PERIODIC REVIEW REPORT

for

23-01 42nd ROAD Long Island City, New York NYSDEC BCP Site No. C241152

Prepared For:

QPS 23-10 Development LLC c/o Property Markets Group, Inc. 111 Fifth Avenue, 6th Floor New York, New York 10003

Prepared By:

Langan Engineering, Environmental, Surveying, and Landscape Architecture, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

> Jason J. Hayes, P.E. Professional Engineer License No. 089491-1

LANGAN

April 2017 170244602

TABLE OF CONTENTS

1.0		INT	RODUCTION	1
	1.1		General	1
	1.2		Site Summary	1
	1.3		Effectiveness of the Remedial Program	2
	1.4		Compliance with the Site Management Plan	2
	1.5		Recommendations	
2.0		SIT	E OVERVIEW	3
	2.1		Site Location	3
	2.2		Site Background	
3.0		IC/I	EC PLAN COMPLIANCE REPORT	4
	3.1		IC/EC Components	4
		3.1.	1 Engineering Controls	4
			3.1.1.1 Composite Cover System	4
			3.1.1.2 Submembrane Depressurization System	4
		3.1.	2 Institutional Controls	
	3.2		Goal Status and Corrective Measures	
	3.3		Conclusions and Recommendations	5
4.0		MO	NITORING PLAN COMPLIANCE REPORT	6
	4.1		Monitoring Plan Components	6
	4.2		Summary of Monitoring Completed	6
		4.2.	1 SMD System Inspections	6
		4.2.	2 Composite Cover System Inspections	6
		4.2.	3 Annual Site-Wide Inspection	6
	4.4		Monitoring Deficiencies	
	4.5		Conclusions and Recommendations	
5.0			M PLAN COMPLIANCE REPORT	
	5.1		O&M Plan Components	8
	5.2		Completed O&M Activities	
			1 SMD System Start-up	
	5.3		Evaluation of SMD System	
		5 .3.	- 1	
	5.4		O&M Deficiencies	_
	5.5		Conclusions and Recommendations	
6.0			ERALL CONCLUSIONS AND RECOMMENDATIONS	
	6.1		SMP Compliance	
	6.2		Remedy Performance Evaluation	
		6.2.		
			2 Composite Cover System	
			3 IC Components	
	6.3		Future Submittals	
7.0			RTIFICATION OF IC/ECS	
	7.1		IC/EC Certification Form	
	7.2		IC/EC Certification	11

TABLES

Table 1 Air Analytical Results Summary

FIGURES

Figure 1 Site Location Map
Figure 2 As-Built SMD System Layout Plan

Figure 3 Composite Cover Layout Plan

APPENDICES

Appendix A Environmental Easement

Appendix B SMD System Installation Record
Appendix C SMD System Inspection Checklist

Appendix D Composite Cover System Inspection Checklist

Appendix E Site-Wide Inspection Checklist

Appendix F NYSDOH Indoor Air Quality Questionnaire and Building Survey

Appendix G Laboratory Report

Appendix H ICEC Certification Form

1.0 INTRODUCTION

1.1 General

This Periodic Review Report was prepared in accordance with the New York State Department of Environmental Conservation (NYSDEC)-approved Site Management Plan (SMP), dated March 31, 2015 and revised May 15, 2015. The certification period is October 19, 2015 through February 19, 2017. A periodic review of all institutional controls and engineering controls (IC/ECs) and a site evaluation are required for fulfillment of the Certificate of Completion for 23-01 42nd Road (the "site"), dated October 19, 2015, which acknowledges that applicable remediation requirements set forth in the ECL have been achieved to the satisfaction of the Commissioner of the NYSDEC, pursuant to the Brownfield Cleanup Agreement (BCA), dated October 4, 2013 (BCA Index No. C241152-09-13, Site No. C241152). Site remediation was performed in accordance with the Interim Remedial Measures Work Plan (IRMWP), dated September 20, 2013, and the Remedial Action Work Plan (RAWP), dated May 2014.

1.2 Site Summary

The site is located in an area of historical industrial usage and was used for manufacturing purposes since as early as 1947. From 1936 through 2006, the site was occupied by a one-story warehouse building with a basement and was used as a garage and for manufacturing. Historical uses of properties surrounding the site include a filling station, an auto repair shop, multiple garages, and lacquer spraying. Three underground storage tanks (UST) and one aboveground storage tank (AST) were decommissioned and removed as part of IRMWP implementation. The current development is a 44-story residential apartment building with ground-floor amenity space. The building occupies the entire lot and does not have a cellar.

Subsurface investigations were conducted between November 2012 and November 2013. These investigations were documented in the Remedial Investigation Report (RIR), dated November 2013 and revised in January 2014. The following list summarizes the results of the investigations:

• The contaminants of concern identified include:

Benzene Benzo(b)fluoranthene Lead Benzo(a)anthracene Indeno(1,2,3-cd)pyrene Mercury

Benzo(a)pyrene Copper Trichloroethylene (TCE)

• The contaminants of concern exceeded the applicable Standards, Criteria, and Guidance (SCG) for soil, groundwater and soil vapor intrusion.

- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) were detected in soil primarily in the western and southeastern portions of the site. Metals were detected in soil primarily in the northwestern portion of the site.
- Benzene was detected in groundwater in the southeastern portion of the site, but is not expected to have migrated off-site.
- TCE was detected in soil vapor and is believed to be migrating from the northernadjoining property that is being addressed pursuant to a separate BCA.

Site management has been conducted since completion of the remedial activities on October 19, 2015. See Section 2.2 for further information on the remedial program.

1.3 Effectiveness of the Remedial Program

The remedial program was designed to eliminate and mitigate environmental and potential human health exposure to adverse environmental conditions still present in soil and soil vapor underlying the site. The IC/ECs for the certification period achieved their remedial objectives.

1.4 Compliance with the Site Management Plan

All ICs and ECs remain fully in place for the certification period and continue to be effective.

1.5 Recommendations

No changes to the SMP are recommended at this time.

2.0 SITE OVERVIEW

2.1 Site Location

The site is located in Long Island City, New York and is identified as Block 425, Lot 1 on the New York City Tax Map. The rectangular site is situated on a 0.343-acre parcel bounded by a five-story building to the north, 42nd Road to the south, 24th Street to the east, and 23rd Street to the west (see Figure 1).

2.2 Site Background

Interim remedial measures (IRM) were implemented between November 13, 2013 and June 12, 2014. Remedial activities implemented in accordance with the NYSDEC-approved RAWP were completed in October 2014. The components of the selected remedy include:

- Decommissioning and removal of one AST and three USTs;
- Excavation and off-site disposal of grossly-contaminated soil associated with the USTs;
- Collection and analysis of post-excavation documentation samples;
- Backfilling to development grade with clean fill, recycled concrete aggregate (RCA), or virgin, native crushed stone;
- Installation of ECs including a composite cover system and a submembrane depressurization (SMD) system;
- An environmental easement with ICs; and
- Ongoing implementation of a Site Management Plan (SMP) to ensure the performance, effectiveness, and protectiveness of the IC/ECs.

With the exception of the installation of the above-grade components of the submembrane depressurization (SMD) system, remedial activities were completed as of October 2014. NYSDEC issued a Certificate of Completion on October 19, 2015. Superstructure construction of the 44-story building was completed between October 2014 and January 2017 and included installation of the above-slab components of the SMD system (e.g. blower and piping). The SMP inspections and SMD system startup testing were conducted on January 27, 2017 and January 30, 2017, respectively. The New York City Department of Buildings (NYCDOB) issued a Certificate of Occupancy for floors 1 to 44 effective February 7, 2017.

Long Island City, New York Langan Project No. 170244602

3.0 IC/EC PLAN COMPLIANCE REPORT

Since residual contaminated soil, groundwater, and soil vapor exists beneath the site, IC/ECs are required to protect human health and the environment. The Engineering and Institutional Control Plan included in the SMP describes the procedures for the implementation and management of the IC/ECs.

3.1 IC/EC Components

Consistent with the Final Engineering Report (FER) and SMP, the site-specific IC/ECs are summarized below.

3.1.1 Engineering Controls

3.1.1.1 Composite Cover System

Exposure to remaining contamination in soil/fill is prevented by a composite cover system placed over the Site. This cover system is comprised of a minimum of 14-inch concrete building slab underlain by a vapor barrier membrane, which was installed as a contingency measure to prevent vapor intrusion.

3.1.1.2 Submembrane Depressurization System

An SMD system was incorporated into the foundation design to mitigate potential soil vapor intrusion into the site building. The SMD system consists of horizontal, interconnected, 4-inch diameter perforated HDPE piping placed in an 8-inch layer of clean ¾-inch stone. The system underlies a vapor barrier membrane, which extends underneath the entire floor slab. The horizontal piping is connected to a vertical, subgrade vapor collection pipe located in the central portion of the site, southwest of the core mat. The collection pipe attaches to a 4-inch diameter riser that extends through the floor slab.

3.1.2 Institutional Controls

The site has a series of ICs in the form of site restrictions. Adherence to these ICs is required by the Environmental Easement (Appendix A). Site restrictions that apply to the Controlled Property are:

• The property may only be used for restricted residential, commercial, and industrial uses provided that the long-term EC/ICs included in the SMP are employed.

- The property may not be used for a higher level of use, such as residential or unrestricted use, without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC.
- All future activities on the site that will disturb remaining contaminated material must be conducted in accordance with the SMP.
- The use of the groundwater underlying the property is prohibited without necessary water quality treatment, as determined by the NYSDOH or NYCDOH.
- Vegetable gardens and farming in residual soil on the property are prohibited.
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that:
 - (1) Controlled Property controls are unchanged from the previous certification or that any changes to the controls were NYSDEC approved; and,
 - O (2) Nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time to evaluate the maintenance of any and all controls.

3.2 Goal Status and Corrective Measures

No deviations of the IC/ECs have been documented during the certification period.

3.3 Conclusions and Recommendations

The IC/ECs continue to function as designed and in compliance with the SMP. Maintenance recommendations are described in Section 5.5.

Langan Project No. 170244602

4.0 MONITORING PLAN COMPLIANCE REPORT

4.1 Monitoring Plan Components

The components of the Monitoring Plan are as follows:

- Quarterly inspections of the SMD system during the first year of operation, then annually thereafter;
- An annual inspection of the composite cover system; and
- An annual site-wide inspection.

4.2 Summary of Monitoring Completed

4.2.1 SMD System Inspections

Post-construction initial inspection of the SMD system was conducted on January 27, 2017. The first quarterly inspection of the SMD system was conducted on April 26, 2017. The SMD was inspected to determine whether the system installation and function is satisfactory and consistent with the manufacturer's specifications and the design criteria. Based on the inspections, the SMD system is operational and functioning within the design criteria for the certification period. Minor deficiencies identified during the initial inspection were resolved before the first quarterly inspection and are summarized in Section 4.4. The SMD system installation record and the manufacturer's start-up checklist are included in Appendix B. The individual system inspection report is included in Appendix C.

4.2.2 Composite Cover System Inspections

The annual composite cover system inspection was conducted on January 27, 2017. The 14-inch-thick first-floor slab was inspected for quality and integrity. Damages or breaches to the composite cover system were not observed during the annual inspection event. No construction activity or indication of any construction activity during the certification period that included the breaching of the site cover system was observed. Detailed composite cover system inspection reports are included as Appendix D.

4.2.3 Annual Site-Wide Inspection

The annual site-wide inspection was conducted on January 27, 2017. This consisted of spot inspections of all ECs and verification of ICs. All IC/EC components inspected were functioning in compliance with the SMP. Site operations consisted of construction activities in preparation

for residential tenant occupancy. The completed site-wide inspection form is included as Appendix E.

4.4 Monitoring Deficiencies

No deficiencies were identified during the composite cover system and site-wide inspections. The following deficiencies were identified during the post-startup SMD system inspection:

- The exposed piping was not labeled in accordance with the design drawings;
- A vacuum gauge placed directly before the blower's air-filter was not present; and
- The remote alarm was not installed and therefore unable to be tested.

The Volunteer resolved the deficiencies before the first quarterly inspection. During the first quarterly inspection, the alarm system was tested and was found to be working properly, the exposed piping was labeled in accordance with the design drawings, and a vacuum gauge was present before the blower's air filter.

4.5 Conclusions and Recommendations

No changes to the SMP are recommended at this time.

Langan Project No. 170244602

5.0 O&M PLAN COMPLIANCE REPORT

5.1 **O&M Plan Components**

The components of the O&M Plan are as follows:

• Continuous operation and maintenance, as necessary, of the SMD system.

5.2 Completed O&M Activities

5.2.1 SMD System Start-up

The SMD system start-up and initial testing was completed on January 27, 2017. The initial testing consisted of the following:

- While the system was operating, smoke tubes were used to check for leaks through concrete cracks, floor joints, and at the suction points.
- Indoor air, outdoor ambient air, and SMD system sample port samples were collected.

No leaks were identified during the smoke tube testing. The air samples were transported from the site to York Analytical Laboratories, Inc. (York) by a laboratory-provided courier for analysis of volatiles organic compounds (VOCs) via Environmental Protection Agency (EPA) method TO-15. VOC concentrations in indoor air are below the New York State Department of Health (NYSDOH) Air Guidance Values (AGVs). A summary table of air analytical detection results is shown as Table 1. A NYSDOH Indoor Air Quality Questionnaire and Building Inventory were completed on January 27, 2017 and are included as Appendix F. A copy of the laboratory report for the samples collected is included as Appendix G.

5.3 Evaluation of SMD System

5.3.1 SMD System

The primary objective of the SMD system is to impart a negative pressure under the sub-slab membrane in relation to the building indoor air pressure. The negative pressure field captures contaminated soil vapors, which are expelled to the atmosphere above the building's roof via a vacuum blower system. The results of the smoke tube test and air sample analysis indicate effective performance of the mitigation system.

5.4 **O&M Deficiencies**

SMD system deficiencies noted during the post-startup inspection were resolved before the first quarterly inspection.

5.5 Conclusions and Recommendations

No changes to the SMP are recommended at this time.

6.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

6.1 SMP Compliance

Each component of the SMP, including the IC/EC Plan, Monitoring Plan, and O&M Plan, with the exception of the alarm system testing for the SMD system, was in compliance for the certification period.

6.2 Remedy Performance Evaluation

6.2.1 SMD System

Overall and following system startup, the SMD system is operating as designed and is mitigating the potential exposure to soil vapor contaminants.

6.2.2 Composite Cover System

Conditions of the 14-inch thick first floor slab covering the entire site were inspected for quality and integrity. The site-wide composite cover system was observed to be intact and continues to protect public health and the environment.

6.2.3 IC Components

All ICs were maintained during the 2016 calendar year, and the environmental easement remains in place.

6.3 Future Submittals

Quarterly inspections of the SMD system and annual composite cover system and site-wide inspections will continue to be conducted as specified in the Reporting Plan of the NYSDEC-approved SMP. Forms and other information generated during regular monitoring events and inspections will be submitted at the time of the annual Periodic Review Report.

Periodic Review Report #1 NYSBCP Site #C241152 23-01 42nd Road Long Island City, New York Langan Project No. 170244602

7.0 CERTIFICATION OF IC/ECS

7.1 IC/EC Certification Form

The completed IC/EC Certification Form is presented in Appendix H. NYCDOB work permits for superstructure construction performed after the COC was issued are attached to the IC/EC Certification Form.

7.2 IC/EC Certification

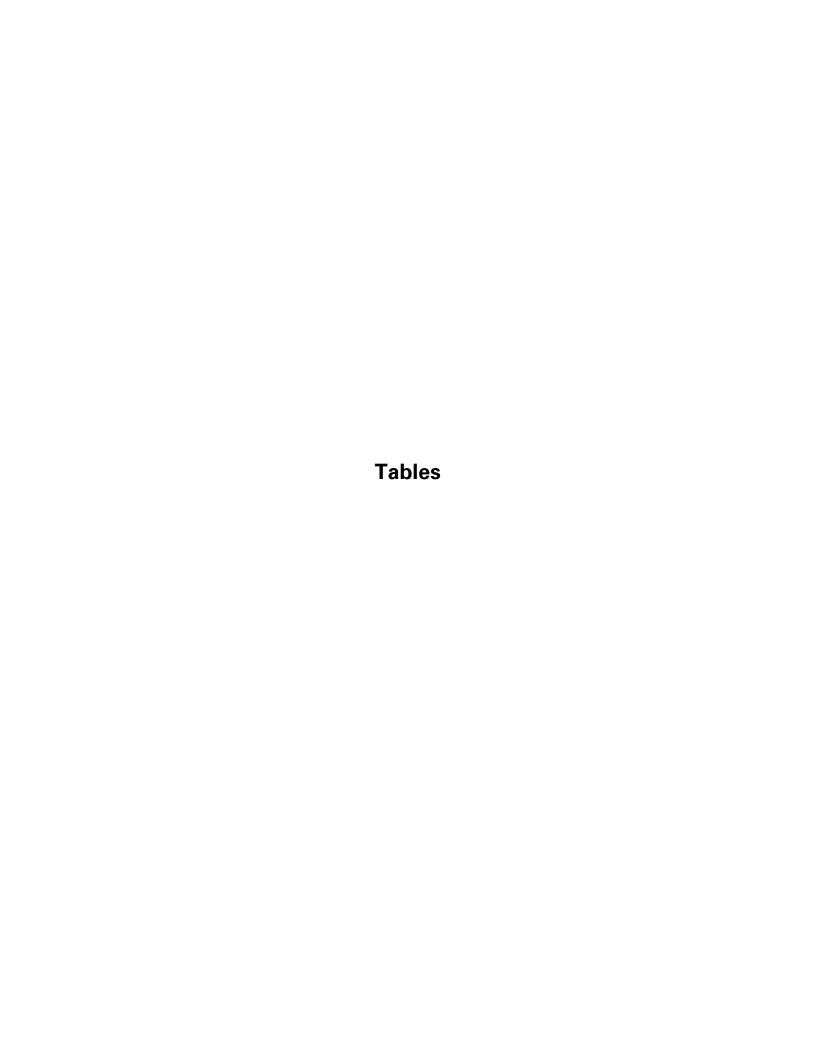
I, Jason J. Hayes, am currently a registered professional engineer licensed by the State of New York. I had primary direct responsibility for implementation of the remedial program for the 23-01 42nd Road site (NYSDEC BCA Index No. C241152-09-13, Site No. C241152).

I certify that the ICs/ECs are in place and effective and are performing as designed.

I certify that nothing has occurred that would impair the ability of the controls to protect the public health and environment and that nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls.

I certify that all use restrictions, institutional controls, engineering controls, and all operation and maintenance requirements applicable to the site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded. A Site Management Plan has been submitted by the applicant for the continual and proper operation, maintenance, and monitoring of all engineering controls employed at the site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all information and statements in this certification are true. I understand that a false statement made herein is punishable as Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.


089491-1

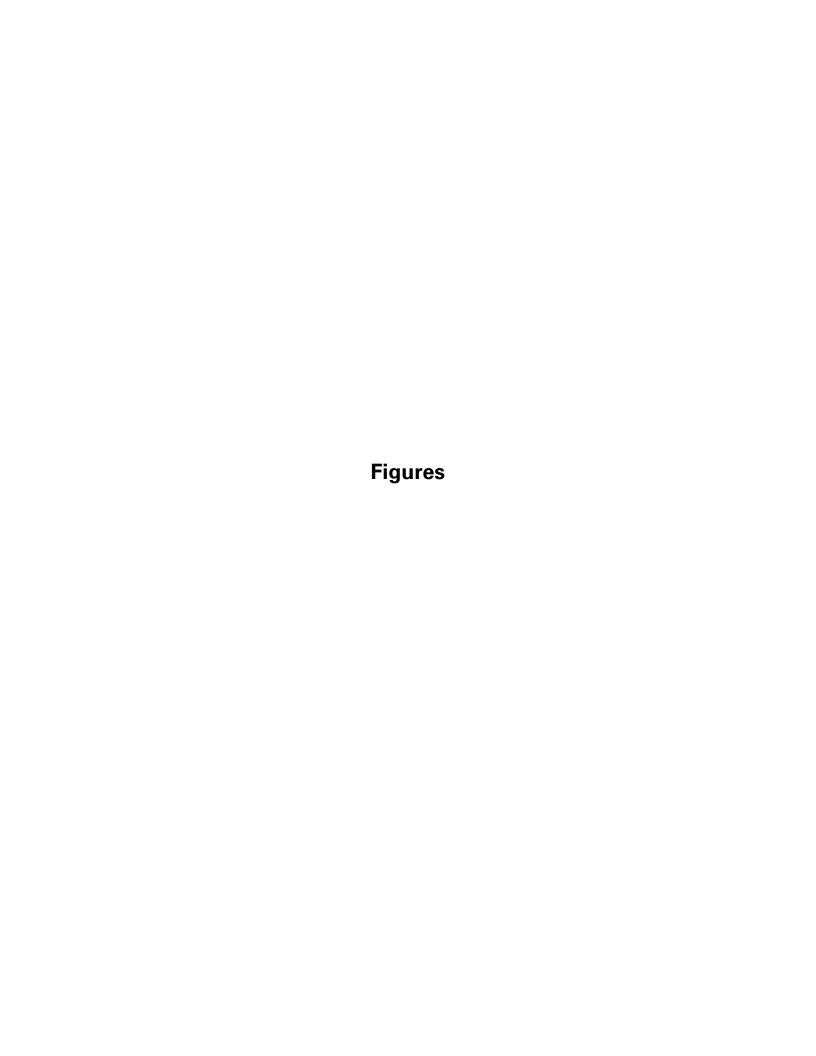
New York State Professional Engineer #

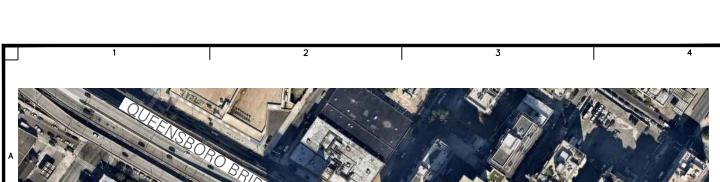
5/1/20/7 Date

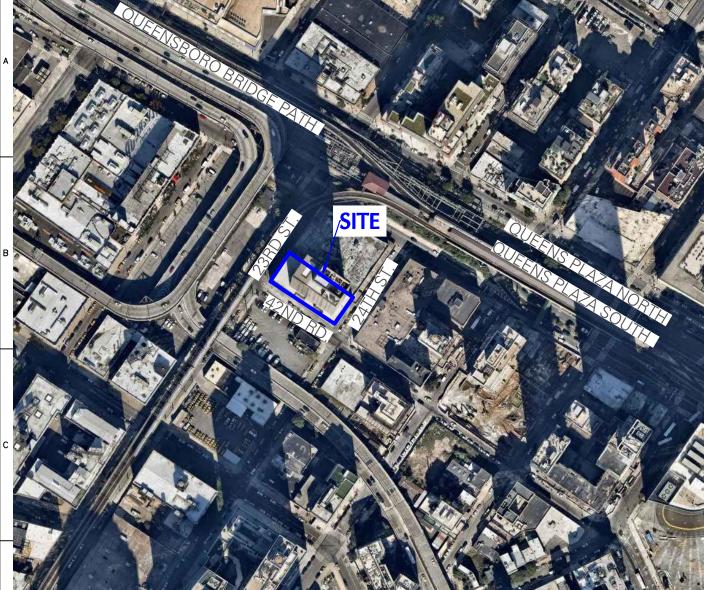
Signature

It is a violation of Article 130 of New York State Education Law for any person to alter this document in any way without the express written verification of adoption by any New York State licensed engineer in accordance with Section 7209(2), Article 130, New York State Education Law.

Table 1 Air Analytical Results Summary 23-01 42nd Road Periodic Review Report Long Island City, New York Langan Project No. 170244602


Sample ID Sample Location Laboratory Sample ID Sample Date	AA_013017 Outdoor Ambient Air 17A1033-03 1/30/2017		IA_013017 Indoor Ambient Air 17A1033-02 1/30/2017		SMDRiser_013017 SMD Riser 17A1033-01 1/30/2017	
Volatile Organic Compounds (µg/m³)						
1,2,4-Trimethylbenzene	0.55	U	0.57	U	14	
1,2-Dichlorotetrafluoroethane	0.78	U	0.81	U	140	
2-Butanone	0.53		1.6		5.5	U
Acetone	5.2		10		29	
Benzene	0.39		0.55		210	
Carbon disulfide	0.35	U	0.61		44	
Carbon tetrachloride	0.42		0.36		2.9	U
Chlorobenzene	0.52	U	0.53	U	120	
Chloromethane	1.2		1.0		3.9	U
Cyclohexane	0.39	U	0.40	U	280	
Dichlorodifluoromethane	2.0		2.0		54	
Ethyl Benzene	0.49	U	0.65		130	
Isopropanol	0.55	U	2.8		9.2	U
Methylene chloride	8.9		1.5		13	U
n-Heptane	0.46	U	0.47		250	
n-Hexane	0.39	U	0.41	U	170	
o-Xylene	0.49	U	0.50	U	70	
p/m-Xylene	0.97	U	2.1		340	
p-Ethyltoluene	0.55	U	0.57	U	16	
Tetrachloroethylene	0.30		0.39		8.9	
Toluene	1.9		4.9		180	
Trichloroethylene	0.15	U	0.16	U	4.0	
Trichlorofluoromethane (Freon 11)	1.4		1.2		24	
Vinyl chloride	0.29	U	0.30	U	11	
Total VOCs	22.24		30.13		2,094.9	


Notes:


- 1. Only analytes with detections are shown in the table.
- 2. $\mu g/m^3 = micrograms per cubic meter$
- 3. VOC = volatile organic compound

Qualifiers:

U = Analyte was not detected at a concentration greater than or equal to the Reporting Limit (RL); the value shown in the table is the RL.

LEGEND:

NOTES:

SITE BOUNDARY

Project

1. BASE MAP TAKEN FROM NEARMAP (IMAGE DATE 10/15/2016)

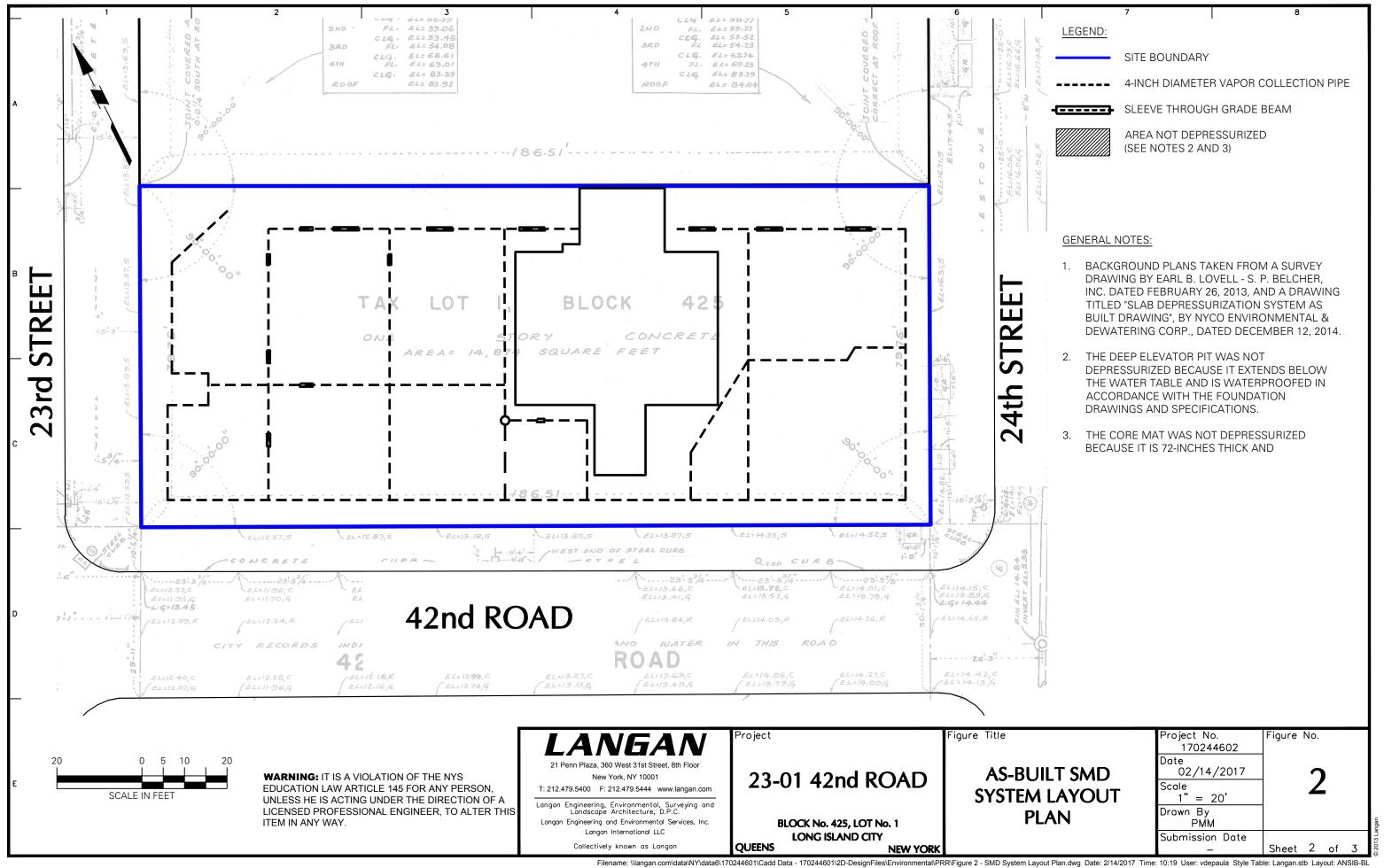
New York, NY 10001

T: 212.479.5400 F: 212.479.5444 www.langan.com

Langan Engineering, Environmental, Surveying and Landscape Architecture, D.P.C. Langan Engineering and Environmental Services, Inc. Langan International LLC

Collectively known as Langan

23-01 42nd ROAD


BLOCK No. 425, LOT No. 1

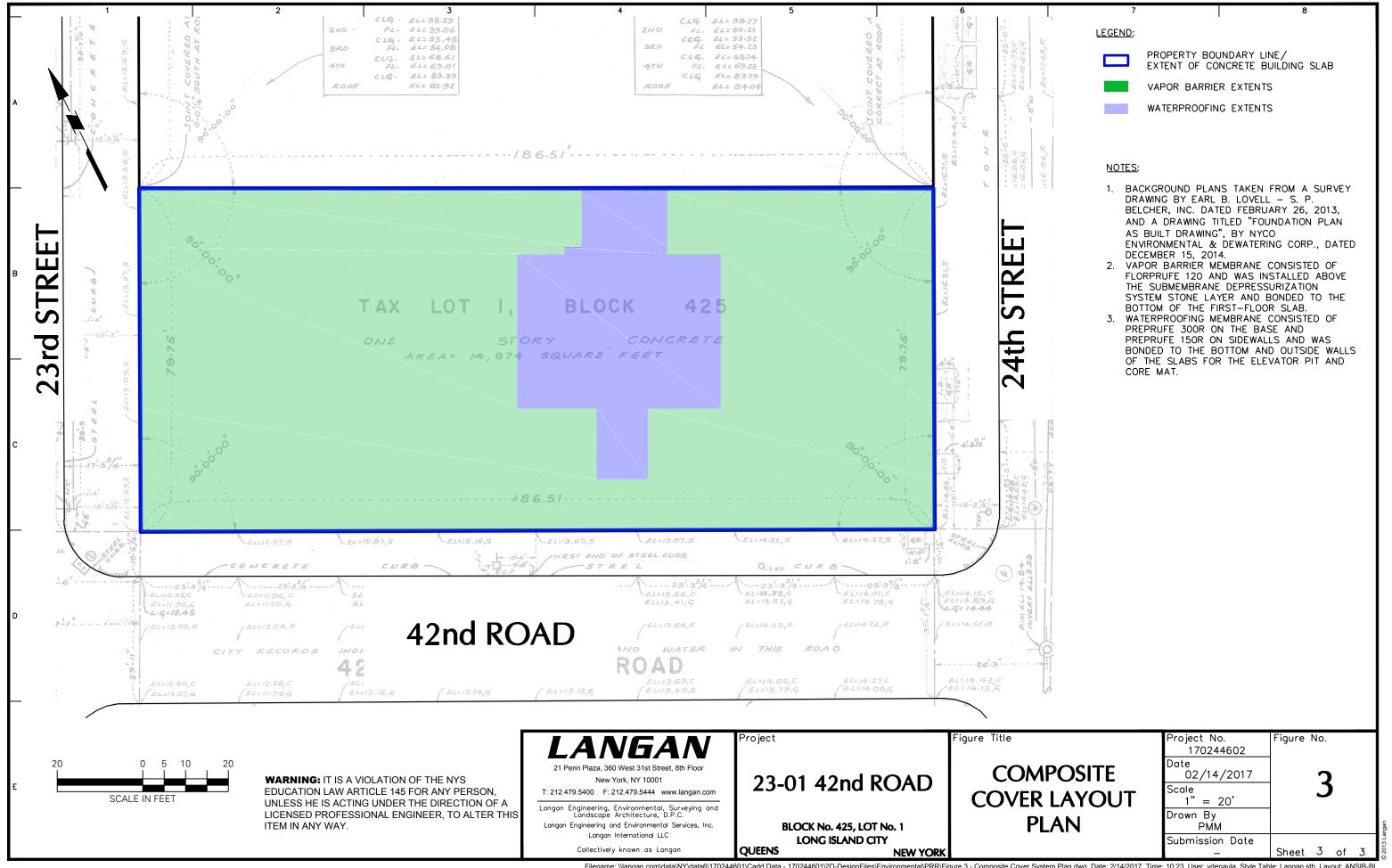

LONG ISLAND CITY QUEENS NEW YORK

Figure Title

SITE LOCATION MAP

Project No. 170244602	Figure No.
Date 02/14/2017	1
Scale	J
NTS	
Drawn By VDP	
Submission Date	
-	Sheet 1 of 3

Appendix A

Environmental Easement

August 31, 2015

SIVE PAGET & RIESEL, P.C. 460 PARK AVENUE 10TH FLOOR NEW YORK, NY 10022

RE: Submitted Transaction Successfully Recorded

Dear SIVE PAGET & RIESEL, P.C.:

Document Identification Number 2015082401131001 which was electronically submitted and intaken for Recording on 8/24/2015 2:34:54 PM, was successfully recorded on 8/31/2015 at 1:31 PM.

Below summarizes the status of the document(s).

Recording & Endorsement Cover Page(s) attached

2015082401131001

If you have questions or require further information, please send an email to acrishelp@finance.nyc.gov and someone will get back to you.

Thank you.

City Register

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER

This page is part of the instrument. The City Register will rely on the information provided by you on this page for purposes of indexing this instrument. The information on this page will control for indexing purposes in the event of any conflict with the rest of the document.

TASF:

Additional MRT: \$

TOTAL:

MTA:

Recording Fee:

Affidavit Fee:

NYCTA:

\$

\$

\$

\$

\$

\$

2015082401131001002E3B81

RECORDING AND ENDORSEMENT COVER PAGE PAGE 1 OF 10 Preparation Date: 08-24-2015 Document ID: 2015082401131001 Document Date: 07-31-2015 Document Type: EASEMENT Document Page Count: 9 RETURN TO: PRESENTER: SIVE PAGET & RIESEL, P.C. FIRST AMERICAN TITLE INSURANCE (FIRSTAM 460 PARK AVENUE PICKUP) 10TH FLOOR 666 THIRD AVENUE-5TH FLOOR TITLE# 3020-747876-CQ NEW YORK, NY 10022 NEW YORK, NY 10017 KARY TORRES 212-850-0670 PROPERTY DATA Unit Address Borough Block Lot QUEENS 425 1 Entire Lot 23-01 42ND ROAD Property Type: COMMERCIAL REAL ESTATE CROSS REFERENCE DATA CRFN______or DocumentID_____or ____Year___ Reel___Page____or File Number_____ **PARTIES** GRANTEE/BUYER: GRANTOR/SELLER: PEOPLE OF STATE OF NEW YORK **QPS 23-10 DEVELOPMENT LLC** BY COMMISSIONER DEPT OF ENVIRONMENTAL 5 EAST 17TH STREET, 2ND FLOOR CONSERVATION, 625 BROADWAY NEW YORK, NY 10003 ALBANY, NY 12233 FEES AND TAXES Filing Fee: Mortgage: Mortgage Amount: 100.00 0.00 Taxable Mortgage Amount: \$ 0.00 NYC Real Property Transfer Tax: 0.00 Exemption: TAXES: County (Basic): NYS Real Estate Transfer Tax: \$ 0.00 City (Additional): \\$ 0.00 0.00 Spec (Additional): \$ 0.00 RECORDED OR FILED IN THE OFFICE

0.00

0.00

0.00

0.00

0.00

82.00

0.00

2015000302414

OF THE CITY REGISTER OF THE

Recorded/Filed

CITY OF NEW YORK

City Register File No.(CRFN):

City Register Official Signature

08-31-2015 13:31

County: Queens Site No: C241152 Brownfield Cleanup Agreement Index: C241152-09-13

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 31 day of 70, 2015, between Owner(s) QPS 23-10 Development LLC, having an office at 5 East 17th Street, 2nd Floor, New York, NY 10003, County of New York, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 23-01 42nd Road in the City of New York, County of Queens and State of New York, known and designated on the tax map of the New York City Department of Finance as tax map parcel number: Block 425 Lot 1, being the same as that property conveyed to Grantor by deed dated December 28, 2012 and recorded in the City Register of the City of New York in CFRN #201300001222248. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately .3415 +/- acres, and is hereinafter more fully described in the Land Title Survey dated December 15, 2014 prepared by Earl B. Lovell – S.P. Belcher, Inc., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is

extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C241152-09-13, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the property is prohibited without necessary water quality treatment_as determined by the NYSDOH or the New York City Department of Health and Mental Hygiene to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- (8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation

County: Queens Site No: C241152 Brownfield Cleanup Agreement Index: C241152-09-13

pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved b the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C241152

Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233 All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

QPS 23-10 Development LLC

By:

Print Name: 15/15 U.Ta

MALONEY

Title: SFONATURY

Date:

Grantor's Acknowledgment

STATE OF NEW YORK)

COUNTY OF NEW YORK)

ss:

On the 30m day of yule, in the year 20/5, before me, the undersigned, personally appeared review macous y, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

York

FRANKLIN R. KAIMAN

Ontary Public, State of New York

No. 02KA4663586

Notary No. 02KA4663586

Commission Exprises February 28, 2018

Commission Exprises February 28, 2018

Commission Exprises February 28, 2018

County: Queens Site No: C241152 Brownfield Cleanup Agreement Index: C241152-09-13

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Robert W. Schick, Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK) ss: COUNTY OF ALBANY)

Notary Public - State of New York

David J. Chiusano
Notary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County
Commission Expires August 22, 20

County: Queens Site No: C241152 Brownfield Cleanup Agreement Index: C241152-09-13

SCHEDULE "A" PROPERTY DESCRIPTION

ALL THAT LOT OR PARCEL OF LAND, WITH THE BUILDINGS AND IMPROVEMENTS THEREON ERECTED, SITUATE IN THE BOROUGH AND COUNTY OF QUEENS, CITY AND STATE OF NEW YORK, MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE CORNER FORMED- BY THE INTERSECTION OF THE EASTERLY SIDE OF ELY AVENUE AND THE NORTHERLY SIDE OF HENRY STREET;

RUNNING THENCE EASTERLY ALONG THE NORTHERLY SIDE OF HENRY STREET 186 FEET, 6 INCHES TO THE CORNER FORMED BY THE INTERSECTION OF THE NORTHERLY SIDE OF HENRY STREET WITH THE WESTERLY SIDE OF WILLIAM STREET;

THENCE NORTHERLY ALONG THE WESTERLY SIDE OF WILLIAM STREET 79 FEET 9 INCHES;

THENCE WESTERLY PARALLEL WITH HENRY STREET 186 FEET 6 INCHES TO THE EASTERLY SIDE OF ELY AVENUE AT A POINT THEREIN DISTANT 79 FEET 9 INCHES NORTHERLY FROM THE POINT OF BEGINNING;

THENCE SOUTHERLY ALONG THE EASTERLY SIDE OF ELY AVENUE 79 FEET 9 INCHES TO THE POINT OR PLACE OF BEGINNING.

CONTAINING 14,874 SQUARE FEET (0.3415 ACRE)

Appendix B

SMD System Installation Record

Mitigation System Installation Record

			Structure was sampled previously		
System Information		Site No: C241152			
System ID:		Site Name: 23-01 42nd	2nd Rd Long Island City		
Owner Name: QPS 23-10 Development L	LC	☐ Owner Occupied Telephone: 212-610-2800			
System Address: 23-01 42nd Road, Long Is	sland City				
City: New York (Queens)	Zip: 11101	Alt. Telephone:			
Contractor Information					
Installer Name: Centrifugal Associates		Company: Centrifugal As	sociates Group LLC		
Telephone: 917-577-8039					
Building Conditions Building Type:	Multi-Unit Reside	nce			
Slab Integrity: O Poor	○ Aver	age 🔘 Good	Excellent		
Slab Penetrations: X Sump Describe:	ズ Floor drain	☐ Perimeter drain	Other		
Observed Water: Ory Describe:	O Dam	p Sump only	Standing		
From interior construction					
System Installation					
Installation Type: Sub-Slab Depressurizat	tion (Active)	Date Installed:			
Slab Thickess (inches): >5 in.					
Subslab Material: Gravel		Subslab Moisture:	Dry		
Number of Suction Points: 1		Number of Fans Ir	nstalled: 1		
Fan #1 Oper Fan Model No(s): San #1 Oper 3BA1530-74 Fan Serial No(s): ATF-200-15 Final U-Tube Levels:	A536	#2 Operating Fan	#3 Operating		
Additional Mitigation Elements (check all th		ew floor 🗵 Rain cap	☐ Other		

Communication Testing

Test Method:	Smoke test Meter Type/Manufacturer: Drager					
Location	n	Reading/Result	Dist. From Suction Point (ft)	Passed?		
Next to Ri	ser	N/A	N/A	X		
	(indic	sate notable features, location c	System Sketch of extraction points, and communic	ation test holes)		
NORTH						

AIRTECH CENTRAL SYSTEM STARTUP CHECKLIST/SIGN-OFF SHEET

Date: 1/27/2017	Custome	r: QPS 23-10 Development LLC	
Project/Airtech Job#:			
System Model/Type:	3BA1530-7A536		
Serial Number:	ATF-200-15124		
VERIFY THE FOLLOWI	ING:		
I. Installation			
A) Location			
	e room for servicing		\boxtimes
•	e room for cooling		\boxtimes
B) Piping			\boxtimes
1) Adequat	_		
2) Hangers			\boxtimes
•	iquid/debris line provided with rai	n can or googanack	
C) Electrical (p			
C) Liectrical (p	ii / iiz / voits	1	
II. Service and Opera	tion		
•	lve location (clean; d	ry)	\boxtimes
•	off to insure correct ro	• •	\boxtimes
C) Run system wi	th inlet isolation valve	e partially open (4-5"Hg vacuum)	☐ N/A
D) Check for unus	sual noise or vibration		\boxtimes
E) Place on line (v	valves open)		\boxtimes
F) Remote alarm	panel installed and co	nnected/functioning	 ∏ No
System installation and	function is satisfactor	Yes, with exceptions	
•		,	
Notes:	منسوباء معماه ما ما ما		
 Exposed piping must Remote alarm not ins 		gs.	
3. Needs vacuum gaug			
J. Necas vacaam gaag	c just before anniter		
Albert Tashji	1/27/2017		
Checked by:	Date	Approved by:	Date

Appendix C

SMD System Inspection Checklist

SSD SYSTEM INSPECTION CHECKLIST

Site Name: 23-01 42nd Road Location: Long Island City, NY Project Number: 170244602

I	Inspector Name: <u>Eric Judge & Albert Tashji</u> Date: <u>01/30/2017</u> Weather Conditions: <u>Clear, Windy, 30s degrees Fahrenheit</u>								
F	Reason for Inspe	ction (i.e., routine, severe weath	ner condition, etc.)	: <u> </u>	ost C	onstr	uction		
Check one of the following: (Y: Yes N: No NA: Not Applicable)									
_				Υ	N	NA	Normal Situation	Remarks	
L	Records								
	1 Is the Operation	ions & Maintenance Plan readily	y available on-	✓			Y		
	/	e records, when was the last instorrepair event?	spection,			✓			
	3 amount of tim	e records, was the system nono ne since the last inspection, ma For how long? Provide details	intenance, or			✓			
	Alarm Syste	m							
	4 Do the alarm	lights indicate that the system i	is operational?			✓	Υ	Alarm light not installed at the time of inspection	
	General Syst	tem							
	construction a (including any breaching of inspection?	construction activity, or indication activity within the past certification tenant improvements), that incurrent the floor slab, on-site at the time	tion year cluded the e of this		√		N		
		nber 5, is there documentation to Plan, HASP, and CAMP for the ad?				✓	NA if N to 5/ Y if Y to 5		

If the answer to any of the above questions indicates the SSD system is nonoperational or malfunctioning, or that this EC is in noncompliance, additional remarks must be provided and, where applicable, documentation attached to this checklist detailing additional inspection and repair activities

NA if N to 5/

Y if Y to 5

Ν

Υ

> 130 CFM

Additional remarks:

1. Exposed piping must be labeled per drawings

What is the VelociCalc Meter reading?

If YES to number 5, is there documentation that all breaches

Does all visible SSD piping appear intact and undamaged?

Have any intake points been constructed at the roof near

10 Is the SSD blower operational at the time of the inspection?

(less than 10 feet) the SSD blower discharge point?

12 Is the SSD blower expelling air at the discharge point?

2. Remote Alarm not installed

SSD Blower Unit

3. Needs vacuum gauge just before air filter

in the floor slab have been sealed?

Minimum Inspection Schedule:

- At a minimum, SSD inspections will be conducted quarterly for the first certification year.
- Additional SSD inspections will be conducted following maintenance, repair, or severe weather condition events.
- The minimum schedule will be revised, as necessary, following the first certification year.
- SSD inspection events will use this checklist.

SSD SYSTEM INSPECTION CHECKLIST

Site Name:	23-01 42nd Road	Location:_	Long Island C	ity, NY	Project Numb	er: <u>17024</u>	4602		
Inspector Na	me: Luke McCartne	y Date:_	04/26/2017	Weather	Conditions:	Overcast, 5	<u>0s°F</u>		
Reason for Inspection (i.e., routine, severe weather condition, etc.): 1st Quarterly Inspection (1st Year of Operation)									
				Chec	k one of the fo	llowing:			

(Y: Yes N: No NA: Not Applicable)

		(1. 1	<u> </u>	1. 110	NA: NOt Appli	
		Y	N	NA	Normal Situation	Remarks
	Records					
1	Is the Operations & Maintenance Plan readily available onsite?	✓			Y	
2	Based on site records, when was the last inspection, maintenance, or repair event?	✓				1/30/2017 (Post Start-up Inspection)
3	Based on site records, was the system nonoperational for any amount of time since the last inspection, maintenance, or repair event? For how long? Provide details.		✓		N	
	Alarm System					
4	Do the alarm lights indicate that the system is operational?	✓			Υ	Blower linked to Building Maintenance System (BMS) software and property manager's email
	General System					
5	Is there any construction activity, or indication of any construction activity within the past certification year (including any tenant improvements), that included the breaching of the floor slab, on-site at the time of this inspection?		✓		N	
6	If YES to number 5, is there documentation that the Soil Management Plan, HASP, and CAMP for the site was/is being followed?			✓	NA if N to 5/ Y if Y to 5	
7	If YES to number 5, is there documentation that all breaches in the floor slab have been sealed?			✓	NA if N to 5/ Y if Y to 5	
8	Does all visible SSD piping appear intact and undamaged?	✓			Y	
9	Have any intake points been constructed at the roof near (less than 10 feet) the SSD blower discharge point?		✓		N	
	SSD Blower Unit					
10	Is the SSD blower operational at the time of the inspection?	✓			Y	
11	What is the VelociCalc Meter reading?					126 CFM
12	Is the SSD blower expelling air at the discharge point?				Y	

If the answer to any of the above questions indicates the SMD system is nonoperational or malfunctioning, or that this EC is in noncompliance, additional remarks must be provided and, where applicable, documentation attached to this checklist detailing additional inspection and repair activities

Additional remarks:

1.	Exposed piping	has been	labeled wit	h printed	paper a	and affixed	to pi	pes with	packing	tape.
----	----------------	----------	-------------	-----------	---------	-------------	-------	----------	---------	-------

Minimum Inspection Schedule:

- At a minimum, SSD inspections will be conducted quarterly for the first certification year.
- Additional SSD inspections will be conducted following maintenance, repair, or severe weather condition events.
- The minimum schedule will be revised, as necessary, following the first certification year.
- SSD inspection events will use this checklist.

Appendix D

Composite Cover System Inspection Checklist

COMPOSITE COVER SYSTEM INSPECTION CHECKLIST

Site	e Name: <u>23-0</u>	01 42nd Road	Location:_	Long Island City, N	<u>Y</u>	Proje	ct Nu	mber: <u>1702</u>	44602	
Ins	pector Name:_	Eric Judge & Alb	ert Tashji	Date: 01/30/2017	W	/eath	er Coi	nditions: Cle	ar, Windy, 30s degrees Fahrenheit	
Re	ason for Inspec	ction (i.e., routine	, severe co	ndition, etc.): Post	Cons	struct	ion			
								ne following:		
(Y: Yes N: No NA: Not Applicable)										
					Υ	N	NA	Situation	Remarks	
	General									
1	What are the	current site cond	litions?		_	_	_	_	Finishing interior construction prior to tentant move-in	
	Impermeable	Сар								
2	Are there any the time of thi		oreach in th	e capping system at		✓		N		
3	Is there any construction activity, or indication of any construction activity within the past certification year (including any tenant improvements), that included the breaching of the capping system, on-site at the time of this inspection?					✓		N		
4		ber 3, is there do Plan, HASP, and		on that the Soil the site was/is being			√	NA		
		re applicable, do	-		-				site, additional remarks must be provided al inspection and repair activities.***	
	•	tion Schedule:	inspections	will be conducted an	nually	, per	certif	ication year.		
• /	Additional comp	oosite cover insp	ections will	also be conducted at					dition events.	
• (Compoiste cove	er inspection eve	nts will use	this checklist.						

LANGAN

Appendix E

Site-Wide Inspection Checklist

SITE INSPECTION CHECKLIST

	5 <u> </u>			•								
Sit	Site Name: 23-01 42nd Road Location: Long Island City, NY Project Number: 170244602											
Ins	Inspector Name: <u>Eric Judge & Albert Tashji</u> Date: <u>01/30/2017</u> Weather Conditions: <u>Clear, Windy, 30s degrees Fahrenheit</u>											
Re	Reason for Inspection (i.e., routine, severe weather condition, etc.): Post Construction											
	Check one of the following: (Y: Yes N: No NA: Not Applicable)											
	Normal Y N NA Situation Remarks											
	General											
1	What are the current site conditions?					Finishing interior construction for tenant move in						
2	Are all applicable site records (e.g., documentation of construction activity, SMD system maintenance and repair, most current easement, etc.) complete and up to date?	✓			Y							
	Environmental Easement											
3	Has site use (restricted residential) remained the same?	✓			Y							
4	Does it appear that all environmental easement restrictions have been followed?	~			Y							
	Impermeable Cap											
5	Are there any indications of a breach in the capping system at the time of this inspection?		√		N							
6	Are there any cracks in the building slabs?		✓		N							
7	Are there any cracks in the building walls?		✓		N							
8	Is there any construction activity, or indication of any construction activity within the past certification year (including any tenant improvements), that included the breaching of the capping system, on-site at the time of this inspection?		✓		N							
9	If YES to number 8, is there documentation that the Soil Management Plan, HASP, and CAMP for the site was/is being followed?			~	NA if N to 6/ Y if Y to 6							
	If the answer to any of the above questions indicate non-compliance with any IC/ECs for the site, additional remarks must be provided and, where applicable, documentation attached to this checklist detailing additional inspection and repair activities.											
Ad	ditional remarks:											
_												

Minimum Inspection Schedule:

- At a minimum, site-wide inspections will be conducted annually, per certification year.
 Additional site-wide inspections will also be conducted at times of severe condition events.
 Site-wide inspection events will use this checklist.

,

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

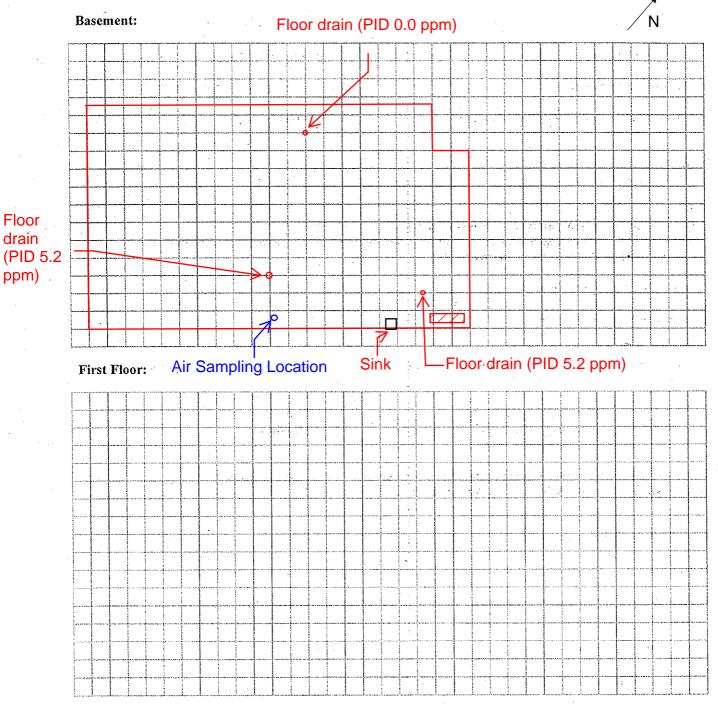
Preparer's Name Eric Judg	ge / Albert ⁻	Tashji	Date/Time Prep	oared 1.30.	17 / 13:00
Preparer's Affiliation Lang	an ,		Phone No. 212	.479.5400)
Purpose of Investigation Pos					
1. OCCUPANT:					
Interviewed: Y/N					
Last Name:		First Name:			
Address:					
County:					** :
Home Phone:	Offi	ce Phone:			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Number of Occupants/persons		•			V
2. OWNER OR LANDLOR	D: (Check if s	same as occupant)		
Interviewed: (Y)/ N		· · · · · · · · · · · · · · · · · · ·	·······		
Last Name:		First Name: QPS	23-10 Devel	opment LI	_C
Address: 111 5th Ave, 6tl	n Floor, Ne	w York, NY, 10	011		
County: United States					• .
Home Phone:	Off	ice Phone: <u>718-7</u>	06-9855		
·					. 1
3. BUILDING CHARACTE	RISTICS				
Type of Building: (Circle app	propriate respo	ense)			
Residential Industrial	School Church	Commercial/N	Multi-use		

is the property is residential, type: (Cheic ap	propriate response)	
Ranch 2-Family Raised Ranch Split Level	3-Family Colonial	
Cape Cod Contemporary Duplex Apartment Hou Modular Log Home		
If multiple units, how many? 391		
If the property is commercial, type?	•	
Business Type(s)		en e
Does it include residences (i.e., multi-use)?	Y/N If yes, how many?	
Other characteristics:		
Number of floors 45	Building age 0	
Is the building insulated?(Y)/ N	How air tight? (Tight) Average / Not T	ight
4. AIRFLOW		
Use air current tubes or tracer smoke to eva	luate airflow patterns and qualitatively	describe:
	w w Constitution	7 Table 1
Airflow between floors Central HVAC		
Airflow near source Mechanical ventilation		
		<u>.</u>
	•	
Outdoor air infiltration None		
		<u> </u>
Infiltration into air ducts None		

5.	BASEMENT	AND	CONSTRUCTION	CHARACTERISTICS	Circle all that apply)
----	----------	-----	--------------	-----------------	------------------------

a. Above grade construc	etion: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other None
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed /	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ned
j. Sump present?	Ø/ N			. y
k. Water in sump?	Y/N/not applicable		100 mg (AP) (1)	
Basement/Lowest level dept	h below grade: 0	_(feet)		
Identify potential soil vapor	entry points and approx	kimate size (e.ş	g., cracks, utility	ports, drains)
3" diameter floor drains				
6. HEATING, VENTING a Type of heating system(s) us	and AIR CONDITIONI	NG (Circle all	that apply)	•
:				
Hot air circulation Space Heaters	Heat pump Stream radiation		water baseboard ant floor	•
Electric baseboard	Wood stove		oor wood boiler	Other
The primary type of fuel use	ed is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kero Solar		
Domestic hot water tank fue	led by: Natural Gas			
Boiler/furnace located in:	Basement Outdo	ors Main	Floor	Other
Air conditioning:	Central Air Windo	w units Oper	Windows	None

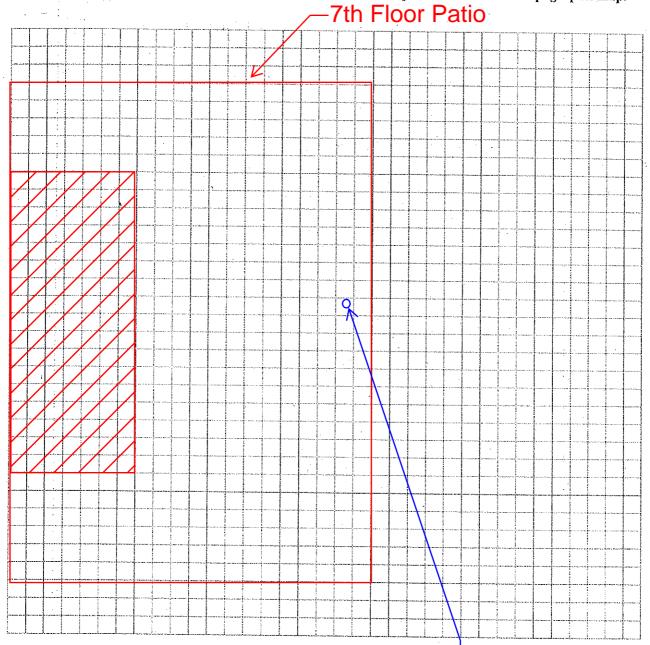
Are there air	distribution	ducts present	:? (Y)/ N
1 WW	**************	amote process	, ·	,, , ,


Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

	lition building wide			<u></u>	
7. OCCUP	ANCY	· · · · · · · · · · · · · · · · · · ·		en e	
ls basement	/lowest level occupied? Full-time	Occasionally	Seldom	Almost Never	
<u>Level</u>	General Use of Each Floor (e.g.,	familyroom, bedro	om, laundry, wo	rkshop, storage)	
Basement	None	· · · · · · · · · · · · · · · · · · ·	·	ing the second of the second o	
1st Floor	Lobby & Utilities		¥ .	and the second second	
2 nd Floor	Residential		3		
3 rd Floor	Residential	:	· · · · · · · · · · · · · · · · · · ·		
•		· ·			
	Residential				
a. Is there	Residential RS THAT MAY INFLUENCE INDOC e an attached garage? ne garage have a separate heating unit troleum-powered machines or vehicles	?	Y (N) Y / N / (NA) Y / N / (NA)		
8. FACTOI a. Is there b. Does the	RS THAT MAY INFLUENCE INDOC e an attached garage? ne garage have a separate heating unit	? s	Y /N /NA		
8. FACTOR a. Is there b. Does the c. Are perestored	RS THAT MAY INFLUENCE INDOC e an attached garage? ne garage have a separate heating unit troleum-powered machines or vehicles	? s	Y / (N) Y / N / (NA) Y / N / (NA)		
8. FACTOR a. Is there b. Does the c. Are per stored d. Has the	RS THAT MAY INFLUENCE INDOOR e an attached garage? ne garage have a separate heating unit troleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, can	:? s r)	Y/N/NA Y/N/NA Please specify Y/N When?		
8. FACTOR a. Is there b. Does the c. Are perstored d. Has the e. Is a ker	RS THAT MAY INFLUENCE INDOOR e an attached garage? ne garage have a separate heating unit troleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, can	:? s r)	Y/N/NA Y/N/NA Please specify_ Y/N When? Y/N Where?		
8. FACTOR a. Is there b. Does the c. Are perstored d. Has the e. Is a ker f. Is there	RS THAT MAY INFLUENCE INDOOR e an attached garage? ne garage have a separate heating unit troleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, can e building ever had a fire? rosene or unvented gas space heater p	resent?	Y/N/NA Y/N/NA Please specify Y/N When? Y/N Where?		
8. FACTOR a. Is there b. Does the c. Are per stored d. Has the e. Is a ker f. Is there g. Is there	RS THAT MAY INFLUENCE INDOOR e an attached garage? ne garage have a separate heating unit troleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, can e building ever had a fire? rosene or unvented gas space heater p	?; s r) resent? Y /ℕ Y ⋅ℕ	Y/N/NA Y/N/NA Please specify_ Y/N When? Y/N Where? Where & Type? How frequently		ed pro

j. Has painting/staining been dor	ie in the last 6 mo	onths?	Where & W	hen? Throughout,	during construction
k. Is there new carpet, drapes or	other textiles?	(Y)/N	Where & W	hen? Throughout,	during construction
I. Have air fresheners been used	recently?	Y (N)	When & Ty	/pe?	
m. Is there a kitchen exhaust fan	?	Y/N	If yes, when	re vented? Centrally	to the roof
n. Is there a bathroom exhaust f	an?	(Y)/ N	If yes, when	re vented? Centrally	to the roof
o. Is there a clothes dryer?		Y/N	If yes, is it	vented outside? Y / N	
p. Has there been a pesticide app	lication?	YN	When & Ty	pe?	
Are there odors in the building? If yes, please describe:		Y (N)	:		
Do any of the building occupants us (e.g., chemical manufacturing or labor boiler mechanic, pesticide application	ratory, auto mecha	k? Y/N anic or auto body	shop, paintir	ng, fuel oil delivery,	
If yes, what types of solvents are u	sed?		:		
If yes, are their clothes washed at v	vork?	Y/N	. :		
Do any of the building occupants re response)	egularly use or wo	ork at a dry-clea	ning service	? (Circle appropriate	A.C.
Yes, use dry-cleaning regular Yes, use dry-cleaning infrequ Yes, work at a dry-cleaning s	ently (monthly or	less)	No Unknown		
Is there a radon mitigation system it Is the system active or passive?	for the building/si Active/Passive	tructure? () /N	Date of Inst	allation:	- -
9. WATER AND SEWAGE					
Water Supply: Public Water	Drilled Well	Driven Well	Dug Well	Other:	
Sewage Disposal: Public Sewer	Septic Tank	Leach Field	Dry Well	Other:	
10. RELOCATION INFORMATIO	N (for oil spill re	sidential emerge	ency)		ı
a. Provide reasons why relocation	on is recommende	ed:			
b. Residents choose to: remain ir	home relocat	te to friends/fami	ly relo	cate to hotel/motel	
c. Responsibility for costs associ	ated with reimbu	rsement explain	ed? Y/]	N	
d. Relocation package provided	and explained to	residents?	Y /]	N	

11. FLOOR PLANS


Floor drain Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Air Sampling Location

12	DD.	ODUCT	INI	/FNT	$\mathbf{n}\mathbf{v}$	FORM
13.	IN	VII/UUL	113.3	- E 13 I 3	JINI	$I \cup I \cup I$

Make & Model of field instrument used:	
List specific products found in the reside	nce that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo.** Y/N
	No Chemicals were					
	observed where the air samples were collected					
	Collected					
			·			
				. '		
					. `	

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Appendix G

Laboratory Report

Technical Report

prepared for:

Langan Engineering & Environmental Services (NYC)

21 Penn Plaza, 360 West 31st Street New York NY, 10001 Attention: Paul McMahon

Report Date: 02/03/2017

Client Project ID: 170244602 York Project (SDG) No.: 17A1033

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 02/03/2017 Client Project ID: 170244602 York Project (SDG) No.: 17A1033

Langan Engineering & Environmental Services (NYC)

21 Penn Plaza, 360 West 31st Street New York NY, 10001 Attention: Paul McMahon

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on January 31, 2017 and listed below. The project was identified as your project: **170244602**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
17A1033-01	SMDRiser_013017	Soil Vapor	01/30/2017	01/31/2017
17A1033-02	IA_013017	Indoor Ambient Air	01/30/2017	01/31/2017
17A1033-03	AA_013017	Dutdoor Ambient Ai	01/30/2017	01/31/2017

General Notes for York Project (SDG) No.: 17A1033

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 9. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia Laboratory Director **Date:** 02/03/2017

SMDRiser_013017 17A1033-01 **Client Sample ID:** York Sample ID:

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17A1033 170244602 Soil Vapor January 30, 2017 3:00 pm 01/31/2017

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	LOD/MDI	Reported t	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	13	13	18.67	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 16:13	LDS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	10	10	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	13	13	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	14	14	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	10	10	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
75-34-3	1,1-Dichloroethane	ND		ug/m³	7.6	7.6	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	7.4	7.4	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	14	14	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
95-63-6	1,2,4-Trimethylbenzene	14		ug/m³	9.2	9.2	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 AC-NY10854-Quε	LDS
106-93-4	1,2-Dibromoethane	ND		ug/m³	14	14	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Que	LDS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	11	11	18.67	EPA TO-15		01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13	LDS
107-06-2	1,2-Dichloroethane	ND		ug/m³	7.6	7.6	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
78-87-5	1,2-Dichloropropane	ND		ug/m³	8.6	8.6	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
76-14-2	1,2-Dichlorotetrafluoroethane	140		ug/m³	13	13	18.67	EPA TO-15 Certifications:	NEL AC N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13	LDS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	9.2	9.2	18.67	EPA TO-15		01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13	LDS
106-99-0	1,3-Butadiene	ND		ug/m³	12	12	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	11	11	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	8.6	8.6	18.67	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 16:13	LDS
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	11	11	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
123-91-1	1,4-Dioxane	ND		ug/m³	13	13	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
78-93-3	2-Butanone	ND		ug/m³	5.5	5.5	18.67	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
591-78-6	* 2-Hexanone	ND		ug/m³	15	15	18.67	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 16:13	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 21

FAX (203) 357-0166

Client Sample ID: SMDRiser_013017

York Sample ID: 17A1033-01

York Project (SDG) No. 17A1033 Client Project ID 170244602 <u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> January 30, 2017 3:00 pm Date Received 01/31/2017

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Color Parameter										red by Method: EPA TO15 PREP	Sample Prepar
18-16-1			Reference Method			LOD/MD	Units	Flag	Result	No. Parameter	CAS N
				18.67	29	29	ug/m³		ND	3-Chloropropene	107-05-1
107-13-11 Acrylonitrile				18.67	7.6	7.6	ug/m³		ND	4-Methyl-2-pentanone	108-10-1
107-13-1	17 16:13 LDS	01/31/2017 13:29	EPA TO-15	18.67	8.9	8.9	ug/m³		29	Acetone	67-64-1
Part	4-Que	NY10854,NJDEP,NELAC-NY10854-Quε	Certifications: NELAC-N								
100-44-7 Bernzyl chloride				18.67	4.1	4.1	ug/m³		ND	Acrylonitrile	107-13-1
100-44-7 100-44-7				18.67	6.0	6.0	ug/m³		210	Benzene	71-43-2
Part	4-Que	VY10854,NJDEP,NELAC-NY10854-Quε	Certifications: NELAC-N								
Part				18.67	9.7	9.7	ug/m³		ND	Benzyl chloride	100-44-7
Part				18.67	13	13	ug/m³		ND	Bromodichloromethane	75-27-4
				18.67	19	19	ug/m³		ND	Bromoform	75-25-2
Part				18.67	7.2	7.2	ug/m³		ND	Bromomethane	74-83-9
Second S				18.67	5.8	5.8	ug/m³		44	Carbon disulfide	75-15-0
108-90-7 Chlorobenzene 120	i4-Quε	NY10854,NJDEP,NELAC-NY10854-Que	Certifications: NELAC-N								
Certifications: NELAC-NY10854-NJDEP,NELAC-NY10854-Queen				18.67	2.9	2.9	ug/m³		ND	Carbon tetrachloride	56-23-5
To-00-3 Chloroethane ND Ug/m² 4.9 4.9 18.67 EPA TO-15 01/31/2017 13:29	17 16:13 LDS	01/31/2017 13:29	EPA TO-15	18.67	8.6	8.6	ug/m³		120	Chlorobenzene	108-90-7
Chiloroform ND Ug/m³ 9.1 9.1 18.67 EPA TO-15 01/31/2017 13:29 01/31/2017 16:59-20 Certifications: NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854-Quark NELAC-NY10854,NIDEP,NELAC-NY10854-Quar	4-Que	NY10854,NJDEP,NELAC-NY10854-Que	Certifications: NELAC-N								
The state of the				18.67	4.9	4.9	ug/m³		ND	Chloroethane	75-00-3
156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 7.4 7.4 18.67 EPA TO-15 O1/31/2017 13:29 O1/31/2017 16:29 O1/3				18.67	9.1	9.1	ug/m³		ND	Chloroform	67-66-3
156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 7.4 7.4 18.67 EPA TO-15 01/31/2017 13:29 01/3				18.67	3.9	3.9	ug/m³		ND	Chloromethane	74-87-3
10061-01-5 cis-1,3-Dichloropropylene ND	17 16:13 LDS	01/31/2017 13:29	EPA TO-15	18.67	7.4	7.4	ug/m³		ND	cis-1,2-Dichloroethylene	156-59-2
110-82-7 Cyclohexane 280 ug/m³ 6.4 6.4 18.67 EPA TO-15 01/31/2017 13:29 01/31/2017 16 124-48-1 Dibromochloromethane ND ug/m³ 16 16 18.67 EPA TO-15 O1/31/2017 13:29 01/31/2017 16 16 18.67 EPA TO-15 O1/31/2017 13:29 O1/31/2017 16 O1/31/2017 16 O1/31/2017 13:29 O1/31/2017 16 O	17 16:13 LDS	01/31/2017 13:29	EPA TO-15	18.67	8.5	8.5	ug/m³		ND	cis-1,3-Dichloropropylene	10061-01-5
124-48-1 Dibromochloromethane ND ug/m³ 16 16 18.67 EPA TO-15 O1/31/2017 13:29 O1/31/2017 16				18 67	6.4	6.4	110/m³		280	Cyclohexane	110-82-7
Total Tota				16.07	0.4	0.4	ug/iii		200	Cyclonexune	110 02 7
75-71-8				18.67	16	16	ug/m³		ND	Dibromochloromethane	124-48-1
141-78-6 * Ethyl acetate ND ug/m³ 13 13 18.67 EPA TO-15 O1/31/2017 13:29 O1/31/2017 16:29 O1/31/2017 13:29 O1/31/2017 16:29 O1/31/2017 16:2				18.67	9.2	9.2	ug/m³		54	Dichlorodifluoromethane	75-71-8
100-41-4 Ethyl Benzene 130 ug/m³ 8.1 8.1 18.67 EPA TO-15 01/31/2017 13:29 01/31/2017 16 18.67 Certifications: NELAC-NY10854,NJDEP,NELAC-NY10854-Quarter NELAC-NY10854-Quarter NELAC-NY10				-0.07			Č				
100-41-4 Ethyl Benzene 130 ug/m³ 8.1 8.1 18.67 EPA TO-15 01/31/2017 13:29 01/31/2017 16 Certifications: NELAC-NY10854,NJDEP,NELAC-NY10854-Qu	17 16:13 LDS	01/31/2017 13:29		18.67	13	13	ug/m³		ND	* Ethyl acetate	141-78-6
Certifications: NELAC-NY10854,NJDEP,NELAC-NY10854-Qu	17 16:13 LDS	01/31/2017 13:29		18.67	8.1	8.1	ug/m³		130	Ethyl Benzene	100-41-4
87-68-3 Hexachlorobutadiene ND ug/m³ 20 20 18.67 EPA TO-15 01/31/2017 13:29 01/31/2017 16							-		-50	•	
Certifications: NELAC-NY10854,NJDEP,NELAC-NY10854-Qu		01/31/2017 13:29 01/31/2017 16:13 YY10854,NJDEP,NELAC-NY10854-Que	EPA TO-15 Certifications: NELAC-NY	18.67	20	20	ug/m³		ND	Hexachlorobutadiene	87-68-3

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 5 of 21

Client Sample ID: SMDRiser_013017

York Sample ID:

17A1033-01

York Project (SDG) No. 17A1033

Client Project ID 170244602 <u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> January 30, 2017 3:00 pm Date Received 01/31/2017

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:
Log-m Notes:	Samble Notes:

CAS No	. Parameter	Result	Flag	Units	LOD/MDI	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-63-0	Isopropanol	ND		ug/m³	9.2	9.2	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 710854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
80-62-6	Methyl Methacrylate	ND		ug/m³	7.6	7.6	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 710854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	6.7	6.7	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 710854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
75-09-2	Methylene chloride	ND		ug/m³	13	13	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Que	LDS
142-82-5	n-Heptane	250		ug/m³	7.7	7.7	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Que	
110-54-3	n-Hexane	170		ug/m³	6.6	6.6	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Quε	
95-47-6	o-Xylene	70		ug/m³	8.1	8.1	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Quε	
179601-23-1	p- & m- Xylenes	340		ug/m³	16	16	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Quε	
622-96-8	* p-Ethyltoluene	16		ug/m³	9.2	9.2	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
								Certifications:				
115-07-1	* Propylene	ND		ug/m³	3.2	3.2	18.67	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 16:13	LDS
100-42-5	Styrene	ND		ug/m³	8.0	8.0	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Que	LDS
127-18-4	Tetrachloroethylene	8.9		ug/m³	3.2	3.2	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Quε	
109-99-9	* Tetrahydrofuran	ND		ug/m³	11	11	18.67	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 16:13	LDS
108-88-3	Toluene	180		ug/m³	7.0	7.0	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Quε	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	7.4	7.4	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	8.5	8.5	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
79-01-6	Trichloroethylene	4.0		ug/m³	2.5	2.5	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
	•			-				Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Que	
75-69-4	Trichlorofluoromethane (Freon 11)	24		ug/m³	10	10	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Que	
108-05-4	Vinyl acetate	ND		ug/m³	6.6	6.6	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
593-60-2	Vinyl bromide	ND		ug/m³	8.2	8.2	18.67	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 16:13 C-NY10854-Quε	LDS
75-01-4	Vinyl Chloride	11		ug/m³	4.8	4.8	18.67	EPA TO-15		01/31/2017 13:29	01/31/2017 16:13	LDS
				=				Certifications:	NELAC-N	Y 10854, NJDEP, NELA	AC-NY10854-Que	
	Surrogate Recoveries	Result		Acc	eptance Ran	ge						
460-00-4	Surrogate: p-Bromofluorobenzene	103 %		1100	72-118	e *						
100-00-4	зин одине. p-внотојниоговенzене	103 70			/2-110							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 6 of 21

Client Sample ID: IA_013017

York Sample ID: 17A1033-02

York Project (SDG) No. 17A1033 Client Project ID 170244602 <u>Matrix</u> Indoor Ambient Air <u>Collection Date/Time</u>
January 30, 2017 3:00 pm

Date Received 01/31/2017

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

•		TAT 4
	ng-in	Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.79	0.79	1.158	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 18:00	LDS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.63	0.63	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.79	0.79	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.89	0.89	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.63	0.63	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.47	0.47	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.46	0.46	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.86	0.86	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.57	0.57	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.89	0.89	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.70	0.70	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.47	0.47	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.54	0.54	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.81	0.81	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.57	0.57	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
106-99-0	1,3-Butadiene	ND		ug/m³	0.77	0.77	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 ΔC-NY10854-Quε	LDS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.70	0.70	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.54	0.54	1.158	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 18:00	LDS
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.70	0.70	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
123-91-1	1,4-Dioxane	ND		ug/m³	0.83	0.83	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
78-93-3	2-Butanone	1.6		ug/m³	0.34	0.34	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NEL	-	
591-78-6	* 2-Hexanone	ND		ug/m³	0.95	0.95	1.158	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 18:00	LDS
107-05-1	3-Chloropropene	ND		ug/m³	1.8	1.8	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Quε	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 21

Client Sample ID: IA_013017

York Sample ID: 17A1033-02

York Project (SDG) No. 17A1033 Client Project ID 170244602 Matrix Collection Date/Time
Indoor Ambient Air January 30, 2017 3:00 pm

Date Received 01/31/2017

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA TO15 PREP									Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Aethod	Prepared	Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	0.47	0.47	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Quε	LDS
67-64-1	Acetone	10		ug/m³	0.55	0.55	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NEL	AC-NY10854-Quε	
107-13-1	Acrylonitrile	ND		ug/m³	0.25	0.25	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
1-43-2	Benzene	0.55		ug/m³	0.37	0.37	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NEL	AC-NY10854-Quε	
100-44-7	Benzyl chloride	ND		ug/m³	0.60	0.60	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 ΔC-NY10854-Quε	LDS
75-27-4	Bromodichloromethane	ND		ug/m³	0.78	0.78	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
75-25-2	Bromoform	ND		ug/m³	1.2	1.2	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Oue	LDS
74-83-9	Bromomethane	ND		ug/m³	0.45	0.45	1.158	EPA TO-15		01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00	LDS
75-15-0	Carbon disulfide	0.61		ug/m³	0.36	0.36	1.158	EPA TO-15	NLLAC-IVI	01/31/2017 13:29	01/31/2017 18:00	LDS
,5 15 0	our bon unsumue	0.01		49	0.50	0.50	1.156		NELAC-N	Y10854,NJDEP,NEL		220
56-23-5	Carbon tetrachloride	0.36		ug/m³	0.18	0.18	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NEL	AC-NY10854-Quε	
108-90-7	Chlorobenzene	ND		ug/m³	0.53	0.53	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
75-00-3	Chloroethane	ND		ug/m³	0.31	0.31	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
67-66-3	Chloroform	ND		ug/m³	0.57	0.57	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-One	LDS
74-87-3	Chloromethane	1.0		ug/m³	0.24	0.24	1.158	EPA TO-15	· · · · · · · · · · · · · · · · · · ·	01/31/2017 13:29	01/31/2017 18:00	LDS
		1.0		0					NELAC-N	Y10854,NJDEP,NEL		
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.46	0.46	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00 AC-NY10854-Que	LDS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.53	0.53	1.158	EPA TO-15		01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00	LDS
110-82-7	Cyclohexane	ND		ug/m³	0.40	0.40	1.158	EPA TO-15		01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00	LDS
124-48-1	Dibromochloromethane	ND		ug/m³	0.99	0.99	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
75-71-8	Dichlorodifluoromethane	2.0		ug/m³	0.57	0.57	1.158	EPA TO-15	NELAC-IV	Y10854,NJDEP,NELA 01/31/2017 13:29	01/31/2017 18:00	LDS
/3-/1-6	Demoi ouriuoi ometriane	2.0		ug/III	0.57	0.37	1.136		NELAC-N	Y10854,NJDEP,NEL		LDS
141-78-6	* Ethyl acetate	ND		ug/m³	0.83	0.83	1.158	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 18:00	LDS
100-41-4	Ethyl Benzene	0.65		ug/m³	0.50	0.50	1 159	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
100-41-4	Large Delizenc	0.65		ug/m³	0.50	0.50	1.158		NELAC-N	Y10854,NJDEP,NEL		LDS
87-68-3	Hexachlorobutadiene	ND		ug/m³	1.2	1.2	1.158	EPA TO-15		01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 18:00	LDS
67-63-0	Isopropanol	2.9		ug/m³	0.57	0.57	1.158	EPA TO-15	TELAC-IVI	01/31/2017 13:29	01/31/2017 18:00	LDS
,,-UJ=U	130pi opanoi	2.8		ug/III	0.5/	0.57	1.138		NELAC-N	Y10854,NJDEP,NEL		LDS
								_crancations.	10-11			

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 8 of 21

Client Sample ID: IA_013017

York Sample ID:

17A1033-02

York Project (SDG) No. 17A1033

Client Project ID 170244602 <u>Matrix</u> Indoor Ambient Air <u>Collection Date/Time</u> January 30, 2017 3:00 pm Date Received 01/31/2017

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:
Log-m Notes:	Samble Notes:

CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Analyzed	Analyst
80-62-6	Methyl Methacrylate	ND		ug/m³	0.47	0.47	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 710854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Quε	LDS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.42	0.42	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Quε	LDS
75-09-2	Methylene chloride	1.5		ug/m³	0.80	0.80	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-NY	Y10854,NJDEP,NELA	AC-NY10854-Quε	
142-82-5	n-Heptane	0.47		ug/m³	0.47	0.47	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-NY	Y10854,NJDEP,NELA	AC-NY10854-Quε	
110-54-3	n-Hexane	ND		ug/m³	0.41	0.41	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Que	LDS
95-47-6	o-Xylene	ND		ug/m³	0.50	0.50	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Que	LDS
179601-23-1	p- & m- Xylenes	2.1		ug/m³	1.0	1.0	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-NY	Y10854,NJDEP,NELA	AC-NY10854-Quε	
622-96-8	* p-Ethyltoluene	ND		ug/m³	0.57	0.57	1.158	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 18:00	LDS
115-07-1	* Propylene	ND		ug/m³	0.20	0.20	1.158	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 18:00	LDS
100-42-5	Styrene	ND		ug/m³	0.49	0.49	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Quε	LDS
127-18-4	Tetrachloroethylene	0.39		ug/m³	0.20	0.20	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-NY	Y10854,NJDEP,NELA	AC-NY10854-Quε	
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.68	0.68	1.158	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 18:00	LDS
108-88-3	Toluene	4.9		ug/m³	0.44	0.44	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-NY	Y10854,NJDEP,NEL	AC-NY10854-Quε	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.46	0.46	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 710854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Quε	LDS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.53	0.53	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Quε	LDS
79-01-6	Trichloroethylene	ND		ug/m³	0.16	0.16	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Quε	LDS
75-69-4	Trichlorofluoromethane (Freon 11)	1.2		ug/m³	0.65	0.65	1.158	EPA TO-15		01/31/2017 13:29	01/31/2017 18:00	LDS
								Certifications:	NELAC-NY	Y10854,NJDEP,NELA	AC-NY10854-Quε	
108-05-4	Vinyl acetate	ND		ug/m³	0.41	0.41	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Quε	LDS
593-60-2	Vinyl bromide	ND		ug/m³	0.51	0.51	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 /10854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Que	LDS
75-01-4	Vinyl Chloride	ND		ug/m³	0.30	0.30	1.158	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 710854,NJDEP,NELA	01/31/2017 18:00 C-NY10854-Quε	LDS
	Surrogate Recoveries	Result		Acc	eptance Rang	ge						
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			72-118							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 9 of 21

Client Sample ID: AA_013017 York Sample ID:

17A1033-03

York Project (SDG) No. 17A1033

Client Project ID 170244602

Matrix

Collection Date/Time Outdoor Ambient Air January 30, 2017 12:00 am Date Received 01/31/2017

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method: EPA TO15 PREP									D-4-/T:	D-4-/T:	
CAS No	. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.77	0.77	1.12	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 19:01	LDS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.61	0.61	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.77	0.77	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.86	0.86	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.61	0.61	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.45	0.45	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.44	0.44	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.83	0.83	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.55	0.55	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.86	0.86	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.67	0.67	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.45	0.45	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.52	0.52	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.78	0.78	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.55	0.55	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
106-99-0	1,3-Butadiene	ND		ug/m³	0.74	0.74	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.67	0.67	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.52	0.52	1.12	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 19:01	LDS
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.67	0.67	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
123-91-1	1,4-Dioxane	ND		ug/m³	0.81	0.81	1.12	EPA TO-15 Certifications:		01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01	LDS
78-93-3	2-Butanone	0.53		ug/m³	0.33	0.33	1.12	EPA TO-15 Certifications:		01/31/2017 13:29 JY10854,NJDEP,NELA	01/31/2017 19:01	LDS
591-78-6	* 2-Hexanone	ND		ug/m³	0.92	0.92	1.12	EPA TO-15	NELAC-N	01/31/2017 13:29	01/31/2017 19:01	LDS
107-05-1	3-Chloropropene	ND		ug/m³	1.8	1.8	1.12	Certifications: EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
								Certifications:	NELAC-N	Y10854,NJDEP,NELA	C-NY10854-Que	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 10 of 21

Client Sample ID: AA_013017 York Sample ID: 17A1033-03

York Project (SDG) No. 17A1033

Client Project ID 170244602

Matrix Outdoor Ambient Air January 30, 2017 12:00 am

Collection Date/Time

Date Received 01/31/2017

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:

CAS No.	. Parameter	Result	Flag Units	LOD/MDI	Reported to L LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.46	0.46	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
67-64-1	Acetone	5.2	ug/m³	0.53	0.53	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
							Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Que	
107-13-1	Acrylonitrile	ND	ug/m³	0.24	0.24	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
71-43-2	Benzene	0.39	ug/m³	0.36	0.36	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
							Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Quε	
100-44-7	Benzyl chloride	ND	ug/m³	0.58	0.58	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
75-27-4	Bromodichloromethane	ND	ug/m³	0.75	0.75	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
75-25-2	Bromoform	ND	ug/m³	1.2	1.2	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
74-83-9	Bromomethane	ND	ug/m³	0.43	0.43	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
75-15-0	Carbon disulfide	ND	ug/m³	0.35	0.35	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Oue	LDS
56-23-5	Carbon tetrachloride	0.42	ug/m³	0.18	0.18	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
		VII.2	Č				Certifications:	NELAC-N	Y 10854,NJDEP,NELA	AC-NY10854-Quε	
108-90-7	Chlorobenzene	ND	ug/m³	0.52	0.52	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
75-00-3	Chloroethane	ND	ug/m³	0.30	0.30	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
57-66-3	Chloroform	ND	ug/m³	0.55	0.55	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
74-87-3	Chloromethane	1.2	ug/m³	0.23	0.23	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
							Certifications:	NELAC-N	Y10854,NJDEP,NELA	AC-NY10854-Que	
56-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.44	0.44	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.51	0.51	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
110-82-7	Cyclohexane	ND	ug/m³	0.39	0.39	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
124-48-1	Dibromochloromethane	ND	ug/m³	0.95	0.95	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Que	LDS
75-71-8	Dichlorodifluoromethane	2.0	ug/m³	0.55	0.55	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
							Certifications:	NELAC-N	Y 10854,NJDEP,NELA	AC-NY10854-Quε	
141-78-6	* Ethyl acetate	ND	ug/m³	0.81	0.81	1.12	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 19:01	LDS
100-41-4	Ethyl Benzene	ND	ug/m³	0.49	0.49	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
87-68-3	Hexachlorobutadiene	ND	ug/m³	1.2	1.2	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA	01/31/2017 19:01 C-NY10854-Quε	LDS
67-63-0	Isopropanol	ND	ug/m³	0.55	0.55	1.12	EPA TO-15 Certifications:	NELAC-NY	01/31/2017 13:29 10854,NJDEP,NELA		LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 11 of 21

Client Sample ID: AA_013017 York Sample ID:

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received17A1033170244602Outdoor Ambient AirJanuary 30, 2017 12:00 am01/31/2017

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes

CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
80-62-6	Methyl Methacrylate	ND		ug/m³	0.46	0.46	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.40	0.40	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Que	LDS
75-09-2	Methylene chloride	8.9		ug/m³	0.78	0.78	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
								Certifications:	NELAC-N	IY10854,NJDEP,NELA	AC-NY10854-Que	
42-82-5	n-Heptane	ND		ug/m³	0.46	0.46	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
10-54-3	n-Hexane	ND		ug/m³	0.39	0.39	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
95-47-6	o-Xylene	ND		ug/m³	0.49	0.49	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
179601-23-1	p- & m- Xylenes	ND		ug/m³	0.97	0.97	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
522-96-8	* p-Ethyltoluene	ND		ug/m³	0.55	0.55	1.12	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 19:01	LDS
15-07-1	* Propylene	ND		ug/m³	0.19	0.19	1.12	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 19:01	LDS
00-42-5	Styrene	ND		ug/m³	0.48	0.48	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
27-18-4	Tetrachloroethylene	0.30		ug/m³	0.19	0.19	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
								Certifications:	NELAC-N	IY10854,NJDEP,NELA	AC-NY10854-Que	
09-99-9	* Tetrahydrofuran	ND		ug/m³	0.66	0.66	1.12	EPA TO-15 Certifications:		01/31/2017 13:29	01/31/2017 19:01	LDS
08-88-3	Toluene	1.9		ug/m³	0.42	0.42	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
								Certifications:	NELAC-N	IY10854,NJDEP,NELA	AC-NY10854-Quε	
56-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.44	0.44	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.51	0.51	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
9-01-6	Trichloroethylene	ND		ug/m³	0.15	0.15	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
5-69-4	Trichlorofluoromethane (Freon 11)	1.4		ug/m³	0.63	0.63	1.12	EPA TO-15		01/31/2017 13:29	01/31/2017 19:01	LDS
								Certifications:	NELAC-N	IY10854,NJDEP,NELA	AC-NY10854-Quε	
08-05-4	Vinyl acetate	ND		ug/m³	0.39	0.39	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
93-60-2	Vinyl bromide	ND		ug/m³	0.49	0.49	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Que	LDS
75-01-4	Vinyl Chloride	ND		ug/m³	0.29	0.29	1.12	EPA TO-15 Certifications:	NELAC-N	01/31/2017 13:29 Y10854,NJDEP,NELA	01/31/2017 19:01 .C-NY10854-Quε	LDS
	Surrogate Recoveries	Result		Acc	eptance Rang	ge						
60-00-4	Surrogate: p-Bromofluorobenzene	101 %			72-118							
	O				-							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

17A1033-03

ClientServices@ Page 12 of 21

Analytical Batch Summary

Batch ID: BA71259 Preparation Method: EPA TO15 PREP Prepared By:	LDS
--	-----

YORK Sample ID	Client Sample ID	Preparation Date
17A1033-01	SMDRiser_013017	01/31/17
17A1033-02	IA_013017	01/31/17
17A1033-03	AA_013017	01/31/17
BA71259-BLK1	Blank	01/31/17
BA71259-BS1	LCS	01/31/17
BA71259-DUP1	Duplicate	01/31/17

Volatile Organic Compounds in Air by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

A (RAT1259-BLKI)	
Frichloroethane	
2-Trichloro-1,2,2-trifluoroethane (Freon 113) ND 0.77 12-Trichloroethane ND 0.55 13-Trichloroethane ND 0.40 13-Trichloroethane ND 0.40 13-Trichloroethylene ND 0.40 13-Trichlorobenzene ND 0.40 13-Trichlorobenzene ND 0.74 13-Trimethylbenzene ND 0.49 13-Trimethylbenzene ND 0.49 13-Trimethylbenzene ND 0.60 13-Trimethylbenzene ND 0.60 13-Trimethylbenzene ND 0.40 13-Trimethylbenzene ND 0.46 13-Trimethylbenzene ND 0.46 13-Trimethylbenzene ND 0.66 13-Trimethylbenzene ND 0.66 13-Trimethylbenzene ND 0.66 13-Trimethylbenzene ND 0.60 13-Trimethylbenzene ND 0.46 13-Trimethylbe	
2-Trichloro-1,2,2-trifluoroethane (Freon 113) ND 0.77 12-Trichloroethane ND 0.55 13	
Particuloroethane	
Dichloroethylene ND 0.40 " L-Trichlorobenzene ND 0.74 " L-Trimethylbenzene ND 0.77 " Dichlorobenzene ND 0.77 " Dichlorobenzene ND 0.60 " Dichlorotethane ND 0.40 " Dichlorotetrafluorothane ND 0.46 " Dichlorotetrafluorothane ND 0.70 " S-Trimethylbenzene ND 0.49 " Butadiene ND 0.66 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.82 " <td></td>	
Dichloroethylene	
#Trichlorobenzene #Trimethylbenzene ND	
A Trimethylbenzene ND 0.49 " Dibromoethane ND 0.77 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.40 " Dichloropropane ND 0.46 " Dichloropropane ND 0.46 " Dichlorobenzene ND 0.46 " Dichlorobenzene ND 0.49 "	
Dibromoethane ND 0.77 " Dichlorobenzene ND 0.60 " Dichloroethane ND 0.40 " Dichlorotetrafluoroethane ND 0.46 " Dichlorotetrafluoroethane ND 0.70 " 5-Trimethylbenzene ND 0.49 " Butadiene ND 0.66 " Dichlorobenzene ND 0.60 " Dichloropropane ND 0.60 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.60 " Dicklorobenzene ND 0.60 " Dicklorobenzene ND 0.72 " Dicklorobenzene ND 0.29 " Edutatione ND 0.41 " Inforperopene ND 0.41 "	
Dichlorobenzene ND	
Dichloroethane ND 0.40 " Dichloropropane ND 0.46 " Dichlorotetrafluoroethane ND 0.70 " 5-Trimethylbenzene ND 0.49 " Butadiene ND 0.66 " Dichlorobenzene ND 0.60 " Dichloropropane ND 0.46 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.60 " Dichlorobenzene ND 0.72 " attanone ND 0.72 " exanone ND 0.82 " altoropropene ND 0.41 " ethyl-2-pentanone ND 0.48 " done ND 0.32 " zene ND 0.32 " zene <t< td=""><td></td></t<>	
Dichloropropane	
Dichlorotetrafluoroethane ND 0.70 " 1.5-Trimethylbenzene ND 0.49 " 1.5-Trimethylbenzene ND 0.66 " 1.5-Trimethylbenzene ND 0.66 " 1.5-Trimethylbenzene ND 0.60 " 1.5-Trimethylbenzene ND 0.46 " 1.5-Trimethylbenzene ND 0.46 " 1.5-Trimethylbenzene ND 0.60 " 1.5-Trimethylbenzene ND 0.60 " 1.5-Trimethylbenzene ND 0.72 " 1.5-Trimethylbenzene ND 0.72 " 1.5-Trimethylbenzene ND 0.82 " 1.5-Trimethylbenzene ND 0.82 " 1.5-Trimethylbenzene ND 0.41 " 1.5-Trimethylbenzene ND 0.41 " 1.5-Trimethylbenzene ND 0.48 " 1.5-Trimethylbenzene ND 0.32 " 1.5-Trimethylbenzene ND 0.52 " 1.5-Trimethylbenzene ND 0.67 " 1.5-Trimethylbenzene ND 0.39 " 1.5-Trimethylbenzene ND 0.39 " 1.5-Trimethylbenzene ND 0.31 " 1.5-Trimethylbenzene ND 0.31 " 1.5-Trimethylbenzene ND 0.16 " 1.5-Trimeth	
ND 0.49 "	
ND	
Dichlorobenzene ND 0.60 " Dichloropropane ND 0.46 " Dicknorobenzene ND 0.60 " Dioxane ND 0.72 " Itanone ND 0.29 " Exanone ND 0.82 " Iloropropene ND 1.6 " ethyl-2-pentanone ND 0.41 " donitrile ND 0.48 " donitrile ND 0.32 " zerne ND 0.32 " zyl chloride ND 0.52 " modichloromethane ND 0.67 " monoform ND 0.39 " non disulfide ND 0.31 " non tetrachloride ND 0.16 " norbenzene ND 0.46 "	
Dichloropropane ND 0.46 " Dichlorobenzene ND 0.60 " Dioxane ND 0.72 " attanone ND 0.29 " exanone ND 0.82 " nloropropene ND 1.6 " ethyl-2-pentanone ND 0.41 " tone ND 0.48 " vlonitrile ND 0.22 " zene ND 0.32 " zyl chloride ND 0.52 " modichloromethane ND 0.67 " moform ND 0.39 " pon disulfide ND 0.31 " pon tetrachloride ND 0.16 " probenzene ND 0.46 "	
Dicklorobenzene ND 0.60 " Dioxane ND 0.72 " stanone ND 0.29 " exanone ND 0.82 " altoropropene ND 1.6 " ethyl-2-pentanone ND 0.41 " one ND 0.48 " vlonitrile ND 0.32 " zene ND 0.32 " zyl chloride ND 0.52 " modichloromethane ND 0.67 " moform ND 0.39 " oon disulfide ND 0.31 " oon tetrachloride ND 0.16 " orobenzene ND 0.46 "	
Dioxane ND 0.72 " stanone ND 0.29 " exanone ND 0.82 " doropropene ND 1.6 " ethyl-2-pentanone ND 0.41 " one ND 0.48 " donitrile ND 0.32 " eene ND 0.32 " cyl chloride ND 0.52 " nodichloromethane ND 0.67 " noform ND 0.39 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " robenzene ND 0.46 "	
ND	
ND	
ND	
ethyl-2-pentanone ND 0.41 " one ND 0.48 " clonitrile ND 0.22 " rene ND 0.32 " cyl chloride ND 0.52 " nodichloromethane ND 0.67 " noform ND 1.0 " nomethane ND 0.39 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " robenzene ND 0.46 "	
one ND 0.48 " donitrile ND 0.22 " ene ND 0.32 " syl chloride ND 0.52 " nodichloromethane ND 0.67 " noform ND 1.0 " nomethane ND 0.39 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " robenzene ND 0.46 "	
ND	
ND 0.32 "	
Variable	
nodichloromethane ND 0.67 " noform ND 1.0 " nomethane ND 0.39 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " robenzene ND 0.46 "	
noform ND 1.0 " nomethane ND 0.39 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " robenzene ND 0.46 "	
nomethane ND 0.39 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " orobenzene ND 0.46 "	
von disulfide ND 0.31 " von tetrachloride ND 0.16 " vorbenzene ND 0.46 "	
on tetrachloride ND 0.16 " orobenzene ND 0.46 "	
probenzene ND 0.46 "	
vroetnane ND 0.26 "	
roform ND 0.49 "	
oromethane ND 0.21 "	
2-Dichloroethylene ND 0.40 "	
1,3-Dichloropropylene ND 0.45 "	
ND 0.34	
omochloromethane ND 0.85 "	
lorodifluoromethane ND 0.49 "	
l acetate ND 0.72 "	
l Benzene ND 0.43 "	
achlorobutadiene ND 1.1 "	
ropanol ND 0.49 "	
hyl Methacrylate ND 0.41 "	
hyl tert-butyl ether (MTBE) ND 0.36 "	
pylene chloride ND 0.69 " eptane ND 0.41 "	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Volatile Organic Compounds in Air by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

1 mary to	1105411	Limit	Cinto	Ee vei	resure	7 UTCE-C	Emmo	
Batch BA71259 - EPA TO15 PREP								
Blank (BA71259-BLK1)							Pre	pared & Analyzed: 01/31/2017
n-Hexane	ND	0.35	ug/m³					
o-Xylene	ND	0.43	"					
p- & m- Xylenes	ND	0.87	"					
p-Ethyltoluene	ND	0.49	"					
Propylene	ND	0.17	"					
Styrene	ND	0.43	"					
Tetrachloroethylene	ND	0.17	"					
Tetrahydrofuran	ND	0.59	"					
Toluene	ND	0.38	"					
trans-1,2-Dichloroethylene	ND	0.40	"					
trans-1,3-Dichloropropylene	ND	0.45	"					
Trichloroethylene	ND	0.13	"					
Trichlorofluoromethane (Freon 11)	ND	0.56	"					
Vinyl acetate	ND	0.35	"					
Vinyl bromide	ND	0.44	"					
Vinyl Chloride	ND	0.26	"					
Surrogate: p-Bromofluorobenzene	9.46	0.20	ppbv	10.0		94.6	72-118	
			PP -			7.114		pared & Analyzed: 01/31/2017
LCS (BA71259-BS1) 1,1,1,2-Tetrachloroethane	7.72		1	10.0		77.2		pared & Finally Zea. 01/31/2017
1,1,1-Trichloroethane	7.73		ppbv "	10.0		77.3	70-130	
	8.00		,,	10.0		80.0	70-130	
1,1,2,2-Tetrachloroethane	7.78		,,	10.0		77.8	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	7.67		,,	10.0		76.7	70-130	
1,1,2-Trichloroethane	7.94		,,	10.0		79.4	70-130	
1,1-Dichloroethane	7.78			10.0		77.8	70-130	
1,1-Dichloroethylene	7.73		"	10.0		77.3	70-130	
1,2,4-Trichlorobenzene	7.06		"	10.0		70.6	70-130	
1,2,4-Trimethylbenzene	8.67		"	10.0		86.7	70-130	
1,2-Dibromoethane	8.05		"	10.0		80.5	70-130	
1,2-Dichlorobenzene	8.48		"	10.0		84.8	70-130	
1,2-Dichloroethane	7.90		"	10.0		79.0	70-130	
1,2-Dichloropropane	7.71		"	10.0		77.1	70-130	
1,2-Dichlorotetrafluoroethane	8.86		"	10.0		88.6	70-130	
1,3,5-Trimethylbenzene	8.56		"	10.0		85.6	70-130	
1,3-Butadiene	6.72		"	10.0		67.2	70-130	Low Bias
1,3-Dichlorobenzene	8.52		"	10.0		85.2	70-130	
1,3-Dichloropropane	7.81		"	10.0		78.1	70-130	
1,4-Dichlorobenzene	8.66		"	10.0		86.6	70-130	
1,4-Dioxane	9.43		"	10.0		94.3	70-130	
2-Butanone	7.50		"	10.0		75.0	70-130	
2-Hexanone	9.70		"	10.0		97.0	70-130	
3-Chloropropene	8.01		"	10.0		80.1	70-130	
4-Methyl-2-pentanone	9.04		"	10.0		90.4	70-130	
Acetone	8.07		"	10.0		80.7	70-130	
Acrylonitrile	8.02		"	10.0		80.2	70-130	
Benzene	10.6		"	10.0		106	70-130	
Benzyl chloride	7.02		"	10.0		70.2	70-130	
Bromodichloromethane	7.72		"	10.0		77.2	70-130	
Bromoform	8.37		"	10.0		83.7	70-130	
Bromomethane	7.75		"	10.0		77.5	70-130	
Carbon disulfide	8.81		"	10.0		88.1	70-130	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Volatile Organic Compounds in Air by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BA71259-BS1)					Prepared & Analyzed: 01/31/2017
Carbon tetrachloride	7.78	ppbv	10.0	77.8	70-130
Chlorobenzene	8.47	"	10.0	84.7	70-130
Chloroethane	7.32	"	10.0	73.2	70-130
hloroform	7.64	"	10.0	76.4	70-130
hloromethane	10.8	"	10.0	108	70-130
s-1,2-Dichloroethylene	8.48	"	10.0	84.8	70-130
is-1,3-Dichloropropylene	8.47	"	10.0	84.7	70-130
Cyclohexane	11.8	"	10.0	118	70-130
Dibromochloromethane	8.17	"	10.0	81.7	70-130
richlorodifluoromethane	8.03	"	10.0	80.3	70-130
thyl acetate	11.2	"	10.0	112	70-130
thyl Benzene	8.08	"	10.0	80.8	70-130
Iexachlorobutadiene	8.85	"	10.0	88.5	70-130
opropanol	6.87	"	10.0	68.7	70-130 Low Bias
ethyl Methacrylate	8.90	"	10.0	89.0	70-130
ethyl tert-butyl ether (MTBE)	8.11	"	10.0	81.1	70-130
ethylene chloride	7.70	"	10.0	77.0	70-130
Heptane	11.0	"	10.0	110	70-130
-Hexane	9.11	"	10.0	91.1	70-130
Xylene	8.58	"	10.0	85.8	70-130
- & m- Xylenes	16.8	"	20.0	84.1	70-130
Ethyltoluene	8.85	"	10.0	88.5	70-130
ropylene	8.98	"	10.0	89.8	70-130
tyrene	8.25	"	10.0	82.5	70-130
etrachloroethylene	7.39	"	10.0	73.9	70-130
etrahydrofuran	10.4	"	10.0	104	70-130
oluene	7.84	"	10.0	78.4	70-130
ans-1,2-Dichloroethylene	7.97	"	10.0	79.7	70-130
nns-1,3-Dichloropropylene	8.09	"	10.0	80.9	70-130
richloroethylene	7.41	"	10.0	74.1	70-130
richlorofluoromethane (Freon 11)	7.96	"	10.0	79.6	70-130
Vinyl acetate	7.76	"	10.0	77.6	70-130
7inyl bromide	9.07	"	10.0	90.7	70-130
inyl Chloride	7.49	"	10.0	74.9	70-130

10.0

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

 ${\it Surrogate: p-Bromofluor obenzene}$

10.0

100

72-118

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BA71259 - EPA TO15 PREP	Ratch	RA71259) - EPA '	TO15	PREP
-------------------------------	-------	---------	-----------	------	------

Ouplicate (BA71259-DUP1)	*Source sample: 17A	1033-03 (A.	Prepared & Analyzed: 01/31/2017			
,1,1,2-Tetrachloroethane	ND	0.77	ug/m³	ND		25
,1,1-Trichloroethane	ND	0.61	"	ND		25
1,2,2-Tetrachloroethane	ND	0.77	"	ND		25
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.86	"	ND		25
1,2-Trichloroethane	ND	0.61	"	ND		25
I-Dichloroethane	ND	0.45	"	ND		25
1-Dichloroethylene	ND	0.44	"	ND		25
2,4-Trichlorobenzene	ND	0.83	"	ND		25
2,4-Trimethylbenzene	ND	0.55	"	ND		25
2-Dibromoethane	ND	0.86	"	ND		25
2-Dichlorobenzene	ND	0.67	"	ND		25
2-Dichloroethane	ND	0.45	"	ND		25
2-Dichloropropane	ND	0.52	"	ND		25
2-Dichlorotetrafluoroethane	ND	0.78	"	ND		25
3,5-Trimethylbenzene	ND ND	0.78	"	ND ND		25
B-Butadiene	ND ND	0.55	"	ND ND		25
3-Dichlorobenzene	ND ND	0.74	"	ND ND		25
3-Dichloropropane	ND ND	0.67	"	ND ND		25
4-Dichlorobenzene	ND ND		,,			25
4-Dioxane		0.67	"	ND		25
Butanone	ND	0.81	"	ND	6.45	25
Hexanone	0.50	0.33	,,	0.53	0.43	25
	ND	0.92	"	ND		
Chloropropene	ND	1.8	,,	ND		25
Methyl-2-pentanone	ND	0.46		ND	1.02	25
etone	5.2	0.53	"	5.2	1.03	25
rylonitrile	ND	0.24		ND	0.00	25
nzene	0.39	0.36	"	0.39	0.00	25
nzyl chloride	ND	0.58	"	ND		25
omodichloromethane	ND	0.75	"	ND		25
omoform	ND	1.2	"	ND		25
omomethane	ND	0.43	"	ND		25
rbon disulfide	ND	0.35	"	ND		25
rbon tetrachloride	0.35	0.18	"	0.42	18.2	25
llorobenzene	ND	0.52	"	ND		25
lloroethane	ND	0.30	"	ND		25
lloroform	ND	0.55	"	ND		25
lloromethane	1.1	0.23	"	1.2	9.71	25
-1,2-Dichloroethylene	ND	0.44	"	ND		25
-1,3-Dichloropropylene	ND	0.51	"	ND		25
vclohexane	ND	0.39	"	ND		25
bromochloromethane	ND	0.95	"	ND		25
chlorodifluoromethane	1.9	0.55	"	2.0	2.82	25
nyl acetate	ND	0.81	"	ND		25
nyl Benzene	ND	0.49	"	ND		25
exachlorobutadiene	ND	1.2	"	ND		25
propanol	ND	0.55	"	ND		25
ethyl Methacrylate	ND	0.46	"	ND		25
ethyl tert-butyl ether (MTBE)	ND	0.40	"	ND		25
ethylene chloride	8.9	0.78	"	8.9	0.436	25
Heptane	ND	0.46	"	ND		25
Hexane	ND	0.39	"	ND		25

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Page 17 of 21 ClientServices@

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

$\label{lem:compounds} \textbf{Volatile Organic Compounds in Air by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Duplicate (BA71259-DUP1)	*Source sample: 17A	1033-03 (A.	A_013017)			Prepared & Analyzed	d: 01/31/2	017
o-Xylene	ND	0.49	ug/m³	ND				25
p- & m- Xylenes	1.2	0.97	"	ND				25
p-Ethyltoluene	ND	0.55	"	ND				25
Propylene	ND	0.19	"	ND				25
Styrene	ND	0.48	"	ND				25
Tetrachloroethylene	0.30	0.19	"	0.30			0.00	25
Tetrahydrofuran	ND	0.66	"	ND				25
Toluene	2.3	0.42	"	1.9			18.2	25
trans-1,2-Dichloroethylene	ND	0.44	"	ND				25
trans-1,3-Dichloropropylene	ND	0.51	"	ND				25
Trichloroethylene	ND	0.15	"	ND				25
Trichlorofluoromethane (Freon 11)	1.4	0.63	"	1.4			4.44	25
Vinyl acetate	ND	0.39	"	ND				25
Vinyl bromide	ND	0.49	"	ND				25
Vinyl Chloride	ND	0.29	"	ND				25
Surrogate: p-Bromofluorobenzene	10.2		ppbv	10.0	102 7	2-118		

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 18 of 21

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Notes and Definitions

QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.	
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.	
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)	
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.	
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.	
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.	
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.	
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.	
NR	Not reported	
RPD	Relative Percent Difference	
Wet	The data has been reported on an as-received (wet weight) basis	
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take no that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.	
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.	
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high	

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 20 of 21

		Field Ch	Field Chain-of-Custody Record - AIR	stoo	'v Reco	rd -	AIR	Page	of
YORK KAALTITEA LABORATORIES INC.	This	NOTE: York's Str document serves as your signature binds you to	NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature hinds you to York's Std. Terms & Conditions unless superseded by written contract.	ed on the back to proceed win	side of this docume h the analyses requerseded by written co	nt. sted and your ntract.	York Project No. 17/1033	t No. 17	11033
YOUR Information	Report To:	To:	Invoice To:	ğ	YOUR Project ID		Turn-Around Time	Report Type/I	Report Type/Deliverables
Company: Langer 1 31 Store	Company:	Company);	170	70244602		RUSH - Same Day RUSH - Next Day	Summary w/ QA Summary CT RCP Package	A Summaryage
N	Address:	Audicasi	0 1112	Purch	Purchase Order No.	RUSE	RUSH - Two Day	NY ASP A Package NY ASP B/CLP Pkg	ckage
1	Phone No.	W/ Phone No	· C D /// E			RUSI	RUSH - Three Day RUSH - Four Day	NJDEP Reduced Electronic Deliverables:	ed
Contact Person: Paul / VICIVIA hon Library Le-Mail Address: PM Mot hon Columbia	Attention: E-Mail Address:	Attention:	n:	Samples from: CT	m: CTNY X NJ		Standard(5-7 Days)X	EDD (Specify Type) Standard Excel	Type)
Print Clearly and Legibly. All Information must be complete.	ll Information n	nust be complete	. Additional Notes:			Dete	Detection Limits Required	Regulatory Comparison Excel	nparison Excel
Samples will NOT be logged in and the turn-around time	d in and the t	urn-around tim	<i>a</i> .			$\leq 1 \text{ ug/m}^3$	s/m³	Special	Special Instructions
CIOCK Wat not begin and any	T do suomenh	Air Matrix Codes				NYS	NYSDEC VI Limits		
Cir Ships	- IV	INDOOR Ambient Air				ON	NJDEP low level		
Samples Collected/Authorized By (Signature)		OUTDOOR Amb. Air Vapor Extraction Well/	Please enter the following Field Data	wolloj e	ing Field Da		Routine Survey		
Name (printed)	AS-	Process Gas/Effluent SOIL Vapor/Sub-Slab			→	Other			
Sample Identification	Date Sampled	AIR Matrix	1000		Canister ID Flow Cont.ID		ANALYSES REQUESTED	UESTED	Sampling Media
Campion	poud uno ounc		g (in. Hg)	After Sampling (in. Hg)	, 0		TONE VOC.	+	6 Liter canister
SMDRISER 013017	1/30/17	SZ	-2943 -3.5	93 4	443 22081		5 7 7 5	7	Tedlar Bag
14 013017	1/36/17	AT	-29.58 -7.8	83	7268 14193	1	0-15 VOCS	2 [Tedlar Bag
AA 013017	1/20/17	CA	-2797 -5.	78 7	7360 DOGHT	7 TO-15	15 VOCS	υ Γ	6 Liter canister 7
									6 Liter canister Tedlar Bag
									6 Liter canister Tedlar Bag
									6 Liter canister
									6 Liter canister
									Tedlar Bag
		-							Tedlar Bag
									6 Liter canister Tedlar Bag
									6 Liter canister Tedlar Bag

Samples Received in LA/B by Date/Time

1/30/17 Date/Time

Samples Relinquished By £. 0

Samples Relinquished By

130/12 Date/Time

Eric Sudge

Comments

Page 21 of 21

SPARS CLOMES 1-3017

Samples Received By San Desnas

Appendix H

ICEC Certification Form and NYCDOB Records

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C241152	Site Details	Box 1	
Sit	e Name 23-	-01 42nd Road			
Cit Co			Zip Code: 11101		
Re	porting Perio	od: October 19, 201	5 to February 19, 2017		
				YES NO	
1.	Is the inform	mation above correc	et?	/ 0	
	If NO, inclu	de handwritten abov	ve or on a separate sheet.		
2.		or all of the site prop nendment during this	perty been sold, subdivided, merç s Reporting Period?	ged, or undergone a	
3.		peen any change of RR 375-1.11(d))?	use at the site during this Report	ting Period	
4.		ederal, state, and/or e property during this	local permits (e.g., building, disc Reporting Period?	charge) been issued	
			tions 2 thru 4, include docume n previously submitted with thi		
5.	Is the site o	currently undergoing	development?		
				Box 2	
				YES NO	
6.		ent site use consiste Residential, Comme	nt with the use(s) listed below? ercial, and Industrial		
7.	Are all ICs/	ECs in place and fu	nctioning as designed?	/ 0	
	IF TH		HER QUESTION 6 OR 7 IS NO, s E THE REST OF THIS FORM. Of		
Α (Corrective M	easures Work Plan	must be submitted along with th	nis form to address these issues.	
Sig	nature of Ow	rner, Remedial Party	or Designated Representative	Date	

		Box 2	Α
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	Ø	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C241152 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

425-1 QPS 23-10 Development LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Site Management Plan IC/EC Plan

O&M Plan

The institutional control is in the form of an Environmental Easement for the controlled property that:

- requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- allows the use and development of the controlled property for restricted residential, commercial and industrial uses as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or NYCDOH; and
- requires compliance with the Department-approved Site Management Plan.

Box 4

Description of Engineering Controls

Parcel Engineering Control

425-1

Vapor Mitigation Cover System

The engineering controls include:

- 1. A cover system consisting of either of the structures such as building, pavement, sidewalks comprising the site development or a soil cover in areas where the upper two feet of exposed surface soil exceeded the applicable Soil Cleanup Objectives (SCOs). Where the soil cover was required it is a minimum of two feet of soil, meeting the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d) for restricted residential use. The soil cover was placed over a demarcation layer, with the upper six inches of soil of sufficient quality to maintain a vegetation layer.
- 2. Operation of a sub-slab depressurization system to prevent the migration of vapors into the building from the subsurface.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;	
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted	1
	engineering practices; and the information presented is accurate and compete. YES NO	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutiona or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	İ
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	е
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. C241152

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

relial Law.		
I Asen Asen print name	at 1((5 m A	s address
am certifying as	- Cling	(Owner or Remedial Party)
for the Site named in th	e Site Details Section of this form.	
Signature of Owner, Re	emedial Party, or Designated Representativ	ve Date
Rendering-Certification		

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Jason J. Hayes print name	at LANGAN, 21 Penn Plaza, 8th Fl, New YorkN) print business address
am certifying as a Qualified Environmen	al Professional for the <u>QP5 23-10 Development LLC</u> (Owner or Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification Stamo Da

Stamp (Required for PE)

Date

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS BIN: 4005065 Block: 425 Lot: 1 Filed At: 23-01 42 ROAD QUEENS

Job Type: A3 - ALTERATION TYPE 3

View Permit History

DOB NOW: Inspections

420989960 Job No: Fee: **STANDARD** Permit No: 420989960-01-EQ-OT Issued: 05/28/2015 **Expires:** 05/27/2016 05/28/2015 ERENEWAL Seq. No.: Filing Date: Status: **ISSUED** 02 Work: Proposed Job Start: 06/20/2014 Work Approved: 06/20/2014

ALTERATION TYPE 3 - CONSTRUCTION EQUIPMENT - OTHER

THIS APPLICATION IS FOR THE NORTH HOIST. INSTALLATION OF A SINGLE 6000 LBS CAPACITY PERSONNEL/MATERIAL HOIST DURING NEW BLDG CONSTRUCTION, FILED SEPARATELY. HOIST SHALL COMPLY WITH CHAPTER #33 OF THE 2008 CODE. NO CHANGE IN USE, OCCUPANCY OR EGRESS UNDER THIS APPLICATION. ELEVATOR APPLICATION SUBMITTED SEPARATELY TO ELEVATOR DIVISION.

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 44

Review is requested under Building Code: 2008

Issued to: COLM COEN CONTRACTOR - NON- GC 037441

REGISTERED:

Business: S&E BRIDGE & SCAFFOLD LLC

700 COMMERCIAL AVE GROUND FL CARLSTADT NJ
Phone: 201-933-3418

07072 Phone: 201-935-3416

Page 1 of 1 Work Permit Data

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS Filed At: 23-01 42 ROAD QUEENS BIN: 4005065 Block: 425 Lot: 1 Job Type: A3 - ALTERATION TYPE 3

View Permit History | Printable (PDF) version of this Permit

DOB NOW: Inspections

420989979 Job No: Fee: **STANDARD** Permit No: 420989979-01-EQ-OT Issued: 05/05/2016 **Expires:** 05/05/2017 Seq. No.: Filing Date: 05/05/2016 RENEWAL **ISSUED** 03 Status: Work: Proposed Job Start: 06/23/2014 Work Approved: 06/23/2014

ALTERATION TYPE 3 - CONSTRUCTION EQUIPMENT - OTHER

THIS APPLICATION IS FOR THE SOUTH HOIST. INSTALLATION OF A DUAL 6000 LBS CAPACITY PERSONNEL/MATERIAL HOIST DURING NEW BLDG CONSTRUCTION, FILED SEPARATELY. HOIST SHALL COMPLY WITH CHAPTER #33 OF THE 2008 CODE. NO CHANGE IN USE, OCCUPANCY OR EGRESS UNDER THIS APPLICATION. ELEVATOR APPLICATION SUBMITTED SEPARATELY TO ELEVATOR DIVISION.

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 44

Review is requested under Building Code: 2008

GENERAL Issued to: COLM COEN CONTRACTOR - NON- GC 037441

REGISTERED:

Business: S&E BRIDGE & SCAFFOLD LLC

700 COMMERCIAL AVE GROUND FL CARLSTADT NJ

Phone: 201-933-3418 07072

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS BIN: 4005065 Block: 425 Lot: 1 Filed At: 23-01 42ND ROAD QUEENS Job Type: A3 - ALTERATION TYPE 3

View Permit History

DOB NOW: Inspections

421086648 Job No: Fee: **STANDARD** Permit No: 421086648-01-EQ-OT Issued: 02/24/2016 **Expires:** 02/23/2017 **ISSUED** Seq. No.: Filing Date: 02/24/2016 RENEWAL Status: 02 Work: Proposed Job Start: 03/18/2015 Work Approved: 03/18/2015

ALTERATION TYPE 3 - CONSTRUCTION EQUIPMENT - OTHER

USING BACKER SCAFFOLDING AS PER PLAN. NO CHANGE IN USE OR OCCUPANCY.

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 39

Review is requested under Building Code: 2008

Issued to: HOWARD ECKER

CONTRACTOR - NON- GC 012784
REGISTERED:

Business: ECKER WINDOW CORP

ONE ODELL PLAZA YONKERS NY 10701 Phone: 914-776-0000

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS Filed At: 23-01 42 ROAD QUEENS
BIN: 4005065 Block: 425 Lot: 1 Job Type: A3 - ALTERATION TYPE 3

<u>View Permit History</u> | <u>Printable (PDF) version of this Permit</u>

DOB NOW: Inspections

Job No: <u>421167221</u> Fee: **STANDARD** Permit No: 421167221-01-EQ-SH Issued: 05/13/2016 **Expires:** 05/13/2017 Seq. No.: 02 Filing Date: **ISSUED** 05/13/2016 RENEWAL Status: Work: Proposed Job Start: 06/03/2015 Work Approved: 06/03/2015

ALTERATION TYPE 3 - CONSTRUCTION EQUIPMENT - SIDEWALK-SHED

INSTALLATION OF 104 LINEAR FEET OF HEAVY DUTY SIDEWALK SHED DURING BUILDING DEMOLITION, FILED SEPARATELY. SIDEWALK SHED SHALL COMPLY WITH CHAPTER #33 OF THE NYC BUILDING CODE. NO CHANGE IN USE, OCCUPANCY OR EGRESS UNDER THIS APPLICATION.

Electrical Application Number for Shed Lighting: A337976

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 44

Review is requested under Building Code: 2014

Issued to: WILLIAM MIRANDA CONTRACTOR - NON- GC 612038

REGISTERED:

Business: DYNAMIC INSTALLATION CORP 68 CONWAY STREET BROOKLYN NY 11207

3 CONWAY STREET BROOKLYN NY 11207 Phone: 646-517-0244

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS Filed At: 23-01 42ND ROAD QUEENS
BIN: 4005065 Block: 425 Lot: 1 Job Type: A3 - ALTERATION TYPE 3

View Permit History | Printable (PDF) version of this Permit

DOB NOW: Inspections

421195325 Job No: Fee: **STANDARD** Permit No: 421195325-01-EQ-OT Issued: 07/26/2016 **Expires:** 07/26/2017 Seq. No.: Filing Date: Status: **ISSUED** 02 07/26/2016 RENEWAL Work: Proposed Job Start: 07/28/2015 Work Approved: 07/28/2015

ALTERATION TYPE 3 - CONSTRUCTION EQUIPMENT - OTHER

USING JEKO MINI CRANE ON FLOORS AS PER PLAN. NO CHANGE IN USE OR OCCUPANCY.

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 39

Review is requested under Building Code: 2008

Issued to: HOWARD ECKER CONTRACTOR - NON- GC 012784

REGISTERED:

Business: ECKER WINDOW CORP

ONE ODELL PLAZA YONKERS NY 10701 Phone: 914-776-0000

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS BIN: 4005065 Block: 425 Lot: 1 Filed At: 23-01 42ND RD QUEENS

Job Type: A3 - ALTERATION TYPE 3

Printable (PDF) version of this Permit

DOB NOW: Inspections

Job No: 421195361 Fee: **STANDARD** Permit No: 421195361-01-EQ-OT Issued: 04/21/2016 **Expires:** 04/21/2017 01 Seq. No.: Filing Date: 04/21/2016 INITIAL Status: **ISSUED** Work: Proposed Job Start: 04/21/2016 Work Approved: 04/21/2016

ALTERATION TYPE 3 - CONSTRUCTION EQUIPMENT - OTHER

USING BACKER SCAFFOLDING AND SCISSOR LIFT AS PER PLAN ,NO CHANGE IN EGRESS, IN

USE OR OCCUPANCY.

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 47

Review is requested under Building Code: 2014

GENERAL

Issued to: HOWARD ECKER CONTRACTOR - NON- GC 012784

REGISTERED:

Business: ECKER WINDOW CORP

ONE ODELL PLAZA YONKERS NY 10701 Phone: 914-776-0000

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS BIN: <u>4005065</u> Block: 425 Lot: 1 Filed At: 23-01 42 ROAD QUEENS

Job Type: A3 - ALTERATION TYPE 3

Printable (PDF) version of this Permit

DOB NOW: Inspections

421302904 Job No: Fee: **STANDARD** Permit No: 421302904-01-EQ-SH Issued: 06/23/2016 **Expires:** 06/23/2017 06/23/2016 INITIAL Seq. No.: Filing Date: **ISSUED** 01 Status: Work: Proposed Job Start: 06/23/2016 Work Approved: 06/23/2016

ALTERATION TYPE 3 - CONSTRUCTION EQUIPMENT - SIDEWALK-SHED

INSTALLATION OF 56 LINEAR FEET OF HEAVY DUTY SIDEWALK SHED DURING NEW BUILDING CONSTRUCTION, FILED SEPARATELY. SIDEWALK SHED SHALL COMPLY WITH CHAPTER #33 OF THE NYC BUILDING CODE. NO CHANGE IN USE, OCCUPANCY OR EGRESS UNDER THIS APPLICATION.

Electrical Application Number for Shed Lighting: A350452

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 44

Review is requested under Building Code: 2014

GENERAL

Issued to: COLM COEN CONTRACTOR - GC 037441

NON-REGISTERED:

Business: S&E BRIDGE & SCAFFOLD LLC

700 COMMERCIAL AVE GROUND FL CARLSTADT NJ

07072

Phone: 201-933-3418

Filing Represntative: BEN/MICH/VYA/SA

ITA/BOOD/LAN/RAM/MON

Business: A1 EXPEDITING SERVICE CORP Phone: 718-366-1820

959 FULTON STREET FARMINGDALE NY 11735

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS BIN: 4005065 Block: 425 Lot: 1 Filed At: 23-01 42ND ROAD QUEENS Job Type: A3 - ALTERATION TYPE 3

NO WORK PERMIT

Printable (PDF) version of this Permit

DOB NOW: Inspections

Job No: 421321947 Fee: **STANDARD** Permit No: 421321947-01-AL Issued: 11/29/2016 **Expires:** 11/29/2017 Filing Date: 11/29/2016 INITIAL Status: Seq. No.: 01 ISSUED Work: Proposed Job Start: 11/29/2016 Work Approved: 09/06/2016

ALTERATION TYPE 3 - TPP-NO WORK

FILLING TENANT PROTECTION PLAN FOR THE SCOPE OF WORK WHICH IS FILED UNDER APPLICATION 420649187 . NO WORK SHALL BE PERFORMED UNDER THIS APPLICATION. NO CHANGE IN USE OR EGRESS UNDER THIS APPLICATION.

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 44

Review is requested under Building Code: 2008

Issued to: NED WHITE

5 EAST 17TH STREET NEW YORK NY 10013

Phone: 212-610-2827

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS

BIN: 4005065 Block: 425 Lot: 1 Job Type: A2 - ALTERATION TYPE 2

View Permit History | Printable (PDF) version of this Permit | Inspection History

DOB NOW: Inspections

STANDARD Job No: 421355367 Fee: Permit No: 421355367-01-PL Issued: 09/19/2016 09/19/2017 **Expires:** Seq. No.: Filing Date: 09/19/2016 RENEWAL Status: **ISSUED** Work: Work Approved: 08/04/2016 Proposed Job Start: 08/19/2016

PLUMBING - ALTERATION TYPE 2

PLUMBING WORK FILED IN CONJUNCTION WITH NB# 420649187

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 44

Site Fill: NOT APPLICABLE

Review is requested under Building Code: 2014

Issued to:PANAGIOTIS KARDASAKISMASTER PLUMBERBusiness:HYDROKINETIC PLBG & HTG ILicense No:MP 00226711-12 MAIN AVENUE ASTORIA NY 11102Phone:718-777-7795

Applicant Can No Longer Self-Certify

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS BIN: 4005065 Block: 425 Lot: 1 Filed At: 23-01 42ND ROAD QUEENS Job Type: A3 - ALTERATION TYPE 3

NO WORK PERMIT

Printable (PDF) version of this Permit

DOB NOW: Inspections

Job No: 440318657 Fee: **STANDARD** Permit No: 440318657-01-AL Issued: 11/16/2016 **Expires:** 11/16/2017 Seq. No.: Filing Date: 11/16/2016 INITIAL Status: **ISSUED** Work: Proposed Job Start: 11/16/2016 Work Approved: 11/15/2016

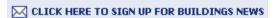
ALTERATION TYPE 3 - FPP

APPLICATION FILED FOR FIRE PROTECTION PLAN IN ASSOCIATION WITH NB 4206489187.

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 39

Review is requested under Building Code: 2008

Issued to: NED WHITE


5 EAST 17TH STREET NEW YORK NY 10013

NO WORK (ADMIN)

Phone: 212-610-2827

NYC Department of Buildings

Work Permit Data

Premises: 42-19 23 STREET QUEENS BIN: 4005065 Block: 425 Lot: 1 Filed At: 23-01 42ND ROAD QUEENS
Job Type: A2 - ALTERATION TYPE 2

Printable (PDF) version of this Permit

DOB NOW: Inspections

440349384 Job No: Fee: **STANDARD** Permit No: 440349384-01-EW-BL Issued: 11/03/2016 **Expires:** 07/22/2017 Seq. No.: 11/03/2016 INITIAL Status: **ISSUED** 01 Filing Date: Work: Proposed Job Start: 11/03/2016 Work Approved: 10/19/2016

ALTERATION TYPE 2 - BOILER

INSTALLATION OF GAS BOILER FOR NEW BUILDING 420649187.

Use: R-2 - RESIDENTIAL: APARTMENT HOUSES Landmark: NO Stories: 44

Site Fill: NOT APPLICABLE

Review is requested under Building Code: 2008

Issued to:ROBERT J KILBANEMASTER PLUMBERBusiness:ARMON MECHANICAL INCLicense No:MP 00161058-76 57TH DRIVE MASPETH NY 11378Phone:347-547-8895

Filing Represntative: GANESH/IAN PARAY/SAHADEO

Business: MPEX, CO. **Phone:** 718-576-1188

82-12 91 AVENUE WOODHAVEN NY 11421