dichloroethane	2.5 U
8260C	N	UG/L	1,1-Dichloroethene	0.5 U
8260C	N	UG/L	1,1-Dichloropropene	2.5 U
8260C	N	UG/L	1,2,3-Trichlorobenzene	2.5 U
8260C	N	UG/L	1,2,3-Trichloropropane	2.5 U
8260C	N	UG/L	1,2,4-Trichlorobenzene	2.5 U
8260C	N	UG/L	1,2,4-Trimethylbenzene	2.5 U
8260C	N	UG/L	1,2-Dibromo-3-chloropropane	2.5 U
8260C	N	UG/L	1,2-Dibromoethane	2 U
8260C	N	UG/L	1,2-Dichlorobenzene	2.5 U
8260C	N	UG/L	1,2-Dichloroethane	0.5 U
8260C	N	UG/L	1,2-Dichloroethene (total)	2.5 U
8260C	N	UG/L	1,2-Dichloropropane	1 U
8260C	N	UG/L	1,3,5-Trimethylbenzene	2.5 U
8260C	N	UG/L	1,3-Dichlorobenzene	2.5 U
8260C	N	UG/L	1,3-Dichloropropane	2.5 U
8260C	N	UG/L	1,3-Dichloropropene (total)	0.5 U
8260C	N	UG/L	1,4-Dichlorobenzene	2.5 U
8260C	N	UG/L	1,4-Dioxane	250 U
8260C	N	UG/L	2,2-Dichloropropane	2.5 U
8260C	N	UG/L	2-Butanone	5 U
8260C	N	UG/L	2-Chlorotoluene	2.5 U
8260C	N	UG/L	2-Hexanone	5 U
8260C	N	UG/L	4-Chlorotoluene	2.5 U
8260C	N	UG/L	4-Ethyltoluene	2 U
8260C	N	UG/L	4-iso-Propyltoluene	2.5 U
8260C	N	UG/L	4-Methyl-2-pentanone	5 U
8260C	N	UG/L	Acetone	5 U
•				

			SDG:	L1815070
			Location:	QC
			Date Collected:	04/26/18
			Sample ID:	FIELD BLANK
			Туре:	FB
Method	Fraction	Unit	Parameter	Result Qualifier
8260C	N	UG/L	Acrylonitrile	5 U
8260C	N	UG/L	Benzene	0.5 U
8260C	N	UG/L	Benzene, 1,2,4,5-tetramethyl	2 U
8260C	N	UG/L	Bromobenzene	2.5 U
8260C	N	UG/L	Bromochloromethane	2.5 U
8260C	N	UG/L	Bromodichloromethane	0.5 U
8260C	N	UG/L	Bromoform	2 U
8260C	N	UG/L	Bromomethane	2.5 U
8260C	N	UG/L	Carbon disulfide	5 U
8260C	N	UG/L	Carbon tetrachloride	0.5 U
8260C	N	UG/L	Chlorobenzene	2.5 U
8260C	N	UG/L	Chloroethane	2.5 U
8260C	N	UG/L	Chloroform	2.5 U
8260C	N	UG/L	Chloromethane	2.5 U
8260C	N	UG/L	Cis-1,2-Dichloroethene	2.5 U
8260C	N	UG/L	Cis-1,3-Dichloropropene	0.5 U
8260C	N	UG/L	Dibromochloromethane	0.5 U
8260C	N	UG/L	Dibromomethane	5 U
8260C	N	UG/L	Dichlorodifluoromethane	5 U
8260C	N	UG/L	Diethyl ether	2.5 U
8260C	N	UG/L	Ethylbenzene	2.5 U
8260C	N	UG/L	Hexachlorobutadiene	2.5 U
8260C	N	UG/L	Isopropylbenzene	2.5 U
8260C	N	UG/L	Methyl Tertbutyl Ether	2.5 U
8260C	N	UG/L	Methylene chloride	2.5 U
8260C	N	UG/L	n-Butylbenzene	2.5 U
8260C	N	UG/L	Naphthalene	2.5 U
8260C	N	UG/L	p-Diethylbenzene	2 U
8260C	N	UG/L	Propylbenzene	2.5 U
8260C	N	UG/L	sec-Butylbenzene	2.5 U
8260C	N	UG/L	Styrene	2.5 U
8260C	N	UG/L	tert-Butylbenzene	2.5 U

			SDG:	L1815070
			Location:	QC
			Date Collected:	04/26/18
			Sample ID:	FIELD BLANK
			Type:	FB
	Fraction	Unit	Parameter	Result Qualifier
8260C	N	UG/L	Tetrachloroethene	0.5 U
8260C	N	UG/L	Toluene	2.5 U
8260C	N	UG/L	trans-1,2-Dichloroethene	2.5 U
8260C	N	UG/L	trans-1,3-Dichloropropene	0.5 U
8260C	N	UG/L	trans-1,4-Dichloro-2-butene	2.5 U
8260C	N	UG/L	Trichloroethene	0.5 U
8260C	N	UG/L	Trichlorofluoromethane	2.5 U
8260C	N	UG/L	Vinyl acetate	5 U
8260C	N	UG/L	Vinyl chloride	1 U
8260C	N	UG/L	Xylene, o	2.5 U
8260C	N	UG/L	Xylenes (m&p)	2.5 U
8260C	N	UG/L	Xylenes, Total	2.5 U
6020A	T	MG/L	Aluminum	0.00424 J
6020A	T	MG/L	Antimony	0.00092 J
6020A	T	MG/L	Arsenic	0.0005 U
6020A	Т	MG/L	Barium	0.00051
6020A	T	MG/L	Beryllium	0.0005 U
6020A	T	MG/L	Cadmium	0.0002 U
6020A	T	MG/L	Calcium	0.0718 J
6020A	Т	MG/L	Chromium	0.00043 J
6020A	Т	MG/L	Cobalt	0.0005 U
6020A	T	MG/L	Copper	0.00089 J
6020A	Т	MG/L	Iron	0.0209 J
6020A	Т	MG/L	Lead	0.001 U
6020A	T	MG/L	Magnesium	0.07 U
6020A	T	MG/L	Manganese	0.001 U
6020A	T	MG/L	Nickel	0.002 U
6020A	T	MG/L	Potassium	0.089 J
6020A	T	MG/L	Selenium	0.005 U
6020A	T	MG/L	Silver	0.0004 U
6020A	T	MG/L	Sodium	0.248
6020A	T	MG/L	Thallium	0.0005 U

				SDG:	L181	5070
				Location:	C	(C
				Date Collected:	04/2	6/18
				Sample ID:	-	BLANK
				Type:	F	В
Method	Fraction	Unit	Parameter		Result	Qualifier
6020A	Т	MG/L	Vanadium		0.005	U
6020A	Т	MG/L	Zinc		0.01	U
7470A	T	MG/L	Mercury		0.0002	U
6020A	D	MG/L	Aluminum		0.01	U
6020A	D	MG/L	Antimony		0.00081	J
6020A	D	MG/L	Arsenic		0.0005	U
6020A	D	MG/L	Barium		0.00058	
6020A	D	MG/L	Beryllium		0.0005	U
6020A	D	MG/L	Cadmium		0.0002	U
6020A	D	MG/L	Calcium		0.1	U
6020A	D	MG/L	Chromium		0.001	U
6020A	D	MG/L	Cobalt		0.0005	U
6020A	D	MG/L	Copper		0.001	U
6020A	D	MG/L	Iron		0.05	U
6020A	D	MG/L	Lead		0.001	U
6020A	D	MG/L	Magnesium		0.07	U
6020A	D	MG/L	Manganese		0.001	U
6020A	D	MG/L	Nickel		0.002	U
6020A	D	MG/L	Potassium		0.1	U
6020A	D	MG/L	Selenium		0.005	U
6020A	D	MG/L	Silver		0.0004	U
6020A	D	MG/L	Sodium		0.1	U
6020A	D	MG/L	Thallium		0.0005	U
6020A	D	MG/L	Vanadium		0.005	
6020A	D	MG/L	Zinc		0.01	U
7470A	D	MG/L	Mercury		0.0002	U

Notes:

U = undetected

J = estimated value

FS = field sample

FD = field duplicate

N, T = total

		SDG:	L181	5079	L181	5079	L181	.5079	L181	5079	L181	15079
		Location:	BM\	N-1	BM	W-2	BM	W-3	BM	W-4	BM	IW-4
		Date Collected:	04/26/18		04/26/18		04/26/18		04/26/18		04/2	26/18
		Sample ID:	BMW-1-0418		BMW-2-0418		BMW-3-0418		BMW-4-0418		DUPLICATE	
	Type:		FS		F	S	FS		FS		F	-D
Method	Unit	Parameter	Result	Qualifier	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier
537(M)	NG/L	6:2 fluorotelomer sulfonate	0.721	J	1 J		3.43	J	1.85	J	1.8	J
537(M)	NG/L	8:2 Fluorotelomer sulfonate	1.72	UJ	1.92	UJ	1.72	UJ	1.92	UJ	1.85	UJ
537(M)	NG/L	N-ethyl perfluorooctanesulfonamidoacetic acid	1.72	U	1.92	U	1.72	U	0.515	J	1.85	U
537(M)	NG/L	N-methyl perfluorooctanesulfonamidoacetic acid	1.72	U	1.92	U	1.72	U	1.92	U	1.85	U
537(M)	NG/L	Perfluorobutanesulfonic acid	950		706		111	J	248	J	286 J	
537(M)	NG/L	Perfluorobutanoic acid	30.2		29.8		28.9 J		31		30.4	•
537(M)	NG/L	Perfluorodecanesulfonic acid	1.72	U	1.92	U	1.72	U	1.15 J		1.85	U
537(M)	NG/L	Perfluorodecanoic acid	1.28	J	1.22	J	0.972	J	1.17	J	0.589	J
537(M)	NG/L	Perfluorododecanoic acid	1.72 U		1.92 U		1.72	U	0.762 J		1.85	U
537(M)	NG/L	Perfluoroheptanesulfonic acid	48.1		83.2		115		75		85.9	<u> </u>
537(M)	NG/L	Perfluoroheptanoic acid	23.3		20.1		26.2		23.2		22.7	
537(M)	NG/L	Perfluorohexane sulfonic acid	148		322		97.1	J	106	J	108	i J
537(M)	NG/L	Perfluorohexanoic acid	72.2		45.7		104		104		99	·
537(M)	NG/L		4.84		3.43		4.1		3.03		3.01	
537(M)	NG/L	Perfluorooctane sulfonamide	1.72	UJ	1.92	UJ	1.72	UJ	1.92	UJ	1.85	UJ
537(M)	NG/L	Perfluorooctanesulfonic acid (PFOS)	780		1720		5770		2550		2820	<u> </u>
537(M)	NG/L	Perfluorooctanoic acid (PFOA)	59.1		79.7		65.6		71.2		73	<u> </u>
537(M)	NG/L	Perfluoropentanoic acid	61.8		62.4		56.9		92.5		90.3	
537(M)		Perfluorotetradecanoic acid	1.72	U	1.92	U	1.72	1.72 U		J	1.85	U
537(M)	NG/L	Perfluorotridecanoic acid	1.72	U	1.92	U	1.72	U	0.646	J	1.85	U
537(M)				U	1.92	U	1.72	U	0.704	J	1.85	U

Notes:

U = undetected

J = estimated value

FS = field sample

FD = field duplicate

N = total

		CDC	1101	F070	1101	F070	1101	F070	1101	F070	110	15070
		SDG:	_	.5079	_	5079	_	.5079		.5079	_	15079
		Location:		N-5		/-6D	MW-6S			N-E		QC
		Date Collected:		27/18		7/18	04/27/18		04/27/18			26/18
	Sample ID:			5-0418		D-0418		S-0418		E-0418		BLANK
	Туре:		F	S	F	:S	F	S	FS		ļ	FB
Method	Unit	Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
537(M)	NG/L	6:2 fluorotelomer sulfonate	1.78	U	1.85	UJ	5.26	J	17		1.85	U
537(M)	NG/L	8:2 Fluorotelomer sulfonate	1.78	U	1.85	U	1.72	U	1.67	U	1.85	U
537(M)	NG/L	N-ethyl perfluorooctanesulfonamidoacetic acid	1.78	U	1.85	U	1.72	U	1.67	U	1.85	U
537(M)	NG/L	N-methyl perfluorooctanesulfonamidoacetic acid	1.78	U	1.85	С	1.72	U	1.67	Ω	1.85	U
537(M)	NG/L	Perfluorobutanesulfonic acid	11.9		13.8		22.5		7.14		1.85	U
537(M)	NG/L	Perfluorobutanoic acid	8.62		6.24		12.7		26		1.85	U
537(M)	NG/L	Perfluorodecanesulfonic acid	1.78	U	1.85	С	1.72	U	1.67	Ω	1.85	U
537(M)	NG/L	Perfluorodecanoic acid	1.78	U	0.481	J	0.852	J	0.843	J	1.85	U
537(M)	NG/L	Perfluorododecanoic acid	1.78	U	1.85	С	1.72	U	1.67	Ω	1.85	U
537(M)	NG/L	Perfluoroheptanesulfonic acid	1.78	U	0.744	J	11.4		1.67 U		1.85 U	
537(M)	NG/L	Perfluoroheptanoic acid	4.82		4.02		5.69		9.33		1.85 U	
537(M)	NG/L	Perfluorohexane sulfonic acid	4.81		2.75		30.2		1.7		1.85	U
537(M)	NG/L	Perfluorohexanoic acid	8.14		6.03		6.96		72.3		1.85	U
537(M)	NG/L	Perfluorononanoic acid	0.628	J	1.36	J	2.48		0.887	J	1.85	U
537(M)	NG/L	Perfluorooctane sulfonamide	1.78	UJ	1.85	CU	1.72	UJ	1.67	IJ	1.85	U
537(M)	NG/L	Perfluorooctanesulfonic acid (PFOS)	65.6		64.4		479		5.26		0.126	J
537(M)	NG/L	Perfluorooctanoic acid (PFOA)	18.2		17.4		48.7		29.2		0.7	J
537(M)	NG/L	Perfluoropentanoic acid	8.78		5.01		7.42		56		1.85	U
537(M)			1.78 U		1.85	U	1.72 UJ		1.72 UJ 1.67 U		1.85	U
537(M) NG/L Perfluorotridecanoic acid		1.78 U		1.85	U	1.72 U		1.67 U		1.85 U		

1.78 U

Notes:

537(M)

U = undetected

J = estimated value

FS = field sample

FD = field duplicate

N = total

1.85 U

NG/L Perfluoroundecanoic acid

1.85 U

1.72 U

1.67 U

TABLE 3 - QUALIFICATION ACTIONS SUMMARY DATA USABILITY SUMMARY REPORT APPIL 2018 GROUNDWATER SAMPLING EVENT

APRIL 2018 GROUNDWATER SAMPLING EVENT FORMER HYGRADE POLISHING AND PLATING COMPANY LONG ISLAND CITY, NEW YORK

	Analysis		Field Sample				Lab Result	Lab		Final	Val Reason	Result
SDG	Method	Lab Sample Id	Date	Field Sample Id	Fraction	Param Name	Text	Qualifier	Final Result (Qualifier	Code	Uom
L1815070	6020A	L1815070-01	4/26/2018	BMW-1-0418	D	Aluminum	0.00393	J	0.01	U	BL1	MG/L
L1815070	6020A	L1815070-01	4/26/2018	BMW-1-0418	D	Antimony	0.00364	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-01	4/26/2018	BMW-1-0418	Т	Antimony	0.00363	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-01	4/26/2018	BMW-1-0418	Т	Copper	0.00366		0.00366	J	BL2	MG/L
L1815070	8260C	L1815070-01	4/26/2018	BMW-1-0418	N	Acetone	1.9	J	5 (U	BL2	UG/L
L1815070	6020A	L1815070-02	4/26/2018	BMW-2-0418	D	Aluminum	0.00489	J	0.01	U	BL1	MG/L
L1815070	6020A	L1815070-02	4/26/2018	BMW-2-0418	D	Antimony	0.00082	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-02	4/26/2018	BMW-2-0418	Т	Antimony	0.00068	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-02	4/26/2018	BMW-2-0418	Т	Copper	0.004	•	0.004	J	BL2	MG/L
L1815070	8260C	L1815070-02	4/26/2018	BMW-2-0418	N	Acetone	1.8	J	5 (U	BL2	UG/L
L1815070	6020A	L1815070-03	4/26/2018	BMW-3-0418	D	Aluminum	0.00902	J	0.01	U	BL1	MG/L
L1815070	6020A	L1815070-03	4/26/2018	BMW-3-0418	D	Antimony	0.00061	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-03	4/26/2018	BMW-3-0418	Т	Antimony	0.00081	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-03	4/26/2018	BMW-3-0418	Т	Copper	0.00411		0.00411	J	BL2	MG/L
L1815070	6020A	L1815070-04	4/26/2018	BMW-4-0418	D	Aluminum	0.00343	J	0.01	U	BL1	MG/L
L1815070	6020A	L1815070-04	4/26/2018	BMW-4-0418	D	Antimony	0.00058	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-04	4/26/2018	BMW-4-0418	D	Iron	0.35	ı	0.35 J	l	FD	MG/L
L1815070	6020A	L1815070-04	4/26/2018	BMW-4-0418	Т	Antimony	0.00061	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-04	4/26/2018	BMW-4-0418	Т	Chromium	0.00129		0.00129	J	BL2	MG/L
L1815070	6020A	L1815070-04	4/26/2018	BMW-4-0418	T	Copper	0.00063	J	0.00063	l	BL2	MG/L
L1815070	6020A	L1815070-05	4/27/2018	MW-6D-0418	D	Aluminum	0.00492	J	0.01	U	BL1	MG/L
L1815070	6020A	L1815070-05	4/27/2018	MW-6D-0418	D	Antimony	0.00082	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-05	4/27/2018	MW-6D-0418	D	Selenium	0.00484	. J	0.00484	J+	MS-H	MG/L
L1815070	6020A	L1815070-05	4/27/2018	MW-6D-0418	Т	Antimony	0.0035	J	0.004	U	BL1, BL2	MG/L
L1815070	6020A	L1815070-05	4/27/2018	MW-6D-0418	Т	Copper	0.00288		0.00288	l	BL2	MG/L
L1815070	8260C	L1815070-05	4/27/2018	MW-6D-0418	N	Acetone	3.8		5 (U	BL2	UG/L
L1815070	6020A	L1815070-06	4/27/2018	MW-6S-0418	D	Aluminum	0.00722	J	0.01	U	BL1	MG/L
L1815070	6020A	L1815070-06	4/27/2018	MW-6S-0418	D	Antimony	0.00147	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-06	4/27/2018	MW-6S-0418	Т	Antimony	0.00165	J	0.004	U	BL1, BL2	MG/L
L1815070	6020A	L1815070-06	4/27/2018	MW-6S-0418	Т	Chromium	0.00212		0.00212	l	BL2	MG/L
L1815070	6020A	L1815070-06	4/27/2018	MW-6S-0418	Т	Copper	0.00222		0.00222	l	BL2	MG/L
L1815070	6020A	L1815070-07	4/27/2018	MW-5-0418	D	Aluminum	0.00616	J	0.01	U	BL1	MG/L
L1815070	6020A	L1815070-07	4/27/2018	MW-5-0418	D	Antimony	0.00068	J	0.004 (U	BL1, BL2	MG/L
L1815070	6020A	L1815070-07	4/27/2018	MW-5-0418	T	Antimony	0.00077	J	0.004 (U	BL1, BL2	MG/L

TABLE 3 - QUALIFICATION ACTIONS SUMMARY DATA USABILITY SUMMARY REPORT

APRIL 2018 GROUNDWATER SAMPLING EVENT FORMER HYGRADE POLISHING AND PLATING COMPANY LONG ISLAND CITY, NEW YORK

	Analysis		Field Sample				Lab Result	Lab	Final	Val Reason	Result
SDG	Method	Lab Sample Id	Date	Field Sample Id	Fraction	Param Name	Text	Qualifier	Final Result Qualifier	Code	Uom
L1815070	6020A	L1815070-07	4/27/2018	MW-5-0418	Т	Copper	0.00155		0.00155 J	BL2	MG/L
L1815070	8260C	L1815070-07	4/27/2018	MW-5-0418	N	Acetone	1.5	J	5 U	BL2	UG/L
L1815070	6020A	L1815070-08	4/27/2018	MW-E-0418	D	Antimony	0.00048	J	0.004 U	BL1, BL2	MG/L
L1815070	6020A	L1815070-08	4/27/2018	MW-E-0418	Т	Antimony	0.00094	J	0.004 U	BL1, BL2	MG/L
L1815070	8260C	L1815070-08	4/27/2018	MW-E-0418	N	Acetone	1.6	J	5 U	BL2	UG/L
L1815070	6020A	L1815070-09	4/26/2018	DUPLICATE	D	Antimony	0.00087	J	0.004 U	BL1, BL2	MG/L
L1815070	6020A	L1815070-09	4/26/2018	DUPLICATE	D	Iron	0.126		0.126 J	FD	MG/L
L1815070	6020A	L1815070-09	4/26/2018	DUPLICATE	Т	Antimony	0.00048	J	0.004 U	BL1, BL2	MG/L
L1815070	6020A	L1815070-09	4/26/2018	DUPLICATE	Т	Chromium	0.00124		0.00124 J	BL2	MG/L
L1815070	6020A	L1815070-09	4/26/2018	DUPLICATE	Т	Copper	0.00065	J	0.00065 J	BL2	MG/L

Notes:

U = undetected

J = estimated value

FD = field duplicate precision not met

BL1 = method blank contamination

BL2 = field or trip blank contamination

N, T = total

D = dissolved

TABLE 3 - QUALIFICATION ACTIONS SUMMARY DATA USABILITY SUMMARY REPORT APRIL 2018 GROUNDWATER SAMPLING EVENT FORMER HYGRADE POLISHING AND PLATING COMPANY LONG ISLAND CITY, NEW YORK

							Lab					
	Analysis		Field Sample				Result	Lab	Final	Final	Val Reason	Result
SDG	Method	Lab Sample Id	Date	Field Sample Id	Fraction	Param Name	Text	Qualifier	Result	Qualifier	Code	Uom
L1815079	537(M)	L1815079-01	4/26/2018	BMW-1-0418	N	6:2 fluorotelomer sulfonate	0.721	J	0.721	J	IS-H	NG/L
L1815079	537(M)	L1815079-01	4/26/2018	BMW-1-0418	N	8:2 Fluorotelomer sulfonate	1.72	U	1.72	UJ	IS-H	NG/L
L1815079	537(M)	L1815079-01	4/26/2018	BMW-1-0418	N	Perfluorooctane sulfonamide	1.72	U	1.72	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-02	4/26/2018	BMW-2-0418	N	6:2 fluorotelomer sulfonate	1	J	1	J	IS-H	NG/L
L1815079	537(M)	L1815079-02	4/26/2018	BMW-2-0418	N	8:2 Fluorotelomer sulfonate	1.92	U	1.92	UJ	IS-H	NG/L
L1815079	537(M)	L1815079-02	4/26/2018	BMW-2-0418	N	Perfluorooctane sulfonamide	1.92	U	1.92	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-03	4/26/2018	BMW-3-0418	N	6:2 fluorotelomer sulfonate	3.43		3.43	J	IS-H	NG/L
L1815079	537(M)	L1815079-03	4/26/2018	BMW-3-0418	N	8:2 Fluorotelomer sulfonate	1.72	U	1.72	UJ	IS-H	NG/L
L1815079	537(M)	L1815079-03	4/26/2018	BMW-3-0418	N	Perfluorobutanesulfonic acid	111		111	J	IS-H	NG/L
L1815079	537(M)	L1815079-03	4/26/2018	BMW-3-0418	N	Perfluorobutanoic acid	28.9		28.9	J	IS-L	NG/L
L1815079	537(M)	L1815079-03	4/26/2018	BMW-3-0418	N	Perfluorohexane sulfonic acid	97.1		97.1	J	IS-H	NG/L
L1815079	537(M)	L1815079-03	4/26/2018	BMW-3-0418	N	Perfluorooctane sulfonamide	1.72	U	1.72	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-04	4/26/2018	BMW-4-0418	N	6:2 fluorotelomer sulfonate	1.85	J	1.85	J	IS-H	NG/L
L1815079	537(M)	L1815079-04	4/26/2018	BMW-4-0418	N	8:2 Fluorotelomer sulfonate	1.92	U	1.92	UJ	IS-H	NG/L
L1815079	537(M)	L1815079-04	4/26/2018	BMW-4-0418	N	Perfluorobutanesulfonic acid	248		248	J	IS-H	NG/L
L1815079	537(M)	L1815079-04	4/26/2018	BMW-4-0418	N	Perfluorohexane sulfonic acid	106		106	J	IS-H	NG/L
L1815079	537(M)	L1815079-04	4/26/2018	BMW-4-0418	N	Perfluorooctane sulfonamide	1.92	U	1.92	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-05	4/27/2018	MW-6D-0418	N	6:2 fluorotelomer sulfonate	1.85	U	1.85	UJ	IS-H	NG/L
L1815079	537(M)	L1815079-05	4/27/2018	MW-6D-0418	N	Perfluorooctane sulfonamide	1.85	U	1.85	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-06	4/27/2018	MW-6S-0418	N	6:2 fluorotelomer sulfonate	5.26		5.26	J	IS-H	NG/L
L1815079	537(M)	L1815079-06	4/27/2018	MW-6S-0418	N	Perfluorooctane sulfonamide	1.72	U	1.72	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-06	4/27/2018	MW-6S-0418	N	Perfluorotetradecanoic acid	1.72	U	1.72	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-07	4/27/2018	MW-5-0418	N	Perfluorooctane sulfonamide	1.78	U	1.78	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-08	4/27/2018	MW-E-0418	N	Perfluorooctane sulfonamide	1.67	U	1.67	UJ	IS-L	NG/L
L1815079	537(M)	L1815079-09	4/26/2018	DUPLICATE	N	6:2 fluorotelomer sulfonate	1.8	J	1.8	J	IS-H	NG/L
L1815079	537(M)	L1815079-09	4/26/2018	DUPLICATE	N	8:2 Fluorotelomer sulfonate	1.85	U	1.85	UJ	IS-H	NG/L
L1815079	537(M)	L1815079-09	4/26/2018	DUPLICATE	N	Perfluorobutanesulfonic acid	286		286	J	IS-H	NG/L
L1815079	537(M)	L1815079-09	4/26/2018	DUPLICATE	N	Perfluorohexane sulfonic acid	108		108	J	IS-H	NG/L
L1815079	537(M)	L1815079-09	4/26/2018	DUPLICATE	N	Perfluorooctane sulfonamide	1.85	U	1.85	UJ	IS-L	NG/L

Notes:

U = undetected

J = estimated value

IS-L = extracted internal standard recovery low

IS-H = extracted internal standard recovery high

N = total

ATTACHMENT A SUMMARY OF VALIDATION QC LIMITS FOR SURROGATES, SPIKES, AND DUPLICATES BASED ON THE REGION 2 VALIDATION GUIDELINES

DADAMETED	OC TEST	Soil	Soil	
PARAMETER	QC TEST	ANALYTE	(%R)	(RPD)
	Surrogate	All Surrogate Compounds	70 - 130	
Volatiles	LCS	All Target Compounds	70 - 130	
voiatiles	MS/MSD	All Target Compounds	70 - 130	35
	Field Duplicate	All Target Compounds		100
	Surrogate	All Surrogate Compounds	Lab Limits	
Per- and Polyfluorinated Alkyl	LCS	All Target Compounds	Lab Limits	
Substances (PFAS)	MS/MSD	All Target Compounds	Lab Limits	Lab Limits
	Field Duplicate	All Target Compounds		50
	LCS	All Target Analytes	80 - 120	
Inorganica Matala	MS/MSD	All Target Analytes	75 -125	35
Inorganics-Metals	Lab Duplicate	All Target Analytes		35
	Field Duplicate	All Target Analytes		35

Notes:

LCS - Laboratory Control Sample

MS/MSD - Matrix spike/ Matrix Spike Duplicate

RPD = Relative percent difference

%R = percent recovery

QC Limits are based on USEPA Region II Data Validation Guidelines and Project QA/QC Objectives

Project No. 3612162331

ATTACHMENT B

VOCs

		JSR PROJECT CHEMIST REVIEW RECORD
Ma La Da	oject: ethod: boratory: ite: viewer:	Hygrale 8260C Alpha-vertborough SDG(s): L1815070 6113/18 Julie Ricardi
Re	view Level	NYSDEC DUSR USEPA Region II Guideline
1. 2. 3.	Were Are F Were M Hol	se Narrative Review and COC/Data Package Completeness problems noted? No Field Sample IDs and Locations assigned correctly? YES NO (circle one) all the samples on the COC analyzed for the requested analyses? (YES) NO (circle one) Iding time and Sample Collection amples were analyzed within the 14 day holding time. (YES) NO (circle one) C Blanks method blanks free of contamination? (YES) NO (circle one)
		Prip blanks free of contamination? YES NO (circle one) A Lebox 4.7 J 43 Rinse blanks free of contamination? YES NO NA (circle one) 4.7 J 43 Rinse blanks free of contamination? YES NO NA (circle one)
4.	Did the (circle	strument Tuning – Data Package Narrative Review the laboratory narrative identify any results that were not within method criteria? YES NO e one) s, use professional judgment to evaluate data and qualify results if needed
5.	Did the contin	strument Calibration – Data Package Narrative Review he laboratory narrative identify compounds that were not within criteria in the initial and/or muing calibration standards? YES NO (circle one)
	Initial	l Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) 1 Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, form and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane
	Conti	nuing Calibration $\text{\%D} = 20\%$
		ne laboratory qualify results based on initial or continuing calibration exceedances? YES NO to above, use professional judgment to evaluate data and qualify results if needed
6.	(Area point i Did th	hal Standards – Data Package Narrative Review Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midif samples follow ICAL) be laboratory narrative identify any sample internal standards that were not within criteria? (NO) (circle one)
		ne laboratory qualify results based on internal standard exceedances? YES NO to above, use professional judgment to evaluate data and qualify results if needed
7.	Surro	ogate Recovery - Region II limits (water 80-120%, soil 70-130%)
	Were	all results within Region II limits? YES NO (circle one)
8.		trix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35) Mw-60-0418 MS/MSDs submitted/analyzed YES NO

Were all results within the Region II limits (YES) NO NA (circle one) 70-130

9. Duplicates - Region II Limits (water RPD 50, soil RPD 100)
Were Field Duplicates submitted/analyzed (YES) NO BMW-4-0418/DWLICA 15:01
Were all results within Region II limits? (soil RPD<100, water RPD<50) YES NO NA
10. Laboratory Control Sample Results - Region II (Water and soil 70-130%)
Were all results were within Region II control limits? YES NO (circle one)
114 - dioxane 1322; all samples ND in no gals 11. La Raw Data Review and Calculation Checks
Sec attached
12. Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one)
13. Tables and TIC Review
Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)
Table 4 (TICs) Did lab report TICs? YES NO (circle one)

.

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

L1815070 05/04/18

Lab Number: Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1815070-01	BMW-1-0418	WATER	LONG ISLAND CITY, NY	04/26/18 12:35	04/27/18
L1815070-02	BMW-2-0418	WATER	LONG ISLAND CITY, NY	04/26/18 13:10	04/27/18
L1815070-03	BMW-3-0418	WATER	LONG ISLAND CITY, NY	04/26/18 14:00	04/27/18
L1815070-04	BMW-4-0418	WATER	LONG ISLAND CITY, NY	04/26/18 11:00	04/27/18
L1815070-05	MW-6D-0418	WATER	LONG ISLAND CITY, NY	04/27/18 08:50	04/27/18
L1815070-06	MW-6S-0418	WATER	LONG ISLAND CITY, NY	04/27/18 08:50	04/27/18
L1815070-07	MW-S-0418	WATER	LONG ISLAND CITY, NY	04/27/18 10:05	04/27/18
L1815070-08	MW-E-0418	WATER	LONG ISLAND CITY, NY	04/27/18 10:30	04/27/18
L1815070-09	DUPLICATE	WATER	LONG ISLAND CITY, NY	04/26/18 11:00	04/27/18
L1815070-10	FIELD BLANK	WATER	LONG ISLAND CITY, NY	04/26/18 14:25	04/27/18
L1815070-11	TRIP BLANK	WATER	LONG ISLAND CITY, NY	04/26/18 00:00	04/27/18

RPD	14.2	2.0	13.5 13.5	2.2	- T	2.7	2.0	10.7	TOT	C:2	62 G OK. DROE ING ALITE	OZ.3 OK, FNOF JUG, DIFF - KL	2.5 5.0	 	6.7	4,4	2.3	2.3	4.0	7.4	6.6	94.1 J SAMPLE AND DUP	1.3	5. 8. 4.8	7 4	5.0	10	י ע	. w	היי היי	י ר ה וינ	ט מין	5.5 5.5	T. C	√	6.5
FD CONC	286	30.4	85.9	22.7	108	0.66	3.01	2820	73.0	8.06	0.0121	0.00488	0.02348	0.1434	0.2301	0.2301	203.	.197	0.00124	0.02082	0.02110	0.126	30.6	51.2	50.2	8.132	8.359	0.05604	0.05586	48.6	47.6	196	192	1400	380	15
_[SQL_text fraction	1.92 N	1.92 N	1.92 N	1.92 N	1.92 N	1.92 N	1.92 N	40.0	1.92 N	1.92 N	0.0100 T	0.00050 D	0.00050 T	0.00050 D	0.00050	0.100	0.100	0.100	0.00100 T	0.00050 D	0.00050 T	0.0500 D	0.0500 T	0.0700 D	0.0700 T	0.00100 D	0.00100 T	0.00200 D	0.00200 T	0.100 D	0.100 T	0.100	0.100	. N	50 N	10 N
uorr detection	0.106	0.126	0.149	0.089	0.103	0.122	0.097	2.23	0.049	0.082	0.00327	0.00016	0.00016	0.00017	0.00017	0.0394	10000	0.0004	0.00017	0.00016	0.00016	0.0191	0.0191	0.0242	0.0242	0.00044	0.00044	0.00055	0.00055	0.0309	0.0309	0.0293	0.0293	19.	15.	0.71
final_result final_qualif result_uorr detection_[SQL_text	248 NG/L	31.0 NG/L	75.0 NG/L	23.2 NG/L	106 NG/L	104 NG/L	3.03 NG/L	2550 NG/L	71.2 NG/L	92.5 NG/L	0.0232 MG/L	0.00535 MG/L	0.02336 MG/L	0.1471 MG/L	0.2201 MG/L	269. MG/L	267. MG/I	29				_						0.05969 MG/L	0.05790 MG/L	47.9 MG/L	45.9 MG/L	207. MG/L	196. MG/L	1400 UG/L	380 · 06/L	16 UG/L
analysis param_name	537(M) Perfluorobutanesulfonic acid	537(M) Perfluorobutanoic acid	537(M) Perfluoroheptanesulfonic acid		53/(M) Perfluorohexane sulfonic acid	537(M) Perfluorohexanoic acid	537(M) Perfluorononanoic acid	537(M) Perfluorooctanesulfonic acid	537(M) Perfluorooctanoic acid	_						6020A Calcium	6020A Calcium	6020A Chromium	6020A Cobalt												6020A Potassium	6020A Sodium	-			8260C Vinyl chloride
qc_clab_sample_id				rs 118150/9-04												_	_	FS L1815070-04	FS L1815070-04	FS L1815070-04	FS L1815070-04	' -	-											FS L1815070-04	FS L18150/0-04	rs LI&150/0-04
field_sample_id BM/w-4-0418	BMW-4-0418	DAMA A OA10	BM/W 4-0418	BMW 4 0410	PANA 4 0410	BMW 4-0418	BMW-4-0418	BINIW-4-0418	DIVIVY-4-0418	DIVIN-4-0418	BMW-4-0418	DIVIVY-4-U418	DIMW-4-0418	DIMIN 4-0418	DIVIVY-4-0418	BIMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BNAW-A-0419	BMW-4-0418	BMM-A-0418	BAMA 4 0416	BIVIVY-4-0418	DIVIVY-4-0418	DIVING-4-0418	BIMW-4-0418	BIVIW-4-0418	BlvI W-4-0418	DIMIN-4-0418	DIVIVY-4-0410

Laboratory Control Sample Form 3

Client Project Name : Wood Env & Infrastructure Solutions

Lab Number : L1815070

Matrix

: STALINGRAD/HYGRADE GW Q2 SAMPL Project Number : 3612162331

: WATER

: WG1111832-3 Analysis Date : 05/01/18 17:59

File ID : V01180501N02

LCS Sample ID

LCSD Sample ID : WG1111832-4 Analysis Date : 05/01/18 18:28

File ID : V01180501N03

	Laborato	y Contro! Sam	ple	Laborator	70-				
Parameter	True (ug/l)	Found (ug/l)	%R	True (ug/l)	Found (ug/l)	%R	RPD	Recovery Limits	RPD Limit
p-Chlorotoluene	10	9.7	97	10	9.7	97	0	70-130	20
1,2-Dibromo-3-chloropropane	10	8.8	. 88	10	8.9	89	1	41-144	20
Hexachlorobutadiene	10	10.	100	10	11.	110	10	63-130	20
sopropylbenzene	10	9.7	97	10	9.8	98	1	70-130	20
p-Isopropyltoluene	10	9.7	97	10	9.8	98	1	70-130	20
Naphthalene	10	8.6	86	10	8.6	86	0	70-130	20
n-Propylbenzene	10	9.8	98	10	9.8	98	0	69-130	20
1,2,3-Trichlorobenzene	10	8.4	84	10	8.6	86	2	70 -130	20
1,2,4-Trichlorobenzene	10	9.1	91	10	9.2	92	1	70-130	20
1,3,5-Trimethylbenzene	10.	9.6	96	10	9.6	96	0	64-130	20
1,2,4-Trimethylbenzene	10	9.8	98	10	9.8	98	0	70-130	20
1,4-Dioxane J+(N	500	640	128	500	660 ((132)	3	56-162	20
o-Diethylbenzene	10	9.6	96	10	9.7	97	1	70-130	20
-Ethyltoluene	10	9.8	98	10	9.8	98	0	70-130	20
,2,4,5-Tetramethylbenzene	10	9.5	95	10	9.4	94	1	70-130	20
Ethyl ether	10	9.7	97	-10	9.7	97	0	59-134	20
rans-1,4-Dichloro-2-butene	10	10.	100	10	9.2	92	8	70-130	20

6/13/18

All else 70-130

Data Path: I:\VOLATILES\VOA101\2018\180501N\

```
Data File : V01180501N15.D
      Acq On : 2 May 2018 12:09 am
      Operator : VOA101:NLK
     Sample : 11815070-06D,31,1,10,,a
Misc : WG1111832,ICAL14549
      ALS Vial : 15 Sample Multiplier: 1
      Quant Time: May 02 11:44:16 2018
      Quant Method: I:\VOLATILES\VOA101\2018\180501N\V101 180315A 8260.m
      Quant Title : VOLATILES BY GC/MS
     Quant Title : VOLATILES BY GC/MS
QLast Update : Tue Mar 20 11:27:54 2018
Response via : Initial Calibration

CCAL FILE(s) : 1 - I:\VOLATILES\VOA101\2018\180501N\V01180501N02.D

OK
      Sub List : 8260-NYTCL - Megamix plus Diox
                                                                                                                                                                                   (00 )
                      Compound
                                                                                           R.T. QIon Response Conc Units Dev (Min)
        Compound K.I. & Long The Long 
     1) Fluorobenzene 5.845 96 662931 10.000 ug/L 0.00 Standard Area 1 = 671112 Recovery = 98.78%

59) Chlorobenzene-d5 9.637 117 507359 10.000 ug/L 0.00 Standard Area 1 = 513562 Recovery = 98.79%

79) 1,4-Dichlorobenzene-d4 Standard Area 1 = 250788

8ecovery = 94.95% 0
                                                                                                       Recovery = 94.95\%
        System Monitoring Compounds
                                                                                   4.999 113 167535 9.759 ug/L
                                                                                                                                                                                         0.00
      36) Dibromofluoromethane
                                                                                 Range 70 - 130 Recovery = 97.59%
             Spiked Amount 10.000
                                                                                 5.545 65 187572 11.561 ug/L
                                                                                                                                                                                         0.00
      43) 1,2-Dichloroethane-d4

      Spiked Amount
      10.000
      Range
      70 - 130
      Recovery
      = 115.61%

      Toluene-d8
      7.645
      98
      650435
      10.034 kg/L
      0.00

      Spiked Amount
      10.000
      Range
      70 - 130
      Recovery
      = 100.34%

      60) Toluene-d8
      83) 4-Bromofluorobenzene 11.247 95 240743 10.659 ug/L 0.00
             Spiked Amount 10.000 Range 70 - 130 Recovery = 106.59%
                                                                                                                                                                                  Qvalue
        Target Compounds
        2) Dichlorodifluoromethane 0.000
                                                                                                                                  0 N.D.
0 N.D.
                                                                                                                           0
574
471
189
0
        3) Chloromethane
                                                                                    0.000
                                                                                                                                                            N.D. d
                                                                                   1.731 62
2.014 94
        4) Vinyl chloride
                                                                                                                                                            N.D.
        5) Bromomethane6) Chloroethane
    5) Bromomethane
6) Chloroethane
7) Trichlorofluoromethane
8) Ethyl ether
10) 1,1-Dichloroethene
11) Carbon disulfide
15) Methylene chloride
17) Acetone
18) trans-1,2-Dichloroethene
20) Methyl tert-butyl ether
21) 1,1-Dichloroethane
2123 64 84 195 N.D.
318 43 1566 0.827 ug/L # 70
3.504 73 2823681 110.071 ug/L 94
31.1-Dichloroethane
3.504 73 2823681 110.071 ug/L 94
                                                                                                                                                            N.D.
     20) Methyl tell budy 23) 1,1-Dichloroethane 0.000 0.000
                                                                                  0.000
0.000
0.000
    0
                                                                                                                                                            N.D.
                                                                                                                        0 N.D.
34716 2.295 ug/L
                                                                                                                                                                                              91
                                                                                                                             0
                                                                                                                                                          N.D.
     30) Bromochloromethane
                                                                                                                                                             N.D.
                                                                                                          83 177 N.D.
                                                                                     4.819
     32) Chloroform
V101 180315A 8260.m Wed May 02 12:24:42 2018
                                                                                                                                                                            Page: 1
```

Data Path: I:\VOLATILES\VOA101\2018\180501N\

Data File: V01180501N15.D

Acq On : 2 May 2018 12:09 am Operator : VOA101:NLK 1)4 = 10

Sample : 11815070-06D, 31, 1, 10, , a Misc : WG1111832, ICAL14549

ALS Vial : 15 Sample Multiplier: 1 54247 507359

Quant Time: May 02 11:44:16 2018

Quant Method: I:\VOLATILES\VOA101\2018\180501N\V101 180315A 8260.m

Quant Title : VOLATILES BY GC/MS QLast Update : Tue Mar 20 11:27:54 2018 Response via : Initial Calibration

CCAL FILE(s): 1 - I:\VOLATILES\VOA101\2018\180501N\V01180501N02.D OV Sub List : 8260-NYTCL - Megamix plus Diox

Sub	· List : 8260-NYTCL - Me	egamix pl	us Diox		an. i	
	Compound	R.T	. QIon	Response	Conc Units Dev (Mi	(16 .n)
37) 39) 40) 41) 44) 50) 51) 57) 58)	1,2-Dichloropropane Bromodichloromethane 1,4-Dioxane cis-1,3-Dichloropropene	0.000 0.000 0.000 5.414 5.637 6.041 0.000 0.000 0.000	78 62 95	0 0 0 0 513 1315 16096 0 0	N.D. N.D. N.D. N.D. 0.086 ug/L # 1.056 ug/L N.D. N.D. N.D. N.D. N.D. N.D.	90 92
62) 63) 65) 68) 69) 70) 71)	Toluene 4-Methyl-2-pentanone Tetrachloroethene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Chlorodibromomethane 1,3-Dichloropropane 1,2-Dibromoethane 2-Hexanone Chlorobenzene Ethylbenzene	0.000 8.191 0.000 0.000 0.000 0.000	166 112	54247 0 0 0 0 0 0 0	N.D. 3.674 ug/L N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	99
75) 76) 77) 78) 80) 82) 84) 85) 87) 89) 91) 92) 93)	1,1,1,2-Tetrachloroethane p/m Xylene o Xylene Styrene Bromoform Isopropylbenzene Bromobenzene n-Propylbenzene 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 2-Chlorotoluene 1,3,5-Trimethylbenzene 1,2,3-Trichloropropane trans-1,4-Dichloro-2-b	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.585 0.000 0.000	91	908 0 0 0 0 0 0 0 0 0 108 0	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	

V101 180315A 8260.m Wed May 02 12:24:42 2018

Page: 2

: L1815070

Initial Calibration Summary Form 6

Client : Wood Env & Infrastructure Solutions

Lab Number **Project Name** : STALINGRAD/HYGRADE GW Q2 SAMPL Project Number : 3612162331 Ical Ref : ICAL14549

: VOA101 Instrument ID

Calibration dates : 03/15/18 17:44 03/15/18 21:57

Calibration Files

L11 =V01180315A04.D L1 =V01180315A06.D L2 =V01180315A08.D L3 =V01180315A09.D L4 =V01180315A10.D

L6 =V01180315A11.D L8 =V01180315A12.D L10 =V01180315A13.D

1.1		Compound	L11	L1	L2	L3	L4	Ц6	Ц8	L10	Avg	%RSD	
41) TP Senzece	40) TP	1,1-Dichloropr		0.217	0.312	0.320	0.309	0.316	0.325	0.336	0.305	13.03	
A2													
43) S 1,2-Dichloroethaned4 0.237 0.242 0.239 0.241 0.247 0.250 0.261 0.245 3.12 44) TP 1,2-Dichloroet													
45) TP Isobuty1 alcohol	43) S	1,2-Dichloroethane-d4	0.237	0.242	0.239	0.241	0.241	0.247	0.250	0.261	0.245	3.12	
46) TP 2-Methyl-2-but 0.005 0.005 0.005 0.005 0.006 0.006; 8.29 47) TP Nethyl cyclohe 0.247 0.371 0.393 0.383 0.393 0.393 0.404 0.425 0.374 15.61 48) TP fichlecehene 0.178 0.224 0.230 0.228 0.237 0.426 0.236 0.403 0.149 49) TP n-Butanol 0.012 0.018 0.019 0.019 0.019 0.020 0.021 0.018; 15.38 50) TP Dibromomethane 0.076 0.096 0.102 0.103 0.102 0.106 0.108 0.099 11.12 51) TC 1.2-Dichloropr 0.174 0.205 0.214 0.213 0.216 0.223 0.227 0.210 8.32 52) TP 4-penten-2-ol 0.002 0.002 0.002 0.003 0.004 0.004 *L 0.9902 53) TP 2-Chlorocethyl 0.052 0.068 0.071 0.068 0.071 0.067 10.067 11.37 57) TP 1.4-Dioxane 0.023 0.241 0.266 0.260 0.273 0.285 0.293 0.261 11.67 57) TP 1.4-Dioxane 0.001 0.001 0.001 0.001 0.001 0.001 0.001; 5.37 58) TP cis-1,3-Dichlo 0.227 0.280 0.314 0.261 0.283 1.261 1.251 1.238 1.278 1.94 61) TC Toluene 0.591 0.726 0.732 0.727 0.731 0.748 0.764 0.717 7.38 61) TP tetrachlorocethene 0.212 0.295 0.306\(\) 0.301 0.301 0.308 0.315 0.291 \(\) 12.13 63) TP Tetrachlorocethene 0.212 0.295 0.306\(\) 0.310 0.310 0.308 0.315 0.291 \(\) 12.13 64) TP Expendence 0.591 0.726 0.732 0.727 0.731 0.748 0.764 0.717 7.38 65) TP tetrachlorocethene 0.212 0.295 0.306\(\) 0.301 0.301 0.301 0.301 0.301 0.301 0.302 \(\) 19.50 \(\) 19.60 \(\) 19.70 \(\	44) TP	1,2-Dichloroet		0.225	0.227	0.230	0.228	0.228	0.234	0.240	0.230	2.16	
47) TP Methyl cyclohe	45) TP	Isobutyl alcohol			0.002	0.002	0.002	0.002	0.002	0.002	0.002#	2.30	
48) TP Trichloroethene	46) TP	2-Methyl-2-but			0.005	0.005	0.005	0.005	0.006	0.006	0.005#	8.29	
49) TP n-Butanol 0.012 0.018 0.019 0.019 0.019 0.020 0.021 0.018 15.38 50) TP Dibromomethane 0.076 0.096 0.102 0.103 0.103 0.106 0.108 0.099 11.12 51) TC 1,2-Dichloropr 0.174 0.205 0.214 0.213 0.216 0.223 0.227 0.210 8.32 52) TP 4-penten-2-01 0.002 0.002 0.003 0.004 0.004 *L 0.9902 53) TP 2-Chlorosthyl 0.052 0.088 0.071 0.088 0.071 0.071 0.067 11.37 54) TP Bromodichlorom 0.203 0.241 0.266 0.266 0.273 0.285 0.293 0.261 11.67 57) TP 1,4-Dioxane 0.001 0.	47) TP	Methyl cyclohe		0.247	0.371	0.393	0.383	0.393	0.404	0.425	0.374	15.61	
50) TP Dibromomethane 0.076 0.096 0.102 0.103 0.103 0.106 0.108 0.099 11.12	48) TP	Trichloroethene		0.178	0.224	0.230	0.228	0.237	0.248	0.264	0.230	11.49	
Si	49) TP	n-Butanol		0.012	0.018	0.019	0.019	0.019	0.020	0.021	0.018#	15.38	
52 TP 4-penten-2-ol 0.002 0.003 0.004 0.004 *L 0.9902	50) TP	Dibromomethane		0.076	0.096	0.102	0.103	0,103	0.106	0.108	0.099	11.12	
S3 TP 2-Chloroethy1	51) TC	1,2-Dichloropr		0.174	0.205	0.214	0.213	0.216	0.223	0.227	0.210	8.32	
Second Communication	52) TP	4-penten-2-ol				0.002	0.002	0.003	0.004	0.004	*L	0.9902	
57 TP 1,4-Dioxane	53) TP	2-Chloroethyl			0.052	0.068	0.071	0.068	0.071	0.071	0.067	11.37	
S8 TP cis-1,3-Dichlo 0.227 0.280 0.314 0.324 0.333 0.347 0.352 0.311 14.21	54) TP	Bromodichlorom		0,203	0.241	0.266	0.266	0.273	0.285	0.293	0.261	11.67	
Section Chlorobenzene-d5	57) TP	1,4-Dioxane		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001#	5.37	
1.301 1.298 1.304 1.286 1.283 1.261 1.251 1.238 1.278 1.94	58) TP	cis-1,3-Dichlo		0.227	0.280	0.314	0.324	0.333	0.347	0.352	0.311	14.21	
61) TC Toluene	59) I	Chlorobenzene-d5			IS	TD							
62) TP 4-Methyl-2-pen	60) S	Toluene-d8	1,301	1.298	1.304	1.286	1.283	1.261	1.251	1.238	1,278	1.94	
63) TP Tetrachloroethene 0.212 0.295 0.306 v 0.301 0.301 0.308 0.315 0.291 12.13 65) TP trans-1,3-Dich 0.197 0.282 0.331 0.348 0.356 0.368 0.374 0.322 19.58 66) TP 4-Methyl-2-pen 0.014 0.015 0.017 0.020 0.021 0.021 0.018 17.86 67) TP Ethyl methacry 0.139 0.196 0.211 0.216 0.223 0.227 0.202 16.20 68) TP 1,1,2-Trichlor 0.124 0.150 0.161 0.159 0.159 0.162 0.165 0.154 9.18 69) TP Chlorodibromom 0.159 0.184 0.215 0.228 0.233 0.241 0.244 0.215 14.88 70) TP 1,3-Dichloropr 0.268 0.319 0.332 0.329 0.323 0.330 0.331 0.319 7.19 71) TP 1,2-Dibromoethane 0.123 0.159 0.175 0.179 0.177 0.181 0.181 0.168 12.68 72) TP 2-Hexanone 0.0673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 74) TC Ethylbenzene 0.673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP 0 Xylene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4-Dichlorobenzene-d4	61) TC	Toluene		0.591	0.726	0.732	0.727	0.731	0.748	0.764	0.717	7.98	0~
65) TP trans-1,3-Dich	62) TP	4-Methyl-2-pen			0.036	0.049	0,050	0.051	0.053	0.054	0.049#	13.16	No.
66) TP 4-Methyl-2-pen 0.014 0.015 0.017 0.020 0.021 0.021 0.018# 17.86 67) TP Ethyl methacry 0.139 0.196 0.211 0.216 0.223 0.227 0.202 16.20 68) TP 1,1,2-Trichlor 0.124 0.150 0.161 0.159 0.159 0.162 0.165 0.154 9.18 69) TP Chlorodibromom 0.159 0.184 0.215 0.228 0.233 0.241 0.244 0.215 14.88 70) TP 1,3-Dichloropr 0.268 0.319 0.332 0.329 0.323 0.330 0.331 0.319 7.19 71) TP 1,2-Dibromoethane 0.123 0.159 0.175 0.179 0.177 0.181 0.181 0.181 0.168 12.68 72) TP 2-Hexanone 0.040 0.071 0.079 0.080 0.082 0.082 *L 0.9999 73) TP Chlorobenzene 0.673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 74) TC Ethylbenzene 1.140 1.395 1.413 1.404 1.430 1.467 1.495 1.392 8.38 75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP 0 Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4-Dichlorobenzene-d4	63) TP	Tetrachloroethene		0.212	0.295	0.306 V	0.301	0.301	0.308	0.315	0.291	12.13	Mules
67) TP Ethyl methacry 0.139 0.196 0.211 0.216 0.223 0.227 0.202 16.20 68) TP 1,1,2-Trichlor 0.124 0.150 0.161 0.159 0.159 0.162 0.165 0.154 9.18 69) TP Chlorodibxomom 0.159 0.184 0.215 0.228 0.233 0.241 0.244 0.215 14.88 70) TP 1,3-Dichloropr 0.268 0.319 0.332 0.329 0.323 0.330 0.331 0.319 7.19 71) TP 1,2-Dibromoethane 0.123 0.159 0.175 0.179 0.177 0.181 0.181 0.168 12.68 72) TP 2-Hexanone 0.040 0.071 0.079 0.080 0.082 0.082 *L 0.9999 73) TP Chlorobenzene 0.673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 74) TC Ethylbenzene 1.140 1.395 1.413 1.404 1.430 1.467 1.495 1.392 8.38 75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP 0 Xylene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52	65) TP	trans-1,3-Dich		0.197	0.282	0.331	0.348	0.356	0.368	0.374	0.322	19.58	4114118
68) TP 1,1,2-Trichlor 0.124 0.150 0.161 0.159 0.159 0.162 0.165 0.154 9.18 69) TP Chlorodibromom 0.159 0.184 0.215 0.228 0.233 0.241 0.244 0.215 14.88 70) TP 1,3-Dichloropr 0.268 0.319 0.332 0.329 0.323 0.330 0.331 0.319 7.19 71) TP 1,2-Dibromoethane 0.123 0.159 0.175 0.179 0.177 0.181 0.181 0.168 12.68 72) TP 2-Hexanone 0.040 0.071 0.079 0.080 0.082 0.082 *L 0.9999 73) TP Chlorobenzene 0.673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 74) TC Ethylbenzene 1.140 1.395 1.413 1.404 1.430 1.467 1.495 1.392 8.38 75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP 0 Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52	66) TP	4-Methyl-2-pen			0.014	0.015	0.017	0.020	0.021	0.021	0.018#	17.86	
69) TP Chlorodibxomom 0.159 0.184 0.215 0.228 0.233 0.241 0.244 0.215 14.88 70) TP 1,3-Dichloropr 0.268 0.319 0.332 0.329 0.323 0.330 0.331 0.319 7.19 71) TP 1,2-Dibromoethane 0.123 0.159 0.175 0.179 0.177 0.181 0.181 0.168 12.68 72) TP 2-Hexanone 0.040 0.071 0.079 0.080 0.082 0.082 *L 0.9999 73) TP Chlorobenzene 0.673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 74) TC Ethylbenzene 1.140 1.395 1.413 1.404 1.430 1.467 1.495 1.392 8.38 75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP 0 Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4-Dichlorobenzene-d4 0.1510 0.512 0.512 0.513 0.513 0.513 0.513 0.513 0.514 0.815 12.52	67) TP	Ethyl methacry			0.139	0.196	0.211	0.216	0.223	0.227	0.202	16.20	
70) TP 1,3-Dichloropr 0.268 0.319 0.332 0.329 0.323 0.330 0.331 0.319 7.19 71) TP 1,2-Dibromoethane 0.123 0.159 0.175 0.179 0.177 0.181 0.181 0.168 12.68 72) TP 2-Hexanone 0.040 0.071 0.079 0.080 0.082 0.082 *L 0.9999 73) TP Chlorobenzene 0.673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 74) TC Ethylbenzene 1.140 1.395 1.413 1.404 1.430 1.467 1.495 1.392 8.38 75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP 0 Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52	68) TP	1,1,2-Trichlor		0.124	0.150	0.161	0.159	0.159	0.162	0.165	0.154	9.18	
71) TP 1,2-Dibromoethane 0.123 0.159 0.175 0.179 0.177 0.181 0.181 0.168 12.68 72) TP 2-Hexanone 0.040 0.071 0.079 0.080 0.082 0.082 *L 0.9999 73) TP Chlorobenzene 0.673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 74) TC Ethylbenzene 1.140 1.395 1.413 1.404 1.430 1.467 1.495 1.392 8.38 75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP 0 Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52	69) TP	Chlorodibromom		0.159	0.184	0.215	0.228	0.233	0.241	0.244	0.215	14.88	
72) TP 2-Hexanone	70) TP	1,3-Dichloropr		0.268	0.319	0.332	0.329	0.323	0.330	0.331	0.319	7.19	
73) TP Chlorobenzene 0.673 0.776 0.784 0.769 0.774 0.793 0.801 0.767 5.60 74) TC Ethylbenzene 1.140 1.395 1.413 1.404 1.430 1.467 1.495 1.392 8.38 75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP 0 Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4-Dichlorobenzene-d4	71) TP	1,2-Dibromoethane		0.123	0.159	0.175	0.179	0.177	0.181	0.181	0.168	12.68	
74) TC Ethylbenzene 1.140 1.395 1.413 1.404 1.430 1.467 1.495 1.392 8.38 75) TF 1,1,1,2—Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP o Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4—Dichlorobenzene—d4	72) TP	2-Hexanone			0.040	0.071	0.079	0.080	0.082	0.082	* <u>L</u> ,	0.9999	
75) TP 1,1,1,2-Tetrac 0.198 0.234 0.257 0.265 0.272 0.278 0.280 0.255 11.62 76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP o Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4-Dichlorobenzene-d4	73) TP	Chlorobenzene		0.673	0.776	0.784	0.769	0.774	0.793	0.801	0.767	5.60	
76) TP p/m Xylene 0.430 0.533 0.549 0.550 0.559 0.579 0.594 0.542 9.83 77) TP o Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4-Dichlorobenzene-d4	74) TC	Ethylbenzene		1.140	1.395	1.413	1.404	1.430	1.467	1.495	1.392	8.38	
77) TP o Xylene 0.414 0.494 0.510 0.511 0.519 0.538 0.549 0.505 8.70 78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4-Dichlorobenzene-d4	75) TP	1,1,1,2-Tetrac		0.198	0.234	0.257	0.265	0.272	0.278	0.280	0.255	11.62	
78) TP Styrene 0.622 0.739 0.820 0.850 0.867 0.893 0.911 0.815 12.52 79) I 1,4-Dichlorobenzene-d4ISTD	76) TP	p/m Xylene		0.430	0.533	0.549	0.550	0.559	0.579	0.594	0.542	9.83	
79) I 1,4-Dichlorobenzene-d4ISTD	77) TP	o Xylene		0.414	0.494	0.510	0.511	0.519	0.538	0.549	0.505	8.70	
	78) TP	Styrene		0.622	0.739	0.820	0.850	0.867	0.893	0.911	0.815	12.52	•
80) TP Bromoform 0.170 0.206 0.224 0.237 0.249 0.253 0.223 14.02	79) I	1,4-Dichlorobenzene-d4			IS	TD							
	80) TP	Bromoform			0.170	0.206	0.224	0.237	0.249	0.253	0.223	14.02	

RRF = 0.2911

OK

Data Path: I:\VOLATILES\VOA101\2018\180315A\

Data File: V01180315A09.D

Acq On : 15 Mar 2018 8:04 pm

0 Operator : VOA101:PK : ISTDL3 Sample 344571 Misc : WG1098570, ICAL

ALS Vial : 9 Sample Multiplier: 1

Quant Time: Mar 20 11:21:47 2018

Quant Method: I:\VOLATILES\VOA101\2018\180315A\V101 180315A 8260.m

Quant Title : VOLATILES BY GC/MS

OX QLast Update : Mon Mar 19 21:20:01 2018

Response via : Initial Calibration

CCAL FILE(s) : 1 - I:\VOLATILES\VOA101\2018\180315A\V01180315A09.D

Sub List : 8260-CurveAlc - All compounds listed

Compound	R.T. QIon	Response	Conc Units Dev	(Min)
<pre>Internal Standards 1) Fluorobenzene Standard Area 1 = 455723 59) Chlorobenzene-d5 Standard Area 1 = 344571 79) 1,4-Dichlorobenzene-d4 Standard Area 1 = 171112</pre>	9.637 117 R 12.572 152	ecovery = 344571 ecovery =	10.000 ug/L 100.00% 10.000 ug/L 100.00% 10.000 ug/L 100.00%	0.00
System Monitoring Compounds 36) Dibromofluoromethane Spiked Amount 10.000 43) 1,2-Dichloroethane-d4 Spiked Amount 10.000 60) Toluene-d8 Spiked Amount 10.000 83) 4-Bromofluorobenzene Spiked Amount 10.000	4.999 113 Range 70 - 130 5.545 65 Range 70 - 130 7.645 98 Range 70 - 130 11.247 95 Range 70 - 130	109976 Recover 442990	9.861 ug/L y = 98.61% 10.062 ug/L y = 100.62% 9.902 ug/L	0.00
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl chloride 5) Bromomethane 6) Chloroethane 7) Trichlorofluoromethane 8) Ethyl ether 10) 1,1-Dichloroethene 11) Carbon disulfide 12) Freon-113 13) Iodomethane 14) Acrolein 15) Methylene chloride 16) Isopropyl alcohol 17) Acetone 18) trans-1,2-Dichloroethene 19) Methyl acetate 20) Methyl tert-butyl ether 21) tert-Butyl alcohol 22) Diisopropyl ether 23) 1,1-Dichloroethane	1.491 85 1.660 50 1.731 62 2.020 94 2.129 64 2.260 101 2.538 74 2.729 96 2.756 76 2.762 101 2.860 142 3.046 56 3.269 84 3.193 45 3.313 43 3.422 96 3.428 43 3.509 73 3.602 59 3.870 45 4.006 63	83592 97715 102973 52692M1 74843 154603 39177 88354 225383 100448 108901 7133M1 92928 7901M1 12108M1 97795 31334 177452 14347 305641 184823	Qv 10.690 ug/L 10.674 ug/L 10.923 ug/L 9.394 ug/L 10.975 ug/L 10.606 ug/L 10.248 ug/L 10.248 ug/L 10.534 ug/L 10.534 ug/L 10.161 ug/L 9.155 ug/L 9.891 ug/L 9.891 ug/L 44.169 ug/L 9.299 ug/L 10.249 ug/L 9.718 ug/L 10.063 ug/L 50.876 ug/L 10.144 ug/L 10.238 ug/L	99 97 97 97 98

Data Path: I:\VOLATILES\VOA101\2018\180315A\

Data File : V01180315A09.D

Acq On : 15 Mar 2018 8:04 pm

Operator : VOA101:PK Sample : ISTDL3

Misc : WG1098570, ICAL

ALS Vial : 9 Sample Multiplier: 1

Quant Time: Mar 20 11:21:47 2018

Quant Method: I:\VOLATILES\VOA101\2018\180315A\V101 180315A 8260.m

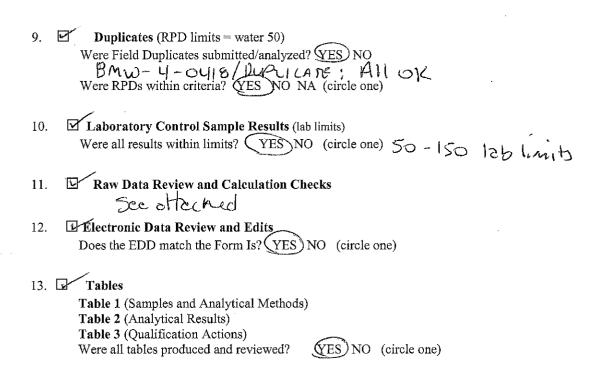
Quant Title : VOLATILES BY GC/MS QLast Update : Mon Mar 19 21:20:01 2018

Response via : Initial Calibration

CCAL FILE(s) : 1 - I:\VOLATILES\VOA101\2018\180315A\V01180315A09.D

Sub List : 8260-CurveAlc - All compounds listed

Compound	R.T. QIC	n Response	Conc Units Dev	(Min)
24) Halothane	4.061 117 4.066 53	81752	10.358 ug/L	100 94
25) Acrylonitrile 26) Ethyl tert-butyl ether	4.066 53 4.224 59	14288 252868	9.816 ug/L 9.995 ug/L	94
27) Vinyl acetate	4.252 43	140251	9.071 ug/L	100
28) cis-1,2-Dichloroethene	4.541 96	105205	10.116 ug/L	99
29) 2,2-Dichloropropane	4.639 77	140865	10.290 ug/L	100
30) Bromochloromethane	4.737 128	45593	10.410 ug/L	88
31) Cyclohexane	4.732 56	175697	10.566 ug/L	98
32) Chloroform	4.814 83	173342	$10.017~\mathrm{ug/L}$	98
33) Ethyl acetate	4.934 43	46992	$9.339~{ m ug/L}$	96
34) Carbon tetrachloride	4.944 117	133875	10.080 ug/L	99
35) Tetrahydrofuran	4.966 42	15699	10.627 ug/L	100
37) 1,1,1-Trichloroethane	5.015 97	160936	10.353 ug/L	99
38) 2-Butanol	4.999 45	10988M1	47.174 ug/L	
39) 2-Butanone	5.125 43	21207M1	11.274 ug/L	0.0
40) 1,1-Dichloropropene	5.146 75	145645	10.477 ug/L	98
41) Benzene	5.403 78	397184	10.197 ug/L	100
42) tert-Amyl methyl ether	5.512 73	212253	9.970 ug/L	97
44) 1,2-Dichloroethane	5.621 62	104744	9.987 ug/L	100
45) Isobutyl alcohol	5.736 43 5.730 59	4315 11439	48.937 ug/L # 48.053 ug/L #	
46) 2-Methyl-2-butanol 47) Methyl cyclohexane	5.730 59 6.014 83	179248	40.033 ug/L # 10.520 ug/L	96
47) Methyl cyclohexane 48) Trichloroethene	6.030 95	105027	10.320 ug/L 10.022 ug/L	91
49) n-Butanol	6.014 56	44111	52.800 ug/L	88
50) Dibromomethane	6.505 93	46468	10.284 ug/L	93
51) 1,2-Dichloropropane	6.609 63	97377	10.165 ug/L	97
52) 4-penten-2-ol	6.636 45	4261M1	60.486 ug/L	
53) 2-Chloroethyl vinyl ether	7.362 63	31099	10.228 ug/L	94
54) Bromodichloromethane	6.691 83	121330	10.192 ug/L	99
57) 1,4-Dioxane	6.920 88	15639	517.974 ug/L	97
58) cis-1,3-Dichloropropene	7.427 75	143152	10.097 ug/L	97
61) Toluene	7.705 92	252361	10.212 ug/L	99
62) 4-Methyl-2-pentanone	8.180 58	16735	9.673 ug/L	93
63) Tetrachloroethene	8.191 166	105554	10.525 ug/L	95
65) trans-1,3-Dichloropropene	8.240 75	113957	$10.265~\mathrm{ug/L}$	90
66) 4-Methyl-2-pentanol	8.327 45	25487.	41.260 ug/L	94
67) Ethyl methacrylate	8.442 69	67383	9.256 ug/L	89
68) 1,1,2-Trichloroethane	8.437 83	55514	10.439 ug/L	98
69) Chlorodibromomethane	8.660 129	74176	10.027 ug/L	97
70) 1,3-Dichloropropane	8.780 76	114569	10.435 ug/L	100


V101 180315A 8260.m Tue Mar 20 11:32:36 2018

Page: 2

Julialis

PFAS

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD Project: Hygrade - Long Island Method: EPA 537 Mansfield Laboratory: Altha westborough SDG(s): L/815079 Date: 5/16/18 Reviewer: Julia Ricardi
Review Level X NYSDEC DUSR USEPA Region II Guideline
1. Case Narrative Review and Data Package Completeness Were problems noted? Yes, introdestandereds; addressed to the Second Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one)
2. A Holding time and Sample Collection Water: 14 days from collection to extraction; 28 days from extraction to analysis Hold time met for all samples? YES NO (circle one)
Are method blanks free of contamination? YES NO (circle one) Are rinse blanks free of contamination? YES NO (NA) (circle one) Are field reagent blanks free of contamination? YES (NO) NA (circle one) Are field reagent blanks free of contamination? YES (NO) NA (circle one) Instrument Tuning – Data Package Narrative Review
4. Instrument Tuning – Data Package Narrative Review Did the laboratory narrative identify any results that were not within method criteria? YES NO (circle one) If yes, use professional judgment to evaluate data and qualify results if needed OK
(Area Limits = -50% to +100%, RTs within 30 seconds of daily CCAL standard (or ICAL midpoint if samples follow ICAL)) Did the laboratory narrative identify any sample internal standards that were not within criteria? YES NO (circle one) Injected IS used only for quantite tion of extracted IS (see successional judgment to evaluate data and qualify results if needed IS (we were
6. Instrument Calibration – Data Package Narrative Review
Did the laboratory narrative identify compounds that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one)
Initial Calibration %RSD = 15%, Continuing Calibration %D = 20%
Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed
7. Surrogate Recovery (lab limits) (Extracted IS) Were all results within limits? YES NO (circle one) Were any recoveries < 10%? (use professional judgment) Sec attached Summan, wall here applied to affected!
Sec attached Summary; qualifiers applied to affected/ 8. Matrix Spike (lab limits) associated terset analytes Jlus for Is-Lor Were MS/MSDs submitted/analyzed? (YES) NO Is-H; these are "extracted IS"
Were all results within limits (YES) NO NA (circle one) 50 - 150 126 1121 +1
MW-61-0418

STALINGRAD/HYGRADE GW Q2 SAMPL Project Name:

L1815079

Lab Number: Report Date:

05/11/18

3612162331 Project Number:

Receive Date 04/27/18 04/27/18 04/27/18 04/27/18 04/27/18 04/27/18 04/27/18 04/27/18 04/27/18 04/26/18 12:35 04/26/18 13:10 04/26/18 14:00 04/26/18 11:00 04/27/18 08:50 04/27/18 08:50 04/27/18 10:05 04/27/18 10:30 04/26/18 11:00 Date/Time Collection LONG ISLAND CITY, NY Location Sample WATER Matrix FIELD BLANK BMW-1-0418 BMW-2-0418 BMW-3-0418 BMW-4-0418 MW-6D-0418 MW-6S-0418 **DUPLICATE** MW-5-0418 MW-E-0418 Client ID _1815079-02 L1815079-05 L1815079-09 L1815079-10 L1815079-01 L1815079-03 L1815079-04 L1815079-06 L1815079-07 L1815079-08 Sample ID Alpha

04/27/18

04/26/18 14:25

LONG ISLAND CITY, NY

STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number:

3612162331

Lab Number:

L1815079

Report Date:

05/11/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1815079-05: The collection date and time on the chain of custody was 27-APR-18 08:50; however, the collection date/time on the container label was 27-APR-18 00:00. At the client's request, the collection date/time is reported as 27-APR-18 08:50.

Perfluorinated Alkyl Acids by Isotope Dilution

L1815079-01, -02, -03, -04, and -09: The samples were re-extracted on dilution in order to quantify the results within the calibration range.

L1815079-01: The internal standard (IS) response(s) for M4PFOS (46%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (49%), M4PFOS (43%) and M2PFDA (46%). Since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-01RE: The Extracted Internal Standard recovery was outside the acceptance criteria for 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (155%).

L1815079-02: The internal standard (IS) response(s) for M4PFOS (39%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (47%), M4PFOS (40%) and M2PFDA (45%). Since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-03: The internal standard (IS) response(s) for M3PFBA (46%), M2PFOA (40%), M4PFOS (15%) and M2PFDA (32%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (49%), M4PFOS (40%) and M2PFDA (45%). Since the IS response was below method criteria, all

gn 5/16/18

16

STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number:

3612162331

Lab Number:

L1815079

Report Date:

05/11/18

Case Narrative (continued)

associated compounds are considered to have a potentially high bias.

L1815079-03RE: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c4]butanoic acid (mpfba) (35%) and perfluoro[13c8]octanesulfonamide (m8fosa) (49%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (168%).

Sec checklist

L1815079-04: The internal standard (IS) response(s) for M3PFBA (34%), M2PFOA (36%), M4PFOS (17%) and M2PFDA (27%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (48%), M4PFOS (40%) and M2PFDA (46%). Since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-04RE: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c4]butanoic acid (mpfba) (43%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (179%).

L1815079-05: The Extracted Internal Standard recoveries were outside the acceptance criteria for and perfluoro[13c8]octanesulfonamide (m8fosa) (15%) 1h,1h,2h,2h-perfluoro[1,2-13c2]hexanesulfonic acid (m2-4:2fts) (202%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (179%).

L1815079-06: The internal standard (IS) response(s) for M4PFOS (42%) and M2PFDA (50%) were below the acceptance criteria; however, re-analysis achieved similar results M3PFBA (29%) M2PFOA (37%), M4PFOS (20%) and M2PFDA (23%). Both runs are reported, however, since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-06R: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (26%) and perfluoro[1,2-13c2]tetradecanoic acid (m2pfteda) (44%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (190%).

L1815079-07: The internal standard (IS) response(s) for M3PFBA (48%), M4PFOS (40%) and M2PFDA (47%) were below the acceptance criteria; however, re-analysis achieved similar results M3PFBA (27%), M2PFOA (29%) M4PFOS (23%) and M2PFDA (24%). Both runs are reported, however, since the IS response was below

92 5/16/18

STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number:

3612162331

Lab Number: .

L1815079

Report Date:

05/11/18

Case Narrative (continued)

method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-07R: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (19%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (187%).

L1815079-08: The internal standard (IS) response(s) for M3PFBA (48%), M4PFOS (44%) and M2PFDA (46%) were below the acceptance criteria; however, re-analysis achieved similar results M3PFBA (28%), M2PFOA (30%), M4PFOS (22%) and M2PFDA (24%). Both runs are reported, however, since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-08R: The Extracted Internal Standard recoveries were outside the acceptance criteria for (500) (500) (26%) and perfluoro[13c8]octanesulfonamide (m8fosa) (26%) and perfluoro[1,2-13c2]tetradecanoic acid (m2pfteda) (25%).

L1815079-09: The internal standard (IS) response(s) for M3PFBA (25%), M2PFOA (240%), M4PFOS (12%) and M2PFDA (18%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (45%), M4PFOS (37%) and M2PFDA (40%). Since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-09RE: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c4]butanoic acid (mpfba) (43%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (192%).

L1815079-10: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (27%).

WG1113611-1 Method Blank: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (11%).

WG1114432-1 Method Biank: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (44%).

92 516/18

STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number:

3612162331

Lab Number:

L1815079

Report Date:

05/11/18

Case Narrative (continued)

WG1113611-2/-3 LCS: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (7%/11%).

checklist

WG1114432-3 LCSD: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (42%).

WG1113611-4/-5 MS/MSD: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (25%/17%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (183%/163%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Gale Por

Report Date: 05/11/18

Title: Technical Director/Representative

STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number:

3612162331

Lab Number:

L1815079

Report Date:

05/11/18

Method Blank Analysis **Batch Quality Control**

Analytical Method:

122,537(M) 05/10/18 20:39

Analytical Date: Analyst:

ΑJ

Extraction Method: EPA 537

Extraction Date:

05/10/18 09:41

Sample result >> 1 no quals

	وساري	P	1-030 (3		no quais
Parameter	Result	Qualifier	Units	RL	MDL
Perfluorinated Alkyl Acids by Isotope NG1114432-1	Dilution -	Mansfield I	Lab for samp	ole(s): 01-04,	09 Batch:
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.131
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.086
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.110
Perfluorohexanoic Acid (PFHxA)	ND		ng/	2.00	0.126
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.092
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.108
Perfluorooctanoic Acid (PFOA)	(0.720)	J	ng/l	2.00	0.050
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	•	ng/l	2.00	0.194
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.155
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.101
Perfluorooctanesulfonic Acid (PFOS)	(0.176)	J	ng/l	2.00	0.112
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.190
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00	0.291
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	: ND		ng/l	2.00	0.250
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.191
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.222
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.227
N-Ethyl Perfluorooctanesulfonamidoacetic A (NEtFOSAA)	Acid ND		ng/l	2.00	0.373
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.092
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.090
Perfluorotetradecanoic Acid (PFTA)	ND	9116 to 6 to 1000	ng/l	2.00	0.072

STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number:

3612162331

Lab Number:

L1815079

Report Date:

05/11/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

122,537(M) 05/09/18 07:50

Analyst:

ΑJ

Extraction Method: EPA 537

Extraction Date:

05/08/18 10:30

Sample result on 4 no quals

		1			
arameter	Result	Qualifier	Units	RL	MDL
erfluorinated Alkyl Acids by Isotope /G1113611-1	Dilution -	Mansfield	Lab for	sample(s): 01-10	Batch;
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.131
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.086
Perfluorobutanesulfonic Acid (PFBS)	ND	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ng/l	2.00	0.110
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00	0.126
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.092
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.108
Perfluorooctanoic Acid (PFOA)	(0.792)	J	ng/l	2.00	0.050
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00	0.194
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.155
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.101
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.112
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.190
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/l	2.00	0.291
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ng/l	2.00	0.250
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.191
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.222
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.227
N-Ethyl Perfluorooctanesulfonamidoacetic (NEtFOSAA)	Acid ND		ng/l	2.00	0.373
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.092
Perfluorotridecanoic Acid (PFTrDA)	ND	,,,	ng/l	2.00	0.090
Perfluorotetradecanoic Acid (PFTA)					

Form 2 Surrogate Recovery SEMIVOLATILES

Client: Wood Env & Infrastructure Solutions, Inc Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079 Project Number: 3612162331

Matrix: Water

CLIENT ID	S1	S2	S 3	S 4	S 5	S6	S7
(LAB SAMPLE NO.)	()	()	()	()	()	()	()
BMW-1-0418 (L1815079-01)	72	58	87	63	80	121	88
BMW-1-0418 (L1815079-01RE)	56	84	105	85	95	124	101
BMW-2-0418 (L1815079-02RE)	53	90	110	92	102	129	102
BMW-2-0418 (L1815079-02)	78	61	97	64	79	125	83
BMW-3-0418 (L1815079-03RE)	~ 35*-	88	108	85	101	133	97
BMW-3-0418 (L1815079-03) (ゴ) しょ	49	58 Ç	233*)	69	85 (J	273*	90
BMW-4-0418 (L1815079-04)	66	65	161*	64	81 7	182*	84
BMW-4-0418 (L1815079-04RE)	-43*-	90	109	88	97	133	94
MW-6D-0418 (L1815079-05)	. 80	68	90	66	79	111	86
MW-6S-0418 (L1815079-06)	67	56	116	71	89	140	88
MW-6S-0418-(L1815079-06R)-	66	56	96	63	8‡	119	83
MW-5-0418 (L1815079-07)	71	64	98	74	86	112	89
MW+5-0418 (L1815079-07R)	72	66	95	67	81	118	88
MW-E-0418 (L1815079-08R)	51	79	88	72	81	102	79
MW-E-0418 (L1815079-08)	51	76	109	79	86	122	85
DUPLICATE (L1815079-09RE)	43*	92	116	94	97	136	101
DUPLICATE (L1815079-09)	53	67	(171*)	73	89(J)	(195 [*])	87
FIELD BLANK (L1815079-10)	68	78	84	74	79	101	84
WG1113611-1BLANK	86	84	103	86	95	124	101
WG1113611-2LCS	60	73	89	72	82	105	84
WG1113611-3LCSD	74	74	90	73	82	105	84
MW-6D-0418MS	72	64	87	64	77	109	82
MW-6D-0418MSD	70	64	85	65	81	104	83
WG1114432-1BLANK	87	87	103	90	93	124	94
WG1114432-2LCS	89	87	110	90	101	132	103
WG1114432-3LCSD	84	84	101	89	91	120	96

9/	\sim			
U	6	ĺ	14	lie

QC LIMITS

(50-150) S1 = PERFLUORO[13C4]BUTANOIC ACID (MPFBA)

(50-150) S2 = PERFLUORO[13C5]PENTANOIC ACID (M5PFPEA)

(50-150) S3 = PERFLUORO[2,3,4-13C3]BUTANESULFONIC ACID (M3PFBS)

(50-150) S4 = PERFLUORO[1,2,3,4,6-13C5]HEXANOIC ACID (M5PFHXA)

(50-150) S5 = PERFLUORO[1,2,3,4-13C4]HEPTANOIC ACID (M4PFHPA)

(50-150) S6 = PERFLUORO[1,2,3-13C3]HEXANESULFONIC ACID (M3PFHXS)

(50-150) S7 = PERFLUORO[13C8]OCTANOIC ACID (M8PFOA)

ΔPHA

FORM II A2-NY-537-ISOTOPE

^{*} Values outside of QC limits

Form 2 **Surrogate Recovery SEMIVOLATILES**

Client: Wood Env & Infrastructure Solutions, Inc Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079 **Project Number: 3612162331**

	^				: Water			
Use lowert dilution;	ASSOC.	aneli	te) gr	lifica	J/UJ	for	alln	on-umplant
CLIENT ID	S8	S9	S10	S11	S12	S13	\$14	extracted
(LAB SAMPLE NO.)	()	()	()	()	()	()	()	1 1
		**************************************	10340-3003407#3#9#44403#83403509#d+3360		***************************************	\$\$00 , 00 9,9 94 110,000,040,040	***************************************	121 101
BMW-1-0418 (L1815079-01) (プ) u ナ	(173*)	82	93	77 (UJ	168*	91	75	standards
BMW-1-0418 (L1815079-01RE)	-155*	89	107	99	114	98	101	2 IEN WON GIJ
BMW-2-0418 (L1815079-02RE)	144	94	105	100	115	99	106	
BMW-2-0418 (L1815079-02)(の)い ナ	184*	78	87	73 (UJ)	165	87	80	
BMW-3-0418 (L1815079-03RE)	-1 6 8*-	84	103	95	111	87	104	
BMW-3-0418 (L1815079-03) (プ)u丁	(663)	71	101	88 (JJ)	368*	107	89	
BMW-4-0418 (L1815079-04)	(349*)	65	83	81 (UJ	(163)	86	80	
BMW-4-0418 (L1815079-04RE)	-179*	86	102	97	120	87	94	
MW-6D-0418 (L1815079-05) ゴ(んプ)	(179*)	78	90	88	133	90	86	
MW-6S-0418 (L1815079-06)	200	75	92	76	126	64	67	
MW-6S-0418 (L1815079-06R)	1-90±	80	86	78	137	73	71	
MW-5-0418 (L1815079-07)	143	77	87	81	83	77	83	
MW-5-0418 (L1815079-07R)	187*	 7 6	95	84	119	87	84	
.MW-E-0418 (L1815079-08R)	108	76	82	87	83	73	80	
MW-E-0418 (L1815079-08)	113	76	95	83	84	61	75	
DUPLICATE (L1815079-09RE)	-4 92 *-	87	105	103	117	103	111	
DUPLICATE (L1815079-09) (ゴ)ルブ	(336*)	63	78	78 W5	(152*)	82	72	
FIELD BLANK (L1815079-10)	101	77	89	85	93	83	88	
WG1113611-1BLANK	119	93	102	91	112	103	104	
WG1113611-2LCS	105	78	93	84	100	93	94	
WG1113611-3LCSD	101	74	85	69	94	82	79	
MW-6D-0418MS	183*	77	90	84	124	86	85	
MW-6D-0418MSD	163*	74	87	79	116	75	79	
WG1114432-1BLANK	106	87	108	103	96	98	109	
WG1114432-2LCS	113	96	109	101	107	106	114	
WG1114432-3LCSD	112	87	102	97	90	101	106	

ac	11	M	ITS

(50-150)	S8 = 1H,1H,2H,2H-PERFLUORO[1,2-13C2]OCTANESULFONIC ACID (M2-6:2FTS)
	AA BURNING HARANGAAN AAN AAN AAN AAN AAN AAN

⁽⁵⁰⁻¹⁵⁰⁾ S9 = PERFLUORO[13C9]NONANOIC ACID (M9PFNA) MYPFOS S10 = PERFLUORO[13C8]OCTANESULFONIC ACID (M8PFOS) (50-150)

⁽⁵⁰⁻¹⁵⁰⁾ S11 = PERFLUORO[1,2,3,4,5,6-13C6]DECANOIC ACID (M6PFDA) M 2 PIFJA

S12 = 1H,1H,2H,2H-PERFLUORO[1,2-13C2]DECANESULFONIC ACID (M2-8:2FTS) (50-150)

^{\$13 =} N-DEUTERIOMETHYLPERFLUORO-1-OCTANESULFONAMIDOACETIC ACID (D3-NMEFOSAA) (50-150)

⁽⁵⁰⁻¹⁵⁰⁾ S14 = PERFLUORO[1,2,3,4,5,6,7-13C7]UNDECANOIC ACID (M7-PFUDA)

^{*} Values outside of QC limits

Form 2 Surrogate Recovery SEMIVOLATILES

Client: Wood Env & Infrastructure Solutions, Inc Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079 Project Number: 3612162331

Matrix: Water

CLIENT ID	S15	S16	\$ 17	S18	S19	S20	S21	TOT
(LAB SAMPLE NO.)	()	()	()	()	()	()	()	OUT
BMW-1-0418 (L1815079-01)	(UJ) (40)	84	72	63				3
BMW-1-0418 (L1815079-01RE)	70	111	94	76				1
BMW-2-0418 (L1815079-02RE)	71	113	97	79	AR			0
BMW-2-0418 (L1815079-02)	(UJ) (32)	90	73	58				3
BMW-3-0418 (L1815079-03RE)	-49*-	98	95	78				3
BMW-3-0418 (L1815079-03)	(U) (48°)	59	84	62				6
BMW-4-0418 (L1815079-04)	¥ (35*)	97	81	62				5
BMW-4-0418 (L1815079-04RE)	53	99	81	66				2
MW-6D-0418 (L1815079-05)	(LJ) (15°)	93	76	60				2
MW-6S-0418 (L1815079-06)	1 (26*)	66	54 (hi	TO 37"				3
MW-6S-0418 (L1815079-06R)		73	59	44*				3
MW-5-0418 (L1815079-07)	(J) (20*)	76	69	57		= W	**	1
MW-5-04 18 (L1815079-07R)	19*	89	70	59-	-			2
WW.E-0418 (L1815079-08R)	26*	70	60	25*				2
MW-E-0418 (L1815079-08)	(UJ) (25°)	63	61	25*				2
DUPLICATE (L1815079-09RE)	62	122	101	83			**	2
DUPLICATE (L1815079-09)	(15) (25°)	87	67	51		**		5
FIELD BLANK (L1815079-10)	27*	94	83	70				1
WG1113611-1BLANK	11*	105	97	86				1
WG1113611-2LCS	7*	89	89	78				1
WG1113611-3LCSD	11*	89	81	79		**	**	1
MW-6D-0418MS	25*	100	73	65				2
MW-6D-0418MSD	17*	93	67	58				2
WG1114432-1BLANK	44*	110	101	82				1
WG1114432-2LCS	63	120	106	85				0
WG1114432-3LCSD	42*	107	101	85				1
	•							

D 6114/18

QC LIMITS

(50-150) S15 = PERFLUORO[13C8]OCTANESULFONAMIDE (M8FOSA)

(50-150) S16 = N-DEUTERIOETHYLPERFLUORO-1-OCTANESULFONAMIDOACETIC ACID (D5-NETFOSAA)

(50-150) S17 = PERFLUORO[1,2-13C2]DODECANOIC ACID (MPFDOA)

(50-150) S18 = PERFLUORO[1,2-13C2]TETRADECANOIC ACID (M2PFTEDA)

FORM II A2-NY-537-ISOTOPE (Continued)

^{*} Values outside of QC limits

RPD	14.2	2.0	13.5	2.2	1.9	4.9	0.7	10.1	2.5	2.4	62.9 OK; PROF JDG, DIFF ~ RL	9.2	0.5	2.5	4.4	2.3	2.3	4.0	7.4	6.6	94.1 J SAMPLE AND DUP	1.3	8.4	4.5	0.5	0.1	6.3	3.6	1.5	3.6	5.5	2.1	0	0	6.5
FD CONC	286	30.4	85.9	22.7	108	0.66	3.01	2820	73.0	90.3	0.0121	0.00488	0.02348	0.1434	0.2301	263.	261.	0.00124	0.02082	0.02110	0.126	30.6	51.2	50.2	8.132	8.359	0.05604	0.05586	48.6	47.6	196.	192.	1400	380	15
ext fraction	z	z	Z	z	z	z	z	z	z	z	-	O 09	50 T	O 09	1 09	۵	-	⊥ 00	O 09	20 T 05	0	-	0	-	O D	<u>ا</u> 00	O D	⊥ 00	Q	 -	٥	T	z	z	z
SQL_te	1.92	1.92	1.92	1.92	1.92	1.92	1.92	40.0	1.92	1.92	0.0100	0.00050	0.00050	0.00050	0.00050	0.100	0.100	0.00100	0.00050	0.00050	0.0500	0.0500	0.0700	0.0700	0.00100	0.00100	0.00200	0.00200	0.100	0.100	0.100	0.100	20	20	10
orr detection	0.106	0.126	0.149	0.089	0.103	0.122	0.097	2.23	0.049	0.082	0.00327	0.00016	0.00016	0.00017	0.00017	0.0394	0.0394	0.00017	0.00016	0.00016	0.0191	0.0191	0.0242	0.0242	0.00044	0.00044	0.00055	0.00055	0.0309	0.0309	0.0293	0.0293	19.	15.	0.71
inal_result final_qualif result_uorr detection_ISQL_text	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	NG/L	_					MG/L	MG/L			3 MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	39 MG/L	1/9M MG/L	MG/L	MG/L	MG/L	MG/L	UG/L	ng/r	ng/r
final_re	, ,	31.0	d 75.0	23.2	d 106	104	3.03	2550	71.2	92.5	0.0232	0.00535	0.02336	0.1471	0.2201	269.	267.	0.00129	0.02242	0.02253	0.350	30.2	55.7	52.5	8.175	8.368	0.05969	0.05790	47.9	45.9	207.	196.	1400	380	16
analysis param_name	537(M) Perfluorobutanesulfonic acid	537(M) Perfluorobutanoic acid	537(M) Perfluoroheptanesulfonic acid	537(M) Perfluoroheptanoic acid	537(M) Perfluorohexane sulfonic acid	537(M) Perfluorohexanoic acid	537(M) Perfluorononanoic acid	537(M) Perfluorooctanesulfonic acid	537(M) Perfluorooctanoic acid	537(M) Perfluoropentanoic acid	6020A Aluminum	6020A Arsenic	6020A Arsenic	6020A Barium	6020A Barium	6020A Calcium	6020A Calcium	6020A Chromium	6020A Cobalt	6020A Cobalt	6020A Iron	6020A Iron	6020A Magnesium	6020A Magnesium	6020A Manganese	6020A Manganese		6020A Nickel	6020A Potassium	6020A Potassium	6020A Sodium	6020A Sodium	8260C 2-Butanone	8260C Acetone	8260C Vinyl chloride
qc_c lab_sample_id	FS L1815079-04	_	_	_	FS L1815079-04	FS L1815079-04	FS L1815079-04	FS L1815079-04	FS L1815079-04	FS L1815079-04	_	_	_	FS L1815070-04	FS L1815070-04	_	_	_	_	_	_	FS L1815070-04	_	_	_	_		_			_	FS L1815070-04	FS L1815070-04	_	FS L1815070-04
field_sample_id	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418	BMW-4-0418

ha Analytical Inc.

taset: C:\MassLynx\Data\2018\180509_537ISO.PRO\Data\wg1113957B.qld

st Altered: nted: Wednesday, May 09, 2018 15:39:06 Eastern Daylight Time Wednesday, May 09, 2018 15:39:45 Eastern Daylight Time

Conc = 26279 x 10 PFBA 37686 x ,796619 = 8,7534 = 76113/16

thod: C:\MassLynx\Data\2018\180509_537ISO.PRO\MethDB\537ISO_Q.mdb 16 Apr 2018 16:47:05

libration: C:\MassLynx\Data\2018\180509_537ISO.PRO\CurveDB\180416_537ISO_ICAL.cdb 16 Apr 2018 20:58:59

L1815079-01 me: I7037

te: 09-May-2018 ne: 11:59:01

scription: WG1113957,WG1113611,ICAL14628

strument: XEVO-TQSmicro#QEA0276

er: LCMS01:AJ

et Method Name: C:\MassLynx\Data\2018\180509_537ISO.PRO\ACQUDB\LCMS_537_ISO ne Method Name: C:\MassLynx\Data\2018\180509_537ISO.PRO\ACQUDB\180112_TUNE.IPR
3 Method Name: C:\MassLynx\Data\2018\180509_537ISO.PRO\ACQUDB\537ISO26_M.EXP

Conc = 8.753 ng x 1/290 = 30,18 ng
PABA OK

matches

Sample Call

BUT SUMMEY

Name	CAS	RT	Trace	Area I	// Flag Conc (ng/mL)	and a standard and about the concept and	Ratio Flag	%Rec
PFBA	375-22-4	2.11	212.926 > 169.111	26279	8.753		na	
M3PFBA ፲≤	INT STD	2.11	215.926 > 172.122	49072	5.540		na	55.4
MPFBA SWY	INT STD	2.11	216.926 > 172.137	37686	7.162		na	71.6
PFPeA	2706-90-3	4.99	262.926 > 219.002	53568	17.921		na	
M5PFPEA SU//	INT STD	4.99	267.989 > 223.081	34517	5.804		na	58.0
PFBS	375-73-5	5.66	298.989 > 80.295	255690	312.615		na	
M3PFBS メ- ル ノ	INT STD	5.66	301.989 > 80.254	8184	8.122		na	81.2
4:2FTS	757124-72-4		326.926 > 306.957		ND		na	
M2-4:2FTS	INT STD	6.83	328.989 > 80.973	2772	20.841		na	208.4
PFHxA	307-24-4	6.91	312.989 > 269.028	90873	20.943	16.65	NO	
M5PFHxA Surr	INT STD	6.91	317.989 > 273.045	46241	6.314		na	63.1
PFPeS	2706-91-4	7.23	348.926 > 80.251	8527	8.491	2.39	YES	
PFHpA	375-85-9	8.20	362.926 > 319.014	42502	6.747	5.29	NO	
M4PFHpA Sove	INT STD	8.20	366.926 > 321.979	65199	7.965		na	79.6
br-PFHxS	355-46-4	8.13	398.926 > 80.295	6234	7.154	2.49	NO	
L-PFHxS	355-46-4	8.36	398.926 > 80.295	31669	35.811	1.43	NO	
PFHxS .	355-46-4		398.926 > 80.295	37903	42.964		na	
M3PFHxS 56/1	INT STD	8.36	401.926 > 80.317	8970	11.406		na	114.1
br-PFOA	335-67-1	8.92	412.989 > 368.9	9853	1.526	1.32	YES	
L-PFOA	335-67-1	9.14	412.989 > 368.9	100754	15.606	8.89	YES	
M2PFOA	INT STD	9.14	415.032 > 369.968	85934	6.433		na	64.3
PFOA	335-67-1		412.989 > 368.9	110607	17.132		na	
M8PFOA ≤ℳ	INT STD	9.14	420.989 > 375.979	63692	8.779		na	87.8
6:2FTS	27619-97-2	9.11	426.989 > 406.921	141	0.209	1.00	YES	ļ
M2-6:2FTS Sℳ↑	INT STD	9.10	428.989 > 408.917	6685	16.378		na	163.8
PFHpS	375-92-8	9.24	448.926 > 80.257	5497	13.944	0.79	YES	
PFNA	375-95-1	9.89	462.989 > 418.931	6632	1.405	4.09	NO	
M9PFNA SJ(ſ	INT STD	9.89	472.053 > 426.947	56233	8.181		na	81.8
br-PFOS	1763-23-1	9.70	498.989 > 80.294	121089	146.351	1.42	YES	
L-PFOS	1763-23-1	9.95	498.989 > 80.294	74140	121.031	14.34	YES	
PFOS	1763-23-1		498.989 > 80.294	195229	267.382		na	ľ
M4PFOS SOF	INT STD	9.95	503.032 > 80.306	6995	4.559		na	45.6
M8PFOS 多いへへ	INT STD	9.95	507.053 > 80.294	6317	8.871		na	88.7
PFDA	335-76-2	10.51	513.053 > 468.906	1528	0.372		na	
M2PFDA	INT STD	10.51	515.053 > 469.934	59351	6.188		na	61.9
M6PFDA SUCC	INT STD	10.51	519.053 > 473.931	47059	7.744		na	77.4
8:2FTS	39108-34-4	10.01	526.989 > 506.946	71000	7.744 ND		na	
r (4	INT STD	10.50	529.053 > 508.945	3448	16.054		na	160.5
PFNS	68259-12-1	10.50	548.989 > 80.249	0440	, ND		, na	, 00.0

ha Analytical Inc.

taset: C:\MassLynx\Data\2018\180509_537ISO.PRO\Data\wg1113957B.qld

st Altered: Wednesday, May 09, 2018 15:39:06 Eastern Daylight Time nted: Wednesday, May 09, 2018 15:39:45 Eastern Daylight Time

L1815079-01 me: I7037 te: 09-May-2018

ne: 11:59:01

scription: WG1113957,WG1113611,ICAL14628

strument: XEVO-TQSmicro#QEA0276

er: LCMS01:AJ

et Method Name: C:\MassLynx\Data\2018\180509_537ISO.PRO\ACQUDB\LCMS_537_ISO ne Method Name: C:\MassLynx\Data\2018\180509_537ISO.PRO\ACQUDB\180112_TUNE.IPR
3 Method Name: C:\MassLynx\Data\2018\180509_537ISO.PRO\ACQUDB\537ISO26_M.EXP

	Name	CAS	RT	Trace	Area M Flag	Conc (ng/mL) Ion Ratio	Ratio Flag	%Rec	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d3-NMeFOSAA	VINT STD	10.89	573.096 > 418.987	6164	9.087	na	90.9	V
	NMeFOSAA	2355-31-9		570.053 > 418.917		ND	na		
	PFUnA	2058-94-8		562.989 > 518.903		ND	na		
	M7-PFUDA メン・イ	INT STD	11.04	570.053 > 524.923	37070	7.538	na	75.4	1
	PFDS	335-77-3		598.926 > 80.314		ND	na		
	FOSA	754-91-6		497.989 > 78.245		ND	na		
	M8FOSA SWV	INT STD	10.98	506.053 > 78.286	11345	3.976	na	39.8	· ·
	d5-NEtFOSAA عسرة	INT STD	11.17	589.117 > 418.929	5093	8.418	na	84.2	
	NEtFOSAA	2991-50-6		583.989 > 418.927		ND	na		
	PFDoA	307-55-1		612.989 > 568.967		ND	na		: !
	MPFDOA 5 WY	INT STD	11.51	614.989 > 569.92	34329	7.157	na	71.6	
	PFTrDA	72629-94-8		663.053 > 618.969		ND	na		
	PFTA	376-06-7	12.27	713.053 > 668.976	32	0.017	na		
	M2PFTEDA SUV	INT STD	12.27	715.053 > 669.945	21791	6.301	na	63.0	V

remetches sur summer form

Initial Calibration Summary Form 6

Lab Number Wood Env & Infrastructure Solutions Project Name

Client

STALINGRAD/HYGRADE GW Q2 SAMPL

CMS01 Calibration dates Instrument ID

: 3612162331 : ICAL14628 Project Number Ical Ref

: L1815079

04/16/18 19:56 : 04/16/18 17:44

C:\MassLynx\Data\2018\180416N_537ISO_ICAL.PRO\Data\WG1106902_ICAL.qld Monday, April 16, 2018 20:58:59 Eastern Daylight Time Monday, April 16, 2018 21:02:01 Eastern Daylight Time MassLynx MassLynx V4.1 SCN 945 Quantify Compound Summary Report

Alpha Analytical Inc.

Dataset:

Last Altered: Printed:

Page 1 of 58

Method: C:\MassLynx\Data\2018\180416N_537ISO_ICAL.PRO\MethDB\537ISO_Q.mdb 16 Apr 2018 16:47:05 Calibration: C:\MassLynx\Data\2018\180416N_537ISO_ICAL.PRO\CurveDB\180416_537ISO_ICAL.cdb 16 Apr 2018 20:58:59

Compound name: PFBA

2-537STD0.5	16-Apr-18	17:44:24	2.134	109673.000	3963.313	0.454	90.7	0.723	136	9.0
2-537STD1.0	16-Apr-18	18:00:55	2.134	95345.102	7186.368	0.946	94.6	0.754	279	0.6
42-537STD2.0	16-Apr-18	18:17:33	2.134	97857.102	14796.836	1.898	94.9	0.756	707	0.7
42-537STD5.0	16-Apr-18	18:34:06	2.129	95466.383	38912.273	5.117	102.3	0.815	1625	0.7
Z-537STD10.0	16-Apr-18		2.134	95411.563	71954.297	9.467	94.7	0.754	6187	0.7
2-537STD20.0	16-Apr-18	19:07:16	2.129	89286.891	154588.406	21.734	108.7	0.866	12437	20
2-537STD50.0	16-Apr-18		2.129	94111,375	411127.438	54.838	109.7	0.874	27139	0.67
42-537STD125	16-Apr-18	19:40:23	2.129	86001.508	881514,625	128.669	102.9	0.820	47817	0.66
2-537STD150	16-Anr-18	19-56-57	9 190	91593 211	91591 211 1024241 975		9	0.746		2000

Coefficient of Determinations, R^2 = 0.995973
Calibration curve; 0.796619*
Response type: Vaterial Star (Ref 3), Area * (IS Cont. / IS Area)
Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None Compound name: PFBA

0K

esuodse_H

RAF = 0,78978

0.86 % 6 Slope =

ORGANIC ELN REPORT

Workgroup: WG1113611

Conc
Final
Analyst
Conc
× €
uo Rai
급
Flow Rate
Lot: Spe
Spike Lot: Amt Spe
Surr
Sample Vol
Analyst Sample Vol
Extract Date

Analyst	Sample		1:. 1		Flow L	1	Flow				Analyst		Conc	
Ş Ē		Amt	Amt S	Spe R Cartrid m	_	Clnup F Cartrid n	Rate 2 ml/min			Date		Vol mi	Unit	
7.5		.02	1	A-007 4		100520 10	4			05/08/18 T 13:00 R	Tyler Russell	-	NEVAP 65 5	
DILUTED TO 250 mL DR 5/8/18	5/8/1	œ												
Tyler 7.5 Russell		.02	+	A-007 4		100520 10	4	<u> </u>		05/08/18 Ty	Tyler Russell	 -	NEVAP 65 5	
nL D	DILUTED TO 250 mL DR 5/8/18	œ												
05/08/18 Tyler 7. 10:30 Russell	7.5	.02	1	A-007 4		100520 10	4			05/08/18 Ty 13:00 R	Tyler Russell	-	NEVAP 65 5	
nL D	DILUTED TO 250 mL DR 5/8/18	80				-								
Tyler 2 Russell	290	29.	8-007 8-0114 118	A-007 4		100520	4			05/08/18 Ty	Tyler	-	NEVAP 65 5	
Tyler ?	260	.02		A-007 4		100520	4			05/08/18 Ty	Tyler Russell	<u></u>	NEVAP 65 5	
Tyler Russell	590	.02	1	A-007 4	·	100520 10	4			05/08/18 T ₃	Tyler	-	NEVAP 65 5	
Tyler Russell	260	.02	1	A-007 4		100520 10	4			05/08/18 T	Tyler Russell	-	NEVAP 65 5	
Tyler Russell	270	.02	1	A-007 4		100520 10	4			05/08/18 Ty	Tyler Russe ll	-	NEVAP 65 5	İ
	290	.02	1	A-007 4		100520 10	4			05/08/18 Ti	Tyler Russell	-	NEVAP 65 5	
Tyler Russell	280	.02		A-007 4		100520 10	4		İ	05/08/18 T	Tyler Russell		NEVAP 65 5	
										_				

Page 2 of 3

Reported: 11-MAY-18 11:51 AM

METALS

Pro Me Lal Da	rsdec dust project chemist review record oject: othod(s): boratory: Apha westorough sdG(s): L1615070 te: viewer:
Re	view Level X NYSDEC DUSR USEPA Region II Guideline
1.	Were problems noted? See QL problems below clie of Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) HWW-5-0418 logsed in as MW-5-0418; corrected during clab val Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) Holding time and Sample Collection COMMENTS COMMENTS VES NO (circle one) Servete requested Holding time and Sample Collection
2.	Were all samples were all prepped and analyzed with the holding time (6 month) (YES NO
3.	Are method blanks clean? YES (NO) (circle-one) See attacked for ever 5 (mal) for method blank 7 field blank Are Initial and continuing calibration blanks clean? YES (NO) (circle one) All detections < RL; Instrument Calibration - Data Package Narrative Review See method blank for
4.	Instrument Calibration - Data Package Narrative Review See Method blank for Did the laboratory narrative identify any results that were not within criteria in the initial and/or continuing calibration standards? YES NO (circle one)
	Initial calibration criteria based on method guidance and continuing calibration standards recovery 90-110% (80-120% Hg)
	Did the laboratory qualify results based on initial or continuing calibration exceedances? YES NO If yes to above, use professional judgment to evaluate data and qualify results if needed
5.	Laboratory Control Sample Results Were all results were within 80-120% limits? YES NO (circle one)
6.	Were MS/MSDs submitted/analyzed? YES NO MW-60-0418 MSTMSD Were all results were within 75-125% limits? YES NO NA (circle one) See attacked for parts
7.	Duplicates Were Field Duplicates submitted/analyzed? YES NO BMD-Y-0416/DPLICATE; See ettacked; The purification of the purif
8,	Were both Total and Dissolved metals reported? YES NO NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results using professional judgment
9.	Percent solids < 50% for any soil/sediment sample? YES NO NA (circle one) If yes, estimate all results using professional judgment

10. Raw Data Review and Calculation Checks

See attached
11. Delectronic Data Review and Edits

Does the EDD match the Form Is? YES NO (circle one)

12. DUSR Tables Review

Table 1 (Samples and Analytical Methods)

Table 2 (Analytical Results)

Table 3 (Qualification Actions)

Were all tables produced and reviewed?

(YES) NO (circle one)

STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number:

3612162331

Lab Number:

L1815070

Report Date:

05/04/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Total Metals

L1815070-10: The Field Blank has a result for barium and sodium present above the reporting limit. The sample was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over.

The WG1111286-3/-4 MS/MSD recoveries for sodium (250%/260%), performed on L1815070-05, do not apply because the sample concentration is greater than four times the spike amount added.

Dissolved Metals

L1815070-10: The Field Blank has a result for barium present above the reporting limit. The sample was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over.

The WG1111500-3/-4 MS/MSD recoveries, performed on L1815070-05, are outside the acceptance criteria for antimony (MS at 126%) and selenium (MSD at 128%). A post digestion spike was performed and was within acceptance criteria.

The WG1111500-3/-4 MS/MSD recoveries for calcium (MSD at 70%) and sodium (230%/240%), performed on L1815070-05, do not apply because the sample concentrations are greater than four times the spike amounts added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Monis

Report Date: 05/04/18

Title: Technical Director/Representative

Client : Wood Env & Infrastructure Solutions Lab Number : L1815070
Project Name : STALINGRAD/HYGRADE GW Q2 SAMFtroject Number : 3612162331

Lab ID : WG1111286-1 Date Collected : NA Client ID : WG1111286-1BLANK Date Received : NA

Sample Location : Date Analyzed : 05/02/18 09:09 Sample Matrix : WATER Dilution Factor : 1

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020A Analyst : AM
Lab File ID : WG1111705.pdf Instrument ID : ICPMSQ2

Sample Amount : 50ml %Solids : N/A
Digestion Method : EPA 3005A Date Digested : 05/01/18

Method Blank, Total mg/l Results RL MDL Qualifier CAS NO. **Parameter** 7429-90-5 Aluminum, Total ND 0.0100 0.00327 U 0.00087 7440-36-0 Antimony, Total 0.00400 0.00042 all 7440-38-2 Arsenic, Total ND 0.00050 0.00016 U 7440-39-3 Barium, Total ND 0.00050 0.00017 U ND 7440-41-7 Beryllium, Total 0.00050 0.00010 U ND 7440-43-9 Cadmium, Total 0.00020 0.00005 U 7440-70-2 ND 0.100 0.0394 Calcium, Total 7440-47-3 Chromium, Total ND 0.00100 0.00017 U 7440-48-4 Cobalt, Total ND 0.00050 0.00016 U 7440-50-8 Copper, Total ND 0.00100 0.00038 u 7439-89-6 Iron, Total ND 0.0500 0.0191 U 7439-92-1 Lead, Total ND 0.00100 0.00034 U 7439-95-4 Magnesium, Total ND 0.0700 0.0242 U U 7439-96-5 Manganese, Total ND 0.00100 0.00044 7440-02-0 Nickel, Total ND 0.00200 0.00055 U U 7440-09-7 Potassium, Total ND 0.100 0.0309 7782-49-2 Selenium, Total ND 0.00500 0.00173 U 7440-22-4 Silver, Total ND 0.00040 0.00016 U 7440-23-5 Sodium, Total ND 0.100 0.0293 U 7440-28-0 Thallium, Total ND 0.00050 0.00014 u 7440-62-2 Vanadium, Total ND 0.00500 0.00157 U ND U 7440-66-6 Zinc, Total 0.01000 0.00341

Client : Wood Env & Infrastructure Solutions Lab Number : L1815070
Project Name : STALINGRAD/HYGRADE GW Q2 SAMRRroject Number : 3612162331

Lab ID : WG1111500-1 Date Collected : NA Client ID : WG1111500-1BLANK Date Received : NA

Sample Location : Date Analyzed : 05/02/18 11:33

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020A Analyst : AM
Lab File ID : WG1111705.pdf Instrument ID : ICPMSQ2

Sample Amount : 50ml %Solids : N/A
Digestion Method : EPA 3005A Date Digested : 05/02/18

Method Blank, Dissolud mg/

CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Dissolved (4) Q \	(0.00328)	0.0100	0.00327	J
7440-36-0	Antimony, Dissolved $\stackrel{\smile}{U}$ q $\stackrel{\smile}{U}$	0.00093	0.00400	0.00042	J
7440-38-2	Arsenic, Dissolved	ND	0.00050	0.00016	U
7440-39-3	Barium, Dissolved	ND	0.00050	0.00017	U
7440-41-7	Beryllium, Dissolved	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Dissolved	ND	0.00020	0.00005	U
7440-70-2	Calcium, Dissolved	ND	0.100	0.0394	U
7440-47-3	Chromium, Dissolved	ND	0.00100	0.00017	บ
7440-48-4	Cobalt, Dissolved	NĎ	0.00050	0.00016	Ū
7440-50-8	Copper, Dissolved	, ND	0.00100	0.00038	U
7439-89-6	Iron, Dissolved	ND	0.0500	0.0191	U
7439-92-1	Lead, Dissolved	ND	0.00100	0.00034	บ
7439-95-4	Magnesium, Dissolved	ND	0.0700	0.0242	U
7439-96-5	Manganese, Dissolved	ND	0.00100	0.00044	U
7440-02-0	Nickel, Dissolved	ND	0.00200	0.00055	U
7440-09-7	Potassium, Dissolved	ND	0.100	0.0309	U
7782-49-2	Selenium, Dissolved	ND	0.00500	0.00173	U
7440-22-4	Silver, Dissolved	ND	0.00040	0.00016	U
7440-23-5	Sodium, Dissolved	ND	0.100	0.0293	U
7440-28-0	Thallium, Dissolved	ND	0.00050	0.00014	U
7440-62-2	Vanadium, Dissolved	ND	0.00500	0.00157	U
7440-66-6	Zinc, Dissolved	ND	0.01000	0.00341	U
			*******************	*****************	

Client : Wood Env & Infrastructure Solutions Lab Number : L1815070 **Project Name** : STALINGRAD/HYGRADE GW Q2 SAMFIroject Number : 3612162331 Lab ID : L1815070-10 **Date Collected** : 04/26/18 14:25 Client ID : FIELD BLANK Date Received : 04/27/18 Sample Location : LONG ISLAND CITY, NY : 05/02/18 10:43 Date Analyzed

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020A Analyst : AM
Lab File ID : WG1111705.pdf Instrument ID : ICPMSQ2

Sample Amount : 50ml %Solids : N/A
Digestion Method : EPA 3005A Date Digested : 05/01/18

Fill Rhill mbl

	reld Blank, 19721	mg/l		
CAS NO.	Parameter	Results RL	MDL	Qualifier
7429-90-5	Aluminum, Tolal 🏲	0.00424 0.0100	0.00327	J
7440-36-0	Antimony, Total (4) all (113, 100)	0.00092 0.0040	0.00042	J
7440-38-2	Arsenic, Total	ND 0.0005	0.00016	U
7440-39-3	Barium, Total	0.00051 0.0005	0.00017	
7440-41-7	Beryllium, Total	ND 0.0005	0.00010	U
7440-43-9	Cadmium, Total	ND 0.0002	0.00005	U
7440-70-2	Calcium, Total >	0.0718 0.100	0.0394	J
7440-47-3	Chromium, Total (J) SUbset	0.00043 0.0010	0.00017	J
7440-48-4	Cobalt, Total	ND 0.0005	0.00016	U
7440-50-8	Copper, Total (3) SUS SU +	0.00089 0.0010	0.00038	J
7439-89-6	Iron, Total 🦙	0.0209 0.0500	0.0191	J
7439-92-1	Lead, Total	ND 0.0010	0.00034	U
7439-95-4	Magnesium, Total	ND 0.0700	0.0242	U
7439-96-5	Manganese, Total	ND 0.00100	0.00044	U
7440-02-0	Nickel, Total	ND 0.0020	0.00055	U
7440-09-7	Potassium, Total 😕	0.0890 0.100	0.0309	J
7782-49-2	Selenium, Total	ND 0.00500	0.00173	U
7440-22-4	Silver, Total	ND 0.00040	0.00016	U
7440-23-5	Sodium, Total	0.248 0.100	0.0293	
7440-28-0	Thallium, Totaí	ND 0.00050	0.00014	U
7440-62-2	Vanadium, Total	ND 0.00500	0.00157	U
7440-66-6	Zinc, Total	ND 0.01000	0.00341	U

Client : Wood Env & Infrastructure Solutions Lab Number : L1815070 **Project Name** : STALINGRAD/HYGRADE GW Q2 SAMPIroject Number : 3612162331 Lab ID : L1815070-10 **Date Collected** : 04/26/18 14:25 Client ID : FIELD BLANK **Date Received** : 04/27/18 Sample Location : LONG ISLAND CITY, NY : 05/02/18 12:21 Date Analyzed

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020A Analyst : AM Lab File ID : WG1111705.pdf Instrument ID : ICPMSQ2 Sample Amount : 50ml %Solids : N/A Digestion Method : EPA 3005A **Date Digested** : 05/02/18

Field Blank, Dissolved mg/

			mg∄		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Dissolved	ND	0.0100	0.00327	U
7440-36-0	Antimony, Dissolved (4) all (MB, thes)	(0.00081)	0.00400	0.00042	J
7440-38-2	Arsenic, Dissolved	ND	0.00050	0.00016	U
7440-39-3	Barium, Dissolved > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.00058	0.00050	0.00017	
7440-41-7	Beryllium, Dissolved	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Dissolved	ND	0.00020	0.00005	U
7440-70-2	Calcium, Dissolved	ND	0.100	0.0394	U
7440-47-3	Chromium, Dissolved	ND	0.00100	0.00017	U
7440-48-4	Cobalt, Dissolved	ND	0.00050	0.00016	Ų .
7440-50-8	Copper, Dissolved	ND	0.00100	0.00038	U
7439-89-6	Iron, Dissolved	ND	0.0500	0.0191	U ·
7439-92-1	Lead, Dissolved	ND	0.00100	0.00034	V
7439-95-4	Magnesium, Dissolved	ND	0.0700	0.0242	U
7439-96-5	Manganese, Dissolved	ND	0.00100	0.00044	U
7440-02-0	Nickel, Dissolved	ND	0.00200	0.00055	U
7440-09-7	Potassium, Dissolved	ND	0.100	0.0309	U
7782-49-2	Selenium, Dissolved	ND	0.00500	0.00173	U
7440-22-4	Silver, Dissolved	ND	0.00040	0.00016	U
7440-23-5	Sodium, Dissolved	ND	0.100	0.0293	U
7440-28-0	Thallium, Dissolved	ND	0.00050	0.00014	U
7440-62-2	Vanadium, Dissolved	ND	0.00500	0.00157	U
7440-66-6	Zinc, Dissolved	ND	0.01000	0.00341	U

	123	14.2	7.0	13.5	2.2	61	0.4		.0.7	T.U.T	2.5	7.4	62.9 OK; PROF JDG, DIFF ~ RL	9.2	0.5	2.5	4,4	2.3	2.3	4.0	7.4	6.6	94.1 J SAMPI F AND DITP	13	(7	01(3)18	0.1	י ני)). T	י ני		1.7	, c	6.5
0400	286 286	200	30.4	85.9	22.7	108	0.66	3.01	7830	2020	73.0	90.3	0.0121	0.00488	0.02348	0.1434	0.2301	Zb3.	261.	0.00124	0.02082	0.02110	0.126	30.6	51.2	50.2	8.132	8.359	0.05604	0.05586	48.6	47.6	196	192	1400	380	15
text fraction		<u>*</u> 2	z :	2	2 N	2 N	Z	Z	: 2	. 2	2 2	1.32 N	0.0100	U.VOUSU F 030050	0.0000	0.0000 D	0.000.0	00 00 1	0.100	onton.	0.00050 D	0.00050 T	0.0500 D	0.0500 T	0.0700 D	0.0700 T	0.00100 D	0.00100 T	0.00200 D	0.00200 T) L 20) 	. z	: z	: Z
rr detection SOI	0.106 1.92	-, r	4 7	•	0.089 1.92	0.103 1.92	,	•	7	_		7.								•		0.00016 0.0	0.0191 0.0	0.0191 0.0	0.0242 0.0	0.0242 0.0	0.00044 0.0		_								0.71 10
final result final qualif result uor detection ISOI text	NG/L	1/5V	7/014 1/014	J/O/L	NG/L	NG/L	NG/L	NG/L	NG/L	/UN	NG/I	MG/I	MC/I	MG/I	MG/I	MG/I	MG/I	MO/L	IVIG/L	JVIG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	- MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	ng/r	ng/r	ng/L
final resultfinal	248	31.0	75.0		7:57	106	104	3.03	2550	71.2	92.5	0.0232	0.00535	0.02336	0.1471	0.2201	269	757	0.00129	C. C. C. C. C. C. C. C. C. C. C. C. C. C	0.02242	0.02253	0.350	30.2	55.7	52.5	8.175	8.368	0.05969	0.05790	47.9	45.9	207.	196.	1400	380	16
analysis param_name	537(M) Perfluorobutanesulfonic acid	537(M) Perfluorobutanoic acid	537(M) Perfluorohentanesulfonic acid	Dorflesonbontone				537(M) Perfluorononanoic acid	537(M) Perfluorooctanesulfonic acid	537(M) Perfluorooctanoic acid	537(M) Perfluoropentanoic acid	6020A Aluminum	6020A Arsenic	6020A Arsenic	6020A Barium	6020A Barium	6020A Calcium	6020A Calcium	_	_		_				_			6020A Nickel	6020A Nickel	6020A Potassium	6020A Potassium	6020A Sodium	6020A Sodium	8260C 2-Butanone	8260C Acetone	8260C Vinyl chloride
qc_c lab_sample_id	FS L1815079-04	FS L1815079-04	FS L1815079-04	FS 11815079-04	_			_	FS L1815079-04	FS L1815079-04	FS L1815079-04	FS L1815070-04	FS L1815070-04	FS L1815070-04	FS L1815070-04	FS L1815070-04	FS L1815070-04	FS L1815070-04	S L1815070-04	FS L1815070-04	_	-				_	_	_	_	_	_	_	FS L1815070-04	_	FS L1815070-04	FS L1815070-04	FS L1815070-04
₽,			BMW-4-0418 F	BMW-4-0418							BMW-4-0418 F.	BMW-4-0418 F	BMW-4-0418 F	BMW-4-0418 F		BMW-4-0418 F.	BMW-4-0418 F.	BMW-4-0418 F	BMW-4-0418 F	BMW-4-0418 F																	BMW-4-0418 F

Form 5a Dissolved Matrix Spike

Client **Project Name** : Wood Env & Infrastructure Solutions

Lab Number

: L1815070 3612162331

Client Sample ID

: MW-6D-0418

: STALINGRAD/HYGRADE GW Q2 SAMPIroject Number Matrix

WATER

Lab Sample ID Matrix Spike

: L1815070-05

: WG1111500-3

MS Analysis Date : 05/02/18 11:41

Matrix Spike Dup

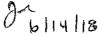
ND

0.5

MSD Analysis Date: 05/02/18 11:45

108

0.5421


2

75-125

20

: WG1111500-4

Matrix Spike Sample Matrix Spike Duplicate Sample Spike Spike Spike Spike Conc. Added Conc. %R Added Conc. %R RPD Recovery RPD Parameter (mg/l) (mg/l) Limits Limit (mg/l)(mg/l) (mg/l)801 0/101 Aluminum, Dissolved 0.00492J 2 1.97 98 2 1.93 96 2 75-125 20 Antimony, Dissolved 0.00082J126)Q 1 75-125 20 0.5 0.6284 0.5 0.6222 124 Arsenic, Dissolved 0.00029J 0.12 0.1349 112 0.12 0.1365 114 1 75-125 20 2 Barium, Dissolved 0.1057 2.263 1 75-125 20 2.240 107 2 108 Beryllium, Dissolved ND 0.05 0.05431 109 0.05 0.05472 109 1 75-125 20 Cadmium, Dissolved 0.051 0.05980 4 0.000094 0.05774 0.051 117 75-125 20 113 Calcium, Dissolved > ∪ √ 211. 10 220. 90 10 218. 0 70 Q 1 75-125 20 0.00224 Chromium, Dissolved 0.2 0.2162 107 0.2 0.2108 104 3 75-125 20 Cobalt, Dissolved 0.00047J 0.5 0.5185 104 0.5 0.5172 103 0 75-125 20 Copper, Dissolved 0.00210 0.25 0.2628 104 0.25 0.2714 108 3 75-125 20 Iron, Dissolved 0.0392J 1 1.11 111 1 1.21 121 9 75-125 20 Lead, Dissolved ND 0.51 0.5597 0.51 0.5802 4 75-125 20 110 114 Magnesium, Dissolved 18.5 10 29.6 111 10 29.3 108 1 75-125 20 2 20 Manganese, Dissolved 0.05963 0.6097 110 0.5 0.5972 108 75-125 0.5 Nickel, Dissolved 0.00372 0.5 0.5434 108 0.5 0.5383 107 1 75-125 20 106 Potassium, Dissolved 23.7 10 34.1 104 10 34.3 1 75-125 20 Selenium, Dissolved 0.00484J 0.12 0.142 118 0.12 0.154 128 Q 8 75-125 20 0.05643 Silver, Dissolved Sample ND 0.05 0.05682 114 0.05 113 1 75-125 20 Sodium, Dissolved 113. 10 136. OK 230 Q 10 137. OK 240 Q 1 75-125 20 ND 4 20 Thallium, Dissolved 0.12 0.1238 0.12 107 75-125 103 0.1283 Vanadium, Dissolved 0.00188J 0.5 0.5476 110 0.5 0.5193 104 5 75-125 20

110

0.5

0.5516

Zinc, Dissolved

Form 5a Total **Matrix Spike**

Client : Wood Env & Infrastructure Solutions Project Name : STALINGRAD/HYGRADE GW Q2 SAMFIroject Number

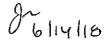
Lab Number

: L1815070 : 3612162331

Client Sample ID : MW-6D-0418

Matrix

: WATER


Lab Sample ID Matrix Spike

: L1815070-05

: WG1111286-3 Matrix Spike Dup : WG1111286-4 MS Analysis Date : 05/02/18 09:25

MSD Analysis Date: 05/02/18 09:29

		Matrix Sp	ike Sample		Matrix Spi	ke Duplicate	positiva california			
	Sample	Spike	Spike		Spike	Spike				
	Conc.	Added	Conc.	%R	Added	Conc.	%R	RPD	Recovery	RPD
Parameter ***********************************	(mg/l)	(mg/l)	(mg/l)	umuquareuapaueuvage	(mg/l)	(mg/l)	hanned the state of the state o	entatular umananananu sit aan	Limits	Limit
Aluminum, Total	0.130	2	2.04	96	2	2.07	97	1	75-125	20
Antimony, Total	0.00350J	0.5	0.5818	116	0.5	0.5964	119	2	75-125	20
Arsenic, Total	0.00046J	0.12	0.1392	116	0.12	0.1401	117	1	75-125	20
Barium, Total	0.1073	2	2,264	108	2	2.234	106	1	75-125	20
Beryllium, Total	ND	0.05	0.05478	110	0.05	0.05394	108	2 -	75-125	20
Cadmium, Total	0.00007J	0.051	0.05847	115	0.051	0.05779	113	1	75-125	20
Calcium, Total	204.	10	213.	90	10	214.	100	0	75-125	20
Chromium, Total	0.00308	0.2	0.2090	103	0.2	0.2147	106	3	75-125	20
Cobalt, Total	0.00056	0.5	0.5188	104	0.5	0.5108	102	2	75-125	20
Copper, Total	0.00288	0.25	0.2751	109	0.25	0.2673	106	3	75-125	20
iron, Total	0.233	1	1.36	113	1	1.38	115	1	75-125	20
Lead, Total	0.00062J	0.51	0.5837	114	0.51	0.5769	113	1	75-125	20
Magnesium, Total	18.1	10	29.3	112	10	29.2	111	0	75-125	20
Manganese, Total	0.04749	0.5	0.5667	104	0.5	0.5702	104	1	75-125	20
Nickel, Total	0.00407	0.5	0.5269	104	0.5	0.5366	106	2	75-125	20
Potassium, Total	23.9	10	33.9	100	10	34.2	103	1	75-125	20
Selenium, Total	0.00463J	0.12	0.139	116	0.12	0.141	118	1	75-125	20
Silver, Total	ND	0.05	0.05705	114	0.05	0.05686	114	0	75-125	20
Sodium, Total > 4	110.	10	135. 0	_ 250 Q	10	136. <i>O</i> (260 Q	1	75-125	20
Thallium, Total	0.00014J	0.12	0.1273	106	0.12	0.1276	106	0	75-125	20
Vanadium, Total	0.00260J	0.5	0.5255	105	0.5	0.5175	104	2	75-125	20
Zinc, Total	ND	0.5	0.5406	108	0.5	0.5400	108	0	75-125	20

Sample calc

	47.1-1.7	Market Market	With Cyto Legisler
~		8	•

Alpha ICPMSQ2 Full

~ % % % % % % % % % % % % % % % % % % %	은 등 등 등 % 	\$ % % % % % % % % % % % % % % % % % % %	
45Sc (STD AGD) 106.997 % 106.848 % 106.811 % 107.832 %	66Zn (KED AGD) 3.157 ppb 3.104 ppb 3.393 ppb 2.974 ppb 6.8 %	15in (KED AGD) 103,738 % 104,494 % 102,725 % 103,997 %	209Bi (KED AGD) 93.216 % 91.952 % 91.143 % 96.553 % 3.1 %
45So		115In	209Bi
27 ppb 27 ppb 151 ppb 163 ppb 1.6 %	(ED AGD) 3.308 ppb 3.287 ppb 3.439 ppb 3.199 ppb	(ED AGD) 1.170 ppb 1.146 ppb 1.156 ppb 1.207 ppb	(ED AGD) 0.020 ppb 0.020 ppb 0.021 ppb 3.5 %
4/Ca (KED AGD) 263,874,727 ppb 263,861,957 ppb 259,787,531 ppb 256,274,693 ppb 268,274,693 ppb	65Cu (KED AGD) 3.308 ppb 3.287 ppb 3.439 ppb 3.199 ppb	11Cd (KED AGD) 1.170 ppt 1.146 ppt 1.156 ppt 1.207 ppt 2.8 %	203Pb (KED AGD) 0.020 ppb 0.020 ppb 0.020 ppb 0.021 ppb
is a superior of the superior	and the second s	17 - stripen tillespiere pjerspiere protrientere pjerspiere	
SSK (KED AGD) 44.410.866 ppb 44.607.399 ppb 43.886.702 ppb 44.537.887 ppb	60NI (KED AGD) 83.188 ppb 84.867 ppb 82.078 ppb 82.618 ppb	107Ag (KED AGD) 0.000 ppb 0.003 ppb 0.001 ppb 0.000 ppb	205TI (KED AGD) 0.310 ppb 0.314 ppb 0.313 ppp 0.302 ppb
98 44 44 43 43 43 44 44 44 43 43 44 44 44	90N	107Ag	205T
(KED ACD) 3.927 ppb 4.418 ppb 3.975 ppb 3.378 ppb	(KED AGD) 14.039 ppb 13.793 ppb 14.149 ppb 14.174 ppb	(ED AGD) 98.820 % 99.781 % 97,672 % 99.007 %	(KED AGD) 0.066 ppb 0.053 ppb 0.063 ppb 0.082 ppb 22.4 %
27A (KED AGD) 3.927 pbb 4.418 ppb 3.388 ppb 13.2%	59Co (KED AGD) 14.039 ppb 13.793 ppb 14.149 ppb 14.174 ppb	103Rh (KED AGD) 98.820 % 99.781 % 97.672 % 99.007 %	183W (KED AGD) 0.066 ppb 0.053 ppb 0.063 ppb 0.062 ppb
7 (4GD) (8 ppb) (7 ppb) (9 ppb	D AGD) 335 ppb 711 ppb 105 ppb 788 ppb	nyen maanin maanin je in	5D) 6 % 1 % 1 %
24Mg (KED AGD) 30,059 208 ppb 29,117.402 ppb 31,169.906 ppp	57Fe (KED AGD) 28,535 ppb 32,711 ppb 29,105 ppb 29,788 ppb 17,3 %	95Mo (KED AGD) 62.815 ppb 63.298 ppb 61.220 ppb 63.927 ppb	75Lu (KED AGD) 103.936 % 102.341 % 105.021 %
24M 22 29 31	57F	W96	175L
Rack: 1 Vial: 42 22Na (KED AGD) 203,058.841 ppb 201,675.996 ppb 208,612.619 ppb 2.5 %	An (KED AGD) 3,815.865 ppb 3,883.646 ppb 3,785.853 ppb 3,778.097 ppb	88Sr (KED AGD) 1,252,073 ppb 1,257,331 ppb 1,245,715 ppb 1,253,175 ppb	(KED AGD) 100.420 % 99.996 % 98.861 % 102.402 %
Rack: 1 Vial: 42 23Na (KED AGD) 203,053.641 ppt 201,675.996 ppt 198,672.307 ppt 208,612.619 ppt	55Mn (KED AGD) 3,815,865 ppt 3,883,646 ppt 3,785,863 ppt 3,780,097 ppt	88Sr (K1 1,252 1,245 1,245 1,253	159Tb (KED AGD) 100.420 % 99.986 % 102.402 %
ment GD) ppb (ppb ppb ppb ppb ppb ppp ppp ppp ppp ppp	(GD) 484 484 485 485 485 485 485 485 485 485	GD) ppb ppb ppb ppb 5%	GD) pob pob pob 9 % 6
ALAB\text{metals-instrument} 9Be (STD AGD) 0.000 ppb 0.000 ppb 0.006 ppb	52Gr (KED AGD) 1,109 ppb 1,116 ppb 1,066 ppb 1,144 ppb	78Se (KED AGD) 1.615 ppb 1.492 ppb 1.398 ppb 1.955 ppb	137Ba (KED AGD) 103.656 ppb 104.308 ppb 104.308 ppb 104.043 ppb
ALPHALABymetals-instrument AGD) 9Be (STD AGD) 0.000 ppb 87.9% 0.000 ppb 87.9% 0.000 ppb 87.9% 0.006 ppb 622% 4812.%	250	288	137/8
rted at: 5/2/2/ ALPH GLI (KED AGD) 112.987 % 114.479 % 110.822 %	61V (KED AGD) 0.379 ppb 0.312 ppb 0.384 ppb 1.21 %	75As (KED AGD) 1.063 ppb 1.005 ppb 1.136 ppb 1.048 ppb 6.3 %	121Sb (KED AGD) 3.649 ppb 3.748 ppb 3.657 ppb 3.541 ppb
	51V (KED AGD) 52Cr (KED AGD) 0.361 ppb 1.109 ppb 0.379 ppb 1.116 ppb 0.312 ppb 1.066 ppb 1.144 ppb 12.1 % 3.5 %	75As (KED AGD) 78Se (KED AGD) 1.063 ppb 1.615 ppb 1.492 ppb 1.386 ppb 1.388 ppb 1.048 ppb 1.955 ppb 1.955 ppb	118Sn (KED AGD) 121Sb (KED AGD) 137Ba (KED AGD) 137Ba (KED AGD) 13.65 ppb 103.66 ppb 3.748 ppb 104.308 ppb 104.308 ppb 13.71 ppb 3.657 ppb 3.541 ppb 104.043 ppb 104.043 ppb 1.370 ppb 3.541 ppb 104.043 ppb 105.616 ppb 1.370 ppb
Analysis stt User name: (GD) 22 % 39 % 33 %	(GD) ppb dqq qqq %1,%	(GD) 30 % 35 % % 3 % %	GD) ppb ppb ppb ppb
Ans OSL Use GLI (STD AGD) 104.122 % 105.139 % 103.223 % 103.223 %	48TI (KED AGD) 398,908 ppb 401.640 ppb 389,652 ppb 405,432 ppb	74Ge (KED AGD) 105.930 % 106.036 % 105.529 % 106.225 %	118Sn (KED AGD) 1,383 ppb 1,371 ppb 1,370 ppb 1,370 ppb
		at the contract of the contrac	——————————————————————————————————————
Analysis index: 70 Analysis labei: L1815070-01 6020SL Category Concentration average Concentration per Run 1 Concentration per Run 2 Concentration per Run 3 Concentration per Run 3	Concentration average Concentration per Run 1 Concentration per Run 2 Concentration per Run 3 Concentration RSD	Category Concentration average Concentration per Run 1 Concentration per Run 2 Concentration per Run 3 Concentration RSD	Centegory Concentration average Concentration per Run 1 Concentration per Run 2 Concentration per Run 3 Concentration RSD
	Category Concentration average Concentration per Run 1 Concentration per Run 2 Concentration per Run 3 Concentration RSD	Category Concentration average Concentration per Run 1 Concentration per Run 2 Concentration per Run 3 Concentration RSD	Concentration average Concentration per Run 1 Concentration per Run 2 Concentration per Run 2 Concentration per Run 3 Concentration RSD
Analysis index: Analysis labei: Category Concentration a Concentration is Concentration is Concentration is Concentration is	Concentra Concentra Concentra Concentra Concentra	Category Concentr Concentr Concentr Concentr	Category Concentr Concentr Concentr Concentr

OK 21 6/14/18

ANALYTICAL REPORT

Lab Number: L1815070

Client: Wood Env & Infrastructure Solutions, Inc

214-25 42nd Avenue

Suite 3R

Bayside, NY 11361

ATTN: Eric Weinstock Phone: (347) 836-4445

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Report Date: 05/04/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070 **Report Date:** 05/04/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1815070-01	BMW-1-0418	WATER	LONG ISLAND CITY, NY	04/26/18 12:35	04/27/18
L1815070-02	BMW-2-0418	WATER	LONG ISLAND CITY, NY	04/26/18 13:10	04/27/18
L1815070-03	BMW-3-0418	WATER	LONG ISLAND CITY, NY	04/26/18 14:00	04/27/18
L1815070-04	BMW-4-0418	WATER	LONG ISLAND CITY, NY	04/26/18 11:00	04/27/18
L1815070-05	MW-6D-0418	WATER	LONG ISLAND CITY, NY	04/27/18 08:50	04/27/18
L1815070-06	MW-6S-0418	WATER	LONG ISLAND CITY, NY	04/27/18 08:50	04/27/18
L1815070-07	MW-S-0418	WATER	LONG ISLAND CITY, NY	04/27/18 10:05	04/27/18
L1815070-08	MW-E-0418	WATER	LONG ISLAND CITY, NY	04/27/18 10:30	04/27/18
L1815070-09	DUPLICATE	WATER	LONG ISLAND CITY, NY	04/26/18 11:00	04/27/18
L1815070-10	FIELD BLANK	WATER	LONG ISLAND CITY, NY	04/26/18 14:25	04/27/18
L1815070-11	TRIP BLANK	WATER	LONG ISLAND CITY, NY	04/26/18 00:00	04/27/18

L1815070

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number:

Project Number: 3612162331 **Report Date:** 05/04/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Serial_No:05041815:16

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070

Project Number: 3612162331 **Report Date:** 05/04/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Total Metals

L1815070-10: The Field Blank has a result for barium and sodium present above the reporting limit. The sample was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over.

The WG1111286-3/-4 MS/MSD recoveries for sodium (250%/260%), performed on L1815070-05, do not apply because the sample concentration is greater than four times the spike amount added.

Dissolved Metals

L1815070-10: The Field Blank has a result for barium present above the reporting limit. The sample was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over.

The WG1111500-3/-4 MS/MSD recoveries, performed on L1815070-05, are outside the acceptance criteria for antimony (MS at 126%) and selenium (MSD at 128%). A post digestion spike was performed and was within acceptance criteria.

The WG1111500-3/-4 MS/MSD recoveries for calcium (MSD at 70%) and sodium (230%/240%), performed on L1815070-05, do not apply because the sample concentrations are greater than four times the spike amounts added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 05/04/18

ORGANICS

VOLATILES

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

LONG ISLAND CITY, NY

L1815070-01

BMW-1-0418

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 12:35

Date Received: 04/27/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/01/18 22:15

Wethylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,2-Dichloropropane ND ug/l 0.50 0.15 1 1,2-Dichloropthane ND ug/l 0.50 0.15 1 1,1,2-Trichlorothane ND ug/l 0.50 0.13 1 1,2-Dichloropthane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.16 1 Bromotichloromethane ND ug/l 0.50 0.16	
1,1-Dichloroethane ND	
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene 0.86 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50	
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 0.86 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l	
1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 0.86 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l	
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane 0.86 ug/l 0.50 0.18 1 1 Chlorobenzene ND ug/l 2.5 0.70 1 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l	
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene 0.86 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroffluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.5	
Tetrachloroethene 0.86 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1	
Paggara	
Benzene ND ug/l 0.50 0.16 1	
Toluene ND ug/l 2.5 0.70 1	
Ethylbenzene ND ug/l 2.5 0.70 1	
Chloromethane ND ug/l 2.5 0.70 1	
Bromomethane ND ug/l 2.5 0.70 1	
Vinyl chloride 0.51 J ug/l 1.0 0.07 1	
Chloroethane ND ug/l 2.5 0.70 1	
1,1-Dichloroethene ND ug/l 0.50 0.17 1	
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL **Lab Number:**

Project Number: 3612162331

L1815070-01

BMW-1-0418

LONG ISLAND CITY, NY

SAMPLE RESULTS

Date Collected: 04/26/18 12:35

Date Received: 04/27/18

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Trichloroethene	1.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	3.5		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	3.5		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.9	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815070

Project Number: 3612162331

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: L1815070-01 04/26/18 12:35 Client ID: Date Received: 04/27/18 BMW-1-0418

Sample Location: Field Prep: Not Specified LONG ISLAND CITY, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	116		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	98		70-130	

L1815070

05/04/18

Not Specified

04/27/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: Date Collected: 04/26/18 13:10 L1815070-02

Client ID: BMW-2-0418

Sample Location: LONG ISLAND CITY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/01/18 22:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	2.5		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.19	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	3.1		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

LONG ISLAND CITY, NY

L1815070-02

BMW-2-0418

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 13:10

Date Received: 04/27/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
-	-					
Trichloroethene	5.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	7.8		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	7.8		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

05/04/18

Report Date:

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070

Project Number: 3612162331

SAMPLE RESULTS

L1815070-02 Date Collected: 04/26/18 13:10

Client ID: BMW-2-0418 Date Received: 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	115		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	96		70-130	

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 14:00

Lab Number:

Report Date:

Lab ID: D L1815070-03

Client ID: BMW-3-0418

Date Received: 04/27/18 Field Prep: Sample Location: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/01/18 23:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	12		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	34		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10

05/04/18

Report Date:

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070

Project Number: 3612162331

SAMPLE RESULTS

L1815070-03 D Date Collected: 04/26/18 14:00

Client ID: BMW-3-0418 Date Received: 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
Xylenes, Total	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	71		ug/l	25	7.0	10
1,2-Dichloroethene, Total	71		ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	1000		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	1700		ug/l	50	19.	10
Vinyl acetate	ND		ug/l	50	10.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,3-Dichloropropane	ND		ug/l	25	7.0	10
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
p-Chlorotoluene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815070

Project Number: 3612162331

L1815070-03

SAMPLE RESULTS

Date Collected: 04/26/18 14:00

Report Date:

Client ID: Date Received: 04/27/18 BMW-3-0418

D

Sample Location: Field Prep: Not Specified LONG ISLAND CITY, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	ND		ug/l	20	7.0	10	
p-Ethyltoluene	ND		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	ND		ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	A Qualifier	cceptance Criteria	
1,2-Dichloroethane-d4	115		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	98		70-130	

L1815070

04/26/18 11:00

Not Specified

04/27/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Report Date: 05/04/18

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: D

L1815070-04

Client ID: BMW-4-0418

Sample Location: LONG ISLAND CITY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/01/18 23:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	2.3	J	ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	16		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	7.2	J	ug/l	25	7.0	10

L1815070

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL

D

Project Number: 3612162331

L1815070-04

BMW-4-0418

LONG ISLAND CITY, NY

SAMPLE RESULTS

Date Collected: 04/26/18 11:00

Date Received: 04/27/18

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Trichloroethene	2.4	J	ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10	
Methyl tert butyl ether	ND		ug/l	25	7.0	10	
p/m-Xylene	ND		ug/l	25	7.0	10	
o-Xylene	ND		ug/l	25	7.0	10	
Xylenes, Total	ND		ug/l	25	7.0	10	
cis-1,2-Dichloroethene	12	J	ug/l	25	7.0	10	
1,2-Dichloroethene, Total	19	J	ug/l	25	7.0	10	
Dibromomethane	ND		ug/l	50	10.	10	
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10	
Acrylonitrile	ND		ug/l	50	15.	10	
Styrene	ND		ug/l	25	7.0	10	
Dichlorodifluoromethane	ND		ug/l	50	10.	10	
Acetone	380		ug/l	50	15.	10	
Carbon disulfide	ND		ug/l	50	10.	10	
2-Butanone	1400		ug/l	50	19.	10	
Vinyl acetate	ND		ug/l	50	10.	10	
4-Methyl-2-pentanone	ND		ug/l	50	10.	10	
2-Hexanone	ND		ug/l	50	10.	10	
Bromochloromethane	ND		ug/l	25	7.0	10	
2,2-Dichloropropane	ND		ug/l	25	7.0	10	
1,2-Dibromoethane	ND		ug/l	20	6.5	10	
1,3-Dichloropropane	ND		ug/l	25	7.0	10	
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10	
Bromobenzene	ND		ug/l	25	7.0	10	
n-Butylbenzene	ND		ug/l	25	7.0	10	
sec-Butylbenzene	ND		ug/l	25	7.0	10	
tert-Butylbenzene	ND		ug/l	25	7.0	10	
o-Chlorotoluene	ND		ug/l	25	7.0	10	
p-Chlorotoluene	ND		ug/l	25	7.0	10	
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10	
Hexachlorobutadiene	ND		ug/l	25	7.0	10	
Isopropylbenzene	ND		ug/l	25	7.0	10	
p-Isopropyltoluene	ND		ug/l	25	7.0	10	
Naphthalene	ND		ug/l	25	7.0	10	

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815070

Project Number: 3612162331

L1815070-04

SAMPLE RESULTS

D Date Collected: 04/26/18 11:00

Report Date:

Client ID: Date Received: 04/27/18 BMW-4-0418

Sample Location: Field Prep: Not Specified LONG ISLAND CITY, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	ND		ug/l	20	7.0	10	
p-Ethyltoluene	ND		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	ND		ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	115		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	98		70-130	

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Lab Number:

Report Date:

Date Received: 04/27/18
Field Prep: Not Specified

Lab ID: L1815070-05 Client ID: MW-6D-0418

Sample Location: LONG ISLAND CITY, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/01/18 21:47

Volatile Organics by GC/MS - Westboroug	.l. I .l.				
	jn Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	0.58	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

LONG ISLAND CITY, NY

L1815070-05

MW-6D-0418

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Date Received: 04/27/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	1.1		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815070

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Report Date:

Lab ID: L1815070-05 Client ID: Date Received: 04/27/18 MW-6D-0418

Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	97	70-130	

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

LONG ISLAND CITY, NY

L1815070-06

MW-6S-0418

D

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Lab Number:

Report Date:

Date Received: 04/27/18
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/02/18 00:09

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	37		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number:

D

Project Number: 3612162331

L1815070-06

MW-6S-0418

LONG ISLAND CITY, NY

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Date Received: 04/27/18

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	gh Lab						
Trichloroethene	10		ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10	
Methyl tert butyl ether	1100		ug/l	25	7.0	10	
p/m-Xylene	ND		ug/l	25	7.0	10	
o-Xylene	ND		ug/l	25	7.0	10	
Xylenes, Total	ND		ug/l	25	7.0	10	
cis-1,2-Dichloroethene	23	J	ug/l	25	7.0	10	
1,2-Dichloroethene, Total	23	J	ug/l	25	7.0	10	
Dibromomethane	ND		ug/l	50	10.	10	
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10	
Acrylonitrile	ND		ug/l	50	15.	10	
Styrene	ND		ug/l	25	7.0	10	
Dichlorodifluoromethane	ND		ug/l	50	10.	10	
Acetone	ND		ug/l	50	15.	10	
Carbon disulfide	ND		ug/l	50	10.	10	
2-Butanone	ND		ug/l	50	19.	10	
Vinyl acetate	ND		ug/l	50	10.	10	
4-Methyl-2-pentanone	ND		ug/l	50	10.	10	
2-Hexanone	ND		ug/l	50	10.	10	
Bromochloromethane	ND		ug/l	25	7.0	10	
2,2-Dichloropropane	ND		ug/l	25	7.0	10	
1,2-Dibromoethane	ND		ug/l	20	6.5	10	
1,3-Dichloropropane	ND		ug/l	25	7.0	10	
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10	
Bromobenzene	ND		ug/l	25	7.0	10	
n-Butylbenzene	ND		ug/l	25	7.0	10	
sec-Butylbenzene	ND		ug/l	25	7.0	10	
tert-Butylbenzene	ND		ug/l	25	7.0	10	
o-Chlorotoluene	ND		ug/l	25	7.0	10	
p-Chlorotoluene	ND		ug/l	25	7.0	10	
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10	
Hexachlorobutadiene	ND		ug/l	25	7.0	10	
Isopropylbenzene	ND		ug/l	25	7.0	10	
p-Isopropyltoluene	ND		ug/l	25	7.0	10	
Naphthalene	ND		ug/l	25	7.0	10	

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815070

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Report Date:

Lab ID: L1815070-06 D Client ID: Date Received: 04/27/18 MW-6S-0418

Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
n-Propylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	ND		ug/l	20	7.0	10	
p-Ethyltoluene	ND		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	ND		ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	98	70-130	

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

LONG ISLAND CITY, NY

L1815070-07

MW-S-0418

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:05

Lab Number:

Report Date:

Date Received: 04/27/18 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/02/18 00:37

Volatile Organics by GC/MS - Westboroug	ıh Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	0.57	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

LONG ISLAND CITY, NY

L1815070-07

MW-S-0418

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:05

Date Received: 04/27/18 Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Trichloroethene	3.4		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815070

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:05

Report Date:

Lab ID: L1815070-07 Client ID: Date Received: 04/27/18 MW-S-0418

Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	97	70-130	

L1815070

04/27/18 10:30

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

Date Collected:

Report Date: 05/04/18

SAMPLE RESULTS

Lab ID: L1815070-08

Client ID: Date Received: 04/27/18 MW-E-0418 Field Prep: Sample Location: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/02/18 01:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

L1815070-08

MW-E-0418

LONG ISLAND CITY, NY

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:30

Date Received: 04/27/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
	-					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
•						

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815070

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:30

Report Date:

Lab ID: L1815070-08 Client ID: Date Received: 04/27/18 MW-E-0418

Sample Location: Field Prep: Not Specified LONG ISLAND CITY, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	115		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	96		70-130	

L1815070

04/26/18 11:00

Not Specified

04/27/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Report Date: 05/04/18

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: D L1815070-09

Client ID: **DUPLICATE**

Sample Location: LONG ISLAND CITY, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/02/18 11:34

Analyst: ΑD

Volatile Organics by GC/MS - Westborough La Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene Chlorobenzene						
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene						
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND		ug/l	25	7.0	10
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND		ug/l	25	7.0	10
1,2-Dichloropropane Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND		ug/l	25	7.0	10
Dibromochloromethane 1,1,2-Trichloroethane Tetrachloroethene	ND		ug/l	5.0	1.3	10
1,1,2-Trichloroethane Tetrachloroethene	ND		ug/l	10	1.4	10
Tetrachloroethene	ND		ug/l	5.0	1.5	10
	ND		ug/l	15	5.0	10
Chlorobenzene	ND		ug/l	5.0	1.8	10
	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	2.3	J	ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	15		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	7.7	J	ug/l	25	7.0	10

05/04/18

04/27/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 11:00

Report Date:

Date Received:

Lab ID: L1815070-09 D

Client ID: DUPLICATE

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Trichloroethene	2.1	J	ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
Xylenes, Total	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	11	J	ug/l	25	7.0	10
1,2-Dichloroethene, Total	19	J	ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	380		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	1400		ug/l	50	19.	10
Vinyl acetate	ND		ug/l	50	10.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,3-Dichloropropane	ND		ug/l	25	7.0	10
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
p-Chlorotoluene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 11:00

Lab ID: L1815070-09 D
Client ID: DUPLICATE

Date Received: 04/27/18
Field Prep: Not Specified

Report Date:

Sample Location: LONG ISLAND CITY, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
n-Propylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	ND		ug/l	20	7.0	10	
p-Ethyltoluene	ND		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	ND		ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	98	70-130	

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 04/26/18 14:25 L1815070-10

Client ID: Date Received: 04/27/18 FIELD BLANK Field Prep: Sample Location: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/02/18 01:34

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070

Project Number: 3612162331

L1815070-10

FIELD BLANK

LONG ISLAND CITY, NY

SAMPLE RESULTS

Date Collected: 04/26/18 14:25

Date Received: 04/27/18

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wo	estborough Lab					
Trichloroethene	ND		/1	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND ND		ug/l	2.5	0.70	1
p/m-Xylene	ND ND		ug/l	2.5	0.70	1
o-Xylene			ug/l			
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND 		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
			-			

05/04/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815070

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 14:25

Report Date:

L1815070-10 Client ID: Date Received: 04/27/18 FIELD BLANK

Sample Location: Field Prep: Not Specified LONG ISLAND CITY, NY

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	97	70-130	

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

LONG ISLAND CITY, NY

L1815070-11

TRIP BLANK

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 00:00

Date Received: 04/27/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/02/18 02:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L1815070

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number:

Project Number: 3612162331

L1815070-11

TRIP BLANK

LONG ISLAND CITY, NY

SAMPLE RESULTS

Date Collected: 04/26/18 00:00

Date Received: 04/27/18

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070

Project Number: 3612162331

L1815070-11

SAMPLE RESULTS

Date Collected: 04/26/18 00:00

Report Date:

Client ID: TRIP BLANK Date Received: 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	96	70-130	

L1815070

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number:

Project Number: 3612162331 **Report Date:** 05/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/01/18 19:24

Analyst: AD

Methylene chloride ND ug/l 2.5 1,1-Dichloroethane ND ug/l 2.5 Chloroform ND ug/l 2.5 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	WG1111832-5
1,1-Dichloroethane ND ug/l 2.5 Chloroform ND ug/l 2.5 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 2.5 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	
Chloroform ND ug/l 2.5 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.70
Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 2.5 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.70
1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.70
Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 2.5 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.13
1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 2.5 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.14
Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 2.5 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.15
Chlorobenzene ND ug/l 2.5 Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 2.5 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.50
Trichlorofluoromethane ND ug/l 2.5 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 2.5 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.18
1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 2.5 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.70
1,1,1-TrichloroethaneNDug/l2.5BromodichloromethaneNDug/l0.50trans-1,3-DichloropropeneNDug/l0.50	0.70
Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50	0.13
trans-1,3-Dichloropropene ND ug/l 0.50	0.70
	0.19
	0.16
cis-1,3-Dichloropropene ND ug/l 0.50	0.14
1,3-Dichloropropene, Total ND ug/l 0.50	0.14
1,1-Dichloropropene ND ug/l 2.5	0.70
Bromoform ND ug/l 2.0	0.65
1,1,2,2-Tetrachloroethane ND ug/l 0.50	0.17
Benzene ND ug/l 0.50	0.16
Toluene ND ug/l 2.5	0.70
Ethylbenzene ND ug/l 2.5	0.70
Chloromethane ND ug/l 2.5	0.70
Bromomethane ND ug/l 2.5	0.70
Vinyl chloride ND ug/l 1.0	0.07
Chloroethane ND ug/l 2.5	0.70
1,1-Dichloroethene ND ug/l 0.50	0.17
trans-1,2-Dichloroethene ND ug/l 2.5	0.70
Trichloroethene ND ug/l 0.50	

L1815070

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number:

Project Number: 3612162331 **Report Date:** 05/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/01/18 19:24

Analyst: AD

arameter	Result	Qualifier Units	RL.	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-08,10-11	Batch: WG1111832-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number:

Project Number: 3612162331 **Report Date:** 05/04/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/01/18 19:24

Analyst: AD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough La	b for sample(s):	01-08,10-11	Batch: WG1111832-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Tentatively Identified Compounds

No Tentatively Identified Compounds ND

ug/l

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070

Project Number: 3612162331 **Report Date:** 05/04/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/01/18 19:24

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	borough La	ab for sample	e(s):	01-08,10-11	Batch: WG1111832-5

		Acceptance
Surrogate	%Recovery Qua	llifier Criteria
1,2-Dichloroethane-d4	115	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	106	70-130
Dibromofluoromethane	97	70-130

Project Number: 3612162331

Lab Number: L1815070

Report Date: 05/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/02/18 09:40

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 09	9 Batch:	WG1111878-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 3612162331

Lab Number: L1815070

Report Date: 05/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/02/18 09:40

Analyst: PD

Volatile Organics by GC/MS - Westborough Lab for sample(s): 09 Batch: WG1111878-5	Parameter	Result	Qualifier Units	RL	MDL
1,3-Dichlorobenzene ND	olatile Organics by GC/MS	- Westborough Lab	for sample(s): 09	Batch:	WG1111878-5
1,4-Dichlorobenzene ND	1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 5.0 1.0 1,2-Jichloropropane ND ug/l 5.0 1.0 1,2-Jichloropropane ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l	1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
Description	1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
o-Xylene ND ug/l 2.5 0.70 Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Dibromomethane ND ug/l 5.0 1.0 1,2,3-Trichloropropane ND ug/l 5.0 1.5 Acrylonitrile ND ug/l 5.0 1.5 Styrene ND ug/l 5.0 1.5 Styrene ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 <td< td=""><td>Methyl tert butyl ether</td><td>ND</td><td>ug/l</td><td>2.5</td><td>0.70</td></td<>	Methyl tert butyl ether	ND	ug/l	2.5	0.70
Xylenes, Total ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Dibromomethane ND ug/l 5.0 1.0 1,2,3-Trichloropropane ND ug/l 2.5 0.70 Acrylonitrile ND ug/l 5.0 1.5 Styrene ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70	p/m-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1,2-Dichloroethene, Total ND ug/l 2.5 0.70 Dibromomethane ND ug/l 5.0 1.0 1,2,3-Trichloropropane ND ug/l 5.0 1.5 Acrylonitrile ND ug/l 5.0 1.5 Styrene ND ug/l 5.0 1.5 Styrene ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70	o-Xylene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total ND ug/l 2.5 0.70	Xylenes, Total	ND	ug/l	2.5	0.70
Dibromomethane ND ug/l 5.0 1.0 1,2,3-Trichloropropane ND ug/l 2.5 0.70 Acrylonitrile ND ug/l 5.0 1.5 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70	cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2,3-Trichloropropane ND ug/l 2.5 0.70 Acrylonitrile ND ug/l 5.0 1.5 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70	1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Acrylonitrile ND ug/l 5.0 1.5 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70	Dibromomethane	ND	ug/l	5.0	1.0
Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dichloropropane ND ug/l 2.5 0.70 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dichloropropane ND ug/l 2.5 0.70 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	Acrylonitrile	ND	ug/l	5.0	1.5
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	Styrene	ND	ug/l	2.5	0.70
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND	ug/l	5.0	1.0
2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	Acetone	ND	ug/l	5.0	1.5
Vinyl acetate ND ug/l 5.0 1.0 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	Carbon disulfide	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	2-Butanone	ND	ug/l	5.0	1.9
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	Vinyl acetate	ND	ug/l	5.0	1.0
Bromochloromethane ND ug/l 2.5 0.70 2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2,2-Dichloropropane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane ND ug/l 2.0 0.65 1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	Bromochloromethane	ND	ug/l	2.5	0.70
1,3-Dichloropropane ND ug/l 2.5 0.70 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	1,2-Dibromoethane	ND	ug/l	2.0	0.65
Bromobenzene ND ug/l 2.5 0.70 n-Butylbenzene ND ug/l 2.5 0.70	1,3-Dichloropropane	ND	ug/l	2.5	0.70
n-Butylbenzene ND ug/l 2.5 0.70	1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Bromobenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene ND ug/l 2.5 0.70	n-Butylbenzene	ND	ug/l	2.5	0.70
·	sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene ND ug/l 2.5 0.70	tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 3612162331

Lab Number:

L1815070

Report Date:

05/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/02/18 09:40

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 09	Batch:	WG1111878-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL **Lab Number:** L1815070

Project Number: 3612162331 **Report Date:** 05/04/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/02/18 09:40

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS - We	stborough La	b for sampl	e(s): 09	Batch: WG	G1111878-5	

		Acceptance	
Surrogate	%Recovery 0	Qualifier Criteria	_
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	96	70-130	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

3612162331

Project Number:

OTALINGRAD/ITTORADE OV Q

Lab Number: L1815070

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	01-08,10-11 Bat	ch: WG111	1832-3 WG1111	832-4		
Methylene chloride	92		91		70-130	1	20	
1,1-Dichloroethane	98		98		70-130	0	20	
Chloroform	94		95		70-130	1	20	
Carbon tetrachloride	94		94		63-132	0	20	
1,2-Dichloropropane	97		98		70-130	1	20	
Dibromochloromethane	94		94		63-130	0	20	
1,1,2-Trichloroethane	98		97		70-130	1	20	
Tetrachloroethene	94		93		70-130	1	20	
Chlorobenzene	94		95		75-130	1	20	
Trichlorofluoromethane	110		110		62-150	0	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	96		98		67-130	2	20	
trans-1,3-Dichloropropene	100		100		70-130	0	20	
cis-1,3-Dichloropropene	95		97		70-130	2	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	86		86		54-136	0	20	
1,1,2,2-Tetrachloroethane	100		100		67-130	0	20	
Benzene	96		96		70-130	0	20	
Toluene	94		94		70-130	0	20	
Ethylbenzene	94		94		70-130	0	20	
Chloromethane	100		100		64-130	0	20	
Bromomethane	73		76		39-139	4	20	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number:

3612162331

Lab Number: L1815070

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-08,10-11 Bate	ch: WG111	11832-3 WG1111	832-4	
Vinyl chloride	110		110		55-140	0	20
Chloroethane	92		93		55-138	1	20
1,1-Dichloroethene	99		99		61-145	0	20
trans-1,2-Dichloroethene	96		95		70-130	1	20
Trichloroethene	95		97		70-130	2	20
1,2-Dichlorobenzene	94		95		70-130	1	20
1,3-Dichlorobenzene	94		94		70-130	0	20
1,4-Dichlorobenzene	93		93		70-130	0	20
Methyl tert butyl ether	97		98		63-130	1	20
p/m-Xylene	90		90		70-130	0	20
o-Xylene	90		90		70-130	0	20
cis-1,2-Dichloroethene	93		93		70-130	0	20
Dibromomethane	100		100		70-130	0	20
1,2,3-Trichloropropane	110		110		64-130	0	20
Acrylonitrile	99		100		70-130	1	20
Styrene	90		90		70-130	0	20
Dichlorodifluoromethane	110		100		36-147	10	20
Acetone	96		100		58-148	4	20
Carbon disulfide	98		98		51-130	0	20
2-Butanone	98		100		63-138	2	20
Vinyl acetate	100		100		70-130	0	20
4-Methyl-2-pentanone	96		97		59-130	1	20
2-Hexanone	110		110		57-130	0	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815070

Report Date:

05/04/18

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
latile Organics by GC/MS - Westbo	orough Lab Associated sample(s): 01-08,10-11 Batch	n: WG1111832-3 WG1111	832-4	
Bromochloromethane	95	97	70-130	2	20
2,2-Dichloropropane	110	110	63-133	0	20
1,2-Dibromoethane	99	100	70-130	1	20
1,3-Dichloropropane	100	100	70-130	0	20
1,1,1,2-Tetrachloroethane	95	94	64-130	1	20
Bromobenzene	96	96	70-130	0	20
n-Butylbenzene	97	98	53-136	1	20
sec-Butylbenzene	96	96	70-130	0	20
tert-Butylbenzene	97	97	70-130	0	20
o-Chlorotoluene	95	94	70-130	1	20
p-Chlorotoluene	97	97	70-130	0	20
1,2-Dibromo-3-chloropropane	88	89	41-144	1	20
Hexachlorobutadiene	100	110	63-130	10	20
Isopropylbenzene	97	98	70-130	1	20
p-Isopropyltoluene	97	98	70-130	1	20
Naphthalene	86	86	70-130	0	20
n-Propylbenzene	98	98	69-130	0	20
1,2,3-Trichlorobenzene	84	86	70-130	2	20
1,2,4-Trichlorobenzene	91	92	70-130	1	20
1,3,5-Trimethylbenzene	96	96	64-130	0	20
1,2,4-Trimethylbenzene	98	98	70-130	0	20
1,4-Dioxane	128	132	56-162	3	20
p-Diethylbenzene	96	97	70-130	1	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Lab Number: L1815070

Project Number: 3612162331 Report Date:

05/04/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%. Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): (01-08,10-11 Bat	ch: WG111183	32-3 WG1111	832-4		
p-Ethyltoluene	98		98		70-130	0		20
1,2,4,5-Tetramethylbenzene	95		94		70-130	1		20
Ethyl ether	97		97		59-134	0		20
trans-1,4-Dichloro-2-butene	100		92		70-130	8		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	114	120	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	107	108	70-130
Dibromofluoromethane	99	100	70-130

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070

arameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 09	Batch: \	NG1111878-3	WG1111878-4			
Methylene chloride	91		89		70-130	2		20
1,1-Dichloroethane	98		96		70-130	2		20
Chloroform	94		92		70-130	2		20
Carbon tetrachloride	97		93		63-132	4		20
1,2-Dichloropropane	96		94		70-130	2		20
Dibromochloromethane	91		89		63-130	2		20
1,1,2-Trichloroethane	91		90		70-130	1		20
Tetrachloroethene	92		89		70-130	3		20
Chlorobenzene	92		90		75-130	2		20
Trichlorofluoromethane	110		100		62-150	10		20
1,2-Dichloroethane	110		110		70-130	0		20
1,1,1-Trichloroethane	100		98		67-130	2		20
Bromodichloromethane	96		93		67-130	3		20
trans-1,3-Dichloropropene	96		94		70-130	2		20
cis-1,3-Dichloropropene	95		94		70-130	1		20
1,1-Dichloropropene	100		96		70-130	4		20
Bromoform	83		82		54-136	1		20
1,1,2,2-Tetrachloroethane	90		90		67-130	0		20
Benzene	96		94		70-130	2		20
Toluene	92		89		70-130	3		20
Ethylbenzene	92		90		70-130	2		20
Chloromethane	110		110		64-130	0		20
Bromomethane	98		89		39-139	10		20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 0	9 Batch: WG1	111878-3	WG1111878-4				
Vinyl chloride	110		100		55-140	10		20	
Chloroethane	94		88		55-138	7		20	
1,1-Dichloroethene	99		96		61-145	3		20	
trans-1,2-Dichloroethene	96		93		70-130	3		20	
Trichloroethene	96		93		70-130	3		20	
1,2-Dichlorobenzene	92		90		70-130	2		20	
1,3-Dichlorobenzene	92		90		70-130	2		20	
1,4-Dichlorobenzene	89		88		70-130	1		20	
Methyl tert butyl ether	91		91		63-130	0		20	
p/m-Xylene	90		85		70-130	6		20	
o-Xylene	90		90		70-130	0		20	
cis-1,2-Dichloroethene	94		92		70-130	2		20	
Dibromomethane	97		98		70-130	1		20	
1,2,3-Trichloropropane	100		99		64-130	1		20	
Acrylonitrile	92		92		70-130	0		20	
Styrene	90		85		70-130	6		20	
Dichlorodifluoromethane	110		100		36-147	10		20	
Acetone	110		100		58-148	10		20	
Carbon disulfide	99		95		51-130	4		20	
2-Butanone	91		95		63-138	4		20	
Vinyl acetate	95		95		70-130	0		20	
4-Methyl-2-pentanone	87		85		59-130	2		20	
2-Hexanone	98		100		57-130	2		20	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 09	9 Batch: WG1	111878-3	WG1111878-4		
Bromochloromethane	94		92		70-130	2	20
2,2-Dichloropropane	110		110		63-133	0	20
1,2-Dibromoethane	92		91		70-130	1	20
1,3-Dichloropropane	94		92		70-130	2	20
1,1,1,2-Tetrachloroethane	93		91		64-130	2	20
Bromobenzene	94		92		70-130	2	20
n-Butylbenzene	95		91		53-136	4	20
sec-Butylbenzene	95		91		70-130	4	20
tert-Butylbenzene	96		92		70-130	4	20
o-Chlorotoluene	93		90		70-130	3	20
p-Chlorotoluene	97		94		70-130	3	20
1,2-Dibromo-3-chloropropane	78		80		41-144	3	20
Hexachlorobutadiene	110		100		63-130	10	20
Isopropylbenzene	96		93		70-130	3	20
p-Isopropyltoluene	96		92		70-130	4	20
Naphthalene	76		76		70-130	0	20
n-Propylbenzene	96		93		69-130	3	20
1,2,3-Trichlorobenzene	76		76		70-130	0	20
1,2,4-Trichlorobenzene	85		84		70-130	1	20
1,3,5-Trimethylbenzene	95		92		64-130	3	20
1,2,4-Trimethylbenzene	96		93		70-130	3	20
1,4-Dioxane	126		128		56-162	2	20
p-Diethylbenzene	95		92		70-130	3	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Lab Number: L1815070

Project Number: 3612162331 Report Date:

05/04/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 09	Batch: WG	1111878-3	WG1111878-4				
p-Ethyltoluene	97		93		70-130	4		20	
1,2,4,5-Tetramethylbenzene	92		91		70-130	1		20	
Ethyl ether	93		92		59-134	1		20	
trans-1,4-Dichloro-2-butene	100		100		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	116	113	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene	108	107	70-130
Dibromofluoromethane	100	100	70-130

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815070

Report Date:

05/04/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS ID: MW-6D-0418	- Westborough	Lab Assoc	ciated sample((s): 01-08,10-11	QC Batch ID: WG	31111832-6 V	VG1111832-7 QC S	Sample	: L1815070-05 Clien
Methylene chloride	ND	10	10	100	9.8	98	70-130	2	20
1,1-Dichloroethane	ND	10	11	110	11	110	70-130	0	20
Chloroform	ND	10	11	110	11	110	70-130	0	20
Carbon tetrachloride	ND	10	11	110	11	110	63-132	0	20
1,2-Dichloropropane	ND	10	11	110	10	100	70-130	10	20
Dibromochloromethane	ND	10	10	100	9.7	97	63-130	3	20
1,1,2-Trichloroethane	ND	10	10	100	10	100	70-130	0	20
Tetrachloroethene	0.58	10	11	104	10	94	70-130	10	20
Chlorobenzene	ND	10	10	100	9.9	99	75-130	1	20
Trichlorofluoromethane	ND	10	12	120	12	120	62-150	0	20
1,2-Dichloroethane	ND	10	12	120	12	120	70-130	0	20
1,1,1-Trichloroethane	ND	10	12	120	11	110	67-130	9	20
Bromodichloromethane	ND	10	10	100	10	100	67-130	0	20
trans-1,3-Dichloropropene	ND	10	10	100	10	100	70-130	0	20
cis-1,3-Dichloropropene	ND	10	10	100	10	100	70-130	0	20
1,1-Dichloropropene	ND	10	11	110	11	110	70-130	0	20
Bromoform	ND	10	8.9	89	8.6	86	54-136	3	20
1,1,2,2-Tetrachloroethane	ND	10	10	100	10	100	67-130	0	20
Benzene	ND	10	11	110	10	100	70-130	10	20
Toluene	ND	10	10	100	10	100	70-130	0	20
Ethylbenzene	ND	10	10	100	9.8	98	70-130	2	20
Chloromethane	ND	10	12	120	12	120	64-130	0	20
Bromomethane	ND	10	8.1	81	9.0	90	39-139	11	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
	•			•	·	_			
Volatile Organics by GC/MS - ID: MW-6D-0418	- Westborough La	ab Asso	ociated sample	(s): 01-08,10-11	QC Batch ID: WG	31111832-6 V	VG1111832-7 QC (Sample	: L1815070-05 Client
Vinyl chloride	ND	10	13	130	12	120	55-140	8	20
Chloroethane	ND	10	10	100	10	100	55-138	0	20
1,1-Dichloroethene	ND	10	12	120	11	110	61-145	9	20
rans-1,2-Dichloroethene	ND	10	11	110	10	100	70-130	10	20
Frichloroethene	1.1	10	12	109	11	99	70-130	9	20
,2-Dichlorobenzene	ND	10	10	100	9.7	97	70-130	3	20
1,3-Dichlorobenzene	ND	10	10	100	9.7	97	70-130	3	20
,4-Dichlorobenzene	ND	10	9.9	99	9.6	96	70-130	3	20
Methyl tert butyl ether	ND	10	10	100	9.9	99	63-130	1	20
o/m-Xylene	ND	20	20	100	19	95	70-130	5	20
o-Xylene	ND	20	20	100	19	95	70-130	5	20
cis-1,2-Dichloroethene	ND	10	11	110	10	100	70-130	10	20
Dibromomethane	ND	10	11	110	11	110	70-130	0	20
1,2,3-Trichloropropane	ND	10	11	110	11	110	64-130	0	20
Acrylonitrile	ND	10	10	100	10	100	70-130	0	20
Styrene	ND	20	19	95	19	95	70-130	0	20
Dichlorodifluoromethane	ND	10	12	120	11	110	36-147	9	20
Acetone	3.8J	10	12	120	10	100	58-148	18	20
Carbon disulfide	ND	10	11	110	11	110	51-130	0	20
2-Butanone	ND	10	10	100	9.6	96	63-138	4	20
√inyl acetate	ND	10	10	100	9.7	97	70-130	3	20
4-Methyl-2-pentanone	ND	10	9.8	98	9.4	94	59-130	4	20
2-Hexanone	ND	10	11	110	11	110	57-130	0	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815070

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS ID: MW-6D-0418	- Westborough	Lab Asso	ciated sample	e(s): 01-08,10-11	QC Batch ID: WG	i1111832-6 V	VG1111832-7 QC S	Sample	: L1815070-05 Client
Bromochloromethane	ND	10	10	100	10	100	70-130	0	20
2,2-Dichloropropane	ND	10	11	110	11	110	63-133	0	20
1,2-Dibromoethane	ND	10	10	100	10	100	70-130	0	20
1,3-Dichloropropane	ND	10	10	100	10	100	70-130	0	20
1,1,1,2-Tetrachloroethane	ND	10	10	100	10	100	64-130	0	20
Bromobenzene	ND	10	10	100	10	100	70-130	0	20
n-Butylbenzene	ND	10	9.8	98	9.6	96	53-136	2	20
sec-Butylbenzene	ND	10	9.9	99	9.6	96	70-130	3	20
tert-Butylbenzene	ND	10	10	100	9.9	99	70-130	1	20
o-Chlorotoluene	ND	10	10	100	9.7	97	70-130	3	20
p-Chlorotoluene	ND	10	10	100	9.9	99	70-130	1	20
1,2-Dibromo-3-chloropropane	ND	10	9.0	90	8.5	85	41-144	6	20
Hexachlorobutadiene	ND	10	10	100	11	110	63-130	10	20
Isopropylbenzene	ND	10	10	100	10	100	70-130	0	20
p-Isopropyltoluene	ND	10	10	100	9.7	97	70-130	3	20
Naphthalene	ND	10	9.0	90	8.5	85	70-130	6	20
n-Propylbenzene	ND	10	10	100	9.9	99	69-130	1	20
1,2,3-Trichlorobenzene	ND	10	8.5	85	8.4	84	70-130	1	20
1,2,4-Trichlorobenzene	ND	10	9.3	93	9.2	92	70-130	1	20
1,3,5-Trimethylbenzene	ND	10	10	100	9.8	98	64-130	2	20
1,2,4-Trimethylbenzene	ND	10	10	100	9.9	99	70-130	1	20
1,4-Dioxane	ND	500	600	120	610	122	56-162	2	20
p-Diethylbenzene	ND	10	10	100	9.6	96	70-130	4	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815070

Report Date:

05/04/18

Parameter	Native Sample	MS Adde	MS ed Found	MS %Recovery		MSD Found	MSD %Recovery		Recovery Limits	RPD		RPD Limits	
Volatile Organics by GC/MS - ID: MW-6D-0418	- Westborough	Lab A	Associated sample((s): 01-08,10-11	QC Batch	n ID: WG	G1111832-6 W	/G11118	332-7 QC	Sample:	L181507	0-05 (Client
p-Ethyltoluene	ND	10	0 10	100		9.9	99		70-130	1		20	
1,2,4,5-Tetramethylbenzene	ND	10	0 10	100		9.6	96		70-130	4		20	
Ethyl ether	ND	10	0 10	100		9.8	98		59-134	2		20	
trans-1,4-Dichloro-2-butene	ND	10) 11	110		8.7	87		70-130	23	Q	20	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	114	112	70-130
4-Bromofluorobenzene	107	107	70-130
Dibromofluoromethane	99	98	70-130
Toluene-d8	100	100	70-130

METALS

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 12:35

Lab Number:

Report Date:

Lab ID: L1815070-01 Client ID: BMW-1-0418

Client ID: BMW-1-0418 Date Received: 04/27/18
Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.0132		mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Antimony, Total	0.00363	J	mg/l	0.00400	0.00042	. 1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Arsenic, Total	0.00125		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Barium, Total	0.1025		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00116		mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Calcium, Total	258.		mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Chromium, Total	0.01476		mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Cobalt, Total	0.01313		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Copper, Total	0.00366		mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Iron, Total	0.464		mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Lead, Total	0.00044	J	mg/l	0.00100	0.00034	. 1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Magnesium, Total	29.8		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Manganese, Total	3.659		mg/l	0.00100	0.00044	. 1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 12:46	EPA 7470A	1,7470A	MG
Nickel, Total	0.07921		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Potassium, Total	43.6		mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Selenium, Total	0.00181	J	mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Sodium, Total	204.		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Thallium, Total	0.00029	J	mg/l	0.00050	0.00014	. 1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 10:24	EPA 3005A	1,6020A	AM
Dissolved Metals -	Mansfield	Lab									
Aluminum, Dissolved	0.00393	J	mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 12:29	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00364	J	mg/l	0.00400	0.00042	. 1	05/02/18 08:45	05/02/18 12:29	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.00106		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:29	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.1036		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 12:29	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 12:29	EPA 3005A	1,6020A	AM

Project Number: 3612162331

Lab Number: Report Date:

L1815070

05/04/18

SAMPLE RESULTS

Date Collected:

04/26/18 12:35

Lab ID: Client ID: L1815070-01 BMW-1-0418

Date Received:

04/27/18

Sample Location:

LONG ISLAND CITY, NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	0.00117		mg/l	0.00020	0.00005	1	05/02/19 09:41	5 05/02/18 12:29	EDA 2005A	1,6020A	AM
-						-				1,6020A	
Calcium, Dissolved	264.		mg/l	0.100	0.0394	1		5 05/02/18 12:29		1,6020A	AM
Chromium, Dissolved	0.00110		mg/l	0.00100	0.00017	1		5 05/02/18 12:29		•	AM
Cobalt, Dissolved	0.01404		mg/l	0.00050	0.00016	1		5 05/02/18 12:29		1,6020A	AM
Copper, Dissolved	0.00330		mg/l	0.00100	0.00038	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Iron, Dissolved	0.0285	J	mg/l	0.0500	0.0191	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	30.0		mg/l	0.0700	0.0242	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Manganese, Dissolved	3.816		mg/l	0.00100	0.00044	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	3 05/02/18 16:33	EPA 7470A	1,7470A	MG
Nickel, Dissolved	0.08319		mg/l	0.00200	0.00055	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Potassium, Dissolved	44.4		mg/l	0.100	0.0309	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Sodium, Dissolved	203.		mg/l	0.100	0.0293	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Thallium, Dissolved	0.00030	J	mg/l	0.00050	0.00014	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	05/02/18 08:4	5 05/02/18 12:29	EPA 3005A	1,6020A	AM

Project Number: 3612162331

Lab Number: Report Date:

Date Collected:

Date Received:

Field Prep:

L1815070

04/26/18 13:10

Not Specified

05/04/18

04/27/18

SAMPLE RESULTS

Lab ID: L1815070-02

Client ID: BMW-2-0418

Sample Location: LONG ISLAND CITY, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.0707		mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Antimony, Total	0.00068	J	mg/l	0.00400	0.00042	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Arsenic, Total	0.00080		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Barium, Total	0.1146		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00727		mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Calcium, Total	284.		mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Chromium, Total	0.00447		mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Cobalt, Total	0.01489		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Copper, Total	0.00400		mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Iron, Total	0.445		mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Magnesium, Total	40.7		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Manganese, Total	5.743		mg/l	0.00100	0.00044	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 12:48	EPA 7470A	1,7470A	MG
Nickel, Total	0.1369		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Potassium, Total	34.3		mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Sodium, Total	162.		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Thallium, Total	0.00015	J	mg/l	0.00050	0.00014	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 10:27	EPA 3005A	1,6020A	AM
Dissolved Metals - I	Mansfield	Lab									
Aluminum, Dissolved	0.00489	J	mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00082	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.00051		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.1248		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM

3612162331

Lab Number:

L1815070

Project Number:

Report Date:

05/04/18

SAMPLE RESULTS

Lab ID: L1815070-02 Client ID:

Date Collected:

04/26/18 13:10

Sample Location:

BMW-2-0418

Date Received:

04/27/18

LONG ISLAND CITY, NY

Field Prep: Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	0.00767		mg/l	0.00020	0.00005	1	05/02/18 08:45	5 05/02/18 12:33	EPA 3005A	1,6020A	AM
Calcium, Dissolved	307.		mg/l	0.100	0.0394	1	05/02/18 08:45	5 05/02/18 12:33	EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00203		mg/l	0.00100	0.00017	1	05/02/18 08:45	5 05/02/18 12:33	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	0.01379		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Copper, Dissolved	0.00367		mg/l	0.00100	0.00038	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Iron, Dissolved	0.0249	J	mg/l	0.0500	0.0191	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	41.3		mg/l	0.0700	0.0242	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Manganese, Dissolved	5.380		mg/l	0.00100	0.00044	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	3 05/02/18 16:35	EPA 7470A	1,7470A	MG
Nickel, Dissolved	0.1236		mg/l	0.00200	0.00055	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Potassium, Dissolved	38.5		mg/l	0.100	0.0309	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	05/02/18 08:45	5 05/02/18 12:33	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Sodium, Dissolved	161.		mg/l	0.100	0.0293	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Thallium, Dissolved	0.00014	J	mg/l	0.00050	0.00014	1	05/02/18 08:45	5 05/02/18 12:33	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	05/02/18 08:45	05/02/18 12:33	EPA 3005A	1,6020A	AM

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 14:00

Lab Number:

Report Date:

Lab ID: L1815070-03 Client ID: BMW-3-0418

Client ID: BMW-3-0418 Date Received: 04/27/18 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Antimony, Total 0.00081 J mg/l 0.00400 0.0042 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Arsenic, Total 0.02126 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Barium, Total 0.3487 mg/l 0.00050 0.00017 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Berylium, Total ND mg/l 0.00050 0.00010 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cadmium, Total ND mg/l 0.00050 0.00005 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cadmium, Total ND mg/l 0.00050 0.00005 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cadmium, Total 0.00986 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cobalt, Total 0.00386 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cobalt, Total 0.00313 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cobalt, Total 0.00111 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Copper, Total 0.00411 mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Iron, Total 80.0 mg/l 0.00500 0.0016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Iron, Total 80.0 mg/l 0.00500 0.0016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Iron, Total 40.8 mg/l 0.00500 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total 40.8 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total ND mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total ND mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Potassium, Total ND mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Potassium, Total ND mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00000 0.00014 1 05/01/18 08:40 05/02/18 10:47 EP	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Animony, Total 0.00081 J mg/l 0.00400 0.0042 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Arsenic, Total 0.02126 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Barium, Total ND mg/l 0.00050 0.00017 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Beryllium, Total ND mg/l 0.00050 0.00010 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cadmium, Total ND mg/l 0.00050 0.00005 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Calcium, Total ND mg/l 0.00050 0.00005 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Calcium, Total ND mg/l 0.00050 0.00017 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Calcium, Total 0.00988 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cobalt, Total 0.01313 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cobalt, Total 0.00131 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Iron, Total 0.00411 mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Iron, Total 0.00081 J mg/l 0.00500 0.0191 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Iron, Total 0.00081 J mg/l 0.00500 0.0191 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total 40.8 mg/l 0.00000 0.00034 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total 40.8 mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total 40.8 mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total ND mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Potassium, Total ND mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00200 0.00050 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00200 0.00157 1 05/01/18 08:40 05/02/18 10:4	Total Metals - Mans	sfield Lab										
Arsenic, Total 0.02126 mg/l 0.00050 0.00016 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Berlum, Total 0.3487 mg/l 0.00050 0.00017 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Berlim, Total ND mg/l 0.00050 0.00010 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Cadmium, Total ND mg/l 0.00020 0.00005 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Calcium, Total 281. mg/l 0.100 0.0394 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Calcium, Total 281. mg/l 0.100 0.0394 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Chromium, Total 0.00998 mg/l 0.00100 0.00017 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Copper, Total 0.001313 mg/l 0.00050 0.00016 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Copper, Total 0.00411 mg/l 0.00100 0.00038 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Iron, Total 80.0 mg/l 0.0500 0.0191 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Magnesium, Total 40.8 mg/l 0.00100 0.00034 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Magnesium, Total 40.8 mg/l 0.00100 0.00044 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Magnesium, Total ND mg/l 0.00100 0.00044 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Magnesium, Total ND mg/l 0.00200 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Magnesium, Total ND mg/l 0.00200 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Magnesium, Total ND mg/l 0.00200 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00200 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00000 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00000 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00000 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00000 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00000 0.00014 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020	Aluminum, Total	0.403		mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Barium, Total 0.3487	Antimony, Total	0.00081	J	mg/l	0.00400	0.00042	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Beryllium, Total ND	Arsenic, Total	0.02126		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Cadmium, Total ND mg/l 0.00020 0.00005 1 0.6/01/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Calcium, Total 281. mg/l 0.100 0.0394 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Chromium, Total 0.00998 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Cobalt, Total 0.01313 mg/l 0.00050 0.0016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Copper, Total 0.00411 mg/l 0.0000 0.0018 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Iron, Total 80.0 mg/l 0.0000 0.00191 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Lead, Total 0.00081 J mg/l 0.00100 0.0044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Mangarese, Total	Barium, Total	0.3487		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Calcium, Total 281. mg/l 0.100 0.0394 1 0.5/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Chromium, Total 0.00998 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Cobalt, Total 0.01313 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Copper, Total 0.00411 mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Iron, Total 80.0 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Lead, Total 0.0081 J mg/l 0.0010 0.0034 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total 40.8 mg/l 0.0010 0.0044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Marganesium, Total	Beryllium, Total	ND		mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Chromium, Total 0.00998 mg/l 0.00100 0.00017 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Cobalt, Total 0.01313 mg/l 0.00050 0.00016 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Copper, Total 0.00411 mg/l 0.00100 0.00038 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Iron, Total 80.0 mg/l 0.00500 0.0191 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Iron, Total 40.8 mg/l 0.00100 0.00034 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Magnesium, Total 40.8 mg/l 0.00100 0.00044 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Magnesium, Total 5.194 mg/l 0.00100 0.00044 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Mercury, Total ND mg/l 0.00020 0.00066 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Mercury, Total ND mg/l 0.00200 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Mercury, Total 0.3830 mg/l 0.00200 0.00055 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Potassium, Total 64.6 mg/l 0.100 0.0309 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00050 0.00173 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00050 0.00173 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00050 0.0016 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00050 0.0016 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00050 0.0016 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total ND mg/l 0.00050 0.0016 1 0.501/18 08:40 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total 0.01342 mg/l 0.00050 0.0016 1 0.501/18 08:45 05/02/18 10:47 EPA 3005A 1.6020A AM Silver, Total 0.01342 mg/l 0.00050 0.0	Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Cobalt, Total 0.01313 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Copper, Total 0.00411 mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Iron, Total 80.0 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Lead, Total 0.00081 J mg/l 0.00100 0.00242 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total 40.8 mg/l 0.00100 0.0042 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Marganese, Total 5.194 mg/l 0.00020 0.00066 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Mickel, Total ND mg/l 0.00020 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total	Calcium, Total	281.		mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Copper, Total 0.00411	Chromium, Total	0.00998		mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Iron, Total 80.0 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM	Cobalt, Total	0.01313		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Lead, Total 0.00081 J mg/l 0.00100 0.00034 1 0.5/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Magnesium, Total 40.8 mg/l 0.0700 0.0242 1 0.5/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Manganese, Total 5.194 mg/l 0.00100 0.00044 1 0.5/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Mercury, Total ND mg/l 0.00020 0.00066 1 0.5/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Nickel, Total 0.3830 mg/l 0.00200 0.00555 1 0.5/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Potassium, Total ND mg/l 0.00500 0.00173 1 0.5/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00040 0.00016 1 0.5/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total <td>Copper, Total</td> <td>0.00411</td> <td></td> <td>mg/l</td> <td>0.00100</td> <td>0.00038</td> <td>1</td> <td>05/01/18 08:40</td> <td>05/02/18 10:47</td> <td>EPA 3005A</td> <td>1,6020A</td> <td>AM</td>	Copper, Total	0.00411		mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Magnesium, Total 40.8 mg/l 0.0700 0.0242 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Manganese, Total 5.194 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Mercury, Total ND mg/l 0.00200 0.00066 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Nickel, Total 0.3830 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Potassium, Total 64.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00040 0.0016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total ND	Iron, Total	80.0		mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Manganese, Total 5.194 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Mercury, Total ND mg/l 0.00020 0.00006 1 05/01/18 08:40 05/02/18 12:50 EPA 7470A 1,7470A MG Nickel, Total 0.3830 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Potassium, Total 64.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00040 0.0016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total 229. mg/l 0.00050 0.0014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Thallium, Total ND	Lead, Total	0.00081	J	mg/l	0.00100	0.00034	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Mercury, Total ND mg/l 0.00020 0.00006 1 05/01/18 11:50 05/02/18 12:50 EPA 7470A 1,7470A MG Nickel, Total 0.3830 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Potassium, Total 64.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total 229. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Vanadium, Total ND mg/l 0.00050 0.0014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Zinc, Total 0.01342	Magnesium, Total	40.8		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Nickel, Total 0.3830 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Potassium, Total 64.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total 229. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Vanadium, Total ND mg/l 0.00500 0.00014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Vanadium, Total 0.00542 mg/l 0.00500 0.00157 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Zinc, Total 0.01342 mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Dissolved Metals - Mansfield Lab Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00061 J mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM ARSENIUM, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM ARSENIUM, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM ARSENIUM, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM ARSENIUM, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM ARSENIUM, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM ARSENIUM, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM ARSENIUM, DISSOlved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08	Manganese, Total	5.194		mg/l	0.00100	0.00044	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Potassium, Total 64.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total 229. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Vanadium, Total 0.00542 mg/l 0.00500 0.00157 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Zinc, Total 0.01342 mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Dissolved Metals - Mansfield Lab Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.00061 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 12:50	EPA 7470A	1,7470A	MG
Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total 229. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Vanadium, Total 0.00542 mg/l 0.00500 0.00157 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Zinc, Total 0.01342 mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Dissolved Metals - Mansfield Lab Mansfield Lab AM Antimony, Dissolved 0.00902 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A<	Nickel, Total	0.3830		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Sodium, Total 229. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Thallium, Total ND mg/l 0.00050 0.0014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Vanadium, Total 0.00542 mg/l 0.00500 0.00157 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Zinc, Total 0.01342 mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Dissolved Metals - Mansfield Lab Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A <	Potassium, Total	64.6		mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Sodium, Total 229. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Vanadium, Total 0.00542 mg/l 0.00500 0.00157 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Zinc, Total 0.01342 mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Dissolved Metals - Mansfield Lab Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A	Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Vanadium, Total 0.00542 mg/l 0.00500 0.00157 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Zinc, Total 0.01342 mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Dissolved Metals - Mansfield Lab Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.00061 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Vanadium, Total 0.00542 mg/l 0.00500 0.00157 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Zinc, Total 0.01342 mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Dissolved Metals - Mansfield Lab Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.00061 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Sodium, Total	229.		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Zinc, Total 0.01342 mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 10:47 EPA 3005A 1,6020A AM Dissolved Metals - Mansfield Lab Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.00061 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Thallium, Total	ND		mg/l	0.00050	0.00014	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Dissolved Metals - Mansfield Lab Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.00061 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Vanadium, Total	0.00542		mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Aluminum, Dissolved 0.00902 J mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Antimony, Dissolved 0.00061 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Zinc, Total	0.01342		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 10:47	EPA 3005A	1,6020A	AM
Antimony, Dissolved 0.00061 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Dissolved Metals -	Mansfield	Lab									
Arsenic, Dissolved 0.00266 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Aluminum, Dissolved	0.00902	J	mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 12:37	EPA 3005A	1,6020A	AM
Barium, Dissolved 0.2015 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Antimony, Dissolved	0.00061	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 12:37	EPA 3005A	1,6020A	AM
· · · · · · · · · · · · · · · · · · ·	Arsenic, Dissolved	0.00266		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:37	EPA 3005A	1,6020A	AM
Beryllium, Dissolved ND mg/l 0.00050 0.00010 1 05/02/18 08:45 05/02/18 12:37 EPA 3005A 1,6020A AM	Barium, Dissolved	0.2015		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 12:37	EPA 3005A	1,6020A	AM
	Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 12:37	EPA 3005A	1,6020A	AM

Project Number: 3612162331

Lab Number: Report Date:

L1815070

05/04/18

SAMPLE RESULTS

Date Collected:

04/26/18 14:00

Lab ID: Client ID: L1815070-03 BMW-3-0418

DIVIVY O OTTO

Date Received:

04/27/18

Sample Location:

LONG ISLAND CITY, NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Calcium, Dissolved	275.		mg/l	0.100	0.0394	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00174		mg/l	0.00100	0.00017	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	0.01128		mg/l	0.00050	0.00016	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Copper, Dissolved	ND		mg/l	0.00100	0.00038	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Iron, Dissolved	8.36		mg/l	0.0500	0.0191	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	40.2		mg/l	0.0700	0.0242	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Manganese, Dissolved	4.685		mg/l	0.00100	0.00044	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	3 05/02/18 16:36	EPA 7470A	1,7470A	MG
Nickel, Dissolved	0.3688		mg/l	0.00200	0.00055	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Potassium, Dissolved	63.4		mg/l	0.100	0.0309	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Sodium, Dissolved	230.		mg/l	0.100	0.0293	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	05/02/18 08:45	5 05/02/18 12:37	EPA 3005A	1,6020A	AM

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04

Lab Number:

Report Date:

04/26/18 11:00

L1815070

05/04/18

Lab ID: L1815070-04 Client ID: BMW-4-0418

Sample Location: LONG ISLAND CITY, NY

Date Received: 04/27/18
Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.0232		mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Antimony, Total	0.00061	J	mg/l	0.00400	0.00042	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Arsenic, Total	0.02336		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Barium, Total	0.2201		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00006	J	mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Calcium, Total	267.		mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Chromium, Total	0.00129		mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Cobalt, Total	0.02253		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Copper, Total	0.00063	J	mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Iron, Total	30.2		mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Magnesium, Total	52.5		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Manganese, Total	8.368		mg/l	0.00100	0.00044	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 12:51	EPA 7470A	1,7470A	MG
Nickel, Total	0.05790		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Potassium, Total	45.9		mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Sodium, Total	196.		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Thallium, Total	ND		mg/l	0.00050	0.00014	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 10:51	EPA 3005A	1,6020A	AM
Dissolved Metals - I	Mansfield	Lab									
Aluminum, Dissolved	0.00343	J	mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00058	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.00535		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.1471		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM

Project Number: 3612162331

Lab Number: Report Date:

L1815070

05/04/18

SAMPLE RESULTS

Date Collected:

04/26/18 11:00

Lab ID:

L1815070-04

Client ID: BMW-4-0418

Sample Location: LONG ISLAND CITY, NY

Date Received: 04/27/18
Field Prep: Not Specified

Sample Depth:

	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Prep Method	Analytical Method	Analyst
		mg/l	0.00020	0.00005	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
).		mg/l	0.100	0.0394	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
0053	J	mg/l	0.00100	0.00017	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
2242		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.00100	0.00038	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
50		mg/l	0.0500	0.0191	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.00100	0.00034	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
7		mg/l	0.0700	0.0242	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
75		mg/l	0.00100	0.00044	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.00020	0.00006	1	05/02/18 10:23	05/02/18 16:42	EPA 7470A	1,7470A	MG
5969		mg/l	0.00200	0.00055	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
9		mg/l	0.100	0.0309	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.00500	0.00173	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.00040	0.00016	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.100	0.0293	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.00050	0.00014	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.00500	0.00157	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
		mg/l	0.01000	0.00341	1	05/02/18 08:45	05/02/18 12:42	EPA 3005A	1,6020A	AM
7	0053 2242 50 	0053 J 2242 50 	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	mg/l 0.100 mg/l 0.00100 mg/l 0.00100 mg/l 0.00050 mg/l 0.00100 mg/l 0.00100 mg/l 0.00100 mg/l 0.00100 mg/l 0.00100 mg/l 0.00020 mg/l 0.00200 mg/l 0.100 mg/l 0.00500 mg/l 0.000500 mg/l 0.000500 mg/l 0.000500 mg/l 0.000500	mg/l 0.100 0.0394 mg/l 0.00100 0.00017 mg/l 0.00050 0.00016 mg/l 0.00500 0.00038 mg/l 0.0500 0.0191 mg/l 0.00100 0.00034 mg/l 0.0700 0.0242 mg/l 0.00100 0.00044 mg/l 0.00020 0.00065 mg/l 0.00200 0.00055 mg/l 0.100 0.0309 mg/l 0.00500 0.00173 mg/l 0.100 0.0293 mg/l 0.00050 0.00014 mg/l 0.00500 0.00014	mg/l 0.100 0.0394 1 mg/l 0.00100 0.00017 1 mg/l 0.00050 0.00016 1 mg/l 0.00100 0.00038 1 mg/l 0.0500 0.0191 1 mg/l 0.00100 0.00034 1 mg/l 0.0700 0.0242 1 mg/l 0.00100 0.00044 1 mg/l 0.00020 0.0006 1 mg/l 0.00200 0.00055 1 mg/l 0.100 0.0309 1 mg/l 0.00500 0.00173 1 mg/l 0.00040 0.00016 1 mg/l 0.100 0.0293 1 mg/l 0.00500 0.00014 1 mg/l 0.00500 0.00014 1 mg/l 0.00500 0.00014 1 mg/l 0.00500 0.000157 1	mg/l 0.100 0.0394 1 05/02/18 08:45 mg/l 0.00100 0.00017 1 05/02/18 08:45 mg/l 0.00050 0.00016 1 05/02/18 08:45 mg/l 0.00100 0.00038 1 05/02/18 08:45 mg/l 0.0500 0.0191 1 05/02/18 08:45 mg/l 0.00100 0.00034 1 05/02/18 08:45 mg/l 0.00100 0.00034 1 05/02/18 08:45 mg/l 0.00100 0.00034 1 05/02/18 08:45 mg/l 0.00100 0.00044 1 05/02/18 08:45 mg/l 0.00100 0.00044 1 05/02/18 08:45 mg/l 0.00020 0.00006 1 05/02/18 08:45 mg/l 0.00200 0.00055 1 05/02/18 08:45 mg/l 0.00500 0.00173 1 05/02/18 08:45 mg/l 0.00500 0.0016 1 05/02/18 08:45 mg/l 0.00040 0.00016 1 05/02/18 08:45 mg/l 0.00050 0.00014 1 05/02/18 08:45 mg/l 0.00050 0.00014 1 05/02/18 08:45	mg/l 0.100 0.0394 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00100 0.00017 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00100 0.00038 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00500 0.0191 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00100 0.00044 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00100 0.00044 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00020 0.00006 1 05/02/18 08:45 05/02/18 16:42 mg/l 0.00200 0.00055 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00500 0.00173 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00040 0.00016 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00040 0.00016 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00040 0.00016 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.00040 0.00016 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.000500 0.00014 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.000500 0.00014 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.000500 0.00014 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.000500 0.00014 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.000500 0.000157 1 05/02/18 08:45 05/02/18 12:42 mg/l 0.000500 0.000157 1 05/02/18 08:45 05/02/18 12:42	mg/l 0.100 0.0394 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00100 0.00017 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00100 0.00038 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00100 0.00038 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00100 0.00044 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00100 0.00044 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00020 0.00006 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00200 0.00055 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00500 0.00173 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00040 0.0016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00040 0.00016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00050 0.00173 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00050 0.0016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00050 0.00014 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00050 0.00014 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A mg/l 0.00050 0.000157 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A	mg/l 0.100 0.0394 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00100 0.00017 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00100 0.00038 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.0500 0.0191 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00100 0.00034 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00100 0.0044 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00020 0.00066 1 05/02/18 10:23 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00200 0.00055 1 05/02/18 10:23 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00020 0.00055 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00000 0.00173 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00040 0.0016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00040 0.00016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00050 0.0016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00050 0.0016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 12:42 EPA 3005A 1,6020A

05/04/18

04/27/18 08:50

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Lab ID: L1815070-05

Client ID: MW-6D-0418

Date Received: 04/27/18 LONG ISLAND CITY, NY Field Prep: Not Specified Sample Location:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.130		mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Antimony, Total	0.00350	J	mg/l	0.00400	0.00042	. 1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Arsenic, Total	0.00046	J	mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Barium, Total	0.1073		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00007	J	mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Calcium, Total	204.		mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Chromium, Total	0.00308		mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Cobalt, Total	0.00056		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Copper, Total	0.00288		mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Iron, Total	0.233		mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Lead, Total	0.00062	J	mg/l	0.00100	0.00034	. 1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Magnesium, Total	18.1		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Manganese, Total	0.04749		mg/l	0.00100	0.00044	. 1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 12:24	EPA 7470A	1,7470A	MG
Nickel, Total	0.00407		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Potassium, Total	23.9		mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Selenium, Total	0.00463	J	mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Sodium, Total	110.		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Thallium, Total	0.00014	J	mg/l	0.00050	0.00014	. 1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Vanadium, Total	0.00260	J	mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 09:21	EPA 3005A	1,6020A	AM
Dissolved Metals -	Mansfield	Lab									
Aluminum, Dissolved	0.00492	J	mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 11:13	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00082	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 11:13	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.00029	J	mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 11:13	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.1057		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 11:13	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 11:13	EPA 3005A	1,6020A	AM

Project Number: 3612162331

Lab Number: Report Date:

L1815070

05/04/18

SAMPLE RESULTS

Date Collected:

Field Prep:

04/27/18 08:50

Lab ID: L1815070-05 Client ID: MW-6D-0418

MW-6D-0418 Date Received:

04/27/18 Not Specified

Sample Location: LONG ISLAND CITY, NY

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	0.00009	J	mg/l	0.00020	0.00005	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Calcium, Dissolved	211.		mg/l	0.100	0.0394	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00224		mg/l	0.00100	0.00017	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	0.00047	J	mg/l	0.00050	0.00016	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Copper, Dissolved	0.00210		mg/l	0.00100	0.00038	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Iron, Dissolved	0.0392	J	mg/l	0.0500	0.0191	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	18.5		mg/l	0.0700	0.0242	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Manganese, Dissolved	0.05963		mg/l	0.00100	0.00044	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	3 05/02/18 16:27	EPA 7470A	1,7470A	MG
Nickel, Dissolved	0.00372		mg/l	0.00200	0.00055	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Potassium, Dissolved	23.7		mg/l	0.100	0.0309	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Selenium, Dissolved	0.00484	J	mg/l	0.00500	0.00173	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Sodium, Dissolved	113.		mg/l	0.100	0.0293	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	0.00188	J	mg/l	0.00500	0.00157	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	05/02/18 08:4	5 05/02/18 11:13	EPA 3005A	1,6020A	AM
,			J.							•	

Project Number: 3612162331 Lab Number: **Report Date:**

L1815070

05/04/18

SAMPLE RESULTS

Date Collected:

04/27/18 08:50

Lab ID: Client ID: L1815070-06

MW-6S-0418 Sample Location:

LONG ISLAND CITY, NY

Date Received: 04/27/18 Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.212		mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Antimony, Total	0.00165	J	mg/l	0.00400	0.00042	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Arsenic, Total	0.00157		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Barium, Total	0.1963		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00006	J	mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Calcium, Total	251.		mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Chromium, Total	0.00212		mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Cobalt, Total	0.00306		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Copper, Total	0.00222		mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Iron, Total	0.482		mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Lead, Total	0.00189		mg/l	0.00100	0.00034	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Magnesium, Total	74.6		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Manganese, Total	4.051		mg/l	0.00100	0.00044	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 12:53	EPA 7470A	1,7470A	MG
Nickel, Total	0.03138		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Potassium, Total	16.5		mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Sodium, Total	125.		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Thallium, Total	ND		mg/l	0.00050	0.00014	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Zinc, Total	0.01609		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 10:55	EPA 3005A	1,6020A	AM
Dissolved Metals -	Mansfield	Lab									
Aluminum, Dissolved	0.00722	J	mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 12:46	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00147	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 12:46	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.00106		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:46	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.1948		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 12:46	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 12:46	EPA 3005A	1,6020A	AM

Project Number: 3612162331

Lab Number:

L1815070

SAMPLE RESULTS

Report Date:

05/04/18

Lab ID: L1815070-06

Client ID: MW-6S-0418

Sample Location: LONG ISLAND CITY, NY

Date Collected: 04/27/18 08:50
Date Received: 04/27/18
Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Calcium, Dissolved	253.		mg/l	0.100	0.0394	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00024	J	mg/l	0.00100	0.00017	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	0.00312		mg/l	0.00050	0.00016	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Copper, Dissolved	0.00136		mg/l	0.00100	0.00038	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Iron, Dissolved	0.0203	J	mg/l	0.0500	0.0191	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	81.4		mg/l	0.0700	0.0242	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Manganese, Dissolved	4.112		mg/l	0.00100	0.00044	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	3 05/02/18 16:43	EPA 7470A	1,7470A	MG
Nickel, Dissolved	0.03264		mg/l	0.00200	0.00055	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Potassium, Dissolved	16.9		mg/l	0.100	0.0309	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Sodium, Dissolved	130.		mg/l	0.100	0.0293	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM
Zinc, Dissolved	0.01048		mg/l	0.01000	0.00341	1	05/02/18 08:4	5 05/02/18 12:46	EPA 3005A	1,6020A	AM

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:05

Lab Number:

Report Date:

Lab ID: L1815070-07 Client ID: MW-S-0418

Sample Location: LONG ISLAND CITY, NY

Date Received: 04/27/18
Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.175		mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Antimony, Total	0.00077	J	mg/l	0.00400	0.00042	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Arsenic, Total	0.00031	J	mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Barium, Total	0.1125		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00007	J	mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Calcium, Total	201.		mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Chromium, Total	0.01283		mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Cobalt, Total	0.00078		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Copper, Total	0.00155		mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Iron, Total	0.332		mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Lead, Total	0.00230		mg/l	0.00100	0.00034	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Magnesium, Total	14.0		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Manganese, Total	0.00800		mg/l	0.00100	0.00044	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 12:55	EPA 7470A	1,7470A	MG
Nickel, Total	0.00419		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Potassium, Total	26.8		mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Selenium, Total	0.00870		mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Sodium, Total	196.		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Thallium, Total	ND		mg/l	0.00050	0.00014	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 10:59	EPA 3005A	1,6020A	AM
Dissolved Metals - I	Mansfield	Lab									
Aluminum, Dissolved	0.00616	J	mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 12:50	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00068	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 12:50	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.00022	J	mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:50	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.1092		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 12:50	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 12:50	EPA 3005A	1,6020A	AM

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL **Lab Number:**

Project Number: 3612162331 **Report Date:** 05/04/18

SAMPLE RESULTS

 Lab ID:
 L1815070-07
 Date Collected:
 04/27/18 10:05

 Client ID:
 MW-S-0418
 Date Received:
 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Calcium, Dissolved	201.		mg/l	0.100	0.0394	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00708		mg/l	0.00100	0.00017	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	0.00065		mg/l	0.00050	0.00016	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Copper, Dissolved	0.00153		mg/l	0.00100	0.00038	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Iron, Dissolved	0.0269	J	mg/l	0.0500	0.0191	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	13.7		mg/l	0.0700	0.0242	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Manganese, Dissolved	0.00647		mg/l	0.00100	0.00044	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	3 05/02/18 16:45	EPA 7470A	1,7470A	MG
Nickel, Dissolved	0.00551		mg/l	0.00200	0.00055	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Potassium, Dissolved	26.4		mg/l	0.100	0.0309	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Selenium, Dissolved	0.00846		mg/l	0.00500	0.00173	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Sodium, Dissolved	192.		mg/l	0.100	0.0293	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1		5 05/02/18 12:50		1,6020A	AM
Zinc, Dissolved	0.00369	J	mg/l	0.01000	0.00341	1	05/02/18 08:45	5 05/02/18 12:50	EPA 3005A	1,6020A	AM

05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:30

Lab Number:

Report Date:

Lab ID: L1815070-08
Client ID: MW-E-0418

Client ID: MW-E-0418 Date Received: 04/27/18
Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	4.83		mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Antimony, Total	0.00094	J	mg/l	0.00400	0.00042	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Arsenic, Total	0.00999		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Barium, Total	0.2058		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Beryllium, Total	0.00048	J	mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00011	J	mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Calcium, Total	118.		mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Chromium, Total	0.01688		mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Cobalt, Total	0.00870		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Copper, Total	0.02403		mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Iron, Total	15.6		mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Lead, Total	0.00733		mg/l	0.00100	0.00034	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Magnesium, Total	22.2		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Manganese, Total	2.088		mg/l	0.00100	0.00044	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 12:57	EPA 7470A	1,7470A	MG
Nickel, Total	0.01742		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Potassium, Total	22.5		mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Selenium, Total	0.00555		mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Sodium, Total	92.2		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Thallium, Total	ND		mg/l	0.00050	0.00014	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Vanadium, Total	0.01856		mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Zinc, Total	0.04941		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 11:02	EPA 3005A	1,6020A	AM
Dissolved Metals - I	Mansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00048	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.00060		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.08407		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM

Project Number: 3612162331 Lab Number: Report Date:

L1815070

05/04/18

SAMPLE RESULTS

L1815070-08

Date Collected:

04/27/18 10:30

Lab ID: Client ID:

MW-E-0418

Date Received:

04/27/18

Field Prep:

Sample Location:

LONG ISLAND CITY, NY

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Calcium, Dissolved	109.		mg/l	0.100	0.0394	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00043	J	mg/l	0.00100	0.00017	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	0.00022	J	mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Copper, Dissolved	0.00067	J	mg/l	0.00100	0.00038	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Iron, Dissolved	ND		mg/l	0.0500	0.0191	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	17.2		mg/l	0.0700	0.0242	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Manganese, Dissolved	0.2710		mg/l	0.00100	0.00044	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	05/02/18 16:47	EPA 7470A	1,7470A	MG
Nickel, Dissolved	0.00112	J	mg/l	0.00200	0.00055	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Potassium, Dissolved	20.5		mg/l	0.100	0.0309	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Selenium, Dissolved	0.00449	J	mg/l	0.00500	0.00173	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Sodium, Dissolved	89.8		mg/l	0.100	0.0293	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	05/02/18 08:45	05/02/18 12:54	EPA 3005A	1,6020A	AM

Project Number: 3612162331

Lab Number: Report Date:

L1815070

05/04/18

SAMPLE RESULTS

Date Collected:

04/26/18 11:00

Lab ID: Client ID: L1815070-09

DUPLICATE LONG ISLAND CITY, NY Date Received: 04/27/18
Field Prep: Not Specified

Sample Depth:

Sample Location:

Aluminum, Total 0.0121 mg/l 0.0100 0.00327 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1.6020A	nalyst
Antimony, Total 0.00048 J mg/l 0.00400 0.00042 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Arsenic, Total 0.02348 mg/l 0.00050 0.00016 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Barium, Total 0.2301 mg/l 0.00050 0.00017 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Beryllium, Total ND mg/l 0.00050 0.00010 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cadmium, Total ND mg/l 0.00020 0.00005 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Calcium, Total ND mg/l 0.00020 0.00005 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Calcium, Total 261. mg/l 0.00010 0.00017 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Chromium, Total 0.00124 mg/l 0.00100 0.00017 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cobalt, Total 0.00114 mg/l 0.00050 0.00016 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Copper, Total 0.00065 J mg/l 0.00050 0.00016 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Iron, Total 30.6 mg/l 0.00500 0.00191 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total ND mg/l 0.00100 0.00034 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.00100 0.00034 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 8.359 mg/l 0.00100 0.00034 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total ND mg/l 0.00000 0.00044 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00000 0.00065 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00000 0.00055 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total ND mg/l 0.00000 0.00073 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total ND mg/l 0.00000 0.00065 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total ND mg/l 0.00000 0.00065 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total ND mg/l 0.00000 0.00065 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total ND mg/l 0.00000 0.00016 1 0.5/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassiu	
Arsenic, Total 0.02348 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Barium, Total 0.2301 mg/l 0.00050 0.00017 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Beryllium, Total ND mg/l 0.00050 0.00010 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cadmium, Total ND mg/l 0.00020 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Calcium, Total 261. mg/l 0.100 0.0394 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Chromium, Total 0.00124 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cobalt, Total 0.02110 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Copper, Total 0.00065 J mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Iron, Total 30.6 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Lead, Total ND mg/l 0.00100 0.00034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.00100 0.00034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Manganese, Total 8.359 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00000 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00000 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total 47.6 mg/l 0.0000 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.0000 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.0000 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.0000 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.0000 0.0016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
Barium, Total 0.2301 mg/l 0.00050 0.00017 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Beryllium, Total ND mg/l 0.00050 0.00010 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cadmium, Total ND mg/l 0.00020 0.00005 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Calcium, Total 261. mg/l 0.100 0.0394 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Chromium, Total 0.00124 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cobalt, Total 0.02110 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Copper, Total 0.00065 J mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Lead, Total ND mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/	AM
Beryllium, Total ND	AM
Cadmium, Total ND mg/l 0.00020 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Calcium, Total 261. mg/l 0.100 0.0394 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Chromium, Total 0.00124 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cobalt, Total 0.02110 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Copper, Total 0.00065 J mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Iron, Total 30.6 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Lead, Total ND mg/l 0.00100 0.0034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.0700 0.0242 1 05/01/18 08:40 05/02/18 11	AM
Calcium, Total 261. mg/l 0.100 0.0394 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Chromium, Total 0.00124 mg/l 0.00100 0.00017 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cobalt, Total 0.02110 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Copper, Total 0.00065 J mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Iron, Total 30.6 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Lead, Total ND mg/l 0.00100 0.0034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.0700 0.0242 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00020 0.00044 1 05/01/18 08:40 05/02/18 11	AM
Chromium, Total 0.00124 mg/l 0.00100 0.0017 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Cobalt, Total 0.02110 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Copper, Total 0.00065 J mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Iron, Total 30.6 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Lead, Total ND mg/l 0.00100 0.00034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.00700 0.0242 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Nickel, Total ND mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 1	AM
Cobalt, Total 0.02110 mg/l 0.00050 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Copper, Total 0.00065 J mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Iron, Total 30.6 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Lead, Total ND mg/l 0.00100 0.00034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.0700 0.0242 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Nickel, Total ND mg/l 0.00200 0.00066 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total 47.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 11:06<	AM
Copper, Total 0.00065 J mg/l 0.00100 0.00038 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Iron, Total 30.6 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Lead, Total ND mg/l 0.00100 0.00034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.0700 0.0242 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Manganese, Total 8.359 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00200 0.00066 1 05/01/18 11:50 05/02/18 12:58 EPA 7470A 1,7470A Nickel, Total 0.05586 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18	AM
Iron, Total 30.6 mg/l 0.0500 0.0191 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Lead, Total ND mg/l 0.00100 0.00034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.0700 0.0242 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Manganese, Total 8.359 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00020 0.00006 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Nickel, Total 0.05586 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total 47.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00050 0.00173 1 05/01/18 08:40 05/02/18 11:06 <td< td=""><td>AM</td></td<>	AM
Lead, Total ND mg/l 0.00100 0.00034 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Magnesium, Total 50.2 mg/l 0.0700 0.0242 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Manganese, Total 8.359 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00020 0.00006 1 05/01/18 08:40 05/02/18 12:58 EPA 7470A 1,7470A Nickel, Total 0.05586 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total 47.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 11:06 <	AM
Magnesium, Total 50.2 mg/l 0.0700 0.0242 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Manganese, Total 8.359 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00020 0.00006 1 05/01/18 11:50 05/02/18 12:58 EPA 7470A 1,7470A Nickel, Total 0.05586 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total 47.6 mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00040 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Sodium, Total 192. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 11:06	AM
Manganese, Total 8.359 mg/l 0.00100 0.00044 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Mercury, Total ND mg/l 0.00020 0.00006 1 05/01/18 11:50 05/02/18 12:58 EPA 7470A 1,7470A Nickel, Total 0.05586 mg/l 0.00200 0.0055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total 47.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Sodium, Total ND mg/l 0.00040 0.0016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
Mercury, Total ND mg/l 0.00020 0.00006 1 05/01/18 11:50 05/02/18 12:58 EPA 7470A 1,7470A Nickel, Total 0.05586 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total 47.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Sodium, Total 192. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
Nickel, Total 0.05586 mg/l 0.00200 0.00055 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Potassium, Total 47.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Silver, Total ND mg/l 0.00040 0.0016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Sodium, Total 192. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
Potassium, Total 47.6 mg/l 0.100 0.0309 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Sodium, Total 192. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	MG
Selenium, Total ND mg/l 0.00500 0.00173 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Sodium, Total 192. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
Silver, Total ND mg/l 0.00040 0.00016 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Sodium, Total 192. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
Sodium, Total 192. mg/l 0.100 0.0293 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
Thallium, Total ND mg/l 0.00050 0.00014 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
	AM
Vanadium, Total ND mg/l 0.00500 0.00157 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
	AM
Zinc, Total ND mg/l 0.01000 0.00341 1 05/01/18 08:40 05/02/18 11:06 EPA 3005A 1,6020A	AM
Dissolved Metals - Mansfield Lab	
Aluminum, Dissolved ND mg/l 0.0100 0.00327 1 05/02/18 08:45 05/02/18 13:13 EPA 3005A 1,6020A	AM
Antimony, Dissolved 0.00087 J mg/l 0.00400 0.00042 1 05/02/18 08:45 05/02/18 13:13 EPA 3005A 1,6020A	AM
Arsenic, Dissolved 0.00488 mg/l 0.00050 0.00016 1 05/02/18 08:45 05/02/18 13:13 EPA 3005A 1,6020A	AM
Barium, Dissolved 0.1434 mg/l 0.00050 0.00017 1 05/02/18 08:45 05/02/18 13:13 EPA 3005A 1,6020A	AM
Beryllium, Dissolved ND mg/l 0.00050 0.00010 1 05/02/18 08:45 05/02/18 13:13 EPA 3005A 1,6020A	AM

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL L

Project Number: 3612162331

Lab Number: Report Date:

L1815070 05/04/18

SAMPLE RESULTS

Date Collected:

04/26/18 11:00

Lab ID: Client ID: L1815070-09 DUPLICATE

LONG ISLAND CITY, NY

Date Received: 04/27/18
Field Prep: Not Specified

Sample Depth:

Sample Location:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Calcium, Dissolved	263.		mg/l	0.100	0.0394	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00056	J	mg/l	0.00100	0.00017	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	0.02082		mg/l	0.00050	0.00016	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Copper, Dissolved	0.00053	J	mg/l	0.00100	0.00038	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Iron, Dissolved	0.126		mg/l	0.0500	0.0191	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	51.2		mg/l	0.0700	0.0242	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Manganese, Dissolved	8.132		mg/l	0.00100	0.00044	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	3 05/02/18 16:49	EPA 7470A	1,7470A	MG
Nickel, Dissolved	0.05604		mg/l	0.00200	0.00055	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Potassium, Dissolved	48.6		mg/l	0.100	0.0309	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Sodium, Dissolved	196.		mg/l	0.100	0.0293	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	05/02/18 08:45	5 05/02/18 13:13	EPA 3005A	1,6020A	AM

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: Report Date:

L1815070

05/04/18

SAMPLE RESULTS

Date Collected:

04/26/18 14:25

Lab ID: Client ID: L1815070-10 FIELD BLANK

LONG ISLAND CITY, NY

Date Received: 04/27/18
Field Prep: Not Specified

Sample Depth:

Sample Location:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.00424	J	mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Antimony, Total	0.00092	J	mg/l	0.00400	0.00042	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Barium, Total	0.00051		mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Calcium, Total	0.0718	J	mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Chromium, Total	0.00043	J	mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Copper, Total	0.00089	J	mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Iron, Total	0.0209	J	mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Magnesium, Total	ND		mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Manganese, Total	ND		mg/l	0.00100	0.00044	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/01/18 11:50	05/02/18 13:03	EPA 7470A	1,7470A	MG
Nickel, Total	ND		mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Potassium, Total	0.0890	J	mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Sodium, Total	0.248		mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Thallium, Total	ND		mg/l	0.00050	0.00014	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 10:43	EPA 3005A	1,6020A	AM
Dissolved Metals - I	Mansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 12:21	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00081	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 12:21	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	ND		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 12:21	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.00058		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 12:21	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 12:21	EPA 3005A	1,6020A	AM

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

3612162331

Lab Number:

L1815070

SAMPLE RESULTS

Report Date:

05/04/18

Lab ID: Client ID:

Project Number:

L1815070-10 FIELD BLANK

Date Collected: Date Received: 04/26/18 14:25 04/27/18

Sample Location:

LONG ISLAND CITY, NY

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Calcium, Dissolved	ND		mg/l	0.100	0.0394	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Chromium, Dissolved	ND		mg/l	0.00100	0.00017	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	ND		mg/l	0.00050	0.00016	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Copper, Dissolved	ND		mg/l	0.00100	0.00038	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Iron, Dissolved	ND		mg/l	0.0500	0.0191	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	ND		mg/l	0.0700	0.0242	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Manganese, Dissolved	ND		mg/l	0.00100	0.00044	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00020	0.00006	1	05/02/18 10:23	3 05/02/18 16:51	EPA 7470A	1,7470A	MG
Nickel, Dissolved	ND		mg/l	0.00200	0.00055	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Potassium, Dissolved	ND		mg/l	0.100	0.0309	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Sodium, Dissolved	ND		mg/l	0.100	0.0293	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	05/02/18 08:45	5 05/02/18 12:21	EPA 3005A	1,6020A	AM

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815070

Report Date: 05/04/18

Method Blank Analysis Batch Quality Control

Parameter	Result Quali	fier Units	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample	e(s): 01-10	Batch: Wo	G111128	36-1				
Aluminum, Total	ND	mg/l	0.0100	0.00327	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Antimony, Total	0.00087 J	mg/	0.00400	0.00042	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Arsenic, Total	ND	mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Barium, Total	ND	mg/l	0.00050	0.00017	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Beryllium, Total	ND	mg/l	0.00050	0.00010	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Calcium, Total	ND	mg/l	0.100	0.0394	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Chromium, Total	ND	mg/l	0.00100	0.00017	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Cobalt, Total	ND	mg/l	0.00050	0.00016	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Copper, Total	ND	mg/l	0.00100	0.00038	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Iron, Total	ND	mg/l	0.0500	0.0191	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Lead, Total	ND	mg/l	0.00100	0.00034	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Magnesium, Total	ND	mg/l	0.0700	0.0242	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Manganese, Total	ND	mg/l	0.00100	0.00044	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Nickel, Total	ND	mg/l	0.00200	0.00055	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Potassium, Total	ND	mg/l	0.100	0.0309	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Selenium, Total	ND	mg/l	0.00500	0.00173	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Silver, Total	ND	mg/l	0.00040	0.00016	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Sodium, Total	ND	mg/l	0.100	0.0293	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Thallium, Total	ND	mg/l	0.00050	0.00014	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Vanadium, Total	ND	mg/l	0.00500	0.00157	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM
Zinc, Total	ND	mg/l	0.01000	0.00341	1	05/01/18 08:40	05/02/18 09:09	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01-10 E	Batch: WO	G11114	31-1				
Mercury, Total	ND	mg/l	0.00020	0.00006	5 1	05/01/18 11:50	05/02/18 12:17	7 1,7470A	MG

L1815070

Lab Number:

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331 **Report Date:** 05/04/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Mans	sfield Lab	for sample	(s): 01-	10 Batch	: WG11	11500-1				
Aluminum, Dissolved	0.00328	J	mg/l	0.0100	0.00327	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Antimony, Dissolved	0.00093	J	mg/l	0.00400	0.00042	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Arsenic, Dissolved	ND		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Barium, Dissolved	ND		mg/l	0.00050	0.00017	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Calcium, Dissolved	ND		mg/l	0.100	0.0394	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Chromium, Dissolved	ND		mg/l	0.00100	0.00017	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Cobalt, Dissolved	ND		mg/l	0.00050	0.00016	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Copper, Dissolved	ND		mg/l	0.00100	0.00038	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Iron, Dissolved	ND		mg/l	0.0500	0.0191	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Magnesium, Dissolved	ND		mg/l	0.0700	0.0242	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Manganese, Dissolved	ND		mg/l	0.00100	0.00044	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Nickel, Dissolved	ND		mg/l	0.00200	0.00055	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Potassium, Dissolved	ND		mg/l	0.100	0.0309	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Sodium, Dissolved	ND		mg/l	0.100	0.0293	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	05/02/18 08:45	05/02/18 11:33	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

L1815070

Lab Number:

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: Report Date:

3612162331 05/04/18

> **Method Blank Analysis Batch Quality Control**

Dilution Date Date Analytical **Factor** Method Analyst **Parameter Result Qualifier** RL**Prepared** Analyzed Units MDL Dissolved Metals - Mansfield Lab for sample(s): 01-10 Batch: WG1111768-1 Mercury, Dissolved ND mg/l 0.00020 0.00006 05/02/18 16:24 1,7470A MG 05/02/18 10:23

Prep Information

Digestion Method: EPA 7470A

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815070

Report Date:

05/04/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-10 Bate	ch: WG111	1286-2					
Aluminum, Total	95		-		80-120	-		
Antimony, Total	110		-		80-120	-		
Arsenic, Total	106		-		80-120	-		
Barium, Total	103		-		80-120	-		
Beryllium, Total	107		-		80-120	-		
Cadmium, Total	110		-		80-120	-		
Calcium, Total	104		-		80-120	-		
Chromium, Total	102		-		80-120	-		
Cobalt, Total	100		-		80-120	-		
Copper, Total	105		-		80-120	-		
Iron, Total	115		-		80-120	-		
Lead, Total	108		-		80-120	-		
Magnesium, Total	108		-		80-120	-		
Manganese, Total	105		-		80-120	-		
Nickel, Total	104		-		80-120	-		
Potassium, Total	107		-		80-120	-		
Selenium, Total	111		-		80-120	-		
Silver, Total	112		-		80-120	-		
Sodium, Total	111		-		80-120	-		
Thallium, Total	103		-		80-120	-		
Vanadium, Total	103		-		80-120	-		

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Lab Number: L1815070

Project Number: 3612162331

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated	sample(s): 01-10 Batch: W	G1111286-2			
Zinc, Total	107	-	80-120	-	
Total Metals - Mansfield Lab Associated	sample(s): 01-10 Batch: W	G1111431-2			
Mercury, Total	93	-	80-120	-	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01-10	Batch: WG1111500-2			
Aluminum, Dissolved	96	-	80-120	-	
Antimony, Dissolved	105	-	80-120	-	
Arsenic, Dissolved	110	-	80-120	-	
Barium, Dissolved	105	-	80-120	-	
Beryllium, Dissolved	106	-	80-120	-	
Cadmium, Dissolved	111	-	80-120	-	
Calcium, Dissolved	101	-	80-120	-	
Chromium, Dissolved	103	-	80-120	-	
Cobalt, Dissolved	102	-	80-120	-	
Copper, Dissolved	106	-	80-120	-	
Iron, Dissolved	120	-	80-120	-	
Lead, Dissolved	110	-	80-120	-	
Magnesium, Dissolved	102	-	80-120	-	
Manganese, Dissolved	106	-	80-120	-	
Nickel, Dissolved	102	-	80-120	-	
Potassium, Dissolved	100	-	80-120	-	
Selenium, Dissolved	108	-	80-120	-	
Silver, Dissolved	110	-	80-120	-	
Sodium, Dissolved	104	-	80-120	-	
Thallium, Dissolved	102	-	80-120	-	
Vanadium, Dissolved	102	-	80-120	-	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Lab Number:

L1815070

Project Number: 3612162331

Report Date:

05/04/18

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab	Associated sample(s): 01-10	Batch: WG1111500-2			
Zinc, Dissolved	111	-	80-120	-	
Dissolved Metals - Mansfield Lab	Associated sample(s): 01-10	Batch: WG1111768-2			
Mercury, Dissolved	108	-	80-120	-	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
otal Metals - Mansfield L 418	_ab Associated san	nple(s): 01-10	QC Bat	tch ID: WG111	1286-3 WG11112	86-4 QC Sam	ple: L1815070-05	Clien	t ID: MW-6D-
Aluminum, Total	0.130	2	2.04	96	2.07	97	75-125	1	20
Antimony, Total	0.00350J	0.5	0.5818	116	0.5964	119	75-125	2	20
Arsenic, Total	0.00046J	0.12	0.1392	116	0.1401	117	75-125	1	20
Barium, Total	0.1073	2	2.264	108	2.234	106	75-125	1	20
Beryllium, Total	ND	0.05	0.05478	110	0.05394	108	75-125	2	20
Cadmium, Total	0.00007J	0.051	0.05847	115	0.05779	113	75-125	1	20
Calcium, Total	204.	10	213	90	214	100	75-125	0	20
Chromium, Total	0.00308	0.2	0.2090	103	0.2147	106	75-125	3	20
Cobalt, Total	0.00056	0.5	0.5188	104	0.5108	102	75-125	2	20
Copper, Total	0.00288	0.25	0.2751	109	0.2673	106	75-125	3	20
Iron, Total	0.233	1	1.36	113	1.38	115	75-125	1	20
Lead, Total	0.00062J	0.51	0.5837	114	0.5769	113	75-125	1	20
Magnesium, Total	18.1	10	29.3	112	29.2	111	75-125	0	20
Manganese, Total	0.04749	0.5	0.5667	104	0.5702	104	75-125	1	20
Nickel, Total	0.00407	0.5	0.5269	104	0.5366	106	75-125	2	20
Potassium, Total	23.9	10	33.9	100	34.2	103	75-125	1	20
Selenium, Total	0.00463J	0.12	0.139	116	0.141	118	75-125	1	20
Silver, Total	ND	0.05	0.05705	114	0.05686	114	75-125	0	20
Sodium, Total	110.	10	135	250	Q 136	260	Q 75-125	1	20
Thallium, Total	0.00014J	0.12	0.1273	106	0.1276	106	75-125	0	20
Vanadium, Total	0.00260J	0.5	0.5255	105	0.5175	104	75-125	2	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815070

Parameter	Native Sample	MS Added	MS Found ^o	MS %Recovery	MSD Found %	MSD Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La 0418	b Associated samլ	ole(s): 01-10	QC Batc	h ID: WG1111286-3	WG1111286-	4 QC Sample: L	1815070-05	Client ID:	MW-6D-
Zinc, Total	ND	0.5	0.5406	108	0.5400	108	75-125	0	20
Total Metals - Mansfield La 0418	b Associated samլ	ole(s): 01-10	QC Batc	h ID: WG1111431-3	WG1111431-	4 QC Sample: L	1815070-05	Client ID:	MW-6D-
Mercury, Total	ND	0.005	0.00481	96	0.00470	94	75-125	2	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPI	RPD Limits
Dissolved Metals - Mansfield 0418	Lab Associated	l sample(s)	: 01-10 QC	C Batch ID: WG	1111500-3 WG11	11500-4 QC	Sample: L1815070	-05	Client ID: MW-6D-
Aluminum, Dissolved	0.00492J	2	1.97	98	1.93	96	75-125	2	20
Antimony, Dissolved	0.00082J	0.5	0.6284	126	Q 0.6222	124	75-125	1	20
Arsenic, Dissolved	0.00029J	0.12	0.1349	112	0.1365	114	75-125	1	20
Barium, Dissolved	0.1057	2	2.240	107	2.263	108	75-125	1	20
Beryllium, Dissolved	ND	0.05	0.05431	109	0.05472	109	75-125	1	20
Cadmium, Dissolved	0.00009J	0.051	0.05774	113	0.05980	117	75-125	4	20
Calcium, Dissolved	211.	10	220	90	218	70	Q 75-125	1	20
Chromium, Dissolved	0.00224	0.2	0.2162	107	0.2108	104	75-125	3	20
Cobalt, Dissolved	0.00047J	0.5	0.5185	104	0.5172	103	75-125	0	20
Copper, Dissolved	0.00210	0.25	0.2628	104	0.2714	108	75-125	3	20
Iron, Dissolved	0.0392J	1	1.11	111	1.21	121	75-125	9	20
Lead, Dissolved	ND	0.51	0.5597	110	0.5802	114	75-125	4	20
Magnesium, Dissolved	18.5	10	29.6	111	29.3	108	75-125	1	20
Manganese, Dissolved	0.05963	0.5	0.6097	110	0.5972	108	75-125	2	20
Nickel, Dissolved	0.00372	0.5	0.5434	108	0.5383	107	75-125	1	20
Potassium, Dissolved	23.7	10	34.1	104	34.3	106	75-125	1	20
Selenium, Dissolved	0.00484J	0.12	0.142	118	0.154	128	Q 75-125	8	20
Silver, Dissolved	ND	0.05	0.05682	114	0.05643	113	75-125	1	20
Sodium, Dissolved	113.	10	136	230	Q 137	240	Q 75-125	1	20
Thallium, Dissolved	ND	0.12	0.1238	103	0.1283	107	75-125	4	20
Vanadium, Dissolved	0.00188J	0.5	0.5476	110	0.5193	104	75-125	5	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815070

Report Date:

05/04/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RP	RPD Limits
Dissolved Metals - Mansfield La 0418	b Associated	sample(s): 0	1-10 Q	C Batch ID: WG1	111500-3 WG11	11500-4 QC Samp	le: L1815070-05	Client ID: MW-6D-
Zinc, Dissolved	ND	0.5	0.5516	110	0.5421	108	75-125 2	2 20
Dissolved Metals - Mansfield La 0418	b Associated	sample(s): 0	1-10 Q	C Batch ID: WG1	111768-3 WG11	11768-4 QC Samp	le: L1815070-05	Client ID: MW-6D-
Mercury, Dissolved	ND	0.005	0.00503	101	0.00508	102	75-125	20

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815070 **Report Date:** 05/04/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	ner Intormation ner ID Container Type		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815070-01A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-01B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-01C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-01D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-01E	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1815070-01X	Plastic 250ml HNO3 preserved Filtrates	A	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),PB-6020S(180),TE-6020S(180),PB-6020S(180),TE-6020S(180),AS-6020S(180),BA-6020S(180),AS-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),CD-6020S(180),BR-S(28)
L1815070-02A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-02B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-02C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-02D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-02E	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)

Lab Number: L1815070

Report Date: 05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Container Information Container ID Container Type			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815070-02X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),NA-6020S(180),AS-6020S(180),SB-6020S(180),AS-6020S(180),SB-6020S(180),AS-6020S(180),CD-6020S(180),HG-S(28)
L1815070-03A	Vial HCI preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-03B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-03C	Vial HCI preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-03D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-03E	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),CD-6020T(180),HG-7(28),MG-6020T(180),CO-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1815070-03X	Plastic 250ml HNO3 preserved Filtrates	Α	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),NI-6020S(180),PB-6020S(180),NB-6020S(180),AG-6020S(180),AS-6020S(180),SB-6020S(180),AL-6020S(180),CD-6020S(180),HG-S(28)
L1815070-04A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-04B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-04C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-04D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-04E	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)

Lab Number: L1815070

Report Date: 05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler		рН		Pres	Seal	Date/Time	Analysis(*)
L1815070-04X	Plastic 250ml HNO3 preserved Filtrates	A	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),EE-6020S(180),BA-6020S(180),BA-6020S(180),TL-6020S(180),AG-6020S(180),BB-6020S(180),TL-6020S(180),AG-6020S(180),AS-6020S(180),AS-6020S(180),CD-6020S(180),BB-6020S(180),BB-6020S(180),BB-6020S(180),AG-6020S(180),CD-6020S(180),HG-S(28)
L1815070-05A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05A1	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05A2	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05B1	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05B2	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05C1	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05C2	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-05D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-05D1	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-05D2	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-05E	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CA-6020T(180),CA-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),SB-6020T(180),SB-6020T(180),SB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),CD-6020T(180),CD-6020T(180),CD-6020T(180)
L1815070-05E1	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),NN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)

Lab Number: L1815070

Report Date: 05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815070-05E2	Plastic 250ml HNO3 preserved	А	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),SB-6020T(180),SB-6020T(180),CD-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1815070-05X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),CR-6020S(180),RA-6020S(180),RA-6020S(180),BA-6020S(180),NA-6020S(180),AG-6020S(180),AS-6020S(180),SB-6020S(180),AS-6020S(180),CD-6020S(180),HG-S(28)
L1815070-06A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-06B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-06C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-06D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-06E	Plastic 250ml HNO3 preserved	А	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),CD-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1815070-06X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),NI-6020S(180),PB-6020S(180),TL-6020S(180),AG-6020S(180),AS-6020S(180),SB-6020S(180),AS-6020S(180),CD-6020S(180),HG-S(28)
L1815070-07A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-07B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-07C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-07D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-

Lab Number: L1815070

Report Date: 05/04/18

Project Number: 3612162331

STALINGRAD/HYGRADE GW Q2 SAMPL

Project Name:

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815070-07E	Plastic 250ml HNO3 preserved	А	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),AN-6020T(180),AS-6020T(180),SB-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1815070-07X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),BA-6020S(180),TE-6020S(180),BA-6020S(180),AG-6020S(180),AS-6020S(180),AS-6020S(180),AS-6020S(180),AS-6020S(180),CD-6020S(180),HG-S(28)
L1815070-08A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-08B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-08C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-08D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-08E	Plastic 250ml HNO3 preserved	А	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),SB-6020T(180),CD-6020T(180),HG-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1815070-08X	Plastic 250ml HNO3 preserved Filtrates	А	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),PB-6020S(180),T-6020S(180),PB-6020S(180),T-6020S(180),AS-6020S(180),BA-6020S(180),AS-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-6020S(180),BR-S(28)
L1815070-09A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-09B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-09C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-09D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-

Lab Number: L1815070

Report Date: 05/04/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815070-09E	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),AN-6020T(180),AS-6020T(180),SB-6020T(180),AG-6020T(180),AL-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1815070-09X	Plastic 250ml HNO3 preserved Filtrates	A	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),AG-6020S(180),AS-6020S(180),SB-6020S(180),AG-6020S(180),AS-6020S(180),AS-6020S(180),AS-6020S(180),CD-6020S(180),AG-6020S(180),CD-6020S(180),HG-S(28)
L1815070-10A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-10B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-10C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-10D	Plastic 250ml unpreserved	Α	7	7	4.0	Υ	Absent		-
L1815070-10E	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),CU-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),SB-6020T(180),V-6020T(180),AG-6020T(180),AB-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L1815070-10X	Plastic 250ml HNO3 preserved Filtrates	A	NA		4.0	Y	Absent		CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),BA-6020S(180),FE-6020S(180),BA-6020S(180),NI-6020S(180),BA-6020S(180),TR-6020S(180),AG-6020S(180),AS-6020S(180),AS-6020S(180),AS-6020S(180),AS-6020S(180),AS-6020S(180),CD-6020S(180),HG-S(28)
L1815070-11A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)
L1815070-11B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260(14)

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815070
Project Number: 3612162331 Report Date: 05/04/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name:STALINGRAD/HYGRADE GW Q2 SAMPLLab Number:L1815070Project Number:3612162331Report Date:05/04/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:STALINGRAD/HYGRADE GW Q2 SAMPLLab Number:L1815070Project Number:3612162331Report Date:05/04/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Revision 11

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	lay	5	Page \ o		A		Rec'd	1/2-	7/18		ALPHA Joh # L1815070
Westborough, MA 01581	Mansfield, MA 02048	Project Information					Deliv	erable	s				Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: STONIN	Cart 1 hou	6 (M ()3	samplin	4		ASP-	A	74	ASP-B		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Long			124.4)	1 🗆	EQui	S (1 File)	\Box	EQuIS (4 FI	le)	PO#
Period Park Control of		-	-SMG (VI)	11.1			1 1	Other	Children Street,				NOTE OF STREET
Client Information		Project # 3612162331					Person		Requireme	nt			Disposal Site Information
Client: Arneu Fosser		(Use Project name as Pr		64			NAME OF TAXABLE PARTY.		COSTON AND PROPERTY.	Marie .	NY Part 375		
Address: 214-2547	in the Switesh	Project Manager: Ecis	-	200			-			=			Please identify below location of applicable disposal facilities.
Bayside NY 11	361	ALPHAQuote #: 052	.56				ļЦ	AWQ	Standards	_	NY CP-51		applicable disposal facilities.
Phone: 344 836	4445	Turn-Around Time						NY Re	stricted Use		Other		Disposal Facility:
Fax:		Standard		Due Date:				NY Ur	restricted Us	e			□ NJ □ NY
	rainfrom all or	Rush (only if pre approved		# of Days:				NYC S	Sewer Discha	rge			Other:
These samples have be							ANA	LYSIS					Sample Filtration
Other project specific										T			Done
	unde filtratta			ř				THL metaly	retak				Lab to do Preservation Lab to do
Please specify Metals	or TAL.						1		A B	1 1			Lab to do
							1 5	3					(Please Specify below)
ALTHUR LOND	F -		Colle	ection	Sample	Sampler's	3	33	1267				
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	2	Dissolved	13				Sample Specific Comments
15070- 01	BMW-1-041	A .	PHIZEIPE	1235	64	BH	×	x	×				
02	BMW-2-04		UH1361A	1310	GW	21	×	×	×				
-03	BMW-3-04		04125119	COPI	GW	BH	×	X	×			7 10	
-01	BMW-4-02		04/36/14	1100	GW	JL	*	×	X		\neg		
			04/27/18	0650	GW	9L	X	×	×	+			
-05	MW-60	1 / T T T T T T T T T T T T T T T T T T					X	-	10000000		-	-	
-06	MW-65		04/27/18		A I	BH		X	×	-			
	MW-5	The state of the s	04/27/18	1005	9W	91	X	X	X	-	_	-	
-08	MW-E	-0418	04/27/18	1030	6M	BH	X	X	×	\vdash			
-09	Pophrate	@ puplicate	04/26/18	1100	GW	16	X	X	*				
-10	Field	Blank	104/26/18	1425	GW	75	78	X	X				
Preservative Code:	Container Code	Westboro: Certification N			-5.93			0	0				Please print clearly, legibly
A = None	P = Plastic	Mansfield: Certification N			Con	tainer Type	A	P	P				and completely. Samples can
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Williams Certification N	io. mriorio			Maria (1990)							not be logged in and
D = H ₂ SO ₄	G = Glass				F	reservative	B	A	C	1 1			turnaround time clock will not
E = NaOH	B = Bacteria Cup							1000		-		_	start until any ambiguities are
F = MeOH	C = Cube O = Other	Relinquished		Date/		-	Receiv	ved By		2.11	Date/Time	-	resolved. BY EXECUTING THIS COC, THE CLIENT
$G = NaHSO_4$ $H = Na_2S_2O_3$	E = Encore	130 HORS		上的北方 1	1300	1 bo	D	14	71	4/12	7/18/	3/1	HAS READ AND AGREES
K/E = Zn Ac/NaOH	D = BOD Bottle	DOND AG	21	4/20/12	1805	Danie	15	and	05 AAL	4/2	118, 18	30	TO BE BOUND BY ALPHA'S
O = Other			S AAL	412/18	A CONTRACTOR OF THE PARTY OF TH	11	1		2	40	7/182	3/0	TERMS & CONDITIONS.
F	0.01.00107	THE THAT	DITL	415418	COIU	100				THE	11000	-	(See reverse side.)
Form No: 01-25 HC (rev. 3) Page 102 of 104	u-aept-zu13)												

Дена	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	lay	05	Page 2 of	-			Rec'd Lab					ALPHA Job#
Westborough, MA 01581	Mansfield, MA 02048	Project Information		-		-	Deliv	erable	s					Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: Stolker (A)	and Maria	ode				ASP.	A	×	ASP	-B		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	7 15	Ac des	JUL		10	EQui	S (1 File		100	IS (4 F	File)	PO#
Client Information	THE REAL PROPERTY.		7 33 1	of 1100	V 73		1 7	Othe	and the second second		1	CONTRACTOR OF STREET	(70 20 4.11	
Client: AVYC TOSPy	whehe	(Use Project name as Pr	-				Regi		Require	ment				Disposal Site Information
	47D Ave St 3R			-1 -1×	_		- No. of Concession,	NY TO		110111	NYP	art 375		The second secon
Augus NY		ALPHAQuote #:	256	S OCK					Standards	Ē	NYC			Please identify below location of applicable disposal facilities.
Phone: 747 934	The same of the sa	Turn-Around Time	ALCOHOLD S	A STATE OF	WY CEN	-		NY R	estricted U	se 🗌	Other			Disposal Facility:
Fax:		Standard	X	Due Date:				NY U	restricted	Use				□ NJ □ NY
Email: (21/16 (3/217)	Should Drown thouse	Rush (only if pre approved)		# of Days:				NYC:	Sewer Disc	harge				Other:
These samples have b		ed by Alpha										_		Sample Filtration
Other project specific								1	- 1					Done
lab to do	Sample Yith	MSX	+ MSO	sollect	ed to	200	1	10	-3					Lab to do
(00 10 00	south 1111	ration, MS	1-0-0	LING D	u 30	8		2	3					Preservation
Please specify Metals	or TAL.	7.100	00-0	110 6	-1134	10	1	\$	_					Lab to do
					_	_	1	00	巨					(Please Specify below)
ALPHA Lab ID			Colle	ection	Camala	Complete	5	200	_					(Freuse opeciny below)
(Lab Use Only)	Sa	mple ID	Date	Time	Sample Matrix	Sampler's Initials	S	5.5	20		-			Sample Specific Comments
	MS		N1/27, K	0550	AW	AL	Y	×	¥					-
The same of the sa	275	0	acho dis	17550	AN	11	V	1	V					
The same of the sa	TWO B)	anh	111	0.00	AN	100	×	1						
2016 7700	INV DI	SAFIXA			HIV		- Po-							4
A STATE OF THE PARTY OF THE PAR														
Mary Comments							-							
A THE LOCAL PROPERTY OF														
Preservative Code; A = None	Container Code P = Plastic	Westboro: Certification N	o: MA935		Con	tainer Type								Please print clearly, legibly
B = HCI	A = Amber Glass	Mansfield: Certification N	o: MA015		Con	tainer Type								and completely. Samples can
C = HNO ₃	V = Vial					Anna and a salar a								not be logged in and
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup				P	reservative								turnaround time clock will not
F = MeOH	C = Cube	Relinquished B	Bv:	Date/	Time	9	Receiv	ed By			/Date	/Time	_	start until any ambiguities are resolved. BY EXECUTING
G = NaHSO ₄ H = Na ₂ S ₂ O ₃	O = Other E = Encore	Ben Hess		HONR	1310	12	T		A1.	41	777	10	13	THIS COC, THE CLIENT
K/E = Zn Ac/NaOH	D = BOD Bottle	Don DA	1	Worlie	1.100			1	-	17	4	-0	-	HAS READ AND AGREES
O = Other		Don D AAL 4/27/18.												TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 3	0-Sept-2013)													(See reverse side.)

ДРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co	Way	5	Page Z º				Rec'd Lab				ALPHA Job #	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erable	S				Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Stoly o	ruch lysome	ado				ASP-	A	X	ASP-E	3	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: Stolly (n Island	City 1	NY			EQui	S (1 File)		EQuis	(4 File)	PO#	
Client Information		Project# 3512-1	62331	10.01	ALCO II			Other						
Client: AMME POSE	or inhugher	(Use Project name as P					Regu	ilatory	Requiren	nent		11	Disposal Site Information	
Address: 214-25	4201 Ave Se 3R			HOCK.			_ nonempte	NY TO	THE OWNER OF THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER,		NY Par	t 375	Please identify below location of	
Busde NY		ALPHAQuote #: Q5	25b	-				AWQ	Standards		NY CP	51	applicable disposal facilities.	
Phone: 341 63		Turn-Around Time						NY Re	stricted Us	e _	Other		Disposal Facility:	
Fax:	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Standar	d [X]	Due Date:				NY Ur	restricted l	Jse			□ NJ □ NY	
Email: 0 Vyr. (2014	ns back () numo for	Qush (only if pre approved	n 🗀	# of Days:				NYC	Sewer Disc	narge			Other:	
	been previously analyz						ANA	LYSIS	8				Sample Filtration	1
The second secon	ic requirements/comm	NAME OF THE PARTY						1	5	\top	T		Done	0
	Sample Air	NORTH CONTRACTOR						(155 dvod TATELLO)	Metals				Lab to do Preservation	a
Please specify Meta	Is or TAL.						1	=	_1		1 1		Lab to do	В
riced speeny mone	18. 81. 11. 181.						ł	DON	THE STATE OF THE S		1 1		(Please Specify below)	e
			Celle	ation .		T	5	0	VIII I				(Flease Specify below)	1
(Lab Use Only)	Sa	imple ID	130907-039	ection	Sample Matrix	Sampler's Initials	400	1,5	Tolal				0	1
	-		Date	Time	L. Components					+-	-	-	Sample Specific Comments	8
15070-05	Me		04/27/18		GW	de	X	X	*	+	\vdash			
05	ms		04/2-114	0850	GW	16	X	1	X	-				
-11	Trip BI	anh	2 3		GW		X	27						
	. 4	= 016	15											
								[]						
	1											li .		
		 												
Preservative Code: A = None B = HCl C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N				tainer Type							Please print clearly, legibly and completely. Samples c not be logged in and turnaround time clock will n	can
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup					reservative							start until any ambiguities a	2000
F = MeOH	C = Cube	Relinquished	By:	Date/	Time		Receiv	ed By	12		/Date/J	Time	resolved. BY EXECUTING	21/07/5
G = NaHSO ₄	O = Other E = Encore	Ber Hess		AIRCH	1300	12	T	_	01	4/	-	9 13	THIS COC, THE CLIENT	332
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	D = BOD Bottle		+A1 -	4/27/18	1005	Danie	7		AAL	U	2/1/1	_	HAS READ AND AGREES TO BE BOUND BY ALPHA	150 Section 1
O = Other		1		4/27/18	-	THAT	10	ITO	7	U	7	1230	TERMS & CONDITIONS.	,0
From Net O1 05 UO /	20 Cont 20121	David Davidos	DAL_	Alellix	0.310	01	•			1-6	W/7	WA TO	(See reverse side.)	
Form No: 01-25 HC (rev.	30-3ept-2013)	1											The second secon	_

ANALYTICAL REPORT

Lab Number: L1815079

Client: Wood Env & Infrastructure Solutions, Inc

214-25 42nd Avenue

Suite 3R

Bayside, NY 11361

ATTN: Eric Weinstock Phone: (347) 836-4445

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Report Date: 05/11/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815079 **Report Date:** 05/11/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1815079-01	BMW-1-0418	WATER	LONG ISLAND CITY, NY	04/26/18 12:35	04/27/18
L1815079-02	BMW-2-0418	WATER	LONG ISLAND CITY, NY	04/26/18 13:10	04/27/18
L1815079-03	BMW-3-0418	WATER	LONG ISLAND CITY, NY	04/26/18 14:00	04/27/18
L1815079-04	BMW-4-0418	WATER	LONG ISLAND CITY, NY	04/26/18 11:00	04/27/18
L1815079-05	MW-6D-0418	WATER	LONG ISLAND CITY, NY	04/27/18 08:50	04/27/18
L1815079-06	MW-6S-0418	WATER	LONG ISLAND CITY, NY	04/27/18 08:50	04/27/18
L1815079-07	MW-5-0418	WATER	LONG ISLAND CITY, NY	04/27/18 10:05	04/27/18
L1815079-08	MW-E-0418	WATER	LONG ISLAND CITY, NY	04/27/18 10:30	04/27/18
L1815079-09	DUPLICATE	WATER	LONG ISLAND CITY, NY	04/26/18 11:00	04/27/18
L1815079-10	FIELD BLANK	WATER	LONG ISLAND CITY, NY	04/26/18 14:25	04/27/18

L1815079

Lab Number:

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331 **Report Date:** 05/11/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079

Project Number: 3612162331 **Report Date:** 05/11/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1815079-05: The collection date and time on the chain of custody was 27-APR-18 08:50; however, the collection date/time on the container label was 27-APR-18 00:00. At the client's request, the collection date/time is reported as 27-APR-18 08:50.

Perfluorinated Alkyl Acids by Isotope Dilution

L1815079-01, -02, -03, -04, and -09: The samples were re-extracted on dilution in order to quantify the results within the calibration range.

L1815079-01: The internal standard (IS) response(s) for M4PFOS (46%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (49%), M4PFOS (43%) and M2PFDA (46%). Since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-01RE: The Extracted Internal Standard recovery was outside the acceptance criteria for 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (155%).

L1815079-02: The internal standard (IS) response(s) for M4PFOS (39%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (47%), M4PFOS (40%) and M2PFDA (45%). Since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-03: The internal standard (IS) response(s) for M3PFBA (46%), M2PFOA (40%), M4PFOS (15%) and M2PFDA (32%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (49%), M4PFOS (40%) and M2PFDA (45%). Since the IS response was below method criteria, all

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079

Project Number: 3612162331 **Report Date:** 05/11/18

Case Narrative (continued)

associated compounds are considered to have a potentially high bias.

L1815079-03RE: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c4]butanoic acid (mpfba) (35%) and perfluoro[13c8]octanesulfonamide (m8fosa) (49%) and 1h,1h,2h,perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (168%).

L1815079-04: The internal standard (IS) response(s) for M3PFBA (34%), M2PFOA (36%), M4PFOS (17%) and M2PFDA (27%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (48%), M4PFOS (40%) and M2PFDA (46%). Since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-04RE: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c4]butanoic acid (mpfba) (43%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (179%).

L1815079-05: The Extracted Internal Standard recoveries were outside the acceptance criteria for and perfluoro[13c8]octanesulfonamide (m8fosa) (15%) 1h,1h,2h,2h-perfluoro[1,2-13c2]hexanesulfonic acid (m2-4:2fts) (202%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (179%).

L1815079-06: The internal standard (IS) response(s) for M4PFOS (42%) and M2PFDA (50%) were below the acceptance criteria; however, re-analysis achieved similar results M3PFBA (29%) M2PFOA (37%), M4PFOS (20%) and M2PFDA (23%). Both runs are reported, however, since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-06R: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (26%) and perfluoro[1,2-13c2]tetradecanoic acid (m2pfteda) (44%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (190%).

L1815079-07: The internal standard (IS) response(s) for M3PFBA (48%), M4PFOS (40%) and M2PFDA (47%) were below the acceptance criteria; however, re-analysis achieved similar results M3PFBA (27%), M2PFOA (29%) M4PFOS (23%) and M2PFDA (24%). Both runs are reported, however, since the IS response was below

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079

Project Number: 3612162331 **Report Date:** 05/11/18

Case Narrative (continued)

method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-07R: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (19%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (187%).

L1815079-08: The internal standard (IS) response(s) for M3PFBA (48%), M4PFOS (44%) and M2PFDA (46%) were below the acceptance criteria; however, re-analysis achieved similar results M3PFBA (28%), M2PFOA (30%), M4PFOS (22%) and M2PFDA (24%). Both runs are reported, however, since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias. L1815079-08R: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (26%) and perfluoro[1,2-13c2]tetradecanoic acid (m2pfteda) (25%).

L1815079-09: The internal standard (IS) response(s) for M3PFBA (25%), M2PFOA (240%), M4PFOS (12%) and M2PFDA (18%) were below the acceptance criteria; however, re-extraction achieved similar results M3PFBA (45%), M4PFOS (37%) and M2PFDA (40%). Since the IS response was below method criteria, all associated compounds are considered to have a potentially high bias.

L1815079-09RE: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c4]butanoic acid (mpfba) (43%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (192%).

L1815079-10: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (27%).

WG1113611-1 Method Blank: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (11%).

WG1114432-1 Method Blank: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (44%).

Serial_No:05111815:44

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079
Project Number: 3612162331 Report Date: 05/11/18

Case Narrative (continued)

WG1113611-2/-3 LCS: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (7%/11%).

WG1114432-3 LCSD: The Extracted Internal Standard recovery was outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (42%).

WG1113611-4/-5 MS/MSD: The Extracted Internal Standard recoveries were outside the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (25%/17%) and 1h,1h,2h,2h-perfluoro[1,2-13c2]octanesulfonic acid (m2-6:2fts) (183%/163%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Galle Por Elizabeth Porta

Authorized Signature:

Title: Technical Director/Representative

Date: 05/11/18

ORGANICS

SEMIVOLATILES

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 12:35

Lab Number:

Report Date:

Lab ID: L1815079-01 Date Received: Client ID: BMW-1-0418 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/09/18 11:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	30.2		ng/l	1.72	0.113	1	
Perfluoropentanoic Acid (PFPeA)	61.8		ng/l	1.72	0.074	1	
Perfluorobutanesulfonic Acid (PFBS)	1080	Е	ng/l	1.72	0.095	1	
Perfluorohexanoic Acid (PFHxA)	72.2		ng/l	1.72	0.109	1	
Perfluoroheptanoic Acid (PFHpA)	23.3		ng/l	1.72	0.080	1	_
Perfluorohexanesulfonic Acid (PFHxS)	148		ng/l	1.72	0.093	1	
Perfluorooctanoic Acid (PFOA)	59.1		ng/l	1.72	0.043	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	0.721	J	ng/l	1.72	0.167	1	
Perfluoroheptanesulfonic Acid (PFHpS)	48.1		ng/l	1.72	0.134	1	
Perfluorononanoic Acid (PFNA)	4.84		ng/l	1.72	0.087	1	
Perfluorooctanesulfonic Acid (PFOS)	922	Е	ng/l	1.72	0.096	1	
Perfluorodecanoic Acid (PFDA)	1.28	J	ng/l	1.72	0.164	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.72	0.251	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.72	0.216	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.72	0.165	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.72	0.192	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.72	0.196	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.72	0.321	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.72	0.079	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.72	0.078	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.72	0.062	1	

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 12:35

Report Date:

Lab ID: L1815079-01 Date Received: Client ID: 04/27/18 BMW-1-0418

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	72		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	58		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	87		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	63		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	80		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	121		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	88		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	173	Q	50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	82		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	77		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	168	Q	50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	91		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	75		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	40	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	84		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	72		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	63		50-150	

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 12:35

Lab Number:

Report Date:

Lab ID: RE L1815079-01 Date Received: Client ID: BMW-1-0418 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/10/18 09:41 Analytical Method: 122,537(M) Analytical Date: 05/10/18 21:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	28.0		ng/l	10.0	0.656	1	
Perfluoropentanoic Acid (PFPeA)	55.9		ng/l	10.0	0.428	1	
Perfluorobutanesulfonic Acid (PFBS)	950		ng/l	10.0	0.550	1	
Perfluorohexanoic Acid (PFHxA)	67.1		ng/l	10.0	0.632	1	
Perfluoroheptanoic Acid (PFHpA)	21.3		ng/l	10.0	0.462	1	
Perfluorohexanesulfonic Acid (PFHxS)	130		ng/l	10.0	0.538	1	
Perfluorooctanoic Acid (PFOA)	53.1		ng/l	10.0	0.252	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	5.48	J	ng/l	10.0	0.970	1	
Perfluoroheptanesulfonic Acid (PFHpS)	42.0		ng/l	10.0	0.776	1	
Perfluorononanoic Acid (PFNA)	5.20	J	ng/l	10.0	0.504	1	
Perfluorooctanesulfonic Acid (PFOS)	780		ng/l	10.0	0.558	1	
Perfluorodecanoic Acid (PFDA)	2.10	J	ng/l	10.0	0.952	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	10.0	1.45	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	10.0	1.25	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	10.0	0.956	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	10.0	1.11	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	10.0	1.13	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	10.0	1.86	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	10.0	0.458	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	10.0	0.452	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	10.0	0.360	1	

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 12:35

Report Date:

Lab ID: RE L1815079-01

Date Received: 04/27/18 BMW-1-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Client ID:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	56		50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	84		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	105		50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	85		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	95		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	124		50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	101		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	155	Q	50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	89		50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	107		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	99		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	114		50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	98		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	101		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	70		50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	111		50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	94		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	76		50-150

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 13:10

Lab Number:

Report Date:

Lab ID: L1815079-02 Date Received: Client ID: BMW-2-0418 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/09/18 12:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	29.8		ng/l	1.92	0.126	1	
Perfluoropentanoic Acid (PFPeA)	62.4		ng/l	1.92	0.082	1	
Perfluorobutanesulfonic Acid (PFBS)	806	E	ng/l	1.92	0.106	1	
Perfluorohexanoic Acid (PFHxA)	45.7		ng/l	1.92	0.122	1	
Perfluoroheptanoic Acid (PFHpA)	20.1		ng/l	1.92	0.089	1	
Perfluorohexanesulfonic Acid (PFHxS)	322		ng/l	1.92	0.103	1	
Perfluorooctanoic Acid (PFOA)	79.7		ng/l	1.92	0.049	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	1.00	J	ng/l	1.92	0.186	1	
Perfluoroheptanesulfonic Acid (PFHpS)	83.2		ng/l	1.92	0.149	1	
Perfluorononanoic Acid (PFNA)	3.43		ng/l	1.92	0.097	1	
Perfluorooctanesulfonic Acid (PFOS)	2130	E	ng/l	1.92	0.107	1	
Perfluorodecanoic Acid (PFDA)	1.22	J	ng/l	1.92	0.183	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.92	0.280	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.92	0.241	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.92	0.184	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.92	0.214	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.92	0.218	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.92	0.358	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.92	0.088	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.92	0.087	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.92	0.069	1	

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Report Date: 05/11/18

Lab ID: Date Collected: L1815079-02 04/26/18 13:10

Date Received: Client ID: 04/27/18 BMW-2-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	78		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	61		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	97		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	125		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	83		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	184	Q	50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	87		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	73		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	165	Q	50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	87		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	32	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	73		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	58		50-150	

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

L1815079-02

RE

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 13:10

Lab Number:

Report Date:

Date Received: Client ID: 04/27/18 BMW-2-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/10/18 09:41 Analytical Method: 122,537(M) Analytical Date: 05/10/18 21:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	27.6		ng/l	20.0	1.31	1	
Perfluoropentanoic Acid (PFPeA)	52.7		ng/l	20.0	0.856	1	
Perfluorobutanesulfonic Acid (PFBS)	706		ng/l	20.0	1.10	1	
Perfluorohexanoic Acid (PFHxA)	39.8		ng/l	20.0	1.26	1	
Perfluoroheptanoic Acid (PFHpA)	19.5	J	ng/l	20.0	0.924	1	
Perfluorohexanesulfonic Acid (PFHxS)	294		ng/l	20.0	1.08	1	
Perfluorooctanoic Acid (PFOA)	74.0		ng/l	20.0	0.504	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	8.20	J	ng/l	20.0	1.94	1	
Perfluoroheptanesulfonic Acid (PFHpS)	69.6		ng/l	20.0	1.55	1	
Perfluorononanoic Acid (PFNA)	3.52	J	ng/l	20.0	1.01	1	
Perfluorooctanesulfonic Acid (PFOS)	1720		ng/l	20.0	1.12	1	_
Perfluorodecanoic Acid (PFDA)	ND		ng/l	20.0	1.90	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	20.0	2.91	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	20.0	2.50	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	20.0	1.91	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	20.0	2.22	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	20.0	2.27	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	20.0	3.73	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	20.0	0.916	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	20.0	0.904	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	20.0	0.720	1	

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 13:10

Report Date:

Lab ID: RE L1815079-02

Date Received: Client ID: 04/27/18 BMW-2-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	53	50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	90	50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	110	50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	92	50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	102	50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	129	50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	102	50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	144	50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	94	50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105	50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	100	50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	115	50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	99	50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	106	50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	71	50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	113	50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	97	50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	79	50-150

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 04/26/18 14:00 L1815079-03

Date Received: Client ID: 04/27/18 BMW-3-0418

LONG ISLAND CITY, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/09/18 12:32

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilut	ion - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	28.9		ng/l	1.72	0.113	1
Perfluoropentanoic Acid (PFPeA)	56.9		ng/l	1.72	0.074	1
Perfluorobutanesulfonic Acid (PFBS)	111		ng/l	1.72	0.095	1
Perfluorohexanoic Acid (PFHxA)	104		ng/l	1.72	0.109	1
Perfluoroheptanoic Acid (PFHpA)	26.2		ng/l	1.72	0.080	1
Perfluorohexanesulfonic Acid (PFHxS)	97.1		ng/l	1.72	0.093	1
Perfluorooctanoic Acid (PFOA)	65.6		ng/l	1.72	0.043	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	3.43		ng/l	1.72	0.167	1
Perfluoroheptanesulfonic Acid (PFHpS)	115		ng/l	1.72	0.134	1
Perfluorononanoic Acid (PFNA)	4.10		ng/l	1.72	0.087	1
Perfluorooctanesulfonic Acid (PFOS)	8390	Е	ng/l	1.72	0.096	1
Perfluorodecanoic Acid (PFDA)	0.972	J	ng/l	1.72	0.164	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.72	0.251	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.72	0.216	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.72	0.165	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.72	0.192	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.72	0.196	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.72	0.321	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.72	0.079	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.72	0.078	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.72	0.062	1

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 14:00

Report Date:

Lab ID: L1815079-03

Date Received: Client ID: 04/27/18 BMW-3-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	49	Q	50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	58		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	233	Q	50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	69		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	85		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	273	Q	50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	90		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	663	Q	50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	71		50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	88		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	368	Q	50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	107		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	89		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	48	Q	50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	59		50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	84		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	62		50-150

05/11/18

Report Date:

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

RE Date Collected: 04/26/18 14:00 L1815079-03

Lab ID: Date Received: Client ID: 04/27/18 BMW-3-0418

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/10/18 09:41 Analytical Method: 122,537(M) Analytical Date: 05/10/18 22:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	100	6.56	1
Perfluoropentanoic Acid (PFPeA)	44.2	J	ng/l	100	4.28	1
Perfluorobutanesulfonic Acid (PFBS)	120		ng/l	100	5.50	1
Perfluorohexanoic Acid (PFHxA)	74.2	J	ng/l	100	6.32	1
Perfluoroheptanoic Acid (PFHpA)	19.8	J	ng/l	100	4.62	1
Perfluorohexanesulfonic Acid (PFHxS)	152		ng/l	100	5.38	1
Perfluorooctanoic Acid (PFOA)	102		ng/l	100	2.52	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	100	9.70	1
Perfluoroheptanesulfonic Acid (PFHpS)	92.6	J	ng/l	100	7.76	1
Perfluorononanoic Acid (PFNA)	5.20	J	ng/l	100	5.04	1
Perfluorooctanesulfonic Acid (PFOS)	5770		ng/l	100	5.58	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	100	9.52	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	100	14.5	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	100	12.5	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	100	9.56	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	100	11.1	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	100	11.3	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	100	18.6	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	100	4.58	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	100	4.52	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	100	3.60	1

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 14:00

Lab ID: RE L1815079-03

Date Received: 04/27/18

Report Date:

Client ID: BMW-3-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

	urrogate	% Recovery	Qualifier	Acceptance Criteria
108 50-150 102,3,4-13C3 Butanesulfonic Acid (M3PFBS) 108 50-150 102,3,4,6-13C5 Hexanoic Acid (M5PFHxA) 85 50-150 102,3,4-13C4 Heptanoic Acid (M4PFHpA) 101 50-150 102,3-13C3 Hexanesulfonic Acid (M3PFHxS) 133 50-150 102,3-13C3 Hexanesulfonic Acid (M3PFHxS) 133 50-150 102,3-13C3 Hexanesulfonic Acid (M3PFHxS) 168 Q 50-150 102,2-13C2 Octanesulfonic Acid (M2-6:2FTS) 168 Q 50-150 103 102,3,4,5,6-13C6 Decanoic Acid (M8PFOS) 103 50-150 102,3,4,5,6-13C6 Decanoic Acid (M6PFDA) 95 50-150 102,2,4,4,5,6-13C6 Decanoic Acid (M6PFDA) 95 50-150 102,3,4,5,6,7-13C7 Undecanoic Acid (M2-8:2FTS) 111 50-150 102,3,4,5,6,7-13C7 Undecanoic Acid (M7-PFUDA) 104 50-150 103 102,3,4,5,6,7-13C7 Undecanoic Acid (M7-PFUDA) 104 50-150 103	erfluoro[13C4]Butanoic Acid (MPFBA)	35	Q	50-150
1,2,3,4,6-13C5 Hexanoic Acid (M5PFHxA)	erfluoro[13C5]Pentanoic Acid (M5PFPEA)	88		50-150
1,2,3,4-13C4 Heptanoic Acid (M4PFHpA)	rfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	108		50-150
1,2,3-13C3 Hexanesulfonic Acid (M3PFHxS)	fluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	85		50-150
13C8 Octanoic Acid (M8PFOA) 97 50-150 1,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 168 Q 50-150 1,3C9 Nonanoic Acid (M9PFNA) 84 50-150 1,3C8 Octanesulfonic Acid (M8PFOS) 103 50-150 1,2,3,4,5,6-13C6 Decanoic Acid (M6PFDA) 95 50-150 1,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 111 50-150 1,2H-Perfluoro-1-octanesulfonamidoacetic Acid (M3-NMeFOSAA) 87 50-150 1,2,3,4,5,6,7-13C7 Undecanoic Acid (M7-PFUDA) 104 50-150 1,2,3,4,5,6,7-13C7 Undecanoic Acid (M7-PFUDA) 104 50-150 1,2,3,4,5,6,7-13C7 Undecanoic Acid (M7-PFUDA) 104 50-150 1,2,3,4,5,6,7-13C7 Undecanoic Acid (M8FOSA) 98 50-150 1,2-13C2 Dodecanoic Acid (MPFDOA) 95 50-150 1,2-	fluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101		50-150
H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 168 Q 50-150 [13C9]Nonanoic Acid (M9PFNA) 84 50-150 [13C8]Octanesulfonic Acid (M8PFOS) 103 50-150 [1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 104 50-150 [1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 105 [1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 106 [13C8]Octanesulfonamide (M8FOSA) 107 [13C8]Octanesulfonamide (M8FOSA) 108 [1,2-13C2]Dodecanoic Acid (MPFDOA) 109 [1,2-13C2]Dodecanoic Acid (MPFDOA) 109 [1,2-13C2]Dodecanoic Acid (MPFDOA) 100 [1,2-13C2]Dodecanoic Acid (MPFDOA)	luoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	133		50-150
[13C9]Nonanoic Acid (M9PFNA) 84 50-150 [13C8]Octanesulfonic Acid (M8PFOS) 103 50-150 [1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 95 50-150 H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 111 50-150 riomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 87 50-150 [1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 50-150 [13C8]Octanesulfonamide (M8FOSA) 49 Q 50-150 [1,2-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	luoro[13C8]Octanoic Acid (M8PFOA)	97		50-150
[13C8]Octanesulfonic Acid (M8PFOS) 103 50-150 [1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 95 50-150 H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 111 50-150 riomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 87 50-150 [1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 50-150 [13C8]Octanesulfonamide (M8FOSA) 49 Q 50-150 [10cethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 98 50-150 [1,2-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	168	Q	50-150
[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 95 50-150 H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 111 50-150 riomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 87 50-150 o[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 50-150 o[13C8]Octanesulfonamide (M8FOSA) 49 Q 50-150 rioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 98 50-150 o[1,2-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	luoro[13C9]Nonanoic Acid (M9PFNA)	84		50-150
H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 111 50-150 riomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 87 50-150 112,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 50-150 113C8]Octanesulfonamide (M8FOSA) 49 Q 50-150 110-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	uoro[13C8]Octanesulfonic Acid (M8PFOS)	103		50-150
riomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 87 50-150 9[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 50-150 9[13C8]Octanesulfonamide (M8FOSA) 49 Q 50-150 rioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 98 50-150 9[1,2-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	oro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	95		50-150
[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 50-150 [13C8]Octanesulfonamide (M8FOSA) 49 Q 50-150 [10cethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 98 50-150 [1,2-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	111		50-150
p[13C8]Octanesulfonamide (M8FOSA) 49 Q 50-150 rioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 98 50-150 p[1,2-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	euteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	87		50-150
rioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 98 50-150 1,2-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	uoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	104		50-150
[1,2-13C2]Dodecanoic Acid (MPFDOA) 95 50-150	luoro[13C8]Octanesulfonamide (M8FOSA)	49	Q	50-150
.,	euterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	98		50-150
of 1.2.13C2)Tetradecanoic Acid (M2PETEDA) 78 50.150	oro[1,2-13C2]Dodecanoic Acid (MPFDOA)	95		50-150
(1,2-1302) Tetradecarioic Acid (WZTTTEDA)	oro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78		50-150

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number:

Project Number: 3612162331

L1815079-04

BMW-4-0418

LONG ISLAND CITY, NY

SAMPLE RESULTS

Date Collected: 04/26/18 11:00

Date Received: 04/27/18

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Extraction Method: EPA 537

Analytical Method: 122,537(M) Extraction Date: 05/08/18 10:30
Analytical Date: 05/09/18 12:48

Analyst: AJ

Result	Qualifier	Units	RL	MDL	Dilution Factor
ion - Mansfiel	d Lab				
31.0		ng/l	1.92	0.126	1
92.5		ng/l	1.92	0.082	1
248		ng/l	1.92	0.106	1
104		ng/l	1.92	0.122	1
23.2		ng/l	1.92	0.089	1
106		ng/l	1.92	0.103	1
71.2		ng/l	1.92	0.049	1
1.85	J	ng/l	1.92	0.186	1
75.0		ng/l	1.92	0.149	1
3.03		ng/l	1.92	0.097	1
3750	Е	ng/l	1.92	0.107	1
1.17	J	ng/l	1.92	0.183	1
ND		ng/l	1.92	0.280	1
ND		ng/l	1.92	0.241	1
0.704	J	ng/l	1.92	0.184	1
1.15	J	ng/l	1.92	0.214	1
ND		ng/l	1.92	0.218	1
0.515	J	ng/l	1.92	0.358	1
0.762	J	ng/l	1.92	0.088	1
0.646	J	ng/l	1.92	0.087	1
0.638	J	ng/l	1.92	0.069	1
	31.0 92.5 248 104 23.2 106 71.2 1.85 75.0 3.03 3750 1.17 ND ND 0.704 1.15 ND 0.515 0.762 0.646	31.0 92.5 248 104 23.2 106 71.2 1.85 J 75.0 3.03 3750 E 1.17 ND ND ND ND 0.704 J 1.15 ND 0.515 J 0.762 J 0.646 J	31.0 ng/l 92.5 ng/l 248 ng/l 104 ng/l 23.2 ng/l 106 ng/l 71.2 ng/l 1.85 J ng/l 75.0 ng/l 3.03 ng/l 3750 E ng/l 1.17 J ng/l ND ng/l ND ng/l 0.704 J ng/l 1.15 J ng/l ND ng/l 0.762 J ng/l 0.646 J ng/l	31.0	31.0 ng/l 1.92 0.126 92.5 ng/l 1.92 0.082 248 ng/l 1.92 0.106 104 ng/l 1.92 0.122 23.2 ng/l 1.92 0.089 106 ng/l 1.92 0.103 71.2 ng/l 1.92 0.049 1.85 J ng/l 1.92 0.146 75.0 ng/l 1.92 0.149 3.03 ng/l 1.92 0.149 3.03 ng/l 1.92 0.107 1.17 J ng/l 1.92 0.183 ND ng/l 1.92 0.280 ND ng/l 1.92 0.280 ND ng/l 1.92 0.241 0.704 J ng/l 1.92 0.214 ND ng/l 1.92 0.214 ND ng/l 1.92 0.218 0.515 J ng/l 1.92 0.258 0.762 J ng/l 1.92 0.088 0.646 J ng/l 1.92 0.088 0.646 J ng/l 1.92 0.088

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

Report Date: 05/11/18

SAMPLE RESULTS

Lab ID: Date Collected: L1815079-04 04/26/18 11:00

Date Received: Client ID: 04/27/18 BMW-4-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	66		50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	65		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	161	Q	50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	182	Q	50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	84		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	349	Q	50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	65		50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	83		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	163	Q	50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	86		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	35	Q	50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	97		50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	81		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	62		50-150

05/11/18

Report Date:

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079

Project Number: 3612162331

SAMPLE RESULTS

Lab ID: L1815079-04 RE Date Collected: 04/26/18 11:00

Client ID: BMW-4-0418 Date Received: 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 537

Analytical Method: 122,537(M) Extraction Date: 05/10/18 09:41
Analytical Date: 05/10/18 22:19

Analyst: AJ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	31.7	J	ng/l	40.0	2.62	1
Perfluoropentanoic Acid (PFPeA)	84.2		ng/l	40.0	1.71	1
Perfluorobutanesulfonic Acid (PFBS)	229		ng/l	40.0	2.20	1
Perfluorohexanoic Acid (PFHxA)	93.0		ng/l	40.0	2.53	1
Perfluoroheptanoic Acid (PFHpA)	21.0	J	ng/l	40.0	1.85	1
Perfluorohexanesulfonic Acid (PFHxS)	89.6		ng/l	40.0	2.15	1
Perfluorooctanoic Acid (PFOA)	85.8		ng/l	40.0	1.01	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	40.0	3.88	1
Perfluoroheptanesulfonic Acid (PFHpS)	40.2		ng/l	40.0	3.10	1
Perfluorononanoic Acid (PFNA)	3.04	J	ng/l	40.0	2.02	1
Perfluorooctanesulfonic Acid (PFOS)	2550		ng/l	40.0	2.23	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	40.0	3.81	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	40.0	5.82	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	40.0	5.01	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	40.0	3.82	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	40.0	4.45	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	40.0	4.54	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	40.0	7.46	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	40.0	1.83	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	40.0	1.81	1
Perfluorotetradecanoic Acid (PFTA)	2.08	J	ng/l	40.0	1.44	1

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 11:00

Report Date:

Lab ID: RE L1815079-04

Date Received: Client ID: 04/27/18 BMW-4-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	43	Q	50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	90		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	109		50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	88		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	97		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	133		50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	94		50-150
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	179	Q	50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	86		50-150
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	102		50-150
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	97		50-150
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	120		50-150
I-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	87		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	94		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	53		50-150
-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	99		50-150
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	81		50-150
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	66		50-150

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Lab Number:

Report Date:

Lab ID: L1815079-05 Date Received: Client ID: 04/27/18 MW-6D-0418

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/10/18 18:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	6.24		ng/l	1.85	0.121	1	
Perfluoropentanoic Acid (PFPeA)	5.01		ng/l	1.85	0.079	1	
Perfluorobutanesulfonic Acid (PFBS)	13.8		ng/l	1.85	0.102	1	
Perfluorohexanoic Acid (PFHxA)	6.03		ng/l	1.85	0.117	1	
Perfluoroheptanoic Acid (PFHpA)	4.02		ng/l	1.85	0.086	1	
Perfluorohexanesulfonic Acid (PFHxS)	2.75		ng/l	1.85	0.100	1	
Perfluorooctanoic Acid (PFOA)	17.4		ng/l	1.85	0.047	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.85	0.180	1	
Perfluoroheptanesulfonic Acid (PFHpS)	0.744	J	ng/l	1.85	0.144	1	
Perfluorononanoic Acid (PFNA)	1.36	J	ng/l	1.85	0.093	1	
Perfluorooctanesulfonic Acid (PFOS)	64.4		ng/l	1.85	0.103	1	
Perfluorodecanoic Acid (PFDA)	0.481	J	ng/l	1.85	0.176	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.85	0.269	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85	0.232	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85	0.177	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85	0.206	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.85	0.210	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85	0.345	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85	0.085	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85	0.084	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85	0.067	1	

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Report Date:

Lab ID: L1815079-05 Date Received: Client ID: 04/27/18 MW-6D-0418

Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	80		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	68		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	90		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	66		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	111		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	179	Q	50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	88		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	133		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	90		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	86		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	15	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	93		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	76		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	60		50-150	

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Lab Number:

Report Date:

L1815079-06 Date Received: MW-6S-0418 04/27/18

Client ID: Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/09/18 13:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	12.7		ng/l	1.72	0.113	1	
Perfluoropentanoic Acid (PFPeA)	7.42		ng/l	1.72	0.074	1	
Perfluorobutanesulfonic Acid (PFBS)	22.5		ng/l	1.72	0.095	1	
Perfluorohexanoic Acid (PFHxA)	6.96		ng/l	1.72	0.109	1	
Perfluoroheptanoic Acid (PFHpA)	5.69		ng/l	1.72	0.080	1	
Perfluorohexanesulfonic Acid (PFHxS)	30.2		ng/l	1.72	0.093	1	
Perfluorooctanoic Acid (PFOA)	48.7		ng/l	1.72	0.043	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	5.26		ng/l	1.72	0.167	1	
Perfluoroheptanesulfonic Acid (PFHpS)	11.4		ng/l	1.72	0.134	1	
Perfluorononanoic Acid (PFNA)	2.48		ng/l	1.72	0.087	1	
Perfluorooctanesulfonic Acid (PFOS)	479		ng/l	1.72	0.096	1	
Perfluorodecanoic Acid (PFDA)	0.852	J	ng/l	1.72	0.164	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.72	0.251	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.72	0.216	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.72	0.165	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.72	0.192	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.72	0.196	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.72	0.321	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.72	0.079	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.72	0.078	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.72	0.062	1	

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Report Date:

Lab ID: L1815079-06 Date Received: Client ID: 04/27/18 MW-6S-0418

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	67		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	56		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	116		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	71		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	89		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	140		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	88		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	200	Q	50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	75		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	92		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	76		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	126		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	64		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	67		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	26	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	66		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	54		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	37	Q	50-150	

05/11/18

Report Date:

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Lab ID: R Date Collected: 04/27/18 08:50 L1815079-06

Date Received: Client ID: MW-6S-0418 04/27/18

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/10/18 19:32

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	12.7		ng/l	1.72	0.113	1	
Perfluoropentanoic Acid (PFPeA)	7.55		ng/l	1.72	0.074	1	
Perfluorobutanesulfonic Acid (PFBS)	23.0		ng/l	1.72	0.095	1	
Perfluorohexanoic Acid (PFHxA)	7.17		ng/l	1.72	0.109	1	
Perfluoroheptanoic Acid (PFHpA)	5.70		ng/l	1.72	0.080	1	
Perfluorohexanesulfonic Acid (PFHxS)	29.4		ng/l	1.72	0.093	1	
Perfluorooctanoic Acid (PFOA)	48.8		ng/l	1.72	0.043	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	4.58		ng/l	1.72	0.167	1	
Perfluoroheptanesulfonic Acid (PFHpS)	11.0		ng/l	1.72	0.134	1	
Perfluorononanoic Acid (PFNA)	2.32		ng/l	1.72	0.087	1	
Perfluorooctanesulfonic Acid (PFOS)	474		ng/l	1.72	0.096	1	_
Perfluorodecanoic Acid (PFDA)	0.710	J	ng/l	1.72	0.164	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.72	0.251	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.72	0.216	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.72	0.165	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.72	0.192	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.72	0.196	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.72	0.321	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.72	0.079	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.72	0.078	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.72	0.062	1	

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 08:50

Report Date:

Lab ID: R L1815079-06

Date Received: Client ID: 04/27/18 MW-6S-0418 Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	66		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	56		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	96		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	63		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	119		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	83		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	190	Q	50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	80		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	86		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	78		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	137		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	73		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	71		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	26	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	73		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	59		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	44	Q	50-150	

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

04/27/18 10:05

Lab Number:

Report Date:

Lab ID: Date Collected: L1815079-07

Date Received: Client ID: 04/27/18 MW-5-0418

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/09/18 14:11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfield	d Lab				
Perfluorobutanoic Acid (PFBA)	8.62		ng/l	1.78	0.117	1
Perfluoropentanoic Acid (PFPeA)	8.78		ng/l	1.78	0.076	1
Perfluorobutanesulfonic Acid (PFBS)	11.9		ng/l	1.78	0.098	1
Perfluorohexanoic Acid (PFHxA)	8.14		ng/l	1.78	0.113	1
Perfluoroheptanoic Acid (PFHpA)	4.82		ng/l	1.78	0.083	1
Perfluorohexanesulfonic Acid (PFHxS)	4.81		ng/l	1.78	0.096	1
Perfluorooctanoic Acid (PFOA)	18.2		ng/l	1.78	0.045	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.78	0.173	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.78	0.138	1
Perfluorononanoic Acid (PFNA)	0.628	J	ng/l	1.78	0.090	1
Perfluorooctanesulfonic Acid (PFOS)	65.6		ng/l	1.78	0.100	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.78	0.170	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.78	0.260	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.78	0.224	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.78	0.171	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.78	0.198	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.78	0.202	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.78	0.333	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.78	0.082	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.78	0.081	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.78	0.064	1

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079

Project Number: 3612162331

SAMPLE RESULTS

Report Date:

Lab ID: L1815079-07 Date Collected: 04/27/18 10:05

Client ID: MW-5-0418 Date Received: 04/27/18
Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	71		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	64		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	98		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	74		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	112		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	89		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	143		50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	77		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	87		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	83		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	77		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	20	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	76		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	69		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	57		50-150	

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:05

Report Date:

Lab ID: R L1815079-07

Date Received: Client ID: 04/27/18 MW-5-0418 LONG ISLAND CITY, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/10/18 19:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	8.52		ng/l	1.78	0.117	1	
Perfluoropentanoic Acid (PFPeA)	8.69		ng/l	1.78	0.076	1	
Perfluorobutanesulfonic Acid (PFBS)	12.2		ng/l	1.78	0.098	1	
Perfluorohexanoic Acid (PFHxA)	8.06		ng/l	1.78	0.113	1	
Perfluoroheptanoic Acid (PFHpA)	4.98		ng/l	1.78	0.083	1	
Perfluorohexanesulfonic Acid (PFHxS)	4.12		ng/l	1.78	0.096	1	
Perfluorooctanoic Acid (PFOA)	18.1		ng/l	1.78	0.045	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.78	0.173	1	
Perfluoroheptanesulfonic Acid (PFHpS)	0.782	J	ng/l	1.78	0.138	1	
Perfluorononanoic Acid (PFNA)	0.714	J	ng/l	1.78	0.090	1	
Perfluorooctanesulfonic Acid (PFOS)	64.6		ng/l	1.78	0.100	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.78	0.170	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.78	0.260	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.78	0.224	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.78	0.171	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.78	0.198	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.78	0.202	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.78	0.333	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.78	0.082	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.78	0.081	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.78	0.064	1	

04/27/18 10:05

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

Report Date: 05/11/18

Date Collected:

SAMPLE RESULTS

Lab ID: R L1815079-07

Date Received: Client ID: 04/27/18 MW-5-0418 Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	72		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	66		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	95		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	67		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	118		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	88		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	187	Q	50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	76		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	84		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	119		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	87		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	84		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	19	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	89		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	70		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	59		50-150	

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:30

Lab Number:

Report Date:

Lab ID: L1815079-08 Date Received:

Client ID: 04/27/18 MW-E-0418 LONG ISLAND CITY, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/09/18 14:27

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	ion - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	26.0		ng/l	1.67	0.109	1
Perfluoropentanoic Acid (PFPeA)	56.0		ng/l	1.67	0.071	1
Perfluorobutanesulfonic Acid (PFBS)	7.14		ng/l	1.67	0.092	1
Perfluorohexanoic Acid (PFHxA)	72.3		ng/l	1.67	0.105	1
Perfluoroheptanoic Acid (PFHpA)	9.33		ng/l	1.67	0.077	1
Perfluorohexanesulfonic Acid (PFHxS)	1.70		ng/l	1.67	0.090	1
Perfluorooctanoic Acid (PFOA)	29.2		ng/l	1.67	0.042	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	17.0		ng/l	1.67	0.162	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.67	0.129	1
Perfluorononanoic Acid (PFNA)	0.887	J	ng/l	1.67	0.084	1
Perfluorooctanesulfonic Acid (PFOS)	5.26		ng/l	1.67	0.093	1
Perfluorodecanoic Acid (PFDA)	0.843	J	ng/l	1.67	0.159	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.67	0.242	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.67	0.209	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.67	0.159	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.67	0.185	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.67	0.189	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.67	0.311	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.67	0.076	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.67	0.075	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.67	0.060	1

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Report Date:

Lab ID: Date Collected: L1815079-08 04/27/18 10:30

Date Received: Client ID: 04/27/18 MW-E-0418 Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	51		50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	76		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	109		50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	122		50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	85		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	113		50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	76		50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	83		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	84		50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	61		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	75		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	25	Q	50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	63		50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	61		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	25	Q	50-150

L1815079

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Report Date:

Lab ID: R Date Collected: 04/27/18 10:30 L1815079-08

Date Received: Client ID: 04/27/18 MW-E-0418 LONG ISLAND CITY, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/10/18 20:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	26.1		ng/l	1.67	0.109	1
Perfluoropentanoic Acid (PFPeA)	55.4		ng/l	1.67	0.071	1
Perfluorobutanesulfonic Acid (PFBS)	7.52		ng/l	1.67	0.092	1
Perfluorohexanoic Acid (PFHxA)	73.8		ng/l	1.67	0.105	1
Perfluoroheptanoic Acid (PFHpA)	9.88		ng/l	1.67	0.077	1
Perfluorohexanesulfonic Acid (PFHxS)	1.59	J	ng/l	1.67	0.090	1
Perfluorooctanoic Acid (PFOA)	31.6		ng/l	1.67	0.042	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	15.9		ng/l	1.67	0.162	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.67	0.129	1
Perfluorononanoic Acid (PFNA)	0.737	J	ng/l	1.67	0.084	1
Perfluorooctanesulfonic Acid (PFOS)	5.08		ng/l	1.67	0.093	1
Perfluorodecanoic Acid (PFDA)	0.533	J	ng/l	1.67	0.159	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.67	0.242	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.67	0.209	1
Perfluoroundecanoic Acid (PFUnA)	0.167	J	ng/l	1.67	0.159	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.67	0.185	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.67	0.189	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.67	0.311	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.67	0.076	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.67	0.075	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.67	0.060	1

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/27/18 10:30

Report Date:

Lab ID: L1815079-08 R Date Collected:

Client ID: MW-E-0418 Date Received: 04/27/18
Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	51		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	79		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	72		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	79		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	108		50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	76		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	82		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	83		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	73		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	26	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	70		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	25	Q	50-150	

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

04/26/18 11:00

Lab Number:

Report Date:

Lab ID: Date Collected: L1815079-09

Date Received: Client ID: 04/27/18 **DUPLICATE**

Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/09/18 14:44

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	30.4		ng/l	1.85	0.121	1
Perfluoropentanoic Acid (PFPeA)	90.3		ng/l	1.85	0.079	1
Perfluorobutanesulfonic Acid (PFBS)	286		ng/l	1.85	0.102	1
Perfluorohexanoic Acid (PFHxA)	99.0		ng/l	1.85	0.117	1
Perfluoroheptanoic Acid (PFHpA)	22.7		ng/l	1.85	0.086	1
Perfluorohexanesulfonic Acid (PFHxS)	108		ng/l	1.85	0.100	1
Perfluorooctanoic Acid (PFOA)	73.0		ng/l	1.85	0.047	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	1.80	J	ng/l	1.85	0.180	1
Perfluoroheptanesulfonic Acid (PFHpS)	85.9		ng/l	1.85	0.144	1
Perfluorononanoic Acid (PFNA)	3.01		ng/l	1.85	0.093	1
Perfluorooctanesulfonic Acid (PFOS)	3950	E	ng/l	1.85	0.103	1
Perfluorodecanoic Acid (PFDA)	0.589	J	ng/l	1.85	0.176	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.85	0.269	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85	0.232	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85	0.177	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85	0.206	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.85	0.210	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85	0.345	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85	0.085	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85	0.084	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85	0.067	1

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 11:00

Report Date:

Lab ID: L1815079-09 Date Received:

Client ID: 04/27/18 **DUPLICATE** Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	53		50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	67		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	171	Q	50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	73		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	89		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	195	Q	50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	336	Q	50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	63		50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	78		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	78		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	152	Q	50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	82		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	72		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	25	Q	50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	87		50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	67		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	51		50-150

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

L1815079-09

SAMPLE RESULTS

Date Collected: 04/26/18 11:00

RE

Lab Number:

Report Date:

Date Received: Client ID: 04/27/18 **DUPLICATE** Sample Location: LONG ISLAND CITY, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/10/18 09:41 Analytical Method: 122,537(M) Analytical Date: 05/10/18 22:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	28.8	J	ng/l	40.0	2.62	1	
Perfluoropentanoic Acid (PFPeA)	76.3		ng/l	40.0	1.71	1	
Perfluorobutanesulfonic Acid (PFBS)	267		ng/l	40.0	2.20	1	
Perfluorohexanoic Acid (PFHxA)	81.4		ng/l	40.0	2.53	1	
Perfluoroheptanoic Acid (PFHpA)	20.6	J	ng/l	40.0	1.85	1	
Perfluorohexanesulfonic Acid (PFHxS)	102		ng/l	40.0	2.15	1	
Perfluorooctanoic Acid (PFOA)	84.2		ng/l	40.0	1.01	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	40.0	3.88	1	
Perfluoroheptanesulfonic Acid (PFHpS)	42.2		ng/l	40.0	3.10	1	
Perfluorononanoic Acid (PFNA)	5.52	J	ng/l	40.0	2.02	1	
Perfluorooctanesulfonic Acid (PFOS)	2820		ng/l	40.0	2.23	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	40.0	3.81	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	40.0	5.82	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	40.0	5.01	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	40.0	3.82	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	40.0	4.45	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	40.0	4.54	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	40.0	7.46	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	40.0	1.83	1	
Perfluorotridecanoic Acid (PFTrDA)	2.48	J	ng/l	40.0	1.81	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	40.0	1.44	1	

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

RE

Date Collected: 04/26/18 11:00

Report Date:

L1815079-09 Date Received: 04/27/18 **DUPLICATE**

Client ID: Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Lab ID:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	43	Q	50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	92		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	116		50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	94		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	97		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	136		50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	101		50-150
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	192	Q	50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	87		50-150
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	103		50-150
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	117		50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	103		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	111		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	62		50-150
I-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	122		50-150
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	101		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	83		50-150

L1815079

05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 04/26/18 14:25 L1815079-10

Date Received: Client ID: FIELD BLANK 04/27/18 LONG ISLAND CITY, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 537 Matrix: Water

Extraction Date: 05/08/18 10:30 Analytical Method: 122,537(M) Analytical Date: 05/10/18 18:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.85	0.121	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.85	0.079	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.85	0.102	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.85	0.117	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.85	0.086	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.85	0.100	1
Perfluorooctanoic Acid (PFOA)	0.700	J	ng/l	1.85	0.047	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.85	0.180	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.85	0.144	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.85	0.093	1
Perfluorooctanesulfonic Acid (PFOS)	0.126	J	ng/l	1.85	0.103	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.85	0.176	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.85	0.269	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85	0.232	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85	0.177	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85	0.206	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.85	0.210	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85	0.345	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85	0.085	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85	0.084	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85	0.067	1

05/11/18

Project Name: Lab Number: STALINGRAD/HYGRADE GW Q2 SAMPL L1815079

Project Number: 3612162331

SAMPLE RESULTS

Date Collected: 04/26/18 14:25

Report Date:

Lab ID: L1815079-10 Date Received: Client ID: 04/27/18 FIELD BLANK

Sample Location: Field Prep: LONG ISLAND CITY, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	68		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	78		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	74		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	101		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	84		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	101		50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	77		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	85		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	93		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	83		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	88		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	27	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	94		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	83		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	70		50-150	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815079

Report Date: 05/11/18

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537(M)

Analytical Date: 05/09/18 07:50

Analyst: AJ

Extraction Method: EPA 537
Extraction Date: 05/08/18 10:30

Parameter	Result	Qualifier	Units	RL		MDL
Perfluorinated Alkyl Acids by Isotope WG1113611-1	Dilution -	Mansfield	Lab for	sample(s):	01-10	Batch:
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		0.131
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		0.086
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.110
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.126
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.092
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.108
Perfluorooctanoic Acid (PFOA)	0.792	J	ng/l	2.00		0.050
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		0.194
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		0.155
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.101
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.112
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.190
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		0.291
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00		0.250
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.191
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00		0.222
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00		0.227
N-Ethyl Perfluorooctanesulfonamidoacetic A (NEtFOSAA)	cid ND		ng/l	2.00		0.373
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.092
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.090
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.072

L1815079

Lab Number:

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: Report Date: 05/11/18 3612162331

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537

Analytical Date: 05/09/18 07:50 **Extraction Date:** 05/08/18 10:30

Analyst: ΑJ

> Result Qualifier Units RLMDL Parameter

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-10 Batch: WG1113611-1

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	86		50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	84		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	103		50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	86		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	95		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	124		50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	101		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	119		50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	93		50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	102		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	91		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	112		50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	103		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	104		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	11	Q	50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	105		50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	97		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	86		50-150

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815079

Report Date: 05/11/18

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537(M) Analytical Date: 05/10/18 20:39

Analyst: AJ

Extraction Method: EPA 537
Extraction Date: 05/10/18 09:41

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope WG1114432-1	Dilution -	Mansfield I	Lab for sa	ample(s):	01-04,09 E	Batch:
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.13	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.08	6
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.11	0
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00	0.12	6
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.09	2
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.10	8
Perfluorooctanoic Acid (PFOA)	0.720	J	ng/l	2.00	0.05	0
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00	0.19	4
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.15	5
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.10	1
Perfluorooctanesulfonic Acid (PFOS)	0.176	J	ng/l	2.00	0.11	2
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.19	0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	l ND		ng/l	2.00	0.29	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	: ND		ng/l	2.00	0.25	0
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.19	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.22	2
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.22	7
N-Ethyl Perfluorooctanesulfonamidoacetic (NEtFOSAA)	Acid ND		ng/l	2.00	0.37	3
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.09	2
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.09	0
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.07	2

L1815079

Lab Number:

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: Report Date: 3612162331 05/11/18

Method Blank Analysis

Batch Quality Control

Analytical Method: 122,537(M) Extraction Method: EPA 537

Analytical Date: 05/10/18 20:39 **Extraction Date:** 05/10/18 09:41

Analyst: AJ

> Result Qualifier Units RLMDL **Parameter**

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-04,09 Batch: WG1114432-1

Surrogate	%Recovery		Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	87		50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	87		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	103		50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	90		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	93		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	124		50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	94		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	106		50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	87		50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	108		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	103		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	96		50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	98		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	44	Q	50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	110		50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	101		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	82		50-150

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815079

Report Date: 05/11/18

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
rfluorinated Alkyl Acids by Isotope Diluti	on - Mansfield Lab	Associated sample(s): 01-	10 Batch: WG1113611-2	WG1113611-3	
Perfluorobutanoic Acid (PFBA)	107	105	50-150	2	30
Perfluoropentanoic Acid (PFPeA)	106	103	50-150	3	30
Perfluorobutanesulfonic Acid (PFBS)	106	107	50-150	1	30
Perfluorohexanoic Acid (PFHxA)	115	111	50-150	4	30
Perfluoroheptanoic Acid (PFHpA)	102	100	50-150	2	30
Perfluorohexanesulfonic Acid (PFHxS)	115	118	50-150	3	30
Perfluorooctanoic Acid (PFOA)	102	112	50-150	9	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	112	110	50-150	2	30
Perfluoroheptanesulfonic Acid (PFHpS)	108	118	50-150	9	30
Perfluorononanoic Acid (PFNA)	119	110	50-150	8	30
Perfluorooctanesulfonic Acid (PFOS)	94	90	50-150	4	30
Perfluorodecanoic Acid (PFDA)	110	118	50-150	7	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	104	96	50-150	8	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	101	100	50-150	1	30
Perfluoroundecanoic Acid (PFUnA)	106	105	50-150	1	30
Perfluorodecanesulfonic Acid (PFDS)	88	89	50-150	1	30
Perfluorooctanesulfonamide (FOSA)	103	112	50-150	8	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	102	91	50-150	11	30
Perfluorododecanoic Acid (PFDoA)	100	100	50-150	0	30
Perfluorotridecanoic Acid (PFTrDA)	93	97	50-150	4	30
Perfluorotetradecanoic Acid (PFTA)	114	110	50-150	4	30

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Lab Number:

L1815079

Project Number: 3612162331

Report Date:

05/11/18

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-10 Batch: WG1113611-2 WG1113611-3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	_
Perfluoro[13C4]Butanoic Acid (MPFBA)	60		74		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	73		74		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	89		90		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	72		73		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	82		82		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	105		105		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	84		84		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	105		101		50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78		74		50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93		85		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	84		69		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	100		94		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	93		82		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	94		79		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	7	Q	11	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	89		89		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89		81		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78		79		50-150	

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815079

Report Date: 05/11/18

arameter	LCS %Recovery		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s): 01-04,09	Batch:	WG1114432-2	WG1114432-	-3	
Perfluorobutanoic Acid (PFBA)	83		86		50-150	4		30
Perfluoropentanoic Acid (PFPeA)	79		82		50-150	4		30
Perfluorobutanesulfonic Acid (PFBS)	86		86		50-150	0		30
Perfluorohexanoic Acid (PFHxA)	87		89		50-150	2		30
Perfluoroheptanoic Acid (PFHpA)	79		87		50-150	10		30
Perfluorohexanesulfonic Acid (PFHxS)	91		94		50-150	3		30
Perfluorooctanoic Acid (PFOA)	79		84		50-150	6		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	93		86		50-150	8		30
Perfluoroheptanesulfonic Acid (PFHpS)	90		85		50-150	6		30
Perfluorononanoic Acid (PFNA)	84		88		50-150	5		30
Perfluorooctanesulfonic Acid (PFOS)	72		78		50-150	8		30
Perfluorodecanoic Acid (PFDA)	87		90		50-150	3		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	96		90		50-150	6		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	74		77		50-150	4		30
Perfluoroundecanoic Acid (PFUnA)	77		84		50-150	9		30
Perfluorodecanesulfonic Acid (PFDS)	68		72		50-150	6		30
Perfluorooctanesulfonamide (FOSA)	79		80		50-150	1		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	72		81		50-150	12		30
Perfluorododecanoic Acid (PFDoA)	82		82		50-150	0		30
Perfluorotridecanoic Acid (PFTrDA)	68		76		50-150	11		30
Perfluorotetradecanoic Acid (PFTA)	90		92		50-150	2		30

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Lab Number: L1815079

Project Number: 3612162331 Report Date:

05/11/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-04,09 Batch: WG1114432-2 WG1114432-3

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	89		84		50-150
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	87		84		50-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	110		101		50-150
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	90		89		50-150
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101		91		50-150
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	132		120		50-150
Perfluoro[13C8]Octanoic Acid (M8PFOA)	103		96		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	113		112		50-150
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	96		87		50-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	109		102		50-150
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	101		97		50-150
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	107		90		50-150
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	106		101		50-150
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	114		106		50-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	63		42	Q	50-150
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	120		107		50-150
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	106		101		50-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	85		85		50-150

Matrix Spike Analysis Batch Quality Control

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number: L1815079

Report Date: 05/11/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Is Client ID: MW-6D-0418	sotope Dilutior	n - Mansfield	d Lab Assoc	ciated sample(s):	01-10	QC Batch	ID: WG111361	1-4 WG1113611-	5 QCS	Sample: L1815079-0
Perfluorobutanoic Acid (PFBA)	6.24	37	43.7	101		44.9	101	50-150	3	30
Perfluoropentanoic Acid (PFPeA)	5.01	37	41.3	98		42.6	98	50-150	3	30
Perfluorobutanesulfonic Acid (PFBS)	13.8	37	52.1	103		54.0	105	50-150	4	30
Perfluorohexanoic Acid (PFHxA)	6.03	37	45.3	106		47.7	108	50-150	5	30
Perfluoroheptanoic Acid (PFHpA)	4.02	37	40.7	99		42.5	100	50-150	4	30
Perfluorohexanesulfonic Acid (PFHxS)	2.75	37	43.9	111		46.2	113	50-150	5	30
Perfluorooctanoic Acid (PFOA)	17.4	37	56.4	105		59.0	108	50-150	5	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	37	36.2	98		43.3	113	50-150	18	30
Perfluoroheptanesulfonic Acid (PFHpS)	0.744J	37	43.3	117		41.5	108	50-150	4	30
Perfluorononanoic Acid (PFNA)	1.36J	37	41.4	112		44.9	117	50-150	8	30
Perfluorooctanesulfonic Acid (PFOS)	64.4	37	99.0	93		99.9	92	50-150	1	30
Perfluorodecanoic Acid (PFDA)	0.481J	37	39.9	108		42.9	112	50-150	7	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	37	39.6	107		40.3	105	50-150	2	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	37	35.8	97		42.3	110	50-150	17	30
Perfluoroundecanoic Acid (PFUnA)	ND	37	37.1	100		39.6	103	50-150	7	30
Perfluorodecanesulfonic Acid (PFDS)	ND	37	27.8	75		31.0	81	50-150	11	30
Perfluorooctanesulfonamide (FOSA)	ND	37	35.3	95		37.7	98	50-150	7	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	37	33.3	90		37.4	97	50-150	12	30
Perfluorododecanoic Acid (PFDoA)	ND	37	37.1	100		39.8	103	50-150	7	30
Perfluorotridecanoic Acid (PFTrDA)	ND	37	33.8	91		38.4	100	50-150	13	30
Perfluorotetradecanoic Acid (PFTA)	ND	37	38.6	104		44.0	114	50-150	13	30

Matrix Spike Analysis Batch Quality Control

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Lab Number:

L1815079

Report Date:

05/11/18

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	/ Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-10 QC Batch ID: WG1113611-4 WG1113611-5 QC Sample: L1815079-05 Client ID: MW-6D-0418

	MS	5	M:	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	124		116		50-150	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	183	Q	163	Q	50-150	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	100		93		50-150	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	86		75		50-150	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	85		79		50-150	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	84		79		50-150	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64		65		50-150	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	77		81		50-150	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	109		104		50-150	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	73		67		50-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	65		58		50-150	
Perfluoro[13C4]Butanoic Acid (MPFBA)	72		70		50-150	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	64		64		50-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	25	Q	17	Q	50-150	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90		87		50-150	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	82		83		50-150	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	77		74		50-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	87		85		50-150	

Serial_No:05111815:44 *Lab Number:* L1815079

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331 **Report Date:** 05/11/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	าเอาเทลนอก		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815079-01A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-01B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-01C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-02A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-02B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-02C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-03A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-03B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-03C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-04A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-04B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-04C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05A1	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05A2	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05B1	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05B2	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05C1	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-05C2	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-06A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-06B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
	Container ID L1815079-01A L1815079-01B L1815079-01C L1815079-02A L1815079-02B L1815079-03A L1815079-03A L1815079-03C L1815079-04A L1815079-04A L1815079-04B L1815079-04B L1815079-05A L1815079-05A L1815079-05A1 L1815079-05B1 L1815079-05B2 L1815079-05C L1815079-05C1 L1815079-05C2 L1815079-05C2	L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-04B 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-04C 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05A1 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05A2 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05B1 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05C 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05C 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05C1 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05C2 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05C2 3 Plastic Trizma/1 Plastic/1 H20+Trizma L1815079-05C2 3 Plastic Trizma/1 Plastic/1 H20+Trizma	Container ID Container Type Cooler L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-03C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-04B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-04B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A L1815079-05C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A	Container ID Container Type Cooler pH L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-03C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-04B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-05B	Container ID Container Type Cooler pH nmittal pH L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-04B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA <t< td=""><td>Container ID Container Type Cooler pH PH deg C L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-03C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-05A <td< td=""><td>Container ID Container Type Cooler pH reall deg C Pres L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y <</td><td>Container ID Container Type Cooler pH PH deg C Pres Seal L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-03C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5</td><td> Container ID Container Type</td></td<></td></t<>	Container ID Container Type Cooler pH PH deg C L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-03C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-05B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 L1815079-05A <td< td=""><td>Container ID Container Type Cooler pH reall deg C Pres L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y <</td><td>Container ID Container Type Cooler pH PH deg C Pres Seal L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-03C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5</td><td> Container ID Container Type</td></td<>	Container ID Container Type Cooler pH reall deg C Pres L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-02C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-03A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y <	Container ID Container Type Cooler pH PH deg C Pres Seal L1815079-01A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-01B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-01C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-02A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-02B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-03C 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-03B 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-04A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5 Y Absent L1815079-05A 3 Plastic Trizma/1 Plastic/1 H20+Trizma A NA 2.5	Container ID Container Type

Serial_No:05111815:44

Lab Number: L1815079

Report Date: 05/11/18

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL

Project Number: 3612162331

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815079-06C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-07A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-07B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-07C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-08A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-08B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-08C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-09A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-09B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-09C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-10A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		A2-NY-537-ISOTOPE(14)
L1815079-10B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		-
L1815079-10C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		2.5	Υ	Absent		-

Project Name: STALINGRAD/HYGRADE GW Q2 SAMPL Lab Number: L1815079

Project Number: 3612162331 Report Date: 05/11/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name:STALINGRAD/HYGRADE GW Q2 SAMPLLab Number:L1815079Project Number:3612162331Report Date:05/11/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:05111815:44

Project Name:STALINGRAD/HYGRADE GW Q2 SAMPLLab Number:L1815079Project Number:3612162331Report Date:05/11/18

REFERENCES

Determination of Selected Perfluorintated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05111815:44

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

NEW YORK CHAIN OF CUSTODY Westborough, MA 01581 Mansfield, MA 02048		Mahwah, NJ 07430: 3 Albany, NY 12205: 14 Tonawanda, NY 1415	Pa	ge of 2		Date Roc'd in Lab	478/18		ALPHA JOB#815076			
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd	Project Informa				No. of	Deliv	erables	TANKS OF	1000	Billing Information	
FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: S	aligal Hygaille	De GW QQ	Sandiro			ASP-A	ASF	р-В	Same as Client Info	
VARIABLE IN THE	Wilderwice Positioned and	Project Location:	Lord I prod	CH. W	1)	10	EQuIS (1 File)		IS (4 File)	PO#	
Client Information		Project # 3612	162331	1			15	Other		(41 110)	PO#	
lient: Arrec Fo	Sier Wheeler	(Use Project nam	e se Project #\		W		Regu	latory Requirem	ont	and the same	Direction of the second	
dress: 214-35	42, Me Sales	Project Manager:	Frie Wein	cm.X			- Contraction	NY TOGS	The same of the sa		Disposal Site Information	
TY BING IN !	11361	ALPHAQuote #:	9525L	BIM	2		1 -			art 375	Please identify below location of	
ione: 347 4	36 4445	Turn-Around Tir	0 2000	THE REAL PROPERTY.	NAME OF TAXABLE PARTY.			AWQ Standards	NYC	P-51	applicable disposal facilities.	
x:	1.17	The second secon	andard X		100	100		NY Restricted Use	Personal Control	r .	Disposal Facility:	
nail: ercuein	wismo@xere	Rush (only if are as	andard [Z]	Due Date				NY Unrestricted U			□ NJ □ NY	
ese samples have	been previously analy	and a second county in pire ap	oproved)	# of Days	Ľ.			NYC Sewer Disch	arge		Other;	
her project speci	fic requirements/com	zed by Alpha					ANAL	YSIS	-		Sample Filtration	
ase specify Meta	als or TAL.						1.537				Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	S	ample ID		Collection Sam		Sampler's	五山			11	(Please Specify below)	
79.01	BWN-7-0	110	Date	Time	Matrix	Initials	0				Sample Specific Comments	
07	BWM-3- C	418	0419E11B	1332	6/1	13/4	X					
05	201110	dire	SINSPIPO	BIO	GW	Blos	×				NEW TOTAL	
OF	DWM-3-1	MR	OHINGING.	1400	CM	BH	X					
1/	BWM-H-	0418	D41X61R	coli	GW	2r	×				100/100	
- 05	MW-60		04/27/18	0850	GW	16	X				27.00	
de	MW- 65		04/27/18	0850	6W	BH	X					
07	mw-5		104/27/18	1005	GW	JL	X					
OX	MW-E	-0418	04/27/18	1030	GW	BH	X					
09	aphic	ate	0412618	1100	6W	SL	\$				THE SHOPE OF THE SECOND	
rvative Code:	Field	Blank	104/126/2	1-125	6W	20	1					
one Cl	P = Plastic A = Amber Glass	Westboro: Certificati Mansfield: Certificati	on No: MA935		1000		P			7	Please print clearly, legibly	
NO ₃ SO ₄ OH	V = Vial G = Glass B = Bacteria Cup		TO SHOW THE MICH IS				0				and completely. Samples cannot be logged in and turnaround time clock will no	
OH	C = Cube	Relinquist	and Dun								turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING	
HSO₄ ₂S₂O₃	O = Other E = Encore	Ben Hess	-	Date/Ti		R	eceived	By:	Date/7	Time		
n Ac/NaOH	D = BOD Bottle	- COL 1162	111	19/12/18/	13:00	Don	0	441	4/27/14	3 1300	THIS COC, THE CLIENT	
ner		LEDI	144	1/27/18.	1805	Danie	San	ex AA	4/27/18	1830	HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
01 25 NO /		Plania San	es are	4/27/18	2310	01	11	1	4/12/	c 28/11	TERMS & CONDITIONS.	
o: 01-25 HC (rev. 30	-sept-2013)	71		04/28/14	0545	Min	120	1/2	STANS	rike	(See reverse side.)	

WESTBORO, MA TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: AWC	MANSFIELD, MA TEL 508-822-9300 FAX: 508-822-3288	Project Information: Project Location: Project #: 36 12	ation Ungrad	ind City	rade g.No	Rep St At Regul	ort Info AX DEx	a. Require	n - Data D EMAIL Add'l Deliv	port Limit	s Bi	PHA Job #: U8/5679 Illing Information Same as Client info PO#:
150450k NY Phone: 3117 - 8 Fax:	120 Ave, Ste. 3R 11361 36-4445	ALPHA Quote #: Turn-Around Ti	0525 me	76				gram		Criteria		
Other Project Special PLEASE NOTE MS/MSD (at unit co	ch (b umcfw. (o m sen previously analyzed by Alpha cific Requirements/Comm st) will be omitted unless	Date Due: nents/Detection L		Time:	ggarovied)	11	1 /	//				SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation
ALPHA Lab ID (Lab Use Only)	Sample ID	Colli Date	ection Time	Sample Matrix	Sampler's	14A	/	//	11	111	///	Sample Specific Comments
,05	MS D	०५/२७/१४ ०५/२७/१४				X						Sample Specific Comments
RM NO: 101-09 (rev. 27-SEP-10) Page 63 of 64	Container Type Preservative Relinquished By: Date/Time CY127/18 / 1805 Day 1-65 AAL 4/27/18 23/10				Dor 5 Dan	P	ived By: AAI	AAC	4/20/	7Time //8 3	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.	

	ANSFIELD	CHAIN OF C	LICTOR	· ·	-	7	The same							1000		coc		130/18	
ALPHA	THOI ILLD	CHAIN OF C	USTUL	71	PAGE 2	OF L	Dat	e Rec'	d in La	b:				野路	ALP	HA Job#	: 11	2150	79
WESTBORO, MA TEL: 508-898-9220	MANSFIELD, MA TEL: 508-822-0000	TEL: 508.822.0100				Report Information - Data					Delive	rable	25	Billir	ng Informa	ation			
FAX: 508-898-9193	FAX: 508-822-3288	Projec	Project Name: Jalingal Hugade				□ FAX □ EMAIL						Same as Client info PO #:						
lient Information		Project	Location: (c	ong bb	nd oil	441	5.00	ADEx	201		id'i Del					LIE			
HMC	Poster wi	Project	# 3612	1623	31				1		ents/R	eport	Limit	ts					
dress: / ILH 75	120 Ave	Stc. 32 Project	Manager:	10 We	wisto	-14	State	/Fed	Prograi	m		Crite	ería				11374		
yeak NY	1361	ALPHA	Quote #:	0525	6		1	1				-				Allerin	-	1000	
ione: 3117 -	836 114	45 Turn	Around Tir	me	al medi	CALA										Del Sa			
x:			200			-210													
nail:	stock a unech	Stand		RUSH jong	ссивання в рив-а	допьист)	55/(5)	UH/	1	1	1	1	1	/ /	1	7 7	7		
These samples have	e been previously analy	zed by Alpha	0.00		Time:		3	3	11	/	1	11	/	1	1	///	SAMPLE	HANDLIN	IG.
her Project Sp	pecific Requireme	ents/Comments/D	etection Li	mits:			L	1 /	1	1	1	1	1	1	11	1 1	Filtration		
	MSO & MS	ents/Comments/D	from	2010/02/			ANALYSIC	12	1	1	11	1	1	11	1	3 F	☐ Done		
EASE NOTE	MW- 60-6	19 0 0 otted unless you ch	41301	18			4	2	1	19	1	1	1	1/	1		☐ Not ne		
MSD (at unit	cost) will be omit	tted unless you ch	eck here:	0			1/5	1	11	1	1	11	/	1	11		☐ Lab to Preserva		
PHA Lab ID	-	Marriage .	Colle	ection	Sample	Sampler's	1/2	1 /	1	1	11	1	1	1	1/	/ 1	☐ Lab to	do	
ab I Inc. Chaled	Sam		- WOIIO	CHOIL	Carrible	15 amniers											Please specif	belowi	
d Use Only)	Salli	ple ID	Date	Time	Matrix	Initials	100	1	/	1	1/	1	//	1/	1	-	Department of the last of the	SCHOOL STREET	s
1 .05	MS	ipie iu			Matrix	Initials	X	1	1	/	1	1	4	1	1	-	Department of the last of the	Comment	s
1 .05			341.1/2	Time 0850	Matrix (1)	Initials	17	1	1		1	1	4	1	1	-	Department of the last of the	SCHOOL STREET	S
1 , 05	MS			Time 0850	Matrix	Initials	17	1				1	4	1		Sample	Department of the last of the	SCHOOL STREET	S
1 .05	MS		341.1/2	Time 0850	Matrix GW GW	Initials	17							1		-	Department of the last of the	SCHOOL STREET	S
1 ,05	MS		341.1/2	Time 0850	Matrix (1)	Initials	17									Sample	Department of the last of the	SCHOOL STREET	S
1 .05	MS		341.1/2	Time 0850	Matrix GW GW	Initials	17	19								Sample	Department of the last of the	SCHOOL STREET	S
1 .05	MS		341.1/2	Time 0850	Matrix GW GW	Initials	17									Sample	Department of the last of the	SCHOOL STREET	S
1 105 105 105	MS		341.1/2	Time 0850	Matrix GW GW	Initials	17									Sample	Department of the last of the	SCHOOL STREET	S
4 .05	MS		341.1/2	Time 0850	Matrix GW GW	Initials	17									Sample	Department of the last of the	SCHOOL STREET	S
9 .05	MS		341.1/2	Time 0850	Matrix GW GW	Initials	17									Sample	Department of the last of the	SCHOOL STREET	S
9,05	MS		341.1/2	Time 0850	Matrix GW GW	Initials	17									Sample	Department of the last of the	SCHOOL STREET	5
9 .05	MS		341.1/2	Time 0850	Matrix GW GW	Initials	17									Sample	e Specific	Comment	
9 .05	MS		341.1/2	Time 0850	Matrix GW GW Contain	Initials	17									Please pripletely. Sample	e Specific	legibly an	d com
ab Use Only)	MS		0.4(1.3)1.9	Time 0850	Matrix GW GW Contain	Initials July Der Type Derivative	17	Re	ceived	I By:			Dat	le/Time		Please pripletely. Sain and turn	e Specific	legibly an	d com
0, 101-09 (ver. 27-SEP-	MS MS C		0.4(1.3)1.9	Time 0850	Matrix GW GW Contair	ner Type pervative	17	100	ceived A				Pat	le/Time	120	Please pripletely. Sample	nt clearly amples cramping amples cramping amp	legibly an an not be ke guities are sub	d com

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client: Eric Weinstock Phone:

Wood Environment & Infrastructure Solutions, Inc.

214-25 42nd Ave.

Bayside, NY 11361 Fax:

Client Project #: 3612162331 Client Project Name: Stalingrad/Hygrade Q2 GW Sampling

Purchase Order #:

Analysis Requested: CENSUS

Reviewed By:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

MICROBIAL INSIGHTS, INC.

10515 Research Dr., Knoxville, TN 37932

Tel. (865) 573-8188 Fax. (865) 573-8133

Client: **Wood Environment & Infrastructure Solutions**

MI Project Number: Project: Stalingrad/Hygrade Q2 GW Sampling

04/27/2018 Date Received:

085PD

CENSUS

Sample Information

Client Sample ID: BMW-3-0418

04/26/2018 Sample Date: cells/mL Units: Analyst/Reviewer: JS

Dechlorinating Bacteria

Dehalococcoides DHC <5.00E-01 tceA Reductase TCE <5.00E-01 BAV1 Vinyl Chloride Reductase BVC <5.00E-01

Vinyl Chloride Reductase VCR <5.00E-01

Legend:

NA = Not Analyzed J = Estimated gene copies below PQL but above LQL I = Inhibited NS = Not Sampled

< = Result not detected

Quality Assurance/Quality Control Data

Samples Received 4/27/2018

Component	Date Prepared	Date Analyzed	Arrival Temperature	Positive Control	Extraction Blank	Negative Control	
BVC	04/27/2018	05/01/2018	0 °C	104%	non-detect	non-detect	
TCE	04/27/2018	05/01/2018	0 °C	103%	non-detect	non-detect	
VCR	04/27/2018	05/01/2018	0 °C	103%	non-detect	non-detect	
DHC	04/27/2018	05/01/2018	0 °C	100%	non-detect	non-detect	