11-28 31st Drive Queens, New York Block 502 Lot 22

Final Engineering Report

NYSDEC Site Number: C241159

Program Volunteer:

GBT Real Estate LLC 1083 Maple Lane New Hyde Park, NY 11040 212-625-0820

CERTIFICATIONS

I, Ariel Czemerinski certify that I am currently a NYS registered professional engineer, I had primary direct responsibility for the implementation of the subject construction program, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the DER-approved Remedial Action Work Plan.

I certify that this Final Engineering Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by Department

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Ariel Czemerinski, of AMC Engineering, PLLC, am certifying as Owner's Designated Site Representative for the site.

Date

Signature

TABLE OF CONTENTS FINAL ENGINEERING REPORT 11-28 31ST DRIVE, QUEENS NY

CE	ERTIFICA	TIONS	II
LIS	ST OF AC	CRONYMS	VI
1.0	BACI	KGROUND AND SITE DESCRIPTION	1
	1.2 SI	TE BACKGROUND TE LOCATION DRMER SITE USE	1
2.0	SUM	MARY OF SITE REMEDY	3
	2.1.1 2.1.2	EMEDIAL ACTION OBJECTIVES Groundwater Soil Vapor ESCRIPTION OF IMPLEMENTED REMEDY	3 3
3.0	INTE	RIM REMEDIAL MEASURES	6
	3.1 In	terim Remedial Measures Work Plan (IRM)	6
4.0	DESC	CRIPTION OF REMEDIAL ACTIONS PERFORMED	7
	4.1 G	OVERNING DOCUMENTS	7
	4.1.1	Site Specific Health & Safety Plan (HASP)	7
	4.1.2	Quality Assurance Project Plan (QAPP)	
	4.1.3	Construction Quality Assurance Plan (CQAP)	
	4.1.4	Soil/Materials Management Plan (S/MMP)	
	4.1.5	Storm-Water Pollution Prevention Plan (SWPPP)	
	4.1.6	Community Air Monitoring Plan (CAMP)	
	4.1.7	Site Operations Plan (SOP)	
		Citizen Participation Plan (CPP)	
		EMEDIAL PROGRAM ELEMENTS	
	4.2.1	Contractors and Consultants	
	4.2.2 4.2.3	Site Preparation	
	4.2.3	Odor, Dust and Nuisance Control Plan	
	4.2.4	Community Air Monitoring Plan (CAMP) Results	
	4.2.5	Reporting	
		ONTAMINATED MATERIALS REMOVAL	
	4.3.1	Waste Characterization Sampling	
	4.3.1	Excavation and Disposal of Historic Fill and Native Soils	

4.3.3	Excavation and Disposal of C&D Waste	23
4.3.4	Excavation and Disposal of Underground Storage Tank	
4.3.5	Disposal Summary	24
4.4 R	EMEDIAL PERFORMANCE SAMPLING	25
4.4.1	UST Endpoint Sampling	25
4.4.2	Post ISCO Groundwater Sampling	25
4.5 IN	MPORTED MATERIALS FOR BACKFILL	26
4.5.1	Imported Blue Stone	
4.6 C	ONTAMINATION REMAINING AT THE SITE	26
	NGINEERING CONTROLS	
	ub-Slab Depressurization System (SSDS)	
	System Design and Installation	
System	m Startup and Testing	28
System	m Operation and Maintenance	
4.7.2	In-Situ Chemical Oxidant Injections	
	Design and Installation	
	Injection Events	
	ling and Post-Injection Analysis	
	NSTITUTIONAL CONTROLS	
4.9 D	EVIATIONS FROM THE REMEDIAL ACTION WORK PLAN	32
# 4 P F F G		
<u>TABLES</u>		
Table 1	Soil Cleanup Objectives for the Project	
Table 2	Off-Site Disposal and Materials Import Summary	
Table 3	Waste Characterization Analytical Results for VOCs	
Table 4	Waste Characterization Analytical Results for SVOCs	
Table 5	Waste Characterization Analytical Results for Pesticides, Herbicides, a	and PCBs
Table 6	Waste Characterization Analytical Results for Metals	
Table 7	Waste Characterization Analytical Results for TCLPs	
Table 8	Waste Characterization Analytical Results for RCRA Characteristics	
Table 9	Concrete Waste Characterization Summary	
Table 10	UST Sediment Sampling Data	
Table 11	RI and Supplemental RI Soil Sampling Results (VOCs/SVOCs/Pest/Po	CB/Metals)
Table 12	UST Excavation Endpoint Sample Results	,
Table 13	Soil Remaining Onsite that Exceeds UUSCOs	
Table 14a	Pre-Injection Groundwater Sampling Results	
Table 14b	The injection Groundwater bumping results	
	ı c	
Table 15	Remedial Investigation Groundwater Data (2013 and 2015) Post-Injection Groundwater Sampling Results	

TABLE OF CONTENTS FINAL ENGINEERING REPORT 11-28 31ST DRIVE, QUEENS NY

FIGURES

Figure 1	Site Location Map
Figure 2	Site Layout Map
Figure 3	Waste Characterization Sampling Plan
Figure 4	Excavated Materials Removal
Figure 5	UST Endpoint Sampling Locations
Figure 6	Contamination Remaining Onsite
Figure 7	Pre and Post-Injection Groundwater Data
Figure 8	As-Built SSDS Drawing
Figure 9	Engineering Control Locations

ATTACHMENTS (DIGITAL FILES ON CD)

Attachment A	Digital Copy of FER
Attachment B	Easement and Metes and Bounds Description, Survey Map
Attachment C	CAMP Air Monitoring Reports
Attachment D	NYSDEC Approvals of Substantive Technical Requirements
Attachment E	Daily and Monthly Status Reports
Attachment F	Digital Photo Log
Attachment G	Solid Waste Disposal Documentation
Attachment H	NYSDEC Permission to Reuse Soil Onsite
Attachment I	Imported Bluestone Documentation
Attachment J	Liquid Waste Disposal Documentation
Attachment K	Cut and Fill Survey
Attachment L	Non-Agency Permits
Attachment M	RI and Supplemental RI Lab Reports
Attachment N	UST Endpoint Sampling Lab Report
Attachment O	Data Usability Summary Reports
Attachment P	UST Removal Documentation
Attachment Q	Pre and Post-Injection Groundwater Lab Reports
Attachment R	Monitoring Well Construction Logs
Attachment S	Approved ISCO Design Document
Attachment T	EPA Authorization to Inject

LIST OF ACRONYMS

Acronym	Definition			
AMC Engineering PLLC				
AWQS	Ambient Water Quality Standards			
BCA	Brownfield Cleanup Agreement			
BCP	Brownfield Cleanup Program			
BTEX Benzene, Toluene, Ethylbenzene and Xylene				
CQMP	Construction Quality Management Plan			
FER	Final Engineering Report			
IRM	Interim Remedial Measure			
NYC	New York City			
NYCDEP	New York City Department of Environmental Protection			
NYSDEC	NYSDEC New York State Department of Environment Conservation			
NYSDOH New York State Department of Health				
EP Qualified Environmental Professional				
RAO	Remedial Action Objectives			
RAWP	Remedial Action Work Plan			
RE	Remedial Engineer			
RI	Remedial Investigation			
SCG	Standards, Criteria, and Guidelines			
SCO	Soil Cleanup Objectives			
SMMP	Soil/Materials Management Plan			
SSO	Site Safety Officer			
SWPPP	Stormwater Pollution Prevention Plan			
SVOCs Semi-Volatile Organic Compounds				
USEPA	United States Environmental Protection Agency			
UST	Underground Storage Tank			
VOCs Volatile Organic Compounds				

1.0 BACKGROUND AND SITE DESCRIPTION

1.1 SITE BACKGROUND

GBT Real Estate LLC (the Volunteer) entered into a Brownfield Cleanup Agreement with the New York State Department of Environmental Conservation (NYSDEC) in June of 2014 and amended in March 2017 to remediate a 0.055-acre (2,400 sf) property located in Queens County, New York (Site No. C241159). The Site was remediated to restricted residential use and is in the process of being redeveloped with a multi-unit residential building. An electronic copy of this FER with all supporting documentation is included as **Attachment A**.

1.2 SITE LOCATION

The address for the Site is listed as 11-28 31st Drive Queens NY, 11106. The Site is located in the City of New York and Borough and County of Queens as shown on **Figure 1**. The Site is located on the south side of 31st Drive, between 12th Street and Vernon Boulevard, and is designated as Block 502, Lot 22 on the Queens Tax Map. The site is an approximately 0.055-acre area (2,400 square feet), and is bounded by 31st Drive to the north-northeast, vacant land and a 1-story manufacturing building to the south-southwest, a 1-story cabinet manufacturing facility to the east-southeast and a vacant 1-story warehouse to the west-northwest (see **Figure 2** – Site Layout Map). The boundaries of the Site are fully described in **Attachment B**: Easement, Survey Map, Metes and Bounds.

The property has an elevation of approximately 11 feet above mean sea level. The depth to groundwater beneath the Site, as determined from field measurements during the RI, ranges from 8.7 to 9.17 feet below grade. Based upon regional groundwater contour maps and site-specific measurements, the groundwater flow was found to generally be from northeast to southwest.

1.3 FORMER SITE USE

Historical property use and ownership were obtained from NYC records and Sanborn Fire Insurance Maps. Current ownership information was collected from online property records maintained by the NYC Department of Finance Office of the City Register under its Automated

City Register Information System (ACRIS). GBT Real Estate LLC purchased the property in 2012.

The Phase I investigation was completed in March 2013 by Hydro Tech Environmental, Corp. The report indicates that the Site was used as an auto repair shop between 1934 and 1936. From 1945 to 1970, the Site was used as a machine shop. Between 1977 and 2006, the Site was used as a commercial facility. Most recently, the Site was used as a manufacturing facility of wood cabinets; it became vacant during the last quarter of 2012.

After completing a Remedial Investigation, Hydro Tech determined that the contaminants of concern at the Site included Volatile Organic Compounds (VOCs) in the groundwater and soil vapor (particularly trichloroethylene, or TCE, and tetrachloroethylene, or PCE) and metals in the soil (particularly copper, lead, zinc, mercury, chromium trivalent, and chromium hexavalent). TCE, PCE, and BTEX (that is, benzene, toluene, ethylbenzene, and xylene) derivatives were found in soil vapor samples collected on and off site. The highest concentrations of chlorinated hydrocarbons were found in groundwater located near an underground storage tank (UST) situated in the northeastern portion of the property.

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this Site.

2.1.1 Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

RAOs for Environmental Protection

- Restore groundwater aquifer to pre-disposal/pre-release conditions to the extent practicable.
- Remove the source of groundwater or surface water contamination.

2.1.2 Soil Vapor

RAOs for Public Health Protection

 Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.2 DESCRIPTION OF IMPLEMENTED REMEDY

The Site was remediated in accordance with the remedy selected by the Remedial Action Work Plan dated September 2016 and the Decision Document dated September 2016. The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8.

The following are the elements of the implemented remedy:

- 1. Removal of and underground storage tank (UST), piping, and other structures associated with the UST;
- 2. Collection and analysis of end-point samples from around the vicinity of the excavated UST;
- 3. Excavation of soil/fill exceeding Track 2 restricted residential SCOs as listed in **Table 1** to a depth of 3 feet below grade throughout the Site and 6.6 feet below grade for an elevator pit.
- 4. Installation of a sub-slab depressurization system (SSDS) to mitigate the migration of vapors into the building from groundwater;
- 5. Treatment of groundwater contamination via in-situ chemical oxidant (ISCO) injections;
- 6. Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during any intrusive Site work;
- 7. Appropriate off-Site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- 8. Import of materials to be used for backfill and cover in compliance with: (1) chemical limits and other specifications included in Table 1, (2) all Federal, State and local rules and regulations for handling and transport of material;
- 9. Implementation of a Site Management Plan (SMP) for operation, monitoring and maintenance of the Engineering Controls, including the SSDS and potential on-going chemical injections; and,
- 10. An Environmental Easement will be filed against the Site to ensure implementation of the SMP.

All responsibilities associated with the Remedial Action, including permitting requirements and pretreatment requirements, were addressed in accordance with all applicable Federal, State and local rules and regulations.

Details on each of the remedial elements listed above are provided in **Sections 4.3** through **4.7**.

3.0 INTERIM REMEDIAL MEASURES

3.1 INTERIM REMEDIAL MEASURES WORK PLAN (IRM)

The remedy for this Site was performed in one phase as a single project, and no interim remedial measures, operable units or separate construction contracts were performed.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved Remedial Action Work Plan (RAWP) for the site (September, 2016) All deviations from the RAWP are noted below.

4.1 GOVERNING DOCUMENTS

4.1.1 Site Specific Health & Safety Plan (HASP)

The Health and Safety Plan for the implementation of remedial actions at 11-28 31st Drive was included as an appendix (9) of the Remedial Action Work Plan (RAWP) approved by the NYSDEC.

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA. The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site.

4.1.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as an appendix (4) of the Remedial Action Work Plan (RAWP) approved by the NYSDEC. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives. The QAPP was revised after the RAWP was approved, and the revised QAPP was approved in 2018. The purpose of the revision was to change the method of groundwater sampling for PCE and TCE analysis from EPA Low Flow sampling to Passive Diffusion Bag (PDB) sampling and to include details and procedures for sampling and analysis of the emerging contaminants PFCs and 1,4 dioxane.

4.1.3 Construction Quality Assurance Plan (CQAP)

The Construction Quality Assurance Plan(s) (CQAPs) managed performance of the Remedial Action tasks through designed and documented QA/QC methodologies applied in the field and in

the lab. The CQAP provided a detailed description of the observation and testing activities that were used to monitor construction quality and confirm that remedial construction was in conformance with the remediation objectives and specifications. A revised copy of the plan was submitted on July 12, 2017.

The following organizations and key personnel were involved in the implementation of the remedy:

Name	Title	Organization	
Mark Robbins	Qualified Environmental Professional	Hydro Tech Environmental Corp.	
Paul Matli	Environmental Project Manager/Environmental Project Director/Health and Safety Officer	Hydro Tech Environmental Corp.	
Rachel Ataman	Project Coordinator	Hydro Tech Environmental Corp.	
Morgan Violette	Project Geologist/Health and Safety Officer (Alternate)	Hydro Tech Environmental Corp.	
Ariel Czemerinski P.E.	Remedial Engineer	AMC Engineering, PLLC	
George Man	General Contractor/Construction Manager/Site Foreman/Supervisor	Morgan Construction	
Timothy Li	Architect of Record	TLI Architect, PLLC	
Donald Anné	Data Validator/Quality Assurance Officer	Alpha Geoscience	

All intrusive and soil disturbance activities were monitored by a Qualified Environmental Professional (QEP) who recorded observations in the Site field book and kept a photographic log of the daily activities. The QEP provided daily updates to the Remedial Engineer (RE) who both made periodic visits to the Site as needed to assure construction quality.

Soil samples were collected by the QEP who was on-Site daily during all soil disturbance activities. Chemical injections were performed under the direction of AMC Engineering, PLLC. Sample collection, analysis and frequency were made in accordance with the requirements of the disposal facilities: Clean Earth of Carteret and Evergreen Recycling of Corona. Corrective measures, if required, were to be made in direct consultation with the representative of the selected disposal facility. No corrective action was taken. Project coordination meetings were generally held on-Site on a weekly basis and supplemented as conditions required. Meeting attendees over the course of the project varied according to need and may have included the following personnel:

- Construction Manager
- QEP/SSO
- Site Foreman / Supervisor
- Architect of Record
- Environmental Project Manager
- Environmental Project Director
- Remedial Engineer

Daily status reports were prepared by Hydro Tech and distributed to the project contact list via email. Photographic documentation was performed on a daily basis and periodically uploaded to the digital project file at the Hydro Tech office.

4.1.4 Soil/Materials Management Plan (S/MMP)

A Soil/Materials Management Plan (S/MMP) was included in the RAWP for excavation, handling, storage, transport and disposal of all soils/materials that were disturbed at the Site. The S/MMP provided detailed plans for managing all soils/materials that were disturbed at the Site, including excavation, handling, storage, transport and disposal. It also included all of the controls that were applied to these efforts to assure effective, nuisance-free performance in compliance with all applicable Federal, State and local laws and regulations.

The S/MMP specified the following methods to meet the performance objectives:

- Soil Screening Methods Visual, olfactory and PID soil screening and assessment was performed by an EP during all remedial and development excavations into known or potentially contaminated material (Residual Contamination Zone).
- Stockpile Methods Stockpiles were kept covered at all times with appropriately anchored tarps and were inspected daily to ensure the covers were maintained and fugitive dust emissions did not occur. Stockpiles were also inspected after every storm event. Hay bales were used as needed near catch basins, surface waters, and other discharge points, and the stockpiles were encircled with silt fences.
- Materials Excavation and Load Out The EP under the supervision of the RE was on-Site on a daily basis to oversee all invasive work and the excavation and load-out of all excavated material. Loaded vehicles leaving the Site were appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State and local requirements. A truck wash was operated on-Site and all outbound trucks were inspected and cleaned, as required to remove loose soils before leaving the Site. The adjacent streets were inspected and cleaned as needed with respect to Site-derived materials.
- Materials Transport Off-Site All transport of materials was performed by licensed haulers in accordance with appropriate local, State, and Federal regulations. Truck transport routes were determined prior to construction and a map of the route was posted at the egress points of the Site. All trucks loaded with Site materials exited the vicinity of the Site using the approved truck routes. The identified route was selected to limit transport through residential areas and past sensitive sites and comply with City-mapped truck routes.
- Materials Disposal Off-Site All excavated historic fill was treated as a contaminated
 and regulated material and was disposed in accordance with all local, State and Federal
 regulations. Non-hazardous waste manifests were used to track and document the offSite movement of non-hazardous wastes and contaminated soils. Waste characterization
 was performed for off-Site disposal in accordance with the requirements of the receiving

facility and in conformance with applicable permits. Waste characterization data was provided to the receiving facility and approved in writing by the facility prior to off-Site shipment. A summary of off-Site disposal is provided in **Table 2**. A summary of waste characterization sampling of nonhazardous historic fill, clean native soils, and nonhazardous VOC/SVOC impacted soils is provided in **Tables 3 to 8**, while a summary of waste characterization for the concrete (disposed of as C&D Waste) is provided in **Table 9**. **Attachment G** contains all documentation related to solid waste disposal, including waste characterization for excavated soil, waste characterization for concrete (disposed of as C&D waste), solid waste disposal manifests, disposal facility acceptance letters, and disposal and trucking facility permits.

- Clean Native Soil Reuse On-Site According to the RAWP, soil was not planned to be reused on-Site. However, soil from the elevator pit excavation was reused to backfill the rear yard. The soil at this depth was known to be clean based on waste characterization that was performed in June of 2017. The waste characterization lab report, which also characterizes soil in other parts of the Site beyond the elevator pit, is included in **Attachment G.** A request was forwarded to the NYSDEC to reuse the stockpiled soil from the elevator pit, and a copy of this request is included in **Attachment H.**
- Fluids Management All liquids to be removed from the Site were handled, transported, and disposed in accordance with applicable local, State, and Federal regulations. Dewatered fluids were not recharged back to the land surface or subsurface of the Site; any fluids generated were managed off-Site. The only liquid encountered at the Site came from the excavated UST. Liquid disposal manifests are included in **Attachment J**.
- Backfill from Off-Site Sources Fourteen (14) loads of ¾-inch blue stone were imported to the Site from North Church Gravel, Inc and two (2) loads of 1.5-inch blue stone were imported from Impact Materials. A 6-inch layer of the ¾-inch stone was laid across the Site underneath the vapor barrier. A 6-inch layer was also used for the SSDS piping installed below the cellar slab. The remainder of the ¾-inch stone and all of the 1.5 inch stone was used to restore the Site elevation following excavation. No other off-Site material was imported to the Site. Documentation related to the use of blue stone,

including NYSDEC approval of blue stone and tickets from North Church Gravel and Impact Materials, are included in **Attachment I**.

- After the completion of soil removal and other invasive remedial activities and prior to backfilling, a land survey was performed by a New York State licensed surveyor. See
 Attachment K.
- Contingency Plan The contingency plan specified procedures to document and notifies the NYSDEC in the event that underground tanks or other previously unidentified contaminant sources were found during on-Site remedial excavation or development related construction. A single tank removal and treatment was an initial action in the RAWP; no other tanks were found at the Site.
- Community Air Monitoring The S/MMP specified air monitoring during implementation of each component of the Remedial Action to provide a measure of protection for the downwind community from potential airborne contaminant releases as a direct result of investigative or remedial work activities. As described in Section 4.1.6, the project EP performed daily monitoring around the perimeter of the property for volatile organic compounds and dust particulates. No exceedances in CAMP action levels were recorded during the remedial action. Air monitoring logs can be found in Attachment C.
- Odor, Dust and Nuisance Control Dust control was accomplished by spraying water on exposed soil surfaces to ensure that perimeter action levels established in the CAMP were not exceeded. Continuous air monitoring revealed that there were no instances when the onsite VOCs levels exceeded the CAMP action levels.

4.1.5 Storm-Water Pollution Prevention Plan (SWPPP)

This document addressed requirements of New York State Storm-Water Management Regulations including physical methods to control and/or divert surface water flows and to limit the potential for erosion and migration of Site soils, via wind or water.

The erosion and sediment controls for all remedial construction were performed in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control and the site-specific Storm Water Pollution Prevention Plan.

Typical measures that were utilized at various stages of the project to limit the potential for erosion and migration of soil included the use of silt fences and a temporary gravel construction entrance. Accumulated sediments were removed as required to keep the silt fence functional.

4.1.6 Community Air Monitoring Plan (CAMP)

The Community Air Monitoring Plan (CAMP) provided measures for the protection of the surrounding and downwind community (i.e., off-Site receptors including residences, businesses, and on-Site workers not directly involved in the remedial work) from potential airborne contaminant releases resulting from remedial activities. The action levels specified required increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that the remedial work did not spread contamination off-Site through the air. The primary concerns for this Site were VOC vapors, nuisance odors and dust particulates.

To comply with the requirements of the CAMP, the EP performed daily monitoring around the perimeter of the property for volatile organic compounds and dust particulates. Instruments used for CAMP monitoring included one MiniRAE 2000 photoionization detector (PID) and one PDR 1500 aerosol monitor. No exceedances in CAMP action levels were recorded during the remedial action. However, there were three instances on 1/26/2018 where there was visible dust in the job Site (although the CAMP action levels were not exceeded during any of these instances). During these periods, water was sprayed in the area to mitigate the dust in the air. Daily CAMP monitoring data sheets are included in **Attachment C**.

4.1.7 Site Operations Plan (SOP)

The Remedial Engineer reviewed all plans and submittals for this remedial project (i.e. those listed above plus contractor and subcontractor submittals) and confirmed that they were in

compliance with the RAWP. All remedial documents were submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

4.1.8 Citizen Participation Plan (CPP)

The approved Citizen Participation Plan for this project specified the following document repositories for all applicable project documents for the duration of the project:

Queens Library

Astoria Branch
14-01 Astoria Boulevard
Astoria, NY 11102
(718) 278-2220

Queens Community Board 1

45-02 Ditmars Boulevard LL Suite 125 Astoria, NY 11105 (718) 626-1072

NYSDEC Region 2 Office

Hunter's Point Plaza
47-40 21st Street
Long Island City, NY 11101
(718) 482-4900

Fact sheets notifying the public of project milestones and of the availability of documents for review and comment were sent to the site contact list in accordance with the Citizen Participation requirements of the NYS Brownfield Cleanup Program.

Remaining citizen participation elements will include the distribution of a fact sheet to the site contact list when the Certificate of Completion (COC) is issued.

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultants

- Morgan Construction
 - General Contractor for the Site
 - o Supervise, schedule and coordinate subcontractors
 - Project Budgeting
- Shulman Industries Inc.
 - Subcontractor
 - Performed all excavation work
 - Installed SSDS and Vapor Barrier
- Mercury Tank and Pump Service, Inc.
 - o Tank Removal
 - o Removal of oil and fluids within tanks
- Hydro Tech Environmental, Corp.
 - o Environmental Consultant
 - Qualified Environmental Professional
 - o Perform Health and Safety and CAMP Monitoring
 - o Perform Soil Screening and Waste Characterization Sampling
 - o Document Remedial Program
 - o Reporting (Daily, Monthly)
- AMC Engineering, PLLC
 - o Remedial Engineer
 - Perform Periodic Inspections of Work / Methods
 - o Certify Compliance with RAWP and Associated Plans
 - o Design, inspect, and certify the SSD system
 - o Design, inspect, and certify the In-Situ Chemical Oxidant procedure

Certify Compliance with FER and Associated Plans

4.2.2 Site Preparation

The Remedial Action Work Plan was approved by the NYSDEC in September 2016. Documentation of NYSDEC approvals is included in **Attachment D.** Other non-agency permits relating to the remediation project are provided in **Attachment L**. A pre-construction meeting was held with NYSDEC on April 24, 2017. The following permits were issued for this project.

Permit	Permit Number	Originating Agency	Issued	Expires
Construction Equipment/Fence	420605964-01-EQ-FN	NYCDOB	01/18/2018	01/18//2019
New Building	420605964-01-FO-EA	NYCDOB	05/03/2018	05/02/2019
New Building	420605964-01-FO	NYCDOB	05/03/2018	05/02/2019
New Building	420605964-01-AL	NYCDOB	05/03/2018	05/02/2019
Plumbing	420605964-01-PL	NYCDOB	02/21/2018	02/21/2019
Sidewalk Shed	421546580-01-EQ-SH	NYCDOB	08/07/2018	08/07/2019
Place Equipment Other Than Crane or Shovel	Q02-2018221-B52	NYCDOT	08/09/2018	11/08/2018
Occupancy of Roadway	Q02-2018221-B50	NYCDOT	08/09/2018	11/08/2018
Occupancy of Sidewalk	Q02-2018221-B51	NYCDOT	08/09/2018	11/08/2018
Crossing Sidewalk	Q02-2018221-B49	NYCDOT	08/09/2018	11/08/2018

All SEQRA/CEQR requirements and all substantive compliance requirements for attainment of applicable permits were achieved during this Remedial Action.

Site preparation began with the erection of a construction fence in preparation for demolition work. The construction fence was installed along the northern property line on 31st Drive on September 1, 2017. Demolition of the building on the Site was completed on September 15, 2017. Mobilization for remedial work subsequently began in September 2017. A new NYSDEC-approved project sign was erected at the project entrance and remained in place during all phases of the Remedial Action. Excavation was fully completed in December 2017.

4.2.3 General Site Controls

Security of the Site was maintained by a construction fence erected around the perimeter of the Site with a gate at the site entrance/egress point, which was locked at the end of each work day. Job Site record keeping included a daily sign-in sheet, daily air monitoring logs, waste manifests,

accident reports, field notes and photographic documentation. All project forms, logs and receipts were filed on-Site, in dedicated binders kept in the construction trailer. Field notes and observations were recorded in a project-dedicated field book which remained in the construction trailer. Photographic documentation was up-loaded on a daily basis to a laptop computer which remained in the possession of the EP.

Erosion and sediment controls included a silt fence, hay bales, and one truck wash. The purpose of the truck wash was to prevent soil from leaving the site. Furthermore, trucks leaving the site were secured with tight-fitting covers. All trucks were inspected before leaving the site.

Soil stockpiles were covered with appropriately anchored tarps until disposal facility arrangements were made and soil load out occurred. Soil stockpiles were inspected at least once per week and after every storm event.

4.2.4 Odor, Dust and Nuisance Control Plan

The S/MMP specified that dust would be controlled by wetting the work area as required. Dust generation was minimal during most excavation work, and water was sprayed in the areas of work on three occasions.

A temporary gravel construction entrance / exit was constructed to reduce the amount of sediment transported onto roads by construction vehicles and runoff. The road foundation was graded so that the entrance / exit sloped towards south of the entrance. After the trucks delivering materials to the Site and transporting excavated materials departed from the Site, the street and front of the Site were inspected and broom swept as needed to maintain a clean condition.

Nuisance odors, primarily related to temporarily stockpiled soils and loading operations, were minimized by covering stockpiled soils when such piles remained overnight or longer and by loading technique which minimized the vertical distance that soil were dumped within the truck bed. No odors were reported throughout the course of the project.

The selected truck route minimized traffic on neighborhood streets, and followed the NYCDOT-approved truck routes. The truck route map was enlarged and mounted at the Site access gate to notify all drivers.

4.2.5 Community Air Monitoring Plan (CAMP) Results

Air monitoring was performed on a daily basis at the site boundaries for dust and VOCs in accordance with the Community Air Monitoring Plan (CAMP). There were no exceedances of the CAMP action levels reported during the project. During one day, visible dust was reported in the air on three separate occasions. Each time this happened, the area was sprayed with water. On each of these three occasions, the concentration of dust in the air did not exceed the CAMP action levels.

Copies of all field data sheets relating to the CAMP are provided in **Attachment C**.

4.2.6 Reporting

In accordance with the approved RAWP, daily status reports were prepared and submitted to the NYSDEC and the project team. Daily reports included a listing of contractors, personnel and equipment on-Site, description of activities performed by contractors, CAMP monitoring results, materials imported/exported to/from the Site and planned activities for the following day.

Monthly project status reports were prepared by Hydro Tech Project and distributed to the NYSDEC and project team. Monthly reports included a summary of the activities performed during the month and those anticipated during the next month, a summary of materials transported on/off the Site during the month, sampling results and delays in the schedule.

All daily and monthly reports are included in **Attachment E**. The digital photo log required by the RAWP is included in electronic format in **Attachment F**.

4.3 CONTAMINATED MATERIALS REMOVAL

Materials removed from the Site during the remediation project included construction and demolition debris from the building walls and slab, structures associated with the former Site building, USTs, non-hazardous historic fill, non-hazardous (metal) contaminated soils, and clean native soils.

The approved Track 2 cleanup included remediation of all soil to Restricted Residential Use SCOs. The implemented remedy included the following:

- Demolition and excavation of the existing building slab;
- Disposal of approximately 145 tons of clean C&D waste at Evergreen Recycling of Corona from the demolition of the existing building slab;
- Removal of an UST and disposal of the UST as scrap metal;
- Disposal of approximately 100 gallons of rainwater (at Advanced Wastewater Treatment Corp.) that had seeped into the UST through an opening made on the tank shell during the RI;
- Excavation of all soil/fill exceeding Track 2 SCOs (which exceeds restricted residential soil cleanup objectives) listed in **Table 1** to a depth of 3 feet below grade throughout the property and a depth of 6.6 feet below grade for the elevator pit;
- Disposal of approximately 323.5 tons of nonhazardous contaminated historic fill / native soil at Clean Earth of Carteret;
- Screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during any intrusive Site work;
- Collection and analysis of five (5) end-point samples from the base and sidewalls of the UST excavation;
- Appropriate off-Site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- Import of materials for use as backfill and cover in compliance with: (1) chemical limits and other specifications included in **Table 1**, (2) all Federal, State and local rules and regulations for handling and transport of material;

- Implementation of a Site Management Plan (SMP) to ensure maintenance of the Engineering Controls; and
- Recording of an Environmental Easement against the Site to ensure implementation of the SMP.

A list of the Track 2 soil cleanup objectives (SCOs) and groundwater protection for the contaminants of concern for this project is provided in **Table 1**. Refer to **Section 4.3.5** for a tabulated summary of the material removed from the Site.

4.3.1 Waste Characterization Sampling

Historic Fill and Native Soil

According to the soil probe logs in **Attachment G**, historic fill was present from 0-2' below grade across the Site. Soil borings were taken at the Site on June 20, 2017 for the purpose of collecting waste characterization samples. The waste characterization samples are required by soil disposal facilities to obtain soil disposal approval. From a total of four (4) borings, Hydro Tech obtained a total of five (5) grab samples. The borings extended from 0-3' below grade across the entire Site and from 3-7' beneath the proposed elevator pit. The sampling locations can be found in **Figure 3**. Five grab samples, designated WC-1_SB-1 (1'-2'), WC-1_SB-1 (3'-4'), WC-1_SB-2 (3'-4'), WC-1_SB-3 (4'-5'), and WC-1_SB-4 (0-1'), were analyzed for VOCs. The five-point composite sample created from these grabs was analyzed for VOCs, TCLP VOCs Semi Volatile Organic Compounds (SVOCs), TCLP SVOCs, Pesticides, TCLP Pesticides, TCLP Herbicides, Polyclorinated Biphenyls (PCBs), TAL Metals, Corrosivity, Ignitability, and Reactivity for Cyanide and Sulfide. Grab sample WC-1_SB-1 (3'-4') was analyzed for TCLP metals and paint filters.

Soil samples collected for waste characterization were placed in pre-cleaned laboratory supplied glassware, and were placed in a cooler packed with ice for transport to the laboratory. Analysis of the waste characterization samples was provided by York Analytical Laboratories of 132-02 89th Avenue, Richmond Hill, NY 11418, a New York State ELAP certified environmental

laboratory (ELAP Certification No. 12058). Each of the grab samples was submitted for laboratory analysis of VOCs via EPA Method 8260. The composite soil sample was submitted for laboratory analysis of the following:

Analysis	Method
Volatile Organic Compounds (VOCs)	EPA Method 8260
Semi-Volatile Organic Compounds (SVOCs)	EPA Method 8270
Pesticides/Herbicides/PCBs	EPA Method 8082/8081
Target Analyte Metals + Cr ⁶	EPA Method 1311/6010
Mercury	EPA Method 7473
RCRA Characteristics	

Based on the laboratory results of the waste characterization, Clean Earth of Carteret accepted all of the contaminated soil and historic fill generated at the Site to their facility located at 24 Middlesex Avenue, Carteret, NJ 07008. A copy of the acceptance letter from Clean Earth of Carteret is provided in **Attachment G**. A copy of the laboratory report from York is also included in **Attachment G**, and a summary of the waste characterization data is included in **Tables 3-8**.

Construction and Demolition (C&D) Waste

Construction and Demolition (C&D) waste was generated from the demolition of the original concrete slab present on the Site. Samples of the C&D waste were taken on September 28, 2017; one sample consisted of washed concrete, while the other sample consisted of concrete in contact with soil.

Concrete samples collected for waste characterization were placed in pre-cleaned laboratory supplied glassware, and were placed in a cooler packed with ice for transport to the laboratory. Analysis of the waste characterization samples was provided by York Analytical Laboratories of 132-02 89th Avenue, Richmond Hill, NY 11418, a New York State ELAP certified environmental laboratory (ELAP Certification No. 12058). Both samples were analyzed for TAL Metals and Hexavalent Chromium by EPA Method 6010 as well as Mercury by EPA Method

7473.

Removal of the existing concrete slab was completed on September 20, 2017.

Based on the laboratory results of the waste characterization soil samples for C&D waste, Evergreen Recycling of Corona accepted the material to their facility located at 127-08 Willets Point Boulevard, Flushing, NY 11368. Copies of the waste acceptance letter from Evergreen and the waste characterization lab report are provided in **Attachment G**. A summary of the waste characterization data for the C&D waste can be found in **Table 9**.

4.3.2 Excavation and Disposal of Historic Fill and Native Soils

As per the soil boring logs in **Attachment G**, historic fill material has been identified across the Site from grade to approximately 2 feet below grade. All historic fill was removed from the Site in accordance with the procedures outlined under the approved Remedial Action Work Plan dated September 2016. The historic fill was underlain by native soils. Excavation of historic fill and native soil began in October 2017, and was completed in December 2017. Initially, no soil was to be reused on-Site. Soil from the excavated elevator pit was, however, reused to backfill the rear yard. NYSDEC permission to reuse this soil is provided in **Attachment H**. In accordance with the approved RAWP, a temporary gravel construction entrance was constructed where trucks/equipment entered the Site. The construction entrance was maintained, as needed, to the edge of the excavation / load-out area to minimize dust generation and the off-Site tracking of Site soil. Laborers inspected and brushed off the wheels and undercarriage of each truck before it exited the Site and periodically swept the street and the site ingress/egress.

Disposal Details - Historic Fill and Native Soil to Clean Earth of Carteret

All non-hazardous historic fill/soil excavated from the site was shipped to the Clean Earth of Carteret facility. A total of 323.5 tons of non-hazardous fill material was transported to Clean Earth of Carteret. This material came from between 0 and 3' below grade. Non-hazardous disposal manifests for the facility are provided in **Attachment G.** A summary of the waste streams and their destination is provided in **Table 2**.

4.3.3 Excavation and Disposal of C&D Waste

C&D waste was produced from the demolition of the original concrete slab present on the Site. All waste was removed from the Site in accordance to the procedures outlined under the approved RAWP dated September 2016. Excavation and removal of C&D waste was completed by October 2017.

Disposal Details – C&D Waste to Evergreen Recycling of Corona

All C&D waste was shipped to the Evergreen Recycling of Corona facility. A total of 145 tons of material was transported to Evergreen. Non-hazardous disposal manifests for the facility are provided **Attachment G.** A summary of the waste streams and their destination is provided in **Table 2**.

4.3.4 Excavation and Disposal of Underground Storage Tank

A 550 gallon UST was excavated in the northern portion of the Site, as shown in **Figure 4**. The tank was buried in dirt with no evidence of a spill. The tank was 5 feet wide, 9 feet long, and 6 feet deep, and no groundwater was encountered at the bottom of the pit. Approximately 100 gallons of rainwater had seeped into the tank through an opening that was made during a Remedial Investigation tank exploration exercise. The rainwater was removed via a vacuum truck, and was disposed of at Advanced Waste Water Treatment, Corp on October 16, 2017. The liquid disposal manifest is included as **Attachment J**. The tank also contained sediment that had fallen in during the building slab removal. This material was placed in a 55 gallon drum, and was sampled on October 27, 2017. The sample was placed in pre-cleaned laboratory supplied glassware, and was placed in a cooler packed with ice for transport to the laboratory. Analysis of the sample was provided by York Analytical Laboratories of 132-02 89th Avenue, Richmond Hill, NY 11418, a New York State ELAP certified environmental laboratory (ELAP Certification No. 12058). The sample was analyzed for the following:

Analysis	Method
Volatile Organic Compounds (VOCs)	EPA Method 8260
Semi-Volatile Organic Compounds (SVOCs)	EPA Method 8270
Pesticides/Herbicides/PCBs	EPA Method 8082/8081
Target Analyte Metals	EPA Method 1311/6010

Mercury

EPA Method 7473

RCRA Characteristics

Lab results showed that the sediment met Residential Use Soil Cleanup Objectives. The analytical report is provided in **Attachment P**, and the data is summarized in **Table 10**. The drum of sediment was disposed of on December 20, 2018. A waste manifest for the sediment disposal is provided in **Attachment P**.

After being cleaned out, the UST was removed from the ground and disposed of by Mercury Tank & Pump Service, Inc. on October 16, 2017. An affidavit from Mercury regarding the UST removal is provided in **Attachment P**.

4.3.5 Disposal Summary

The table provided below shows the total quantities of each category of material removed from the Site and the disposal location.

Off-Site Disposal Summary

Disposal Facility	Historic Fill / Native Soil	C&D Waste (Tons)	Liquid Waste From UST	550 Gallon UST	Sediment From UST
	(Tons)		(Gallons)		(Pounds)
Clean Earth of	323.5				
Carteret					
Evergreen Recycling		145			
of Corona					
Advanced Waste			100		
Water Treatment					
Corp.					
Mercury Tank &				Cleaned and	
Pump Service, Inc.				disposed of as	
				scrap metal	
Republic					20
Environmental					
Systems (PA), LLC					

4.4 REMEDIAL PERFORMANCE SAMPLING

Endpoint sampling was not performed throughout the entire site because the remedial objective was to meet Track 2 SCOs, and all soil at a depth lower than 2 ft below grade was shown to meet Track 2 Restricted Use SCOs during the remedial investigations. Since the entire Site was excavated to a minimum of 3 ft below grade, all of the remaining soil meets Track 2 SCOs. Laboratory reports showing the analytical data from the remedial investigations (including soil data taken during the original RI) can be found in **Attachment M**. A summary of the RI and Supplemental RI soil analytical results can be found in **Table 11**. Endpoint samples were, however, taken from the area surrounding the UST that was removed, since there was a higher probability of the soil in that area being contaminated.

4.4.1 UST Endpoint Sampling

After the removal of the UST from the northeastern portion of the site, five (5) endpoint samples were taken. Samples EP-1 through EP-4 were taken from the sides of the excavation at a depth of 5 ft below grade, while sample EP-5 was taken from the bottom of the excavation at a depth of 6.5 ft below grade. UST endpoint sampling locations are shown in **Figure 5**. The analytical results of the endpoint sampling are included in **Attachment N**, and a summary of the data is given in **Table 12**. The Data Usability Summary Report (DUSR) for the endpoint samples is included in **Attachment O**. All five endpoint samples met UUSCOs. All UST removal documentation can be found in **Attachment P**.

4.4.2 Post ISCO Groundwater Sampling

Pre and post-injection groundwater sampling results can be found in **Tables 14a and 15**, respectively, while the lab reports containing pre and post-injection groundwater data are included in **Attachment Q**. Note that **Table 14b** shows historical groundwater data from the previous remedial investigations (2013 and 2015). Post-injection results indicate a general reduction in CVOC concentrations following the completion of the injection program.

4.5 IMPORTED MATERIALS FOR BACKFILL

4.5.1 Imported Blue Stone

A total of 1687.6 tons of blue stone were imported to the Site, 1622 tons of which were ¾-inch stone obtained from North Church Gravel, Inc., located in Franklin, New Jersey. The remaining 65.6 tons were 1.5-inch stone received from Impact Materials, Inc., located in Lyndhurst, New Jersey. This information is summarized in **Table 2**. The 1.5-inch stone was used to backfill the Site and restore it to its former elevation after all excavation activity was completed. Most of the ¾-inch stone also served this purpose. Some of the ¾-inch stone, however, was used for the SSDS and the vapor barrier. The SSDS was placed in a 6-inch layer of blue stone that was installed across the entire site; the vapor barrier was installed on top of a 6-inch layer of blue stone as well. All documentation relating to the import and use of blue stone from both North Church and Impact can be found in **Attachment I.** This includes all of the import tickets from both North Church and Impact Materials, as well as the permission from NYSDEC to use blue stone.

A table of all sources of imported backfill with quantities for each source is provided in the table below.

Source	Material	Quantity	Purpose
	Type		
North Church Gravel	³ / ₄ -inch	1622 tons	Onsite backfill to restore Site
	blue stone		elevation; use in SSDS and vapor
			barrier system
Impact Materials	1.5-inch	65.6 tons	Onsite backfill to restore Site
	blue stone		elevation

4.6 CONTAMINATION REMAINING AT THE SITE

The results of the soil sampling shown in **Table 11** indicate that the soil present at the Site meets Track 2 Residential Use SCOs, but exceeds Track 1 Unrestricted Use SCOs. The remaining soil contaminants are metals. **Table 13 and Figure 6** summarize the results of all soil samples remaining at the site after completion of Remedial Action that exceed the Track 1 (unrestricted)

SCOs. This data was taken during the remedial investigation and the supplemental remedial investigation. Furthermore, the UST endpoint sampling results shown in **Table 12** indicate that none of the soil surrounding the excavated UST exceeded UUSCOs.

Post-injection groundwater samples show groundwater at the site still contains elevated levels of PCE. Pre and post-injection groundwater sampling results can be found in **Tables 14a and 15**, respectively, and **Figure 7** while the lab reports containing pre and post-injection groundwater data are included in **Attachment Q**. Note that **Table 14b** shows historical groundwater data from the previous remedial investigations (2013 and 2015). Results indicate a general reduction in CVOC concentrations following the completion of the injection program.

Because contaminated groundwater remains on the site, contaminated soil vapor is likely also present.

Since contaminated groundwater and soil vapor remains beneath the site after completion of the Remedial Action, Institutional and Engineering Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

4.7 ENGINEERING CONTROLS

The site has the following primary Engineering Controls, as described in the following subsections:

- Sub-Slab Depressurization (SSD) system
- In-situ chemical oxidant (ISCO) injections

4.7.1 Sub-Slab Depressurization System (SSDS)

A sub-slab depressurization system (SSDS) was designed in order to mitigate soil vapor intrusion into the new building. The SSDS was installed in August of 2018.

SSD System Design and Installation

The SSDS consists of a system of horizontal, interconnected 4-inch diameter perforated PVC pipes with a 0.020-inch slotted screen placed in a 6-inch layer of ¾-inch stone. The stone underlies the vapor barrier, a 20 mil VaporBlock Plus (VBP20), that spans the Site. The 4-inch collector pipe is connected via a reducer to a 6-inch PVC tee. The tee is vertically connected to a 6-inch PVC riser pipe, which is in turn connected to a fan. The fan is a RadonAway RP265 model with a 6-inch diameter duct. It has a power requirement of 91 – 129 W. The maximum suction pressure achievable by the fan is 2.3 inches of water and is capable of flow rates ranging from 52 – 334 cubic feet per minute (CFM). The fan is connected to another 6-inch diameter pipe that exhausts from the top of the building. The exhaust stack is at least 10 feet away from any building air intake. The SSDS also contains a Magnehelic Differential Pressure Gage, manufactured by Dwyer, and an audio/visual system alarm. An as-built drawing of the SSDS is included as **Figure 8**.

The SSDS will not be discontinued unless prior written approval is granted by the NYSDEC. In the event that monitoring data indicates that the SSDS may no longer be required, a proposal to discontinue the system will be submitted by the remedial party.

System Startup and Testing

The SSDS will be started up prior to occupancy of the building. Prior to startup, an inspection will be performed to confirm that all system components are in place. All equipment will then be started in accordance with the procedures outlined in the SMP. One monitoring point will be installed at each of the four corners of the building. A vacuum gauge will be used to measure the pressure at each monitoring point to verify that a vacuum extends throughout the entire sub-slab. While the system operates, smoke tubes will be used to check for leaks through concrete cracks, floor joints, and at the suction points. Any leaks identified will be properly sealed. The alarm indicating fan malfunction will also be tested to confirm proper operation.

System Operation and Maintenance

Procedures for monitoring, operating and maintaining the SSDS are provided in the Operation and Maintenance Plan in Section 5 and Attachment H of the Site Management Plan (SMP).

4.7.2 In-Situ Chemical Oxidant Injections

Remediation of dissolved phase VOCs in groundwater is on-going through a chemical oxidant injection program. The areas of injections are the northeastern portion of the Site as well as the sidewalk just outside the northeastern portion of the site. The ISCO treatment program utilizes six injection points (IW1-IW6) for oxidant application. Injection points IW1-IW3 are located along a line on the sidewalk just outside the Site, and IW4-IW6 are located just inside the Site near the sidewalk. Furthermore, IW6 is located directly adjacent to the excavated UST. **Figure 9** shows the injection point locations, and **Figure 7** shows the monitoring well locations.

ISCO Design and Installation

Prior to the injection events, groundwater samples were taken from monitoring wells MW1-MW4 and MW6. Note that MW5 could not be located, and was presumed to be destroyed by construction activity near the Site. The sampling established the baseline levels of PCE and TCE, the main contaminants of concern, in the groundwater. DUSRs for both the pre and post-injection groundwater data are included in **Attachment O**.

The ISCO treatment program utilized six injection points (IW1-IW6) for oxidant application and five monitoring wells (MW1-MW4 and MW6) for groundwater monitoring. AMC and Hydro Tech field inspectors (under the direct supervision of the Remedial Engineer) inspected and photographed the injection procedures. Monitoring well construction logs can be found in **Attachment R**. Note that the original MW1 – MW3 were constructed in 2013, but were later destroyed. They were subsequently rebuilt in 2018. The first three monitoring well construction logs in **Attachment R** show the construction details for the original MW1 – MW3, while the next three logs show the construction details for the rebuilt MW1 – MW3. Note also that the only wells actually used for groundwater monitoring are MW1-MW4 and MW6. The other wells were used in earlier parts of the investigation.

ISCO Injection Events

Chemical injections were performed on May 28 and 29, 2018. A total of 1,186 pounds of sodium persulfate (Klozur®) and 117 pounds of iron-EDTA activator (FeEDTA) were injected into the six injection points. On both days, dry sodium persulfate powder was mixed with water to create a 9.3 lb/gal solution. Approximately 34 gallons of activated persulfate solution were injected at each injection point. The ISCO design document is included as **Attachment S**.

Sampling and Post-Injection Analysis

A round of pre-injection baseline groundwater samples was obtained on February 19, 2018 from five (5) monitoring wells (MW1-4 and MW6) to establish the initial groundwater conditions. On July 24, 2018, the first round of post-injection groundwater samples was collected and tested for TCE and PCE via EPA method 8260. The results indicate that PCE is still present in the groundwater at levels that exceed the class GA Standards and Guidance Values. However, the PCE concentration did decrease after injections. In MW-4 and MW-6, the two most heavily contaminated wells, the pre-injection PCE concentrations were 70 and 75 μg/L, respectively; the post-injection PCE concentrations were 13 and 43 μg/L, respectively. TCE no longer exceeds the class GA Standards and Guidance Values in any of the five monitoring wells. Before injections, the TCE concentration in MW-6 was 15 μg/L; the TCE concentration in MW-6 decreased to 0.46 μg/L. The post-injection sample was also tested for sodium persulfate using Persulfate Field Test Kits from Peroxychem. MW-1 and MW-6 had persulfate concentrations of 0 g/L, while MW-2, MW-3, and MW-4 had persulfate concentrations of 28.74 g/L, 34.68 g/L, and 40.62 g/L, respectively, indicating that the chemical was still active in those three wells. Information regarding the test kits can be found in the attached ISCO design document.

Results of the pre-injection baseline sampling can be found in **Table 14a**, and results of the post-injection sampling can be found in **Table 15**. Laboratory reports showing the pre and post-injection results are included in **Attachment Q**.

Authorization to inject was granted by the EPA on November 17, 2017. The authorization is included in **Attachment T**.

Maintenance and monitoring of the ISCO injection program will be performed on an as-needed basis under the Site Management Plan. Results and observations will be published in the annual Period Review Report.

4.8 INSTITUTIONAL CONTROLS

The Site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to restricted residential, commercial or industrial uses only.

The environmental easement for the Site was executed by the Department on July 26, 2016, and filed with the Queens County Office of the City Register on August 12, 2016. The County Recording Identifier number for this filing is 2016000278636. A copy of the easement and proof of filing is provided in **Attachment B**.

4.9 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN

The only deviation from the RAWP is the fact that the first groundwater sample was taken two months after the injection event. The original RAWP requirement was that the first groundwater sample would be taken six (6) weeks after injections. This deviation occurred because Hydro Tech had to wait for approval of the revised QAPP before taking the sample. As discussed in **Section 4.1.2**, the revised QAPP changed the groundwater sampling method from Low Flow to PDB sampling. The change had no effect on the remedial action.

TABLES

TABLE 1

Xylene (mixed)

11-28 31st Drive, Queens, NY Soil Cleanup Objectives (SCOs)

Contaminant	CAS Number	Restricted-Residential Use (mg/kg)
	Met	als
Arsenic	7440-38-2	16
Barium	7440-39-3	400
Beryllium	7440-41-7	72
Cadmium	7440-43-9	4.3
Chromium, hexavalent	18540-29-9	110
Chromium, trivalent	16065-83-1	180
Copper	7440-50-8	270
Total Cyanide		27
Lead	7439-92-1	400
Manganese	7439-96-5	2,000
Total Mercury		0.81
Nickel	7440-02-0	310
Selenium	7782-49-2	180
Silver	7440-22-4	180
Zinc	7440-66-6	10,000
	PCBs/Pe	sticides
2,4,5-TP Acid (Silvex)	93-72-1	100
4,4'-DDE	72-55-9	8.9
4,4'-DDT	50-29-3	7.9
4,4'-DDD	72-54-8	13
Aldrin	309-00-2	0.097
alpha-BHC	319-84-6	0.48
beta-BHC	319-85-7	0.36
Chlordane (alpha)	5103-71-9	4.2
delta-BHC	319-86-8	100
Dibenzofuran	132-64-9	59
Dieldrin	60-57-1	0.2
Endosulfan I	959-98-8	24
Endosulfan II	33213-65-9	24
Endosulfan sulfate	1031-07-8	24
Endrin	72-20-8	11
Heptachlor	76-44-8	2.1
Lindane	58-89-9	1.3
Polychlorinated biphenyls	1336-36-3	1

All soil cleanup objectives (SCOs) are in parts per million (ppm). NS = Not Specified. See Technical Support Document (TSD). Footnotes:

Contaminant	CAS Number	Restricted-Residential Use (mg/kg)
S	emivolatile org	anic compounds
Acenaphthene	83-32-9	100
Acenapthylene	208-96-8	100
Anthracene	120-12-7	100
Benz(a)anthracene	56-55-3	1
Benzo(a)pyrene	50-32-8	1
Benzo(b)fluoranthene	205-99-2	1
Benzo(g,h,i)perylene	191-24-2	100
Benzo(k)fluoranthene	207-08-9	3.9
Chrysene	218-01-9	3.9
Dibenz(a,h)anthracene	53-70-3	0.33
luoranthene	206-44-0	100
luorene	86-73-7	100
ndeno(1,2,3-cd)pyrene	193-39-5	0.5
m-Cresol	108-39-4	100
Naphthalene	91-20-3	100
o-Cresol	95-48-7	100
o-Cresol	106-44-5	100
Pentachlorophenol	87-86-5	6.7
Phenanthrene	85-01-8	100
Phenol	108-95-2	100
Pyrene	129-00-0	100
,		nic compounds
1,1,1-Trichloroethane	71-55-6	100
1,1-Dichloroethane	75-34-3	26
1,1-Dichloroethene	75-35-4	100
1,2-Dichlorobenzene	95-50-1	100
1,2-Dichloroethane	107-06-2	3.1
cis -1,2-Dichloroethene	156-59-2	100
rans-1,2-Dichloroethene	156-60-5	100
1,3-Dichlorobenzene	541-73-1	49
1,4-Dichlorobenzene	106-46-7	13
1,4-Dioxane	123-91-1	13
Acetone	67-64-1	100
Benzene	71-43-2	4.8
n-Butylbenzene	104-51-8	100
Carbon tetrachloride	56-23-5	2.4
Chlorobenzene	108-90-7	100
Chloroform	67-66-3	49
Ethylbenzene	100-41-4	41
Hexachlorobenzene	118-74-1	1.2
Methyl ethyl ketone	78-93-3	100
Methyl tert-butyl ether	1634-04-4	100
Methylene chloride	75-09-2	100
- Propylbenzene	103-65-1	100
sec-Butylbenzene	135-98-8	100
ert-Butylbenzene	98-06-6	100
Tetrachloroethene	127-18-4	19
Toluene	108-88-3	100
Trichloroethene	79-01-6	21
1,2,4-Trimethylbenzene	95-63-6	52
1,3,5-Trimethylbenzene	108-67-8	52
/inyl chloride	75-01-4	0.9
,	4000.00.5	400

1330-20-7

100

Table 2
Off-Site Disposal and Materials Import Summary

Off-Site Disposal Summary

Disposal Facility	Historic Fill/Native Soil (Tons)	C&D Waste (Tons)	Liquid Waste From UST (Gallons)	550 Gallon UST	Sediment From UST (Pounds)
Clean Earth of Carteret	323.5				
Evergreen Recycling of Corona		145			
Advanced Waste Water Treatment, Corp.			100		
Mercury Tank & Pump Service, Inc.				Cleaned and disposed of as scrap metal	
Republic Environmental Systems (PA), LLC					20

Imported Materials Summary

Source	Material Type	Quantity	Purpose
North Church Gravel	3/4-inch Blue Stone	1622 tons	Backfill to restore
			Site elevation; used
			for SSDS and vapor
			barrier
Impact Materials	1.5-inch Blue stone	65.6 tons	Backfill to restore
			Site elevation

Table 3 Waste Characterization Analytical Results for VOCs

	11-28 31st D	rive, Lo	alytical Results for VOCs ng Island city, NY		
Sample ID	WC-1-SB-2 (2-3) C	Grab	NYSDEC Part 375		
Sampling Date Client Matrix	6/20/2017 Soil		Unrestricted Use Soil	PA Clean Fill Limits	PA Regulated Fill Limits
Compound	Result		Cleanup Objectives		Emits
Units	mg/kg	Q	mg/Kg	mg/kg	mg/kg
		nics, 826	60 - Comprehensive		
1,1,1,2-Tetrachloroethane	0.00280	U	~	18	18
1,1,1-Trichloroethane	0.00280	U	0.68	7.2	7.2
1,1,2,2-Tetrachloroethane	0.00280	U	~	0.0093	0.0093
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane	0.00280 0.00280	U	~	26000 0.15	53000 7.2
1,1-Dichloroethane	0.00280	U	0.27	0.65	2.7
1,1-Dichloroethylene	0.00280	U	0.33	0.19	0.19
1,1-Dichloropropylene	0.00280	U	~	~	~
1,2,3-Trichlorobenzene	0.00280	U	~	~	~
1,2,3-Trichloropropane	0.00280	U	~	1.6	0.82
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	0.00280 0.00280	U	3.6	27 9	27 20
1,2-Dibromo-3-chloropropane	0.00280	U	3.0 ~	0.0092	0.0092
1,2-Dibromoethane	0.00280	U	~	0.0012	0.0012
1,2-Dichlorobenzene	0.00280	U	1.1	59	59
1,2-Dichloroethane	0.00280	U	0.02	0.1	0.1
1,2-Dichloropropane	0.00280	U	~	0.11	0.11
1,3,5-Trimethylbenzene	0.00280	U	8.4	2.8	6.2
1,3-Dichloropenana	0.00280	U	2.4	61	61
1,3-Dichloropropane 1.4-Dichlorobenzene	0.00280 0.00280	U	~ 1.8	~ 10	~ 10
1,4-Dioxane	0.00280	U	0.1	0.073	0.31
2,2-Dichloropropane	0.00280	U	~	~	~
2-Butanone	0.00280	U	0.12	54	110
2-Chlorotoluene	0.00280	U	~	20	20
2-Hexanone	0.00280	U	~	~	~
4-Chlorotoluene	0.00280	U	~	~	~
4-Methyl-2-pentanone Acetone	0.00280 0.00570	U	0.05	2.9 41	6.3 110
Acrolein	0.00570	U	~	0.00062	0.0014
Acrylonitrile	0.00280	U	~	0.0087	0.037
Benzene	0.00280	U	0.06	0.13	0.13
Bromobenzene	0.00280	U	~	~	?
Bromochloromethane	0.00280	U	~	1.6	1.6
Bromodichloromethane	0.00280	U	~	3.4	3.4
Bromoform	0.00280	U	~	4.4	4.4
Bromomethane Carbon disulfide	0.00280 0.00280	U	~	0.54 160	0.54 350
Carbon tetrachloride	0.00280	U	0.76	0.26	0.26
Chlorobenzene	0.00280	U	1.1	6.1	6.1
Chloroethane	0.00280	U	~	5	19
Chloroform	0.00280	U	0.37	2.5	2.5
Chloromethane	0.00280	U	~	0.038	0.038
cis-1,2-Dichloroethylene	0.00280	U	0.25	1.6	1.6 0.46
cis-1,3-Dichloropropylene Cyclohexane	0.00280 0.00280	U	~	0.12	0.46 ~
Dibromochloromethane	0.00280	U	~	3.2	3.2
Dibromomethane	0.00280	U	~	3.7	7.7
Dichlorodifluoromethane	0.00280	U	~	100	2.6
Ethyl Benzene	0.00280	U	1	46	46
Hexachlorobutadiene	0.00280	U	~	1.2	1.2
Isopropylbenzene Mothyl agototo	0.00280	U	~	780	1600
Methyl acetate Methyl tert-butyl ether (MTBE)	0.00280 0.00280	U	0.93	690 0.28	1900 0.28
Methylcyclohexane	0.00280	U	~	0.26	~
Methylene chloride	0.0400	<u> </u>	0.05	0.076	0.038
n-Butylbenzene	0.00280	U	12	950	2600
n-Propylbenzene	0.00280	U	3.9	290	780
o-Xylene	0.00280	U	~	~	~
p- & m- Xylenes	0.00570	U	~	~	~
p-Isopropyltoluene	0.00280	U	~ 11	~ 250	~
sec-Butylbenzene Styrene	0.00280 0.00280	U	11 ~	350 24	960 24
tert-Butyl alcohol (TBA)	0.00280	U	~	~	24
tert-Butyl alcohol (1871)	0.00280	U	5.9	270	740
Tetrachloroethylene	0.00280	U	1.3	0.43	0.43
Toluene	0.00280	U	0.7	44	44
trans-1,2-Dichloroethylene	0.00280	U	0.19	2.3	2.3
trans-1,3-Dichloropropylene	0.00280	U	~	0.12	0.046
Trichlorothylene	0.00280	U	0.47 ~	0.17	0.17
Trichlorofluoromethane Vinyl acetate	0.00280 0.00280	U	~	87 ~	87 14
Vinyl Chloride	0.00280	U	0.02	0.03	0.027
Xylenes, Total	0.00250	U	0.26	990	990
			vely Identified Cmpds.		
Hexane isomer	0.0140	JN	~	~	~
NOTES:	•				

NOTES:

Q is the Qualifier Column with definitions as follows:
D=result is from an analysis that required a dilution
J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

b=analyte found in the analysis batch dians.

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

= sample exceeds PA Regulated Fill Limits

Table 4 Waste Characterization Analytical Results for SVOCs

			llytical Results for SVO ng Island city, NY	Cs	
Sample ID	WC-1 (0-7) Compos				
Sampling Date	6/20/2017		NYSDEC Part 375	DAGE PULL :	PA Regulated Fill
Client Matrix	Soil		Unrestricted Use Soil Cleanup Objectives	PA Clean Fill Limits	Limits
Compound	Result		Cleanup Objectives		
Units	mg/kg	Q	mg/Kg	mg/kg	mg/kg
	Semi-Volatil	les, 8270) - Comprehensive		
1,1-Biphenyl	0.0477	U	~	790	2200
1,2,4,5-Tetrachlorobenzene	0.0952	U	~	~	14
1,2,4-Trichlorobenzene	0.0477	U	~	27	27
1,2-Dichlorobenzene	0.0477	U	1.1	59	59
1,2-Diphenylhydrazine (as Azobenzene)	0.0477	U	~	0.15	0.58
1,3-Dichlorobenzene	0.0477	U	2.4	61	61
1,4-Dichlorobenzene	0.0477	U	1.8	10	10
2,3,4,6-Tetrachlorophenol	0.0952	U	~ ~	~	~
2,4,5-Trichlorophenol	0.0477	U		2300	6100
2,4,6-Trichlorophenol	0.0477 0.0477	U	~	3.1	8.9
2,4-Dichlorophenol 2,4-Dimethylphenol	0.0477	U	~	1 32	1 87
2,4-Dinitrophenol	0.0952	U	~	0.21	0.46
2,4-Dinitrophenoi 2,4-Dinitrotoluene	0.0477	U	~	0.05	0.40
2,6-Dinitrotoluene	0.0477	U	~	1.1	3
2-Chloronaphthalene	0.0477	U	~	6200	18000
2-Chlorophenol	0.0477	U	~	4.4	4.4
2-Methylnaphthalene	0.0477	U	~	2900	8000
2-Methylphenol	0.0477	U	0.33	64	180
2-Nitroaniline	0.0952	U	~	0.038	0.091
2-Nitrophenol	0.0477	U	~	5.9	17
3- & 4-Methylphenols	0.0477	U	~	4.2	12
3,3-Dichlorobenzidine	0.0477	U	~	8.3	32
3-Nitroaniline	0.0952	U	~	0.033	0.1
4,6-Dinitro-2-methylphenol	0.0952	U	~	~	~
4-Bromophenyl phenyl ether	0.0477	U	~	~	~
4-Chloro-3-methylphenol	0.0477	U	~	37	110
4-Chloroaniline	0.0477	U	~	19	52
4-Chlorophenyl phenyl ether	0.0477	U	~	~	~
4-Nitroaniline	0.0952	U	~	0.031	0.066
4-Nitrophenol	0.0952	U	~	4.1	4.1
Acenaphthene	0.0477	U	20	2700	4700
Acenaphthylene	0.0477	U	100	2500	6900
Acetophenone	0.0477	U	~	200	540
Aniline	0.191	U	~	0.16	0.34
Anthracene	0.0477	U	100	350	350
Atrazine	0.0477 0.0477	U	~ ~	0.13 ~	0.13
Benzaldehyde Benzidine	0.191	U	~	0.078	0.34
Benzo(a)anthracene	0.0477	U	1	25	110
Benzo(a)pyrene	0.0477	U	1	2.5	110
Benzo(b)fluoranthene	0.0477	U	1	25	110
Benzo(g,h,i)perylene	0.0477	U	100	180	180
Benzo(k)fluoranthene	0.0477	U	0.8	250	610
Benzoic acid	0.0477	U	~	2900	7800
Benzyl alcohol	0.0477	U	~	400	1100
Benzyl butyl phthalate	0.0477	U	~	10000	10000
Bis(2-chloroethoxy)methane	0.0477	U	~	~	~
Bis(2-chloroethyl)ether	0.0477	U	~	0.0039	0.017
Bis(2-chloroisopropyl)ether	0.0477	U	~	8	8
Bis(2-ethylhexyl)phthalate	0.0477	U	~	130	130
Caprolactam	0.0952	U	~	~	~
Carbazole	0.0477	U	~	21	0.83
Chrysene	0.0477	U	1	230	230
Dibenzo(a,h)anthracene	0.0477	U	0.33	2.5	11
Dibenzofuran	0.0477	U	7	~	~
Diethyl phthalate	0.0477	U	~	160	180
Dimethyl phthalate	0.0477	U	~	~	~
Di-n-butyl phthalate	0.0477	U	~	~	~ 10000
Di-n-octyl phthalate	0.176	D U		4400	10000
Fluoranthene	0.0477 0.0477	U	100 30	3200 3000	3200 3800
Fluorene Hexachlorobenzene	0.0477	U	0.33	0.96	0.96
Hexachlorobutadiene	0.0477	U	0.33 ~	1.2	1.2
Hexachlorocyclopentadiene	0.0477	U	~	91	91
Hexachloroethane	0.0477	U	~	0.56	0.56
Indeno(1,2,3-cd)pyrene	0.0477	U	0.5	25	110
Isophorone	0.0477	U	~	1.9	1.9
Naphthalene	0.0477	U	12	25	25
Nitrobenzene	0.0477	U	~	0.79	2.2
N-Nitrosodimethylamine	0.0477	U	~	0.000041	7.6e-005
N-nitroso-di-n-propylamine	0.0477	U	~	0.0013	0.0061
N-Nitrosodiphenylamine	0.0477	U	~	20	83
Pentachlorophenol	0.0477	U	0.8	5	5
Phenanthrene	0.0477	U	100	10000	10000
Phenol	0.0477	U	0.33	66	88
Pyrene	0.0477	U	100	2200	2206
NOTES:					

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated U=analyte not detected at or above the level indicated B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences NT=this indicates the analyte was not a target for this sample ~=this indicates that no regulatory limit has been established for this analyte

Table 5 Waste Characterization Analytical Results for Pesticides, Herbicides and PCBs 11-28 31st Drive, Long Island city, NY

Sample ID	WC-1 (0-8) Composite	9			
Sampling Date	6/20/2017		NYSDEC Part 375	n. o	PA Regulated Fill
Client Matrix	Soil		Unrestricted Use Soil	PA Clean Fill Limits	Limits
Compound	Result		Cleanup Objectives		
Units	mg/kg	Q	mg/Kg	mg/kg	mg/kg
		P	esticides, EPA TCL List		
4,4'-DDD	0.00191	U	0.0033	6.8	30
4,4'-DDE	0.00191	U	0.0033	41	170
4,4'-DDT	0.00191	U	0.0033	53	230
Aldrin	0.00191	U	0.005	0.1	0.44
alpha-BHC	0.00191	U	0.02	0.046	0.19
beta-BHC	0.00191	U	0.036	0.22	0.82
Chlordane, total	0.00382	U	~	49	49
delta-BHC	0.00191	U	0.04	11	30
Dieldrin	0.00191	U	0.005	0.11	0.44
Endosulfan I	0.00191	U	2.4	110	260
Endosulfan II	0.00191	U	2.4	130	260
Endosulfan sulfate	0.00191	U	2.4	70	70
Endrin	0.00191	U	0.014	5.5	5.5
Endrin aldehyde	0.00191	U	~	~	~
Endrin ketone	0.00191	U	~	~	~
gamma-BHC (Lindane)	0.00191	U	0.1	0.072	0.072
Heptachlor	0.00191	U	0.042	0.68	0.68
Heptachlor epoxide	0.00191	U	~	1.1	1.1
Methoxychlor	0.00955	U	~	630	630
Toxaphene	0.0966	U	~	1.2	1.2
	Po	lyc	hlorinated Biphenyls (I	PCB)	
Aroclor 1016	0.0193	U	~	15	200
Aroclor 1221	0.0193	U	~	0.63	2.5
Aroclor 1232	0.0193	U	~	0.5	2
Aroclor 1242	0.0193	U	~	16	62
Aroclor 1248	0.0193	U	~	9.9	44
Aroclor 1254	0.0193	U	~	4.4	44
Aroclor 1260	0.0193	U	~	30	130
Total PCBs	0.0193	U	0.1	~	50

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

 $J= analyte \ detected \ at \ or \ above \ the \ MDL \ (method \ detection \ limit) \ but \ below \ the \ RL \ (Reporting \ Limit) \ - \ data \ is \ estimated \ detection \ limit)$

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

 \sim =this indicates that no regulatory limit has been established for this analyte

Table 6 Waste Characterization Analytical Results for Metals 11-28 31st Drive, Long Island city, NY

Sample ID	WC-1 (0-8) Composi	te			
Sampling Date	6/20/2017		NYSDEC Part 375 Unrestricted Use Soil	PA Clean Fill Limits	PA Regulated Fill
Client Matrix	Soil		Cleanup Objectives	PA Clean FIII Limits	Limits
Compound	Result	Q	Cleanup Objectives		
Aluminum	9,510		~	~	190000
Antimony	0.58	U	~	27	27
Arsenic	4.68		13	12	53
Barium	26.40		350	8200	8200
Beryllium	0.44		7.2	320	320
Cadmium	0.35	U	2.5	38	38
Calcium	779	В	~	~	~
Chromium, Trivalent	14.60		~	~	190000
Chromium, Hexavalent	0.58	U	1	94	190
Cobalt	12.90		~	8.1	22
Copper	12.50		50	8200	36000
Iron	19,400		~	~	190000
Lead	12		63	450	450
Magnesium	2,770		~	~	~
Manganese	480		1600	31000	190000
Mercury	0.03	U	0.18	10	10
Nickel	13.90	В	30	650	650
Potassium	1,120	В	~	~	~
Selenium	2.61		3.9	26	26
Silver	0.58	U	2	84	84
Sodium	113	В	~	~	~
Thallium	1.16	U	~	14	14
Vanadium	20.80		~	1500	72000
Zinc	39.50		109	12000	12000

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

= sample exceeds PA Clean Fill Limits

Table 7 Waste Characterization Analytical Results for TCLPs 11-28 31st Drive, Long Island city, NY

			31st Drive, Long Isla				
Sample ID	WC-1 (0-8) Compo	site		rab	WC-SB-1 (3-4) Site Gra	b	EPA Hazardous
Sampling Date	6/20/2017		6/20/2017		6/20/2017		Waste Limits
Client Matrix	Soil		Soil		Soil		vvaste Limits
Units	mg/L	Q	mg/L	Q			mg/L
	,	Vola	tile Organics, TCLP	RCI	RA List		
1,1-Dichloroethylene	NT		0.00250	U	NT		0.33
1,2-Dichloroethane	NT		0.00250	U	NT		0.02
1,4-Dichlorobenzene	NT		0.00250	J	NT		1.8
2-Butanone	NT		0.00250	J	NT		0.12
Benzene	NT		0.00250	U	NT		0.06
Carbon tetrachloride	NT		0.00250	J	NT		0.76
Chlorobenzene	NT		0.00250	J	NT		1.1
Chloroform	NT		0.00250	J	NT		0.37
Tetrachloroethylene	NT		0.00250	U	NT		1.3
Trichloroethylene	NT		0.00250	U	NT		0.47
Vinyl Chloride	NT		0.00250	U	NT		0.02
		S	emi-Volatiles, TCLF	RC	RA		
1,4-Dichlorobenzene	0.00645	U	NT		NT		1.8
2,4,5-Trichlorophenol	0.00722	U	NT		NT	Ħ	~
2,4,6-Trichlorophenol	0.00654	U	NT		NT		~
2,4-Dinitrotoluene	0.00473	U	NT		NT		~
2-Methylphenol	0.00171	U	NT		NT	П	0.33
3- & 4-Methylphenols	0.00743	U	NT		NT		~
Cresols, total	0.00740	U	NT		NT		~
Hexachlorobenzene	0.00591	U	NT		NT	П	0.33
Hexachlorobutadiene	0.00662	U	NT		NT		~
Hexachloroethane	0.00726	U	NT		NT	П	~
Nitrobenzene	0.00393	U	NT		NT	П	~
Pentachlorophenol	0.00753	U	NT		NT	П	0.8
Pyridine	0.00637	U	NT		NT		~
		I	Pesticides, TCLP RC	RA I	List		
Chlordane, total	0.00022	U	NT		NT		~
Endrin	0.00004	U	NT		NT	Ħ	0.014
gamma-BHC (Lindane)	0.00004	U	NT		NT	Ħ	0.1
Heptachlor	0.00004	U	NT		NT	Т	0.042
Heptachlor epoxide	0.00004	U	NT		NT	Т	~
Methoxychlor	0.00004	U	NT		NT		~
Toxaphene	0.00111	U	NT		NT		~
	•		Metals, TCLP		•		•
Arsenic	NT		NT		0.00400	U	13
Barium	NT		NT		0.134		350
Cadmium	NT		NT		0.00300	U	2.5
Chromium	NT		NT		0.00600	U	~
Copper	0.00333	U	NT		NT	Ħ	50
Mercury	0.00020	U	NT		0.00020	U	0.18
Lead	NT		NT		0.00400	В	63
Nickel	0.00556	U	NT		NT	П	30
Selenium	NT		NT		0.0110	U	3.9
Silver	NT		NT		0.00600	U	2
Zinc	0.0722	В	NT		NT	П	109
			Herbicides, TCI	P			
2,4,5-TP (Silvex)	0.00500	U	NT		NT	П	3.8
2,4-D	0.00500	U	NT		NT	+	~
=/	0.00000	Ŭ	141		141		

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample ~=this indicates that no regulatory limit has been established for this analyte

Table 8
Waste Characterization Analytical Results for RCRA Characteristics
11-28 31st Drive, Long Island city, NY

WC-1 (0-8) Composi	te	WC-1-SB-2 (2-3) Grab		WC-SB-1 (3-4) Site Grab)
6/20/2017		6/20/2017		6/20/2017	
Soil		Soil		Soil	
Result	Q	Result	Q	Result	Q
		Corrosivity			
8.040		NT		NT	
		Ignitability			
Non-Ignit.		NT		NT	
	Pa	int Filter Test			
NT		NT		No Free Liquid	
	Rea	ctivity-Cyanide			
0.25 mg/kg	U	NT		NT	
	Rea	activity-Sulfide		_	
15 mg/Kg	U	NT		NT	
	6/20/2017 Soil Result 8.040 Non-Ignit. NT 0.25 mg/kg	Soil Result Q 8.040 Non-Ignit. Pa NT Rea 0.25 mg/kg U Rea	6/20/2017 6/20/2017 Soil Soil Result Q Result Corrosivity NT Ignitability Non-Ignit. NT NT Paint Filter Test NT NT Reactivity-Cyanide 0.25 mg/kg U NT Reactivity-Sulfide	6/20/2017 Soil Result Q Corrosivity 8.040 NT Ignitability Non-Ignit. NT Paint Filter Test NT NT Reactivity-Cyanide 0.25 mg/kg U NT NT Reactivity-Sulfide	6/20/2017 6/20/2017 Soil Soil Result Q Result Corrosivity 8.040 NT NT NT Ignitability Non-Ignit. NT NT NT Paint Filter Test NT NT No Free Liquid Reactivity-Cyanide 0.25 mg/kg U NT NT Reactivity-Sulfide

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

 $\sim\!\!=\!\!$ this indicates that no regulatory limit has been established for this analyte

Table 9 - Concrete Waste Characterization Summary

			-					
	Lab Camada Id		-					
	Lab Sample Id Collection Date		4		ب	eq	Comercia	Computa in
			-		NY-ResRestrict	NY-UnRestricted	Concrete	Concrete in
	Client Id		_		Rest	est	Washed	Contact w/soil
	Matrix		NY-GWP	es.	esF	InR	17 1195-01	17 1195-02
Project Id : 11-28 3			_ ტ	NY-Res.	 	Λ-'	9/28/2017	9/28/2017
	CAS	Units	Z	Z	Z	Z		
Miscellaneous/Inc	-							
Percent Solid	PHNX - PCTSOLID	%					95.9	97.5
Metals, Total								
Aluminum	7429-90-5	mg/Kg					4620	6340
Antimony	7440-36-0	mg/Kg					1.26	1.79
Arsenic	7440-38-2	mg/Kg	16	16	16	13	3.8	5.56
Barium	7440-39-3	mg/Kg	820	350	400	350	55.8	79.2
Beryllium	7440-41-7	mg/Kg	47	14	72	7.2	<0.1	<0.103
Cadmium	7440-43-9	mg/Kg	7.5	2.5	4.3	2.5	0.644	0.825
Calcium	7440-70-2	mg/Kg					103000	102000
Chromium	7440-47-3	mg/Kg		36	180	30	10.4	13.7
Chromium-III	16065-83-1	mg/Kg		36	180	30	6.1	10.2
Chromium-VI	18540-29-9	mg/Kg	19	22	110	1	4.3	3.49
Cobalt	7440-48-4	mg/Kg					2.4	3.93
Copper	7440-50-8	mg/kg	1,720	270	270	50	5.96	18.2
Iron	7439-89-6	mg/Kg					5920	11000
Lead	7439-92-1	mg/Kg	450	400	400	63	2.69	52.9
Magnesium	7439-95-4	mg/Kg					17000	11600
Manganese	7439-96-5	mg/Kg	2,000	2,000	2,000	1,600	119	152
Mercury	7439-97-6	mg/Kg	0.73	0.81	0.81	0.18	< 0.0313	0.0811
Nickel	7440-02-0	mg/Kg	130	140	310	30	7.55	10.6
Potassium	9/7/7440	mg/Kg					477	746
Selenium	7782-49-2	mg/Kg	4	36	180	3.9	<1.04	<1.03
Silver	7440-22-4	mg/Kg	8.3	36	180	2	<10.4	<0.513
Sodium	7440-23-5	mg/Kg					136	168
Thallium	7440-28-0	mg/Kg					<1.04	<1.03
Vanadium	7440-62-2	mg/Kg					51.9	56.1
Zinc	7440-66-6	mg/Kg	2,480	2,200	10,000	109	26.5	62.1
		<u> </u>	<u> </u>	-				
Result Detected								
RL Exceeds Criteria								
			<u> </u>	1				
Ilt Exceeds Criteria								
it Execess Criteria								

Table 10 – UST Sediment Sampling Data

11-28 31st Drive, Queens

Sample ID			Sediments from UST	
York ID Sampling Date		NYSDEC Part 3/5 Unrestricted Use Soil	17J1208-01 10/27/2017 3:00:00 PM	
Client Matrix		Cleanup Objectives	Soil	
Compount	CAS Number		Result	Q
Volatile Organics, 8260 Lis		mg/Kg	mg/Kg	
Dilution Facto			1	
1,1,1,2-Tetrachloroethane	630-20-6	~	0.00320	N
1,1,1-Trichloroethane	71-55-6	89.0	0.00320	N
1,1,2,2-Tetrachloroethane	79-34-5	~	0.00320	N
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 11	76-13-1	2	0.00320	N
1,1,2-Trichloroethane	79-00-5	~	0.00320	N
1,1-Dichloroethan€	75-34-3	0.27	0.00320	N
1,1-Dichloroethylen	75-35-4	0.33	0.00320	N
1,1-Dichloropropylen	563-58-6	~	0.00320	N
1,2,3-Trichlorobenzene	87-61-6	2	0.00320	N
1,2,3-Trichloropropane	96-18-4	~	0.00320	N
1,2,4-Trichlorobenzene	120-82-1	2	0.00320	N
1,2,4-Trimethylbenzene	95-63-6	3.6	0.00320	N
1,2-Dibromo-3-chloropropan	96-12-8	\$	0.00320	Π
1,2-Dibromoethane	106-93-4	\$	0.00320	Ω
1,2-Dichlorobenzen	95-50-1	1.1	0.00320	Π
1,2-Dichloroethane	107-06-2	0.02	0.00320	Π
1,2-Dichloropropan	78-87-5	\$	0.00320	Π
1,3,5-Trimethylbenzene	108-67-8	8.4	0.00320	Π
1,3-Dichlorobenzene	541-73-1	2.4	0.00320	Π
1,3-Dichloropropan	142-28-9	>	0.00320	N
1,4-Dichlorobenzen€	106-46-7	1.8	0.00320	Π
1,4-Dioxane	123-91-1	0.1	0.0640	Π
2,2-Dichloropropan	594-20-7	\$	0.00320	Π
2-Butanone	78-93-3	0.12	0.00320	Π
2-Chlorotoluen	95-49-8	\$	0.00320	Π
4-Chlorotoluen	106-43-4	\$	0.00320	Ω
Acetone	67-64-1	0.05	0.0540	
Benzene	71-43-2	90.0	0.00320	N
Bromobenzene	108-86-1	2	0.00320	N
Bromochloromethan.	74-97-5	\$	0.00320	Ω
Bromodichloromethan	75-27-4	\$	0.00320	Ω
Bromoform	75-25-2	\$	0.00320	Ω
Bromomethane	74-83-9	\$	0.00320	n
Carbon tetrachlorid	56-23-5	0.76	0.00320	Ω

Chlorobenzene	108-90-7	1.1	0.00320	n
Chloroethane	75-00-3	2	0.00320	n
Chloroform	67-66-3	0.37	0.00320	n
Chloromethan	74-87-3	2	0.00320	N
cis-1,2-Dichloroethylen€	156-59-2	0.25	0.00320	Λ
cis-1,3-Dichloropropylen	10061-01-5	2	0.00320	Λ
Dibromochloromethan	124-48-1	2	0.00320	n
Dibromomethans	74-95-3	5	0.00320	Ω
Dichlorodifluoromethan	75-71-8	2	0.00320	N
Ethyl Benzene	100-41-4	1	0.00320	N
Hexachlorobutadien	87-68-3	2	0.00320	N
Isopropylbenzene	98-85-8	2	0.00320	N
Methyl tert-butyl ether (MTBE	1634-04-4	0.93	0.00320	N
Methylene chloride	75-09-2	0.05	0.00640	Λ
Naphthalene	91-20-3	12	0.00320	N
n-Butylbenzene	104-51-8	12	0.00320	N
n-Propylbenzene	103-65-1	3.9	0.00320	N
o-Xylene	95-47-6	2	0.00320	N
p- & m- Xylenes	179601-23-1	2	0.00640	N
p-IsopropyItoluen€	9-8-66	2	0.00320	N
sec-Butylbenzene	135-98-8	11	0.00320	N
Styrene	100-42-5	?	0.00320	U
tert-Butylbenzene	9-90-86	5.9	0.00320	N
Tetrachloroethylen	127-18-4	1.3	0.00320	N
Toluene	108-88-3	0.7	0.00320	N
trans-1,2-Dichloroethylen	156-60-5	0.19	0.00320	N
trans-1,3-Dichloropropylen	10061-02-6	2	0.00320	N
Trichloroethylen	79-01-6	0.47	0.00320	N
Trichlorofluoromethan	75-69-4	2	0.00320	N
Vinyl acetate	108-05-4	5	0.00320	N
Vinyl Chloride	75-01-4	0.02	0.00320	N
Xylenes, Total	1330-20-7	0.26	0.00950	N
Volatile Organics, TCLP RCRA Lis		mg/Kg	mg/L	
Dilution Facto			10	
1,1-Dichloroethylen€	75-35-4	0.33	0.0250	N
1,2-Dichloroethane	107-06-2	0.02	0.0250	N
1,4-Dichlorobenzen€	106-46-7	1.8	0.0250	N
2-Butanone	78-93-3	0.12	0.0250	N
Benzene	71-43-2	90:0	0.0250	Ω
Carbon tetrachlorid	56-23-5	0.76	0.0250	Ω
Chlorobenzene	108-90-7	1.1	0.0250	N

Chloroform	67-66-3	0.37	0.0250	Π
Tetrachloroethylen€	127-18-4	1.3	0.0250	n
Trichloroethylen€	79-01-6	24.0	0.0250	n
Vinyl Chloride	75-01-4	0.02	0.0250	n
Semi-Volatiles, 8270 Target Lis		Mg/Kg	mg/Kg	
Dilution Facto			2	
1,2,4-Trichlorobenzene	120-82-1	~	0.0570	n
1,2-Dichlorobenzen€	95-50-1	1.1	0.0570	Π
1,3-Dichlorobenzen€	541-73-1	2.4	0.0570	n
1,4-Dichlorobenzen	106-46-7	1.8	0.0570	Π
2,4,5-Trichloropheno	95-95-4	~	0.0570	n
2,4,6-Trichloropheno	88-06-2	~	0.0570	n
2,4-Dichlorophenc	120-83-2	~	0.0570	n
2,4-Dimethylpheno	105-67-9	~	0.0570	Π
2,4-Dinitropheno	51-28-5	~	0.114	Π
2,4-Dinitrotoluen	121-14-2	2	0.0570	D
2,6-Dinitrotoluen∈	606-20-2	~	0.0570	n
2-Chloronaphthalen	91-58-7	~	0.0570	n
2-Chloropheno	95-57-8	~	0.0570	n
2-Methylnaphthalene	91-57-6	~	0.0570	n
2-Methylpheno	95-48-7	0.33	0.0570	n
2-Nitroanilin€	88-74-4	~	0.114	n
2-Nitropheno	88-75-5	2	0.0570	Π
3- & 4-Methylphenols	65794-96-9	~	0.0570	n
3,3-Dichlorobenzidin	91-94-1	~	0.0570	n
3-Nitroanilin	99-09-2	~	0.114	n
4,6-Dinitro-2-methylphenc	534-52-1	~	0.114	n
4-Bromophenyl phenyl ethe	101-55-3	2	0.0570	n
4-Chloro-3-methylphenc	59-50-7	2	0.0570	n
4-Chloroaniline	106-47-8	2	0.0570	Π
4-Chlorophenyl phenyl ethe	7005-72-3	2	0.0570	Π
4-Nitroaniline	100-01-6	2	0.114	n
4-Nitropheno	100-02-7	~	0.114	n
Acenaphthene	83-32-9	20	0.0570	n
Acenaphthylene	208-96-8	100	0.0570	n
Aniline	62-53-3	~	0.228	n
Anthracene	120-12-7	100	0.102	JD
Benzo(a)anthracene	56-55-3	1	0.361	D
Benzo(a)pyrene	50-32-8	1	0.337	D
Benzo(b)fluoranthen	205-99-2	1	0.300	О
Benzo(g,h,i)perylene	191-24-2	100	0.227	D

Benzo(k)fluoranthene	207-08-9	0.8	0.330	٥
Benzyl alcoho	100-51-6	5	0.0570	Π
Benzyl butyl phthalate	2-89-58	~	0.0570	N
Bis(2-chloroethoxy)methan	111-91-1	2	0.0570	N
Bis(2-chloroethyl)ethe	111-44-4	3	0.0570	Π
Bis(2-chloroisopropyl)ethe	108-60-1	3	0.0570	⊃
Bis(2-ethylhexyl)phthalat	117-81-7	2	0.0901	Oſ
Chrysene	218-01-9	1	0.358	D
Dibenzo(a,h)anthracene	23-70-3	0.33	0.0791	Dl
Dibenzofurar	132-64-9	7	0.0570	N
Diethyl phthalate	84-66-2	~	0.0570	N
Dimethyl phthalate	131-11-3	2	0.0570	N
Di-n-butyl phthalat	84-74-2	2	0.232	D
Di-n-octyl phthalat€	117-84-0	~	0.0570	N
Fluoranthene	206-44-0	100	292'0	D
Fluorene	2-82-98	30	0.0570	N
Hexachlorobenzen	118-74-1	0.33	0.0570	n
Hexachlorobutadien	82-68-3	~	0.0570	N
Hexachlorocyclopentadien	77-47-4	~	0.0570	N
Hexachloroethan	67-72-1	~	0.0570	n
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.207	D
Isophorone	78-59-1	~	0.0570	n
Naphthalene	91-20-3	12	0.0570	N
Nitrobenzene	98-95-3	~	0.0570	Π
N-Nitrosodimethylamin	62-75-9	~	0.0570	Π
N-nitroso-di-n-propylamin	621-64-7	~	0.0570	Π
N-Nitrosodiphenylamin	9-08-98	~	0.0570	n
Pentachloropheno	87-86-5	0.8	0.0570	N
Phenanthrene	85-01-8	100	0.460	D
Phenol	108-95-2	0.33	0.0570	Ω
Pyrene	129-00-0	100	0.596	D
Pyridine	110-86-1	~	0.228	Π
Semi-Volatiles, TCLP RCRA Target Lis		mg/Kg	mg/L	
Dilution Facto			1	
1,4-Dichlorobenzen	106-46-7	1.8	0.00645	n
2,4,5-Trichloropheno	95-95-4	2	0.00722	N
2,4,6-Trichloropheno	88-06-2	~	0.00654	N
2,4-Dinitrotoluen	121-14-2	~	0.00473	n
2-Methylphenol	95-48-7	0.33	0.00171	n
3- & 4-Methylphenols	65794-96-9	~	0.00743	Π
Cresols, tota	1319-77-3	5	0.00740	Ω

Hexachlorobenzene	118-74-1	0.33	0.00591	>
Hexachlorobutadien	87-68-3	2	0.00662	n
Hexachloroethan€	67-72-1	\$	0.00726	n
Nitrobenzen€	98-95-3	2	0.00393	n
Pentachloropheno	87-86-5	0.8	0.00753	n
Pyridine	110-86-1	2	0.00637	n
Pesticides, TCLP RCRA Lis		mg/Kg	mg/L	
Dilution Facto			1	
Chlordane, tota	57-74-9	2	0.00022	D
Endrin	72-20-8	0.014	0.00004	n
gamma-BHC (Lindane)	58-89-9	0.1	0.00004	D
Heptachlor	76-44-8	0.042	0.00004	D
Heptachlor epoxid	1024-57-3	2	0.00004)
Methoxychlor	72-43-5	2	0.00004	D
Toxaphene	8001-35-2	2	0.00111	D
Metals, Target Analyte		mg/Kg	mg/Kg	
Dilution Facto			1	
Aluminum	7429-90-5	2	8,180	В
Antimony	7440-36-0	2	3.740	
Arsenic	7440-38-2	13	4.570	
Barium	7440-39-3	350	88.500	
Berylliur	7440-41-7	7.2	0.136	n
Cadmium	7440-43-9	2.5	0.409	n
Calcium	7440-70-2	\$	49,500	
Chromium	7440-47-3	\$	16.400	
Cobalt	7440-48-4	2	8.010	
Copper	7440-50-8	50	36.900	
Iron	7439-89-6	2	31,600	
Lead	7439-92-1	63	179	
Magnesium	7439-95-4	2	2,930	
Manganese	7439-96-5	1600	353	
Nickel	7440-02-0	30	7.930	
Potassium	7440-09-7	2	1,020	
Selenium	7782-49-2	3.9	3.420	
Silver	7440-22-4	2	0.682	n
Sodium	7440-23-5	2	129	
Thallium	7440-28-0	2	1.360	n
Vanadium	7440-62-2	2	17.900	
Zinc	7440-66-6	109	109	
Metals, TCLP RCRA		mg/Kg	mg/L	
Dilution Facto			1	

Arsenic	7440-38-2	13	0.00400	Ω
Barium	7440-39-3	350	0.640	В
Cadmium	7440-43-9	2.5	0.00400	
Chromium	7440-47-3	2	0.00600	N
Lead	7439-92-1	63	0.0180	
Selenium	7782-49-2	3.9	0.0150	В
Silver	7440-22-4	2	0.00600	N
Mercury by 7473		mg/Kg	mg/Kg	
Dilution Facto			1	
Mercury	7439-97-6	0.18	0.151	
Mercury TCLP by 7473		mg/Kg	mg/L	
Dilution Facto			1	
Mercury	7439-97-6	0.18	0.00020	N
TCLP Extraction for METALS EPA 131:			N/A	
Dilution Facto			1	
TCLP Extraction		2	Completed	
TCLP Extraction for SVOCS/PEST/HERE			N/A	
Dilution Facto			1	
TCLP Extraction		₹	Completed	
TCLP Extraction for VOA by EPA 1311 ZH			%	
Dilution Facto			1	
TCLP Extraction		?	Completed	
Total Solid:			%	
Dilution Facto			1	
% Solids	solids	₹	73.300	
Herbicides, TCLP Target Lis		mg/Kg	mg/L	
Dilution Facto			1	
2,4,5-TP (Silvex)	93-72-1	3.8	0.00500	N
2,4-D	94-75-7	2	0.00500	N
NOTES:				

Indicates an Exceedance of UUSCO:

Q is the Qualifier Column with definitions as follo

D=result is from an analysis that required a dilutiv

J-analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estim

U=analyte not detected at or above the level indicate

B=analyte found in the analysis batch blan

E=result is estimated and cannot be accurately reported due to levels encountered or interfere

P=this flag is used for pesticide and PCB (Aroclor) target compounds when there is a % difference for detected concentrations that exceed method dictated limits be NT=this indicates the analyte was not a target for this samp

^{~=}this indicates that no regulatory limit has been established for this anal

DISCLAIMER:

may arise from use of said information. As regulations change often, we encourage the user to review the regulatory limits and lists of interest to confirm York Analytical Laboratories, Inc. is providing this information as a convenience to you. York makes no representations or warranties that these data are regulations. Your use of these data constitute your understanding of these limitations and you agree to hold York harmless from any and all action that accurate, complete or represent the latest regulatory authority limits or analytes. York is not responsible for any errors or omissions in these specific these data. Table 11
Soil Samples Analytical Results for VOCs
11-28 31 ** Drive, Queens, NY

						11-28 31 " Drive, Queens, NY							
Sample ID	SP-1	SPI	SP-2	SP-2	SP-2	SF-3	SF-3	SP4	5F-4	SF-5			
Sampling Depth (ft)	0'-2'	.68	0'-2'	.6-,8	8:-9:	0'-2'	.6-8	2'4'	.89	0'-2'		NYSDEC Part 375 R	Restricted Use Soil Cleanup Objectives 6 NYC RR
Sampling Date	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	10/15/2013	10/15/2013	10/15/2013	10/15/2013	Cleanup Objectives mg/kg	Pt.375-6.8b) - Restricted
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	dry	Residential mg/kg dry
Units	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry		
						Volatile Organics, 8260 List	ist						
1,1,1,2-Tetrachloroethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00025	<0.00024	<0.00022	SN	NS
1,1,1-Trichloroethane	<0.0028	<0.0015	<0.0030	<0.0017	60.0029	<0.0025	<0.0023	<0.0023	<0.000052	<0.00049	<0.00046	0.68 NS	00 N
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	NA	NA	NA	SN	S SN
1,1,2-Trichloroethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00044	<0.00042	<0.00039	SN	NS
1,1-Dichloroethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00073	<0.00069	<0.00064	0.27	26
1,1-Dichloroethylene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.000053	<0.0005	<0.00047	0.33	100
L.1-Dichloropropylene L.2.3-Trichlorobenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00041	VAV <0.00039	NA <0.00036	s N	2 2
1,2,3-Trichloropropane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00043	<0.00041	<0.00038	SN	SN
1,2,4-Trichlorobenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	NA	NA	NA	SN	NS
1,2,4-Trimethylbenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00042	<0.0004	<0.00037	3.6	52
1.2-Dibromoethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00042	400000×	<0.00037	s s	2 2
1,2-Dichlorobenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00036	<0.00034	<0.00032	1.1	100
1,2-Dichloroethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00054	<0.00052	<0.00048	0.02	3.1
1,2-Dichloropropane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00024	<0.00023	<0.00021	SN	NS
1,3,5-Trimethylbenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.0014	<0.0013	<0.0012	8.4	52
1,3-Dichlorobenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00027	<0.00026	<0.00024	2.4	49
1.4-Dichlorobenzene	<0.0028	<0.0015	000000>	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00027	-0.00026 -0.00026	<0.00024	18	13
1,4-Dioxane	<0.056	<0.031	<0.060	<0.034	<0.059	<0.0025	<0.047	<0.047	NA	NA	NA	0.1	13
2,2-Dichloropropane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00043	<0.00041	<0.00038	SN	SN
2-Butanone	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	NA	NA	NA	SN	NS
2-Chlorotoluene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.0014	<0.0013	<0.0012	SN	2 2
4-Citorotottene	<0.0020 <0.0020	<0.0015	<0.0030	<0.0017	<0.0029 <0.0009	50,005	0.0002	0.0031	<0.0006	<0.0003/	<0.00035	50 O	100 100
Benzene	<0.0028	<0.0015	000000>	<0.0017	<0.0029	<0.0025	<0.00023	<0.0023	<0.00037	<0.00035	<0.00033	90:0	4.8
Bromobenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00043	<0.00041	<0.00038	NS	SN
Bromochloromethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.0004	<0.00038	<0.00035	SN	SN
Bromodichloromethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00035	<0.00033	<0.00031	SN	NS
Bromoform	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	>000000	<0.00062	<0.00058	NS	SN
Bromomethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.00023	<0.0023	<0.0019	<0.0018	<0.00017	NS	S Z
Carbon tetracinoride	<0.0028	<0.0015	<0.0000	<0.0017	<0.0029 <0.0079	<0.0025	<0.0023	<0.0023	<0.00005	<0.00096	<0.00092	11	100
Chloroethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.0005	<0.00047	<0.00044	SN	SN
Chloroform	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00043	<0.00041	<0.00038	0.37	49
Chloromethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.0022	<0.0021	<0.002	SN	SN
cis-1,2-Dichloroethylene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00049	<0.00046	<0.00043	0.25	100
cis-1,3-Dichloropropylene	<0.0028	<0.0015	<0.0030	<0.00017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00024	<0.00023	<0.00021	SN	S 22
Dibromomethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00043	<0.00041	<0.00038	SN	S. S.
Dichlorodifluoromethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00035	<0.00033	<0.00031	NS	NS
Ethyl Benzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00025	<0.00024	<0.00022	1	41
Hexachlorobutadiene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.000039	<0.00037	<0.00034	0.33	1.2
Methyl tert-butyl ether (MTBE)	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00078	<0.00074	<0.00069	0.93	100
Methy lene chloride	0.0099 J.B	0.0024 J.B	0.0052 J.B	0.0036 J,B	<0.0029	0.0035 J.B	<0.0023	<0.0023	<0.0029	<0.0028	<0.0026	0.05	100
n-Butylberzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00027	<0.00026	<0.00024	12	SN
n-Propylbenzene Naruhhalana	<0.00028	<0.0015	<0.0030	<0.0017	<0.0029 <0.0029	<0.0025	<0.00023	<0.0023	<0.00049 NA	<0.00046 NA	<0.00043 NA	3.9 NS	00 SN
o-Xylene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00034	<0.00032	<0.0003	0.26	100
p- & m- Xylenes	<0.0028	<0.0015	<0.0030	<0.0017	<0.0059	<0.0050	<0.0047	<0.0047	<0.00061	<0.00058	<0.00054	0.26	100
p-Isopropyltoluene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	NA	NA	NA	NS	SS
sec-Butylbenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00042	<0.0004	<0.00037	11	100
byrene tert-Butylbenzene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00034	<0.00032	<0.0002/	5.9	100
Tetrachloroethylene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	0.0039 J	<0.0023	0.0042	<0.001	0.0042	600000>	1.3	19
Toluene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	0.00863	0.0075	9800:0	<0.00035	20	100
trans-1,2-Dichloroethylene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.00078	<0.00074	<0.00069	0.19	100
trans-1,3-Dichloropropylene Trichloroethelene	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.000037	<0.00035	<0.00033	NS 0.47	S 2
Trichlorofluoromethane	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	<0.0004	<0.00038	<0.00035	SN	i SV
Vinyl acetate	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029	<0.0025	<0.0023	<0.0023	NA	NA	NA	SN	SN
Vinyl Chloride Total VOCs	<0.0028	<0.0015	<0.0030	<0.0017	<0.0029 ND	<0.0025	<0.0023	<0.0023	<0.0011	<0.0011	40.00099 OIN	0.02 NS	6:0 SN
B=analyte found in the analysis batch blank	Vario	UNUMER	Viviore	VANAV	25	ViVV/3	NA NA	VIVALUE	0,000	a.	à	200	24.

Pennalpe (rond in the analyse but of the analyse to the contract of the analyse to the an

Table 11 (Cont.)
Soil Samples Analytical Results for SVOCs
11-2831 ** Drive, Queens, NY

						11-28 31 st Drive, Queens, NY							
Sample ID	SP-I	SP-1	25-75 27-25	2-75	SP-2	57.3	5-3	SP-4	51.4	ç. a	5-75		
Samping Depth (ft)	7-0	6-0	2-0	6-0	6-0	2-0	6-6	#- 7	0-0	2-0		NYSDEC Part 375 Unrestricted Use Soil	Restricted Use Soil Cleanup Objectives (6 NYC RR Pt.375-6.8b)
Sampling Date	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	10/15/2013	10/15/2013	10/15/2013	013	Cleanup Objectives mg/kg	- Restricted Residential mg/ kg
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	dry	dry
Units	mg/kg dry	mg/kg dry	dry ,	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry		
1,2,4-Trichlorobenzene	<0.101	<0.104		<0.107	<0.106	<0.499	6960.0>	<0.294	<0.297	<0.034	<0.033	SN	NS
1,2-Dichlorobenzene	<0.183	<0.188		<0.194	<0.191	<0.901	<0.175	<0.175	NA	NA	NA	S	SS
14-Dk hlorobenzene	<0.172	<0.177		<0.183	<0.0923	<0.849	<0.165	<0.165	NA	N N	NA NA	2 2	2 2
2,4,5-Trichlorophenol	<0.217	<0.223		<0.230	<0.227	4.07	<0.208	<0.208	<0.037	<0.036	<0.035	SN	SN
2,4,6-Trichlorophenol	<0.142	<0.146		<0.151	<0.149	<0.700	<0.136	<0.136	<0.042	<0.041	<0.04	NS	SN
2,4-Dkhlorophenol	<0.228	<0.234		<0.242	<0.239	<1.12	<0.218	<0.218	<0.049	<0.048	<0.047	SN	NS
2,4-Dimethylphenol	<0.196	<0.201		<0.208	<0.205	<0.965	<0.187	<0.187	<0.036	<0.035	<0.034	8 2	SZ 2
2,4-Unitrophenol	<0.235	<0.241		<0.249	<0.246	97.15	<0.225	5770>	<0.0059	<0.0039	<0.005/	S S	S S
2.4-Dinitrololuene	<0.124	<0.12/		<0.153	<0.129	<0.708	<0.138	<0.138	<0.042	40.041 40.041	\$0.05 \$0.05	2 2	2 %
2-Chloronaphthalene	<0.151	<0.155		<0.160	<0.158	<0.744	<0.144	<0.144	<0.034	<0.034	<0.033	S S	2 2
2-Chlorophenol	<0.0923	<0.0948		<0.0979	<0.0966	<0.455	<0.0883	<0.0883	<0.053	<0.053	<0.051	SZ	SZ
2-Methylnaphthalene	<0.215	<0.221		<0.228	0.386	<1.06	<0.206	<0.206	<0.027	<0.027	<0.026	SN	SN
2-Methylphenol	<0.106	<0.109		<0.113	<0.111	<0.524	<0.102	<0.102	<0.13	<0.12	<0.12	SN	NS
2-Nitroaniline	<0.244	<0.250		<0.259	<0.255	<1.20	<0.233	<0.233	<0.03	<0.029	<0.029	NS	NS
2-Nitrophenol	<0.0761	<0.0781		<0.0807	<0.0796	<0.375	<0.0728	<0.0728	<0.053	<0.053	<0.051	SN	NS
3,3'-Dichlorobenzidine	<0.147	<0.151		<0.156	<0.153	<0.722	<0.140	<0.140	<0.045	<0.045	<0.043	SS :	SN .
3- & 4-Methylphenols	<0.121	<0.125		<0.129	<0.127	40.598	<0.116	9170>	<0.047	<0.047	<0.046	82 2	SZ 2
2-Introdutine 46-Dinitro-2-methylphenol	<0.278	C07:05		<0.293	1670>	7.7V	<0.200	<0.200	<0.059	<0.039	<0.02/	2 %	S S
4.Rromonhanvlnhanvlather	<0.135	<0.138		<0.74	<0.141	50,664	<0.129	<0.179	25:05	15000>	<0.059	2 %	S. S.
4-Chloro-3-methylphenol	<0.189	<0.194		<0.200	<0.197	<0.929	<0.180	<0.180	<0.043	<0.042	<0.041	Se	82
4-Chloroaniline	<0.0727	<0.0747		<0.0772	<0.0761	<0.358	>0.0696	>0.0696	<0.03	<0.029	<0.029	SN	SN
4-Chlorophenyl phenyl ether	<0.164	<0.168		<0.174	<0.172	<0.808	<0.157	<0.157	<0.036	<0.035	<0.034	NS	NS
4-Nitroaniline	<0.116	<0.119		<0.123	<0.121	<0.571	<0.111	<0.111	<0.049	<0.048	<0.047	NS	SN
4-Nitrophenol	<0.105	<0.108		<0.112	<0.11.0	<0.518	<0.101	<0.101	<0.34	<0.34	<0.33	NS	NS
Acenaphthene	<0.101	<0.104		<0.107	<0.106	<0.499	<0.0969	<0.0969	<0.037	<0.036	<0.035	20	100
Acenaphthylene	<0.134	<0.138		<0.142	<0.140	<0.661	<0.128	<0.128	<0.037	<0.036	<0.035	100	100
Aumine	0.100	-0.15#		O.T.0	79700	-0.7E0	-0.133	C0.105	NA OPE	WW.	-000	DN SP	SN
Bonnelabundanona	60.09	<0.107	-	<0.112	0010>	20.702	-0.100 -0.100	<0.100	<0.02/	<0.02/	<0.020 <0.015	100	100
Benzo(a)pyrene	0.508	<0.114	-	\$0.118	<0.109	\$5.00 \$45.00	<0.106	<0.106	CTO:05	720 O>	9000>		3 -
Benzo(b)fluoranthene	0.486	<0.241		<0.249	<0.245	△1.15	<0.224	<0.224	<0.058	<0.058	<0.0756		
Benzo(g,h,i)perylene	0.194	<0.0954		<0.0985	<0.0972	<0.458	<0.0888	<0.0888	<0.022	<0.022	<0.022	100	100
Berzo(k)fluoranthene	0.598	<0.287		<0.297	<0.293	<138	<0.268	<0.268	<0.019	<0.019	<0.018	8.0	3.9
Benzyl alcohol	<0.280	<0.287		<0.297	<0.293	<1.38	<0.268	<0.268	NA	NA	NA	SN	SN
Benzyl butyl phthalate	<0.154	<0.159		<0.164	<0.162	<0.761	<0.148	<0.148	<0.022	<0.022	<0.022	NS	NS
Bis(2-chloroethoxy)methane	<0.0962	<0.0988		<0.102	<0.101	<0.474	<0.0921	<0.0921	<0.04	<0.04	<0.039	SN	SN
Bis(2-chloroethyl)ether	<0.143	<0.146		<0.151	<0.149	<0.703	<0.136	<0.136	<0.05	<0.049	<0.048	SN	NS
Bis(2-chloroisopropyl)ether	<0.0985	<0.101		<0.104	<0.103	<0.485	<0.0942	<0.0942	<0.047	<0.047	<0.046	S 2	SS 2
Christin	0.635	<0.132	-	<0.137	<0.135	40.634 40.634	<0.173	<0.103	0000	4000	1000	2 -	0.00
Di-n-butyl phthalate	<0.114	<0.117		<0.121	911.0>	<0.559	<0.109	<0.109	<0.031	<0.031	<0.03	- 52	3
Di-n-octyl phthalate	<0.280	<0.287		<0.297	<0.293	<1.38	<0.268	<0.268	<0.022	<0.022	<0.022	SN	SZ
Dibenzo(a,h) anthracene	<0.112	<0.115		<0.119	<0.118	<0.554	<0.108	<0.108	<0.031	<0.031	<0.03	0.33	0.33
Dibenzofuran	<0.130	<0.134		<0.138	<0.136	<0.642	<0.125	<0.125	NA	NA	NA	SN	NS
Diethyl phthalate	<0.176	<0.180		<0.186	<0.184	<0.865	<0.168	<0.168	<0.039	<0.039	<0.038	SS :	SZ
Dimethyl phthalate	<0.125	<0.128		<0.132	<0.131	<0.615	\$0.00 \$0.00	40.29/	V0.29/	<0.29/ NA	<0.29/	S 2	S ×
Huoranthana	100	<0.00		<0.00 <0.174	<0.172	8080>	<0.00	<0.00	NA (1)	A000>	70.02	100	100
Fluorene	<0.134	<0.138		<0.142	<0.140	40.661	<0.128	<0.128	<0.026	<0.026	<0.025	30	100
Hexachlorobenzene	<0.165	<0.169		<0.175	<0.173	<0.813	<0.158	<0.158	<0.038	<0.038	<0.037	NS	SZ
Hexachlorobutadiene	<0.0946	<0.0971		<0.100	<0.0989	<0.466	<0.0904	<0.0904	<0.058	<0.058	<0.056	NS	NS
Hexachlorocyclopentadiene	<0.208	<0.214		<0.221	<0.218	<1.03	<0.199	<0.199	<0.53	<0.52	<0.51	NS	NS
Hexachloroethane	<0.0800	<0.0821		<0.0849	<0.0837	<0.394	<0.0765	<0.0765	<0.06 	<0.06	<0.058	NS	SS
Indeno(1,2,3-cd)pyrene	0.219	<0.131		<0.135	<0.133	<0.628	<0.022 <0.0971	<0.122	<0.017	<0.017	<0.016	0.5 NS	0.5 NS
N-nitroso-di-n-propylamine	<0.0934	<0.0959		1660'0>	<0.0978	<0.460	<0.0894	<0.0894	<0.056	<0.055	<0.054	SN	2 2
N-Nitrosodimethylamine	<0.115	<0.118		<0.122	<0.120	<0.565	<0.110	<0.110	NA	NA	NA	SN	NS
N-Nitrosodiphenylamine	<0.126	<0.130		<0.134	<0.132	<0.623	<0.121	<0.121	<0.034	<0.034	<0.033	0.33	100
Naphthalene	<0.0688	<0.0707		<0.0730	<0.0720	<0.339	<0.0658	<0.0658	NA	NA See 35	NA 20 30	NS	SS
Pentachiorophenoi	112.0>	<0.217	<0.216	<0.224	<0.221 <0.153	<u.)< td=""><td><0.202</td><td><0.202</td><td><0.34</td><td><0.33</td><td><0.32</td><td>100</td><td>100</td></u.)<>	<0.202	<0.202	<0.34	<0.33	<0.32	100	100
Phenol	<0.121	<0.124		<0.128	<0.126	<0.595	<0.116	<0.116	<0.034	<0.034	<0.033	0.33	100
Pyrene	0.998	<0.11.7		<0.121	<0.119	<0.562	<0.109	<0.109	<0.026	<0.026	<0.025	100	100
Pyridine	<0.196	<0.202		<0.208	<0.205	<0.967	<0.188	<0.188	NA	NA	NA	SN	NS
TotalSVOCs	6.326	ND		ND	0.386	ND	ND	ND	ND	ND	ND	NS	SN

[Total SVOCK]
[T

Table 11 (Cont.) oil Samples Analytical Results for Pesticides & PCBs

						11-28 31" Drive, Queens, NY	Queens, NY						
Sample ID	SP-1	SP-1	SP-2	SP-2	SP-2	SP-3	SP-3	SP-4	SP-4	SP-5	SP-5		
Sampling Depth (ft)	0:-2'	6-18	0'-2'	16-18	16-18	.70	16-8	2:-4'	.8-,9	02'	.89	NYSDEC Part 375	Restricted Use Soil Cleanup
Sampling Date	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	10/15/2013	10/15/2013	10/15/2013	10/15/2013	Unrestricted Use Soil Cleanup Objectives mg/kg	Unrestricted Use Soil Objectives (6 NYC RR Pt.375- Cleanup Objectives mg/kg [6.8b] - Restricted Residential
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	dry	mg/kg dry
Units	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry		
4,4'-DDD	<0.00185	<0.00190	<0.00189	96100′0⊳	<0.00193	<0.00182	<0.00177	<<0.00177	0.0024	<0.0024	<0.0023	0.0033	13
4,4'-DDE	<0.00185	<0.00190	<0.00189	≪0.00196	<0.00193	<0.00182	<0.00177	<0.00177	9∠000′0>	<0.00075	<0.00073	0.0033	8.9
4,4'-DDT	<0.00185	<0.00190	<0.00189	≪0.00196	<0.00193	<0.00182	<0.00177	<0.00177	<0.0012	<0.0012	<0.0012	0.0033	7.9
Aldrin	<0.00185	<0.00190	<0.00189	≪0.00196	<0.00193	<0.00182	<0.00177	<0.00177	<0.0014	<0.0013	<0.0013	0.005	0.097
alpha-BHC	<0.00185	<0.00190	<0.00189	96100′0⊳	<0.00193	<0.00182	<0.00177	<0.00177	<0.0030	<0.0030	<0.0029	0.02	0.48
alpha-Chlordane	<0.00185	<0.00190	<0.00189	≪0.00196	<0.00193	<0.00182	<0.00177	<0.00177	<0.00075	<0.00074	<0.00072	0.094	4.2
beta-BHC	<0.00185	<0.00190	<0.00189	≪0.00196	<0.00193	<0.00182	<0.00177	<0.00177	86000'0>	<0.00098	<0.00095	SN	SN
delta-BHC	<0.00185	<0.00190	<0.00189	≪0.00196	<0.00193	<0.00182	<0.00177	<0.00177	<0.0022	<0.0022	<0.0022	0.04	100
Dieldrin	<0.00185	<0.00190	<0.00189	≪0.00196	<0.00193	<0.00182	<0.00177	<0.00177	<0.00077	<0.00076	<0.00074	0.005	0.2
Endosulfan I	<0.00185	<0.00190	<0.00189	96100:0>	<0.00193	<0.00182	<0.00177	<0.00177	06000:0>	<0.00089	∠8000:0>	2.4	24
Endosulfan II	<0.00185	<0.00190	<0.00189	96100′0⊳	<0.00193	<0.00182	<0.00177	<0.00177	<0.0029	<0.0028	<0.0028	2.4	24
Endosulfan sulfate	<0.00185	<0.00190	<0.00189	96100′0⊳	<0.00193	<0.00182	<0.00177	<0.00177	<0.0037	<0.0036	<0.0035	2.4	24
Endrin	<0.00185	<0.00190	<0.00189	96100′0>	<0.00193	<0.00182	<0.00177	<0.00177	<0.0015	<0.0014	<0.0014	0.014	11
Endrin aldehyde	<0.00185	<0.00190	<0.00189	96100′0>	<0.00193	<0.00182	<0.00177	<0.00177	<0.0022	<0.0022	<0.0021	NS	SN
Endrin ketone	<0.00185	<0.00190	<0.00189	96100′0>	<0.00193	<0.00182	<0.00177	<0.00177	<0.0025	<0.0025	<0.0025	NS	SN
gamma-BHC (Lindane)	<0.00185	<0.00190	<0.00189	96100′0>	<0.00193	<0.00182	<0.00177	<0.00177	<0.0015	<0.0015	<0.0015	NS	SN
gamma-Chlordane	<0.00185	<0.00190	<0.00189	96100′0>	<0.00193	<0.00182	<0.00177	<0.00177	<0.0014	<0.0014	<0.0014	NS	SN
Heptachlor	<0.00185	<0.00190	<0.00189	96100:0⊳	<0.00193	<0.00182	<0.00177	<0.00177	<0.00095	<0.00094	<0.00092	NS	SN
Heptachlor epoxide	<0.00185	<0.00190	<0.00189	96100:0⊳	<0.00193	<0.00182	<0.00177	<0.00177	<0.0038	<0.0038	<0.0037	0.1	1.3
Methoxychlor	<0.00923	<0.00948	<0.00946	62600.0⊳	<0.00966	<0.00910	<0.00883	<0.00883	<0.0011	<0.0011	<0.0011	NS	SN
Toxaphene	<0.0934	<0.0959	<0.0957	<0.0991	<0.0978	<0.0921	<0.0894	<0.0894	<0.023	<0.023	<0.022	NS	SN
Arodor 1016	0610:0>	<0.0195	<0.0195	<0.0202	<0.0199	2810'0>	<0.0182	<0.0182	<0.073	<0.072	<0.070	SN	SN
Arodor 1221	<0.0190	<0.0195	<0.0195	<0.0202	<0.0199	2810'0>	<0.0182	<0.0182	<0.059	<0.059	<0.057	SN	SN
Arodor 1232	<0.0190	<0.0195	<0.0195	<0.0202	<0.0199	<0.0187	<0.0182	<0.0182	<0.085	<0.084	<0.082	SN	SN
Aroclor 1242	<0.0190	<0.0195	<0.0195	<0.0202	<0.0199	<0.0187	<0.0182	<0.0182	<0.076	<0.075	<0.073	SN	SN
Aroclor 1248	<0.0190	<0.0195	<0.0195	<0.0202	<0.0199	<0.0187	<0.0182	<0.0182	<0.071	0.000	<0.068	SN	SN
Aroclor 1254	<0.0190	<0.0195	<0.0195	<0.0202	<0.0199	<0.0187	<0.0182	<0.0182	<0.030	<0.030	<0.029	NS	SN
Aroclor 1260	<0.0190	<0.0195	<0.0195	<0.0202	<0.0199	<0.0187	<0.0182	<0.0182	<0.070	0.070	<0.068	NS	NS
Total PCBs	<0.0190	<0.0195	< 0.0195	<0.0202	<0.0199	<0.0187	<0.0182	<0.084	<0.085	<0.082	<0.082	0.1	1
NS=this indicates that no regulatory limit has been established for this analyte	ory limit has been established	d for this analyte											

Table 11 (Cont.) Soil Samples Analytical Results for Metals

(4) (4) <th>Supplied plants 67 at 50 a</th> <th>Cumbre III</th> <th>SP-1</th> <th>SP-1</th> <th>SP-2</th> <th>SP-2</th> <th>SP-2</th> <th>SP-3</th> <th>SP-3</th> <th>SP-4</th> <th>SP-4</th> <th>SP-5</th> <th>SP-5</th> <th></th> <th></th>	Supplied plants 67 at 50 a	Cumbre III	SP-1	SP-1	SP-2	SP-2	SP-2	SP-3	SP-3	SP-4	SP-4	SP-5	SP-5		
Sample Date 474/2013	Sale Sale <th< td=""><td>Sampling Depth (ft)</td><td>0:-2:</td><td>.67.8</td><td>0'-2'</td><td>.68</td><td>.6-18</td><td>0'-2'</td><td>8-9</td><td>2'4'</td><td>.8-,9</td><td>0'-2'</td><td>.8-9</td><td>NYSDEC Part 375</td><td>Restricted Use Soil Cleanup</td></th<>	Sampling Depth (ft)	0:-2:	.67.8	0'-2'	.68	.6-18	0'-2'	8-9	2'4'	.8-,9	0'-2'	.8-9	NYSDEC Part 375	Restricted Use Soil Cleanup
Matter Self Affile Unith 1 mig/4 dy	Unitary Sept	Sampling Date	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	4/24/2013	10/15/2013	10/15/2013	10/15/2013	10/15/2013	Unrestricted Use Soil	Objectives (6 NYCRR Pt.375-6.8b) - Restricted
Unitary State Time Visidary mark/s state mark/s stat	Unitary Maryle depty	Matrix	Soil	Soil	Soil	Soil	dry								
10.00 G1580 c1860 c1860 <th< td=""><td>(1) (1)</td></th<> <td>Units</td> <td>mg/kg dry</td> <td></td> <td></td>	(1) (1)	Units	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry									
1, 18, 18, 18, 18, 18, 18, 18, 18, 18, 1	type 61896 61879 61879 61281	Aluminum	7630	11000	9370	11500	0996	9020	0968	10400	11400	0928	11600	SN	SN
t 444	t 64 </td <td>Antimony</td> <td>0.586</td> <td><0.253</td> <td>2.64</td> <td><0.261</td> <td><0.258</td> <td><0.243</td> <td><0.235</td> <td>19.5</td> <td>10.6</td> <td>8.43</td> <td>10.7</td> <td>SN</td> <td>SN</td>	Antimony	0.586	<0.253	2.64	<0.261	<0.258	<0.243	<0.235	19.5	10.6	8.43	10.7	SN	SN
th t	the color 68.4 68.4 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.2 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 88.2	Arsenic	7.14	4.94	4.04	29	6.35	421	3.93	4.38	3.85	4.02	3.62	13	16
min 4017 4018 4011	mint 6412 6413 6413 6417 6410 <th< td=""><td>Barium</td><td>63.9</td><td>36.5</td><td>57.6</td><td>25.2</td><td>21.8</td><td>98</td><td>36.3</td><td>88.1</td><td>24.4</td><td>183</td><td>48.6</td><td>350</td><td>400</td></th<>	Barium	63.9	36.5	57.6	25.2	21.8	98	36.3	88.1	24.4	183	48.6	350	400
min 460112 640113 640114 64014 64	num 24011 640115 640115 640115 640115 640115 640115 640115 640115 640115 640115 640115 640115 640115 64011	Beryllium	<0.112	<0.115	<0.115	<0.119	<0.117	<0.110	<0.107	0.52	0.34	0.39	0.47	7.2	7.2
n 555 1940 655 1940 656 1940 667 725 662 685 NS	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Cadmium	<0.112	<0.115	<0.115	<0.119	<0.117	<0.110	<0.107	2.37	2.12	1.75	2.22	2.5	4.3
4 55 11.6 55.9 18.5 18.6 <th< td=""><td>4 6.55 11.6 5.99 8.77 6.63 1.29 7.59 7.59 7.65 7.59 7.65 7.59 7.65 7.59 7.65 7.50 <</td><td>Calcium</td><td>26900</td><td>1040</td><td>49300</td><td>955</td><td>1930</td><td>16400</td><td>219</td><td>2220</td><td>728</td><td>969</td><td>852</td><td>SN</td><td>SN</td></th<>	4 6.55 11.6 5.99 8.77 6.63 1.29 7.59 7.59 7.65 7.59 7.65 7.59 7.65 7.59 7.65 7.50 <	Calcium	26900	1040	49300	955	1930	16400	219	2220	728	969	852	SN	SN
t 4806 173 180<	type 1549 <th< td=""><td>Cobalt</td><td>5.55</td><td>11.6</td><td>5.89</td><td>8.75</td><td>6.63</td><td>8.29</td><td>7.08</td><td>7.63</td><td>7.96</td><td>6.32</td><td>8.65</td><td>SN</td><td>SN</td></th<>	Cobalt	5.55	11.6	5.89	8.75	6.63	8.29	7.08	7.63	7.96	6.32	8.65	SN	SN
sign 1340 1850 <th< td=""><td>that 1840 1890 1890 1290 2200 1860 1860 1860 2200 2500 <th< td=""><td>Copper</td><td>49.6</td><td>17.3</td><td>25.9</td><td>16</td><td>12.9</td><td>54.6</td><td>13.4</td><td>58.7</td><td>12.9</td><td>11.5</td><td>12.2</td><td>20</td><td>270</td></th<></td></th<>	that 1840 1890 1890 1290 2200 1860 1860 1860 2200 2500 <th< td=""><td>Copper</td><td>49.6</td><td>17.3</td><td>25.9</td><td>16</td><td>12.9</td><td>54.6</td><td>13.4</td><td>58.7</td><td>12.9</td><td>11.5</td><td>12.2</td><td>20</td><td>270</td></th<>	Copper	49.6	17.3	25.9	16	12.9	54.6	13.4	58.7	12.9	11.5	12.2	20	270
elaboration of the color of the co	with the parameter of the paramete	Iron	13400	18900	13900	23700	20200	17200	16600	18600	22300	18700	21500	SN	SN
sign 8289 3190 3190 3190 NS NS nee 225 236 236 246 439 439 470 3100 3190 NS 1500 nm 237 105 243 11 817 439 172 159 1500 <td>sign 5250 5260 3100 3100 3170 <th< td=""><td>Lead</td><td>191</td><td>19.3</td><td>42.3</td><td>7.52</td><td>6.63</td><td>896</td><td>5.18</td><td>157</td><td>8.2</td><td>7.01</td><td>10</td><td>63</td><td>400</td></th<></td>	sign 5250 5260 3100 3100 3170 <th< td=""><td>Lead</td><td>191</td><td>19.3</td><td>42.3</td><td>7.52</td><td>6.63</td><td>896</td><td>5.18</td><td>157</td><td>8.2</td><td>7.01</td><td>10</td><td>63</td><td>400</td></th<>	Lead	191	19.3	42.3	7.52	6.63	896	5.18	157	8.2	7.01	10	63	400
meter 257 876 261 189 488 413 799 277 184 430 1860 1860 489 1850 1870	meter 257 876 268 483 483 777 194 480 777 mm 1823 113 1140 1140 1140 1140 1172 1172 1173 1174	Magnesium	8280	3230	11800	3010	2560	3250	3130	3110	3470	3100	3190	SN	SN
mm 12.0 1	mm 1820 110.3 10.4 11.5	Manganese	237	928	235	261	189	458	413	390	277	194	430	1,600	2,000
mm 1850 1850 1840 1870 1870 947 879 772 1870 NS mm 0.65 2.77 0.633 3.23 2.13 2.13 0.633 3.23 0.67 6.79 7.79 1870 5.79 3.79	mm 1820 1830 1840 1840 1870 1870 772 1070 mm 2.65 2.65 2.67 2.67 2.67 6.77 6.77 1070 n 0.786 4.01.13 4.11.9	Nickel	10.3	10.6	26.3	11	8.02	9.85	12.3	17.2	16.3	12.9	17.6	30	310
mm 217 683 217 683 217 684 789	mm 2.86 2.77 6.77 7.89 8.77 9.77 9.72 9.72 9.72 9.72 9	Potassium	1820	1180	196	1210	1190	1970	1470	247	628	777	1070	SN	SN
4.7. The collection of th	th 231 232 40.85 40.17<	Selenium	2.65	2.77	0.953	3.23	2.97	222	2.65	2'9	69'2	7.73	6.87	3.9	180
1 32 18 25 112 118 582 142 667 415 464 109 NS NS m 43 63 63 63 67 64 54 109 NS NS m 71 194 214 245 64 41 24 78 67 67 67 78 NS	127 118 222 142 647 415 464 109 238 43.5 40.353 40.345 4.2 41.5 0.29 47.0 23.5 23.6 46.7 21.7 2 25.4 23.1 27.3 44.8 33.3 64.7 34.0 142 47.1 38.8 53.4 40.02 40.03 40.03 0.03 16.7 0.03 0.03 0.03 17.1 16.7 40.1 15.7 36.8 18.4 13.5 17.2 4.48 43.10 43.7 40.27 40.27 40.26 40.26	Silver	0.708	<0.115	<0.115	<0.119	<0.117	<0.110	<0.107	. □	<0.792	0.844	<0.878	2	180
61388 61389 61389 61389 61389 61389 61389 61389 61389 61389 6138 6138 6138 6139	Q1580 Q1775 Q1580 Q178	Sodium	321	160	226	127	118	282	142	2'09	41.5	48.4	109	SN	SN
171 184 214 235 5.66 662 217 23 254 231 273 NS NS 411 54 64 64 64 340 42 67 38 534 109 109 401049 4110 64 61 40 61<	23.5 23.6 46.2 21.7 23.4 23.1 27.3 7.3 44.8 33.3 64.7 34.0 14.2 47.1 38.8 53.4 40.02 40.03 40.04 40.03 0.02 40.02 60.02 77.1 16.5 14.1 16.7 38.5 18.4 13.8 17.2 4.04 40.10 40.13 40.27 40.27 40.29 40.29 40.29	Thallium	<0.358	<0.368	<0.367	<0.380	<0.375	<0.353	<0.343	<2	<1.58	0.29	<1.76	SN	SN
111 56 60 44.8 33.3 64.7 34.0 16.2 47.1 38.8 53.4 109 109 q.01849 q.01089 q.01084 q.01084 q.01085 q.01085 0.02 q.02 q.02 0.02 0.03 0.13	44.8 33.3 64.7 34.0 14.2 47.1 38.8 53.4 78.4 40.092 -0.0084 -0.0084 -0.0084 -0.0084 -0.02 0.02 0.02 17.1 16.5 14.1 15.7 86.5 18.4 136 17.2 -(Als -0.136 -0.136 -0.136 -0.27 -0.27 -0.26 -0.26	Vanadium	17.1	19.4	21.4	23.5	26.6	45.2	21.7	23	25.4	23.1	27.3	SN	SN
40.00% CALDEW CALDEW<	©10892 ©10896 ©10894 ©10895 0.02 0.02 0.02 17.1 16.5 14.1 15.7 38.5 18.4 13.8 17.2 <0.16	Zinc	111	26	09	44.8	33.3	64.7	34.0	142	47.1	38.8	53.4	109	10,000
129 137 137 137 141 157 158 154 138 159	T/71 165 141 157 385 184 138 172 <0.416	Mercury	<0.0369	<0.0379	<0.0378	<0.0392	<0.0386	<0.0364	<0.0353	0.2	0.02	<0.02	0.02	0.18	0.81
4000 c000 c000 c000 c000 c000 c000 c000	COM/6 Q1,410 Q1,386 Q1,377 Q1,277 Q1,277 Q1,286	Chromium, Trivalent	12.9	13.7	37.2	17.1	16.5	14.1	15.7	38.5	18.4	13.8	17.2	30	180
TOTAL COMPANY OF THE PARTY OF T	NS-this districts that no agalacty in itin has been established for this analyte	Chromium, Hexavalent	<0.392	<0.402	1.47	<0.416	<0.410	<0.386	<0.375	<0.297	<0.297	<0.286	<0.286	1	110

Table 12 - UST Excavation Endpoint Sample Results

Sample ID	EP-1 (5 ft)	EP-2 (5 ft)	_	EP-3 (5 ft)	Н	EP-4 (5 ft)	EP-5 (6.5 ft)	ft)	NYSDEC	NYSDEC	NYSDEC
York ID	-	1730671-02	+	1730671-03	-	1730671-04	1730671-05	05	Part 375	Part 375	Part 375
Sampling Date	10/16/2017	10/16/2017		10/16/2017		10/16/2017	10/16/2017	17	Restricted	Restricted	Unrestricted
Client Matrix	Soil	Soil		Soil	Н	Soil	Soil		Use Soil	Use Soil	Use Soil
Compound	EP-1 (5 ft Q	Result	O	Result (QF	Result Q	Result	\bigcirc	Cleanup	Cleanup	Cleanup
Volatile Organics, 8260 List	mg/Kg	mg/Kg	I	mg/Kg	n	mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg
Dilution Factor	1	1		1		1	1				
1,1,1,2-Tetrachloroethane	0.00270 U	0.00200	$0 \mid \Omega$	0.00170	U 0.	0.00240 U	0.00250	Γ	₹	~	`
1,1,1-Trichloroethane	0.00270 U	0.00200	$0 \mid 0$	0.00170	U 0.	0.00240 U	0.00250	U	100	100	0.68
1,1,2,2-Tetrachloroethane	0.00270 U	0.00200	$0 \mid \Omega$	0.00170	\cup 0.	0.00240 U	0.00250	N	₹	~	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.00270 U	0.00200	$0 \mid 0$		U 0.	0.00240 U	0.00250	U		`	`
1,1,2-Trichloroethane	0.00270 U	0.00200	$0 \mid \Omega$	0.00170	U 0.	0.00240 U	0.00250	N	}	~	?
1,1-Dichloroethane	0.00270 U	0.00200	0	0.00170	0	0.00240 U	0.00250	U	26	19	0.27
1,1-Dichloroethylene	0.00270 U	0.00200	0Ω	0.00170	U 0.	0.00240 U	0.00250	U	100	100	0.33
1,1-Dichloropropylene	0.00270 U	0.00200	$0 \mid 0$	0.00170	U 0.	0.00240 U	0.00250	U	`	~	
1,2,3-Trichlorobenzene	0.00270 U	0.00200	$0 \mid \Omega$	0.00170	\cup 0.	0.00240 U	0.00250	N	₹	~	`
1,2,3-Trichloropropane	0.00270 U	0.00200	$0 \mid 0$		U 0.	0.00240 U	0.00250	U	~	`	`
1,2,4-Trichlorobenzene	0.00270 U	0.00200	0	0.00170	U 0.	0.00240 U	0.00250	U	₹	{	`
1,2,4-Trimethylbenzene	0.00270 U	0.00200	$0 \mid 0$	0.00170	U 0.	0.00240 U	0.00250	U	52	47	3.6
1,2-Dibromo-3-chloropropane	0.00270 U	0.00200	0	0.00170	U 0.	0.00240 U	0.00250	U	~	}	
1,2-Dibromoethane	0.00270 U	0.00200	0	0.00170	U 0.	0.00240 U	0.00250	U	₹	}	₹
1,2-Dichlorobenzene	0.00270 U	0.00200	0		U 0.	0.00240 U	0.00250	U	100	100	1.1
1,2-Dichloroethane	0.00270 U	0.00200	$0 \mid 0$		U 0.	0.00240 U	0.00250	U	3.1	2.3	0.02
1,2-Dichloropropane	0.00270 U	0.00200	$0 \mid 0$		U 0.	0.00240 U	0.00250	U	`		
1,3,5-Trimethylbenzene	0.00270 U	0.00200	0	0.00170	U 0.	0.00240 U	0.00250	n	52	47	8.4
1,3-Dichlorobenzene	0.00270 U	0.00200	0	0.00170	U 0.	0.00240 U	0.00250	U	49	17	2.4
1,3-Dichloropropane	0.00270 U	0.00200	$0 \mid 0$	0.00170	U 0.	0.00240 U	0.00250	U	`	`	
1,4-Dichlorobenzene	0.00270 U	0.00200	$0 \mid 0$	0.00170	U 0.	0.00240 U	0.00250	U	13	8.6	1.8
1,4-Dioxane	0.0530 U	0.0400	U (U 0	0.0480 U	0.0500	U	13	8.6	0.1
2,2-Dichloropropane	0.00270 U	0.00200	0		U 0.	0.00240 U	0.00250	n	?	}	?
2-Butanone	0.00270 U	0.00200	0	0.00170	U 0.	0.00240 U	0.00250	n	100	100	0.12
2-Chlorotoluene	0.00270 U	0.00200	0 0	0.00170	U 0.	0.00240 U	0.00250	n	ζ	l	ì
4-Chlorotoluene	0.00270 U	0.00200	0 0	_	U 0.	0.00240 U	0.00250	Ŋ	?	ì	?
Acetone	0.00530 U	0.00400	0		U 0.	0.00480 U	0.00500	U	100	100	0.05
Benzene	0.00270 U		0		U 0.	0.00240 U	0.00250	U	4.8	2.9	0.06
Bromobenzene	0.00270 U	0.00200	$0 \mid 0$	0.00170	U 0.	0.00240 U	0.00250	U	₹	}	₹
Bromochloromethane	0.00270 U	0.00200	$0 \mid 0$	0.00170	U 0.	0.00240 U	0.00250	U	`	~	
Bromodichloromethane	0.00270 U	0.00200	0	0.00170	U 0.	0.00240 U	0.00250	N	?	}	₹
Bromoform	0.00270 U		0		U 0.	0.00240 U	0.00250	n	?	₹	?
Bromomethane	0.00270 U		0 0		U 0.	0.00240 U	0.00250	n	ζ	l	?
Carbon tetrachloride	0.00270 U	0.00200	0 1	0.00170	U 0.	0.00240 U	0.00250	n	2.4	1.4	0.76

Chloroethane		т	00000	II		Ξ	4	t					
	0.00270	n	0.002001	כ	0.00170		0.00240	n	0.00250	n	\sim	≀	≀
Chloroform	-	n	0.00200	U	0.00170	N	0.00240	U	0.00250	N	65	10	0.37
Chloromethane		n	0.00200	U	0.00170	N	0.00240	N	0.00250	N	\sim	l	?
cis-1,2-Dichloroethylene	0.00270	n	0.00200	U	0.00170	N	0.00240	N	0.00250	N	100	69	0.25
cis-1,3-Dichloropropylene	0.00270	n	0.00200	U	0.00170	U	0.00240	U	0.00250	U	~	≀	}
Dibromochloromethane		Γ	0.00200	U	0.00170	U	0.00240	U	0.00250	U	\sim	≀	{
Dibromomethane	0.00270	Γ	0.00200	U	0.00170	N	0.00240	N	0.00250	N	\sim	≀	{
nethane		n	0.00200	U	0.00170	N	0.00240	U	0.00250	N	~	≀	₹
Ethyl Benzene	0.00270	n	0.00200	U	0.00170	N	0.00240	N	0.00250	N	41	30	1
Hexachlorobutadiene		n	0.00200	U	0.00170	N	0.00240	U	0.00250	N	~	l	?
Isopropylbenzene	0.00270	n	0.00200	N	0.00170	N	0.00240	N	0.00250	N	~	l	?
Methyl tert-butyl ether (MTBE)	0.00270	n	0.00200	U	0.00170	N	0.00240	N	0.00250	N	100	62	0.93
Methylene chloride	-	n	0.00400	U	0.00340	N	0.00480	U	0.00500	N	100	51	0.05
Naphthalene	0.00270	n	0.00200	N	0.00170	N	0.00240	N	0.00250	N	100	100	12
n-Butylbenzene		n	0.00200	U	0.00170	N	0.00240	N	0.00250	N	100	100	12
n-Propylbenzene		Γ	0.00200	U	0.00170	N	0.00240	N	0.00250	N	100	100	3.9
o-Xylene	0.00270	n	0.00200	U	0.00170	n	0.00240	U	0.00250	U	`	}	}
p- & m- Xylenes	0.00530	þ	0.00400	U	0.00340	Ŋ	0.00480	Ŋ	0.00500	n	}	l	≀
p-Isopropyltoluene		n	0.00200	U	0.00170	U	0.00240	U	0.00250	U	\	}	}
sec-Butylbenzene		n	0.00200	U	0.00170	U	0.00240	U	0.00250	U	100	100	11
Styrene		n	0.00200	U	0.00170	U	0.00240	U	0.00250	U	`	≀	}
tert-Butylbenzene	0.00270	n	0.00200	U	0.00170	U	0.00240	U	0.00250	U	100	100	5.9
Tetrachloroethylene	0.00270	n	0.00200	U	0.00170	U	0.00240	U	0.00250	U	19	5.5	1.3
Toluene		n	0.00200	U	0.00170	N		U	0.00250	N	100	100	0.7
trans-1,2-Dichloroethylene		\neg	0.00200	U	0.00170	D	0.00240	Ŋ	0.00250	Ŋ	100	100	0.19
trans-1,3-Dichloropropylene		þ	0.00200	U	0.00170	Ŋ	0.00240	Ŋ	0.00250	U	?	≀	≀
		b	0.00200	U	0.00170	n	0.00240	n	0.00250	n	21	10	0.47
Trichlorofluoromethane		D	0.00200	U	0.00170	n	0.00240	U	0.00250	n	l	l	?
Vinyl acetate	_	þ	0.00200	U	0.00170	Ŋ	0.00240	Ŋ	0.00250	n	}	l	≀
Vinyl Chloride	0.00270	n	0.00200	U	0.00170	U	0.00240	U	0.00250	U	6.0	0.21	0.02
Xylenes, Total	0.00800	n	0.00610	U	0.00510	U	0.00730	U	0.00740	U	100	100	0.26
Volatile Organics, Tentatively Identified Cmpds.	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg				
Dilution Factor	1		1		1		1		_				
Tentatively Identified Compounds	0	U	0	U	0	U	0	U	0	U	~	≀	≀
Semi-Volatiles, 8270 Target List	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	mg/Kg	mg/Kg
Dilution Factor	2		2		2		2		2				
1,2,4-Trichlorobenzene	0.0493	n	0.0478	U	0.0483	n	0.0483	n	0.0508	n	≀	l	?
1,2-Dichlorobenzene	0.0493	U	0.0478	U	0.0483	U	0.0483	U	0.0508	U	100	100	1.1
1,3-Dichlorobenzene	0.0493	U	0.0478	U	0.0483	U	0.0483	U	0.0508	U	49	17	2.4
1,4-Dichlorobenzene	0.0493	N	0.0478	U	0.0483	N	0.0483	N	0.0508	N	13	8.6	1.8

2.4.6-Trichlorophenol		Ţ	0.0478	Ξ		T				ļ			
	0.0493	<u>_</u>)	0.0483	U	0.0483	U	0.0508	n	₹	≀	≀
2,4-Dichlorophenol	0.0493	U	0.0478	U	0.0483	N	0.0483	N	0.0508	U	~	`	₹
2,4-Dimethylphenol	0.0493	N	0.0478	Ω	0.0483	Ω	0.0483	N	0.0508	Π		`	≀
2,4-Dinitrophenol	0.0984	U	0.0953	U	0.0964	U	0.0965	U	0.101	U	≀	≀	≀
2,4-Dinitrotoluene	0.0493	N	0.0478	Ω	0.0483	Ω	0.0483	N	0.0508	N		≀	≀
2,6-Dinitrotoluene	0.0493	n	0.0478	U	0.0483	U	0.0483	N	0.0508	U	≀	≀	≀
2-Chloronaphthalene	0.0493	n	0.0478	n	0.0483	n	0.0483	n	0.0508	n	2	l	≀
2-Chlorophenol	0.0493	n	0.0478	n	0.0483	n	0.0483	n	0.0508	U	≀	≀	≀
2-Methylnaphthalene	0.0493	n	0.0478	n	0.0483	n	0.0483	n	0.0508	n	≀	l	≀
2-Methylphenol	0.0493	U	0.0478	U	0.0483	U	0.0483	n	0.0508	U	100	100	0.33
2-Nitroaniline	0.0984	U	0.0953	U	0.0964	U	0.0965	N	0.101	U	~	`	`
2-Nitrophenol	0.0493	N	0.0478	Ω	0.0483	Ω	0.0483	N	0.0508	Γ		`	₹
3- & 4-Methylphenols	0.0493	U	0.0478	N	0.0483	N	0.0483	N	0.0508	Γ	~	`	₹
3,3-Dichlorobenzidine	0.0493	N	0.0478	Ω	0.0483	Ω	0.0483	N	0.0508	Π		`	≀
3-Nitroaniline	0.0984	U	0.0953	U	0.0964	U	0.0965	U	0.101	U	≀	≀	≀
4,6-Dinitro-2-methylphenol	0.0984	U	0.0953	U	0.0964	U	0.0965	N	0.101	U	~	`	₹
4-Bromophenyl phenyl ether	0.0493	n	0.0478	U	0.0483	U	0.0483	N	0.0508	U	₹	}	}
4-Chloro-3-methylphenol	0.0493	n	0.0478	Ŋ	0.0483	n	0.0483	n	0.0508	U	}	}	?
4-Chloroaniline	0.0493	n	0.0478	U	0.0483	U	0.0483	n	0.0508	U	\	}	₹
4-Chlorophenyl phenyl ether	0.0493	n	0.0478	U	0.0483	U	0.0483	n	0.0508	U	}	₹	?
4-Nitroaniline	0.0984	n	0.0953	n	0.0964	n	0.0965	n	0.101	U	l	?	?
4-Nitrophenol	0.0984	U	0.0953	U	0.0964	U	0.0965	U	0.101	U	`	}	₹
Acenaphthene	0.0493	U	0.0478	U	0.0483	U	0.0483	U	0.0508	U	100	100	20
Acenaphthylene	0.0493	N	0.0478	U	0.0483	U	0.0483	N	0.0508	U	100	100	100
Aniline	0.197	n	0.191	U	0.193	U	0.193	n	0.203	U	}	₹	?
Anthracene	0.0493	n	0.0478	U	0.0483	U	0.0483	n	0.0508	U	100	100	100
Benzo(a)anthracene	0.0889	Œ	0.109	D	0.219	D	0.0578	Ωſ	0.0510	Œ	1	1	1
Benzo(a)pyrene	0.0975	Ωſ	0.0937	IJ	0.224	D	0.0555	JD	0.0508	U	1	1	1
Benzo(b)fluoranthene	0.0841	Ð	0.0762	Œ	0.204	Ω	0.0483	n	0.0508	Ŋ	1	1	1
Benzo(g,h,i)perylene	0.0700	Ð	0.0609	Œ	0.156	D	0.0483	n	0.0508	U	100	100	100
Benzo(k)fluoranthene	0.0975	Ωſ	9060.0	IJ	0.222	D	0.0540	JD	0.0508	U	3.9	1	8.0
Benzyl alcohol	0.0493	n	0.0478	Ŋ	0.0483	D	0.0483	n	0.0508	U	}	}	?
Benzyl butyl phthalate	0.0493	n	0.0478	n	0.0483	n	0.0483	n	0.0508	U	l	?	?
Bis(2-chloroethoxy)methane	0.0493	U	0.0478	U	0.0483	U	0.0483	U	0.0508	U		`	`
Bis(2-chloroethyl)ether	0.0493	N	0.0478	U	0.0483	U	0.0483	N	0.0508	U		}	₹
Bis(2-chloroisopropyl)ether	0.0493	n	0.0478	U	0.0483	U	0.0483	n	0.0508	U	{	₹	?
Bis(2-ethylhexyl)phthalate	0.0493	U	0.0478	U	0.0483	U	0.0483	U	0.0508	U		`	₹
Chrysene	0.101	D	0.114	D	0.266	D	0.0694	JD	0.0575	JD	3.9	1	1
Dibenzo(a,h)anthracene	0.0493	n	0.0478	U	0.0509	Œ	0.0483	n	0.0508	U	0.33	0.33	0.33
Dibenzofuran	0.0493	n	0.0478	Ŋ	0.0483	U	0.0483	n	0.0508	U	59	14	7

Diethyl phthalate	0.0493	U	0.0478	U	0.0483	U	0.0483	N	0.0508	$ \Omega $		l	≀
Dimethyl phthalate	0.0493	U	0.0478	U	0.0483	U	0.0483	N	0.0508	U	{	{	₹
Di-n-butyl phthalate	0.0493	U	0.0478	N	0.0483	U	0.0483	N	0.0508	U		`	~
Di-n-octyl phthalate	0.0493	n	0.0478	N	0.0483	N	0.0483	N	0.0508	U	≀	l	≀
Fluoranthene	0.158	D	0.240	D	0.350	D	0.116	Q	0.0980	JD	100	100	100
Fluorene	0.0493	n	0.0478	Ω	0.0483	N	0.0483	N	0.0508	U	100	100	30
Hexachlorobenzene	0.0493	N	0.0478	Ω	0.0483	U	0.0483	N	0.0508	U	1.2	0.33	0.33
Hexachlorobutadiene	0.0493	N	0.0478	Ω	0.0483	U	0.0483	Ω	0.0508	U		`	₹
Hexachlorocyclopentadiene	0.0493	n	0.0478	N	0.0483	U	0.0483	N	0.0508	U	≀	≀	
Hexachloroethane	0.0493	n	0.0478	N	0.0483	U	0.0483	N	0.0508	U	≀	≀	≀
Indeno(1,2,3-cd)pyrene	0.0661	JD	0.0548	JD	0.143	D	0.0483	N	0.0508	U	0.5	0.5	0.5
Isophorone	0.0493	U	0.0478	U	0.0483	U	0.0483	N	0.0508	U		{	₹
Naphthalene	0.0493	N	0.0478	Ω	0.0483	U	0.0483	Ω	0.0508	U	100	100	12
Nitrobenzene	0.0493	U	0.0478	N	0.0483	U	0.0483	N	0.0508	U		`	~
N-Nitrosodimethylamine	0.0493	U	0.0478	U	0.0483	U	0.0483	N	0.0508	U		{	₹
N-nitroso-di-n-propylamine	0.0493	U	0.0478	U	0.0483	U	0.0483	U	0.0508	U	{	\	₹
N-Nitrosodiphenylamine	0.0493	U	0.0478	N	0.0483	U	0.0483	N	0.0508	U		`	~
Pentachlorophenol	0.0493	N	0.0478	Ω	0.0483	U	0.0483	N	0.0508	U	6.7	2.4	8.0
Phenanthrene	0.0621	JD	0.171	D	0.143	D	0.0578	JD	0.0519	JD	100	100	100
Phenol	0.0493	U	0.0478	N	0.0483	U	0.0483	N	0.0508	U	100	100	0.33
Pyrene	0.143	D	0.201	D	0.303	D	0.103	D	0.0843	JD	100	100	100
Pyridine	0.197	U	0.191	U	0.193	U	0.193	N	0.203	U	≀	l	₹
Semi-Volatiles, Tentatively Identified Cmpds.	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg				
Dilution Factor	2		2		2		2		2				
Tentatively Identified Compounds	0	U	0	U	0	U	0	N	0	U		`	₹
Total Solids	%		%		%		%		%				
Dilution Factor	1		1		1		1		1				
% Solids	84.800		87.500		86.500		86.500		82.300		l	l	≀

NOTES

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

Table 13 – Contamination Remaining Onsite in Exceedance of UUSCOs $11\text{-}28\ 31^{\text{st}}\ \text{Drive, Queens}$

SP-4, 6-8' bgs	(see Figure 6)	SP-5, 6-8' bgs	(see Figure 6)
Contaminant	Selenium	Contaminant	Selenium
Concentration	7.69	Concentration	9.87
(mg/kg)		(mg/kg)	
UUSCO	3.9	UUSCO	3.9
(mg/kg)		(mg/kg)	
Residential	36	Residential	36
SCO (mg/kg)		SCO (mg/kg)	

Table 14a Pre-Injection Groundwater Results 11-28 31st Drive, Queens, NY

				28 3	1st Drive,										
Sample ID	MW-1		MW-2		MW-3		MW-4		MW-6	_	Field Blar	ık	Trip Blar	ık	
Sampling Date	2/19/2018		2/19/201	8	2/19/20	18	2/19/201	8	2/19/201	8	2/19/201	8	2/19/201	18	NYSDEC TOGS
Sampling Date	2/19/2010		2/19/201	.0	2/15/20	10	2/19/201	.0	2/19/201		2/19/201	.0	2/19/20		Standards and Guidance Values - GA
Matrix	Groundwater		Groundwa	ter	Groundwa	ater	Groundwa	ter	Groundwa	ter	Groundwa	ter	Groundwa	iter	
Compound	μg/L	Q	μg/L	0	μg/L	0	μg/L	0	μg/L	Q	μg/L	Q	μg/L	0	
1,1,1,2-Tetrachloroethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,1,1-Trichloroethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,1,2,2-Tetrachloroethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
		U	0.2	-		-	0.2	U		U		U		U	5
1,1,2-Trichloro-1,2,2-trifluoroeth	0.2	_		U	0.2	U		-	0.2	U	0.2	-	0.2	_	1
1,1,2-Trichloroethane	0.2	U	0.2		0.2	U	0.2	U	0.2	-	0.2	U	0.2	U	_
1,1-Dichloroethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,1-Dichloroethylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,1-Dichloropropylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,2,3-Trichlorobenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,2,3-Trichloropropane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.04
1,2,4,5-Tetramethylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS
1,2,4-Trichlorobenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,2,4-Trimethylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,2-Dibromo-3-chloropropane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.04
1,2-Dibromoethane	0.2	U	0.2	U	0.2	U	0.2	U		U	0.2	U	0.2	U	0.0006
1,2-Dichlorobenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	3
								_		-		_			
1,2-Dichloroethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.6
1,2-Dichloropropane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	1
1,3,5-Trimethylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,3-Dichlorobenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	3
1,3-Dichloropropane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,4-Dichlorobenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	3
2,2-Dichloropropane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
2-Butanone	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	50
2-Chlorotoluene	0.2	U	0.2	U	0.2	U	0.2	U		U	0.2	U	0.2	U	5
2-Hexanone	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	50
4-Chlorotoluene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS NS
4-Methyl-2-pentanone		_		_		_		_		U		U		U	
Acetone	1.0	U	1.0	U	1.0	U	1.0	U	1.0		5.6		1.0	_	50
Benzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	1
Bromobenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U		U	5
Bromochloromethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Bromodichloromethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	50
Bromoform	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	50
Bromomethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Carbon disulfide	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS
Carbon tetrachloride	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Chlorobenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Chloroethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Chloroform	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	7
Chloromethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
	0.2	U	0.6	U	0.2	U	0.2	-	57	U	0.2	U	0.2	U	5
cis-1,2-Dichloroethylene		-				_						-		-	
cis-1,3-Dichloropropylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.4
Dibromochloromethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	50
Dibromomethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS
Dichlorodifluoromethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Ethyl Benzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Hexachlorobutadiene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.5
Isopropylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Methyl tert-butyl ether (MTBE)	0.2	U	0.9		0.2	U	0.2	U	0.3	J	0.2	U	0.2	U	10
Methylene chloride	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ú	1.0	U	1.0	U	5
Naphthalene	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	10
n-Butylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U		U	5
n-Propylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
										_				_	
o-Xylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
p- & m- Xylenes	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U		U	5
p-Diethylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS
p-Ethyltoluene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS
p-Isopropyltoluene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
sec-Butylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Styrene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
tert-Butylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Tetrachloroethylene	0.3	J	25	Г	4.1	П	70	Г	75	Н	0.2	U		U	5
Toluene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
trans-1,2-Dichloroethylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	ı	0.2	U	0.2	U	5
trans-1,3-Dichloropropylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U		U	0.4
	0.2	U	0.4	-	0.2	U	0.2	۲	15	J	0.2	U	0.2	U	5
Trichloroethylene		-		J		_		7.		7.		-		-	
Trichlorofluoromethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Vinyl Chloride	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	2
Xylenes, Total	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	5
NOTES:	·	_		_										_	

NOTES:

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

NS=this indicates that no regulatory limit has been established for this analyte

Indicates a TOGS Exceedance

Table 14b - Remedial Investigation Groundwater Data (2013 and 2015)
VOC Results
11-28 31st Drive, Queens

								02-11	20.00	Dilve, Queelis	2		=						
Sample ID	MW ^c 1	MW-2	MW-3	MW-3 (Duplicate)	MW:1	MW-2	MW-3	MW-4	MW-5	MW:-6	MW-7	MW:8	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank	
Sampling Date	4/25/2013	4/25/2013	4/25/2013	4/25/2013	1/13/2015	1/13/2015	1/13/2015	1/13/2015	1/13/2015	1/13/2015	1/13/2015	1/13/2015	1/13/2015	1/13/2015	4/24/2013	4/25/2013	4/25/2013		NYSDEC TOCS Standards
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	DI water	DI water	DI Water		nd Guidance Values - GA
Units	ng/L	ng/L	ng/L	ng/L	ng/L	n%T	ng/L	ng/L		T/Sn	ng/L	ng/L	n%T	ng/L	ng/L	ng/L	ng/L	ng/L	
									nics, 826						•	÷			
1,1,1,2,2 Tetrachloroethane	8 8	5 6	5 6	5 6	A2 0	A 28	40.2 40.2 11.0	1.40	A12 U	A 2 C	42 CD	402 D	402 D	42 42 11	8 8	5 6	5 6	5 65	io io
1,1,22-Tetrachloroethane	425	525	25	425		402									425	425	52	25	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	<25	425	<2.5	<25	<0.2 U	<0.2	<0.2 U	<0.2 U	<0.2 U			<0.2 U			425	425	425	<2.5	5
1,1,2-Trichloroethane	25	52	25	25	<02 U	402 U	<02 U			402 U	402 0		402 U	402 n	52	25	25	2.5	1
1.1-Dichlorochylene	9 6	62 62	9 6	9 6	41.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 1	40.2	40.5	777	412	40.2	40.5 11	202	412	202	9 6	5 6	9 6	9 6	n in
1.1-Dichloropropylene	25	25	25	25	402 U	402 D		402 D		A2 U	402 D		402 U	402 U	22	25	25	25	
1,2,3-Trichlorobenzene	425	<2.5	425	425	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<25	425	<2.5	425	20
1,2,3-Trichloropropane	<25	425	<25	<25	<0.2 U	<0.2 U	-40.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	-40.2 U	<0.2 U	<0.2 U	425	425	2.5	<25	0.04
1,2,4,5-Tetramethylbenzene	IN	NT	NT	NT	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	IN	NT.	NT	NT	5
1,2,4-Trichlorobenzene	425	2.5	<2.5	<25	<0.2 U	<0.2 U		<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.5 U	<0.2 U	<0.2 U	425	425	2.5	2.5	3
1,2,4-Trimethylbenzene	425	25	2.5	25	0.21 J	<0.2 U	40.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	425	25	25	25	5
1,2-Dibromo-3-chloropropane	2.5	425	2.5	2.5	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	2.5	2.5	425	425	0.04
1,2-Dibromoethane	25	25	25	25	402 D	402 U	402 U	402 U	402 U	402 U	402 U	402 U	402 U	402 U	25	25	25	25	22
1,2-Dichlorobenzene	25	52	25	25	402 D	402 U	412 U	402 U	402 U	402 U	402 U	402 U	402 U	402 U	25	25	52	52	3
1,2-Dichloroethane	522	52 52	5 63	25	402 O	402 D	402 U	402 O	402 U	402 O	402 D	402 O	402 n	402 O	52	52 52	50 50	5 63	979
1,2-Dichloropropane	575	572	572	575	402	40.7	40.2	407 O	40.2 U	417 O	415 O	407 O	40.2	40.2	57	572	57	575	- 1
1,5,5-1 nmemy toenzene	675	575	572	575	40.2	40.2	412	40.2	40.2 U	40.2	40.2 O	40.2	40.2 O	40.2 O	572	525	572	675	
1,3-Dichlorobenzene	5 7	52.0	5 5	6 7	415 43 11	412 433	412 O	412 433	412 O	402 O	412 403	A12	402 O	402 O	5 63	52 62	52.0	5 63	*** H
t.o-t.denoropropane	57 1	52.5	57.0	57 5	402	202	0 700	0 275	40.2	0 705	405 D	0 700	200	202	57.	52.5	52.5	9 6	
1,4-Lichlorencence	52	9 6	5 6	5 6	402	402	0 700	40.2	40.2	0 7	40.2	30 0	40.2	200	52	9 6	9 6	9 6	0 11
4,2-Denoropropane	5 6	9 6	9 5	5 6	903	40.2	0 700	0 200	0 707	0 70	0 2	0 1	0 20	0 2	3 5	9 6	9 6	9 6	n S
2.Chlorotolnone	3 %	30	3 6	3.6	40.5	40.5	40.5	41.5	40.7	402	41.5	413	412	412	3.0	20	30	30	3 10
2.Hovanone	N IN	N IN	N I	, I	40.2	40.2	40.2	40.2	40.2	d12 II	40.7	40.5	412	40.5	I I	N I	N I		
4-Chlorotoluene	425	522	- 52	25	40.2 D	40.2 D	40.2 U	40.2 U	40.2 D	40.2 D	40.2 U	40.2 D	40.2 U	40.2 U	425	525	525	425	
4-Methyl-2-pentanene	IN	N	IN	IN	40.2 D	<0.2 U	40.2 U	40.2 D	40.2 U	40.2 D	40.2 U	40.2 D	<0.5 U	40.2 U	IN	N	N	IN	SN
Acetone	4.0 J.B	425	3.6 J.B	3.9 J.B	n ⊳	n ⊳	n Þ	1.40	n ⊳	n Þ	1.30	n Þ	n Þ	n Þ	12 J,B	16 B	5.4 J.B	16 B	90
Benzene	425	<2.5	2.5	<25	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	425	425	2.5	2.5	1
Bromobenzene	425	<25	425	425	40.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	40.2 U	<2.5	<25	2.5	2.5	2
Bromochloromethane	425	525	25	25	40.2 U	40.2 U	40.2 U	40.2 U	40.2 U	402 U	40.2 U	402 U	40.2 U	40.2 U	425	525	2.5	2.5	2
Bromodichloromethane	25	<25	<25	<25	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<25	<25	2.5	2.5	50
Bromoform	<25	<25	<25	<2.5	<0.2 U	<0.2 U	<02 U	<0.2 U	<0.2 U	<02 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<25	<25	2.5	2.5	30
Bromomethane	25	25	25	25	<02 U	<02 U	402 U	<02 U	<02 U	402 U	<02 U	402 U	<0.2 U	<02 U	25	25	25	25	ın .
Carbon disulfide	N	N	N	N	40.2 U	40.2 0	40.2	40.2 O	QU.2 U	40.2 0	40.2 U	40.2 0	40.2 U	40.2 U	NI	N	NI	N	S
Chlorobenzone	20	30	20	30	40.2	40.5	40.5	40.2	40.2	40.5	40.2	40 cm	40.5	40.5	20	20	20	30	o er
Chloroethane	52	52	52	25	40.2 U	40.2 U	40.2 U	40.2 U	40.2 U	40.2 U	40.2 U	40.2 U	40.2 U	40.2 U	52	52	52	25	s in
Chloroform	2.5	2.5	2.5	4.7	<0.2 U	0.35	0.54	1 220	<0.2 U	<0.2 U	-	<0.2 U	40.2 U	40.2 U	2.5	2.5	2.5	2.5	7
Chloromethane	92	25	50.5	0.5	40.2	40.2	U 200	d12 □	□ □ □ □	40.2 U	- II □	- II - I	d12 □	40.2 U	. 25	50	5.5	50	. un
cis-12-Dichloroethylene	2.5	52	25	25	<0.2 U	<0.2 U	1.10	20	<0.2 U	40 D	<0.2 U	1.10	<0.2 U	40.2 U	2.5	25	52	25	i in
cis-1,3-Dichloropropylene	425	2.5	2.5	25	<0.2 U	<0.2 U	40.2 U	<0.2 U		ĺ.	<0.2 U	40.2 U	<0.2 U	<0.2 U	2.5	2.5	2.5	2.5	0.4
Dibromochloromethane	2.5	2.5	2.5	2.5	<0.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	2.5	2.5	2.5	2.5	20
Dibromomethane	42.5	42.5	2.5	42.5	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	42.5	2.5	42.5	42.5	SN
Dichlorodifluoromethane	42.5	42.5	2.5	42.5	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	42.5	2.5	42.5	42.5	0.0
Ethyl Benz ene	42.5	<2.5	<2.5	2.5	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	2.5	2.5	<2.5	<2.5	5
Hexachlorobutadiene	42.5	<2.5	<2.5	2.5	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	2.5	2.5	<2.5	<2.5	0.5
Isopropylbenzene	<0.63	<0.63	<0.63	<0.63	<0.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	-Q1.2 U	<0.2 U	-0.2 U	2.5	<0.053	<0.63	<0.63	5
Methyl tert-butyl ether (MTBE)						<0.2 U			0.39	<0.2 U	<0.2 U		<0.2 U			2.5		2.5	10
Methylene chloride	3.0 J,B	3.3 J.B	2.8 J.B	4.2 J,B	D :	D :			n F	n :	D :	D :	D :	D :	2.5 J,B	12 B	5.4 J.B	12 B	ın i
Naphthalehe	7.23	2 52	7 72	7 72	0 17	0 17	0 17	0 17	41 0	0 17	0 17	0 17	0 17	7 6	7.23	7 72	2 52	2 52	OF S
II-Duty Delizence	9 6	7 7	7 7	3 6	20.2					7.00	27.0		27.0		7 7	2 6	7 7	9 6	0 10
o-Welene	0.5	20	0.5	0.5	40.2	40.2	412	40.5	40.2	40.7	40.5	40.5 11.0	1 280	1 020	0.5	0.0	20	20	o un
n. & m. Xvienes	30	30	0.0	0.0	11 500	405	11 5/05	11 2	11 500	11 500	0 11	11 500	11	11	is	30	30	30	o ur
p-Die flyctbenzene	N	Þ	N	N	<0.2 U	40.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	40.2	<0.2 U	<0.2 U	40.2	N	×	N	×	- 52
p-Ethyltoluene	IN	×	IN	N	40.2 U	40.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	40.2 U	<0.2 U	40.2 U	40.2 U	IN	i k	N.	IN	S2
p-Isopropylloluene	2.5	2.5	2.5	425	<0.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	40.2 U	40.2 U	40.2 U	2.5	2.5	2.5	2.5	10
sec-Butylbenzene	42.5	2.5	2.5	2.5	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	2.5	2.5	2.5	42.5	en.
Styrene	2.5	42.5	2.5	2.5	<0.2 U		<0.2 U			<0.2 U	<0.2 U	<0.2 U	<0.2 U		2.5	2.5	2.5	2.5	en.
tert-Butylbenzene	2.5	2.5	2.5	2.5	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	<0.2 U	2.5	2.5	2.5	2.5	5
Tetrachloroethylene	<2.5	<2.5	38	83	<0.2 U	3.03*	20.83*	3,799.83* D	5.43*	S5.83* D	3.53	1.83	0.53	0.36 J	42.5	<2.5	<2.5	42.5	33
Toluene	42.5	42.5	2.5	425	0.28	<0.2 U	40.2 U	0.12** J	<0.2 U	1 **90'0	0.20 U	070 n	0.20 U	0.22 J	42.5	2.5	42.5	42.5	5
trans-1,2-Dichloroethylene	425	25	25	425	<0.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	0.28 J	0.20 U	0.20 U	0.20 U	0.20 U	25	2.5	2.5	42.5	33
trans-1,3-Dichloropropylene	425	425	425	425	<0.2 U	<0.2 U	40.2 U	<0.2 U	<0.2 U	<0.2 U	0.20 U	0.20 U	0.20 U	0.20 U	425	425	425	42.5	0.4
Trichloroethylene	<2.5	<2.5	<2.5	<25	<0.2 U	<0.2 U	0.52	17	0.81	8.90	0.20 U	1.20	0.20 U	0.20 U	<2.5	42.5	<2.5	2.5	10
Trichlorofluoromethane	425	25	2.5	25	<02 U	<0.2 U	<0.2 U	<02 U	<0.2 U	<02 U	0.20 U	0.20 U	0.20 U	0.20 U	2.5	2.5	2.5	2.5	ın.
Vinyl acetate	52	500	57 57	5 63	N S	N S	IN P	N S	NI P	IN S	IN OCO	IN CO	IN OCO	IN 000	52.2	52.2	5 62	7 72	SN
Vinyi Cinonine Total VOCs	7	33	44.4	85.8	0.77	2 80	23.88	384525	1.2	135.49	7.03	5.13	2.00	187	12	9 %	108	× ×	4 SZ
B-analyte found in the analysis batch blank		i i		an ac		districts and	/ dames	T amount of	!	distribution of the same of th	nam ,	-	-	The state of the s		-	***************************************	i	
Teanalyte detected at or above the MDL (method detects	on limit) but below the F	L (Reporting Limit) - data	a is estimated																

The angle occurs in the angle occurs in the angle occurs of the angle occurs of the angle occurs of the angle occurs occu

Table 14b - Remedial Investigation Groundwater Data (2013 and 2015) SVOCs 11-28 31st Drive, Queens

SampleID	MW-1	MW-2	MW-3	MW-3 (Duplicate)	Field Blank	Field Blank	
Sampling Date	4/25/2013	4/25/2013	4/25/2013	4/25/2013	4/24/2013	4/25/2013	NYSDEC TOGS Standards and
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	DI Water	DI Water	Guidance Values - GA
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	- GA
		Semi	-Volatiles, 8270 Ta	arget List			
1,2,4-Trichlorobenzene	<2.47	<2.53	<2.53	<2.53	<2.53	<2.53	5
1,2-Dichlorobenzene	<2.49	<2.55	<2.55	<2.55	<2.55	<2.55	3
1,3-Dichlorobenzene	<2.61 <2.21	<2.68 <2.27	<2.68 <2.27	<2.68 <2.27	<2.68 <2.27	<2.68 <2.27	3
1,4-Dichlorobenzene 2,4,5-Trichlorophenol	<1.91	<1.96	<1.96	<1.96	<1.96	<1.96	3
2,4,6-Trichlorophenol	<1.75	<1.79	<1.79	<1.79	<1.79	<1.79	1
2,4-Dichlorophenol	<1.89	<1.94	<1.94	<1.94	<1.94	<1.94	5
2,4-Dimethylphenol	<1.60	<1.64	<1.64	<1.64	<1.64	<1.64	50
2,4-Dinitrophenol 2,4-Dinitrotoluene	<2.25 <1.61	<2.31 <1.65	<2.31 <1.65	<2.31 <1.65	<2.31 <1.65	<2.31 <1.65	10 5
2,6-Dinitrotoluene	<1.61	<1.65	<1.65	<1.65	<1.65	<1.65	5
2-Chloronaphthalene	<2.20	<2.26	<2.26	<2.26	<2.26	<2.26	10
2-Chlorophenol	<1.79	<1.84	<1.84	<1.84	<1.84	<1.84	1
2-Methylnaphthalene	<2.76	<2.83	<2.83	<2.83	<2.83	<2.83	NS
2-Methylphenol 2-Nitroaniline	<1.16 <1.68	<1.19 <1.72	<1.19 <1.72	<1.19 <1.72	<1.19 <1.72	<1.19 <1.72	5
2-Nitroaniine 2-Nitrophenol	<2.36	<2.42	<2.42	<2.42	<2.42	<2.42	1
3,3'-Dichlorobenzidine	<1.27	<1.30	<1.30	<1.30	<1.30	<1.30	5
3- & 4-Methylphenols	<1.12	<1.15	<1.15	<1.15	<1.15	<1.15	NS
3-Nitroaniline	<1.68	<1.72	<1.72	<1.72	<1.72	<1.72	5 NC
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	<1.62 <1.33	<1.66 <1.36	<1.66 <1.36	<1.66 <1.36	<1.66 <1.36	<1.66 <1.36	NS NS
4-Chloro-3-methylphenol	<1.89	<1.94	<1.94	<1.94	<1.94	<1.94	1
4-Chloroaniline	<2.98	<3.06	<3.06	<3.06	<3.06	<3.06	5
4-Chlorophenyl phenyl ether	<2.45	<2.51	<2.51	<2.51	<2.51	<2.51	NS
4-Nitroaniline	<2.68 <1.66	<2.75 <1.70	<2.75 <1.70	<2.75 <1.70	<2.75 <1.70	<2.75 <1.70	5
4-Nitrophenol Acenaphthene	<1.77	<1.82	<1.82	<1.82	<1.82	<1.82	20
Acenaphthylene	<1.74	<1.78	<1.78	<1.78	<1.78	<1.78	NS
Aniline	<1.50	<1.54	<1.54	<1.54	<1.54	<1.54	5
Anthracene	<1.19	<1.22	<1.22	<1.22	<1.22	<1.22	50
Benzo(a)anthracene Benzo(a)pyrene	<1.31 <1.30	<1.34 <1.33	<1.34 <1.33	<1.34 <1.33	<1.34 <1.33	<1.34 <1.33	0.002
Benzo(b)fluoranthene	<1.41	<1.45	<1.45	<1.45	<1.45	<1.45	0.002
Benzo(g,h,i)perylene	<1.71	<1.75	<1.75	<1.75	<1.75	<1.75	NS
Benzo(k)fluoranthene	<1.83	<1.88	<1.88	<1.88	<1.88	<1.88	0.002
Benzyl alcohol	<1.45	<1.49	<1.49	<1.49	<1.49	<1.49	NS
Benzyl butyl phthalate Bis(2-chloroethoxy)methane	<0.852 <1.77	<0.874 <1.82	<0.874 <1.82	<0.874 <1.82	<0.874 <1.82	<0.874 <1.82	50 5
Bis(2-chloroethyl)ether	<1.50	<1.54	<1.54	<1.54	<1.54	<1.54	1
Bis(2-chloroisopropyl)ether	<2.99	<3.07	<3.07	<3.07	<3.07	<3.07	5
Bis(2-ethylhexyl)phthalate	<4.78	<4.90	<470	<4.90	<4.90	<4.90	5
Chrysene	<1.47	<1.51	<1.51	<1.51	<1.51	<1.51	0.002
Di-n-butyl phthalate Di-n-octyl phthalate	11.2 <1.12	<2.10 <1.15	<2.10 <1.15	<2.10 <1.15	<2.10 <1.15	<2.10 <1.15	50 50
Dibenzo(a,h)anthracene	<1.56	<1.60	<1.60	<1.60	<1.60	<1.60	NS
Dibenzofuran	<2.41	<2.47	<2.47	<2.47	<2.47	<2.47	NS
Diethyl phthalate	<2.56	<2.63	<2.63	<2.63	<2.63	<2.63	50
Dimethyl phthalate	<1.91	<1.96	<1.96	<1.96 <1.27	<1.96	<1.96	50
Fluoranthene Fluorene	<1.24 <1.83	<1.27 <1.88	<1.27 <1.88	<1.27 <1.88	<1.27 <1.88	<1.27 <1.88	50 50
Hexachlorobenzene	<1.27	<1.30	<1.30	<1.30	<1.30	<1.30	0.04
Hexachlorobutadiene	<2.79	<2.86	<2.86	<2.86	<2.86	<2.86	0.5
Hexachlorocyclopentadiene	<2.53	<2.59	<2.59	<2.59	<2.59	<2.59	5
Hexachloroethane	<3.04 <1.70	<3.12 <1.74	<3.12 <1.74	<3.12 <1.74	<3.12 <1.74	<3.12 <1.74	5 0.002
Indeno(1,2,3-cd)pyrene Isophorone	<2.68	<2.75	<2.75	<2.75	<2.75	<2.75	50
N-nitroso-di-n-propylamine	<2.56	<2.63	<2.63	<2.63	<2.63	<2.63	NS
N-Nitrosodimethylamine	<0.389	<0.399	< 0.399	<0.399	<0.399	<0.399	NS
N-Nitrosodiphenylamine	<5.00	<5.13	<5.13	<5.13	<5.13	<5.13	50
Naphthalene Nitrobenzene	<1.99 <1.69	<2.04 <1.73	<2.04 <1.73	<2.04 <1.73	<2.04 <1.73	<2.04 <1.73	10 0.4
Pentachlorophenol	<1.45	<1.73	<1.73	<1.73	<1.73	<1.73	1
Phenanthrene	<1.37	<1.41	<1.41	<1.41	<1.41	<1.41	50
Phenol	<1.10	<1.13	<1.13	<1.13	<1.13	<1.13	1
Pyrene	<1.73	<1.77	<1.77	<1.77	<1.77	<1.77	50
Pyridine Total VOCs	<3.91 11.2	<4.01 ND	<4.01 ND	<4.01 ND	<4.01 ND	<4.01 ND	50 NS
ND=this indicates the analyte wa		MD	IND	IND	ND	יאני	CNI

ND=this indicates the analyte was not a detected

NS=this indicates that no regulatory limit has been established for this analyte

Table 14b - Remedial Investigation Groundwater Data (2013 and 2015)
Pesticides and PCBs
11-28 31st Drive, Queens

SampleID	MW-1	MW-2	MW-3	MW-3 (Duplicate)	Field Blank	Field Blank	
Sampling Date	4/25/2013	4/25/2013	4/25/2013	4/25/2013	4/24/2013	4/25/2013	NYSDEC TOGS Standards
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	DI Water	DI Water	and Guidance Values - GA
Units	T/Sn	T/Sn	T/Sn	T/Sn	T/Sn	T/8n	
			Pes	Pesticides			
4,4'-DDD	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
4,4'-DDE	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
4,4'-DDT	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Aldrin	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
alpha-BHC	< 0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
beta-BHC	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Chlordane, total	<0.00410	<0.00410	<0.00410	<0.00410	NT	<0.00410	NS
delta-BHC	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
delta-BHC	TN	IN	IN	IN	<0.00100	LN	NS
Dieldrin	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Endosulfan I	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Endosulfan II	< 0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Endosulfan sulfate	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Endrin	< 0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Endrin aldehyde	< 0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Endrin ketone	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
gamma-BHC (Lindane)	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
gamma-Chlordane	NT	IN	IN	IN	<0.00100	L	NS
Heptachlor	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Heptachlor epoxide	<0.00103	<0.00100	<0.00100	<0.00103	<0.00100	<0.00100	NS
Methoxychlor	<0.00513	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	NS
Toxaphene	<0.0513	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	NS
			Polychlorinated	Polychlorinated Biphenyls (PCB)			
Aroclor 1016	<0.0513	<0.0500>	<0.0500	<0.0513	<0.0500	<0.0500	NS
Aroclor 1221	<0.0513	<0.0500	<0.0500	<0.0513	<0.0500	<0.0500	NS
Aroclor 1232	<0.0513	<0.0500	<0.0500	<0.0513	<0.0500	<0.0500	NS
Aroclor 1242	<0.0513	<0.0500	<0.0500	<0.0513	<0.0500	<0.0500	NS
Aroclor 1248	<0.0513	<0.0500>	<0.0500	<0.0513	<0.0500	<0.0500	NS
Aroclor 1254	<0.0513	<0.0500	<0.0500	<0.0513	<0.0500	<0.0500	NS
Aroclor 1260	<0.0513	<0.0500	<0.0500	<0.0513	<0.0500	<0.0500	NS
Total PCBs	<0.0513	<0.050.0>	<0.0500	<0.0513	<0.0500	<0.0500	NS

NS=this indicates that no regulatory limit has been established for this analyte NT=this indicates the analyte was not a target for this sample

Table 14b - Remedial Investigation Groundwater Data (2013 and 2015)

Total Metals

11-28 31st Drive, Queens

Sample ID	MW-1	MW-2	MW-3	MW-3 (Duplicate)	Field Blank	Field Blank	
Sampling Date	4/25/2013	4/25/2013	4/25/2013	4/25/2013	4/24/2013	4/25/2013	NYSDEC TOGS Standards
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	DI Water	DI Water	and Guidance Values - GA
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
			Metals, Targ	get Analyte, Total			
Aluminum	280	1910	53	748	<10	<10	NS
Antimony	<3	<3	<3	<3	<3	<3	3
Arsenic	<4	<4	<4	<4	<4	<4	25
Barium	65	184	41	71	<2	<2	1000
Beryllium	1	1	<1	<1	<1	<1	3
Cadmium	<2	<2	<2	<2	<2	<2	5
Calcium	50900	120000	68700	70400	<19	6050	NS
Chromium	2 J	8	<2	<2	<2	<2	50
Cobalt	6	2 J	<2	2 J	<2	<2	NS
Copper	<2	7	<2	<2	<2	<2	200
Iron	243	860	52	402	<10	<10	300
Lead	<2	3	<2	<2	<2	<2	25
Magnesium	10700	16500	14400	14800	<10	953	35000
Manganese	1980	1190	19	165	<2	<2	300
Nickel	7	5	1	1 J	1 J	<1	100
Potassium	4590	4940	2160	2230	<26	654	NS
Selenium	<7	7 J	<7	<7	<7	<7	10
Silver	<2	<2	<2	<2	<2	<2	50
Sodium	35600	27000	58600	58000	<61	5720	20000
Thallium	<3	<3	<3	<3	<3	<3	0.5
Vanadium	<2	2 J	<2	2 J	<2	<2	NS
Zinc	2 J	27	2 J	21	2 J	2 J	5000
Mercury	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
Chromium, Trivalent	<8.00	<8.00	<8.00	<8.00	<8.00	<8.00	50
Chromium, Hexavalent	<6.00	<6.00	<6.00	<6.00	<6.00	<6.00	50

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

NS=this indicates that no regulatory limit has been established for this analyte

Table 14b - Remedial Investigation Groundwater Data (2013 and 2015)
Dissolved Metals

11-28 31st Drive, Queens

Sample ID	MW-1	MW-2	MW-3	MW-3 (Duplicate)	Field Blank	Field Blank	
Sampling Date	4/25/2013	4/25/2013	4/25/2013	4/25/2013	4/24/2013	4/25/2013	NYSDEC TOGS Standards
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	DI Water	DI Water	and Guidance Values - GA
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
			Metals, Target	Analyte, Dissolved			
Aluminum	<10	<10	<10	<10	NT	<10	NS
Antimony	<3	<3	<3	<3	NT	<3	3
Arsenic	<4	<4	<4	<4	NT	<4	25
Barium	50	35	40	42	NT	<2	1000
Beryllium	<1	<1	<1	<1	NT	<1	3
Cadmium	<2	<2	<2	<2	NT	<2	5
Calcium	52700	106000	68700	69400	NT	6210	NS
Chromium	<2	<2	<2	<2	NT	<2	50
Cobalt	5	<2	<2	<2	NT	<2	NS
Copper	<2	<2	<2	<2	NT	<2	200
Iron	29	<10	<10	<10	NT	<10	300
Lead	<2	<2	<2	<2	NT	<2	25
Magnesium	10800	15000	14300	14600	NT	958	35000
Manganese	1910	566	16	17	NT	<2	300
Nickel	6	<1	<1	<1	NT	<1	100
Potassium	4830	4200	2210	2170	NT	705	NS
Selenium	<7	<7	<7	<7	NT	<7	10
Silver	<2	<2	<2	<2	NT	<2	50
Sodium	36600	27200	58700	59300	NT	6120	20000
Thallium	<3	<3	<3	<3	NT	<3	0.5
Vanadium	<2	<2	<2	<2	NT	<2	NS
Zinc	<2	<2	<2	<2	NT	<2	5000
Mercury	< 0.03900	< 0.03900	< 0.03900	< 0.03900	NT	< 0.039	0.7

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

NS=this indicates that no regulatory limit has been established for this analyte

Table 15

Post-Injection Groundwater Results

11-28 31st Drive, Queens, NY

					777,0, & 40		,						
Sample ID	MW-1		MW-2		MW-3		MW-4		MW-6		Trip Blaı	ık	NYSDEC TOGS
Sampling Date	7/24/201	8	7/24/201	8	7/24/201	8	7/24/201	8	7/24/201	8	7/24/201	8	Standards and
Client Matrix	Water		Water		Water		Water		Water		Water		Guidance Values -
Compound	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	GA
Volatile Organics, 8260 List - Low Level	ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L
Dilution Factor	1		1		1		1		1		1		
Tetrachloroethy lene	0.220	J	20		1.200		13		43		0.200	U	5
Trichloroethy lene	0.200	U	0.630		0.200	U	0.430	J	0.460	J	0.200	U	5

NOTES

\boldsymbol{Q} is the \boldsymbol{Q} ualifier Column with definitions as follows:

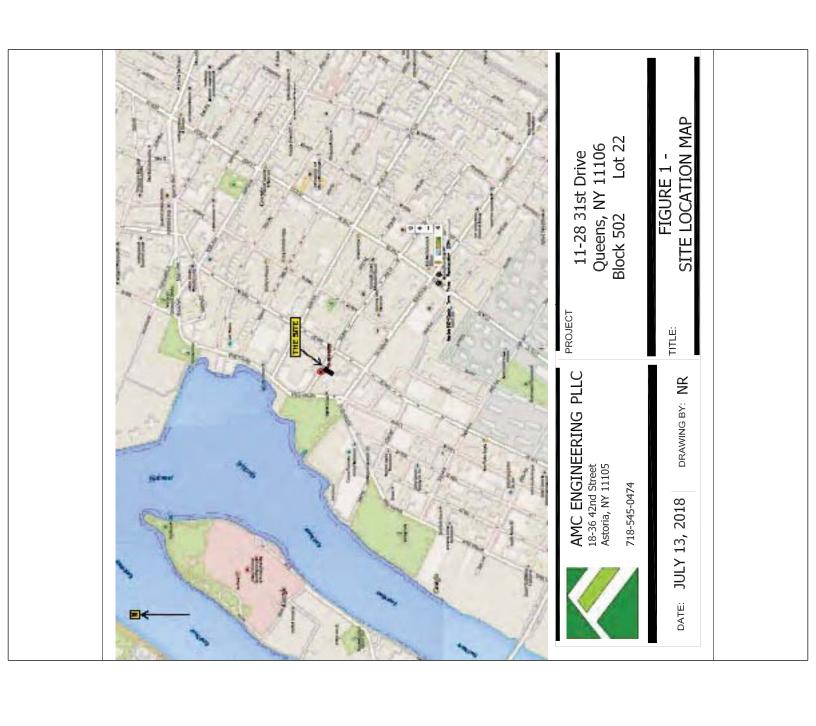
D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

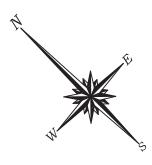
U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

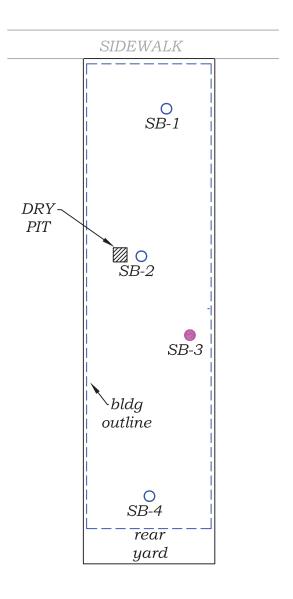
E=result is estimated and cannot be accurately reported due to levels encountered or interferences


NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte


Indicates a TOGS Exceedance

Well	MW-1	MW-2	MW-3	MW-4	MW-6
Sampling Date	7/24/2018	7/24/2018	7/24/2018	7/24/2018	7/24/2018
Sodium Persulfate Concentration (g/L)	0	28.74	34.68	40.62	0


FIGURES

31st DRIVE

LEGEND:

- WASTE CHARACTERIZATION BORING TO 7 FEET BELOW GRADE (SB)
- O WASTE CHARACTERIZATION BORING TO 4 FEET BELOW GRADE (SB)

TITLE:

31st Drive

Sidewalk

Property Boundary

for Concrete Slab and Area of Excavation for Concrete Slab at Soil / Fill Tank Pit Excavation Area

Elevator Pit Excavation Area

that seeped into tank disposed of at Treatment, Corp; UST disposed of Approximately 100 gal of rainwater 5 ft wide x 9 ft long x 6 ft deep; UST Tank Pit Excavation Advanced Waste Water as scrap metal

soil stockpiled and used to backfill Elevator Pit excavated to 6.6' bgs; rear yard

of nonhazardous contaminated historic fill / native soil excavated from 0 to 3' bgs - Approximately 323.5 tons and disposed of at Clean Earth of Carteret

C&D waste from original building slab disposed - Approximately 145 tons of nonhazardous of at Evergreen Recycling of Corona

AMC ENGINEERING PLLC 18-36 42nd Street Astoria, NY 11105

PROJECT

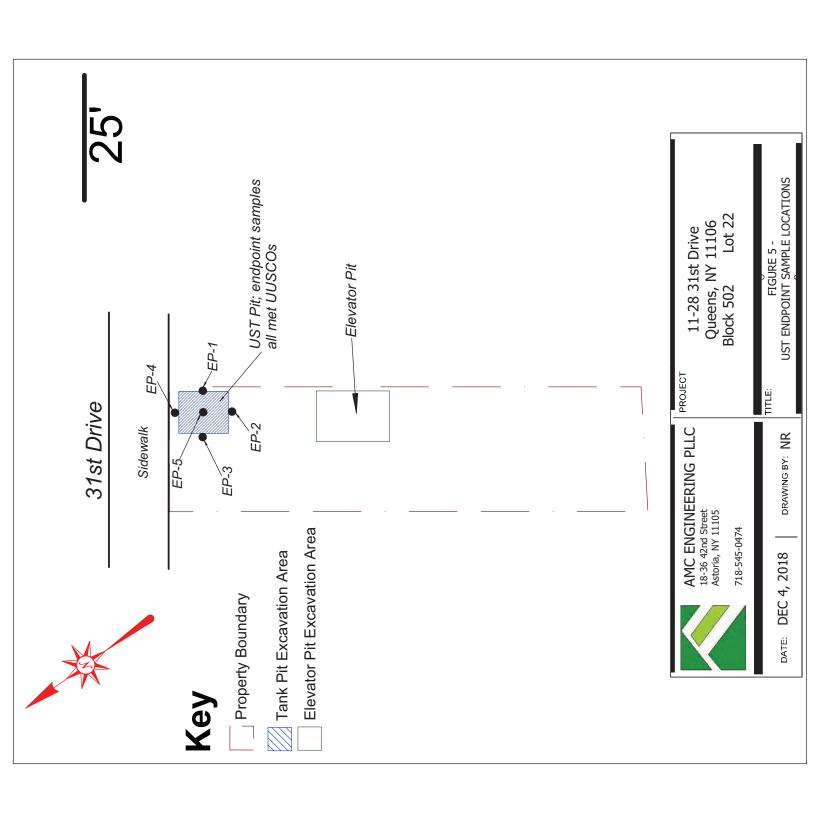
718-545-0474

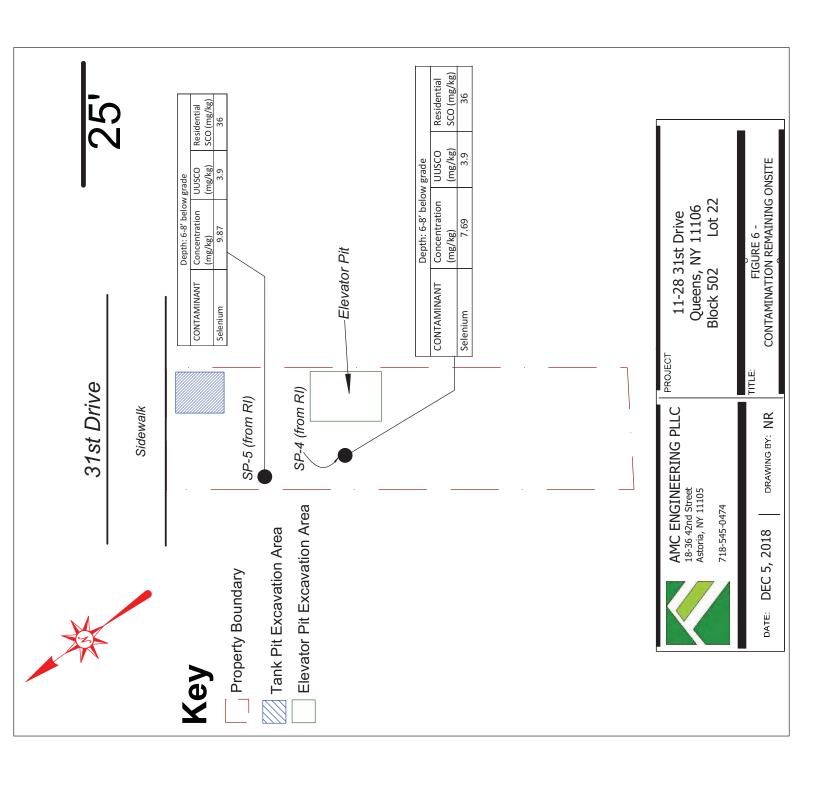
FIGURE 4 -

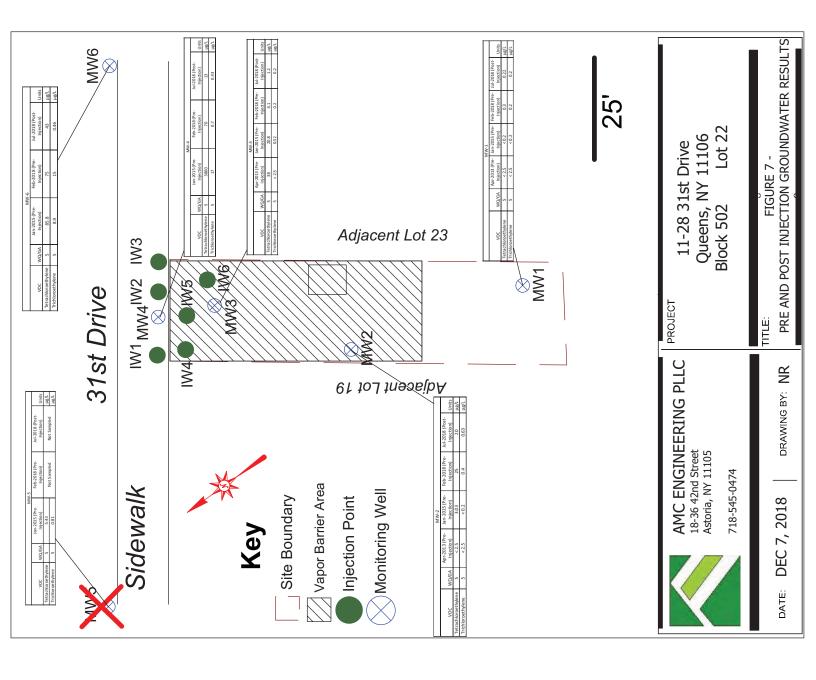
Lot 22

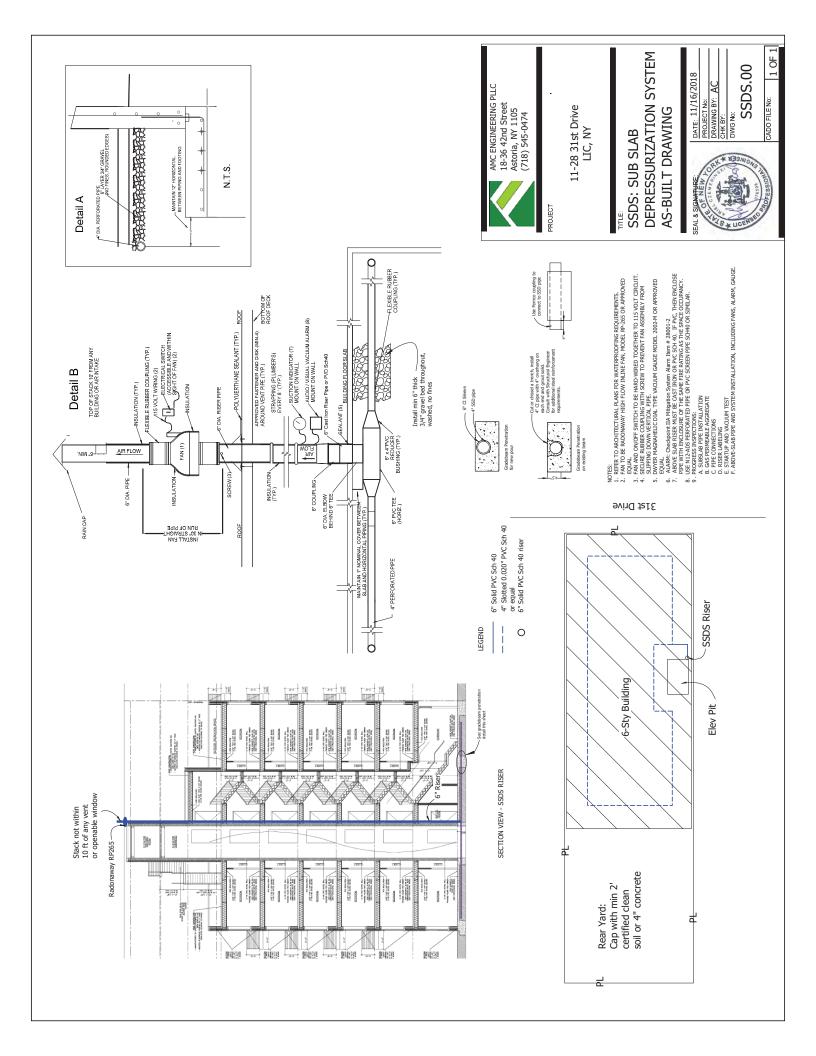
Block 502

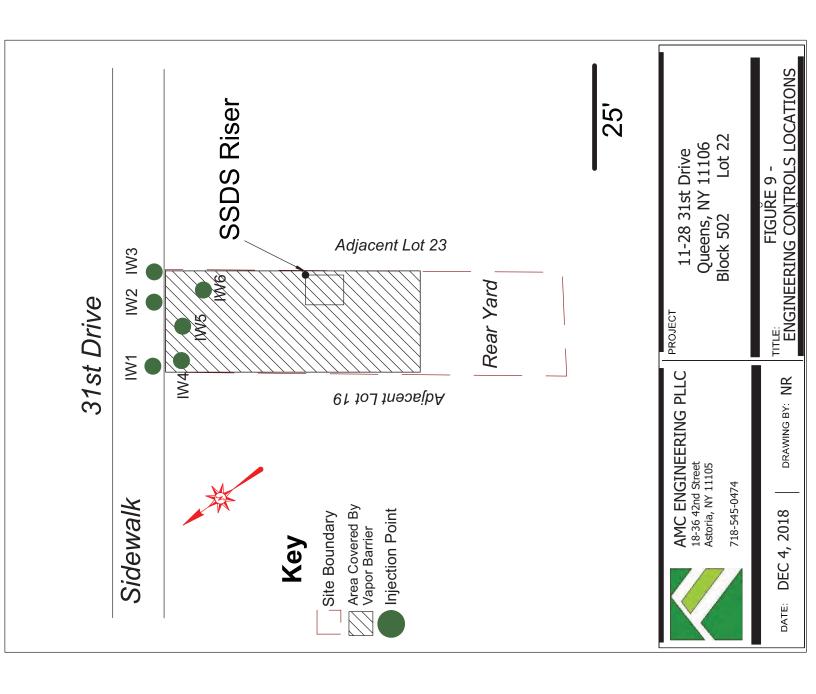
Queens, NY 11106 11-28 31st Drive


EXCAVATED MATERIALS REMOVAL


TITLE:


DRAWING BY: NR


DEC 4, 2018


DATE:

ATTACHMENT A Digital Copy of FER

ATTACHMENT B Easement and Metes and Bounds Description, Survey Map

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER

This page is part of the instrument. The City Register will rely on the information provided by you on this page for purposes of indexing this instrument. The information on this page will control for indexing purposes in the event of any conflict with the rest of the document.

2016080300503001003EDEA8

RECORDING AND ENDORSEMENT COVER PAGE

Document Date: 07-26-2016

PAGE 1 OF 10

Preparation Date: 08-10-2016

Document ID: 2016080300503001

Document Type: EASEMENT

Document Page Count: 9

RETURN TO:

THE LAW OFFICE OF JOSEPH YAU, PLLC

139 CENTRE ST STE 816 NEW YORK, NY 10013

347-788-8304

PRESENTER:

THE LAW OFFICE OF JOSEPH YAU, PLLC 139 CENTRE ST STE 816 NEW YORK, NY 10013

347-788-8304

Borough

Block Lot

DocumentID

PROPERTY DATA Unit Address

OUEENS

CRFN

502

22 Entire Lot 1128 31ST DR

Property Type: INDUSTRIAL BUILDING Easement

CROSS	REFERENCE	DATA
r	Year	Reel

GRANTOR/SELLER: GBT REAL ESTATE LLC

1083 MAPLE LN

NEW HYDE PARK, NY 11040

PARTIES GRANTEE/BUYER:

NYS DEPT OF ENVIRONMENTAL CONSERVATION

Page

625 BROADWAY

ALBANY, NY 12233

FEES AND TAXES

Mortgage:		Filing Fee:
Mortgage Amount:	\$ 0.00	
Taxable Mortgage Amount:	\$ 0.00	NYC Real I
Exemption:		
TAXES: County (Basic):	\$ 0.00	NYS Real E
City (Additional):	\$ 0.00	
Spec (Additional):	\$ 0.00	
TASF:	\$ 0.00	
MTA:	\$ 0.00	2
NYCTA:	\$ 0.00	4/0
Additional MRT:	\$ 0.00	
TOTAL:	\$ 0.00	
Recording Fee:	\$ 82.00	
Affidavit Fee:	\$ 0.00	162 DATI
Providence of the control of the con		1

NYC Real Property Transfer Tax:

0.00

NYS Real Estate Transfer Tax:

OF THE CITY REGISTER OF THE

100.00

0.00

File Number

CITY OF NEW YORK

RECORDED OR FILED IN THE OFFICE

Recorded/Filed

08-12-2016 10:48

City Register File No.(CRFN): 2016000278636

City Register Official Signature

OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 26 hday of 50 hetween Owner(s) GBT Real Estate LLC, having an office at 1083 Maple Lane, New Hyde Park, New York 11040, County of Nassau, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 11-28 31st Drive in the City of New York, County of Queens and State of New York, known and designated on the tax map of the New York City Department of Finance as tax map parcel number: Block 502 Lot 22, being the same as that property conveyed to Grantor by deed dated February 7, 2014 and recorded in the City Register of the City of New York as CRFN # 20140000061160. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.055 +/- acres, and is hereinafter more fully described in the Land Title Survey dated May 25, 2016 prepared by Vincent J. Dicce, L.S. of Boro Land Surveying, P.C., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is

extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C241159-04-14, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

- I. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls.</u> The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the New York City Department of Health and Mental Hygiene to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

- (7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- (8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233
Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation

pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved b the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

County: Queens Site No: C241159 Brownfield Cleanup Agreement Index: C241159-04-14

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C241159

Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail

and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

By: Surge Man

Print Name: Goog Mar.

Title: member Date: 7/20/2016

Grantor's Acknowledgment

COUNTY OF New YORK)

SS:

COUNTY OF New York)

on the last day of slat in the year 2016 before me

GBT Real Estate LLC:

On the day of day of his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

Joseph Yau
Notary Public State of New York
No. 02YA6186606
Qualified in Kings County
Commission Expires May 5, 2020

County: Queens Site No: C241159 Brownfield Cleanup Agreement Index: C241159-04-14

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Robert W. Schick, Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)
) ss
COUNTY OF ALBANY)

On the day of da

Notary Fublic - State of New York

David J. Chiusano
Notary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County
Commission Expires August 22, 20

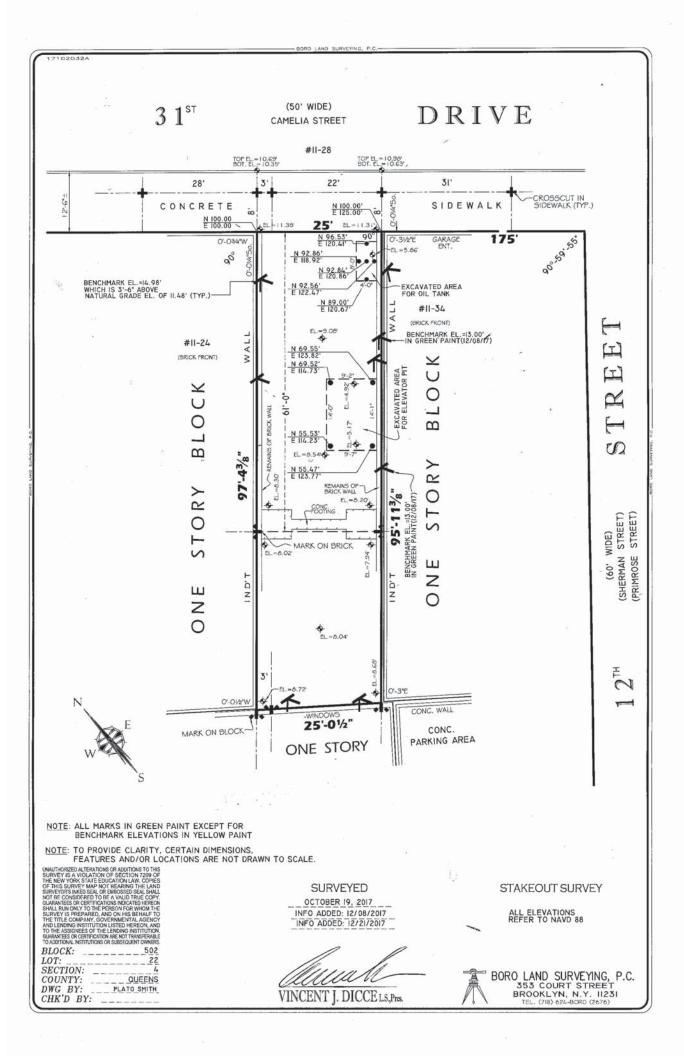
County: Queens Site No: C241159 Brownfield Cleanup Agreement Index: C241159-04-14

SCHEDULE "A" PROPERTY DESCRIPTION

Legal Description of the Easement Area

ALL that certain plot, piece or parcel of land with the buildings or improvements thereon, erected, situate, lying and being in the Astoria, Long Island City, in the Borough and County of Queens, City and State of New York, being more particularly bounded and described as follows:

BEGINNING at a point on the southerly side of 31st Drive, distant 175 feet westerly from the corner formed by the intersection of the southerly side of 31st Drive with the westerly side of 12th Street;


RUNNING THENCE southerly at right angles to 31st Drive, 95 feet 11-3/8ths inches to the southerly side of the land on the map hereinafter mentioned and to the land now or formerly of Robert Moore:

THENCE westerly along the said land and along the southerly line of said lot, 25 feet ½ inch to the westerly side of said lot on said map;

THENCE northerly along the westerly line of said lot on said map at right angles to 31st Drive, 97 feet 4-3/8ths inches to the southerly side of 31st Drive;

THENCE easterly along the southerly side of 31st Drive, 25 feet to the point or place of BEGINNING.

Containing approximately 2,416 square feet or 0.055 acres more or less.

ATTACHMENT C CAMP Air Monitoring Reports

*	Hydro	Tech Enviror	ment	al All	IVION	itoring Form	
Project Name:	28 31st Dr UC	NY					
Site Location: 11-	CD 212- D						
Date: 9-19	1931/Light Rai			_	_		
HITE PERSONNEL	Tast II chi Ral	1					
Temperature: 2	VI do 1 / Cight			-			
Humidity: 64 9		Wind Direction	on: 5 s	men			
anuments: band	19	and the second second	Mathia		PID		The second second
TIME	Air Monitoring Equipment Make and Model	Air Particulate levels Sampling Results: (mg/m³)	Visible Dust (Y/N)	Odors (Y/N)	Readings (PPM)	Corrective Action Taken	Additional comments
7:00 AM	PID 2000 / PDR 1500			-			
7:15 AM	PID 2000 / PDR 1500						
7:30 AM	PID 2000 / PDR 1500						
7:45 AM	PID 2000 / PDR 1500		-				
MA 00:8	PID 2000 / PDR 1500						
8:15 AM	PID 2000 / PDR 1500			-			
8:30 AM	PID 2000 / PDR 1500		-				Late J
8:45 AM	PID 2000 / PDR 1500	- 1/A	7	17	NA	N/A	Brashing connets slab
9:00 AM	PID 2000 / PDR 1500	N/A	17	1	1		
9:15 AM	PID 2000 / PDR 1500		-				
MA DE:9	PID 2000 / PDR 1500						1
9:45 AM	PID 2000 / PDR 1500						Tasactivity
MA 00:01	PID 2000 / PDR 1500						Harry Rain
10:15 AM	PID 2000 / PDR 1500						Stock piling come
10:30 AM	PID 2000 / PDR 1500						21011 Prill
10:45 AM	PID 2000 / PDR 1500		1				1
11:00 AM	PID 2000 / PDR 1500						W I D Committee of
11:15 AM	PID 2000 / PDR 1500						Breshing connetes
11:30 AM	PID 2000 / PDR 1500						1 2 12
11:45 AM	PID 2000 / PDR 1500						mich
12:00 PM	PID 2000 / PDR 1500 PID 2000 / PDR 1500						Junch
12:15 PM					 		Breaking contrate ste
12:30 PM	PID 2000 / POR 1500					77	KACKING LINE TO
12:45 PM	PID 2000 / POR 1500				أ الحداق	THE RESERVE	
1:00 PM	PID 2000 / PDR 1500			最早度			- W
1:15 PM	PID 2000 / PDR 1500					STATE OF THE PARTY	Steenpelling comments
1:30 PM	PID 2000 / PDR 1500						
1:45 PM	PID 2000 / PDR 1500						
2:00 PM	PID 2000 / PDR 1500						
2:15 PM	PID 2000 / PDR 1500	1	IV	11	V	V	-
2:30 PM	PID 2000 / PDR 1500	*					
2:45 PM	PID 2000 / POR 1500			W. Deck			
3:00 PM	PID 2000 / PDR 1500						
3:15 PM	PID 2000 / PDR 1500						
3:30 PM	PID 2000 / PDR 1500						
3:45 PM	PID 2000 / PDR 1500	(section of			-		

Particulate Air Monitoring will be conducted during ground intrusure activities at the Site in accordance with the Fugitive Dust and Particulate Manitoring from DER-10 Technical.

As per DER-10 Technical Guidance, any particular levels to exceed 0.10 mg/m³ will result in the implementation of dust supression techniques to allow work to continue. As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m² will result in the work to stop immediately.

3:45 PM

4:00 PM

4:15 PM

4:30 PM

4:45 PM

5:00 PM

PID 2000 / PDR 1500

1. Co. 2 C	A		Hydro	Tech	Hydro Tech Environmental Air Monitoring Form	ital Air I	Monit	oring	Form	
Cachillo	ct Name:									
Cachillo	ocalion: 1	3154	LLI.C. NX	90111						
Control Health Cont	2-1	1								
Appropriate	Jer: Mo	12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Temp: Co.	40's Humidity: 7	340			Direction: N.S.	\d
Sessional Trail Sessional	TIME	Air Monttoring Stations Make and Model	avel	PID Readings (PPM)		-	Odors (Y/N)	Visible Dust (Y/N)	Corrective Action Taken.	Additiona
Section train	7:00 AM	TSE-8530 Dust Trak II								
15 #530 Dear Trail	7:15 AM	TSE-8530 Dust Trak II.								
15 15 15 15 15 15 15 15	7:30 AM	TSE-8530 Dust Trak II								
15 15 15 15 15 15 15 15	7:45 AM	TSE-8530 Dust Trak II	E 0.13	100	200		7	Z	N/A	HTE CASIA
15 15 15 15 15 15 15 15	8:00 AM	Ter orgo Ouer Test II					2	1 2	AVX	ACARONA CARCK
Stesso Dear trait	STS AIM	TCE-R530 Dust Trak II	1		0.00		2	2 2	AIN	Darkinger Come Co
15 15 15 15 15 15 15 15	PAS AM	TSE-8530 Dust Trak II		1	10		2	2	*Z	Set Up camo station
15 15 15 15 15 15 15 15	:00 AM	TSE-8530 Dust Trak II	5100	0	1 -	~	2	Z	NA	Pus congrete al
Telescobart Trail	15.AM	TSE-8530 Dust Trak II .	020.0	00	1000		Z	2	N N	20
15 6330 Dest Trak	30 AM .	TSE-8530 Dust Trak II	0.621		Δ	- 24	2	Z	47	8 A 8
Tisessount Trakiii C. Old	45 AM.	TSE-8530 Dust Trak II	510-0		ALC: U	1000	2	2	A Z	-
The size obest Trail	:00 AM	TSE-8530 Dust Trak II,	0.016		-		2	2	4.2	2
The state of train 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.00 0.0012 0.0012 0.00 0.0012 0.001	15 AM.	TSE-8530 Dust Trak II .	0.019	41 :	-		2 2	2	47	Converte Story
The 8390 Dust Trak	:30 AM	TSE-8530 Dust Trak II	0.010	- 4	020.0		2 :	2 :	NA	No. 4. A.
The 8530 bust trak	45 AM	T5E-8530 Dust Trak II	170.0	-	17000		2 2	27	A/N	S. A. O. A. S.
The Best Dust Trak	DDAM	TSE-8530 Dust Trak II	0.025	00	2		2 2	2 7	22	A CONTRACTOR
15F-8530 Dust Trak	15 AIM	TCE-8530 Dust Trak II	3000	200		000	2 7	2	22	10.00
Tife 8530 Dust Trak II	45 AM	TSE-8530 Dust Trak II.	-	000	Ö	0.0	2	7	さる	8.4.8
15 6530 Dust Trak	- M4 00	TSE-8530 Dust Trak II,	-	0	0.01		2	Z	N/A	Bragh Lay lunds
15F-8530 Dust Trak	E PM -	TSE-8530 Dust Trak II	0.013	0.0	0.000		2	Z	N/N	てきさせい 02
15F-8530 Dust Trak	IN DIM	TSE-8530 Dust Trak II.	0.017	0	2000	4	2	2	0/2	100 79 79 78 78 78 78 78 78 78 78 78 78 78 78 78
The Bish Dust Trak	S PIN .	TSE-8530 Dust Trak II	200	200	3	00	27	2	42	Congrete Stocks 211
Tight	J.P.M.	Tree octor from Tree III	000	00	*	000	1	2 -	2	200
15E-8530 Dust Trak 0 .01	PIK	TSF-8530 Dust Trak III-	0.00	00	000	000	2 7	2 2	12	
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PIM :	- 15E-8530 Dust Trak II	1000	00	1000	000	-	Z	-	1 1 1 1
NAM 22 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	PIM	TSE-8530 Dust Trak II.	0.02	0.0	0.00	0.0	2	72	N/N	10 11
Z Z 0:0 0:0 5:0:0	PIM	TSE-8530 Dust Trak II	0.020	0	000	0.0	2	2		11 11 11
	PIM	TSE-8530 Dust Trak II	9.0.0	00	0.000	0.0	2	2	*/2	HE SECT
PM TSE-8530 Dust Trak II	PLM -	TSE-8530 Dust Trak II			1.3 1.7	1	-	100000000000000000000000000000000000000		
7.M TSE-8530 Dust Trak II TM TSE-8530 Dust Trak II 1.M TSE-8530 Dust Trak II 1.M TSE-8530 Dust Trak II	PIM -	TSE-8530 Dust Trak II						1 1 1 1		
M TSE-8530 Dust Trak II M TSE-	PIN NIG	TSE-8530 Dust Trak II-								
M TSE 8530 Dust Trak II	14.	TSE-8530 Dust Trak II								
M 15/ 6530 Dust Trak II	114	TSE-8530 Dust Trak II						1 - 4 - 5		
The state of the s	1 1 1	15E-8530 Dust Trak II.		Samuel and		2		1000	The state of the s	

Manitoring will be conducted during ground intrustive activities at the Site in accordance with the Fyaitive Dust and Particulate Monitoring from DER-10 Technical Guidance for Site Incestigation and Remediation (App. Technical Guidance, any particular levels to exceed 0.10 mg/m* will result in the implementation of dust supression techniques to allow work to continue.

								ことのころと	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		マングラウ マトゅうり	つ シ シ シ シ シ シ シ ラ			12/2 100/2 12/2 100/2		> WITW (COUCARET)	インとなる。		6.824		らんなどのどのない			とうる 州のおうできょ			CLETE ROCKS								
	The second secon		The second secon		mary read of the comment of the comm	Additional comments.		LOANSING TRUCKS			005000000000000000000000000000000000000						するがしていても							してものなった。	いっていている。	yr yr		8080 X 17 6 8 40		HTE OFF 517 5						
g Form	The suppose of the later of the suppose of the supp	The second secon	والمساورة والمساوية والمساورة والمساورة والمساورة والمساورة والمساورة والمساورة والمساورة والمساورة	والمساورة والمنافرة والمساورة والمساورة والمنافرة والمنا	White Direction ()	st Correctlye Action Taken		201860		- Link		177	1/1	11/2/2	4/1/		13/2	11/1				1/2/4			12/2	11/1	1/1/	11/1/	100							
ntal Air Wonitoring Form	سالوتين والمتواقعة والموادة المتوافقة والمتوافقة والمتوافقة		The second secon			is Orders Visible Dust	The self-self-self-self-self-self-self-self-		一トーシ	12/2	()	7	1	1		7	7	7		5	1/2	١ ١			7	1/2	シュング	1	7							
	ーーうさ	The second secon		Phichiais 600	11 11	sults; Down (PPM) (PPM)	The second section of the sect	グンドルで	3 S S S S S S S S S S S S S S S S S S S	30.0	が 十一 カ	200 000 000	77	40-00	20 0 XX	10 0	اران ان ان	か マ マ ト が	イーがあ	(1) (1) (1)	0,0	000			小 。 。 。	が の の の の の の の の の の の の の	0 0	0.0	0							
UVALO LEGILENVIRONMO	SEANSO	The state of the s	The state of the s	Tellin 75 Committee		Readings Sampling Results; Down (PpVA)			70.70	0000	ならら		000	うらった。	いらら	0.0	ららら	している	がなった。	10.0	7 7 7 6	のである人		水できた	いっとつ	0 0	0000	かなる一つ	アーフェステン					The state of the s		不 一 一 "我们" " " " " " " " " " "
	S156 40 NE 18 4 NO 3 75 18	the manufacture of manufacture of the state	The state of the s	[a] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\)èls	eradient (mg/m³)		20.25	うらいない。	00012		0.0.26	00%	0,0 0	20 XX	0.0000	2002	0.0 24	2,000	1.2 15	0 8 0.	0.017 0.0		0.0	200	2000	のです。	SON - SON								THE SECOND SECON
		10/10/1	グラグラ	70576	Arr Would order Crass trace		10.04	ंत	TSE-8530 Dust Trait II	ļ -	Staffsjorbust Trait II	USE 40540 Dust Prairing	15E-0530 Dirst Trakel	151-1830 Dust frak il.	[SE-8530 Dust, Trak'll 3: 7	151-8530 Oust Trak II	18E-8530 Oust Traje II	1SE-8E30 Oust Trail II	Tali-Réad Dust Trak II.	185-8530 Dust Trat II	Istabilio Dust (fink II : C	T	55-8580 Dust Traicil		-4	SE-REGIODUST Trafe II.	SQ-8530 Dust Trak II	S 18530 Dust Trak II.	Sci8530 Dust Trak II	(1983)) Dust Trak II	6-8530 Dust Truk II	(-105)(O'Dust Trak II	(36-8530 thust Trak II	-8530 Dust Trail II	6-05-80 Dost Frak Ib. 4	
Control and Control of the control of the statement of the control	Site Locations	Date.	WTE Personnel :-	Weather			1.00 AW	PLIS AM		0.00 AN	RIS AIM	Rais AM	9:00.AM	9:15:AM, 5	9:30 AW (2)		10:15 AM, 1:-	10:30 AM	11, 00 AM	11:15-AM	1.1145 AIM	12:00 PM (12:30 PM	12.45 PM	3.00 PMI.	1:30 P.M.	T-45 PM	2.00 P.M	T. 2:15 PM	2.15 PM (1.1	3:00 PM	1:15 PM		Ma Shir	TERRIT LINE	Hate All banningen

Etiate at the advance of the conduction to international differential and the state in accordance with the facility of particular levels to enced to it may will result in the work to standard and only particular levels to exceed our many will result in the work to standard with the standard of the sta

With the continue								The state of the s					
1		de l'éterna a responsable de la companya de la comp			The second secon		The state of the s						
Color Colo	Manne;				Linvironin	ental Aii	Moni	Coring	LOLL With the state of the stat	And the second of the second o			
C C C C C C C C C C	allone	Company of the second s	Ã	21791	The state of the s			androdefenjieranga artimos	er filmeten bestätten er en	Andrew State of the State of th			
Well for the Color of the Col	sonnel :	790	0	The state of the s	7 02 23 5			the state of the s	Arm and the state of the state	e de la communicación estrera una esta manaca esta una desta la composição de composição de composições de la composição de composições de la composiçõe de composições de la composiçõe de composições de la composiçõe de la comp			
Well contained training the contained training the containing the containing training trainin	Ti Ti	いっている	الد	formation of the same in the same		1			والمستحدد والمستحد والمستحدد والمستح				
Walt out the field Second Weekley Second	TIME	Alr Montoring Station	A		Alr Particular Favor	7/2	The second secon	A Production of the last			H _C		
Section continues C - C - C - C - C - C - C - C - C -		Wake and Mortel	ary 3	A 13	Sampling Results; Do Bradlent (mg/m ⁿ)	wh PID fteadings (PRM)	Orlors (Y/N)	Visible Dust	Cafrective Action Taken		driments.		
Selection trait 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DO AIM	(St. 0530 Dust Trail II.	O	1									
State Dec De	30 AM	20,250	00000	N P P P P P P P P P P P P P P P P P P	0.00	000	3.	1	THE	104KIN			
### SERIO USE THAT IN THE TOTAL STATE OF THE TOTAL	45 AM	15E-4830 Dust Trak II	0,00	000	いいま	50.0	9 4	5	11/1/	1000 K	ングラング		
Style Deat Hall	DO ANG	15,-16510 Dust Trak II		000	なのの	200	\$	12	1 Mills				
	IO AM	TISE 6530 Oust Trak II		0.0	0.0 22	200	33	>	affect				
First Dors Trail CODS CO	5 AM	(T)	0000	200	であったの	0.0	13	12	11/1/	EXCAURTION	Actor	# C S	
First bloom trail	5 AM	151-0530 Dust Trak II.	0.00	0.0	C. C. 2.5	000	3	1	La fail to				
Section Train Do 2 Section Do) AM.	15E-11530 Pust Tral(1)	M	0.2	00 32		3	1	14/11	100,06) \		
### ### ### ### ######################	AM	3.0	0.035	000	00035	O O	12	12	The state of the s		1-1	0	
State Door train in Door 14 Door 15	2 AM	11.00	EN.	00	0.0 23	200	3/3	1	10/4		X.	5 W 176 5012	
September Trail) AM	TSE-BE30 Dust Trail H	$\frac{1}{\delta}$	1000	0.0	0.0	1	小小	12/1/2				
15.50 Dust trait	AM C	Telf-8530 Dust Trak II.	9	000		000		1	11/11		0		
High Dour Trick II D. O. 24 D. O. 25	AM	1. 18:-0530 Dust Trate il	1	000	0.0	0.0	10	9	1777		7770		
#550 Dust Trait #0.073	AM	TSI: 8530 Dust Trak II	0,0,0	000	プラウング	000	<i>5</i>	1	11/10				
6450 Dust Traktit	N.	. 15 -8530 Dust Trak	1000	0	2001	アングルー	十 ()	1/2	1/1/2	-	TOUR ST	のいず	
61300 Dust Trik II	N/	TSI-8530 Dust Trak II	1111	9	20.00	0.0	5	了了	ライン		\$ \$ \$ \$		
1330 bust Trak II	IN PAC	TSE-8590 Dust Trait II	The second secon)						
#350 Pust Trak II	, M	156-85300ust Tak II	う う う う の の の の の の の の の の の の の	0.0	0.004			1					
#45 plusis Trials	M	78-4530 Dust Trak II	3	000	200.0		4	1	14/4/	101181 5			
1450 Dust Trak II	Σ	12	した。らった	90	からの		5		1/2/1				
1950 Dust Trak II	Σ.	- 1	0			0	5		11/2/1				
17 17 17 17 17 17 17 17	2 2	TSE48530 Dust Trak II.	60	0.0	いつこう	一心の	3			100000 ACC	80 C C C C C C C C C C C C C C C C C C C	170 2012	
8239 Dust Trak II 839 Dust Trak II 859 Dust Trak II 859 Dust Trak II 859 Dust Trak II	Σ	The Mesa Dust Trak II				1	1	7	11/1/4				
6.953Q (vist Trak II 6.953Q (vist Trak II 6.953Q (vist Trak II 9.953Q (vist Trak II	5	15c-B530 Dušt Tralc II								4+2044	3705		
45.40 Just Trak II 8530 Just Trak II 8530 Just Trak II 4530 Diret Trak II	5 :	15 E-8530 Oust Trak II	The state of the s			† 							
USBO Divis Trait II.		TSF-8530 Dust Trak II											
- US 310 Diest Grank II		TSF 0530 Dust Trait II					1 1						
- 1		-								The state of the s			
		-1								The state of the s			
			The second secon	**** **** ****								The second secon	

Touries for November 2015 and the conductor of the strain of the strain in a strain of the strain of

) U. F.

ISO ISA
。

ducted tyrtha mound totasive articulties of the Stie in according e with the Equitive Dust and Porticular leaves to exceed to 1.0 million will result in the bindemaintain of this supression behinduals to allow work to contain the conceed out the work to stap homealingly. Ner DER-UG Technical Guldance, any Ner DER-UG Technical Guldance, and Ner DER-UG Techn

-				THE INDITION BY FORM	ולמו עוו	INIOIN	BIIIIOII	Form	A CONTRACTOR OF THE PARTY OF TH
Project Name: 1501	15105		-						A97
Site tocation; V	1.24 214 Orive	or Long Islan	J (; 15	72 72					
D D D D D D D D D D D D D D D D D D D	1								
Weather.	> 1005HTG (554:11 -	2				-			177
	7000		Temp: 6 C	1 St Humidity: 1	10/01			9	
TIME	Air Monttoring Stations Make and Model	Air Particulate levels Sampling. Results: Up gradient fme/m*)	PID Readings (PPM)	Air Particulate levels Sampling Results: Down gradient (mg/m³)	PID Res	Odors (Y/N)	Visible Dust	Corrective Action Taken	Additional comments
-7:00 AM	TSE-8530 Dust Trak II	2000		3 × ×		12 L			
7:15 AM	FSE-8530 Dust Trak II.	000	25	1100	0	Z	Z	11/2	
7:30 AM	: (SE-8530 Dust Trak II	150000	9	500	1 0	2	2	172	-
7:45 AM	[SE-8530 Dust Trak II	0600	×	0000	0	2	7		DAY CHAC
8:00 AM	TSE-8530 Dust Trak II	0.02	×	2000	2	2	7	7/ 1/2	0 1000000000000000000000000000000000000
8:15 AM	15E-8530 Dust Trak II	6.0.0) <	970.0	- Ok	2	. 2	V/2	200000000000000000000000000000000000000
8:30 AM	. 7SE-8530 Dust Trak II .	0.00	- <	10.0	0	2	2	4/2	かいか
8:45 AM	. TSE-8530 Dust Trak II	000	0	500	1:0	2	7	2.2	Como i
9:00 AM	- TSE-8530 Dust Trak II	0000	-	0.02	-	Z	2	* 2	13787
9:15:AM:	TSE-8530 Dust Trak II .	000	1	V	-	2	2	*/ N	1 1 2 2 1
9:30 AM .	ISE-8530 Dust Trakii	2000	- -	810.0	0	2	2	122	COLLINS + SING
9:45 AM	TSE-8530 Dust Trak II	1000		770 0	-	2	2	17.7	N N N N
10:00 AM	-TSE-8530 Dust Trak II.	000	-	0.07	0	2	2	12	2 8 3 15
10:15 AM;	TSE-8530 Dust Trak II	10000	200	0	1.0	Z	Z	N. Ki	
10:30 AM	15E-8530 Dust Trak II	2200	-	600	1.0	2	2	7 7	+
10:45 AM	TSE-8530 Dust Trak II	23	0	Siono	0	Z	2	1	CINSULTS TENK
11:00 AM	TSE-8530 Dust Trak II -	200		100	- 0	2	2	5	N 1
11:15 AM · ·	: TSE-8530 Dust Trak II	1000	2	d	0.1.0	Z	7		N. A. C.
11:30 AM	. TSE-8530 Dust Trak II	0000	0	0.020	2	7	2	V 17	Listosci of USI
11145 AM	TSE-8530 Dust Trak II	人へつくつ	000	0.01	- 0	7	7		SAL
12:00 PM -	TSE-8530 Dust Trak II	5,000	0	5100	- 0	2	-	4 72	5 2 8
12:15 PM	TSF-8530 Dust Teale II	2000	-	000	0	2	12		SAR
12:30 PM	TSE-8530 Dust Trak II					- C		4,2	HILE CATESTE
12:45 PM	15E-8530 Dust Trak II	T. T	1		1 TO 10 TO 10			The state of the s	
1:00 PM	TSE-8530 Dust Trak II					100	-		
1;15 PM	-		1				1		
1:30 PM	-		1000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11000	1		
1:45 PM	TSE-8530 Dust Trak II					1	1	1. +	
2:00 PM.	TSE-8530 Dust Teak II						The state of the s		
2:15 PM	TSE-8530 Duct Trate II		1	F		1-	1		
2:30 PM	TKE-84-36 Duet Teal II					-	1		The state of the s
2:45 PM	TSF-R530 Duct Trade II					-	1		
13+OO DRA	Ter prop of			154 10	1	+			
TO DE LA	15E-8530 Dust Trak II					1			
J:15 PM	15E-8530 Dust Trak II				*		V = 0 = +		
Handel.	TSE-BS30 Dust Trak II								
3:45 PM	75E-8530 Dust Trak II -	The second second	-		1000	140		The state of the s	
	II WITH TERM IN THE			-	1	1	100	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN	

Particulate Alt Mantacina with the conducted during mound lattusive activities of the Site in accordance with the Funitive Dust and Particulate Monitorina from DER-10 Technical Guidance, any particular levels to exceed 0.10 mg/m² will result in the Implementation of dust supression techniqués to allow work to continue, As per DER-10 Technical Guldance, any particular levels to exceed 0.15 mg/m³ Will result in the work to stop immediately.

SHULMAR HOME INC ENPORTED JACEMUMENTS.
SHULMAR HOME INC ENPORTED JACEMUMENTS.

Annual of North Section Sectio

PHILIP	OPET AGA / ROOT TOA					
196,197	COST VON 7 HARD THA	1				
PARK	THE REAL PROPERTY.	1-1				
DE 579	SOLICA (SOLICA)	1				
non-						
MIST	Will have a front that		_			
	100 KG/1004 DK		_	_		
HITT	LOSE ADVISORS THE					
WEE	2002 NOV DREEDS	1 100	-	_		
THE REAL PROPERTY.	3003 A25 (A000 DA	1900	~	A	-	
PALIFE	COST MONTH DESIGNATION	5000	d	~	9.7	- 22
WHI.	9907 WG4 / (\$800 lbw)	の社会を記り加	11	N	60	
WITE	DOST NO. / TONE THA	12 312		679507		
Marini.	GOST MG4 / 5005 But	3200	1	M	- 3.7	
PH-17-T	DIRECT SECH / DIRECT STAR	150 O O	1	4	7.1	
THOU	OMET Wile / 1000E Class	7500	1	100	127	
THREE	0001 WG# / 0000 GH	7100	d	Ž,	21-1	
MICH	0051 HOW / 0002 (BM	56-0	11/	- Control	lost.	
PATRICIT	9052 NOV 1 9005 THE	7100	- Sily	7	177	
PARTY.		2000	N,	-	0.7	
PHYSICS	0001 MGH / BORE DW	1000	110		- The second second	
	0001 MIT \ 9000 CM	0000	14	×	24	
PH ST	3001 MW / 2002 SM	3000	18	·W	24	A A A
PER SETS	100 T MON / 1000 COM	200.0	~	CV	31	11d G-1117
WEST	MODIFIED AND THOSE GRA	DAG C	-0	~	24.7	**
PRESIDENT.	DOLL ROLL HOSE OF	250 0	2	2	200	Creek Land
PRINCIPL.	SOLD AGE / VISIT DAT	TO BE RECEIVED.	10000	1.00	1500	KINGDAIRES
MATERIAL	SINT YOU / METERS	450.0	14	70	10.11	
MICE	0051 NG4 / 10KB 3M	2500	1000	24222	0.0	I to the way
10000	MIST HOW/MIST SHE	-57.8 8	8	1.04	10.0	A LEG WAR THURST
AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IN COLUM	WEST WON / YOUR DAY	4600	CV	Other	24	- 15
26.01	000T WD4 / 0000T (M4	7800	14	14	17.17	-
98 554	COST WGG / SWEET (SM	Sal Co G	176	100	8 5	1-1-07-24-3
1997553	DOET WOW / MORE THAN	100-61	22022	145	1 17	100
HOUSE.	cost was / post the	0.00.0	100	10	73 - 1	07 PO 2-11/5
TOTAL	DOST WON / COST COM	The second second second	1	2551		
STATE OF THE PERSON NAMED IN	0001 HOW / 10002 GMF					
690 TT 21	DOST HOW / DOCK ON			-		
- erritti	1000T WOV / 6000T 004					
HY STA	WALLSON LYON TANK		-			
MINT.	FREE WAY FORCE OF					
1997015	5885 WG4 / 608E G4					
PR 165	Settl wise / most than	Commence of the last	-			
		THE REAL PROPERTY.	's THE OWNER.	-		
			196/43	Carlotte.	Park .	ARTON MANAGEMENT AND ADDRESS OF THE PARTY AND
	Marine and America	LAI/Put	200,000			
-	Section for some	remey Remini	SHE	THRE	ent our street thorn	Commercial Principles

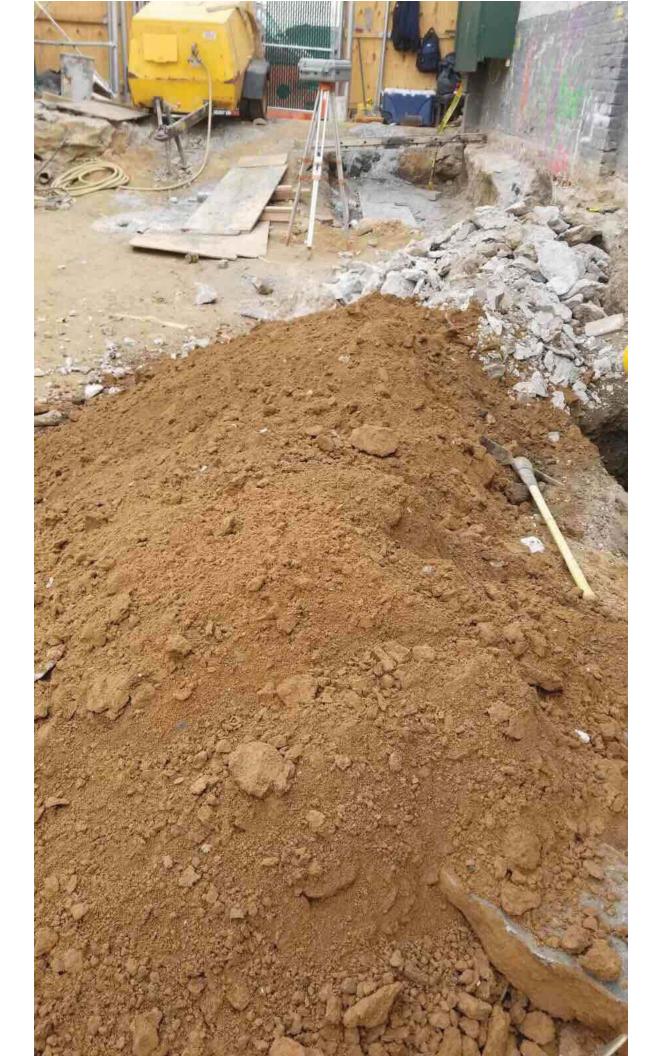
•	Hydro	Tech Enviro	nmen	ital A	ir Mon	itoring Form	
_							
Project Name: 🔎	ES.DENCIAL				-	· + · 1 1/2	
ite Location: //	1-28 315+ Dri	re Long	5 15	LAN	10 C	119,109	Account to the second s
ate: ///	28117						
TE Personnel :	PAUL MATL	<i>i</i>					
	NY						
	50°F						
imidity:					1		
TIME	Air Monitoring Equipment Make and Model	Air Particulate levels Sampling Results: (mg/m³)	Visible Dust (Y/N)	Odors (Y/N)	PID Readings (PPM)	Corrective Action Taken	Additional comments
7:00 AM	PID 2000 / PDR 1500						
7:15 AM .	PID 2000 / PDR 1500						
7:30 AM	PID 2000 / PDR 1500				-		17.0
7:45 AM	PID 2000 / PDR 1500						2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8:00 AM	PID 2000 / PDR 1500	0.015	N	N	0.0		CXAVATING
8:15 AM	PID 2000 / PDR 1500	0.019	1	-	0.0		
8:30 AM	PID 2000 / PDR 1500	0.013		-	0.2		FOR UNDERPIN
8:45 AM	PID 2000 / PDR 1500	0-015	-	-	0.5		Ü
9:00 AM	PID 2000 / PDR 1500	0.016		-	0		LOW ACTIVITY
9:15 AM	PID 2000 / PDR 1500	0.020	1	-	10.		COC 17 17
9:30 AM	PID 2000 / PDR 1500	0.019	-	-	04		
9:45 AM	PID 2000 / PDR 1500	0.022		-	0.5		PXCAVATING
10:00 AM	PID 2000 / PDR 1500	0.020		-	0.5		UNDERPIN
10:15 AM	PID 2000 / PDR 1500	0.015			0.5	1	
10:30 AM	PID 2000 / PDR 1500	0.016		-	0-6		. !! .
11:00 AM	PID 2000 / PDR 1500	0.015			0.5		PILNEUP
11:15 AM	PID 2000 / PDR 1500	0.012			0-5	· · · · · · · · · · · · · · · · · · ·	DIRT
11:30 AM	PID 2000 / PDR 1500	12:015			0.0	1.00	11.
11:45 AM	PID 2000 / PDR 1500	0.016			0.6		
12:00 PM	PID 2000 / PDR 1500	0.018.			05	See Man	Cow ACTIVITY
12:15 PM	PID 2000 / PDR 1500	0.021			0.6		
12:30 PM	PID 2000 / PDR 1500	0.021			2.5		/
12:45 PM	PID 2000 / PDR 1500	0.015			0.0		
1:00 PM	PID 2000 / PDR 1500	1.016			0.2		
1:15 PM	PID 2000 / PDR 1500	0.021			0.5	-	
1:30 PM -	PID 2000 / PDR 1500	0.020			0.6		
1:45 PM	PID 2000 / PDR 1500	0.031			05		1
2:00 PM	210 2000 / PDR 1500	-0 031	1.4	1/	0.0		
15 PM	PID 2000 / PDR 1500		.,	•			
:30 PM	PID 2000 / PDR 1500						
45 PM -	PID 2000 / PDR 1500						
00 PM -	PID 2000 / PDR 1500						1 .
15 PM	PID 2000 / PDR 1500				is estimated the		
30 PM	PID 2000 / PDR 1500						
45 PM	PID 2000 / PDR 1500						
DO PM	PID 2000 / PDR 1500						
5 PM	PID 2000 / PDR 1500						
O PM	PID 2000 / PDR 1500					1	
	PID 2000 / PDR 1500						
5 PM	PID 2000 / PDR 1500		-				

Particulate Air Mönitoring will be conducted during ground intrusuve activities at the Site in accordance with the Fugitive Dust and Particulate Monitoring from DER-10 Technical As per DER-10 Technical Guidance, any particular levels to exceed 0.10 mg/m³ will result in the implementation of dust supression techniques to allow work to continue.

As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m³ will result in the work to stop immediately.

LABOREAS: SCHOLMAN HOMES INC - WIS > USING SHOVELS TO EXCHUATE UNDERPINS - ELI

_	11,,,,,,,,,	Tanh Enviro		+-1 A		the above Francis	
	nyaro	iech Enviro	nmen	tal A	r Mor	nitoring Form]
roject Name:							
te Location:	- 28 3/st DZ	VE Long	- 15	Liga	100	114 N	4
ate: 11/50	117						- Control - Cont
TE Personnel : D	AUL MATLI						
	ovd4 1:01d						
emperature: 4	30/=	The state of the second					
umidity:							
TIME	Air Monitoring Equipment Make and Model	Air Particulate levels Sampling Results: (mg/m³)	Visible Dust (Y/N)	Odors (Y/N)	PID Readings (PPM)	Corrective Action Taken	Additional comments
7:00 AM	PID 2000 / PDR 1500			-			
7:15 AM	PID 2000 / PDR 1500						
7:30 AM	PID 2000 / PDR 1500						
7:45 AM	PIO 2000 / PDR 1500	98.0			100		
8:00 AM	PID 2000 / PDR 1500	0015	N	N	NH		9+ MRTING +0
. 8:15 AM	PID 2000 / PDR 1500	0.050	,	1			POLAVATE
8:30 AM	PID 2000 / POR 1500	0.031					UNDERPINS
8:45 AM	PID 2000 / PDR 1500	0.035					11
9:00 AM	PID 2000 / PDR 1500	0 071					11
9:15 AM	PID 2000 / PDR 1500	0.091					
9:30 AM	PID 2000 / PDR 1500	0 091					, "
9:45 AM	PID 2000 / PDR 1500	0.090					low ACTIVILY
10:00 AM	PID 2000 / PDR 1500	0 075					11
10:15 AM	PID 2000 / PDR 1500	0.077					"/
10:30 AM	PID 2000 / PDR 1500	0.072					ODCIAVA TING
10:45 AM	PID 2000 / PDR 1500	2062					Pits
11:00 AM	PID 2000 / PDR 1500	0065					for UNDERPI
11:15 AM	PID 2000 / PDR 1500	0.072					
11:30 AM	PID 2000 / PDR 1500	0.005			3 6 7		
11:45 AM	PID 2000 / PDR 1500	5.090	_	-			
12:00 PM	PID 2000 / PDR 1500	0.088					STOCK PILING
12:15 PM 12:30 PM	PID 2000 / PDR 1500	0.025					,1
12:45 PM	PID 2000 / PDR 1500 PID 2000 / PDR 1500	0.072		- 1			
1:00 PM	PID 2000 / PDR 1500	0.073	-		1		(4
1:15 PM	PID 2000 / PDR 1500	0.079					COCAVATING
1:30 PM	PID 2000 / PDR 1500	0.065	-+				"
1:45 PM	PID 2000 / PDR 1500	0.069					
2.00 PM	PID 2000 / PDR 1500	0.055					BACKFILING
2:15 PM	PID 2000 / PDR 1500	0051					TO POUR
2:30 PM	PID 2000 / PDR 1500	0.053		\rightarrow			CONCRETE
2:45 PM	PID 2000 / PDR 1500		-		1/		
3:00 PM	PID 2000 / PDR 1500	0.055	1//	-			
3:15 PM	PID 2000 / PDR 1500	0.024					
3:30 PM	PID 2000 / PDR 1500						
3:45 PM	PID 2000 / PDR 1500						
4:00 PM	PID 2000 / PDR 1500						
4:15 PM	PID 2000 / PDR 1500						
4:30 PM	PID 2000 / PDR 1500						
4:45 PM	PID 2000 / POR 1500						
5:00 PM	PID 2000 / PDR 1500						


Particulate Air Monitoring will be conducted during around intrusive activities at the Site in accordance with the Fugitive Dust and Particulate Manitoring from DER-10 Technical

As per DER-10 Technical Guidance, any particular levels to exceed 0.10 mg/m³ will result in the implementation of dust supression techniques to allow work to continue.

As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m³ will result in the work to stop immediately.

Hydro Tech Environmental Air Monitoring Form										
	Marian Anna Marian									
Project Name:										
Site Location: 1/	-28 3/1 DU	108 1.7	0							
Date: (7.//3/	1/2		7.775	11						
	AULMATLI		2.0		1000					
Weather:			A House of	4 718	100					
Temperature:		er van er betjaar e		10 mm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A DATE OF THE STATE OF THE STATE OF			
Humidity		The Artist Action								
ngingaew.		Landy to Minde	100							
TIME	Air Monitoring Equipment Make and Model	Air Particulate levels Sampling Results: (माष्ट्र/m³)	Visible Dust (Y/N)	Odors (Y/N)	PID Readings (PPM)	Corrective Action Taken	Additional comments			
7:00 AM	PID 2000 / PDR 1500	0045	N	\mathcal{N}_{-}	pm . O	2.3	wasting for			
7:15 AM	PID 2000 / PDR 1500	0.040		, ,	10.1		101100-4 1000			
7:30 AM	PID 2000 / PDR 1500	0-031	1 July 1		0.5		Blue (fore)			
7:45 AM	PID 2000 / POR 1500	0-035			01		1/			
8:00 AM	PID 2000 / PDR 1500	6-038		7	0.2		All the second second			
8:15 AM	PID 2000 / PDR 1500	0031			3.1		4			
8:30 AM	PID 2000 / PDR 1500	0-041			0-2		Durip in flue			
8:45 AM	PID 2000 / PDR 1500	0.042		14 9.00	0.1		.chal			
9:00 AM	PID 2000 / PDR 1500	12.045			0.2		<u> </u>			
9:15 AM	PID 2000 / PDR 1500	0-044	354 37 31		0-3		7			
9:30 AM	PID 2000 / PDR 1500.	0.641	1		0.3	All the second of the	Ninging Clerater			
9:45 AM	PID 2000 / PDR 1500	1.039	1 1 1 1 1	12.50	0:5		V° pt			
10:00 AM	PID 2000 / PDR 1500	2-041			0-2					
10:15 AM	PID 2000 / POR 1500	0-028			0.1					
10:30 AM	PID 2000 / PDR 1500	0-051	1 / 1		0.2					
10:45 AM	PID 2000 / PDR 1500	0.055		11.	01					
11:00 AM	PID 2000 / PDR 1500	0.049		1	0.2	<u>, in the second of the second</u>				
31:15 AM	PID 2000 / PDR 1500	0.029		3.5	1.1	1 1 1 1 1 1 1 1 1				
11:30 AM	PID 2000 / PDR 1500	0031			0.2	100				
11:45 AM	PID 2690 / PDR 1500	0.045		7	0.2	355 355 35				
12:00 PM	PID 2000 / PDR 1500	0.048		17.1	ni					
12:15 PM	PID 2000 / PDR 1500	0.055			0.7		1			
12:30 PM	PID 2000 / PDR 1500	0'058			02	the second of				
12:45 PM	PID 2000 / PDR 1500	0.057			10. Z					
1:00 PM	PID 2000 / PDR 1500	0.049		10.	Toil					
1:15 PM	PID 2000 / PDR 1500	0 035			01		Back filing			
1:30 PM	PID 2000 / PDR 1500	0.039		11/2	3.7		a plat stol			
1:45 PM	PID 2000 / PDR 1500	0051			0.1		BINCH			
2:00 PM	PID 2000 / PDR 1500	0050			0.1	<u> </u>	Trickness.			
2:15 PM	PID 2000 / PDR 1500	0.049	:1	1	0.1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
2:30 PM	PID 2000 / PDR 1500	1.029	V .	· N	0.2					
2:45 PM	PID 2000 / PDR 1500	0.030	N	V	05					
3:00 PM	PID 2000 / PDR 1500	0-046	N	N	03					
3:15 PM	PID 2000 / PDR 1500									
3:30 PM	PID 2000 / PDR 1500	14 1 Aug 18 1				1				
3:45 PM	PID 2000 / PDR 1500		T	1	1 4 4		and the stage of the second			
4:00 PM	PID 2000 / PDR 1500									
4:15 PM	PID 2000 / PDR 1500	No. 19 No.		1.5						
4:30 PM	PID 2000 / PDR 1500	The second second	1 2 25	1 4 4 4						
4:45 PM	PID 2000 / PDR 1500					<u> </u>				
5:00 PM	PID 2000 / PDR 1500									

Particulate Air Manitorina will be conducted during around intrusuve activities at the Site in accordance with the Fuditive Oust and Particulate Manitoring from DER-10 Technical As per DER-10 Technical Guidance, any particular levels to exceed 0.10 mg/m² will result in the implementation of dust supression techniques to allow work to continue.

As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m² will result in the work to stop Immediately.

Hydro Tech Environmental Air Monitoring Form									
	nyuro	ECH ENVIO	1111/2111	a. All					

Project Name:	ter territoria.								
Site Location: //	- LB 313 F D	ul 6	- B						
Date: 12/10	7//7			445 15					
	act in an		1961 1969		er de la compa				
Weather:	gray free grant to be a filter from the	5,400 1,79,140	10.00		100				
Temperature:		All Control of the Control	31-1 TH	No. 2, 3					
Humidler:	DINA SATURE		e Maria						
TIME	Air Monitoring Equipment Make and Model	Air Particulate levels Sampling Results: (mg/m³)	Visible Dust (Y/N)	Odors (Y/N)	PID Readings (PPM)	Corrective Action Taken	Additional comments		
7:00 AM	PID 2000 / PDR 1500								
7:15 AM	PID 2000 / PDR 1500								
7:30 AM	PID 2000 / POR 1500		11 7 4 3			Partie de la seconda			
7:45 AM	PID 2000 / PDR 1500	1.4 (1.4)					77 19		
8:00 AM	PID 2000 / PDR 1500	0-015	(A.)	N	0-1		SETTUNG SEK		
8:15 AM	PID 2000 / PDR 1500	0.020		100	0.1		1 / 1/		
8:30 AM	2ID 2000 / PDR 1500	0.025			0.1		Waltragor		
8:45 AM	PID 2000 / PDR 1500	0031	1		n - Z		Oxecution to		
9:00 AM	PID 2000 / PDR 1500	0030		1. 1. 1. 1.	0.5		to Bus RAIL		
9:15 AM	PID 2000 / PDR 1500	0040		2.	0° Z				
9:30 AM	PIO 2000 / POR 1500	1 2 7 1 7 7 7	100		0.2		4		
9:45 AM	PID 2000 / PDR 1500	003/-			0-7		1 V		
10:00 AM	PID 2000 / PDR 1500	8038			0-/		Low Get with		
10:15 AM	PID 2000 / POR 1500	0027			6.1		and the second		
10:30 AM	PID 2000 / POR 1500	0026			10.1		4		
10:45 AM	PID 2000 / POR 1500	002/			0.2		PRIAMOL		
11:00 AM	PID 2000 / PDR 1500	0028			01	1000	Arrived		
11:15 AM	PID 2000 / PDR 1500	0027	1		0-2		(//		
11:30 AM	PID 2000 / PDR 1500	003/			10-3		Regginion		
11:45 AM	PID 2890 / PDR 1500	000			0.1		14ck Hilling		
12:00 PM	PID 2000 / PDR 1500	6500		194	10.1	4.41 (1.5.44.5)	and the same		
12:15 PM	PID 2000 / PDR 1500	0025			10.6				
12:30 PM	PID 2000 / POR 1500	002/		1	127		VKack tillion		
12:30 PM	PID 2000 / PDR 1500	0820		1	0.1		1/		
1:00 PM	PID 2000 / PDR 1500	0628			12.7		4		
1:15 PM	PID 2000 / PDR 1500	0037			12.7		Moving TIRT		
1:30 PM	PID 2000 / PDR 1500	10036	1		10.7		TO Kack of		
1:45 PM	PID 2000 / PDR 1500	12026	1		0.1		Duo per for		
2:00 PM	PID 2000 / PDR 1500	8030	1		0.1		1.11		
2:15 PM	PID 2000 / PDR 1500	2030	1 - 1	1 /	0.7	F 2 7 7 7 7 7	, " "		
2:30 PM	PID 2000 / PDR 1500	0.075	1 1		00		10 ve (14)		
2:45 PM	PID 2000 / PDR 1500	1 · · · · · · · ·	1 4	 ~-	1 -				
3:00 PM	PID 2000 / PDR 1500	 	1		1				
3:15 PM	PID 2000 / PDR 1500	 	1.	1	 				
3:15 PM	PID 2000 / PDR 1500		1	1	1	1			
3:30 PM	PID 2000 / PDR 1500		1		 				
4:00 PM	PID 2000 / PDR 1500		1	1	1				
4:00 PM	PID 2000 / PDR 1500	-		1	1				
4:30 PM	PID 2000 / PDR 1500		1 1	1			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
4:45 PM	PID 2000 / PDR 1500		+	 	1				
4:45 FM	PIO 2000 / FUR 2500	 	1	+	+	 			

Porticulate Air Manitoring will be conducted during ground intrusive activities at the Site in accordance with the Fualitive Dust and Particulate Manitoring will be conducted during ground intrusive activities at the Site in accordance with the Fualitive Dust and Particulate Manitoring for DER-10 Technical Guidance, any particular levels to exceed 0.10 mg/m² will result in the work to stop immediately.

As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m² will result in the work to stop immediately.

		711L Carlier	arapa.	tal Ai	rMon	toring roa	
-	11,010	letil tirmo	4 5 5 5 5 mm 2 10				A STATE OF THE STA
	- Covil (Carallel State of Sta						
Project Hame:				LAY	o est	y.	
Name and Address of the Owner, where the Person	1- 28 3164 C	RIVE, 700	r6 3.	La JY			
Date:	05- 2018		regional const	100	2.00		
	JULIO GALA	? }			and the training	is a syrey in	
	אין				an el a sa de		
Temperature: 😗	A PROPERTY SERVICE	a g. ts e e		11,000	4 mg 2 mg	pali + 1. Na. 4. 多形物物	
Humidity:	yayan ara makingani adi wen	Control of the Control					
		Als Particulate levels	Visible.	Odars	PID	Corrective Action Talk	Additional comments
	Air Vionitoting Equipment	, Sampling Results:	Duzc	(Y/N)	Readings (Contractive Administration	
्राण्यः । शास्त्रहः १	Make and Model	(rng/m²)	(KAN)		T. St. Mar.		
	4073年63年11日	14 7 8 15 18 18 18 18 18 18 18 18 18 18 18 18 18			10.0	MA	HIE ONLER
- 7:00 AM:	PID 2000 / POR 1500/	0.000	W	A	10 A		NO MILUTICA
215 AM	PIC 2000 / POR 1500-	0.038	-44-	4	8 A	A	S.A. 15
NA DE F	PID 2000 / POR 1500	0.010	100	21 0. 4	50	تبولا بالنافع والمرازيوفي	<u> </u>
7:45 AM.	POR 1500	10.022	2. 4.	. g 100 g €	n . 0		1 S . A . 18
8:00 AM	PID-2000 / PDR 1500: //	0.034		ं विश्वासः	0 0		CAR
AM: 15 AM:	Fig PTD 2000 / PDR 1500 -	10.0 15	1 July 2014	in the	b O		A
	PID 2000/ PDR:1500	100			0 -0		C. L. R
	PID.2000/PDR 1500-	1	2. S.A.		0 . 0		The state of the s
Sidd Aive	PID 2000 / PDR 1500	0.008		2.5	0.0	4 4 4 4 4	SAR
9-15 AM	910 2000 / PDR 1500	0.036	F 22 24 44		0.Q		K 4 . 6
. 9:30 AM	PID 2000 / PDR 1500	0.028		2 1000	0 0	Commence of the Commence of th	A - 3
5 5 9:45 AW	PID-2000 / POR-1500	10,014		1	0 0	Carlos Call Science	S A.B
10:00 AM	F PID 2000 F PDR 1500	0.043			6 - 8		T A R
10:15 AW	PID 2000 / PDR 1500	0.061		* - ×	0 0	, a e l	1 E A 3
IO:45 AW	PID 2000 / PDR 1500	100 59		7	0.0	te ac	5 A 13
11:00 AM	PID 2009 7 POR 1500	0.007			0 0	despring to the Property of	CAB
11:15 AM	PID 2000 / PDR 2500	0.025			0		A. P
11:30 AM	PID 2000 / PDR-1500	0.012		- 1	80		A 1 3
- 11:45 AM	PID 2200 / PDR 1500	3037			D : 0	Section 1	MATO TAT MY HUCK
12:00 PM	PID 2000 / POR 1500.	0.0 50		7 N. 27 W.	0 0	and the second second	BACKFELLITTE
12:15:FM	PID:2000/RDR:1500	0.0 72			8-8		RACKEDITE
12:50 PM: > 1	PID 2000 / PDR 1500	0.0 23			1		BACKEDILLES
12:45.RM	FID 2000 / PDR 1500	0.005	N/	V	0 . 0	4.4	HIT BETSETE
1:00 PM.	PID 2000 / POR 1500	0.011	~	<u></u>	0 - 0	NIA	
1:15 PM	PID-2000 / PDR-1500				1		
1:30 PM	910-2000/PDR-1500:	Paragraphy (Section)					
1:45 PM	PIO 2000 / POR 1500	21 to 10 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	. K. 2557.5	2 TAN 2 TAN	r - F		James et al exploração de la cal
2:00.PM	PID 2000 / PDR 1500	F 140 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1975-1974	<u> </u>	1		
2:30 PM	PID-2000 / POR-1500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_	4 4 4 4 A A A A A A A	The second second second
2:35 PM	PID 2000 / PDR 1500						
3:00 PM	PID:2000 / POR 1500	1,5,1 = 211,415,4	erea proje		1	and the second	The state of the state of
3:15.9M	PID 2000 / POR 1500		*			The River Control	
3:30 PM	PID 2000 ≠PDR-1500	pure explained with the first			7.	i galanggan impek	 Jandan, J. Comp. (1997)
7. 7.3:45.PM 17	PID 2000 / PDR 1500.			Section 1	100	and the second section	
3 C 4:00 PM 3 - 1 -	PID-2000 / PDR-1500			1.5		September 1	
4:15 PM	PID 7000 / PDR 1500			Talahai a			A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1
430 PM + 100	PID-2000 / POR 1500		7		s		
4:45 PM	PID 1000 /- 20R 1500		12. 1. 1. 1. 1	+		3.14	
7 T-00.06d	PIO 2000 / POR 1500	100 - 400 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>				よしょう しゃれい といがしこむ	海巴森 使先列斯 化双角压剂 自经验证据

Particulate Air Monitoring will be conducted during around intrusive acquiries at the Sics in accordance, with the Fugitive Dust and Particulate Manitoring from OER-10 Technical
As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m² will result in the work to stop immediately.

As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m² will result in the work to stop immediately.

				ا الأ	- 11/100	noring Fo	
	11,4210	Tech Envire	HAMER	1345	H-1344-	++-++-	
The second secon	<u> All Carlos Company (Carlos Company)</u>				Migrapia antiga. Permanangan da		
cject Hamer		2 2	7 7 6/	AND	CITY		
e Location: 🗸 🐧	The second second	PRIVE , LONG	2 4/6				
te: 64	-26-2018	5 A		and all the	Sept. Sec.		
6		<u> </u>					The second second
nperature: QA	RICAL CLOUV		s	S	142 142		वेदरा । अञ्चलका अध्यक्षिक असूर्वाध्यक्षिक राजा होत
midity:	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second second		1		Control Same	
at with the first	Property and a state of	and a second	Visible	拉工芸	- PIO	F 被多。因此是	aken Additional comments
	Air Wonkoring Equipment	Air Particulate levels Sempling Results	Dust	Odors (Y/N)	Readings :	Corrective Action T	aken i Additional comment
ากเลื	ivials and Model	(mg/m²)	[Y/N]	L. Virgi	(PPIVI)		後事為。計學的2012年
					P 1	NIA	HIF ON SHE
- 7:00 AM	PIG 2000 / POR 1500:	10.0 L		N	10:0	NIA	UNLONGEN & TRUCK
7.15 ANI -	-2107 2000 Y POR 1500-	10.0 45	N N	N	10 . 0	NA	UPLOADENC TRUE
7:30 AM 37	PID 2000 / POR 1500	0.070	N	N	0 . 0	NIA	UPLOA DEPE TRU
4, 7:45 AM. 7.	PID 2000./PDR 1500	N N 23	~	N	0.0	N/A	UNIOA OLYG FRU
8:00 AM	PID-2000 / PDR 1500	<u> </u>	N.	<i>N</i> -	0.0	<i>j-t/</i> A	42.2
2115 AM	PTD 2000:/ PDR 1500	10.0 54	N -	ν.	0.0	NIA	Low Activity
2:30 AM	PID 2000 / FDR 1500	0.0 71	٠. بر.	N	10 · C	PRANTINA S	MEUNLO ATTING TRU
9:00:AN	210-2000/PDR-1500	0.014	Y	_/_	0	PINILIUM	UNLO ADING TRO
9:15 AM	PIO 2000:/ POR 1500.	0 0 22	po .	- PS	$0 \cdot 0$	440	BACKED INC SIT
9:30 AM	PID-2000 / PDR 1500.	10.0 58	, y	N	0.0	NIA	BACKFELLING ST
9:45 AW	PID-2000:/PDR-1500 at	5.Q.87 -	1	N	7.0	NIA	RACKETIZNE ST
10:00 AW .	- PID 2000 / PDR 1500	0.016		N	7.0	MA	LOW Activity
10:15 AW	PID 2000:/ PDR 1500 -	0 0 86	N	- N	0,0		LINE ACTIVITY
10:30:AM	PID 2000 / POR 1500 "-	V A VA	ן א	. N	0 . 0	μ/ <u> </u>	
10:45 AW:	PID 2000 / PDR 1500 * PID 2000 7 PDR 1500 *	0.0 73	V	٠,٠	<u>0</u> 0	3 1-4-12 -	MER UNLOADENG TRUC
11:15 AM	FID 2000 / PDR 1500	16 6 19	<u>L</u>	Al:	0.0	MA. NIA	MO ACTIVITY
11:11 AM	PID 2000 / POR 1500	10.012	مر	<u> </u>	HU Y	NIA	NO Activity
- 11:45 AM	PID 2.100 / PDR 1500	0.0 55	ا مد ا	N	0.0	NA	NO Activity
12:00 PM	PID 2000 / POR 1500	0.0 76	10	N	0 : 1)	MA	BACK FE 2/1 Y G
12:15:PM	910:2000/RDR-1500	0.0 29	N	7	n . U	MA	BACKFELLING
, 12:30. PM	PID 2000 / POR 1500	0.0 30 0 0 74	~		0.0	NIA	BACKETUITNG
12,45.RM	PID 2000 / PDR:1500	0.0 73	N	μ	0,0	NA	UNLOADENG TRUC
1.00 PM	PID 2000 / POR-1500	0.0 76	Y	Ν	-	SPRAYERS IN A	RACKETLZING
1:15 PA	PID-2000 / POR ISGO	0.0 6	برر		$0 \cdot 0$	PA	RACEFILLING
1:30 PM 3 44	PID 2000 / PDR 1500	10.0 92	N		8 · 8	r IA	BACKETHIN
2:60.PM	PIO:2000 / PDR-1500	0.016	امرا	A	0:0	MIA	REEK IN LUNC
. 2:15 PM	210-2000 / RDR 1500	0.0 77	N	-	0.0	NA	S. A. R
· 2:30 PM	. PID-2000 / POR 1500	0.028	W .		0 0	MIA	RESUME WORL
1 Z:45 PM 1	PIG 2000 / PDR 1500	10.0 53	N	1.00	0.0	MIA	UN LOADENG TRUE
- 3:00 PM	PID 2000 / POR 1500	2013			Q : Q	ν/Λ -	DACK FILLITE
3.15.RM	PID 2000 / PDR 1500	0.044	N	N	$Q \cdot Q$		TACKTELLI I
3:30 PM 1	PID 2000 / PDR 1500	0.0 18	M	-W	0.0	PIA	THE TOTAL CONTROL OF THE
4:00 PM	PID-2000 / PDR 1500		<u> </u>	F. 1	1 2 2 2 2 2		
4:15 PM:	PID 2000 / PDR-1500					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	en gargina dan mengerapan pengengan digitah penge
4:30 PM	PID-2000-/ PDR 1500			- 1	la la	· Professional States and the states are states are states are states and the states are st	the same of the spice of the
4:45.FW -	- FID 2000 /- 2DR 1500-			-12 and 1 d		. gardy jak <u>is s</u> oci	文·[数 1200] [10 10 10 10 10 10 10 10 10 10 10 10 10
- 5.00.PM: 4	. PID 2000 / PDR 1500	458 Park <u>ing majalah</u>			1.1	1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Sambara di Sambara da Sambara da Cara da Sambara da Cara da Sambara da Cara da Cara da Cara da Cara da Cara da

Particulate XIr Monitoring will be conducted during around intrusive activities of the Site in accordance, with the Fugitive Dust and Particulate Monitoring from DER-10 Technical
As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m² will result in the work to stop immediately.

As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m² will result in the work to stop immediately.

						- BURNETH AND A STATE OF THE ST	
- 1 × 1	11	Toch Swift		10 LA	r Mor	itoring for	
450	1 yul U	WCCU PILAILO	31616-2	A STATE OF THE REAL PROPERTY.			The second secon
3 4/10			1000				and the same of th
Project Name:		<u> </u>		6.4100	Pity		
Site Location: ,	1-28 3156 6	TRIVE, LONG	<u>لکہ ق</u>	AV/	CHI		
Date: 4	- 29-2019					When the	والأناب المراجع والمكور والأنجاب والمحاصورة والمراج
H(E Rarsonnel)	LUCIO GALARA	0/					and the control of th
: Weather: 🥳 🍠	MAN					on the Nation of the	
Temperature: 16	3.8			7			
idumidity: 24	2/1	and and the control of the control		4	·	Company of the Lorente	enters in value of Alice of Arterio
	Albania Carana Asia	A contract to the second	Visible.	1.00	PID-		
	Air Mionitoring Equipment	Air Particulate levels Sampling Results:	Dust	Odors	Readings	Corrective Action Taks	an Additional comments
TIME	iviake and Model	(mg/m²)	- (Y/N) :	(r/n)	(PPM)		
		E TO STATE OF THE PARTY OF			* ***		
7:80 AM	PID 2000 / PDR 1500	0.0.22	N	V	0,0	NA	SEATONG UP PUST/PT
7.15 AN	PIC 2000 / PDR 1500	00 24	-	~	0.0	MIA	UNLOADING TRUCK
MA DE F	PID 2000 / POR 1500	0.0 60	7	N	$0 \cdot 0$	MIA	9 A 13
7:45 AM	PID 2000 / POR 1500	0.0 48	. N	N	0 - 0	MIA	16 A 13
8:00 AM	PID 2000 / PDR 1500	0.019	· W	· N	$Q \cdot Q$	MA	RECHET ? / IN YARD
8.15 AM	FID 2000 / PDR 1500	2.024	N	N.	0 0	PIA	
2:30 AM	PID 2000 / PDR:1500	0.039	N.	<i>M</i>	0.0	<u> </u>	JOHN DA PTHY TEUR
1 8:45:AMF	PID.2000 / PDR 1500-	0.07			9.0	MA	- A - 5
1 9:00:AN	PID 2000 / POR 1900	0.015			o o	-91	MARK FT/ TIME YARD
- 9:15.AM	1: PID 2000:/ POR 1500	0.026	N		$Q \cdot Q$		THE LOW STILL THE MARK
9:30 AM	PLD 2000 / PDR 1500.	0.031	<i>y</i> /		$Q \cdot Q$	7.7A	NO ACTIVETY
9:45-AM	PID-2000-/ PDR-1500	0.044	ν	ν	0 . 0	N/A	HIE OFESTE
10:00 AM	PID 2000 APDR 1500 -	0.028	- /	ا در	0 . 0	PIA	I STATE OF STATE
10:15 AW	PID 2000 / POR 1500		1	- 10 T			
10:30:AM	PID 2000 / PDR 1500	1995 1996 24					The second second second
10:45 Aivi:	PID 2000 / POR 1500						
11:00 AM	PID-2000/ POR 1500						· Daniel State (State of the
11:15 AM	PID 2000 / PDR 1500						
11:30 AM	PID 2000 / POR-1500				1 1 1	A Section 1985	
1. 11:45 AM	PID 2310 / PDR-1500						
12:00 PM	PID 2000/FOR 1500:			4	3 3 4 4		
. 12:15 PM	1 910-2000 / RDR 1500				3 Tal		
12:30 PM	# PID 2000 / POR 1500 # PID 2000 / POR 1500			7.5			
12:45.RM	PID 2000 / POR 1500		1		**************************************	10 to	Activities and a second second
130 PN	PID 2000 / PDR 1500	• • •		30 m (2)	radio de la		
130 FM	PID-2000 / POR ISO0 -	1 TO 1 TO 1 TO 1		H1 1 12/17	•	e de la composición	
1:45 PM	F PID 2000 / PDR 1500			204	4, 3, 4		F # 1
2:00.PK4	PID/2000 / POR 1500	Professional Professional		· · · · · · · · · · · · · · · · · · ·	-		
2:15 PM	PIO-2000 / FDR 1500			ľ			
2:30 PM	PID-2000 / POR-1500				ा त	<u> </u>	<u> </u>
2:45 PM	910 2000 / PDR 1500** · ·			2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
3:00 PM	PID 2000 / POR 1500	ele esta e te de c	*** F			a transfer of the second	
3:15.PM.	PID 2000 / POR 1500						
3:30 PM	PID 2000 / PDR 1500			<u> </u>		A to the second section of the section of the second section of the section of the second section of the section of t	
3:45.PM - 3	PID 2000 / PDR 1500						
4:00 PM	PID-2000 / POR 1500			Mark 1			
4:15 PM	810-2000 / PDR-1500	Lart of Street L	<u> </u>				
4:30 PM	PID 2000 / PDR 1500		2.256. [3	*			
4:45 FM	PID 2000 / POR 1500		- 1- T				
5.00 PM	PID 2000 / POR 1500 "	ara ara da a	<u> </u>				

Particulate Air Monitoring will be conducted during around intrusive activities at the lite in accordance, with the Puglitive Dust and Particulate Manitoring from DER-10 Technical As per DER-10 Technical Guidance, any particular levels to exceed 0.10 mg/m² will result in the implementation of dust supression techniques to allow work to continue. As per DER-10 Technical Guidance, any particular levels to exceed 0.15 mg/m² will result in the work to stop immediately.

						-	itoring Form	
Project Na		28 313 Dr	4 . 2 . 5 . 6		-			
Site Locati	on //r	28 31" DRIVE,	ASTORIA					
Date: 2	114/1	AU MILANESI						
Weather.	Clays	10028	17 1					
Temperatu	re 42	6#		-		191		
tumidity:		1.7		-	-		1.7	Christian Charles
п	ME	Air Monitoring Equipment . Wake and Model	Air Particulate levels Sampling Results: (mg/m³)	Visible. Dust (Y/N)	Odors (Y/N)	PID Readings (PPM)	Corrective Action Taken	Additional comments
1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-		
	MA	PID 2000 / PDR 1500				1		
	AM	PID 2000 / PDR 1500	1,57		4. "			
	AM	PID 2000 / PDR 1500.						
	AM.	. PID 2000 / PCR 1500		1	1			
	AM .	910 2000 / PDR 1500 .						100
	AM	PID 2000 / PDR 1500				-		
	AM	PID 2000 / PDR 1500	- REA	N	N	0.0	N/A	HTE ONSITE
	AM	PID 2000 / PDR 1500	0.009	17	1	Lac.	1	MARKING WELL LOCA
9:30		PID 2000 / PDR 1500.	0.018					· //
9:45		PID 2000 / PDR 1500	0.016					RIG ARRIVED
10,00		PID 2000 / PDR 1500 .	0.014	1	1			INSTALLING WELL
10:15		PID 2000 / PDR 1500	0.021			-		INSTALLING WELL
10:30		PID 2000 / POR 1500	0.028	1	-	-	-	ii
10:45		PID 2000 / PDR 1500	0.019	-	1	1		11
11:00		PID 2000 / PDR 1500	0.024	-				i ii
12:15		PtD 2000 / PDR 1500	0.037	1		++		11: 11:
11:30 11:45		PID 2000 / PDR 1500	0.074					1
12:00		PID 2000 / PDR 1500	0.033					
12:15		PID 2000 / PDR 2500	0.030					1 11
12:30		. PID 2000 / PDR 1500	0.041			1		LUNCH
12:45		PID 2000 / PDR 1500	10.029	-	-	+		1 11
1:00		PID 2000 / PCR 1500	0.031	-	1	1		LOW ACTIVITY
1:15		PID 2000 / PDR 1500	0.038	-	1			11
2:30		PED 2000 / PDR 1500	0.027	1.1		1.		PURGING WELLS
1:45		PID 2000 / PDR 1500 PID 2000 / PDR 1500	0.020					
2:00		PID 2000 / PDR 1500	0.017					
2:30 1		PID 2000 / PDR 1500	0.025					11
2:45 1		PID 2000 / POR 1500	0.026	1	11/	1	1	"
3:00 1		P1D 2000 / PDR 1500	0.019	V	V	-	Y	" "
. 3:15	PM	PID 2000 / PDR 1500			-			
3:30 (. PID 2000 / PDR 1500		1		1		
3:45 F		PID 2000 / PDR 1500		1	1000			114 1 145 15 15 15 15
4:00 F		PID 2000 / PDR 1500 PID 2000 / PDR 1500			1		4	
4:30 F		PID 2000 / PDR 1500						
4:45 F		PID 2000 / PDR 1500						
	M.	PID 2000 / PDR 1500				1		4 4 2 4 4 4

ATTACHMENT D NYSDEC Approvals of Substantive Technical Requirements

New York State Department of Environmental Conservation

Division of Environmental Remediation

Office of the Director, 12th Floor

625 Broadway, Albany, New York 12233-7011 Phone: (518) 402-9706 • Fax: (518) 402-9020

Website: www.dec.ny.gov

JUN 0 2 2014

George Man Attn: Timothy Li, R.A. 957 56th Street Brooklyn, New York 11219

RE: Site Name: 11-28 31st Drive

Site No.: C241159

Location of Site: 11-28 31st Drive, Queens County, Queens, New York

Dear Mr. Man:

To complete your file, attached is a fully executed copy of the Brownfield Cleanup Agreement for the 11-28 31st Drive Site.

If you have any further questions relating to this matter, please contact the project attorney for this site, John Byrne, Esq., NYS Department of Environmental Conservation, Office of General Counsel, One Hunters Point Plaza, 47-40 21st Street, Long Island City, New York 11101, or by email at jrbyrne@gw.dec.state.ny.us.

Sincerely.

Robert W. Schick, P.E.

Director

Division of Environmental Remediation

Enclosure

ec: Sondra Martinkat, Project Manager

cc w/enc.: J. Byrne, Esq.

A. Guglielmi, Esq./.E. Armater

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION BROWNFIELD CLEANUP PROGRAM ECL \$27,1401 et seg

ECL §27-1401 et seq.

In the Matter of a Remedial Program for

BROWNFIELD SITE CLEANUP AGREEMENT Index No.: C241159-04-14

11-28 31st Drive

DEC Site No.: C241159

Located at:

11-28 31st Drive

Queens County Queens, NY 11106

Hereinafter referred to as "Site"

by:

George Man

957 56th Street, Brooklyn, NY 11219

Hereinafter referred to as "Applicant"

WHEREAS, the Department of Environmental Conservation (the "Department") is authorized to administer the Brownfield Cleanup Program ("BCP") set forth in Article 27, Title 14 of the Environmental Conservation Law ("ECL"); and

WHEREAS, the Applicant submitted an application received by the Department on January 21, 2014; and

WHEREAS, the Department has determined that the Site and Applicant are eligible to participate in the BCP.

NOW, THEREFORE, IN CONSIDERATION OF AND IN EXCHANGE FOR THE MUTUAL COVENANTS AND PROMISES, THE PARTIES AGREE TO THE FOLLOWING:

I. Applicant Status

The Applicant, George Man, is participating in the BCP as a Volunteer as defined in ECL 27-1405(1)(b).

II. Real Property

The Site subject to this Brownfield Cleanup Agreement (the "BCA" or "Agreement") consists of approximately 0.055 acres, a Map of which is attached as Exhibit "A", and is described as follows:

Tax Map/Parcel No.: 502-22 Street Number: 11-28 31st Drive, Queens Owner: George Man

III. Payment of State Costs

Invoices shall be sent to Applicant at the following address:

George Man Attn: Timothy Li, R.A. 957 56th Street Brooklyn, NY 11219 tli.architect@gmail.com

IV. Communications

A. All written communications required by this Agreement shall be transmitted by United States Postal Service, by private courier service, by hand delivery, or by electronic mail.

1. Communication from Applicant shall be sent to:

Sondra Martinkat
New York State Department of Environmental Conservation
Division of Environmental Remediation
One Hunters Point Plaza
47-40 21st Street
Long Island City, NY 11101
smmartin@gw.dec.state.ny.us

Note: one hard copy (unbound) of work plans and reports is required, as well as one electronic copy.

Krista Anders (electronic copy only)
New York State Department of Health
Bureau of Environmental Exposure Investigation
Empire State Plaza
Corning Tower Room 1787
Albany, NY 12237
kma06@health.state.ny.us

John Byrne, Esq. (correspondence only)
New York State Department of Environmental Conservation
Office of General Counsel
One Hunters Point Plaza
47-40 21st Street
Long Island City, NY 11101
ifbvrne@gw.dec.state.ny.us

2. Communication from the Department to Applicant shall be sent to:

George Man Attn: c/o Timothy Li, R.A. 957 56th Street Brooklyn, NY 11219 tli.architect@gmail.com

- B. The Department and Applicant reserve the right to designate additional or different addressees for communication on written notice to the other. Additionally, the Department reserves the right to request that the Applicant provide more than one paper copy of any work plan or report.
- C. Each party shall notify the other within ninety (90) days after any change in the addresses listed in this paragraph or in Paragraph III.

V. Miscellaneous

- A. Applicant acknowledges that it has read, understands, and agrees to abide by all the terms set forth in Appendix A "Standard Clauses for All New York State Brownfield Site Cleanup Agreements" which is attached to and hereby made a part of this Agreement as if set forth fully herein.
- B. In the event of a conflict between the terms of this BCA (including any and all attachments thereto and amendments thereof) and the terms of Appendix A, the terms of this BCA shall control.
- C. The effective date of this Agreement is the date it is signed by the Commissioner or the Commissioner's designee.

DATED:

JUN 0 2 2014

JOSEPH J. MARTENS COMMISSIONER NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

y. //

Robert W. Schick, P.E., Director

Division of Environmental Remediation

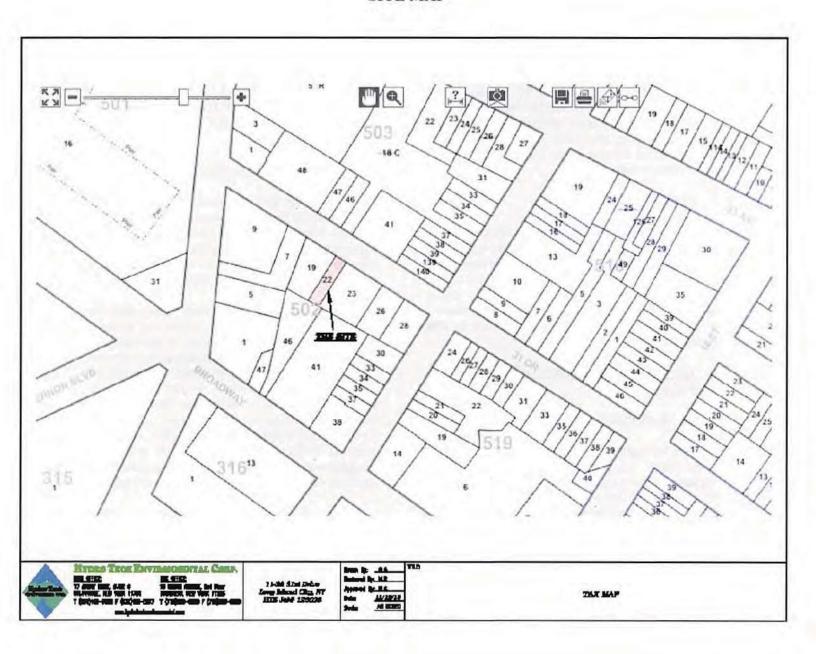
CONSENT BY APPLICANT

Applicant hereby consents to the issuing and entering of this Agreement, waives Applicant's right to a hearing herein as provided by law, and agrees to be bound by this Agreement.

George Man

By:

State of New York


On the 12th day of may in the year 20 / y before me, the undersigned, personally appeared for the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Signature and Office of individual taking acknowledgment

NOTARY PUBLIC-STATE OF NEW YORK
No. 01HO6233947
Qualified in Queens County
My Commission Expires January 03, 20

EXHIBIT A

SITE MAP

APPENDIX A

STANDARD CLAUSES FOR ALL NEW YORK STATE BROWNFIELD SITE CLEANUP AGREEMENTS

The parties to the Brownfield Site Cleanup Agreement (hereinafter "the BCA" or "the Agreement" or "this Agreement") agree to be bound by the following clauses which are hereby made a part of the BCA. The word "Applicant" herein refers to any party to the Agreement, other than the New York State Department of Environmental Conservation (herein after "Department").

I. Citizen Participation Plan

Within twenty (20) days after the effective date of this Agreement, Applicant shall submit for review and approval a written citizen participation plan prepared in accordance with the requirements of ECL § 27-1417 and 6 NYCRR §§ 375-1.10 and 375-3.10. Upon approval, the Citizen Participation Plan shall be deemed to be incorporated into and made a part of this Agreement.

II. <u>Development</u>, <u>Performance</u>, and <u>Reporting of Work Plans</u>

A. Work Plan Requirements

The work plans ("Work Plan" or "Work Plans") under this Agreement shall be prepared and implemented in accordance with the requirements of ECL Article 27, Title 14, 6 NYCRR §§ 375-1.6(a) and 375-3.6, and all applicable laws, rules, regulations, and guidance documents. The Work Plans shall be captioned as follows:

- 1. "Remedial Investigation Work Plan" if the Work Plan provides for the investigation of the nature and extent of contamination within the boundaries of the Site and, if the Applicant is a "Participant", the extent of contamination emanating from such Site. If the Applicant is a "Volunteer" it shall perform a qualitative exposure assessment of the contamination emanating from the site in accordance with ECL § 27-1415(2)(b) and Department guidance;
- 2. "Remedial Work Plan" if the Work Plan provides for the development and implementation of a Remedial Program for contamination within the boundaries of the Site and, if the Applicant is a "Participant", the contamination that has emanated from such Site:
- 3. "IRM Work Plan" if the Work Plan provides for an interim remedial measure; or
- "Site Management Plan" if the Work Plan provides for the identification and implementation of institutional and/or engineering controls as well as any

necessary monitoring and/or operation and maintenance of the remedy.

"Supplemental" if additional work plans other than those set forth in II.A.1-4 are required to be prepared and implemented.

B. Submission/Implementation of Work Plans

- 1. The first proposed Work Plan to be submitted under this Agreement shall be submitted no later than thirty (30) days after the effective date of this Agreement. Thereafter, the Applicant shall submit such other and additional work plans as determined in a schedule to be approved by the Department.
- 2. Any proposed Work Plan shall be submitted for the Department's review and approval and shall include, at a minimum, a chronological description of the anticipated activities to be conducted in accordance with current guidance, a schedule for performance of those activities, and sufficient detail to allow the Department to evaluate that Work Plan. The Department shall use best efforts in accordance with 6 NYCRR § 375-3.6(b) to approve, modify, or reject a proposed Work Plan within forty-five (45) days from its receipt or within fifteen (15) days from the close of the comment period, if applicable, whichever is later.
- i. Upon the Department's written approval of a Work Plan, such Department-approved Work Plan shall be deemed to be incorporated into and made a part of this Agreement and shall be implemented in accordance with the schedule contained therein.
- ii. If the Department requires modification of a Work Plan, the reason for such modification shall be provided in writing and the provisions of 6 NYCRR § 375-1.6(d)(3) shall apply.
- iii. If the Department disapproves a Work Plan, the reason for such disapproval shall be provided in writing and the provisions of 6 NYCRR § 375-1.6(d)(4) shall apply.
- A Site Management Plan, if necessary, shall be submitted in accordance with the schedule set forth in the IRM Work Plan or Remedial Work Plan.

C. <u>Submission of Final Reports</u>

1. In accordance with the schedule contained in an approved Work Plan, Applicant shall submit a Final Report for an Investigation Work Plan prepared in accordance with ECL § 27-1411(1) and 6 NYCRR §

- 375-1.6. If such Final Report concludes that no remediation is necessary, and the Site does not meet the requirements for Track 1, Applicant shall submit an Alternatives Analysis prepared in accordance with ECL § 27-1413 and 6 NYCRR § 375-3.8(f) that supports such determination.
- 2. In accordance with the schedule contained in an approved Work Plan, Applicant shall submit a Final Engineering Report certifying that remediation of the Site has been performed in accordance with the requirements of ECL §§ 27-1419(1) and (2) and 6 NYCRR § 375-1.6. The Department shall review such Report, the submittals made pursuant to this Agreement, and any other relevant information regarding the Site and make a determination as to whether the goals of the remedial program have been or will be achieved in accordance with established timeframes; if so, a written Certificate of Completion will be issued in accordance with ECL § 27-1419, 6 NYCRR §§ 375-1.9 and 375-3.9.
- 3. Within sixty (60) days of the Department's approval of a Final Report, Applicant shall submit such additional Work Plans as it proposes to implement. Failure to submit any additional Work Plans within such period shall, unless other Work Plans are under review by the Department or being implemented by Applicant, result in the termination of this Agreement pursuant to Paragraph XII.

D. Review of Submittals other than Work Plans

- 1. The Department shall timely notify Applicant in writing of its approval or disapproval of each submittal other than a Work Plan in accordance with 6 NYCRR § 375-1.6. All Department-approved submittals shall be incorporated into and become an enforceable part of this Agreement.
- 2. If the Department disapproves a submittal covered by this Subparagraph, it shall specify the reason for its disapproval and may request Applicant to modify or expand the submittal. Within fifteen (15) days after receiving written notice that Applicant's submittal has been disapproved, Applicant shall elect in writing to either (i) modify or expand it within thirty (30) days of receipt of the written notice of disapproval; (ii) complete any other Department-approved Work Plan(s); (iii) invoke dispute resolution pursuant to Paragraph XIII; or (iv) terminate this Agreement pursuant to Paragraph XII. If Applicant submits a revised submittal and it is disapproved, the Department and Applicant may pursue whatever remedies may be available under this Agreement or under law.
- E. <u>Department's Determination of Need for Remediation</u>

The Department shall determine upon its approval of each Final Report dealing with the investigation of the Site whether remediation, or additional remediation as the case may be, is needed for protection of public health and the environment.

- 1. If the Department makes a preliminary determination that remediation, or additional remediation, is not needed for protection of public health and the environment, the Department shall notify the public of such determination and seek public comment in accordance with ECL § 27-1417(3)(f). The Department shall provide timely notification to the Applicant of its final determination following the close of the public comment period.
- 2. If the Department determines that additional remediation is not needed and such determination is based upon use restrictions, Applicant shall cause to be recorded an Environmental Easement in accordance with 6 NYCRR § 375-1.8(h).
- 3. If the Department determines that remediation, or additional remediation, is needed, Applicant may elect to submit for review and approval a proposed Remedial Work Plan (or modify an existing Work Plan for the Site) for a remedy selected upon due consideration of the factors set forth in ECL § 27-1415(3) and 6 NYCRR § 375-1.8(f). A proposed Remedial Work Plan addressing the Site's remediation will be noticed for public comment in accordance with ECL § 27-1417(3)(f) and the Citizen Participation Plan developed pursuant to this Agreement. If the Department determines following the close of the public comment period that modifications to the proposed Remedial Work Plan are needed, Applicant agrees to negotiate appropriate modifications to such Work Plan. If Applicant elects not to develop a Work Plan under this Subparagraph then this Agreement shall terminate in accordance with Paragraph XII. If the Applicant elects to develop a Work Plan, then it will be reviewed in accordance with Paragraph II.D above.

F. Institutional/Engineering Control Certification

In the event that the remedy for the Site, if any, or any Work Plan for the Site, requires institutional or engineering controls, Applicant shall submit a written certification in accordance with 6 NYCRR §§ 375-1.8(h)(3) and 375-3.8(h)(2).

III. Enforcement

Except as provided in Paragraph V, this Agreement shall be enforceable as a contractual agreement under the laws of the State of New York. Applicant shall not suffer any penalty except as provided in Paragraph V, or be subject to any proceeding or action if it cannot comply with any requirement of this Agreement as a result of a Force Majeure Event as described at 6

NYCRR § 375-1.5(b)(4) provided Applicant complies with the requirements set forth therein.

IV. Entry upon Site

- A. Applicant hereby agrees to provide access to the Site and to all relevant information regarding activities at the Site in accordance with the provisions of ECL § 27-1431. Applicant agrees to provide the Department upon request with proof of access if it is not the owner of the site.
- B. The Department shall have the right to periodically inspect the Site to ensure that the use of the property complies with the terms and conditions of this Agreement. The Department will generally conduct such inspections during business hours, but retains the right to inspect at any time.
- C. Failure to provide access as provided for under this Paragraph may result in termination of this Agreement pursuant to Paragraph XII.

V. Payment of State Costs

- A. Within forty-five (45) days after receipt of an itemized invoice from the Department, Applicant shall pay to the Department a sum of money which shall represent reimbursement for State Costs as provided by 6 NYCRR § 375-1.5 (b)(3)(i).
- B. Costs shall be documented as provided by 6 NYCRR § 375-1.5(b)(3)(ii). The Department shall not be required to provide any other documentation of costs, provided however, that the Department's records shall be available consistent with, and in accordance with, Article 6 of the Public Officers Law.
- C. Each such payment shall be made payable to the New York State Department of Environmental Conservation and shall be sent to:

Director, Bureau of Program Management Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7012

- D. The Department shall provide written notification to the Applicant of any change in the foregoing addresses.
- E. If Applicant objects to any invoiced costs under this Agreement, the provisions of 6 NYCRR §§ 375-1.5 (b)(3)(v) and (vi) shall apply. Objections shall be sent to the Department as provided under subparagraph V.C above.

F. In the event of non-payment of any invoice within the 45 days provided herein, the Department may seek enforcement of this provision pursuant to Paragraph III or the Department may commence an enforcement action for non-compliance with ECL § 27-1423 and ECL § 71-4003.

VI. Liability Limitation

Subsequent to the issuance of a Certificate of Completion pursuant to this Agreement, Applicant shall be entitled to the Liability Limitation set forth at ECL § 27-1421, subject to the terms and conditions stated therein and to the provisions of 6 NYCRR §§ 375-1.9 and 375-3.9.

VII. Reservation of Rights

- A. Except as provided in Subparagraph VII.B, Applicant reserves all rights and defenses under applicable law to contest, defend against, dispute, or disprove any action, proceeding, allegation, assertion, determination, or order of the Department, including any assertion of remedial liability by the Department against Applicant, and further reserves all rights including the rights to notice, to be heard, to appeal, and to any other due process respecting any action or proceeding by the Department, including the enforcement of this Agreement. The existence of this Agreement or Applicant's compliance with it shall not be construed as an admission of any liability, fault, wrongdoing, or violation of law by Applicant, and shall not give rise to any presumption of law or finding of fact which shall inure to the benefit of any third party.
- B. Notwithstanding the foregoing, Applicant hereby waives any right it may have to make a claim pursuant to Article 12 of the Navigation Law with respect to the Site and releases the State and the New York Environmental Protection and Spill Compensation Fund from any and all legal or equitable claims, suits, causes of action, or demands whatsoever with respect to the Site that Applicant may have as a result of Applicant's entering into or fulfilling the terms of this Agreement.

VIII. Indemnification

Applicant shall indemnify and hold the Department, the State of New York, and their representatives and employees harmless from any claim, suit, action, and cost of every name and description arising out of or resulting from the fulfillment or attempted fulfillment of this Agreement by Applicant prior to the Termination Date except for those claims, suits, actions, and costs arising from the State's gross negligence or willful or intentional misconduct by the Department, the State of New York, and/or their representatives and employees during the course of any activities conducted pursuant to this

Agreement. In the event that the Applicant is a Participant, this provision shall also include the Trustee of the State's Natural Resources. The Department shall provide Applicant with written notice no less than thirty (30) days prior to commencing a lawsuit seeking indemnification pursuant to this Paragraph.

IX. Change of Use

Applicant shall notify the Department at least sixty (60) days in advance of any change of use, as defined in ECL § 27-1425, which is proposed for the Site, in accordance with the provisions of 6 NYCRR § 375-1.11(d). In the event the Department determines that the proposed change of use is prohibited, the Department shall notify Applicant of such determination within forty-five (45) days of receipt of such notice.

X. Environmental Easement

A. Within thirty (30) days after the Department's approval of a Remedial Work Plan which relies upon one or more institutional and/or engineering controls, or within sixty (60) days after the Department's determination pursuant to Subparagraph II.E.2 that additional remediation is not needed based upon use restrictions, Applicant shall submit to the Department for approval an Environmental Easement to run with the land in favor of the State which complies with the requirements of ECL Article 71, Title 36 and 6 NYCRR § 375-1.8(h)(2). Applicant shall cause such instrument to be recorded with the recording officer for the county in which the Site is located within thirty (30) days after the Department's approval of such instrument. Applicant shall provide the Department with a copy of such instrument certified by the recording officer to be a true and faithful copy within thirty (30) days of such recording (or such longer period of time as may be required to obtain a certified copy provided Applicant advises the Department of the status of its efforts to obtain same within such thirty (30) day period), which shall be deemed to be incorporated into this Agreement.

B. Applicant or the owner of the Site may petition the Department to modify or extinguish the Environmental Easement filed pursuant to this Agreement at such time as it can certify that the Site is protective of public health and the environment without reliance upon the restrictions set forth in such instrument. Such certification shall be made by a Professional Engineer or Qualified Environmental Professional as defined at 6 NYCRR § 375-1.2(ak) approved by the Department. The Department will not unreasonably withhold its consent.

XI. Progress Reports

Applicant shall submit a written progress report of its actions under this Agreement to the parties identified

in Subparagraph III.A.1 of the Agreement by the 10th day of each month commencing with the month subsequent to the approval of the first Work Plan and ending with the Termination Date, unless a different frequency is set forth in a Work Plan. Such reports shall, at a minimum, include: all actions relative to the Site during the previous reporting period and those anticipated for the next reporting period; all approved activity modifications (changes of work scope and/or schedule); all results of sampling and tests and all other data received or generated by or on behalf of Applicant in connection with this Site, whether under this Agreement or otherwise, in the previous reporting period, including quality assurance/quality control information; information regarding percentage of completion; unresolved delays encountered or anticipated that may affect the future schedule and efforts made to mitigate such delays; and information regarding activities undertaken in support of the Citizen Participation Plan during the previous reporting period and those anticipated for the next reporting period.

XII. Termination of Agreement

Applicant or the Department may terminate this Agreement consistent with the provisions of 6 NYCRR §§ 375-3.5(b), (c), and (d) by providing written notification to the parties listed in Paragraph IV of the Agreement.

XIII. Dispute Resolution

A. In the event disputes arise under this Agreement, Applicant may, within fifteen (15) days after Applicant knew or should have known of the facts which are the basis of the dispute, initiate dispute resolution in accordance with the provisions of 6 NYCRR § 375-1.5(b)(2).

- B. All cost incurred by the Department associated with dispute resolution are State costs subject to reimbursement pursuant to this Agreement.
- C. Notwithstanding any other rights otherwise authorized in law or equity, any disputes pursuant to this Agreement shall be limited to Departmental decisions on remedial activities. In no event shall such dispute authorize a challenge to the applicable statute or regulation.

XIV. Miscellaneous

A. If the information provided and any certifications made by Applicant are not materially accurate and complete, this Agreement, except with respect to Applicant's obligations pursuant to Paragraphs V, VII.B, and VIII, shall be null and void ab initio fifteen (15) days after the Department's notification of such inaccuracy or incompleteness or fifteen (15) days after issuance of a final decision

resolving a dispute pursuant to Paragraph XIII, whichever is later, unless Applicant submits information within that fifteen (15) day time period indicating that the information provided and the certifications made were materially accurate and complete. In the event this Agreement is rendered null and void, any Certificate of Completion and/or Liability Limitation that may have been issued or may have arisen under this Agreement shall also be null and void ab initio, and the Department shall reserve all rights that it may have under law.

- B. By entering into this Agreement, Applicant agrees to comply with and be bound by the provisions of 6 NYCRR §§ 375-1, 375-3 and 375-6; the provisions of such subparts that are referenced herein are referenced for clarity and convenience only and the failure of this Agreement to specifically reference any particular regulatory provision is not intended to imply that such provision is not applicable to activities performed under this Agreement.
- C. The Department may exempt Applicant from the requirement to obtain any state or local permit or other authorization for any activity conducted pursuant to this Agreement in accordance with 6 NYCRR §§ 375-1.12(b), (c), and (d).
- D. 1. Applicant shall use "best efforts" to obtain all Site access, permits, easements, approvals, institutional controls, and/or authorizations necessary to perform Applicant's obligations under this Agreement, including all Department-approved Work Plans and the schedules contained therein. If, despite Applicant's best efforts, any access, permits, easements, approvals, institutional controls, or authorizations cannot be obtained, Applicant shall promptly notify the Department and include a summary of the steps taken. The Department may, as it deems appropriate and within its authority, assist Applicant in obtaining same.
- 2. If an interest in property is needed to implement an institutional control required by a Work Plan and such interest cannot be obtained, the Department may require Applicant to modify the Work Plan pursuant to 6 NYCRR § 375-1.6(d)(3) to reflect changes necessitated by Applicant's inability to obtain such interest.
- E. The paragraph headings set forth in this Agreement are included for convenience of reference only and shall be disregarded in the construction and interpretation of any provisions of this Agreement.
- F. 1. The terms of this Agreement shall constitute the complete and entire agreement between the Department and Applicant concerning the implementation of the activities required by this Agreement. No term, condition, understanding, or agreement purporting to modify or vary any term of this

Agreement shall be binding unless made in writing and subscribed by the party to be bound. No informal advice, guidance, suggestion, or comment by the Department shall be construed as relieving Applicant of its obligation to obtain such formal approvals as may be required by this Agreement. In the event of a conflict between the terms of this Agreement and any Work Plan submitted pursuant to this Agreement, the terms of this Agreement shall control over the terms of the Work Plan(s). Applicant consents to and agrees not to contest the authority and jurisdiction of the Department to enter into or enforce this Agreement.

- 2. i. Except as set forth herein, if Applicant desires that any provision of this Agreement be changed, Applicant shall make timely written application to the Commissioner with copies to the parties in Subparagraph IV.A.1 of the Agreement.
- ii. If Applicant seeks to modify an approved Work Plan, a written request shall be made to the Department's project manager, with copies to the parties listed in Subparagraph IV.A.1 of the Agreement.
- iii. Requests for a change to a time frame set forth in this Agreement shall be made in writing to the Department's project attorney and project manager; such requests shall not be unreasonably denied and a written response to such requests shall be sent to Applicant promptly.
- G. 1. If there are multiple parties signing this Agreement, the term "Applicant" shall be read in the plural, the obligations of each such party under this Agreement are joint and several, and the insolvency of or failure by any Applicant to implement any obligations under this Agreement shall not affect the obligations of the remaining Applicant(s) under this Agreement.
- 2. If Applicant is a partnership, the obligations of all general partners (including limited partners who act as general partners) under this Agreement are joint and several and the insolvency or failure of any general partner to implement any obligations under this Agreement shall not affect the obligations of the remaining partner(s) under this Agreement.
- 3. Notwithstanding the foregoing Subparagraphs XIV.G.1 and 2, if multiple parties sign this Agreement as Applicants but not all of the signing parties elect to implement a Work Plan, all Applicants are jointly and severally liable for each and every obligation under this Agreement through the completion of activities in such Work Plan that all such parties consented to; thereafter, only those Applicants electing to perform additional work shall be jointly and severally liable under this Agreement for the obligations and activities under such additional Work

- Plan(s). The parties electing not to implement the additional Work Plan(s) shall have no obligations under this Agreement relative to the activities set forth in such Work Plan(s). Further, only those Applicants electing to implement such additional Work Plan(s) shall be eligible to receive the Liability Limitation referenced in Paragraph VI.
- 4. Any change to parties pursuant to this Agreement, including successors and assigns through acquisition of title, is subject to approval by the Department, after submittal of an application acceptable to the Department.
- H. Applicant shall be entitled to receive contribution protection and/or to seek contribution to the extent authorized by ECL § 27-1421(6) and 6 NYCRR § 375-1.5(b)(5).
- Applicant shall not be considered an operator of the Site solely by virtue of having executed and/or implemented this Agreement.
- J. Applicant and Applicant's agents, grantees, lessees, sublessees, successors, and assigns shall be bound by this Agreement. Any change in ownership of Applicant including, but not limited to, any transfer of assets or real or personal property, shall in no way alter Applicant's responsibilities under this Agreement.
- K. Unless otherwise expressly provided herein, terms used in this Agreement which are defined in ECL

- Article 27 or in regulations promulgated thereunder shall have the meaning assigned to them under said statute or regulations.
- L. Applicant's obligations under this Agreement represent payment for or reimbursement of State costs, and shall not be deemed to constitute any type of fine or penalty.
- M. In accordance with 6 NYCRR § 375-1.6(a)(4), the Department shall be notified at least 7 days in advance of, and be allowed to attend, any field activities to be conducted under a Department approved work plan, as well as any pre-bid meetings, job progress meetings, substantial completion meeting and inspection, and final inspection and meeting; provided, however that the Department may be excluded from portions of meetings where privileged matters are discussed.
- N. In accordance with 6 NYCRR § 375-1.11(a), all work plans; reports, including all attachments and appendices, and certifications, submitted by a remedial party shall be submitted in print, as well as in an electronic format acceptable to the Department.
- O. This Agreement may be executed for the convenience of the parties hereto, individually or in combination, in one or more counterparts, each of which shall be deemed to have the status of an executed original and all of which shall together constitute one and the same.

New York State Department of Environmental Conservation

Division of Environmental Remediation, 12th Floor

625 Broadway, Albany, New York 12233-7011 Phone: (518) 402-9706 Fax: (518) 402-9020

Website: www.dec.ny.gov

APR 3 0 2014

Certified Mail, Return Receipt Requested

George Man c/o Timothy Li, R.A. 957 56th Street Brooklyn, NY 11219

Re:

11-28 31st Drive

Tax Map ID No.: 502-22 Property County: Queens

Site No.: C241159

Dear Applicant:

Your application for the above-referenced Brownfield Cleanup Program ("BCP") project has been reviewed by the New York State Department of Environmental Conservation ("Department"). I am pleased to inform you that your request is accepted. The acceptance is based upon your participation as follows:

George Man is a Volunteer as defined in ECL 27-1405(1)(b).

Based upon the facts and information in the application, information contained in the Department's records, and a timely return of the signed Brownfield Cleanup Agreements (BCAs), the Department is prepared to execute a BCA for the above-described property. Enclosed are three original proposed BCAs. Please have an authorized representative sign all three originals where indicated and return them to my attention at 625 Broadway, Albany, New York, along with proof that the party executing the BCA is authorized to bind the Requestor. This would be documentation from corporate organizational papers, which are updated, showing the authority to bind the corporation, or a Corporate Resolution showing the same, or an Operating Agreement or Resolution for an LLC. The BCA shall not be effective until it is fully executed by the parties. A reassessment of eligibility may result in a denial of the application if there are any changes to material facts and information before the BCA is fully executed. Please note, if the BCA is not signed and returned to the Department within 60 days, the Department will consider the Application withdrawn and the offer to enter the BCP will be deemed rescinded.

The Department looks forward to working with you on this project. The Department's project manager will assist you in completing your project. You can arrange a meeting to discuss the program's requirements and work plan. The work plan will determine the scope of work to be conducted and completed. You may contact the Department's project team as set forth in Paragraph IV of the attached draft BCA to discuss the next steps.

Sincerely

Robert W. Schick, P.E., Director

Division of Environmental Remediation

Enclosures:

Department's Copies:

ec:

Michael J. Ryan, P.E.

Robert Cozzy
Jane O'Connell
Benjamin Conlon
Kelly Lewandowski
Andrew Guglielmi
Sondra Martinkat
John Byrne

Applicant's Copies:

ec:

Timothy Li, R.A. (tli.architect@gmail.com)

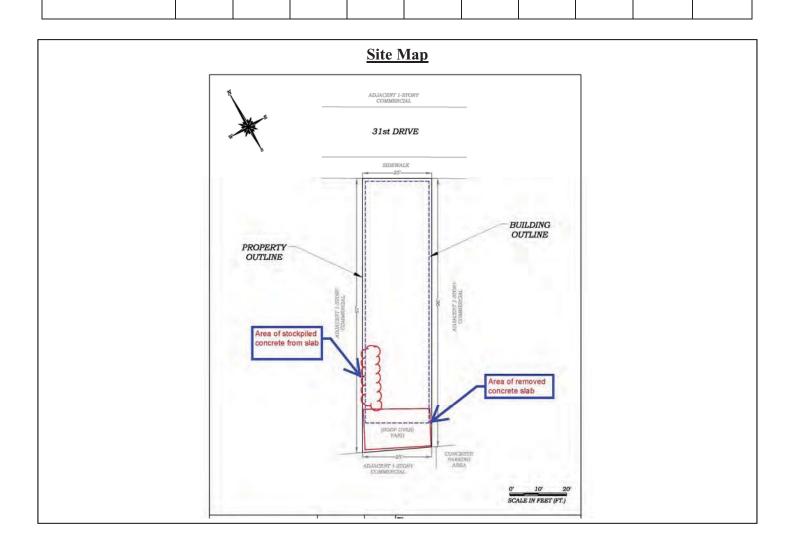
Lawrence Schnapf (larry@schnapflaw.com)

Paul Matli (pmatli@hydrotechenvironmental.com)

ATTACHMENT E Daily and Monthly Status Reports

Daily Reports

DAILY STATUS REPORT


Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	Partly Cloudy	Х	Bright Sun	
TEMP.	< 32	32-50	50-70	70-85	х	>85	

BCP Project No.:	C241159	Date:	9-19-2017
Project Name:	11-28 31 Drive, LIC, NY		

Safety Officer:
George Man
Site Manager/ Supervisor:
George Man
):
ne concrete as C&D
le concrete as C&D
•

								Example:		
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ									
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total										
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)	
Today										

Photo Log

Housekeeping activities following site demolition

Removal of concrete slab

DAILY STATUS REPORT

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	Partly Cloudy	X	Bright Sun	
TEMP.	< 32	32-50	50-70	70-85	Х	>85	

BCP Project No.:	C241159	Date:	9-20-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp.	George Man
AMC Engineering, PLLC Ariel Czemerinski P. E.	
General Contractor:	Site Manager/ Supervisor:
General Contractor: Schulman Industries, Inc.	Site Manager/ Supervisor: George Man

Work Activities Performed (Since Last Report):

Removal and stockpiling of existing concrete slab Coordination with a permitted facility to dispose the concrete as C&D

Working In Grid #: Southern portion

Samples Collected (Since Last Report):

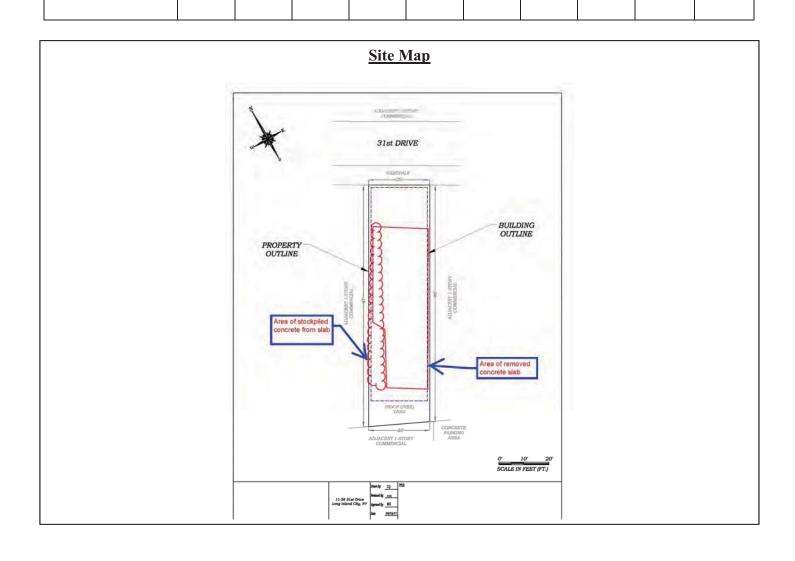
None collected

Air Monitoring (Since Last Report):

PID: 0.0 ppm

Dust:

Pre start Condition: Up gradient -0.012 mg/m^3 Downgradient -0.014 mg/m^3 Highest Condition: Up gradient -0.027 mg/m^3 Downgradient -0.022 mg/m^3


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week:

Removal and stockpiling of existing concrete slab

									Example:	
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid		Earth of ret, NJ								
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total										
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)	
Today										

Photo Log

CAMP station	
Removal of concrete slab	
Stockpiling of removed concrete from slab	

DAILY STATUS REPORT

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	50-70	70-85	х	>85	

BCP Project No.:	C241159	Date:	10-11-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants: Hydro Tech Environmental Corp. AMC Engineering, PLLC Ariel Czemerinski P. E.	Safety Officer: George Man
General Contractor: Schulman Industries, Inc.	Site Manager/ Supervisor: George Man
Work Activities Performed (Since Last Report):	

Disposal of 5 loads of stockpiled concrete as C&D at Evergreen Recycling

Working In Grid #: Southern portion

Samples Collected (Since Last Report):

None collected.

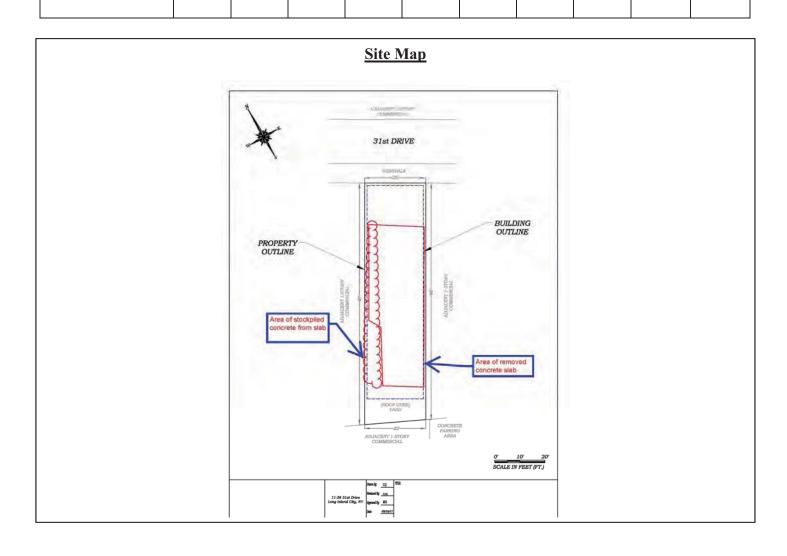
Air Monitoring (Since Last Report):

PID: 0.0 ppm

Dust:

Pre start Condition: Up gradient – 0.021 mg/m³ Downgradient – 0.031 mg/m³ Highest Condition: Up gradient – 0.037 mg/m³ Downgradient – 0.037 mg/m³

Problems Encountered:


No problems encountered

Planned Activities for the Next Day/ Week:

Excavation and disposal of soil-fill material

Example:

Facility # Name/ Location Type of Waste	Clean Earth of Carteret, NJ		Evergreen Recycling							
Solid <u>Or</u> Liquid										
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today			5	150						
Total			5	150						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

Photo Log

Truck loading with C&D

Disposal of C&D

Truck loading with C&D

				7 7 8 9	$\frac{10}{11}$ $\frac{12}{13}$	14 15 16	17	21 22 23	25	27		
	Tonnage											
	Off-Site Disposal	EVERGREEN										
	On 9te Location											
SOft Disposal ann represent	idk Ucense Zlate	n-	23264 11									
SOIL DIS	Tansporter Name / Truck	7 S C (6)	4									
	Manifest#											
	Shipmeni Date											
	Shipme							200		A longitum inter		

DAILY STATUS REPORT

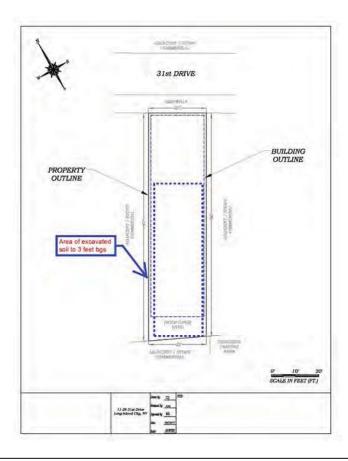
Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	50-70	70-85	х	>85	

BCP Project No.:	C241159	Date:	10-12-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp.	George Man
AMC Engineering, PLLC Ariel Czemerinski P. E.	
General Contractor:	Site Manager/ Supervisor:
Schulman Industries, Inc.	George Man
	<u> </u>
Excavation of southern and central portions of t	
Disposal of 8 loads of soil/fill material at Clean E	earth of Carteret
Working In Grid #: Southern portion	
Samples Collected (Since Last Report):	
None collected.	
Air Monitoring (Since Last Report):	
3 (0.1100 = 1100 110 p 0.14)	
PID: 0.0 ppm	
1.121 0.0 pp	
Dust:	
	owngradient – 0.030 mg/m ³
	owngradient – 0.037 mg/m³
Thighest Condition. Op gradient - 0.030 mg/m D	owngradient – 0.037 mg/m²
Problems Encountered:	
No problems encountered	
p. ca.ca diladanialaa	

Planned Activities for the Next Day/ Week:


Excavation and disposal of soil-fill material

_		
Fxam	n	Δ.
LAGIII	יש	ıc.

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ			Evergreen Recycling					
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.		Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today	8	160	5	150					
Total	8	160	5	150					

Imported Backfill/ Facility	(Cu. Yds.)	(Cı	ı. Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today									

Site Map

Soil excavation

Soil loading

Truck# Truck#	23 24 25 26 27 27
On-site Location On-site Disposal (A)Prov. Depth) CO. 47) Co. 47)	
4LAND TRUCKING 10 4LAND TRUCKING 10 45 1 45 1 45 1 45 1 45 1 45 1 45 1 45	
1749 Con 17 17 17 17 17 17 17 17 17 17 17 17 17	
10/12/20/3 10/12/2 10/1	
35 WC 82020 25 WC 820 25	

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	50-70	70-85	х	>85	

BCP Project No.:	C241159	Date:	10-13-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants: Hydro Tech Environmental Corp. AMC Engineering, PLLC Ariel Czemerinski P. E.	Safety Officer: George Man
General Contractor: Schulman Industries, Inc.	Site Manager/ Supervisor: George Man

Excavation of northern portion of the site to 3 feet bgs
Disposal of 4 loads of soil/fill material at Clean Earth of Carteret

Working In Grid #: Southern portion

Samples Collected (Since Last Report):

None collected.

Air Monitoring (Since Last Report):

PID: 0.0 ppm

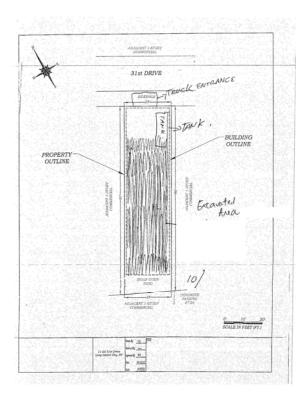
Dust:

Pre start Condition: Up gradient – 0.020 mg/m³ Downgradient – 0.025 mg/m³ Highest Condition: Up gradient – 0.037 mg/m³ Downgradient – 0.037 mg/m³

Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week:


Excavation and disposal of additional concrete load Removal of UST

_		
Fxam	n	Δ.
LAGIII	יש	ıc.

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid			Evergreen Recycling									
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.		
Today	4	80	5	5 150								
Total	12	240	5	150								
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Vda.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)		
	`	(Ou. Tus.)		(Cu. Yds.)		. 40.,	(Ou.	. 40.,	(Ou.	. 40.,		

Site Map

Today

Soil excavation

Soil loading

	1. Truck#	7 8 9 10 11	13 14 15 17	19 20 21	23 24 25 26 27 28
	Tonnage (23)				
	Off-Sife Disposal				
THEET	On Sife Location (Approx. Depth)				
SOIL DISPOSAL AND TRUCKING LOG SHEET	166 S				
SOIL DISPOSAL A	Porter Name / Truck Lice Rate & Expassy / S Porter & S Porter & S Porter & S Porter & S Porter Name				
	Tans				
	#16.12582 [6.12582 [6.12584 [6.12584				
	Shipment Date 13 / 20 1 7				
70%					

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	х	Partly Cloudy	Bright Sun	
TEMP.	< 32	32-50	50-70	х	70-85	>85	

BCP Project No.:	C241159	Date:	10-16-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp.	George Man
AMC Engineering, PLLC Ariel Czemerinski P. E.	
General Contractor:	Site Manager/ Supervisor:
Schulman Industries, Inc.	George Man

- -Vacuum removal of liquid accumulated inside the tank following its exposure during demolition activities from rainfall. Approx. 100 gallons of liquid was removed from the UST
- Tank also contained sediment from falling soil material during demolition.
- -Excavation and removal of UST in the northern portion of the Site. Tank was buried in dirt with no evidence of spill. Soil was brown silty sand with fill material. The excavation was 5 feet wide, 9 feet long and 6 feet deep and is set-back 2 feet from northern and also from eastern site boundary lines. No groundwater was encountered at tank bottom and no PID readings (0.1 ppm) was detected in screened soil from sidewalls or bottom.
- -Collected 5 end points samples around the tank pit
- -clean and dispose the tank as scrap metal. Sediment was placed in one 55-gal drum
- -Disposal of 1 load of C&D

Working In Grid #: Southern portion

Samples Collected (Since Last Report):

EP-1, EP-2 (MS/MSD), EP-3, EEP-4 and EP-5.

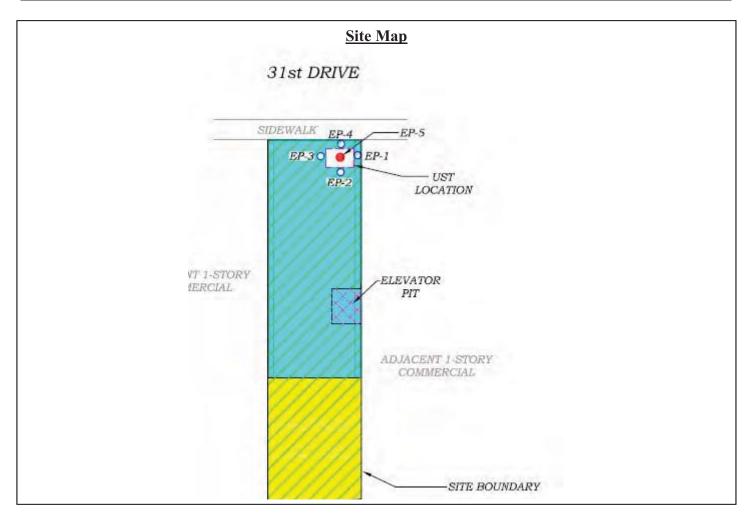
Air Monitoring (Since Last Report):

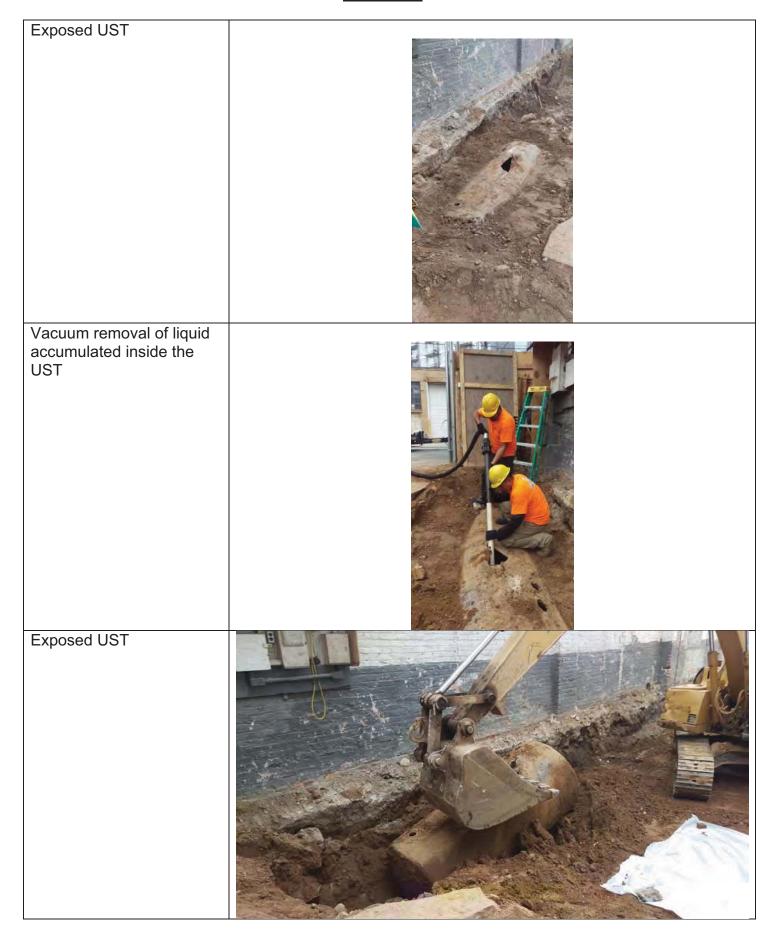
PID: 0.0 ppm

Dust:

Pre start Condition: Up gradient – 0.029 mg/m³ Downgradient – 0.016 mg/m³ Highest Condition: Up gradient – 0.045 mg/m³ Downgradient – 0.026 mg/m³

Problems Encountered:


No problems encountered


Planned Activities for the Next Day/ Week:

Survey of site excavation bottom and tank excavation pit prior to import of backfill

									Exan	nple:						
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid				Evergreen Recycling												
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.						
Today			1	30												
Total	12	240	6	180												
		•				•										

Imported Backfill/ Facility	(Cu. Yds.)					
Today						

View of tank excavation pit

55-gal drum containing cleaning waste from UST

11-28 3/st D. L.I.C, NY 11166

		T					10.16				ij.		48				74				D. Harris		a start				100		
	#						1000		8	9	10	11		3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	Truck #	1	2	- 3	4	5	9	7	3	5	1	1	12	13	Patrica.	1	010	-				,,,		5.75	100				
			11.5		CHE				146								26		93		200								2.1
			1000		A 200						Special St						Section Section												
	Tonnage	0							1111	Ŧ	- 1 to 2 to	1																	
	To	2									0	1.			學問題									100	1634		2		
	1415 450									7.											100				100		4.0		7.5
	Off-Site Disposal	32575																	· · · · · · · · · · · · · · · · · · ·						100				
	Site Dispo	3											100												Secondary of the second				
	Off	13				9		3											1						and the second				100 mm
	(u)										数では				# 0 TO 1				1000										
	On-Site Location (Approx. Depth)	CONCRETE		Ŧ		,													18	100									
THE	Site L.	275						15					A STATE OF THE PARTY OF						1000		100				100				
G SHI	On (Ap	9					Top																						
SOIL DISPOSAL AND TRUCKING LOG SHEET		Y																	182										
NCKI	License Plate	59283H					+												The second					1					
ND TR	cense	978			精樂												門器		THE WAR										
SALA								-	100				影響			-					建		題	-	報				
OISPO	Truck	9																								.*			
SOIL	ame /	SUSINS																	1.0									2000	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ter Name Name	3	製品				1,5 to 4 obs.fr																188					100	
	Tansporter Name / Truck	03									PA T																		
	TOPASE	(-)	物質														345				100		· 是一						
		BOLLHOOL											· · · · · · · · · · · · · · · · · · ·																
-	Manifest #	#			100			- 1													9.11.5				1946 11 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16				
	Mar	tt											10 Miles						51										39
		3					00								計画を														
									Est la								100						100						
	e)	-					SPG0.11														100				が表現は				
	Shipment Date	1-9			ないがられば、15万円												11 ¹ ,				No.		12.7		100000				
	ipme	0				-	T					 X	# 1	-		-	The said	100		**		V	4000	77	他は				
	- CONTRACTOR	7			953				1.00 E				10000				100				· 1000年		1000						
				5	1. The second se				L.		电影		8				1					M	100		()		Š.		

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	х	Partly Cloudy	Bright Sun	
TEMP.	< 32	32-50	50-70	x	70-85	>85	

BCP Project No.:	C241159	Date:	10-27-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	Site is closed as no remedial construction
AMC Engineering, PLLC Ariel Czemerinski P. E.	activities are taking place
General Contractor:	Site Manager/ Supervisor:
General Contractor: Site is closed as no remedial construction activities	Site Manager/ Supervisor: Site is closed as no remedial construction

Activities:

- Site is vacant and no equipment are staged on property
- At the request of NYSDEC, Hydro Tech Environmental collected a sample of the sediments removed during the cleaning of the interior of the closed and removed UST. The sample was shipped to laboratory for analysis for VOCs, SVOCs and TCLP full suite.

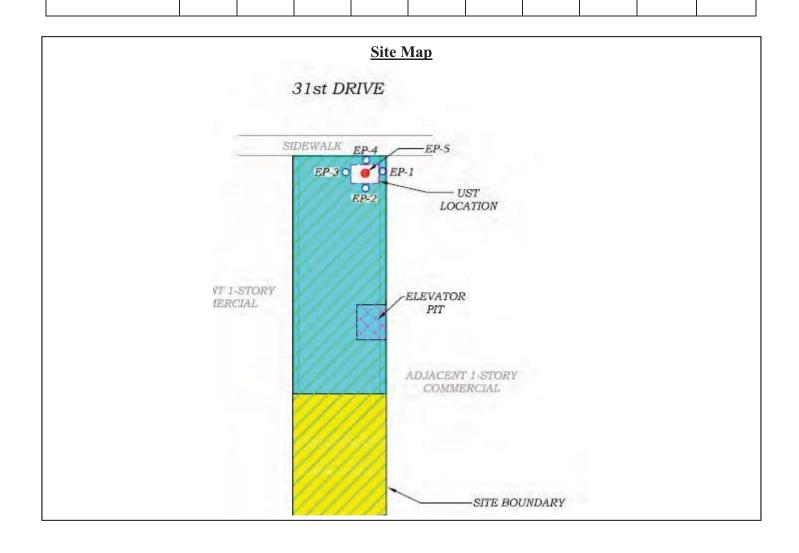
Working In Grid #: not applicable

Samples Collected (Since Last Report):

Sampled Sediments from UST

Air Monitoring (Since Last Report):

Not performed


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week:

Survey of site excavation bottom and tank excavation pit prior to import of backfill Perform shoring around elevator pit and tank pit

									Exan	nple:
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ		Evergreen Recycling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility			(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

55-gal drum containing cleaning waste from UST	WASTE

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	х	Partly Cloudy	Bright Sun	
TEMP.	< 32	32-50	50-70	х	70-85	>85	1

BCP Project No.:	C241159	Date:	11-22-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
Eli Duncan/Luis Rosales	

Activities:

- Excavation a pit for underpinning for elevator pit. Underpinning pit is 2 feet deep and 3 feet wide and required excavation 3 feet wide and 5 feet deep below current floor of excavation.
- Tools used included a jack hammer and shovels

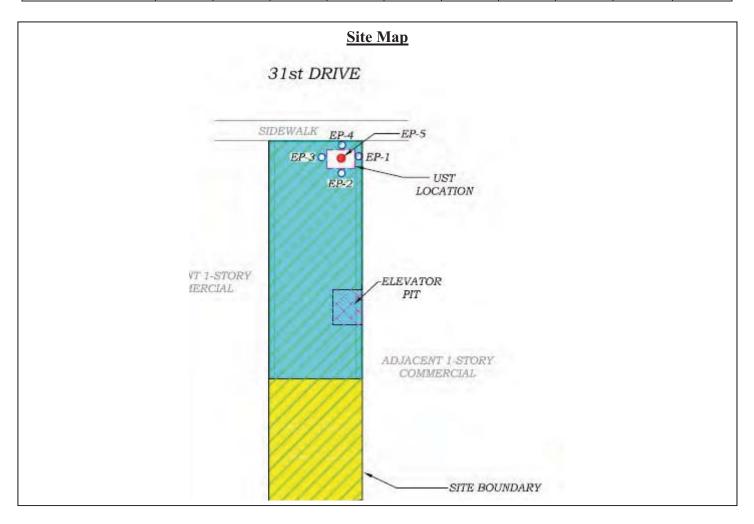
Working In Grid #: not applicable

Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

PID: 0.0 ppm

Dust:


Pre start Condition: Downgradient – 0.060 mg/m³ Highest Condition: Downgradient – 0.091 mg/m³

Problems Encountered: No problems encountered

Planned Activities for the Next Day/ Week:

Continue underpinning

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid		Clean Earth of Carteret, NJ		Evergreen Recycling						
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility			(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

Breaking edges of former slab along existing southern wall in preparation for underpinning

Hand excavated pit for underpinning

Form placed for concrete underlining under footing of south-adjacent building

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	х	Partly Cloudy	Bright Sun	
TEMP.	< 32	32-50	50-70	х	70-85	>85	

BCP Project No.:	C241159	Date:	11-28-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
Eli Duncan/Luis Rosales	

Activities:

- Excavation a second pit for underpinning for elevator pit. Underpinning pit is 2 feet deep and 3 feet wide and required excavation 3 feet wide and 5 feet deep below current floor of excavation.
- Tools used included a jack hammer and shovels

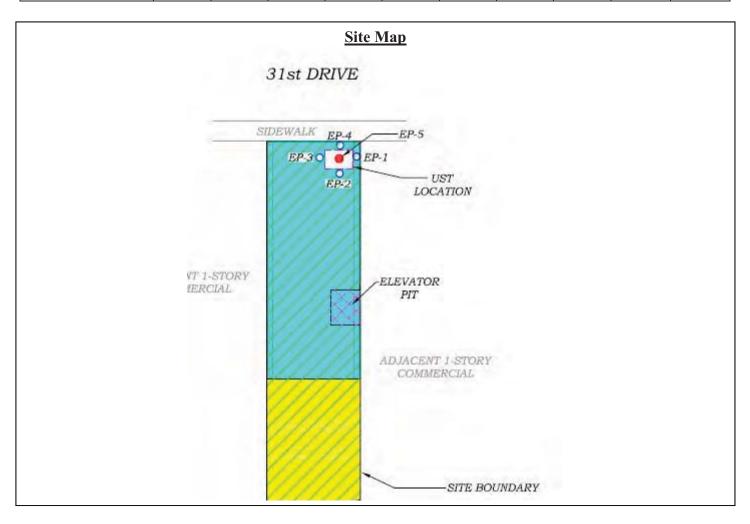
Working In Grid #: not applicable

Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

PID: 0.0 ppm

Dust:


Pre start Condition: Downgradient – 0.015 mg/m³ Highest Condition: Downgradient – 0.031 mg/m³

Problems Encountered: No problems encountered

Planned Activities for the Next Day/ Week:

Continue underpinning

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean E Cartei	Earth of ret, NJ		Evergreen Recycling						
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	fill/ (Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)	
Today										

Site View Hand excavation of underpinning pits View of underpinning pits

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	х	Partly Cloudy	Bright Sun	
TEMP.	< 32	32-50	50-70	х	70-85	>85	

BCP Project No.:	C241159	Date:	11-30-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
Eli Duncan/Luis Rosales	

Activities:

- Excavation a third pit for underpinning for elevator pit. Underpinning pit is 2 feet deep and 2 feet wide and required excavation 3 feet wide and 5 feet deep below current floor of excavation.
- Tools used included a jack hammer and shovels

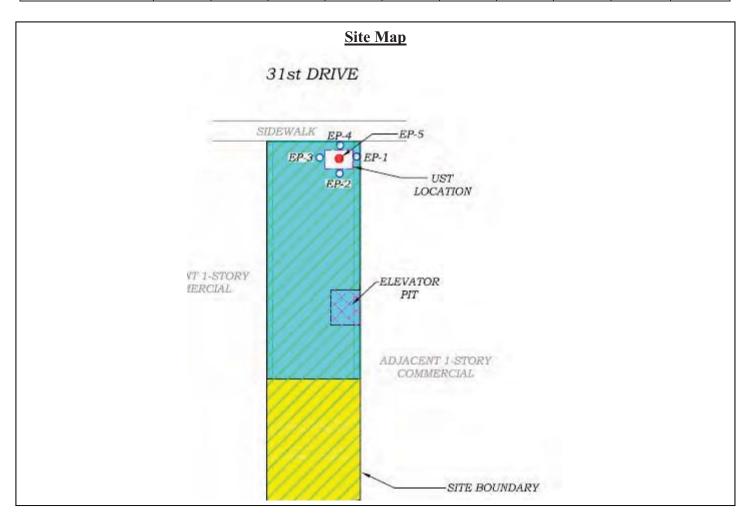
Working In Grid #: not applicable

Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

PID: 0.0 ppm

Dust:

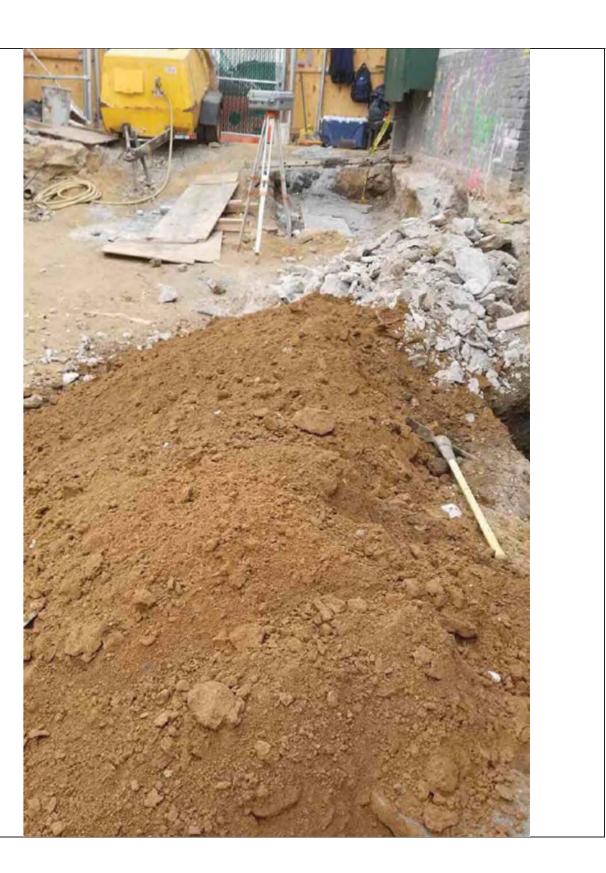

Pre start Condition: Downgradient – 0.015 mg/m³ Highest Condition: Downgradient – 0.091 mg/m³

Problems Encountered: No problems encountered

Planned Activities for the Next Day/ Week:

Excavation of a pit for elevator foundations

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean E Cartei	Earth of ret, NJ		Evergreen Recycling						
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	fill/ (Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)	
Today										


Site View

Hand excavation of underpinning pits

Excavated soil from underpinning activities

Prepared By: Paul Matli

WEATHER	Snow		Rain	Overcast	Partly Cloudy	Bright Sun	
TEMP.	< 32	X	32-50	50-70	70-85	>85	

BCP Project No.:	C241159	Date:	12-13-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants: Hydro Tech Environmental Corp Paul I. Matli AMC Engineering, PLLC. Ariel Czemerinski P. E.	Safety Officer: George Man
General Contractor: Shulman Home Inc: Gerald De France – excavator Operator Elijah Duncan Jr Helper	Site Manager/ Supervisor: George Man

Activities:

- Excavation of a pit for the layout of footings of elevator and surrounding building footings using Bobcat excavator 335. Excavation is 6.6 feet bgs and is 13 feet long and 16 feet wide.
- Stockpile of excavated soil along northern side of site
- Delivery of a load of ¾-inch stone for the SSDS
- Placement of a 6-inch thick layer of ¾-inch bluestone at bottom of excavated pit. Bluestone was imported from North Church Gravel, Inc.

Working In Grid #: not applicable

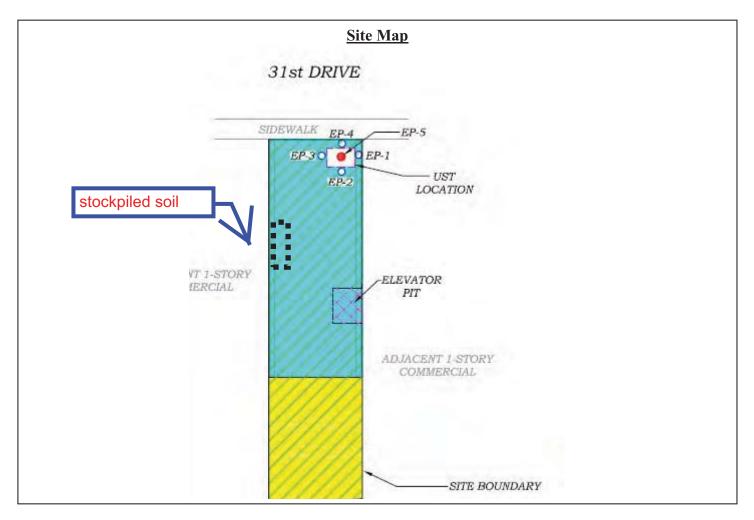
Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

PID: 0.0 ppm

Dust:

Pre start Condition: Downgradient – 0.045 mg/m³ Highest Condition: Downgradient – 0.058 mg/m³


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week:

Placement of vapor barrier under footings of elevator pit

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid		Earth of ret, NJ		Evergreen Recycling				_		
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	kfill/ (Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)	
Today										

View of excavated pit for elevator foundations and surrounding building footings

Stockpiled soil from elevator pit excavation

Placement of ¾-inch bluestone at bottom of elevator pit

Prepared By: Paul Matli

WEATHER	Snow		Rain	Overcast	Partly Cloudy	Bright Sun	
TEMP.	< 32	х	32-50	50-70	70-85	>85	

BCP Project No.:	C241159	Date:	12-18-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants: Hydro Tech Environmental Corp Paul I. Matli AMC Engineering, PLLC. Ariel Czemerinski P. E.	Safety Officer: George Man						
General Contractor: Shulman Home Inc: Gerald De France Elijah Duncan Jr Helper Activities:	Site Manager/ Supervisor: George Man						
- Installation of vapor barrier in elevator pit							
Working In Grid #: not applicable							
Samples Collected (Since Last Report):							
Air Monitoring (Since Last Report):							
Not performed							
Problems Encountered: No problems encountered							
Planned Activities for the Next Day/ Week: Reuse of stockpiled soil that is excavated from elevator pit to backfill the rear yard							

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ		Evergreen Recycling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

Installation of vapor barrier in elevator pit	
Completed installation of vapor barrier in elevator pit	

Prepared By: Paul Matli

WEATHER	Snow	Rain		Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	х	50-70	70-85		>85	

BCP Project No.:	C241159	Date:	12-19-2017
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
Gerald De France – excavator Operator	
Elijah Duncan Jr Helper	

Activities:

- On-site reuse of stockpiled soil from excavation of elevator pit to backfill rear yard
- Backfilling with on-site soil in rear yard was performed for a layer 1 foot above excavation floor

Working In Grid #: not applicable

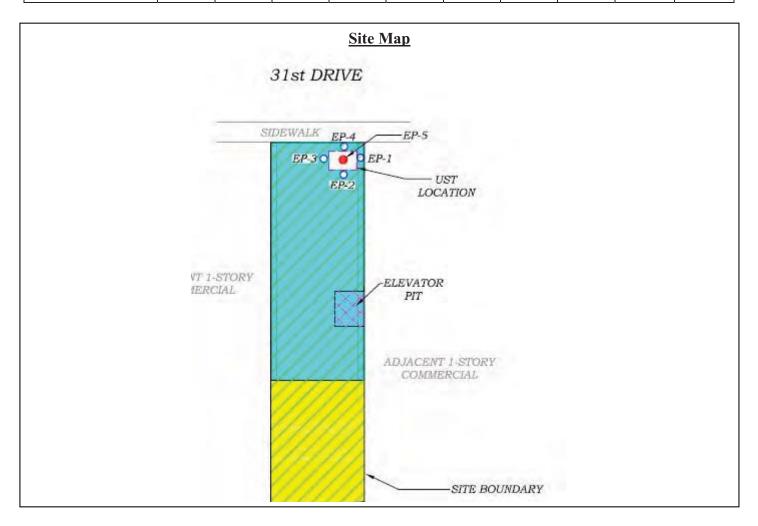
Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

PID: 0.1 ppm

Dust:

Pre start Condition: Downgradient – 0.015 mg/m³ Highest Condition: Downgradient – 0.041 mg/m³


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week:

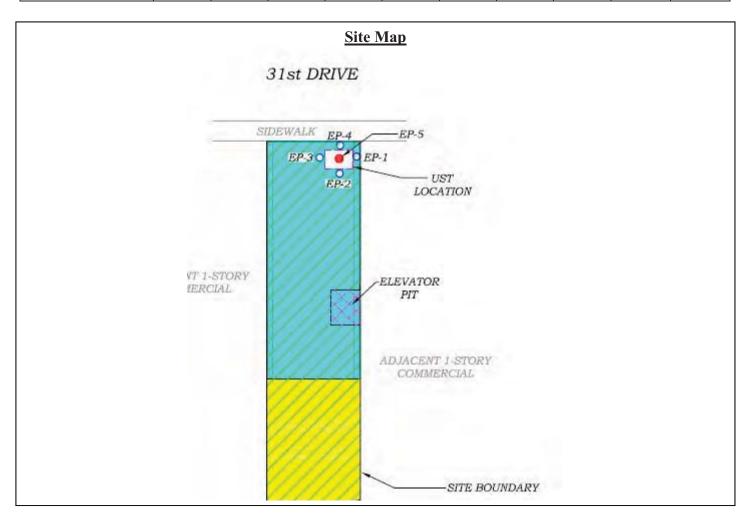
Forming and pouring of elevator pit foundations

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ		Evergreen Recycling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

View of demarcation layer prior to backfill in rear yard

Movement of previously stockpiled excavated soil for on-site reuse as backfill

Competed backfilling in rear yard with reused on-site soil


Prepared By: Paul Matli


WEATHER	Snow	Rain		Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	х	50-70	70-85		>85	

BCP Project No.:	C241159	Date:	1-18-2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants: Hydro Tech Environmental Corp Paul I. Matli AMC Engineering, PLLC. Ariel Czemerinski P. E.	Safety Officer: George Man
General Contractor: Shulman Home Inc: Gerald De France – Skid steer (bobcat) Operator Elijah Duncan Jr Helper Activities:	Site Manager/ Supervisor: George Man
- Installation of vapor barrier around elevator pi	it
Working In Grid #: not applicable Samples Collected (Since Last Report):	
Air Monitoring (Since Last Report): Not performed	
Problems Encountered: No problems encountered	
Planned Activities for the Next Day/ Week Import of backfill to restore site excavation elevation	

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean E Cartei	Earth of ret, NJ		Evergreen Recycling						
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	6 180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

Prepared By: Paul Matli

WEATHER	Snow	Rain		Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	х	50-70	70-85		>85	

BCP Project No.:	C241159	Date:	1-25-2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants: Hydro Tech Environmental Corp Paul I. Matli AMC Engineering, PLLC. Ariel Czemerinski P. E.	Safety Officer: George Man
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
Gerald De France – Skid steer (bobcat) Operator	
Elijah Duncan Jr Helper	

Activities:

- Import of 1 load of ¾ inch stone from North Church Gravel to use as backfill to restore Site elevation following excavation

Working In Grid #: not applicable

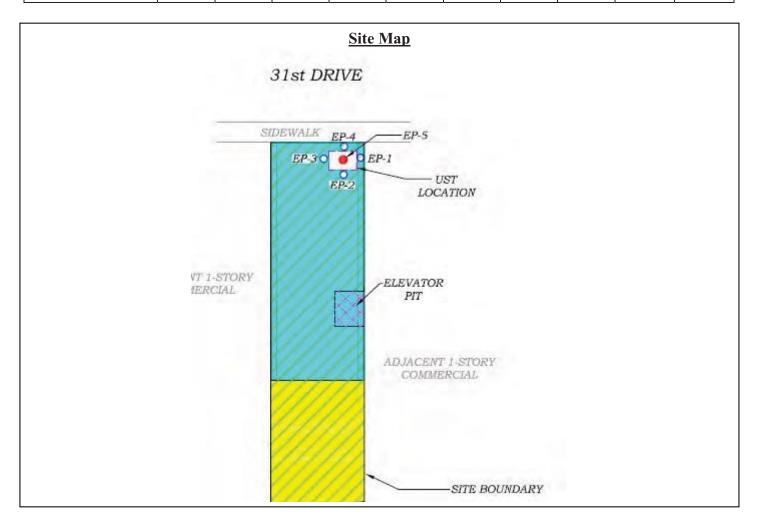
Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

PID: 0.1 ppm

Dust:

Pre start Condition: Downgradient – 0.009 mg/m³ Highest Condition: Downgradient – 0.038 mg/m³


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week:

Import of bluestone backfill

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ		Evergreen Recycling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	6 180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today	у									

View of imported bluestone	* Bobout

Prepared By: Paul Matli

WEATHER	Snow	Rain		Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	х	50-70	70-85		>85	

BCP Project No.:	C241159	Date:	1-26-2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants: Hydro Tech Environmental Corp Paul I. Matli AMC Engineering, PLLC. Ariel Czemerinski P. E.	Safety Officer: George Man
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
Gerald De France – Skid steer (bobcat) Operator	
Elijah Duncan Jr Helper	

Activities:

- Import of 9 load of ¾ inch stone from North Church Gravel to use as backfill to restore Site elevation following excavation
- Import of 2 load of 1.5 inch bluestone from Impact Materials to use as backfill to restore Site elevation following excavation
- Stockpile 2 loads ¾ inch stone from North Church Gravel to be used for the 6 inch layer of the SSDS beneath the building

Working In Grid #: not applicable

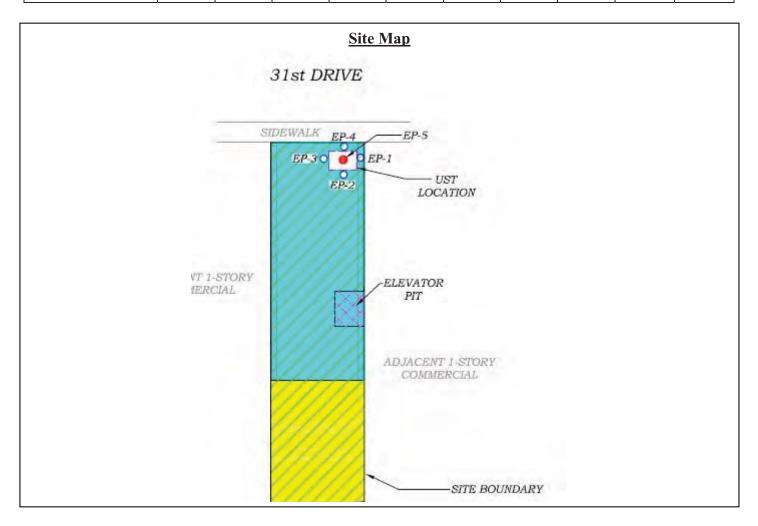
Samples Collected (Since Last Report):

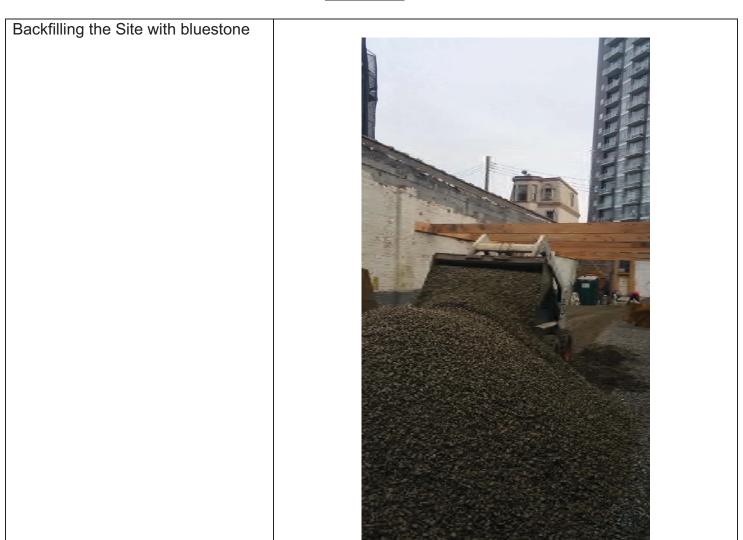
Air Monitoring (Since Last Report):

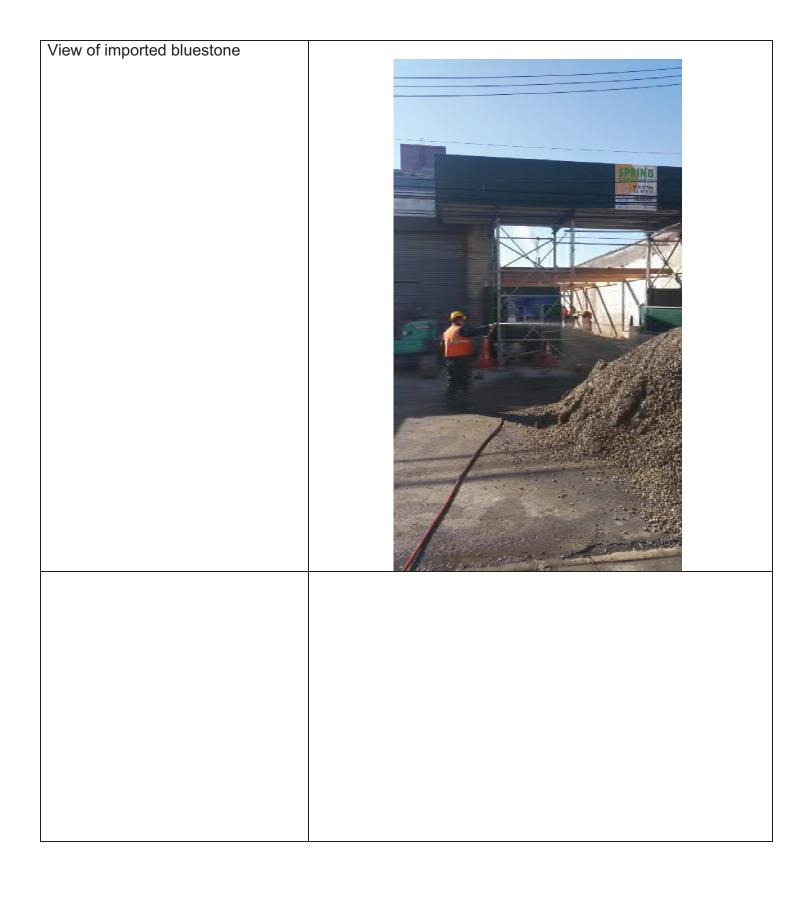
PID: 0.1 ppm

Dust:

Pre start Condition: Downgradient – 0.011 mg/m³ Highest Condition: Downgradient – 0.087 mg/m³


Problems Encountered:


No problems encountered


Planned Activities for the Next Day/ Week:

Import of bluestone backfill

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ		Evergreen Recycling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)	
Today										

Prepared By: Paul Matli

WEATHER	Snow	Rain		Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	х	50-70	70-85		>85	

BCP Project No.:	C241159	Date:	1-29-2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants: Hydro Tech Environmental Corp Paul I. Matli AMC Engineering, PLLC. Ariel Czemerinski P. E.	Safety Officer: George Man
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
Gerald De France – Skid steer (bobcat) Operator	
Elijah Duncan Jr Helper	

Activities:

- Import of 2 load of ¾ inch stone from North Church Gravel to use as backfill to restore Site elevation following excavation

_

Working In Grid #: not applicable

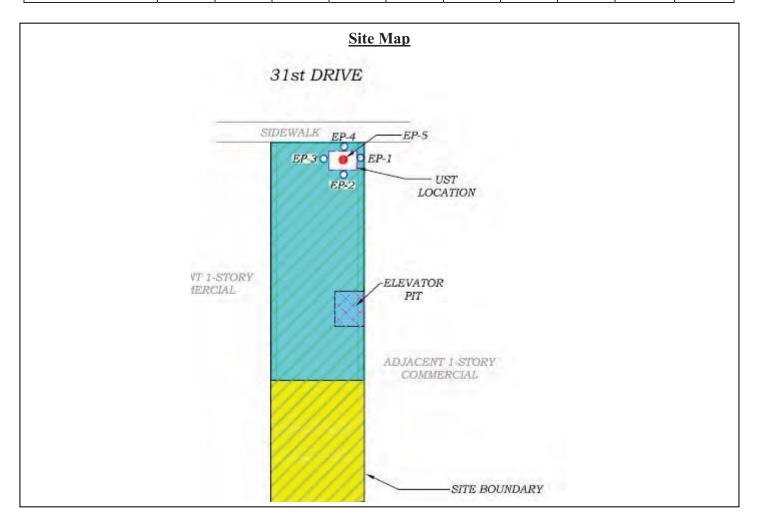
Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

PID: 0.1 ppm

Dust:

Pre start Condition: Downgradient – 0.022 mg/m³ Highest Condition: Downgradient – 0.060 mg/m³


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week

Installation of monitoring wells and ISCO Injections

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ		Evergreen Recycling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)	
Today										

Prepared By: Paul Matli

WEATHER	Snow	Rain		Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	х	50-70	70-85		>85	

BCP Project No.:	C241159	Date:	2-14-2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
Paul Milanesi – Geoprobe Model 7822	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man

Activities:

- Installation of 3 monitoring wells MW-1 MW-2 and MW-3 on-site

Working In Grid #: not applicable

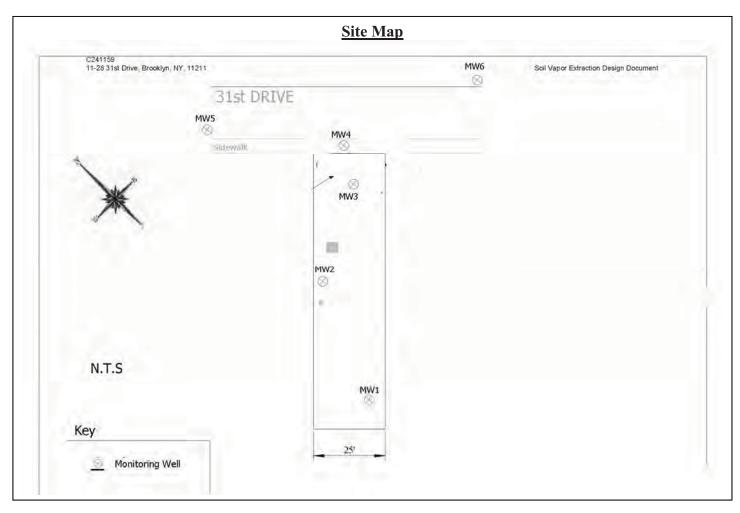
Samples Collected (Since Last Report):

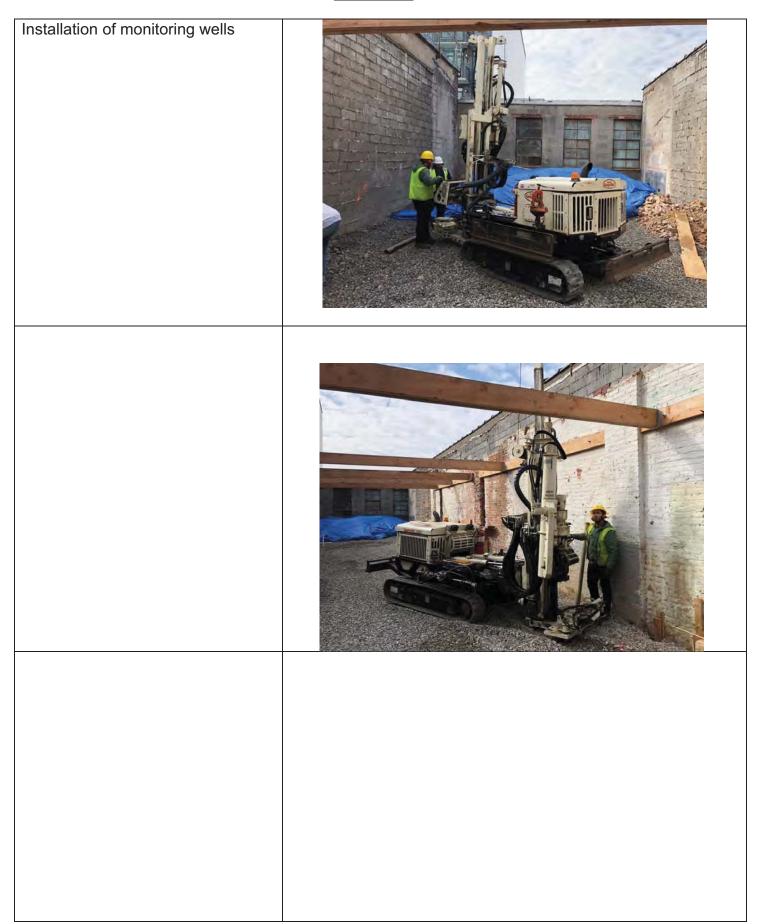
Air Monitoring (Since Last Report):

PID: 0.1 ppm

Dust:

Pre start Condition: Downgradient – 0.009mg/m³ Highest Condition: Downgradient – 0.041 mg/m³

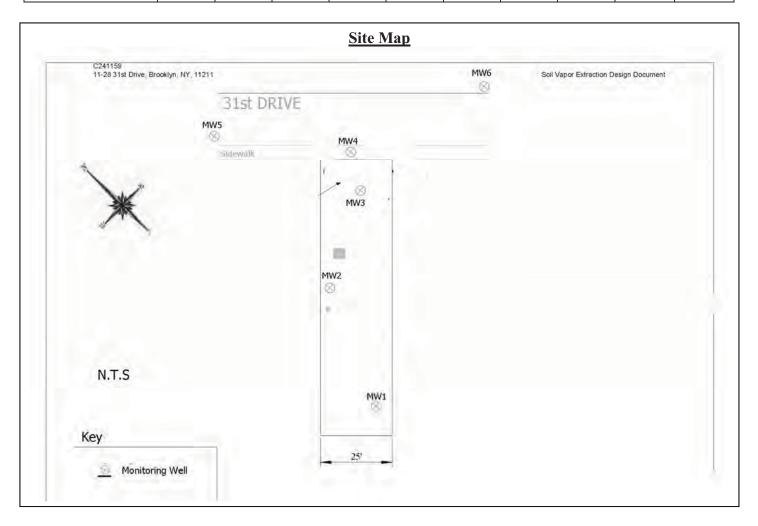

Problems Encountered:


No problems encountered

Planned Activities for the Next Day/ Week

Development of 3 installed monitoring wells

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid		Clean Earth of Evergreen Carteret, NJ Recycling		Evergreen Recycling						
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)		(Cu. Yds.)	
Today										


Prepared By: Paul Matli

WEATHER	Snow	Rain		Overcast	Partly Cloudy	х	Bright Sun	
TEMP.	< 32	32-50	х	50-70	70-85		>85	

BCP Project No.:	C241159	Date:	2-15-2018
Project Name:	11-28 31 Drive, LIC, NY		

•	
Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E. Paul Milanesi – Surge block/Horiba U-52 Flow cell	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
	3.
Activities:	
 Development of installation of 3 monitoring we 	ells MVV-1 MVV-2 and MVV-3 on-site
Working In Grid #: not applicable	
Samples Collected (Since Last Report):	
(0.11.00 - 1.11.00 - 1.10.0	
Air Manitanina (Cinaa Last Danast)	
Air Monitoring (Since Last Report): PID: 0.1 ppm	
11 0. 0.1 ppm	
Problems Encountered:	
No problems encountered	
Planned Activities for the Next Day/ Week	
Planned Activities for the Next Day/ Week Groundwater sampling	
Croanawator camping	

										1
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ		Evergreen Recycling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

Development of monitoring wells	

Prepared By: Paul Matli

WEATHER	Snow	Rain		Overcast	x	Partly Cloudy	Bright Sun	
TEMP.	< 32	32-50	х	50-70		70-85	>85	

BCP Project No.:	C241159	Date:	2-19-2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
Paul Matli and James Stamm –	
Geopump/Horiba/Interface probe	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man

Activities:

- Sampling of 6 target monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6 to provide the baseline [PCE] and [TEC] prior to ISCO injections
- MW-5 was not sampled as it was considered destroyed behind a construction fence over sidewalk at a nearby development site.

Working In Grid #: not applicable

Samples Collected (Since Last Report):

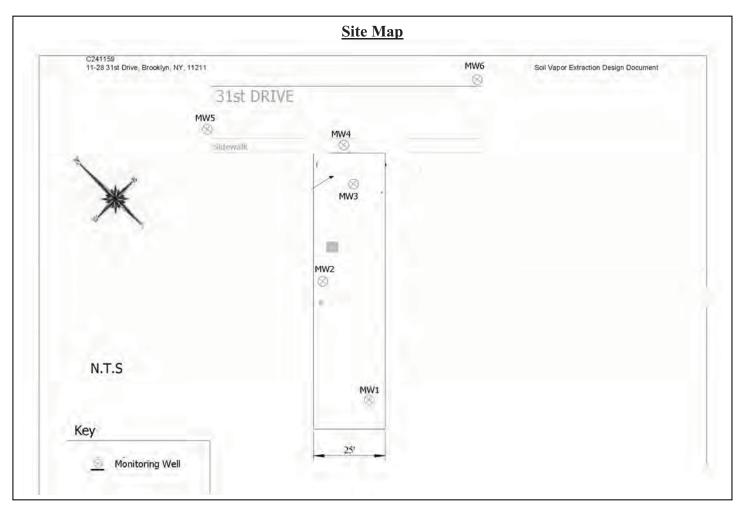
MW-1 (MS/MSD), MW-2, MW-3, MW-4, MW-6, Field Blank and Trip Blank

Air Monitoring (Since Last Report):

PID: 0.1 ppm on All wells

Dust:

Not Performed


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week

ISCO Injections

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid		Earth of ret, NJ		green cling						
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

Sampling of monitoring wells	

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast		Partly Cloudy		Bright Sun	x
TEMP.	< 32	32-50	50-70	x	70-85	Х	>85	

BCP Project No.:	C241159	Date:	5-28-2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
Paul Matli and James Stamm –	
Geopump/Horiba/Interface probe	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man

Activities:

- Completed ISCO injections in 3 points in sidewalk

Working In Grid #: not applicable

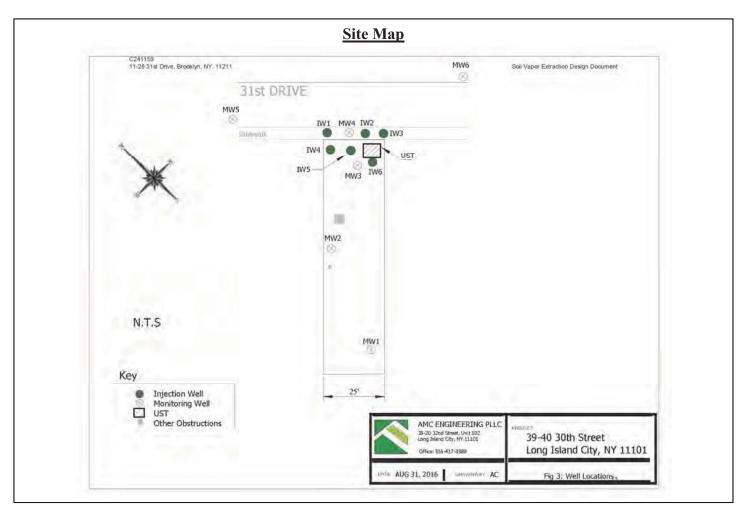
Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

PID: 0.1 ppm

Dust:

Not Performed


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week

ISCO Injections

Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ									
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	kfill/ (Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

ISCO injections in sidewalk	SPANS 16 Sta 170 Figure 17 STATE FIGURE 18 STATE FIGUR

Prepared By: Paul Matli

WEATHER	Snow	Rain Overcast			Partly Cloudy		Bright Sun	x		
TEMP.	< 32		32-50		50-70	X	70-85	Х	>85	

BCP Project No.:	C241159	Date:	5-29-2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
Paul Matli and James Stamm –	
Geopump/Horiba/Interface probe	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man

Activities:

- Completed ISCO injections in 3 points inside the site

Working In Grid #: not applicable

Samples Collected (Since Last Report):

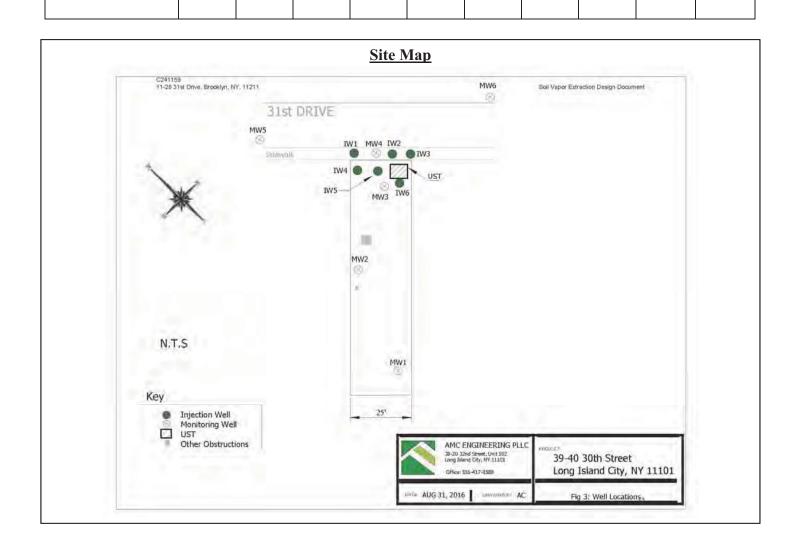
Air Monitoring (Since Last Report):

PID: 0.1 ppm

Dust:

Not Performed

Problems Encountered:


No problems encountered

Planned Activities for the Next Day/ Week

Groundwater monitoring and sampling 6 weeks after this injection on July 2nd by placing PDBs on June 18 and also monitor Peroxide levels in groundwater and also sample for PFOAs on June 18

									Exan	nple:	
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid		Earth of ret, NJ	Everg Recy	green ⁄cling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.	
Today											
Total	12	240	6	180							
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu. Yds.)		

Today

ISCO injections in sidewalk	

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast		Partly Cloudy		Bright Sun	x
TEMP.	< 32	32-50	50-70		70-85	х	>85	

BCP Project No.:	C241159	Date:	7/3/2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
Paul Matli and James Stamm –	
Geopump/Horiba/Interface probe	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man

Activities:

- Gauged the depth to water and placed PDB samplers in MW-1 to MW-4 and MW-6
- Collected a groundwater sample and MS/MSD samples from MW-3 for PFC analysis. This sample was collected following low flow EP method using geopump fitted with poly-ethylene tubing and Horiba

Working In Grid #: not applicable

Samples Collected (Since Last Report):

MW-3 for PFC analysis

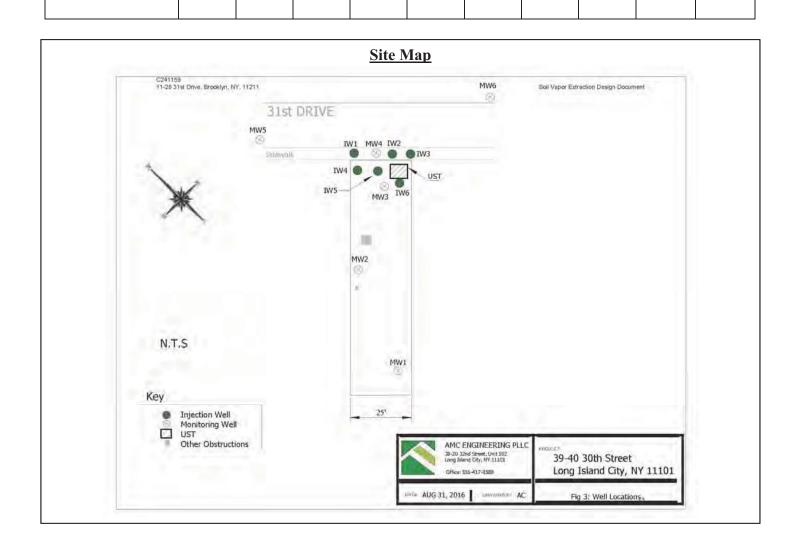
Air Monitoring (Since Last Report):

PID: 0.1 ppm

Dust:

Not Performed

Problems Encountered:


No problems encountered

Planned Activities for the Next Day/ Week

Groundwater sampling on or after 7/17/2018

									Exan	nple:	
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid		Earth of ret, NJ	Everg Recy	green ⁄cling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.	
Today											
Total	12	240	6	180							
Imported Backfill/ Facility	(Cu. Yds.)		(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu. Yds.)		

Today

WELL MONITORING LOG SHEET

Project Name	11-28 3 Drive		Date	7-2-2018
Client	George Man		Instrument	
Site Location	11-28 31 Drive		Spill No.	
Monitoring Schedule	Monthly:	Quartely :	Bi-Annually :	
S = Snow I DTW = Depth to V	D = Dry G = Gone Water DTP = Depth to I	Lege C = Can' Product PT = Pro		None Detected
Monitorir Mw-		D.T.W.	Riser abovegrund	
MW		17-1-1	1-01 X	
MU	1-3 1-h	9.80	1-96	
ML ML ML	1-1 1-h	9.80	1-96	
ML ML ML	1-h 1-h	12-54 9-80 10-20	1-96	
ML ML ML	1-h 1-h	12-54 9-82 10-20	1-96	
ML ML ML	J-\(\frac{1}{2}\)	12-54 9-82 10-20	1-96	
Notes: All me	easurements in feet, below	9.80	of well casing	
YIL	easurements in feet, below	v the nortnern top	of well casing	

Monitoring Well Sampling Log Sheet

Initial DTW: 18-54 Casing Type: Date: 7.3.18 Well Diameter: Tubing Type: Total Volume Purged: - Well No .: The Screen Length: Sampling Device: (Cop w Well Volume: Well Depth:

pumping rate less than 0.5 L /minute Yes: Low Flow Sampling required ? Sampling Personnel:

Order of stabilization

occipo	chinos.														
Stabilization over 3 concentrive readings	Purded water volume	outpick forms policy .					F								
± 10 mv	ORP (mV)	192	10	275	3/4	22	0								
+ 10%	Turb.(NTU)	6 8	10:1	Zo	77	0 7									
± 10%	Dis.02 (mg/L	110.01	00.00	7.00	8.55	8.49									
+ 3%	emp (°F) Cond'(\$/Cm) Dis.O2 (mg/L) Turb.(NTU) ORP (mV)	6.77	6,21.	1	5.40	SHR)								
	Temp (°F)	19-22	13.18	000	70.72	22.01									
±0.1	Н	0.53	9.69	2	4.4.4	9.74									
	DTW (ft)	12.54	13.80	11.	2	01.41									
	DTP (ft)														
Deviation	Time	SW. FI	0/10	10.15	0	20:00									

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	Partly Cloudy		Bright Sun	х
TEMP.	< 32	32-50	50-70	70-85	Х	>85	

BCP Project No.:	C241159	Date:	7/24/2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
Paul Matli and James Stamm –	
Geopump/Horiba/Interface probe	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man

Activities:

- Collected a groundwater sample from the PDBs placed in MW-1 to MW-4 and MW-6 along with with the QA/QC samples from MW-4.
- Performed a test on groundwater samples collected from the wells to determine the postinjection levels of Klosur Persulfate in the wells. The levels of Klosur Persulfate were determined as follows:

MW-1 = 0 g/L

MW-2 = 28.74 g/L

MW-3 = 34.68 g/L

MW-4 = 40.62 g/L

MW-6 = 0 g/L

Working In Grid #: not applicable

Samples Collected (Since Last Report):

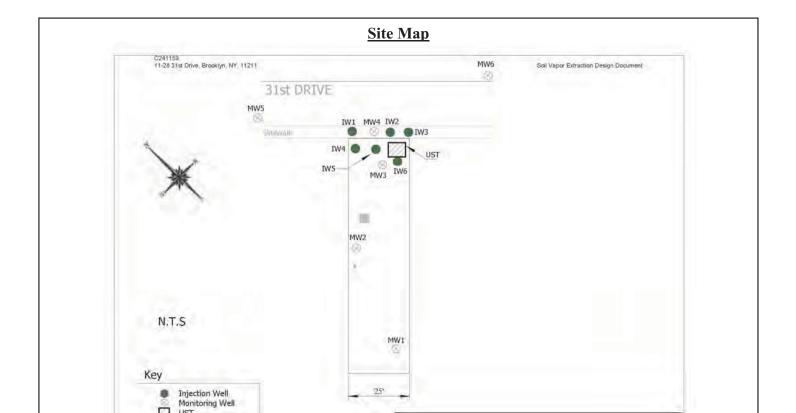
MW-1 to MW-4 and MW-6

Air Monitoring (Since Last Report):

PID: 0.1 ppm

Dust:

Not Performed


Problems Encountered:

No problems encountered

Planned Activities for the Next Day/ Week

Evaluate the GW results and determine the need for second round of injections Installation of SSDS and vapor barrier and cover slab

									Exan	nple:
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid	Clean Earth of Carteret, NJ		Evergreen Recycling							
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.
Today										
Total	12	240	6	180						
Imported Backfill/ Facility	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)
Today										

DAILY STATUS REPORT

Prepared By: Nick Randazzo

WEATHER	Snow	Rain	Overcast	Partly Cloudy		Bright Sun	X
TEMP.	< 32	32-50	50-70	70-85	X	>85	

Project Name: 11-28 31 st Drive (NYSDEC Site # C241159) Date: 8/2/2018

Consultant:	Safety Officer:
AMC Engineering, PLLC – Ariel Czemerinski P.E., Nick Randazzo	George Man
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc	George Man

Work Activities Performed:

- Inspection of SSDS prior to laying of blue stone and installation of the vapor barrier; ensured that SSDS pipe was perforated as required
- Inspected stone to be used as backfill throughout the site and ensured that stone was clean
- Work was proceeding according to plan; no issues were encountered

Samples Collected (Since Last Report):
N/A
Air Monitoring (Since Last Report):
NI/A
N/A Problems Encountered:
None Right and Astrictics for the Next Dev/ Meetr
Planned Activities for the Next Day/ Week:
Inspect the vapor barrier after it is installed

Photo Log

Photo 1 – SSDS Riser

Photo 2– View of Site, Rear Yard, and SSDS Pipe

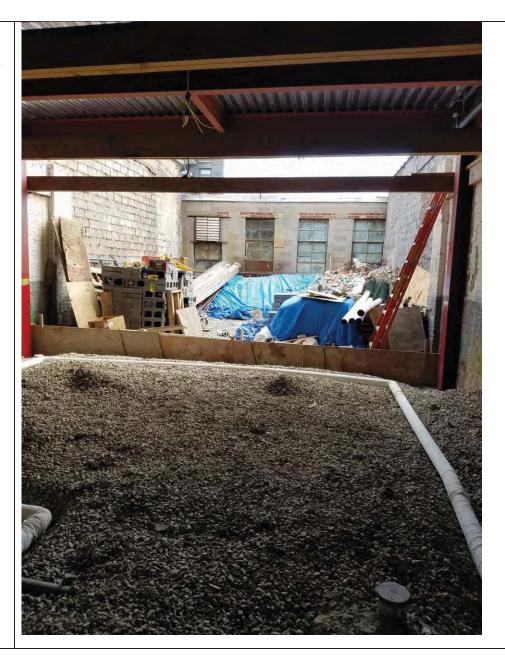
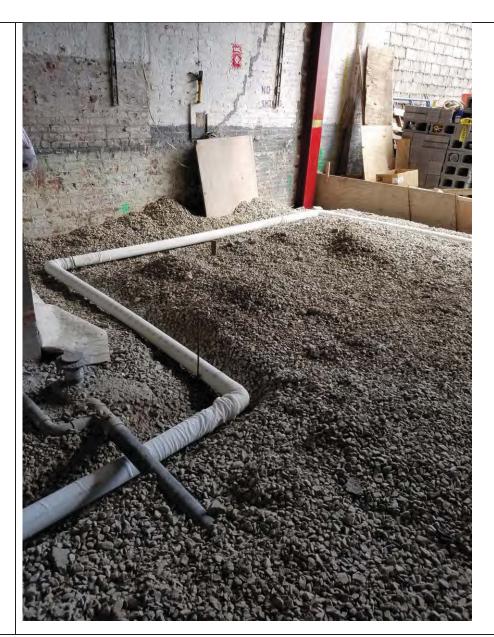



Photo 3– SSDS Pipe

DAILY STATUS REPORT

Prepared By: Paul Matli

WEATHER	Snow	Rain	Overcast	Partly Cloudy		Bright Sun	x
TEMP.	< 32	32-50	50-70	70-85	Х	>85	

BCP Project No.:	C241159	Date:	8/3/2018
Project Name:	11-28 31 Drive, LIC, NY		

Consultants:	Safety Officer:
Hydro Tech Environmental Corp Paul I. Matli	George Man
AMC Engineering, PLLC. Ariel Czemerinski P. E.	
Paul Matli and James Stamm –	
Geopump/Horiba/Interface probe	
General Contractor:	Site Manager/ Supervisor:
Shulman Home Inc:	George Man
Activities:	

- Installation of 6-inch layer of bluestone for the SSDS covering the building footprint. The bluestone was previously brought and stockpiled at the site
- Installation of 4-inch diameter perforated PVC pipe in the layer of bluestone

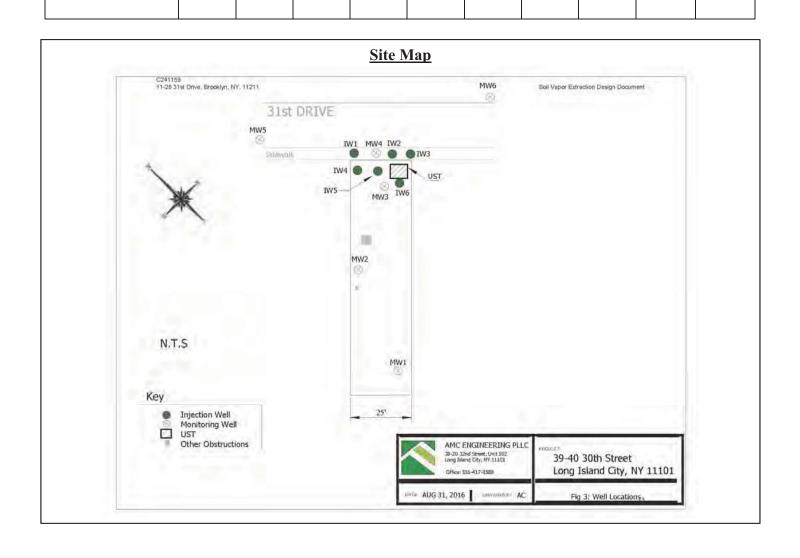
Working In Grid #: not applicable

Samples Collected (Since Last Report):

Air Monitoring (Since Last Report):

Not Performed

Problems Encountered:


No problems encountered

Planned Activities for the Next Day/ Week

Installation of vapor barrier and cover slab on-grade across entire lot

									Exan	nple:				
Facility # Name/ Location Type of Waste Solid <u>Or</u> Liquid		Earth of ret, NJ	Evergreen Recycling											
(Trucks, Cu.Yds. <u>Or</u> Gallons)	Trucks	Cu. Yds.	Trucks	Cu. Yds.			Trucks	Cu. Yds.	Trucks	Cu. Yds.				
Today														
Total	12	240	6	180										
Imported Backfill/ Facility	(Cu.	Yds.)	(Cu. Yds.)		(Cu.	Yds.)	(Cu.	Yds.)	(Cu.	Yds.)				

Today

DAILY STATUS REPORT

Prepared By: Nick Randazzo

WEATHER	Snow	Rain	Overcast	Partly Cloudy	Bright Sun	X
TEMP.	< 32	32-50	50-70	70-85	>85	X

Project Name:	11-28 31 st Drive (NYSDEC Site # C241159)	Date:	8/8/2018	
,				ı

Consultant:	Safety Officer:							
AMC Engineering, PLLC – Ariel Czemerinski P.E., Nick Randazzo	George Man							
General Contractor:	Site Manager/ Supervisor:							
Shulman Home Inc	George Man							
1A/ 1 A (1.10) ED 6								

Work Activities Performed:

- Inspection of vapor barrier as it was being installed over the ¾-inch blue stone that was previously laid across the site
- Ensured that there were no leaks or perforations in vapor barrier
- Work was proceeding according to plan; no issues were encountered

Photo Log

Photo 1 – View of vapor barrier across entire site

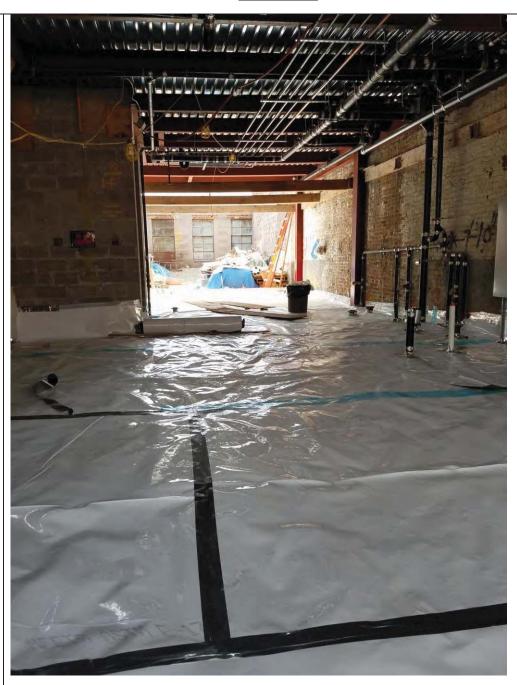


Photo 2– Vapor barrier near elevator pit

Photo 3— Tape used to secure vapor barrier and prevent opening from forming in between barrier pieces

Monthly Reports

Hydro Tech Environmental, Corp.

Main Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 • F (631) 462-5877 NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800• F (718) 636-0900

WWW.HYDROTECHENVIRONMENTAL.COM

September 10, 2017

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza 47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - August 2017

11-28 31st Drive Long Island City, New York

BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- NYC DOB permits for alterations associated with the remedial developments were issued on Sept 6, 2017
- Installed the construction fence along the northern property line on 31st Drive on Sept. 1, 2017

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- Demolition of the 1-story building that is scheduled to start between Sept. 11 and 15, 2017
- · Breaking of building slab in preparation of its removal
- Performance of CAMP during the breaking of building slab
- Coordination in preparation of remedial ISCO injections and removal of the UST

Approved Activity Modifications:

None

Estimated Percentage of Project Completion:

50 percent.

<u>Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:</u>

 The start of remedial activities at this Site are likely toward end of September 2017 following building demolition and the removal of concrete slab. Monthly Progress Report - September 2017 11-28 31st Drive LIC, New York BCP Site #C241159

Actions Undertaken to Resolve Delays:

• None.

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

Hydro Tech Environmental, Corp.

Paul I. Matli, Ph.D., P.G.

Senior Project Manager

PIM/tj

cc: Jane O'Connell-NYSDEC w/ Enc. (by email)

Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

Hydro Tech Environmental, Corp.

Main Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 • F (631) 462-5877 NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800• F (718) 636-0900

WWW.HYDROTECHENVIRONMENTAL.COM

October 10, 2017

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza 47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - September 2017

11-28 31st Drive Long Island City, New York

BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- Demolition of the 1-story building was completed on September 15, 2017
- Broke, removed and stockpiled the concrete slab on September 19 and 20, 2017
- Performed CAMP during the breaking of building slab
- Collected and analyzed 2 concrete waste characterization samples on September 29, 2017 at the recommendation
 of Evergreen Recycling located in Queens, New York. A Concrete waste testing report dated October 5, 2017
 was communicated with Evergreen Recycling and an acceptance letter from this facility was issued on October
 6, 2017 for the disposal of this concrete as concrete and demolition material.
- Transmitted the C&D acceptance letter from Evergreen Recycling to NYSDEC on October 6, 2017. In a response dated October 10, 2017, NYSDEC expressed no comments on this concrete disposal.
- Transmitted the soil/fill material acceptance letter from Clean Earth of Catered to NYSDEC on September 22, 2017. In a response dated October 10, 2017, NYSDEC expressed no comments on this soil/fill disposal.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- Disposal of stockpiled concrete from building slab as C&D at Evergreen Recycling
- Excavation of the top 3 feet of soil/fill material across the site perimeter and disposal of excavated material at Clean Earth of Carteret
- Performance of CAMP during the disposal of building slab and soil/fill material
- Coordination in preparation of remedial ISCO injections and removal of the UST

Approved Activity Modifications:

None

Monthly Progress Report - October 2017 11-28 31st Drive LIC, New York BCP Site #C241159

Estimated Percentage of Project Completion:

• 50 percent.

Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:

None.

Actions Undertaken to Resolve Delays:

None.

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

Hydro Tech Environmental, Corp.

Paul I. Matli, Ph.D., P.G. Senior Project Manager

PIM/lr

cc:

Jane O'Connell-NYSDEC w/ Enc. (by email)
Larry Schnapf- Schnapf LLC w/ Enc. (by email)
Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)
Tim Li-Project Architect w/ Enc. (by email)

Hydro Tech Environmental, Corp.

Main Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 • F (631) 462-5877 NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800• F (718) 636-0900

WWW.HYDROTECHENVIRONMENTAL.COM

November 10, 2017

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza 47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - October 2017

11-28 31st Drive Long Island City, New York

BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- Removed the former building slab and disposed a total of 6 loads of C&D at Evergreen Recycling on October 11 and 16, 2017
- Excavated the entire site to the depth of 3 feet bgs and disposed 12 loads of soil/fill at Clean Earth of Cratered on October 12 and 13, 2017
- Excavated and removed the 550 gallon UST located in the northern portion of the Site on October 16, 2017. A
 total of 100 gallons of rain water that most recently seeped into the tank through an opening made on the tank
 shell during an RI tank exploration exercise was removed via vacuum truck. Sediments the accumulated from
 falling material inside the tank during slab removal was placed in 55-gallon drum awaiting disposal
- Collected a sample from the sediment removed from the tank and contained in the 55-gallon drum per NYSDEC requirement on October 27, 2017.
- Performed CAMP during the removal and disposal of building slab and also during the excavation and disposal
 of soil/fill material at the Site and tank excavation. No exceedances of CAMP thresholds were reported during
 these activities
- Collected 5 endpoint soil samples around the removed UST on October 16, 2017. No impact associated with chlorinated hydrocarbons was identified in the area of the removed UST. Endpoint soil samples analytical results are provided in Attachment A.
- Tank was buried in dirt with no evidence of spill. Tank excavation pit was 5 feet wide, 9 feet long and 6 feet deep. No groundwater was encountered at the bottom of the tank pit.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

Coordination in preparation of remedial ISCO injections

Monthly Progress Report - November 2017 11-28 31st Drive LIC, New York BCP Site #C241159

Coordination with NYSDEC to approve ¾-inch bleustone for use as backfill to restore site elevation following
excavation and also for the SSDS. The bleustone will be supplied from North Church Sand & Gravel Franklin,
NJ

Approved Activity Modifications:

None

Estimated Percentage of Project Completion:

• 55 percent.

Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:

 Obtain permit from DOB to use the excavation at the tank pit for the installation of footing foundation for the new building

Actions Undertaken to Resolve Delays:

None.

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

Hydro Tech Environmental, Corp.

Paul I. Matli, Ph.D., P.G. Senior Project Manager

PIM/lr

cc:

Jane O'Connell-NYSDEC w/ Enc. (by email)
Larry Schnapf-Schnapf LLC w/ Enc. (by email)
Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)
Tim Li-Project Architect w/ Enc. (by email)

Hydro Tech Environmental, Corp.

Main Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 • F (631) 462-5877

NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800• F (718) 636-0900

WWW.HYDROTECHENVIRONMENTAL.COM

December 6, 2017

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza 47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - November 2017 11-28 31st Drive Long Island City, New York BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

Performed underpinning beneath the foundations of the existing brick wall in the area of the proposed elevator
pit in the southern portion of the Site. The underpinning was performed on November 22, 28 and 30, 2017 and
involved the excavation of a pit that is 9 feet wide and 5 feet deep to place a 2-foot concrete reinforcement under
the existing wall foundations.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- Coordination in preparation of remedial ISCO injections
- Coordination with NYSDEC to approve ¾-inch blue stone for use as backfill to restore site elevation following
 excavation and also for the SSDS. The blue stone will be supplied from North Church Sand & Gravel Franklin,
 NI

Approved Activity Modifications:

None

Estimated Percentage of Project Completion:

55 percent.

<u>Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:</u>

None

Monthly Progress Report - December 2017 11-28 31st Drive LIC, New York BCP Site #C241159

Actions Undertaken to Resolve Delays:

None.

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

Hydro Tech Environmental, Corp.

Paul I. Matli, Ph.D., P.G. Senior Project Manager

PIM/lr

cc: Jane O'Connell-NYSDEC w/ Enc. (by email)

Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

Hydro Tech Environmental Engineering and Geology, DPC

NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800 · F (718) 636-0900 Long Island Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 F (631) 462-5877

WWW.HYDROTECHENVIRONMENTAL.COM

January 09, 2018

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza 47-40 21st Street Long Island City, New York 11101

Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - December 2017 11-28 31st Drive Long Island City, New York BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- Excavated an elevator pit elevator within an area that is 13 feet long, 16 feet wide and 6.6 feet bgs. All excavated soil was stockpiled and reused in proposed rear yard upon approval by NYSDEC.
- Delivery 1 load of ¾-inch stone from North Church Gravel, located at 17-68 River Road in Fair Lawn, NJ and placement of 6-inch layer of ¾-inch bluestone at bottom of excavated pit.
- Installed vapor barrier on top of bluestone at the location of the elevator pit

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

Coordination in preparation of remedial ISCO injections

Approved Activity Modifications:

None

Estimated Percentage of Project Completion:

• 55 percent.

Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:

• None

Actions Undertaken to Resolve Delays:

None.

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

Hydro Tech Environmental Engineering and Geology, DPC

Paul I. Matli, Ph.D., P.G. Senior Project Manager

Fare I MINE

PIM/lr

cc:

Jane O'Connell-NYSDEC w/ Enc. (by email)

Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

Hydro Tech Environmental Engineering and Geology, DPC

NYC Office

15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800 · F (718) 636-0900 Long Island Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 F (631) 462-5877

WWW.HYDROTECHENVIRONMENTAL.COM

February 07, 2018

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza 47-40 21st Street Long Island City, New York 11101

Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report – January 2018 11-28 31st Drive Long Island City, New York

BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- Installed vapor barrier around elevatpr pit on 1/18/2018
- NYSDEC approved 1.5-inch bluestone manufactured at Impact Reuse and Recovery Center, located at 1000 Page Avenue in Lyndhurst, New Jersey to backfill the site excavation. This approval was communicated via email dated 1/22/2018
- Delivery of a total of 12 load of ¾-inch stone from North Church Gravel, located at 17-68 River Road in Fair Lawn, NJ to backfill the site excavation elevation. 2 loads were stockpiled in rear yard area for later use for the SSDS system. These loads were delivered on 1/25,26 and 29/2018
- Delivery of a total of 2 load of 1.5-inch stone from Impact Reuse and Recovery Center to backfill the site excavation elevation. These loads were delivered on 1/26/2018

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- Scheduling of on-site monitoring well installation and the sampling of target on-site and off-site wells prior to ISCO injections
- Coordination for the remedial ISCO injections

Approved Activity Modifications:

None

Estimated Percentage of Project Completion:

• 55 percent.

Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:

None

Actions Undertaken to Resolve Delays:

• None.

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

Hydro Tech Environmental Engineering and Geology, DPC

Paul I. Matli, Ph.D., P.G. Senior Project Manager

Farl I MINE

PIM/lr

cc: Jane O'Connell-NYSDEC w/ Enc. (by email)

Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

Hydro Tech Environmental Engineering and Geology, DPC

Engineering and Geology, DPC
NYC Office Lon

15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800 · F (718) 636-0900 Long Island Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 / F (631) 462-5877

WWW.HYDROTECHENVIRONMENTAL.COM

March 08, 2018

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - February 2018 11-28 31st Drive Long Island City, New York BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- Re-installed 3 on-site monitoring wells MW-1, MW-2 and MW-3 on 2/14/2018
- Developed MW-1, MW-2 and MW-3 on 2/15/2018
- Collected groundwater samples for baseline data of PCE and TCE prior to ISCO injections from monitoring wells MW-1 to MW-4 and MW-6 on 2/19/2018 via EPA Low flow method. MW-5, which is located off-site could not be located and is deemed destroyed during by a nearby construction site.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

Coordination for the remedial ISCO injections

Approved Activity Modifications:

None

Estimated Percentage of Project Completion:

• 55 percent.

<u>Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:</u>

None

Actions Undertaken to Resolve Delays:

None.

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

Hydro Tech Environmental Engineering and Geology, DPC

Paul I. Matli, Ph.D., P.G. Senior Project Manager

PIM/lr

cc:

Jane O'Connell-NYSDEC w/ Enc. (by email) Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

Hydro Tech Environmental Engineering and Geology, DPC

NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800 · F (718) 636-0900 Long Island Office 77 Arkay Drive, Suite G Hauppauge, New York 11788 T (631) 462-5866 / F (631) 462-5877

WWW.HYDROTECHENVIRONMENTAL.COM

April 06, 2018

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - March 2018 11-28 31st Drive Long Island City, New York BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- Received the laboratory analytical report for the baseline data of PCE and TCE for groundwater samples collected from monitoring wells MW-1 to MW-4 and MW-6 on 2/19/2018.
- Transmitted to NYSDEC Revised the RAWP QAPP on March 28, 2018. The RAWP QAPP was revised to update the method for groundwater sampling for PCE and TCE analysis via Passive Diffusion Bag (BDB samplers) and also to include the groundwater sampling and analytical methods for additional analysis for emerging contaminants including 1,4 dioxane and PFoas.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- NYSDEC approval of the revised RAWP QAPP
- Coordination for the remedial ISCO injections

Approved Activity Modifications:

None

Results of sampling and tests and all other data received or generated by or on behalf of Applicant in connection with this Site

• The February 19, 2018 groundwater sampling exercise performed prior to ISCO injections indicated PCE, TCE and cis-1,2-DCE concentrations detected in the most impacted monitoring well MW-4 were significantly reduced to 75 μ g/L, 0.7 μ g/L and 0.9 μ g/L compared to their respective levels of 3,799 μ g/L, 17 μ g/L and 20 μ g/L detected during January 2015. PCE, TCE and cis-1,2-DCE concentrations detected in the off-site upgradient monitoring well MW-6 and also in groundwater beneath the Site

were consistent with the January 2015 investigation. (Table 1 provides a tabulation of laboratory analytical results of groundwater samples).

Estimated Percentage of Project Completion:

• 55 percent.

Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:

- None
- •

Actions Undertaken to Resolve Delays:

None

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely

Hydro Tech Environmental Engineering and Geology, DPC

Paul I. Matli, Ph.D., P.G. Senior Project Manager

Faul I. MINE

PIM/lr

cc: Jane

Jane O'Connell-NYSDEC w/ Enc. (by email) Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

Tabel 1 Groundwater Samples Analytical Results for VOCs 11-28 31st Drive, Queens, NY

Semples 1,50 2,50	11-28 31st Drive, Queens, NY															
Company Comp	Sample ID		MW-1 MW-2		_	MW-3		MW-4		MW-6		Field Blank		Trip Blank		NYSDEC TOGS
Compress	1 0	, ,		, ,								, ,				
13.13 Frenchemorehane					_				_				_			Guidance Values - GA
13.1 Friedricere-base	-	-	~		_		_		_		~		_		~	_
13.23-Tereshlkoverhure			_		_		_		_		_				_	
13.12-FireInforceMarker (Present II)			_		_		_		-				-		-	
1.1.2-TriesColorescenter			_		_		-		-		-		-		_	
1.11-Deli-Orderstrate	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113		_		-				_				_		_	5
11-Debt Debt D			-		-		_		_		-				-	
11-Dishipsoproprieme	1,1-Dichloroethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,2,3-Trieshloropename	1,1-Dichloroethylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1,2,3-Tricthopropage	1,1-Dichloropropylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
1.2.6.1-friedmonthylemores	1,2,3-Trichlorobenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
12.4-Triestophomenes	1,2,3-Trichloropropane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.04
13.4-Trimeshythemore	1,2,4,5-Tetramethylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS
13.4-Trimeshythemore		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
12-Ditromos-Stationycopane	1.2.4-Trimethylbenzene	0.2	IJ	0.2	IJ	0.2	IJ	0.2	IJ	0.2	IJ	0.2	IJ	0.2	IJ	5
12-Dehromochame			U		U	0.2	U		U		U	0.2	_	0.2	U	
12-Dehlinverbreneme			-		-		-		-		-		-		П	
12-Dehlbroprepage	<u> </u>		_		_		_		-		_		-		-	
13-De-Histopreprepare	<u> </u>		-		-		-		-		-		_		-	
13.5-Timethylhenzene			_		_		_		-				_		_	
I.S.Dehlahordenzene	1 1		_		-		-		_				_		_	
1.3-De-hidrogropene			-		-		-		-		-		-		-	
Le-Dehchoropeneme			_		_				_		_		-		_	
22-Dichidropropane			_		-		-		-		-		-		-	
2-Butanome			_		-		_		_		_		-		-	
Scherothere	1 1		_		-		-		_		-		_		-	
23-Hexanone			_		_		_		-		_		_		-	
ACI-Introducence	2-Chlorotoluene	0.2	U	0.2	U	0.2	U	0.2	-	0.2	-		-	0.2	U	5
AMethyl-2-pentanone			U		_	0.2	_		_		_			0.2	_	
Acetone	4-Chlorotoluene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Berezene	4-Methyl-2-pentanone	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS
Bromochloromethane	Acetone	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	5.6		1.0	U	50
Bromnehorenee	Benzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	1
Bromochloromethane		0.2	IJ	0.2	IJ	0.2	IJ	0.2	IJ	0.2	IJ	0.2	-	0.2	IJ	5
Bromochichoromethane			_		-				_		_		_			
Bromonethame			-		-		-		-		-		-		-	
Remomethane			-		-		_		_		_		-		_	
Carbon disulfide			-		-		-		-		-		_		-	
Carbon tetrachloride 0.2 U 0.5 Chlorobenzene 0.2 U 0.5 SChlorobenzene 0.2 U 0.5 SChloroform 0.2 U													_		_	
Chlorobenzene			-		-		-		-		-		-		_	
Chloroethane			_		_		_		-		-		-		_	
Chloroform			-		-		-		-		-		_		-	
Chioromethane			_		_		_		-		_		-		_	
cis-1,2-Dichloroethylene 0.2 U 0.4 Dibromorphylene 0.2 U 0.4 Dibromochloromethane 0.2 U 0.5 Dibromomethane 0.2 U 0.5 Dichlorodifluoromethane 0.2 U 0.5 U 0.5 Elhyl Benzene 0.2 U 0.5 SElhyl Benzene 0.2 U 0.5 SElhyl Benzene 0.2 U 0.5 SElhyl Benzene 0.2 U 0.5 SElhyl Benzene 0.2 U 0.5 SElhyl Benzene 0.2 U 0.5 SElhyl Benzene 0.2 U 0.5 SElhyl Benzene 0.2 U 0.5 SElhyl Benzene 0.2 U			-		_		_								_	
cis-1,3-Dichloropropylene 0.2 U 0.2 <th< td=""><td>Chloromethane</td><td></td><td>-</td><td></td><td>U</td><td></td><td>-</td><td></td><td>U</td><td></td><td>U</td><td></td><td>-</td><td></td><td>-</td><td></td></th<>	Chloromethane		-		U		-		U		U		-		-	
Dibromochloromethane	cis-1,2-Dichloroethylene	0.2	_	0.6		0.2	-	0.9		57		0.2	_	0.2	_	5
Dibromomethane	cis-1,3-Dichloropropylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.4
Dichlorodifluoromethane	Dibromochloromethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	50
Ethyl Benzene	Dibromomethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	NS
Hexachlorobutadiene	Dichlorodifluoromethane	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Sepropylbenzene	Ethyl Benzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Methyl tetr-butyl ether (MTBE) 0.2 U 0.9 0.2 U 0.2 U 0.3 J 0.2 U 0.2 U 0.2 U 0.5 Methylene chloride 1.0 U	Hexachlorobutadiene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.5
Methyl tert-butyl ether (MTBE) 0.2 U 0.9 0.2 U 0.2 U 0.3 J 0.2 U 0.5 U 0.5 Naphthalene 1.0 U 1.0 U </td <td>Isopropylbenzene</td> <td>0.2</td> <td>U</td> <td>5</td>	Isopropylbenzene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
Methylene chloride		0.2	U	0.9	T	0.2	U	0.2	U	0.3	Ţ	0.2	U	0.2	U	10
Naphthalene		1.0	-	1.0	U	1.0	-	_	-		+-	1.0	-	1.0	U	5
n-Butylbenzene			-		_		_		-						_	
n-Propylbenzene	-		-		-		-		-		-		-		-	
o-Xylene 0.2 U 0.5 U 0.2 U <			_		-				-						-	
p-6 m-Xylenes 0.5 U 0.2 U	**		_		-				_		_				_	
p-Diethylbenzene 0.2 U			-		-		_		_						-	
p-Ethylloluene 0.2 U			_		-		-		_				-		-	
P-Isopropyltoluene 0.2			-		-		-		_		-		-		-	
sec-Butylbenzene 0.2 U	1 3		_		-		-		_		-		-		_	
Styrene 0.2 U 0.2 U <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></t<>					_		_								_	
tert-Butylbenzene			_		-		-		-		-		-		-	
Tetrachloroethylene			_		-				_				-		_	
Toluene 0.2 U 0.5 trans-1,2-Dichloroethylene 0.2 U 0.2			-		U		U		U		U		_		-	
trans-1,2-Dichloroethylene 0.2 U 0.5 trans-1,3-Dichloropropylene 0.2 U 0.4 Trichloroethylene 0.2 U 0.4 J 0.2 U 0.7 I5 0.2 U 0.2 U 0.2 U 0.5 Trichlorofluoromethane 0.2 U	Tetrachloroethylene	0.3	J	25	\perp	4.1	\perp	70	L	75	L	0.2	U	0.2	U	5
trans-1,3-Dichloropropylene 0.2 U 0.4 Trichloroethylene 0.2 U 0.4 J 0.2 U 0.7 I5 0.2 U 0.2 U 0.5 Trichlorofluoromethane 0.2 U 0.5 Vinyl Chloride 0.2 U	Toluene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	5
trans-1,3-Dichloropropylene 0.2 U 0.4 Trichloroethylene 0.2 U 0.4 J 0.2 U 0.7 I5 0.2 U 0.2 U 0.2 U 5 Trichlorofluoromethane 0.2 U 5 Vinyl Chloride 0.2 U 0.2	trans-1,2-Dichloroethylene	0.2	U	0.2	U	0.2	U	0.2	U	0.2	J	0.2	U	0.2	U	5
Trichloroethylene 0.2 U 0.4 J 0.2 U 0.7 15 0.2 U 0.2 U 5 Trichlorofluoromethane 0.2 U			-		-		-		-		-		-		U	
Trichlorofluoromethane 0.2 U 0.2 U<			-		-		-		Ť		Ť		-		-	
Vinyl Chloride 0.2 U 5 Xylenes, Total 0.6 U 0.6			_		÷		-		TT		TT		-		-	
Xylenes, Total 0.6 U 5			-		-		-		-		-		-		-	
			_		-		-		-		-		-		-	
	NOTES:	0.6	U	U.b	ľ	U.b	ľ	0.6	U	U.b	ľÚ	0.6	ľÚ	0.6	ľ	٥

NOTES:

\mathbf{Q} is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

 $\ensuremath{\mathsf{NS}}\textsc{-this}$ indicates that no regulatory limit has been established for this analyte

Hydro Tech Environmental Engineering and Geology, DPC

NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718) 636-0800 ; F (718) 636-0900 Long Island Office 77 Arkay Drive, Suite K Hauppauge, New York 11788 T (631) 462-5866; F (631) 462-5877

WWW.HYDROTECHENVIRONMENTAL.COM

May 08, 2018

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - April 2018

11-28 31st Drive Long Island City, New York

BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- The Site was represented by Hydro Tech during the BCP COC Seminar, which was held by NYSDEC on April 24, 2018.
- NYSDEC provided review comments on the Revised RAWP QAPP on April 17, 2018.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- Revised and finalized the RAWP QAPP per NYSDEC comments
- Coordination for the remedial ISCO injections

Approved Activity Modifications:

None

Results of sampling and tests and all other data received or generated by or on behalf of Applicant in connection with this Site

None

Estimated Percentage of Project Completion:

55 percent.

<u>Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:</u>

None

Actions Undertaken to Resolve Delays:

None

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

Hydro Tech Environmental Engineering and Geology, DPC

Paul I. Matli, Ph.D., P.G. Senior Project Manager

Fare I MINE

PIM/lr

cc: Jane O'Connell-NYSDEC w/ Enc. (by email)

Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

HydroTech Environmental

ENGINEERING AND GEOLOGY, DPC

NYC Office 15 Ocean Avenue, Suite 2B Brooklyn, New York 11225 T (718) 636-0800; F (718) 636-0900 Long Island Office 77 Arkay Drive, Suite K Hauppauge, New York 11788 T (631) 462-5866; F (631) 462-5877

WWW.HYDROTECHENVIRONMENTAL.COM

June 07, 2018

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - May 2018 11-28 31st Drive Long Island City, New York BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- Transmitted NYSDEC to the revised RAWP QAPP on May 16, 2018.
- Performed the first round of ISCO injections on May 28 and 29, 2018.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- Receive NYSDEC approval of revised RAWP QAPP
- Schedule on June 18, 2018 the monitoring of groundwater depth in target MWs and the sampling of groundwater in MW-3 to be analyzed for emerging contaminant.
- Place PDB samplers in target monitoring wells on June 18, 2018 to be collected for laboratory analysis 14 days later.

Approved Activity Modifications:

None

Results of sampling and tests and all other data received or generated by or on behalf of Applicant in connection with this Site

- Received the DUSR for the baseline groundwater data collected prior to ISCO injections. Overall data is deemed usable (**see attached**).
- Received the DUSR for the endpoint soil samples collected around the UST. All data is deemed usable (see attached).

Estimated Percentage of Project Completion:

• 55 percent.

<u>Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:</u>

None

Actions Undertaken to Resolve Delays:

• None

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

HydroTech Environmental Engineering and Geology, DPC

Paul I. Matli, Ph.D., P.G. Senior Project Manager

Faul I. MITE

PIM/as

cc: Jane O'Connell-NYSDEC w/ Enc. (by email)

Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

Geology

Hydrology

Remediation

Water Supply

Re: Data Validation Report

October 2017 Soil Sampling Event

11-28 31 Drive, LIC, NY

April 30, 2018

Mr. Paul I. Matli, Ph.D. Hydro Tech Environmental, Corp. 15 Ocean Ave., 2nd Floor Brooklyn, NY 11225

Dear Dr. Matli:

The data usability summary report and data validation summaries are attached to this letter for the above referenced project. The data for York Analytical Laboratories, Inc. SDG 17J0671 were mostly acceptable with some issues that are identified in the validation summary. There were data that were qualified as unusable (R) in the data pack. The reasons for rejecting data are outlined in the associated DUSR and QA/QC reviews. The data is rejected based solely on the validation guidance criteria. The rejected data may be determined to be acceptable to the user based on additional information that is not contained in the data validation criteria.

We have attached lists of data validation acronyms and data qualifiers to assist you in the interpretation of the reviews. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Hydro Tech Environmental, Corp.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- J- Analyte is present. Reported value may be biased low and associated with a higher level of uncertainty than is normally expected with the analytical method.
- J+ = Analyte is present. Reported value may be biased high and associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for York Analytical Laboratories, Inc., SDG: 17J0671

5 Soil Samples and 1 Trip Blank Collected October 16, 2017

Prepared by: Donald Anné April 30, 2018

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results of volatile and semi-volatile analyses for 5 soil samples and volatile analyses only for 1 trip blank.

The overall performance of the analysis is acceptable. York Analytical Laboratories, Inc. did not fulfill the requirements of the methods.

The data are mostly acceptable with issues that are identified in the accompanying data validation reviews. The following data were qualified:

- The "not detected" volatile results for 1,4-dioxane were qualified as "rejected, unusable" (R) in all 5 soil samples because average RRF and RRF for 1,4-dioxane were below the allowable minimum in the associated initial and continuing calibrations.
- The "not detected" volatile result for 1,1,1-trichloroethane was qualified as "rejected, unusable" (R) in the Trip Blank because 1 of 2 percent recoveries for 1,1,1-trichloroethane was below QC limits and below 30% in the associated aqueous LCS/LCSD.
- The "not detected" semi-volatile result for hexachlorocyclopentadiene was qualified as "rejected, unusable" (R) in sample EP-3 (5 ft) because 2 of 2 percent recoveries for hexachlorocyclopentadiene were below QC limits and below 10% in soil MS/MSD sample EP-3 (5 ft).

All data that are not qualified rejected, unusable (R) are considered usable. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2015\15600 - 15620\15604-11-28 31 Drive\2018\17J0671.dus.wpd

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260C Volatiles Data for York Analytical Laboratories, Inc., SDG: 17J0671

5 Soil Samples and 1 Trip Blank Collected October 16, 2017

Prepared by: Donald Anné April 30, 2018

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The average RRF for 2-butanone was below the method minimums for VOA No.3 on 09-14-17. The average RRFs for 2-butanone and 2-hexanone were below the method minimums for VOA No.8 on 10-05-17. The %RSDs for methyl acetate and acetone were above the method maximum for VOA No.3 on 09-14-17. The %RSDs for bromomethane and cyclohexane were above the method maximum for VOA No.8 on 10-05-17. No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The %RSDs for methyl acetate and acetone were above the allowable maximum (30%) for VOA No.3 on 09-14-17. Positive results for these compounds should be considered estimated (J) in associated samples.

The average RRF for 1,4-dioxane was below the allowable minimum (0.005) for VOA No.3 on 09-14-17. Positive results for 1,4-dioxane should be considered estimated, biased low (J-) and "not detected" results rejected, unusable (R) in associated samples.

Continuing Calibration: The RRFs for 2-butanone and 2-hexanone were below the method minimums on 10-17-17 (V801633.D). The %Ds for 7 compounds (circled red on attached FORM VII) were above the method maximum on 10-17-17 (V801633.D). The %Ds for 2-butanone and 1,2,4-trichlorobenzene were above the method maximum on 10-18-17 (V3128543.D). No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The RRF for 1,4-dioxane was below the allowable minimum (0.005) on 10-17-17 (V801633.D). The RRF for 1,4-dioxane was below the allowable minimum (0.005) on 10-18-17 (V3128543.D). Positive results for 1,4-dioxane should be considered estimated, biased low (J-) and "not detected" results rejected, unusable (R) in associated samples.

The %Ds for dichlorodifluoromethane, bromomethane, trichlorofluoromethane, and cyclohexane were above the allowable maximum (25%) on 10-17-17 (V801633.D). The %D for 2-butanone was above the allowable maximum (25%) on 10-18-17 (V3128543.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of the method and trip blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the soil samples and trip blank.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for 5 compounds (circled red on the attached MS/MSD from) were above the allowable maximum and 1 of 2 percent recoveries for 1,1-dichloroethylene was above QC limits for soil MS/MSD sample EP-3 (5 ft). Positive results for compounds with RPDs above the allowable maximum should be considered estimated (J) and positive results for 1,1-dichloroethylene estimated, biased high (J+). Sample EP-3 (5 ft) reported these compounds as "not detected"; therefore, no action is taken.

Laboratory Control Sample: The relative percent difference (RPD) for 1,1,1-trichloroethane was above the allowable maximum; 2 of 2 percent recoveries (%Rs) for 1,1-dichloroethylene, dichlorodifluoromethane, and vinyl acetate and 1 of 2 %Rs for hexachlorobutadiene were above the QC limits; and 1 of 2 for 1,1,1-trichloroethane was below QC limits and below 30% for aqueous samples BJ70847-BS1/BSD1. Positive results for 1,1-dichloroethylene, dichlorodifluoromethane, vinyl acetate, and hexachlorobutadiene should be considered estimated, biased high (J+); positive results for 1,1,1-trichloroethane should be considered estimated, biased low (J-); and "not detected" results for 1,1,1-trichloroethane should be considered rejected, unusable (R) in associated aqueous samples.

The RPDs for target compounds were below the allowable maximum, but 2 of 2%Rs for 1,1-dichloroethylene and 1 of 2 %Rs for 2-butanone were above the QC limits for soil samples BJ70939-BS1/BSD1. Positive results for 1,1-dichloroethylene and 2-butanone should be considered estimated, biased high (J+) in associated soil samples.

Compound ID: Checked surrogates were within GC quantitation limits. The analyses of soil samples reported target compounds as not detected.

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch: BJ70847

Laboratory ID:

BJ70847-BS1

Preparation:

EPA 5030B

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	10.0	10.8	108	70 - 132
1,1,1-Trichloroethane	10.0	11.9	119	68 - 138
1,1,2,2-Tetrachloroethane	10.0	8.89	88.9	73 - 132
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.0	12.6	126	67 - 136
1,1,2-Trichloroethane	10.0	9.36	93.6	79 - 125
1,1-Dichloroethane	10.0	10.8	108	78 - 128
1,1-Dichloroethylene	5.00	11.1	222 *	68 - 134
1,1-Dichloropropylene	10.0	11.0	110	74 - 130
1,2,3-Trichlorobenzene	10.0	9.54	95.4	77 - 140
1,2,3-Trichloropropane	10.0	9.26	92.6	79 - 127
1,2,4-Trichlorobenzene	10.0	10.1	101	75 - 141
1,2,4-Trimethylbenzene	10.0	10.6	106	78 - 127
1,2-Dibromo-3-chloropropane	10.0	9.24	92.4	60 - 150
1,2-Dibromoethane	10.0	9.42	94.2	86 - 123
1,2-Dichlorobenzene	10.0	9.74	97.4	79 - 125
1,2-Dichloroethane	10.0	10.9	109	69 - 133
1,2-Dichloropropane	10.0	9.48	94.8	76 - 124
1,3,5-Trimethylbenzene	10.0	10.3	103	78 - 128
1,3-Dichlorobenzene	10.0	10.4	104	81 - 124
1,3-Dichloropropane	10.0	9.32	93.2	79 - 125
1,4-Dichlorobenzene	10.0	10.1	101	82 - 124
2,2-Dichloropropane	10.0	11.9	119	61 - 139
2-Butanone	10.0	6.22	62.2	44 - 169
2-Chlorotoluene	10.0	10.4	104	74 - 130
4-Chlorotoluene	10.0	9.82	98.2	75 - 127
Acetone	10.0	10.3	103	29 - 163
Benzene	10.0	10,3	103	72 - 134
Bromobenzene	10.0	9.48	94.8	74 - 129
Bromochloromethane	10.0	11.1	111	69 - 134
Bromodichloromethane	10.0	10.0	100	76 - 127

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BS1

Preparation:

EPA 5030B

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
Bromoform	10.0	9.63	96.3	77 - 137
Bromomethane	10.0	6.06	60.6	50 - 156
Carbon tetrachloride	10.0	12.4	124	62 - 145
Chlorobenzene	10.0	10.2	102	85 - 119
Chloroethane	10.0	12.6	126	49 - 143
Chloroform	10.0	10.5	105	74 - 131
Chloromethane	10.0	10.7	107	43 - 134
cis-1,2-Dichloroethylene	10.0	10.6	106	73 - 134
cis-1,3-Dichloropropylene	10.0	9.78	97.8	77 - 128
Dibromochloromethane	10.0	9.98	99.8	79 - 130
Dibromomethane	10.0	9.38	93.8	78 - 128
Dichlorodifluoromethane	10.0	18.0	(180) *	38 - 139
Ethyl Benzene	10.0	11.0	110	80 - 129
Hexachlorobutadiene	10.0	13.5	135	72 - 141
Isopropylbenzene	10.0	11.1	111	76 - 128
Methyl tert-butyl ether (MTBE)	10.0	9.82	98.2	64 - 142
Methylene chloride	10.0	10.3	103	56 - 142
Naphthalene	10.0	9.23	92.3	79 - 144
n-Butylbenzene	10.0	11.5	115	74 - 132
n-Propylbenzene	10.0	11.1	111	72 - 135
o-Xylene	10.0	10.7	107	81 - 123
p- & m- Xylenes	20.0	22.7	114	79 - 130
p-Isopropyltoluene	10.0	11.2	112	80 - 127
sec-Butylbenzene	10.0	10.8	108	78 - 127
Styrene	10.0	10.5	105	82 - 124
ert-Butylbenzene	10.0	10.6	106	75 - 131
Tetrachloroethylene	10.0	11.0	110	78 - 133
Toluene	10,0	10.3	103	83 - 122
trans-1,2-Dichloroethylene	10.0	10.6	106	59 - 145
trans-1,3-Dichloropropylene	10.0	9.77	97.7	74 - 131

LCS / LCS DUPLICATE RECOVERY **EPA 8260C**

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BS1

Preparation:

EPA 5030B

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
Trichloroethylene	10.0	10.1	101	81 - 125
Trichlorofluoromethane	10.0	14.4	144	61 - 144
Vinyl acetate	10.0	16.6	(166) *	32 - 165
Vinyl Chloride	10.0	13.0	130	42 - 136

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY **EPA 8260C**

Laboratory:

York Analytical Laboratories, Inc.

SDG: 17J0671

Client:

Hydro Tech Environmental (Brooklyn)

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch: BJ70847 Laboratory ID:

BJ70847-BSD1

Preparation:

EPA 5030B

Initial/Final:

Project:

	SPIKE	LCSD	LCSD	%	QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	10.0	10.8	108	0.371	30	70 - 132
1,1,1-Trichloroethane	10.0	2.22	(22.2) *	(137) *	30	68 - 138
1,1,2,2-Tetrachloroethane	10.0	9.01	90.1	1.34	30	73 - 132
1,1,2-Trichloro-1,2,2-trifluoroethane	10.0	12.8	128	1.18	30	67 - 136
1,1,2-Trichloroethane	10.0	9.75	97.5	4.08	30	79 - 125
1,1-Dichloroethane	10.0	10.9	109	1.01	30	78 - 128
1,1-Dichloroethylene	5.00	11.2	(224) *	0.717	30	68 - 134
1,1-Dichloropropylene	10.0	11.2	112	2.25	30	74 - 130
1,2,3-Trichlorobenzene	10.0	12.4	124	25.9	30	77 - 140
1,2,3-Trichloropropane	10.0	9.31	93.1	0.539	30	79 - 127
1,2,4-Trichlorobenzene	10.0	11.2	112	10.4	30	75 - 141
1,2,4-Trimethylbenzene	10.0	10.0	100	5.35	30	78 - 127
1,2-Dibromo-3-chloropropane	10.0	9.26	92.6	0.216	30	60 - 150
1,2-Dibromoethane	10.0	9.79	97.9	3.85	30	86 - 123
1,2-Dichlorobenzene	10.0	9.67	96.7	0.721	30	79 - 125
1,2-Dichloroethane	10.0	11.5	115	4.82	30	69 - 133
1,2-Dichloropropane	10.0	9.62	96.2	1.47	30	76 - 124
1,3,5-Trimethylbenzene	10.0	9.83	98.3	4.86	30	78 - 128
1,3-Dichlorobenzene	10.0	10.0	100	3.53	30	81 - 124
1,3-Dichloropropane	10.0	9.76	97.6	4.61	30	79 - 125
1,4-Dichlorobenzene	10.0	9.97	99.7	0.899	30	82 - 124
2,2-Dichloropropane	10.0	11.8	118	0.677	30	61 - 139
2-Butanone	10.0	7.06	70.6	12.7	30	44 - 169
2-Chlorotoluene	10.0	9.84	98.4	5.15	30	74 - 130
4-Chlorotoluene	10.0	9.44	94.4	3.95	30	75 - 127
Acetone	10.0	11.0	110	6.46	30	29 - 163
Benzene	10.0	10.5	105	1.93	30	72 - 134
Bromobenzene	10.0	9.20	92.0	3.00	30	74 - 129
Bromochloromethane	10.0	11.6	116	3.97	30	69 - 134
Bromodichloromethane	10.0	10.2	102	1.48	30	76 - 127

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BSD1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE ADDED (ug/L)	LCSD	LCSD	0.6	QC	LIMITS
COMPOUND		CONCENTRATION (ug/L)	% REC. #	% RPD#	RPD	REC.
Bromoform	10.0	10.2	102	6.24	30	77 - 137
Bromomethane	10.0	6.85	68.5	12.2	30	50 - 156
Carbon tetrachloride	10.0	12.4	124	0.564	30	62 - 145
Chlorobenzene	10.0	10.1	101	0.197	30	85 - 119
Chloroethane	10.0	12.5	125	0.557	30	49 - 143
Chloroform	10.0	10.9	109	4.03	30	74 - 131
Chloromethane	10.0	10.3	103	3.14	30	43 - 134
cis-1,2-Dichloroethylene	10.0	9.50	95.0	11.4	30	73 - 134
cis-1,3-Dichloropropylene	10.0	10.0	100	2.42	30	77 - 128
Dibromochloromethane	10.0	10.4	104	4.03	30	79 - 130
Dibromomethane	10.0	9.79	97.9	4.28	30	78 - 128
Dichlorodifluoromethane	10.0	18.0	180 *	0.0556	30	38 - 139
Ethyl Benzene	10.0	10.8	108	1.46	30	80 - 129
Hexachlorobutadiene	10.0	16.1	(161) *	17.5	30	72 - 141
Isopropylbenzene	10.0	10.4	104	6.61	30	76 - 128
Methyl tert-butyl ether (MTBE)	10.0	10.7	107	8.67	30	64 - 142
Methylene chloride	10.0	10.6	106	3.45	30	56 - 142
Naphthalene	10.0	10.4	104	12.4	30	79 - 144
n-Butylbenzene	10.0	11.1	111	3.64	30	74 - 132
n-Propylbenzene	10.0	10.4	104	6.88	30	72 - 135
o-Xylene	10.0	10.7	107	0.00	30	81 - 123
p- & m- Xylenes	20.0	22.3	112	1.73	30	79 - 130
p-Isopropyltoluene	10.0	10.7	107	4.49	30	80 - 127
sec-Butylbenzene	10.0	10.2	102	5.62	30	78 - 127
Styrene	10.0	10.6	106	0.852	30	82 - 124
tert-Butylbenzene	10.0	10.0	100	6.11	30	75 - 131
Tetrachloroethylene	10.0	10.7	107	2.49	30	78 - 133
Toluene	10.0	10.2	102	0.878	30	83 - 122
trans-1,2-Dichloroethylene	10.0	10.8	108	1.77	30	59 - 145
trans-1,3-Dichloropropylene	10.0	10.1	101	3.02	30	74 - 131

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BSD1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE	LCSD	LCSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
Trichloroethylene	10.0	9.96	99.6	1.79	30	81 - 125
Trichlorofluoromethane	10.0	14.2	142	1.33	30	61 - 144
Vinyl acetate	10.0	17.1	(171) *	3.27	30	32 - 165
Vinyl Chloride	10.0	13.0	130	0.154	30	42 - 136

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG: <u>17J0671</u>

Client:

Hydro Tech Environmental (Brooklyn)

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch: BJ70939

Laboratory ID:

4.773.4

Preparation:

EPA 5035A

Project:

BJ70939-BS1

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	50.0	54.4	109	75 - 129
1,1,1-Trichloroethane	50.0	54.3	109	71 - 137
1,1,2,2-Tetrachloroethane	50.0	54.8	110	79 - 129
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	50.0	53.3	107	58 - 146
1,1,2-Trichloroethane	50.0	53.1	106	83 - 123
1,1-Dichloroethane	50.0	52.3	105	75 - 130
1,1-Dichloroethylene	25.0	52.3	209 *	64 - 137
1,1-Dichloropropylene	50.0	52.1	104	77 - 127
1,2,3-Trichlorobenzene	50.0	55.6	111	81 - 140
1,2,3-Trichloropropane	50.0	57.3	115	81 - 126
1,2,4-Trichlorobenzene	50.0	61.3	123	80 - 141
1,2,4-Trimethylbenzene	50.0	53.9	108	84 - 125
1,2-Dibromo-3-chloropropane	50.0	54.5	109	74 - 142
1,2-Dibromoethane	50.0	53.3	107	86 - 123
1,2-Dichlorobenzene	50.0	55.3	111	85 - 122
1,2-Dichloroethane	50.0	50.9	102	71 - 133
1,2-Dichloropropane	50.0	52.2	104	81 - 122
1,3,5-Trimethylbenzene	50.0	52.4	105	82 - 126
1,3-Dichlorobenzene	50.0	55.9	112	84 - 124
1,3-Dichloropropane	50.0	49.0	98.0	83 - 123
1,4-Dichlorobenzene	50.0	55.6	111	84 - 124
1,4-Dioxane	1000	1010	101	10 - 228
2,2-Dichloropropane	50.0	52.3	105	67 - 136
2-Butanone	50.0	74.6	(149) *	58 - 147
2-Chlorotoluene	50.0	53.9	108	78 - 127
4-Chlorotoluene	50.0	53.2	106	79 - 125
Acetone	50.0	39.3	78.6	36 - 155
Benzene	50.0	48.5	96.9	77 - 127
Bromobenzene	50.0	52.7	105	77 - 129
Bromochloromethane	50.0	51.6	103	74 - 129

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BS1

Preparation:

EPA 5035A

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
Bromodichloromethane	50.0	53.6	107	81 - 124
Bromoform	50.0	57.0	114	80 - 136
Bromomethane	50.0	45.4	90.8	32 - 177
Carbon tetrachloride	50.0	54.6	109	66 - 143
Chlorobenzene	50.0	54.0	108	86 - 120
Chloroethane	50.0	49.8	99.6	51 - 142
Chloroform	50.0	51.3	103	76 - 131
Chloromethane	50.0	50.4	101	49 - 132
cis-1,2-Dichloroethylene	50.0	49.4	98.8	74 - 132
cis-1,3-Dichloropropylene	50.0	53.9	108	81 - 129
Dibromochloromethane	50.0	55.5	111	10 - 200
Dibromomethane	50.0	53.1	106	83 - 124
Dichlorodifluoromethane	50.0	52.4	105	28 - 158
Ethyl Benzene	50.0	53.7	107	84 - 125
Hexachlorobutadiene	50.0	51.4	103	83 - 133
Isopropylbenzene	50.0	52.8	106	81 - 127
Methyl tert-butyl ether (MTBE)	50.0	49.1	98.2	74 - 131
Methylene chloride	50.0	48.9	97.8	57 - 141
Naphthalene	50.0	56.0	112	86 - 141
n-Butylbenzene	50.0	57.7	115	80 - 130
n-Propylbenzene	50.0	54.0	108	74 - 136
o-Xylene	50,0	54.0	108	83 - 123
p- & m- Xylenes	100	105	105	82 - 128
p-Isopropyltoluene	50.0	55.5	111	85 - 125
sec-Butylbenzene	50.0	55.4	111	83 - 125
Styrene	50.0	52.4	105	86 - 126
ert-Butylbenzene	50.0	53.3	107	80 - 127
Tetrachloroethylene	50.0	49.2	98.4	80 - 129
Toluene	50.0	54.2	108	85 - 121
rans-1,2-Dichloroethylene	50.0	48.0	96.1	72 - 132

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BS1

Preparation:

EPA 5035A

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
trans-1,3-Dichloropropylene	50.0	55.4	111	78 - 132
Trichloroethylene	50.0	52.1	104	84 - 123
Trichlorofluoromethane	50.0	49.8	99,7	62 - 140
Vinyl acetate	50.0	57.0	114	67 - 136
Vinyl Chloride	50.0	46.4	92.9	52 - 130

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BSD1

	SPIKE LCSD		LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	50.0	53.3	107	2.12	30	75 - 129
1,1,1-Trichloroethane	50.0	49.4	98.9	9.32	30	71 - 137
1,1,2,2-Tetrachloroethane	50.0	52.6	105	4.13	30	79 - 129
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	51.9	104	2.72	30	58 - 146
1,1,2-Trichloroethane	50.0	53.3	107	0.433	30	83 - 123
1,1-Dichloroethane	50.0	50.6	101	3.46	30	75 - 130
1,1-Dichloroethylene	25.0	44.4	177 *	16.4	30	64 - 137
1,1-Dichloropropylene	50.0	51.5	103	1.10	30	77 - 127
1,2,3-Trichlorobenzene	50.0	55.5	111	0.108	30	81 - 140
1,2,3-Trichloropropane	50.0	58.4	117	1.97	30	81 - 126
1,2,4-Trichlorobenzene	50.0	58.3	117	5.15	30	80 - 141
1,2,4-Trimethylbenzene	50.0	50.4	101	6.71	30	84 - 125
1,2-Dibromo-3-chloropropane	50.0	54.3	109	0.367	30	74 - 142
1,2-Dibromoethane	50.0	51.3	103	3.75	30	86 - 123
1,2-Dichlorobenzene	50.0	54.7	109	1.11	30	85 - 122
1,2-Dichloroethane	50.0	51.9	104	2.00	30	71 - 133
1,2-Dichloropropane	50.0	49.4	98.7	5.61	30	81 - 122
1,3,5-Trimethylbenzene	50.0	54.0	108	2.93	30	82 - 126
1,3-Dichlorobenzene	50.0	57.9	116	3.55	30	84 - 124
1,3-Dichloropropane	50.0	50.5	101	3.14	30	83 - 123
1,4-Dichlorobenzene	50.0	57.0	114	2.43	30	84 - 124
1,4-Dioxane	1000	1010	101	0.0287	30	10 - 228
2,2-Dichloropropane	50.0	51.2	102	2.01	30	67 - 136
2-Butanone	50.0	72.3	145	3.20	30	58 - 147
2-Chlorotoluene	50.0	55.9	112	3.72	30	78 - 127
4-Chlorotoluene	50.0	56.4	113	5.88	30	79 - 125
Acetone	50.0	30.7	61.5	24.5	30	36 - 155
Benzene	50.0	49.8	99.5	2.67	30	77 - 127
Bromobenzene	50.0	51.6	103	2.11	30	77 - 129
Bromochloromethane	50.0	48.1	96.3	6.96	30	74 - 129

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

Hydro Tech Environmental (Brooklyn)

SDG: Project: 17J0671

Client:

Matrix:

#170154 11-28 31 Drive, LIC NY

Soil

Batch: BJ70939 Laboratory ID:

BJ70939-BSD1

Preparation:

EPA 5035A

Initial/Final:

	SPIKE	LCSD	LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
Bromodichloromethane	50.0	54.3	109	1.30	30	81 - 124
Bromoform	50.0	54.8	110	3.92	30	80 - 136
Bromomethane	50.0	48.3	96.7	6.25	30	32 - 177
Carbon tetrachloride	50.0	53.6	107	1.88	30	66 - 143
Chlorobenzene	50.0	53.1	106	1.72	30	86 - 120
Chloroethane	50.0	49.2	98.5	1.17	30	51 - 142
Chloroform	50.0	50.9	102	0.783	30	76 - 131
Chloromethane	50.0	50.6	101	0.356	30	49 - 132
cis-1,2-Dichloroethylene	50.0	49.8	99.6	0.847	30	74 - 132
cis-1,3-Dichloropropylene	50.0	53.4	107	0.839	30	81 - 129
Dibromochloromethane	50.0	57.3	115	3.21	30	10 - 200
Dibromomethane	50.0	52.3	105	1.56	30	83 - 124
Dichlorodifluoromethane	50.0	49.8	99.7	5.03	30	28 - 158
Ethyl Benzene	50.0	54.8	110	1.94	30	84 - 125
Hexachlorobutadiene	50.0	53.8	108	4.47	30	83 - 133
Isopropylbenzene	50.0	52.4	105	0.627	30	81 - 127
Methyl tert-butyl ether (MTBE)	50.0	49.2	98.4	0.203	30	74 - 131
Methylene chloride	50.0	43.4	86.9	11.8	30	57 - 141
Naphthalene	50.0	52.2	104	7.08	30	86 - 141
n-Butylbenzene	50.0	57.8	116	0.156	30	80 - 130
n-Propylbenzene	50.0	55.2	110	2.23	30	74 - 136
o-Xylene	50.0	50.5	101	6.62	30	83 - 123
o- & m- Xylenes	100	107	107	2.06	30	82 - 128
p-Isopropyltoluene	50.0	55.8	112	0.557	30	85 - 125
ec-Butylbenzene	50.0	56.5	113	1.93	30	83 - 125
Styrene	50.0	52.3	105	0.172	30	86 - 126
ert-Butylbenzene	50.0	56.3	113	5.49	30	80 - 127
Tetrachloroethylene	50.0	52.3	105	6.07	30	80 - 129
Toluene	50.0	53.1	106	2.05	30	85 - 121
rans-1,2-Dichloroethylene	50.0	47.8	95.6	0.501	30	72 - 132

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BSD1

Preparation:

EPA 5035A

Initial/Final:

	SPIKE	LCSD	LCSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
trans-1,3-Dichloropropylene	50.0	55.2	110	0.235	30	78 - 132
Trichloroethylene	50.0	52.4	105	0.536	30	84 - 123
Trichlorofluoromethane	50.0	50.3	101	0.998	30	62 - 140
Vinyl acetate	50.0	56.9	114	0.211	30	67 - 136
Vinyl Chloride	50.0	47.4	94.8	2.00	30	52 - 130

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

Preparation:

BJ70939

Laboratory ID:

BJ70939-MS1

EPA 5035A

Initial/Final:

5.6 g / 5 ml

Source Sample Name:

EP-3 (5 ft)

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	50.0	0.00	52.7	105	15 - 161
1,1,1-Trichloroethane	50.0	0.00	48.7	97.3	42 - 145
1,1,2,2-Tetrachloroethane	50.0	0.00	56.3	113	16 - 167
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	0.00	48.9	97.7	11 - 160
1,1,2-Trichloroethane	50.0	0.00	51.7	103	44 - 145
1,1-Dichloroethane	50.0	0.00	48.9	97.7	46 - 142
1,1-Dichloroethylene	25.0	0.00	44.8	(179) *	30 - 153
1,1-Dichloropropylene	50.0	0.00	47.1	94.3	40 - 133
1,2,3-Trichlorobenzene	50.0	0.00	31.8	63.7	10 - 157
1,2,3-Trichloropropane	50.0	0.00	61.7	123	38 - 155
1,2,4-Trichlorobenzene	50.0	0.00	34.1	68.1	10 - 151
1,2,4-Trimethylbenzene	50.0	0.00	54.4	109	10 - 170
1,2-Dibromo-3-chloropropane	50.0	0.00	44.6	89.3	36 - 138
1,2-Dibromoethane	50.0	0.00	44.8	89.5	40 - 142
1,2-Dichlorobenzene	50.0	0.00	46.6	93.3	10 - 147
1,2-Dichloroethane	50.0	0.00	49.9	99.8	48 - 133
1,2-Dichloropropane	50.0	0.00	52.8	106	47 - 141
1,3,5-Trimethylbenzene	50.0	0.00	52,2	104	10 - 150
1,3-Dichlorobenzene	50.0	0.00	46.2	92.5	10 - 144
1,3-Dichloropropane	50.0	0.00	47.9	95.7	43 - 142
1,4-Dichlorobenzene	50.0	0.00	44.7	89.3	10 - 160
1,4-Dioxane	1000	0.00	952	95.2	10 - 191
2,2-Dichloropropane	50.0	0.00	50.2	100	38 - 130
2-Butanone	50.0	0.00	72.9	146	10 - 189
2-Chlorotoluene	50.0	0.00	52.8	106	14 - 144
4-Chlorotoluene	50.0	0.00	49.3	98.6	15 - 138
Acetone	50.0	2.47	58.9	113	10 - 196
Benzene	50.0	0.00	47.2	94.5	43 - 139
Bromobenzene	50.0	0.00	49.7	99.4	23 - 142
Bromochloromethane	50.0	0.00	47.8	95.6	38 - 145
Bromodichloromethane	50.0	0.00	50.8	102	38 - 147
Bromoform	50.0	0.00	55.1	110	29 - 156

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG: 17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch: BJ70939 Laboratory ID:

Preparation:

EPA 5035A

Initial/Final:

BJ70939-MS1 5.6 g / 5 ml

50.0

0.00

Vinyl acetate

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC.#	QC LIMITS REC.
Bromomethane	50.0	0.00	47.6	95.2	10 - 166
Carbon tetrachloride	50.0	0.00	50.5	101	35 - 145
Chlorobenzene	50.0	0.00	46.9	93.9	21 - 154
Chloroethane	50.0	0.00	51.2	102	15 - 160
Chloroform	50.0	0.00	51.1	102	47 - 142
Chloromethane	50.0	0.00	45.5	90.9	10 - 159
cis-1,2-Dichloroethylene	50.0	0.00	48.5	97.0	42 - 144
cis-1,3-Dichloropropylene	50.0	0.00	48.8	97.5	18 - 159
Dibromochloromethane	50.0	0.00	50.7	101	10 - 179
Dibromomethane	50.0	0.00	48.6	97.2	47 - 143
Dichlorodifluoromethane	50.0	0.00	42.3	84.6	10 - 145
Ethyl Benzene	50.0	0.00	49.0	98.1	11 - 158
Hexachlorobutadiene	50.0	0.00	35.2	70.4	10 - 158
Isopropylbenzene	50.0	0.00	56.6	113	10 - 162
Methyl tert-butyl ether (MTBE)	50.0	0.00	50.0	100	42 - 152
Methylene chloride	50.0	0.00	47.8	95.5	28 - 151
Naphthalene	50.0	0.00	33.6	67.1	10 - 158
n-Butylbenzene	50.0	0.00	47.7	95.4	10 - 162
n-Propylbenzene	50.0	0.00	54.3	109	10 - 155
o-Xylene	50.0	0.00	47.3	94.7	10 - 158
o- & m- Xylenes	100	0.00	99.2	99.2	10 - 156
o-Isopropyltoluene	50.0	0.00	51.7	103	10 - 147
ec-Butylbenzene	50.0	0.00	55.1	110	10 - 157
Styrene	50.0	0.00	42.6	85.2	13 - 171
ert-Butylbenzene	50.0	0.00	59.4	119	10 - 160
etrachloroethylene	50.0	0.00	54.7	109	30 - 167
oluene	50.0	0.00	48.5	97.1	21 - 160
rans-1,2-Dichloroethylene	50.0	0.00	46.2	92.4	29 - 153
rans-1,3-Dichloropropylene	50.0	0.00	46.7	93.3	18 - 155
richloroethylene	50.0	0.00	48.0	96.0	24 - 169
richlorofluoromethane	50.0	0.00	46.3	92.6	35 - 142
Cond october					

10 - 119

68.1

34.0

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-MS1

Preparation:

EPA 5035A

Source Sample Name:

EP-3 (5 ft)

Initial/Final:

5.6 g / 5 ml

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC.#	REC.
Vinyl Chloride	50.0	0.00	43.7	87.4	12 - 160

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-MSD1

Preparation:

EPA 5035A

Initial/Final:

5.57 g / 5 ml

Source Sample Name: EP-3 (5 ft)

	SPIKE	MSD	MSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	50.0	43.0	86.0	20.3	33	15 - 161
1,1,1-Trichloroethane	50.0	36.0	72.1	29.8	30	42 - 145
1,1,2,2-Tetrachloroethane	50.0	49.1	98.3	13.6	56	16 - 167
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	34.3	68.7	34.9 *	31	11 - 160
1,1,2-Trichloroethane	50.0	48.2	96.3	7.03	40	44 - 145
1,1-Dichloroethane	50.0	41.3	82.6	16.8	36	46 - 142
1,1-Dichloroethylene	25.0	34.5	138	25.8	31	30 - 153
1,1-Dichloropropylene	50.0	37.7	75.4	22.3	28	40 - 133
1,2,3-Trichlorobenzene	50.0	26.7	53.5	17.4	47	10 - 157
1,2,3-Trichloropropane	50.0	56.4	113	9.06	48	38 - 155
1,2,4-Trichlorobenzene	50.0	27.9	55.8	19.9	52	10 - 151
1,2,4-Trimethylbenzene	50.0	40.0	80.1	30.3	242	10 - 170
1,2-Dibromo-3-chloropropane	50.0	48.3	96.6	7.94	54	36 - 138
1,2-Dibromoethane	50.0	44.5	89.0	0.538	39	40 - 142
1,2-Dichlorobenzene	50.0	38.0	75.9	20.6	52	10 - 147
1,2-Dichloroethane	50.0	47.0	93.9	6.11	32	48 - 133
1,2-Dichloropropane	50.0	44.3	88.5	17.6	37	47 - 141
1,3,5-Trimethylbenzene	50.0	39.7	79.5	27.1	62	10 - 150
1,3-Dichlorobenzene	50.0	37.0	73.9	22.3	51	10 - 144
1,3-Dichloropropane	50.0	47.0	94.1	1.73	36	43 - 142
1,4-Dichlorobenzene	50.0	36.8	73.7	19.2	52	10 - 160
1,4-Dioxane	1000	1200	120	22.7	196	10 - 191
2,2-Dichloropropane	50.0	36.6	73.2	(31.3) *	31	38 - 130
2-Butanone	50.0	81.9	164	11.6	67	10 - 189
2-Chlorotoluene	50.0	39.7	79.4	28.3	49	14 - 144
4-Chlorotoluene	50.0	39.4	78.8	22.3	39	15 - 138
Acetone	50.0	61.8	119	4.77	150	10 - 196
Benzene	50.0	39.4	78.9	18.0	64	43 - 139
Bromobenzene	50.0	38.8	77.7	24.5	44	23 - 142
Bromochloromethane	50.0	44.1	88.2	8.01	30	38 - 145
Bromodichloromethane	50.0	43.2	86.4	16.2	37	38 - 147
Bromoform	50.0	47.7	95.5	14.3	51	29 - 156
Bromomethane	50.0	38.3	76.6	21.7	42	10 - 166

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-MSD1

Preparation:

EPA 5035A

Initial/Final:

5.57 g / 5 ml

Source Sample Name: EP-3 (5 ft)

	SPIKE	MSD	MSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
Carbon tetrachloride	50.0	36.5	73.0	(32.2) *	31	35 - 145
Chlorobenzene	50.0	38.1	76.3	20.7	32	21 - 154
Chloroethane	50.0	34.9	69.8	37.9	40	15 - 160
Chloroform	50.0	40.6	81.2	22.8	29	47 - 142
Chloromethane	50.0	37.3	74.5	19.8	31	10 - 159
cis-1,2-Dichloroethylene	50.0	37.9	75.9	24.4	30	42 - 144
cis-1,3-Dichloropropylene	50.0	43.6	87.1	11.3	39	18 - 159
Dibromochloromethane	50.0	46.1	92.1	9.65	41	10 - 179
Dibromomethane	50.0	44.1	88.2	9.66	41	47 - 143
Dichlorodifluoromethane	50.0	29.1	58.2	(37.0) *	34	10 - 145
Ethyl Benzene	50.0	37.7	75.4	26.1	42	11 - 158
Hexachlorobutadiene	50.0	30.8	61.5	13.6	45	10 - 158
Isopropylbenzene	50.0	38.8	77.5	37.4	57	10 - 162
Methyl tert-butyl ether (MTBE)	50.0	46.6	93.2	7.06	47	42 - 152
Methylene chloride	50.0	40.8	81.6	15.7	49	28 - 151
Naphthalene	50.0	29.7	59.4	12.1	95	10 - 158
n-Butylbenzene	50.0	38.0	75.9	22.7	96	10 - 162
n-Propylbenzene	50.0	39.3	78.6	32.1	56	10 - 155
o-Xylene	50.0	39.9	79.9	17.0	51	10 - 158
o- & m- Xylenes	100	78.7	78.7	23.0	47	10 - 156
o-Isopropyltoluene	50.0	39.6	79.1	26.6	60	10 - 147
sec-Butylbenzene	50.0	39.7	79.4	32.4	56	10 - 157
Styrene	50.0	37.6	75.1	12.6	39	13 - 171
ert-Butylbenzene	50.0	41.8	83.5	34.9	79	10 - 160
Tetrachloroethylene	50.0	44.1	88.1	21.5	33	30 - 167
oluene	50.0	39.7	79.4	20.1	50	21 - 160
rans-1,2-Dichloroethylene	50.0	35.1	70.2	27.4	30	29 - 153
ans-1,3-Dichloropropylene	50.0	41.6	83.1	11.6	30	18 - 155
richloroethylene	50.0	37.1	74.2	25.7	30	24 - 169
richlorofluoromethane	50.0	33.3	66.5	(32.7) *	30	35 - 142
finyl acetate	50.0	28.7	57.4	17.0	82	10 - 119
inyl Chloride	50.0	35.3	70.5	21.4	35	12 - 160

Title : Volatile Organics EPA 8260C Last Update : Fri Oct 06 10:28:22 2017 Response Via : Initial Calibration

Calibration Files

A

Compound 0.5 2.0 4.0 10.0 40.0 80.0 120 160 Avg %RSD 13 TEUOROBENZENE (ISTD)													
THOUSOBENIZENE (ISTD) 2) T Chlorodifluo. 0.997 0.972 0.994 0.820 1.013 0.574 0.830 0.890 16.6 3) T Chlorodifluo. 1.647 1.310 1.293 1.201 1.329 1.343 1.518 1.536 1.397 10.8 4) T Chlorodifluo. 1.647 1.310 1.293 1.201 1.329 1.343 1.518 1.536 1.397 10.8 5) T Chloromethane 0.339 0.325 0.340 0.380 0.579 0.625 0.579 0.684 0.646 0.581 0.610 0.611 0.6			Compound	0	0.	4	0	0	0	2	9	Avg	R
Trichorobenzenzenzenzenzenzenzenzenzenzenzenzenze		l K		1	1	1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	
2) T Dichlorodiffluo 0.997 0.972 0.994 0.820 1.013 0.574 0.830 0.923 0.890 16.6 d 3) T Chloromethane	1)	Н	FLUOROBENZENE (IS'		1 1	i 1 1	T-TS	1	1	1	1 1		
13 T Chloromethane 1.647 1.310 1.293 1.201 1.329 1.343 1.518 1.556 1.397 10.8 4) T Vinyl Chloride 1.338 1.162 1.187 1.104 1.234 0.966 1.094 1.116 1.149 9.69	5	H	Dichlorodifluo	0.99	.97	.99	.82	. OI	.57	.83	.92	.89	9.9
4) T Vinyl Chloride 1.338 1.162 1.187 1.104 1.234 0.960 1.094 1.116 1.149 9.651 Expromethane 0.339 0.325 0.340 0.540 0.650 0.559 0.651 0.579 0.6584 0.669 0.659 0.651 0.650 0.659 0.651 0.650 0.659 0.651 0.650 0.659 0.650 0.659 0.650 0.602 0.003 0.0044 0.121 1.221 1.221 1.222 1.022 0.032 0.032 0.034 0.032 0.034 0	3)	H		.64	.31	.29	.20	.32	.34	.51	.53	.39	0.8
Bromomethane	4)	H	D	.33	.16	.18	.10	.23	96.	.09	.11	.14	9.6
Chloroethane 0.730 0.651 0.649 0.614 0.660 0.595 0.611 0.607 0.640 6.88	2	EH	Bromomethane	.33	.32	.34	.38	.57	.62	.57	.58	.46	8.3
Trichlorofluor. 1.992 1.827 1.860 1.775 1.828 1.078 1.507 1.643 1.689 16.9 Ethanol Ethanol Ethanol 1.378 1.324 1.374 1.375 1.012 1.050 0.002 0	(9	H	Chloroethane	. 73	.65	.64	.61	.66	.59	.61	.60	.64	6.8
Ethanol Ethanol Ethanol Ethanol D.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 Erecon-113 Frecon-113 Frecon-113 Frecon-113 Frecon-113 D.1324 1.274 1.266 1.235 0.636 1.015 1.189 1.165 20.5 1, 1.189 1.165 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.	7	H	Trichlorofluor	.99	.82	.86	.77	.82	.07	.50	.64	.68	6.9
9) T Freon-113 1	8		Ethanol		00.	00.	.00	.00	.00	.00	.00	.00	0.1
1) T Acrolein	6	H	Freon-113	.37	.32	.27	.26	.23	.63	.01	.18	.16	0.5
1) T Acrolein 0.100 0.074 0.080 0.078 0.081 0.084 0.080 0.075 0.081 10.1 2) T Acetone 0.158 0.144 0.127 0.123 0.122 0.121 0.132 11.5 3) T Indomedrate 0.345 0.376 0.389 0.355 0.356 0.353 0.342 0.332 0.354 4.0 6) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16.1 6) T Carbon disulfide 4.189 3.257 3.029 2.925 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.059 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.055 0.053 0.056 0.057 0.055 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.055 0.058 0.055 0.058 0.051 0.049 0.054 0.044 0		H	~	.13	.05	.02	.01	.06	.80	.92	.97	. 99	0.2
2) T Acetone 3) T Icdomethane 6) 0.158 0.144 0.127 0.123 0.122 0.121 0.132 11.5 4) T Carbon disulfide 4.189 3.257 3.029 2.925 0.356 0.356 0.353 0.342 0.332 0.354 4.0 5) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16.1 6) T tert-Butyl Alc 0.060 0.059 0.056 0.057 0.053 0.054 0.055 0.053 0.054 0.055 0.055 0.054 0.055 0.055 0.054 0.055 0.055 0.054 0.055 0.055 0.055 0.054 0.055 0.055 0.055 0.054 0.055		H	Acrolein	.10	.07	.08	.07	.08	.08	.08	.07	.08	0.1
3) T Iodomethane 4) 1 Methyl Acetate 6) 245 6,355 6,356 6,353 6,342 6,332 6,354 4) 1 Carbon disulfide 4,189 3,257 3,029 2,925 3,042 2,533 2,789 2,864 3,079 16,11 6) T tert-Butyl Alc 0,060 0,059 0,056 0,055 0,054 0,055 0,055 0,056 4,11 7) T Methylene Chlo 2,038 1,846 1,688 1,634 1,616 1,617 1,534 1,472 1,680 10,88 8) T trans-1,2-Dich 2,235 1,956 1,881 1,875 1,924 1,716 1,1885 8,88 9) T trans-1,2-Dich 2,613 2,613 2,643 2,043 2,068 1,990 1,966 7,70 1) T i,1-Dichloroet 2,613 2,613 2,504 2,473 2,506 2,370 2,218 2,127 2,427 7,33		H	Acetone			.15	.14	.12	.12	.12	12	.13	7.5
4) T Methyl Acetate 0.345 0.376 0.369 0.355 0.356 0.353 0.342 0.332 0.354 4.0 5) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16.1 6) T text-Butyl Alc 0.060 0.059 0.056 0.057 0.055 0.054 0.055 0.053 0.056 4.1 7) T Methylene Chlo 2.038 1.846 1.688 1.634 1.616 1.617 1.534 1.472 1.680 10.8 8) T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.161 0.158 0.156 8.0 9) T text-Butyl Met 1.643 2.077 1.979 1.999 2.068 1.990 1.910 1.885 8.8 1) T 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7.3 2) T Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5.6 3) T Diisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 12.2 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.73 cis-1,2-Dichloropr 2.355 2.153 2.042 0.044 0.044 0.044 0.044 0.044 0.043 0.045 0.048 0.048 0.044 0.044 0.044 0.044 0.044 0.044 0.043 0.046 0.045 0.046 0.045 0.048 0.048 0.044 0.044 0.044 0.044 0.044 0.044 0.045 0.046 0.047 1.044 0.0087 0.0087 0.0080 0.0		H	Iodomethane			.48	.79	.22	.20	.02	.99	. 95	6
5) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16.1 (c) T tert-Butyl Alc 0.060 0.059 0.056 0.057 0.055 0.054 0.055 0.055 0.056 4.1 (d) 2.038 1.846 1.688 1.634 1.616 1.617 1.534 1.472 1.680 10.88 (d) 3.0 T trans-1,2-Dich 2.038 1.846 1.688 1.634 1.616 1.617 1.534 1.472 1.680 10.8 (e) 3.0 T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8.8 (e) T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7.0 (e) T tert-Butyl Met 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7.3 (e) T tynyl Accetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5.6 (e) T tynyl Accetate 1.025 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5.6 (e) T tynyl tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.77 (e) T tynyl tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.77 (e) T tynyl tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.297 3.297 5.5 (e) T 2.Butanone 0.053 0.061 0.058 0.044 0.044 0.044 0.049 0.053 0.046 9.1 Tetrahydrofuran 0.055 0.048 0.048 0.044 0.044 0.044 0.044 0.049 0.053 0.046 9.1 Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 1.02 6.0 (e) 0.050 0.055 0.048 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.045 0.046 0.020 0.055 0.048 0.048 0.044 0.		H	Methyl Acetate	.34	.37	.36	.35	.35	.35	.34	.33	.35	4.0
6) T tert-Butyl Alc 0.060 0.059 0.056 0.057 0.055 0.055 0.055 0.056 0.056 0.057 0.055 0.055 0.055 0.056 0.058 1.084 1.616 1.617 1.534 1.472 1.680 10.88 1.084 1.616 1.617 1.534 1.472 1.680 10.88 1.089 T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.161 0.158 0.156 8.8 1.89 T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8.8 0.000 T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7.0 1.000 T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7.0 1.000 T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7.0 1.000 T tert-Butyl Met 1.000 T 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 1.22		H	Carbon disulfide	. 18	. 25	.02	.92	.04	.53	.78	.86	.07	6.1
7) T Methylene Chlo 2.038 1.846 1.688 1.614 1.616 1.617 1.534 1.472 1.680 10.88) 8) T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.161 0.158 0.156 8.0 9) T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8.8 0) T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7.0 1) T 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7.3 2) T vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5.6 3) T bisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 12.2 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.7 5) T cis-1,2-Dichloroper 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5.5 6) T 2-Butanone 0.055 0.048 0.048 0.044 0.044 0.044 0.043 0.045 9.1 8) T Tetrahydrofuran 0.055 0.048 0.048 0.044 0.044 0.044 0.043 0.046 9.1 Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10.2 9) T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6.0		H	tert-Butyl Alc	90.	.05	.05	.05	.05	.05	.05	.05	.05	4.1
8) T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.161 0.158 0.156 8.0 9) T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8.8 0.0) T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7.0 1.0) T vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 7.3 2.0 1.240 1.288 1.168 1.247 1.22 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		H	Methylene Chlo	. 03	.84	.68	.63	.61	.61	.53	.47	.68	0.8
9) T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8.8 0.77 tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7.0 1.710 1.885 1.710 1.885 1.710 1.885 1.710 1.885 1.710 1.885 1.710 1.885 1.710 1.885 1.710 1.966 7.0 1.710 1.885 1.710 1.966 7.0 1.710 1.885 1.710 1.966 7.33 1.710 1.710 1.252 1.305 1.240 1.288 1.168 1.247 1.257 1.257 1.252 1.305 1.240 1.288 1.168 1.247 1.257 1.257 1.252 1.305 1.240 1.288 1.168 1.247 1.257 1.257 1.252 1.305 1.240 1.288 1.168 1.247 1.227 1.228 1.168 1.247 1.227 1.228 1.168 1.247 1.227 1.228 1.242 3.249 4.077 1.228 1.1610 1.220 1.187 2.179 2.227 2.160 2.086 2.018 2.197 1.258 1.240 1.058 0.052 0.050 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.051 0.049 0.045 0.048 0.044		H	Acrylonitrile	.12	.16	.15	.15	.15	.16	.16	.15	.15	8.0
0) T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7.0 1) T 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7.3 2) T Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5.6 3) T Diisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 12.2 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.7 5) T Cis-1,2-Dichlor. 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5.5 6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7.3 7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9.18 8) T Tetrahydrofuran 0.055 0.048 0.048 0.044 0.044 0.044 0.044 0.044 0.045 0.046 9.1 9.1 Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 1.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		H	trans-1,2-Dich	. 23	.95	.88	.87	.92	.75	.74	.71	. 88	00
1) T 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7.3 2) T Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5.6 3) T Diisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 12.2 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.7 5) T cis-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5.5 6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9.1 Tetrahydrofuran 0.055 0.048 0.048 0.044 0.044 0.044 0.043 0.046 9.1 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 1.02 0) T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6.0		H	tert-Butyl Met	. 64	.07	.97	.99	.04	.06	.99	.93	.96	0.
2) T Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5.6 3) T Diisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 12.2 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.7 5.5 T cis-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5.5 6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.		H	1,1-Dichloroet	.61	.61	.50	.47	.50	.37	.21	.12	.42	3
3) T Dlisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 12.2 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.7 5) T cis-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5.5 6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7.3 7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9.1 8) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.044 0.046 9.1 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10.2 0) T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6.0		E+ 1	Vinyl Acetate	.12	. 25	.34	.25	.30	.24	.28	.16	.24	9.
4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6.7 cis-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5.5 6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7.3 7.3 7.3 7.3 T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9.1 8) T Tetrahydrofuran 0.055 0.048 0.048 0.044 0.044 0.044 0.044 0.044 0.046 9.1 9.1 Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10.2 0.0 T Chloroform		- 1	Dilsopropyl et	.02	99.	. 55	.40	.25	.95	.50	.24	.07	S
5) T cls-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5.5 6) T 2-Butanone		T.	Ethyl-tert-But	. 85	. 53	.42	.36	.47	.44	.27	.13	.31	7
6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.051 0.049 0.053 7.3 7.3 7.3 T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9.1 8) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.043 0.046 9.1 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10.2 0) T Chloroform		H 1	cis-1, 2-Dichlo	.41	.31	.18	.17	.22	.16	.08	.01	.19	.5
7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9.1 8) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.043 0.046 9.1 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10.2 0) T Chloroform		- 1	2-Butanone	.05	.06	.05	.05	.05	.05	.05	.04	.05	3
8) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.043 0.046 9.1 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10.2 0) T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6.0		H 1	2,2-Dichloropr	.35	.15	.07	.04	.07	.75	.87	.90	.02	4
9) I Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10.2 0) T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6.0		H E	Tetrahydrofuran	.05	.04	.04	.04	.04	.04	.04	.04	.04	4
0) T Chlorotorm 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6.0		- 1	Bromochloromet	2	. 98	. 94	. 92	.86	.82	.76	.73	.87	0.2
		-	Chlorotorm	5	.44	.41	.43	.51	.54	.48	.44	.44	6.0

Page 158 of 520

Page 159 of 520

16.39

606.

4

	T	: Volatile	Organics EPA 8	N	U								
(69)	EH U	Isopropylbenzene	0	7.659	7.331	7.196	6.201	10	0 5	4 5		4	1.
	2 E	BIOMOLIACION	0 7	0 1	0/.	9.	. 63	T.6	2 1.7	5 1	74	. 70	3.3
	→ E	dC	10.	.65	. 63	. 61	.60	0.6	2 0.5	1 0	26	.60	9
V	H	omobenzene	.38	.18	.08	• 06	. 98	2.0	0 1.9	8	01	.09	3
	HI	trans-1,4-Dich	. 89	. 83	.81	.80	. 78	0.7	7 0.8	0 6	81	.81	4
	H		.19	.19	.18	.18	.17	0.1	9 0.1	0 9	17	.18	2
	H	-Propylbenzene		. 59	.25	.11	.05	5.7	9 6.1	9 9	30	.18	5.7
(9)	HI	-Chlorotoluene	. 62	.60	.35	.24	.76	4.4	8 4.3	0 4	20	.07	6.0
(//	H (lorotoluene	5.625	. 89	.68	.61	.31	4.2	4 4.1	5 4	18	.58	10.90
	∃ [,3,5-Trimethy	.41	. 21	96.	. 88	. 28	4.6	4 4.8	8 4	90	.64	6.3
	⊣ [ert-Butylbenzene	.10	.07	. 91	. 91	. 28	3.3	2 3.9	7 4	27	.61	7.9
	H 1	, 2, 4-Trimethy	. 66	. 79	99.	. 59	.07	4.6	1 4.5	6 4	48	.30	4.3
	H 1	c-Butylbenzene	.67	. 25	00.	. 92	.08	4.4	4 5.3	2 5	75	.43	0.4
	H	,3-Dichlorobe	.95	. 66	. 55	.50	.31	2.2	9 2.1	4 2	05	.42	2.5
	H	sopropyltol	.30	. 25	.05	.07	.31	3.9	6 4.5	2 4	75	.53	9.6
	\exists	,4-Dichlorobe	. 20	.17	.17	.16	.16	0.1	5 0.1	5 0	16	.17	6.9
	ı	2,3-Trimethy	.01	.84	.87	. 95	.44	4.2	6 4.2	8 4	22	.61	7.3
	HE	Diethylbenzene	. 54	.05	.01	.03	.79	2.1	5 2.6	7 2	80	. 88	9.
	H E	2-Dichlorobe	.07	.99	. 89	.87	.80	1.8	7 1.8	3 I	83	.89	4.9
	H 1	utylbenzene	. 95	.01	. 93	.96	.38	3.9	8 4.8	8 5	19	.53	6.2
200	H E	,2-Dibromo-3	. 07	. 08	.08	.08	.08	0.0	8 0.0	2 0	60	.08	7.6
5	H 1	2,4,5-Tetram	. 20	.34	.39	.44	.30	2.8	0 3.2	1 3	38	.27	5
	Η 1	rrichlor	. 65	. 68	.67	.69	.67	9.0	3 0.7	3.0	71	.67	TU.
92)	H	oro-1,3	.19	.18	.17	.17	.15	0.0	4 0.1	5 0	20	16) -
3	H		.90	.99	.97	.01	.99	0.9	1 1.0	1 0	03	66	4 4
94)	H	1,2,3-Trichlor		.02	.03	.02	.02	0.0	5 0.0	0 0	.030	.02	10

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\V8101717\
Data File : V801633.D

Acq On : 17 Oct 2017

Operator : SR

InstName : VOA No. 8 Sample : SEQ-CCV1 Misc : QBV8101717A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 17 10:13:52 2017

Quant Method: C:\msdchem\1\methods\V8L00058.M Quant Title : Volatile Organics EPA 8260C QLast Update : Fri Oct 06 10:28:22 2017

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

-		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
	I	FLUOROBENZENE (ISTD)	1.000	1.000	0.0	70	0.00
2	T	Dichlorodifluoromethane	0.890	1.663	(-86.8#)		0.00
3	T	Chloromethane	1.397	1.440	-3.0	84	0.00
4		Vinyl Chloride	1.149	1.430	(-24.4)	91	0.00
5	T	Bromomethane	0.469	0.187	60.2#	35#	
	T	Chloroethane	0.640	0.784	-22.6	90	0.00
7	T	Trichlorofluoromethane	1.689	2.417	-43.1#	96	0.00
8		Ethanol	0.002	0.003	-18.2	83	0.00
9	T	Freon-113	1.165	1.464	NA-25.7#	81	0.00
10	T	1,1-Dichloroethylene	0.997	1.100	-10.3	77	0.00
11		Acrolein	0.081	0.062	NP23.6	56	0.00
12		Acetone	0.132.	0.143	-8.4	70	0.00
		Iodomethane	0.953	0.679	NA 28.7#	60	0.00
14	T	Methyl Acetate	0.353	0.396	-11.9	78	0.00
15		Carbon disulfide	3.079	3.093	-0.5	74	0.00
16		tert-Butyl Alcohol (TBA)	0.056	0.054	3.9	66	0.00
17		Methylene Chloride	1.680	1.763	-4.9	76	0.00
18		Acrylonitrile	0.156	0.159	-2.1	70	0.00
19		trans-1,2-Dichloroethylene	1.885	1.992	-5.7	75	0.00
20		tert-Butyl Methyl Ether (MT	1.966	2.051	-4.3	72	0.00
21		1,1-Dichloroethane	2.427	2.604	-7.3	74	0.00
22		Vinyl Acetate	1.247	1.329	-6.5	75	0.00
23		Diisopropyl ether (DIPE)	4.077	4.661	-14.3	74	0.00
	T	Ethyl-tert-Butyl ether (ETB	3.313	3.582	-8.1	75	0.00
25		cis-1,2-Dichloroethylene	2.197	2.362	-7.5	76	0.00
26		2-Butanone	0.053	0.047	12.4	63	0.00
27		2,2-Dichloropropane	2.029	2.445	-20.5	84	0.00
28		Tetrahydrofuran	0.046	0.042	9.7	67	0.00
29		Bromochloromethane	0.874	1.007	-15.2	76	0.00
30		Chloroform	1.444	1.535	-6.3	75	0.00
31		1,1,1-Trichloroethane	2.125	2.514	-18.3	81	0.00
32 '		Cyclohexane	2.230	2.888	-29.5#	79	0.00
33 '		1,1-Dichloropropylene	1.793	1.992	-11.1	75	0.00
34		d4-1,2-Dichloroethane (SURR	0.894	0.970	-8.5	74	0.00
35		Carbon Tetrachloride	1.870	2.321	(24.1)	83	0.00
	T	tert-Amyl alcohol (TAA)	0.040	0.045	-13.2	76	0.00
37	T	1,2-Dichloroethane	1.220	1.393	-14.2	80	0.00

pratuace contenuating carrieration vehore

Data Path : C:\msdchem\1\data\V8101717\

Data File: V801633.D

Acq On : 17 Oct 2017 9:57 am

Operator : SR

InstName : VOA No. 8
Sample : SEQ-CCV1
Misc : QBV8101717A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 17 10:13:52 2017

Quant Method: C:\msdchem\1\methods\V8L00058.M

Quant Title : Volatile Organics EPA 8260C QLast Update : Fri Oct 06 10:28:22 2017

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

41		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
40		Benzene	4.824	4:936	-2.3	72	0.00
41	T	tert-Amyl methyl ether (TAM	2.376	2.559	-7.7	74	0.00
	I	CHLOROBENZENE-d5 (ISTD)	1.000	1.000	0.0	73	0.00
		Trichloroethylene	0.410	0.406	0.9	75	0.00
		Methyl Cyclohexane	0.642	0.694	-8.0	77	0.00
	T	Methyl Methacrylate	0.215	0.201	6.3	69	0.00
	T	Dibromomethane	0.134	0.130	2.9	74	0.00
		Bromodichloromethane	0.439	0.441	-0.3	75	0.00
	T	1,2-Dichloropropane	0.372	0.352	5.1	71	0.00
	T	1,4-Dioxane	0.001	0.001	-14.3	82	0.00
	T	2-Chloroethyl vinyl ether	0.071	0.097	NA-36.6#		0.00
49		cis-1,3-Dichloropropene	0.512	0.504	1.4	73	0.00
50		4-Methyl-2-Pentanone	0.251	0.259	-3.0	74	0.00
51		Toluene-d8 (SURR)	1.378	1.335	3.1	72	0.00
52		Toluene	1.515	1.548	-2.2	74	0.00
53		trans-1,3-Dichloropropene	0.389	0.389	0.2	75	0.00
54		1,1,2-Trichloroethane	0.182	0.176	3.2	72	0.00
55		1,3-Dichloropropane	0.322	0.314	2.5	72	0.00
56		Tetrachloroethylene	0.416	0.447	-7.3	76	0.00
57		2-Hexanone	0.089	(0.090)	-1.5	74	0.00
58		Dibromochloromethane	0.235	0.239	-2.0	76	0.00
	T	1,2-Dibromoethane	0.176	0.170	3.3	73	0.00
	T	Chlorobenzene	0.950	0.959	-1.0	74	0.00
61 '		1,1,1,2-tetrachloroethane	0.331	0.359	-8.5	77	0.00
62 5		Ethyl Benzene	1.698	1.838	-8.2	75	0.00
63 5		p- & m-Xylenes	1.276	1.424	-11,6	76	0.00
64		o-Xylene	1.316	1.392	-5.8	75	0.00
	T	Styrene	0.957	1.007	-5.3	74	0.00
66 5	T	Bromoform	0.112	0.115	-2.6	78	0.00
67	I	1,2-DICHLOROBENZENE-d4 (IST	1.000	1.000	0.0	81	0.00
68 7	Г	p-Ethyltoluene	5.645	5.594	0.9	78	0.00
69 7	Γ	Isopropylbenzene	6.414	6.741	-5.1	76	0.00
70 5	S	p-Bromofluorobenzene (SURR)	1.703	1.561	8.3	75	0.00
71 1	r	1,1,2,2-Tetrachloroethane	0.609	0.556	8.7	73	0.00
72 I	Г	Bromobenzene	2.092	1.911	8.7	75	0.00

matriace concinuing carribracton vehore

Data Path : C:\msdchem\1\data\V8101717\

Data File : V801633.D

Acq On : 17 Oct 2017 9:57 am

Operator : SR

InstName : VOA No. 8
Sample : SEQ-CCV1
Misc : QBV8101717A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 17 10:13:52 2017

Quant Method: C:\msdchem\1\methods\V8L00058.M

Quant Title : Volatile Organics EPA 8260C QLast Update : Fri Oct 06 10:28:22 2017

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
-							
	T	trans-1,4-Dichloro-2-butene	0.818	0.806	1.4	82	0.00
	T	1,2,3-Trichloropropane	0.184	0.173	5.9	76	0.00
	T	n-Propylbenzene	7.189	7.575	-5.4	76	0.00
76		2-Chlorotoluene	5.070	5.032	0.8	78	0.00
77		4-Chlorotoluene	4.587	4.363	4.9	77	0.00
78		1,3,5-Trimethylbenzene	5.644	5.594	0.9	77	0.00
	T	tert-Butylbenzene	4.613	4.651	-0.8	77	0.00
80		1,2,4-Trimethylbenzene	5.306	5.386	-1.5	78	0.00
81		sec-Butylbenzene	6.431	6.637	-3.2	78	0.00
82		1,3-Dichlorobenzene	2.422	2.442	-0.8	79	0.00
83		p-Isopropyltoluene	5.536	5.937	-7.2	80	0.00
84	T	1,4-Dichlorobenzene	0.172	0.172	-0.1	85	0.00
85		1,2,3-Trimethylbenzene	4.614	4.572	0.9	75	0.00
86		p-Diethylbenzene	2.881	3,238	-12.4	87	0.00
87		1,2-Dichlorobenzene	1.891	1.803	4.6	78	0.00
88		n-Butylbenzene	5.533	6.097	-10.2	83	0.00
89		1,2-Dibromo-3-chloropropane	0.084	0.079	5.9	80	0.00
90	T ·	1,2,4,5-Tetramethylbenzene	3.276	3.782	-15.5	90	0.00
91		1,2,4-Trichlorobenzene	0.676	0.706	-4.4	83	0.00
92		Hexachloro-1,3-Butadiene	0.165	0.234	M-41.3#	107	0.00
		Naphthalene	0.991	0.972	1.9	78	0.00
94	T	1,2,3-Trichlorobenzene	0.029	0.030	-5.9	87	0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

Response Factor Report VOA No. 3

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)

Title : VOCs BY GC/MS EPA SW846-8260
Last Update : Thu Sep 14 15:49:54 2017

Response via : Initial Calibration

Calibration Files

5 =V3127773.D 10 =V3127774.D 20 =V3127775.D 50 =V3127776.D 100 =V3127777.D 200 =V3127778.D

		Compound	5	10	20	50	100	200) Avg	%RSD
1	1	FLUOROBENZENE (ISTD)				TOWN				
2		Dichlorodifluoromet		1 205	1 200	-ISTD-		1 040	1 200	
3	-	Chloromethane	2 624	2 403	2.565	1 1.313	1.311	1.248	2.514	3.07
4		Vinyl Chloride	1 712	1 620	1 676	1 540	1 500	2.361	1.613	3.75
5	- SE-FETT	Bromomethane	0 776	0 736	0.700	0 763	0.722	1.536	0.749	4.43#
6		Chloroethane	0.770	0.750	0.700	0.763	0.733	0.776	0.749	3.67
7		Trichlorofluorometh	1 230	1 1 1 1 0	1 102	1 205	1 225	1 105	1 1 202	1.49
8)		Ethyl Ether	1 1.233	1.140	1.173	1.205	1.235	1.19/		2.76
9)		Freon-113	0 908	0 825	0 820	0 051	0 066	0 000	2 0.877	-1.00
10)		1,1-Dichloroethylen	0.500	0.623	0.620	0.331	0.000	0.692	0.877	5.75
11)		Acrolein	0.000	0.078	0.07/	0.727	0.050	0.674	0.682	3.70#
12)		Iodomethane	0.000	0.071	1 069	1 246	1 120	1 227	1.092	13.99
13)		Methyl Acetate	0.003	0.374	0 647	0 630	0.622	0 557	0.533	12.65
14)		tert-Butyl Alcohol	0.023	0.727	0.047	0.020	0.022	0.557	0.086	
15)		trans-1,2-Dichloroe		2 091	2 027	2 120	2 024	0.094	0.086	26.96
16)		Carbon Disulfide	3 377	3 063	2 1/7	2 122	2.034	2.021	3.200	2.52
17)		Methylene Chloride	1 632	1 381	1 266	1 350	1 271	1 200	1 260	5.45
18)		Acrylonitrile	0 343	0 314	0.320	0.341	0 353	0.356	0.338	9.98
19)		tert-Butyl Methyl E	2 370	2 5/2	2 324	2 464	2 410	2 300	0.338	4.99
20)		Acetone		0.380						3.07
21)	P	1,1-Dichloroethane	2 621	2.653	2 579	2 711	2 603	0.209	0.298	33.53
22)		Vinyl Acetate		3.863	2 909	4 010	4 005	2.502	2.621	2.07
23)		cis-1,2-Dichloroeth	1 661	1 704	1 664	1 722	1 600	1 640	1 660	2.76
24)		2-Butanone	0.059	0.061	0 002	0.077	0.070	0.064	0.070	2.66
25)		2,2-Dichloropropane	1 650	1 884	1 638	1 905	1 571	1 020	1 746	14.15
26)		Bromochloromethane	1 295	1.247	1 207	1 216	1.3/1	1 210	1.746	8.22
27)	C	Chloroform	2 269	2.101	2 114	2 226	2 115	7.413	1.2/1	3.19
28)	-	Tetrahydrofuran	0 129	0.120	0 103	0 106	0 110	0.100	0 111	4.09#
29)		1,1-Dichloropropyle	2 238	2 021	1 010	2 106	1 012	1 777	0.111	9.93
30)		1,1,1-Trichloroetha	1 702	1 616	1 622	1 720	1 500	1.///	1.995	8.16
31)		Cyclohexane	2 635	2.829	2 709	2 7//	2 620	2 427	2.637	4.04
32)	S	d4-1,2-Dichloroetha	1 068	1 069	1 003	1 072	1 000	0.000	2.002	5.15
33)	~	Carbon Tetrachlorid	1 558	1 468	1 425				1.490	3.75
34)		1,2-Dichloroethane		1.381			1 256	1 107	1.490	4.44
35)	M	Benzene		5 256	5 170	E 160	1 707	1.197	1.308	6.02 6.79
, ,		Delizerie	5.075	3.230	3.1/3	5.100	4.797	4.710	5.131	6.79
36)		CHLOROBENZENE-d5 (IST	rD			TSTD				
37)	M	Trichloroethylene	0 403	0 442	0 358	0 375	0 384	0 361	0 307	0 15
38)		Trichloroethylene Methyl Cyclohexane	0.607	0 718	0.630	0.575	0.504	0.562	0.507	0.15
39)		Dibromomethane	0.007	0 202	0.030	0.030	0.040	0.302	0.033	0.11
0)		Methyl Methacrylate	0 184	0.202	0.170	0.100	0.192	0.104	0.105	4.40
11)		Bromodichloromethan	0.104	0.200	0.1/2	0.130	0.190	0.174	0.185	
	C	1,2-Dichloropropane	0.405	0.453	0.330	0.443	0.407	0.400	0.405	2.91
/	-	-, 2 Dicirotopropane	0.403	0.433	0.331	0.333	0.386	0.3//	0.401	6.72#

Response Factor Report VOA No. 3

: C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator) Method

Title : VOCs BY GC/MS EPA SW846-8260 Last Update : Thu Sep 14 15:49:54 2017 Response via : Initial Calibration

Calibration Files

=V3127773.D 10 =V3127774.D 20 =V3127775.D 50 =V3127776.D 100 =V3127777.D 200 =V3127778.D

		Compound	5	10	20	50	100	200) Avg	%RSD
43)		1,4-Dioxane	0.002	0.003	0.002	0.002	0.002	2 0.002	0.002#	8.04
44)		2-Chloroethylvinyl							0.717	5.00
45)		cis-1,3-Dichloropro								4.18
46)		2-Hexanone				0.213			0.220	8.77
47)	S	Toluene-d8 (SURR)				1.218			1.186	5.29
48)	C, M	Toluene							1.310	8.25#
49)		trans-1,3-Dichlorop	0.421	0.415	0.406	0.438	0.446	0.442	0.428	3.81
50)		1,1,2-Trichloroetha								6.71
51)		1,3-Dichloropropane								4.64
52)		Tetrachloroethylene								13.08
53)		4-Methyl-2-Pentanon								9.09
54)		Dibromochloromethan								3.70
55)	D 14	1,2-Dibromoethane							0.268	5.33
56)		Chlorobenzene				0.866		0.819		6.98
57) 58)	C	Ethyl Benzene	1.504			1.400				7.20#
59)		p- & m-Xylenes	1.136			1.022				11.95
60)		o-Xylene Styrene				1.034				9.55
61)		1,1,1,2-Tetrachloro	0.320	0.361	0.321	0.332	0.870	0.812	0.909	8.21 6.33
62)		1,2-DICHLOROBENZENE	-d			-ISTD-				
63)	p	Bromoform		0.415			0.557	0.593	0.499	14.79
64)	S	p-Bromofluorobenzen								7.18
65)		p-Ethyltoulene							3.182	5.47
66)			1.492							3.88
67)	P	1,1,2,2-Tetrachloro								5.74
68)		1,2,3-Trichloroprop	0.148	0.184	0.176	0.202	0.198	0.179	0.181	10.55
69)		Isopropylbenzene	3.696	3.345	3.363	3.804	3.556	3.563	3.555	5.08
70)		1,2-Dibromo-3-Chlor	0.082	0.093	0.092	0.103	0.102	0.101	0.095	8.23
71)		Bromobenzene				1.282				1.90
72)		trans-1,4-Dichloro-								21.41
73)		n-Propylbenzene								3.14
74)		2-Chlorotoluene	2.554	2.437	2.406	2.538	2.391	2.287	2.435	4.08
75)			2.518							4.43
76)		tert-Butylbenzene								4.40
77)		1,3,5-trimethylbenz								6.49
78)		1,2,4-trimethylbenz								5.70
79)			3.336							4.36
80)		1,3-Dichlorobenzene								7.73
81)		1,4-Dichlorobenzene								4.93
82)		1,2-Dichlorobenzene								4.79
83)		p-Isopropyltoluene								8.37
84)			3.149							3.68
85)		1,2,4,5-Tetramethyl	2.286	2.416	2.253	2.316	2.337	2.208	2.303	3.12

Response Factor Report VOA No. 3

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)
Title : VOCs BY GC/MS EPA SW846-8260

Last Update : Thu Sep 14 15:49:54 2017 Response via : Initial Calibration

Calibration Files

5 =V3127773.D 10 =V3127774.D 20 =V3127775.D 50 =V3127776.D 100 =V3127777.D 200 =V3127778.D

30	30 =V312///0.D 100		-V312////.D 200 -V312///8.L		1110.0				
	Compound	5	10	20	50	100	200	Avg	%RSD
86) 87) 88)	1,2,4-Trichlorobenz Naphthalene Hexachloro-1,3-Buta	1.879	1.688	1.695 0.476	1.847 0.522	1.824	1.800	1.789	5.99 4.45 5.37
89)	1,2,3-Trichlorobenz	0.832	0.747	0.731	0.757	0.740	0.786	0.765	4.95

Evaluace contenuating carribraction vehore

Data File : C:\HPCHEM\1\DATA\V3101817\V3128543.D Vial: 2

Acq On : 18 Oct 2017 10:02 am
Sample : SEQ-CCV1
Misc : QBV3101817A Operator: SR Inst : VOA No. 3 Multiplr: 1.00

MS Integration Params: RTEINT1.P

: C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator) Method

Title : VOCs BY GC/MS EPA SW846-8260 Last Update : Thu Sep 14 15:49:54 2017 Response via : Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1	FLUOROBENZENE (ISTD)	1.000	1.000	0.0	107	-0.02
2	Dichlorodifluoromet	hane 1.308	1.316	-0.6	107	-0.01
3 P		2.514	2.528	-0.6		-0.01
4 C	Vinyl Chloride	1.613	1.626	-0.8	113	-0.01
5	Bromomethane	0.749	0.702	6.3		-0.02
6	Chloroethane	0.757	0.702	7.3		-0.02
7	Trichlorofluorometh	ane 1.203	1.142	5.1	101	-0.02
8	Ethyl Ether	0.000	0.000#	0.0	126	-0.02
9	Freon-113	0.877	0.932	-6.3	105	-0.02
10 C,	,M 1,1-Dichloroethylene	0.682	0.694	-1.8	102	-0.01
11	Acrolein	0.076	0.080	-5.3	94	
12	Iodomethane	1.092	1.058	3.1		-0.02
13	Methyl Acetate	0.533	0.614	-15.2		-0.02
14	tert-Butyl Alcohol	(TBA) 0.086	0.110	VA27.9#		-0.02
15	trans-1,2-Dichloroet	hylene 2.073	2.045	1.4		-0.01
16	Carbon Disulfide	3.200	2.961	7.5		-0.02
17	Methylene Chloride	1.368	1.297			-0.02
18	Acrylonitrile	0.338	0.353	5.2		-0.02
19	tert-Butyl Methyl Et	ther (MT 2.420		-4.4	111	-0.02
20	Acetone	0.298	2.494	-3.1	108	-0.02
21 P	1,1-Dichloroethane	2.621	0.247	17.1	105	-0.02
22	Vinyl Acetate		2.717	-3.7	107	-0.02
23	cis-1,2-Dichloroethy	3.923	4.457	-13.6	119	-0.02
24	2-Butanone		1.678	-0.6		-0.02
25	2,2-Dichloropropane	0.070	0.116	-65.7#		0.00
26	Bromochloromethane	1.746	1.862	-6.6		-0.02
27 C	Chloroform	1.271	1.302	-2.4		-0.02
28		2.143	2.260	-5.5		-0.02
29	Tetrahydrofuran	0.111	0.113			-0.02
30	1,1-Dichloropropylen		1.996	-0.1		-0.02
31	1,1,1-Trichloroethan		1.757	-7.3		-0.03
32 S	Cyclohexane	2.662	2.859	-7.4		-0.02
	d4-1,2-Dichloroethan		1.121	-6.9		-0.02
33 34	Carbon Tetrachloride		1.523	-2.2	103	-0.02
	1,2-Dichloroethane	1.308	1.403	-7.3	113	-0.02
35 M	Benzene	5.131	4.968	3,2	103	-0.02
36	CHLOROBENZENE-d5 (IST	D) 1.000	1.000	0.0	104	-0.02
37 M	Trichloroethylene	0.387	0.400			-0.02
38	Methyl Cyclohexane		0.652			-0.02
39	Dibromomethane	0.188		-4.3		-0.02
40	Methyl Methacrylate	0.185	0.194			-0.02

Evaluace concenuing carrotaction report

Data File : C:\HPCHEM\1\DATA\V3101817\V3128543.D Vial: 2 Acq On : 18 Oct 2017 10:02 am Sample : SEQ-CCV1 Operator: SR

Inst : VOA No. 3 Misc : QBV3101817A Multiplr: 1.00

MS Integration Params: RTEINT1.P

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)
Title : VOCs BY GC/MS EPA SW846-8260
Last Update : Thu Sep 14 15:49:54 2017
Response via : Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 200%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
41		Bromodichloromethane	0.405	0.430	-6.2	105	-0.02
42	C	1,2-Dichloropropane	0.401	0.398	0.7	105	-0.02
43		1,4-Dioxane	0.002	0.002#	0.0	108	-0.02
44		2-Chloroethylvinyl ether	0.717	0.722	-0.7	107	-0.02
45		cis-1,3-Dichloropropene	0.567	0.597	-5.3	108	-0.02
46		2-Hexanone	0.220	0.224	-1.8	109	-0.02
47	S	Toluene-d8 (SURR)	1.186	1.122	5.4	95	-0.02
48	C,M	Toluene	1.310	1.322	-0.9	104	-0.02
49		trans-1,3-Dichloropropene	0.428	0.458	-7.0	108	-0.02
50		1,1,2-Trichloroethane	0.226	0.235	-4.0	108	-0.02
51		1,3-Dichloropropane	0.459	0.470	-2.4	109	-0.02
52		Tetrachloroethylene	0.511	0.497	2.7	105	-0.02
53		4-Methyl-2-Pentanone	0.590	0.616	-4.4	111	-0.02
54		Dibromochloromethane	0.302	0.338	-11.9	111	-0.02
55		1,2-Dibromoethane	0.268	0.269	-0.4	107	-0.02
56	P,M	Chlorobenzene	0.893	0.944	-5.7	113	-0.02
57	C	Ethyl Benzene	1.393	1.436	-3.1	106	-0.03
58		p- & m-Xylenes	1.004	1.007	-0.3	102	-0.02
59		o-Xylene	1.041	1.071	-2.9	107	-0.02
60		Styrene	0.909	0.946	-4.1	110	-0.02
61		1,1,1,2-Tetrachloroethane	0.326	0.343	-5.2	107	-0.02
62		1,2-DICHLOROBENZENE-d4(ISTD	1.000	1.000	0.0	104	-0.02
63	p	Bromoform	0.499	0.582	-16.6	112	-0.02
64	S	p-Bromofluorobenzene (SURR)	0.933	0.922	1.2	104	-0.02
65		p-Ethyltoulene	3.182	3.683	-15.7	117	-0.03
66		p-Diethylbenzene	1.487	1.942	NA30.6#	129	-0.02
67	P	1,1,2,2-Tetrachloroethane	0.826	0.876	-6.1	108	-0.02
68		1,2,3-Trichloropropane	0.181	0.203	-12.2	104	-0.02
69		Isopropylbenzene	3.555	3.878	-9.1	106	-0.02
70		1,2-Dibromo-3-Chloropropane	0.095	0.111	-16.8	11.3	-0.02
71		Bromobenzene	1.270	1.335	-5.1	108	-0.02
72		trans-1,4-Dichloro-2-butene	0.836	0.896	-7.2	116	-0.02
73		n-Propylbenzene	4.108	4.471	-8.8	109	-0.02
74		2-Chlorotoluene	2.435	2.738	-12.4	CARLES NATE.	-0.02
75		4-Chlorotoluene	2.396	2.717	-13.4		-0.02
76		tert-Butylbenzene	2.312	2.498	-8.0		-0.02
77		1,3,5-trimethylbenzene	2.712	2.772	-2.2		-0.02
78		1,2,4-trimethylbenzene	2.574	2.818	-9.5		-0.02
79		sec-Butylbenzene	3.548	3.730	-5.1		-0.02
80		1,3-Dichlorobenzene	1.588	1.855	-16.8		-0.02

^{(#) =} Out of Range V3128543.D V3C00289.M

matuace conteminating carribraction report

Data File : C:\HPCHEM\1\DATA\V3101817\V3128543.D Vial: 2 Acq On : 18 Oct 2017 10:02 am Operator: SR

Sample : SEQ-CCV1 Misc : QBV3101817A Inst : VOA No. 3 Multiplr: 1.00

MS Integration Params: RTEINT1.P

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)
Title : VOCs BY GC/MS EPA SW846-8260
Last Update : Thu Sep 14 15:49:54 2017 Response via : Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 200%

122	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
81	1,4-Dichlorobenzene	1.579	1.884	-19.3	121	-0.02
82	1,2-Dichlorobenzene	1.433	1.573	-9.8	113	-0.02
83	p-Isopropyltoluene	2.866	3.254	-13.5	112	-0.02
84	n-Butylbenzene	3.071	3.609	-17.5	118	-0.02
85	1,2,4,5-Tetramethylbenzene	2.303	2.649	-15.0	119	-0.02
86	1,2,4-Trichlorobenzene	0.888	1.072	(-20.7)	127	-0.02
87	Naphthalene	1.789	1.978	-10.6	111	-0.02
88	Hexachloro-1,3-Butadiene	0.517	0.518	-0.2	103	-0.02
89	1,2,3-Trichlorobenzene	0.765	0.891	-16.5	123	-0.02

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8270D Semi-Volatiles Data for York Analytical Laboratories, Inc., SDG: 17J0671

5 Soil Samples Collected October 16, 2017

Prepared by: Donald Anné April 30, 2018

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The average RRFs for applicable compounds were above the method minimums, as required. The %RSDs for hexachlorocyclopentadiene, 2,4-dinitrophenol, and pentachlorophenol were above the method maximum for BNA #1 on 10-09-17. No action is taken when fewer than 20% of the compounds per calibration do not meet either method %RSD or average RRF criteria, provided no average RRF is less than 0.010.

The average RRFs for target compounds were above the allowable minimum (0.010), as required.

The %RSD for 2,4-dinitrophenol was above the allowable maximum (30%) for BNA #1 on 10-09-17. Positive results for 2,4-dinitrophenol should be considered estimated (J) in associated samples.

Continuing Calibration: The RRFs for applicable compounds were above the method minimums and the %Ds were below the method maximum, as required.

The RRFs for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (25%), as required.

Blanks: The analysis of the method blank reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for the soil samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for 24 compounds (circled red on the attached MS/MSD from) were above the allowable maximum and 2 of 2 percent recoveries for hexachlorocyclopentadiene were below QC limits and below 10% for soil MS/MSD sample EP-3 (5 ft). The "not detected" result for hexachlorocyclopentadiene should be considered rejected, unusable (R) in sample EP-3 (5 ft).

<u>Laboratory Control Sample</u>: The percent recoveries for target compounds were within QC limits for soil sample BJ71019-BS1.

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

BJ71019-MS1

Preparation:

EPA 3550C

Initial/Final:

30 g / 1 mL

Source Sample Name: EP-3 (5 ft)

COMPOUND	SPIKE ADDED (ug/kg dry)	SAMPLE CONCENTRATION (ug/kg dry)	MS CONCENTRATION (ug/kg dry)	MS % REC.#	QC LIMITS REC.
1,2,4-Trichlorobenzene	963	ND	717	74.5	15 - 139
1,2-Dichlorobenzene	963	ND	707	73.4	29 - 106
1,3-Dichlorobenzene	963	ND	659	68.4	34 - 100
1,4-Dichlorobenzene	963	ND	652	67.7	26 - 107
2,4,5-Trichlorophenol	963	ND	744	77.3	10 - 148
2,4,6-Trichlorophenol	963	ND	732	76.0	12 - 138
2,4-Dichlorophenol	963	ND	814	84.5	16 - 144
2,4-Dimethylphenol	963	ND	798	82.9	11 - 133
2,4-Dinitrophenol	963	ND	377	39.1	10 - 132
2,4-Dinitrotoluene	963	ND	734	76.2	42 - 113
2,6-Dinitrotoluene	963	ND	781	81.1	36 - 124
2-Chloronaphthalene	963	ND	756	78.5	31 - 116
2-Chlorophenol	963	ND	787	81.7	28 - 114
2-Methylnaphthalene	963	ND	877	91.0	10 - 143
2-Methylphenol	963	ND	734	76.2	10 - 160
2-Nitroaniline	963	ND	729	75.7	33 - 122
-NitrophenoI	963	ND	770	79.9	12 - 127
- & 4-Methylphenols	963	ND	735	76.3	16 - 115
,3-Dichlorobenzidine	963	ND	515	53.4	10 - 134
-Nitroaniline	963	ND	520	54.0	24 - 128
,6-Dinitro-2-methylphenol	963	ND	456	47.4	10 - 149
-Bromophenyl phenyl ether	963	ND	697	72.3	32 - 148
-Chloro-3-methylphenol	963	ND	818	85.0	14 - 138
-Chloroaniline	963	ND	645	67.0	10 - 124
-Chlorophenyl phenyl ether	963	ND	707	73.4	10 - 153
-Nitroaniline	963	ND	679	70.5	10 - 151
Nitrophenol	963	ND	837	86.9	10 - 141
cenaphthene	963	ND	757	78.6	13 - 133
cenaphthylene	963	ND	724	75.2	25 - 125
niline	963	ND	668	69.4	10 - 112
nthracene	963	ND	825	85.7	27 - 128
enzo(a)anthracene	963	219	936	74.5	20 - 147

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

BJ71019-MS1

Preparation:

EPA 3550C

Initial/Final:

30 g / 1 mL

Source Sample Name:

EP-3 (5 ft)

COMPOUND	SPIKE ADDED (ug/kg dry)	SAMPLE CONCENTRATION (ug/kg dry)	MS CONCENTRATION (ug/kg dry)	MS % REC. #	QC LIMITS REC.
Benzo(a)pyrene	963	224	870	67.0	18 - 153
Benzo(b)fluoranthene	963	204	908	73.0	10 - 163
Benzo(g,h,i)perylene	963	156	536	39.5	10 - 157
Benzo(k)fluoranthene	963	222	933	73.8	10 - 157
Benzyl alcohol	963	ND	764	79.3	20 - 122
Benzyl butyl phthalate	963	ND	702	72.9	10 - 129
Bis(2-chloroethoxy)methane	963	ND	867	90.0	12 - 128
Bis(2-chloroethyl)ether	963	ND	722	75.0	18 - 113
Bis(2-chloroisopropyl)ether	963	ND	789	81.9	10 - 130
Bis(2-ethylhexyl)phthalate	963	ND	720	74.8	10 - 138
Chrysene	963	266	1020	78.2	18 - 133
Dibenzo(a,h)anthracene	963	50.9	580	55.0	10 - 146
Dibenzofuran	963	ND	760	78.9	26 - 134
Diethyl phthalate	963	ND	715	74.2	30 - 119
Dimethyl phthalate	963	ND	727	75.5	
Di-n-butyl phthalate	963	ND	780	81.0	34 - 120
Di-n-octyl phthalate	963	ND	716	74.3	20 - 128
Fluoranthene	963	350	1230	91.1	10 - 133
Fluorene	963	ND	756	78.5	10 - 155
Hexachlorobenzene	963	ND	744	77.3	12 - 150
Hexachlorobutadiene	963	ND	702	72.9	16 - 142
Hexachlorocyclopentadiene	963	ND	84.0	8.72 *	11 - 150
Hexachloroethane	963	ND	578	60.0	10 - 115
Indeno(1,2,3-cd)pyrene	963	143	618	49.4	14 - 106
sophorone	963	ND	799		10 - 155
Naphthalene	963	ND	878	83.0	14 - 127
Nitrobenzene	963	ND	744	91.2	15 - 132
N-Nitrosodimethylamine	963	ND ND	658	77.3	18 - 125
N-nitroso-di-n-propylamine	963	ND	737	68.3	10 - 123
I-Nitrosodiphenylamine	963	ND	823	76.5	23 - 115
entachlorophenol	963	ND		85.4	16 - 166
henanthrene	963	143	737 1020	76.5 90.7	10 - 160

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

Preparation:

EPA 3550C

Initial/Final:

30 g/1 mL

BJ71019-MS1

Source Sample Name:

EP-3 (5 ft)

COMPOUND	SPIKE ADDED (ug/kg dry)	SAMPLE CONCENTRATION (ug/kg dry)	MS CONCENTRATION (ug/kg dry)	MS % REC.#	QC LIMITS REC.
Phenol	963	ND	700	72.6	11 - 124
Pyrene	963	303	1120	85.0	13 - 148
Pyridine	963	ND	539	55,9	10 - 125

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

BJ71019-MSD1

Preparation:

EPA 3550C

Initial/Final:

30 g/1 mL

Source Sample Name:

EP-3 (5 ft)

	SPIKE	MSD	MSD		Q	CLIMITS
COMPOUND	ADDED (ug/kg dry)	CONCENTRATION (ug/kg dry)	% REC.#	% RPD#	RPD	REC.
1,2,4-Trichlorobenzene	963	458	47.6	(44.0) *	30	15 - 139
1,2-Dichlorobenzene	963	445	46.2	45.4 *	30	29 - 106
1,3-Dichlorobenzene	963	418	43.4	(44.8) *	30	34 - 100
1,4-Dichlorobenzene	963	413	42.9	(44.9) *	30	26 - 107
2,4,5-Trichlorophenol	963	690	71.6	7.63	30	10 - 148
2,4,6-Trichlorophenol	963	616	64.0	17.1	30	12 - 138
2,4-Dichlorophenol	963	582	60.4	(33.2) *	30	16 - 144
2,4-Dimethylphenol	963	586	60.8	(30.7) *	30	11 - 133
2,4-Dinitrophenol	963	311	32.3	19.0	30	10 - 132
2,4-Dinitrotoluene	963	716	74.3	2.45	30	42 - 113
2,6-Dinitrotoluene	963	726	75.4	7.36	30	36 - 124
2-Chloronaphthalene	963	552	57.3	31.2 *	30	31 - 116
2-Chlorophenol	963	515	53.4	41.8 *	30	28 - 114
2-Methylnaphthalene	963	596	61.9	38.1) *	30	10 - 143
2-Methylphenol	963	519	53.9	34.2 *	30	10 - 160
2-Nitroaniline	963	669	69.4	8.60	30	33 - 122
2-Nitrophenol	963	518	53.8	39.1) *	30	12 - 127
3- & 4-Methylphenols	963	528	54.8	(32.8) *	30	16 - 115
3,3-Dichlorobenzidine	963	573	59.4	10.6	30	10 - 134
3-Nitroaniline	963	577	59.9	10.4	30	24 - 128
,6-Dinitro-2-methylphenol	963	408	42.4	11.1	30	10 - 149
-Bromophenyl phenyl ether	963	660	68.6	5.34	30	32 - 148
-Chloro-3-methylphenol	963	730	75.8	11.4	30	14 - 138
-Chloroaniline	963	564	58.6	13.4	30	10 - 124
-Chlorophenyl phenyl ether	963	651	67.6	8.28	30	10 - 153
-Nitroaniline	963	693	71.9	2.02	30	10 - 151
-Nitrophenol	963	798	82.9	4.71	30	10 - 141
cenaphthene	963	605	62.8	22.3	30	13 - 133
cenaphthylene	963	587	61.0	20.9	30	25 - 125
niline	963	485	50.4	31.7 *	30	10 - 112
nthracene	963	774	80.3	6.46	30	27 - 128
enzo(a)anthracene	963	840	64.5	10.8	30	20 - 147
enzo(a)pyrene	963	781	57.8	10.8	30	18 - 153

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

<u>17J0671</u>

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

Preparation:

EPA 3550C

BJ71019-MSD1

Source Sample Name:

EP-3 (5 ft)

Initial/Final: 30 g / 1 mL

	SPIKE	MSD	MSD		QC LIMITS		
COMPOUND	ADDED (ug/kg dry)	CONCENTRATION (ug/kg dry)	% REC. #	% RPD#	RPD	REC.	
Benzo(b)fluoranthene	963	818	63.7	10.5	30	10 - 163	
Benzo(g,h,i)perylene	963	510	36.8	5.01	30	10 - 157	
Benzo(k)fluoranthene	963	823	62.4	12.5	30	10 - 157	
Benzyl alcohol	963	546	56.7	33.2 *	30	20 - 122	
Benzyl butyl phthalate	963	687	71.4	2.11	30	10 - 129	
Bis(2-chloroethoxy)methane	963	581	60.3	39.5 *	30	12 - 128	
Bis(2-chloroethyl)ether	963	457	47.4	45.0 *	30	18 - 113	
Bis(2-chloroisopropyl)ether	963	489	50.7	47.0 *	30	10 - 130	
Bis(2-ethylhexyl)phthalate	963	704	73.0	2.38	30	10 - 138	
Chrysene	963	912	67.0	11.2	30	18 - 133	
Dibenzo(a,h)anthracene	963	556	52.4	4.34	30	10 - 146	
Dibenzofuran	963	652	67.7	15.3	30	26 - 134	
Diethyl phthalate	963	689	71.5	3.73	30	30 - 119	
Dimethyl phthalate	963	664	69.0	9.08	30	34 - 120	
Di-n-butyl phthalate	963	749	77.8	4.03	30	20 - 128	
Di-n-octyl phthalate	963	710	73.7	0.865	30	10 - 133	
Fluoranthene	963	1020	69.6	18.4	30	10 - 155	
Fluorene	963	683	70.9	10.2	30	12 - 150	
Hexachlorobenzene	963	707	73.4	5.10	30	16 - 142	
Hexachlorobutadiene	963	445	46.2	(44.7) *	30	11 - 150	
Hexachlorocyclopentadiene	963	ND	*		30	10 - 115	
Hexachloroethane	963	364	37.8	(45.3) *	30	14 - 106	
ndeno(1,2,3-cd)pyrene	963	589	46.4	4.72	30	10 - 155	
sophorone	963	552	57.4	36.5 *	30	14 - 127	
Naphthalene	963	574	59.6	(41.9) *	30	15 - 132	
Vitrobenzene	963	495	51.4	40.1 *	30	18 - 125	
N-Nitrosodimethylamine	963	490	50.9	29.3	30	10 - 123	
J-nitroso-di-n-propylamine	963	485	50.4	(41.1) *	30	23 - 115	
I-Nitrosodiphenylamine	963	780	81.0	5.38	30	16 - 166	
entachlorophenol	963	678	70.4	8.28	30	10 - 160	
henanthrene	963	882	76.8	14.1	30	10 - 151	
henol	963	502	52.2	(32.8) *	30	11 - 124	
yrene	963	976	69.8	13.9	30	13 - 148	

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

BJ71019-MSD1

Preparation:

EPA 3550C

Source Sample Name:

EP-3 (5 ft)

Initial/Final:

30 g/1 mL

COMPOUND	SPIKE ADDED (ug/kg dry)	MSD CONCENTRATION (ug/kg dry)	MSD % REC. #	% RPD#	QC RPD	LIMITS REC.
Pyridine	963	398	41.4	29.9	30	10 - 125

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Response Factor Report BNA #1

```
Method : C:\HPCHEM\1\METHODS\BNA1RQB3.M (Chemstation Integrator)
Title : GC MS BNA 1 Semi Volatiles Calibration
     Last Update : Tue Oct 10 16:38:26 2017
     Response via : Initial Calibration
                                                 october 9,20m
     Calibration Files
          =SV109770.D 20 =SV109772.D 40.0 =SV109774.D =SV109771.D 2.5 =SV109768.D 5 =SV109769.D
                                  10 20 40.0 15.0 2.5 5 Avg
        Compound
  1) I 1,4-Dichlorobenzene-d -----ISTD-----ISTD-----
  2) t
           N-Nitrosodimethylam 1.371 1.477 1.495 1.419 1.757 1.727 1.551 10.27
         Pyridine 2.481 2.175 2.113 2.360 2.598 2.342 7.77 2-Fluorophenol 1.999 1.952 2.000 2.005 1.987 1.980 1.47 Phenol-d5 2.304 2.161 2.130 2.254 2.461 2.237 5.92 Benzaldehyde 1.635 1.195 0.724 1.376 1.697 1.258 130.84 Aniline 2.546 2.424 2.317 2.506 2.625 2.460 4.87 Phenol 2.722 2.528 2.447 2.651 2.963 2.893 2.720 8.85
  3) t
  4) s
  5) s
  6) t
  7) t
  8) t
         Bis(2-chloroethyl)e 2.482 2.300 2.361 2.412 2.769 2.693 2.515 8.19
 9) t
10) t
          2-Chlorophenol 1.867 1.798 1.829 1.842 2.006 1.956 1.895 5.24
11) t
          1,3-Dichlorobenzene 1.868 1.797 1.784 1.876 1.969 1.844 4.09 1,4-Dichlorobenzene 2.011 1.891 1.826 1.959 2.112 1.944 5.44
 12) t
          Benzyl Alcohol 1.293 1.236 1.164 1.294 1.359 1.257 5.73 1,2-Dichlorobenzene 1.912 1.734 1.588 1.835 2.047 1.800 9.25
13) t
14) t
15) t 2-Methylphenol 1.544 1.448 1.421 1.490 1.666 1.637 1.546 8.11 16) t Acetophenone 2.646 2.313 2.264 2.378 2.834 2.449 9.67
16) t Acetophenone 2.646 2.313 2.264 2.378 2.834 2.449 9.67 17) t Bis(2-chloroisoprop 3.380 3.106 2.949 3.252 3.787 3.643 3.382 10.76
18) t N-Nitroso-di-n-prop 1.591 1.455 1.275 1.544 1.794 1.712 1.567 12.40
19) t 4-Methylphenol 2.023 1.839 1.587 1.963 2.215 2.158 1.963 11.58 20) t Hexachloroethane 0.857 0.819 0.699 0.843 0.912 0.899 0.841 8.87
26) t 2,4-Dimethylphenol 0.497 0.447 0.389 0.475 0.532 0.541 0.480 12.66 27) t Bis(2-chloroethoxy) 0.797 0.719 0.616 0.766 0.872 0.738 12.70
28) t Benzoic acid 0.270 0.399 0.406 0.393 0.269 0.354 18.66
         2,4-Dichlorophenol 0.457 0.418 0.367 0.446 0.469 0.493 0.435 9.97
29) t
30) t 1,2,4-Trichlorobenz 0.501 0.452 0.385 0.477 0.555 0.544 0.487
                                                                                          13.80
31) t Naphthalene 1.449 1.211 0.881 1.360 1.455 1.233 32) t Alpha-Terpineol 0.470 0.433 0.345 0.457 0.511 0.433 33) t 4-Chloroaniline 0.685 0.635 0.511 0.669 0.749 0.635
                                                                        1.455 1.233 18.98
                                                                                          13.98
                                                                                          13.63
34) t
         Hexachlorobutadiene 0.260 0.234 0.198 0.248 0.294 0.287 0.253 14.23
35) t
         Caprolactam 0.270 0.256 0.256 0.205 0.288 0.252 11.44
                                                                                        10.29
36) t 4-Chloro-3-methylph 0.564 0.508 0.448 0.532 0.572 0.603 0.532
          1-Methylnaphthalene 0.921 0.747 0.609 0.803 0.988 0.788 18.64
2-Methylnaphthalene 0.976 0.851 0.697 0.925 1.070 0.879 15.84
37) t
38) t
39) I
        Acenaphthene-d10
                                      -----ISTD-----
         1,2,4,5-tetrachloro 0.897 0.792 0.666 0.831 1.025 0.821 15.69
40) t
41) t
         Hexachlorocyclopent 0.358 0.349 0.320 0.368 0.254 0.329 0.311 (21.34)
```

^{(#) =} Out of Range ### Number of calibration levels exceeded format ###

BNA1RQB3.M Tue Oct 10 16:38:39 2017 Page 418 of 520 Page 1

Method : C:\HPCHEM\1\METHODS\BNA1RQB3.M (Chemstation Integrator)

Title : GC MS BNA 1 Semi Volatiles Calibration

Last Update : Tue Oct 10 16:38:26 2017

Response via : Initial Calibration

Calibration Files

10 =SV109770.D 20 =SV109772.D 40.0 =SV109774.D 15.0 =SV109771.D 2.5 =SV109768.D 5 =SV109769.D

		Compound	10	20	40.	0 15.	0 2.5	5	Avg	%RSD
42)	t	Biphenyl	0.890	0.748	0.621	0.789		0.989	0.787	17.19
43)		2,4,6-Trichlorophen						0.632	0.592	4.85
44)	t	2,4,5-Trichlorophen	0.630	0.590	0.519	0.606	0.663	0.669	0.614	9.04
45)	S	2-Fluorobiphenyl			1.340				1.663	15.82
46)	t	2-Chloronaphthalene							1.621	
47)	t	2-Nitroaniline			0.774				0.794	2.34
48)	t	Dimethylphthalate							2.181	9.18
49)	t	2,6-Dinitrotoluene							0.515	
50)	t	Acenaphthylene			2.197				2.597	12.91
51)	t	3-Nitroaniline	0.505	0.485	0.543	0.492			0.511	4.56
52)	t	Acenaphthene'	1.665	1.518	1.393	1.610			1.570	9.03
53)	t	2,4-Dinitrophenol		0.362	0.403	0.351	0.169	0.269	0.297	36.69
54)	t	Dibenzofuran			2.091				2.368	10.27
55)	t	2,4-Dinitrotoluene	0.807	0.782	0.786	0.803	0.783	0.826	0.783	4.68
56)	t	4-Nitrophenol					0.491			5.41
57)	t	2,3,4,6-Tetrachloro							0.258	
58)	t	Diethyl phthalate	2.480	2.268	2.139	2.369		2.607	2.344	7.54
59)	t	Fluorene	1.972	1.747	1.611	1.871			1.837	10.91
60)	t	4-Chlorophenyl phen						1.090	0.920	12.24
61)	t	4-Nitroaniline			0.525			0.647	0.568	9.40
62)	I	Phenanthrene-d10				-ISTD-				22
63)	t	4,6-Dinitro-2-methy								19.35
64)	t	Diphenylamine			0.684				0.769	9.95
65)	t	N-Nitrosodiphenylam					0.312			11.86
66)	t	Azobenzene					1.597			11.25
67)	S	2,4,6-Tribromopheno						0.204		3.92
68)	t	4-Bromophenyl pheny						0.363		7.42
69)	t	Atrazine					0.313			12.54
70)	t	Hexachlorobenzene					0.169			9.79
71)	t	Pentachlorophenol					0.131			(27.58)
72)	t	Pentachloronitroben					7.200	0.116		5.87
73)	t	Phenanthrene			1.232			1.528		8.07
74)	t	Anthracene			1.309			1.646		8.66
75)	t	Carbazole	1.136							12.30
76)		Di-n-butyl phthalat								10.10
		Parathion	0.375	0.362	0.346	0.375		0.375	0.364	3 49
		Fluoranthene	1.570	1.420	1.309	1.499		1.682	1.473	9 44
		Benzidine	0.245	0.254	0.192	0.264	0.102	0.283	0.224	27.25
80)	I									.=
		Pyrene							1.594	7.83
82)		Terphenvl-d14	1.114	1.041	0.973	1.095		1.180	1.062	7.86
83)		Benzyl butyl phthal	1.069	1.017	0.986	1.056		1.090	1.033	4.38

^{(#) =} Out of Range ### Number of calibration levels exceeded format ###
BNA1RQB3.M Tue Oct 10 16:38:40 2017 Page 419 of 520 2020

Response Factor Report BNA #1

Method : C:\HPCHEM\1\METHODS\BNA1RQB3.M (Chemstation Integrator)
Title : GC MS BNA 1 Semi Volatiles Calibration

Last Update : Tue Oct 10 16:38:26 2017

Response via : Initial Calibration

Calibration Files

10 =SV109770.D 20 =SV109772.D 40.0 =SV109774.D 15.0 =SV109771.D 2.5 =SV109768.D 5 =SV109769.D

	Zace	Compound	10	20	40.	0 15.	0 2.5	5	Avg	%RSD
84) 85) 86) 87) 88) 89) 90) 91)	t t t t t t	Bis (2-ethylhexyl) p Benz (a) anthracene 3,3-Dichlorobenzidi Chrysene Di-n-octyl phthalat Benzo(b) fluoranthen Benzo(k) fluoranthen Benzo(a) pyrene	1.623 0.456 1.433 2.516 1.541 1.520	1.553 0.454 1.336 2.412 1.490 1.435	1.525 0.422 1.306 2.418 1.421 1.279	1.606 0.456 1.394 2.506 1.523 1.495	1.742 0.345 1.606 1.597 1.648	1.710 0.412 1.540 2.542 1.590 1.610	1.628 0.421 1.452 2.469 1.543	4.45 5.44 9.43 9.70 2.35 4.13 9.75 5.32
92) 93) 94) 95)	t t	Perylene-d12 Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrace Benzo(g,h,i)perylen	1.731	1.649	1.549	1.729	1.882	1.843	1.745	7.94 9.73 5.62

Geology

Hydrology

Remediation

Water Supply

May 11, 2018

Mr. Paul I. Matli, Ph.D. Hydro Tech Environmental, Corp. 15 Ocean Ave., 2nd Floor Brooklyn, NY 11225

Re: Data Validation Report

February 2018 Ground Water Sampling Event

11-28 31 Drive, LIC, NY

Dear Dr. Matli:

The data usability summary report and data validation summaries are attached to this letter for the above referenced project. The data for York Analytical Laboratories, Inc. SDG 18B0738 were acceptable with some minor issues that are identified in the validation summary. There were no data that were qualified as rejected, unusable (R) in the data pack.

We have attached lists of data validation acronyms and data qualifiers to assist you in the interpretation of the reviews. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Hydro Tech Environmental, Corp.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- J- = Analyte is present. Reported value may be biased low and associated with a higher level of uncertainty than is normally expected with the analytical method.
- J+ = Analyte is present. Reported value may be biased high andassociated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for York Analytical Laboratories, Inc., SDG: 18B0738

5 Ground Water Samples, 1 Field Blank, and 1 Trip Blank Collected February 19, 2018

> Prepared by: Donald Anné May 11, 2018

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results of volatile analyses for 5 ground water samples, 1 field blank, and 1 trip blank.

The overall performance of the analysis is acceptable. York Analytical Laboratories, Inc. did fulfill the requirements of the volatile method.

The data are acceptable with minor issues that are identified in the accompanying data validation reviews. There were no data qualified as either estimated (J) or rejected (R); therefore, all data are considered usable. Detailed information on data quality is included in the data validation reviews.

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260C Volatiles Data for York Analytical Laboratories, Inc., SDG: 18B0738

5 Ground Water Samples, 1 Field Blank, and 1 Trip Blank Collected February 19, 2018

Prepared by: Donald Anné May 11, 2018

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for 2-butanone and 2-hexanone were below the method minimums for VOA No.8 on 02-23-18. The %RSDs for bromomethane and methylene chloride were above the method maximum for VOA No.8 on 02-23-18. No action is taken on fewer than 20% of the compounds with method criteria outside control limits and no average RRF is less than 0.010, per calibration.

The average RRFs for target compounds were above the allowable minimum (0.010), as required.

The %RSD for bromomethane was above the allowable maximum (30%) for VOA No.8 on 02-23-18. Positive results for bromomethane should be considered estimated (J) in associated samples.

Continuing Calibration: The RRFs for 2-butanone, 4-methyl-2-pentanone, and 2-hexanone were below the method minimum on 02-25-18 (V803939.D). The %D for bromomethane was above the method maximum on 02-25-18 (V803939.D). No action is taken on fewer than 20% of the compounds with method criteria outside control limits and no average RRF is less than 0.010, per calibration.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %D for bromomethane was above the allowable maximum (25%) on 02-25-18 (V803939.D). Positive results for bromomethane should be considered estimated (J) in associated samples.

Page 1 of 2

- <u>Blanks</u>: The analyses of the method and trip blanks reported target compounds as not detected. The field blank contained a trace of acetone (5.6 ug/L). Positive results for acetone that are less than 10 times the highest blank level should be reported as not detected (U) in associated samples.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.
- <u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the ground water samples, field blank, and trip blank.
- Matrix Spike/Matrix Spike Duplicate: The relative percent difference for target compounds were below the allowable maximum and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-3.
- <u>Laboratory Control Sample</u>: The relative percent differences (RPDs) for target compounds were below the allowable maximums and the percent recoveries (%Rs) within QC limits for aqueous samples BB81103-BS1/BSD1.
- <u>Compound ID</u>: Checked compounds and surrogates were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Method Method

File

Path

C: \msdchem\1\methods\

```
29
                 28
                               26
                                      25
                                             24
                                                    23
                                                                                                                 26195
                                                          22
                                                                 21
                                                                        20
                                                                                19
                                                                                      18
                                                                                             17
                                                                                                    16
                                                                                                           15
                                                                                                                                                                                                                                                  0.5
                                                                                                                                                                                                                                          80.0=V803904.D
                                                                                                                                                                                                                                                                                   Title
                                                                                                                                                                                                                                                      Calibration Files
                                                                                                                                                                                                                                                                           Last Update
                                                                                                                                                                                                                                                                     Response Via
                                                                                                                                                                                                                                                 =V803898.D
                                                                                                                                                                                                                             Compound
          Bromochloromet.
    Chloroform
                Tetrahydrofuran
                       2,2-Dichloropr...
                                           Ethyl-tert-But..
                                                Diisopropyl et..
                                                        Vinyl Acetate
                              2-Butanone
                                     cis-1,2-Dichlo.
                                                                                                                                    Acrolein
                                                                1,1-Dichloroet.
                                                                       tert-Butyl Met...
                                                                              trans-1, 2-Dich..
                                                                                    Acrylonitrile
                                                                                           Methylene Chlo..
                                                                                                 tert-Butyl Alc...
                                                                                                         Carbon disulfide
                                                                                                               Methyl Acetate
                                                                                                                       Iodomethane
                                                                                                                              Acetone
                                                                                                                                           1,1-Dichloroet.
                                                                                                                                                  Freon-113
                                                                                                                                                               Trichlorofluor
                                                                                                                                                                     Chloroethane
                                                                                                                                                                             Bromomethane
                                                                                                                                                                                   Vinyl Chloride
                                                                                                                                                                                          Chloromethane
                                                                                                                                                                                                 Dichlorodifluo.
                                                                                                                                                                                                       FLUOROBENZENE (ISTD)
                                                                                                                                                         Ethanol
                                                                                                                                                                                                                                                                         Volatile Organics EPA 8260C : Sun Feb 25 13:19:17 2018
                                                                                                                                                                                                                                                                                        V8L00063.M
                                                                                                                                                                                                                                                                   Initial Calibration
                                                                                                                                                                                                                                          120
                                                                                                                                                                                                                                                2.0
                                                                                                                                                                                                                                         =V803905.D
                                                                                                                                                                                                                                               =V803899.D
   0.918
                0.022
                      2.160
                              0.036
                                    2.141
                                                  3:248
                                                        0.770
                                                                2.539
                                                                      1.714
                                                                             1.996
                                                                                    0.100
                                                                                                               0.356
                                                                                                                                   0.006
                                                                                                                                         2.433
                                                                                                                                                                            0.099
                                                                                                                                                 1.562
                                                                                                                                                              2.238
                                                                                                                                                                     0.770
                                           .372
                                                                                                  .081
                                                                                                         .392
                                                                                                                                                                                   .. 203
                                                                                                                                                                                          . 030
                                                                                                                                                                                                                            ū
   N
         0.910
                0.036
                      2.340
                             0.042
                                    N
                                           N
                                                  W
                                                               2.643
                                                                      1.738
                                                                                   0.126
                                                                                                  0
                                                                                                                0
                                                                                                                      0
                                                                                                                                    0
                                                                                                                                          2.518
                                                                                                                                                                    0.830
                                                                                                                                                                            0
                                                                                                                                                       0.003
                                           .664
                                                                                                                                   .005
                                    .289
                                                 .599
                                                                             .094
                                                                                          .584
                                                                                                 .079
                                                                                                        .345
                                                                                                                      180
                                                                                                                                                 .. 581
                                                                                                                                                              .478
                                                                                                                                                                            104
                                                                                                                                                                                  .335
                                                                                                                                                                                                                                         160
                                                                                                                                                                                                                                               4.0
                                                                                                               .330
                                                                                                                             . 154
                                                                                                                                                                                                                                        =V803900.D
                     2.311
        0.905
                0.036
                             0.045
                                                                                    0
                                    2.351
                                                        0.810
                                                               N
                                                                             N
                                                                                                 0.078
                                                                                                        W
                                                                                                               0
                                                                                                                      0
                                                                                                                                                        0
                                          . 683
                                                 . 625
                                                               . 670
                                                                     .813
                                                                            .145
                                                                                   .126
                                                                                          .088
                                                                                                        .351
                                                                                                               .315
                                                                                                                     .242
                                                                                                                            .124
                                                                                                                                   .006
                                                                                                                                                ..519
                                                                                                                                                       .005
                                                                                                                                                             .170
                                                                                                                                                                    .748
                                                                                                                                         .499
                                                                                                                                                                            .130
                     2.311
                                                       0.917
         0.894
               0.036
                             0.043
                                   2.346
                                          2.606
                                                                            2.164
                                                                                                 0.076
                                                                                                                           0.130
                                                 3.422
                                                              2.634
                                                                     1.890
                                                                                   0.121
                                                                                          1.795
                                                                                                        3.349
                                                                                                              0.293
                                                                                                                     0.380
                                                                                                                                  0.006
                                                                                                                                                       0.003
                                                                                                                                                             2.061
                                                                                                                                                                    0.699
                                                                                                                                                                           0.175
                                                                                                                                         .464
                                                                                                                                                .390
                                                                                                                                                                                                                           10.0
                                                                                                                                                                                         .022
                                                                                                                                                                                                                                              10.0=V803901.D
               0.037
                     2.199
                             0.041
                                                                                                 0.071
                                                                                                              0.290
                                   2.229
                                          2.893
                                                 3.749
                                                              2.490
                                                                     1.818
                                                                            2.023
                                                                                   0.119
                                                                                         1.604
                                                                                                       3.209
                                                                                                                     0.588
                                                                                                                            0.109
                                                                                                                                  0.007
                                                                                                                                         2.341
                                                                                                                                                      0.003
                                                                                                                                                             2.186
                                                                                                                                                                    0.753
                                                                                                                                                                           0.287
                                                                                                                                                1.444
                                                                                                                                                                                         1.092
                                                                                                                                                                                                                          20.0
                                                       .918
                                                                                                                                                                                  370
                                                                                                                    0.721
                            0.040
                                                                                                0.070
                                                                                                                           0.118
                                                                                                                                  0.007
                                                 3.640
                                                       0.917
                                                              2.405
                                                                                  0.126
                                                                                                       3.122
                                                                                                                                                      0.004
                                                                                                                                                             2.050
                                                                                                                                                                   0.702
                                                                                                                                                                          0.397
                                                                                                                                                                                       1.045
                                                                                                                                               1.330
                                                                                                                                                                                  1.309
                                                                            1.966
                                                                                                                                                                                                                           40.0
                                                                                                             .302
                                                                                                                                         .220
                                   178
                                                                    .876
                                                                                         534
                                                                                                                                                                                               303
               0.038
                            0.039
                                   2.082
                                                                                  0.125
                                                                                                0.069
                                                                                                       3.008
                                                                                                             0.294
                                                                                                                    0.827
                                                                                                                           0.094
                                                                                                                                  0.007
                                                                                                                                         2.128
                                                                                                                                                      0.003
                                                                                                                                                                   0.673
                                                                                                                                                             1.932
                                                                                                                                                                                                                          80.0
                                         .812
                                                             . 255
                                                379
                                                       . 936
                                                                    835
                                                                           893
                                                                                         455
                                                                                                                                               . 298
                                                                                                                                                                                        079
                                                                                                                                                                                              260
                                                                                                                                                                                                                                             20.0=V803902.D
              0.036
                    2.083
                           0.037
                                 2.088
                                                                                               0.069
                                                                                                                          0.089
                                                                                                                                 0.006
                                                                                                                                                     0.005
                                         2.828
                                                                    1.825
                                                                           1.894
                                                                                                             0.286
                                                                                                                    0.898
                                                                                                                                                                          0.575
                                                                                                      3.030
                                                                                         1.443
                                                                                                                                        2.133
                                                                                                                                               .. 281
                                                                                                                                                                                                                          120
                                                      .943
                                                             . 225
                                                .216
                                                                                  122
                                                                                                                                                                   . 650
                                                                                                                                                                                        253
                                                                                                                                                             880
                                                                                                                                       2.035
              0.038
                    1.960
                                                                                                                          0.096
                           0.040
                                  2.010
                                                                                                      2.908
                                                                                                             0.296
                                                                                                                    0.811
                                                                                                                                 0.007
                                                                                                                                                                         0.549
                                                                                               0.065
                                                                                                                                                                   0.612
                                                                                                                                                      0.001
                                               3.047
                                                                                                                                                            1.720
                                        2.797
                                                             .105
                                                                           .. 787
 .049
                                                                    .. 836
                                                                                  .129
                                                                                         .420
                                                                                                                                                                                                                          160
                                                      .026
                                                                                                                                               243
                    2.190
0.040
2.171
                                                                                                                                0.006
       0.839
             0.035
                                                     0.890
                                               3.436
                                                                           1,996
                                                                                                             0:307
                                                                                                                    0.530
                                                                                                                                                     0.004
                                        2.731
                                                             2.441
                                                                    1.816
                                                                                 0.121
                                                                                               0.073
                                                                                                      3.190
                                                                                                                          0.114
                                                                                                                                        2.308
                                                                                                                                                           2.079
                                                                                                                                                                  0.715
                                                                                                                                                                         0.316
                                                                                        1.740
                                                                                                                                              1.405
                                                                                                                                                                                                                        Avg
                                                                                                                                                                                                                                             40.0=V803903.D
                                                                                       7.51
                                                                                                                  19.01
                                                                                                                                                                 4.47
63.32
9.35
                                                                                                                                                    10.68
             14.21
                                                                                                                                10.45
                                              9.78
                                                                   6.29
7.31
      8.97
                    6.02
                                5.56
                                                                                                     5.64
                                                                                                           7.55
                                                                                                                                       7.92
                          7.01
                                                                                7.06
                                                            8.42
                                                                                                                                             9.03
                                                                                                                                                                                      9.12
                                                                                                                                                                                                                         %RSD
```

Method Method

File

V8L00063.M

C:\msdchem\1\methods\

Path

```
67)
                                                                                                                          414950
                              64)
                                    63
                                               60
                                                         555556
                                                                                                              314
                                         62
                                                                                                                                                     42
                                                                                                                                                          41
                                                                                                                                                                               37)
                                                                                                                                                                                          332)
                                                                                                                                               43
                                                                                                                                                               40)
                                                                                                                                                                          39)
                                                                                                                                                                                                                          Title
                                   ннннннннничннн
   HH
                                                                                                                                                                                                                     H
                                                                                                                                                                          нинннин
                                                                                                                                                                                                               H
  1,2-DICHLOROBENZEN...
p-Ethyltoluene 5.2
                                  5
                  Bromoform
                       Styrene
                             o-Xylene
                                            1,1,1,2-tetrac.
                                        Ethyl Benzene
                                                  Chlorobenzene
                                                       1,2-Dibromoethane
                                                             Dibromochlorom...
                                                                       Tetrachloroeth...
                                                                             1,3-Dichloropr...
                                                                                       trans-1,3-Dich...
                                                                                              Toluene
                                                                   2-Hexanone
                                                                                  1,1,2-Trichlor...
                                                                                                   Toluene-d8 (SURR)
                                                                                                       4-Methyl-2-Pen...
                                                                                                             cis-1,3-Dichlo...
                                                                                                                  2-Chloroethyl ...
                                                                                                                             1,2-Dichloropr...
                                                                                                                                  Bromodichlorom...
                                                                                                                         1,4-Dioxane
                                                                                                                                        Dibromomethane
                                                                                                                                              Methyl Methacr...
                                                                                                                                                   Methyl Cyclohe...
                                                                                                                                                        Trichloroethylene
                                                                                                                                                              CHLOROBENZENE-d5
                                                                                                                                                                         tert-Amyl meth.
                                                                                                                                                                              Benzene
                                                                                                                                                                                              Carbon Tetrach...
                                                                                                                                                                                                   d4-1,2-Dichlor..
                                                                                                                                                                                                              Cyclohexane
                                                                                                                                                                                   1,2-Dichloroet..
                                                                                                                                                                                        tert-Amyl alco...
                                                                                                                                                                                                        1,1-Dichloropr..
                                                                                                                                                                                                                    1,1-Trichlor...
                                  & m-Xylenes
                                                                                                                                                                                                                        Volatile Organics
                  0.803
                                  1.892
1.461
                                                                                                                                                                        5.337
1.868
                            1.226
                                                       0.171
                                                             0.229
                                             0.348
                                                  1.114
                                                                  0.063
                                                                       0.588
                                                                             0.349
                                                                                  0.207
                                                                                        0.349
                                                                                                  1.523
                                                                                                        0.100
                                                                                                                              0.377
                                                                                                                                                         0
                                                                                                                                                                                        0.016
                                                                                             1.900
                                                                                                             0.406
                                                                                                                  0.053
                                                                                                                                  0.457
                                                                                                                                        0.154
                                                                                                                                             0.176
                                                                                                                                                   0.666
                                                                                                                                                                                   1.270
                                                                                                                                                                                                    0
                                                                                                                                                                                                        1.978
                                                                                                                                                                                                   ).839
                                                                                                                                                                                                              2.237
                                                                                                                                                        .485
                                                                                                                                                                                              .190
                                                                                                                                                                                                                    .426
  246
                                                                                                                                                                                                                        EPA 8260C
  S
                                                                            0.352
                                                                                                                                                                        5.455
                                                                                                                                                                                       0.014
                  0
                       1.041
                             1.476
                                  1.700
                                       2.138
                                                       0.180
                                                             0.244
                                                                                                                             0.395
                                                                                                                                                                                                  0.822
                                                  1.147
                                                                  0.064
                                                                       0.596
                                                                                  0.212
                                                                                       0.368
                                                                                                  1.515
                                                                                                        0.111
                                                                                                             0.476
                                                                                                                  0.057
                                                                                                                                  0.481
                                                                                                                                        0.154
                                                                                                                                                                                                                   2.620
                                                                                             1.961
                                                                                                                       0.000
                                                                                                                                             0.188
                                                                                                                                                   0
                                                                                                                                                        0
                                                                                                                                                                                   1.316
                                                                                                                                                                                             2.342
                                                                                                                                                  .752
                                                                                                                                                                                                        .189
                                                                                                                                                                                                              . 526
                                                                                                                                                        .498
                                             .377
  00
  347
  9
                       1.108
                                 1.737
                                                  1.133
                                                        0
                                                            0.250
                                                                  0.070
                                                                                                 1.515
                                                                                                                                                                            5.472
                                                                                                                                                                                  0.018
                                            0.389
                                                                       0.576
                                                                             0
                                                                                  0.214
                                                                                       0.389
                                                                                             1.943
                                                                                                       0.116
                                                                                                            0.527
                                                                                                                  0.062
                                                                                                                       0.000
                                                                                                                                                                                             2.357
                                                                                                                                       0.154
                                                                                                                             0.394
                                                                                                                                  0.498
                                                                                                                                             0.208
                                                                                                                                                  0.777
                                                                                                                                                                                                   0
                                                                                                                                                                                                        N
                                                                                                                                                                                                              N
                                       .208
                                                       185
                                                                            .360
                                                                                                                                                                                                  .800
                                                                                                                                                                                                                  .616
                                                                                                                                                        .507
                                                                                                                                                                                                       .133
                                                                                                                                                                                                             . 573
                            .596
  0
                                                                                                                                                                        . 995
 890
                                                                                                                                                                            1.285
 S
                                                                                                                                                                                       0.017
                                                                  0
                                                                      0.570
                                                                                 0.208
                                                                                       0.411
                                                                                            1.915
                                                                                                       0.124
                                                                                                            0.553
                                                                                                                  0.061
                                                                                                                       0.000
                                                                                                                                  0.501
                                                                                                                                       0.157
                                                                                                                                            0.226
                                                                                                                                                                                             2.375
                                                                                                                                                                                                       2.198
                                                                                                                            0.387
                                                                                                                                                       0.501
                                                                                                 1.508
                                                                                                                                                  0.735
                                                                                                                                                                        1.900
                                                                                                                                                                                                  0.811
                                      . 203
                                            .394
                                                 .. 126
                                                       186
                                                                 .078
                                                                            .359
                                                                                                                                                                                                             . 454
                                                                                                                                                                                                                  .620
                            .629
                                 .714
 649
                      132
                                                            . 263
      ISTD-
                                                                                                                                                             ISTD-
 5
                                                                                                                                                                       1.192
5.076
2.134
                                                                                                                                                                                       2.284
                                                                                                                                                                                                  2.564
2.090
0.813
                                      2.060
                                            0.368
                                                       0.175
                                                                 0.075
                                                                                 0.194
                                                                                            1.775
                                                                                                       0.118
                                                                                                            0.529
                                                                                                                            0.364
                                                                                                                                  0.472
                                                                                                                                       0.146
                                                                                                                                                       0.470
                                                                                                 1.504
                                                                                                                                                                                                                  2.497
                                                                            .338
                                                                                                                  062
                                                                                                                       .000
 766
                       070
                            532
                                 575
                                                  041
                                                            . 250
                                                                      .524
                                                                                       .396
                                                                                                                                                  .761
                                                                                                                                                                                                 0.820
 UI
                                                                      0
                                                                                                                                                                             4.
                                1.437
                                           0.351
                                                 0.991
                                                      0
                                                            0
                                                                 0.082
                                                                            0
                                                                                 0.192
                                                                                           1.649
                                                                                                                       0.000
                                                                                       0.403
                                                                                                 1.481
                                                                                                      0.126
                                                                                                                 0.065
                                                                                                                                                                                 1.195
                                                                                                                                                                                       0
                      1.029
                           1.460
                                      1.894
                                                            257
                                                                           .338
                                                                                                                            . 355
                                                                                                                                 .467
                                                                                                                                       . 144
                                                                                                                                                                                       .022
                                                                                                                                                                                            .161
                                                                                                                                                                                                            .363
                                                      .179
                                                                      506
                                                                                                            .527
                                                                                                                                                  699
                                                                                                                                                                       174
                                                                                                                                                                            871
 23
                                                                                                                                                                                                       984
                                                                                                                                                                                                                  356
 N
                                                                     0.455
                                                                           0.188
                                                                                           1.468
                                                                                                      0.512
                                                                                      0.397
 4
                                                                                                                 0.065
                                                                                                                                                                                            2.077
                           1.394
                                1.285
                                      1.752
                                           0.334
                                                 0.948
                                                                                                                                                                                                 0
                      0
                                                      0.176
                                                           0.255
                                                                0.082
                                                                                                                      0.000
                                                                                                                           0.344
                                                                                                                                 0
                                                                                                                                      0.142
                                                                                                                                                                            4.560
                                                                                                                                                                                       0.022
                      .987
                                                                                                                                 .455
                                                                                                                                                                       .107
 800
                                                                                                                                                  694
                                                                                                                                                                                 .136
                                                                                                                                                                                                  .794
                                                                                                                                                                                                       922
                                                                                                                                                                                                            231
                                           0.324
                                                                                                     0.125
                                                                                                                                                                           2.032
0.021
1.106
4.440
4.695
                      0
                           1.352
                                1.162
                                                 00
                                                           0
                                                                 0
                                                                      000
                                                                                      0.393
                                                                                           1.482
                                                                                                1.489
                                                                                                           0.512
                                                                                                                 0.064
                                                                                                                           0.346
                                                                                                                                 0.456
                                                                                                                      0.000
                                                                                                                                      0.141
                                                                                                                                           0.231
                                                                                                                                                 0.687
                                                                                                                                                                       2.103
                                                                                                                                                                                                 0.763
                      .953
                                      . 650
                                                 1.929
                                                      1.175
                                                           256
                                                                0.081
                                                                     .454
                                                                                1.185
                                                                           .324
                                                                                                                                                      .435
                                                                                                                                                                                                            .157
                                                                                                                                                                                                       .880
                                                                                                                                                                                                                  191
                           1.245
                                                                                          1.355
                                                                                                                                                                      1.084
4.149
2.079
                                                                                                                                                                                      2.035
1.979
1.748
0.753
1.894
0.024
4
                 00
                                0
                                      H
                                           0
                                                 0
                                                     0
                                                           0
                                                                0
                                                                     0
                                                                           0
                                                                                0
                                                                                      0
                                                                                                1.459
                                                                                                      0
                                                                                                           0.497
                                                                                                                0.067
                                                                                                                      0.000
                                                                                                                           0.336
                                                                                                                                 0
                                                                                                                                      0.141
                                                                                                                                           0.233
                                                                                                                                                 0.652
                     .891
                                .993
                                     .475
                                           .303
                                                 .880
                                                      1.176
                                                           .255
                                                                0.085
                                                                     .435
                                                                                1.184
                                                                                                      1.130
                                                                                                                                                      1.414
                                                                           .324
                                                                                      .389
                                                                                                                                 .442
W
69
                                                          0.388
0.198
0.342
0.523
0.075
                     1.002
                                                                                          1.496
1.725
                                                                                                                                                                                                2.014
                                                                                                                                                                                1.211
S
                0
                           1.434
                                           0
                                                     0.178
                                1.452
                                                                                                      0.120
                                                                                                           0
                                                                                                                 0
                                                                                                                      0
                                                                                                                           0
                                                                                                                                 0
                                                                                                                                      0
                                                                                                                                            0
                                                                                                                                                 0
                                                                                                                                                                       AU
                                                                                                                                                                                      ON
                                                                                                                                                                                                           NN
                                           .354
                                                .. 034
                                                                                                           .504
                                                                                                                .061
                                                                                                                      .000
                                                                                                                           .366
                                                                                                                                .470
                                                                                                                                      148
                                                                                                                                           .216
                                                                                                                                                                      2.034
                                                                                                                                                                            1.970
                                                                                                                                                                                      0.019
                                                                                                                                                                                           2.190
                                                                                                                                                                                                           2.343
                                                                                                                                                                                                                 .401
                                     .919
97
11.
                10.5
                               18.06
                                                                                          1.52
13.05
                                                                                                                                                                      8.76
8.79
7.53
3.48
7.58
7.58
15.63
9.87
9.87
                                                               12.1:
                                     13.42
                                                                          4.87
5.98
4.18
                                                                                                     8.50
                                                                                                               9.71
4.38
4.28
6.23
148.96
7.16
                                               3.93
2.60
9.76
                                           8.68
                                                                                                                                                7.27
                           6
                                                                     .12
                           97
```

(#)

= Out of Range

94) T 1	H F	-∃ ⊦	1 1	H	n T	T	d L	1) T 1	H	日	H	H	H	H	H	H	H	T	H	Н	ij	S	69) T I	T.	Method F
,2,3-T	exaction	, 2, 4-Trichio	,2,4,5-Tetra	,2-Dibr	-Butylb	,2-Dichlor	-Diethylbenzen	,2,3-Trimethy	,4-Dichlorobe	-Isopropyltol	,3-Dichlorob	ec-Butylbenzen	,2,4-Trimeth	ert-Butylbenzen	,3,5-Trimeth	-Chloro	-Chloro	-Propyl	,2,3-Tri	rans-1,4-Di	romobenzen	,1,2,2-Tetr	-Bromofluoro	sopropylbenzene	Volatile Org	ile : V8L
00	40 0.4	.867 0.9	07 3.1	.067 0.0	.731 5.7	.146 2.1	.033 2.5	.523 4.2	.158 0.1	.094 5.1	.416 2.5	.789 5.7	.876 4.7	.399 4.0	.469 4.9	.163 4.3	.660 4.9	.855 7.5	.163 0.1	.754 0.7	.911 1.8	63 0.5	.314 1.3	.908 5.8	SEPA	/T/mernous
53 0.057 0	9 0.519	1 1.030	9 3.756	8 0.079	1 6.198	7 2.142	5 2.832	3 4.274	6 0.176	1 5.654	2 2.660	3 6.263	9 5.112	4 4.417	5 5.332	8 4.594	4 5.174	0.7.946	1 0.173	4 0.832	6 1.966	1 0.586	1 1.334	9 6.459	8260C	1
.057 0.057	.544 0.52	.118 1.08	.853 4.08	.084 0.08	.207 5.92	.109 1.97	.805 2.86	.207 4.28	.172 0.16	.703 5.35	.592 2.39	.383 6.01	.090 4.75	.496 4.25	.301 4.94	.491 4.21	.026 4.72	.910 7.33	.159 0.15	.830 0.78	.918 1.80	.577 0.52	.339 1.35	.479 6.02		
	0.508 0	1.109 1	3.899 3	0.085 0	5.517 5	1.916 1	2.665 2	4.061 3	0.158 0	4.986 4	2.245 2	5.610 5	4.467 4	4.010 3	4.645 4	4.006 3	4.409 4	6.735 6	0.151 0	0.772 0	1.764 1	0.532	1.350	5.618		
057 0.059	516 0.54	067 1.09	637 3.62	084 0.08	157 5.00	815 1.82	519 2.50	781 3.75	151 0.15	578 4 45	027 1.97	227 5.16	101 4.02	775 3 81	313 4.28	777 3 77	044 3 94	185 5 92	145 0 14	741 0 75	706 1.75	04 0.50	51 1.40	98 5.14		
1.605 1.3	0.553 0.	1.134 1.	3.514 3.	0.091 0.	4.660 5	1.816 1.	2.413 2	3.603 3.	0 152 0	4 100 4	1 879 2	4.825 5	3 750 4	3 640 3	4 033 4	3 678 4	3 687 4	5.427 6	0.740 0.	0 748 0	1.745 1	0.506 0	1 454 7	4 800 5		
376 16.6 054 22.9	14 6.	46 9.	58 13.	81 8.	65 11	85 7	77 10	66 7.	77.	171	04 13	63 10	40 11	0 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 0.	10 11	72 73.	л о п .	700	л с	40	л I л (12 11		

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\V8022518\

Data File: V803939.D

Acq On : 25 Feb 2018 2:16 pm

Operator : RDS
InstName : VOA No. 8
Sample : SEQ-CCV1
Misc : QBV8022518A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 26 12:25:43 2018

Quant Method: C:\msdchem\1\methods\V8L00063.M Quant Title: Volatile Organics EPA 8260C QLast Update: Sun Feb 25 13:19:17 2018

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area% D	ev(min)
1 I	FLUOROBENZENE (ISTD)	1.000	1.000	0.0 102	0.00
2 T	Dichlorodifluoromethane	1.310	1.321	-0.9 109	0.00
3 T	Chloromethane	1.117	0.958	14.3 96	0.00
4 T	Vinyl Chloride	1.271	1.284	-1.0 106	0.00
5 T	Bromomethane	0.316	0.141	55.5# 82	0.00
6 T	Chloroethane	0.715	0.716	-0.1 105	0.00
7 T	Trichlorofluoromethane	2.079	2.118	-1.9 105	0.00
8	Ethanol	0.004	0.001	NA 62.9# 40#	0.00
9 T	Freon-113	1.405	1.434	-2.1 106	0.00
10 T	1,1-Dichloroethylene	2.308	2.200	4.7 91	0.00
11 T	Acrolein	0.006	0.046	NA 628.6# 768#	0.00
12 T	Acetone	0.114	0.124	-8.4 98	0.00
13 T	Iodomethane	0.530	0.330	N\$37.7# 89	0.00
14 T	Methyl Acetate	0.307	0.249	19.0 87	0.00
15 T	Carbon disulfide	3.191	3.084	3.3 94	0.00
16-T	tert-Butyl Alcohol (TBA)	0.073	0.065	11.7 87	0.00
17 T	Methylene Chloride	1.740	1.500	13.8 86	0.00
18 T	Acrylonitrile	0.121	0.104	14.2 88	0.00
19 T	trans-1,2-Dichloroethylene	1.996	1.925	3.6 91	0.00
20 T	tert-Butyl Methyl Ether (MT	1.816	1.695	6.7 92	0.00
21 T	1,1-Dichloroethane	2.441	2.373	2.8 92	0.00
22 T	Vinyl Acetate	0.890	0.811	8.9 91	0.00
23 T	Diisopropyl ether (DIPE)	3.436	3.352	2.4 100	0.00
24 T	Ethyl-tert-Butyl ether (ETB	2.731	2.635	3.5 103	0.00
25 T	cis-1,2-Dichloroethylene	2.191	2.158	1.5 94	0.00
26 T	2-Butanone	0.040	(0.041)	-1.7 98	0.00
27 T	2,2-Dichloropropane	2.171	2.321	-6.9 103	0.00
28 T	Tetrahydrofuran	0.035	0.030	14.7 86	0.00
29 T	Bromochloromethane	0.839	0.766	8.7 88	0.00
30 T	Chloroform	2.298	2.236	2.7 94	0.00
31-T	1,1,1-Trichloroethane	2.401	2.429		0.00
32 T	Cyclohexane	2.343	2.418	-3.2 101	0.00
33 T	1,1-Dichloropropylene	2.014	2.064	-2.5 96	0.00
34 S	d4-1,2-Dichloroethane (SURR	0.802	0.796		0.00
35 T	Carbon Tetrachloride	2.190	2.208		0.00
36 T	tert-Amyl alcohol (TAA)	0.020	0.013		0.01
37 T	1,2-Dichloroethane	1.211	1.140		0.00

V8L00063.M Mon Feb 26 14:13:29 2018 Page 158 of 199

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\V8022518\

Data File: V803939.D

Acq On : 25 Feb 2018 2:16 pm

Operator : RDS

InstName : VOA No. 8 Sample : SEQ-CCV1 Misc : QBV8022518A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 26 12:25:43 2018

Quant Method : C:\msdchem\1\methods\V8L00063.M Quant Title : Volatile Organics EPA 8260C

QLast Update : Sun Feb 25 13:19:17 2018

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(mir	1)
38		Benzene	4.970	4.936	0.7	94	0.00	
39	T	tert-Amyl methyl ether (TAM	2.034	1.938	4.7	104	0.00	
	I	CHLOROBENZENE-d5 (ISTD)	1.000	1.000	0.0	106	0.00	
41		Trichloroethylene	0.466	0.458	1.8	97	0.00	
42		Methyl Cyclohexane	0.714	0.735	-2.9	106	0.00	
		Methyl Methacrylate	0.216	0.193	10.7	90	0.00	
44		Dibromomethane	0.148	0.136	8.4	91	0.00	
45		Bromodichloromethane	0.470	0.443	5.9	93	0.00	
	T	1,2-Dichloropropane	0.366	0.342	6.7	93	0.00	
47		1,4-Dioxane	0.000	0.000	NA66.7#	32#	0.00	
	T	2-Chloroethyl vinyl ether	0.061	0.059	3.6	103	0.00	
49		cis-1,3-Dichloropropene	0.504	0.501	0.7	96	0.00	
50		4-Methyl-2-Pentanone	0.120	0.097	19.0	82	0.00	
51	S	Toluene-d8 (SURR)	1.496	1.498	-0.1	105	0.00	
52	T	Toluene	1.726	1.717	0.5	95	0.00	
53	T	trans-1,3-Dichloropropene	0.388	0.365	6.0	94	0.00	
54		1,1,2-Trichloroethane	0.198	0.183	7.5	93	0.00	
55	T	1,3-Dichloropropane	0.342	0.315	7.8	93	0.00	
56	T	Tetrachloroethylene	0.523	0.514	1.7	95	-0.01	
57	T	2-Hexanone	0.075	0.071	6.5	96	0.00	
58	T	Dibromochloromethane	0.251	0.236	5.9	95	0.00	
59	T	1,2-Dibromoethane	0.178	0.163	8.5	93	0.00	
60	T	Chlorobenzene	1.034	1.017	1.7	95	0.00	
61	T	1,1,1,2-tetrachloroethane	0.354	0.353	0.2	95	-0.01	
62 '	T	Ethyl Benzene	1.919	1.987	-3.5	95	-0.01	
63 '	T	p- & m-Xylenes	1.452	1.549	-6.7	96	-0.01	
54 '	T	o-Xylene	1.434	1.460	-1.8	95	0.00	
55 4	T =	Styrene	1.002	1.009	-0.7	94	-0.01	
66 '	T	Bromoform	0.124	0.112	9.3	96	0.00	
57	I	1,2-DICHLOROBENZENE-d4 (IST	1.000	1,000	0.0	106	0.00	
58		p-Ethyltoluene	5.297	5.395	-1.9	101	-0.01	
59 5		Isopropylbenzene	5.614	5.856	-4.3	95	0.00	Ŧ
70 5		p-Bromofluorobenzene (SURR)	1.355	1.325		104	0.00	
	Γ	1,1,2,2-Tetrachloroethane	0.540	0.480	11.1	88	0.00	
72 :		Bromobenzene	1.828	1.694	7.3	93	0.00	

V8L00063.M Mon Feb 26 14:13:29 2018

Page:

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\V8022518\

Data File: V803939.D

Acq On : 25 Feb 2018 2:16 pm

Operator : RDS

InstName : VOA No. 8
Sample : SEQ-CCV1
Misc : QBV8022518A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 26 12:25:43 2018

Quant Method : C:\msdchem\1\methods\V8L00063.M
Quant Title : Volatile Organics EPA 8260C

QLast Update : Sun Feb 25 13:19:17 2018

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	Area%	Dev(min)
73	3 T	trans-1,4-Dichloro-2-butene	0.778	0.727	6,6	92	0.00
74	T	1,2,3-Trichloropropane	0,155	0.137	11.2	91	-0.01
75	T	n-Propylbenzene	6.872	7.052	-2.6	94	-0.01
76	T	2-Chlorotoluene	4.512	4.502	0.2	95	0.00
77	T	4-Chlorotoluene	4.113	3.999	2.8	94	-0.01
	T	1,3,5-Trimethylbenzene	4.698	4.749	-1.1	95	-0.01
	T	tert-Butylbenzene	3.985	4.059	-1.9	95	-0.01
80		1,2,4-Trimethylbenzene	4.440	4.520	-1.8	94	0.00
	T	sec-Butylbenzene	5.563	5.682	-2.1	94	0.00
	T	1,3-Dichlorobenzene	2.304	2.333	-1.3	95	0.00
83	T	p-Isopropyltoluene	4.901	5.102	-4.1	94	-0.01
	T	1,4-Dichlorobenzene	0.161	0.155	4.2	95	0.00
85		1,2,3-Trimethylbenzene	3.966	3.935	0.8	99	0.00
86		p-Diethylbenzene	2.577	2,519	2.3	95	0.00
87		1,2-Dichlorobenzene	1.985	1.872	5.7	94	0.00
88	T	n-Butylbenzene	5.465	5.432	0.6	92	0.00
89	T	1,2-Dibromo-3-chloropropane	0.082	0.068	16.4	86	0.00
90	T	1,2,4,5-Tetramethylbenzene	3.558	3.659	-2.8	100	0.00
91	T	1,2,4-Trichlorobenzene	1.046	1.000	4.4	94	0.00
92	T	Hexachloro-1,3-Butadiene	0.514	0.460	10.6	89	0.00
93	T	Naphthalene	1.375	1.262	8.2	90	0.00
94	T	1,2,3-Trichlorobenzene	0.054	0.051	4.3	95	0.00

^{(#) =} Out of Range

SPCC's out = 0 CCC's out = 0

HydroTech Environmental

ENGINEERING AND GEOLOGY, DPC

NYC Office 15 Ocean Avenue, Suite 2B Brooklyn, New York 11225 T (718) 636-0800; F (718) 636-0900

Long Island Office 77 Arkay Drive, Suite K Hauppauge, New York 11788 T (631) 462-5866; F (631) 462-5877

WWW.HYDROTECHENVIRONMENTAL.COM

July 05, 2018

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report - May 2018 11-28 31st Drive Long Island City, New York BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the Brownfield Site Cleanup Agreement for:

Actions Taken Relative to the Project during the Reporting Period:

- Received approval from NYSDEC for the revised RAWP QAPP
- Posted the EDD for the endpoint soil samples via NYSDEC EQuIS.
- NYSDEC confirmed that the Environmental Easement submitted previously is accepted as a final document.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- Schedule on July 3, 2018 the monitoring of groundwater depth in target MWs and the sampling of groundwater in MW-3 to be analyzed for emerging contaminant.
- Place PDB samplers in target monitoring wells on July 3, 2018 to be collected for laboratory analysis 14 days later.

Approved Activity Modifications:

None

Results of sampling and tests and all other data received or generated by or on behalf of Applicant in connection with this Site

None

Estimated Percentage of Project Completion:

• 60 percent.

<u>Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:</u>

• None

Actions Undertaken to Resolve Delays:

None

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

HydroTech Environmental Engineering and Geology, DPC

Paul I. Matli, Ph.D., P.G.

Fare I MINE

Senior Project Manager

PIM/as

cc: Jane O'Connell-NYSDEC w/ Enc. (by email)

Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email)

Hydro Tech file 140344 w/ Enc.

HydroTech Environmental ENGINEERING AND GEOLOGY, DPC

NYC Office 15 Ocean Avenue, Suite 2B

Brooklyn, New York 11225 T (718) 636-0800 ; F (718) 636-0900 Long Island Office 77 Arkay Drive, Suite K Hauppauge, New York 11788 T (631) 462-5866; F (631) 462-5877

WWW.HYDROTECHENVIRONMENTAL.COM

August 09, 2018

New York State Department of Environmental Conservation Bureau of Environmental Remediation Hunters Point Plaza47-40 21st Street Long Island City, New York 11101 Attn.: Mr. Sondra Martinkat, Project Manager

Re: Progress Report – July 2018 11-28 31st Drive Long Island City, New York BCP Site #C241159

Dear Ms. Martinkat:

This correspondence is submitted on behalf of Mr. George Man to satisfy Section XI of the *Brownfield Site Cleanup Agreement* for:

Actions Taken Relative to the Project during the Reporting Period:

- Collected one groundwater sample from MW-3 for emerging contaminants via EPA low flow sampling method and gauged depth to water and placed PDB in MW-1 to MW-4 and MW-6 on July 3, 2018.
- Groundwater samples from PDBs removed from MW-1 to MW-4 and MW-6 were collected for laboratory analysis on July 24, 2018. Also performed a test on groundwater sample collected from the wells to determine the pos-injection levels of Klosur Persulfate in the wells.

Other Site Activities not related to the Proposed Remediation:

None

Anticipated Activities for the Next Reporting Period:

- Installation of SSD system and vapor barrier system.
- Evaluate the possibility of postponing second round of injections until after the second quarterly sampling.

Approved Activity Modifications:

None

Results of sampling and tests and all other data received or generated by or on behalf of Applicant in connection with this Site

- Measured levels of Klosur Persulfate were coordinated with manufacturer for their comments. Manufacturer indicate a sufficient amount this chemical remains in groundwater in MW-2 (28.74 g/L), MW-3 (34.68 g/L) and MW-4 (40.62 g/L) and it is likely to continue to be effective in reducing the concentration of contaminants for the next couple of months.
- Post-injection analytical results of PCE and TCE in target monitoring wells indicated the concentrations of these 2 compounds have decreased from the baseline and historic levels. The post-injection PCE level was detected on-site at a maximum 20 μ g/L in MW-2. Table 1 provides PCE and TCE concentration detection over time. Attachment A provides analytical results of PCE and TCE.
- Emerging contaminants results in MW-3 indicate 1,4-Dioxane was not detected and Perfluoropentanoic acid (PFPeA) was detected at a concentration of 94 ng/L. Attachment B provided laboratory analytical results of emerging contaminants.

Estimated Percentage of Project Completion:

• 60 percent.

<u>Unresolved Delays Encountered or Anticipated That May Affect the Approved Schedule:</u>

None

Actions Undertaken to Resolve Delays:

None

If you need any additional information, please contact me directly at 718-636-0800 or at pmatli@hydrotechenvironmental.com.

Sincerely,

HydroTech Environmental Engineering and Geology, DPC

Paul I. Matli, Ph.D., P.G.

Faul I. MINE

Senior Project Manager

PIM/as

cc: Jane O'Connell-NYSDEC w/ Enc. (by email)
Larry Schnapf-Schnapf LLC w/ Enc. (by email)

Ariel Czemerinski PE. - AMC Engineering, PLLC w/ Enc. (by email)

Tim Li-Project Architect w/ Enc. (by email) Hydro Tech file 140344 w/ Enc.

										11-28 31st Drive,	Drive, Queen	ens, NY										
Sample ID	MW-1	1	MW-1	M	MW-1	MW-2	L	MW-2	MW-2	MW-3	MW-3	MW-3	L	MW-4	MW-4	MW-4	9-MM	9-MM	9-/	9-MM	NYSDEC TOGS	
Sampling Date	1/13/201	015 2,	/19/201	// 8	24/2018	#######	2/19	2018	7/24/2018	###### 8	\$ 2/19/2018	8 7/24/2018	18 1/13/	3/2015	2/19/	/2018	1/13/2015	2/19/	810	7/24/2018	Standards and	
Compound	η/gπ	O	ng/L	Q µg/L	,r o	η/gπ	Q µg/L	Ŏ	J/Sn	Q µg/L C	O μg/L (O µg/L	Q µg/1	/r 0	η/gπ	Õ) T/Bn	J/gn C	O) T/Sn	Q Guidance Values -	
Tetrachloroethylene	0.2	n	0.3	J 0.220	i0 J	3.03	25		20	20.8	4.1	1.2	3,799.8	8.6	20	13	85.83 I	D 75		43	5	
Trichloroethylene	0.2	Ŋ	0.2	U 0.200)0 D	0.2	U 0.4	_	0.630	0.52	0.2	U 0.200	U 17.0	0	0.7	0.430	8.90	15		0.460	5	

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution
J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated U=analyte not detected at or above the level indicated
NS=this indicates that no regulatory limit has been established for this analyte

Attachment A

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 07/31/2018

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 18G1061

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 07/31/2018

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 18G1061

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on July 25, 2018 and listed below. The project was identified as your project: #170154 11-28 31 Drive, LIC NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18G1061-01	MW-1	Water	07/24/2018	07/25/2018
18G1061-02	MW-2	Water	07/24/2018	07/25/2018
18G1061-03	MW-3	Water	07/24/2018	07/25/2018
18G1061-04	MW-4	Water	07/24/2018	07/25/2018
18G1061-05	MW-6	Water	07/24/2018	07/25/2018
18G1061-06	Trip Blank	Water	07/24/2018	07/25/2018
1				

General Notes for York Project (SDG) No.: 18G1061

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

belf

Benjamin Gulizia Laboratory Director **Date:** 07/31/2018

Sample Information

Client Sample ID: MW-1 York Sample ID: 18G1061-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared	by	Method:	EPA	5030B	

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	0.22	J	ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 03:53	SS
								Certifications: 0	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 03:53	SS
								Certifications: C	TDOH,NE	ELAC-NY10854,NELA	AC-NY12058,NJDEP	,PADEP
	Surrogate Recoveries	Result		Acc	eptance Rango	•						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			69-130							
2037-26-5	Surrogate: Toluene-d8	101 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

Sample Information

Client Sample ID: MW-2 York Sample ID: 18G1061-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	20		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 04:25	SS
								Certifications:	CTDOH,N	IELAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
79-01-6	Trichloroethylene	0.63		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 04:25	SS
								Certifications:	CTDOH,N	IELAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: Toluene-d8	100 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	100 %			79-122							

Sample Information

Client Sample ID: MW-3 York Sample ID: 18G1061-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

<u>Volatile Organics, 8260 List - Low Level</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 4 of 12

Sample Information

Client Sample ID: MW-3 York Sample ID: 18G1061-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Iethod	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	1.2		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 04:57	SS
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	?,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 04:57	SS
								Certifications: C	CTDOH,NE	ELAC-NY10854,NELA	AC-NY12058,NJDEP	,PADEP
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: Toluene-d8	100 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

Sample Information

Client Sample ID: MW-4 York Sample ID: 18G1061-04

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Met	Date/Time hod Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	13		ug/L	0.20	0.50	1	EPA 8260C	07/27/2018 12:28	07/28/2018 05:29	SS
								Certifications: CTI	OOH,NELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
79-01-6	Trichloroethylene	0.43	J	ug/L	0.20	0.50	1	EPA 8260C	07/27/2018 12:28	07/28/2018 05:29	SS
								Certifications: CTI	OOH,NELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
	Surrogate Recoveries	Result		Acce	eptance Rango	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			69-130						
2037-26-5	Surrogate: Toluene-d8	100 %			81-117						
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			79-122						

Sample Information

Client Sample ID: MW-6 York Sample ID: 18G1061-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18G1061#170154 11-28 31 Drive, LIC NYWaterJuly 24, 2018 3:00 pm07/25/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

120 RESEARCH DRIVE

Log-in Notes:	Sample Notes:
----------------------	---------------

132-02 89th AVENUE

RICHMOND HILL, NY 11418

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	43		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 07:38	SS
								Certifications: C	CTDOH,NEL	LAC-NY10854,NEL	AC-NY12058,NJDEF	P,PADEP

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 5 of 12

STRATFORD, CT 06615

Sample Information

Client Sample ID: MW-6

York Sample ID:

18G1061-05

York Project (SDG) No. 18G1061

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water Collection Date/Time
July 24, 2018 3:00 pm

Date Received 07/25/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Iethod	Date/Time Prepared	Date/Time Analyzed	Analyst
79-01-6	Trichloroethylene	0.46	J	ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 07:38	SS
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	108 %			69-130							
2037-26-5	Surrogate: Toluene-d8	98.4 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

Sample Information

Client Sample ID: Trip Blank

Client Project ID

York Sample ID:

18G1061-06

York Project (SDG) No. 18G1061

#170154 11-28 31 Drive, LIC NY

Matrix Water Collection Date/Time

Date Received

July 24, 2018 3:00 pm

07/25/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:	

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	07/27/2018 12:28 ELAC-NY10854,NEL	07/28/2018 01:46 AC-NY12058,NJDEP	SS PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	07/27/2018 12:28 ELAC-NY10854,NEL	07/28/2018 01:46 AC-NY12058,NJDEP	SS PADEP
	Surrogate Recoveries	Result		Acce	ptance Range	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: Toluene-d8	100 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 6 of 12

Analytical Batch Summary

Batch ID: BG8	81295 Prej	paration Method: EP	PA 5030B P	Prepared By:	TAB
---------------	------------	---------------------	------------	--------------	-----

YORK Sample ID	Client Sample ID	Preparation Date	
18G1061-01	MW-1	07/27/18	
18G1061-02	MW-2	07/27/18	
18G1061-03	MW-3	07/27/18	
18G1061-04	MW-4	07/27/18	
18G1061-05	MW-6	07/27/18	
18G1061-06	Trip Blank	07/27/18	
BG81295-BLK1	Blank	07/27/18	
BG81295-BS1	LCS	07/27/18	
BG81295-BSD1	LCS Dup	07/27/18	
BG81295-MS1	Matrix Spike	07/27/18	
BG81295-MSD1	Matrix Spike Dup	07/27/18	

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG81295 - EPA 5030B											
Blank (BG81295-BLK1)							Prep	pared: 07/27/20	018 Analyz	ed: 07/28/2	2018
Tetrachloroethylene	ND	0.50	ug/L								
Trichloroethylene	ND	0.50	"								
Surrogate: 1,2-Dichloroethane-d4	10.4		"	10.0		104	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: p-Bromofluorobenzene	10.4		"	10.0		104	79-122				
LCS (BG81295-BS1)							Prep	pared & Analy	zed: 07/27/	2018	
Tetrachloroethylene	8.06		ug/L	10.0		80.6	82-131	Low Bias			
Trichloroethylene	8.83		"	10.0		88.3	82-128				
Surrogate: 1,2-Dichloroethane-d4	9.82		"	10.0		98.2	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: p-Bromofluorobenzene	9.90		"	10.0		99.0	79-122				
LCS Dup (BG81295-BSD1)							Prep	pared: 07/27/20	018 Analyz	ed: 07/28/2	2018
Tetrachloroethylene	8.42		ug/L	10.0		84.2	82-131		4.37	30	
Trichloroethylene	9.24		"	10.0		92.4	82-128		4.54	30	
Surrogate: 1,2-Dichloroethane-d4	10.0		"	10.0		100	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: p-Bromofluorobenzene	9.93		"	10.0		99.3	79-122				
Matrix Spike (BG81295-MS1)	*Source sample: 180	G1061-04 (M	W-4)				Prep	pared: 07/27/20	018 Analyz	ed: 07/28/2	2018
Tetrachloroethylene	18.6		ug/L	10.0	12.8	58.2	64-139	Low Bias			
Trichloroethylene	8.41		"	10.0	0.430	79.8	53-145				
Surrogate: 1,2-Dichloroethane-d4	10.4		"	10.0		104	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: p-Bromofluorobenzene	9.72		"	10.0		97.2	79-122				
Matrix Spike Dup (BG81295-MSD1)	*Source sample: 180	G1061-04 (M	W-4)				Prep	pared: 07/27/20	018 Analyz	ed: 07/28/2	2018
Tetrachloroethylene	20.1		ug/L	10.0	12.8	72.8	64-139		22.3	30	
Trichloroethylene	9.00		"	10.0	0.430	85.7	53-145		7.13	30	
Surrogate: 1,2-Dichloroethane-d4	10.4		"	10.0		104	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 12

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
18G1061-01	MW-1	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-02	MW-2	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-03	MW-3	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-04	MW-4	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-05	MW-6	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-06	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD.	The batch was accepted based on acceptable LCS
	recovery.	

QL-02 This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method

has certain limitations with respect to analytes of this nature.

Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 10 of 12

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 11 of 12

www.YORKLAB.com (203) 325-1371 York Project No. / 8 G- 106

Field Chain-of-Custody Record

This document serves as your written authorization to York to proceed with the analyses requested and your NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

120 RESEARCH DR. STRATFORD, CT 06615

signature binds you to York's Std. Terms & Conditions unless superseded by written contract.

Report/Deliverable Type CT RCP DOA/DUE Pkg NJDEP Reduced Deliv NY ASP A Package NY ASP B Package Summary Report 2A Report CT RCP Semi-Vols, Pestrebents Metals Misc. Org. Full II 18270 cr 625 8082PCB RCRA8 TPH GRO Pri.Poll. **Turn-Around Time** Standard (5-7day) RUSH-Three Day RUSH-Same Day RUSH-Four Day RUSH-Next Day RUSH-Two Day Samples from CT_NX_NJ Purchase Order # Your Project ID 11-28 31 Drive, LIC NY 52161 #170154 Invoice To: SAME x Company: Address: E-mail Name: Report to: × FAX (203) 357-0166 SAME Company: Address: E-mail: Name: Company: HydroTech Env. Eng Geol 15 Ocean Ave. 2nd FI YOUR Information **Bklyn**, NY 11225 718-636-0800 Paul I. Matli (203) 325-1371 Address: Sontact: Phone.: E-mail:

Volatiles

Site Spec. STARS list 8081Pest TAL Suffolk Co. Adds Only S131Herb TAL Suffolk Co. Adds Only CT RCP CTI5 list NY 310-13 Ketones PAH list App. IX TAGM list TPH 1664 Oxygendes TAGM list Site Spec. NUDEP list Air TO14 list 324.2 TCL list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest TCLP	Diret Clanely and I am	ihly All Informa	tion must be complete.	Volatiles Semi-Vols, Pear Chier McLans Max. O.g.	Pri Poll.
RS list Nassau Co. BN Only 8151Herb TAL CTETPH TALMAGON Suffolk Co. Acide Only CTRCP CTI5 list Ny 310-13 Full TCLP List Ketones PAH list App. IX TAGM list Site Spec. NDEP list Air TO11A PAT500Bosine let to Coygandes TAGM list Site Spec. NDEP list Air TO12 PAT500Bosine let to Coygandes CTRCP list TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TO12 Pat500Bosine let to Chilotene India Air TO13 PAT500Bosine let to Chilotene India Air TO13 PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air TCLP Pes	Frin Clearly and Leg	many, that may control	the time appared time	Site Spec. STARS list 8081Pest PP13 list TPH DRO	TICS
Matrix Codes NTBE Retones PAH list Site Spec. Soil for specify(sit, etc.) Tagm list Tagm list Site Spec. Tagm list Tagm list Site Spec. NW - wastewater W. wastewater Tagm list Tagm list Tagm list Tagm list Spec. W. drinking water Halogony NDEP list Amyo. NY Chilordene Interface Aron. App. NY ODEPsec. NY - drinking water Halogony NDEP list App. NY ODEPsec. NY - wastewater NY - wastew	Samples will NOT be clock will not begin u	e logged in and intil any question:	me turn-uround turns s by York are resolved	RS list Nassau Co. BN Only 8151Herb TAL CTETPH XX Suffolk Co. Acids Only CTRCP CT15 list NY 310-13	
C March			Matrix Codes S - soil	MTBE Ketones PAH list App. IX TAGM list TPH 1664 ICL.list Oxygendes TAGM list Site Spec. NIDEP list Air TO14A	1 App. IX (Std.) 360-Route legulatory Comp Excel
C. Continue Cont	Samples Collected/Au	ithorized By (Signature		TAGM ist TCLP list CI KCP iist SCLFOLL 10kii Aii 1919 CTRCP list 524.2 TCL list TCLP Pest Dissolved Air STARS	(200 Feering Comment halow
Name (printed)	Lange	Mate,		Arom. only 502.2 Nadez us. 1 Cale and a Ari Tics Halog, only Nadez Halog. IX. Calordane hat Metak Ari Tics	Mile ODEser
Tigation	Name	(printed)	r-SV - soil v	ApplX list STROTICLE LICLE BINA 608 Fest LIST Below including \$102.00 His second lines and the second lines are second lines and the second lines are second lines and lines are second lines and lines are second	صائونت Description
X	Sample Identification	Date+Time Sampled		DCF and TCF via EPA 8260B	3 x 40 mils vials
ASD) X X X X X X X X X A DI Relinquished X finds. This fix Relinquished X fixes. This fix fixes. This fixes. This fixes. This fixes is a fixed fixes. The fixes is a fixed fixes. This fixes is a fixed fixes fixed fixes. The fixes fixed fixes fixed fixes fixed fixed fixed fixes fixed fixe	MW-1	7/24/2018	AAD :	×	×
ANSD) X X X X X X X X X X X X X X X X X X X	MW-2	×	×	· >	×
nk x X X X X X X X X X X X X X X X X X X	MW-3	×	×	<	Aleksia Character
x x x x x x x x x x x x x x x x x x x	MW-4 (MS/MSD)	×	×	×	0 X 40 IIIIIS VIGIS
Relinjushed x Langer This 1/8 Relinjushed x Laborator This 1/8 Relinjushed x Laborator to the this the thing the things the thing the thing the thing the things the thing	MW.6	×	×	×	3 x 40 mils vials
Reltrywshed x finder 7/h5/18	O-MINI STORY OF THE	•	ĪQ	×	2 x 40 mils vials
Preservation (check all appliciable) 4°C Frozen HCI MEOH HNO3 HSO	Inp biann	e e	Rel	12/5 7/NS/1	
Check all appliciable) 4°C Frozell HO MEOH HNO HSO			Res	unedbylub	
(check all appliciable) 4°C Frozen HCI MeOH HNO3 H,SO					
4°C Frozen HCI McOH HNO3 HSO	Comments:		Preservation (check all appliciable)		- 3.7°C
	x = same as before			Frozen HCI MeOH HNO3	i.

Compare to NYSDEC - 1.1.1 TOGS- GQS

Пе

12/18 12:18

Date/Time

Samples Received By

Special Instructions

Attachment B

July 19, 2018

Paul I. Matli Hydro Tech Environmental Engineering and Geology 77 Arkay Dr. Suite K Hauppauge, NY 11788

Project Location: 11-28 31st., Dr.

Client Job Number: Project Number: 170154

Laboratory Work Order Number: 18G0164

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on July 5, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	7
18G0164-01	7
18G0164-02	9
Sample Preparation Information	10
QC Data	11
1,4-Dioxane by isotope dilution GC/MS	11
B207396	11
Miscellaneous Organic Analyses	12
B207774	12
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	16

REPORT DATE: 7/19/2018

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Hydro Tech Environmental Engineering and Geolog

77 Arkay Dr. Suite K

Hauppauge, NY 11788

ATTN: Paul I. Matli

PURCHASE ORDER NUMBER: 52150

PROJECT NUMBER: 170154

ANALYTICAL SUMMARY

18G0164 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 11-28 31st., Dr.

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-3	18G0164-01	Ground Water		SOP 434-PFAAS	
				SW-846 8270D	
Field Blank	18G0164-02	Equipment Blank Water		SOP 434-PFAAS	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SOP 434-PFAAS

Qualifications:

L-03

Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be

biased on the low side.

Analyte & Samples(s) Qualified:

Perfluorooctanesulfonamide (FOSA

B207774-BS1

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Perfluorobutanesulfonic acid (PFB

B207774-MS1

Perfluorodecanoic acid (PFDA)

B207774-MS1

MS-07A

Matrix spike and spike duplicate recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possiblity of matrix effects that lead to low bias or non-homogeneous sample aliquot cannot be eliminated. Analyte & Samples(s) Qualified:

6:2 Fluorotelomersulfonate (6:2 FT

B207774-MS1, B207774-MSD1

NEtFOSAA

B207774-MS1, B207774-MSD1

NMeFOSAA

B207774-MS1, B207774-MSD1

Perfluorobutanoic acid (PFBA)

B207774-MS1, B207774-MSD1

Perfluorodecanesulfonic acid (PFD B207774-MS1, B207774-MSD1

Perfluorododecanoic acid (PFDoA)

B207774-MS1, B207774-MSD1

Perfluorohexanoic acid (PFHxA)

B207774-MS1, B207774-MSD1

Perfluorooctanesulfonamide (FOSA B207774-MS1, B207774-MSD1

Perfluoropentanoic acid (PFPeA)

B207774-MS1, B207774-MSD1

Perfluorotetradecanoic acid (PFTA

B207774-MS1, B207774-MSD1

Perfluorotridecanoic acid (PFTrDA

B207774-MS1, B207774-MSD1

Perfluoroundecanoic acid (PFUnA)

B207774-MS1, B207774-MSD1

R-06

Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.

Analyte & Samples(s) Qualified:

Perfluorobutanesulfonic acid (PFB

B207774-MSD1

S-19

Surrogate recovery is outside of control limits, matrix interference suspected. Reanalysis yielded similar surrogate non-conformance.

Analyte & Samples(s) Qualified:

d5-NEtFOSAA

18G0164-01[MW-3], B207774-MS1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: 11-28 31st., Dr. Sample Description: Work Order: 18G0164

Date Received: 7/5/2018

Field Sample #: MW-3

Sample ID: 18G0164-01

Sample Matrix: Ground Water

Start Date/Time: 7/3/2018 10:10:00AM Stop Date/Time: 7/3/2018 10:59:00AM

1,4-Dioxane by isotope dilution GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	ND	0.20	μg/L	1		SW-846 8270D	7/6/18	7/13/18 15:40	IMR
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8		22.7	15-110		-	-		7/13/18 15:40	

Project Location: 11-28 31st., Dr. Sample Description: Work Order: 18G0164

Date Received: 7/5/2018

Field Sample #: MW-3

Sample ID: 18G0164-01

Sample Matrix: Ground Water

Start Date/Time: 7/3/2018 10:10:00AM Stop Date/Time: 7/3/2018 10:59:00AM

Miscellaneous Organic Analyses

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorohexanoic acid (PFHxA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluoroheptanoic acid (PFHpA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorobutanoic acid (PFBA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorodecanesulfonic acid (PFDS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluoroheptanesulfonic acid (PFHpS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorooctanesulfonamide (FOSA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluoropentanoic acid (PFPeA)	94	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
6:2 Fluorotelomersulfonate (6:2 FTS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorohexanesulfonic acid (PFHxS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorooctanoic acid (PFOA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorooctanesulfonic acid (PFOS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorononanoic acid (PFNA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorodecanoic acid (PFDA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
NMeFOSAA	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluoroundecanoic acid (PFUnA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
NEtFOSAA	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorododecanoic acid (PFDoA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorotridecanoic acid (PFTrDA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF
Perfluorotetradecanoic acid (PFTA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:46	KAF

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	97.6	70-130		7/18/18 20:46
13C-PFDA	70.3	70-130		7/18/18 20:46
d5-NEtFOSAA	46.7 *	70-130	S-19	7/18/18 20:46

Project Location: 11-28 31st., Dr. Sample Description: Work Order: 18G0164

Date Received: 7/5/2018

Field Sample #: Field Blank

Sampled: 7/3/2018 10:59

Sample ID: 18G0164-02

Sample Matrix: Equipment Blank Water

Miscel	laneous	Organic	Analyses

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorohexanoic acid (PFHxA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluoroheptanoic acid (PFHpA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorobutanoic acid (PFBA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorodecanesulfonic acid (PFDS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluoroheptanesulfonic acid (PFHpS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorooctanesulfonamide (FOSA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluoropentanoic acid (PFPeA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
6:2 Fluorotelomersulfonate (6:2 FTS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorohexanesulfonic acid (PFHxS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorooctanoic acid (PFOA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorooctanesulfonic acid (PFOS)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorononanoic acid (PFNA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorodecanoic acid (PFDA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
NMeFOSAA	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluoroundecanoic acid (PFUnA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
NEtFOSAA	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorododecanoic acid (PFDoA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorotridecanoic acid (PFTrDA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF
Perfluorotetradecanoic acid (PFTA)	ND	20	ng/L	1		SOP 434-PFAAS	7/16/18	7/18/18 20:59	KAF

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	107	70-130		7/18/18 20:59
13C-PFDA	96.7	70-130		7/18/18 20:59
d5-NEtFOSAA	104	70-130		7/18/18 20:59

Sample Extraction Data

Prep Method: EPA 537-SOP 434-PFAAS

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18G0164-01 [MW-3]	B207774	250	1.00	07/16/18
18G0164-02 [Field Blank]	B207774	250	1.00	07/16/18

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18G0164-01 [MW-3]	B207396	980	1.00	07/06/18

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B207396 - SW-846 3510C										
Blank (B207396-BLK1)				Prepared: 07	//06/18 Analy	yzed: 07/13/	18			
1,4-Dioxane	ND	0.20	μg/L							
Surrogate: 1,4-Dioxane-d8	3.12		$\mu g/L$	10.0		31.2	15-110			
LCS (B207396-BS1)				Prepared: 07	//06/18 Analy	yzed: 07/13/	18			
1,4-Dioxane	9.75	0.20	μg/L	10.0		97.5	40-140			
Surrogate: 1,4-Dioxane-d8	3.60		μg/L	10.0		36.0	15-110			
LCS Dup (B207396-BSD1)				Prepared: 07	//06/18 Analy	yzed: 07/13/	18			
1,4-Dioxane	9.18	0.20	μg/L	10.0		91.8	40-140	6.01	30	
Surrogate: 1,4-Dioxane-d8	3.62		$\mu g/L$	10.0		36.2	15-110			
Matrix Spike (B207396-MS2)	Sou	rce: 18G0164-	01	Prepared: 07/06/18 Analyzed: 07/13/18						
1,4-Dioxane	10.3	0.20	μg/L	10.0	ND	103	40-140			
Surrogate: 1,4-Dioxane-d8	2.46		μg/L	10.0		24.6	15-110			
Matrix Spike Dup (B207396-MSD2)	Sou	rce: 18G0164-	01	Prepared: 07/06/18 Analyzed: 07/13/18			18			
1,4-Dioxane	10.8	0.21	μg/L	10.4	ND	104	40-140	4.43	20	
Surrogate: 1,4-Dioxane-d8	2.38		μg/L	10.4		22.9	15-110			

QUALITY CONTROL

Miscellaneous Organic Analyses - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B207774 - EPA 537										
Blank (B207774-BLK1)				Prepared: 07	7/16/18 Analy	yzed: 07/18/	18			
Perfluorobutanesulfonic acid (PFBS)	ND	20	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	20	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	20	ng/L							
Perfluorobutanoic acid (PFBA)	ND	20	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	20	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	20	ng/L							
Perfluorooctanesulfonamide (FOSA)	ND	20	ng/L							
erfluoropentanoic acid (PFPeA)	ND	20	ng/L							
:2 Fluorotelomersulfonate (6:2 FTS)	ND	20	ng/L							
:2 Fluorotelomersulfonate (8:2 FTS)	ND	20	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	20	ng/L							
Perfluorooctanoic acid (PFOA)	ND	20	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	20	ng/L							
Perfluorononanoic acid (PFNA)	ND	20	ng/L							
erfluorodecanoic acid (PFDA)	ND	20	ng/L							
MeFOSAA	ND	20	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	20	ng/L							
TEtFOSAA	ND	20	ng/L							
erfluorododecanoic acid (PFDoA)	ND	20	ng/L							
erfluorotridecanoic acid (PFTrDA)	ND	20	ng/L							
erfluorotetradecanoic acid (PFTA)	ND	20	ng/L							
urrogate: 13C-PFHxA	51.8		ng/L	40.0		130	70-130			
urrogate: 13C-PFDA	50.8		ng/L	40.0		127	70-130			
urrogate: d5-NEtFOSAA	173		ng/L	160		108	70-130			
CS (B207774-BS1)				Prepared: 07	7/16/18 Analy	yzed: 07/18/	18			
Perfluorobutanesulfonic acid (PFBS)	11.5	20	ng/L	8.85		130	70-130			
Perfluorohexanoic acid (PFHxA)	10.6	20	ng/L	10.0		106	70-130			
Perfluoroheptanoic acid (PFHpA)	9.91	20	ng/L	10.0		99.1	70-130			
erfluorobutanoic acid (PFBA)	3.35	20	ng/L	10.0		33.5	30-110			
erfluorodecanesulfonic acid (PFDS)	11.5	20	ng/L	9.65		120	70-130			
erfluoroheptanesulfonic acid (PFHpS)	12.1	20	ng/L	9.50		128	70-130			
Perfluorooctanesulfonamide (FOSA)	2.14	20	ng/L	10.0		21.4 *	30-110			L-03
Perfluoropentanoic acid (PFPeA)	12.2	20	ng/L	10.0		122	70-130			
:2 Fluorotelomersulfonate (6:2 FTS)	10.6	20	ng/L	9.50		111	70-130			
:2 Fluorotelomersulfonate (8:2 FTS)	12.0	20	ng/L	9.60		125	70-130			
erfluorohexanesulfonic acid (PFHxS)	10.9	20	ng/L	9.10		120	70-130			
Perfluorooctanoic acid (PFOA)	10.1	20	ng/L	10.0		101	70-130			
erfluorooctanesulfonic acid (PFOS)	11.8	20	ng/L	9.25		127	70-130			
erfluorononanoic acid (PFNA)	10.8	20	ng/L	10.0		108	70-130			
erfluorodecanoic acid (PFDA)	8.49	20	ng/L	10.0		84.9	70-130			
IMeFOSAA	10.5	20	ng/L	10.0		105	70-130			
erfluoroundecanoic acid (PFUnA)	8.54	20	ng/L	10.0		85.4	70-130			
TEtFOSAA	11.2	20	ng/L	10.0		112	70-130			
Perfluorododecanoic acid (PFDoA)	8.46	20	ng/L	10.0		84.6	70-130			
erfluorotridecanoic acid (PFTrDA)	7.91	20	ng/L	10.0		79.1	70-130			
erfluorotetradecanoic acid (PFTA)	8.75	20	ng/L	10.0		87.5	70-130			
urrogate: 13C-PFHxA	46.2		ng/L	40.0		116	70-130			
urrogate: 13C-PFDA	42.4		ng/L	40.0		106	70-130			
urrogate: d5-NEtFOSAA	196		ng/L	160		122	70-130			

QUALITY CONTROL

Miscellaneous Organic Analyses - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REO	2	%REC Limits	RPD		RPD Limit	Notes
eatch B207774 - EPA 537												
1atrix Spike (B207774-MS1)	Sou	rce: 18G0164-0)1	Prepared: 07	7/16/18 Analyz	zed: 07/	18/18	3				
erfluorobutanesulfonic acid (PFBS)	20.4	20	ng/L	8.85	6.53	157	*	70-130				MS-07
erfluorohexanoic acid (PFHxA)	19.5	20	ng/L	10.0	6.02	135	*	70-130				MS-07A
erfluoroheptanoic acid (PFHpA)	12.3	20	ng/L	10.0	2.18	101		70-130				
erfluorobutanoic acid (PFBA)	25.2	20	ng/L	10.0	12.5	127	*	30-110				MS-07
erfluorodecanesulfonic acid (PFDS)	5.39	20	ng/L	9.65	ND	55.9	*	70-130				MS-07
erfluoroheptanesulfonic acid (PFHpS)	10.2	20	ng/L	9.50	ND	107		70-130				
erfluorooctanesulfonamide (FOSA)	1.31	20	ng/L	10.0	ND	13.1	*	30-110				MS-07
erfluoropentanoic acid (PFPeA)	146	20	ng/L	10.0	94.1	522	*	70-130				MS-07
2 Fluorotelomersulfonate (6:2 FTS)	24.1	20	ng/L	9.50	1.36	239	*	70-130				MS-07
2 Fluorotelomersulfonate (8:2 FTS)	10.4	20	ng/L	9.60	ND	108		70-130				
erfluorohexanesulfonic acid (PFHxS)	9.96	20	ng/L	9.10	1.73	90.5		70-130				
erfluorooctanoic acid (PFOA)	18.1	20	ng/L	10.0	7.45	106		70-130				
erfluorooctanesulfonic acid (PFOS)	11.4	20	ng/L	9.25	3.65	83.3		70-130				
erfluorononanoic acid (PFNA)	7.99	20	ng/L	10.0	0.820	71.7		70-130				
erfluorodecanoic acid (PFDA)	6.60	20	ng/L	10.0	0.732	58.6	*	70-130				MS-07
MeFOSAA	6.09	20	ng/L	10.0	ND	60.9	*	70-130				MS-07.
erfluoroundecanoic acid (PFUnA)	4.13	20	ng/L	10.0	ND	41.3	*	70-130				MS-07.
EtFOSAA	3.97	20	ng/L	10.0	ND	39.7	*	70-130				MS-07.
erfluorododecanoic acid (PFDoA)	3.92	20	ng/L	10.0	ND	39.2	*	70-130				MS-07.
erfluorotridecanoic acid (PFTrDA)	3.98	20	ng/L	10.0	ND	39.8	*	70-130				MS-07.
erfluorotetradecanoic acid (PFTA)	3.55	20	ng/L	10.0	ND	35.5	*	70-130				MS-07.
nrogate: 13C-PFHxA	43.9		ng/L	40.0		110		70-130				
nrrogate: 13C-PFDA	28.5		ng/L	40.0		71.2		70-130				
rrogate: d5-NEtFOSAA	102		ng/L	160		63.5	*	70-130				S-19
atrix Spike Dup (B207774-MSD1)	Sou	rce: 18G0164-()1	Prepared: 07	7/16/18 Analyz	zed: 07/	18/18	3				
erfluorobutanesulfonic acid (PFBS)	13.3	20	ng/L	8.85	6.53	76.7		70-130	42.1	*	30	R-06
erfluorohexanoic acid (PFHxA)	20.1	20	ng/L	10.0	6.02	141	*	70-130	3.02		30	MS-07
erfluoroheptanoic acid (PFHpA)	12.7	20	ng/L	10.0	2.18	105		70-130	3.35		30	
erfluorobutanoic acid (PFBA)	33.0	20	ng/L	10.0	12.5	205	*	30-110	26.6		30	MS-07.
erfluorodecanesulfonic acid (PFDS)	6.73	20	ng/L	9.65	ND	69.7	*	70-130	22.1		30	MS-07
erfluoroheptanesulfonic acid (PFHpS)	10.7	20	ng/L	9.50	ND	113		70-130	4.76		30	
erfluorooctanesulfonamide (FOSA)	2.09	20	ng/L	10.0	ND	20.9	*	30-110	45.9	*	30	MS-07.
erfluoropentanoic acid (PFPeA)	200	20	ng/L	10.0	94.1	1060	*	70-130	30.8	*	30	MS-07
2 Fluorotelomersulfonate (6:2 FTS)	16.8	20	ng/L	9.50	1.36	162	*	70-130	35.7	*	30	MS-07.
2 Fluorotelomersulfonate (8:2 FTS)	9.60	20	ng/L	9.60	ND	100		70-130	7.87		30	
erfluorohexanesulfonic acid (PFHxS)	8.63	20	ng/L	9.10	1.73	75.9		70-130	14.3		30	
erfluorooctanoic acid (PFOA)	16.1	20	ng/L	10.0	7.45	86.2		70-130	11.8		30	
erfluorooctanesulfonic acid (PFOS)	10.3	20	ng/L	9.25	3.65	71.8		70-130	9.82		30	
erfluorononanoic acid (PFNA)	9.01	20	ng/L	10.0	0.820	81.9		70-130	12.0		30	
erfluorodecanoic acid (PFDA)	8.14	20	ng/L	10.0	0.732	74.1		70-130	21.0		30	
MeFOSAA	6.18	20	ng/L	10.0	ND	61.8	*	70-130	1.39		30	MS-07
erfluoroundecanoic acid (PFUnA)	6.53	20	ng/L	10.0	ND	65.3	*	70-130	45.1	*	30	MS-07
EtFOSAA	4.83	20	ng/L	10.0	ND	48.3	*	70-130	19.4		30	MS-07
erfluorododecanoic acid (PFDoA)	5.72	20	ng/L	10.0	ND	57.2	*	70-130	37.3	*	30	MS-07.
erfluorotridecanoic acid (PFTrDA)	4.93	20	ng/L	10.0	ND	49.3	*	70-130	21.3		30	MS-07.
erfluorotetradecanoic acid (PFTA)	3.73	20	ng/L	10.0	ND	37.3	*	70-130	5.01		30	MS-07
rrogate: 13C-PFHxA	47.9		ng/L	40.0		120		70-130				
rrogate: 13C-PFDA	35.6		ng/L	40.0		88.9		70-130				

FLAG/QUALIFIER SUMMARY

	4 · · · · · · · · · · · · · · · · · · ·
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-03	Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
MS-07A	Matrix spike and spike duplicate recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possiblity of matrix effects that lead to low bias or non-homogeneous sample aliquot cannot be eliminated.
R-06	Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.
S-19	Surrogate recovery is outside of control limits, matrix interference suspected. Reanalysis yielded similar surrogate non-conformance.

QC result is outside of established limits.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SOP 434-PFAAS in Water	
Perfluorobutanesulfonic acid (PFBS)	NH-P
Perfluorohexanoic acid (PFHxA)	NH-P
Perfluoroheptanoic acid (PFHpA)	NH-P
Perfluorohexanesulfonic acid (PFHxS)	NH-P
Perfluorooctanoic acid (PFOA)	NH-P
Perfluorooctanesulfonic acid (PFOS)	NH-P
Perfluorononanoic acid (PFNA)	NH-P
Perfluorodecanoic acid (PFDA)	NH-P
NMeFOSAA	NH-P
Perfluoroundecanoic acid (PFUnA)	NH-P
NEtFOSAA	NH-P
Perfluorododecanoic acid (PFDoA)	NH-P
Perfluorotridecanoic acid (PFTrDA)	NH-P
Perfluorotetradecanoic acid (PFTA)	NH-P
SW-846 8270D in Water	
1,4-Dioxane	NY

 $The \ CON\text{-}TEST \ Environmental \ Laboratory \ operates \ under the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2018

Table of Contents Preservation Codes: X = Sodium Hydroxide W. Prints With Mutrix Codes: 6W = Ground Water B = Sodium Bisulfate S = Summa Canister T = Tedlar Bag SL = Sludge SOL = Solid O = Other (please 3 Container Codes: 0 = Other (please 0 = Other (please Non Soxhlet A = Amber Glass S = Sulfuric Acid Preservation Code PCB ONLY Soxhiet Field Filtered N = Nitric Acid Field Filtered of Lab to Filter ☐ Lab to Filter M = Methanol Container Code ST = Sterile # of Containers T = Sodium Thiosulfate P = Plastic G = Glass A-A-V = Vial H= 125 pao = define) define) Page Enhanced Data Package NYSDEC EQUIS EDD EQuIS (Standard) EDD NY Regulatory EDD NY Regs Hits-Only EDD Please use the following codes to indicate possible sample concentration NELAC and AHA-LAP, LLC Acpredited East Longmeadow, MA 01028 Chromatogram AIHA-LAP, LLC H - High; M - Medium; L - Low; C - Clean; U - Unknown ANAL YSIS REQUESTED 39 Spruce Street within the Conc Code column above Other Doc # 380 Rev 1_03242017 WRTA MWRA School MBTA Phone: 413-525-2332 $\left\{\begin{cases} 60164 & \frac{\text{ortp://www.contestiabs.com}}{6} \\ 60164 & \text{CHAIN OF CUSTODY RECORD (New York)} \end{cases}\right\}$ http://www.contestlabs.com NY CP-51 NY TOGS Matrix Code <u>3</u> Municipality Brownfield 10-Day 3-Day 4-Day EXCEL Grab Conposed + Part 360 GW (Landfill) Email To: Dow of C. NYC Sewer Discharge Сотроѕіте NY Unrestricted Use CLP Like Data Pkg R NY Restricted Use PDF NY Part 375 Government AWQ STDS Oue Date: ax 10 #: Ending ormat: Federal 2-Day 7-Day Other: 1-Day City Project Entity Date/Time Beginning 06:00 annt PF AR \leq Email: info@contestlabs.com 75-181340 Sime: 10% Soul: Ore Client Sample ID / Description MSASS Fax: 413-525-6405 Date/wime: I'me: Date/Time: Date/Time: ヤファ Andwork col TW-3 00/17 0 लें। 2000 Number CON-KSK Project Location: 1.1. ecelived by: (signature) (Signature) Work Order# Con-Test Quote Name/ Con-Test Company Name involce Recipient: Project Manager: Project Number: Sampled By: comments: Address: Phone: Page 16 of 20

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client Hydlote	ch Gov Gravi) & veod						
Received By	Eso		Date	7-5-18		Time	16:45	
How were the samples	In Cooler	7	No Cooler		On Ice	7	No Ice	
received?	Direct from Samp	ling	1973 (1959) (196 -7 0) (1966), (1961) (1966)		Ambient		Melted Ice	
	Bircot from Carry	By Gun #	ħ				Metted ice	
Were samples within		50 J.			Actual Tem			
Temperature? 2-6°C	<u> </u>	By Blank #		ADADON SAC	Actual Tem			
Was Custody S		NA		3 IF IN SEC. 14 THE SEC. 1000	s Tampered	activities and a	NA	
Was COC Relin		<u>T</u>		s Chain Ag	ree With Sar	mples?	Ī	
Are there broken/l		on any sam		<u> </u>	•			
Is COC in ink/ Legible?		•ii		mples recei	ved within ho			
Did COC include all	Client	T	Analysis			er Name		
pertinent Information?	Project	T	ID's		Collection	Dates/Times	T	
Are Sample labels filled	,	<u> </u>						
Are there Lab to Filters?	?	<u></u>			s notified?	***************************************		
Are there Rushes?		<u> </u>		Who was	s notified?			
Are there Short Holds?		<u></u>		Who was	s notified?			
Is there enough Volume								
Is there Headspace who	ere applicable?	EARINA		MS/MSD?	T_			
Proper Media/Container	s Used?	O _T		Is splitting	samples req	uired?	P	
Were trip blanks receive	ed?	F		On COC?	F			
Do all samples have the	proper pH?	NA	Acid .			Base		
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.	6	1 Liter	Plastic		16 oz	Amb.	
HCL-	500 mL Amb.		500 mL	Plastic		8oz Am	b/Clear	
Meoh-	250 mL Amb.		250 mL	Plastic	_ (C	4oz Am	b/Clear	
Bisulfate-	Col./Bacteria		Flash			2oz Aml	b/Clear	
DI-	Other Plastic		Other			Enc	ore	
Thiosulfate-	SOC Kit		Plastic	c Bag		Frozen:		
Sulfuric-	Perchlorate		Zipl	ock				
			Unused I	Vledia				
Vials #	Confainers:	#			#			#
Unp-	1 Liter Amb.	·	1 Liter			16 oz .		
HCL-	500 mL Amb.		500 mL			8oz Aml		
Meoh-	250 mL Amb.		250 mL			4oz Aml		
Bisulfate-	Col./Bacteria		Flash			2oz Aml		
DI-	Other Plastic		Other			Enco	ore	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric- Comments:	Perchlorate		Ziplo	ock	J			
Comments:								
Commonts.								
John Mills								
oommonto.								
oommonto.								
oommonto.								

contamination. Project managers may approve a shorter analyte list (e.g., just the UCMR3 list) for some reporting on a case by case basis.

1.4-Dioxane Analysis and Reporting: The method detection limit (MDL) for 1,4-dioxane should be no higher than 0.28 μ g/l (ppb). ELAP offers certification for both EPA Methods 8260 and 8270. In order to get the appropriate detection limits, the lab would need to run either of these methods in "selective ion monitoring" (SIM) mode. DER is advising PMS to use 8270, since this method provides a more robust extraction procedure, uses a larger sample volume, and is less vulnerable to interference from chlorinated solvents (we acknowledge that 8260 has been shown to have a higher recovery in some studies).

Full PFAS Target Analyte List

Group	Chemical Name	Abbreviation	CAS Number
	Perfluorobutanesulfonic acid	PFBS	375-73-5
D 0	Perfluorohexanesulfonic acid	PFHxS	355-46-4
Perfluoroalkyl sulfonates	Perfluoroheptanesulfonic acid	PFHpS	375-92-8
- Callonatoo	Perfluorooctanessulfonic acid	PFOS	1763-23-1
	Perfluorodecanesulfonic acid	PFDS	335-77-3
	Perfluorobutanoic acid	PFBA	375-22-4
	Perfluoropentanoic acid	PFPeA	2706-90-3
	Perfluorohexanoic acid	PFHxA	307-24-4
	Perfluoroheptanoic acid	PFHpA	375-85-9
Dadiossallad	Perfluorooctanoic acid	PFOA	335-67-1
Perfluoroalkyl carboxylates	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUA/PFUdA	2058-94-8
	Perfluorododecanoic acid	PFDoA	307-55-1
	Perfluorotridecanoic acid	PFTriA/PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	PFTA/PFTeDA	376-06-7
Fluorinated Telomer	6:2 Fluorotelomer sulfonate	6:2 FTS	27619-97-2
Sulfonates	8:2 Fluorotelomer sulfonate	8:2 FTS	39108-34-4
Perfluorooctane- sulfonamides	Perfluroroctanesulfonamide	FOSA	754-91-6
Perfluorooctane-	N-methyl perfluorooctanesulfonamidoacetic acid	N-MeFOSAA	2355-31-9
sulfonamidoacetic acids	N-ethyl perfluorooctanesulfonamidoacetic acid	N-EtFOSAA	2991-50-6

Bold entries depict the 6 original UCMR3 chemicals

Groundwater Sampling for Emerging Contaminants

February 2018

<u>Issue:</u> NYSDEC has committed to analyzing representative groundwater samples at remediation sites for emerging contaminants (1,4-dioxane and PFAS) as described in the below guidance.

Implementation

NYSDEC project managers will be contacting site owners to schedule sampling for these chemicals. Only groundwater sampling is required. The number of samples required will be similar to the number of samples where "full TAL/TCL sampling" would typically be required in a remedial investigation. If sampling is not feasible (e.g., the site no longer has any monitoring wells in place), sampling may be waived on a site-specific basis after first considering potential sources of these chemicals and whether there are water supplies nearby.

Upon a new site being brought into any program (i.e., SSF, BCP), PFAS and 1,4-dioxane will be incorporated into the investigation of groundwater as part of the standard "full TAL/TCL" sampling. Until an SCO is established for PFAS, soil samples do not need to be analyzed for PFAS unless groundwater contamination is detected. Separate guidance will be developed to address sites where emerging contaminants are found in the groundwater. The analysis currently performed for SVOCs in soil is adequate for evaluation of 1,4-dioxane, which already has an established SCO.

Analysis and Reporting

Labs should provide a full category B deliverable, and a DUSR should be prepared by a data validator.

The work plan should explicitly describe analysis and reporting requirements.

PFAS sample analysis: Samples should be analyzed by an environmental laboratory certified by ELAP to use EPA method 537 or ISO 25101. ELAP does not currently offer certification for PFAS analysis of non-drinking water samples (including groundwater, soil and sediment), so there is no requirement to use an ELAP certified method. The preferred method is the modified EPA Method 537. Labs have been able to achieve reporting limits for PFOA and PFOS of 2 ng/l (part per trillion). If labs are not able to achieve similar reporting limits, the NYSDEC project manager will make case-by-case decisions as to whether the analysis can meet the needs for the specific site.

<u>PFAS sample reporting:</u> DER has developed a PFAS target analyte list (below) with the intent of achieving reporting consistency between labs for commonly reportable analytes. It is expected that reported results for PFAS will include, at a minimum, all the compounds listed. This list may be updated in the future as new information is learned and as labs develop new capabilities. If lab and/or matrix specific issues are encountered for any particular compounds, the NYSDEC project manager will make case-by-case decisions as to whether particular analytes may be temporarily or permanently discontinued from analysis for each site. Any technical lab issues should be brought to the attention of a NYSDEC chemist.

Some sampling using this full PFAS target analyte list is needed to understand the nature of contamination. It may also be critical to differentiate PFAS compounds associated with a site from other sources of these chemicals. Like routine refinements to parameter lists based on investigative findings, the full PFAS target analyte list may not be needed for all sampling intended to define the extent of

Collection of Groundwater Samples for Perfluorooctanoic Acid (PFOA) and Perfluorinated Compounds (PFCs) from Monitoring Wells Sample Protocol

Samples collected using this protocol are intended to be analyzed for perfluorocatanoic acid (PFOA) and other perfluorinated compounds by Modified (Low Level) Test Method 537.

The procedure used must be consistent with the NYSDEC March 1991 Sampling Guidelines and Protocols http://www.dec.ny.gov/docs/remediation-hudson-pdf/sgpsect5.pdf with the following materials limitations.

At this time acceptable materials for sampling include: stainless steel, high density polyethylene (HDPE), PVC, silicone, acetate and polypropylene. Equipment blanks should be generated at least daily. Additional materials may be acceptable if preapproved by NYSDEC. Requests to use alternate equipment should include clean equipment blanks. NOTE: Grunfos pumps and bladder pumps are known to contain PFC materials (e.g. TeflonTM washers for Grunfos pumps and LDPE bladders for bladder pumps). All sampling equipment components and sample containers should not come in contact with aluminum foil, low density polyethylene (LDPE), glass or polytetrafluoroethylene (PTFE, TeflonTM) materials including sample bottle cap liners with a PTFE layer. Standard two step decontamination using detergent and clean water rinse will be performed for equipment that does come in contact with PFC materials. Clothing that contains PTFE material (including GORE-TEX®) or that have been waterproofed with PFC materials must be avoided. Many food and drink packaging materials and "plumbers thread seal tape" contain PFCs.

All clothing worn by sampling personnel must have been laundered multiple times. The sampler must wear nitrile gloves while filling and sealing the sample bottles.

Pre-cleaned sample bottles with closures, coolers, ice, sample labels and a chain of custody form will be provided by the laboratory.

- 1. Fill two pre-cleaned 500 mL HDPE or polypropylene bottle with the sample.
- 2. Cap the bottles with an acceptable cap and liner closure system.
- 3. Label the sample bottles.
- 4. Fill out the chain of custody.
- 5. Place in a cooler maintained at 4 ± 2° Celsius.

Collect one equipment blank for every sample batch, not to exceed 20 samples.

Collect one field duplicate for every sample batch, not to exceed 20 samples.

Collect one matrix spike / matrix spike duplicate (MS/MSD) for every sample batch, not to exceed 20 samples.

Request appropriate data deliverable (Category A or B) and an electronic data deliverable.

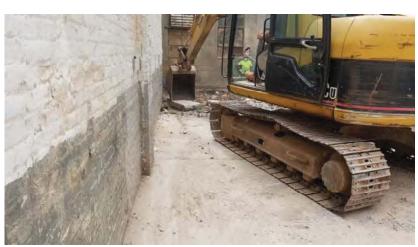

ATTACHMENT F Digital Photo Log

Photo Log 9/19/17

Housekeeping activities following site demolition

Removal of concrete slab

CAMP (C	9/20/1/
CAMP station	
Removal of concrete slab	
Stockpiling of removed concrete from slab	

Truck loading with C&D

Disposal of C&D

Truck loading with C&D

Photo Log 10/12/17

Soil excavation

Soil loading

Soil excavation

Soil loading

Photo Log 10/16/17 Exposed UST Vacuum removal of liquid accumulated inside the UST Exposed UST

View of tank excavation pit

55-gal drum containing cleaning waste from UST

Photo Log 10/27/17

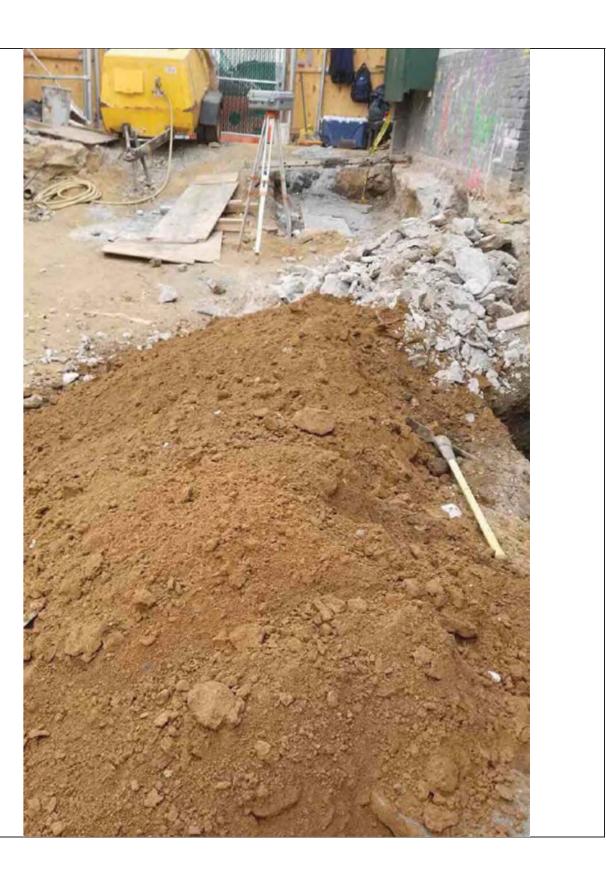
55-gal drum containing cleaning waste from UST	WASTE

Breaking edges of former slab along existing southern wall in preparation for underpinning

Hand excavated pit for underpinning

Form placed for concrete underlining under footing of south-adjacent building

Photo Log 11/28/17 Site View Hand excavation of underpinning pits View of underpinning pits


Site View

Hand excavation of underpinning pits

Excavated soil from underpinning activities

Photo Log 12/13/17

View of excavated pit for elevator foundations and surrounding building footings

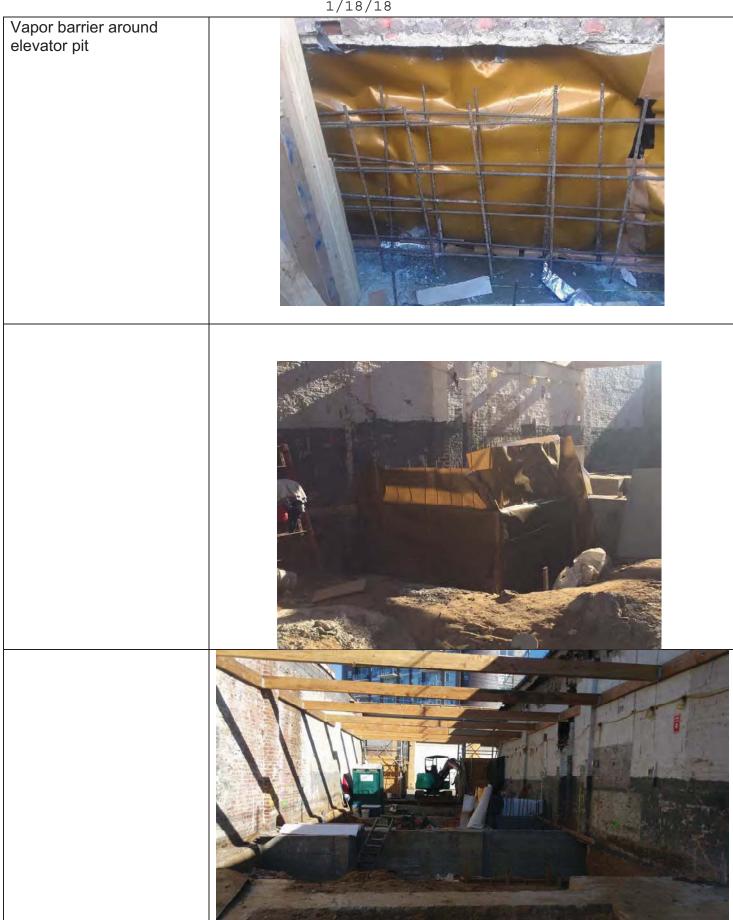
Stockpiled soil from elevator pit excavation

Placement of ¾-inch bluestone at bottom of elevator pit

Photo Log 12/18/17

Installation of vapor barrier in elevator pit	
Completed installation of vapor barrier in elevator pit	

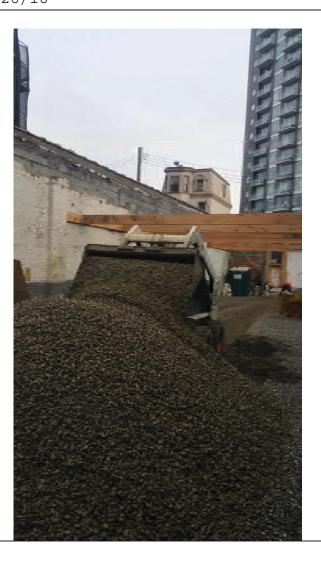
View of demarcation layer prior to backfill in rear yard

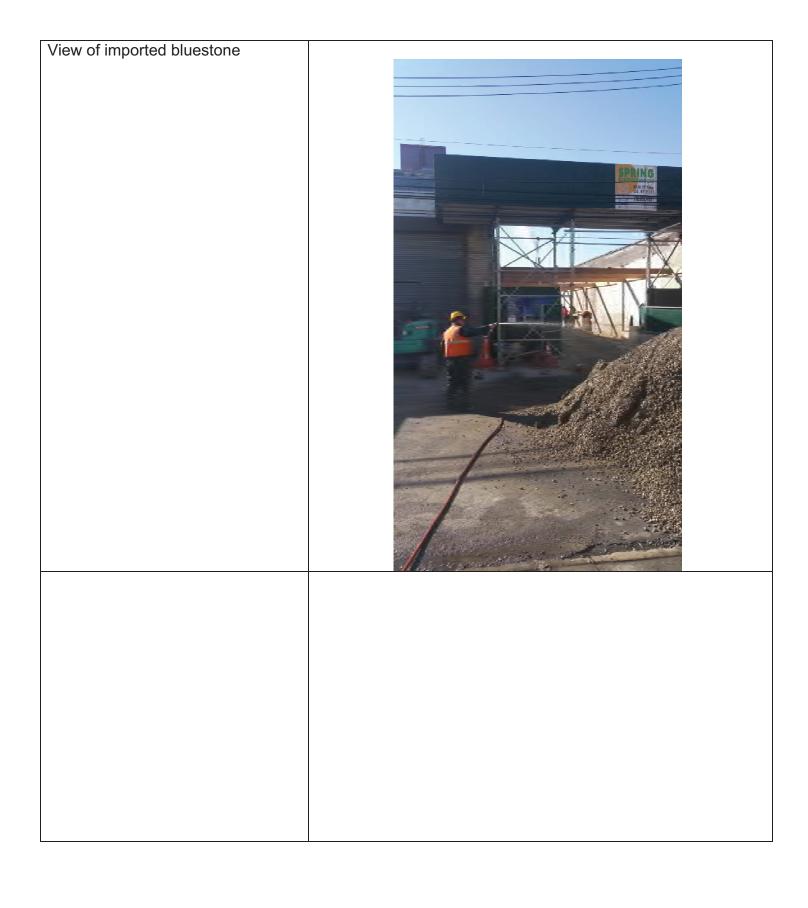

Movement of previously stockpiled excavated soil for on-site reuse as backfill

Competed backfilling in rear yard with reused on-site soil

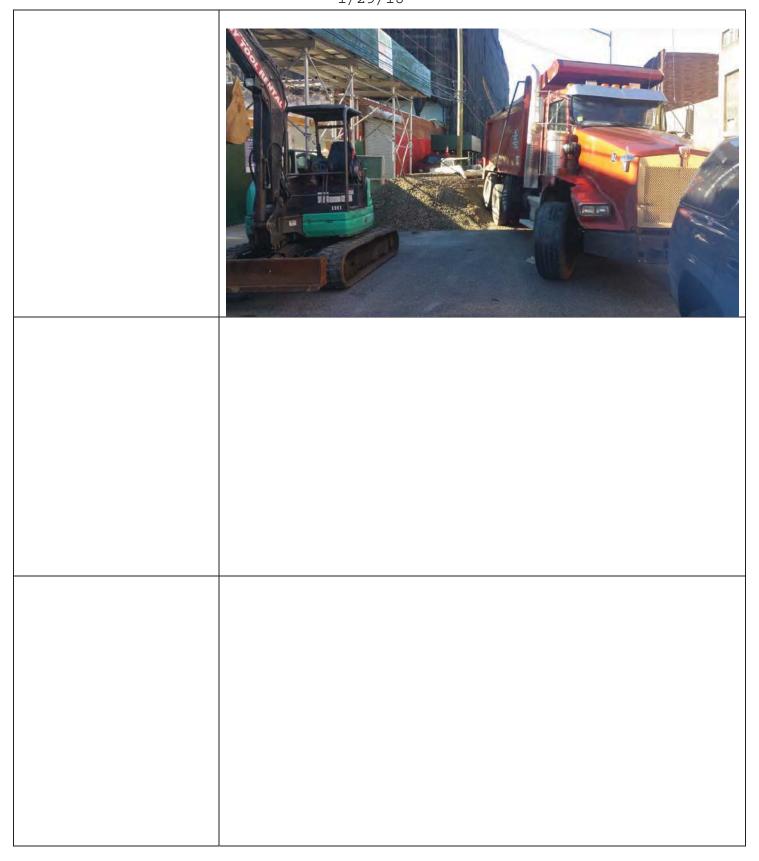
Photo Log 1/18/18

Photo Log 1/25/18


View of imported bluestone



View of imported bluestone	* Bobout


Photo Log 1/26/18

Backfilling the Site with bluestone

Photo Log 1/29/18

Photo Log

	2/14/18
Installation of monitoring wells	

Photo Log 2/15/18

Development of monitoring wells

Photo Log 2/19/18

	2/15/10
Sampling of monitoring wells	

Photo Log 5/28/18 ISCO injections in sidewalk

Photo Log 5/29/18

	3/23/10
ISCO injections in sidewalk	

ATTACHMENT G Solid Waste Disposal Documentation

Soil/Fill Waste Characterization

www.hydrotechenvironmental.com

Brooklyn, New York 11225

T (718) 636-0800 • F (718) 636-0900

July 07, 2017

Mr. George Man 57 Allen Street New York, NY 10002

Re:

11-28 31st Drive, Long Island City, New York

NYSDEC BCP Site #C241159

Hauppauge, New York 11788

T (631) 462-5866 • F (631) 462-5877

Hydro Tech Job No. 170175 -Waste Characterization Sampling

Dear Mr. Man:

This letter is intended to provide you with the analytical data from our recent waste characterization exercise conducted at the above-referenced in anticipation of Site remedial development under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Clean-Up Program Site (NYSDEC BCP Site # C241159). According to the proposed development plan, the site excavation will extend to the depth of 3 feet below grade surface across the entire property and to the depth of the soil and groundwater interface at approximately 7 feet below grade surface in the ear of the elevator pit. Based on the requirements of the retained soil disposal facility identified as Clean Earth of Bethlehem in Pennsylvania, one waste characterization sample is required for the total amount of soil waste generated during Site excavation that is anticipated to be around 400 tons. A map showing the sampling locations is provided in Figure 1.

The waste characterization exercise was performed on June 20, 2017. There were no deviations from the original waste characterization sampling plan. The entire site was designated as (1) grid designated WC-1. Four (4) soil probes designated SB-1 to SB-4 were installed in this grid spanning the required depths of soil excavation; 0 to 3 feet in across the entire site and from 3 to 7 feet bgs beneath the proposed elevator pit. Groundwater was not encountered during the soil sampling activities.

A Hydro Tech geologist performed infield characterization and screening of each soil sample utilizing the Unified Soil Classification System and a Photo Ionization Detector (PID). The soil beneath the Site is composed of sand with trace amount of fill material consisting of glass, bricks to variable depths underlain by silty sand, consistent with the previous investigations. No visual/olfactory evidence of petroleum vapors or detectable (<0.1 ppm) organic vapors were noted in any soil samples. Attachment A provides soil probe logs.

A total of five grab samples WC-1_SB-1 (1'-2'; 3'-4'), WC-1_SB-2 (3'-4'), WC-1_SB-3 (4'-5') and WC-1_SB-4 (0-1') were analyzed for VOCs. The five-point composite sample was analyzed for Volatile Organics (VOCs), TCLP VOCs, Semi Volatile Organics (SVOCs), TCLP SVOCs, Pesticides, TCLP Pesticides, TCLP Herbicides, PCBs, TAL Metals, TCLP Metals, Corrosivity, Ignitability and Reactivity for Cyanide and Sulfide. Additionally, a site grab sample was collected from WC-1_SB-1 (3'-4') and analyzed for TCLP metals and paint filters. The sample was analyzed by a New York State Department of Health ELAP certified laboratory.

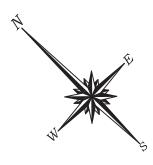
Tables 1 through 6 provide the results of the soil samples from the composite and grab samples. Tables 1 through 6 also provide a comparison to the NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives (UUCSO), PA Clean Fill Limits and PA Regulated Fill Limits, and EPA Hazardous Waste Regulatory Levels for Toxicity Characteristic or TCLP. The concentrations reported in the summary tables are in milligrams per kilogram (mg/kg), unless noted otherwise. The laboratory analytical data report for waste characterization activities is provided in Attachment B.

Upon review of the laboratory analytical results, no substances were detected at concentrations exceeding the TCLP hazardous levels.

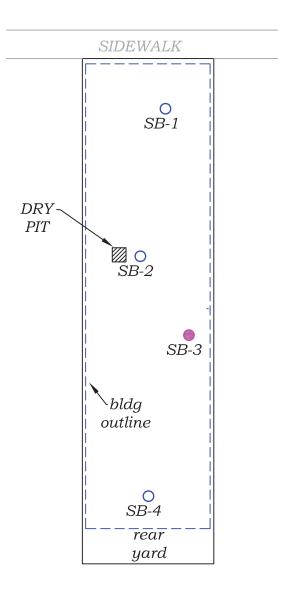
The analytical results indicated the grab sample WC-1_SB-2 contained Methylene chloride at a concentration in exceedance of UUSCO. The composite sample WC-1 contained Cobalt at a concentration exceeding the PA Clean Fill Limits. Soil at the Site met the PA Regulated Fill Limits. Since no soil removed from this Site is permitted to be disposed of at an unregulated facility, a final approval following a review from the soil disposal facility will be required prior to the export of any soil from the Site.

Price quotes will be requested from disposal companies on your behalf and will be provided upon receipt.. Should you have any questions, please feel free to contact our office at your convenience.

Very Truly Yours,


Hydro Tech Environmental, Corp.

Paul I. Matli, Ph.D., P.G. Senior Project Manager


PM/mw Enc.

cc: HTE File No. 170154 w/ Enc.

Figure 1: Sampling Plan

31st DRIVE

LEGEND:

- WASTE CHARACTERIZATION BORING TO 7 FEET BELOW GRADE (SB)
- O WASTE CHARACTERIZATION BORING TO 4 FEET BELOW GRADE (SB)

11-28 31st Drive Long Island City, NY HTE Job# 120029

FIGURE 1: MAP OF WASTE CHARACTERIZATION SAMPLING

<u>Tables</u>

Table 1 Waste Characterization Analytical Results for VOCs

			alytical Results for VOCs ng Island city, NY		
Sample ID	WC-1-SB-2 (2-3) C				
Sampling Date	6/20/2017		NYSDEC Part 375 Unrestricted Use Soil	PA Clean Fill Limits	PA Regulated Fill
Client Matrix	Soil		Cleanup Objectives	THE CICAN TIME EMILLO	Limits
Compound	Result	10			
Units	mg/kg	Q Q	mg/Kg	mg/kg	mg/kg
1,1,1,2-Tetrachloroethane	0.00280	U U	0 - Comprehensive	18	18
1,1,1-Trichloroethane	0.00280	U	0.68	7.2	7.2
1,1,2,2-Tetrachloroethane	0.00280	U	~	0.0093	0.0093
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.00280	U	~	26000	53000
1,1,2-Trichloroethane	0.00280	U	~	0.15	7.2
1,1-Dichloroethane	0.00280	U	0.27	0.65	2.7
1,1-Dichloroethylene	0.00280	U	0.33	0.19	0.19
1,1-Dichloropropylene	0.00280	U	~	~	~
1,2,3-Trichlorobenzene	0.00280 0.00280	U	~ ~	~	0.82
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	0.00280	U	~	1.6 27	0.82
1,2,4-Trimethylbenzene	0.00280	U	3.6	9	20
1,2-Dibromo-3-chloropropane	0.00280	U	~	0.0092	0.0092
1,2-Dibromoethane	0.00280	U	~	0.0012	0.0012
1,2-Dichlorobenzene	0.00280	U	1.1	59	59
1,2-Dichloroethane	0.00280	U	0.02	0.1	0.1
1,2-Dichloropropane	0.00280	U	~	0.11	0.11
1,3,5-Trimethylbenzene	0.00280	U	8.4	2.8	6.2
1,3-Dichlorobenzene	0.00280	U	2.4	61	61
1,3-Dichloropropane	0.00280	U	~	~	~
1,4-Dichlorobenzene 1,4-Dioxane	0.00280 0.0570	U	1.8 0.1	10 0.073	10 0.31
1,4-Dioxane 2,2-Dichloropropane	0.0570	U	0.1 ~	0.073	0.31
2-Butanone	0.00280	U	0.12	54	110
2-Chlorotoluene	0.00280	U	~	20	20
2-Hexanone	0.00280	U	~	~	~
4-Chlorotoluene	0.00280	U	~	~	~
4-Methyl-2-pentanone	0.00280	U	~	2.9	6.3
Acetone	0.00570	U	0.05	41	110
Acrolein	0.00570	U	~	0.00062	0.0014
Acrylonitrile	0.00280	U	~	0.0087	0.037
Benzene	0.00280	U	0.06	0.13	0.13
Bromochloromethane	0.00280 0.00280	U	~	1.6	1.6
Bromodichloromethane	0.00280	U	~	3.4	3.4
Bromoform	0.00280	U	~	4.4	4.4
Bromomethane	0.00280	U	~	0.54	0.54
Carbon disulfide	0.00280	U	~	160	350
Carbon tetrachloride	0.00280	U	0.76	0.26	0.26
Chlorobenzene	0.00280	U	1.1	6.1	6.1
Chloroethane	0.00280	U	~	5	19
Chloroform	0.00280	U	0.37	2.5	2.5
Chloromethane	0.00280	U	0.25	0.038	0.038
cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene	0.00280 0.00280	U	0.25 ~	1.6 0.12	1.6 0.46
Cyclohexane	0.00280	U	~	~	~
Dibromochloromethane	0.00280	U	~	3.2	3.2
Dibromomethane	0.00280	U	~	3.7	7.7
Dichlorodifluoromethane	0.00280	U	~	100	2.6
Ethyl Benzene	0.00280	U	1	46	46
Hexachlorobutadiene	0.00280	U	~	1.2	1.2
Isopropylbenzene	0.00280	U	~	780	1600
Methyl acetate	0.00280	U	~	690	1900
Methyl tert-butyl ether (MTBE)	0.00280	U	0.93	0.28	0.28
Methylcyclohexane Methylene chloride	0.00280 0.0400	U	0.05	0.076	0.038
n-Butylbenzene	0.0400	U	12	950	2600
n-Propylbenzene	0.00280	U	3.9	290	780
o-Xylene	0.00280	U	~	~	~
p- & m- Xylenes	0.00570	U	~	~	~
p-Isopropyltoluene	0.00280	U	~	~	~
sec-Butylbenzene	0.00280	U	11	350	960
Styrene	0.00280	U	~	24	24
tert-Butyl alcohol (TBA)	0.00280	U	~	~	24
tert-Butylbenzene	0.00280	U	5.9	270	740
Tetrachloroethylene Toluene	0.00280 0.00280	U	1.3 0.7	0.43	0.43
trans-1,2-Dichloroethylene	0.00280	U	0.19	2.3	2.3
trans-1,3-Dichloropropylene	0.00280	U	~	0.12	0.046
Trichloroethylene	0.00280	U	0.47	0.17	0.17
Trichlorofluoromethane	0.00280	U	~	87	87
Vinyl acetate	0.00280	U	~	~	14
Vinyl Chloride	0.00280	U	0.02	0.03	0.027
Xylenes, Total	0.00850	U	0.26	990	990
			vely Identified Cmpds.		
Hexane isomer	0.0140	JN	~	~	~
NOTES:					

NOTES:

 \boldsymbol{Q} is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution
J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

B=analyte round in the analyses batch blank
E=result is estimated and cannot be accurately reported due to levels encountered or interferences
NT=this indicates the analyte was not a target for this sample
~=this indicates that no regulatory limit has been established for this analyte

= sample exceeds PA Regulated Fill Limits

Table 2 Waste Characterization Analytical Results for SVOCs

Sample Disc				llytical Results for SVO	Cs	
Sampling Date	Sample ID			ng Island city, NY		
Citest Marks						PA Regulated Fill
Compound					PA Clean Fill Limits	
Semi-Volatilies, 270 10		Result		Cleanup Objectives		
Semi-Volutiles, 270 - Comprehensive	Units	mg/kg	Q	mg/Kg	mg/kg	mg/kg
2.4.5 First and brownesses			s, 8270			
12.4-First-Newborner 0.0477 U	1,1-Biphenyl	0.0477	U	~	790	2200
12-Dichlorobekenzene	1,2,4,5-Tetrachlorobenzene	0.0952	U	~	~	14
23-Diphophylydrazanie (as Aoshenzene)	1,2,4-Trichlorobenzene	0.0477	U	~	27	27
1.3-DeChlorosberamer 0.0477 U 24 61 61 1.3-LeChlorosberamer 0.0477 U 1.8 10 10 1.3-LeChlorosberamer 0.0477 U -		0.0477	U	1.1	59	59
J.A.Delchorobenzones	1,2-Diphenylhydrazine (as Azobenzene)		_		0.15	0.58
23.45 Frichiorophened						
2.4.5 Frichisophemol					10	10
24.6-Pichlosophenol					~	~
2A-Denktypehend			_			
24-Distriptyphenol 0.0977 U			_			
24-Dintrobleme 0.0952			_			
2.4-Dintroblume			_			
22-Districtotlesee			_			
2.Chlorophenol 0.0477 U 6.200 18000 2.0401 2.04				~		
2.Chlorophenol			_			
2-Methylphenol			_	~		
2-Nitrophenol			U	~		
2-Nitrophenel 0.0477						
3-6 + Methylphenols						
33-Dichlorobenizitine						
3-Nitroansiline						
Ab-Dintro-2-methylphenol						
4-Bromopheryl phenyl ether 0.0477						
Chloros-methylphenol 0.0477 U			_			
### AChloropation 0.0477						
A-Chlorophenyl phenyl ether						
A-Nitrophenol						
A-Nitrophenol				~	0.031	0.066
Acenaphthylene 0.0477 U 20 2700 4700 4700 Acenaphthylene 0.0477 U 100 2500 6900 6900 Acetophenone 0.0477 U - 200 540 Aniline 0.191 U - 0.16 0.34 Aniline 0.191 U - 0.16 0.34 Aniline 0.0477 U 100 350 350 350 350 Atrazine 0.0477 U - 0.13 0.14 0.15				~		
Acetophenone 0.0477 U	-	0.0477	U	20	2700	4700
Aniline 0.191 U ~ 0.16 0.34 Anthracene 0.0477 U 100 350 350 Arazine 0.0477 U ~ 0.13 0.13 Benzaldehyde 0.0477 U ~ ~ ~ Benzolajanthracene 0.0477 U 1 25 110 Benzolajanthracene 0.0477 U 1 25 110 Benzolajfurranthene 0.0477 U 1 25 110 Benzolajfurranthene 0.0477 U 1 25 110 Benzolajfurranthene 0.0477 U 100 180 180 Benzolacid 0.0477 U 0.8 250 610 Benzolacid 0.0477 U 0 2900 7800 Benzyl butyl phthalate 0.0477 U ~ 2900 7800 Benzyl butyl phthalate 0.0477 U ~ 0.0039 0.017 <tr< td=""><td>Acenaphthylene</td><td>0.0477</td><td>U</td><td>100</td><td>2500</td><td>6900</td></tr<>	Acenaphthylene	0.0477	U	100	2500	6900
Anthracene 0.0477 U 100 350 350 Arazine 0.0477 U ~ 0.13 0.13 Benzaldehyde 0.0477 U ~ ~ ~ Benzaldine 0.191 U ~ 0.078 0.34 Benzo(a)pyrene 0.0477 U 1 25 110 Benzo(a)dio 0.0477 U 0.8 250 610 Benzyl alcohol 0.0477 U 0.8 250 610 Benzyl alcohol 0.0477 U ~ 2000 7800 Benzyl alcohol 0.0477 U ~ 10000 1000 Benzyl butyl pythhala	Acetophenone	0.0477	U	~	200	540
Atrazine 0.0477 U ~ 0.13 0.13 Benzaldehyde 0.0477 U ~ ~ ~ Benzólajnthracene 0.0471 U 1 25 110 Benzólajnthracene 0.0477 U 1 25 110 Benzólajnthracene 0.0477 U 1 25 11 Benzólajnthracene 0.0477 U 1 25 11 Benzólajntorathene 0.0477 U 100 180 180 Benzólajntorathene 0.0477 U 0.08 250 610 Benzóladidorathene 0.0477 U 0.08 250 610 Benzyladohol 0.0477 U ~ 2900 7800 Benzyladohol 0.0477 U ~ 400 1100 Bis(2-chloreikoxy)methane 0.0477 U ~ 0.0039 0.017 Bis(2-chloreikylphthalate 0.0477 U ~ 0.0039 0.	Aniline	0.191	U	~	0.16	0.34
Benzaldehyde 0.0477 U ~	Anthracene	0.0477		100		
Benzidine			_			
Benzo(a)anthracene 0.0477 U 1 25 110 Benzo(a)pyrene 0.0477 U 1 25 11 Benzo(philoranthene 0.0477 U 1 25 110 Benzo(gh.ilperylene 0.0477 U 100 180 180 Benzo(gh.ilperylene 0.0477 U 100 180 180 Benzo(a) Genzia 0.0477 U 0.08 250 610 Benzol alcohol 0.0477 U ~ 2900 7800 Benzyl alcohol 0.0477 U ~ 400 1100 Benzyl butyl phthalate 0.0477 U ~ 400 1000 Bis(2-chloroethy)ylether 0.0477 U ~ 0.039 0.017 Bis(2-chloroethy)ylether 0.0477 U ~ 0.039 0.017 Bis(2-chloroethy)ylether 0.0477 U ~ 0.08 8 8 Bis(2-chloroethy)ylether 0.0477 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Benzo(a)pyrene 0.0477 U 1 2.5 11 Benzo(b)fluoranthene 0.0477 U 1 25 110 Benzo(b)fluoranthene 0.0477 U 100 180 180 Benzo(b)fluoranthene 0.0477 U 0.8 250 610 Benzola caid 0.0477 U ~ 2900 7800 Benzyl alcohol 0.0477 U ~ 2990 7800 Benzyl butyl phthalate 0.0477 U ~ 10000 1100 Benzyl butyl phthalate 0.0477 U ~ 10000 10000 Bis(2-chyloreboxylmethane 0.0477 U ~ 0.0039 0.017 Bis(2-chyloreboxylmethane 0.0477 U ~ 8 8 8 Bis(2-chylorebyl)phthalate 0.0477 U ~ 8 8 8 Carbacole 0.0477 U ~ 21 0.83 Carbacole 0.0477 U<			_			
Benzo(b)fluoranthene 0.0477 U 1 25 110 Benzo(b,h)perylene 0.0477 U 100 180 180 Benzo(b)fluoranthene 0.0477 U 0.08 250 610 Benzol acid 0.0477 U ~ 2900 7800 Benzyl alcohol 0.0477 U ~ 400 1100 Benzyl butyl phthalate 0.0477 U ~ 10000 10000 Bis(2-chloroethoxy)methane 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethylether 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethylether 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethylether 0.0477 U ~ 8 8 8 Bis(2-chloroethylether 0.0477 U ~ 8 8 8 Bis(2-chloroethylether 0.0477 U ~ 130 130 130 130 130						
Benzo(g,h,i)perylene 0.0477 U 100 180 180 Benzo(g,k)Huoranthene 0.0477 U 0.8 250 610 Benzo(acid 0.0477 U ~ 2900 7800 Benzyl alcohol 0.0477 U ~ 400 1110 Benzyl butyl phthalate 0.0477 U ~ 10000 10000 Bis(2-chloroethoxy)methane 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethoxy)methane 0.0477 U ~ 0.0039 0.017 Bis(2-chlorostopropylether 0.0477 U ~ 8 8 8 Bis(2-chloroisopropylether 0.0477 U ~ 8 8 8 Bis(2-chloroisopropylether 0.0477 U ~ 8 8 8 Bis(2-chloroisopropylether 0.0477 U ~ 130 130 130 Caprolactam 0.0477 U ~ 21 0.83 25			_			
Benzo(k)fluoranthene 0.0477 U 0.8 250 610 Benzo(acid 0.0477 U ~ 2900 7800 Benzyl alcohol 0.0477 U ~ 400 1100 Benzyl butyl phthalate 0.0477 U ~ 10000 10000 Bis(2-chloroethoxy)methane 0.0477 U ~ ~ ~ Bis(2-chloroethy)ether 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethy)ether 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethy)ether 0.0477 U ~ 8 8 8 Bis(2-chloroethy)ether 0.0477 U ~ 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 230 230 230 230 230 230 230 230 230 230						
Benzoic acid 0.0477 U ~ 2900 7800 Benzyl alcohol 0.0477 U ~ 400 1100 Benzyl butyl phthalate 0.0477 U ~ 10000 10000 Bis(2-chloroethoxy)methane 0.0477 U ~ ~ ~ Bis(2-chloroethyl)ether 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethyl)jether 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethyl)jether 0.0477 U ~ 8 8 8 Bis(2-chloroisopropyl)jether 0.0477 U ~ 130 30 25						
Benzyl butyl phthalate 0.0477 U ~ 10000 10000 Bis(2-chloroethcoxy)methane 0.0477 U ~ ~ ~ Bis(2-chloroethyl)ether 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethyl)ether 0.0477 U ~ 8 8 Bis(2-chloroethyl)ether 0.0477 U ~ 130 130 Caprolactam 0.0477 U ~ 130 130 Caprolactam 0.0952 U ~ ~ ~ Carbazole 0.0477 U ~ 21 0.83 Chrysene 0.0477 U ~ 21 0.83 Chrysene 0.0477 U 0.33 2.5 11 Dibenzofuran 0.0477 U 7 ~ ~ Dibenzofuran 0.0477 U 7 ~ ~ Diethyl phthalate 0.0477 U ~ 160 180						7800
Bis(2-chloroethoxy)methane 0.0477 U ~ ~ ~ ~ Bis(2-chloroethy)lether 0.0477 U ~ 0.0039 0.017 Bis(2-chloroethy)lether 0.0477 U ~ 8 8 8 Bis(2-chloroisopropylether 0.0477 U ~ 130 130 130 Caprolactam 0.0952 U ~ <	Benzyl alcohol	0.0477	U	~	400	1100
Bis(2-chloroethyl)ether	Benzyl butyl phthalate	0.0477	U	~	10000	10000
Bis(2-chloroisopropyl)ether 0.0477 U ~ 8 8 Bis(2-chlylhexyl)phthalate 0.0477 U ~ 130 130 Caprolactam 0.0952 U ~ ~ ~ Carbazole 0.0477 U ~ 21 0.83 Chrysene 0.0477 U 1 230 230 Dibenzo(a,h)anthracene 0.0477 U 0.33 2.5 11 Dibenzo(tran 0.0477 U 7 ~ ~ ~ Dibenzofuran 0.0477 U 7 ~ ~ ~ ~ Dibenzofuran 0.0477 U 7 ~ <td>Bis(2-chloroethoxy)methane</td> <td>0.0477</td> <td>U</td> <td>~</td> <td>2</td> <td>2</td>	Bis(2-chloroethoxy)methane	0.0477	U	~	2	2
Bis(2-ethylhexyl)phthalate 0.0477 U ~ 130 130 Caprolactam 0.0952 U ~ ~ ~ Carbazole 0.0477 U ~ 21 0.83 Chrysene 0.0477 U 1 230 230 Dibenzofuran 0.0477 U 0.33 2.5 11 Dibenzofuran 0.0477 U 7 ~ ~ Diethyl phthalate 0.0477 U ~ 160 180 Dimethyl phthalate 0.0477 U ~ ~ ~ Di-n-ottyl phthalate 0.0477 U ~ ~ ~ Bi-n-ottyl phthalate 0.0477 U ~ ~ ~ Bi-n-ottyl phthalate 0.0477 U ~ ~ ~ Bi-n-ottyl phthalate 0.0477 U 0 ~ ~ ~ Bi-uvallore 0.0477 U 10 30 3000 3800			_			
Caprolactam 0.0952 U ~			_			
Carbazole 0.0477 U ~ 21 0.83 Chrysene 0.0477 U 1 230 230 Dibenzo(a,h)anthracene 0.0477 U 0.33 2.5 11 Dibenzofuran 0.0477 U 7 ~ ~ Diethyl phthalate 0.0477 U ~ 160 180 Dimethyl phthalate 0.0477 U ~ ~ ~ Din-butyl phthalate 0.0477 U ~ ~ ~ ~ Din-butyl phthalate 0.0477 U ~ <td>0 1 :</td> <td>0.0000</td> <td>U</td> <td>~</td> <td>130</td> <td>130</td>	0 1 :	0.0000	U	~	130	130
Chrysene 0.0477 U 1 230 230 Dibenzo(a,h)anthracene 0.0477 U 0.33 2.5 11 Dibenzofuran 0.0477 U 7 ~ ~ Dienbyl phthalate 0.0477 U ~ 160 180 Dimethyl phthalate 0.0477 U ~ ~ ~ Di-n-octyl phthalate 0.0477 U ~ ~ ~ Di-n-octyl phthalate 0.0477 U ~ ~ ~ ~ Di-n-octyl phthalate 0.0477 U ~ ~ ~ ~ ~ Di-n-octyl phthalate 0.0477 U ~ ~ 4400 10000 10000 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3800 Hexachlorothance 0.0477 U 0.33 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96			U	~	21	0.00
Dibenzo(a,h)anthracene 0.0477 U 0.33 2.5 11 Dibenzofuran 0.0477 U 7 ~ ~ Diethyl phthalate 0.0477 U ~ 160 180 Dimethyl phthalate 0.0477 U ~ ~ ~ Di-n-butyl phthalate 0.0477 U ~ ~ ~ Di-n-octyl phthalate 0.0477 U 100 3200 3200 Fluoranthene 0.0477 U 100 3200 3200 Fluoranthene 0.0477 U 30 3000 3800 Hexachlorobenzene 0.0477 U 0.33 0.96 0.96 Hexachlorobutadiene 0.0477 U ~ 1.2 1.2 Hexachlorocyclopentadiene 0.0477 U ~ 91 91 Hexachlorocyclopentadiene 0.0477 U ~ 0.56 0.56 Indeno(1,2,3-cd)pyrene 0.0477 U ~ 0.5						
Dibenzofuran 0.0477 U 7 ~ ~ Diethyl phthalate 0.0477 U ~ 160 180 Dimethyl phthalate 0.0477 U ~ ~ ~ Di-n-butyl phthalate 0.0477 U ~ ~ ~ Di-n-octyl phthalate 0.0476 D ~ 4400 10000 Fluoranthene 0.0477 U 100 3200 3200 Fluorene 0.0477 U 30 3000 3800 Hexachlorobenzene 0.0477 U 0.33 0.96 0.96 Hexachlorobutadiene 0.0477 U ~ 1.2 1.2 Hexachlorocyclopentadiene 0.0477 U ~ 91 91 Hexachlorocyclopentadiene 0.0477 U ~ 0.56 0.56 Indemo(1,23-cd)pyrene 0.0477 U ~ 91 91 91 Isophorone 0.0477 U ~ 1.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Diethyl phthalate 0.0477 U ~ 160 180 Dimethyl phthalate 0.0477 U ~ ~ ~ Di-n-butyl phthalate 0.0477 U ~ ~ ~ Di-n-octyl phthalate 0.176 D ~ 4400 10000 Fluoranthene 0.0477 U 100 3200 3200 Fluoranthene 0.0477 U 30 3000 3800 Hexachlorobenzene 0.0477 U 0.33 0.96 0.96 Hexachlorobutadiene 0.0477 U ~ 1.2 1.2 Hexachlorocyclopentadiene 0.0477 U ~ 91 91 Hexachlorochane 0.0477 U ~ 0.56 0.56 Indeno(1,2,3-cd)pyrene 0.0477 U ~ 0.56 0.56 Isophorone 0.0477 U ~ 1.9 1.9 Naphthalene 0.0477 U ~ 0.79 2.						
Dimethyl phthalate 0.0477 U ~ ~ ~ Di-n-butyl phthalate 0.0477 U ~ ~ ~ ~ Di-n-butyl phthalate 0.0477 U ~ ~ ~ ~ Fluoranthene 0.0477 U 100 3200 3200 3200 Fluorene 0.0477 U 30 3000 3800 3800 Hexachlorobutadiene 0.0477 U ~ 1.2						
Di-n-butyl phthalate 0.0477 U ~ ~ ~ Di-n-butyl phthalate 0.176 D ~ 4400 10000 10000 10000 3200 3200 3200 3200 3200 3200 3200 3200 3800 3800 3800 3800 3800 3800 4800 3800 3800 480				~		
Di-n-octyl phthalate 0.176 D ~ 4400 10000 Fluoranthene 0.0477 U 100 3200 3200 Fluorene 0.0477 U 30 3000 3800 Hexachlorobenzene 0.0477 U 0.33 0.96 0.96 Hexachlorobutadiene 0.0477 U ~ 1.2 1.2 Hexachlorocyclopentadiene 0.0477 U ~ 91 91 Hexachlorocyclopentadiene 0.0477 U ~ 0.56 0.56 Indeno(1,23-cd)pyrene 0.0477 U ~ 0.56 0.56 Indeno(1,23-cd)pyrene 0.0477 U ~ 1.9 1.9 Naphthalene 0.0477 U ~ 1.9 1.9 Naphthalene 0.0477 U ~ 1.9 1.9 Nitrobenzene 0.0477 U ~ 0.079 2.2 N-Nitrosodimethylamine 0.0477 U ~ 0.000041						
Fluorene 0.0477 U 30 3000 3800 3800 Hexachlorobenzene 0.0477 U 0.33 0.96 0.96 0.96 1.2 1.2 1.2 1.2 1.3 1				~	4400	10000
Hexachlorobenzene 0.0477 U 0.33 0.96 0.96 Hexachlorobutadiene 0.0477 U ~ 1.2 1.2 Hexachlorocyclopentadiene 0.0477 U ~ 91 91 Hexachlorocyclopentadiene 0.0477 U ~ 0.56 0.56 Indeno(1,2,3-cd)pyrene 0.0477 U 0.5 25 110 Isophorone 0.0477 U ~ 1.9 1.9 Naphthalene 0.0477 U 25 25 25 Nitrobenzene 0.0477 U ~ 0.79 2.2 N-Nitrosodimethylamine 0.0477 U ~ 0.000041 7.6e-005 N-Nitrosodiphenylamine 0.0477 U ~ 0.0013 0.0061 N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 Phenanthrene 0.0477 U 0.33						
Hexachlorobutadiene 0.0477 U ~ 1.2 1.2 Hexachlorocyclopentadiene 0.0477 U ~ 91 91 Hexachlorocyclopentadiene 0.0477 U ~ 0.56 0.56 Indeno(1,23-cd)pyrene 0.0477 U 0.5 25 110 Isophorone 0.0477 U ~ 1.9 1.9 Naphthalene 0.0477 U ~ 1.9 1.9 Nitrobenzene 0.0477 U ~ 0.79 2.2 N-Nitrosodimethylamine 0.0477 U ~ 0.000041 7.6e-005 N-nitroso-di-n-propylamine 0.0477 U ~ 0.0013 0.0061 N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Hexachlorocyclopentadiene 0.0477 U						
Hexachloroethane 0.0477 U ~ 0.56 0.56 Indeno(1,2,3-cd)pyrene 0.0477 U 0.5 25 110 Isophorone 0.0477 U ~ 1.9 1.9 Naphthalene 0.0477 U 12 25 25 Nitrobenzene 0.0477 U ~ 0.79 2.2 N-Nitrosodimethylamine 0.0477 U ~ 0.00041 7.6e-005 N-nitroso-di-n-propylamine 0.0477 U ~ 0.0013 0.0061 N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88						
Indeno(1,2,3-cd)pyrene						
Isophorone 0.0477 U ~ 1.9 1.9 Naphthalene 0.0477 U 12 25 25 25 Nitrobenzene 0.0477 U ~ 0.79 2.2 N-Nitrosodimethylamine 0.0477 U ~ 0.000041 7.6e-005 N-nitroso-di-n-propylamine 0.0477 U ~ 0.0013 0.0061 N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88						
Naphthalene 0.0477 U 12 25 25 Nitrobenzene 0.0477 U ~ 0.79 2.2 N-Nitrosodimethylamine 0.0477 U ~ 0.000041 7.6e-005 N-nitroso-di-n-propylamine 0.0477 U ~ 0.0013 0.0061 N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88						
Nitrobenzene 0.0477 U ~ 0.79 2.2 N-Nitrosodimethylamine 0.0477 U ~ 0.000041 7.6e-005 N-nitroso-di-n-propylamine 0.0477 U ~ 0.0013 0.0061 N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88						
N-Nitrosodimethylamine 0.0477 U ~ 0.000041 7.6e-005 N-nitroso-di-n-propylamine 0.0477 U ~ 0.0013 0.0061 N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88						
N-nitroso-di-n-propylamine 0.0477 U ~ 0.0013 0.0061 N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88			_			
N-Nitrosodiphenylamine 0.0477 U ~ 20 83 Pentachlorophenol 0.0477 U 0.8 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88						
Pentachlorophenol 0.0477 U 0.8 5 5 Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88						
Phenanthrene 0.0477 U 100 10000 10000 Phenol 0.0477 U 0.33 66 88						
					10000	10000
Pyrene 0.0477 U 100 2200 2206						
NOTES:		0.0477	U	100	2200	2206

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

Table 3 Waste Characterization Analytical Results for Pesticids, Herbicides and PCBs 11-28 31st Drive, Long Island city, NY

Sample ID	WC-1 (0-8) Composite			•		
Sampling Date	6/20/2017		NYSDEC Part 375 Unrestricted Use Soil	PA Clean Fill Limits	PA Regulated Fill	
Client Matrix	Soil		Cleanup Objectives	PA Clean FIII Limits	Limits	
Compound	Result		Cleanup Objectives			
Units	mg/kg	Q	mg/Kg	mg/kg	mg/kg	
		P	esticides, EPA TCL List			
4,4'-DDD	0.00191	U	0.0033	6.8	30	
4,4'-DDE	0.00191	U	0.0033	41	170	
4,4'-DDT	0.00191	U	0.0033	53	230	
Aldrin	0.00191	U	0.005	0.1	0.44	
alpha-BHC	0.00191	U	0.02	0.046	0.19	
beta-BHC	0.00191	U	0.036	0.22	0.82	
Chlordane, total	0.00382	U	~	49	49	
delta-BHC	0.00191	U	0.04	11	30	
Dieldrin	0.00191	U	0.005	0.11	0.44	
Endosulfan I	0.00191	U	2.4	110	260	
Endosulfan II	0.00191	U	2.4	130	260	
Endosulfan sulfate	0.00191	U	2.4	70	70	
Endrin	0.00191	U	0.014	5.5	5.5	
Endrin aldehyde	0.00191	U	~	~	~	
Endrin ketone	0.00191	U	~	~	~	
gamma-BHC (Lindane)	0.00191	U	0.1	0.072	0.072	
Heptachlor	0.00191	U	0.042	0.68	0.68	
Heptachlor epoxide	0.00191	U	~	1.1	1.1	
Methoxychlor	0.00955	U	~	630	630	
Toxaphene	0.0966	U	~	1.2	1.2	
	Pol	lyc	hlorinated Biphenyls (I	PCB)		
Aroclor 1016	0.0193	U	~	15	200	
Aroclor 1221	0.0193	U	~	0.63	2.5	
Aroclor 1232	0.0193	U	~	0.5	2	
Aroclor 1242	0.0193	U	~	16	62	
Aroclor 1248	0.0193	U	~	9.9	44	
Aroclor 1254	0.0193	U	~	4.4	44	
Aroclor 1260	0.0193	U	~	30	130	
Total PCBs	0.0193	U	0.1	~	50	

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

 $J= analyte \ detected \ at \ or \ above \ the \ MDL \ (method \ detection \ limit) \ but \ below \ the \ RL \ (Reporting \ Limit) \ - \ data \ is \ estimated \ detection \ limit)$

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

 \sim =this indicates that no regulatory limit has been established for this analyte

Table 4
Waste Characterization Analytical Results for Metals
11-28 31st Drive, Long Island city, NY

Sample ID	WC-1 (0-8) Composi	te			
Sampling Date	6/20/2017		NYSDEC Part 375	DA CL E'ILL''t	PA Regulated Fill
Client Matrix	Soil		Unrestricted Use Soil Cleanup Objectives	PA Clean Fill Limits	Limits
Compound	Result	Q	Cleanup Objectives		
Aluminum	9,510		~	~	190000
Antimony	0.58	U	~	27	27
Arsenic	4.68		13	12	53
Barium	26.40		350	8200	8200
Beryllium	0.44		7.2	320	320
Cadmium	0.35	U	2.5	38	38
Calcium	779	В	~	~	~
Chromium, Trivalent	14.60		~	~	190000
Chromium, Hexavalent	0.58	U	1	94	190
Cobalt	12.90		~	8.1	22
Copper	12.50		50	8200	36000
Iron	19,400		~	~	190000
Lead	12		63	450	450
Magnesium	2,770		~	~	~
Manganese	480		1600	31000	190000
Mercury	0.03	U	0.18	10	10
Nickel	13.90	В	30	650	650
Potassium	1,120	В	~	~	~
Selenium	2.61		3.9	26	26
Silver	0.58	U	2	84	84
Sodium	113	В	~	~	~
Thallium	1.16	U	~	14	14
Vanadium	20.80		~	1500	72000
Zinc	39.50		109	12000	12000

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

= sample exceeds PA Clean Fill Limits

Table 5 Waste Characterization Analytical Results for TCLPs 11-28 31st Drive, Long Island city, NY

			31st Drive, Long Isla				
Sample ID	· · · ·	WC-1 (0-8) Composite WC-1-SB-2 (2-3) Grab WC-SB-1 (3-4) Site Grab				EPA Hazardous	
Sampling Date	6/20/2017		6/20/2017		6/20/2017		Waste Limits
Client Matrix	Soil		Soil		Soil		vvaste Limits
Units	mg/L	Q	mg/L	Q			mg/L
		Vola	tile Organics, TCLP	RCI	RA List	•	
1,1-Dichloroethylene	NT	1	0.00250	U	NT	П	0.33
1,2-Dichloroethane	NT	1	0.00250	U	NT	+	0.02
1.4-Dichlorobenzene	NT	1	0.00250	U	NT	+	1.8
2-Butanone	NT	1	0.00250	U	NT	+	0.12
Benzene	NT		0.00250	U	NT	+	0.06
Carbon tetrachloride	NT	+	0.00250	U	NT	+	0.76
Chlorobenzene	NT	+	0.00250	U	NT	+	1.1
Chloroform	NT	+	0.00250	U	NT	+	0.37
Tetrachloroethylene	NT		0.00250	U	NT	+	1.3
Trichloroethylene	NT	1	0.00250	U	NT	+	0.47
Vinyl Chloride		+		U	NT NT	+	0.02
vinyi Chioride	NT		0.00250			Ш	0.02
1 (D) 11 1	0.00545		emi-Volatiles, TCLI	KC.		_	1.0
1,4-Dichlorobenzene	0.00645	U	NT		NT	\perp	1.8
2,4,5-Trichlorophenol	0.00722	U	NT		NT	\perp	~
2,4,6-Trichlorophenol	0.00654	U	NT		NT	\perp	~
2,4-Dinitrotoluene	0.00473	U	NT		NT	\perp	~
2-Methylphenol	0.00171	U	NT		NT		0.33
3- & 4-Methylphenols	0.00743	U	NT		NT		~
Cresols, total	0.00740	U	NT		NT		~
Hexachlorobenzene	0.00591	U	NT		NT		0.33
Hexachlorobutadiene	0.00662	U	NT		NT		~
Hexachloroethane	0.00726	U	NT		NT		~
Nitrobenzene	0.00393	U	NT		NT		~
Pentachlorophenol	0.00753	U	NT		NT		0.8
Pyridine	0.00637	U	NT		NT		~
		I	Pesticides, TCLP RC	RA I	List		
Chlordane, total	0.00022	U	NT		NT		~
Endrin	0.00004	U	NT		NT		0.014
gamma-BHC (Lindane)	0.00004	U	NT		NT	\top	0.1
Heptachlor	0.00004	U	NT		NT	T	0.042
Heptachlor epoxide	0.00004	U	NT		NT	+	~
Methoxychlor	0.00004	U	NT		NT	+	~
Toxaphene	0.00111	U	NT		NT	T	~
			Metals, TCLP	_			
Arsenic	NT	1	NT NT	Г	0.00400	U	13
Barium	NT	+	NT	\vdash	0.00400	-	350
Cadmium	NT	+	NT		0.134	U	2.5
Chromium	NT	+	NT		0.00500	U	~
Copper	0.00333	U	NT	\vdash	0.00600 NT	U	50
Mercury	0.00333	U	NT NT	\vdash	0.00020	U	0.18
Lead	0.00020 NT	10	NT NT	\vdash	0.00020	В	63
Nickel	0.00556	U	NT NT	\vdash	0.00400 NT	D	30
Selenium	0.00556 NT	10	NT NT		0.0110	U	3.9
Silver		+-	NT NT		0.0110	U	2
Zinc	NT	- n	NT NT	\vdash		U	109
ZIIIC	0.0722	В		n	NT	1_	109
	T	Ι.	Herbicides, TCI	ď		_	
2,4,5-TP (Silvex)	0.00500	U	NT		NT	\perp	3.8
2,4-D	0.00500	U	NT	l	NT	1	~

NOTES:

 \boldsymbol{Q} is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample ~=this indicates that no regulatory limit has been established for this analyte

Table 6
Waste Characterization Analytical Results for RCRA Characteristics
11-28 31st Drive, Long Island city, NY

Sample ID	WC-1 (0-8) Composi	ite	WC-1-SB-2 (2-3) Grab		WC-SB-1 (3-4) Site Gral	5
Sampling Date	6/20/2017		6/20/2017		6/20/2017	
Client Matrix	Soil		Soil		Soil	
Compound	Result	Q	Result	Q	Result	Q
			Corrosivity			
рН	8.040		NT		NT	
			Ignitability			
Ignitability	Non-Ignit.		NT		NT	
		Pa	int Filter Test			
Paint Filter Test	NT		NT		No Free Liquid	
		Rea	ctivity-Cyanide			
Reactivity - Cyanide	0.25 mg/kg	U	NT		NT	
		Rea	activity-Sulfide			
Reactivity - Sulfide	15 mg/Kg	U	NT		NT	

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

 \sim =this indicates that no regulatory limit has been established for this analyte

Attachment A: Soil Logs

Hydro Tech Environmental, Corp.

Main Office 77 Arkay Drive Suite G Hauppauge, NY 11786

NYC Office

15 Ocean Avenuet, 2nd Floor Brooklyn, New York 11225

T (718) 636-0800 · F (718) 636-0900

Log

Soil Probe

T (631) 462-5866 · F (631) 462-5877 www.hydrotechenvironmental.com

Date: 6/20/2017 Job No: 170183

11-28 31 Drive

Long Island City, NY 11106

Boring No.: SB-1

GM - Silty Gravel

GC - Clayey Gravel

Location:

4 Feet

Drilling Method: Geoprobe Total Depth:

Page: 1 of 1

Sampling Interval: 2 Feet

Sampling Method: Grab

Driller: Envirodrill

Depth to Water: N/A

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay

SM - Silty Sand OL - Inorganic Silts/Organic Silty Clay

SC - Clayey Sand MH- Elastic Silts CH - Inorganic Clay, High Plastic

OH - Organic Silt / Clay PT - Peat/High Organics

Depth Below Grade and	PID Reading (ppm)	USCS	Soil Description
Lithology			

工工工工工工工工	0.0	SP	Coment, asnablt and brown silty sand. No odor
	0.0	SP	Cement, aspahlt and brown silty sand. No odor. Silty sand. No odor.
7			

Job No: 170183

Location:

Hydro Tech Environmental, Corp.

Main Office 77 Arkay Drive Suite G Hauppauge, NY 11786

NYC Office 15 Ocean Avenuet, 2nd Floor

Brooklyn, New York 11225 T (718) 636-0800 · F (718) 636-0900

Soil Probe

Log

www.hydrotechenvironmental.com

Date: 6/20/2017 Page: 1 of 1

Sampling Interval: 2 Feet 11-28 31 Drive Sampling Method: Grab Long Island City, NY 11106

Boring No.: SB-2 Driller: Envirodrill

Depth to Water: Drilling Method: Geoprobe N/A

Total Depth: 4 Feet

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay OH - Organic Silt / Clay PT - Peat/High Organics GM - Silty Gravel SM - Silty Sand OL - Inorganic Silts/Organic Silty Clay

GC - Clayey Gravel SC - Clayey Sand MH- Elastic Silts

Depth Below Grade and Lithology	PID Reading (ppm)	USCS	Soil Description
Lithology	(ррш)		•

-2 Light brown silty sand. No odor.	******	0.0	SP	
Light brown silty sand. No odor.				Cement, aspahlt and dark brown silty sand. No odor.
Light brown silty sand. No odor.	正完平完平完平出			
Light brown silty sand. No odor.	光平光平光平光平			
Light brown silty sand. No odor.	平光平光平光平光			
Light brown silty sand. No odor.	光平光平光平光平			
Light brown silty sand. No odor.	<u> </u>			
Light brown silty sand. No odor.	五字五字五字五字			
Light brown silty sand. No odor.	出事出事出事出事			
Light brown silty sand. No odor.	平光平光平光平光			
Light brown silty sand. No odor.	出来出来出来出来			
Light brown silty sand. No odor.	卡亚米亚米亚米亚			
Light brown silty sand. No odor.	平光平光平光平光			
Light brown silty sand. No odor.	光平光平光平光平			
Light brown silty sand. No odor.	产生产生产生产生			
Light brown silty sand. No odor.	李完李完李完李完			
Light brown silty sand. No odor.	光平光平光平光平			
Light brown silty sand. No odor.	至出至出至出至出			
Light brown silty sand. No odor.	王王王王王王王			
Light brown silty sand. No odor.	-2 			
Light brown sitty sand. No odor.		0.0	SP	The Late Communication and Albertain
	光平光平光平光平			Light brown sifty sand. No odor.
	<u> </u>			
	李宗李宗李宗李宗			
	光平光平光平光平			
	重完重完重完重完			
	光平光平光平光平			
	<u> </u>			
	工光平光平光平光			
	光平光平光平光平			
	工光平光平光革光			
	工光平光平光革光			
	光空光空光空光空			
-4	-4			

Hydro Tech Environmental, Corp.

Main Office 77 Arkay Drive Suite G Hauppauge, NY 11786

NYC Office

15 Ocean Avenuet, 2nd Floor Brooklyn, New York 11225

Log

Soil Probe

T (631) 462-5866 · F (631) 462-5877

T (718) 636-0800 · F (718) 636-0900 www.hydrotechenvironmental.com

Date: 6/20/2017 Job No: 170183

11-28 31 Drive

Long Island City, NY 11106

Boring No.: SB-3

Location:

Drilling Method: Geoprobe

Total Depth: 8 Feet Page: 1 of 1

Sampling Interval: 2 Feet

Sampling Method: Grab

Driller: Envirodrill

Depth to Water: N/A

USCS SYMBOLS

GW - Well Graded Gravel SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt CH - Inorganic Clay, High Plastic

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay OH - Organic Silt / Clay GM - Silty Gravel

SM - Silty Sand OL - Inorganic Silts/Organic Silty Clay

GC - Clayey Gravel SC - Clayey Sand MH- Elastic Silts

PT - Peat/High Organics

Depth Below Grade and	PID Reading (ppm)	USCS	Soil Description
Lithology			

22 23 24 24 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	0	
Brown silty sand. No odor. -4 -4 -5 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	Cement, aspanlt and brown silty sand. No odor.	
-6 -6 -7 -7 -7 -7 -7 -7 -7 -7	- 	
Brown silty sand. No odor.	Drown sity sand. No odor.	
-8 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		

Hydro Tech Environmental, Corp.

Main Office 77 Arkay Drive Suite G Hauppauge, NY 11786

NYC Office

15 Ocean Avenuet, 2nd Floor Brooklyn, New York 11225

Log

Soil Probe

T (718) 636-0800 · F (718) 636-0900 T (631) 462-5866 · F (631) 462-5877 www.hydrotechenvironmental.com

Job No: 170183

Location:

11-28 31 Drive

Boring No.:

Long Island City, NY 11106

Drilling Method:

Geoprobe

SB-4

4 Feet

Total Depth:

Date: 6/20/2017 Page: 1 of 1

Sampling Interval: 2 Feet Sampling Method: Grab

Driller: Envirodrill

Depth to Water: N/A

USCS SYMBOLS

GW - Well Graded Gravel

SW - Well Graded Sand ML - Inorganic Silt / Sandy Silt

GP - Poorly Graded Gravel SP - Poorly Graded Sand CL - Inorganic Clays/Sandy Clay

CH - Inorganic Clay, High Plastic OH - Organic Silt / Clay

SM - Silty Sand

OL - Inorganic Silts/Organic Silty Clay MH- Elastic Silts SC - Clayey Sand

PT - Peat/High Organics

Depth Below
Grade and
Lithology

GM - Silty Gravel

GC - Clayey Gravel

PID Reading	USCS
(ppm)	

Soil Description

	0.0	SP	Cement, aspahlt and brown silty sand. No odor.
-2	0.0	SP	Dark brown silty sand. No odor.

Attachment B: Laboratory Data

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 07/05/2017

Client Project ID: 170154 - 11-28 31st Dr. Long Island City. NY

York Project (SDG) No.: 17F0796

Revision No. 1.0

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 07/05/2017

Client Project ID: 170154 - 11-28 31st Dr. Long Island City. NY

York Project (SDG) No.: 17F0796

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on June 20, 2017 and listed below. The project was identified as your project: 170154 - 11-28 31st Dr. Long Island City. NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
17F0796-01	WC-1 (0-8) Composite	Soil	06/20/2017	06/20/2017
17F0796-02	WC-1SB-2 (2-3) Grab	Soil	06/20/2017	06/20/2017
17F0796-03	WC-SB-1 (3-4) Site Grab	Soil	06/20/2017	06/20/2017

General Notes for York Project (SDG) No.: 17F0796

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 9. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

"Body"

Benjamin Gulizia Laboratory Director **Date:** 07/05/2017

Client Sample ID: WC-1 (0-8) Composite York Sample ID:

17F0796-01

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

17F0796

170154 - 11-28 31st Dr. Long Island City. NY

Soil

June 20, 2017 3:00 pm

06/20/2017

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	d by Method: EPA 3550C Parameter	Result	Flag	Units	Reported to	LOO	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
02-52-4	1,1-Biphenyl	ND	1 11119	ug/kg dry	47.7	95.2	2	EPA 8270D		06/24/2017 10:08	06/28/2017 11:55	ZZZ
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	95.2	190	2	Certifications: EPA 8270D Certifications:		710854,NJDEP,PADEP 06/24/2017 10:08 710854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:		06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55	ZZZ
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-NY	06/24/2017 10:08 710854,PADEP	06/28/2017 11:55	ZZZ
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-NY	06/24/2017 10:08 /10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-NY	06/24/2017 10:08 /10854,PADEP	06/28/2017 11:55	ZZZ
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-NY	06/24/2017 10:08 710854,PADEP	06/28/2017 11:55	ZZZ
58-90-2	2,3,4,6-Tetrachlorophenol	ND		ug/kg dry	95.2	190	2	EPA 8270D Certifications:	NELAC-NY	06/24/2017 10:08 710854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
8-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
20-83-2	2,4-Dichlorophenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
05-67-9	2,4-Dimethylphenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
1-28-5	2,4-Dinitrophenol	ND		ug/kg dry	95.2	190	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
21-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
06-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
1-58-7	2-Chloronaphthalene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
95-57-8	2-Chlorophenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
95-48-7	2-Methylphenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
38-74-4	2-Nitroaniline	ND		ug/kg dry	95.2	190	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
38-75-5	2-Nitrophenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE		ZZZ
55794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NE	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ

Client Sample ID: WC-1 (0-8) Composite York Sample ID: 17F0796-01

Sample Notes:

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received

17F0796 170154 - 11-28 31st Dr. Long Island City. NY Soil June 20, 2017 3:00 pm 06/20/2017

Log-in Notes:

Semi-Volatiles, 8270 - Comprehensive

Sample Prepar	red by Method: EPA 3550C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
99-09-2	3-Nitroaniline	ND		ug/kg dry	95.2	190	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	95.2	190	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
106-47-8	4-Chloroaniline	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
100-01-6	4-Nitroaniline	ND		ug/kg dry	95.2	190	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
100-02-7	4-Nitrophenol	ND		ug/kg dry	95.2	190	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
83-32-9	Acenaphthene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
208-96-8	Acenaphthylene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
98-86-2	Acetophenone	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
62-53-3	Aniline	ND		ug/kg dry	191	381	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
120-12-7	Anthracene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
1912-24-9	Atrazine	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
100-52-7	Benzaldehyde	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
92-87-5	Benzidine	ND		ug/kg dry	191	381	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,PADE	06/28/2017 11:55 P	ZZZ
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDE	06/28/2017 11:55 P,PADEP	ZZZ
65-85-0	Benzoic acid	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 5 of 51

Client Sample ID: WC-1 (0-8) Composite

York Sample ID: 17F0796-01

Sample Notes:

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received

17F0796 170154 - 11-28 31st Dr. Long Island City. NY Soil June 20, 2017 3:00 pm 06/20/2017

Log-in Notes:

Semi-Volatiles, 8270 - Comprehensive

Sample Prepar	Sample Prepared by Method: EPA 3550C											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-51-6	Benzyl alcohol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
105-60-2	Caprolactam	ND		ug/kg dry	95.2	190	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
86-74-8	Carbazole	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
218-01-9	Chrysene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
132-64-9	Dibenzofuran	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
84-66-2	Diethyl phthalate	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
131-11-3	Dimethyl phthalate	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
117-84-0	Di-n-octyl phthalate	176		ug/kg dry	47.7	95.2	2	EPA 8270D		06/24/2017 10:08	06/28/2017 11:55	ZZZ
								Certifications:	CTDOH,N	IELAC-NY10854,NJDEF	P,PADEP	
206-44-0	Fluoranthene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
86-73-7	Fluorene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	NELAC-N	06/24/2017 10:08 Y10854,NJDEP,PADEP	06/28/2017 11:55	ZZZ
118-74-1	Hexachlorobenzene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
67-72-1	Hexachloroethane	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ
78-59-1	Isophorone	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,N	06/24/2017 10:08 ELAC-NY10854,NJDEP,	06/28/2017 11:55 PADEP	ZZZ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Client Sample ID: WC-1 (0-8) Composite York Sample ID: 17F0796-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17F0796 170154 - 11-28 31st Dr. Long Island City. NY Soil June 20, 2017 3:00 pm 06/20/2017

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-20-3	Naphthalene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
98-95-3	Nitrobenzene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
87-86-5	Pentachlorophenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
85-01-8	Phenanthrene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
108-95-2	Phenol	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
129-00-0	Pyrene	ND		ug/kg dry	47.7	95.2	2	EPA 8270D Certifications:	CTDOH,NI	06/24/2017 10:08 ELAC-NY10854,NJDI	06/28/2017 11:55 EP,PADEP	ZZZ
	Surrogate Recoveries	Result		Acceptance Range								
367-12-4	Surrogate: 2-Fluorophenol	67.4 %			20-108							
4165-62-2	Surrogate: Phenol-d5	55.0 %			23-114							
4165-60-0	Surrogate: Nitrobenzene-d5	63.4 %			22-108							
321-60-8	Surrogate: 2-Fluorobiphenyl	56.7 %			21-113							
118-79-6	Surrogate: 2,4,6-Tribromophenol	84.8 %			19-110							
1718-51-0	Surrogate: Terphenyl-d14	59.1 %			24-116							

Semi-Volatiles, TCLP RCRA Target List

Sample Prepared by Method: EPA 3510C/1311

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-46-7	1,4-Dichlorobenzene	ND		ug/L	6.45	10.0	1	EPA 8270D/1311 Certifications: NELAC-NY	06/22/2017 08:22 Y10854,PADEP	06/27/2017 19:34	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	7.22	10.0	1	EPA 8270D/1311 Certifications: CTDOH,NI	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	6.54	10.0	1	EPA 8270D/1311 Certifications: CTDOH,NI	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/L	4.73	10.0	1	EPA 8270D/1311 Certifications: CTDOH,NI	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
95-48-7	2-Methylphenol	ND		ug/L	1.71	10.0	1	EPA 8270D/1311 Certifications: CTDOH,NI	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	7.43	20.0	1	EPA 8270D/1311 Certifications: CTDOH,NI	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
1319-77-3	Cresols, total	ND		ug/L	7.40	30.0	1	EPA 8270D/1311 Certifications: CTDOH,NI	06/22/2017 08:22 ELAC-NY10854	06/27/2017 19:34	SR
118-74-1	Hexachlorobenzene	ND		ug/L	5.91	10.0	1	EPA 8270D/1311 Certifications: CTDOH,NI	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR

Log-in Notes:

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 7 of 51

Client Sample ID: WC-1 (0-8) Composite York Sample ID: 17F0796-01

Date Received

06/20/2017

York Project (SDG) No. Client Project ID Matrix Collection Date/Time 17F0796

170154 - 11-28 31st Dr. Long Island City. NY Soil June 20, 2017 3:00 pm

Semi-Volatiles, TCLP RCRA Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C/1311

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/L	6.62	10.0	1	EPA 8270D/1311 Certifications: CTDOH,N	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
67-72-1	Hexachloroethane	ND		ug/L	7.26	10.0	1	EPA 8270D/1311 Certifications: CTDOH,N	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
98-95-3	Nitrobenzene	ND		ug/L	3.93	10.0	1	EPA 8270D/1311 Certifications: CTDOH,N	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
87-86-5	Pentachlorophenol	ND		ug/L	7.53	10.0	1	EPA 8270D/1311 Certifications: CTDOH,N	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
110-86-1	Pyridine	ND		ug/L	6.37	10.0	1	EPA 8270D/1311 Certifications: CTDOH,N	06/22/2017 08:22 ELAC-NY10854,NJDE	06/27/2017 19:34 EP,PADEP	SR
	Surrogate Recoveries	Result		Acceptance Range							
367-12-4	Surrogate: 2-Fluorophenol	50.4 %			10-65						
4165-62-2	Surrogate: Phenol-d5	36.4 %			10-49						
4165-60-0	Surrogate: Nitrobenzene-d5	67.9 %			10-96						
321-60-8	Surrogate: 2-Fluorobiphenyl	50.5 %			10-93						
118-79-6	Surrogate: 2,4,6-Tribromophenol	70.0 %			10-128						
1718-51-0	Surrogate: Terphenyl-d14	60.6 %			10-100						

Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3550C

Log-in Note:	s:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Tentativ	ely Identified Compounds	0.00		ug/kg dry			2	EPA 8270D	06/24/2017 10:08	06/28/2017 11:55	ZZZ

Pesticides, EPA TCL List

Log-in Notes:

Sample Notes:

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD		ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,NI	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
72-55-9	4,4'-DDE		ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,NI	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
50-29-3	4,4'-DDT		ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,NI	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
309-00-2	Aldrin		ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,NI	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
319-84-6	alpha-BHC		ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,NI	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
319-85-7	beta-BHC		ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,NI	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
57-74-9	Chlordane, total		ND		ug/kg dry	3.82	3.82	5	EPA 8081B Certifications:	CTDOH,NI	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
319-86-8	delta-BHC		ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,NI	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 8 of 51

Client Sample ID: WC-1 (0-8) Composite

York Sample ID: 17F0796-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received17F0796170154 - 11-28 31st Dr. Long Island City. NYSoilJune 20, 2017 3:00 pm06/20/2017

Pesticides, EPA TCL List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550	C
-------------------------------------	---

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
60-57-1	Dieldrin	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
959-98-8	Endosulfan I	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
33213-65-9	Endosulfan II	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
72-20-8	Endrin	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
53494-70-5	Endrin ketone	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
76-44-8	Heptachlor	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.91	1.91	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
72-43-5	Methoxychlor	ND		ug/kg dry	9.55	9.55	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
8001-35-2	Toxaphene	ND		ug/kg dry	96.6	96.6	5	EPA 8081B Certifications:	CTDOH,N	06/22/2017 09:20 ELAC-NY10854,NJDE	06/22/2017 21:13 EP,PADEP	SA
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
877-09-8	Surrogate: Tetrachloro-m-xylene	46.5 %		30-140								
2051-24-3	Surrogate: Decachlorobiphenyl	56.9 %			30-140							

Pesticides, TCLP RCRA List

Sample Prepared by Method: EPA 3510C/1311

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
57-74-9	Chlordane, total	ND		ug/L	0.222	0.222	1	EPA 8081B/1311 Certifications: CTDOH,NE	06/22/2017 08:32 ELAC-NY10854,NJDI	06/23/2017 10:50 EP,PADEP	SA
72-20-8	Endrin	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	06/22/2017 08:32 ELAC-NY10854,NJDE	06/23/2017 10:50 EP,PADEP	SA
58-89-9	gamma-BHC (Lindane)	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	06/22/2017 08:32 ELAC-NY10854,NJDE	06/23/2017 10:50 EP,PADEP	SA
76-44-8	Heptachlor	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	06/22/2017 08:32 ELAC-NY10854,NJDE	06/23/2017 10:50 EP,PADEP	SA
1024-57-3	Heptachlor epoxide	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	06/22/2017 08:32 ELAC-NY10854,NJDE	06/23/2017 10:50 EP,PADEP	SA
72-43-5	Methoxychlor	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	06/22/2017 08:32 ELAC-NY10854,NJDE	06/23/2017 10:50 EP,PADEP	SA
8001-35-2	Toxaphene	ND		ug/L	1.11	1.11	1	EPA 8081B/1311 Certifications: CTDOH,NE	06/22/2017 08:32 ELAC-NY10854,NJDI	06/23/2017 10:50 EP,PADEP	SA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 9 of 51

Client Sample ID: WC-1 (0-8) Composite

York Sample ID: 1'

17F0796-01

York Project (SDG) No.

CAS No.

877-09-8

2051-24-3

Client Project ID

Flag

Units

Matrix

Collection Date/Time

Date Received

17F0796

170154 - 11-28 31st Dr. Long Island City. NY

Soil

Dilution

June 20, 2017 3:00 pm

06/20/2017

Pesticides, TCLP RCRA List

Sample Prepared by Method: EPA 3510C/1311

Log-in Notes:

Sample Notes:

Reference Method

Date/Time	Date/Time	
Prepared	Analyzed	Analyst

Surrogate Recoveries	
Surrogate: Tetrachloro-m-xylene	

Surrogate: Decachlorobiphenyl

Result 52.9 %

90.7 %

Result

Acceptance Range

30-120

Reported to

LOD/MDL

30-120

Polychlorinated Biphenyls (PCB)

Parameter

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND	mg/kg dry	0.0193	1	EPA 8082A Certifications:	NELAC-N	07/03/2017 11:55 Y10854,CTDOH,NJDI	07/03/2017 18:10 EP,PADEP	SA
11104-28-2	Aroclor 1221	ND	mg/kg dry	0.0193	1	EPA 8082A Certifications:	NELAC-N	07/03/2017 11:55 Y10854,CTDOH,NJDI	07/03/2017 18:10 EP,PADEP	SA
11141-16-5	Aroclor 1232	ND	mg/kg dry	0.0193	1	EPA 8082A Certifications:	NELAC-N	07/03/2017 11:55 Y10854,CTDOH,NJDI	07/03/2017 18:10 EP,PADEP	SA
53469-21-9	Aroclor 1242	ND	mg/kg dry	0.0193	1	EPA 8082A Certifications:	NELAC-N	07/03/2017 11:55 Y10854,CTDOH,NJDI	07/03/2017 18:10 EP,PADEP	SA
12672-29-6	Aroclor 1248	ND	mg/kg dry	0.0193	1	EPA 8082A Certifications:	NELAC-N	07/03/2017 11:55 Y10854,CTDOH,NJDI	07/03/2017 18:10 EP,PADEP	SA
11097-69-1	Aroclor 1254	ND	mg/kg dry	0.0193	1	EPA 8082A Certifications:	NELAC-N	07/03/2017 11:55 Y10854,CTDOH,NJDI	07/03/2017 18:10 EP,PADEP	SA
11096-82-5	Aroclor 1260	ND	mg/kg dry	0.0193	1	EPA 8082A Certifications:	NELAC-N	07/03/2017 11:55 Y10854,CTDOH,NJDI	07/03/2017 18:10 EP,PADEP	SA
1336-36-3	* Total PCBs	ND	mg/kg dry	0.0193	1	EPA 8082A Certifications:		07/03/2017 11:55	07/03/2017 18:10	SA
	Surrogate Recoveries	Result	Accepta	nce Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	55.5 %	36	0-140						
2051-24-3	Surrogate: Decachlorobiphenyl	44.0 %	30	0-140						

Herbicides, TCLP Target List

Sample Prepared by Method: EPA 3535A/1311

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND	1	ug/L	5.00	1	EPA 8151A/1311 Certifications: CTDOH,NI	06/23/2017 05:23 ELAC-NY10854,NJDE	06/23/2017 19:02 EP	LAB
94-75-7	2,4-D	ND		ug/L	5.00	1	EPA 8151A/1311 Certifications: CTDOH,NI	06/23/2017 05:23 ELAC-NY10854,NJDE	06/23/2017 19:02 EP	LAB
	Surrogate Recoveries	Result		Accepta	nce Range					
19719-28-9	Surrogate: 2 4-Dichlorophenylacetic acid (D	85.6%		3/	0-150					

Copper, TCLP by EPA 6010

Log-in Notes:

Sample Notes:

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 10 of 51

Client Sample ID: WC-1 (0-8) Composite York Sample ID: 17F0796-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received

17F0796 170154 - 11-28 31st Dr. Long Island City. NY Soil June 20, 2017 3:00 pm 06/20/2017

Sample Prepared by Method: EPA 3015A/1311

CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ Dilution Refe		Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-50-8	Copper		ND		mg/L	0.00333	1	EPA 6010C/1311	06/23/2017 11:38	06/24/2017 04:49	KML

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes:	Sample Notes:

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum		9510		mg/kg dry	5.79	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-36-0	Antimony		ND		mg/kg dry	0.579	1	EPA 6010C Certifications:	CTDOLLNI	06/23/2017 11:55	06/24/2017 00:22	KML
	A								CTDOH,NI	ELAC-NY10854,NJDI		****
7440-38-2	Arsenic		4.68		mg/kg dry	1.16	1	EPA 6010C	CTDOLLN	06/23/2017 11:55	06/24/2017 00:22	KML
	ъ.							Certifications:	CIDOH,N	ELAC-NY10854,NJD		****
7440-39-3	Barium		26.4		mg/kg dry	1.16	1	EPA 6010C	CTD OIL V	06/23/2017 11:55	06/24/2017 00:22	KML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD		
7440-41-7	Beryllium		0.441		mg/kg dry	0.116	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-43-9	Cadmium		ND		mg/kg dry	0.347	1	EPA 6010C Certifications:	CTDOH,NE	06/23/2017 11:55 ELAC-NY10854,NJDI	06/24/2017 00:22 EP,PADEP	KML
7440-70-2	Calcium		779	В	mg/kg dry	5.79	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-47-3	Chromium		14.6		mg/kg dry	0.579	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-48-4	Cobalt		12.9		mg/kg dry	0.579	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-50-8	Copper		12.5		mg/kg dry	0.579	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
	• •		12.0					Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7439-89-6	Iron		19400		mg/kg dry	2.31	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
			13.00					Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7439-92-1	Lead		12.0		mg/kg dry	0.347	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
			12.0		3 3 . ,			Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7439-95-4	Magnesium		2770		mg/kg dry	5.79	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
			2770		3 3 . ,	2.77	•	Certifications:	CTDOH,N	ELAC-NY10854,NJD		
7439-96-5	Manganese		480		mg/kg dry	0.579	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
	8		.00					Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
7440-02-0	Nickel		13.9	В	mg/kg dry	0.579	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
			13.5	Б	887	0.579	•	Certifications:	CTDOH,N	ELAC-NY10854,NJD		
7440-09-7	Potassium		1120	В	mg/kg dry	5.79	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
			1120	2	3 3 . ,	2.77	•	Certifications:	CTDOH,N	ELAC-NY10854,NJD		
7782-49-2	Selenium		2.61		mg/kg dry	1.16	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
			2.01			1.10		Certifications:	CTDOH.N	ELAC-NY10854,NJD		-22
7440-22-4	Silver		ND		mg/kg dry	0.579	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
/ 11 U-22-4			ND		mg/kg ury	0.579	1	Certifications:	CTDOH,NI	06/23/2017 11:33 ELAC-NY10854,NJDI		KIVIL
7440-23-5	Sodium		113	В	mg/kg dry	11.6	1	EPA 6010C		06/23/2017 11:55	06/24/2017 00:22	KML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 11 of 51

					Sample I	nformation					
Client Sar	mple ID:	WC-1 (0-8) Co	mposite		-				York Samp	le ID: 17	F0796-01
York Proje	ect (SDG) N	Jo.	Client F	roiect I	D		M	atrix Coll	ection Date/Time	e Date	e Received
	7F0796	<u></u>	170154 - 11-28 31st D			ΙΥ			20, 2017 3:00 p	_	06/20/2017
Metals, Ta	arget Ana	_				<u>Log-in Notes:</u>		Sample Not	es:		
CAS No		Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-28-0	Thallium		ND		mg/kg dry	1.16	1	EPA 6010C	06/23/2017 11:55	06/24/2017 00:22	KML
7440-62-2	Vanadium	ı	20.8		mg/kg dry	1.16	1	EPA 6010C	NELAC-NY10854,NJE 06/23/2017 11:55	06/24/2017 00:22	KML
7440-66-6	Zinc		39.5		mg/kg dry	1.16	1	EPA 6010C	06/23/2017 11:55	06/24/2017 00:22	KML
Nickel, TO	CLP by El	PA 6010				Log-in Notes:		Certifications: CTDOH Sample Not	NELAC-NY10854,NJI	DEP,PADEP	
		EPA 3015A/1311									
CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-02-0	Nickel		ND		mg/L	0.00556	1	EPA 6010C/1311 Certifications: CTDOH,	06/23/2017 11:38 NELAC-NY10854,NJI	06/24/2017 04:49 DEP,PADEP	KML
Zinc, TCI	LP by EPA	A 6010				Log-in Notes:		Sample Not	es:		
		EPA 3015A/1311									
CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-66-6	Zinc		0.0722	В	mg/L	0.0111	1	EPA 6010C/1311 Certifications: CTDOH	06/23/2017 11:38 NELAC-NY10854,NJ	06/24/2017 04:49 DEP,PADEP	KML
Mercury Sample Prepare		EPA 7473 soil				Log-in Notes:		Sample Not	res:		
CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/kg dry	0.0347	1	EPA 7473 Certifications: CTDOH,	06/23/2017 09:29 NJDEP,NELAC-NY10	06/23/2017 14:37 854,PADEP	SY
Mercury,	TCLP					Log-in Notes:		Sample Not	es:		
Sample Prepare	ed by Method:	EPA SW846-7470									
CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		ND		mg/L	0.000200	1	EPA 7470/1311 Certifications: CTDOH,	06/23/2017 14:28 NJDEP,PADEP,NELAC	06/23/2017 14:28 C-NY10854	AA
Ignitabilit		Analysis Preparation				<u>Log-in Notes:</u>		Sample Not			
CAS No	0.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	* Ignitabili	ty	Non-Ignit.		-	1	1	EPA 1030P Certifications: CTDOH,	06/22/2017 19:58 PADEP	06/22/2017 20:11	AA
Total Soli	<u>ds</u>					Log-in Notes:		Sample Not	es:		

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 12 of 51

			\$	Sample	Information					
Client Sample II	D: WC-1 (0-8) Cor	nposite						York Sample	<u>: ID:</u> 17]	F0796-0
York Project (SD	<i>*</i>	·	roject ID	='				ection Date/Time	Date Recei	
17F0796	6	170154 - 11-28 31st D	r. Long I	sland City.	NY	S	oil June 2	20, 2017 3:00 pn	1 ()	06/20/201
Sample Prepared by Met	ethod: % Solids Prep							Data/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Analyzed	Analyst
solids * % S	Solids	86.4		%	0.100	1	SM 2540G Certifications: CTDOH	06/26/2017 10:07	06/26/2017 13:44	TAJ
Chromium, Hex	<u>xavalent</u>				Log-in Notes:		Sample Not	es:		
Sample Prepared by Met	ethod: EPA SW846-3060				P. 4.14			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
18540-29-9 Chron	nium, Hexavalent	ND		mg/kg dry	0.579	1	EPA 7196A Certifications: NJDEP,CT	06/21/2017 08:26 FDOH,NELAC-NY1085	06/22/2017 12:57 4,PADEP	AD
Corrosivity					Log-in Notes:		Sample Not	es:		
Sample Prepared by Me	ethod: Analysis Preparation									
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
рН		8.04	НТ-рН	pH units	0.500	1	EPA 9045D	06/21/2017 11:42	06/21/2017 12:40	TJM
* Tem	nperature	23.2	НТ-рН	pH units		1	Certifications: NELAC-1 EPA 9045D Certifications:	NY10854,CTDOH,PAD 06/21/2017 11:42	06/21/2017 12:40	TJM
Reactivity-Cyar	<u>nide</u>				Log-in Notes:		Sample Not	es:		
Sample Prepared by Me	ethod: Analysis Preparation									
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Read	ctivity - Cyanide	ND		mg/kg	0.250	1	EPA SW-846 Ch.7.3.3 Certifications: CTDOH,F	06/26/2017 11:32 PADEP	06/26/2017 14:27	AD
Reactivity-Sulfi	<u>ide</u>				Log-in Notes:		Sample Not	es:		
Sample Prepared by Mer	ethod: Analysis Preparation									
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Read	ctivity - Sulfide	ND		mg/kg	15.0	1	EPA SW-846 Ch.7.3.4 Certifications: CTDOH,F	06/26/2017 11:35 PADEP	06/26/2017 14:29	AD
TCLP Extraction	on for METALS EPA	1311			Log-in Notes:		Sample Not	es: EXT-Temp		
Sample Prepared by Met	ethod: EPA SW 846-1311 TCLP	ext. for metals						D . (T)	D (//E!	
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
TCLP	Extraction	Completed		N/A	1.00	1	EPA 1311 Certifications: NELAC-N	06/21/2017 18:50 NY10854,CTDOH,NJDE	06/22/2017 13:29 P,PADEP	TAJ
TCLP Extraction	on for SVOCS/PEST	HERB			Log-in Notes:		Sample Not	es: EXT-Temp		
	ethod: EPA SW 846-1311 TCLP		S							
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
TCLP	Extraction	Completed		N/A	1.00	1	EPA 1311 Certifications: NELAC-N	06/21/2017 19:18 NY10854,CTDOH,NJDE	06/22/2017 13:30 P.P.PADEP	TAJ
								,		

Page 13 of 51 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@

132-02 89th AVENUE

STRATFORD, CT 06615

120 RESEARCH DRIVE

RICHMOND HILL, NY 11418

Client Sample ID: WC-1SB-2 (2-3) Grab

York Sample ID: 17F0796-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 17F0796
 170154 - 11-28 31st Dr. Long Island City. NY
 Soil
 June 20, 2017 3:00 pm
 06/20/2017

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		Time pared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 NELAC-NY10854,NJI		06/23/2017 21:04 P	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 NELAC-NY10854,NJI		06/23/2017 21:04 P	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 NELAC-NY10854,NJI		06/23/2017 21:04	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 NELAC-NY10854,NJI		06/23/2017 21:04 P	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 NELAC-NY10854,NJI		06/23/2017 21:04 P	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 CTDOH,NELAC-NY1		06/23/2017 21:04 EP,PADEP	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	57	110	1	EPA 8260C Certifications:	06/23/20 NELAC-NY10854,NJI	17 07:30	06/23/2017 21:04	SS
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/20 NELAC-NY10854,NJI		06/23/2017 21:04	SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 14 of 51

Client Sample ID: WC-1SB-2 (2-3) Grab York Sample ID: 17F0796-02

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17F0796 Soil

Log-in Notes:

170154 - 11-28 31st Dr. Long Island City. NY

June 20, 2017 3:00 pm

Sample Notes:

06/20/2017

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

CAS N	Vo. Parameter	Result Fl	ag Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time e Method Prepared Analyzed A	Analyst
78-93-3	2-Butanone	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
95-49-8	2-Chlorotoluene	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
591-78-6	2-Hexanone	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
106-43-4	4-Chlorotoluene	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
108-10-1	4-Methyl-2-pentanone	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
67-64-1	Acetone	ND	ug/kg dry	5.7	11	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
107-02-8	Acrolein	ND	ug/kg dry	5.7	11	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
107-13-1	Acrylonitrile	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
71-43-2	Benzene	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
108-86-1	Bromobenzene	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 NELAC-NY10854,NJDEP,PADEP	SS
74-97-5	Bromochloromethane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 NELAC-NY10854,NJDEP,PADEP	SS
75-27-4	Bromodichloromethane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
75-25-2	Bromoform	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
74-83-9	Bromomethane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
75-15-0	Carbon disulfide	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
56-23-5	Carbon tetrachloride	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
108-90-7	Chlorobenzene	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
75-00-3	Chloroethane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
67-66-3	Chloroform	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
74-87-3	Chloromethane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
156-59-2	cis-1,2-Dichloroethylene	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 CTDOH,NELAC-NY10854,NJDEP,PADEP	SS
110-82-7	Cyclohexane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 21:04 NELAC-NY10854,NJDEP,PADEP	SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 15 of 51

Client Sample ID: WC-1SB-2 (2-3) Grab

York Sample ID: 17F0796-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received17F0796170154 - 11-28 31st Dr. Long Island City. NYSoilJune 20, 2017 3:00 pm06/20/2017

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Tie e Method Prepared Analyz	
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 NELAC-NY10854,NJDEP,PADEP	21:04 SS
74-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 NELAC-NY10854,NJDEP,PADEP	21:04 SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 NELAC-NY10854,NJDEP,PADEP	21:04 SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 NELAC-NY10854,NJDEP,PADEP	21:04 SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 NELAC-NY10854,NJDEP,PADEP	21:04 SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 NELAC-NY10854,NJDEP,PADEP	21:04 SS
75-09-2	Methylene chloride	40	CCV-E	ug/kg dry	5.7	11	1	EPA 8260C	06/23/2017 07:30 06/23/2017	21:04 SS
								Certifications:	CTDOH,NELAC-NY10854,NJDEP,PADEP	
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,PADEP	21:04 SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.7	11	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,PADEP	21:04 SS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
100-42-5	Styrene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 NELAC-NY10854,NJDEP,PADEP	21:04 SS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
108-88-3	Toluene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	06/23/2017 07:30 06/23/2017 CTDOH,NELAC-NY10854,NJDEP,PADEP	21:04 SS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 16 of 51

Client Sample ID: WC-1SB-2 (2-3) Grab York Sample ID: 17F0796-02

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 06/20/2017

17F0796 170154 - 11-28 31st Dr. Long Island City. NY Soil June 20, 2017 3:00 pm

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Notes:

bumpre i repui	ea o j memoa: Em sossm											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDF	06/23/2017 21:04 EP,PADEP	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
108-05-4	Vinyl acetate	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-NY	06/23/2017 07:30 Y10854,NJDEP,PADE	06/23/2017 21:04 P	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.5	17	1	EPA 8260C Certifications:	CTDOH,NI	06/23/2017 07:30 ELAC-NY10854,NJDF	06/23/2017 21:04 EP	SS
	Surrogate Recoveries	Result		Acce	ptance Range	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	108 %			77-125							
2037-26-5	Surrogate: Toluene-d8	96.8 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	89.0 %			76-130							

Volatile Organics, TCLP RCRA List

Log-in Notes: Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDI	06/23/2017 21:04 EP,PADEP	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
78-93-3	2-Butanone	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
67-66-3	Chloroform	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
127-18-4	Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA 8260C/1311 Certifications: CTDOH,NE	06/23/2017 07:30 ELAC-NY10854,NJDE	06/23/2017 21:04 EP,PADEP	SS
	Surrogate Recoveries	Result		Acce	eptance Range	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	108 %			77-125						
460-00-4	Surrogate: p-Bromofluorobenzene	89.0 %			76-130						
2037-26-5	Surrogate: Toluene-d8	96.8 %			85-120						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 17 of 51

WC-1SB-2 (2-3) Grab **Client Sample ID:**

York Sample ID: 17F0796-02

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

17F0796

170154 - 11-28 31st Dr. Long Island City. NY

Soil

June 20, 2017 3:00 pm

06/20/2017

Volatile Organics, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Reference Method

Sample Prepared by Method: EPA 5035A

CAS No. Parameter

Reported to Flag Units LOD/MDL

%

Units

ug/kg dry

Dilution

Date/Time Date/Time Prepared

Analyzed Analyst

Hexane isomer

Result

83.0

EPA 8260C Certifications: 06/23/2017 07:30 06/23/2017 21:04

SS

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

* % Solids

CAS No.

Result Flag Units

Flag

Reported to LOQ

Dilution Reference Method SM 2540G

Date/Time Prepared 06/26/2017 10:07 Date/Time Analyzed

Analyst TAI

Certifications:

CTDOH

06/26/2017 13:44

TCLP Extraction for VOA by EPA 1311 ZHE

Parameter

Parameter

Result

Log-in Notes:

0.100

Reported to

LOO 1.00

Sample Notes:

CAS No.

solids

Sample Prepared by Method: EPA SW 846-1311 TCLP ZHE for VOA

TCLP Extraction	Completed
-----------------	-----------

Reference Method Dilution

EPA 1311

Date/Time Prepared

06/22/2017 18:50

Date/Time Analyzed

Analyst 06/23/2017 12:08

NELAC-NY10854,CTDOH,NJDEP,PADEP Certifications:

Sample Information

Client Sample ID:

WC-SB-1 (3-4) Site Grab

York Sample ID:

17F0796-03

York Project (SDG) No.

17F0796

Client Project ID

170154 - 11-28 31st Dr. Long Island City. NY

Matrix Soil

Collection Date/Time June 20, 2017 3:00 pm Date Received 06/20/2017

Metals, TCLP RCRA

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3015A/1311

CAS No	o. Paramo	eter Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	ND		mg/L	0.004	1	EPA 6010C/1311 Certifications: CTDOH,NE	06/23/2017 11:38 ELAC-NY10854,NJDE	06/24/2017 04:55 EP,PADEP	KML
7440-39-3	Barium	0.134		mg/L	0.011	1	EPA 6010C/1311 Certifications: CTDOH,NI	06/23/2017 11:38 ELAC-NY10854,NJD	06/24/2017 04:55 EP,PADEP	KML
7440-43-9	Cadmium	ND		mg/L	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NE	06/23/2017 11:38 ELAC-NY10854,NJDE	06/24/2017 04:55 EP,PADEP	KML
7440-47-3	Chromium	ND		mg/L	0.006	1	EPA 6010C/1311 Certifications: CTDOH,NE	06/23/2017 11:38 ELAC-NY10854,NJDE	06/24/2017 04:55 EP,PADEP	KML
7439-92-1	Lead	0.004	В	mg/L	0.003	1	EPA 6010C/1311 Certifications: CTDOH,NI	06/23/2017 11:38 ELAC-NY10854,NJD	06/24/2017 04:55 EP,PADEP	KML
7782-49-2	Selenium	ND		mg/L	0.011	1	EPA 6010C/1311 Certifications: CTDOH,NE	06/23/2017 11:38 ELAC-NY10854,NJDE	06/24/2017 04:55 EP,PADEP	KML

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 18 of 51

Client Sample ID: WC-SB-1 (3-4) Site Grab York Sample ID: 17F0796-03

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

17F0796

170154 - 11-28 31st Dr. Long Island City. NY

Soil

June 20, 2017 3:00 pm

06/20/2017

Metals, TCLP RCRA

Sample Notes:

Sample Prepared by Method: EPA 3015A/1311

CAS No. Parameter

Result Flag Units Reported to LOQ Dilution Reference Method

Date/Time Prepared

Prepared

06/23/2017 14:28

Date/Time Analyzed

Analyst

7440-22-4 Silver ND

mg/L

0.006

Log-in Notes:

Log-in Notes:

EPA 6010C/1311 Certifications:

EPA 7470/1311

06/23/2017 11:38 CTDOH,NELAC-NY10854,NJDEP,PADEP

06/24/2017 04:55

KML

Mercury, TCLP

CAS No.

7439-97-6

Sample Prepared by Method: EPA SW846-7470

Result Flag Parameter

ND

Units

mg/L

Reported to Dilution ĹOQ

0.000200

Date/Time Reference Method

Sample Notes:

Date/Time Analyzed

Analyst

Log-in Notes:

Sample Notes:

06/23/2017 14:28 AA Certifications: CTDOH.NJDEP.PADEP.NELAC-NY10854

Paint Filter Test

Sample Prepared by Method: Analysis Preparation

CAS No. Parameter Paint Filter Test

Mercury

Result Flag No Free

Liquid

Result

Units

Reported to Dilution LOQ

Dilution

Reference Method

Reference Method

Date/Time Date/Time Prepared

Analyzed Analyst 06/22/2017 20:13

Date/Time

EPA 9095B Certifications:

06/22/2017 19:56 NELAC-NY10854,NJDEP

TCLP Extraction for METALS EPA 1311

Sample Prepared by Method: EPA SW 846-1311 TCLP ext. for metals

Parameter

Log-in Notes:

Sample Notes: EXT-Temp

Date/Time

CAS No.	
	TCLP Extraction

Completed

Units N/A

Flag

LOO 1.00

Reported to

Certifications:

Prepared 06/21/2017 18:50 06/22/2017 13:29 NELAC-NY10854,CTDOH,NJDEP,PADEP

Analyst

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 19 of 51

Analytical Batch Summary

	1 mung (
Batch ID: BF71088	Preparation Method:	EPA SW846-3060	Prepared By:	AD
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01	WC-1 (0-8) Composite	06/21/17		
BF71088-BLK1	Blank	06/21/17		
BF71088-SRM1	Reference	06/21/17		
Batch ID: BF71110	Preparation Method:	Analysis Preparation	Prepared By:	TJM
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01	WC-1 (0-8) Composite	06/21/17		
Batch ID: BF71146	Preparation Method:	EPA SW 846-1311 TCLP ext. for meta	Prepared By:	TAJ
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01	WC-1 (0-8) Composite	06/21/17		
17F0796-03	WC-SB-1 (3-4) Site Grab	06/21/17		
BF71146-BLK1	Blank	06/21/17		
Batch ID: BF71148	Preparation Method:	EPA SW 846-1311 TCLP extr. for SV(Prepared By:	TAJ
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01	WC-1 (0-8) Composite	06/21/17		
BF71148-BLK1	Blank	06/21/17		
Batch ID: BF71163	Preparation Method:	EPA 3510C/1311	Prepared By:	TMP
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01	WC-1 (0-8) Composite	06/22/17		
BF71163-BLK1	Blank	06/22/17		
BF71163-BS1	LCS	06/22/17		
BF71163-BSD1	LCS Dup	06/22/17		
Batch ID: BF71164	Preparation Method:	EPA 3510C/1311	Prepared By:	TMP
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01	WC-1 (0-8) Composite	06/22/17		
BF71164-BLK1	Blank	06/22/17		
BF71164-BS1	LCS	06/22/17		
BF71164-BSD1	LCS Dup	06/22/17		
Batch ID: BF71170	Preparation Method:	EPA 3550C	Prepared By:	ТВ
YORK Sample ID	Client Sample ID	Preparation Date		
120 RESEARCH DRIVE	STRATFORD, CT 06615	■ 132-02 89th AVENUE	RICHMO	ND HILL, NY 11418

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 20 of 51

 17F0796-01
 WC-1 (0-8) Composite
 06/22/17

 BF71170-BLK1
 Blank
 06/22/17

 BF71170-BS1
 LCS
 06/22/17

Batch ID: BF71222 Preparation Method: Analysis Preparation Prepared By: AA

YORK Sample ID Client Sample ID Preparation Date

17F0796-03 WC-SB-1 (3-4) Site Grab 06/22/17

Batch ID: BF71224 Preparation Method: Analysis Preparation Prepared By: AA

YORK Sample ID Client Sample ID Preparation Date

17F0796-01 WC-1 (0-8) Composite 06/22/17

Batch ID: BF71228 Preparation Method: EPA 3535A/1311 Prepared By: CM

 YORK Sample ID
 Client Sample ID
 Preparation Date

 17F0796-01
 WC-1 (0-8) Composite
 06/23/17

 BF71228-BLK1
 Blank
 06/23/17

 BF71228-BS1
 LCS
 06/23/17

 BF71228-BSD1
 LCS Dup
 06/23/17

Batch ID: BF71237 Preparation Method: EPA 5035A Prepared By: RDS

YORK Sample ID Client Sample ID Preparation Date WC-1SB-2 (2-3) Grab 17F0796-02 06/23/17 BF71237-BLK1 06/23/17 Blank BF71237-BLK2 06/23/17 Blank BF71237-BS1 06/23/17 LCS BF71237-BSD1 06/23/17 LCS Dup

Batch ID: BF71256 **Preparation Method:** EPA 7473 soil **Prepared By:** SY

 YORK Sample ID
 Client Sample ID
 Preparation Date

 17F0796-01
 WC-1 (0-8) Composite
 06/23/17

 BF71256-BLK1
 Blank
 06/23/17

 BF71256-SRM1
 Reference
 06/23/17

Batch ID: BF71268 **Preparation Method:** EPA 3015A/1311 **Prepared By:** SY

YORK Sample ID Client Sample ID Preparation Date 17F0796-01 06/23/17 WC-1 (0-8) Composite 17F0796-03 WC-SB-1 (3-4) Site Grab 06/23/17 06/23/17 BF71268-BLK1 Blank BF71268-BLK2 Blank 06/23/17 BF71268-SRM1 06/23/17 Reference

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 21 of 51

		AMAINTICAL LABORATORIES INC		
Batch ID: BF71271	Preparation Method:	EPA SW 846-1311 TCLP ZHE for VO	Prepared By:	TJM
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-02 BF71271-BLK1	WC-1SB-2 (2-3) Grab Blank	06/22/17 06/23/17		
Batch ID: BF71276	Preparation Method:	EPA 3050B	Prepared By:	SY
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01 BF71276-BLK1 BF71276-SRM1	WC-1 (0-8) Composite Blank Reference	06/23/17 06/23/17 06/23/17		
Batch ID: BF71281	Preparation Method:	EPA 5030B/1311	Prepared By:	RDS
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-02 BF71281-BLK1 BF71281-BS1 BF71281-BSD1	WC-1SB-2 (2-3) Grab Blank LCS LCS Dup	06/23/17 06/23/17 06/23/17 06/23/17		
Batch ID: BF71283	Preparation Method:	EPA SW846-7470	Prepared By:	AA
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01 17F0796-03 BF71283-BLK1 BF71283-BS1	WC-1 (0-8) Composite WC-SB-1 (3-4) Site Grab Blank LCS	06/23/17 06/23/17 06/23/17 06/23/17		
Batch ID: BF71295	Preparation Method:	EPA 3550C	Prepared By:	CM
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01 BF71295-BLK1 BF71295-BS1	WC-1 (0-8) Composite Blank LCS	06/24/17 06/24/17 06/24/17		
Batch ID: BF71331	Preparation Method:	% Solids Prep	Prepared By:	TAJ
YORK Sample ID	Client Sample ID	Preparation Date		
17F0796-01 17F0796-02	WC-1 (0-8) Composite WC-1SB-2 (2-3) Grab	06/26/17 06/26/17		
Batch ID: BF71337	Preparation Method:	Analysis Preparation	Prepared By:	AD
YORK Sample ID	Client Sample ID	Preparation Date		

120 RESEARCH DRIVE S' www.YORKLAB.com (2

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 22 of 51

17F0796-01 06/26/17 WC-1 (0-8) Composite BF71337-BLK1 06/26/17 Blank

Prepared By: Batch ID: BF71338 **Preparation Method: Analysis Preparation** AD

YORK Sample ID Client Sample ID Preparation Date

17F0796-01 06/26/17 WC-1 (0-8) Composite BF71338-BLK1 06/26/17 Blank

BG70030 Batch ID: **Preparation Method:** EPA 3550C Prepared By: TB

YORK Sample ID Client Sample ID Preparation Date

17F0796-01 07/03/17 WC-1 (0-8) Composite

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

<u>Bat</u>	ch E	SF"/12	37 - E.	PA 5035	A

Blank (BF71237-BLK1)				Prepared & Analyzed: 06/23/2017
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg wet	
Tentatively Identified Compounds	0.0		"	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,1-Dichloroethylene	ND	5.0	"	
,1-Dichloropropylene	ND	5.0	"	
,2,3-Trichlorobenzene	ND	5.0	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
,2,4-Trimethylbenzene	ND	5.0	"	
,2-Dibromo-3-chloropropane	ND	5.0	"	
,2-Dibromoethane	ND	5.0	"	
,2-Dichlorobenzene	ND	5.0	"	
,2-Dichloroethane	ND	5.0	"	
,2-Dichloropropane	ND	5.0	II .	
,3,5-Trimethylbenzene	ND	5.0	"	
,3-Dichlorobenzene	ND	5.0	"	
,3-Dichloropropane	ND	5.0	"	
,4-Dichlorobenzene	ND	5.0	"	
,4-Dioxane	ND	100	"	
,2-Dichloropropane	ND	5.0	"	
2-Butanone	ND	5.0	"	
-Chlorotoluene	ND	5.0	"	
-Hexanone	ND	5.0	"	
-Chlorotoluene	ND	5.0	"	
I-Methyl-2-pentanone	ND	5.0	"	
Acetone	ND	10	"	
Acrolein	ND	10	"	
Acrylonitrile	ND	5.0	"	
Benzene	ND ND	5.0	"	
Bromobenzene	ND ND	5.0	"	
Bromochloromethane	ND ND	5.0	"	
Bromodichloromethane	ND ND	5.0	"	
Bromoform	ND ND	5.0	"	
Bromomethane			"	
Carbon disulfide	ND ND	5.0 5.0	"	
Carbon disumde Carbon tetrachloride			"	
Carbon tetrachioride Chlorobenzene	ND ND	5.0	"	
Chloroethane	ND	5.0	"	
	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
ris-1,2-Dichloroethylene	ND	5.0	"	
cis-1,3-Dichloropropylene	ND	5.0		
Cyclohexane	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
Dibromomethane	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 24 of 51

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

|--|

Blank (BF71237-BLK1)					Prepared & Analyzed: 06/23/2017
Ethyl Benzene	ND	5.0 ug/kg	g wet		
Hexachlorobutadiene	ND	5.0 "	1		
Isopropylbenzene	ND	5.0 "	1		
Methyl acetate	ND	5.0 "	1		
Methyl tert-butyl ether (MTBE)	ND	5.0 "	1		
Methylcyclohexane	ND	5.0 "	1		
Methylene chloride	ND	10 "	1		
n-Butylbenzene	ND	5.0 "	1		
n-Propylbenzene	ND	5.0 "	1		
o-Xylene	ND	5.0 "	•		
p- & m- Xylenes	ND	10 "	1		
p-Isopropyltoluene	ND	5.0 "	1		
sec-Butylbenzene	ND	5.0 "	1		
Styrene	ND	5.0 "	1		
tert-Butyl alcohol (TBA)	ND	5.0 "	1		
tert-Butylbenzene	ND	5.0 "	i		
Tetrachloroethylene	ND	5.0 "	i		
Toluene	ND	5.0 "	i		
trans-1,2-Dichloroethylene	ND	5.0 "	1		
trans-1,3-Dichloropropylene	ND	5.0 "	1		
Trichloroethylene	ND	5.0 "	i		
Trichlorofluoromethane	ND	5.0 "	1		
Vinyl acetate	ND	5.0 "	1		
Vinyl Chloride	ND	5.0 "	1		
Xylenes, Total	ND	15 "	,		
Surrogate: 1,2-Dichloroethane-d4	54.7	ug	/L 50.0	109	77-125
Surrogate: Toluene-d8	49.3		" 50.0	98.5	85-120
Surrogate: p-Bromofluorobenzene	43.5		" 50.0	87.1	76-130

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 25 of 51 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF71237 - EPA 5035A											
Blank (BF71237-BLK2)							Prep	ared & Anal	yzed: 06/23/	/2017	
1,1,1,2-Tetrachloroethane	ND	500	ug/kg wet								
Tentatively Identified Compounds	0.0	300	ug/kg wet								
1,1,1-Trichloroethane	ND	500	,,								
1,1,2,2-Tetrachloroethane	ND	500	,,								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	500	,,								
1,1,2-Trichloroethane	ND	500	"								
1,1-Dichloroethane	ND	500	"								
1,1-Dichloroethylene	ND	500	"								
1,1-Dichloropropylene	ND	500	"								
1,2,3-Trichlorobenzene	ND	500	"								
1,2,3-Trichloropropane	ND	500	"								
1,2,4-Trichlorobenzene	ND	500	"								
1,2,4-Trimethylbenzene	ND	500	"								
1,2-Dibromo-3-chloropropane	ND	500	"								
1,2-Dibromoethane	ND	500	"								
1,2-Dichlorobenzene	ND	500	"								
1,2-Dichloroethane	ND	500	"								
1,2-Dichloropropane	ND	500	"								
1,3,5-Trimethylbenzene	ND	500	"								
1,3-Dichlorobenzene	ND	500	"								
1,3-Dichloropropane	ND	500	"								
1,4-Dichlorobenzene	ND	500	"								
1,4-Dioxane	ND	10000	"								
2,2-Dichloropropane	ND	500	"								
2-Butanone	ND	500	"								
2-Chlorotoluene	ND	500	"								
2-Hexanone	ND	500	"								
4-Chlorotoluene	ND	500	"								
4-Methyl-2-pentanone	ND	500	"								
Acetone	ND	1000	"								
Acrolein	ND	1000	"								
Acrylonitrile	ND	500	"								
Benzene	ND	500	"								
Bromobenzene	ND	500	"								
Bromochloromethane	ND	500	"								
Bromodichloromethane	ND	500	"								
Bromoform	ND	500	"								
Bromomethane	ND	500	"								
Carbon disulfide	ND	500	"								
Carbon tetrachloride	ND	500									
Chlorobenzene	ND	500	"								
Chloroethane	ND	500	"								
Chloroform	ND	500	"								
Chloromethane	ND	500	"								
cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene	ND	500	"								
Cyclohexane	ND	500	,,								
Dibromochloromethane	ND	500	,,								
Dibromocnioromethane Dibromomethane	ND	500	,,								
Dichlorodifluoromethane	ND ND	500	,,								
Diemorouniuoromeulane	ND	500	-								

120 RESEARCH DRIVE www.YORKLAB.com

Ethyl Benzene

STRATFORD, CT 06615

(203) 325-1371

ND

500

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch	BF71237	' - EPA 5035A
-------	---------	---------------

Blank (BF71237-BLK2)						Prepared & Analyzed: 06/23/2017
Hexachlorobutadiene	ND	500	ug/kg wet			
Isopropylbenzene	ND	500	"			
Methyl acetate	ND	500	"			
Methyl tert-butyl ether (MTBE)	ND	500	"			
Methylcyclohexane	ND	500	"			
Methylene chloride	ND	1000	"			
n-Butylbenzene	ND	500	"			
n-Propylbenzene	ND	500	"			
o-Xylene	ND	500	"			
p- & m- Xylenes	ND	1000	"			
p-Isopropyltoluene	ND	500	"			
sec-Butylbenzene	ND	500	"			
Styrene	ND	500	"			
tert-Butyl alcohol (TBA)	ND	500	"			
tert-Butylbenzene	ND	500	"			
Tetrachloroethylene	ND	500	"			
Toluene	ND	500	"			
trans-1,2-Dichloroethylene	ND	500	"			
trans-1,3-Dichloropropylene	ND	500	"			
Trichloroethylene	ND	500	"			
Trichlorofluoromethane	ND	500	"			
Vinyl acetate	ND	500	"			
Vinyl Chloride	ND	500	"			
Xylenes, Total	ND	1500	"			
Surrogate: 1,2-Dichloroethane-d4	52.7		ug/L	50.0	105	77-125
Surrogate: Toluene-d8	48.0		"	50.0	96.0	85-120
Surrogate: p-Bromofluorobenzene	44.2		"	50.0	88.4	76-130

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 27 of 51 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF71237 - EPA 5035A										
LCS (BF71237-BS1)						Prep	pared & Analy	zed: 06/23/	/2017	
1,1,1,2-Tetrachloroethane	52	ug/L	50.0		105	75-129				
1,1,1-Trichloroethane	57	"	50.0		115	71-137				
1,1,2,2-Tetrachloroethane	52	"	50.0		104	79-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	69	"	50.0		137	58-146				
1,1,2-Trichloroethane	53	"	50.0		105	83-123				
1,1-Dichloroethane	58	"	50.0		115	75-130				
1,1-Dichloroethylene	65	"	50.0		131	64-137				
1,1-Dichloropropylene	57	"	50.0		113	77-127				
1,2,3-Trichlorobenzene	48	"	50.0		95.1	81-140				
1,2,3-Trichloropropane	51	"	50.0		102	81-126				
1,2,4-Trichlorobenzene	50	"	50.0		99.4	80-141				
1,2,4-Trimethylbenzene	50	"	50.0		101	84-125				
1,2-Dibromo-3-chloropropane	56	"	50.0		111	74-142				
1,2-Dibromoethane	52	"	50.0		104	86-123				
1,2-Dichlorobenzene	50	"	50.0		100	85-122				
1,2-Dichloroethane	59	"	50.0		118	71-133				
1,2-Dichloropropane	51	"	50.0		101	81-122				
1,3,5-Trimethylbenzene	50	"	50.0		99.8	82-126				
1,3-Dichlorobenzene	49	"	50.0		98.1	84-124				
1,3-Dichloropropane	52	"	50.0		104	83-123				
1,4-Dichlorobenzene	51	"	50.0		102	84-124				
1,4-Dioxane	1100	"	1000		106	10-228				
2,2-Dichloropropane	56	"	50.0		112	67-136				
2-Butanone	62	"	50.0		124	58-147				
2-Chlorotoluene	51	"	50.0		102	78-127				
2-Hexanone	53	"	50.0		107	70-139				
4-Chlorotoluene	52	"	50.0		104	79-125				
4-Methyl-2-pentanone	55	"	50.0		110	72-132				
Acetone	72	"	50.0		144	36-155				
Acrolein	59	"	50.0		118	10-238				
Acrylonitrile	61	"	50.0		122	66-141				
Benzene	57	"	50.0		115	77-127				
Bromobenzene	54	"	50.0		107	77-129				
Bromochloromethane	58	"	50.0		116	74-129				
Bromodichloromethane	55	"	50.0		110	81-124				
Bromoform	50	"	50.0		99.8	80-136				
Bromomethane	58	"	50.0		115	32-177				
Carbon disulfide	73	"	50.0		145	10-136	High Bias			
Carbon tetrachloride	57	"	50.0		114	66-143				
Chlorobenzene	52	"	50.0		105	86-120				
Chloroethane	64	"	50.0		128	51-142				
Chloroform	59	"	50.0		117	76-131				
Chloromethane	58	"	50.0		115	49-132				
cis-1,2-Dichloroethylene	56	"	50.0		111	74-132				
cis-1,3-Dichloropropylene	53	"	50.0		106	81-129				
Cyclohexane	56	"	50.0		112	70-130				
Dibromochloromethane	54	"	50.0		107	10-200				
Dibromomethane	53	"	50.0		106	83-124				
Dichlorodifluoromethane	53	"	50.0		107	28-158				
Ethyl Benzene	53	"	50.0		105	84-125				
Hexachlorobutadiene	45	"	50.0		91.0	83-133				
	•									

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

York Analytical Laboratories, Inc.

Part			Reporting	Spike	Source*		%REC			RPD	
Property No. Prop	Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Suppose Supp	Batch BF71237 - EPA 5035A										
Medical face face 73	LCS (BF71237-BS1)						Prep	pared & Analyz	ed: 06/23/	2017	
Angle Angl	Isopropylbenzene	51	ug/L	50.0		102	81-127				
Methylence (binding 10	Methyl acetate	73	"	50.0		147	41-143	High Bias			
Methylame Si	Methyl tert-butyl ether (MTBE)	62	"	50.0		123	74-131				
Seary Description	Methylcyclohexane	52	"	50.0		103	70-130				
Propoptioname 51	Methylene chloride	68	"	50.0		136	57-141				
Nylene 53 " 500 105 8.1-123 A in X Poless 100 " 100 104 82.128	n-Butylbenzene	51	"	50.0		103	80-130				
No. R. m. Xylenes	n-Propylbenzene	51	"	50.0		101	74-136				
Sepanghoptonean	o-Xylene	53	"	50.0		105	83-123				
se-ButyNemene 51	p- & m- Xylenes	100	"	100		104	82-128				
Syene	p-Isopropyltoluene	50	"	50.0		99.2	85-125				
ert-Buryl alcohol (TBA) 63	sec-Butylbenzene	51	"	50.0		101	83-125				
cert-Bury-Remember	Styrene	50	"	50.0		101	86-126				
Fetachlorochylene	tert-Butyl alcohol (TBA)	63	"	50.0		127	70-130				
Trichiorechylene	tert-Butylbenzene	51	"	50.0		102	80-127				
rans-1,2-Dichloroethylene	Tetrachloroethylene	49	"	50.0		97.8	80-129				
Trichlororothylene	Toluene	49	"	50.0		97.6	85-121				
Frichlorochylene	trans-1,2-Dichloroethylene	58	"	50.0		115	72-132				
Trichlorofluoromethane 55 " 50.0 110 62-140 (mp) acetate 88 " 50.0 115 67-156 (mp) Chloride 65 " 50.0 130 52-130 Surrogate: 1,2-Dichloroethane-d4 50.1 " 50.0 100 77-125 Surrogate: P-Bromofluorobenzee 47.5 " 50.0 92.4 88-120 LCS Dup (BF71237-BSDI) Prepared & Analyzed: 06/23/2017 LL2 Tetrachloroethane 53 ug/L 50.0 106 75-129 1.22 30 1,1,1-Trichloroethane 56 " 50.0 112 71-137 2.36 30 1,1,2-Tetrachloroethane 52 " 50.0 112 71-137 2.36 30 1,1,2-Tetrachloroethane 52 " 50.0 118 8s-146 149 30 1,1,2-Tetrachloroethane 53 " 50.0 118 8s-146 149 30 1,1,2-Tichloroethane <t< td=""><td>trans-1,3-Dichloropropylene</td><td>53</td><td>"</td><td>50.0</td><td></td><td>107</td><td>78-132</td><td></td><td></td><td></td><td></td></t<>	trans-1,3-Dichloropropylene	53	"	50.0		107	78-132				
Vinyl acetalte 58 " 50.0 115 67-136 Vinyl Chloride 68 " 50.0 130 52-130 Vinyl Chloride 68 " 50.0 100 77-125 Jamingate: Dictione-d8 46.2 " 50.0 95.0 76-130 LCS Dug (BF71237-BSD1) Prepared & Analyzed: 06/23/2017 LCS Dug (BF71237-BSD2) Prepared & Analyzed: 06/23/2017 LCS Dug (BF71237-BSD2) Prepared & Analyzed: 06/23/2017 LCS Dug (BF7	Trichloroethylene	51	"	50.0		102	84-123				
Simple S	Trichlorofluoromethane	55	"	50.0		110	62-140				
Surrogate: 1,2-Dichloroethane-44 50.1 " 50.0 100 77-125 Surrogate: Phomofluorobenzee 47.5 " 50.0 92.4 85-120 Surrogate: Phomofluorobenzee 47.5 " 50.0 95.0 76-130 Surrogate: Phomofluorobenzee 47.5 " 50.0 95.0 76-130 Surrogate: Phomofluorobenzee 47.5 " 50.0 95.0 76-130 Surrogate: Phomofluorobenzee 53 ugl. 50.0 106 75-129 1.22 30 1.1,12-Tetrachloroethane 56 " 50.0 112 71-137 2.36 30 1.1,22-Tetrachloroethane 56 " 50.0 104 79-129 0.134 30 1.1,22-Tetrachloroethane 52 " 50.0 104 79-129 0.134 30 1.1,22-Tichloroethane 53 " 50.0 118 58-146 14.9 30 1.1,22-Tichloroethane 53 " 50.0 107 83-123 1.15 30 1.1,2-Tichloroethane 55 " 50.0 110 75-130 4.44 30 1.1,2-Tichloroethane 55 " 50.0 110 75-130 4.44 30 1.1,2-Dichloroethylene 57 " 50.0 110 75-130 4.44 30 1.1,2-Dichloroethylene 57 " 50.0 111 77-127 1.77 30 1.1,2-Tichloroethylene 56 " 50.0 111 77-127 1.77 30 1.2,3-Tichloropopylene 56 " 50.0 111 77-127 1.77 30 1.2,3-Tichloropopylene 52 " 50.0 111 77-127 1.77 30 1.2,3-Tichloroethane 52 " 50.0 105 81-140 0.880 30 1.2,3-Tichloroethane 52 " 50.0 105 81-140 0.880 30 1.2,3-Tichloroethane 52 " 50.0 105 81-12 0.14 64 30 1.2,4-Timethylbenzene 49 " 50.0 98.9 80-141 0.525 30 1.2,4-Tichloroethane 56 " 50.0 112 74-12 0.644 30 1.2,2-Dibromo-5-holopoppane 56 " 50.0 112 74-12 0.644 30 1.2,2-Dibromo-5-holopoppane 56 " 50.0 112 74-12 0.644 30 1.2,2-Dibromo-thane 50 " 50.0 99.6 85-122 0.361 30 1.2,2-Dichloroethane 56 " 50.0 111 71-13 5.72 30 1.2,2-Dichloroethane 50 " 50.0 99.2 84-124 0.661 30 1.2,2-Dichloroethane 50 " 50.0 99.2 84-124 0.661 30 1.2,2-Dichloroethane 50 " 50.0 99.2 84-124 0.661 30 1.2,2-Dichloroethane 50	Vinyl acetate	58	"	50.0		115	67-136				
Solid Soli	Vinyl Chloride	65	"	50.0		130	52-130				
Surrogate: Toluene-48	Surrogate: 1.2-Dichloroethane-d4	50.1	"	50.0		100	77-125				
Survegate: p-Bromofluorobenzene 47.5 " 50.0 95.0 76-130 Prepared & Analyzed: 06/23/2017 CCS Dup (BF71237-BSD1) Prepared & Analyzed: 06/23/2017 Prepa	=		"								
1,12,1-Tirchloroethane	Surrogate: p-Bromofluorobenzene		"	50.0							
1,1- Trichloroethane	LCS Dup (BF71237-BSD1)						Prep	pared & Analyz	ed: 06/23/	2017	
1,1-Trichloroethane	1,1,1,2-Tetrachloroethane	53	ug/L	50.0		106	75-129		1.22	30	
1,12-Trichloro-1,2,2-trifluoroethane (Freon I13) 59 " 50,0 118 58-146 14.9 30 1,12-Trichloroethane 53 " 50,0 107 83-123 1.15 30 1,12-Trichloroethane 55 " 50,0 110 75-130 4.44 30 1,12-Dichloroethylene 55 " 50,0 110 75-130 4.44 30 1,12-Dichloroethylene 56 " 50,0 111 77-127 1.77 30 30 1,12-Dichloroptopylene 56 " 50,0 111 77-127 1.77 30 30 1,23-Trichlorobenzene 48 " 50,0 95.9 81-140 0.880 30 30 30 30 30 30 30	1,1,1-Trichloroethane	56		50.0		112	71-137		2.36	30	
1,12-Trichloroethane	1,1,2,2-Tetrachloroethane	52	"	50.0		104	79-129		0.134	30	
1-Dichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	59	"	50.0		118	58-146		14.9	30	
1-Dichloroethylene	1,1,2-Trichloroethane	53	"	50.0		107	83-123		1.15	30	
1-Dichloropropylene 56	1,1-Dichloroethane	55	"	50.0		110	75-130		4.44	30	
1,2,3-Trichlorobenzene	1,1-Dichloroethylene	57	"	50.0		114	64-137		13.6	30	
1.25 30 1.25	1,1-Dichloropropylene	56	"	50.0		111	77-127		1.77	30	
1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	48	"	50.0		95.9	81-140		0.880	30	
1,2,4-Trimethylbenzene	1,2,3-Trichloropropane	52	"	50.0		103	81-126		1.25	30	
1,2-Dibromo-3-chloropropane 56	1,2,4-Trichlorobenzene	49	"	50.0		98.9	80-141		0.525	30	
1,2-Dibromoethane 52 " 50.0 105 86-123 0.960 30 1,2-Dichlorobenzene 50 " 50.0 99.6 85-122 0.361 30 1,2-Dichloroethane 56 " 50.0 111 71-133 5.72 30 1,2-Dichloropropane 51 " 50.0 101 81-122 0.336 30 1,3,5-Trimethylbenzene 49 " 50.0 97.0 82-126 2.84 30 1,3-Dichloropropane 51 " 50.0 98.2 84-124 0.0611 30 1,3-Dichloropropane 51 " 50.0 98.2 84-124 0.0611 30 1,3-Dichloropropane 51 " 50.0 99.2 84-124 2.65 30 1,4-Dichlorobenzene 50 " 50.0 99.2 84-124 2.65 30 1,4-Dioxane 1000 " 1000 102 10-228 3.66 30 1,4-Dioxane 55 " 50.0 109 67-136 2.80 30 1,2-Dichloropropane 55 " 50.0 110 58-147 12.2 30	1,2,4-Trimethylbenzene	49	"	50.0		99.0	84-125		1.88	30	
1,2-Dichlorobenzene 50 50,0 99,6 85-122 0.361 30 1,2-Dichlorocethane 56 50,0 111 71-133 5.72 30 1,2-Dichloropropane 51 50,0 101 81-122 0.336 30 1,3,5-Trimethylbenzene 49 50,0 97,0 82-126 2.84 30 1,3-Dichlorobenzene 49 50,0 98.2 84-124 0.0611 30 1,3-Dichloropropane 51 50,0 102 83-123 2.38 30 1,4-Dichlorobenzene 50 50,0 99,2 84-124 2.65 30 1,4-Dioxane 1000 1000 102 10-228 3.66 30 2,2-Dichloropropane 55 50,0 109 67-136 2.80 30 2,2-Dichloropropane 55 50,0 100 58-147 12.2 30 30	1,2-Dibromo-3-chloropropane	56	"	50.0		112	74-142		0.644	30	
1,2-Dichlorobenzene 50 " 50,0 99,6 85-122 0,361 30 1,2-Dichloroethane 56 " 50,0 111 71-133 5.72 30 1,2-Dichloropropane 51 " 50,0 101 81-122 0,336 30 1,3,5-Trimethylbenzene 49 " 50,0 97,0 82-126 2.84 30 1,3-Dichlorobenzene 49 " 50,0 98,2 84-124 0,0611 30 1,3-Dichloropropane 51 " 50,0 98,2 84-124 0,0611 30 1,3-Dichloropropane 51 " 50,0 102 83-123 2.38 30 1,4-Dichlorobenzene 50 " 50,0 99,2 84-124 2.65 30 1,4-Dioxane 1000 " 1000 102 10-228 3.66 30 2,2-Dichloropropane 55 " 50,0 109 67-136 2.80 30 2,2-Dichloropropane 55 " 50,0 110 58-147 12,2 30	1,2-Dibromoethane	52	"	50.0		105	86-123		0.960	30	
1,2-Dichloroethane 56 " 50.0 111 71-133 5.72 30 1,2-Dichloropropane 51 " 50.0 101 81-122 0.336 30 1,3,5-Trimethylbenzene 49 " 50.0 97.0 82-126 2.84 30 1,3-Dichlorobenzene 49 " 50.0 98.2 84-124 0.0611 30 1,3-Dichloropropane 51 " 50.0 98.2 84-124 0.0611 30 1,3-Dichloropropane 51 " 50.0 99.2 84-124 2.65 30 1,4-Dichlorobenzene 50 " 50.0 99.2 84-124 2.65 30 1,4-Dioxane 1000 " 1000 102 10-228 3.66 30 1,2-Dichloropropane 55 " 50.0 109 67-136 2.80 30 1,2-Dichloropropane 55 " 50.0 110 58-147 12.2 30 1000 1000 1000 1000 1000 1000 1000	1,2-Dichlorobenzene	50	"	50.0		99.6			0.361	30	
3,5-Trimethylbenzene	1,2-Dichloroethane		"	50.0		111	71-133		5.72	30	
3-Dichlorobenzene	1,2-Dichloropropane	51	"	50.0		101	81-122		0.336	30	
1,3-Dichloropropane 51 " 50.0 102 83-123 2.38 30 1,4-Dichlorobenzene 50 " 50.0 99.2 84-124 2.65 30 1,4-Dioxane 1000 " 1000 102 10-228 3.66 30 2,2-Dichloropropane 55 " 50.0 109 67-136 2.80 30 2-Butanone 55 " 50.0 110 58-147 12.2 30	1,3,5-Trimethylbenzene	49	"	50.0		97.0	82-126		2.84	30	
1,4-Dichlorobenzene 50 " 50.0 99.2 84-124 2.65 30 1,4-Dioxane 1000 " 1000 102 10-228 3.66 30 2,2-Dichloropropane 55 " 50.0 109 67-136 2.80 30 2-Butanone 55 " 50.0 110 58-147 12.2 30	1,3-Dichlorobenzene	49	"	50.0		98.2	84-124		0.0611	30	
1,4-Dioxane 1000 " 1000 102 10-228 3.66 30 2,2-Dichloropropane 55 " 50.0 109 67-136 2.80 30 2-Butanone 55 " 50.0 110 58-147 12.2 30	1,3-Dichloropropane	51	"	50.0		102	83-123		2.38	30	
2,2-Dichloropropane 55 " 50.0 109 67-136 2.80 30 2-Butanone 55 " 50.0 110 58-147 12.2 30	1,4-Dichlorobenzene	50	"	50.0		99.2	84-124		2.65	30	
2-Butanone 55 " 50.0 110 58-147 12.2 30	1,4-Dioxane	1000	"	1000		102	10-228		3.66	30	
	2,2-Dichloropropane	55	"	50.0		109	67-136		2.80	30	
400 DECEMBER DRIVE CERTIFICADO CENCRES DE 400 00 00% AVENUE DICUMONO UNA AVENUE	2-Butanone	55	"	50.0		110	58-147		12.2	30	
		OTD 1750	0.1.5		0.00.00::			DIOLINA CONT.	m r - 883	44445	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 29 of 51 ClientServices@

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF71237 - EPA 5035A											

Allalyte	Result	Lillit Ollits	Level	Result	/0KEC	Lillits	1 mg	ICI D	Limit	1 lag
Batch BF71237 - EPA 5035A										
LCS Dup (BF71237-BSD1)						Prepa	ared & Analyze	ed: 06/23/	2017	
2-Chlorotoluene	50	ug/L	50.0		100	78-127		1.54	30	
2-Hexanone	54	"	50.0		108	70-139		1.32	30	
4-Chlorotoluene	51	"	50.0		102	79-125		2.20	30	
4-Methyl-2-pentanone	55	"	50.0		110	72-132		0.0364	30	
Acetone	59	"	50.0		118	36-155		19.5	30	
Acrolein	46	"	50.0		92.0	10-238		24.4	30	
Acrylonitrile	57	m .	50.0		113	66-141		7.07	30	
Benzene	56	"	50.0		113	77-127		1.85	30	
Bromobenzene	53	"	50.0		106	77-129		1.75	30	
Bromochloromethane	57	"	50.0		113	74-129		1.87	30	
Bromodichloromethane	55	"	50.0		110	81-124		0.0911	30	
Bromoform	50	"	50.0		99.4	80-136		0.381	30	
Bromomethane	50	"	50.0		99.5	32-177		14.8	30	
Carbon disulfide	58	"	50.0		117	10-136		21.7	30	
Carbon tetrachloride	55	"	50.0		111	66-143		2.96	30	
Chlorobenzene	52	"	50.0		104	86-120		1.11	30	
Chloroethane	56	"	50.0		113	51-142		12.6	30	
Chloroform	57	"	50.0		113	76-131		3.31	30	
Chloromethane	57	"	50.0		114	49-132		1.52	30	
cis-1,2-Dichloroethylene	52	"	50.0		105	74-132		5.63	30	
cis-1,3-Dichloropropylene	52	"	50.0		103	81-129		1.73	30	
Cyclohexane	53	"	50.0		107	70-130		4.45	30	
Dibromochloromethane	54	"	50.0		107	10-200		0.818	30	
Dibromomethane	52	"	50.0		103	83-124		2.03	30	
Dichlorodifluoromethane	50	,,	50.0		103	28-158		5.69	30	
Ethyl Benzene	52	"	50.0		101	84-125		0.993	30	
Hexachlorobutadiene	47	,,	50.0		93.8	83-133		3.12	30	
Isopropylbenzene	50	,,	50.0		100	81-127		1.96	30	
Methyl acetate	67	,,	50.0		135	41-143		8.51	30	
Methyl tert-butyl ether (MTBE)	57	,,	50.0			74-131		7.88	30	
Methylcyclohexane	53	,,	50.0		114 105	70-130		2.11	30	
Methylene chloride	63	,,						7.67	30	
n-Butylbenzene		"	50.0		126	57-141		1.04	30	
n-Propylbenzene	51	"	50.0		102	80-130		1.92	30	
o-Xylene	50		50.0		99.1	74-136		0.190	30	
	53		50.0		105	83-123		1.62	30	
p- & m- Xylenes	100	,	100		102	82-128		0.182	30	
p-Isopropyltoluene	50	"	50.0		99.1	85-125		0.182	30	
sec-Butylbenzene	50	"	50.0		101	83-125				
Styrene tert-Butyl alcohol (TBA)	51		50.0		101	86-126		0.496	30	
	62	" "	50.0		124	70-130		1.88	30	
tert-Butylbenzene	50		50.0		100	80-127		1.60	30	
Telegraph	50		50.0		100	80-129		2.64	30	
Toluene	49	"	50.0		98.2	85-121		0.654	30	
trans-1,2-Dichloroethylene	55		50.0		110	72-132		4.88	30	
trans-1,3-Dichloropropylene	52	"	50.0		105	78-132		1.66	30	
Trichlor floor methods	52		50.0		104	84-123		1.11	30	
Trichlorofluoromethane	54	"	50.0		107	62-140		2.47	30	
Vinyl acetate	51	"	50.0		103	67-136		11.2	30	
Vinyl Chloride	60	"	50.0		120	52-130		8.46	30	
Surrogate: 1,2-Dichloroethane-d4	50.2	"	50.0		100	77-125				
Surrogate: Toluene-d8	46.7	"	50.0		93.3	85-120				

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF71237 - EPA 5035A											
LCS Dup (BF71237-BSD1)							Prep	ared & Anal	yzed: 06/23/	2017	
Surrogate: p-Bromofluorobenzene	47.0		ug/L	50.0		93.9	76-130				
Batch BF71281 - EPA 5030B/1311											
Blank (BF71281-BLK1)							Prep	ared & Anal	yzed: 06/23/	2017	
1,1-Dichloroethylene	ND	5.0	ug/L								
1,2-Dichloroethane	ND	5.0	"								
1,4-Dichlorobenzene	ND	5.0	"								
2-Butanone	ND	5.0	"								
Benzene	ND	5.0	"								
Carbon tetrachloride	ND	5.0	"								
Chlorobenzene	ND	5.0	"								
Chloroform	ND	5.0	"								
Tetrachloroethylene	ND	5.0	"								
Trichloroethylene	ND	5.0	"								
Vinyl Chloride	ND	5.0	"								
Surrogate: 1,2-Dichloroethane-d4	54.7		"	50.0		109	77-125				
Surrogate: p-Bromofluorobenzene	43.5		"	50.0		87.1	76-130				
Surrogate: Toluene-d8	49.3		"	50.0		98.5	85-120				
LCS (BF71281-BS1)							Prep	ared & Anal	yzed: 06/23/	2017	
1,1-Dichloroethylene	65		ug/L	50.0		131	68-134				
1,2-Dichloroethane	59		"	50.0		118	69-133				
1,4-Dichlorobenzene	51		"	50.0		102	82-124				
2-Butanone	62		"	50.0		124	44-169				
Benzene	57		"	50.0		115	72-134				
Carbon tetrachloride	57		"	50.0		114	62-145				
Chlorobenzene	52		"	50.0		105	85-119				
Chloroform	59		"	50.0		117	74-131				
Tetrachloroethylene	49		"	50.0		97.8	78-133				
Trichloroethylene	51		"	50.0		102	81-125				
Vinyl Chloride	65		"	50.0		130	42-136				
Surrogate: 1,2-Dichloroethane-d4	50.1		"	50.0		100	77-125				
Surrogate: p-Bromofluorobenzene	47.5		"	50.0		95.0	76-130				
Surrogate: Toluene-d8	46.2		"	50.0		92.4	85-120				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 31 of 51 ClientServices@

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RF71281	- EPA	5030B/1311	

LCS Dup (BF71281-BSD1)					Prepared &	Analyzed: 06/23/2	2017
1,1-Dichloroethylene	57	ug/L	50.0	114	68-134	13.6	30
1,2-Dichloroethane	56	"	50.0	111	69-133	5.72	30
1,4-Dichlorobenzene	50	"	50.0	99.2	82-124	2.65	30
2-Butanone	55	"	50.0	110	44-169	12.2	30
Benzene	56	"	50.0	113	72-134	1.85	30
Carbon tetrachloride	55	"	50.0	111	62-145	2.96	30
Chlorobenzene	52	"	50.0	104	85-119	1.11	30
Chloroform	57	"	50.0	113	74-131	3.31	30
Tetrachloroethylene	50	"	50.0	100	78-133	2.64	30
Trichloroethylene	52	"	50.0	104	81-125	1.11	30
Vinyl Chloride	60	"	50.0	120	42-136	8.46	30
Surrogate: 1,2-Dichloroethane-d4	50.2	"	50.0	100	77-125		
Surrogate: p-Bromofluorobenzene	47.0	"	50.0	93.9	76-130		
Surrogate: Toluene-d8	46.7	"	50.0	93.3	85-120		

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 32 of 51

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BF71163-BLK1)						Prepared: 06/22/2017 Analyzed: 06/23/201
,4-Dichlorobenzene	ND	10.0	ug/L			
2,4,5-Trichlorophenol	ND	10.0	"			
2,4,6-Trichlorophenol	ND	10.0	"			
,4-Dinitrotoluene	ND	10.0	"			
-Methylphenol	ND	10.0	"			
- & 4-Methylphenols	ND	20.0	"			
resols, total	ND	30.0	"			
exachlorobenzene	ND	10.0	"			
exachlorobutadiene	ND	10.0	"			
exachloroethane	ND	10.0	"			
itrobenzene	ND	10.0	"			
entachlorophenol	ND	10.0	"			
yridine	ND	10.0	"			
urrogate: 2-Fluorophenol	98.3		"	154	64.0	10-65
urrogate: Phenol-d5	72.2		"	152	47.5	10-49
urrogate: Nitrobenzene-d5	89.5		"	107	83.8	10-96
urrogate: 2-Fluorobiphenyl	72.3		"	102	71.1	10-93
rrogate: 2,4,6-Tribromophenol	151		"	154	97.9	10-128
urrogate: Terphenyl-d14	73.1		"	100	72.8	10-100
CS (BF71163-BS1)						Prepared: 06/22/2017 Analyzed: 06/23/201
4-Dichlorobenzene	29.4	10.0	ug/L	50.0	58.7	42-82
4,5-Trichlorophenol	37.1	10.0	"	50.0	74.3	36-112
4,6-Trichlorophenol	35.5	10.0	"	50.0	70.9	41-107
4-Dinitrotoluene	42.9	10.0	"	50.0	85.8	41-114
Methylphenol	31.7	10.0	"	50.0	63.4	10-90
& 4-Methylphenols	24.4	20.0	"	50.0	48.8	10-101
resols, total	56.1	30.0	"	100	56.1	30-130
exachlorobenzene	36.6	10.0	"	50.0	73.3	27-120
exachlorobutadiene	32.8	10.0	"	50.0	65.6	25-106
exachloroethane	27.7	10.0	"	50.0	55.3	33-84
itrobenzene	31.4	10.0	"	50.0	62.9	32-113
entachlorophenol	35.3	10.0	"	50.0	70.5	19-127
vridine	20.1	10.0	"	50.0	40.2	10-46
rrogate: 2-Fluorophenol	87.7		"	154	57.1	10-65
urrogate: Phenol-d5	67.1		"	152	44.1	10-49
urrogate: Nitrobenzene-d5	80.2		"	107	75.1	10-96
urrogate: 2-Fluorobiphenyl	70.9		"	102	69.8	10-93
urrogate: 2,4,6-Tribromophenol	157		"	154	101	10-128
urrogate: Terphenyl-d14	71.8		"	100	71.5	10-100

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 33 of 51

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC		_	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF71163 - EPA 3510C/1311											
LCS Dup (BF71163-BSD1)							Prep	ared: 06/22/2	2017 Analyz	ed: 06/23/2	2017
1,4-Dichlorobenzene	29.1	10.0	ug/L	50.0		58.2	42-82		0.821	20	
2,4,5-Trichlorophenol	34.2	10.0	"	50.0		68.4	36-112		8.30	20	
2,4,6-Trichlorophenol	32.5	10.0	"	50.0		64.9	41-107		8.83	20	
2,4-Dinitrotoluene	38.1	10.0	"	50.0		76.2	41-114		12.0	20	
2-Methylphenol	32.7	10.0	"	50.0		65.3	10-90		2.98	20	
3- & 4-Methylphenols	25.0	20.0	"	50.0		49.9	10-101		2.19	20	
Cresols, total	57.6	30.0	"	100		57.6	30-130		2.64	20	
Hexachlorobenzene	33.4	10.0	"	50.0		66.7	27-120		9.37	20	
Hexachlorobutadiene	29.8	10.0	"	50.0		59.6	25-106		9.46	20	
Hexachloroethane	26.9	10.0	"	50.0		53.8	33-84		2.86	20	
Nitrobenzene	30.1	10.0	"	50.0		60.1	32-113		4.49	20	
Pentachlorophenol	30.2	10.0	"	50.0		60.3	19-127		15.6	20	
Pyridine	18.4	10.0	"	50.0		36.7	10-46		9.05	20	
Surrogate: 2-Fluorophenol	84.5		"	154		55.0	10-65				
Surrogate: 2-Fluorophenol Surrogate: Phenol-d5	84.5 62.8		,,				10-65 10-49				
e e e e e e e e e e e e e e e e e e e			,,	152 107		41.3					
Surrogate: Nitrobenzene-d5	75.2 66.4		,,	107 102		70.4	10-96				
Surrogate: 2-Fluorobiphenyl	66.4		,,			65.3	10-93				
Surrogate: 2,4,6-Tribromophenol	144		"	154		93.4	10-128				
Surrogate: Terphenyl-d14	67.6		"	100		67.3	10-100				
Batch BF71295 - EPA 3550C											
Blank (BF71295-BLK1)							Prep	ared: 06/24/2	2017 Analyz	ed: 06/25/2	2017
1,1-Biphenyl	ND	41.7	ug/kg wet								
1,2,4,5-Tetrachlorobenzene	ND	83.3	"								
1,2,4-Trichlorobenzene	ND	41.7	"								
1,2-Dichlorobenzene	ND	41.7	"								
1,2-Diphenylhydrazine (as Azobenzene)	ND	41.7	"								
1,3-Dichlorobenzene	ND	41.7	"								
1,4-Dichlorobenzene	ND	41.7	"								
2,3,4,6-Tetrachlorophenol	ND	83.3	"								
2,4,5-Trichlorophenol	ND	41.7	"								
2,4,6-Trichlorophenol	ND	41.7	"								
2,4-Dichlorophenol	ND	41.7	"								
2,4-Dimethylphenol	ND	41.7	"								
2,4-Dinitrophenol	ND	83.3	"								
2,4-Dinitrotoluene	ND	41.7	"								
2,6-Dinitrotoluene	ND	41.7	"								
2-Chloronaphthalene	ND	41.7	"								
2-Chlorophenol	ND	41.7	"								
2-Methylnaphthalene	ND	41.7	"								
2-Methylphenol	ND	41.7	"								
2-Nitroaniline	ND	83.3	"								
2-Nitrophenol	ND	41.7	"								
3- & 4-Methylphenols	ND	41.7	"								
3,3-Dichlorobenzidine	ND	41.7	"								
3-Nitroaniline	ND	83.3	"								
4,6-Dinitro-2-methylphenol	ND	83.3	"								
4-Bromophenyl phenyl ether	ND	41.7	"								
4-Chloro-3-methylphenol	ND	41.7	"								
4-Chloroaniline	ND	41.7	"								
120 RESEARCH DRIVE	STRATFORD, CT	06615		13	2-02 89th A	VENUE	F	RICHMONE	HILL, NY	11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 34 of 51

Semivolatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BF71295-BLK1)						Prepared: 06/24/2017 Analyzed: 06/25/2017
4-Chlorophenyl phenyl ether	ND	41.7	ug/kg wet			
4-Nitroaniline	ND	83.3	"			
4-Nitrophenol	ND	83.3	"			
Acenaphthene	ND	41.7	"			
Acenaphthylene	ND	41.7	"			
Acetophenone	ND	41.7	"			
Aniline	ND	167	"			
Anthracene	ND	41.7	"			
Atrazine	ND	41.7	,,			
Benzaldehyde	ND	41.7	,,			
Benzidine	ND ND	167	"			
Benzo(a)anthracene	ND ND	41.7	,,			
Senzo(a)pyrene	ND ND		,,			
Benzo(b)fluoranthene		41.7	"			
Senzo(g,h,i)perylene	ND	41.7	"			
Benzo(k)fluoranthene	ND	41.7	,,			
Benzo(k)Huorantnene	ND	41.7	,,			
Benzyl alcohol	ND	41.7	,,			
=	ND	41.7	"			
Benzyl butyl phthalate	ND	41.7	"			
Bis(2-chloroethoxy)methane	ND	41.7	,,			
sis(2-chloroethyl)ether	ND	41.7				
sis(2-chloroisopropyl)ether	ND	41.7	"			
is(2-ethylhexyl)phthalate	ND	41.7	"			
Caprolactam	ND	83.3	"			
arbazole	ND	41.7	"			
Thrysene	ND	41.7	"			
ribenzo(a,h)anthracene	ND	41.7	"			
Dibenzofuran	ND	41.7	"			
Piethyl phthalate	ND	41.7	"			
Dimethyl phthalate	ND	41.7	"			
i-n-butyl phthalate	ND	41.7	"			
i-n-octyl phthalate	ND	41.7	"			
luoranthene	ND	41.7	"			
luorene	ND	41.7	"			
Iexachlorobenzene	ND	41.7	"			
Iexachlorobutadiene	ND	41.7	"			
Iexachlorocyclopentadiene	ND	41.7	"			
lexachloroethane	ND	41.7	"			
ndeno(1,2,3-cd)pyrene	ND	41.7	"			
sophorone	ND	41.7	"			
aphthalene	ND	41.7	"			
Vitrobenzene	ND	41.7	"			
I-Nitrosodimethylamine	ND	41.7	"			
I-nitroso-di-n-propylamine	ND	41.7	"			
I-Nitrosodiphenylamine	ND	41.7	"			
entachlorophenol	ND	41.7	"			
henanthrene	ND	41.7	"			
henol	ND	41.7	"			
yrene	ND	41.7	"			
Surrogate: 2-Fluorophenol	2140		"	2650	81.0	20-108
urrogate: Phenol-d5	1920		"	2710	70.9	23-114
120 RESEARCH DRIVE	STRATFORD, CT 066	315		132-02 89	9th AVENUE	RICHMOND HILL NY 11418

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 35 of 51

www.YORKLAB.com (203) 325-1371 ClientServices@

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BF71295 - EPA 3550C						
Blank (BF71295-BLK1)						Prepared: 06/24/2017 Analyzed: 06/25/20
urrogate: Nitrobenzene-d5	1440		ug/kg wet	1740	82.9	22-108
urrogate: 2-Fluorobiphenyl	1610		"	1780	90.5	21-113
urrogate: 2,4,6-Tribromophenol	3020		"	2510	120	19-110
ırrogate: Terphenyl-d14	1310		"	1740	75.1	24-116
CS (BF71295-BS1)						Prepared: 06/24/2017 Analyzed: 06/25/20
1-Biphenyl	678	41.7	ug/kg wet	833	81.4	22-103
2,4,5-Tetrachlorobenzene	516	83.3	"	833	61.9	10-144
2,4-Trichlorobenzene	624	41.7	"	833	74.9	23-130
2-Dichlorobenzene	654	41.7	"	833	78.5	26-113
2-Diphenylhydrazine (as Azobenzene)	576	41.7	"	833	69.1	10-140
3-Dichlorobenzene	620	41.7	"	833	74.4	32-113
l-Dichlorobenzene	548	41.7	"	833	65.8	28-111
3,4,6-Tetrachlorophenol	1630	83.3	"	833	196	30-130 High Bias
4,5-Trichlorophenol	566	41.7	"	833	67.9	14-138
4,6-Trichlorophenol	643	41.7	"	833	77.2	27-122
4-Dichlorophenol	738	41.7	"	833	88.5	23-133
1-Dimethylphenol	736	41.7	"	833	88.3	15-131
4-Dinitrophenol	868	83.3	"	833	104	10-149
4-Dinitrotoluene	714	41.7	"	833	85.7	30-123
5-Dinitrotoluene	654	41.7	"	833	78.4	30-125
Chloronaphthalene	581	41.7	"	833	69.8	22-115
Chlorophenol			"			
•	674	41.7	"	833	80.9	25-121
Methylnaphthalene	675	41.7	,,	833	81.0	16-127
Methylphenol	573	41.7	"	833	68.8	10-146
Nitroaniline	695	83.3		833	83.4	24-126
Nitrophenol	773	41.7	"	833	92.8	17-129
& 4-Methylphenols	588	41.7	"	833	70.5	20-109
3-Dichlorobenzidine	498	41.7	"	833	59.8	10-147
Nitroaniline	529	83.3	"	833	63.5	23-123
5-Dinitro-2-methylphenol	691	83.3	"	833	83.0	10-149
Bromophenyl phenyl ether	690	41.7	"	833	82.8	30-138
Chloro-3-methylphenol	726	41.7	"	833	87.2	16-138
Chloroaniline	480	41.7	"	833	57.6	10-117
Chlorophenyl phenyl ether	539	41.7	"	833	64.6	18-132
Nitroaniline	586	83.3	"	833	70.3	14-125
Nitrophenol	601	83.3	"	833	72.1	10-136
enaphthene	671	41.7	"	833	80.6	17-124
enaphthylene	601	41.7	"	833	72.1	16-124
eetophenone	779	41.7	"	833	93.5	28-105
niline	483	167	"	833	58.0	10-111
thracene	648	41.7	"	833	77.8	24-124
razine	804	41.7	"	833	96.5	22-120
nzaldehyde	806	41.7	"	833	96.7	21-100
nzo(a)anthracene	646	41.7	"	833	77.5	25-134
nzo(a)pyrene	689	41.7	"	833	82.7	29-144
nzo(b)fluoranthene	664	41.7	"	833	79.7	20-151
enzo(g,h,i)perylene	718	41.7	"	833	86.2	10-153
enzo(k)fluoranthene	646	41.7	"	833	77.5	10-148
enzoic acid	912	41.7	"	833	109	10-116
enzyl alcohol	639	41.7	"	833	76.6	17-128

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BF71295-BS1)						Prepared: 06/24/2017 Analyzed: 06/25/2017
Benzyl butyl phthalate	602	41.7	ug/kg wet	833	72.2	10-132
Bis(2-chloroethoxy)methane	704	41.7	"	833	84.4	10-129
Bis(2-chloroethyl)ether	650	41.7	"	833	78.0	14-125
Bis(2-chloroisopropyl)ether	627	41.7	"	833	75.3	14-122
Bis(2-ethylhexyl)phthalate	656	41.7	"	833	78.7	10-141
Caprolactam	760	83.3	"	833	91.2	10-123
Carbazole	634	41.7	"	833	76.1	31-120
Chrysene	567	41.7	"	833	68.1	24-116
Dibenzo(a,h)anthracene	717	41.7	"	833	86.1	17-147
Dibenzofuran	629	41.7	"	833	75.4	23-123
Diethyl phthalate	658	41.7	"	833	79.0	23-122
Dimethyl phthalate	597	41.7	"	833	71.6	28-127
Di-n-butyl phthalate	622	41.7	"	833	74.6	19-123
Di-n-octyl phthalate	663	41.7	"	833	79.6	10-132
Fluoranthene	615	41.7	"	833	73.8	36-125
Fluorene	591	41.7	"	833	70.9	16-130
Hexachlorobenzene	655	41.7	"	833	78.6	10-129
Hexachlorobutadiene	628	41.7	"	833	75.4	22-153
Hexachlorocyclopentadiene	319	41.7	"	833	38.2	10-134
Hexachloroethane	520	41.7	"	833	62.4	20-112
ndeno(1,2,3-cd)pyrene	668	41.7	"	833	80.2	10-155
sophorone	673	41.7	"	833	80.7	14-131
Naphthalene	587	41.7	"	833	70.5	20-121
Nitrobenzene	628	41.7	"	833	75.4	20-121
N-Nitrosodimethylamine	595	41.7	"	833	71.4	10-124
N-nitroso-di-n-propylamine	596	41.7	"	833	71.5	21-119
N-Nitrosodiphenylamine	733	41.7	"	833	87.9	10-163
Pentachlorophenol	720	41.7	"	833	86.4	10-143
Phenanthrene	663	41.7	"	833	79.5	24-123
Phenol	591	41.7	"	833	70.9	15-123
Pyrene	625	41.7	"	833	75.0	24-132
Surrogate: 2-Fluorophenol	2030		"	2650	76.6	20-108
Surrogate: Phenol-d5	1780		"	2710	65.6	23-114
Surrogate: Nitrobenzene-d5	1500		"	1740	86.3	22-108
Surrogate: 2-Fluorobiphenyl	1290		"	1780	72.5	21-113
Surrogate: 2,4,6-Tribromophenol	2730		"	2510	109	19-110
Surrogate: Terphenyl-d14	1250		"	1740	71.6	24-116

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Organochlorine Pesticides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BF71164-BLK1)						Prepared &	Analyzed: 06/22/2	2017
Chlordane, total	ND	0.400	ug/L					
Endrin	ND	0.0800	"					
gamma-BHC (Lindane)	ND	0.0800	"					
Heptachlor	ND	0.0800	"					
Heptachlor epoxide	ND	0.0800	"					
Methoxychlor	ND	0.0800	"					
Гохарhene	ND	2.00	"					
Surrogate: Tetrachloro-m-xylene	2.86		"	4.00	71.5	30-120		
Surrogate: Decachlorobiphenyl	3.39		"	4.00	84.9	30-120		
LCS (BF71164-BS1)						Prepared &	Analyzed: 06/22/2	2017
Endrin	1.80	0.0800	ug/L	2.00	89.8	40-120		
gamma-BHC (Lindane)	1.77	0.0800	"	2.00	88.6	40-120		
Heptachlor	1.60	0.0800	"	2.00	80.0	40-120		
Heptachlor epoxide	1.61	0.0800	"	2.00	80.6	40-120		
Methoxychlor	1.94	0.0800	"	2.00	97.1	40-120		
Surrogate: Tetrachloro-m-xylene	2.42		"	4.00	60.6	30-120		
Surrogate: Decachlorobiphenyl	2.46		"	4.00	61.4	30-120		
LCS Dup (BF71164-BSD1)						Prepared &	Analyzed: 06/22/2	2017
Endrin	2.14	0.0800	ug/L	2.00	107	40-120	17.4	30
gamma-BHC (Lindane)	2.00	0.0800	"	2.00	100	40-120	12.2	30
Heptachlor	1.73	0.0800	"	2.00	86.7	40-120	8.03	30
Heptachlor epoxide	1.86	0.0800	"	2.00	92.9	40-120	14.2	30
Methoxychlor	2.24	0.0800	"	2.00	112	40-120	14.3	30
Surrogate: Tetrachloro-m-xylene	2.68		"	4.00	67.1	30-120		
Surrogate: Decachlorobiphenyl	2.72		"	4.00	68.1	30-120		

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Organochlorine Pesticides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BF71170-BLK1)						Prepared & Analyzed: 06/22/2017
4,4'-DDD	ND	0.330	ug/kg wet			
4,4'-DDE	ND	0.330	"			
4,4'-DDT	ND	0.330	"			
Aldrin	ND	0.330	"			
alpha-BHC	ND	0.330	"			
peta-BHC	ND	0.330	"			
Chlordane, total	ND	0.660	"			
lelta-BHC	ND	0.330	"			
Dieldrin	ND	0.330	"			
Endosulfan I	ND	0.330	"			
Endosulfan II	ND	0.330	"			
Endosulfan sulfate	ND	0.330	"			
Endrin	ND	0.330	"			
Endrin aldehyde	ND	0.330	"			
Endrin ketone	ND	0.330	"			
gamma-BHC (Lindane)	ND	0.330	"			
Heptachlor	ND	0.330	"			
Heptachlor epoxide	ND	0.330	"			
Methoxychlor	ND	1.65	"			
Гохарһепе	ND	16.7	"			
Surrogate: Tetrachloro-m-xylene	51.6		"	66.7	77.5	30-140
Surrogate: Decachlorobiphenyl	50.5		"	66.7	75.8	30-140
LCS (BF71170-BS1)						Prepared & Analyzed: 06/22/2017
4,4'-DDD	39.2	0.330	ug/kg wet	33.3	118	40-140
1,4'-DDE	33.5	0.330	"	33.3	101	40-140
I,4'-DDT	36.0	0.330	"	33.3	108	40-140
Aldrin	31.9	0.330	"	33.3	95.8	40-140
alpha-BHC	35.2	0.330	"	33.3	105	40-140
peta-BHC	32.1	0.330	"	33.3	96.4	40-140
lelta-BHC	35.2	0.330	"	33.3	106	40-140
Dieldrin	33.5	0.330	"	33.3	101	40-140
Endosulfan I	35.9	0.330	"	33.3	108	40-140
Endosulfan II	35.4	0.330	"	33.3	106	40-140
Endosulfan sulfate	38.3	0.330	"	33.3	115	40-140
Endrin	33.4	0.330	"	33.3	100	40-140
Endrin aldehyde	34.4	0.330	"	33.3	103	40-140
Endrin ketone	38.1	0.330	"	33.3	114	40-140
gamma-BHC (Lindane)	32.4	0.330	"	33.3	97.1	40-140
Heptachlor	28.0	0.330	"	33.3	83.9	40-140
Heptachlor epoxide	29.8	0.330	"	33.3	89.4	40-140
Methoxychlor	34.1	1.65	"	33.3	102	40-140
Surrogate: Tetrachloro-m-xylene	44.4		"	66.7	66.6	30-140
Surrogate: Decachlorobiphenyl	43.0		"	66.7	64.5	30-140

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 39 of 51

Chlorinated Herbicides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF71228 - EPA 3535A/1311											
Blank (BF71228-BLK1)							Prepa	ared & Analy	yzed: 06/23/	2017	
2,4,5-TP (Silvex)	ND	5.00	ug/L								
2,4-D	ND	5.00	"								
Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	144		"	125		115	30-150				
LCS (BF71228-BS1)							Prepa	ared & Analy	yzed: 06/23/	2017	
2,4,5-TP (Silvex)	36.5	5.00	ug/L	40.0		91.2	40-140				
2,4-D	29.8	5.00	"	40.0		74.4	40-140				
Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	116		"	125		92.8	30-150				
LCS Dup (BF71228-BSD1)							Prepa	ared & Analy	yzed: 06/23/	2017	
2,4,5-TP (Silvex)	37.5	5.00	ug/L	40.0		93.8	40-140		2.70	30	
2,4-D	30.0	5.00	"	40.0		75.0	40-140		0.837	30	
Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	112		"	125		89.8	30-150				

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 40 of 51

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc.

Reporting

Spike

Source*

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF71268 - EPA 3015A/1311											
Blank (BF71268-BLK1)							Prep	ared: 06/23/2	2017 Analyz	red: 06/24/2	017
Arsenic	ND	0.004	mg/L								
Barium	ND	0.011	"								
Cadmium	ND	0.003	"								
Chromium	ND	0.006	"								
Copper	ND	0.00333	"								
Lead	0.007	0.003	"								
Nickel	ND	0.00556	"								
Selenium	ND	0.011	"								
Silver	ND	0.006	"								
Zine	0.0315	0.0111	"								
Blank (BF71268-BLK2)							Prep	ared: 06/23/2	2017 Analyz	red: 06/24/2	017
Arsenic	ND	0.004	mg/L								
Barium	ND	0.011	"								
Cadmium	ND	0.003	"								
Chromium	ND	0.006	"								
Copper	ND	0.00333	"								
Lead	ND	0.003	"								
Nickel	ND	0.00556	"								
Selenium	ND	0.011	"								
Silver	ND	0.006	"								
Zinc	0.0257	0.0111	"								
Reference (BF71268-SRM1)							Prep	ared: 06/23/2	2017 Analyz	zed: 06/24/2	017
Arsenic	0.582		ug/mL	0.669		87.0	84.3-114.3				
Barium	0.496		"	0.570		87.0	85-115				
Cadmium	0.642		"	0.779		82.4	84.9-115	Low Bias			
Chromium	0.226		"	0.260		86.8	85-115				
Copper	0.394		"	0.420		93.7	85-115				
Lead	0.120		"	0.140		85.7	85-115				
Nickel	0.458		"	0.510		89.8	87-113.7				
Selenium	0.383		"	0.470		81.6	85.1-115.1	Low Bias			
Silver	0.439		"	0.510		86.1	85-115				
Zinc	0.580		"	0.679		85.4	84.9-115				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

RPD

Metals by ICP - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

lank (BF71276-BLK1)						Prepared & Analyzed: 06/23/2017
luminum	ND	5.00	mg/kg wet			
ntimony	ND	0.500	"			
rsenic	ND	1.00	"			
rium	ND	1.00	"			
ryllium	ND	0.100	"			
lmium	ND	0.300	"			
cium	5.41	5.00	"			
romium	ND	0.500	"			
palt	ND	0.500	"			
oper	ND	0.500	"			
1	ND	2.00	"			
ad	ND	0.300	"			
gnesium	ND	5.00	"			
anganese	ND	0.500	"			
skel	0.516	0.500	"			
assium	11.2	5.00	"			
enium	ND	1.00	"			
/er	ND	0.500	"			
lium	106	10.0	"			
llium	ND	1.00				
adium	ND	1.00	"			
c	ND	1.00	"			
						Prepared & Analyzed: 06/23/2017
ference (BF71276-SRM1)						· · ·
minum	7080	5.00	mg/kg wet	8770	80.8	39.6-160.89
imony	131	0.500	"	117	112	19.6-259.6
enic	27.1	1.00	"	29.6	91.5	67-161.9
ium	175	1.00	"	198	88.2	72-129.1
yllium	83.4	0.100	"	92.0	90.6	73.8-126.4
lmium	61.3	0.300	"	71.5	85.7	73.3-126.7
lcium	5810	5.00	"	6310	92.1	73.9-126.9
romium	88.1	0.500	"	102	86.4	68.2-132
palt	47.2	0.500	"	51.4	91.8	74.3-125.7
pper	140	0.500	"	153	91.2	72.5-131.4
n	13700	2.00	"	15200	90.1	36.4-163.9
ad	119	0.300	"	139	85.3	69.7-130.8
gnesium	2370	5.00	"	2760	86.0	64.6-135.1
nganese	245	0.500	"	270	90.8	73.9-126
ekel	120	0.500	"	129	93.1	70.3-129.7
assium	2050	5.00	"	2420	84.7	60.3-140.1
enium	55.7	1.00	"	60.6	91.9	63.2-136.9
ver	30.1	0.500	"	36.4	82.7	66.8-133.4
lium	814	10.0	"	819	99.4	59.2-141.1
allium	90.9	1.00	"	101	90.0	68.5-130.9
nadium	70.0	1.00	"	81.3	86.1	53.3-146.5

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 42 of 51

Mercury by EPA 7000/200 Series Methods - Quality Control Data

York Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BF71256 - EPA 7473 soil											
Blank (BF71256-BLK1)							Prep	ared & Anal	yzed: 06/23/	2017	
Mercury	ND	0.0300	mg/kg wet								
Reference (BF71256-SRM1)							Prep	ared & Anal	yzed: 06/23/	2017	
Mercury	19.315		mg/kg	13.8		140	51.4-168.8				
Batch BF71283 - EPA SW846-7470											
Blank (BF71283-BLK1)							Prep	ared & Anal	yzed: 06/23/	2017	
Mercury	ND	0.000200	mg/L								
LCS (BF71283-BS1)							Prep	ared & Anal	yzed: 06/23/	2017	
Mercury	0.00212	0.000200	mg/L	0.00200		106	80-120				

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 43 of 51

Wet Chemistry Parameters - Quality Control Data

York Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BF71088 - EPA SW846-3060	100000	Ziiiit	2			,,,,,,,					
Blank (BF71088-BLK1)							Prepa	ared: 06/21/2	017 Analyz	ed: 06/22/2	2017
Chromium, Hexavalent	ND	0.500	mg/kg wet								
Reference (BF71088-SRM1)							Prepa	ared: 06/21/2	017 Analyz	ed: 06/22/2	2017
Chromium, Hexavalent	28.2		mg/L	46.6		60.5	18.3-202				
Batch BF71146 - EPA SW 846-1311 TC	CLP ext. for metals	5									
Blank (BF71146-BLK1)							Prepa	ared: 06/21/2	017 Analyz	ed: 06/22/2	2017
TCLP Extraction	Completed	1.00	N/A								
Batch BF71148 - EPA SW 846-1311 TC	CLP extr. for SVO	A/PEST/HE	RBS								
Blank (BF71148-BLK1)							Prepa	ared: 06/21/2	017 Analyz	ed: 06/22/2	2017
TCLP Extraction	Completed	1.00	N/A								
Batch BF71271 - EPA SW 846-1311 TO	CLP ZHE for VOA	<u>L</u>									
Blank (BF71271-BLK1)							Prepa	ared & Analy	zed: 06/23/	2017	
TCLP Extraction	Completed	1.00	%								
Batch BF71337 - Analysis Preparation											
Blank (BF71337-BLK1)							Prepa	ared & Analy	zed: 06/26/	2017	
Reactivity - Cyanide	ND	0.250	mg/kg								

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@ Page 44 of 51

Wet Chemistry Parameters - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BF71338 - Analysis Preparation

Prepared & Analyzed: 06/26/2017 Blank (BF71338-BLK1)

Reactivity - Sulfide ND 15.0 mg/kg

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 45 of 51

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
17F0796-02	WC-1SB-2 (2-3) Grab	Encore Sampler
17F0796-02	WC-1SB-2 (2-3) Grab	Encore Sampler

Notes and Definitions

S-08 The recovery of this surrogate was outside of QC limits. OL-02 This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature. PF-01 No Free Liquid The Tentatively Identified Compound reported indicates the presence of an possible analyte or class of analyte that has been 'tentatively identified' and the associated numerical value represents its estimated concentration. M-CCVO CCV Out. Samples bracketed by acceptable CCVs. IGN-01 Non-Ignit. HOLDING TIME EXCEEDED. Samples for pH must be measured in the field or within 15 minutes of sample collection. НТ-рН EXT-Temp Extraction temperture slightly exceeded acceptance range. **EXT-COMP** Completed CCV-E The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit). В Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Analyte is not certified or the state of the samples origination does not offer certification for the Analyte. ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL) RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve. LOO LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses. LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846. MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods. This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located Reported to above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only. NR Not reported RPD Relative Percent Difference Wet The data has been reported on an as-received (wet weight) basis Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias. High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

120 RESEARCH DRIVE STRATFORD, CT 06615 RICHMOND HILL, NY 11418 132-02 89th AVENUE FAX (203) 357-0166 ClientServices@

Page 47 of 51

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

www.YORKLAB.com (203) 325-1371

Non-Dir.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Revision Description: This report has been revised to correct the PCB results for 17F0796-01.

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 48 of 51

www.YORKLAB.com (203) 325-1371

YORK ANALYTIDAL LABURATORIES 120 RESEARCH DR.

FAX (203) 357-0166

STRATFORD, CT 06615 (203) 325-1371

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.

York Project No. 17F0 796

Page of

YOUR Information	Report To:		Invoice To:		Turn-Around Time	me Report Type	
Company: Highin Jech Fracion Mark.	Company: (A Poe	Company:	San	カ	RUSH - Same Day		
Address: 15 Organ flue 2nd Food	1	Address: _		Langlishid Cth. N	RUSH - Next Day	Summary W/ QA Summary CT RCP Package	1
Brookly NY 11725			->	Purchase Order No.	RUSH - Two Day	CTRCP DQA/DUE Pkg	
Phone No. 118 - Coc. Sec.	Phone No.	Phone No.	Musitiona Mard	1190	RUSH - Inree Day	NY ASP B Package	
2 matti Chydrotech environmental. andress:	E-Mail Address:	Mwerd & E-Mail Ad	mwerd & Pucho Icchenvivon Mantel Lan Samples from: CT_	oles from: CT_NY_NJ	Standard(5-7 Days)	Electronic Data Deliverables (EDD)	(EDD)
Print Clearly and Logibly All Information must be complete	411 Information m	ust he commiste	Volatiles Semi-Vols	Metals	bio.	Simple Excel	1
Camples will NOT be loaged in and the turn-around time	od in and the tu	en-around time	8260 full TICs 8270 or 625 624 Site Spec STARS list	8081Prest PP13 list TPH GRO	Pri.Poll. Corrosivity	FOurts (std.)	
clock will not begin until any questions by York are resolved.	ty questions by Yo	rk are resolved.	RS list Nassau Co.	8151Herb TAL	TAL MetCN	EZ-EDD (EQuIS)	1 1
	and the second s	Matrix Codes	Ketones	App. IX TAGM list	Full App. IX	NJDEP SRP HazSite EDD GIS/KEY (std)	
Sew Fr		S - soil Other - specify(oil, etc.)	TCL list Oxygenates TAGM list TAGM list TCLP list CT RCP list	Site Spec. NJDEP list Air TO14A SPLP or TCLP Total Air TO15	A Part360-Rouine Heterotrophs Part360-Baseline TOX	S Other Vorly Dominion	
Samples Collected/Authorized By (Signature)	d By (Signature)	WW - wastewater GW - groundwater	524.2 502.2	TCLP Pest Dissolved TCLP Herb SPLPorTCLP	Part 360-Eccustor No December Furnes Part 360-Eccustor		OH (U):
OVG N 1 450.4 Name (printed)		Dw - unitability water Air-A - ambient air Air-SV - soil vapor	Halog.only NIDEP list App. IX App.IX list SPIPOTICIP TCLP BNA	Chlordane Indix Metals 608 Pest LIST Below	NYSDECSewer TOC NYSDECSewer Asbestos		
Sample Identification	Date/Time Sampled	Sample Matrix	Choose Analyses Nee		ove and Enter Be	Container Description(s)	
WG-1(08) GMDON/R	6/20/17	5			5.	3 /8 02 Juis	
NC-188-2 (2-3) Grab			Tobl Vocs				٥٧
NC-50-1 (3-4) SIL Grab	-)	7	LP Melals	5 Puch Filters		1/802 Jer.	
		Preservation	4°C Frozen HCI	MeOH HNO,	H.SO, NaOH		
Darsmetus wonth out other Also	2/24. Also	Check those Applicable Special Instructions	The M. ZnA	100	125	6-201720	Temperature on Receipt
	n-the chair,	Field Filtered	Samples Relinquished By	1	Samples Received By	Pate/Time 2.5	200
			Samples Relinquished By	Date/Time Samples	Samples Received in LAB by	Date/Time	

METHODS (1)		J	
TYPE OF MATERIAL		PA Regulated Fill	
LOLAT ANTWEORCAMICS (LCT+10) BESSER	FREQUENCY	Grab Sample every 1000 CY With EnCore	5 point composite sample every 1,000 CY
S & S & S & S & S & S & S & S & S & S &		×	
LWT.WELVT'S MILHIEVENINA WIEVECTORA OF STATE OF SWILL OF			×
101. VI 101. V			×
TOTAL PESTICIDES (ICL)			×
8081B			×

17F0796

Sampling Requirements - PA Management of Fill Sites

(1) The methods provided are standard EPA methods. The method revisions are subject to change and the most current method should always be utilized by the laboratory.

Analysis must be performed by a PA certified laboratory.

Protocol for sampling requires the screening of each of the five (5) grab samples with a PID.

The highest PID grab sample for every 1,000 cy is to be submitted for the VOC portion of the testing utilizing an ENCORE sampling

The five (5) grab samples are then to be composited for every 1,000 cy and submitted for the remaining parameters.

TRACE PARAMETERS	METHODS				50	. Limit (mg/Kg)	ш	HISTORIC FILL/ WASTE PETROLEUM/ USED (WASTE) OIL	c c	Limit (mg/Kg)	z W	MGP (COAL TAR)	5 p	Limit (mg/Kg)
OTAL PETROLERO MAPLE		FREQUENCY	Grab Sample Every 250 tons	Grab - every 1000 tons	5 point composite - every 1000 tons		Grab Sample Every 250 tons	Grab - every 1000 tons	5 point composite - every 1000 tons		Grab Sample Every 250 tons	Grab - every 1000 tons	5 point composite - every 1000 tons	
TOX GRAE SMIPLE	8015M (expanded to C44)		×			GRO <30,000; DRO <100,000	×			GRO <30,000; DRO <100,000	×			GRO <30,000; DRO
TOTAL V	8260B			×								H		
TOTAL SELL E ORGAN	9023					1,000				1,000		×		1,000
TOTAL METALS RORA TOU, NI, ZO	8260B					30,000		×	III	30,000		×		30,000
	8270D	4							×			Y.	×	
/ .x /	6010				×	End Use Criteria			×	End Use Criteria			×	End Use Criteria
CONTARLITY CU.N. ZA	1311/6010				×	Below RCRA Toxicity Level			(3)	Below RCRA Toxidity Level			×	Below RCRA Toxidity Level
	1010A				×	A Negative			3	Negative			×	Negative
ST. SULFIDE AND	9040C				×	> 2 - <12.5			(3)	> 2 -			×	×2.
REACTIVITY SULFIDE AND CYAMDE	SW846 CHAPTER 7.3				×	Sulfide <500 Cyanide <250	H		(3)	Sulfide <500 Cyanide <250			×	Sulfide <500 Cvanide <250
TOTAL SULFUR	8082A					<48			diff	<48			×	842
LE VOAR S	ASTM D129 or equivelent					No Limit				No Limit			×	No Cimit
1 .60	9 1311/ 8260B					Below RCRA Toxicity Level		(3)		Below RCRA Toxicity Level		×		Below RCRA Toxicity
, city	1311/ 8270D					A Below RCRA Toxicity Level			٧	. Below RCRA Toxicity Level			*	Below RCRA Toxicity
TOLP PESTICIPES	1311/ 8151A					Below RCRA Toxicity Level			0	Below RCRA Toxicity Level			×	Below RCRA Toxicity
	1311/ 8081B					Below RCRA Toxicity Level			3	Below RCRA Toxicity Level			×	Below RCRA Toxicity

Concrete Waste Characterization

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 10/04/2017

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 17I1195

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 10/04/2017

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 17I1195

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 28, 2017 and listed below. The project was identified as your project: #170154 11-28 31 Drive, LIC NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
17I1195-01	Concrete washed	Concrete	09/28/2017	09/28/2017
17I1195-02	Concrete in contact with soil	Concrete	09/28/2017	09/28/2017

General Notes for York Project (SDG) No.: 17I1195

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

De St

Benjamin Gulizia Laboratory Director **Date:** 10/04/2017

Client Sample ID: Concrete washed York Sample ID: 17I1195-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 17I1195
 #170154 11-28 31 Drive, LIC NY
 Concrete
 September 28, 2017 1:00 pm
 09/28/2017

Metals, Target Analyte
Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS N	No. Paramete	er Result	Flag	Units	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	4620		mg/kg dry	5.21	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-36-0	Antimony	1.26		mg/kg dry	0.521	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-38-2	Arsenic	3.80		mg/kg dry	1.04	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-39-3	Barium	55.8		mg/kg dry	1.04	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-41-7	Beryllium	ND		mg/kg dry	0.104	1	EPA 6010C Certifications: C	TDOH,NE	10/02/2017 13:26 LAC-NY10854-CT,N	10/02/2017 21:57 JDEP,PADEP	KML
7440-43-9	Cadmium	0.644		mg/kg dry	0.313	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
		••••						CTDOH,NI	ELAC-NY10854-CT,N		
7440-70-2	Calcium	103000		mg/kg dry	52.1	10	EPA 6010C		10/02/2017 13:26	10/03/2017 11:42	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-47-3	Chromium	10.4		mg/kg dry	0.521	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-48-4	Cobalt	2.40		mg/kg dry	0.521	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-50-8	Copper	5.96		mg/kg dry	0.521	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7439-89-6	Iron	5920		mg/kg dry	2.09	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7439-92-1	Lead	2.69		mg/kg dry	0.521	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP,PADEP	
7439-95-4	Magnesium	17000		mg/kg dry	5.21	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N		
7439-96-5	Manganese	119		mg/kg dry	0.521	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
								CTDOH,NI	ELAC-NY10854-CT,N		
7440-02-0	Nickel	7.55		mg/kg dry	0.521	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
	D		_					CTDOH,NI	ELAC-NY10854-CT,N		
7440-09-7	Potassium	477	В	mg/kg dry	5.21	1	EPA 6010C	CTDOU NI	10/02/2017 13:26 ELAC-NY10854-CT,N	10/02/2017 21:57	KML
##02 40 2					4.04			CIDON,NI			****
7782-49-2	Selenium	ND		mg/kg dry	1.04	1	EPA 6010C Certifications: C	TDOH.NE	10/02/2017 13:26 LAC-NY10854-CT,N	10/02/2017 21:57 JDEP.PADEP	KML
7440-22-4	Silver	ND		mg/kg dry	0.521	1	EPA 6010C	. , .	10/02/2017 13:26	10/02/2017 21:57	KML
, 22 .	Silver	ND			0.021	•		TDOH,NE	LAC-NY10854-CT,N		11.112
7440-23-5	Sodium	136	В	mg/kg dry	10.4	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
							Certifications:	CTDOH,NI	ELAC-NY10854-CT,N	NJDEP	
7440-28-0	Thallium	ND		mg/kg dry	1.04	1	EPA 6010C Certifications: C	TDOH,NE	10/02/2017 13:26 LAC-NY10854-CT,N	10/02/2017 21:57 JDEP,PADEP	KML
7440-62-2	Vanadium	51.9		mg/kg dry	1.04	1	EPA 6010C		10/02/2017 13:26	10/02/2017 21:57	KML
		3117		G 0,	1.0.	•		CTDOH,NI	ELAC-NY10854-CT,N		
									ŕ	•	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 16

FAX (203) 357-0166

Log-in Notes:

Log-in Notes:

Log-in Notes:

Log-in Notes:

Reported to

LOQ

1.56

Reported to LOQ

0.0313

Reported to

LOQ

0.100

Reported to

0.521

Matrix

Concrete

Dilution

Dilution

Dilution

Dilution

Client Project ID

#170154 11-28 31 Drive, LIC NY

Flag

Flag

Flag

Flag

#170154 11-28 31 Drive, LIC NY

Units

mg/kg dry

Units

Units

Units

mg/kg dry

%

mg/kg dry

Result

Result

Result

Result

4.30

95.9

ND

26.5

							Certifications: NJ	JDEP,CTDO	OH,NELAC-NY108	54-CT,PADEP	
Chromium, Tri	<u>ivalent</u>				Log-in Notes:		Sample	Notes:			
Sample Prepared by Me	ethod: Analysis Preparation										
CAS No.	Parameter	Result	Flag	Units	Reported to	Dilution	Reference Me	ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
16065-83-1 * Ch	romium, Trivalent	6.10		mg/kg	0.500	1	Calculation Certifications:		10/04/2017 09:48	10/04/2017 09:51	PAM
			;	Sample	e Information						
Client Sample I	D: Concrete in contact	with soil							York Sample	<u>e ID:</u> 17	/I1195-02
York Project (SE	OG) No.	Client	Project II	<u>)</u>		Ma	<u>atrix</u>	Collecti	on Date/Time	Date	Received

Log-in Notes:

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Client Sample ID:

York Project (SDG) No.

17I1195

Metals, Target Analyte
Sample Prepared by Method: EPA 3050B

Zinc

Sample Prepared by Method: EPA 7473 soil

Mercury

Sample Prepared by Method: % Solids Prep

* % Solids

Chromium, Hexavalent
Sample Prepared by Method: EPA SW846-3060

17I1195

Metals, Target Analyte

CAS No.

Mercury by 7473

CAS No.

Total Solids

CAS No.

CAS No.

18540-29-9

7439-97-6

solids

7440-66-6

Concrete washed

Parameter

Parameter

Parameter

Parameter

Chromium, Hexavalent

132-02 89th AVENUE

Concrete

RICHMOND HILL, NY 11418

York Sample ID:

Collection Date/Time

September 28, 2017 1:00 pm

Date/Time

10/02/2017 13:26

Prepared

CTDOH.NELAC-NY10854-CT.NJDEP.PADEP

Date/Time

10/03/2017 09:01

CTDOH,NJDEP,NELAC-NY10854-CT,PADEP

Date/Time

09/29/2017 11:22

Date/Time

10/02/2017 09:46

Prepared

Prepared

Prepared

Sample Notes:

Sample Notes:

Sample Notes:

CTDOH

Sample Notes:

Reference Method

Reference Method

Reference Method

Reference Method

EPA 6010C

Certifications:

EPA 7473

SM 2540G

Certifications:

EPA 7196A

Certifications:

1711195-01

Date Received

Date/Time

Analyzed

10/02/2017 21:57

Date/Time

Analyzed

10/03/2017 13:28

Date/Time

Analyzed

09/29/2017 14:49

Date/Time

Analyzed

10/02/2017 17:10

09/28/2017

Analyst

KML

Analyst

Analyst

TJM

Analyst

DM1

09/28/2017

Sample Notes:

September 28, 2017 1:00 pm

Client Sample ID: Concrete in contact with soil

York Sample ID: 17I1195-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1711195#170154 11-28 31 Drive, LIC NYConcreteSeptember 28, 2017 1:00 pm09/28/2017

Sample Prepared by Method: EPA 3050B

CAS N	lo.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum		6340		mg/kg dry	5.13	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-36-0	Antimony		1.79		mg/kg dry	0.513	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-38-2	Arsenic		5.56		mg/kg dry	1.03	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
									CTDOH,N	ELAC-NY10854-CT,N		
7440-39-3	Barium		79.2		mg/kg dry	1.03	1	EPA 6010C	CTP OIL	10/02/2017 13:26	10/02/2017 22:02	KML
									CTDOH,N	ELAC-NY10854-CT,N		
7440-41-7	Beryllium		ND		mg/kg dry	0.103	1	EPA 6010C Certifications:	CTDOH,NI	10/02/2017 13:26 ELAC-NY10854-CT,N	10/02/2017 22:02 JDEP,PADEP	KML
7440-43-9	Cadmium		0.825		mg/kg dry	0.308	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
			0.023			0.500	1		CTDOH,N	ELAC-NY10854-CT,N		
7440-70-2	Calcium		102000		mg/kg dry	51.3	10	EPA 6010C		10/02/2017 13:26	10/03/2017 11:46	KML
			102000		<i>3 3 3</i>				CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-47-3	Chromium		13.7		mg/kg dry	0.513	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
			101,						CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-48-4	Cobalt		3.93		mg/kg dry	0.513	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-50-8	Copper		18.2		mg/kg dry	0.513	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7439-89-6	Iron		11000		mg/kg dry	2.05	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7439-92-1	Lead		52.9		mg/kg dry	0.513	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7439-95-4	Magnesium		11600		mg/kg dry	5.13	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7439-96-5	Manganese		152		mg/kg dry	0.513	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-02-0	Nickel		10.6		mg/kg dry	0.513	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-09-7	Potassium		746	В	mg/kg dry	5.13	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7782-49-2	Selenium		ND		mg/kg dry	1.03	1	EPA 6010C	CTDOLLNI	10/02/2017 13:26	10/02/2017 22:02	KML
									C1DOH,NI	ELAC-NY10854-CT,N		
7440-22-4	Silver		ND		mg/kg dry	0.513	1	EPA 6010C Certifications:	CTDOH.NI	10/02/2017 13:26 ELAC-NY10854-CT,N	10/02/2017 22:02 JDEP.PADEP	KML
7440-23-5	Sodium		168	В	mg/kg dry	10.3	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
, 110 23 3			100	Ь		10.5	1		CTDOH,N	ELAC-NY10854-CT,N		11.112
7440-28-0	Thallium		ND		mg/kg dry	1.03	1	EPA 6010C	Í	10/02/2017 13:26	10/02/2017 22:02	KML
20 0	1 110111111111		ND			1.03			CTDOH,NI	ELAC-NY10854-CT,N		Line
7440-62-2	Vanadium		56.1		mg/kg dry	1.03	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,N	NJDEP,PADEP	
7440-66-6	Zinc		62.1		mg/kg dry	1.54	1	EPA 6010C		10/02/2017 13:26	10/02/2017 22:02	KML
								Certifications:		ELAC-NY10854-CT,N		

Client Sample ID: Concrete in contact with soil York Sample ID:

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

17I1195-02 Date Received

17I1195

#170154 11-28 31 Drive, LIC NY

Concrete

September 28, 2017 1:00 pm

09/28/2017

Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 7473 soil

CAS No	0.	Parameter	Result	Flag	Units	Reported t	o Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		0.0811		mg/kg dry	0.0308	1	EPA 7473	10/03/2017 09:01	10/03/2017 13:37	SY

CTDOH,NJDEP,NELAC-NY10854-CT,PADEP Certifications:

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS	S No.	Parameter	Result	Flag	Units	Reported LOQ	ıtion	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		97.5		%	0.100	1	SM 2540G		09/29/2017 11:22	09/29/2017 14:49	TJM
								Certifications:	CTDOH			

Chromium, Hexavalent

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-3060

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
18540-29-9	Chromium, Hexavalent	3.49	mg/kg dry	0.513	1	EPA 7196A	10/02/2017 09:46	10/02/2017 17:10	DM1

Chromium, Trivalent

Log-in Notes:

Sample Notes:

Sample Prepared by Method: Analysis Preparation

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ Dilut	ition	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
16065-83-1	* Chromium, Trivalent	10.2		mg/kg	0.500 1	1 (Calculation	10/04/2017 09:48	10/04/2017 09:51	PAM
						(Certifications:			

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 7 of 16

www.YORKLAB.com

Analytical Batch Summary

Batch ID: BI71400	Preparation Method:	% Solids Prep	Prepared By:	TJM
YORK Sample ID	Client Sample ID	Preparation Date		
17I1195-01 17I1195-02 BI71400-DUP1	Concrete washed Concrete in contact with soil Duplicate	09/29/17 09/29/17 09/29/17		
Batch ID: BJ70025	Preparation Method:	EPA SW846-3060	Prepared By:	DM1
YORK Sample ID	Client Sample ID	Preparation Date		
17I1195-01 17I1195-02 BJ70025-BLK1 BJ70025-DUP1 BJ70025-MS1 BJ70025-SRM1	Concrete washed Concrete in contact with soil Blank Duplicate Matrix Spike Reference	10/02/17 10/02/17 10/02/17 10/02/17 10/02/17 10/02/17		
Batch ID: BJ70043	Preparation Method:	EPA 3050B	Prepared By:	SY
YORK Sample ID	Client Sample ID	Preparation Date		
17I1195-01 17I1195-01RE1 17I1195-02 17I1195-02RE1 BJ70043-BLK1 BJ70043-SRM1	Concrete washed Concrete in contact with soil Concrete in contact with soil Blank Reference	10/02/17 10/02/17 10/02/17 10/02/17 10/02/17 10/02/17		
Batch ID: BJ70086	Preparation Method:	EPA 7473 soil	Prepared By:	SY
YORK Sample ID	Client Sample ID	Preparation Date		
17I1195-01 17I1195-02 BJ70086-BLK1 BJ70086-SRM1	Concrete washed Concrete in contact with soil Blank Reference	10/03/17 10/03/17 10/03/17 10/03/17		
Batch ID: BJ70160	Preparation Method:	Analysis Preparation	Prepared By:	PAM
YORK Sample ID	Client Sample ID	Preparation Date		
17I1195-01 17I1195-02	Concrete washed Concrete in contact with soil	10/04/17 10/04/17		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Metals by ICP - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BJ70043-BLK1)						Prepared & Analyzed: 10/02/2017
luminum	ND	5.00	mg/kg wet			
ntimony	ND	0.500	"			
rsenic	ND	1.00	"			
arium	ND	1.00	"			
eryllium	ND	0.100	"			
admium	ND	0.300	"			
alcium	ND	5.00	"			
nromium	ND	0.500	"			
balt	ND	0.500	"			
pper	ND	0.500	"			
on	ND	2.00	"			
ad	ND	0.500	"			
agnesium	ND	5.00	"			
anganese	ND	0.500	"			
ckel	ND	0.500	"			
tassium	8.47	5.00	"			
lenium	ND	1.00	"			
ver	ND	0.500	"			
dium	42.0	10.0	"			
allium	ND	1.00	"			
nadium	ND	1.00	"			
nc	ND	1.50	"			
oforomos (D 170042 SDM1)						Prepared & Analyzed: 10/02/2017
uminum (BJ70043-SRM1)	7240	5.00	71 .	0770	02.5	
utimony	7240	5.00	mg/kg wet	8770	82.5	39.6-160.89
senic	130	0.500	"	117	111	19.6-259.6
rium	31.5	1.00	,,	29.6	106	67-161.9
ryllium	214	1.00	"	198	108	72-129.1
	100	0.100	"	92.0	109	73.8-126.4
dmium	81.9	0.300		71.5	115	73.3-126.7
leium	6710	5.00	"	6310	106	73.9-126.9
romium	106	0.500	"	102	104	68.2-132
balt	57.5	0.500		51.4	112	74.3-125.7
opper	160	0.500	"	153	105	72.5-131.4
on od	11400	2.00	"	15200	75.2	36.4-163.9
ad	140	0.500		139	101	69.7-130.8
agnesium	2550	5.00	"	2760	92.5	64.6-135.1
anganese	284	0.500	"	270	105	73.9-126
ckel	151	0.500	"	129	117	70.3-129.7
tassium	2200	5.00		2420	90.8	60.3-140.1
lenium	67.2	1.00	"	60.6	111	63.2-136.9
lver 	34.1	0.500	"	36.4	93.8	66.8-133.4
dium	874	10.0	"	819	107	59.2-141.1
nallium	112	1.00	"	101	111	68.5-130.9
				01.3	07.6	52.2.146.5
nadium nc	79.4 230	1.00 1.50	"	81.3 223	97.6 103	53.3-146.5 69.7-129.8

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Mercury by EPA 7000/200 Series Methods - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ70086 - EPA 7473 soil											

Blank (BJ70086-BLK1)					Prepared & Analyzed: 10/03/2017
Mercury	ND	0.0300 mg/kg wet			
Reference (BJ70086-SRM1)					Prepared & Analyzed: 10/03/2017
Mercury	13.387	mg/kg	13.8	97.0	51.4-168.8

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 10 of 16

Miscellaneous Physical Parameters - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Duplicate (BI71400-DUP1)	*Source sample: 17I	1195-02 (Concrete in	Prepared & Analyzed: 09/29/2017	
% Solids	96.8	0.100 %	97.5	0.660 20

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 11 of 16

Wet Chemistry Parameters - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BJ70025 - EPA SW846-3060)								
Blank (BJ70025-BLK1)							Prepared & Analyzed: 10/02/2017	7	
Chromium, Hexavalent	ND	0.500	mg/kg wet						
Duplicate (BJ70025-DUP1)	*Source sample: 17I	1195-02 (Co	Prepared & Analyzed: 10/02/2017						
Chromium, Hexavalent	3.28	0.513	mg/kg dry		3.49		6.06	35	
Matrix Spike (BJ70025-MS1)	*Source sample: 17I	1195-02 (Co	ncrete in cor	ntact with	oil)		Prepared & Analyzed: 10/02/2017		
Chromium, Hexavalent	18.3	0.513	mg/kg dry	20.5	3.49	72.2	75-125 Low Bias		
Reference (BJ70025-SRM1)							Prepared & Analyzed: 10/02/2017	7	
Chromium, Hexavalent	95.6		mg/L	207		46.2	25.6-116.9		

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 16

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS
	recovery.

B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

High Bias

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615

 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@ Page 14 of 16

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

YORK

20 RESEARCH DR. STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature hinds you to York's Std. Terms & Conditions unless superseded by written contract.

York Project No. 1711196

of

Page

Report/Deliverable Type Container Description Temperature YORK Regulatory Comp Excel on Receipt See Comment below ST RCP DOA/DUE Pkg **NJDEP Reduced Deliv** 4 OZ jar JUDEP SRP HazSite VY ASP A Package IY ASP B Package Summary Report 3018 IYSDEC EQUIS GIS/KEY (std) compared to: Johns 9-28-4 Date/Time Date/Time 2A Report NaOH ST RCP **DTHER**: SUNDE xcel TCL Openio Part360-Rottre Part 360 Frank Full Lists Pull App. IX Part360 Bestin NYCOEPSee NYSTECSOR Samples Received By TALMERON Full TCLP Part 360 the Samples Received in LAB by × **Turn-Around Time** Pri.Poll. H,SO, TAGM Analysis Requested (List above includes common analysis) Misc. Org. Air TO14A NY 310-13 TPH GRO TPH DRO TPH 1664 Air STARS Standard (5-7day) CTETPH Air TO15 RUSH-Same Day RUSH-Three Day RUSH-Four Day RUSH-Next Day Air TICs STUTE RUSH-Two Day SPIPOTOTP Air VPH Methane Helium TAL Metals & Chromium Hexavalent/Trivalent NJDEP list Indis Metak Metals TAGM list Dissolved IST Below PP13 list CTI 5 list RCRAS Total TAL Ascorbic Acid Semi-Vols, PentPCBHerb MeOH 56.11 Purchase Order # SPIPOTOP TCLP Herb TCLP Pest Your Project ID 11-28 31 Drive, LIC NY Samples from CT NY AND Chlordane 8270 or 625 8082PCB 8151Herb Site Spec. App. IX 8081Pest CTRCP 608 Pest SPIPOTOLP 608 PCB Date/Time Date/Time 1/30/17 #170154 CTRCP list SPIPOTICIP TICLP BNA STARS list Acids Only TAGM list NJDEP list HCI BN Only Арр. ГХ TCL list PAH list ZnAc Samples Relinquished By Samples Relinquished By Suffolk Co. Nassau Co. NJDEP list Oxygenates Site Spec. TCLPlist Ketones Frozen 502.2 CTRCP list 524.2 TICS Volatiles Hydro Tech Env. Corp. 77 Arkay Dr. Suite G Arom. only App.IX list STARS list TAGM list Halog.only LAUREN 8021B list Invoice To: 8260 full TOL He MTBE BTEX Samples will NOT be logged in and the turn-around time 624 J.F Print Clearly and Legibly. All Information must be complete. S - soil Other - specify(oil, etc.) clock will not begin until any questions by York are resolved. drinking water GW - groundwater WW - wastewater Matrix Codes Air-A - ambient air Air-SV - soil vapor SAME Company: Address: Field Filtered Name: Preservation (check all appliciable) E-mail Instructions Lab to Filter concrete Matrix DW-Report to: Samples Collected/Authorized By (Signature) Date+Time Sampled Harris 9/28/2017 × SAME Company: Address: Name: E-mail. Name (printed) 15 Ocean Ave. 2nd FI Bklyn, NY 11225 YOUR Information Company: Hydro Tech Env. Corp. Sample Identification Concrete in cotact with soil Concrete washed 718-636-0800 Paul I. Matli = same as before Comments: Address: Contact "hone" -mail:

Disposal Facility Acceptance Letters

Evergreen Recycling of Corona

127-50 Northern Blvd.Flushing, N.Y. 11368 718-205-8038 Fax 718-205-8202 Yard: 35th ave & Willets Point Blvd.

October 6, 2017

George Man GBT Real Estate, LLC 57 Allen Street New York, NY 10002

Dear George,

Evergreen Recycling of Corona permit #41W93 an approved NYSDEC C&D facility has reviewed York Analytical Labs Inc. ID 17I1195 for 11-28 31 drive, LIC. The material represented can be accepted at our Corona facility providing it does not contain any historical fill, wood, slag, ash, garbage, tile or other deletenous materials.

If there are any questions please feel free to contact me at any time.

Sincerely,

David Cinquemani General Manager

Faster, smarter, greener solutions...

July 21, 2017

Mr. George Man 57 Allen Street, New York, NY 10002

Re: Morgan Construction NY, Inc.

 $11 - 28 \ 31st \ Drive,$

Long Island City, NY 11106

Dear Mr. Man,

Clean Earth of Carteret, LLC. (CEC) is pleased to provide you with this acceptance letter for the soil material being generated from the site referenced above. CEC has reviewed the Material Profile Sheet, Waste Characterization Sampling Report and the Laboratory analysis representing the project soil material for offsite disposal. Based on the review, soil sample procedure and soil sample analytical data results represented by York Analytical, Inc. meet the analytical criteria of our NJDEP permitted Class-B Recycling Facility in Carteret, NJ.

This letter serves as approval of ~ 400 tons of non-hazardous contaminated soil/urban fill represented by composite sample IDs: WC-1(0-7) Composite and all related grab samples to be generated from construction activities at the site.

CEC is aware that the soil located at the site is contaminated soil, coming from a NYS Brownfield Clean-up site of which the Remedial Engineer of Record is Ariel Czemerinski P. E. (ariel@amc-engineering.com), of AMC Engineering, PLLC (O: 516-417-8588)

Please note that provided laboratory data package is missing TPH analysis. The facility is permitted to analyze missing parameters by collecting soil samples from incoming loads. Please note that TPH analysis (every 150 Tons) will be required to comply with CEC's Class B permit. In the essence of saving time, CEC will collect the additional TPH samples as required upon arrival at the facility to meet the CEC analytical requirements.

Please provide the approval number when scheduling and include the approval number on all manifests when shipping soils generated from this site. CEC can only accept Non Hazardous petroleum impacted soils. Any soils with free petroleum product or liquids, sludge's, or hazardous waste cannot be accepted. The generator will be notified of any non-conforming material.

Clean Earth Inc. and its Subsidiaries would like to thank you in advance for giving us this opportunity to manage this waste stream. If you should have any questions or require any additional information, please call me at (732) 541-8909.

Sincerely, Clean Earth of Carteret, LLC

Waste Manifests

This Invoice is submitted on behalf of Clean Earth, Inc. located at 334 S. Warminster Road, Hatboro, PA 19040.

Clean Earth of Carteret, LLC

Remit To:

P.O. Box 95000-3755 Philadelphia, PA 19195-0001

Phone: 215-734-1400 Fax: 215-734-1423

Faster, smarter, greener solutions...

Invoice

Invoice Number: PSI0100568 Invoice Date: 10/16/17 Order Number

Page:

Sold To:MORGAN CONSTRUCTION NY INC
57 ALLEN STREET
NEW YORK, NY 10002

Site Address: 11-28 31st Drive George Man 11-28 31st Drive Long Island City, NY 11106 917-416-2002

Customer No.	Customer PO	Payment Terms
MOR717		Net 30 Days
Sales Rep ID	Approval Number	Payment Due
RICH CRAWFORD	173071349	11/15/17

Job No.	Description	Scale Date:	Ticket No.	Manifest No.	Quantity	Unit	Unit Price	Total Price
145639	Soil Treatment Type II	10/13/17	700000738588	1612584	27.67	Tons	39.00	1,079.13
145639	Soil Treatment Type II	10/13/17	700000738871	1612583	30.22	Tons	39.00	1,178.58
145639	Soil Treatment Type II	10/13/17	700000739121	1612582	30.98	Tons	39.00	1,208.22
145639	Soil Treatment Type II	10/13/17	700000739262	1612577	10.73	Tons	39.00	418.47
145639	22 Ton Minimum (1 Load)				11.27	Tons	14.00	157.78
145639	Env, Energy, and Ins Fee					N/C		

Amount Subject to Sales Tax 4,042.18 Amount Exempt from Sales Tax 0.00

Total Quantity: 99.60

Subtotal: Invoice Discount: Total Sales Tax: 4,042.18 0.00 358.74

Total: 4,400.92

sRpPrf.rpt				Clean Earth of Carteret Profile Report				Page 1 of 1 10/14/2017 8:50AM
Profile: 173071349 Site ID: 307	49		Transactions	Transactions from 10/13/2017 through 10/13/2017 Inbound Tickets Only			User ID	User ID: CEI/BGIBSON
			Third P.	Third Party and Intercompany Customers Recycle and Disposal Material				
				Sent and Unsent Tickets Full Details				
Tiokat	Date	Truck	In / Out Manifest	Customer	Bill. Units	Cubic Yards	Tons	Tons Estimated Tons

Ticket	Date	Truck	In / Out	In / Out Manifest	Customer	Bill. Units	Cubic Yards	Tons
173071349 - GB1	r Real Estate	73071349 - GBT Real Estate LLC/11-28 31st St			Global Job Number: 145639	er: 145639		
700000738588 10/13/17	10/13/17	07SHIR12	Ι	1612584	MOR717-MORGAN CONSTRUCTIO	27.670 Tn	0.00	27.67
700000738871	10/13/17	07SHIR44	Ι	1612583	MOR717-MORGAN CONSTRUCTIO	30.220 Tn	0.00	30.22
700000739121 10/13/17	10/13/17	07SHIR12	П	1612582	MOR717-MORGAN CONSTRUCTIO	30.980 Tn	0.00	30.98
700000739262 10/13/17	10/13/17	07SHIR44	I	1612577	MOR717-MORGAN CONSTRUCTIO	10.730 Tn	0.00	10.73
173071349 - GB	r Real Estat	173071349 - GBT Real Estate LLC/11-28 31st St				1	00.00	09.66
4 tickets and 4 transactions	TOUS							

0.00

0.00

09.66

0.00

Report Grand Totals

4 tickets and 4 transactions

Rendon, Adres

Ticket: 700000739262

Scale Scale In: 10/13/2017 13:08:47 Time Date

13:08:54 Out: 10/13/2017

Fax: (732) 541-8105

Clean Earth of Carteret

24 Middlesex Avenue

Ph: (732) 541-8909 Carteret, NJ 07008

Tns 25, 11 28760 Lbs 50220 Grass: Tare:

14,38 21460 Net:

Customer: MORGAN CONSTRUCTION NY IN

Vehicle ID: 075HIR44 Manifest: 1612577

Vehicle Permit:

GBT Real Estate LLC/11-28 31s 173071349 Facility Approval#: Job Name:

Job Address: GBT Real Estate LLC 57 Allen Street Gen Address: Generator:

New York, NY 10002

Services Materials &

Origin

SU_ 10,73

Long Island City, NY 11106

Quantity Unit

11-28 31st Drive

Soil Treatment Type II New York

Contaminate Type: 2 Dil Type: Bio Treatment

Code: Petroleum Contaminated Soil Fac Waste

Storage Area: Not Applicable

Comment:

Driver:

GLOBAL JOB NUMBER: 145639	FACILITY APPROVAL NUMBER:
Please Check One:	
24 Middlesex Avenue 1469 Oak Ridge Place 94 Carteret, NJ 07008 Hagerstown, MD 21740 New	an Earth of New Castle □ Clean Earth of Greater Washington 6250 Dower House Road Upper Marlboro, MD 20772 302-427-6633 □ Clean Earth of Greater Washington 6250 Dower House Road Upper Marlboro, MD 20772 Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 S Philadelphia, PA 19153 Kearny, NJ 07032 Mo	an Earth of Southeast Pennsylvania
Non-Hazardous	Material Manifest
(Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
7177 0 - 17 - 11 7 /1 1 70 3 10 CT	Tons Yards
GBT Real Estate LLC/11-28 31# ST	TARE WEIGHT:
Long Island City, NY	Tons Yards
GENERATOR'S PHONE:	NET WEIGHT:
	Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION	SOIL /AIL
Les mi	50,670.4
(/0 - 42)	
GENERATOR'S CERTIFICATION - Incomplete and/or unsigno	ed manifests will cause the load to be delayed and/or rejected.
I hereby certify that the above named material does not contain from is not a hazardous waste as defined by 40 CFR Part 261 or any approximately 10 cm.	be liquid as defined by 40 CFR Part 260.10 or any applicable state law, plicable state law, is not a DOT hazardous substance as defined by 49 rately described above, classified, packaged and is in proper condition
Name: KOSOLEO	Title:
Signature:	Date and Time: 10 13 20 17 12 20 P
TRANSPORTER	the first
Company: Shirton Express LLC	Phone Number: (909) 258-0597
THE PERMITTY AND PARTY AND THE	Fruck # and License Plate:
Direct.	SW Haulers Permit #: (applicable state permit #)
(Type or Print Clearly)	aterial was picked up at the site listed above.
1/1/1/1/	
Driver Signature:	Date and Time:
DESTINATION	
7 18 14	delivered without incident to the facility noted above.
Driver Signature:	Date and Time: O / 13 / 1 =
I hereby certify that the above named material	has been accepted at the above referenced facility.
Authorized Signature:	Date and Time:

- 1	1
- 1	des
- 1	w
- 1	TT
- 1	1000
	Sain
- 1	1755
	200
- 4	L
10.00	
-	
>	
2.4	
whee,	
- prof.	
-	
-	
· pm[
20	
- 344	
177	
1.1	
Inho	

Adres

In: 10/13/2017 11:59:45 Out: 10/13/2017 11:59:52 45,68 Ticket: 700000739121 Date 91360 Lbs Grossi Fax: (732) 541-8105 Clean Earth of Carteret Wanifest: 1612582 Vehicle ID: 075HIRIS 24 Middlesex Avenue Carteret, NJ 07008 541-8909 Ph: (732)

Scale

P. T.

14,70 30,98

29400

Tare

61960

Net:

Ths

Scale

Time

Vehicle Permit:

07SHIR12

Facility Approval#: MORGAN CONSTRUCTION NY IN Customer:

GBT Real Estate LLC/11-28 31s 11-28 31st Drive Job Name: Job Address: GBT Real Estate LLC Generator:

57 Allen Street Gen Address:

New York, NY 10002

NY 11106

Long Island City,

173071349

Quantity Unit

The

30,98

Services Materials &

Origin

Contaminate Type: 2 Oil New York

Code: Petroleum Contaminated Soil Type: Bio Fac Waste Treatment

Storage Area: Not Applicable

Comment:

Drivers

GLOBAL JOB NUMBER: 145639	FACILITY APPROVAL NUMBER:	173071349
Please Check One:		
Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220	94 Pyles Lane 625 New Castle, DE 19720 Upp	an Earth of Greater Washington 0 Dower House Road oer Marlboro, MD 20772 301-599-0939
☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 ☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004	☐ Clean Earth of Southeast Pennsylvania ☐ Oth 7 Steel Road East Morrisville, PA 19067 Ph: 215-428-1700 ☐ Oth	er
Non-Hazard	ous Material Manifest	
(Type or Print Clearly)	in the second se	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:	
GBT Real Estate LLC/11-28 31* ST	Tons Yards	
11-28 31st Drive	TARE WEIGHT:	
Long Island City, NY	Tons Yards	
GENERATOR'S PHONE:	NET WEIGHT:	
	Tons Yards	*
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOC	SOIL/FILL	
101	41)	
(0-		
GENERATOR'S CERTIFICATION - Incomplete and/or u	insigned manifests will cause the load to be delayed	d and/or rejected.
I hereby certify that the above named material does not consist not a hazardous waste as defined by 40 CFR Part 261 or a CFR Part 172 or any applicable state law, has been fully and for transportation according to all applicable state and feder	tain free liquid as defined by 40 CFR Part 260.10 cany applicable state law, is not a DOT hazardous state accurately described above, classified, packaged	or any applicable state law, ubstance as defined by 49
Name: 5040LFO	Title:	
Signature:	Date and Time:	10:30 AM
TRANSPORTER		
Company: Shirtov Evaross Li C	Phone Number: 1908) 758-05	07
Address: 702 Ramsey Ave. Hillside, NI 07205	Truck # and License Plate:	11 (R #14)
Driver: (Type or Print Clearly)	Diri Tamarata I arrivati	NJ-983 le state permit #)
	ned material was picked up at the site listed above.	
Driver Signature:	Date and Time:	-17-
DESTINATION		
471	I was delivered without incident to the facility note	ed above.
Driver Signature: I hereby certify that the above named management of the state of	Date and Time: nterial has been accepted at the above referenced fa	acility.
	Date and Time:	7-17
Authorized Signature.	Date and Time.	

Ticket: 700000738871 Date Time In: 10/13/2017 10:27:50 Out: 10/13/2017 10:27:57	Cross: 89200 44.60 Tare: 28760 14.38 Net: 60440 30.22	y Approval#: 173071349 Job Name: GBT Real Estate LLC Job Address: 11-28 31st Drive Long Island City, N Quantity Unit	30,22 Tns
Carteret Nenue 17008 -8909 Fax: (732) 541-8105	1612583 07SHIR44	MORGAN CONSTRUCTION NY IN Facility Approval#: 57 Allen Street New York, NY 10002 Materials & Services	1
Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: (732) 541-8909 Fa	Manifest: 1612583 Vehicle ID: 075HIR44	Generator: Gen Address:	New York

0/11-28 319

NY 11106

Scale CE P.T.

0

Rendon, Adres Facility:

Type: Bio Code: Petroleum Contaminated Soil

Contaminate Type: 2 Dil

Storage Area: Not Applicable

Comment:

Driver:

Treatment | Fac Waste (

GLOBAL JOB NUMBER: 145639 F.	ACILITY APPROVAL NUMBER: 173071349
Please Check One:	
24 Middlesex Avenue 1469 Oak Ridge Place 94 P Carteret, NJ 07008 Hagerstown, MD 21740 New	Earth of New Castle Clean Earth of Greater Washington 6250 Dower House Road Upper Marlboro, MD 20772 02-427-6633 Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 Ste Philadelphia, PA 19153 Kearny, NJ 07032 Morr	Earth of Southeast Pennsylvania Other
Non-Hazardous I	Material Manifest
(Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
COT Unal Estate LECTION 21st CT	Tons Yards
GBT Real Estate LLC/TT-28 3T# ST - 11-28 3T# Drive	TARE WEIGHT:
Long Island City, NY	Tons Yards
GENERATOR'S PHONE:	NET WEIGHT:
	Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATIO	
CLEAN/SOIL /AILLA	nt ent
(0'-41)	
is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accuration according to all applicable state and federal regul Name: Signature:	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accura for transportation according to all applicable state and federal regul Name: Signature: TRANSPORTER	liquid as defined by 40 CFR Part 260.10 or any applicable state law, is a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: 10 113 / 20 1 7
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accura for transportation according to all applicable state and federal regul Name: Signature: TRANSPORTER Company: Shirlay Express LLC Pl	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time:
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accuration transportation according to all applicable state and federal regulations. Name: Signature: TRANSPORTER Company: Shirtey Express LLC Address: 702 Rappsoy Ave Hillside N107205	liquid as defined by 40 CFR Part 260.10 or any applicable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: Date and License Plate:
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accuration according to all applicable state and federal regulation. Name: Signature: TRANSPORTER Company: Shirley Express LLC Address: 702 Ramsey Ave. Hillside, N107205 Transporter: Driver:	liquid as defined by 40 CFR Part 260.10 or any applicable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: Date and License Plate: W Haulers Permit #:
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accura for transportation according to all applicable state and federal regul Name: Signature: TRANSPORTER Company: Shirtey Express LLC Address: 702 Ramsey Ave Hillside N 07205 Transporter: (Type or Print Clearly)	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: One Number: uck # and License Plate: W Haulers Permit #: (applicable state permit #)
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accuration according to all applicable state and federal regulation. Name: Signature: TRANSPORTER Company: Shirtey Express LLC Address: 702 Rappsoy Ave Hillside N107205 Transporter: (Type or Print Clearly) I hereby certify that the above named material does not contain free is not a hazardous paper. For the print Clearly is not a hazardous paper. I hereby certify that the above named material does not contain free is not a hazardous paper. Signature: TRANSPORTER Company: (Type or Print Clearly) I hereby certify that the above named material does not contain free is not a hazardous paper.	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: Date and License Plate: W Haulers Permit #: (applicable state permit #) erial was picked up at the site listed above.
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accuration according to all applicable state and federal regulation. Name: Signature: TRANSPORTER Company: Shirtey Express LLC Address: 702 Rappsoy Ave Hillside N107205 Transporter: (Type or Print Clearly) I hereby certify that the above named material does not contain free is not a hazardous paper. For the print Clearly is not a hazardous paper. I hereby certify that the above named material does not contain free is not a hazardous paper. Signature: TRANSPORTER Company: (Type or Print Clearly) I hereby certify that the above named material does not contain free is not a hazardous paper.	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: One Number: uck # and License Plate: W Haulers Permit #: (applicable state permit #)
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accuration according to all applicable state and federal regulation. Name: Signature: TRANSPORTER Company: Shirtey Express LLC OTYPE or Print Clearly) I hereby certify that the above named material does not contain free is not a hazardous applicable state and contain free is not a hazardous applicable state law, has been fully and accurate for transportation according to all applicable state and federal regulation. TRANSPORTER Company: Shirtey Express LLC (Type or Print Clearly) I hereby certify that the above named material does not contain free is not a hazardous applicable state law, has been fully and accurate for transportation according to all applicable state and federal regulation. TRANSPORTER Company: Shirtey Express LLC (Type or Print Clearly) I hereby certify that the above named material does not contain free is not a hazardous accurate for transportation according to all applicable state law, has been fully and accurate for transportation according to all applicable state law, has been fully and accurate for transportation according to all applicable state law, has been fully and accurate for transportation according to all applicable state law, has been fully and accurate for transportation according to all applicable state law, has been fully and accurate for transportation according to all applicable state law, has been fully and accurate for transportation according to all applicable state law, has been fully and accurate law, ha	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: Date and License Plate: W Haulers Permit #: (applicable state permit #) erial was picked up at the site listed above.
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accuration according to all applicable state and federal regulation. Name: Signature: TRANSPORTER Company: Shirton Express LLC Address: 702 Ramson Ave Hillside N107205 Transporter: (Type or Print Clearly) I hereby certify that the above named material does not contain free is not a hazardous applicable state and course for transportation according to all applicable state and federal regulation. Plantage of the print Clearly of t	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: One Number: uck # and License Plate: V Haulers Permit #: (applicable state permit #) erial was picked up at the site listed above. Date and Time:
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any app CFR Part 172 or any applicable state law, has been fully and accurator transportation according to all applicable state and federal regulators. Name: Signature: TRANSPORTER Company: Address: Oriver: (Type or Print Clearly) I hereby certify that the above named material was december of the print of the p	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: W Haulers Permit #: (applicable state permit #) Perial was picked up at the site listed above. Date and Time:
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any applicable state law, has been fully and accuration transportation according to all applicable state and federal regulation. Name: Signature: TRANSPORTER Company: Address: TO RANSPORTER Company: (Type or Print Clearly) I hereby certify that the above named material was deposited. Driver Signature: DESTINATION I hereby certify that the above named material was deposited.	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: Date and License Plate: W Haulers Permit #: Prial was picked up at the site listed above. Date and Time: Date and Time: Date and Time:
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any applicable state law, has been fully and accuration transportation according to all applicable state and federal regulation. Name: Signature: TRANSPORTER Company: Address: TO RANSPORTER Company: (Type or Print Clearly) I hereby certify that the above named material was deposited. Driver Signature: DESTINATION I hereby certify that the above named material was deposited.	liquid as defined by 40 CFR Part 260.10 or any applicable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations. Title: Date and Time: W Haulers Permit #: Capplicable state permit #) Perial was picked up at the site listed above. Date and Time: Date and Time:

In: 10/13/2017 08:38:59 Scale CE ut: 10/13/2017 08:39:07 P.T. Lbs Tns re: 29400 14.70 let: 55340 27.67	#: 173071349 e: GBT Real Estate LLC/11-28 31s s: 11-28 31st Drive Long Island City, NY 11106 Quantity Unit	27.67 Tns	Gibson, Barry
Avenue 07008 -8909 Fax: (732) 541-8105 01612584 075HIR12	Generator: GBT Real Estate LLC Gen Address: 57 Allen Street Origin Ven York, NY 10002 Origin	New York Contaminate Type: 2 Oil Treatment Type: Bio Fac Waste Code: Petroleum Contaminated Soil Storage Area: Not Applicable Comment:	Driver:

Scale

Time

Date

Clean Earth of Carteret

Ticket: 700000738588

GLOBAL JOB NUMBER: 145639 FA	ACILITY APPROVAL NUMBER: 173071349
Please Check One:	
Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Clean Earth of Maryland 1469 Oak Ridge Place 94 Py New	Earth of New Castle ☐ Clean Earth of Greater Washington 6250 Dower House Road Upper Marlboro, MD 20772 Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 Ste Philadelphia, PA 19153 Kearny, NJ 07032 Morri	el Road East sville, PA 19067 15-428-1700 Other
Non-Hazardous N	Material Manifest
(Type or Print Clearly)	GROSS WEIGHT:
GENERATOR'S NAME & SITE ADDRESS:	
GBT Real Estate LLC/11-28 31# ST	Tons Yards
11-28 318 Drive	TARE WEIGHT:
Long Island City, NY	Tons Yards
GENERATOR'S PHONE:	NET WEIGHT:
	Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION	<u>7</u>
(0'-4').	
GENERATOR'S CERTIFICATION - Incomplete and/or unsigned	manifests will cause the load to be delayed and/or rejected.
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any appl	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition
Name: KONOLFO	Title:
Signature: Chaiff	Date and Time: $10/13/9017$ 7:30 AM
TRANSPORTER	
Company: Shirley Express L.C. Ph	one Number: (908) 758-0597
	uck # and License Plate: ASTI 6 B
Driver: ong & SV	V Haulers Permit #: NJ-983
(Type or Print Clearly)	(applicable state permit #)
I hereby certify that the above named mate	
Driver Signature:	Date and Time: $10-13-17$
DESTINATION	
I hereby certify that the above named material was de	livered without incident to the facility noted above.
Driver Signature:	Date and Time:
I hereby certify that the above named material had	as been accepted at the above referenced facility.
Authorized Signature:	Date and Time:

This Invoice is submitted on behalf of Clean Earth, Inc. located at 334 S. Warminster Road, Hatboro, PA 19040.

Clean Earth of Carteret, LLC

Remit To:

P.O. Box 95000-3755 Philadelphia, PA 19195-0001

Phone: 215-734-1400 Fax: 215-734-1423

Faster, smarter, greener solutions...

Invoice

Invoice Number: PSI0100547 Invoice Date: 10/16/17 Order Number

Page:

Site Address:

11-28 31st Drive George Man 11-28 31st Drive Long Island City, NY 11106 917-416-2002

Sold To:MORGAN CONSTRUCTION NY INC
57 ALLEN STREET
NEW YORK, NY 10002

1	Customer No.		Custor	ner PO		7	Payment Te	rms
	MOR717						Net 30 Da	ys
	Sales Rep ID		Approva	Number			Payment	Due
	RICH CRAWFORD		1730	71349			11/15/1	7
Job No.	Description	Scale Date:	Ticket No.	Manifest No.	Quantity	Unit	Unit Price	Total Price
145639	Soil Treatment Type II	10/12/17	700000737523	1288779	24.14	Tons	39.00	941.46
145639	Soil Treatment Type II	10/12/17	700000737581	1288780	27.36	Tons	39.00	1 067 04

Job No.	Description	Date:	Ticket No.	Manifest No.	Quantity	Unit	Unit Price	Total Price
145639	Soil Treatment Type II	10/12/17	700000737523	1288779	24.14	Tons	39.00	941.46
145639	Soil Treatment Type II	10/12/17	700000737581	1288780	27.36	Tons	39.00	1,067.04
145639	Soil Treatment Type II	10/12/17	700000737610	1614904	26.84	Tons	39.00	1,046.76
145639	Soil Treatment Type II	10/12/17	700000737757	1288781	28.11	Tons	39.00	1,096.29
145639	Soil Treatment Type II	10/12/17	700000738103	1614901	30.04	Tons	39.00	1,171.56
145639	Soil Treatment Type II	10/12/17	700000738134	1618451	27.8	Tons	39.00	1,084.20
145639	Soil Treatment Type II	10/12/17	700000738203	1618448	30.48	Tons	39.00	1,188.72
145639	Soil Treatment Type II	10/12/17	700000738222	1612570	29.13	Tons	39.00	1,136.07
145639	Env, Energy, and Ins Fee					N/C		

Amount Subject to Sales Tax 8,732.10 Amount Exempt from Sales Tax 0.00

Total Quantity: 223.90

Subtotal: Invoice Discount: Total Sales Tax: 8,732.10 0.00

774.97

Total:

9,507.07

sRpPrf.rpt Profile: 173071349 Site ID: 307				Transac	Clean Earth of Carteret Profile Report Transactions from 10/12/2017 through 10/12/2017 Inbound Tickets Only Third Party and Intercompany Customers Recycle and Disposal Material Sent and Unsent Tickets Full Details			User ID:	Page 1 of 1 10/13/2017 7:16AM User ID: CEI\BGIBSON
Ticket	Date	Truck	In / Out	In / Out Manifest	Customer	Bill. Units	Cubic Yards	Tons	Tons Estimated Tons
71349 - GBT	Real Estate	73071349 - GBT Real Estate LLC/11-28 31st St	St		Global Job Number: 145639	oer: 145639			
700000737523 10/12/17	10/12/17	07LOGI3	Ι	1288779	MOR717-MORGAN CONSTRUCTIO	24.140 Tn	0.00	24.14	0.00
700000737581	10/12/17	07SHIR12	Ι	1288780	MOR717-MORGAN CONSTRUCTIO	27.360 Tn	0.00	27.36	0.00
700000737610	10/12/17	07SHIR44	Ι	1614904	MOR717-MORGAN CONSTRUCTIO	26.840 Tn	0.00	26.84	0.00
700000737757	10/12/17	07SHIR6	Ι	1288781	MOR717-MORGAN CONSTRUCTIO	28.110 Tn	0.00	28.11	0.00
700000738103	10/12/17	07SHIR44	Ι	1614901	MOR717-MORGAN CONSTRUCTIO	30.040 Tn	0.00	30.04	0.00
700000738134	10/12/17	07SHIR12	Ι	1618451	MOR717-MORGAN CONSTRUCTIO	27.800 Tn	0.00	27.80	0.00
700000738203	10/12/17	07LOGI3	Ι	1618448	MOR717-MORGAN CONSTRUCTIO	30.480 Tn	0.00	30.48	0.00
700000738222	10/12/17	07SHIR6	Ι	1612570	MOR717-MORGAN CONSTRUCTIO	29.130 Tn	0.00	29.13	00'0
									The second second

8 tickets and 8 transactions

173071349 - GBT Real Estate LLC/11-28 31st St

0.00

223.90

0.00

0.00

223.90

0.00

Report Grand Totals

8 tickets and 8 transactions

Scale CE P.T.		LC/11-28 31s NY 11106	the same that the man was the same and	
Time 4:52:18 4:52:31	Tns 43.86 14.73 29.13	tate LLC/1 Drive City, NY	Chit	Ths
In: 10/12/2017 14:52:18 Out: 10/12/2017 14:52:31	Lbs 87720 29460 58260	173071349 GBT Real Estate LLC/11-28 31s 11-28 31st Drive Long Island City, NY 11106	Quantity Unit	29.13 Ths
Ini	Gross: Tare:		and has one and their first bell had not seen our even over	
Carteret venue 7008 8909 Fax: (732) 541-8105		Gustomer: MORGAN CONSTRUCTION NY IN Facility Approval#: Generator: GBT Real Estate LLC Gen Address: 57 Allen Street New York, NY 10002	Materials & Services	Soil Treatment Type II
Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: (732) 541-8909 Fa		Generator: Gen Address:	Origin	New York

Ticket: 700000738222

Facility:

Type: Bio Code: Petroleum Contaminated Soil

Contaminate Type: 2 Dil

Storage Area: Not Applicable

Comment:

Driver:

Fac Waste Treatment

Rendon, Adres

*	1770 7 17110
GLOBAL JOB NUMBER: 145639 FA	ACILITY APPROVAL NUMBER: 1730 71349
Please Check One:	
24 Middlesex Avenue 1469 Oak Ridge Place 94 Py Carteret, NJ 07008 Hagerstown, MD 21740 New	Earth of New Castle☐ Clean Earth of Greater Washington∀les Lane6250 Dower House RoadCastle, DE 19720Upper Marlboro, MD 2077202-427-6633Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 Ste Philadelphia, PA 19153 Kearny, NJ 07032 Morri	el Road East sville, PA 19067 15-428-1700 Other
Non-Hazardous N	Material Manifest
(Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
11-28 3154 DRIVE.	Tons Yards
LONG IS LAND CITY	TARE WEIGHT:
NEW YORK	Tons Yards
GENERATOR'S PHONE:	NET WEIGHT:
	Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION	
50%	FILL MATERIAL
(0'	-41).
GENERATOR'S CERTIFICATION - Incomplete and/or unsigned	
is not a hazardous waste as defined by 40 CFR Part 261 or any appl	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition ations.
Name: 150401 FO	Title: P. H.
Signature: Alex	Date and Time: 10/12/2017 1:30P M
Signature.	12/42/
TRANSPORTER	
	one Number:
Address: 702 KAMSEY AVE Tr	uck # and License Plate: # 06 AS 125 L
Direct.	V Haulers Permit #:
(Type or Print Clearly)	(applicable state permit #)
I hereby certify that the above named mate	
Driver Signature: DENNIS T	Date and Time:
DESTINATION	
I hereby certify that the above named material was de	elivered without incident to the facility noted above.
Driver Signature:	Date and Time: 10-12-17.
I hereby certify that the above named material h	as been accepted at the above referenced facility.
Authorized Signature:	Date and Time:

Scale CE P.T.

Scale

Time

Date

Fax: (732) 541-8105 Clean Earth of Carteret 24 Middlesex Avenue Garterst, Ny 07009

In: 10/12/2017 14:37:44 Out: 10/12/2017 14:37:55 Ths Lbs 87180 Bross:

43.59 13.11 30.48 60960 26220 Net: Tare:

Customer: MORGAN CONSTRUCTION NY IN

Wanifest: 1618448 Vehicle ID: 07L0613

Vehicle Permit:

Generator: GBT Real Estate LLC

57 Allen Street

Gen Address:

GBT Real Estate LLC/11-28 31s Facility Approval#: Job Name:

173071349

11-28 31st Drive Job Address:

Long Island City, NY 11106

New York, NY 18002 Origin

Services Materials &

The 30,48

Quantity Unit

Soil Treatment Type II New York

Contaminate Type: 2 Dil Treatment Type: Bio

Fac Waste Code: Petroleum Contaminated Soil

Storage Area: Not Applicable

Comment:

Facilitys

Rendon, Adres

Driver:

GLOBAL JOB NUMBER: 145 639	FACILITY APPROVAL NUMBER: 173071349
Please Check One:	
24 Middlesex Avenue 1469 Oak Ridge Place 9 Carteret, NJ 07008 Hagerstown, MD 21740	Clean Earth of New Castle 4 Pyles Lane New Castle, DE 19720 Clean Earth of Greater Washingtor 6250 Dower House Road Upper Marlboro, MD 20772 Ph: 302-427-6633 Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 Philadelphia, PA 19153 Kearny, NJ 07032	Clean Earth of Southeast Pennsylvania
Non-Hazardou	s Material Manifest
(Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
11 28 315+ DRIVE	Tons Yards
LONG ISLAND CITY	TARE WEIGHT:
NEW YORK	☐Tons ☐Yards
GENERATOR'S PHONE:	NET WEIGHT:
	Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCAT	TION
Soil / Fi	LL MATERIAL
(0'-4	")
is not a hazardous waste as defined by 40 CFR Part 261 or any a CFR Part 172 or any applicable state law, has been fully and acc for transportation according to all applicable state and federal re Name: Signature:	free liquid as defined by 40 CFR Part 260.10 or any applicable state law, applicable state law, is not a DOT hazardous substance as defined by 49 curately described above, classified, packaged and is in proper condition
TRANSPORTER	
Company: Logitech Transport 1/e	
Address: P.O. BOX 787 Hillside	Truck # and License Plate: 15369 X # 03
Driver: (Type or Print Clearly)	SW Haulers Permit #: (applicable state permit #)
	material was picked up at the site listed above.
A1	
Driver Signature:	Date and Time:
DESTINATION	
I hereby certify that the above named material wa	s delivered without incident to the facility noted above.
Driver Signature:	Date and Time: 10-12-17
I hereby certify that the above named materi	al has been accepted at the above referenced facility.
Authorized Signature:	Date and Time:
GENI	ERATOR

	LC/11-28 31s NY 11106
42.50 14.70 27.80	173071349 GBT Real Estate LLC 11-28 31st Drive Long Island City, N Guantity Unit
25600 25600 55600	17307134 GBT Real 11-28 31 Long Isl
Gross: Tare:	NY IN Facility Approval#: 173071349 Job Name: GBT Real Estate LLC/11-28 31s Job Address: 11-28 31st Drive Long Island City, NY 11106 Guantity Unit
1618451 075HIR12	Gustomer: MORGAN CONSTRUCTION I Benerator: GBT Real Estate LLC in Address: 57 Allen Street New York, NY 10002
Wanifest: Vehicle ID: Vehicle Permit:	Generator: Gen Address:

Ths

27.80

Scale Scale

> In: 10/12/2017 13:49:00 Out: 10/12/2017 13:49:09

> > Fax: (732) 541-8105

541-8909

Ph: (732)

Clean Earth of Carteret

24 Middlesex Avenue Carteret, NJ 07008

Date

Ticket: 700000738134

Facilitys

Fac Waste Code: Petroleum Contaminated Soil

Storage Area: Not Applicable

Comment:

Drivers

Type: 2 Oil Type: Bio

Contaminate Treatment

New York

Origin

Soil Treatment Type II

Rendon, Adres

GLOBAL JOB NUMBER: 145639 FA	ACILITY APPROVAL NUMBER: 173071349
Please Check One:	
Clean Earth of Carteret Clean Earth of Maryland Clean 24 Middlesex Avenue 1469 Oak Ridge Place 94 Py Carteret, NJ 07008 Hagerstown, MD 21740 New Contents Clean Earth of Maryland Clean A Py Carteret NJ 07008 Hagerstown, MD 21740 New Contents Clean Earth of Maryland New Contents Clean Earth of	Earth of New Castle les Lane Castle, DE 19720 02-427-6633 Clean Earth of Greater Washington 6250 Dower House Road Upper Marlboro, MD 20772 Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 Stee Philadelphia, PA 19153 Kearny, NJ 07032 Morris	Earth of Southeast Pennsylvania
Non-Hazardous N	Material Manifest
(Type or Print Clearly)	
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
11-28 315+ Dave	Tons Yards
LONGISLAND CITY	TARE WEIGHT:
NEW YORK.	Tons Yards
GENERATOR'S PHONE:	NET WEIGHT:
	Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION	UMATERIAL
(0/-41)	6-777
(0-1)	
GENERATOR'S CERTIFICATION - Incomplete and/or unsigned	manifests will cause the load to be delayed and/or rejected.
	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition
Name: DROBOLED	Title:
Signature:	Date and Time: 10 12 2017 12:45 pm.
Address: Tru	one Number: ack # and License Plate: Haulers Permit #: (applicable state permit #) rial was picked up at the site listed above. Date and Time: Date and Time:
DESTINATION	
DESTINATION I hereby certify that the above named material was delegated. Driver Signature: I hereby certify that the above named material had Authorized Signature:	Date and Time:

. 88840 44.42 : 28760 14.38 : 60080 30.04	: 173071349 : GBT Real Estate LLC/11-28 31s : 11-28 31st Drive Long Island City, NY 11106 Quantity Unit
Gross Tare NY IN	Facility Approval#: 173071349 Job Name: GBT Real Job Address: 11-28 31s Long Islan Services Quantity
ONSTRUCTION	Generator: GBT Real Estate LLC in Address: 57 Allen Street New York, NY 10002 n
Manifest: 1614901 Vehicle ID: 075HIR44 Vehicle Permit: Customer: MORGAN D	Generator: Gen Address: Origin

Scale

Time

Ticket: 700000738103

In: 10/12/2017 13:34:59 Out: 10/12/2017 13:35:08

Fax: (732) 541-8105

Clean Earth of Carteret

24 Middlesex Avenue Carteret, NJ 07008 Ph: (732) 541-8909

P. T.

Driver:

Facility:

Rendon, Adres

Ths

30.04

Code: Petroleum Contaminated Soal

Soil Treatment Type II

Contaminate Type: 2 Dil Treatment Type: Bio

New York

Storage Area: Not Applicable

Comment:

Fac Waste

GLOBAL JOB NUMBER: 145639 FA	CILITY APPROYAL NUMBER: 173071349
Please Check One:	
24 Middlesex Avenue 1469 Oak Ridge Place 94 Pyll Carteret, NJ 07008 Hagerstown, MD 21740 New C	Earth of New Castle es Lane Castle, DE 19720 12-427-6633 Clean Earth of Greater Washington 6250 Dower House Road Upper Marlboro, MD 20772 Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 Stee Philadelphia, PA 19153 Kearny, NJ 07032 Morris	Earth of Southeast Pennsylvania Other
Non-Hazardous M	Naterial Manifest
(Type or Print Clearly)	20 10 10 10 10 10 10 10 10 10 10 10 10 10
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
11-28 31 Street DRIVE	Tons Yards
LONG 1 STANS CITY	TARE WEIGHT:
NEW YORK.	Tons Yards
GENERATOR'S PHONE:	NET WEIGHT:
	Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION	Company of the second of the s
Soil 1/1	ILL MATERIAL
(0'-4	(')
Notes 1	
GENERATOR'S CERTIFICATION - Incomplete and/or unsigned	manifests will cause the load to be delayed and/or rejected.
I hereby certify that the above named material does not contain free is not a hazardous waste as defined by 40 CFR Part 261 or any applicable state law, has been fully and accurate for transportation according to all applicable state and federal regular	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition
(+- a) (10	Title:
Name.	Date and Time: 10/12/2017 12:15px
Signature:	Date and Time.
TRANSPORTER	#444
Company: Storley Exper Ph	one Number:
	uck # and License Plate:
	V Haulers Permit #:
(Type or Print Clearly)	(applicable state permit #)
I hereby certify that the above named mate	erial was picked up at the site listed above.
Driver Signature:	Date and Time:
DESTINATION	
I hereby certify that the above named material was de	livered without incident to the facility noted above.
Driver Signature:	Date and Time:
I hereby certify that the above named material ha	as been accepted at the above referenced facility.
Authorized Signature:	Date and Time:
Authorized dignature.	

			Tickets	70000073775		e
*Clean Earth of			1000	Date 10/12/2017	Time	Scale C
24 Middlesex F Carteret, NJ (In:	10/12/2017	11:08:56	P. T.
Ph: (732) 541	-8909 Fax: (732) 541	-8105	Odti	10/15/50/		
				Lbs	Tns 42.84	
Manifesti	1288781	20	Gross: Tare:		14.73	
Vehicle ID:			Net:		28.11	
Vehicle Permit: Customer:	MORGAN CONSTRUCTION N	Y IN		177071249		
		Facilit	y Approval#:	ISBI Keal L	state LLC	11-28 3
Generator:	GBT Real Estate LLC 57 Allen Street		Job Address:	11-28 31st	Drive	
Ben Haaressa	New York, NY 10002			Long Islan	d City, N	/ 11106
Origin	Materials & S	ervices		Quantity	Univ	
	Soil Treatmen	t Type II		28, 11	Tns	
New York	nate Type: 2 Dil					
The state of the s	and Towns Ran		Soil			
Fac W	aste Code: Petroleum (ontaminaveo	0011			
Storage Hrea:	Not Applicable					
Comment						
-						
Drivers			Facility:	Gibson, Bar	nu	
DLIAGI.				GIDSON, Dan	* *	
	THE THE PARTY OF T	SALTHRESON HILDI	D. Commercial	Shirt of the same		2 10
240 0						
	*			Manif	fest # 128	38781
CLEANEAR	TH	Frank .				
			-			
		201				
		*				
GLOBAL JOB NUMBER	: 145639	FACILITY	APPROVAL	NUMBER:	7307	134
GLOBAL JOB NUMBER	145639	FACILITY	Y APPROVAL	NUMBER: _	7307	134
GLOBAL JOB NUMBER Please Check One:	. 145639	FACILITY	APPROVAL	NUMBER: _	7307	1349
	☐ Clean Earth of Maryland	☐ Clean Earth of N		☐ Clean	7307	
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue	☐ Clean Earth of Maryland 1469 Oak Ridge Place	Clean Earth of N	ew Castle	☐ Clean 6250 I	Earth of Greater Dower House Ro Marlboro, MD 2	ad
Please Check One: ☐ Clean Earth of Carteret	☐ Clean Earth of Maryland	☐ Clean Earth of N	lew Castle	Clean 6250 I Upper	Dower House Ro	ad
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 ☐ Clean Earth of North Jersey	☐ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663	lew Castle 19720 33 outheast Pennsylva	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2	oad 0772
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 ☐ Clean Earth of North Jersey 115 Jacobus Avenue	Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663	lew Castle 19720 33 coutheast Pennsylval	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 ☐ Clean Earth of North Jersey	Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 Clean Earth of S 7 Steel Road Ea	ew Castle 19720 33 outheast Pennsylval ist 9067	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 ☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004	☐ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 ☐ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170	lew Castle 19720 33 outheast Pennsylvan ist 9067 00	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 ☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032	☐ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 ☐ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170	lew Castle 19720 33 outheast Pennsylvan ist 9067 00	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly)	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-8220 ☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	☐ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 ☐ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170	lew Castle 19720 33 coutheast Pennsylvan st 9067 00 al Manifest	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-8220 ☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	☐ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 ☐ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 OUS Materia	lew Castle 19720 33 coutheast Pennsylvan ist 9067 00 al Manifest 6 WEIGHT:	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S	Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS □ Tons	19720 133 coutheast Pennsylvanist 19067 100 al Manifest G WEIGHT: □ Yards	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 ☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 OUS Materia GROSS Tons TARE	new Castle 19720 33 coutheast Pennsylval 9067 00 al Manifest WEIGHT:	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 ☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	☐ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 ☐ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 ☐ GROSS ☐ Tons ☐ TARE ☐ Tons	ew Castle 19720 33 coutheast Pennsylvanist 9067 30 al Manifest WEIGHT: Yards WEIGHT: Yards	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S	Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS □ Tons TARE □ Tons NET	lew Castle 19720 33 coutheast Pennsylvanist 9067 20 al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT:	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S	Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS □ Tons TARE □ Tons NET □ Tons	lew Castle 19720 33 coutheast Pennsylvanist 9067 20 al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT:	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S	Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS □ Tons TARE □ Tons NET □ Tons	lew Castle 19720 33 coutheast Pennsylvanist 9067 20 al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT:	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S	Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard SITE ADDRESS:	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS □ Tons TARE □ Tons NET □ Tons	lew Castle 19720 33 coutheast Pennsylvanist 9067 20 al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT:	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S	Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS □ Tons TARE □ Tons NET □ Tons	lew Castle 19720 33 coutheast Pennsylvanist 9067 20 al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT:	Clean 6250 I Upper Ph: 30	Dower House Ro Mariboro, MD 2 01-599-0939	oad 0772
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S.	☐ Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220 ☐ Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004 Non-Hazard SITE ADDRESS:	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 OUS Materia GROSS □ Tons TARE □ Tons NET □ Tons CATION	new Castle 19720 33 coutheast Pennsylvanist 9067 20 al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards	Clean 6250 I Upper Ph; 30 III Other.	Dower House Ro Marlboro, MD 2 01-599-0939	ad 0772
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S.	CATION - Incomplete and/or u	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 OUS Materia □ GROSS □ Tons □ TARE □ Tons NET □ Tons NET □ Tons CATION unsigned manifest	iew Castle 19720 33 outheast Pennsylval 9067 00 al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards	Clean 6250 t Upper Ph: 30 dia Other.	Dower House Ro Marlboro, MD 2 01-599-0939	nad 07772
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S GENERATOR'S PHONE: DESCRIPTION OF MATE	CATION - Incomplete and/or convergated and a constraint of the con	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 OUS Materia GROSS □ Tons TARE □ Tons NET □ Tons CATION unsigned manifest tain free liquid as	al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards	Clean 6250 t Upper Ph: 30 onia Other.	and/or rejected	i. state law,
Please Check One: Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S. DESCRIPTION OF MATE DESCRIPTION OF MATE GENERATOR'S CERTIFI I hereby certify that the above part a hazardous waste as	CATION – Incomplete and/or cover named material does not condefined by 40 CFR Part 261 or ode fined by 40 CFR Part 261 or ode	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 OUS Materia GROSS □ Tons TARE □ Tons NET □ Tons CATION cursigned manifest tain free liquid as any applicable sta	al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards	Clean 6250 to Upper Ph: 30 hia Other.	and/or rejected any applicable stance as defired	al. I. state law, ned by 49
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S. DESCRIPTION OF MATE DESCRIPTION OF MATE GENERATOR'S CERTIFI I hereby certify that the abord is not a hazardous waste as CFR Part 172 or any applic	CATION – Incomplete and/or cable state law, has been fully an	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 OUS Materia GROSS □ Tons TARE □ Tons NET □ Tons CATION ansigned manifest tain free liquid as any applicable sta d accurately descri	al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards	Clean 6250 to Upper Ph: 30 hia Other.	and/or rejected any applicable stance as defired	al. I. state law, ned by 49
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S. GENERATOR'S PHONE: DESCRIPTION OF MATE GENERATOR'S CERTIFI I hereby certify that the about is not a hazardous waste as CFR Part 172 or any applic for transportation according	CATION – Incomplete and/or cover named material does not condefined by 40 CFR Part 261 or ode fined by 40 CFR Part 261 or ode	Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS TONS TARE TONS NET Tons CATION unsigned manifest tain free liquid as any applicable sta d accurately descral regulations.	al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards	Clean 6250 to Upper Ph: 30 hia Other.	and/or rejected any applicable stance as defired	al. I. state law, ned by 49
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S GENERATOR'S PHONE: DESCRIPTION OF MATE GENERATOR'S CERTIFI I hereby certify that the abo is not a hazardous waste as CFR Part 172 or any applic for transportation according Name:	CATION – Incomplete and/or to able state law, has been fully and to all applicable state and feder	Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-66: Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS Tons TARE Tons NET Tons CATION unsigned manifest tain free liquid as any applicable sta d accurately descral regulations. Title:	al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: A Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: A Yards	Clean 6250 to Upper Ph: 30 hia Other.	and/or rejected any applicable stance as defired	al. I. state law, ned by 49
Please Check One: ☐ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 ☐ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S. GENERATOR'S PHONE: DESCRIPTION OF MATE GENERATOR'S CERTIFI I hereby certify that the about is not a hazardous waste as CFR Part 172 or any applic for transportation according	CATION – Incomplete and/or to able state law, has been fully and to all applicable state and feder	Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 GROSS TONS TARE TONS NET Tons CATION unsigned manifest tain free liquid as any applicable sta d accurately descral regulations.	al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: A Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: A Yards	Clean 6250 to Upper Ph: 30 hia Other.	and/or rejected any applicable stance as defired	al. I. state law, ned by 49
Please Check One: □ Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909 □ Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 (Type or Print Clearly) GENERATOR'S NAME & S. GENERATOR'S PHONE: □ DESCRIPTION OF MATE □ Leave Service Servic	CATION – Incomplete and/or to able state law, has been fully and to all applicable state and feder	□ Clean Earth of N 94 Pyles Lane New Castle, DE Ph: 302-427-663 □ Clean Earth of S 7 Steel Road Ea Morrisville, PA 1 Ph: 215-428-170 OUS Materia □ GROSS □ Tons □ TARE □ Tons NET □ Tons NET □ Tons CATION unsigned manifest tain free liquid as any applicable sta d accurately descral regulations. Title: Date an	al Manifest WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: A Yards WEIGHT: Yards WEIGHT: Yards WEIGHT: A Yards	Clean 6250 to Upper Ph: 30 hia Other.	and/or rejected any applicable stance as defired	al. I. state law, ned by 49

Truck # and License Plate: # 06 A S 125

Company:

Address: 707

000737610	Time	2/201/2	C/C01/ 10:0/:1/ F. I.
7000	1	1.00	1/0/1
Ticket:			Cat
			32) 541-8105
			Fax: (7
Art Caretain	* Clean Earth of Carterer * 24 Middlesex Avenue	Carteret, NJ 07008	Ph: (732) 541-8909 Fa

10

Vehicle ID: 075HIR44 Manifest: 1614904 Vehicle Permit:

14,38 41,22 Ths 26.84 53680 82440 28760 Tares Gross: Net:

Customer: MORGAN CONSTRUCTION NY IN

Facility Appreval#: Job Name: GBT Real Estate LLC Generator:

New York, NY 10002 57 Allen Street Gen Address:

Long Island City, NY 11106 11-28 31st Drive Quantity Unit Job Address:

FILE

26,84

GBT Real Estate LLC/11-28 31s

173071349

Origin

Services Materials &

New York

Soil Treatment Type II Contaminate Type: 2 Dil Type: Bio Freatment

Code: Petroleum Contaminated Soil Fac Waste

Storage Area: Not Applicable

Comment:

Facilitys

Gibson, Barry

Driver:

GLOBAL JOB NUMBER: 145639 FACILITY APPROVAL NUMBER: 173071349
Please Check One:
Clean Earth of Carteret Clean Earth of Maryland 24 Middlesex Avenue Carteret, NJ 07008 Hagerstown, MD 21740 Ph: 732-541-8909 Ph: 301-791-6220 Ph: 302-427-6633 Clean Earth of New Castle Clean Earth of New Castle Clean Earth of New Castle G250 Dower House Road Upper Marlboro, MD 20772 Ph: 302-427-6633 Ph: 301-599-0939
Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520 Clean Earth of North Jersey 115 Jacobus Avenue 7 Steel Road East Morrisville, PA 19067 Ph: 215-428-1700 Clean Earth of Southeast Pennsylvania 7 Steel Road East Morrisville, PA 19067 Ph: 215-428-1700
Non-Hazardous Material Manifest
(Type or Print Clearly)
GENERATOR'S NAME & SITE ADDRESS: GROSS WEIGHT:
11-28 31 street Drive Tons Yards
Long Island City TARE WEIGHT:
Now York
GENERATOR'S PHONE: NET WEIGHT:
Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION
MIX TORTS
SOPLIFIEL MATERIAL
$(0^1 - 0^1)$
GENERATOR'S CERTIFICATION - Incomplete and/or unsigned manifests will cause the load to be delayed and/or rejected.
I hereby certify that the above named material does not contain free liquid as defined by 40 CFR Part 260.10 or any applicable state law, is not a hazardous waste as defined by 40 CFR Part 261 or any applicable state law, is not a DOT hazardous substance as defined by 49 CFR Part 172 or any applicable state law, has been fully and accurately described above, classified, packaged and is in proper condition for transportation according to all applicable state and federal regulations.
Name: Lodoff Title:
Signature: Date and Time: 10/12/20/7
TRANSPORTER
Company: Sherley Express Phone Number: ++ 1111
Address: Hellish NT Truck # and License Plate: AS317W
Driver: Paul Alex SW Haulers Permit #:
(Type or Print Clearly) (applicable state permit #)
I hereby certify that the above named material was picked up at the site listed above.
Driver Signature:
DESTINATION
I hereby certify that the above named material was delivered without incident to the facility noted above.
Driver Signature: Date and Time: 10/12/17
I hereby certify that the above named material has been accepted at the above referenced facility.
Authorized Signature: Date and Time:
10/1-1

Ticket: 700000737581 Ticket: 700000737581 In: 10/12/2017 09:59:08 Scale CE Out: 10/12/2017 09:59:08 Scale CE Lbs Tns Gross: 84120 42.06 Tare: 29400 14.70 Net: 29400 14.70 Job Name: GBT Real Estate LLC/11-28 31s Job Address: 11-28 31st Drive Long Island City, NY 11106 Quantity Unit	27.36 Tns
Ticket: 700000737581 In: 10/12/2017 0 Out: 10/12/2017 0 Lbs Gross: 84120 Tare: 84120 Tare: 84120 Tare: 84720 In: 173071349 b Name: 6BT Real Est ddress: 11-28 31st I Cong Island Guantity L	Cu
f Carteret Avenue 07008 -8909 Fax: (732) 541-8105 1288780 075HIR12 MORGAN CONSTRUCTION NY IN Facility Approv 57 Allen Street New York, NY 10002 New York, NY 10002 New York, NY 10002	Soil Treatment Type II
"Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: (732) 541-8909 Fa Wehicle Permit: Customer: MORGAN CO Gen Address: 57 Allen Gen Address: 57 Allen Origin	New York

Facility: Comment: Not Applicable Drivers

Gibson, Barry

CLORAL IOR NUMBER: 145639 FA	CILITY APPROVAL NUMBER: 17-3071349
GLOBAL JOB NUMBER: 17000 FA	CILITI AFTROVAL NUMBER.
Please Check One:	
24 Middlesex Avenue 1469 Oak Ridge Place 94 Pyl Carteret, NJ 07008 Hagerstown, MD 21740 New C	Earth of New Castle Les Lane Castle, DE 19720 102-427-6633 Clean Earth of Greater Washington 6250 Dower House Road Upper Marlboro, MD 20772 Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 Stee Philadelphia, PA 19153 Kearny, NJ 07032 Morris	Earth of Southeast Pennsylvania Other Other Sville, PA 19067
Non-Hazardous N	Material Manifest
(Type or Print Clearly)	Marine Control
GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
11-28 31St DRIVE	Tons Yards
- PONGISLAND CITY.	TARE WEIGHT:
NEW YORK	Tons Yards
GENERATOR'S PHONE:	NET WEIGHT:
THE PROPERTY OF ALL PERSON OF	TOTAL SECTION OF THE STATE OF T
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION Soil / H	ILL MATERIAL
(8,-	21)
<i>y</i>	
GENERATOR'S CERTIFICATION - Incomplete and/or unsigned	manifests will cause the load to be delayed and/or rejected.
is not a hazardous waste as defined by 40 CFR Part 261 or any applicable State law, has been fully and accuration transportation according to all applicable state and federal regular	tely described above, classified, packaged and is in proper condition
Name: FUROLHO Signature: Law	Date and Time: 10/12/2017 8:25 AM
TRANSPORTER	
Company.	one Number:
11001000	ack # and License Plate: A 5/16 B (12)
Driver: SV	V Haulers Permit #: (applicable state permit #)
I hereby certify that the above named mate	erial was picked up at the site listed above.
Driver Signature:	
DESTINATION	
I hereby certify that the above named material was de	livered without incident to the facility noted above.
Driver Signature:	Date and Time:
I hereby certify that the above named material ha	as been accepted at the above referenced facility.
	Date and Time:

Lbs Tns 74500 37.25 26220 13.11 48280 24.14 173071349 GBT Real Estate LLC/11-28 31s 11-28 31st Drive Long Island City, NY 11106 Quantity Unit	Gibson, Barry
Manifest: 1288779 Vehicle ID: Ø7LOGI3 Vehicle Permit: Customer: MORGAN CONSTRUCTION NY IN Generator: GBT Real Estate LLC Gen Address: 57 Allen Street New York, NY 10002 Origin Origin	New York Contaminate Type: 2 Oil Treatment Type: Bio Fac Waste Code: Petroleum Contaminated Soil Storage Area: Not Applicable Comment: Driver:

GENERATOR

Scale CE

Time

Ticket: 700000737523

In: 10/12/2017 09:32:49 Out: 10/12/2017 09:33:07

Fax: (732) 541-8105

Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: (732) 541-8909 Fax:

P. T.

GLOBAL JOB NUMBER: 145639 FA	CILITY APPROVAL NUMBER: 173071349
Please Check One:	
24 Middlesex Avenue 1469 Oak Ridge Place 94 Pyl Carteret, NJ 07008 Hagerstown, MD 21740 New C Ph: 732-541-8909 Ph: 301-791-6220 Ph: 30	Earth of New Castle les Lane Castle, DE 19720 D2-427-6633 Clean Earth of Greater Washington 6250 Dower House Road Upper Marlboro, MD 20772 Ph: 301-599-0939
3201 S. 61st Street 115 Jacobus Avenue 7 Stee Philadelphia, PA 19153 Kearny, NJ 07032 Morris	Earth of Southeast Pennsylvania el Road East sville, PA 19067 15-428-1700
Non-Hazardous M	Material Manifest
(Type or Print Clearly) GENERATOR'S NAME & SITE ADDRESS:	GROSS WEIGHT:
11-28,31 Street DRIVE	Tons Yards
LONGISLAND CIPTY.	TARE WEIGHT:
NEW YORK	Tons Yards
GENERATOR'S PHONE:	NET WEIGHT:
	Tons Yards
DESCRIPTION OF MATERIAL/SAMPLE ID AND LOCATION	
50,16/4	MIL MATERIAL *
(01-2	1
is not a hazardous waste as defined by 40 CFR Part 261 or any appli	liquid as defined by 40 CFR Part 260.10 or any applicable state law, icable state law, is not a DOT hazardous substance as defined by 49 tely described above, classified, packaged and is in proper condition
Name: (1 200/0/ Flor	Title:
Signature:	Date and Time: 10/12/2017
TRANSPORTER	
Company: 1 20: 42 4 42 Ph	one Number:
	uck # and License Plate:
Dilvei.	V Haulers Permit #:
C(Type or Print Clearly)	(applicable state permit #)
I hereby certify that the above named mate	erial was picked up at the site listed above.
Driver Signature:	Date and Time:
DESTINATION	
I hereby certify that the above named material was de	
Driver Signature:	Date and Time: 17 - 17 - 2014
I hereby certify that the above named material ha	as been accepted at the above referenced facility.
Authorized Signature:	Date and Time:
GENERA	TOR

				Barbara .	ARCHITECTURE.
Instructions	ALTERNATION AND ADDRESS OF THE PARTY NAMED IN	The second second	 10040-	200	OR THE OWNER OF THE OWNER
THE RESERVE AND ADDRESS.	ET NATIONAL				
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN					

- 1. Generating C&D processing facility; complete numbers 1-6, keep a copy and give a copy to the hauler.

 Hauter; complete numbers 7 and 8. keep a copy and give Receiving Facility; complete numbers 9 and 10, keep a co 	a copy to the receiving facility. py and return a copy to the generating C&D	facility within two weeks.
	Processing Facility Section	
I. Generating C&D processing facility name;	2. Hauter name: Two Covicks	Truik it
Mailing midress (street k 57 Miles 54	Mailing address (street):	Aldusala
City, State and Zip:	City, State and Zip: Cs(Jegy_P+ Ny	1756
Telephone number:	Telephoné number: (917) 642-6749	I I was Warranger
3. Part 350 permit number: Date of permit expiration:	Materials transported (use additional Type	Quantity indicate tons or cubic yan
4. Destination Facility name: E yake years Retycling		
Mailing address (street): 12.776 Morture, BLVA		
City, State and Zip: Flushing My 11366		
Telephone number: (718) 205-8078		
6. Generator's certification: I hereby affirm under penalty of perjury that information proprehated by me or under my supervision and direction and it ity as Oracles Coversas. (title) of this tracking document pursuant to 6 NYCRR Part 360. I am misdemeanor pursuant to Section 210.45 of the Penal Law.	FITT Die ffield	(entity) to sign in is punishable as a Class /
Printed Typed Name	Signature	1 0 1 1 1 1
Tim Bung	The Breakley	
	uler Section	(5)
7. Hauler Section Ceptification of Receipt of Construction a	Signature /	Mo. Day ()
Printed Typed Rapple	allen	11011111
Hauler Discrepancy Box (Any discrepancies in Items 2,	4 or 5 should be noted here and by the ite	m number.)
Receiving Facility Section	on (Transfer, Recycling, Disposa	
Receiving Facility Section (Certification of Receipt of Co	nstruction and Demolition Debris as des Signature	Ma t Day

- disconnection in items 7. 4 or 5 should be noted here and by the item number.)

Construction and Demolition Debris Tracking Document

Please type or print clearly

Read Street and London	ARTHUR WILLIAM	the state of the s	SALES AND ADDRESS.
Instructions	CORE CHIEFE	DVBDADE J	BO-10.481102

- 1. Generating C&D processing facility; complete numbers 1-6, keep a copy and give a copy to the hauler
- Hauler; complete numbers 7 and 8, keep a copy and give a copy to the receiving facility.

	C&D Processing Facility Section
1. Generating C&D processing facility name: GDT Reag Estate	Let Two Courins
Mailing address (street): 5 7 Allen 5+	Mailing address (street): 15-02-1274
City, State and Zip: Hy Hy love Z. Telephone number:	City, State and Zip: College 74 NA 11716
Telephone number:	Telephone number:
Date of permit expiration: / /	5. Materials transported (use additional sheets if necessary) Type Quantity indicate tons or cubic yards
Destination Facility name:	
Mailing address (street): 12.770 Northern RA	
City, State and Zip: flushing My 11768	
Telephone number: (718) 205-8076	
epared by me or under my supervision and direction as project freeher (ti s tracking document pursuant to 6 NYCRR Part 360.	aw.
sdemeanor pursuant to Section 210.45 of the Penal L.	
nted Typed Name Time Runjog	Signature Mo. Day Year
nted Typed Name	Hauler Section
nted Typed Name	Hauler Section

Construction and Demolition Debris Tracking Document

Please type or print clearly

Instructions (See Subdroom Mil-16 Affet	The state of the s
BALLEY CHARLE CAR CHARLES AND A CONTRACT OF THE PARTY OF	and the same a copies and mixed
The second secon	secundors numbers 1-6, keep a copy and give a

- copy to the hunler.
- Generating C&D processing facility; complete numbers 1-6, keep a copy and give a copy.
 Hauler; complete numbers 7 and 8, keep a copy and give a copy to the receiving facility. r C&D facility within two weeks.

GBT Rea Estat LLC		
CBT Don Files LLC	2. Hade name	
1 - C 1 / CA1 1464 4 6 6	The lesting	
	Atailing address (street):	
Mailing address (street):	15-02 1235°	
ST Aller St	Plan System and Zint:	
ley, State and Zip.	Cayen et	42 11311
riephone number:	Telephone number:	
mepeone numora-	()	78
Part 360 permit number:	5. Materials transported (use ad	ditional sheets if necessary) Ouantity
Part 360 permit mantoer:	Type:	indicate toes or cubic you
Date of permit expiration:		Hallaton seasons 22 Co. Co.
Destination Facility name:	/	
Commence Before Cod		
Mailing address (street): TETS Marthorn Fly A		
PUTS HARRY BIVY		
City, State and Zip: 1, 25 A		
PLISTING HY 11768		
Telephone number.		
(78) 205-8036		
I hereby affirm under penalty of perjuty that information prove proposed by me or under my supergisten and direction and is to by as Postful P. Juntage (title) of the tracking document pursuant to 6 NYCRR Part 360. I am as	vare that any false statement made be	Reet E/Aq. (entity) to sign erein is punishable as a Class A
In the Penal Law		
misdementor pursuant to Section 210,45 of the Penal Law	imdare	Me. 1 Day 1 Year
misdemeanor pursuant to Section 210,45 of the Penal Law.	ligradure	
mindementor pursuant to Section 210,45 of the Penal Law, Printed Typed Name S		
Printed Typed Name Hant	er Seetima	Me. 1 Day 1 Year
Printed Typed Name Hand 7. Hander Species (Certification of Receipt of Construction and	ier Section Demolition Debris as described in it	Min. 1 Day 1 Von 1 1 1 1 1 1 1 1 1 1
Printed Typed Name Hand 7. Hander Species (Certification of Receipt of Construction and	er Seetima	Mie. 1 Day 1 Ver

Receiving Facility Section (Transfers Receiving, Disputed)

9. Receiving Facility Section (Certification of Receipt of Construction and Demolition Debris as described in item 5)

France: Typed Name

Segnature

Segnature

Segnature

10. Receiving Facility Discrepancy Box (Any discrepancies in items 2, 4 or 5 should be noted fore and by the item number.)

Construction and Demolition Debris Tracking Document

(, tadmum most adt gd bms arad baton ad bluodie č. so ž., L am	Receiving Facility Discrepancy Box (Any discrepancies in ite
	ndie
(è mati ni beditatab as detectibed in item 9)	Recenting Facility Section (Certification of Receipt of Construct
musier, Recycling, Disposal)	Receiving Facility Section (Perceiving Pacified Section (T)
Discount to the August	
A selection of the state of the	L. Hauder Discrepancy Box (Any discrepancies in items 2, 4 or 5
- Kill Work DASSE amon	DONING WILLIAM
	7. Hauler Section (Certification of Receipt of Construction and Do Printed Typed Name
	Whith Section (Certification of December 5) Indian Section 1
+ 1717171011	
mos i ded i ope	de many will
/	none & board behalfd
A east D a en alderheimen et mercet abem imministra selat que haft a	this tracking document parasant to 6 NYCRR Part 360. I am aware this tracking document to Section 210.45 of the Penal Law.
THE PERSON NAMED OF THE PE	W. ARE LEGISLE TO THE PARTY OF
early altigrated to the amountains to the second to the order of the second to the sec	SHALL BE FROM THOMPSOND FROM PROPERTY PROPERTY FOR THE PROPERTY OF THE PARTY OF
at any and any assessments booksetts been tresentioned, titll the b	schivery neithernolai suff varions to ydansy raban amilla górnad i
	6. Generator's certification:
	8703-205 (8117)
	Telephone numbers Philades My 1178.8
	City State and Zips
4	tuis carina off 51
	Perty April Continued and Markette
	4-Destroution Facility name
Type Quantity justs into or cubic justs	Date of permit expiration:
5. Materials trumported (use additional absects (f necessary)	3, Pert 360 permit number:
	and the same of the same of
Telephone manifer:	Lightpoor analysis;
3 /2// 20 14 (1/10)	24001 WY WW
pt 621 2211	the parties of Co.
Meliting addiess (street)	Abidida address (strott):
7) # 15,7(6) 15,7	CRT RA CENT
PROTEST VILLENCE MUNICIPAL	6. Generaling C&D processing facility seems 1.
Selection is experienced facility. On the facility is abin two weeks.	
6, keep a cupy and give a copy in the banker	1. Generaling CAD percenting facility; complem members 1-
of participation of par	Indications (in constant materials
A STATE OF THE PARTY OF THE PAR	The Party of the County of the Party of the

SCALE TICKET 100 774708

g of Corona Inc.

ern Blvd. 7 11368 Ticket Number:

Date:

ax: 718-205-8202 illets Point Blvd.

EVERGREEN RACYCLING 127-50 NORTHER! BVLD FLUSHING, NY \1368 718-446-7000

Trucker:

Truck No.: 10/16/2017 5:56 AM

License No.: Two Cousins.18

Job No.:

JE \$910.00//MORGAN CONS

Store: 0001 Term: 0005 REF#: 00000002 RRN: 728909402067

MID: 7060

SALE

05:53:30

Trans ID. 1016MEB0YDUGR

Batch #: 541

10/16/17

APPR CODE: 06956E

***********8293 MASTERCARD

Manual CP

\$910.00

AMOUNT

Entered By:

YARDS/TONS ALDA

CURB DELIVERIES ONLY—OTHERS MADE ELSEWHERE SOLELY AT THE PURCHASER'S RISK

Concrete Disposal - In

CUSTOMER COPY

APPROVED

RECEIVED BY

TERNANDO

FULL SIGNATURE—NO INITIALS

Disposal Facility Permits

AT-14-020 (01/94)
MEN YORK STATE DEPARTMENT OF ENVIRONMENTAL CORSERVATION
DIVISION OF SOLID MASTE

REGISTRATION FORM FOR A SOLID WASTE MANAGEMENT FACILITY
Please read and follow all instructions before completing
this registration form

Please Type or Print clearly	TRIS IS NOT A LPA PERSIT
------------------------------	--------------------------

		DEPMETH	ant lisé	CHLY			
DEC	REGISTRATION #			4/	W	9	3
œc	ACHINISTRATION	4			******		
	CATE	RECEIVED	9,	10,9	P		

1. FACILITY NAME AND LOCUTION	2. FACILITY CAMER'S HAVE
EVERGREEN RECYCLING OF CORONA	TULLY ENVIRONMENTAL, INC.
WILLETS POINT BLVD.	Mailing Address 127-50 NORTHERN BLVD.
City/village CORONA MEADOWS YARD	City/Tour/Village Ex HOUTING
Ten Conty	FLUSHING .
CODONA OTIPENS	State/Zip Code NEW YORK, 11368
Telephone Hupter (718) 446 7000	Tritophone Number
3. FACILITY CORRATCR'S EIRS (If different)	(718) 446-7000 ex 248 297
TULLY ENVIRONMENTAL, INC.	METROPOLITAN TRANSPORATION AUTHORIT
Mailing Address	Haiting Address
127 50 NORTHERN BLVD.	347 MADISON AVENUE
PINGHING	NEW YORK
State/Zip Code	State/Zip Code
Talaphone Russer 11368	NEW YORK 10017-3739
(718) 446 7000 ox 248	Telephone Busher
5. TYPE OF FACILITY RESILTRATION (check all applicable boxes)	\$2123 878-7048
Energy Pacovery Incine ators or Pyrolysis Units [360-3.1(c)]	Source Separated, Horpustrescible Solid Unite Recyclables Hamiling and Recovery Facilities (350-12.1(d))
Land Application and Studge Storage Facilities (360-4,1(c))	Utante Tire Retrenders (360-13-1(4)(1)(1))
Compacting and Other O stribution and Marketing Facilities (360-5.3(h))	Wester Tirte Stored for On-site Energy Recovery 1369-13.1(d)(1)(i))
tend Clearing Debris Liadfills three acres or less (360-7.2(a))	Tire Senters Setting Wests Tires (\$60-13.1(4)(1)(151))
1 1	Tire Named acturing Facilities [360-13-1(d)(1)((v))
Transfer Stations (mm cipally ounce/operated/contracted)	
household solid usets invently (360-11,1(b)(1))	Proceeding Recitivies Receiving Only Recognizable Uncontemisated Concrete, Asphalt Pavesent, Brick, Soil
Transfer Stations (mm cipally owned/operated/contracted)	or Rock (560-16.1(d)(1)(f))
receiving tess than 50 000 cubic yards or 12,500 town of containorized colid waste annualty (360-11.1(b)(2))	Uncontaminated Unadul termined Wood Processing familities [360-16.1(d)(1)(1)]
Ocher Families and specifically described above, Specify	
Y ZOTID TREAL APPOIND	7. OPERATIONS SCHEDULE - Normal amedule of operation
A. 1349 vactor militar manufata a la como de la como dela como de la como de	<u>'</u>
a. List wastes mai/a: materials to be exceptedConcret Fill, Virgin Sand, Gravel, Asphalt	e <u>Mon-Eri 7am-6pm</u>
	S. RANE(S) OF ALL HERICIPALITIES SERVED
b. Guarcity (Specify Units - see instructions) design capacity 10,000 yards	. RAPE(3) OF ALL PRICEIPALITIES SCATES
storage on site 50,000 yards	
9. CERTIFICATION:	
I haveby affirm under penalty of perjury that information	provided on this form and attached statements and exhibits was
8 highway of an or others, sale sites as a successful But 1:	s istub to the bact of My knowledge and bulled, and that I have
	THE VERY LEAD TO BE A STATE OF THE STATE OF
registration form pursuant to & NYCOS Part 360. By signin applicable regulations and will abide by all conditions of	The content of a manufacture of the state of the second of the
3 SECTION STATE NOTE IN 18 PURISHBOLD DE A CLASS A MEMBERORS	or pursuant to Section 210.45 of the Penal Law.
Printed/Typed Name	Signature Ro. Day Year
Peter K. Tully	09 08 198
	1 C C C 7 T C

REGIONAL OFFICE COPY - COPY #1

the second of th

man and the company of the control of

NYUTM East: 597757 NYUTM North: 4512582

Pg. 29

Date: 01/22/2016

Status: Active; Activity type(s): C&D processing - registration;

NYS DEC REGION 2 County: New York

Consolidated Edison of NY NYUTM East: 586100 NYUTM North: 4492500 [31W13]

ACTIVITY DESCRIPTION: C&D processing - registration

OWNER TYPE: 360 PERMIT 31W13 Private NUMBER:

REGULATORY STATUS: Registration PERMIT ISSUED: 10/12/2005

PERMIT EXPIRES: OWNER: Consolidated Edison company of New York CONTACT: George Ruiz

ADDRESS: 4 Irving Place Rm 15NE ADDRESS: 276-290 Avenue C (East 16th Street)

New York, NY 10003 New York, NY 10009 (Mailing): (Location): PHONE: (212)460-2278 PHONE: (212)253-9553

WASTE TYPE: Construction & Demolition Debris, Asphalt, Street Date of Last

Sweepings Inspection:

NYS DEC REGION 2

County: Queens

Durante Brothers Construction [41W22] NYUTM East: 597431 NYUTM North: 4513760

C&D processing - registration ACTIVITY DESCRIPTION:

OWNER TYPE: Private 360 PERMIT 41W22 NUMBER:

REGULATORY STATUS: PERMIT ISSUED: 04/20/1995 Registration

PERMIT EXPIRES: OWNER: John and Michael Durante CONTACT:

John L. Durante Jr ADDRESS: 31-40 123 Street ADDRESS: 31-40 123 STREET (Mailing): Flushing, NY 11354 (Location): Flushing, NY 11354 PHONE: (718)762-2500 PHONE: (718)762-2500

WASTE TYPE: Rock, Soil (Clean), Concrete, Metals (Ferrous), Metals Date of Last (Non-Ferrous) Inspection:

[41W93]

ACTIVITY DESCRIPTION: C&D processing - registration

Evergreen Recycling of Corona (Willets Point Blvd)

OWNER TYPE: 360 PERMIT 41W93

NUMBER:

REGULATORY STATUS: Registration PERMIT ISSUED: ---PERMIT EXPIRES:

OWNER: Tully Environmental, Inc. CONTACT: Daniel Scully ADDRESS: 127-50 Northern Blvd. ADDRESS: Willlets Point Blvd (Mailing): Flushing, NY 11368 Corona, NY 11368 (Location): PHONE: (718)446-7000 PHONE: (718)205-8038

Asphalt, Concrete, Soil (Clean), Construction & WASTE TYPE: Date of Last

Demolition Debris, Metals (Ferrous), Metals Inspection:

(Non-Ferrous), Brick, Rock

[41MB1] NYUTM Fast: 589575 NYUTM North: 4510523 **Hunters Point Recycling Inc**

ACTIVITY DESCRIPTION: C&D processing - registration

OWNER TYPE: Private 360 PERMIT 41MB1

NUMBER: REGULATORY STATUS: PERMIT ISSUED: Registration

PERMIT EXPIRES:

OWNER: James Juliano CONTACT: James Juliano

ADDRESS: ADDRESS: 213-19 99 Avenue 29-55 Hunters Point Ave (Mailing): Queens village, NY 11429 (Location): Long Island City, NY 11101

(516)779-6081 PHONE: (718)465-5600 PHONE:

WASTE TYPE: Concrete, Rock, Soil (Clean), Metals (Ferrous), Metals Date of Last (Non-Ferrous), Wood (Unadulterated) Inspection:

State of New Jersey

CHRIS CHRISTIE
Governor

DEPARTMENT OF ENVIRONMENTAL PROTECTION

BOB MARTIN Commissioner

KIM GUADAGNO Lt. Governor Division of Solid & Hazardous Waste
Bureau of Recycling & Hazardous Waste Management
401 East State Street
P.O. Box 420, Mail Code 401-02C
Trenton, NJ 08625-0420
Tel (609) 984-3438 Fax (609) 777-1951/984-0565
www.nj.gov/dep/dshw/recycling

August 31, 2017

CERTIFIED MAIL RETURN RECEIPT REQUESTED

John Eshelman, Manager Clean Earth of Carteret, LLC 24 Middlesex Avenue Carteret, NJ 07008

Re:

Renewal of Class B Recycling Center General Approval

Clean Earth of Carteret, LLC

Borough of Carteret, Middlesex County

Facility ID No: 132310 Permit No.: CBG160002

Dear Mr. Eshelman:

Please be advised that the New Jersey Department of Environmental Protection, Division of Solid and Hazardous Waste, Bureau of Recycling and Hazardous Waste Management (Bureau) has reached a final determination to renew the above Class B Recycling Center General Approval. Enclosed is a copy of the final document.

Should you wish to contest any of the conditions of the enclosed general approval, you must file a request for an adjudicatory hearing within twenty (20) days of the date you receive this decision notice in accordance with the procedures found in N.J.A.C. 7:26A-3.14. A copy of the request should also be mailed to this office.

If you have any questions concerning this matter, please contact Nick Nader at (609) 984-2067 or nicholas.nader@dep.nj.gov.

Sincerely,

Zafar M. Billah, Acting Chief

Bureau of Recycling & Hazardous Waste Management

Enc.

C(w/enc.):

*Tom Farrell, Chief, Bureau of Solid Waste Compliance and Enforcement

*Paul Smith, Supervisor, BSWC&E - Central Region

Les Jones, Middlesex County Health Officer

Christopher Sikorski, Middlesex County Solid Waste Coordinator

Kathleen M. Barney, Municipal Clerk, Borough of Carteret

^{*}By e-mail only

State of New Jersey

CHRIS CHRISTIE Governor

DEPARTMENT OF ENVIRONMENTAL PROTECTION

BOB MARTIN Commissioner

KIM GUADAGNO Lt. Governor

Division of Solid & Hazardous Waste Bureau of Recycling & Hazardous Waste Management 401 East State Street P.O. Box 420, Mail Code 401-02C Trenton, NJ 08625-0420 Tel (609) 984-3438 Fax (609) 777-1951/984-0565

www.state.nj.gov/dep/dshw/recycling

RECYCLING CENTER GENERAL APPROVAL FOR CLASS B RECYCLABLE MATERIALS

Under the provisions of N.J.S.A. 13:1E-1 et seg. and N.J.S.A. 13:1E-99.11 et seg., known as the Solid Waste Management Act and New Jersey Statewide Mandatory Source Separation and Recycling Act, respectively, and pursuant to N.J.A.C. 7:26A-1 et seq., known as the Recycling Regulations, this approval is hereby issued to:

Clean Earth of Carteret, LLC

Facility Type:

Recycling Center for Class B Materials

Lot & Block No .:

3.02/1

Municipality:

Borough of Carteret

County: Facility ID No .: Middlesex

132310

Permit No.:

CBG160002

This General Approval is subject to compliance with all conditions specified herein and all regulations promulgated by the Department of Environmental Protection (Department).

This General Approval shall not prejudice any claim the State may have to riparian land nor does it allow the registrant to fill or alter, or allow to be filled or altered, in any way, lands that are deemed to be riparian, wetlands, stream encroachment or flood plains, or within the Coastal Area Facility Review Act (CAFRA) zone or are subject to the Pinelands Protection Act of 1979, nor shall it allow the discharge of pollutants to waters of this State without prior acquisition of the necessary grants, permits, or approvals from the Department of Environmental Protection.

August 31, 2017 Issuance Date

Zafar M. Billah, Acting Chief

Bureau of Recycling & Hazardous Waste Management

March 7, 2022 **Expiration Date**

Scope of Approval

This General Approval (approval), along with the referenced application documents herein specified, shall constitute the sole approval of Recycling Center operations for Class B Recyclable Material (petroleum contaminated soil, street sweepings, brick, block, concrete, stone, rock, and asphalt) by Clean Earth of Carteret, LLC, located in the Borough of Carteret, Middlesex County, New Jersey. Any registration, approval or permit previously issued by the Division of Solid and Hazardous Waste, or its predecessor agencies, for the specific activities as described below and as conditioned herein, is hereby superseded.

Regulated Activities at the Facility

Items 1 through 39 of this approval contain the general conditions applicable to all recycling centers. Items 40 through 87 of this approval contain the operating requirements specific to the recycling center for receipt, storage, processing, or transfer of Class B recyclable materials including non-hazardous petroleum contaminated soils. Items 88 through 91 of this approval are the sampling requirements for testing the street sweepings. Items 92 through 101 of this approval contain the conditions for the aggregate crushing operations.

Facility Description

The recycling center is a Class B facility owned and operated by Clean Earth of Carteret, LLC. The recycling center is located at 24 Middlesex Avenue on Block 1, Lot 3.02, in Borough of Carteret, Middlesex County. This regional recycling center receives petroleum contaminated soil from soil remediation contractors and street sweepings from municipalities. The recycling center is authorized to receive, process and transfer brick, block, concrete, stone, rock, and asphalt from construction and demolition contractors, construction companies, municipalities, and counties. Hours of operation for the receipt, treatment/processioning and transferring source separated recyclable material can occur 24 hours per day, 7 days per week. The operation of the crushers shall be limited to: 7:00 a.m. to 7:00 p.m., Monday through Friday and Saturdays from 7:00 a.m. to 4:00 p.m.

The recycling center is also utilized for finished product storage and equipment storage as shown on the site plan. The recycling center markets clean soil and dense graded aggregate from the site.

When the Approval was last renewed on October 27, 2014 by the Division of Solid and Hazardous Waste, some of the authorized equipment, described in Requirement #94, were inadvertently omitted. Requirement #94 has been revised to include an actual list of authorized equipment.

Approved General Approval Application and Associated Documents

The registrant shall construct and operate the facility in accordance with N.J.A.C. 7:26A-1 *et seq.*, the conditions of this Approval, and the following documents:

- a) Site plan entitled "As-Built Site Map Clean Earth of Carteret, Carteret, Middlesex County, NJ", prepared by Bradley J. Cunningham, P.E. of Compliance Plus Services, Inc., dated May 9, 2014 and last revised May 2, 2017.
- b) Clean Earth of Carteret, Submittal of signed transfer agreement, prepared and signed by Michael D. Logan, Vice President, Compliance Plus Services, dated May 22, 2003.
- c) Plan SB-01 entitled "Unprocessed PHC Soil Storage Building Layout, Clean Earth of Carteret, LLC, Carteret, Middlesex County, New Jersey", prepared by Bradley J. Cunningham, P.E., of Compliance Plus Services, Inc., dated May 2, 2014.
- d) Clean Earth of Carteret, Inc., Request to utilize cement kiln dust or lime as a drying agent to remove moisture from its treated soils, prepared and signed by Michael D. Logan, Vice President, Compliance Plus Services, dated December 27, 2006.
- e) Notification of Proposed Stock Purchase of Clean Earth Holdings, Inc. dated August 20, 2014 and prepared by Michael D. Logan, Vice President of Compliance Plus Services, Inc.
- f) Class B Recycling Center General Permit Renewal and Modification Application for the Acceptance of Restricted Use Aggregate ("RUA") and Direct Reuse Soils ("DRS SOILS"), dated March 5, 2012, prepared by Michael D. Logan, Vice President of Compliance Plus Services, Inc.
- g) Class B Recycling Center General Approval Renewal Application, dated June 10, 2014, and prepared by Michael D. Logan, Vice President of Compliance Plus Services, Inc. This Renewal of the Application does not include any modification approval requested to the proposed acceptance and processing of Direct Reuse of Soils (DRS) and Restricted Reuse Aggregate (RUA) referenced in the Compliance Plus Services, Inc. letter dated March 5, 2012.
- h) Class B Recycling Center Renewal Application of General Approval dated November 21, 2016 and signed by Michael D. Logan, Vice President Environmental Services, Compliance Plus Services, Inc. and including the following:
 - 1. Ground Lease Agreement dated November 1, 2010;
 - 2. List of Permitted Equipment; and
 - 3. Certification dated November 21, 2016, signed by Christopher Dods, President Clean Earth of Carteret and certifying that there have been no changes in the operations of the recycling since the most recent Approval modification.
- i) Supplemental information dated February 17, 2017 and signed by Michael D. Logan, Compliance Plus Services.

In case of conflict, the provisions of N.J.A.C. 7:26A-1 *et seq.* shall have precedence over the conditions of this Approval, and the conditions of this Approval shall have precedence over plans and specifications listed above.

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

- 1. All persons issued a general approval to operate a recycling center for Class B, Class C and/or Class D recyclable material pursuant to N.J.A.C. 7:26A-1 et seq. shall comply with all conditions of the approval [N.J.A.C. 7:26A-3.1(a)]
- 2. The holder of this general approval shall prominently post and maintain a legible sign, at or near the entrance to the recycling center, indicating that the recycling center is an approved New Jersey Department of Environmental Protection recycling center. The sign shall also indicate the following: Hours of operation of the recycling center; Listing of the source separated materials to be received; The size, weight, or other restrictions regarding materials to be received; The maximum amount of contaminants allowed in each load; Warning that loads will be inspected and will be barred from offloading if the contaminant level is exceeded; and Notice that the person offloading shall certify the amount of material per load, municipality of origin of the material and any other information contained on the Recyclable Material Receipt Form [N.J.A.C. 7:26A-3.5(f)]
- 3. Application for renewal of this general approval shall be submitted at least three months prior to expiration of the current approval and shall comply with all requirements for renewal set forth in N.J.A.C. 7:26A-3.6 et seq. One copy of the application for renewal of the general approval shall be submitted by the applicant to the municipal clerk of the municipality in which the recycling center is located, and to the solid waste or recycling coordinator of the county in which the recycling center is located [N.J.A.C. 7:26A-3.6(a)]
- 4. The applicant for renewal of this general approval shall certify in writing to the Department that there have been no changes in the operations of the recycling center since the issuance of the general approval in order to renew the approval in its existing form. In the event that there have been changes in the operations of the recycling center or where changes are planned, the application for renewal of a general approval shall be accompanied by a written request to modify the general approval in accordance with N.J.A.C. 7:26A-3.10 [N.J.A.C. 7:26A-3.6(b)]
- 5. In a case where the holder of this general approval does not comply with N.J.A.C. 7:26A-3.6(a) and (b) and continues to operate without renewal of the general approval, the Department may take enforcement action including the assessment of penalties under N.J.S.A. 13:1E-9; require the holder of this general approval to file an application as a new applicant for a general approval in accordance with N.J.A.C. 7:26A-3.2 and pay the application fee as per N.J.A.C. 7:26A-2; and/or take any other appropriate actions [N.J.A.C. 7:26A-3.6(c)]
- 6. All persons granted a renewal pursuant to N.J.A.C. 7:26A-3.6(d) shall continue to pay the annual fee as specified in N.J.A.C. 7:26A-2 [N.J.A.C. 7:26A-3.6(h)]
- 7. The holder of this general approval shall obtain prior approval from the Department for any modification of the general approval [N.J.A.C. 7:26A-3.10(a)]
- 8. Any change affecting the conditions of this general approval requires the prior approval of the Department [N.J.A.C. 7:26A-3.10(b)1]
- 9. Any change to the information submitted pursuant to N.J.A.C. 7:26A-3.2(a), 3.4, 3.8, 3.18, 3.19 or 3.20 requires the prior approval of the Department, except that changes in end-market information submitted pursuant to N.J.A.C. 7:26A-3.2(a) 7 shall not require the prior approval of the Department but shall be handled in accordance with N.J.A.C. 7:26A-3.10(f). [N.J.A.C. 7:26A- 3.10(b)2]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

- 10. The holder of this general approval shall notify the Department in writing of the intended modification and shall update the information submitted pursuant to N.J.A.C. 7:26A-3.2(a), 3.4, 3.8, 3.18, 3.19 or 3.20. The holder of this general approval shall also provide written notice to the solid waste or recycling coordinator of the applicable county of any request to modify a general approval. [N.J.A.C. 7:26A-3.10(c)]
- 11. The holder of this general approval shall not institute the modification until it receives written approval from the Department [N.J.A.C. 7:26A-3.10(e)]
- 12. Within one week of any change to the end-market information submitted to the Department pursuant to N.J.A.C. 7:26A-3.2(a)7, the holder of this general approval shall submit to the Department a written notification which details any change in the use of the recyclable material transferred from the recycling center to an end-market or in the end-market location to which the recyclable material is transferred. The written notification shall be sent to: New Jersey Department of Environmental Protection, Division of Solid and Hazardous Waste, Bureau of Recycling & Hazardous Waste Management, 401 East State Street, P.O. Box 420, Mail Code 401-02C, Trenton, New Jersey 08625-0420. [N.J.A.C. 7:26A-3.10(f)]
- 13. The Department may revoke this general approval upon a determination that the holder of the general approval has violated any provision of N.J.S.A. 13:1E-1 et seq., the New Jersey Statewide Mandatory Source Separation and Recycling Act, or any rule, regulation or administrative order promulgated pursuant to N.J.S.A. 13:1E-1 et seq. and the New Jersey Statewide Mandatory Source Separation and Recycling Act [N.J.A.C. 7:26A-3.13(a)1]
- 14. The Department may revoke this general approval upon a determination that the holder of the general approval has violated any solid waste utility law at N.J.S.A. 48:2-1 et seq. or 48:13A-1 et seq., or any rule, regulation or administrative order promulgated pursuant to N.J.S.A. 48:2-1 et seq. or 48:13A-1 et seq [N.J.A.C. 7:26A-3.13(a)2]
- 15. The Department may revoke this general approval upon a determination that the holder of the general approval has violated any provision of any laws related to pollution of the waters, air or land surfaces of the State or of any other State or Federal environmental laws including criminal laws related to environmental protection [N.J.A.C. 7:26A-3.13(a)3]
- 16. The Department may revoke this general approval upon a determination that the holder of the general approval has refused or failed to comply with any lawful order of the Department [N.J.A.C. 7:26A-3.13(a)4]
- 17. The Department may revoke this general approval upon a determination that the holder of the general approval has failed to comply with any of the conditions of this general approval issued by the Department [N.J.A.C. 7:26A-3.13(a)5]
- 18. The Department may revoke this general approval upon a determination that the holder of the general approval has transferred a general approval to a new owner or operator pursuant to N.J.A.C. 7:26A-3.15 without the prior approval of the Department [N.J.A.C. 7:26A-3.13(a)6]
- 19. The Department may revoke this general approval upon a determination that the holder of the general approval has failed to obtain any required permit or approval from the Department or other State or Federal agency [N.J.A.C. 7:26A-3.13(a)7]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

- 20. The Department may revoke this general approval upon a determination that the holder of the general approval has committed any of the acts which are criteria for denial of a general approval set forth in N.J.A.C. 7:26A-3.12. [N.J.A.C. 7:26A-3.13(a)8]
- 21. This general approval shall not be transferred to a new owner or operator without the Department's prior approval [N.J.A.C. 7:26A-3.15(a)]
- 22. A written request for permission to allow a transfer of this general approval must be received by the Department at least 60 days in advance of the proposed transfer of ownership or operational control of the recycling center. The request for approval shall include the following: the name, address and social security number of all prospective new owners or operators; a written certification by the proposed transferee that the terms and conditions contained in the general approval will be met by the proposed transferee; and a written agreement between the current owner or operator of the recycling center and the proposed new owner or operator containing a specific future date for transfer of ownership or operational control [N.J.A.C. 7:26A-3.15(a)1]
- 23. A new owner or operator may commence operations at the recycling center only after the existing approval has been revoked and a new approval is issued to the new owner or operator pursuant to N.J.A.C. 7:26A-3.5 [N.J.A.C. 7:26A-3.15(a)2]
- 24. The holder of this general approval remains liable for ensuring compliance with all conditions of the approval unless and until the existing approval is revoked and a new approval is issued to the new owner or operator pursuant to N.J.A.C. 7:26A-3.5 [N.J.A.C. 7:26A-3.15(a)3]
- 25. Compliance with the transfer requirements set forth at N.J.A.C. 7:26A-3.15 shall not relieve the holder of this general approval from the separate responsibility of providing notice of such transfer pursuant to the requirements of any other statutory or regulatory provision [N.J.A.C. 7:26A-3.15(a)4]
- 26. The transfer of a controlling interest in the stock or assets of the recycling center that is the subject of this general approval shall constitute a transfer of this general approval [N.J.A.C. 7:26A-3.15(b)]
- 27. The holder of this general approval shall maintain a daily record of the amounts of each recyclable material by type and municipality of origin which are received, stored, processed or transferred each day, expressed in tons, cubic yards, cubic feet or gallons. Those operators specifying this information in cubic yards shall also indicate the conversion ratio of the materials from cubic yards to tons [N.J.A.C. 7:26A-3.17(a)1]
- 28. The holder of this general approval shall maintain a daily record of the name, address and telephone number of the end-markets for all recyclable materials transported from the recycling center, including the amounts, in tons, cubic yards, cubic feet or gallons, transported to each end-market. Those persons specifying this information in cubic yards shall also indicate the conversion ratio of the materials from cubic yards to tons [N.J.A.C. 7:26A-3.17(a)2]
- 29. The holder of this general approval shall maintain a daily record of the amount of residue disposed of, expressed in tons, cubic yards, cubic feet or gallons, including the name and New Jersey Department of Environmental Protection solid waste registration number of the solid waste collector/hauler contracted to provide the haulage/disposal service. Those persons specifying the amount of residue in cubic yards shall also indicate the conversion ratio of the residue from cubic yards to tons. [N.J.A.C. 7:26A-3.17(a)3]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

- 30. The holder of this general approval shall retain all Recyclable Material Receipt Forms required pursuant to N.J.A.C. 7:26A-3.2(a)16iii for three calendar years following the calendar year for which an annual report is required pursuant to N.J.A.C. 7:26A-3.17(c) [N.J.A.C. 7:26A-3.17(b)]
- The holder of this general approval shall submit an annual report containing monthly summary statements of the information required pursuant to N.J.A.C. 7:26A-3.17(a) to the New Jersey Department of Environmental Protection, Division of Solid and Hazardous Waste, on or before March 1 of each year, for the previous calendar year. The summaries shall include the following: monthly totals of the amount of recyclable material received from each customer by municipality of origin; monthly totals of the amount of recyclable product transferred to each end-market; and the amount of residue disposed of during each month. [N.J.A.C. 7:26A-3.17(c)]
- 32. The holder of this general approval shall certify in writing to the Department that all residue generated at the recycling center has been disposed of in accordance with the solid waste management rules at N.J.A.C. 7:26. The certification shall be submitted annually as part of the annual report [N.J.A.C. 7:26A-3.17(e)]
- All information submitted to the Department pursuant N.J.A.C. 7:26A shall be handled in accordance with the requirements of the Public Records law, N.J.S.A. 47:1-1 et seq. The Department will hold confidential all end-market information, as well as information pertaining to the municipality of origin of recyclable material, submitted pursuant to N.J.A.C 7:26A-3.2, 3.7, and 3.17 through 3.20 for a period of two years from the date on which the information is submitted to the Department, where specified as confidential by the applicant and where there are no health, safety or environmental concerns which require the release of the information, as determined by the Department. [N.J.A.C. 7:26A-3.17(f)]
- 34. The holder of this general approval shall provide a recycling tonnage report by March 1 of each year to all municipalities from which recyclable material is received in the previous calendar year. The report shall detail the amount of each source separated recyclable material, expressed in tons or cubic yards, brought to the recycling center, as well as the date on which the recyclable materials were delivered to the recycling center. Those persons specifying this information in cubic yards shall also indicate the conversion ratio of the materials from cubic yards to tons. [N.J.A.C. 7:26A-4.4(a)]
- 35. The recycling center shall not commence operations unless and until it is included in the applicable district solid waste management plan [N.J.A.C. 7:26A-4.2]
- 36. The construction of the recycling center that is the subject of this general approval shall be in conformance with the New Jersey Uniform Construction Code, N.J.S.A. 52:27D-119 et seq., and the rules promulgated pursuant thereto [N.J.A.C. 7:26A-4.1(b)]
- 37. The New Jersey Department of Environmental Protection or an authorized representative acting pursuant to the County Environmental Health Act, N.J.S.A. 26:3A2-1 et seq. shall have the right to enter and inspect any building or other portion of the recycling center at any time in order to determine compliance with the provisions of all applicable laws or rules and regulations adopted pursuant thereto. This right to inspect includes, but is not limited to: sampling any materials on site; photographing any portion of the recycling center; investigating an actual or suspected source of pollution of the environment; and, ascertaining compliance or non-compliance with the statutes, rules or regulations of the Department, including conditions of the recycling center approval issued by the Department. [N.J.A.C. 7:26-1.7(a)]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

Subject Item: PI 132310 -

- 38. The right of entry specified at N.J.A.C. 7:26A-1.7(a) shall be limited to normal operating hours for the purpose of reviewing and copying all applicable records, which shall be made available to the Department during an inspection and submitted to the Department upon request. [N.J.A.C. 7:26-1.7(b)]
- 39. The facility shall comply with the general operating requirements for all Recycling Centers as provided at N.J.A.C. 7:26A-4.1 [N.J.A.C. 7:26A-4]

- 40. Recycling centers receiving petroleum contaminated soil must have a preparedness and prevention plan. The contingency plan contained in the approved documents must be maintained on-site and updated as necessary. [N.J.A.C. 7:26A- 3.5(e)]
- 41. Upon detection of a release of contaminants to the environment, the facility shall perform the following cleanup steps: stop the release, contain the released contaminants, clean up and manage properly the released contaminants and other materials and if necessary, repair or replace any leaking soil containment systems prior to returning them to service. [N.J.A.C. 7:26A-3.5(e)]
- 42. Upon closure of the facility the owner or operator shall remove or decontaminate petroleum contaminated soils, containment system components, and structures and equipment and manage them as hazardous waste, unless the materials are not hazardous waste under N.J.A.C. 7:26G-5. [N.J.A.C. 7:26A- 3.5(e)]
- 43. All equipment and portions of the facility designated for the storage or processing of petroleum contaminated soils shall be visually inspected each operating day for integrity and leaks. [N.J.A.C. 7:26A-3.5(e)]
- 44. Records shall be maintained for all visual inspections. These records shall document that inspections were performed, any problems found, and the subsequent correction of such problems. All records shall be kept for a minimum of three years. [N.J.A.C. 7:26A-3.5(e)]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

Subject Item: RCBG139162 - General Class B & Soil Conditions

45. The facility shall keep a record of each shipment of petroleum contaminated soil accepted for processing. These records may take the form of a log, invoice, manifest, bill of lading or other shipping documents. All tracking records shall be maintained by the holder of this general approval as required by N.J.A.C. 7:26A-3.2(a) 16iii for three calendar years.

Records for each shipment shall include the following information: the name and address of the transporter who delivered the soil to the facility, the name and address of the generator from whom the soil was sent, the NJDEP registration number of the transporter, EPA ID number (if applicable) of the generator, the quantity of soil accepted and the date of acceptance.

Prior to the receipt of a shipment of soil from a generation source, the holder of this approval shall have received a completed Clean Earth of Carteret Material Characterization Report, as referenced in the approved General Approval Application, and associated documents for that shipment. The report shall include at least the following information: name and address of the generation site, contact information, quantity of soil, type of oil contaminating the soil, contamination source (i.e. underground storage tank, above ground storage tank, spill, histroic or other), past use of generation site (i.e. industrial, commercial, residential or historic fill), analytical results conducted on the soil and a certification that the information provided is true and accurate. The holder of this approval shall review the information provided to ensure the shipment complies with the facility's acceptance criteria for soil prior to authorizing acceptance of a shipment. [N.J.A.C. 7:26A- 3.5(e)]

- 46. The facility shall maintain on-site a written operating record showing analysis records, tracking records, and summary reports of incidents requiring implementation of the contingency plan. This information shall be made available to Department personnel upon request and shall be kept for a minimum of three years. [N.J.A.C. 7:26A-3.5(e)]
- 47. The following source separated Class B recyclable materials, which have been separated at the point of generation from other waste materials or separated at a permitted solid waste facility authorized to separate recyclable materials, may be received, stored, processed or transferred at this recycling center: NJDOT street sweepings (that meet NJ Non-Residential Direct Contact Soil Remediation Standards) and non-hazardous petroleum contaminated soils which otherwise would be ID 27 if not recycled. Only soil contaminated with the following compounds shall be accepted and processed at this facility: gasoline, kerosene, jet fuel, Numbers 1 through 6 fuel oil, and used oil. Used oil shall be defined as any oil that has been and as a result of such use, is contaminated by physical or chemical impurities. No soils may be accepted that have been contaminated with materials that are other waste materials, or waste by-products, such as sludges. No soils with free petroleum product or other liquids shall be accepted at the facility. For soils containing greater than 17,000 ppm EPH, the soil shall be determined not to contain free liquids by USEPA SW-846, Method 9095. No hazardous waste, as defined by N.J.A.C. 7:26G-5, shall be accepted by the facility. [N.J.A.C. 7:26A- 3.5(e)]
- 48. At no time shall the receipt, storage, processing, or transferring of non-source separated construction and demolition material be allowed at this recycling center. The prohibition of this material shall be strictly enforced and any incident shall be considered a serious violation to the conditions of this Approval. [N.J.A.C. 7:26A-3.5(e)]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

- 49. The recycling center may not receive, store, process, or transfer source separated petroleum contaminated soils and NJDOT street sweepings with any other Class B recyclable materials. The commingling of petroleum contaminated soil and NJDOT street sweepings shall only be allowed after the testing requirements identified in this approval have been met. The commingling of any other materials not described above is prohibited. [N.J.A.C. 7:26A-3.5(e)]
- 50. The maximum amount of contaminants, as defined in N.J.A.C. 7:26A-1.3, allowed in each incoming load of Class B recyclable material shall be limited to 1% by volume. Incidental by-product materials shall not be considered to be contaminants. [N.J.A.C. 7:26A-3.5(e)]
- Incidental amounts of rebar, metal, soil, and other by-products which adhere to the Class B recyclable materials, as specified in this Approval, and which are returned to the economic mainstream as raw material or products, may be received, stored, processed, or transferred at this recycling center. The receipt of such incidental amounts of these materials need not be separately accounted for, but the storage and end-markets for these materials shall be subject to specific conditions of this Approval. [N.J.A.C. 7:26A-3.5(e)]
- The holder of this general approval shall operate the recycling center and construct or install associated appurtenances thereto, in accordance with the provisions of N.J.A.C. 7:26A-1 et seq., the conditions of this general approval, and the general approval application documents. [N.J.A.C. 7:26A-3.5(e)]
- In case of conflict, the provisions of N.J.A.C. 7:26A-1 et seq. shall have precedence over the conditions of this Approval, and the conditions of this Approval shall have precedence over plans and specifications listed above. [N.J.A.C. 7:26A- 3.5(e)]
- One complete set of the general approval application documents, this general approval, and all records, reports and plans as may be required pursuant to this approval shall be kept on file at the recycling center and shall be available for inspection by authorized representatives of the Department or delegated agents upon presentation of credentials. [N.J.A.C. 7:26A-3.5(e)]
- Hours of operation for the receipt, treatment/processing and transferring source separated petroleum contaminated soils and NJDOT street sweepings material can occur 24 hours per day, 7 days per week. [N.J.A.C. 7:26A- 3.5(e)]
- Material deliveries to the recycling center shall be scheduled in such a manner as to minimize truck queuing on the recycling center property. Under no circumstances shall delivery trucks be allowed to back-up or queue onto public roads. [N.J.A.C. 7:26A-3.5(e)]
- 57. The recycling center may receive no more than 2,700 tons per day of petroleum contaminated soils and street sweepings. This condition is contingent upon the traffic on the public roads adjacent to the facility not being adversely affected. Should the traffic be impacted by the facility, the Department reserves the right to reduce the capacity of the facility. [N.J.A.C. 7:26A- 3.5(e)]
- The total amount of unprocessed soil material stored in the "soil storage warehouse" shall not exceed 18,287 cubic yards. Materials stored in the "soil storage warehouse" shall be stored only in those areas designated for that purpose as indicated on the approved interior layout drawing. In addition "Area B" on the approved site plan may be used to temporarily store 15,000 cy of unprocessed soils until further processing in the "soil storage warehouse". The unprocessed soils in "Area B" will be segregated on an asphalt base with Jersey barriers and tarped during storage. [N.J.A.C. 7:26A-3.5(e)]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

- If at any time, the amount of soil material stored inside the building exceeds 18,287 cubic yards and the temporary storage "Area B" exceeds 15,000 cubic yards, the recycling center shall immediately cease receiving any unprocessed soil material until the amount of unprocessed soil material combined fall below 33,287 cubic yards. [N.J.A.C. 7:26A-3.5(e)]
- 60. Unprocessed recyclable material shall not remain on-site, in its unprocessed form, for more than one (1) year. [N.J.A.C. 7:26A-3.9(b)]
- 61. The total amount of processed soil materials stored outside shall not exceed 31,674 cubic yards. Processed material shall be stored only in those areas designated for that purpose as indicated on the approved site plan drawings. [N.J.A.C. 7:26A-3.5(e)]
- 62. If at any time, the amount of processed soil material stored on-site exceeds 31,674 cubic yards, the recycling center shall immediately cease processing activities until the amount of processed material falls below 31,674 cubic yards. [N.J.A.C. 7:26A-3.5(e)]
- 63. All processed material shall be stored separately from residues. [N.J.A.C. 7:26A-3.5(e)]
- 64. By-products shall be stored in the container(s) or area(s) as depicted on the approved site plan and shall be removed off-site to the end markets as referenced in the approved documents. [N.J.A.C. 7:26A-3.5(e)]
- 65. Horizontal and vertical control points for the unprocessed and processed materials soil stockpile areas shall be set and maintained on-site. Horizontal limitation markers shall be set at the corners of the stockpile areas as depicted on the approved site plan. Vertical limitation markers shall be set at locations in close proximity of the stockpile areas and shall clearly establish elevation height of 18 feet above the existing grade for the stockpile areas located inside the building and 20 feet above the existing grade for the processed stockpile areas located outside. [N.J.A.C. 7:26A- 3.5(e)]
- Metal pipe or metal rods or the equivalent as approved by the Department shall be used to establish these control points. [N.J.A.C. 7:26A-3.5(e)]
- 67. Ingress and egress of the facility shall be restricted to Middlesex Avenue only. [N.J.A.C. 7:26A-3.5(e)]
- 68. Methods of effectively controlling dust shall be implemented at the facility in order to prevent offsite migration. [N.J.A.C. 7:26A-3.5(e)]
- 69. Fire fighting and emergency procedures shall be posted, and shall include the telephone numbers of local fire, police, ambulance, and hospital facilities. If a fire occurs on-site, the facility shall immediately notify the local fire official and the N.J.D.E.P. Environmental Action Hotline at 1-877-927-6337. [N.J.A.C. 7:26A-3.5(e)]
- Any suspected or prohibited hazardous waste, as defined at N.J.A.C. 7:26G-5, found in a load accepted at the recycling center shall not be returned to the generator. Such materials shall be segregated and stored in a secure manner and shall be immediately reported to the N.J.D.E.P. Environmental Action Hotline at 1-877-927-6337. The owner/operator of the recycling center shall secure the name of the collector/hauler suspected of delivering such waste to the facility and related information surrounding the incident, if available, and shall make this information known to the Department's enforcement personnel. Such material may be returned to a known generator, provided that specific permission to do so is received by the owner/operator after contacting 1-877-927-6337. Otherwise, the owner/operator shall dispose of the unauthorized waste in accordance with instructions received from the Department. [N.J.A.C. 7:26A- 3.5(e)]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

- 71. All revisions to the site plan and the approved documents which may be required as a result of the above, shall be submitted to this office for modification to this Approval. [N.J.A.C. 7:26A-3.5(e)]
- Pursuant to N.J.A.C. 7:26A-3.11(a), the holder of this general approval shall obtain prior approval from the Department for any increase in the design capacity of the facility. The facility shall submit a request to the Department, in writing, for the proposed increase and shall submit updated information pursuant to the requirements of N.J.A.C. 7:26A-3.2(a), 3.4, or 3.8, as applicable. The facility shall also provide written notice of the request to the solid waste or recycling coordinator of the applicable district. [N.J.A.C. 7:26A-3.5(e)]
- 73. The sampling plan, collection, preservation, and handling for the sampling and analysis of unprocessed contaminated soil as required in this Approval must be performed in accordance with the New Jersey Technical Requirements for Site Remediation at N.J.A.C. 7:26E and the latest edition of the New Jersey Department of Environmental Protection, Field Sampling Procedures Manual. All analysis must be performed by a New Jersey certified laboratory. [N.J.A.C. 7:26A- 3.5(e)]
- Petroleum contaminated soils shall be sampled either at the point of generation or at the recycling center. Soils from different generation sites shall be segregated at the facility until the sampling results are received. The sampling and analysis shall be implemented as follows: [N.J.A.C. 7:26A-3.5(e)]
- 75. All soils must be tested using the most current approved test methodology in accordance with USEPA SW-846. [N.J.A.C. 7:26A-3.5(e)]
- 76. Every 100 cubic yards of contaminated soil from each site shall be sampled and analyzed for EPH in the following manner: a representative sample from every 20 cubic yards of contaminated soil shall be taken and these five samples shall be composited into one sample and analyzed. When the volume of soil is less than 100 cubic yards, a representative sample of every 20 cubic yards, or a fraction thereof, shall be taken and these samples shall be composited into one sample and analyzed. [N.J.A.C. 7:26A- 3.5(e)]
- 77. Every 800 cubic yards of contaminated soil shall be sampled and analyzed for total volatile organic compounds (VOC), in the following manner: a representative sample from every 100 cubic yards of contaminated soil shall be taken and these samples shall be composited into one sample and analyzed. When the volume of soil is less than 800 cubic yards, a representative sample of every 100 cubic yards, or fraction thereof, shall be taken and these samples shall be composited into one sample and analyzed. [N.J.A.C. 7:26A-3.5(e)]
- 78. The sampling results shall be used to determine the maximum contaminant feed rate or maximum contaminant concentration for the processing equipment in accordance with the Air Quality Permit and shall also demonstrate that the material is non-hazardous for the above contaminants in accordance with N.J.A.C. 7:26G-8.5. The processing equipment at the facility uses bioremediation to process petroleum contaminated soils and achieve acceptable contaminent levels for reuse. [N.J.A.C. 7:26A- 3.5(e)]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

- Processed material end products, for uses other than as landfill cover material, Department approved Brownfields projects or road construction projects, shall be sampled and analyzed for extractable petroleum hydrocarbons (EPH), total volatile organic compounds (VOC), and all contaminants listed in the New Jersey Soil Remediation Standards (SRS). The sampling procedure shall be implemented as follows: Every 100 cubic yards of processed soil shall be sampled and analyzed for the above contaminants in the following manner: a representative sample from every 20 cubic yards of processed soil shall be taken and these five samples shall be composited into one sample and analyzed. [N.J.A.C. 7:26A- 3.5(e)]
- Processed material end products to be used in road construction projects shall be sampled every 1,000 cubic yards for EPH and VOC in the following manner: a representative sample from every 100 cubic yards of processed soil shall be taken and the samples shall be composited into one sample and analyzed. [N.J.A.C. 7:26A- 3.5(e)]
- Other levels of testing may be allowed on a case-by-case basis as determined by use criteria in accordance with Department guidance and regulations. Applications for case-specific testing requirements must be made to the Bureau of Recycling & Hazardous Waste Management. [N.J.A.C. 7:26A- 3.5(e)]
- 82. Only approved criteria shall be used to determine the allowable end use of the processed material and the maximum allowable contamination levels for use. [N.J.A.C. 7:26A-3.5(e)]
- The maximum allowable contamination levels for unrestricted general use are 200 ppm EPH and all individual organic contaminants less than or equal to 50% and inorganic contaminants less than or equal to 75% of the most stringent Direct Contact Soil Remediation Standards (SRS). [N.J.A.C. 7:26A-3.5(e)]
- The analytical requirements of the individual landfills shall be complied with for soils being used as landfill cover material. For soils being used as fill material in Brownfields projects, the requirements (including sampling frequency and analytical parameters) shall be approved by the individual Site Remediation Program case manager on a case-by-case basis. [N.J.A.C. 7:26A- 3.5(e)]
- 85. Other levels of contamination may be allowed on a case-by-case basis as determined by use criteria and levels of contamination in accordance with Department guidance and regulations. Certificates of Authority to operate beneficial use projects pursuant to N.J.A.C. 7:26-1.7(g) must be obtained before any use of the processed material end products. [N.J.A.C. 7:26A-3.5(e)]
- 86. Any processed material end products that do not meet the above criteria must be reintroduced to the treatment process for further treatment. After treatment, the processed material end products must be reanalyzed in accordance with the above criteria. [N.J.A.C. 7:26A-3.5(e)]
- 87. All analysis records must be kept for a minimum of three years and made available for inspection by state and local officials upon request. [N.J.A.C. 7:26A-3.5(e)]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

Subject Item: RCBG139339 - Street Sweepings Sampling

- 88. Every 800 cubic yards of street sweepings shall be sampled and analyzed for total volatile organic compounds (VOC), in the following manner: a representative sample from every 100 cubic yards shall be taken and these samples shall be composited into one sample and analyzed. When the volume is less than 800 cubic yards, a representative sample of every 100 cubic yards, or fraction thereof, shall be taken and these samples shall be composited into one sample and analyzed. [N.J.A.C. 7:26A-3]
- 89. The sampling results shall be used to determine the maximum contaminant feed rate or maximum contaminant concentration for the processing equipment in accordance with the Air Quality Permit and shall also demonstrate that the material is non-hazardous for the above contaminants in accordance with N.J.A.C. 7:26G-5. [N.J.A.C. 7:26A-3]
- 90. Unprocessed street sweepings shall be sampled either at the point of generation or at the recycling center. Street sweepings from different generation sites shall be segregated at the facility until the sampling results are received. [N.J.A.C. 7:26A-3]
- 91. Every 100 cubic yards of street sweepings from each site shall be sampled and analyzed for EPH in the following manner: a representative sample from every 20 cubic yards shall be taken and these five samples shall be composited into one sample and analyzed. When the volume is less than 100 cubic yards, a representative sample of every 20 cubic yards, or a fraction thereof, shall be taken and these samples shall be composited into one sample and analyzed. [N.J.A.C. 7:26A-3]

Subject Item: RCBG882032 - Final Phase Crushing Operations

- 92. The recycling center may receive no more than 2000 tons per day of source-separated asphalt, concrete, brick, block, rock, and stone. [N.J.A.C. 7:26A-3.5(e)]
- 93. Hours of operation for the receipt, processing and transferring source separated recyclable material can occur 24 hours per day, 7 days per week; the operation of the crusher shall be limited to: 7:00 a.m. to 7:00 p.m., Monday through Friday and Saturdays from 7:00 a.m. to 4:00 p.m. [N.J.A.C. 7:26A- 3.5(e)]
- 94. The following equipment or equivalent shall be available for site operations and shall be maintained in operable condition:

Extec C-12+ Crusher

Extec Impact Crusher

Fintec 542 Screener

Sandvik QE440 Screener

Extec Robotrac Screener (2 units)

Extec S6000 Screener. [N.J.A.C. 7:26A-3.5(e)]

95. The total amount of unprocessed asphalt, concrete, brick, block, rock, and stone stored on-site shall not exceed 36,580 cubic yards (8,800 cy in Area A & 27,780 cy in Area B). These unprocessed materials stored on-site shall be stored only in those areas designated for that purpose as indicated on the approved site plan drawing. [N.J.A.C. 7:26A- 3.5(e)]

132310 CBG160002 Class B Recycling Ctr General Apprv -Renewal Requirements Report

Subject Item: RCBG882032 - Final Phase Crushing Operations

- 96. If at any time, the amount of unprocessed asphalt, concrete, brick, block, rock, and stone stored on-site exceeds 36,580 cubic yards (8,800 cy in Area A & 27,780 cy in Area B), the recycling center shall immediately cease receiving any unprocessed material until the amount of these unprocessed materials stored on-site falls below 36,580 cubic yards (8,800 cy in Area A & 27,780 cy in Area B). [N.J.A.C. 7:26A-3.5(e)]
- 97. The total amount of processed asphalt, concrete, brick, block, rock, and stone stored on-site shall not exceed 74,812 cubic yards (30,901 cy in Area C & 43,911 cy in Area D). These processed materials stored on-site shall be stored only in those areas designated for that purpose as indicated on the approved site plan drawing. [N.J.A.C. 7:26A- 3.5(e)]
- 98. If at any time, the amount of processed asphalt, concrete, brick, block, rock, and stone stored on-site exceeds 74,812 cubic yards (30,901 cy in Area C & 43,911 cy in Area D), the recycling center shall immediately cease processing activities until the amount of these processed materials falls below 74,812 cubic yards. [N.J.A.C. 7:26A- 3.5(e)]
- 99. Horizontal and vertical control points for the unprocessed and processed materials stockpile areas shall be set and maintained on-site. Horizontal limitation markers shall be set at the corners of the stockpile areas as depicted on the approved site plan. Vertical limitation markers shall be set at locations in close proximity of the stockpile areas and shall clearly establish elevation height of 20 feet above the existing grade for the unprocessed stockpile area and 30 feet above the existing grade for the processed stockpile area. [N.J.A.C. 7:26A- 3.5(e)]
- 100. Metal pipe or metal rods or the equivalent as approved by the Department shall be used to establish these control points. [N.J.A.C. 7:26A- 3.5(e)]
- 101. Requisite recycling center operations shall not be delayed or neglected for lack of required equipment or for equipment down time. [N.J.A.C. 7:26A- 3.3(5)e3]

Trucking Permits

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF MATERIALS MANAGEMENT

PART 364 WASTE TRANSPORTER PERMIT NO. NJ-983

Pursuant to Article 27 ,Titles 3 and 15 of the Environmental Conservation Law and 6 NYCRR 364

PERMIT ISSUED TO:

SHIRLEY EXPRESS, LLC 702 RAMSEY AVENUE HILLSIDE, NJ 07205

CONTACT NAME: COUNTY: TELEPHONE NO:

BRAYAN VELARDE OUT OF STATE (908)258-0597

PERMIT TYPE:

□ NEW

RENEWAL

□ MODIFICATION

EFFECTIVE DATE: **EXPIRATION DATE:** US EPA ID NUMBER: 09/03/2017

09/02/2018

AUTHORIZED WASTE TYPES BY DESTINATION FACILITY:

The Permittee is Authorized to Transport the Following Waste Type(s) to the Destination Facility listed :

Destination Facility	Location	Waste Type(s)	Note
BAYSHORE SOIL MANAGEMENT, LLC	KEASBEY, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
BELLMAWR WATERFRONT DEVELOPMENT	BELLMAWR, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
BETHLEHEM EARTH, LP	BETHLEHEM , PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
CAPITOL DEVELOPMENT	E. BANGOR , PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
CLEAN EARTH OF CARTERET	CARTERET, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
CLEAN EARTH OF MARYLAND	HAGERSTOWN, MD	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
CLEAN EARTH OF NEW CASTLE, INC.	NEW CASTLE, DE	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
CLEAN EARTH OF NORTH JERSEY	KEARNY, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
CLEAN EARTH OF PHILADELPHIA	PHILADELPHIA , PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
CLEAN EARTH OF SOUTHEAST PENNSYLVANIA	MORRISVILLE, PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	

*** AUTHORIZED WASTE TYPES BY DESTINATION FACILITY LISTING (continued on next page) ***

NOTE: By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the Environmental Conservation Law, all applicable regulations, and the General Conditions printed on the back of this page.

ADDRESS:

New York State Department of Environmental Conservation Division of Materials Management - Waste Transporter Program 625 Broadway, 9th Floor

Albany, NY 12233-7251

AUTHORIZED SIGNATURE:

PAGE 1 OF 3

This renewed permit is not valid until the effective date listed on the permit.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF MATERIALS MANAGEMENT

PART 364 WASTE TRANSPORTER PERMIT NO. NJ-983

Pursuant to Article 27 ,Titles 3 and 15 of the Environmental Conservation Law and 6 NYCRR 364

PERMIT ISSUED TO:

SHIRLEY EXPRESS, LLC 702 RAMSEY AVENUE HILLSIDE, NJ 07205

CONTACT NAME: COUNTY:

BRAYAN VELARDE OUT OF STATE (908)258-0597

TELEPHONE NO:

PERMIT TYPE:

□ NEW

RENEWAL

□ MODIFICATION

EFFECTIVE DATE: EXPIRATION DATE: 09/03/2017 09/02/2018

US EPA ID NUMBER:

AUTHORIZED WASTE TYPES BY DESTINATION FACILITY: (Continued)

The Permittee is Authorized to Transport the Following Waste Type(s) to the Destination Facility listed:

Destination Facility	Location	Waste Type(s)	Note
FORMER NJ ZINC WEST PLANT, PHASE III	PALMERTON , PA	Non-Hazardous Industrial/Commercial	
HAZLETON CREEK PROPERTIES, LLC	HAZLETON , PA	Non-Hazardous Industrial/Commercial	
HENRY HARRIS SLF (ALHERN, INC.)	MULLICA HILL, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
JERC PARTNERS VII/LLC	EDISON, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
MALANKA (MALL) LANDFILL	SECAUCUS , NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
P PARK NORTH LLC	PROSPECT PARK, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
SOIL SAFE, INC.	LOGAN TOWNSHIP, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
SOIL SAFE-METRO 12	CARTERET, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
TETERBORO LANDING	TETERBORO, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF MATERIALS MANAGEMENT

PART 364

WASTE TRANSPORTER PERMIT NO. NJ-1012

Pursuant to Article 27, Titles 3 and 15 of the Environmental Conservation Law and 6 NYCRR 364

PERMIT	ISSUED	10:
--------	--------	-----

LOGITECH TRANSPORT, LLC 470 HILLSIDE AVENUE HILLSIDE, NJ 07205

CONTACT NAME:

COUNTY:

TELEPHONE NO:

PABLO MANCHENO OUT OF STATE

(908)686-7595

PERMIT TYPE:

□ NEW

D RENEWAL

■ MODIFICATION

EFFECTIVE DATE: EXPIRATION DATE:

04/27/2018 02/19/2019

US EPA ID NUMBER:

AUTHORIZED WASTE TYPES BY DESTINATION FACILITY:

The Permittee is Authorized to Transport the Following Waste Type(s) to the Destination Facility listed:

Destination Facility	Location .	Waste Type(s)	Note
BAYSHORE SOIL MANAGEMENT, LLC	KEASBEY, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
BELLMAWR WATERFRONT DEVELOPMENT	BELLMAWR , NJ	Petroleum Contaminated Soil	*
BETHLEHEM EARTH, LP	BETHLEHEM, PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	(*************************************
CAPITOL DEVELOPMENT	E. BANGOR , PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
CLEAN EARTH OF CARTERET	CARTERET, NJ	Petroleum Contaminated Soil	
CLEAN EARTH OF MARYLAND	HAGERSTOWN, MD	Petroleum Contaminated Soil	
CLEAN EARTH OF NEW CASTLE, INC.	NEW CASTLE, DE	Petroleum Contaminated Soil	
CLEAN EARTH OF NORTH JERSEY	KEARNY, NJ	Petroleum Contaminated Soil	
CLEAN EARTH OF PHILADELPHIA	PHILADELPHIA , PA	Petroleum Contaminated Soil	
CLEAN EARTH OF SOUTHEAST PENNSYLVANIA	MORRISVILLE , PA	Petroleum Contaminated Soil	A
COPLAY AGGREGATES	WHITEHALL , PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
FORMER NJ ZINC WEST PLANT, PHASE III	PALMERTON , PA	Non-Hazardous Industrial/Commercial	
FREEMANSBURG RESTORATION FACILITY	FREEMANSBURG, PA	Non-Hazardous industrial/Commercial Petroleum Contaminated Soil	1878-18 W
GREENVIEW	STROUDSBURG, PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	

^{***} AUTHORIZED WASTE TYPES BY DESTINATION FACILITY LISTING (continued on next page) ***

NOTE: By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the Environmental Conservation Law, all applicable regulations, and the General Conditions printed on the back of this page.

ADDRESS:

New York State Department of Environmental Conservation Division of Materials Management - Waste Transporter Program 625 Broadway, 9th Floor

Albany, NY 12233-7251

AUTHORIZED SIGNATURE

WASTE TRANSPORTER PERMIT

GENERAL CONDITIONS

The permittee must:

- 1. Carry a copy of this waste transporter permit in each vehicle to transport waste. Failure to produce a copy of the permit upon request is a violation of the permit.
- 2. Display the full name of the transporter on both sides of each vehicle and display the waste transporter permit number on both sides and rear of each vehicle containing waste. The displayed name and permit number must be in characters at least three inches high and of a color that contrasts sharply with the background.
- 3. Transport waste only in authorized vehicles. An authorized vehicle is one that is listed on this permit.
- 4. Submit to the Department a modification application for additions/deletions to the authorized fleet of vehicles. The permittee must wait for a modified permit before operating the vehicles identified in the modification application.
- 5. Submit to the Department a modification application to add a new waste category or a new destination facility, or to change the current waste or destination facility category. The permittee must wait for a modified permit before transporting new waste types or transporting to new destination facilities.
- 6. Submit to the Department a modification application for change of address or company name.
- 7. Comply with requirements for placarding and packaging as set forth in New York State Transportation Law as well as any applicable federal rules and regulations.
- 8. Contain all wastes in the vehicle so there is no leaking, blowing, or other discharge of waste.
- 9. Use vehicles to transport only materials not intended for human or animal consumption unless the vehicle is properly cleaned.
- 10. Comply with requirements for manifesting hazardous waste, regulated medical waste, or low-level radioactive waste as set forth in the New York State Environmental Conservation Law and the implementing regulations. Transporters who provide a pre-printed manifest to a generator/shipper/offeror of regulated waste shall ensure that all information is correct and clearly legible on all copies of the manifest.
- 11. Deliver waste only to transfer, storage, treatment and disposal facilities authorized to accept such waste. Permittee must demonstrate that facilities are so authorized if requested to do so.
- 12. Maintain liability insurance as required by New York State Environmental Conservation Law.
- 13. Maintain records of the amount of each waste type transported to each destination facility on a calendaryear basis. The transporter is obligated to provide a report of this information to the Department at the time of permit renewal, or to any law enforcement officer, if requested to do so.
- 14. Pay regulatory fees on an annual basis. Non-payment may be cause for revocation or suspension of permit.
- 15. This permit is not transferrable. A change of ownership will invalidate this permit.
- 16. This permit does not relieve the permittee from the obligation to obtain any other approvals or permits, or from complying with any other applicable federal, state, or local requirement.
- 17. Renewal applications must be submitted no less than 30 days prior to the expiration date of the permit to:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF MATERIALS MANAGEMENT

PART 364 WASTE TRANSPORTER PERMIT NO. NJ-1012

Pursuant to Article 27, Titles 3 and 15 of the Environmental Conservation Law and 6 NYCRR 364

PERMIT ISSUED TO:

LOGITECH TRANSPORT, LLC 470 HILLSIDE AVENUE HILLSIDE, NJ 07205

CONTACT NAME: COUNTY: TELEPHONE NO: PABLO MANCHENO OUT OF STATE (908)686-7595 PERMIT TYPE:

☐ NEW
☐ RENEWAL
■ MODIFICATION

EFFECTIVE DATE: EXPIRATION DATE:

04/27/2018 02/19/2019

US EPA ID NUMBER:

AUTHORIZED WASTE TYPES BY DESTINATION FACILITY: (Continued)

The Permittee is Authorized to Transport the Following Waste Type(s) to the Destination Facility listed :

Destination Facility	Location	Waste Type(s)	Note
GROWS LANDFILL NORTH (PA DEP 101680)	MORRISVILLE, PA	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	**************************************
HAZLETON CREEK PROPERTIES, LLC	HAZLETON , PA	Non-Hazardous Industrial/Commercial	
HENRY HARRIS SLF (ALHERN, INC.)	MULLICA HILL, NJ	Petroleum Contaminated Soil	
JERC PARTNERS VII/LLC	EDISON, NJ	Petroleum Contaminated Soit	
MALANKA (MALL) LANDFILL	SECAUCUS, NJ	Petroleum Contaminated Soil	
OVERPECK PARK LANDFILL AREA IV	PALISADES PARK , NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
P PARK NORTH LLC	PROSPECT PARK, NJ	Petroleum Contaminated Soil	
PHILLIPSBURG COMMERCE PK URBAN RENEWAL ENTITY	PHILLIPSBURG, NJ	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
SOIL SAFE, INC.	LOGAN TOWNSHIP , N	J Petroleum Contaminated Soil	
SOIL SAFE-METRO 12	CARTERET, NJ	Petroleum Contaminated Soil	
TETERBORO LANDING	TETERBORO, NJ	Petroleum Contaminated Soil	
Vanbro Corporation	Staten Island , NY	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF MATERIALS MANAGEMENT

PART 364

WASTE TRANSPORTER PERMIT NO. NJ-1012

Pursuant to Article 27, Titles 3 and 15 of the Environmental Conservation Law and 6 NYCRR 364

P	ER	MI	T	ISSU	JED.	TO:

LOGITECH TRANSPORT, LLC 470 HILLSIDE AVENUE HILLSIDE, NJ 07205

CONTACT NAME:

COUNTY:

TELEPHONE NO:

OUT OF STATE (908)686-7595

PABLO MANCHENO

PERMIT TYPE:

□ NEW

D RENEWAL

MODIFICATION

EFFECTIVE DATE: EXPIRATION DATE:

04/27/2018 02/19/2019

US EPA ID NUMBER:

AUTHORIZED VEHICLES:

The Permittee is Authorized to Operate the Following Vehicles to Transport Waste:

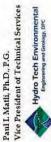
(Vehicles enclosed in <>'s are authorized to haul Residential Raw Sewage and/or Septage only)

17 (Seventeen) Permitted Vehicle(s)

NJ AS368X NJ AS369X NJ AT579Z NJ AT580Z NJ AT835X NJ AT955Z NJ AU222A NJ AU222A NJ AU224A NJ AU224A NJ AU224D NJ AU420C NJ AU421C NJ AU607C NJ AU607C NJ AU607C NJ AU716F NJ AU697E NJ AU976A End of List End of List

ATTACHMENT H NYSDEC Permission to Reuse Soil Onsite

Yes, it may be used.	
	39 4
Sondra Martinkat Environmental Remediation	
New York State Department of Environmental Conservation 4740 21* St. Long Island City, NY 11101 P. 718482-4891 F. 718-482-6358 <u>sondra martinkat@dec.ny gov</u> www.dec.ny.gov <mark>1 </mark>	
From: Paul Matil [mailto:pmatil@hydrotechenvironmental.com] Sent: Friday, December 15, 2017 9:57 AM To: Martinkat, Sondra (DEC) <sondra.martinkat@dec.ny.gov> C: ariel@anc-engineering.com Subject: RE: C241159_1128 31 Dr- Proposal to reuse of on-site soil</sondra.martinkat@dec.ny.gov>	


Ø • Waste characterization was performed prior to site excavation and did not show exceedance of UUSCO. At the early stage of site excavation, all bad fill material was removed to the native soil layer at 3 feet bgs. All excavated soil in elevator pit that will be reused on-site is actually a native soil as pictures in daily report shows.

Regards,

To: ariel@amc-engineering.com; Martinkat, Sondra (DEC) <<u>sondra.martinkat@dec.nv.gov></u> Subject: RE: C241159_1128 31 Dr - Proposal to reuse of on-site soil

Small correction :

From: Paul Matli [mailto:pmatli@hydrotechenvironmental.com] Sent: Thursday, December 14, 2017 5:07 PM

Hydro Tech Environmental Engineering and Geology, DPC

15 Ocean Avenue
Brooklyn, NY 11225
Cell. 631-241-7165
Tell. 718-636-0800
Fax: 718-636-0800
Fax: 718-636-0800
Website: www.hydrotechenvironmental.com
Website: www.hydrotechenvironmental.com
Please consider the environment before printing this email

图 4 I did initially resort to RI data that shows all site soil meets track 2 SCG and GWP SCG. This stockpiled soil will be reused as backfill under a concrete composite cover in rear yard that will be subject to SMP and ICs.

Cc ariel@amc-engineering.com Subject: RE: C241159_1128 31 Dr - Proposal to reuse of on-site soil Sent: Thursday, December 14, 2017 2:54 PM To: 'Martinkat, Sondra (DEC)' <<u>sondra.martinkat@dec.ny.gov</u>>

From: Paul Matli

The stokpiled soil is around 27 cu yds

Regards,

Paul I. Matli, Ph.D., P.G. Vice President of Technical Services Hydro Tech Environmental Engineering and Geology, DFC 15 Ocean Avenue
Brooklyn, NY 11225
Cell: 631-441-7165
Tel: 718-636-0800
Fax: 718-636-0800
Email: parali@hudrotechenvironmental.com
Brosite: www.hudrotechenvironmental.com
Please consider the environment before printing this email

From: Martinkat, Sondra (DEC) [mailto:sondra.martinkat@dec.nv.gov]
Sent: Thursday, December 14, 2017 2:39 PM
To: Paul Matli cpmatli@hydrotechenvironmental.com>
Cc ariel@amc-engineering.com
Subject: RE: C241159_1128 31 Dr - Proposal to reuse of on-site soil

I think you can rely on samples that were collected during the RI. What amount of soil do you need to use?

Sondra Martinkat Environmental Engineer 2, Environmental Remediation

New York State Department of Environmental Conservation 4740 21[#] St, Long Island City, NY 11101
P: 7184824891 | F: 718482-5358 | <u>sondra martinkat@dec.ny.gov</u>

1894 We will collect a sample per Table 4.51(e)10 from the stockpiled material and analyze it for the full TCL and compare results to UUSCO and GWP SCO to make sure this soil can be reused without any restrictions or at least meets the applicable site use per table Cc: ariel@amc-engineering.com Subject: RE: C241159_1128 31 Dr - Proposal to reuse of on-site soil Sondra - I did confer with Ariel so that we are all on same page. From: Paul Matli [mailto:pmatli@hydrotechenvironmental.com] Sent: Thursday, December 14, 2017 2:25 PM To: Martinkat, Sondra (DEC) <<u>sondra.martinkat@dec.ny.gov</u>> Email: <u>pmatil@hydrotechenvironmental.com</u> Website: <u>www.hydrotechenvironmental.com</u> Please consider the environment before printing this email Paul I. Matli, Ph.D., P.G. Vice President of Technical Services Hydro Tech Environmental Engineering and Geology, DPC 15 Ocean Avenue Brooklyn, NY 11225 Cell: 631-241-7165 Tel: 718-636-0800 Fax: 718-636-0900 Regards, 4.5(e)4

Cc: Kuehner, Wendy S (HEALTH) <wendy.kuehner@health.nv.gov>; acie@gmanc-engineering.com; O'Connell, Jane H (DEC) < jane; occonnell@dec.nv.gov>; Jenny J. Shulmanindustries@gmail.com) < schulmanindustries@gmail.com As per DER-10, soil may be reused on the Site without restrictions if the soil on the site meets unrestricted soil SCGs. Please refer to Table 5.4(e)4 for guidance and confirm soil results for the site before proceeding. From: Martinkat, Sondra (DEC) [mailto:sondra.martinkat@dec.ny.gov] Sent: Thursday, December 14, 2017 1:50 PM

To: Paul Matli <pmatli@hydrotechenvironmental.com>
Subject: FW: C241159_1128 31 Dr - Proposal to reuse of on-site soil Subject: RE: C241159_1128 31 Dr - Proposal to reuse of on-site soil New York State Department of Environmental Conservation 47-40 21° St, Long Island City, NY 11101
P: 718-482-4891 | F: 718-482-5358 | sondra martinkat@dec.ny.gov.www.dec.ny.gov | | New York State Department of Environmental Conservation 47-40 21* St. Long Island City, NY 11101
P: 718-482-4891 | F: 718-482-5358 | sondra martinkat@dec.ny.gov To: 'Paul Matli' < pmatli@hydrotechenvironmental.com> Environmental Engineer 2, Environmental Remediation Environmental Engineer 2, Environmental Remediation Sent: Wednesday, December 13, 2017 12:31 PM From: Martinkat, Sondra (DEC) Did this answer your question. Sondra Martinkat Sondra Martinkat

The developer at above site would like to reuse of the soil excavated in elevator pit today to backfill the rear yard area, that will remain undeveloped. In the RAWP we stated that no soil/fill will be reused on-site. To: Martinkat, Sondra (DEC) < sondra.martinkat@dec.ny.gov>; ariel@amc-engineering.com; Jenny J. Shulman (schulmanindustries@gmail.com) < schulmanindustries@gmail.com> subject: C211159_1128 31 Dr - Proposal to reuse of on-site soil Please advise if you have any comments about this proposed action, and whether you have any specific requirements to comply with in this regard. 15 Ocean Avenue
Brooklyn, NY 11225
Cell: 631-241-7165
Tel: 718-636-0800
Fax: 718-636-0900
Fax: 718-636-0900
Website: www.hvdrotechenvironmental.com Sent: Wednesday, December 13, 2017 12:08 PM I apreciate your expedited response. Vice President of Technical Services Hydro Tech Environmental Engineering and Geology, DPC Paul I. Matli, Ph.D., P.G. Sondra -Regards,

From: Paul Matli [mailto:pmatli@hydrotechenvironmental.com]

<u>ATTACHMENT I</u> Imported Bluestone Documentation

North Church Certification and Sieve Analysis

Material Certification

Please be advised that both of our aggregate production facilities listed manufacture construction materials, and fill materials, are from the virgin properties as described herein;

North Church Sand & Gravel- Sand products, Crushed stone products and environmental fill materials are produced from virgin rock, and property, located in Sussex County Franklin, NJ . Approved source: NJDOT & Port Authority of NY & NJ.

http://www.state.nj.us/transportation/eng/materials/qualified/WPLDB.shtm.

J&P Crushing Materials- Sand materials are produced from a virgin source and produced in Sussex County, Sparta, NJ.

Approved source: NJDOT & Port Authority of NY & NJ

To the best of our knowledge, these materials are not contaminated with any hazardous substances while on our properties as listed above.

If you require additional information please don't hesitate to contact me.

Sincerely,

Jesus Martinez VP of Business Development

Location: North Church Sand & Gravel Stockpile

Supplier: North Church Sand & Gravel Franklin, NJ

Material: 34 Crushed #57 Date 07/10/17 Time: 8:30am

Specification ASTM #57

Wet: Lbs 29.7 Dry: Lbs 29.5 Wash Dry: 29.5

Sieve size	Wgt Retained	Wgt Retained Cumulative	% Retained Cumulative	% Passing	Spec.
1 1/2"	0	0	0.0	100.0	100
1"	0.5	0.5	1.7	98.3	95-100
3/4"	6.4	6.9	23.4	76.6	
1/2"	9.5	16.4	55.6	44.4	25-60
3/8"	6.3	22.7	76.9	23.1	
#4	5.4	28.1	95.3	4.7	0-10
#8	0.9	29	98.3	1.7	0-5
Pan	0.5	29.5	100.0	0.0	
Total:	29.5		Loss:	0.0	%

Gradation done by: John O'Neil

NYSDEC Approval of Blue Stone From North Church

Paul Matli

From: Martinkat, Sondra (DEC) <sondra.martinkat@dec.ny.gov>

Sent: Monday, November 06, 2017 4:31 PM

To: Paul Matli

Cc: Jenny J. Shulman (schulmanindustries@gmail.com); Kuehner, Wendy S (HEALTH); George Man

(genmail@mcnyinc.com); ariel@amc-engineering.com

RE: 11-28 31 Drive - Submission of 3/4 inch Bleu stone info **Subject:**

Thank you Paul. No comments.

Sondra Martinkat

Environmental Engineer 2, Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st St, Long Island City, NY 11101

P: 718-482-4891 | F: 718-482-6358 | sondra.martinkat@dec.ny.gov

www.dec.ny.gov | 1 1

From: Paul Matli [mailto:pmatli@hydrotechenvironmental.com]

Sent: Monday, November 06, 2017 4:26 PM

To: Martinkat, Sondra (DEC) <sondra.martinkat@dec.ny.gov>

Cc: Jenny J. Shulman (schulmanindustries@gmail.com) <schulmanindustries@gmail.com>; Kuehner, Wendy S (HEALTH) <wendy.kuehner@health.ny.gov>; George Man (genmail@mcnyinc.com) <genmail@mcnyinc.com>; ariel@amc-

engineering.com

Subject: RE: 11-28 31 Drive - Submission of 3/4 inch Bleu stone info

unexpected emails

Sondra - We still have not received your comments on the attached submission for blue stone for use as backfill under slab and also for SSDS.

Could you please expedite your response.

Regards,

Paul I. Matli, Ph.D., P.G. Vice President of Technical Services

Brooklyn, NY 11225 Cell: 631-241-7165 Tel: 718-636-0800 Fax: 718-636-0900

15 Ocean Avenue

Email: pmatli@hydrotechenvironmental.com
Website: www.hydrotechenvironmental.com

Please consider the environment before printing this email

From: Paul Matli

Sent: Wednesday, October 25, 2017 3:28 PM

To: 'Martinkat, Sondra (DEC)' < sondra.martinkat@dec.ny.gov >

Cc: Jenny J. Shulman (schulmanindustries@gmail.com>; Kuehner, Wendy S (HEALTH)

<wendy.kuehner@health.ny.gov>; George Man (genmail@mcnyinc.com) <genmail@mcnyinc.com>; ariel@amc-

engineering.com

Subject: 11-28 31 Drive - Submission of 3/4 inch Bleu stone info

Sondra – please find the transmittal of ¾ inch blue stone that will be brought to above site for use under footings and also for the SSDS.

Please advise if you have any comments.

Regards,

Paul I. Matli, Ph.D., P.G.
HYDRO TECH ENVIRONMENTAL
Engineering and Geology, DPC
15 Ocean Avenue, 2nd Floor (Suite B), Brooklyn, NY 11225
Cell: (631)-241-7165 Tel: (718) 636-0800 Fax: (718) 636-0900
pmatli@hydrotechenvironmental.com

Impact Materials Certification and Sieve Analysis

Impact Recovery and Reuse Center Crushed Stone Report

Laboratory Testing on Material Stockpiled at Impact Recovery and Reuse Center

Submitted by: Impact Materials 1000 Page Ave, Lyndhurst, NJ

January 17, 2018

Paul Moscatello
PT Consultants, Inc.
330 West 38th Street, Suite 403
New York, NY 10018

RE: Impact Recovery and Reuse Center 1000 Page Avenue, Lyndhurst, NJ Blue Stone Product at IRRC Intended for 11-28 31st Dr, Long Island City, NY

Mr. Moscatello:

This letter was prepared to report the environmental and geotechnical quality of the 1 ½" clean bluestone product manufactured at the Impact Reuse and Recovery Center ("IRRC"), a permitted Class B Recycling Facility located at 1000 Page Avenue in Lyndhurst, New Jersey. The product is proposed as backfill 11-28 31st Dr, Long Island City, NY.

IRRC uses a thorough process to ensure the quality of the products it manufactures. This includes vetting sources used to manufacture our products and performing requisite certified third party analytical testing on representative samples.

This specific product was made by crushing and screening the crushed stone to 1 ½" clean product and inspected for quality control. Geotechnical analysis was conducted periodically. Post processing, it was stored in surge piles for additional quality control analysis. Grab samples were secured from random locations within the stockpile. Samples were secured for volatile organic analysis using Encore © sampling kits. The balance of the discreet sample was secured into glass jars for semivolatile, metal, PCB, pesticide, herbicide and total extractable petroleum hydrocarbon analysis. Once analytical results were received and verified to New York Codes, Rules and Regulations ("NYCRR") Part 375 Residential Use and Protection of Groundwater Soil Cleanup Objectives, the product was combined into a larger finished stockpile.

The results of the finished stockpile sampling are presented below in Table 1. All results are below NYCRR Part 375 Residential Use and Protection of Groundwater Soil Cleanup Objectives. For a more in depth examination of the sampling results, please see the attached summary table, field notes, and Laboratory Report complete with a signed Chain of Custody for the most recent sampling.

Sincerely,

IMPACT ENVIRONMENTAL

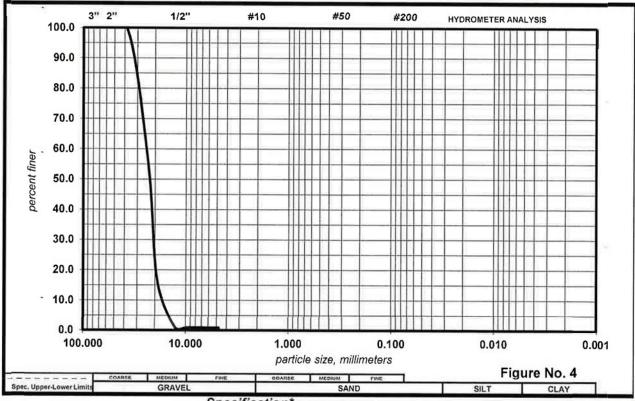

Jeff Bogoian IRRC QA/QC Engineer

Table 1:

SOR TESTING LABORATORIES, INC.

98 Sand Park Road - Cedar Grove, NJ 07009
Tel.: (973) 239-6001 Fax: (973) 239-8380 http://www.sorlabs.com

PARTICLE SIZE DISTRIBUTION TEST REPORT

Specification* Sieve Size % Finer Min.(%) Max.(%) Sample Identification 3" (75 mm) Sample No.: 1.5" Clean 2 1/2" (63 mm) Lab No.: A17-081-03 2" (50 mm) Source/Location: **IRRC** 1 1/2" (38.1 mm) 100.0 Description: 1" (25 mm) 55.5 1.5" Aggregate 16.8 3/4" (19 mm) 5/8" (16 mm) sample description in accordance with Burmister System LL: 1/2" (12.5 mm) 1.1 PL: PI: 3/8" (9.5 mm) 0.9 5/16" (8 mm) As received Moisture Content: % 1/4" (6.3 mm) #4 (4.75 mm) 0.8 Classification: #6 (3.35 mm) USCS: [GP] AASHTO: #8 (2.36 mm) #10 (2 mm) Remarks: #14 (1.4 mm) Sample received in lab on May 18, 2017 #16 (1.18 mm) #20 (850 µm) #30 (600 µm) Client: #40 (425 µm) Impact Materials #50 (300 µm) Project: **IRRC** #60 (250 µm) #100 (150 µm) Location: #200 (75 µm) Date: 22-May-17 Report No.: 17-527 17-01 Job No.:

O MDL	'a na/ka	3 U 1.1	3 U 0.53	0 T	100	3 U 1.1	3 U 0.53	3 0 0.53	1 O 1:1	3 U 0.53) U 0.53	0 U	0.53	0.53	U 42	. U 5.3	, U 5.3	0 23	0.2.0	0.53) U 130	3 U 0.53) U 1.1	3 O	3 0 2.1		3 0 0.53	0 0	3 U 0.53	3 U 0.53	3 U 1.1	3 0 0.53	0.53	0.53	3 U 5.3	U 1.1	0 0	0 0.55	3 U 0.53	3 U 0.53	3 U 0.53	3 U 0.53	17 7	11.1	3 U 5.3	3 U 0.53	3 U 0.53	0 1.1	0 23	0 0 120) U 330	3 U 1.1	0 U 120	0 U 150	0 U 180	110	0 0 120	230	0 130	0 C	U 92	0 0	96 N C		т	0 0 230
IRRC BLUESTONE WEST 9-20-17 RL	Ja/ka na/	< 5.3 5.3	< 5.3 5.	< 5.3	< 230 23	< 5.3 5.3	< 5.3 5.3	< 5.3	< 5.0 5.0	< 5.3 5.	< 5.0 5.0	< 5.0 5.0	< 5.3	V 23	< 79 75	< 32 32	< 26 26	< 50	< 26 Zt	< 5.0	< 230 23	< 5.3 5.3	< 5.0 5.1	< 5.3	5.5.3	A 50.3	× 5.3	< 5.0 5.0	< 5.3 5.	< 5.3 5.3	< 5.3 5.3	< 5.3	V 7.3	233	< 5.3 5.	< 11 13	< 230 23	V 73	< 5.3	< 5.3 5.7	< 5.3 5	< 5.3	< 110 11	× 5.3	< 5.3	< 5.3 5	< 5.3 5.	< 5.3	< 50	< 230 23	< 330 334	< 5.3 5.	< 230 23	< 230 23	< 230 23	< 130 13	< 130 13	230	< 130	< 130 13	< 230 23	< 230 23	< 230 23	_	t	< 300 300
BLU MEST	na/ka	1.2	0.59	1.2	100	1.2	0.59	0.59	1.2	0.59	0.59	1.2	0.59	0.59	47	5.9	5.9	5.9	67	0.59	140	0.59	1.2	1.2	4.7	1.2	0.59	1.2	0.59	0.59	1.2	0.59	0.59	0.59	5.9	1.2	66	1.59	0.59	0.59	0.59	0.59	4.7	1.2	5.9	0.59	0.59	1.2	0.59	120	340	1.2	120	160	190	110	120	240	140	110	. 6	- 26	100	160	3	240
RL Q	ua/ka	5.9 U	5.9 U	5.9 U	240 11	5.9 U	5.9 U	5.9	5.0	5.9 U	5.0 U	5.0 0.5	5.9	2.9	N 88	35 U	29 U	20	13 0	5.0 U	240 U	5.9 U	5.0 U	5.9	5.9	9.9	5.9	5.0 0	5.9 U	5.9 U	5.9 U	5.9	0.5	5.9	5.9 U	12 U	240 U	0.9	5.9 U	5.9	5.9 U	5.9	120 0	2.0	5.9	5.9 U	5.9 U	5.9	20 0	240 U	340 U	5.9 U	240 U	240 U	240 U	140 O	240 U	240 0	140 U	140 U	240 U	240 U	240 U		Ť	300 U
IRRC BLUESTONE EAST 9-20-17	ua/ka	< 5.9	< 5.9	< 5.9	< 240	< 5.9	< 5.9	< 5.9	< 5.0	< 5.9	< 5.0	< 5.0	< 5.9	< 5.9	88 >	< 35	< 29	< 50	< 29	< 5.0	< 240	< 5.9	< 5.0	< 5.9	< 5.9	< 5.9	0.5 >	< 5.0	< 5.9	< 5.9	< 5.9	< 5.9	< 5.9	6.5 >	< 5.9	< 12	< 240	9.5	< 5.9	< 5.9	< 5.9	< 5.9	< 120	< 5.0	< 5.9	< 5.9	< 5.9	< 5.9	< 50	< 240	< 340	< 5.9	< 240	< 240	< 240	< 140	< 140	< 240	< 140	< 140	< 240	< 240	< 240	V 240	7.210	< 300
Q MDL	ua/ka	1.1	J 0.55	11.1	100	1.1	0.55	0.55	1.1	0.55	J 0.55	1.1	0.55	0.55	4	J 5.5	J 5.5	5.5	7.7	0.55	J 140	J 0.55	1.1	1.1	7.7	111	1 0.55	1.1	J 0.55	J 0.55	J 1.1	0.55	0.55	0.55	J 5.5	1.1	88	1 1 1 1	0.55	0.55	J 0.55	0.55	77	1.1	5.5	J 0.55	0.55	[]	0.55	120	340	1.1	J 120	J 160	190	110	120	240	130	J 110	96	96 ſ	J 100	160	200	J 240
R.	ua/ka	5.5	5.5	5.5	240	5.5	5.5	5.5	5.0	5.5	5.0	5.0	5.5	2.5	82	33 (27	20	/7	2.0	240	5.5	2.0	5.5	5.5	0.0	5.5	5.0	5.5	5.5	5.5	5.5	0.7	5.5	5.5	11	240	5.5	5.5	5.5	5.5	5.5	110	2.5	5.5	5.5	5.5	5.5	20 2	240	340	5.5	240	240	240	140	240	240	140	140	240	240	240	270	017	300
IRRC BLUESTONE SOUTH 9-20-17	ua/ka	< 5.5	< 5.5	< 5.5	< 240	< 5.5	< 5.5	< 5.5	< 5.0	< 5.5	< 5.0	< 5.0	4.5.5	0,00	< 82	< 33	< 27	< 50	/7 >	< 5.0	< 240	< 5.5	< 5.0	< 5.5	2.5.5	V 7.0	V V	< 5.0	< 5.5	< 5.5	< 5.5	V .55.51	V V	V V	< 5.5	< 11	< 240	0,00	< 5.5	< 5.5	< 5.5	< 5.5	< 110	V 5.50	< 5.5	< 5.5	< 5.5	< 5.5	< 50	< 240	< 340	< 5.5	< 240	< 240	< 240	< 140	< 240	< 240	< 140	< 140	< 240	< 240	< 240	0000	0+7 >	< 300
Q MDL	ua/ka	1.1	0.53	1.1	100	1.1	0.53	0.53	1.1	0.53	0.53	1.1	0.53	0.53	J 42	5.3	5.3	5.3	0.20	0.53	J 140	0.53	1.1	1.1	7.7	11.1	0.53	1.1	0.53	0.53	1.1	0.53	0.53	0.53	5.3	1.1	86	1 1 1	0.53	0.53	J 0.53	0.53	17	1.1	5.3	0.53	0.53	1.1	0.53	120	340	1.1	120	160	190	110	120	240	130	110	96	96 ſ	100	450	100	U 240
교	ua/ka	5.3	5.3	5.3	240	5.3	5.3	5.3	3.0	5.3	5.0	5.0	5.3	2.5	79	32 L	אפ ר	20	97	5.0	240 L	5.3	5.0	5.3	5.3	2.0	5.3	5.0	5.3	5.3	5.3	5.3	2.5	5.3	5.3	11	240	5.5	5.3	5.3	5.3	5.3	110	2.0	5.3	5.3	5.3	5.3	202	240	340	5.3	240 L	240 L	240	140	240	240	140	140	240	240 L				300
IRRC BLUESTONE NORTH 9-20-17	ua/ka	< 5.3	< 5.3	< 5.3	< 240	< 5.3	< 5.3	× 2.3	< 5.0	< 5.3	< 5.0	< 5.0	5.5.3	× × ×	< 79	< 32	< 26	< 20	97 >	< 5.0	< 240	< 5.3	< 5.0	< 5.3	2,5	0 C C C	× × ×	< 5.0	< 5.3	< 5.3	< 5.3	< 5.3	V V V	V V	< 5.3	1.3	260	V V	< 53	< 5.3	< 5.3	< 5.3	< 110	< 5.3	< 5.3	< 5.3	< 5.3	< 5.3	< 5.0	< 240	< 340	< 5.3	< 240	< 240	< 240	< 140	< 140	< 240	< 140	< 140	< 240	< 240	< 240	980	047 >	< 300
NYCRR 375 Protection of Groundwater	ua/ka	NA	680	600	NA	270	330	3,600	NA	1,100	20f	NA	8,400	1,400	100e	120	1000	20	NA	60	NA	NA	NA	NA	NA	2/00	1.100	NA	1900	370	NA	250	1 000	2300	20	930	12,000	3 900	10000	11,000	NA	5,900	1 200	700	1,600	190	470	NA	20	NA	NA	3400	NA	NA	100	ADO.	NA	200	NA	170	NA	NA	NA		330e	330e 400
NYCRR 375 Residential	ua/ka	NA	100,000a	35000	AN	19,000	100,000a	47,000	NΑ	100,000a	2,300	NA	47,000	9 800	008'6	100,000a	NA	100,000a	NA	2.900	NA	NA	NA	NA	NA 00000	1 400	100.000a	NA	100000	10,000	NA	29,000	30 ON	10000	51,000	62,000	100,000a	100,000	NA	100,000a	NA	100,000a	NA	3,300 100,000a	100,000a	100,000a	10,000	AN	210	NA	NA	NA	NA	NA	100000	NA	NA	10000	NA	1030	NA	100000	410		100,000a	100,000a NA
Parameter ID N Depth		200	VOC	000	SVOC	NOC	200	200	200	NOC	VOC	200	200	200	NOC	VOC	NOC	O C	200	200	SVOC	VOC	VOC	O C	200	200	200	NOC N	NOC	NOC	NOC	200	200	200	NOC	NOC	SVOC	200	NOC NOC	NOC	NOC	200	200	200	, NOC	NOC	NOC.	200	200	SVOC	SVOC	NOC	SVOC	SVOC	SVOC	SVOC	SVOC	2000	SVOC	SVOC	SVOC	SVOC	SVOC	000	SVOC	SVOC
Parameter Name	Date Unit	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1-1- Biphenyl	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trimethylbenzene	1.2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-1 rimethylbenzene	1.5-Dichlorobenzene	1,4-Dioxane	2-Butanone	4-Methyl-2-Pentanone	Acetone	Acrolein	Benzene	Benzidine	Bromochloromethane	Bromodichloromethane	Bromoform	Bromometnane	Carbon Tetrachlorida	Chlorobenzene	Chlorodibromomethane	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	Fihylbarzana	Isopropylbenzene	Methylene Chloride	Methyl Tert-Butyl Ether	Naphthalene	n-butylbenzene	p-Isoproplytoluene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachlanothan	Toluene	Total Xylenes	trans-1,2-Dichloroethene	Trichloroethene	Trichlorofluoromethane	Vinyl Acetate Vinyl Chloride	Hexachlorobutadiene	1,2- Diphenylhydrazine	1,2,4-Trichlorobenzene	1,2,4,5-Tetrachlorobenzene	2,3,4,6-Tetrachlorophenol	2,4,5-Trichlorophenol	2,4,b-1 richlorophenol	2,4-Dimethylphenol	2,4-Dinitronhenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	A MALLE COR O	2-Metnyiphenoi	2-Nitroaniline
CAS Number		630-20-6	71-55-6	79-34-5	92-52-4		75-35-4									78-93-3	108-10-1	67-64-1														156-59-2		ı		Ш	۱													ш		Ш				ı		ı			91-58-7				١	88-74-4

Q MDL		ug/kg	230	120	150	OIT	200	83	100	330	110	66	86	110	110	110	110	110	230	330	- 88	- 65	- 62	82	230	130	110	82	96	110	100	100	88	- 82	110	110	96	100	66	110	93	120	33	130	130	021	110	110	82	82	170	5.0	2.0	2.0	3.4	7.7	5.4	62	62	62	- 67	62	62	- 67	- 67	1.7	75	6.7	85	1 2	,	6.7	6.7	6.7	6.7	1.3
귛		ug/kg	230	230	099	330	230	130	230	330	230	130	230	230	130	230	230	230	330	330	130 L	230 L	230 L	230 L	230 L	170 L	230 L	85	230	130 L	230 L	230 L	230 L	230 L	230	230	130	230	130	230	130	130	730	130	220	130	230	230	85 11	85	170	7.0 ∟	2.0 ∟	2.0	3.4	J./	5.7	62	62	67	1 29	67	67	1 29	1 29	1.7	34	6.7	85	17	,;	6.7	6.7	6.7	6.7 L	1.3
IRRC BLUESTONE WEST 9-20-17		ng/kg	< 230	< 230	> 660	< 330	230	× 130	< 230	< 330	< 230	< 130	< 230	< 230	< 130	< 230	< 230	< 230	< 330	< 330	< 130	< 230	< 230	< 230	< 230	< 170	< 230	< 85	< 230	< 130	< 230	< 230	< 230	< 230	190	< 230	< 130	< 230	< 130	< 230	< 130	< 130	< 230	< 130	7 220	180	< 230	180	< 85	< 85	< 170	< 2.0	< 2.0	< 2.0	< 3.4	< I./	6.0	/0 >	797	< 67	< 67	< 67	< 67	< 67	< 67	< 1.7	. 55	< 6.7	× 85	× 17	Ç.	< 6.7	< 6.7	< 6.7	< 6.7	< 1.3
MDL		ug/kg	240	_		TIO	┸	L	110	340	110	100	100	120	110	120	110	110	240	340	93	92	66	88	240	140	120	98	100	110	110	110	16	88	110	110	100	100		110	0/1	170	A 4	130	130	080	110	120	98	98	170	2.1	2.1	2.1	3.4	1./	2.7	60	609	69	69	69	69	69	69	1.7	34	6.9	┸	1 8	4:,	6.9		6.9	_	ш
RL Q	1	ng/kg	240 U	240 U	\neg	340	_	140	240	340	240	140 U	240 U	240 U	140 U	240 U	240 U	240 U	340 U	340 U	140 U	240 U	240 U	240 U	240 U	170 U	240 U	98	240 U	140 U	240 U	240 U	240 U	240 U	240	240 U	140 U	240 U		240 D	0 0/1	140	740	140	240	140	240	240	98	98 D	170 U	2.1 U	2.1 U	2.1 U	3.4	1.7	1.09	60	60	69	n 69	69	69	0 69	N 69	1.7 U	34	0.69	Т	2 2	ì	0.9		0.9		
IRRC BLUESTONE EAST 9-20-17		ug/kg	< 240	< 240	> 690	> 340	070	× 240	< 240	< 340	< 240	< 140	< 240	< 240	< 140	< 240	< 240	< 240	< 340	< 340	< 140	< 240	< 240	< 240	< 240	< 170	< 240	> 86	< 240	< 140	< 240	< 240	< 240	< 240	150	< 240	< 140	< 240	< 140	< 240	< 1/0	< 140	< 240	< 140	070	100	< 240	140	> 86	> 86	< 170	< 2.1	< 2.1	< 2.1	< 3.4	/T >	CT /	60 /	69 7	69 >	69 >	69 >	69 >	69 >	69 >	< 1.7		6.9 >	, o.5	× 1.7	ÇN,	6.9 >	< 6.9	< 6.9	6.9 >	< 1.4
MDL		ug/kg	_	120	160	OIT P	100	8 49	110	340	110	100	100	110	110	120	110	110	240	340	95	94	86	87	240	140	110	82	66	110	110	110	06	87	110	110	66	100	100	110	ch,	120	9 5	130	130	027	110	120	85	82	170	2.1	2.1	2.1	3.4	J.,/	5.4	89	89	88	89	89	89	89	89	1.7	34	6.8	85	17	4:,	8.9	6.8	_	8.9	Н
RL Q		ng/kg	П	240 U	т	340	т	140	240	340	240 11	140 U	240 U	240 U	140 U	240 U	240 U	240 U	340 U	340 U	140 U	240 U	240 U	240 U	240 U	170 U	240 U	85 U	240 U	140 U	240 U	240 U	240 U	240 U	240	240 U	П	240 U	П	240 U	т	140	т	140	240	140	240	240 U	85 U	85 U	170 U	2.1 U	2.1 U	2.1 U	3.4	1.7	5.4	89	89	89	0 89	1 89	1 89	N 89	0 89	1.7 U	34	6.8	+	17	1	0.8 U		6.8		
IRRC BLUESTONE SOUTH 9-20-17		ng/kg	< 240	< 240	< 680	> 340	240	× 140	< 240	< 340	< 240	< 140	< 240	< 240	< 140	< 240	< 240	< 240	< 340	< 340	< 140	< 240	< 240	< 240	< 240	< 170	< 240	< 85	< 240	< 140	< 240	< 240	< 240	< 240	120	< 240	< 140	< 240	< 140	< 240	04T >	< 140	047 >	< 140	0 T-10	× 140	< 240	< 240	< 85	< 85	< 170	< 2.1	< 2.1	< 2.1	< 3.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6.5	89 1	89 /	99 >	> 68	89 >	89 >	89 >	89 >	< 1.7	< 34	< 6.8	× 85	417	Ç, ÇN	× 6.8	< 6.8	< 6.8	< 6.8	< 1.4
MDL		ug/kg	240	120	160	TIO	200	30	110	340	110	100	100	110	110	120	110	110	240	340	65	94	86	88	240	140	110	98	66	110	110	110	06	88	110	110	66	100	100	110	011	170	95	130	120	027	110	120	98	98	170	2.1	2.1	2.1	3.5	1./	5.0	60	60	69	69	69	69	69	69	1.7	35	6.9	86	17	/ **	6.9	6.9	6.9	6.9	1.4
RL Q	-	g/kg	240 U	240 U	089	340	0 = 0	140	240 11	340	240 11	140 U	240 U	240]	140 U	240 U	240 U	240 U	340 U	340 U	140 U	240 U	240 U	240 U	240 U	170 U	240]	86 U	240 U	140 U	240 U	240 U	240 U	240 U	240]	240 U	140 U	240 U	140 U	240 U	0 0	140	0 0	140	240	140	240	240	N 98	98 U	170 U	2.1 U	2.1 U	2.1 U	3.5 U	1.7	5.3	60	60	1 69	n 69	1 69	1 69	N 69	N 69	1.7 U	35	11 6.9	86 11	17		U 6.9	0 6.9	0.9	U 6.9	1.4 U
IRRC BLUESTONE NORTH 9-20-17		ug/kg u	< 240	1	1	340	000	7 140	< 240	< 340	< 240	< 140	ĺ	120	< 140	< 240	< 240	< 240	< 340	< 340	< 140	< 240	< 240	< 240	< 240	< 170	120	> 86	< 240	< 140	< 240	< 240	< 240	< 240	210	< 240	< 140	< 240	< 140	< 240	047	< 140	0 7 7 7	< 140	OFT V	250	İ	Ī	r	t	< 170	< 2.1	< 2.1	< 2.1	< 3.5	/T >	1.0	60 /	60 /	69 >	69 >	69 >	69 >	69 >	69 >	<1.7	36	6.9 >	× 86	× 1 ×	GN.	ŀ	ı	6.9 >		
NYCRR 375 Protection of Groundwater		ng/kg	NA	NA	077	NA TOO	00 00	107 000	NA NA	330	1.000.000c	NA	NA	1,000f	22,000	1.700	1.700	1,000,000c	100000	NA	NA	NA	435000	122000	NA	NA	1,000f	NA	6200	1,000,000c	7100	27000	8100	120000	1,000,000c	386,000	3,200	NA	NA	8,200	- PO-	1/0	NA NA	NA	WH 0000	1 000 000-	3300	1,000,000c	1900	3,800	200	14,000	17,000	136,000	190	000 c	2,900 NA	V	V	NA	NA	NA	NA	NA	NA	06	2:900	250	NA	100	NA	102.000	102,000	1,000,000c	09	100
NYCRR 375 Residential		ng/kg	NA	NA	100000	NA	100,000	100,000	AN	48000	100:000a	NA	ΑN	1.000f	1,000f	1.000f	1.000	100,000a	100000	NA	NA	NA	20000	100000	NA	NA	1,000f	NA	14,000	330e	100000	100000	100000	100000	100,000a	100,000a	410	NA	NA	500f	000001	3700	AN A	A V	3.400	100,000	100,000a	100,000a	100000	28,000	100000	2,600	1,800	1,700	19	9/6	OTE	X 42		d'N	AN	ΔN	ΔN	NA	ΑN	72	910	100.000a	NA	30	ec N	4.800i	4,800i	4,800i	2,200	280
Parameter ID I			SVOC	SVOC	SWOC	2000	3000	2000	JUNS	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	SVOC	2000	SVOC	2000	SVOC	3000	2000	SVOC	SVOC	HERBICIDE	PESTICIDE	HERBICIDE	PESTICIDE	PESTICIDE	PESTICIDE	PESTICIDE	PESTICIDE	PCR	3 8	3 8	838	PCB	838	P.G	PCB	PGB	PESTICIDE	PESTICIDE	PESTICIDE	HERBICIDE	PESTICIDE	PESTICIDE	PESTICIDE	PESTICIDE	PESTICIDE	PESTICIDE	PESTICIDE
Parameter Name Sample ID	Date	Unit	4,6-Dinitro-2-methylphenol	4-Chloro-3-methylphenol	4-Chloroaniline	4-Nitrophonol	Aceparhithene	Acenaphthylene	Acetonhenone	Aniine	Anthracene	Atrazine	Benzaldehyde	Benzo-a-Anthracene	Benzo-a-Pyrene	Benzo-b-Fluoranthene	Benzo-k-Fluoranthene	Benzo-q,h,i-Pen/lene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethyl)ether	Bis(2-ChloroisopropyI)ether	Bis(2-Ethylhexyl)Phthalate	Butylbenzylphthalate	Caprolactam	Carbazole	Chrysene	Dalapon	Dibenzofuran	Dibenzo-a,h-Anthracene	Diethyl Phthalate	Dimethyl Phthalate	Di-n-Butyl Phthalate	Di-n-Octyl Phthalate	Huoranthene	Fluorene	Hexachlorobenzene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Isopiiororie	Nitrobenzene	N-INICOSOUII HELITIYATIII HE	N-Nitrocodinhandamina	Doctachlorophonol	Phenanthrene	Phenol	Pyrene	2,4,5-T	2,4,5-TP Acid	2,4-D	4,4-DDD	4,4-DDE	4,4-DDT	Aldrin	diplid-bnc	Arodor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	beta-BHC	Chlordane	delta-BHC	Dicamba	Dieldrin	Endosulfan	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	gamma-BHC
CAS Number			534-52-1	59-50-7		100-01-0						1912-24-9		56-55-3	50-32-8							108-60-1							132-64-9						206-44-0		118-74-1									85-01-8		129-00-0			94-75-7	72-54-8	72-55-9	50-29-3	309-00-2	П		П	П	ı	ı	ı	ı	1	ı	ı	1	1	ı		ı	ı			ı	58-89-9

Bluestone Analysis Location: 1000 Page Ave, Lyndhurst, NJ

	Parameter ID NYCRR 375 Residential	NYCRR 375 Protection of Groundwater	IRRC BLUESTONE NORTH 9-20-17	<u>۳</u>	Q MDL	IRRC BLUESTONE SOUTH 9-20-17	RL Q	MDL	IRRC BLUESTONE EAST 9-20-17	RL Q	MDL	IRRC BLUESTONE WEST 9-20-17	RL Q	MDL
Depth				г	Ĺ		1			П			l	
					Ĺ		-						r	
ng/kg	6	ng/kg	nd/ka	nd/ka	ng/kg	ng/kg	nd/ka	ng/kg	ng/kg	nd/ka	nd/ka	ng/kg	nd/ka	ng/kg
PESTICIDE 540		14000	5.1	3.5	3.5	3.6	3.4	3.4	12	3.4	3.4	8	3.4	3.4
PESTICIDE 420		380	6.9 >	6.9	6.9	< 6.8	0.8 U	8.9	6.9 >	0.9 U	6.9	< 6.7	6.7 U	6.7
PESTICIDE 77		20	6.9 >	6.9	6.9	< 6.8	0.8 U	8.9	6.9 >	0.9 U	6.9	< 6.7	6.7 U	6.7
PESTICIDE 100000		000006	< 35	35 U	35	< 34	34 U	34	< 34	34 N	34	< 34	34 U	34
1		1200	< 340	340 U	140	< 340	340 U	140	< 340	340 U	140	< 330	330 N	130
PESTICIDE 1,000		3,200	QN		Ĺ	QN	-		QN			QN	r	
PESTICIDE NA		NA	< 140	140 U	140	< 140	140 U	140	< 140	140 U	140	< 130	130 U	130
		mg/kg	mg/kg	ид/ка	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	mg/kg	mg/kg	mg/kg	тд/кд	mg/kg
METAL NA		NA	17500	31	6.3	17700	32	6.4	14700	33	9.9	13300	34	8.9
METAL NA		NA	< 1.6	1.6 U	1.6	< 1.6	1.6 U	1.6	< 1.6	1.6 U	1.6	< 1.7	1.7 U	1.7
METAL 16f	H	16f	2.55	0.63	0.63	1.08	9.64	0.64	0.92	99'0	99.0	69'0	0.68	99.0
METAL 350f		820	132	9.0	0.31	158	9.0	0.32	119	0.7	0.33	110	0.7	0.34
METAL 14		47	0.34	0.25	0.13	0.36	0.25	0.13	0.3	0.26	0.13	0.3	0.27	0.14
METAL 2.5f		7.5	< 0.31	0.31 U	0.31	< 0.32	0.32 U	0.32	< 0.33	0.33 U	0.33	< 0.34	0.34 U	0.34
	Н	NA	29.2	0.31	0.31	32.7	0.32	0.32	30.9	0.33	0.33	25.2	0.34	0.34
		19	< 0.41	0.41 U	0.41	< 0.41	0.41 U	0.41	< 0.42	0.42 U	0.42	< 0.40	0.40 U	0.40
		NA	29.2	0.31	0.31	32.7	0.32	0.32	30.9	0.33	0.33	25.2	0.34	0.34
		NA	13	0.31	0.31	15.9	0.32	0.32	13.3	0.33	0.33	12.7	0.34	0.34
METAL 270		1,720	46.1	0.31	0.31	85.3	0.32	0.32	54.4	0.33	0.33	31.3	0.34	0.34
_		40	< 0.52	0.52 U	0.260	< 0.52	0.52 U	0.258	< 0.52	0.52 U	0.260	< 0.51	0.51 U	0.255
		NA	25600	31	31	29600	32	32	24900	33	33	23200	34	34
		450	12.2	9.0	0.31	15.8	9.0	0.32	12.4	0.7	0.33	11.2	0.7	0.34
METAL 2,000f		2,000f	268	3.1	3.1	300	3.2	3.2	236	3.3	3.3	264	3.4	3.4
METAL 0.81j		0.73	0.03	0.03	0.02	0.03	0.03	0.02	0.03	0.03	0.02	0.02	0.03	0.02
METAL 140		130	21.7	0.31	0.31	28.8	0.32	0.32	25.3	0.33	0.33	22.5	0.34	0.34
METAL 2,200		2,480	68.7	9.0	0.31	80.9	9.0	0.32	68.4	0.7	0.33	65.8	0.7	0.34
Votes: Shaded values indicate an exceedance of NYCRR Part 375					Ĺ		-			L				
							H							
							H			H				
	-			_	Ļ			L		_			_	

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

September 27, 2017

FOR: Attn: Mr. Jeff Bogoian Impact Materials

170 Keyland Court Bohemia NY 11716

Sample Information **Custody Information** Date <u>Time</u> Collected by: 09/20/17 13:00 Matrix: SOIL JB Received by: **Location Code: IMPACT-IM** SW 09/20/17 17:12

Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBZ05362

Phoenix ID: BZ05362

Project ID: IRRC BLUESTONE

Client ID: IRRC BLUESTONE NORTH 9-20-17

		RL/	LOD/						
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.31	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Aluminum	17500	31	6.3	mg/Kg	10	09/22/17	MA	SW6010C	
Arsenic	2.55	0.63	0.63	mg/Kg	1	09/22/17	MA	SW6010C	
Barium	132	0.6	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Beryllium	0.34	0.25	0.13	mg/Kg	1	09/22/17	MA	SW6010C	
Calcium	7180	31	29	mg/Kg	10	09/22/17	MA	SW6010C	
Cadmium	ND	0.31	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Cobalt	13.0	0.31	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Chromium	29.2	0.31	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Copper	46.1	0.31	0.31	mg/kg	1	09/22/17	MA	SW6010C	
Iron	25600	31	31	mg/Kg	10	09/22/17	MA	SW6010C	В
Mercury	0.03	0.03	0.02	mg/Kg	1	09/22/17	RS	SW7471B	
Potassium	7160	63	24	mg/Kg	10	09/22/17	MA	SW6010C	
Magnesium	8950	31	31	mg/Kg	10	09/22/17	MA	SW6010C	
Manganese	268	3.1	3.1	mg/Kg	10	09/22/17	MA	SW6010C	
Sodium	1200	6	2.7	mg/Kg	1	09/22/17	MA	SW6010C	
Nickel	21.7	0.31	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Lead	12.2	0.6	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Antimony	ND	1.6	1.6	mg/Kg	1	09/22/17	MA	SW6010C	
Selenium	ND	1.3	1.1	mg/Kg	1	09/22/17	MA	SW6010C	
Thallium	ND	1.3	1.3	mg/Kg	1	09/22/17	MA	SW6010C	
Trivalent Chromium	29.2	0.31	0.31	mg/kg	1			CALC 6010-7196	
Vanadium	63.3	0.31	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Zinc	68.7	0.6	0.31	mg/Kg	1	09/22/17	MA	SW6010C	
Percent Solid	96			%		09/20/17	Q	SW846-%Solid	
Chromium, Hex. (SW3060 digestion)	ND	0.41	0.41	mg/Kg	1	09/22/17	KDB	SW7196A	
pH at 25C - Soil	10.0	1.00	1.00	pH Units	1	09/20/17 20:24	0	SW9045	1
Redox Potential	18.4			mV	1	09/20/17	0	SM2580B-09	1

Ver 1 Page 1 of 28

Project ID: IRRC BLUESTONE Phoenix I.D.: BZ05362

Client ID: IRRC BLUESTONE NORTH 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Cyanide (SW9010C Distill.)	ND	0.52	0.260	mg/Kg	1	09/22/17	O/GD	SW9012B
Soil Extraction for PCB	Completed	0.02	0.200	9/9	·	09/21/17	AA/V	
Soil Extraction for Pest	Completed					09/21/17	AA/V	SW3545A
Soil Extraction for SVOA	Completed					09/21/17		SW3545A
Mercury Digestion	Completed					09/21/17	W/W	
NJ EPH Extraction	Completed					09/21/17		NJDEP 10-08 R3
Soil Extraction for Herbicide	Completed					09/21/17	S/D	SW8151A
SPLP Extraction for Organics	Completed					09/25/17	W	SW1312
SPLP Pesticides Ext. (2 L to 1ml)	Completed					09/26/17	Т	SW3510C
Total Metals Digest	Completed					09/20/17		SW3050B
NJ EPH Category 2								
Total EPH (C9-C40)	ND	52	52	mg/kg	1	09/22/17	AW	NJEPH 10-08 R3 1
QA/QC Surrogates	0.5			0/	4	00/00/47	010/	NUEDU 40 00 D0
% COD (surr)	65			%	1	09/22/17	AW	NJEPH 10-08 R3
% Terphenyl (surr)	81			%	1	09/22/17	AW	NJEPH 10-08 R3
Chlorinated Herbicides								
2,4,5-T	ND	86	86	ug/Kg	10	09/22/17	CW	SW8151A
2,4,5-TP (Silvex)	ND	86	86	ug/Kg	10	09/22/17	CW	SW8151A
2,4-D	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
2,4-DB	ND	1700	1700	ug/Kg	10	09/22/17	CW	SW8151A
Dalapon	ND	86	86	ug/Kg	10	09/22/17	CW	SW8151A
Dicamba	ND	86	86	ug/Kg	10	09/22/17	CW	SW8151A
Dichloroprop	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
Dinoseb	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
QA/QC Surrogates % DCAA	51			%	10	09/22/17	CW	30 - 150 %
				70		00/22/11	• • • • • • • • • • • • • • • • • • • •	
Polychlorinated Biphen		00	00		0	00/00/47	010/	014/00004
PCB-1016	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1221	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1232	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1242	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1248	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1254	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1260	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1262	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1268	ND	69	69	ug/Kg	2	09/23/17	AW	SW8082A
QA/QC Surrogates	67			%	2	09/23/17	AW	30 - 150 %
% DCBP % TCMX	60			%	2	09/23/17	AW	30 - 150 %
	00			/0	2	09/23/17	AVV	30 - 130 /6
Pesticides - Soil					_			
4,4' -DDD	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
4,4' -DDE	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
4,4' -DDT	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
a-BHC	ND	1.7	1.7	ug/Kg	2	09/22/17	CW	SW8081B
a-Chlordane	6.1	3.5	3.5	ug/Kg	2	09/22/17	CW	SW8081B
Aldrin	ND	3.5	3.5	ug/Kg	2	09/22/17	CW	SW8081B

Ver 1 Page 2 of 28

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time Reference Bv 2 b-BHC ND 1.7 1.7 ug/Kg 09/22/17 CW SW8081B 2 CW 39 35 35 ug/Kg 09/22/17 SW8081B Chlordane d-BHC ND 6.9 6.9 ug/Kg 2 09/22/17 CW SW8081B 2 Dieldrin ND 1.7 1.7 ug/Kg 09/22/17 CW SW8081B ND 6.9 6.9 ug/Kg 2 09/22/17 CW SW8081B Endosulfan I 6.9 2 Endosulfan II ND 6.9 ug/Kg 09/22/17 CW SW8081B 2 CW ND 6.9 6.9 ug/Kg 09/22/17 SW8081B Endosulfan sulfate ND 6.9 2 Endrin 6.9 ug/Kg 09/22/17 CW SW8081B 2 ND 6.9 6.9 09/22/17 CW SW8081B Endrin aldehyde ug/Kg 2 SW8081B Endrin ketone ND 6.9 6.9 ug/Kg 09/22/17 CW ND 1.4 1.4 ug/Kg 2 09/22/17 CW SW8081B g-BHC 2 3.5 g-Chlordane 5.1 3.5 ug/Kg 09/22/17 CW SW8081B ND 6.9 2 CW Heptachlor 6.9 ug/Kg 09/22/17 SW8081B ND 2 CW 6.9 6.9 ug/Kg 09/22/17 SW8081B Heptachlor epoxide 2 ND 35 35 ug/Kg 09/22/17 CW SW8081B Methoxychlor ND 140 140 ug/Kg 2 09/22/17 CW SW8081B Toxaphene **QA/QC Surrogates** 2 % DCBP 69 % 09/22/17 CW 30 - 150 % 2 60 % 09/22/17 CW 30 - 150 % % TCMX SPLP Chlordane ND 0.050 0.050 ug/L 1 09/27/17 CW SW8081B Volatiles 1,2,4-Trimethylbenzene ND 5.3 0.53 ug/Kg 1 09/23/17 JLI SW8260C ND 5.3 SW8260C 1,3,5-Trimethylbenzene 0.53 ug/Kg 1 09/23/17 JLI 5.3 1 SW8260C 1,3-Dichlorobenzene ND 0.53 ug/Kg 09/23/17 JLI ND 5.3 09/23/17 SW8260C Naphthalene 1.1 ug/Kg 1 JLI ND 5.3 0.53 1 09/23/17 JLI SW8260C n-Butylbenzene ug/Kg 5.3 09/23/17 SW8260C n-Propylbenzene ND 1.1 ug/Kg 1 JLI ND 5.3 0.53 ug/Kg 1 09/23/17 JLI SW8260C p-Isopropyltoluene ND 5.3 0.53 1 SW8260C sec-Butylbenzene ug/Kg 09/23/17 JLI SW8260C tert-Butylbenzene ND 5.3 0.53 ug/Kg 1 09/23/17 JLI **QA/QC Surrogates** SW8260C % 1.2-dichlorobenzene-d4 98 % 1 09/23/17 JLI 101 % 09/23/17 SW8260C % Bromofluorobenzene 1 JLI % Dibromofluoromethane 90 % 1 09/23/17 SW8260C % Toluene-d8 100 % 1 09/23/17 JLI SW8260C 1,4-dioxane 1,4-dioxane ND 79 42 1 09/23/17 JLI SW8260C ug/kg **Volatiles** SW8260C ND 5.3 1 09/23/17 1.1 ug/Kg JH 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane ND 5.3 0.53 ug/Kg 1 09/23/17 JLI SW8260C ND 5.3 1.1 ug/Kg 1 09/23/17 JLI SW8260C 1,1,2,2-Tetrachloroethane ND 5.3 09/23/17 SW8260C 1,1,2-Trichloroethane 1.1 ug/Kg 1 JLI ND 5.3 1.1 ug/Kg 1 09/23/17 SW8260C 1,1-Dichloroethane ND 5.3 0.53 SW8260C ug/Kg 1 09/23/17 JLI 1,1-Dichloroethene ND 5.3 1.1 ug/Kg 1 09/23/17 JLI SW8260C 1,2,3-Trichlorobenzene 1 SW8260C ND 5.3 1.1 ug/Kg 09/23/17 JLI 1,2,4-Trichlorobenzene

Phoenix I.D.: BZ05362

Ver 1 Page 3 of 28

Client ID: IRRC BLUESTONE NORTH 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dibromo-3-chloropropane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dibromoethane	ND	4.7	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
2-Hexanone	ND	26	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
4-Methyl-2-pentanone	ND	26	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
Acetone	ND	50	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
Acrolein	ND	26	2.6	ug/Kg	1	09/23/17	JLI	SW8260C
Acrylonitrile	ND	11	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Benzene	ND	5.0	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Bromochloromethane	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Bromodichloromethane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Bromoform	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Bromomethane	ND	5.3	2.1	ug/Kg	1	09/23/17	JLI	SW8260C
Carbon Disulfide	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Carbon tetrachloride	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Chlorobenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Chloroethane	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Chloroform	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Chloromethane	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Cyclohexane	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Dibromochloromethane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Dichlorodifluoromethane	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Ethylbenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Isopropylbenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
m&p-Xylene	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methyl ethyl ketone	ND	32	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
Methyl t-butyl ether (MTBE)	1.3	J 11	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methylacetate	ND	5.3	2.6	ug/Kg	1	09/23/17	JLI	SW8260C
Methylcyclohexane	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methylene chloride	ND	5.3	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
o-Xylene	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Styrene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
tert-butyl alcohol	ND	110	21	ug/Kg	1	09/23/17	JLI	SW8260C
Tetrachloroethene	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Toluene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Total Xylenes	ND	5.3	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Trichloroethene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Trichlorofluoromethane	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Vinyl chloride	ND	5.0	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
QA/QC Surrogates								

Ver 1 Page 4 of 28

Client ID: IRRC BLUESTONE NORTH 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
% 1,2-dichlorobenzene-d4	98			%	1	09/23/17	JLI	70 - 130 %	
% Bromofluorobenzene	101			%	1	09/23/17	JLI	70 - 130 %	
% Dibromofluoromethane	90			%	1	09/23/17	JLI	70 - 130 %	
% Toluene-d8	100			%	1	09/23/17	JLI	70 - 130 %	
70 Tolubile up					•				
Vinyl Acetate	ND	53	53	ug/Kg	1	09/23/17	JLI	SW8260C TIC	10
<u>Semivolatiles</u>									
1,1-Biphenyl	ND	240	100	ug/Kg	1	09/21/17	PS	SW8270D	
1,2,4,5-Tetrachlorobenzene	ND	240	120	ug/Kg	1	09/21/17	PS	SW8270D	
1,2-Diphenylhydrazine	ND	340	340	ug/Kg	1	09/21/17	PS	SW8270D	
2,3,4,6-tetrachlorophenol	ND	240	160	ug/Kg	1	09/21/17	PS	SW8270D	
2,4,5-Trichlorophenol	ND	240	190	ug/Kg	1	09/21/17	PS	SW8270D	
2,4,6-Trichlorophenol	ND	140	110	ug/Kg	1	09/21/17	PS	SW8270D	
2,4-Dichlorophenol	ND	140	120	ug/Kg	1	09/21/17	PS	SW8270D	
2,4-Dimethylphenol	ND	240	84	ug/Kg	1	09/21/17	PS	SW8270D	
2,4-Dinitrophenol	ND	240	240	ug/Kg	1	09/21/17	PS	SW8270D	
2,4-Dinitrotoluene	ND	140	130	ug/Kg	1	09/21/17	PS	SW8270D	
2,6-Dinitrotoluene	ND	140	110	ug/Kg	1	09/21/17	PS	SW8270D	
2-Chloronaphthalene	ND	240	96	ug/Kg	1	09/21/17	PS	SW8270D	
2-Chlorophenol	ND	240	96	ug/Kg	1	09/21/17	PS	SW8270D	
2-Methylnaphthalene	ND	240	100	ug/Kg	1	09/21/17	PS	SW8270D	
2-Methylphenol (o-cresol)	ND	240	160	ug/Kg	1	09/21/17	PS	SW8270D	
2-Nitroaniline	ND	300	240	ug/Kg	1	09/21/17	PS	SW8270D	
2-Nitrophenol	ND	240	220	ug/Kg	1	09/21/17	PS	SW8270D	
3&4-Methylphenol (m&p-cresol)	ND	240	130	ug/Kg	1	09/21/17	PS	SW8270D	1
3,3'-Dichlorobenzidine	ND	140	140	ug/Kg	1	09/21/17	PS	SW8270D	
3-Nitroaniline	ND	680	240	ug/Kg ug/Kg	1	09/21/17	PS	SW8270D	
4,6-Dinitro-2-methylphenol	ND	240	240	ug/Kg	1	09/21/17	PS	SW8270D	
4-Bromophenyl phenyl ether	ND	240	100	ug/Kg	1	09/21/17	PS	SW8270D	
4-Chloro-3-methylphenol	ND	240	120	ug/Kg	1	09/21/17	PS	SW8270D	
4-Chloroaniline	ND	680	160	ug/Kg ug/Kg	1	09/21/17	PS	SW8270D	
4-Chlorophenyl phenyl ether	ND	240	110	ug/Kg	1	09/21/17	PS	SW8270D	
4-Nitroaniline	ND	340	110	ug/Kg	1	09/21/17	PS	SW8270D	
4-Nitrophenol	ND	340	150	ug/Kg	1	09/21/17	PS	SW8270D	
Acenaphthene	ND	240	100	ug/Kg ug/Kg	1	09/21/17	PS	SW8270D	
Acenaphthylene	ND	140	95	ug/Kg ug/Kg	1	09/21/17	PS	SW8270D	
-	ND	240	110	ug/Kg ug/Kg	1	09/21/17	PS	SW8270D	
Acetophenone	ND	240	110	ug/Kg ug/Kg	1	09/21/17	PS	SW8270D	
Anthracene	ND	140	100	ug/Kg ug/Kg	1	09/21/17	PS	SW8270D	
Atrazine	120	J 240	110		-	09/21/17	PS	SW8270D	
Benz(a)anthracene				ug/Kg	1				
Benzaldehyde	ND	240	100	ug/Kg	1	09/21/17	PS	SW8270D	
Benzidine	ND	240	140	ug/Kg	1	09/21/17	PS	SW8270D	
Benzo(a)pyrene	ND	140	110	ug/Kg	1	09/21/17	PS	SW8270D	
Benzo(b)fluoranthene	ND	240	120	ug/Kg	1	09/21/17	PS	SW8270D	
Benzo(ghi)perylene	ND	240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Benzo(k)fluoranthene	ND	240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Benzyl Alcohol	ND	340	340	ug/Kg	1	09/21/17	PS	SW8270D	
Benzyl butyl phthalate	ND	240	88	ug/Kg	1	09/21/17	PS	SW8270D	
Bis(2-chloroethoxy)methane	ND	240	94	ug/Kg	1	09/21/17	PS	SW8270D	

Phoenix I.D.: BZ05362

Ver 1 Page 5 of 28

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Bis(2-chloroethyl)ether	ND	140	92	ug/Kg	1	09/21/17	PS	SW8270D	_
Bis(2-chloroisopropyl)ether	ND	240	94	ug/Kg	1	09/21/17	PS	SW8270D	
Bis(2-ethylhexyl)phthalate	ND	240	98	ug/Kg	1	09/21/17	PS	SW8270D	
Caprolactam	ND	240	240	ug/Kg	1	09/21/17	PS	SW8270D	
Carbazole	ND	170	140	ug/Kg	1	09/21/17	PS	SW8270D	
Chrysene	120	J 240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Dibenz(a,h)anthracene	ND	140	110	ug/Kg	1	09/21/17	PS	SW8270D	
Dibenzofuran	ND	240	99	ug/Kg	1	09/21/17	PS	SW8270D	
Diethyl phthalate	ND	240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Dimethylphthalate	ND	240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Di-n-butylphthalate	ND	240	90	ug/Kg	1	09/21/17	PS	SW8270D	
Di-n-octylphthalate	ND	240	88	ug/Kg	1	09/21/17	PS	SW8270D	
Fluoranthene	210	J 240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Fluorene	ND	240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Hexachlorobenzene	ND	140	99	ug/Kg	1	09/21/17	PS	SW8270D	
Hexachlorobutadiene	ND	240	120	ug/Kg	1	09/21/17	PS	SW8270D	
Hexachlorocyclopentadiene	ND	240	100	ug/Kg	1	09/21/17	PS	SW8270D	
Hexachloroethane	ND	140	100	ug/Kg	1	09/21/17	PS	SW8270D	
Indeno(1,2,3-cd)pyrene	ND	240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Isophorone	ND	140	110	ug/Kg	1	09/21/17	PS	SW8270D	
Naphthalene	260	240	98	ug/Kg	1	09/21/17	PS	SW8270D	
Nitrobenzene	ND	140	120	ug/Kg	1	09/21/17	PS	SW8270D	
N-Nitrosodimethylamine	ND	240	96	ug/Kg	1	09/21/17	PS	SW8270D	
N-Nitrosodi-n-propylamine	ND	140	110	ug/Kg	1	09/21/17	PS	SW8270D	
N-Nitrosodiphenylamine	ND	140	130	ug/Kg	1	09/21/17	PS	SW8270D	
Pentachlorophenol	ND	240	130	ug/Kg	1	09/21/17	PS	SW8270D	
Phenanthrene	220	140	97	ug/Kg	1	09/21/17	PS	SW8270D	
Phenol	ND	240	110	ug/Kg	1	09/21/17	PS	SW8270D	
Pyrene	240	240	120	ug/Kg	1	09/21/17	PS	SW8270D	
QA/QC Surrogates									
% 2,4,6-Tribromophenol	81			%	1	09/21/17	PS	30 - 130 %	
% 2-Fluorobiphenyl	74			%	1	09/21/17	PS	30 - 130 %	
% 2-Fluorophenol	49			%	1	09/21/17	PS	30 - 130 %	
% Nitrobenzene-d5	61			%	1	09/21/17	PS	30 - 130 %	
% Phenol-d5	58			%	1	09/21/17	PS	30 - 130 %	
% Terphenyl-d14	76			%	1	09/21/17	PS	30 - 130 %	
Aniline	ND	340	340	ug/Kg	1	09/21/17	PS	SW8270D	
Benzoic Acid	ND	340	240	ug/Kg	1	09/21/17	PS	SW8270D	10
Parathion	ND	340	140	ug/Kg	1	09/21/17	PS	SW8270D	

Phoenix I.D.: BZ05362

Ver 1 Page 6 of 28

Project ID: IRRC BLUESTONE Phoenix I.D.: BZ05362

Client ID: IRRC BLUESTONE NORTH 9-20-17

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

10 = This parameter is not certified by NY NELAC for this matrix.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time

Hexavalent Chromium:

This sample is in a reducing state.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

September 27, 2017

Official Report Release To Follow

Ver 1 Page 7 of 28

B = Present in blank, no bias suspected.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY#11301

Analysis Report

September 27, 2017

FOR: Attn: Mr. Jeff Bogoian Impact Materials 170 Keyland Court Bohemia NY 11716

Sample Information **Custody Information** Date <u>Time</u> Collected by: 09/20/17 13:05 Matrix: SOIL JB Received by: **Location Code: IMPACT-IM** SW 09/20/17 17:12

Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBZ05362

Phoenix ID: BZ05363

Project ID: IRRC BLUESTONE

Client ID: IRRC BLUESTONE SOUTH 9-20-17

Dovernator	Daguit	RL/	LOD/	l laita	Dilution	Data/Time	Dv	Deference	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.32	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Aluminum	17700	32	6.4	mg/Kg	10	09/22/17	MA	SW6010C	
Arsenic	1.08	0.64	0.64	mg/Kg	1	09/22/17	MA	SW6010C	
Barium	158	0.6	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Beryllium	0.36	0.25	0.13	mg/Kg	1	09/22/17	MA	SW6010C	
Calcium	7770	3.2	2.9	mg/Kg	1	09/22/17	MA	SW6010C	
Cadmium	ND	0.32	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Cobalt	15.9	0.32	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Chromium	32.7	0.32	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Copper	85.3	0.32	0.32	mg/kg	1	09/22/17	MA	SW6010C	
Iron	29600	32	32	mg/Kg	10	09/22/17	MA	SW6010C	В
Mercury	0.03	J 0.03	0.02	mg/Kg	1	09/22/17	RS	SW7471B	
Potassium	9070	64	25	mg/Kg	10	09/22/17	MA	SW6010C	
Magnesium	9330	32	32	mg/Kg	10	09/22/17	MA	SW6010C	
Manganese	300	3.2	3.2	mg/Kg	10	09/22/17	MA	SW6010C	
Sodium	733	6	2.7	mg/Kg	1	09/22/17	MA	SW6010C	
Nickel	28.8	0.32	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Lead	15.8	0.6	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Antimony	ND	1.6	1.6	mg/Kg	1	09/22/17	MA	SW6010C	
Selenium	ND	1.3	1.1	mg/Kg	1	09/22/17	MA	SW6010C	
Thallium	ND	1.3	1.3	mg/Kg	1	09/22/17	MA	SW6010C	
Trivalent Chromium	32.7	0.32	0.32	mg/kg	1			CALC 6010-7196	
Vanadium	56.0	0.32	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Zinc	80.9	0.6	0.32	mg/Kg	1	09/22/17	MA	SW6010C	
Percent Solid	97			%		09/20/17	Q	SW846-%Solid	
Chromium, Hex. (SW3060 digestion)	ND	0.41	0.41	mg/Kg	1	09/22/17	KDB	SW7196A	
pH at 25C - Soil	10.6	1.00	1.00	pH Units	1	09/20/17 20:24	0	SW9045	1
Redox Potential	-11.0			mV	1	09/20/17	0	SM2580B-09	1

Ver 1 Page 8 of 28

Project ID: IRRC BLUESTONE Phoenix I.D.: BZ05363

Client ID: IRRC BLUESTONE SOUTH 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Cyanide (SW9010C Distill.)	ND	0.52	0.258	mg/Kg	1	09/22/17		SW9012B
Soil Extraction for PCB	Completed	0.02	0.200	mg/rtg		09/21/17	AA/V	
Soil Extraction for Pest	Completed					09/21/17	AA/V	SW3545A
Soil Extraction for SVOA	Completed					09/22/17		SW3545A
Mercury Digestion	Completed					09/21/17	W/W	
NJ EPH Extraction	Completed					09/21/17		NJDEP 10-08 R3
Soil Extraction for Herbicide	Completed					09/21/17	S/D	SW8151A
SPLP Extraction for Organics	Completed					09/25/17	W	SW1312
SPLP Pesticides Ext. (2 L to 1ml)	Completed					09/26/17	т	SW3510C
Total Metals Digest	Completed					09/20/17		SW3050B
Total Metals Digest	Completed					00/20/11	L//(O/DI	C110000D
NJ EPH Category 2								
Total EPH (C9-C40)	ND	50	50	mg/kg	1	09/22/17	AW	NJEPH 10-08 R3 1
QA/QC Surrogates								
% COD (surr)	66			%	1	09/22/17	AW	NJEPH 10-08 R3
% Terphenyl (surr)	82			%	1	09/22/17	AW	NJEPH 10-08 R3
Chlorinated Herbicides								
2,4,5-T	ND	85	85	ug/Kg	10	09/22/17	CW	SW8151A
2,4,5-TP (Silvex)	ND	85	85	ug/Kg	10	09/22/17	CW	SW8151A
2,4-D	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
2,4-DB	ND	1700	1700	ug/Kg	10	09/22/17	CW	SW8151A
Dalapon	ND	85	85	ug/Kg	10	09/22/17	CW	SW8151A
Dicamba	ND	85	85	ug/Kg	10	09/22/17	CW	SW8151A
Dichloroprop	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
Dinoseb	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
QA/QC Surrogates	5	170	., 0	ug/11g		00/22/11	011	011010111
% DCAA	51			%	10	09/22/17	CW	30 - 150 %
Debaldada 4. d Dialam	1 -							
Polychlorinated Biphen		00	00	11.6	•	00/00/47	A1A/	014/00004
PCB-1016	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1221	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1232	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1242	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1248	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1254	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1260	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1262	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1268	ND	68	68	ug/Kg	2	09/23/17	AW	SW8082A
QA/QC Surrogates	00			0/	0	00/00/47	010/	00 450 0/
% DCBP	99			%	2	09/23/17	AW	30 - 150 %
% TCMX	82			%	2	09/23/17	AW	30 - 150 %
Pesticides - Soil								
4,4' -DDD	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
4,4' -DDE	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
4,4' -DDT	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
a-BHC	ND	1.7	1.7	ug/Kg	2	09/22/17	CW	SW8081B
a-Chlordane	4.9	3.4	3.4	ug/Kg	2	09/22/17	CW	SW8081B
Aldrin	ND	3.4	3.4	ug/Kg	2	09/22/17	CW	SW8081B

Ver 1 Page 9 of 28

Client ID: IRRC BLUESTONE SOUTH 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
b-BHC	ND	1.7	1.7	ug/Kg	2	09/22/17	CW	SW8081B
Chlordane	ND	34	34	ug/Kg	2	09/22/17	CW	SW8081B
d-BHC	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
Dieldrin	ND	1.7	1.7	ug/Kg	2	09/22/17	CW	SW8081B
Endosulfan I	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
Endosulfan II	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
Endosulfan sulfate	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
Endrin	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
Endrin aldehyde	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
Endrin ketone	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	09/22/17	CW	SW8081B
g-Chlordane	3.6	3.4	3.4	ug/Kg	2	09/22/17	CW	SW8081B
Heptachlor	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
Heptachlor epoxide	ND	6.8	6.8	ug/Kg	2	09/22/17	CW	SW8081B
Methoxychlor	ND	34	34	ug/Kg	2	09/22/17	CW	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	09/22/17	CW	SW8081B
QA/QC Surrogates								
% DCBP	97			%	2	09/22/17	CW	30 - 150 %
% TCMX	77			%	2	09/22/17	CW	30 - 150 %
SPLP Chlordane	ND	0.050	0.050	ug/L	1	09/27/17	CW	SW8081B
Volatiles								
1,2,4-Trimethylbenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Naphthalene	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
n-Butylbenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
n-Propylbenzene	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
p-Isopropyltoluene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
sec-Butylbenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
tert-Butylbenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	100			%	1	09/23/17	JLI	SW8260C
% Bromofluorobenzene	101			%	1	09/23/17	JLI	SW8260C
% Dibromofluoromethane	96			%	1	09/23/17	JLI	SW8260C
% Toluene-d8	101			%	1	09/23/17	JLI	SW8260C
1,4-dioxane								
1,4-dioxane	ND	82	44	ug/kg	1	09/23/17	JLI	SW8260C
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,1-Dichloroethane	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,1-Dichloroethene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C

Phoenix I.D.: BZ05363

Ver 1 Page 10 of 28

Client ID: IRRC BLUESTONE SOUTH 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dibromo-3-chloropropane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dibromoethane	ND	4.9	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
2-Hexanone	ND	27	5.5	ug/Kg	1	09/23/17	JLI	SW8260C
4-Methyl-2-pentanone	ND	27	5.5	ug/Kg	1	09/23/17	JLI	SW8260C
Acetone	ND	50	5.5	ug/Kg	1	09/23/17	JLI	SW8260C
Acrolein	ND	27	2.7	ug/Kg	1	09/23/17	JLI	SW8260C
Acrylonitrile	ND	11	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Benzene	ND	5.0	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Bromochloromethane	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Bromodichloromethane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Bromoform	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Bromomethane	ND	5.5	2.2	ug/Kg	1	09/23/17	JLI	SW8260C
Carbon Disulfide	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Carbon tetrachloride	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Chlorobenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Chloroethane	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Chloroform	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Chloromethane	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Cyclohexane	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Dibromochloromethane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Dichlorodifluoromethane	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Ethylbenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Isopropylbenzene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
m&p-Xylene	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methyl ethyl ketone	ND	33	5.5	ug/Kg	1	09/23/17	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methylacetate	ND	5.5	2.7	ug/Kg	1	09/23/17	JLI	SW8260C
Methylcyclohexane	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methylene chloride	ND	5.5	5.5	ug/Kg	1	09/23/17	JLI	SW8260C
o-Xylene	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Styrene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
tert-butyl alcohol	ND	110	22	ug/Kg	1	09/23/17	JLI	SW8260C
Tetrachloroethene	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Toluene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Total Xylenes	ND	5.5	5.5	ug/Kg	1	09/23/17	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Trichloroethene	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Trichlorofluoromethane	ND	5.5	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.5	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
Vinyl chloride	ND	5.0	0.55	ug/Kg	1	09/23/17	JLI	SW8260C
QA/QC Surrogates				5 5				

Ver 1 Page 11 of 28

Client ID: IRRC BLUESTONE SOUTH 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
% 1,2-dichlorobenzene-d4	100			%	1	09/23/17	JLI	70 - 130 %	
% Bromofluorobenzene	101			%	1	09/23/17	JLI	70 - 130 %	
% Dibromofluoromethane	96			%	1	09/23/17	JLI	70 - 130 %	
% Toluene-d8	101			%	1	09/23/17	JLI	70 - 130 %	
Vinyl Acetate	ND	55	55	ug/Kg	1	09/23/17	JLI	SW8260C TIC	10
<u>Semivolatiles</u>									
1,1-Biphenyl	ND	240	100	ug/Kg	1	09/23/17	DD	SW8270D	
1,2,4,5-Tetrachlorobenzene	ND	240	120	ug/Kg	1	09/23/17	DD	SW8270D	
1,2-Diphenylhydrazine	ND	340	340	ug/Kg	1	09/23/17	DD	SW8270D	
2,3,4,6-tetrachlorophenol	ND	240	160	ug/Kg	1	09/23/17	DD	SW8270D	
2,4,5-Trichlorophenol	ND	240	190	ug/Kg	1	09/23/17	DD	SW8270D	
2,4,6-Trichlorophenol	ND	140	110	ug/Kg	1	09/23/17	DD	SW8270D	
2,4-Dichlorophenol	ND	140	120	ug/Kg	1	09/23/17	DD	SW8270D	
2,4-Dimethylphenol	ND	240	84	ug/Kg	1	09/23/17	DD	SW8270D	
2,4-Dinitrophenol	ND	240	240	ug/Kg	1	09/23/17	DD	SW8270D	
2,4-Dinitrotoluene	ND	140	130	ug/Kg	1	09/23/17	DD	SW8270D	
2,6-Dinitrotoluene	ND	140	110	ug/Kg	1	09/23/17	DD	SW8270D	
2-Chloronaphthalene	ND	240	96	ug/Kg	1	09/23/17	DD	SW8270D	
2-Chlorophenol	ND	240	96	ug/Kg	1	09/23/17	DD	SW8270D	
2-Methylnaphthalene	ND	240	100	ug/Kg	1	09/23/17	DD	SW8270D	
2-Methylphenol (o-cresol)	ND	240	160	ug/Kg	1	09/23/17	DD	SW8270D	
2-Nitroaniline	ND	300	240	ug/Kg	1	09/23/17	DD	SW8270D	
2-Nitrophenol	ND	240	220	ug/Kg	1	09/23/17	DD	SW8270D	
3&4-Methylphenol (m&p-cresol)	ND	240	130	ug/Kg	1	09/23/17	DD	SW8270D	1
3,3'-Dichlorobenzidine	ND	140	140	ug/Kg	1	09/23/17	DD	SW8270D	
3-Nitroaniline	ND	680	240	ug/Kg	1	09/23/17	DD	SW8270D	
4,6-Dinitro-2-methylphenol	ND	240	240	ug/Kg	1	09/23/17	DD	SW8270D	
4-Bromophenyl phenyl ether	ND	240	100	ug/Kg	1	09/23/17	DD	SW8270D	
4-Chloro-3-methylphenol	ND	240	120	ug/Kg	1	09/23/17	DD	SW8270D	
4-Chloroaniline	ND	680	160	ug/Kg	1	09/23/17	DD	SW8270D	
4-Chlorophenyl phenyl ether	ND	240	110	ug/Kg	1	09/23/17	DD	SW8270D	
4-Nitroaniline	ND	340	110	ug/Kg	1	09/23/17	DD	SW8270D	
4-Nitrophenol	ND	340	150	ug/Kg	1	09/23/17	DD	SW8270D	
Acenaphthene	ND	240	100	ug/Kg	1	09/23/17	DD	SW8270D	
Acenaphthylene	ND	140	95	ug/Kg	1	09/23/17	DD	SW8270D	
Acetophenone	ND	240	110	ug/Kg	1	09/23/17	DD	SW8270D	
Anthracene	ND	240	110	ug/Kg	1	09/23/17	DD	SW8270D	
Atrazine	ND	140	100	ug/Kg	1	09/23/17	DD	SW8270D	
Benz(a)anthracene	ND	240	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzaldehyde	ND	240	100	ug/Kg	1	09/23/17	DD	SW8270D	
Benzidine	ND	240	140	ug/Kg	1	09/23/17	DD	SW8270D	
Benzo(a)pyrene	ND	140	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzo(b)fluoranthene	ND	240	120	ug/Kg	1	09/23/17	DD	SW8270D	
Benzo(ghi)perylene	ND	240	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzo(k)fluoranthene	ND	240	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzyl Alcohol	ND	340	340	ug/Kg	1	09/23/17	DD	SW8270D	
Benzyl butyl phthalate	ND	240	87	ug/Kg	1	09/23/17	DD	SW8270D	
Bis(2-chloroethoxy)methane	ND	240	94	ug/Kg	1	09/23/17	DD	SW8270D	

Phoenix I.D.: BZ05363

Ver 1 Page 12 of 28

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time By Reference Bis(2-chloroethyl)ether ND 140 92 ug/Kg 1 09/23/17 DD SW8270D ND 1 240 94 ug/Kg 09/23/17 DD SW8270D Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate ND 240 98 ug/Kg 1 09/23/17 DD SW8270D 240 1 Caprolactam ND 240 ug/Kg 09/23/17 DD SW8270D ND 170 140 ug/Kg 1 09/23/17 DD SW8270D Carbazole 240 1 Chrysene ND 110 ug/Kg 09/23/17 DD SW8270D ND 1 140 110 ug/Kg 09/23/17 DD SW8270D Dibenz(a,h)anthracene ND 1 Dibenzofuran 240 99 ug/Kg 09/23/17 DD SW8270D ND 240 110 ug/Kg 1 DD SW8270D Diethyl phthalate 09/23/17 240 1 DD Dimethylphthalate ND 110 ug/Kg 09/23/17 SW8270D ND 240 90 ug/Kg 1 09/23/17 DD SW8270D Di-n-butylphthalate ND 240 1 Di-n-octylphthalate 87 ug/Kg 09/23/17 DD SW8270D 120 J 240 1 Fluoranthene 110 ug/Kg 09/23/17 DD SW8270D ND 1 240 110 ug/Kg 09/23/17 DD SW8270D Fluorene ND 140 99 ug/Kg 1 09/23/17 DD SW8270D Hexachlorobenzene Hexachlorobutadiene ND 240 120 ug/Kg 1 09/23/17 DD SW8270D ND 240 100 ug/Kg 1 09/23/17 DD SW8270D Hexachlorocyclopentadiene Hexachloroethane ND 140 100 ug/Kg 1 09/23/17 DD SW8270D ND 240 1 DD SW8270D Indeno(1,2,3-cd)pyrene 110 ug/Kg 09/23/17 ND 140 1 DD 95 ug/Kg 09/23/17 SW8270D Isophorone ND 240 98 ug/Kg 1 09/23/17 DD SW8270D Naphthalene Nitrobenzene ND 140 120 ug/Kg 1 09/23/17 DD SW8270D N-Nitrosodimethylamine ND 240 96 ug/Kg 1 09/23/17 DD SW8270D DD N-Nitrosodi-n-propylamine ND 140 110 ug/Kg 1 09/23/17 SW8270D SW8270D ND 140 130 1 09/23/17 DD N-Nitrosodiphenylamine ug/Kg SW8270D Pentachlorophenol ND 240 130 ug/Kg 1 09/23/17 DD Phenanthrene ND 140 97 1 09/23/17 DD SW8270D ug/Kg Phenol ND 240 110 ug/Kg 1 09/23/17 DD SW8270D ND 240 120 ug/Kg 1 09/23/17 DD SW8270D Pyrene **QA/QC Surrogates** 1 30 - 130 % % 2,4,6-Tribromophenol 69 % 09/23/17 DD 70 % 1 DD 30 - 130 % 09/23/17 % 2-Fluorobiphenyl % 2-Fluorophenol 46 % 1 09/23/17 DD 30 - 130 % 58 % 1 09/23/17 DD 30 - 130 % % Nitrobenzene-d5 % Phenol-d5 56 % 1 09/23/17 DD 30 - 130 % % 30 - 130 % % Terphenyl-d14 70 1 09/23/17 DD Aniline ND 340 340 ug/Kg 1 09/23/17 DD SW8270D

Phoenix I.D.: BZ05363

Ver 1 Page 13 of 28

ND

ND

Benzoic Acid

Parathion

340

340

240

140

ug/Kg

ug/Kg

1

1

09/23/17

09/23/17

DD

DD

SW8270D

SW8270D

10

Project ID: IRRC BLUESTONE Phoenix I.D.: BZ05363

Client ID: IRRC BLUESTONE SOUTH 9-20-17

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time

Hexavalent Chromium:

This sample is in a reducing state.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

September 27, 2017

Official Report Release To Follow

Ver 1 Page 14 of 28

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

^{10 =} This parameter is not certified by NY NELAC for this matrix.

B = Present in blank, no bias suspected.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 27, 2017

FOR: Attn: Mr. Jeff Bogoian Impact Materials 170 Keyland Court

Bohemia NY 11716

Sample Information **Custody Information** Date <u>Time</u> Collected by: 09/20/17 13:10 Matrix: SOIL JB Received by: **Location Code: IMPACT-IM** SW 09/20/17 17:12 Analyzed by: see "By" below

Rush Request: 24 Hour

P.O.#:

Laboratory Data

SDG ID: GBZ05362

Phoenix ID: BZ05364

IRRC BLUESTONE Project ID:

Client ID: **IRRC BLUESTONE EAST 9-20-17**

Dovernator	Daguit	RL/	LOD/	l laita	Dilution	Data/Time	Dv	Deference	
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.33	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Aluminum	14700	33	6.6	mg/Kg	10	09/22/17	MA	SW6010C	
Arsenic	0.92	0.66	0.66	mg/Kg	1	09/22/17	MA	SW6010C	
Barium	119	0.7	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Beryllium	0.30	0.26	0.13	mg/Kg	1	09/22/17	MA	SW6010C	
Calcium	5810	3.3	3.0	mg/Kg	1	09/22/17	MA	SW6010C	
Cadmium	ND	0.33	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Cobalt	13.3	0.33	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Chromium	30.9	0.33	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Copper	54.4	0.33	0.33	mg/kg	1	09/22/17	MA	SW6010C	
Iron	24900	33	33	mg/Kg	10	09/22/17	MA	SW6010C	В
Mercury	0.03	J 0.03	0.02	mg/Kg	1	09/22/17	RS	SW7471B	
Potassium	7240	66	26	mg/Kg	10	09/22/17	MA	SW6010C	
Magnesium	7360	33	33	mg/Kg	10	09/22/17	MA	SW6010C	
Manganese	236	3.3	3.3	mg/Kg	10	09/22/17	MA	SW6010C	
Sodium	745	7	2.8	mg/Kg	1	09/22/17	MA	SW6010C	
Nickel	25.3	0.33	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Lead	12.4	0.7	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Antimony	ND	1.6	1.6	mg/Kg	1	09/22/17	MA	SW6010C	
Selenium	ND	1.3	1.1	mg/Kg	1	09/22/17	MA	SW6010C	
Thallium	ND	1.3	1.3	mg/Kg	1	09/22/17	MA	SW6010C	
Trivalent Chromium	30.9	0.33	0.33	mg/kg	1			CALC 6010-7196	
Vanadium	51.8	0.33	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Zinc	68.4	0.7	0.33	mg/Kg	1	09/22/17	MA	SW6010C	
Percent Solid	96			%		09/20/17	Q	SW846-%Solid	
Chromium, Hex. (SW3060 digestion)	ND	0.42	0.42	mg/Kg	1	09/22/17	KDB	SW7196A	
pH at 25C - Soil	10.8	1.00	1.00	pH Units	1	09/20/17 20:24	0	SW9045	1
Redox Potential	-12.6			mV	1	09/20/17	0	SM2580B-09	1

Ver 1 Page 15 of 28 Project ID: IRRC BLUESTONE Phoenix I.D.: BZ05364

Client ID: IRRC BLUESTONE EAST 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Cyanide (SW9010C Distill.)	ND	0.52	0.260	mg/Kg	1	09/22/17		SW9012B
Soil Extraction for PCB	Completed	0.02	0.200	mg/rtg		09/21/17	AA/V	
Soil Extraction for Pest	Completed					09/21/17	AA/V	SW3545A
Soil Extraction for SVOA	Completed					09/21/17		SW3545A
Mercury Digestion	Completed					09/21/17	W/W	
NJ EPH Extraction	Completed					09/21/17		NJDEP 10-08 R3
Soil Extraction for Herbicide	Completed					09/21/17	S/D	SW8151A
SPLP Extraction for Organics	Completed					09/25/17	W	SW1312
SPLP Pesticides Ext. (2 L to 1ml)	Completed					09/26/17	т	SW3510C
Total Metals Digest	Completed					09/20/17		SW3050B
Total Metals Digest	Completed					00/20/17	L//(O/DI	O110000B
NJ EPH Category 2								
Total EPH (C9-C40)	ND	52	52	mg/kg	1	09/22/17	AW	NJEPH 10-08 R3 1
QA/QC Surrogates								
% COD (surr)	68			%	1	09/22/17	AW	NJEPH 10-08 R3
% Terphenyl (surr)	82			%	1	09/22/17	AW	NJEPH 10-08 R3
Chlorinated Herbicides								
2,4,5-T	ND	86	86	ug/Kg	10	09/22/17	CW	SW8151A
2,4,5-TP (Silvex)	ND	86	86	ug/Kg	10	09/22/17	CW	SW8151A
2,4-D	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
2,4-DB	ND	1700	1700	ug/Kg	10	09/22/17	CW	SW8151A
Dalapon	ND	86	86	ug/Kg	10	09/22/17	CW	SW8151A
Dicamba	ND	86	86	ug/Kg	10	09/22/17	CW	SW8151A
Dichloroprop	ND	170	170	ug/Kg ug/Kg	10	09/22/17	CW	SW8151A
Dinoseb	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
QA/QC Surrogates	No	170	170	ug/rtg	10	OOIZZIII	011	0000000
% DCAA	54			%	10	09/22/17	CW	30 - 150 %
Polychlorinated Biphen								
PCB-1016	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
PCB-1221	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
PCB-1232	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
PCB-1242	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
PCB-1248	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
PCB-1254	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
PCB-1260	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
PCB-1262	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
PCB-1268	ND	69	69	ug/Kg	2	09/22/17	AW	SW8082A
QA/QC Surrogates								
% DCBP	110			%	2	09/22/17	AW	30 - 150 %
% TCMX	88			%	2	09/22/17	AW	30 - 150 %
Pesticides - Soil								
4,4' -DDD	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
4,4' -DDE	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
4,4' -DDT	ND	2.1	2.1	ug/Kg	2	09/22/17	CW	SW8081B
a-BHC	ND	1.7	1.7	ug/Kg	2	09/22/17	CW	SW8081B
a-Chlordane	13	3.4	3.4	ug/Kg	2	09/22/17	CW	SW8081B
Aldrin	ND	3.4	3.4	ug/Kg	2	09/22/17	CW	SW8081B
	• • •			· 3· · · 3	=	· ·		

Ver 1 Page 16 of 28

Client ID: IRRC BLUESTONE EAST 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
b-BHC	ND	1.7	1.7	ug/Kg	2	09/22/17	CW	SW8081B
Chlordane	98	34	34	ug/Kg	2	09/22/17	CW	SW8081B
d-BHC	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
Dieldrin	ND	1.7	1.7	ug/Kg	2	09/22/17	CW	SW8081B
Endosulfan I	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
Endosulfan II	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
Endosulfan sulfate	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
Endrin	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
Endrin aldehyde	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
Endrin ketone	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
g-BHC	ND	1.4	1.4	ug/Kg	2	09/22/17	CW	SW8081B
g-Chlordane	12	3.4	3.4	ug/Kg	2	09/22/17	CW	SW8081B
Heptachlor	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
Heptachlor epoxide	ND	6.9	6.9	ug/Kg	2	09/22/17	CW	SW8081B
Methoxychlor	ND	34	34	ug/Kg	2	09/22/17	CW	SW8081B
Toxaphene	ND	140	140	ug/Kg	2	09/22/17	CW	SW8081B
QA/QC Surrogates								
% DCBP	88			%	2	09/22/17	CW	30 - 150 %
% TCMX	75			%	2	09/22/17	CW	30 - 150 %
SPLP Chlordane	0.081	0.051	0.051	ug/L	1	09/27/17	CW	SW8081B
Volatiles								
1,2,4-Trimethylbenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Naphthalene	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
n-Butylbenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
n-Propylbenzene	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
p-Isopropyltoluene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
sec-Butylbenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
tert-Butylbenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99			%	1	09/23/17	JLI	SW8260C
% Bromofluorobenzene	99			%	1	09/23/17	JLI	SW8260C
% Dibromofluoromethane	96			%	1	09/23/17	JLI	SW8260C
% Toluene-d8	100			%	1	09/23/17	JLI	SW8260C
1,4-dioxane								
1,4-dioxane	ND	88	47	ug/kg	1	09/23/17	JLI	SW8260C
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
1,1-Dichloroethane	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
1,1-Dichloroethene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C

Ver 1 Page 17 of 28

Client ID: IRRC BLUESTONE EAST 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dibromo-3-chloropropane	ND	5.0	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dibromoethane	ND	5.0	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
2-Hexanone	ND	29	5.9	ug/Kg	1	09/23/17	JLI	SW8260C
4-Methyl-2-pentanone	ND	29	5.9	ug/Kg	1	09/23/17	JLI	SW8260C
Acetone	ND	50	5.9	ug/Kg	1	09/23/17	JLI	SW8260C
Acrolein	ND	29	2.9	ug/Kg	1	09/23/17	JLI	SW8260C
Acrylonitrile	ND	12	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Benzene	ND	5.0	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Bromochloromethane	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Bromodichloromethane	ND	5.0	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Bromoform	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Bromomethane	ND	5.9	2.4	ug/Kg	1	09/23/17	JLI	SW8260C
Carbon Disulfide	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Carbon tetrachloride	ND	5.0	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Chlorobenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Chloroethane	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Chloroform	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Chloromethane	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Cyclohexane	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Dibromochloromethane	ND	5.0	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Dichlorodifluoromethane	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Ethylbenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Isopropylbenzene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
m&p-Xylene	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Methyl ethyl ketone	ND	35	5.9	ug/Kg	1	09/23/17	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Methylacetate	ND	5.9	2.9	ug/Kg	1	09/23/17	JLI	SW8260C
Methylcyclohexane	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Methylene chloride	ND	5.9	5.9	ug/Kg	1	09/23/17	JLI	SW8260C
o-Xylene	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Styrene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
tert-butyl alcohol	ND	120	24	ug/Kg	1	09/23/17	JLI	SW8260C
Tetrachloroethene	ND	5.0	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Toluene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Total Xylenes	ND	5.9	5.9	ug/Kg	1	09/23/17	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Trichloroethene	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Trichlorofluoromethane	ND	5.9	1.2	ug/Kg	1	09/23/17	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.9	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
Vinyl chloride	ND	5.0	0.59	ug/Kg	1	09/23/17	JLI	SW8260C
QA/QC Surrogates				-				

Ver 1 Page 18 of 28

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time By Reference % % 1,2-dichlorobenzene-d4 99 1 09/23/17 JLI 70 - 130 % % 1 99 09/23/17 JLI 70 - 130 % % Bromofluorobenzene % Dibromofluoromethane 96 % 1 09/23/17 JLI 70 - 130 % % % Toluene-d8 100 1 09/23/17 JLI 70 - 130 % 10 Vinyl Acetate ND 59 59 ug/Kg 1 09/23/17 JLI SW8260C TIC <u>Semivolatiles</u> ND 240 1 1,1-Biphenyl 100 ug/Kg 09/21/17 DD SW8270D ND 240 120 ug/Kg 1 DD SW8270D 1,2,4,5-Tetrachlorobenzene 09/21/17 340 1,2-Diphenylhydrazine ND 340 ug/Kg 1 09/21/17 DD SW8270D 2,3,4,6-tetrachlorophenol ND 240 160 ug/Kg 1 09/21/17 DD SW8270D ND 1 2,4,5-Trichlorophenol 240 190 ug/Kg 09/21/17 DD SW8270D ND 140 110 ug/Kg 1 09/21/17 DD SW8270D 2,4,6-Trichlorophenol ND 140 120 ug/Kg 1 DD SW8270D 2,4-Dichlorophenol 09/21/17 ND 240 85 ug/Kg 1 09/21/17 DD SW8270D 2,4-Dimethylphenol 2,4-Dinitrophenol ND 240 240 ug/Kg 1 09/21/17 DD SW8270D ND 140 140 1 09/21/17 DD SW8270D 2.4-Dinitrotoluene ug/Kg ND 140 1 DD 2.6-Dinitrotoluene 110 ug/Kg 09/21/17 SW8270D ND 240 97 ug/Kg 1 09/21/17 DD SW8270D 2-Chloronaphthalene ND 240 1 DD SW8270D 97 ug/Kg 09/21/17 2-Chlorophenol 2-Methylnaphthalene ND 240 100 ug/Kg 1 09/21/17 DD SW8270D ND 240 1 DD SW8270D 2-Methylphenol (o-cresol) 160 ug/Kg 09/21/17 ND 300 240 1 09/21/17 DD SW8270D 2-Nitroaniline ug/Kg DD 2-Nitrophenol ND 240 220 ug/Kg 1 09/21/17 SW8270D 240 1 SW8270D 3&4-Methylphenol (m&p-cresol) ND 140 ug/Kg 09/21/17 DD 1 SW8270D 3,3'-Dichlorobenzidine ND 140 140 ug/Kg 09/21/17 DD ND 690 240 1 09/21/17 DD SW8270D 3-Nitroaniline ug/Kg 4,6-Dinitro-2-methylphenol 240 SW8270D ND 240 ug/Kg 1 09/21/17 DD ND 240 100 1 09/21/17 DD SW8270D 4-Bromophenyl phenyl ether ug/Kg 240 1 DD SW8270D 4-Chloro-3-methylphenol ND 120 ug/Kg 09/21/17 ND 690 160 ug/Kg 1 09/21/17 DD SW8270D 4-Chloroaniline ND 240 1 SW8270D 120 09/21/17 DD 4-Chlorophenyl phenyl ether ug/Kg ND 340 110 1 09/21/17 DD SW8270D 4-Nitroaniline ug/Kg ND 340 1 DD SW8270D 4-Nitrophenol 150 ug/Kg 09/21/17 ND 240 100 ug/Kg 1 09/21/17 DD SW8270D Acenaphthene Acenaphthylene ND 140 96 ug/Kg 1 09/21/17 DD SW8270D ND 240 1 DD SW8270D 110 09/21/17 Acetophenone ug/Kg ND 240 110 1 09/21/17 DD SW8270D Anthracene ug/Kg ND 140 100 1 09/21/17 DD SW8270D ug/Kg Atrazine ND 240 1 DD SW8270D Benz(a)anthracene 120 ug/Kg 09/21/17 Benzaldehyde ND 240 100 ug/Kg 1 09/21/17 DD SW8270D ND 240 1 DD SW8270D 140 ug/Kg 09/21/17 Benzidine ND 140 1 DD SW8270D Benzo(a)pyrene 110 ug/Kg 09/21/17 ND 240 1 DD SW8270D Benzo(b)fluoranthene 120 ug/Kg 09/21/17 ND 240 110 ug/Kg 1 09/21/17 DD SW8270D Benzo(ghi)perylene ND 240 110 ug/Kg 1 09/21/17 DD SW8270D Benzo(k)fluoranthene Benzyl Alcohol ND 340 340 ug/Kg 1 09/21/17 DD SW8270D Benzyl butyl phthalate ND 240 88 ug/Kg 1 09/21/17 DD SW8270D ND 240 95 1 SW8270D Bis(2-chloroethoxy)methane ug/Kg 09/21/17 DD

Phoenix I.D.: BZ05364

Ver 1 Page 19 of 28

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time By Reference Bis(2-chloroethyl)ether ND 140 93 ug/Kg 1 09/21/17 DD SW8270D ND 1 240 95 ug/Kg 09/21/17 DD SW8270D Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate ND 240 99 ug/Kg 1 09/21/17 DD SW8270D 1 Caprolactam ND 240 240 ug/Kg 09/21/17 DD SW8270D ND 170 140 ug/Kg 1 09/21/17 DD SW8270D Carbazole 240 1 Chrysene ND 120 ug/Kg 09/21/17 DD SW8270D ND 1 140 110 ug/Kg 09/21/17 DD SW8270D Dibenz(a,h)anthracene ND 1 Dibenzofuran 240 100 ug/Kg 09/21/17 DD SW8270D ND 240 110 ug/Kg 1 DD SW8270D Diethyl phthalate 09/21/17 240 1 DD Dimethylphthalate ND 110 ug/Kg 09/21/17 SW8270D ND 240 91 ug/Kg 1 09/21/17 DD SW8270D Di-n-butylphthalate ND 240 1 Di-n-octylphthalate 88 ug/Kg 09/21/17 DD SW8270D 240 1 Fluoranthene 150 J 110 ug/Kg 09/21/17 DD SW8270D ND 1 240 110 ug/Kg DD SW8270D Fluorene 09/21/17 ND 140 100 ug/Kg 1 09/21/17 DD SW8270D Hexachlorobenzene Hexachlorobutadiene ND 240 120 ug/Kg 1 09/21/17 DD SW8270D ND 240 100 ug/Kg 1 09/21/17 DD SW8270D Hexachlorocyclopentadiene Hexachloroethane ND 140 100 ug/Kg 1 09/21/17 DD SW8270D ND 240 1 DD SW8270D Indeno(1,2,3-cd)pyrene 110 ug/Kg 09/21/17 ND 170 1 DD 170 ug/Kg 09/21/17 SW8270D Isophorone ND 240 99 ug/Kg 1 09/21/17 DD SW8270D Naphthalene Nitrobenzene ND 140 120 ug/Kg 1 09/21/17 DD SW8270D N-Nitrosodimethylamine ND 240 97 ug/Kg 1 09/21/17 DD SW8270D DD N-Nitrosodi-n-propylamine ND 140 110 ug/Kg 1 09/21/17 SW8270D SW8270D ND 140 130 1 09/21/17 DD N-Nitrosodiphenylamine ug/Kg SW8270D Pentachlorophenol ND 240 130 ug/Kg 1 09/21/17 DD Phenanthrene 100 J 140 98 1 09/21/17 DD SW8270D ug/Kg Phenol ND 240 110 ug/Kg 1 09/21/17 DD SW8270D 140 240 120 ug/Kg 1 09/21/17 DD SW8270D Pyrene **QA/QC Surrogates** 1 30 - 130 % % 2,4,6-Tribromophenol 73 % 09/21/17 DD 75 % 1 DD 30 - 130 % 09/21/17 % 2-Fluorobiphenyl % 2-Fluorophenol 54 % 1 09/21/17 DD 30 - 130 % 68 % 1 DD 30 - 130 % % Nitrobenzene-d5 09/21/17 % Phenol-d5 64 % 1 09/21/17 DD 30 - 130 % % 30 - 130 % % Terphenyl-d14 73 1 09/21/17 DD Aniline ND 340 340 ug/Kg 1 09/21/17 DD SW8270D ND 340 240 ug/Kg 1 09/21/17 DD SW8270D 10 Benzoic Acid

Phoenix I.D.: BZ05364

DD

09/21/17

SW8270D

Ver 1 Page 20 of 28

ND

Parathion

340

140

ug/Kg

1

Project ID: IRRC BLUESTONE Phoenix I.D.: BZ05364

Client ID: IRRC BLUESTONE EAST 9-20-17

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time

Hexavalent Chromium:

This sample is in a reducing state.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

September 27, 2017

Official Report Release To Follow

Ver 1 Page 21 of 28

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

^{10 =} This parameter is not certified by NY NELAC for this matrix.

B = Present in blank, no bias suspected.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

September 27, 2017

FOR: Attn: Mr. Jeff Bogoian

Impact Materials 170 Keyland Court Bohemia NY 11716

Sample Information **Custody Information** Date <u>Time</u> Collected by: 09/20/17 Matrix: SOIL JB 13:15 Received by: **IMPACT-IM** SW 09/20/17 17:12 **Location Code:**

Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBZ05362

Phoenix ID: BZ05365

Project ID: IRRC BLUESTONE

Client ID: IRRC BLUESTONE WEST 9-20-17

	.	RL/	LOD/		5.0.0	- · · · ·	_	D (
Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference	
Silver	ND	0.34	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Aluminum	13300	34	6.8	mg/Kg	10	09/22/17	MA	SW6010C	
Arsenic	0.69	0.68	0.68	mg/Kg	1	09/22/17	MA	SW6010C	
Barium	110	0.7	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Beryllium	0.30	0.27	0.14	mg/Kg	1	09/22/17	MA	SW6010C	
Calcium	8680	3.4	3.1	mg/Kg	1	09/22/17	MA	SW6010C	
Cadmium	ND	0.34	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Cobalt	12.7	0.34	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Chromium	25.2	0.34	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Copper	31.3	0.34	0.34	mg/kg	1	09/22/17	MA	SW6010C	
Iron	23200	34	34	mg/Kg	10	09/22/17	MA	SW6010C	В
Mercury	0.02	J 0.03	0.02	mg/Kg	1	09/22/17	RS	SW7471B	
Potassium	7320	68	27	mg/Kg	10	09/22/17	MA	SW6010C	
Magnesium	7600	34	34	mg/Kg	10	09/22/17	MA	SW6010C	
Manganese	264	3.4	3.4	mg/Kg	10	09/22/17	MA	SW6010C	
Sodium	501	7	2.9	mg/Kg	1	09/22/17	MA	SW6010C	
Nickel	22.5	0.34	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Lead	11.2	0.7	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Antimony	ND	1.7	1.7	mg/Kg	1	09/22/17	MA	SW6010C	
Selenium	ND	1.4	1.2	mg/Kg	1	09/22/17	MA	SW6010C	
Thallium	ND	1.4	1.4	mg/Kg	1	09/22/17	MA	SW6010C	
Trivalent Chromium	25.2	0.34	0.34	mg/kg	1			CALC 6010-7196	
Vanadium	40.3	0.34	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Zinc	65.8	0.7	0.34	mg/Kg	1	09/22/17	MA	SW6010C	
Percent Solid	98			%		09/20/17	Q	SW846-%Solid	
Chromium, Hex. (SW3060 digestion)	ND	0.40	0.40	mg/Kg	1	09/22/17	KDB	SW7196A	
pH at 25C - Soil	10.3	1.00	1.00	pH Units	1	09/20/17 20:24	0	SW9045	1
Redox Potential	-22.1			mV	1	09/20/17	0	SM2580B-09	1

Ver 1 Page 22 of 28

Project ID: IRRC BLUESTONE Phoenix I.D.: BZ05365

Client ID: IRRC BLUESTONE WEST 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Total Cyanide (SW9010C Distill.)	ND	0.51	0.255	mg/Kg	1	09/22/17		SW9012B
Soil Extraction for PCB	Completed	0.01	0.200	mg/rtg		09/21/17	AA/V	
Soil Extraction for Pest	Completed					09/21/17	AA/V	SW3545A
Soil Extraction for SVOA	Completed					09/22/17		SW3545A
Mercury Digestion	Completed					09/21/17	W/W	
NJ EPH Extraction	Completed					09/21/17		NJDEP 10-08 R3
Soil Extraction for Herbicide	Completed					09/21/17	S/D	SW8151A
SPLP Extraction for Organics	Completed					09/25/17	W	SW1312
SPLP Pesticides Ext. (2 L to 1ml)	Completed					09/26/17	т	SW3510C
Total Metals Digest	Completed					09/20/17		SW3050B
Total Metals Digest	Completed					00/20/17	L/AO/DI	OWOOOD
NJ EPH Category 2								
Total EPH (C9-C40)	ND	51	51	mg/kg	1	09/22/17	AW	NJEPH 10-08 R3 1
QA/QC Surrogates								
% COD (surr)	72			%	1	09/22/17	AW	NJEPH 10-08 R3
% Terphenyl (surr)	88			%	1	09/22/17	AW	NJEPH 10-08 R3
Chlorinated Herbicides								
2,4,5-T	ND	85	85	ug/Kg	10	09/22/17	CW	SW8151A
2,4,5-TP (Silvex)	ND	85	85	ug/Kg	10	09/22/17	CW	SW8151A
2,4-D	ND	170	170	ug/Kg	10	09/22/17	CW	SW8151A
2,4-DB	ND	1700	1700	ug/Kg	10	09/22/17	CW	SW8151A
Dalapon	ND	85	85	ug/Kg	10	09/22/17	CW	SW8151A
Dicamba	ND	85	85	ug/Kg	10	09/22/17	CW	SW8151A
Dichloroprop	ND	170	170	ug/Kg ug/Kg	10	09/22/17	CW	SW8151A
Dinoseb	ND	170	170	ug/Kg ug/Kg	10	09/22/17	CW	SW8151A
QA/QC Surrogates	ND	170	170	ug/itg	10	03/22/17	CVV	SWOISIA
% DCAA	54			%	10	09/22/17	CW	30 - 150 %
Polychlorinated Biphen								
PCB-1016	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1221	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1232	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1242	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1248	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1254	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1260	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1262	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
PCB-1268	ND	67	67	ug/Kg	2	09/23/17	AW	SW8082A
QA/QC Surrogates								
% DCBP	97			%	2	09/23/17	AW	30 - 150 %
% TCMX	85			%	2	09/23/17	AW	30 - 150 %
Pesticides - Soil								
4,4' -DDD	ND	2.0	2.0	ug/Kg	2	09/22/17	CW	SW8081B
4,4' -DDE	ND	2.0	2.0	ug/Kg	2	09/22/17	CW	SW8081B
4,4' -DDT	ND	2.0	2.0	ug/Kg	2	09/22/17	CW	SW8081B
a-BHC	ND	1.7	1.7	ug/Kg	2	09/22/17	CW	SW8081B
a-Chlordane	8.5	3.4	3.4	ug/Kg ug/Kg	2	09/22/17	CW	SW8081B
Aldrin	ND	3.4	3.4	ug/Kg	2	09/22/17	CW	SW8081B
,	5	.	J. 1	"פיי'יפ		00,	J	

Ver 1 Page 23 of 28

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time Reference Bv 1.7 2 b-BHC ND 1.7 ug/Kg 09/22/17 CW SW8081B 2 CW 64 34 34 ug/Kg 09/22/17 SW8081B Chlordane d-BHC ND 6.7 6.7 ug/Kg 2 09/22/17 CW SW8081B 2 Dieldrin ND 1.7 1.7 ug/Kg 09/22/17 CW SW8081B ND 6.7 6.7 ug/Kg 2 09/22/17 CW SW8081B Endosulfan I 6.7 2 Endosulfan II ND 6.7 ug/Kg 09/22/17 CW SW8081B 2 6.7 CW ND 6.7 ug/Kg 09/22/17 SW8081B Endosulfan sulfate ND 6.7 2 Endrin 6.7 ug/Kg 09/22/17 CW SW8081B 2 ND 6.7 6.7 09/22/17 CW SW8081B Endrin aldehyde ug/Kg 2 SW8081B Endrin ketone ND 6.7 6.7 ug/Kg 09/22/17 CW ND 1.3 1.3 ug/Kg 2 09/22/17 CW SW8081B g-BHC 2 3.4 g-Chlordane 8.0 3.4 ug/Kg 09/22/17 CW SW8081B ND 6.7 2 CW Heptachlor 6.7 ug/Kg 09/22/17 SW8081B ND 6.7 2 CW 6.7 ug/Kg 09/22/17 SW8081B Heptachlor epoxide 2 ND 34 34 ug/Kg 09/22/17 CW SW8081B Methoxychlor ND 130 130 ug/Kg 2 09/22/17 CW SW8081B Toxaphene **QA/QC Surrogates** 2 % DCBP 97 % 09/22/17 CW 30 - 150 % 2 81 % 09/22/17 CW 30 - 150 % % TCMX SPLP Chlordane ND 0.050 0.050 ug/L 1 09/27/17 CW SW8081B Volatiles 1,2,4-Trimethylbenzene ND 5.3 0.53 ug/Kg 1 09/23/17 JLI SW8260C ND 5.3 SW8260C 1,3,5-Trimethylbenzene 0.53 ug/Kg 1 09/23/17 JLI 5.3 1 SW8260C 1,3-Dichlorobenzene ND 0.53 ug/Kg 09/23/17 JLI ND 5.3 09/23/17 SW8260C Naphthalene 1.1 ug/Kg 1 JLI ND 5.3 0.53 1 09/23/17 JLI SW8260C n-Butylbenzene ug/Kg 5.3 09/23/17 SW8260C n-Propylbenzene ND 1.1 ug/Kg 1 JLI ND 5.3 0.53 ug/Kg 1 09/23/17 JLI SW8260C p-Isopropyltoluene ND 5.3 0.53 1 SW8260C sec-Butylbenzene ug/Kg 09/23/17 JLI SW8260C tert-Butylbenzene ND 5.3 0.53 ug/Kg 1 09/23/17 JLI **QA/QC Surrogates** SW8260C % 1.2-dichlorobenzene-d4 100 % 1 09/23/17 JLI 100 % 09/23/17 SW8260C % Bromofluorobenzene 1 JLI % Dibromofluoromethane 93 % 1 09/23/17 SW8260C % Toluene-d8 100 % 1 09/23/17 JLI SW8260C 1,4-dioxane 1,4-dioxane ND 79 42 1 09/23/17 JLI SW8260C ug/kg **Volatiles** SW8260C ND 5.3 1 09/23/17 1.1 ug/Kg JH 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane ND 5.3 0.53 ug/Kg 1 09/23/17 JLI SW8260C ND 5.3 1.1 ug/Kg 1 09/23/17 JLI SW8260C 1,1,2,2-Tetrachloroethane ND 5.3 09/23/17 SW8260C 1,1,2-Trichloroethane 1.1 ug/Kg 1 JLI ND 5.3 1.1 ug/Kg 1 09/23/17 SW8260C 1,1-Dichloroethane ND 5.3 0.53 SW8260C ug/Kg 1 09/23/17 JLI 1,1-Dichloroethene ND 5.3 1.1 ug/Kg 1 09/23/17 JLI SW8260C 1,2,3-Trichlorobenzene 1 SW8260C ND 5.3 ug/Kg 09/23/17 JLI 1,2,4-Trichlorobenzene 1.1

Phoenix I.D.: BZ05365

Ver 1 Page 24 of 28

Client ID: IRRC BLUESTONE WEST 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dibromo-3-chloropropane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dibromoethane	ND	4.7	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
2-Hexanone	ND	26	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
4-Methyl-2-pentanone	ND	26	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
Acetone	ND	50	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
Acrolein	ND	26	2.6	ug/Kg	1	09/23/17	JLI	SW8260C
Acrylonitrile	ND	11	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Benzene	ND	5.0	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Bromochloromethane	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Bromodichloromethane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Bromoform	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Bromomethane	ND	5.3	2.1	ug/Kg	1	09/23/17	JLI	SW8260C
Carbon Disulfide	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Carbon tetrachloride	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Chlorobenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Chloroethane	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Chloroform	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Chloromethane	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Cyclohexane	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Dibromochloromethane	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Dichlorodifluoromethane	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Ethylbenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Isopropylbenzene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
m&p-Xylene	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methyl ethyl ketone	ND	32	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methylacetate	ND	5.3	2.6	ug/Kg	1	09/23/17	JLI	SW8260C
Methylcyclohexane	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Methylene chloride	ND	5.3	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
o-Xylene	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Styrene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
tert-butyl alcohol	ND	110	21	ug/Kg	1	09/23/17	JLI	SW8260C
Tetrachloroethene	ND	5.0	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Toluene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Total Xylenes	ND	5.3	5.3	ug/Kg	1	09/23/17	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Trichloroethene	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Trichlorofluoromethane	ND	5.3	1.1	ug/Kg	1	09/23/17	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.3	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
Vinyl chloride	ND	5.0	0.53	ug/Kg	1	09/23/17	JLI	SW8260C
QA/QC Surrogates				5 5				

Ver 1 Page 25 of 28

Client ID: IRRC BLUESTONE WEST 9-20-17

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
% 1,2-dichlorobenzene-d4	100			%	1	09/23/17	JLI	70 - 130 %	
% Bromofluorobenzene	100			%	1	09/23/17	JLI	70 - 130 %	
% Dibromofluoromethane	93			%	1	09/23/17	JLI	70 - 130 %	
% Toluene-d8	100			%	1	09/23/17	JLI	70 - 130 %	
Vinyl Acetate	ND	53	53	ug/Kg	1	09/23/17	JLI	SW8260C TIC	10
<u>Semivolatiles</u>									
1,1-Biphenyl	ND	230	100	ug/Kg	1	09/23/17	DD	SW8270D	
1,2,4,5-Tetrachlorobenzene	ND	230	120	ug/Kg	1	09/23/17	DD	SW8270D	
1,2-Diphenylhydrazine	ND	330	330	ug/Kg	1	09/23/17	DD	SW8270D	
2,3,4,6-tetrachlorophenol	ND	230	150	ug/Kg	1	09/23/17	DD	SW8270D	
2,4,5-Trichlorophenol	ND	230	180	ug/Kg	1	09/23/17	DD	SW8270D	
2,4,6-Trichlorophenol	ND	130	110	ug/Kg	1	09/23/17	DD	SW8270D	
2,4-Dichlorophenol	ND	130	120	ug/Kg	1	09/23/17	DD	SW8270D	
2,4-Dimethylphenol	ND	230	82	ug/Kg	1	09/23/17	DD	SW8270D	
2,4-Dinitrophenol	ND	230	230	ug/Kg	1	09/23/17	DD	SW8270D	
2,4-Dinitrotoluene	ND	130	130	ug/Kg	1	09/23/17	DD	SW8270D	
2,6-Dinitrotoluene	ND	130	100	ug/Kg	1	09/23/17	DD	SW8270D	
2-Chloronaphthalene	ND	230	94	ug/Kg	1	09/23/17	DD	SW8270D	
2-Chlorophenol	ND	230	94	ug/Kg	1	09/23/17	DD	SW8270D	
2-Methylnaphthalene	ND	230	98	ug/Kg	1	09/23/17	DD	SW8270D	
2-Methylphenol (o-cresol)	ND	230	160	ug/Kg	1	09/23/17	DD	SW8270D	
2-Nitroaniline	ND	300	230	ug/Kg	1	09/23/17	DD	SW8270D	
2-Nitrophenol	ND	230	210	ug/Kg	1	09/23/17	DD	SW8270D	
3&4-Methylphenol (m&p-cresol)	ND	230	130	ug/Kg	1	09/23/17	DD	SW8270D	1
3,3'-Dichlorobenzidine	ND	130	130	ug/Kg	1	09/23/17	DD	SW8270D	
3-Nitroaniline	ND	660	230	ug/Kg	1	09/23/17	DD	SW8270D	
4,6-Dinitro-2-methylphenol	ND	230	230	ug/Kg	1	09/23/17	DD	SW8270D	
4-Bromophenyl phenyl ether	ND	230	97	ug/Kg	1	09/23/17	DD	SW8270D	
4-Chloro-3-methylphenol	ND	230	120	ug/Kg	1	09/23/17	DD	SW8270D	
4-Chloroaniline	ND	660	150	ug/Kg	1	09/23/17	DD	SW8270D	
4-Chlorophenyl phenyl ether	ND	230	110	ug/Kg	1	09/23/17	DD	SW8270D	
4-Nitroaniline	ND	330	110	ug/Kg	1	09/23/17	DD	SW8270D	
4-Nitrophenol	ND	330	150	ug/Kg	1	09/23/17	DD	SW8270D	
Acenaphthene	ND	230	100	ug/Kg	1	09/23/17	DD	SW8270D	
Acenaphthylene	ND	130	93	ug/Kg	1	09/23/17	DD	SW8270D	
Acetophenone	ND	230	100	ug/Kg	1	09/23/17	DD	SW8270D	
Anthracene	ND	230	110	ug/Kg	1	09/23/17	DD	SW8270D	
Atrazine	ND	130	99	ug/Kg	1	09/23/17	DD	SW8270D	
Benz(a)anthracene	ND	230	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzaldehyde	ND	230	98	ug/Kg	1	09/23/17	DD	SW8270D	
Benzidine	ND	230	130	ug/Kg	1	09/23/17	DD	SW8270D	
Benzo(a)pyrene	ND	130	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzo(b)fluoranthene	ND	230	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzo(ghi)perylene	ND	230	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzo(k)fluoranthene	ND	230	110	ug/Kg	1	09/23/17	DD	SW8270D	
Benzyl Alcohol	ND	330	330	ug/Kg	1	09/23/17	DD	SW8270D	
Benzyl butyl phthalate	ND	230	85	ug/Kg	1	09/23/17	DD	SW8270D	
Bis(2-chloroethoxy)methane	ND	230	91	ug/Kg	1	09/23/17	DD	SW8270D	

Phoenix I.D.: BZ05365

Ver 1 Page 26 of 28

RL/ LOD/ Parameter Result **PQL** MDL Units Dilution Date/Time Reference By Bis(2-chloroethyl)ether ND 130 89 ug/Kg 1 09/23/17 DD SW8270D ND 230 1 92 ug/Kg 09/23/17 DD SW8270D Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate ND 230 95 ug/Kg 1 09/23/17 DD SW8270D ND 230 1 Caprolactam 230 ug/Kg 09/23/17 DD SW8270D ND 170 130 ug/Kg 1 09/23/17 DD SW8270D Carbazole 230 1 Chrysene ND 110 ug/Kg 09/23/17 DD SW8270D ND 130 1 110 ug/Kg 09/23/17 DD SW8270D Dibenz(a,h)anthracene ND 230 1 Dibenzofuran 96 ug/Kg 09/23/17 DD SW8270D ND 230 100 ug/Kg 1 DD SW8270D Diethyl phthalate 09/23/17 ND 230 1 DD Dimethylphthalate 100 ug/Kg 09/23/17 SW8270D ND 230 88 ug/Kg 1 09/23/17 DD SW8270D Di-n-butylphthalate ND 230 1 Di-n-octylphthalate 85 ug/Kg 09/23/17 DD SW8270D 190 J 230 1 Fluoranthene 110 ug/Kg 09/23/17 DD SW8270D ND 230 1 110 ug/Kg 09/23/17 DD SW8270D Fluorene ND 130 96 ug/Kg 1 09/23/17 DD SW8270D Hexachlorobenzene Hexachlorobutadiene ND 230 120 ug/Kg 1 09/23/17 DD SW8270D ND 230 100 ug/Kg 1 09/23/17 DD SW8270D Hexachlorocyclopentadiene Hexachloroethane ND 130 99 ug/Kg 1 09/23/17 DD SW8270D ND 230 1 DD SW8270D Indeno(1,2,3-cd)pyrene 110 ug/Kg 09/23/17 ND 130 1 DD 93 ug/Kg 09/23/17 SW8270D Isophorone ND 230 95 ug/Kg 1 09/23/17 DD SW8270D Naphthalene Nitrobenzene ND 130 120 ug/Kg 1 09/23/17 DD SW8270D N-Nitrosodimethylamine ND 230 93 ug/Kg 1 09/23/17 DD SW8270D DD N-Nitrosodi-n-propylamine ND 130 110 ug/Kg 1 09/23/17 SW8270D SW8270D ND 130 130 1 09/23/17 DD N-Nitrosodiphenylamine ug/Kg Pentachlorophenol ND 230 120 ug/Kg 1 09/23/17 DD SW8270D Phenanthrene 180 130 95 1 09/23/17 DD SW8270D ug/Kg Phenol ND 230 110 ug/Kg 1 09/23/17 DD SW8270D 180 230 110 ug/Kg 1 09/23/17 DD SW8270D Pyrene **QA/QC Surrogates** % 1 30 - 130 % % 2,4,6-Tribromophenol 81 09/23/17 DD 79 % 1 DD 30 - 130 % 09/23/17 % 2-Fluorobiphenyl % 2-Fluorophenol 54 % 1 09/23/17 DD 30 - 130 % 67 % 1 09/23/17 DD 30 - 130 % % Nitrobenzene-d5 % Phenol-d5 64 % 1 09/23/17 DD 30 - 130 % 72 % 30 - 130 % % Terphenyl-d14 1 09/23/17 DD Aniline ND 330 330 ug/Kg 1 09/23/17 DD SW8270D ND 330 230 ug/Kg 1 09/23/17 DD SW8270D 10 Benzoic Acid

Phoenix I.D.: BZ05365

DD

09/23/17

SW8270D

Ver 1 Page 27 of 28

ND

Parathion

330

130

ug/Kg

1

Project ID: IRRC BLUESTONE Phoenix I.D.: BZ05365

Client ID: IRRC BLUESTONE WEST 9-20-17

RL/ LOD/

Parameter Result PQL MDL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Please be advised that the NY 375 soil criteria for chromium are based on hexavalent chromium and trivalent chromium.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time

Hexavalent Chromium:

This sample is in a reducing state.

Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

Semi-Volatile Comment:

Where the LOD justifies lowering the RL/PQL, the RL/PQL of some compounds are evaluated below the lowest calibration standard in order to meet criteria.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

September 27, 2017

Official Report Release To Follow

Ver 1 Page 28 of 28

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

^{10 =} This parameter is not certified by NY NELAC for this matrix.

B = Present in blank, no bias suspected.

7	١		
L		_	_
	ï		١
	`		•
7			
1			
	(1)
ì	Č		3
ì	ċ	٦	
ſ		ĺ	
_	_		

Sample Criteria Exceedances Report

GBZ05362 - IMPACT-IM

Criteria: NJ: IGWSS, RC; NY: 375 State: NY

Wednesday, September 27, 2017

State: NY	×						2	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BZ05362	AL-SMDP	Aluminum	NJ / Impact To Ground Water / Soil Screen Levels	17500	31	0009	3900	mg/Kg
BZ05362	MN-SM	Manganese	NJ / Impact To Ground Water / Soil Screen Levels	268	3.1	65	42	mg/Kg
BZ05363	AL-SMDP	Aluminum	NJ / Impact To Ground Water / Soil Screen Levels	17700	32	0009	3900	mg/Kg
BZ05363	CR-SM	Chromium	NY / 375-6.8 Metals / Unrestricted Use Soil	32.7	0.32	30		mg/Kg
BZ05363	CU-SM	Copper	NY / 375-6.8 Metals / Unrestricted Use Soil	85.3	0.32	20	20	mg/kg
BZ05363	MN-SM	Manganese	NJ / Impact To Ground Water / Soil Screen Levels	300	3.2	65	42	mg/Kg
BZ05363	TRI-CRSM	Trivalent Chromium	NY / 375-6.8 Metals / Unrestricted Use Soil	32.7	0.32	30	30	mg/kg
BZ05364	\$PESTSMDPR Chlordane	Chlordane	NJ / Impact To Ground Water / Soil Screen Levels	86	34	50	30	ug/Kg
BZ05364	AL-SMDP	Aluminum	NJ / Impact To Ground Water / Soil Screen Levels	14700	33	0009	3900	mg/Kg
BZ05364	CR-SM	Chromium	NY / 375-6.8 Metals / Unrestricted Use Soil	30.9	0.33	30		mg/Kg
BZ05364	CU-SM	Copper	NY / 375-6.8 Metals / Unrestricted Use Soil	54.4	0.33	20	20	mg/kg
BZ05364	MN-SM	Manganese	NJ / Impact To Ground Water / Soil Screen Levels	236	3.3	65	42	mg/Kg
BZ05364	TRI-CRSM	Trivalent Chromium	NY / 375-6.8 Metals / Unrestricted Use Soil	30.9	0.33	30	30	mg/kg
BZ05365	\$PESTSMDPR Chlordane	Chlordane	NJ / Impact To Ground Water / Soil Screen Levels	49	34	20	30	ug/Kg
BZ05365	AL-SMDP	Aluminum	NJ / Impact To Ground Water / Soil Screen Levels	13300	34	0009	3900	mg/Kg
BZ05365	MN-SM	Manganese	NJ / Impact To Ground Water / Soil Screen Levels	264	3.4	65	42	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

E	CHAIN OF CUSTODY	λ				ב ב	1 1					AB	NAM	IE: {	LAB NAME: P hotal	ΙĶ				
IMPACT	IMPACT ENVIRONMENTAL		س	_		∑ ∑ ∑	չ րթթ					Ç	ļ	` (į		4			
170 Key	170 Keyland Court, Bohemia, New York 11716		Page_	- ot	ļ			7				<u> </u>		ב ב	<u> </u>	RECEIVED DATE: 4-30-(7)	C)-9			
7,07	Cient Information				Pro	Project Information	ormatio	=						Anal	tical I	Analytical Information	tion		X	Matrix Codes
Company Name Impact Env	any Name Impact Environmental		Project Name	4	QC 8	1RR Rluston								(ppg				_	S - Soil	Dive K
Address 170	ss 170 Keyland Court		Street	8	O Page Ave	و					_			MJ NRI					A - Ar	- 8
City Bol	State Bohemia NY	Zip 11716	ליין אין	- WOLV (54)	7			Š	State	diz				pue 5/1					w - wipe	w - wipe PC - Paint Chips
Project Contact	 		Proje	FK 4	-c									E ħ ēq Y	(45!1	/100			50 - Skudg 50 - Solid	St Studge SO - Solid
Phone #	Fax #	631-269-1599	Sampler's Name	Name 7	J. Bocoling									t for N		11	<u></u>	_	-MG	DW- Drinking Water DISS - Dissolved
E-mail			Sampler'	Sampler's Signature	2/1		ا							eij ejyle		1. Las	<u>'</u>		Samp 6=Grab	Sample Type G=Grab
LAB SAMPLE#	* Sample Information		San	Sample Col	Collaction		S P	Sample Containers Number of Each Preserved Bottle	Contair h Preserve	ers d Bottle				50A) 0-0 .			····		C=Comp B=Blank	C=Composite B=Blank
(LAS USE ONLY)	Sample ID	IEC Project Code	Matrix Code	Sample 5 Type	Sample T	Time of bottles	TO SUCK	ICE	жсг	konsriteM A932U) (2502	muiba? elelivza8 2602.A<3)	eqm1,	edwI	AOC 83	GP82 A	<u>.El</u>			5	(LAB USE ONLY)
	MRC Blocker North 9-20-17	FA 4	1	9	Q-300 100			X				X		X		X			O	5362
1 .		-		П		92									-				J	5363
	3 1886 Blue ton Bort 4-20-17			_		101								_					J	10.00 20.00
	11-05-4 Hist Mist 9-20-17	>	→	>	·	<u> </u>)				3	_	>		>			9	かん
	3				-	,							į			_		-		
	9			\dagger			1	_	\downarrow			+	4		+	-		$\frac{1}{1}$	_	
				\dagger	+		\dashv	_							-	+	\downarrow	+		
	8			+			+	1				-	_		+	+		+	-	
ŕ	9	!				+	\downarrow		\downarrow				_		 	-		+		
1	Tumaround Time (Business Days)	(2)				- lå	la Deliver	Data Deliverable Information	mation			\dagger	-		+	=	REFERENCES	S		
Standard Service		(LAB USE ONLY)	(ATM									*	ckage A ((proprieta	ıry) - Prio	rity Polluta	ants Metals	SVOCs, P	CB/Pest and	*Package A (proprietary) - Priority Pollutants Metals, SVOCs, PCB/Pest and Herbiodes - to
	Standard - 5 day	IAI Aggreered By / Dates	/ Date:	LJL.	Results	Results Only (Level-1) Results plus Misc. OC (Level-2)	1) C(Level-2)		P Category P Category	CLP Category A (Level-2) CLP Category B (Level-4)		و ق	ch all NJ prietary) prietary)	DCSRS & Same as Same a	NY Part : Package S Package	375 param A, plus T(e 8 plus R(neters and one DIP Metals CRA charact	dectection & Categor teristics ar	maich all NJ DCSKS & NY Part 375 parameters and decreton limits. **Package B (proprietary): Some as Package A, plus TCLP Metals & Category II EPH. ***Package C, proprietary): Some as Package 8 plus RRA characteristics and Full TCLP	ckage B *Package C
_	70.7			IL_	Results	Results plus ALL QC (Leveb-3)	(Leveb-3)		P QC Pack	ASP QC Package (Level-4)	. =	:]				NOTE	NOTES/COMMENTS:	ENTS		
Rush Service				JШ] PA QC Padcage	qeage] <u> </u>	Other			<u> </u>								
	48 Hour <i>RUSH</i>			□÷	NJ QC Package (Lev	NJ QC Package (Level3NJ) D Formats: Excel, §df, EQU	el3NJ) H, EQUIS, (SIS, GISKey	EDD Format Key, SPDES, A	rel3NJ) EDD Format df, EQUIS, GIS, GISKey, SPDES, Ascil, TAGM, OENJ)	OEIC)									
J		Sample custody must be do	ody must	e docum	ented be	cumented below, each time samples change possession, with a signature, date, and time.	time sa	mples ch	ange po	session,	with a si	Justure -	, date,	and tim	انه ا			$\ \ $		
1 Rot	Redinquished by Samples:	1 Y	17-20-(71	1;44 R	Received 1	/00/	00	a N	Relingefisher	7	1		920	20 me	5	<u> </u>	S. Calverdon		X	_
3 6	Redinquished by:	Date / Times	ë	<u>മ്ന</u>	Received By:	20	_	× 4	Retinguished 4	By:	:		Dete.	Date / Time: 4		4 Georgia	Received By: 4			
	Relinquished by:	Date / Time:		2 4	Received By:			18	Cooler Territy 7	4.4		į		COOLER	COOLER INFORMATION	ATION Camp	le Becaint	Diermonani	R INFORMATION On Fre Sample Reseirt Discensural attach information	hermation)
n		2		1				-		$\ $		$\frac{1}{2}$							Carrie C	C CC 201 2042

Deb Lawrie

From: Michael Lapman

Sent: Monday, September 25, 2017 8:46 PM

To: Deb Lawrie Subject: Fwd: GBZ05362

Deb:

Jeff just emailed me the below. Would you be able to add this for him? Please let me know. Thank you.

Regards, Michael Lapman

Sent from my iPhone

Begin forwarded message:

From: Jeff Bogoian < ibogoian@impactenvironmental.com>

Date: September 25, 2017 at 8:40:18 PM EDT **To:** Michael Lapman <<u>michael@phoenixlabs.com</u>>

Subject: Re: GBZ05362

Please run all 4 for splp chlordane. 24 hr rush.

Sent from my T-Mobile 4G LTE device

----- Original message------ **From:** Michael Lapman

Date: Mon, Sep 25, 2017 3:59 PM

To: Jeff Bogoian;

Cc:

Subject:FW: GBZ05362

Attached...

Regards,

Michael Lapman
Phoenix Environmental Laboratories, Inc.
587 East Middle Turnpike

Manchester, CT 06040 Direct Line: 917.449.0850 Laboratory: 860.812.0086

www.phoenixlabs.com

This message, including any attachments hereto, may contain privileged or confidential information and is sent solely for the attention and use of the intended addressee(s). If you are not an intended addressee, you may neither use this message nor copy or deliver it to anyone. In such case, you should immediately destroy this message and kindly notify the sender by reply email. Thank you.

From: Loreen Fay < loreen@phoenixlabs.com Date: Monday, September 25, 2017 at 3:43 PM To: Michael Lapman < michael@phoenixlabs.com>

Subject: GBZ05362

NYSDEC Approval of Blue Stone From Impact

Paul Matli

From: Martinkat, Sondra (DEC) <sondra.martinkat@dec.ny.gov>

Sent: Monday, January 22, 2018 10:50 AM

To: Paul Matli; 'Paul Matli'

Cc: ariel@amc-engineering.com; Kuehner, Wendy S (HEALTH) **Subject:** RE: C241159 1128 31 Dr - Info for proposed RCA Backfill

Looks good. Thanks.

Sondra Martinkat

Environmental Engineer 2, Environmental Remediation

New York State Department of Environmental Conservation

47-40 21st St, Long Island City, NY 11101

P: 718-482-4891 | F: 718-482-6358 | sondra.martinkat@dec.ny.gov

www.dec.ny.gov |

From: Paul Matli [mailto:pmatli@hydrotechenvironmental.com]

Sent: Thursday, January 18, 2018 12:31 PM

To: 'Paul Matli' < IMCEAEX-

O=EXCHANGELABS OU=EXCHANGE+20ADMINISTRATIVE+20GROUP+20+28FYDIBOHF23SPDLT+29 CN=RECIPIENTS CN =B797F877250C495AA7B5296181D240A1-PAUL+20MATLI@namprd15.prod.outlook.com>; Martinkat, Sondra (DEC)

<sondra.martinkat@dec.ny.gov>

Cc: ariel@amc-engineering.com; Kuehner, Wendy S (HEALTH) < wendy.kuehner@health.ny.gov>

Subject: C241159_ 1128 31 Dr - Info for proposed RCA Backfill

unexpected emails

Sondra – The developer at above BCP site is planning to use 1.5-inch RCA to backfill excavation beneath the building footprint.

Please advise if you have any comments on this backfill.

I appreciate your expedited response, if possible

Regards,

Paul I. Matli, Ph.D., P.G. Vice President of Technical Services

15 Ocean Avenue Brooklyn, NY 11225 Cell: 631-241-7165 Tel: 718-636-0800

Fax: 718-636-0900

Email: pmatli@hydrotechenvironmental.com
Website: www.hydrotechenvironmental.com

Please consider the environment before printing this email

From: Paul Matli

Sent: Tuesday, December 19, 2017 1:28 PM

To: Martinkat, Sondra (DEC) < sondra.martinkat@dec.ny.gov>

Cc: Ariel Czemerinski P. E. (ariel@amc-engineering.com) <ariel@amc-engineering.com>; Kuehner, Wendy S (HEALTH)

<wendy.kuehner@health.ny.gov>

Subject: C241159_ 1128 31 Dr - Daily Report 12-18- 2017

Sondra – Attached please receive the daily report dated 12-18-2017

Regards,

Paul I. Matli, Ph.D., P.G. Vice President of Technical Services

15 Ocean Avenue Brooklyn, NY 11225 Cell: 631-241-7165 Tel: 718-636-0800 Fax: 718-636-0900

Email: pmatli@hydrotechenvironmental.com
Website: www.hydrotechenvironmental.com

Please consider the environment before printing this email

Import Tickets

FRANKLIN. NJ 87416

Term 10: 1967 4582610869

Phone Order

STRCARD

XXXXXXXXX3295

Entry Method: Manual

15:31:23 Batch#: 000004 Approd: Online 12/12/17

.nv#: 00000002 Appr Code: 012190 WS Code: V

92,25 Total:

Custoner Copy THRNK YOU

GRAVEL,ING H CHURCHURCH GRAVE 17-68 River Road - Fair Lawn, NJ 07410 18-68 River Road - Fair Lawn, NJ 07416 19-69 River Road - Franklin, NJ 07416

973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

Please Read Terms and Disciaimers on Reverse Side of Ticket

NORTH CHURCH GRAVEL, INC. Scale House: 216 North Church Road : Franklin, NJ 07416

SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

OVENTE NAME I Mak Lingt Hed Control of the contro TO TO TOTAL DELINERS CHEST CHIEN MUNINER Congression of the congression o Opposite Contract of Contract

MINEMA-MI

HEND OF GROW

Saltstan TAC

STOTETHE NATIONS

WO SHAME

GRADING COUNTY

Sign Here

TOMORA

Please Read Terms and Disclaimers on Reverse Side of Ticket

NORTH CHURCH GRAN, STATE Scale House: 216 North Church Road - Franklin, NJ 07416

SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

75				
CUSTUMER MUMBER 1 CO. C.	LIVERED 7141.10			
CUSTOMER NOWS TICKET NUMBER TICKET DATE TERMS TRUEK	TOTAL DELIVERED LOADS SHIPPED	A STATE OF THE STA	MINISTER AND STREET OF STREET	SUB TOTAL SHLES TOXALING Mers on Reverse Side of
			3.5	Please Read Terms and Disclaimers on Reverse Side of Ticket
	WWELL AF 95CO	The years	Part of the second of the seco	Sign Here. Please
90.0 TO COST	マ FUNA A	Thuck# 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	

SCALE THE SE START STARTS - THE NO. 201706-1556 | FAX. 201734-555

: ::			:		÷	.:		i											ä	::			٠.,
: ::			-		H			3						***	1				ŀ				
		1	8						*				**		*		3				:::		7
		530	÷		÷	-		:	٠.,			:::	:::	ш	4	:::	:		1		:::	***	:::
::::		111	55		11	1		ä		1			7	***	11			::	÷	1		:	: :
	:	***	÷		**	:::		;;		÷	-	4	***	:::	145	***	**	4;	;:				
***		11			:	:::			:::				::		111					×	3	*	***
:-:+			:					::		٠.		1	:::		***	+:		÷	÷	-			**:
			8			:::	1	-		×			×		•	**	***				:::	1	:::
				*	ä					8		*		.,'	٠.		:		÷		:::		
		3-1	H		H	:::		88															:::
333		2::	į.				ž.	::	::	: 1	***												***
		:::	ĸ								*	ŧ.										*	***
		***	ä		ä			::		÷													
		:::	Ħ	:::	ď	:::	7	æ	:::	æ	-	::	٠.						50		-		-44
			Ġ		÷			::	Ξ.			*::	*	***		:::			×		:::	***	
:::	•		Ε					丝	***		***	tri	:::	4	٠.:		:::	::				***	:::
****		***	ĕ		:			÷		÷	:	:::	::3		:::							*	***
***	٠.,	:::				:	**	4	:::	•			:::	₩	100		::					**	***
***					i	:	33	:		::				١.	:::	4	:					11.	
***		: :	3	1	*	:		Ħ	*	Ħ	:::				1.3	ж	Ħ						٠,
::::		**:	::		*	•		讍		::		:::	**	.::	111	٠.	٠.	*	88		:::		173
1. :		-11			1	:		#					4.				::		;:		::		
			:		ï			ñ	::	٠.,							*						
		11.	8		Ŀ	٠,				::;		:::	***		:::						:::		
::·.		:.:	::		**	:::		**	4	÷					.::		**		::	;;		:::	:::
::::		:::	÷		•	•			:;;	×			:22	i					٠,	::	:::	.::	٠.,
	:::.	:.:	÷	:	::	•		;:		٠,	:::	:::		:::	:::	**;	•			٠,		*:	345
::::								Ħ	Н,	н		Ш	:	H	1.5	H	•						
::		•	.:		**	:			•	÷	***	:::	=		=		::			•	÷	•	-:
***	:::	88	13					ë		. 4	•	:::	::	:::		ij.	\$	Ŧ,	÷				
***					ŝ	::	2	ä		:	1	-0		ŧ:	:	æ	#	í	:				Ľ.
3.5	· .	4	÷.		i	::	1	:				1		: ; ;		e i	:						
::::			:		ė			÷	:::	ä		11			3		:			ú	÷		•
***		**:	ij					٠,	:::	ď				:::	:::	.:					::5	:	:
:::		÷	ď.		ŧ.	8	ď	÷		•			Ħ	Н,	:::						-		:
	***	•	:		ä		į,	H	:::	ë		×	:::		:::	1			H				:
:::	***	:::	÷		::	:	÷	ċ	÷	H		H			*	:::	÷						:::
##		:	:		**	1			- ::	:		ij.	::			***	1	Ť	÷				
::::			:		**					:	:::	110	***	:::		1			i,	:		***	1
::ii	:::	:::	í.		*	:		ú	÷	÷		.,,	:::		:::	:::			Ġ				
:::	****	:::	:		٠.			::	::;						::			á					
		Ħ	ŧ,	í	i	÷	.;	į.	H	÷		÷.	٠.	Ŧ.	÷	-	÷	:			::		•
		•	3		::			i:					:				Ŀ	×	i.			***	
***		3	:.		÷	.:		ä		1											:		:::
***:	•				::	:		Ť.	::;				111		:::	33			Ť.	:-			*
#	1		::		:	7		Ħ	:::	:		:::				H	1.		88	::			
	1.1.		86		÷	Ħ.	٠,	÷		Ŀ		Щ,	:::					٠.	:			. 3	**:
		٠.,	i		**			÷		1			:::			ä							
4	****	•	12		:		*	Ħ					₩									ü	
			1		i	•		噩					***	:					:		4		
	•	:::		1	ï		ij.	П					***						-				
	•		:	***	•		*	÷	:::	•	***	: :		. :	:	:	::	**	;;		4		: .;
***	***		:		:		4.	88				:::			***						::		::;
** ;																							
			8		1		**	;	H		*	H				**	•		:		**	:	
												i			ij	**	•						
												•											
																	•						

		***								**************************************													
					* * * * * * * * * * * * * * * * * * *					**************************************													
					**************************************					*** ** · · · · · · · · · · · · · · · ·													

					** ** ** ** ** ** ** ** ** ** ** ** **					*** **													
					** ** ** ** ** ** ** ** ** ** ** ** **																		
					** ** ** ** ** ** ** ** ** ** ** ** **					**************************************													
					** ** ** ** ** ** ** ** ** ** ** ** **					***************************************													
								#		##													

										##													
					1000年,这是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个					##													
					1000000000000000000000000000000000000					##*													
					*** *** *** *** *** *** *** *** *** **					##													
			《《《》》,《《《》《》《《》《《》》,《《》》,《》《《》》,《《》》,《		**************************************			五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二															
			のから、 1 の の の の の を を を で の の の の の の の の の の の		**************************************			五十二十二十二十二十二二十二二二二二二二二二二二二二二二二二二二二二二二二二															
			のでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ		**************************************			しょうしき しょうじゅん 人の主婦 女子をもの 大手の しゅうしゅう 大きな															
			のでは、これでは、「「「「「」」」というでは、「「」」というです。 「「」」というできます。 「「」」というできます。 「「」」というできます。 「「」」というできます。 「「」」というできます。 「					のでは、このようになって、このでは、この事をである。となるになるできなってもなった。 この事をできる となっている はない こうしゅう こうしょう しゅうしょ こうしゅう こうしょう しゅうしょう しゅうしゅう しゅう															
			のでは、これでは、「からないできない。」では、「ないできない。」では、「ないできない。」では、「ないできない。」では、「ないできない。」では、「ないできない。」では、「ないできない。」では、「ないできない できない しょうしょう しょうしょう しょうしょう しょうしょうしょう しょうしょうしょうしょう しょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうし					人名马尔 人名英格兰人姓氏 化二氯化二苯二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲															
			のでは、これでは、「からないできない。」というでは、「ないできない」というできない。 これには、「ないできない」というできない。 これには、「ないできない」というできない。 これには、「ないできない できない これにはい かいかい かいかい しゅうしゅう しゅう					・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		**************************************													
			100 100 100 100 100 100 100 100 100 100					・「「「「「「「」」」、「「」」、「「」」、「「」」、「」」、「」」、「」」、「															
			のでは、「「「「「」」では、「」では、「」では、「」では、「」では、「」では、「」		*** *** *** *** *** *** *** *** *** **			のでは、「「「「「「「「」」」というでは、「「「」」というでは、「「」」というでは、「「」」というでは、「」															
								のでは、これでは、ないでは、ないでは、ないでは、ないでは、一般などでは、一般などでは、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは、ない															
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		**************************************			のできまった。 アンフェンス・アンフェンス・アンフェンス・アングラング アングラング アングラン アングラング アングラング アングラング アングラング アングラング アングラング アング アングラング アング アング アング アング アング アング アング アング アング ア															
			のでは、「一、「「「」」のでは、「「」」では、「」では、「					・「「「「」」では、「「」」では、「「」」では、「「」」では、「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」 ・「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「															
					**************************************			のでは、「「「「「」」というない。 「「」」というない。 「「」」というない。 「「」」というない。 「」」というない。 「」、「」」というない。 「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「															
								・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・															
								のでは、「は、「は、「は、「は、「は、「は、」と、「は、「は、」と、「は、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、 このでは、「は、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」と、「は、」、「は、」															
								・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・															
								のでは、「「「「「「」」」とは、「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」という。「「」」															
								のでは、「「「「「「」」」というでは、「「」」というでは、「「」」というでは、「」															
								のでは、「「「「「」」」というでは、「「」」というでは、「「」」というでは、「」」といっては、「」」というでは、「」」というでは、「」」というでは、「」」というでは、「」」というでは、「」」というでは、「」」というには、「」」というでは、「」」というには、「」」といい、「」」というには、「」」といい、「」」といい、「」」といい、「」」といい、「」」といい、「」」といい、「」」といい、「」」といい、「」」といい、「」」といい、「」」といい、「」」といいい、「」」といいい、「」」といい、「」」には、「」」には、「」」といい、「」」には、「」」には、「」」には、「」」には、「」」には、「」」には、「」」には、「」」には、「」」には															
								のでは、「「「「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」															
								サード・ウェー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・															
								である。 19 mm では、															
								である。 19 mm では、															

以北色十十十十四年

NORTH CICACI GRAMEL. II.

SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553 Scale House: 216 North Church Road · Franklin, NJ 07416

Net John Receipt. 00000 TAMES CONTRACTOR DRUBIUM MENT HINGS 40 Section 1 NEWES ! Section 1

0000

Please Read Terms and Disclaimers on Reverse Side of Ticket

TO THE CHEM

080892 • 12/11

MANA

SNET LINE LENGTHYPHA

PLATE# 1/1-1855F

7.508105

遷

Detail of the North

Sign Here

NORTH CHURCH GRAN, NJ 07410 Scale House: 216 North Church Road - Franklin, NJ 07416

| SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

Net Upon Receint 21944 Camon . . Sec. 33WW AMEE Section 1 TENG LENGTL TENNE THURST Past Past Sk villes (read

TOTAL OF TURKER THAMETO COMPS

PLATERY INSTRUCTIONS

truck# ö'a

Team.

ALCOUNT

The Amage

Sign Here

Please Read Terms and Disclaimers on Reverse Side of Ticket

NORTH CHURCH GRAVEL, INC. 17-68 River Road - Fair Lawn, NJ 07410 Scale House: 216 North Church Road - Franklin, NJ 07416

SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

CUSTONER AUMBER TICKET WIMPER 277602 TICKET DATE 1/26/2018 TICKET DATE 1/26/2018 TRUSK SLJ1 JUN - SCHILMAN	TOTAL BELIEFED LONG SHIPPED SAME SHIPPED	iscaimers on Reverse Side of Tickel
	18 18 18 18 18 18 18 18 18 18 18 18 18 1	Please Read Terms and D

NOTH CHURCHEN ROLL OF CHURCH SAND OF THE S

SCALE HOUSE 973-827-6334 | BELLICE 201-786-1556 | FAX 201-796-5553

	· · · · · · · · · · · · · · · · · · ·
(1) - 40 (+ 140 (+ 140 (*)	
	To South the state of the state
7 1	

NORTH CHURCH GRAVEL, INC. Scale House: 216 North Church Road - Franklin, NJ 07416

SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

HEER COMPANY FOR STANK FOR	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	CTIONS		
	PENETRICTIC	Puch 11 / Kt / L33 E	7 (13) High

Pease Read Terms and Disclaimers on Reverse Side of Ticker

NONTH CHURCH ROAD CATE State House: 216 North Church Road - Franklin; N. 07416

SCALE HOWSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

		747 F	
	 の対象である。	YV.	Sign Hero
	3	<u>- </u>	

	HILBUDY	
	4 か かな た	

NORTH CHURCH GRAVEL

17-68 River Road • Fair Lawn, NJ 07410

Scale House: 216 North Church Road • Franklin, NJ 07416

altquia-

SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

44 AS - 4805

THE TRUE CONTRACTOR

131 77 Mills. TOTAL DEL CUERCY.

1950 imme e ekimedik 🕆 Titomics beamered Tičkér pare

202749

Met Upon Receipt

A678#6

1372657983A

SOME NAME

Sian Here

Please Read Terms and Disclaimers on Reverse Side of Ticket.

NORTH CHURCH GRAVEL, INC.
17-68 River Road - Fair Lawn, NJ 07410

Scale House: 216 North Church Road - Franklin, NJ 07416 SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

CUSTOMER NUMBER TICKET NUMBER : 1-78/67/2018-TICKET DATE: ST IME

14:16 -Wet Upon Receipt TERMS ! -LUCA910 TRUCK

SCHULMAN JON 3

TOTAL DELIVERED LORDS SHIPPED

Sherald Fals SANGE, FAREN

Sign Here

Please Read Terms and Disclaimers on Reverse Side of Ticket

NORTH CHURCH GRAVE

17-68 River Road - Fair Lawn, NJ 07410

Scale House: 216 North Church Road - Franklin, NJ 07416

SCALE HOUSE: 973-827-6334 | BILLING: 201-796-1556 | FAX: 201-796-5553

STEVOMER NUMBER . CROSS TICKET THIMBER ... EVYGER Net Upon Receipt SLJC - T pro TEGWE: THEFT JOATS. SCHULMON TOTAL DELTHERED

Sign Here

Please Read Terms and Disclaimers on Reverse Side of Ticket

Manifest #:

Ticket #:

welcome to solid ground....

SCALE TICKET

Facility Registration #: 121888 Permit: CBG070002

Part 1

631-269-8800

1000 Page Avenue

Lyndhurst, New Jersey 97071

GENERATOR

Generator Name, Address and Telephone #:

CAMBERSAND

(ARC)

1980 Page Ave

Project Site (Description and Address):

PT Consultants - -

3 8

11-26 31st Over

Part 2

MATERIAL CLASSIFICATION AND WEIGHT

WEIGHTS

Classification of Material;

THE Charles Star Stars

NOTES:

GROSS/TARE/NET (lbs)

Fried E

NET (tons):

33700 4

Part 3

WEIGHT CERTIFICATION

<u>Certification:</u> By issuing this ticket, I hereby certify that the above named material has been accepted by this facility, and that the weights stated above are accurate. The weights were calculated in accordance with New Jersey's Weights and Measures Program.

Where applicable, I hereby certify that the Transportation Security Seal referenced in the **Scale Operator Notes** section of this ticket was intact upon entrance to this facility, and that I removed the seal upon the removal of the bed cover on the truck.

Name of Scale Operator:

Date and Time In and Out:

AMBOUNT WESTERS

are offer Greek little

Scale Operator Notes:

to the week

Part 4

TRANSPORTER DATA AND CERTIFICATION

Transporter Name, Address and Permit #:

Driver Name and Signature (conditional):

MARCELO

#12

Truck Plate:

AU-6800

By signing this ticket the transport vehicle driver accepts sole responsibility and therefore assumes all liabilities for the gross weight of this divisible load of material scaled and accepted at Impact Environmental Class B Recycling Facility. The driver acknowledges that he or she is solely responsible for compliance with all traffic safety rules and regulations for the operation and maintenance of the vehicle when transporting to, driving in and leaving from Impact Environmental Class B Recycling Facility. Further, the driver represents that he or she will immediately report any incidents of overloading or vehicle equipment failure/hazards associated with the vehicle to the owner of the vehicle, and in doing so will relieve Impact Environmental, its owners, employees and/or all of its affiliated companies to serve any form of notice to the truck owner. Furthermore, driver accepts that he or she will abide by all posted safety procedures at Impact Environmental Class B Recycling Facility and as directed by company staff.

OFFICE COPY

Manifest #:

Ticket#:

The state of the s

welcome to solid ground....

Facility Registration #: 121888 Permit: CBG070002

SCALE TICKET

Part 1

634-269-8800

1000 Page Avenue

Lyndhurst, New Jersey 07071

GENERATOR

Generator Name, Address and Telephone #:

CYNCHURST-CHAT

1005 Pege Ave

Project Site (Description and Address):

FT Consultante 11-28 åtst Dilve

Part 2

MATERIAL CLASSIFICATION AND WEIGHT

WEIGHTS

Classification of Material:

151 Olean Blue Granc.

NOTES:

GROSS/TARE/NET (lbs)

96946 B 19866 B

NET (tons):

32,720 6

Part 3

WEIGHT CERTIFIC/ "ON

<u>Certification:</u> By Issuing this ticket, I hereby certify that the above named material has been accepted by this facility, and that the weights stated above are accurate. The weights were calculated in accordance with New Jersey's Weights and Measures Program.

Where applicable, I hereby certify that the Transportation Security Seal referenced in the **Scale Operator Notes** section of this ticket was intact upon entrance to this facility, and that I removed the seal upon the removal of the bed cover on the truck.

Name of Scale Operator:

Date and Time In and Out:

Artendo I - W. # Micha

Scale Operator Notes:

1 15 / 4/19

Part 4

TRANSPORTER DATA AND CERTIFICATION

Transporter Name, Address and Permit #:

Driver Name and Signature (conditional):

300

29

Truck Plate:

By signing this ticket the transport vehicle driver accepts sole responsibility and therefore assumes all liabilities for the gross weight of this divisible load of material scaled and accepted at Impact Environmental Class B Recycling Facility. The driver acknowledges that he or she is solely responsible for compliance with all traffic safety rules and regulations for the operation and maintenance of the vehicle when transporting to, driving in and leaving from Impact Environmental Class B Recycling Facility. Further, the driver represents that he or she will immediately report any incidents of overloading or vehicle equipment failure/hazards associated with the vehicle to the owner of the vehicle, and in doing so will relieve Impact Environmental, its owners, employees and/or all of its affiliated companies to serve any form of notice to the truck owner. Furthermore, driver accepts that he or she will abide by all posted safety procedures at Impact Environmental Class B Recycling Facility and as directed by company staff.

$\underline{ATTACHMENT\,J}$ Liquid Waste Disposal Documentation

Advanced Waste Water Treatment, Corp

208 Rouse 109, far ningdale, NY 11735 Tel: (631) 249-3774 DEC# 1-4730-00204/0000

NON-HAZARDOUS WASTE CERTIFICATION

Generator:	Hydro To	ech. Environmental		Date 10-15-17
Address:	77 Arkay Hauppat	ige, NY 11788		;
Manifest No.:	SEE BEL			Waste Code: N018
Shipping Descr	ription:	Vacuum Tank (N	Y D E.	C. Permet # 3 A-1030)
Generating Pro	cess:	Diesel Tanks Gasoline Tanks Fuel Oil Tanks Jet A Tanks Containments Other (Specify)		
listed on manife	ests ED	199	# 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	THE REPORT OF THE PROPERTY OF
Does not contain	n PCBs, pe	esticides, herbicides	, spent	or siderinated solvents and/or any other
				a hazai dous material and/or waste pursuant to all
				he best of my knowledge. I certify that I inspected
_	p filter pric	or to offloading, and	d verify	first sludge collected from this drop came from
				Gals :0+ Gals.*25 gallens of solid waste or Egdro Tech. Environmental
I have personal!	knowledge	e of the information ch. Environmental	nard h	ne suthorny to sign this statement
Authorized Sign	nature:		uddiki uddik - rar ami - dik	<u> </u>
Print Name:J	avier G		·	, Title: Driver Ful
Gallons - 100				
AWWT Authoriz	zed signat	ure		

		print or type designed for use on elite (12-pitch) typrewriter.)							
Γ		NON-HAZARDOUS 1. Generator's US EPA ID WASTE MANIFEST		Manifest Document No.	2. Page of	1 6	10	199	
\downarrow	3	. Generator's Name and Mailing Address		<u> </u>	41	9 R -	`?\<~	+ Donie	a a
11		11-28 314 STREET, LIC, N)	1 1111			the second	اساد.	+ Drau	C.,
	4	. Generator's Phone (212) 625 - 0820	11100	~	الما الما الما	160 17	CA A	userry	
	1 5	Transporter 1 Company Name 6	US EPA ID N	lumber	A. Trans	sporter's Pl	hone		
	L	N. I JANGEMONIVUS HOSTOSAYH	17 1986	428844		sporter's P	11		
	7	. Transporter 2 Company Name 8.	/ US EPA ID N	lumber	B. Iran	sponers r	TIONE		
	9	Designated Facility Name and Site Address 10.	US EPA ID N	lumber	C. Facili	ity's Phone)		
		ABVANCE WASTE ANDWATER							
		TREAMENT GORPE 109 FARMING DALE	MY. MYO	0218677	-				
	1	Waste Shipping Name and Description	/ /	<u> </u>		12. Conta	1	13. Total	14. Unit
	ŀ			- 44.00-	-	No.	Туре	Quantity	Wt/Vol
	a		0	>		TT		100	
	L	NON - DOF THEA REGULATE	<u> </u>	<u> </u>		· § 1	·	199.	
G E N	t	ken di dia kenangan di dia ken							
🌉 E				******					
RAT	C							,	
ÖR							-		
	0								
	1								
		Additional Descriptions for Materials Listed Above			E. Handi	ling Codes	for Was	stes Listed Above	
		D. Additional Descriptions for Materials Listed Above			E. Hand	ling Codes	for Was	stes Listed Above	
		D. Additional Descriptions for Materials Listed Above			E. Hand	ling Codes	for Was	stes Listed Above	
					E. Hand	ling Codes	for Was	stes Listed Above	
		Additional Descriptions for Materials Listed Above Special Handling Instructions and Additional Information			E. Hand	ling Codes	for Was	stes Listed Above	
					E. Hand	ling Codes	for Was	stes Listed Above	
					E. Hand	ling Codes	for Was	stes Listed Above	
					E. Hand	ling Codes	for Was	stes Listed Above	
	1	5. Special Handling Instructions and Additional Information							
	1	Special Handling Instructions and Additional Information GENERATOR'S CERTIFICATION: I certify the materials described above on this	and the same	bject to federal regulat					aste.
V	1	5. Special Handling Instructions and Additional Information	s manifest are not sul Signature	bject to federal regular				sal of Hazardous Wa Month Day	aste.
V TR	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on the Printed/Typed Name	Signature	bject to federal regular				eal of Hazardous Wa Month Day	assie. / Year & VC1
TRANS	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on the Printed/Typed Name	and the same	bject to jederal regular				sal of Hazardous Wa Month Day	assie. / Year & VC1
→ HRAZOPOR	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on the Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Materials	Signature Signature	bject to federal regular				Month Day	aste. / Year G CO1
→ TRANSPORTED	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on the Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature	bject to federal regular				eal of Hazardous Wa Month Day	aste. / Year G CO1
₩ TRANSPORTER	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on the Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Materials	Signature Signature	bject to federal regular				Month Day	aste. / Year G CO1
	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on the Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature Signature	bject to federal regulat				Month Day	aste. / Year G CO1
FAC	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on the Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature Signature	bject to federal regular				Month Day	aste. / Year G CO1
FACILI	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on the Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature, Signature	Life	ions for reg			Month Day	aste. / Year G CO1
FACIL	1	5. Special Handling Instructions and Additional Information 6. GENERATOR'S CERTIFICATION: I certify the materials described above on this Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name 9. Discrepancy Indication Space	Signature, Signature	Life	ions for reg			Month Day	assie. / Year G CC

ATTACHMENT K Cut and Fill Survey

71020324 (50' WIDE) DRIVE 31^{st} CAMELIA STREET TOP EL = 10.69 BOT. EL = 10.35 TOP EL = 10.98' BOT. EL = 10.63' 3' 22' 31 28' CROSSCUT IN SIDEWALK (TYP.) SIDEWALK CONCRETE 900 175 0'-31/2"E 25 0'-03/4"W oo 00 #11-28 EXCAVATED AREA BENCHMARK EL.=14.98'
WHICH IS 3'-6" ABOVE
NATURAL GRADE EL. OF II.48' (TYP.) #11-34 (BRICK FRONT) BENCHMARK EL.=13.00' IN GREEN PAINT(12/08/17) CONSTRU #11-24 WAL 国 (BRICK FRONT) EXCAVATED AREA FOR ELEVATOR PIT .0-.19 -PROPOSED 8 α STORY 0 (SHERMAN STREET) (PRIMROSE STREET) MARK ON BRICK N D Ш Z CONC. WALL 25'-01/2" CONC. MARK ON BLOCK PARKING AREA ONE STORY NOTE: ALL MARKS IN GREEN PAINT EXCEPT FOR BENCHMARK ELEVATIONS IN YELLOW PAINT NOTE: TO PROVIDE CLARITY, CERTAIN DIMENSIONS, FEATURES AND/OR LOCATIONS ARE NOT DRAWN TO SCALE. STAKEOUT SURVEY SURVEYED OCTOBER 19, 2017 ALL ELEVATIONS REFER TO NAVD 88 INFO ADDED: 12/08/2017 BLOCK: SECTION: BORO LAND SURVEYING, P.C.

VINCENT J. DICCE L.S., Pres.

353 COURT STREET BROOKLYN, N.Y. II23I TEL. (718) 624-B0R0 (2676)

COUNTY: DWG BY:

CHK'D BY:

QUEENS

PLATO SMITH

ATTACHMENT L Non-Agency Permits

Work Permit Department of Buildings

Issued: 01/18/2018

Expires: 01/18/2019

Issued to: GEORGE MAN

Business: MORGAN CONSTRUCTION NY IN

Contractor No: GC-28678

Permit Number: 420605964-01-EQ-FN

11-28 31 DRIVE TVE TVE

Address: QUEENS

Description of Work:

ALTERATION TYPE 1 - CONSTRUCTION EQUIPMENT FINCE PROPOSED VERTICAL ENLARGEMENT OF EXISTING 1STORY BRICK BLDG TO 6 STORIES W/ ELEV PIT & STAIR/STEV BULKHEAD. CONVERT EXISTING MACHINE SHOP ON IST FIR TO RES. LOBBY, I RES. UNIT, SPRE/GRS RUSHELEC RM. PROPOSED 10 RES. UNITS FOR FIRS 2 TO 6. TOTAL 11 DU FOR BLDG. DEMOLITION, PLUMBING ROLLER, MECH, & GENERAL CONSTR WORKS AS PER PLAN. OBTAIN NEW C/O. PLAN. OBTAIN NEW C/O.

Review is requested under Building Code: 2014

SITE FILL: ON-SITE

To see a Zoning Diagram (ZD1) or to challenge a zoning approval filed as part of a New Building application or Alteration application filed after 7/13/2009, please use "My Community" on the Buildings Department web site at www.nyc.gov/buildings.

Emergency Telephone Day or Night:

Borough Commissioner:

Commissioner of Buildings: Fix Bunkle

Tampering with or knowingly making a false entry in or falsely altering this permit is a crime that is punishable by a firte, imprisonment of both 1.8072018

Work Permit Department of Buildings

Permit Number: 420605964-01-FO-EA

11-28 31 DRIVE

Contractor No: GC-28678

Business: MORGAN CONSTRUCTION NY IN

Issued to: GEORGE MAN

|ssued: 05/03/2018

Expires: 05/02/2019

Address: QUEENS

Description of Work:

ALTERATION TYPE 1 -FOR BLDG. DEMOLITION, PLUMBING, BOILER MECH & GENERAL CONSTR WORKS AS PER PLAN. OBTAIN NEW C/O. LOBBY, 1 RES. UNIT, SPRK/CAS RM & EIEC RM PROPOSEDE 10 RES. UNITS FOR FIRS 2 TO 6. TOTAL 11 DU STORIES W/ ELEV PIT & STAIR/ELEV BUIKHEAD. EARTHWORK PROPOSED VERTICAL ENLARGEMENT OF EXISTING 1-STORY BRICK BLDG TO 6 RIVE CONVERT EXISTING MACHINE SHOP ON IST FIR TO RES.

Review is requested under Building Code: 2014

To see a Zoning Diagram (ZD1) or to challenge a zoning approval filed as part of a New Building application or Alteration application filed after 7/13/2009, please use "Ny Community" on the Buildings Department web site at www.nyc.gov/buildings.

Emergency Telephone Day or Night: 311

Borough Commissioner:

Commissioner of Buildings: Fed Chunkle

Work Permit Department of Buildings

Permit Number: 420605964~01~F0

11-28 31 DRIVE

Contractor No: GC-28678

Business: MORGAN CONSTRUCTION NY IN

Issued to: GEORGE MAN

Issued: 05/03/2018

Expires: 05/02/2019

Address: QUEENS

Description of Work:

BLDG TO 6 STORIES W/ ELEV PIT & STAIR/KLEV BOLKBEALS CONVERT EXISTING MACHINE SHOP ON 1ST FLR TO RES. LOBBY, 1 RES. UNIT, SPRK/GAS RM & FLEC RM. PROPOSED 10 RES. UNITS FOR FLRS 2 TO 6. TOTAL 11 DU FOR BLDG. DEMOLITION, PLUMBING, BOLLER, MECH, A GENERAL CONSTR WORKS AS PER PLAN. OBTAIN NEW ALTERATION TYPE 1 - FOUNDATION/EARTHWORK PROPOSED VERTICAL ENLARGEMENT OF EXISTING 1-STORY BRICK TVE TWE

Review is requested under Building Code: 2014

SITE FILL: ON-SITE

To see a Zoning Diagram (ZD1) or to chattenge a zoning approval filed as part of a New Building application or Alteration application filed after 7/13/2009, please use "My Community" on the Buildings Department web site at www.nyc.gov/buildings.

Emergency Telephone Day or Night: 311

Borough Commissioner:

Commissioner of Buildings: Fix Chunch

Tampering with or knowingly making a false entry in or falsely aftering this permit is a crime that is purishable by a fine, imprisonment of $\frac{308}{308}$

Work Permit Department of Buildings

Permit Number: 420605964-01-AL

TV.

Contractor No: GC-28678

Business: MORGAN CONSTRUCTION NY IN

Issued: 05/03/2018

Expires: 05/02/2019

Issued to: GEORGE MAN

Address: QUEENS

Description of Work:

Alteration Type I required to meet New Building requirements (28-101.4.5) STAIR/ELEV BULKHEAD. CONVERT EXISTING MACHINE SHOP ON 1ST FLR TO RES. LOBBY, 1 RES. UNIT, SPRK/GAS RM & ELEC RM. PROPOSED 10 RES. UNITS FOR FLRS 2 TO 6. TOTAL 11 DU FOR BLDG. DEMOLITION, PROPOSED VERTICAL ENLARGEMENT OF EXISTING 1 STORY BRICK BLDG TO 6 STORIES W/ ELEV PIT & PLUMBING, BOILER, MECH, & GENERAL CONSTRUMENTS ASSER PLAN. OBTAIN NEW C/O.

Review is requested under Building Code: 2014

To see a Zoning Diagram (ZD1) or to challenge a zoning approval filed as part of a New Building application or Alteration application filed after 7/13/2009, please use "My Community" on the Buildings Department web site at www.nyc.gov/buildings.

Emergency Telephone Day or Night: 311

Borough Commissioner:

Commissioner of Buildings: Fed Chundle

Tampering with or knowingly making a false entry in or falsely altering this permit is a crime that is punishable by a fine, imprisonment of $\frac{308}{300}$

Work Permit Department of Buildings

Permit Number: 420605964-01-PL

Address: QUEENS

11-28 31 DRIVE E CONTRACTOR

License No: MP-2039

Business: MPS PLUMBING & MEATING IN

Issued to: LI KONG MA

Issued: 02/21/2018

Expires: 02/21/2019

Description of Work:

STORIES W/ ELEV PIT & STAIR/ELEV BULKHEAD CONVERT EXISTING MACHINE SHOP ON 1ST FLR TO RES. LOBBY, 1 RES. UNIT, SPRK/GAS RM & ELECTRATIVE PROPOSEDSTO RES. UNITS FOR FLRS 2 TO 6. TOTAL 11 DU FOR BLDG. DEMOLITION, PLUMBING, BOILER, MECH & GENERAL CONSTR WORKS AS PER PLAN. OBTAIN NEW C/O PLUMBING - ALTERATION TYPE 1 PROPOSED YERRICAL ENLARGEMENT OF EXISTING 1-STORY BRICK BLDG TO 6

Review is requested under Building Code: 2014

To see a Zoning Diagram (ZD1) or to challenge a zoning approval filed as part of a New Building application or Alteration application filed after 7/13/2009; please use "My Community" on the Buildings Department web site at www.nyc.gov/buildings.

Emergency Telephone Day or Night: 311

Borough Commissioner:

Commissioner of Buildings: Fix Church

Tampering with or knowingly making a false entry in or falsely altering this permit is a crime that is punishable by a fine, imprisonment of both $\frac{1}{20}$

Work Permit Department of Buildings

Permit Number: 421546580-01-EQ-SH

Address: QUEENS

11-28 31 DRIVE

Description of Work:

SIDEWALK SHED AS PER PLANS. NO CHANGE IN USE ALTERATION TYPE 3 - CONSTRUCTION EQUIPMENTS:

Issued: 08/07/2018

Expires: 08/07/2019

Business: SPRING SCAFFOLDING LLC Issued to: WILLIAM LAFFEY

Contractor No: GC-607447

EGRESS OR OCCUPANCY IDENAIK-SHED PROPOSED INSTALLATION OF HEAVY DUTY

Emergency Telephone Day or Night: 311

Borough Commissioner:

To see a Zoning Diagram (ZD1) or to challenge a zoning approval filed as part of a New Building application or Alteration application filed after 7/13/2009, please use "My Community" on the Buildings Department web site at www.nyc.gov/buildings.

Number of dwelling units occupied during construction: 0011 Review is requested under Building Code: 2014

Electrical Application Number for Shed Lighting: A365975

Commissioner of Buildings: Fin Chandle

Office of Permit Management

BUILDING OPERATION PERMIT

PERMIT#: Q02-2018221-B52 PREVIOUS#: Q02-2018135-A11

ISSUED DATE:

8/9/2018

PERMIT VALID FROM: 8/11/2018

TO:

11/8/2018

BOROUGH:

QUEENS

PERMIT TYPE:

0204 - PLACE EQUIPMENT OTHER THAN CRANE OR

SHOV

FEES (NON-REFUNDABLE):

ROADWAY TYPE:

ASPHALT

ADMINISTR \$50.00

ATION FEE

TOTAL:

\$50.00 PAID

NAME:

CONSTRUCTION N

CONTACT NAME:

PHONE:

SPONSORÍNG

ADDREBS:

HOUSE#:

ON STREET:

FROM STREET:

TO STREET:

ERNON BO

LOCATION DETAILS

FOR PURPOSE OF:

RELATED AGENCY #:

. 420605964 (DOB)

EQUIPMENT TYPE:

Maintain Fance

INSPECT DIST:

OMM. BOA

RECORDED:

TRACKING #:

2018080700726657

Note: If House Number is not provided Parmittee shall use "Location Details location of the work area within a block (for all non-Contract work, i.e. Contract #: None)

PERMITTEE SHALL COMPLY WITH ALL APPLICABLE LAWS, RULES AND SPECIFICATIONS OF THE NEW YORK CITY DEPARTMENT OF TRANSPORTATION AND WITH THE TERMS AND CONDITIONS OF THE PERMIT. FAILURE TO COMPLY MAY RESULT IN REVOCATION OF THE PERMIT BY THE COMMISSIONER.

TAMPERING WITH OR KNOWINGLY MAKING A FALSE ENTRY IN OR FALSELY ALTERING THIS PERMIT MAY RESULT IN A RESTRICTION IN OBTAINING FUTURE NYCOOT PERMITS.

NYS LAW

013

038

.048

066

NYC Department of Transportation

Office of Permit Management BUILDING OPERATION PERMIT

PERMIT#: Q02-2018221-B52 PREVIOUS#: Q02-2018135-A11

CALL NEW YORK 811, INC. AT 1-800-272-4480 OR 811 BEFORE STREET OPENING EXCAVATIONS. NEW YORK STATE INDUSTRIAL CODE RULE 753 MANDATES 2-10 BUSINESS DAYS NOTICE PRIOR TO DIGGING.

PERMITTEE SHALL COMPLY WITH ALL OF THE FOLLOWING STIPULATIONS

SP MUST COORDINATE WITH THE ONGOING CONSTRUCTION PRIOR TO MOBILIZING. **SPECIFIC** STIPULATION MAINTAIN A MINIMUM'S EOOT CLEAR PEDESTRIAN WALK ON THE SIDEWALK ALL TEMPORARY TRAFFIC CONTROL DEVICES, INCLUDING BUT NOT LIMITED TO SIGNS, CHANNELIZING DEVICES, FENCING AND MARKINGS SHALL BE PROVIDED, INSTALLED, MAINTAINED AND REMOVED BY THE PERMITTER IN ACCORDANCE WITH THE MOST RECENT VERSION OF PART 6 OF THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES FOR STREETS AND HIGHWAYS (MUTCD), OBTAIN THE MUTCD AT HTTRIMUTCD FHWA DOT GOV.) OCCUPY'S FOOT WIDTH OF ROADWAY ADJACENT, TO SOUTH CURBLINE DO NOT PLACE MATERIALS, TRAILERS, CRANES, CONTAINERS, OR EQUIPMENT IN FRONT OF DRIVEWAYS, BUS STOPS, WITHIN FIFTEEN FEET OF A FIRE HYDRANT, IN AUTHORIZED PARKING

:	ZONES OR BLOCKING ACCESS TO DEP WATER TESTING BOXES, IF WORK IS DIRECTLY IN ABOVE AREAS, MAY BE IN VIGINITY DURING STIPULATED WORK HOURS BUT NOT WHEN SITE IS UNATTENDED.
091	THIS PERMIT ACTIVITY MAY NOT START UNTIL THE PERMITTEE COORDINATES ALL WORK WITH ANY JONGOING CONSTRUCTION AND WITH THE PROJECT/RESIDENT ENGINEER FOR ANY ONGOING CAPITAL PROJECTS.
103	PARKING OF NON-COMMERCIAL VEHICLES ON THE STREET (ROADWAY AND SIDEWALK) WITHIN WORK ZONES IS PROHIBITED!
107	LICADING AND UNLOADING, STANDING OR PARKING IN A LANE ADJACENT TO THE WORK ZONE IN THE ROADWAY IS PROHIBITED. THIS APPLIES TO PERMITTEES AND ALL OF THEIR IS SUBCONTRACTORS.
NOISE1	BY SUBMITTING THIS APPLICATION AND/OR RENEWAL REQUEST, THE PERMITTEE CERTIFIES ITS COMPLIANCE WITH ALL APPLICABLE CITYWIDE CONSTRUCTION NOISE MITIGATION REQUIREMENTS. INCLUDING BUT NOT LIMITED TO THE DEVELOPMENT OF A COMPLIANT NOISE MITIGATION OR ALTERNATIVE NOISE MITIGATION PLAN. PLEASE CONTACT THE NYC DEPARTMENT OF A COMPLIANT NOISE MITIGATION OF A COMPLIANT NOISE MITIGATION OF A COMPLIANT NOISE OF A CO
SCHOOL	NO WORK TO BE PERFORMED WITHIN BLOCK FRONTING SCHOOLING UDING INTERSECTIONS FOR ONE HOUR PRIOR TO SCHOOL START TIME THROUGH ONE HOUR AFTER END OF SCHOOL TIME. PERMITTEE MUST NOTIFY SCHOOL PRINCIPAL IN WRITING 48 HOURS PRIOR TO BEGINNING ANY WORK THIS STIP VOIDS ANY ALL OTHER CONFLICTING STIPS ON THIS PERMIT UNLESS ACCOMPANIED WITH VARIANCE STIP VARGOT.
TMC001	CONTRACTORS WHO AT ANY TIME DURING THEIR PERMITTED WORK ENCOUNTER TRAFFIC SURVEILLANCE CAMERAS, DETECTION EQUIP.OR ANY TYPE OF COMMUNICATION EQUIPMENT (WIRELESS OR HARD-WIRED) ON ANY NYCOOT, FACILITY, THAT IS NOT INCLUDED ON THE DESIGN/BUILD DWGS, SHATE IMMEDIATELY NOTIFY NYCOOT, TRAFFIC MANAGEMENT AT TMC@DOT.NYC.GOV 8amp; 718-438-339040 AND AWAIT DIRECTION PRIOR TO CONTINUING WORK

Office of Permit Management BUILDING OPERATION PERMIT

PERMIT#: Q02-2018221-850 PREVIOUS#: Q02-2018135-A09

ISSUED DATE:

8/9/2018

PERMIT VALID FROM: 8/11/2018

TO:

11/8/2018

BOROUGH:

QUEENS

PERMIT TYPE:

0211 - OCCUPANCY OF ROADWAY AS STIPULATED

FEES (NON-REFUNDABLE):

ROADWAY TYPE: SIDEWALK TYPE: ASPHALT

ADMINISTR \$50.00

ATION FEE

TOTAL:

\$50.00 PAID

CONCRETE

PERMISSION HEREBY GRANTED TO

NAME:

MORGAN CONSTRUCTION

CONTACT NAME:

MAN GEORGE

PHONE:

SPONSORING AGENC

ADDRESS:

TO OCCUPY THE ROADWAY AND/OR SIDEWAL

HOUSE#:

ON STREET:

FROM STREET:

TO STREET:

YERNON BOULEVARD

LOCATION DETAILS:

FOR PURPOSE OF:

RELATED AGENCY #:

420605964 (DOB)

INSPECT DIST:

RECORDED:

TRACKING #:

2018080700726657

OMM. BOARD: 0 SEQUENCE #:

Note: If House Number is not provided Permittee shall use "Location Details" box to indicate a specific location of the work area within a block (for all non-Contract work, i.e.) Contract #: None).

PERMITTEE SHALL COMPLY WITH ALL APPLICABLE LAWS, RULES AND SPECIFICATIONS OF THE NEW YORK CITY DEPARTMENT OF TRANSPORTATION AND WITH THE TERMS AND CONDITIONS OF THE PERMIT. FAILURE TO COMPLY MAY RESULT IN REVOCATION OF THE PERMIT BY THE COMMISSIONER. Mary Carlotter Commence of the

TAMPERING WITH OR KNOWINGLY MAKING A FALSE ENTRY IN OR FAUSELY ALTERING THIS PERMIT MAY RESULT IN A RESTRICTION IN OBTAINING FUTURE NYCOOT PERMITS.

NYS LAW

CALL NEW YORK 811, INC. AT 1-860-272-4480 OR \$11 BEFORE STREET OPENING EXCAVATIONS, NEW YORK STATE INDUSTRIAL CODE RULE 753 MANDATES 2-16 BUSINESS DAYS NOTICE PRIOR TO DIGGING.

Office of Permit Management

BUILDING OPERATION PERMIT

PERMITTEE SHALL COMPLY WITH ALL OF THE FOLLOWING STIPULATIONS SP MUST COORDINATE WITH THE ONGOING CONSTRUCTION PRIOR TO MOBILIZING. SPECIFIC STIPULATION ALL TEMPORARY TRAFFIC CONTROL DEVICES, INCLUDING BUT NOT LIMITED TO SIGNS, 038 CHANNELIZING DEVICES, FENCING AND MARKINGS SHALL BE PROVIDED, INSTALLED, MAINTAINED AND REMOVED BY THE PERMITTEE IN ACCORDANCE WITH THE MOST RECENT VERSION OF PART 6 OF THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES: FOR STREETS AND HIGHWAYS (MUTCD), OBTAIN THE MUTCD AT HTTP://MUTCD.FHWA.DOT.GOV; OCCUPY 8 FOOT WIDTH OF ROADWAY ADJACENT TO SOUTH CURBLINE 048 DO NOT PLACE MATERIALS, TRAILERS, CRANES, CONTAINERS, OR EQUIPMENT IN FRONT OF DRIVEWAYS, BUS STOPS, WITHIN FIFTEEN FEET OF A FIRE HYDRANT, IN AUTHORIZED PARKING ZONES OR BUCKING ACCESS TO DEP WATER TESTING BOXES. IF WORK IS DIRECTLY IN ABOVE AREAS, MAY BE IN VICINITY DURING STIPULATED WORK HOURS BUT NOT WHEN SITE IS UNATTENDED. .066 UNATTENDED. 🏄 THIS PERMIT ACTIVITY MAY NOT START UNTIL THE PERMITTEE COORDINATES ALL WORK WITH ANY ONGOING CONSTRUCTION AND WITH THE PROJECT/RESIDENT ENGINEER FOR ANY ONGOING 091 CAPITAL PROJECTS: . . PARKING OF NON-COMMERCIAL VEHICLES ON THE STREET (ROADWAY AND SIDEWACK), WITHIN 103 WORK ZONES IS PROHIBITED. L'OADING AND UNLOADING STANDING OR BARKING IN A LANE ADJACENT TO THE WORK ZONE IN THE ROADWAY IS PROHIBITED. THIS APPLIES TO PERMITTEES AND ALL OF THEIR SUBCONTRACTORS. -107THIS PERMIT ONLY ALLOWS FOR THE CLOSURE OF A ROADWAY OR SIDEWALK AS STIPULATED. ANY STORAGE OF MATERIAL OR STORAGE OF EQUIPMENT REQUIRES A SEPARATE PERMIT. HIQA01 BY SUBMITTING THIS ARPLICATION AND/OR RENEWAL REQUEST, THE PERMITTEE CERTIFIES ITS COMPLIANCE WITH ALL APPLICABLE CITYWIDE CONSTRUCTION NOISE MITIGATION REQUIREMENTS INCLUDING, BUT NOT LIMITED TO THE DEVELOPMENT OF A COMPLIANT NOISE MITIGATION OR LALTERNATIVE NOISE MITIGATION PLAN, PLEASE CONTACT THE NYC DEPARTMENT OF A CONSTRUCTION O NOISE1 NO WORK TO BE PERFORMED WITHIN BLOCK FRONTING SCHOOL INCLUDING INTERSECTIONS FOR ONE HOUR PRIOR TO SCHOOL START TIME THROUGH ONE HOUR AFTER END OF SCHOOL TIME. REMNITTEE MUST NOTIFY SCHOOL PRINCIPAL IN WRITING 48 HOURS PRIOR TO BEGINNING ANY WORK THIS STIP VOIDS ANY ALL OTHER CONFLICTING STIPS ON THIS PERMITUNILESS ACCOMPANIED WITH VARIANCE STIP VARIOUS. SCHOOL CONTRACTORS WHO AT ANY TIME DURING THEIR PERMITTED WORK ENCOUNTER TRAFFIC SURVEIL ANGE CAMERAS, DETECTION EQUIP OR ANY TYPE OF COMMUNICATION EQUIPMENT (WIRELESS OR HARD WIRED) ON ANY NYCOOT FACILITY, THAT IS NOT INCLUDED ON THE DESIGN/BUILD DWGS, SHALL IMMEDIATELY NOTIFY NYCOOT TRAFFIC MANAGEMENT AT TMC@DOT.NYC.GOV & Smp; 718-433-3398/40 AND AWAIT DIRECTION PRIGR TO CONTINUING WORK TMC601

Office of Permit Management

BUILDING OPERATION PERMIT

ISSUED DATE:

8/9/2018

PERMIT VALID FROM: 8/11/2018

TO:

11/8/2018

BOROUGH:

QUEENS

PERMIT TYPE:

0215 - OCCUPANCY OF SIDEWALK AS STIPULATED

FEES (NON-REFUNDABLE):

ROADWAY TYPE: SIDEWALK-TYPE:... ASPHALT

ADMINISTR \$50.00

ATION FEE.

TOTAL:

CONCRETE

\$50.00 PAID

EREBY GRANTED TO

NAME:

CONTACT NAME:

MAN GEORGE

PHONE:

SPONSORING AGENCY:

ADDRESS:

NEW YORK IN

TO OCCUPY THE ROADWAY AND/OR SIDEWA

HOUSE#:

ON STREET:

FROM STREET:

TO STREET:

VERNON BOULEVARD

LOCATION DETAILS:

FOR PURPOSE OF:

RELATED AGENCY #:

INSPECT DIST:

RECORDED:

TRACKING #:

2018080700726657 💍

OMM, BOARD: 01 SEQUENCE #:

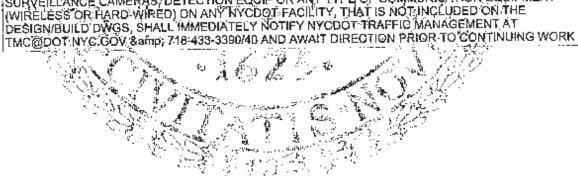
Note: If House Number is not provided Permittee shall use "Location Details" box to Indicate a specific location of the work area within a block (for all non-Contract work, ife: Contract,#: None).

PERMITTEE SHALL COMPLY WITH ALL'APPLICABLE L'AWS, RULES AND SPECIFICATIONS OF THE NEW YORK CITY DEPARTMENT OF TRANSPORTATION AND WITH THE TERMS AND CONDITIONS OF THE PERMIT. FAILURE TO COMPLY MAY RESULT IN REVOCATION OF THE PERMIT BY THE COMMISSIONER.

TAMPERING WITH OR KNOWINGLY MAKING A FALSE ENTRY IN OR FALSELY ALTERING THIS PERMIT MAY RESULT IN A RESTRICTION IN OBTAINING FUTURE NYCOOT PERMITS.

NYS LAW

CALL NEW YORK 811, INC. AT 1-800-272-4480 OR 811 BEFORE STREET OPENING EXCAVATIONS. NEW YORK STATE INDUSTRIAL CODE RULE 753 MANDATES 2-10 BUSINESS DAYS NOTICE PRIOR TO DIGGING.


Office of Permit Management

	PERMITTEE SHALL COMPLY WITH ALL OF THE FOLLOWING STIPULATIONS
SPECIFIC STIPULATION	SP MUST COORDINATE WITH THE ONGOING CONSTRUCTION PRIOR TO MOBILIZING.
013	MAINTAIN A MINIMUM 5 FOOT CLEAR PEDESTRIAN WALK ON THE SIDEWALK
038	ALL TEMPORARY TRAFFIC CONTROL DEVICES, INCLUDING BUT NOT LIMITED TO SIGNS, CHANNELIZING DEVICES, FENCING AND MARKINGS SHALL BE PROVIDED, INSTALLED, MAINTAINED AND REMOVED BY THE PERMITTEE IN ACCORDANCE WITH THE MOST RECENT VERSION OF PART 6 OF THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES FOR STREETS AND HIGHWAYS (MUTCO), OBTAIN THE MUTCO AT HITP HIMUTCO.FHWA.DOT.GOV.
088	DO NOT PLACE MATERIALS, TRAILERS CRANES, CONTAINERS, OR EQUIPMENT IN FRONT OF DRIVEWAYS, BUS STOPS, WITHIN FIFTEEN FEET OF A FIRE HYDRANT, IN AUTHORIZED PARKING ZONES OR BLOCKING ACCESS TO DEP WATER TESTING BOXES. IF WORK IS DIRECTLY IN ABOVE AREAS, MAY BE IN VICINITY DURING STIPULATED WORK HOURS BUT NOT WHEN SITE IS UNATTENDED.
091	THIS PERMIT ACTIVITY MAY NOT START UNTIL THE PERMITTEE COORDINATES ALL WORK WITH ANY ONGOING CONSTRUCTION AND WITH THE PROJECTIRESIDENT ENGINEER FOR ANY ONGOING CAPITAL PROJECTS = 13
103	PARKING OF NON-COMMERCIAL VEHICLES ON THE STREET (ROADWAY AND SIDEWALK) WITHIN WORK ZONES IS PROHIBITED.
HIQA01	WORK ZONES IS PROHIBITED. THIS PERMIT ONLY ALLOWS FOR THE CLOSURE OF A ROADWAY OR SIDEWALK AS STIPULATED. ANY STORAGE OF MATERIAL DESTORAGE OF EQUIPMENT REQUIRES A SEPARATE PERMIT.
NOISE1	BY SUBMITTING THIS APPLICATION AND/OR RENEWAL REQUEST, THE PERMITTEE CERTIFIES ITS COMPLIANCE WITH ALLIAPPLICABLE CITYWIDE CONSTRUCTION NOISE MITIGATION REQUIREMENTS INCLUDING, BUT NOT LIMITED TO THE DEVELOPMENT OF A COMPLIANT NOISE MITIGATION OR ALTERNATIVE NOISE MITIGATION FLAN PLEASE CONTACT THE NYC DEPARTMENT OF ENVIRONMENTAL PROTECTION (WWW.NYC.GOV/HTML/DEP/HTML/NOISE/CONSTRUCTION) AND SESHTML) FOR FURTHER INFORMATION (1)
SCHOOL	IND WORK TO BE PERFORMED WITHIN BLOCK FRONTING SCHOOL INCLUDING INTERSECTIONS FOR ONE HOUR PRIOR TO SCHOOL START TIME THROUGH ONE HOUR AFTER END OF SCHOOL TIME. RERMITTEE MUST NOTIFY SCHOOL PRINCIPAL IN WRITING 48 HOURS PRIOR TO BEGINNING ANY WORK. THIS STIP VOIDS ANY ALLOTHER CONFLICTING STIPS ON THIS PERMIT UNLESS!! ACCOMPANIED WITH VARIANCE STIP VAROUS.
.TMC001	CONTRACTORS WHO AT ANY TIME DURING THEIR PERMITTED WORKENCOUNTER TRAFFIC SURVEILLANCE CAMERAS/DETECTION EQUIP OR ANY TYPE OF COMMUNICATION EQUIPMENT INVIRE LESS OR HARD WIRED ON ANY NYCOOT FACILITY, THAT IS NOT INCLUDED ON THE

Office of Permit Management BUILDING OPERATION PERMIT

ISSUED DATE:

6/9/2018

PERMIT VALID FROM: 8/11/2018

TO:

11/8/2018

BOROUGH:

QUEENS

PERMIT TYPE:

0202 - CROSSING SIDEWALK

GULLING

ROADWAY TYPE:

ASPHALT

FEES (NON-REFUNDABLE):

SIDEWALK TYPE:

CONCRETE

ADMINISTR \$50.00

ATION FEE TOTAL :

\$50.00 PAID

PERMISSIÓN HERÉBY GRANTED TO:

NAME:

MORGAN CONSTRUCTION NY INC.

LICENSE #: None

CONTACT NAME:

MAN GEORGE

CONTRACT #: None

PHONE:

2126250820

SPONSORING AGENCY: None

ADDRESS:

57 ALLEN STREET NEW YORK NY 10002

TO OCCUPY THE ROADWAY AND/OR SIDEWALK AT

HOUSE#:

§11-28

ON STREET:

31 DRIVE

FROM STREET:

12 STREET

TO STREET:

VERNON BOULEVARD

LOCATION DETAILS:

FOR PURPOSE OF:

RELATED AGENCY #:

420605964 (DOB.)

INSPECT DIST:

RECORDED:

None

TRACKING #:

2018080700726657

COMM/BOARD: 010

Note: If House Number is not provided Permittee shall use "Location Details" box to Indicate a specific location of the work area within a block (for all non-Contract work, i.e. Contract #: None).

PERMITTEE SHALL COMPLY WITH ALL APPLICABLE LAWS, RULES AND SPECIFICATIONS OF THE NEW YORK CITY DEPARTMENT OF TRANSPORTATION AND WITH THE TERMS AND CONDITIONS OF THE PERMIT. FAILURE TO COMPLY MAY RESULT IN REVOCATION OF THE PERMIT BY THE COMMISSIONER.

TAMPERING WITH OR KNOWINGLY MAKING A FALSE ENTRY IN OR FALSELY ALTERING THIS PERMIT MAY RESULT IN A RESTRICTION IN OBTAINING FUTURE NYCOOT PERMITS.

NYS LAW

CALL NEW YORK 811, INC. AT 1-800-272-4480 OR 811 BEFORE STREET OPENING EXCAVATIONS, NEW YORK STATE INDUSTRIAL CODE RULE 753 MANDATES 2-10 BUSINESS DAYS NOTICE PRIOR TO DIGGING.

Office of Permit Management

PERMITTEE SHALL COMPLY WITH ALL OF THE FOLLOWING STIPULATIONS SPECIFIC SPINUST COORDINATE WITH THE ONGOING CONSTRUCTION PRIOR TO MOBILIZING. STIPULATION

STIPULATION	
012	FLAG PERSON MUST BE PROVIDED TO STOP PEDESTRIAN AND/OR VEHICLE TRAFFIC WHILE LIFTING MATERIALS OVERHEAD AND ALSO WHEN CROSSING SIDEWALK IN CONJUCTION WITH CROSSING SIDEWALK PERMITS.
013	MAINTAIN A MINIMUM 5 FOOT CLEAR PEDESTRIAN WALK ON THE SIDEWALK
019	WORK 7AM - 6PM, MONDAY THROUGH FRIDAY
038	ALL TEMPORARY TRAFFIC CONTROL DEVICES, INCLUDING BUT NOT LIMITED TO SIGNS, CHANNELIZING DEVICES, FENCING AND MARKINGS SHALL BE PROVIDED; INSTALLED, MAINTAINED AND REMOVED BY THE PERMITTEE IN ACCORDANCE WITH THE MOST RECENT VERSION OF PART 6 OF THE MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES FOR STREETS AND HIGHWAYS (MUTCO), OBTAIN THE MUTCO AT HITP://MUTCO:FHWA:DOT.GOV.
066	DO NOT PLACE MATERIALS, TRAILERS, CRANES, CONTAINERS, OR EQUIPMENT IN FRONT OF DRIVEWAYS, BUS STOPS, WITHIN FIFTEEN FEET OR A FIRE HYDRANT (IN AUTHORIZED PARKING ZONES OR BLOCKING ACCESS TO DEP, WATER TESTING BOXES. IF WORK IS DIRECTLY IN ABOVE AREAS, MAY BE IN VICINITY DURING STIPULATED WORK HOURS BUT NOT WHEN SITE IS UNATTENDED.
091	THIS PERMIT ACTIVITY MAY NOT START UNTIL THE PERMITTEE COORDINATES ALL WORK WITH ANY ONGOING CONSTRUCTION AND WITH THE PROJECT/RESIDENT ENGINEER FOR ANY ONGOING CAPITAL PROJECTS.
103	PARKING OF NON-COMMERCIAL VEHICLES ON THE STREET (ROADWAY/AND SIDEWALK) WITHIN WORK ZONES IS PROHIBITED.)
NOISE1	BY SUBMITTING THIS APPLICATION AND/OR RENEWAL REQUEST. THE PERMITTEE CERTIFIES ITS COMPLIANCE WITH ALL APPLICABLE CITYWIDE CONSTRUCTION NOISE MITIGATION REQUIREMENTS INCLUDING, BUTNOT LIMITED TO THE DEVELOPMENT OF A COMPLIANT NOISE MITIGATION OR ALTERNATIVE NOISE MITIGATION PLANT PLEASE CONTACT THE NYO DEPARTMENT OF LENVIRONMENTAL PROTECTION (WWW.NYC.GOV/HTMI) DEPARTMENT OF LONGINGON NOISE SHIML) FOR FURTHER INFORMATION.
SCHOOL	NO WORK TO BE PERFORMED WITHIN BLOCK FRONTING SCHOOL INCLUDING INTERSECTIONS FOR ONE HOUR PRIOR TO SCHOOL START TIME THROUGH ONE HOUR AFTER END OF SCHOOL TIME. PERMITTEE MUST NOTIFY SCHOOL PRINCIPAL IN WRITING 48 HOURS PRIOR TO BEGINNING ANY WORK, THIS STIP VOIDS ANY ALL OTHER CONFLICTING STIPS ON THIS PERMIT UNLESS. ACCOMPANIED WITH VARIANCE STIP VARIOUS.
TMC001	CONTRACTORS WHO AT ANY TIME DURING THEIR PERMITTED WORK ENCOUNTER TRAFFIC SURVEILLANCE CAMERAS; DETECTION EQUIP OR ANY TYPE OF GOMMUNICATION EQUIPMENT (WIRELESS OR HARD WIRED) ON ANY NYCOOT FACILITY, THAT IS NOT INCLUDED ON THE DESIGN/BUILD DWGS SHALL IMMEDIATELY NOTIFY NYCOOT TRAFFIC MANAGEMENT AT TMC@DOT.NYC.GOV & amp. 18-433-3390/40 AND AWAIT DIRECTION PRIOR TO CONTINUING WORK

ATTACHMENT M RI and Supplemental RI Lab Reports

2013 Groundwater and Soil Lab Report

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 05/09/2013

Client Project ID: #130030 11-28 31st Drive Queens NY

York Project (SDG) No.: 13D1004

Revision No. 1.0

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005

New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 142

Report Date: 05/09/2013

Client Project ID: #130030 11-28 31st Drive Queens NY

York Project (SDG) No.: 13D1004

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on April 26, 2013 and listed below. The project was identified as your project: #130030 11-28 31st Drive Queens NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
13D1004-01	SP-1 0-2 ft	Soil	04/24/2013	04/26/2013
13D1004-02	SP-1 8-9 ft	Soil	04/24/2013	04/26/2013
13D1004-03	SP-2 0-2 ft	Soil	04/24/2013	04/26/2013
13D1004-04	SP-2 8-9 ft	Soil	04/24/2013	04/26/2013
13D1004-05	SP-2 8-9 ft (Duplicate)	Soil	04/24/2013	04/26/2013
13D1004-06	SP-3 0-2 ft	Soil	04/24/2013	04/26/2013
13D1004-07	SP-3 8-9 ft	Soil	04/24/2013	04/26/2013
13D1004-08	Filed Blank	Water	04/24/2013	04/26/2013
13D1004-09	MW-1	Water	04/25/2013	04/26/2013
13D1004-10	MW-2	Water	04/25/2013	04/26/2013
13D1004-11	MW-3	Water	04/25/2013	04/26/2013
13D1004-12	MW-3 (Duplicate)	Water	04/25/2013	04/26/2013
13D1004-13	Field Blank	Water	04/25/2013	04/26/2013
13D1004-14	Trip Blank	Water	04/25/2013	04/26/2013

General Notes for York Project (SDG) No.: 13D1004

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Belf

Date: 05/09/2013

Benjamin Gulizia Laboratory Director

YORK

Client Sample ID: SP-1 0-2 ft York Sample ID: 13D1004-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	56	110	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
67-64-1	Acetone	ND		ug/kg dry	2.8	11	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
71-43-2	Benzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
108-86-1	Bromobenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS

Client Sample ID: SP-1 0-2 ft York Sample ID: 13D1004-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

cs, 8260 List Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
67-66-3	Chloroform	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
74-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-09-2	Methylene chloride	9.9	J, B	ug/kg dry	2.8	11	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
91-20-3	Naphthalene	ND		ug/kg dry	2.8	11	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.6	11	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
100-42-5	Styrene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
108-88-3	Toluene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.6	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 5 of 142

Client Sample ID: SP-1 0-2 ft York Sample ID: 13D1004-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilut	ion	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.4	17	1	EPA	A SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
108-05-4	Vinyl acetate	ND		ug/kg dry	2.8	5.6	1	EPA	A SW846-8260B	04/30/2013 09:22	04/30/2013 13:27	SS
	Surrogate Recoveries	Result	Acceptance Range									
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			73-130							
460-00-4	Surrogate: p-Bromofluorobenzene	113 %			72-127							
2037-26-5	Surrogate: Toluene-d8	105 %			84-117							

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

<u> Log-in Notes:</u>	Sample Notes

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	101	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	134	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
62-53-3	Aniline	ND		ug/kg dry	160	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
120-12-7	Anthracene	184	J	ug/kg dry	153	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
56-55-3	Benzo(a)anthracene	608		ug/kg dry	105	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
50-32-8	Benzo(a)pyrene	508		ug/kg dry	111	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
205-99-2	Benzo(b)fluoranthene	486		ug/kg dry	234	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
191-24-2	Benzo(g,h,i)perylene	194	J	ug/kg dry	92.9	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	280	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
207-08-9	Benzo(k)fluoranthene	598		ug/kg dry	280	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	154	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	135	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	189	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	72.7	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	96.2	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	143	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	98.5	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	193	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	151	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	92.3	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	164	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
218-01-9	Chrysene	635		ug/kg dry	129	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	112	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	130	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 6 of 142

Client Sample ID: SP-1 0-2 ft York Sample ID: 13D1004-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	114	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	183	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	172	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	88.4	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	147	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	228	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	176	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	196	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	125	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	244	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	353	560	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	235	560	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	144	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	124	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	280	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
206-44-0	Fluoranthene	1090		ug/kg dry	164	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
86-73-7	Fluorene	ND		ug/kg dry	134	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	165	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	94.6	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	208	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	80.0	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
193-39-5	Indeno(1,2,3-cd)pyrene	219	J	ug/kg dry	128	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
78-59-1	Isophorone	ND		ug/kg dry	96.2	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	215	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	106	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	121	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
91-20-3	Naphthalene	ND		ug/kg dry	68.8	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	278	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	116	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	82.3	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	105	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	76.1	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR

Client Sample ID: SP-1 0-2 ft York Sample ID: 13D1004-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	93.4	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	115	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	126	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	211	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
85-01-8	Phenanthrene	806		ug/kg dry	146	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
108-95-2	Phenol	ND		ug/kg dry	121	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
129-00-0	Pyrene	998		ug/kg dry	114	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
110-86-1	Pyridine	ND		ug/kg dry	196	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	101	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	217	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	142	280	1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
	Dioxin Screen	0.00		ug/kg dry			1	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 20:33	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	49.0 %			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	59.8 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	33.7 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	42.2 %			30-130						
4165-62-2	Surrogate: Phenol-d5	54.5 %			15-110						
1718-51-0	Surrogate: Terphenyl-d14	60.1 %			30-130						

Pesticides, 8081 target list

Sample Prepared by Method: EPA 3550B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
309-00-2	Aldrin	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 8 of 142

Client Sample ID: SP-1 0-2 ft York Sample ID: 13D1004-01

Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Pesticides, 8081 target list

Log-in Notes:

Sample Notes:

Sample Prepared	by Method: EPA 3550B										
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-20-8	Endrin	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.23	9.23	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.85	1.85	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
8001-35-2	Toxaphene	ND		ug/kg dry	93.4	93.4	5	EPA SW 846-8081B	04/30/2013 07:39	05/01/2013 11:02	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
2051-24-3	Surrogate: Decachlorobiphenyl	83.7 %			30-150						
877-09-8	Surrogate: Tetrachloro-m-xylene	104 %			30-150						

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0190	0.0190	1	EPA SW 846-8082A	04/30/2013 07:39	05/01/2013 09:05	JW
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0190	0.0190	1	EPA SW 846-8082A	04/30/2013 07:39	05/01/2013 09:05	JW
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0190	0.0190	1	EPA SW 846-8082A	04/30/2013 07:39	05/01/2013 09:05	JW
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0190	0.0190	1	EPA SW 846-8082A	04/30/2013 07:39	05/01/2013 09:05	JW
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0190	0.0190	1	EPA SW 846-8082A	04/30/2013 07:39	05/01/2013 09:05	JW
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0190	0.0190	1	EPA SW 846-8082A	04/30/2013 07:39	05/01/2013 09:05	JW
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0190	0.0190	1	EPA SW 846-8082A	04/30/2013 07:39	05/01/2013 09:05	JW
1336-36-3	Total PCBs	ND		mg/kg dry	0.0190	0.0190	1	EPA SW 846-8082A	04/30/2013 07:39	05/01/2013 09:05	JW
	Surrogate Recoveries	Result		Acce	ptance Ra	inge					
877-09-8	Surrogate: Tetrachloro-m-xylene	79.5 %			30-150						
2051-24-3	Surrogate: Decachlorobiphenyl	77.1 %			30-150						

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	7630		mg/kg dry	1.14	2.24	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-36-0	Antimony	0.586		mg/kg dry	0.246	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-38-2	Arsenic	7.14		mg/kg dry	0.380	1.12	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-39-3	Barium	63.9		mg/kg dry	0.145	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 9 of 142

Client Sample ID: SP-1 0-2 ft York Sample ID: 13D1004-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Metals, Target Analyte Log-in Notes:

in Notes: Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-41-7	Beryllium	ND		mg/kg dry	0.112	0.112	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.112	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-70-2	Calcium	26900		mg/kg dry	0.045	5.60	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-47-3	Chromium	12.9		mg/kg dry	0.134	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-48-4	Cobalt	5.55		mg/kg dry	0.090	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-50-8	Copper	49.6		mg/kg dry	0.134	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7439-89-6	Iron	13400		mg/kg dry	0.727	2.24	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7439-92-1	Lead	191		mg/kg dry	0.190	0.336	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7439-95-4	Magnesium	8280		mg/kg dry	0.504	5.60	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7439-96-5	Manganese	237		mg/kg dry	0.123	1.12	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-02-0	Nickel	10.3		mg/kg dry	0.145	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-09-7	Potassium	1820		mg/kg dry	3.78	11.2	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7782-49-2	Selenium	2.65		mg/kg dry	0.560	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-22-4	Silver	0.708		mg/kg dry	0.112	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-23-5	Sodium	321		mg/kg dry	5.90	11.2	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-28-0	Thallium	ND		mg/kg dry	0.358	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-62-2	Vanadium	17.1		mg/kg dry	0.123	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW
7440-66-6	Zinc	111		mg/kg dry	0.101	0.560	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:36	MW

Mercury by 7470/7471

Sample Prepared by Method: EPA SW846-7471

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0369	0.0369	1	EPA SW846-7471	04/30/2013 09:06	04/30/2013 17:17	AA

Log-in Notes:

Sample Notes:

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	89.4		%	0.100	0.100	1	SM 2540G	04/30/2013 11:28	04/30/2013 11:28	AMC

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 10 of 142

Client Sample ID: SP-1 0-2 ft York Sample ID: 13D1004-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

<u>Chromium, Hexavalent</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA SW846-3060

Date/Time Date/Time Analyzed Result Units MDL Dilution Reference Method CAS No. Parameter RLPrepared Analyst SW846-7196A 04/30/2013 14:38 04/30/2013 14:38 ND mg/kg dry 0.392 0.560 AMC 18540-29-9 Chromium, Hexavalent

<u>Chromium, Trivalent</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA SW846-3060

Date/Time Date/Time MDL Dilution Reference Method CAS No. Result Flag Units Parameter Prepared Analyzed Analyst 12.9 mg/kg 0.250 0.500 CALCULATION 04/30/2013 14:31 05/01/2013 10:16 AMC 16065-83-1 Chromium, Trivalent

Sample Information

<u>Client Sample ID:</u> SP-1 8-9 ft <u>York Sample ID:</u> 13D1004-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

<u>Volatile Organics, 8260 List</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 5035A

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 11 of 142

Client Sample ID: SP-1 8-9 ft York Sample ID: 13D1004-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	31	61	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
78-93-3	2-Butanone	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
95-49-8	2-Chlorotoluene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
106-43-4	4-Chlorotoluene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
67-64-1	Acetone	ND		ug/kg dry	1.5	6.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
71-43-2	Benzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
108-86-1	Bromobenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-25-2	Bromoform	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
74-83-9	Bromomethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-00-3	Chloroethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
67-66-3	Chloroform	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
74-87-3	Chloromethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
74-95-3	Dibromomethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-09-2	Methylene chloride	2.4	J, B	ug/kg dry	1.5	6.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
91-20-3	Naphthalene	ND		ug/kg dry	1.5	6.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
104-51-8	n-Butylbenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS

Client Sample ID: SP-1 8-9 ft York Sample ID: 13D1004-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
103-65-1	n-Propylbenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
95-47-6	o-Xylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	3.1	6.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
100-42-5	Styrene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
108-88-3	Toluene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	4.6	9.2	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
108-05-4	Vinyl acetate	ND		ug/kg dry	1.5	3.1	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:02	SS
	Surrogate Recoveries	Result		Acce	ptance Ra	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			73-130						
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			72-127						
2037-26-5	Surrogate: Toluene-d8	99.5 %			84-117						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	104	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	138	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
62-53-3	Aniline	ND		ug/kg dry	164	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
120-12-7	Anthracene	ND		ug/kg dry	157	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	107	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	114	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	241	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	95.4	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	287	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	287	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 13 of 142

Client Sample ID: SP-1 8-9 ft York Sample ID: 13D1004-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:	Sample Notes:
	Swiii pie i totest

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	159	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	138	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	194	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	74.7	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	98.8	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	146	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	101	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	198	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	155	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	94.8	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	168	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
218-01-9	Chrysene	ND		ug/kg dry	132	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	115	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	134	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	117	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	188	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	177	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	90.8	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	151	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	234	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	180	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	201	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	128	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	250	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	362	574	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	241	574	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	148	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	127	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	287	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
206-44-0	Fluoranthene	ND		ug/kg dry	168	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
86-73-7	Fluorene	ND		ug/kg dry	138	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	169	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR

Client Sample ID: SP-1 8-9 ft York Sample ID: 13D1004-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	97.1	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	214	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	82.1	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	131	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
78-59-1	Isophorone	ND		ug/kg dry	98.8	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	221	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	109	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	125	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
91-20-3	Naphthalene	ND		ug/kg dry	70.7	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	285	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	119	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	84.4	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
100-02-7		ND		ug/kg dry	108	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
	4-Nitrophenol	ND		ug/kg dry	78.1	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
88-75-5	2-Nitrophenol						1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
521-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	95.9	287					
52-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	118	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
36-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	130	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
37-86-5	Pentachlorophenol	ND		ug/kg dry	217	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
35-01-8	Phenanthrene	ND		ug/kg dry	150	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
108-95-2	Phenol	ND		ug/kg dry	124	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
129-00-0	Pyrene	ND		ug/kg dry	117	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
110-86-1	Pyridine	ND		ug/kg dry	202	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
20-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	104	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	223	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	146	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
	Dioxin Screen	0.00		ug/kg dry			1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:09	SR
	Surrogate Recoveries	Result		Acce	ptance Ra	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	88.2 %			15-110	Ü					
321-60-8	Surrogate: 2-Fluorobiphenyl	84.3 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	79.1 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	68.8 %			30-130						
1165-62-2	Surrogate: Phenol-d5	80.5 %			15-110						
1718-51-0	Surrogate: Terphenyl-d14	104 %			30-130						

Client Sample ID: SP-1 8-9 ft York Sample ID: 13D1004-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Pesticides, 8081 target list

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
309-00-2	Aldrin	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
72-20-8	Endrin	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.48	9.48	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.90	1.90	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
8001-35-2	Toxaphene	ND		ug/kg dry	95.9	95.9	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 13:46	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
2051-24-3	Surrogate: Decachlorobiphenyl	125 %			30-150						

Polychlorinated Biphenyls (PCB)

Surrogate: Tetrachloro-m-xylene

140 %

Sample Prepared by Method: EPA 3550B

877-09-8

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:03	JW
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:03	JW
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:03	JW
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:03	JW
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:03	JW

30-150

Client Sample ID: SP-1 8-9 ft York Sample ID: 13D1004-02

York Project (SDG) No. Client Project ID Collection Date/Time Matrix Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:03	JW
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:03	JW
1336-36-3	Total PCBs	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:03	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
877-09-8	Surrogate: Tetrachloro-m-xylene	112 %			30-150						

30-150

Metals, Target Analyte

2051-24-3

Sample Prepared by Method: EPA 3050B

Surrogate: Decachlorobiphenyl

89.6 %

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	11000		mg/kg dry	1.17	2.30	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-36-0	Antimony	ND		mg/kg dry	0.253	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-38-2	Arsenic	4.94		mg/kg dry	0.391	1.15	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-39-3	Barium	36.5		mg/kg dry	0.149	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-41-7	Beryllium	ND		mg/kg dry	0.115	0.115	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.115	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-70-2	Calcium	1040		mg/kg dry	0.046	5.74	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
440-47-3	Chromium	13.7		mg/kg dry	0.138	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
440-48-4	Cobalt	11.6		mg/kg dry	0.092	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
440-50-8	Copper	17.3		mg/kg dry	0.138	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
439-89-6	Iron	18900		mg/kg dry	0.747	2.30	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
439-92-1	Lead	19.3		mg/kg dry	0.195	0.345	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
439-95-4	Magnesium	3230		mg/kg dry	0.517	5.74	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
439-96-5	Manganese	876		mg/kg dry	0.126	1.15	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
440-02-0	Nickel	10.6		mg/kg dry	0.149	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
440-09-7	Potassium	1180		mg/kg dry	3.88	11.5	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
782-49-2	Selenium	2.77		mg/kg dry	0.574	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-22-4	Silver	ND		mg/kg dry	0.115	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
440-23-5	Sodium	160		mg/kg dry	6.05	11.5	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-28-0	Thallium	ND		mg/kg dry	0.368	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
7440-62-2	Vanadium	19.4		mg/kg dry	0.126	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW
440-66-6	Zinc	56.0		mg/kg dry	0.103	0.574	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:40	MW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

FAX (203) 35<u>7-0166</u>

Client Sample ID: SP-1 8-9 ft York Sample ID: 13D1004-02

Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received

13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Log-in Notes:

Sample Notes:

Mercury by 7470/7471

Sample Prepared by Method: EPA SW846-7471

Date/Time Date/Time Result Flag Units Dilution Reference Method Analyzed CAS No. **Parameter** MDI Prepared Analyst EPA SW846-7471 04/30/2013 09:06 04/30/2013 17:17 ND mg/kg dry 0.0379 0.0379 7439-97-6 Mercury

Log-in Notes: Sample Notes: Total Solids

Sample Prepared by Method: % Solids Prep

Date/Time Date/Time MDL Dilution CAS No. Result Flag Units Reference Method Analyst **Parameter** Prepared Analyzed 87.0 % 0 100 0.100 SM 2540G 04/30/2013 11:28 04/30/2013 11:28 AMC solids % Solids

Log-in Notes: Sample Notes: Chromium, Hexavalent

Sample Prepared by Method: EPA SW846-3060

Date/Time Date/Time Dilution Reference Method CAS No. Parameter Result Units MDI RL Prepared Analyzed Analyst SW846-7196A 04/30/2013 14:38 04/30/2013 14:38 0.402 0.574 AMC ND mg/kg dry 18540-29-9 Chromium, Hexavalent

Log-in Notes: Sample Notes: Chromium, Trivalent

Sample Prepared by Method: EPA SW846-3060

Date/Time Date/Time Dilution CAS No. Parameter Result Flag Units MDI RL Reference Method Prepared Analyzed Analyst AMC 16065-83-1 Chromium, Trivalent 13.7 mg/kg 0.250 0.500 CALCULATION 04/30/2013 14:31 05/01/2013 10:16

Sample Information

Client Sample ID: SP-2 0-2 ft **York Sample ID:** 13D1004-03

Collection Date/Time Date Received York Project (SDG) No. Client Project ID Matrix 04/26/2013 Soil 13D1004 #130030 11-28 31st Drive Queens NY April 24, 2013 3:00 pm

Log-in Notes: Sample Notes: Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freo	n 113ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 18 of 142

Client Sample ID: SP-2 0-2 ft York Sample ID: 13D1004-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	60	120	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
78-93-3	2-Butanone	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
95-49-8	2-Chlorotoluene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
106-43-4	4-Chlorotoluene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
67-64-1	Acetone	ND		ug/kg dry	3.0	12	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
71-43-2	Benzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
108-86-1	Bromobenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
75-25-2	Bromoform	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
74-83-9	Bromomethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
75-00-3	Chloroethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
67-66-3	Chloroform	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
74-87-3	Chloromethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
74-95-3	Dibromomethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS

Client Sample ID: SP-2 0-2 ft York Sample ID: 13D1004-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List

nared by Method: EPA 5035A

Sample Prepared b	by Method: EPA 5035A								D 4 //E'	D 4 //T'	
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
75-09-2	Methylene chloride	5.2	J, B	ug/kg dry	3.0	12	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
91-20-3	Naphthalene	ND		ug/kg dry	3.0	12	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
104-51-8	n-Butylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
103-65-1	n-Propylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
95-47-6	o-Xylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	6.0	12	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
100-42-5	Styrene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
108-88-3	Toluene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	9.0	18	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
108-05-4	Vinyl acetate	ND		ug/kg dry	3.0	6.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 14:37	SS
	Surrogate Recoveries	Result		Acce	ptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	100 %			73-130						
460-00-4	Surrogate: p-Bromofluorobenzene	100 %			72-127						
2037-26-5	Surrogate: Toluene-d8	106 %			84-117						

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 Page 20 of 142

FAX (203) 35<u>7-0166</u>

Client Sample ID: SP-2 0-2 ft York Sample ID: 13D1004-03

York Project (SDG) No. Client Project ID Collection Date/Time Matrix Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Log-in Notes:

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	ion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	104	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	138	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
62-53-3	Aniline	ND		ug/kg dry	164	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
120-12-7	Anthracene	ND		ug/kg dry	156	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
56-55-3	Benzo(a)anthracene	195	J	ug/kg dry	107	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
50-32-8	Benzo(a)pyrene	126	J	ug/kg dry	114	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	240	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	95.2	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	287	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	287	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	158	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	138	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	193	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	74.5	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	98.6	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	146	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	101	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	198	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	155	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	94.6	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	168	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
218-01-9	Chrysene	211	J	ug/kg dry	132	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	115	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	134	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	116	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	187	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	177	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	90.6	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	150	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	234	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	180	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	201	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
	2, . 2 month phonor			- 1							

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Client Sample ID: SP-2 0-2 ft York Sample ID: 13D1004-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
131-11-3	Dimethyl phthalate	ND		ug/kg dry	128	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	250	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	361	573	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	241	573	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	147	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	127	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	287	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
206-44-0	Fluoranthene	340		ug/kg dry	168	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
86-73-7	Fluorene	ND		ug/kg dry	138	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	169	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	96.9	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	213	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	82.0	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	131	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
78-59-1	Isophorone	ND		ug/kg dry	98.6	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	220	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	109	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	124	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
91-20-3	Naphthalene	ND		ug/kg dry	70.5	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	285	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	119	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	84.3	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	108	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	78.0	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	95.7	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	118	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	130	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	216	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
85-01-8	Phenanthrene	352		ug/kg dry	150	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
108-95-2	Phenol	ND		ug/kg dry	124	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
129-00-0	Pyrene	476		ug/kg dry	117	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
110-86-1	Pyridine	ND		ug/kg dry	201	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR

Client Sample ID: SP-2 0-2 ft York Sample ID: 13D1004-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Notes:

Sample Prepared by Method: EPA 3545A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	104	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	222	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	146	287	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
	Dioxin Screen	0.00		ug/kg dry			1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 17:41	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	42.3 %			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	82.2 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	73.6 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	73.4 %			30-130						
4165-62-2	Surrogate: Phenol-d5	82.6 %			15-110						
1718-51-0	Surrogate: Terphenyl-d14	98.2 %			30-130						

Log-in Notes:

Pesticides, 8081 target list

Sample Prepared by Method: EPA 3550B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
309-00-2	Aldrin	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
72-20-8	Endrin	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.46	9.46	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 23 of 142

<u>Client Sample ID:</u> SP-2 0-2 ft <u>York Sample ID:</u> 13D1004-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Pesticides, 8081 target list
Sample Prepared by Method: EPA 3550B

Log-in Notes:

Log-in Notes:

Sample Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	ion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.89	1.89	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
8001-35-2	Toxaphene	ND		ug/kg dry	95.7	95.7	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:01	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
2051-24-3	Surrogate: Decachlorobiphenyl	100 %			30-150						
877-09-8	Surrogate: Tetrachloro-m-xylene	135 %			30-150						

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:32	JW
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:32	JW
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:32	JW
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:32	JW
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:32	JW
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:32	JW
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:32	JW
1336-36-3	Total PCBs	ND		mg/kg dry	0.0195	0.0195	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 15:32	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
877-09-8	Surrogate: Tetrachloro-m-xylene	114 %			30-150						
2051-24-3	Surrogate: Decachlorobiphenyl	94.5 %			30-150						

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

Sample Prepared by Metho	od: EPA 3050B								Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Prepared	Analyzed	Analyst
7429-90-5	Aluminum	9370		mg/kg dry	1.17	2.29	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-36-0	Antimony	2.64		mg/kg dry	0.252	0.573	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-38-2	Arsenic	4.04		mg/kg dry	0.390	1.15	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-39-3	Barium	57.6		mg/kg dry	0.149	0.573	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-41-7	Beryllium	ND		mg/kg dry	0.115	0.115	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.115	0.573	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-70-2	Calcium	49300		mg/kg dry	0.046	5.73	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-47-3	Chromium	38.7		mg/kg dry	0.138	0.573	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-48-4	Cobalt	5.89		mg/kg dry	0.092	0.573	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7440-50-8	Copper	25.9		mg/kg dry	0.138	0.573	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7439-89-6	Iron	13900		mg/kg dry	0.745	2.29	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW
7439-92-1	Lead	42.3		mg/kg dry	0.195	0.344	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:45	MW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 24 of 142

SP-2 0-2 ft **Client Sample ID:** York Sample ID: 13D1004-03 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #130030 11-28 31st Drive Queens NY 13D1004 Soil April 24, 2013 3:00 pm 04/26/2013 **Log-in Notes:** Metals, Target Analyte **Sample Notes:** Sample Prepared by Method: EPA 3050B Date/Time Date/Time Dilution Reference Method Analyzed CAS No **Parameter** Result Flag Units MDI RI Prepared **Analyst** 11800 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 11:45 MW 7439-95-4 Magnesium mg/kg dry MW 235 EPA SW846-6010B 04/30/2013 11:45 Manganese mg/kg dry 0.126 1 15 1 04/30/2013 09:20 7439-96-5 EPA SW846-6010B 04/30/2013 11:45 MW Nickel 26.3 mg/kg dry 0.149 0.573 04/30/2013 09:20 7440-02-0 EPA SW846-6010B 04/30/2013 11:45 MW Potassium 964 mg/kg dry 3.88 11.5 04/30/2013 09:20 7440-09-7 MW Selenium 0.953 0.573 0.573 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 11:45 mg/kg dry 7782-49-2 7440-22-4 ND mg/kg dry 0.115 0.573 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 11:45 MW Silver Sodium 226 6.04 11.5 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 11:45 MW mg/kg dry 7440-23-5 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 11:45 ND mg/kg dry 0.367 0.573 MW 7440-28-0 Thallium MW 21.4 0.126 0.573 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 11:45 7440-62-2 Vanadium mg/kg dry EPA SW846-6010B 04/30/2013 11:45 MW 0.573 04/30/2013 09:20 60.0 0.103 7440-66-6 Zinc mg/kg dry **Log-in Notes:** Sample Notes: Mercury by 7470/7471 Sample Prepared by Method: EPA SW846-7471 Date/Time Date/Time Units Dilution Reference Method CAS No. Result Flag MDI Prepared Analyzed Analyst Parameter EPA SW846-7471 04/30/2013 09:06 04/30/2013 17:17 ND mg/kg dry 0.0378 0.0378 AA 7439-97-6 Mercury **Log-in Notes: Sample Notes: Total Solids** Sample Prepared by Method: % Solids Prep Date/Time Date/Time CAS No. Parameter Result Flag Units MDI Dilution Reference Method Analyzed Analyst RI Prepared % Solids 87.2 % 0.100 0.100 SM 2540G 04/30/2013 11:28 04/30/2013 11:28 AMC solids **Log-in Notes:** Sample Notes: Chromium, Hexavalent Sample Prepared by Method: EPA SW846-3060 Date/Time Date/Time MDI Dilution CAS No Parameter Result Flag Units Reference Method Prepared Analyzed Analyst 1.47 0.573 SW846-7196A 04/30/2013 14:38 04/30/2013 14:38 AMC mg/kg dry 0.401 18540-29-9 Chromium, Hexavalent **Log-in Notes: Sample Notes:** Chromium, Trivalent Sample Prepared by Method: EPA SW846-3060 Date/Time Date/Time CAS No. Dilution **Parameter** Result Flag Units MDI Reference Method Analyst Prepared AMC CALCULATION 05/01/2013 10:16 16065-83-1 Chromium, Trivalent 37.2 mg/kg 0.250 0.500 04/30/2013 14:31 Sample Information SP-2 8-9 ft **Client Sample ID:** York Sample ID: 13D1004-04 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 25 of

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Page 25 of 142

Client Sample ID: SP-2 8-9 ft York Sample ID: 13D1004-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Sample Prepared by Method: EPA 5035A

CAS N	o. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1	13ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	34	67	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
78-93-3	2-Butanone	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
95-49-8	2-Chlorotoluene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
106-43-4	4-Chlorotoluene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
67-64-1	Acetone	ND		ug/kg dry	1.7	6.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
71-43-2	Benzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
108-86-1	Bromobenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-25-2	Bromoform	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
74-83-9	Bromomethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS

Client Sample ID: SP-2 8-9 ft York Sample ID: 13D1004-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
56-23-5	Carbon tetrachloride	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-00-3	Chloroethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
67-66-3	Chloroform	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
74-87-3	Chloromethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
74-95-3	Dibromomethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-09-2	Methylene chloride	3.6	J, B	ug/kg dry	1.7	6.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
91-20-3	Naphthalene	ND		ug/kg dry	1.7	6.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
104-51-8	n-Butylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
103-65-1	n-Propylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
95-47-6	o-Xylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	3.4	6.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
100-42-5	Styrene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
108-88-3	Toluene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	5.0	10	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 27 of 142

Client Sample ID: SP-2 8-9 ft York Sample ID: 13D1004-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilut	ion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-05-4	Vinyl acetate	ND		ug/kg dry	1.7	3.4	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:13	SS
	Surrogate Recoveries	Result		Acce	ptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			73-130						
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			72-127						
2037-26-5	Surrogate: Toluene-d8	102 %			84-117						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	107	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	142	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
62-53-3	Aniline	ND		ug/kg dry	170	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
120-12-7	Anthracene	ND		ug/kg dry	162	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	111	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	118	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	249	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	98.5	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	297	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	297	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	164	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	143	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	200	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	77.2	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	102	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	151	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	104	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	205	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	160	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	97.9	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	174	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
218-01-9	Chrysene	ND		ug/kg dry	137	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	119	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	138	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	121	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 28 of 142

Client Sample ID: SP-2 8-9 ft York Sample ID: 13D1004-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:	Sample Notes:
	Swiii pie i totest

95-50-1			Units	MDL	RL	Dilution	Reference Method	Prepared	Analyzed	Analyst
	1,2-Dichlorobenzene	ND	ug/kg dry	194	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
106-46-7	1,4-Dichlorobenzene	ND	ug/kg dry	183	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
541-73-1	1,3-Dichlorobenzene	ND	ug/kg dry	93.8	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
91-94-1	3,3'-Dichlorobenzidine	ND	ug/kg dry	156	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
120-83-2	2,4-Dichlorophenol	ND	ug/kg dry	242	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
84-66-2	Diethyl phthalate	ND	ug/kg dry	186	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
105-67-9	2,4-Dimethylphenol	ND	ug/kg dry	208	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
131-11-3	Dimethyl phthalate	ND	ug/kg dry	132	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
88-74-4	2-Nitroaniline	ND	ug/kg dry	259	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND	ug/kg dry	374	594	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
51-28-5	2,4-Dinitrophenol	ND	ug/kg dry	249	594	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
606-20-2	2,6-Dinitrotoluene	ND	ug/kg dry	153	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
121-14-2	2,4-Dinitrotoluene	ND	ug/kg dry	131	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
117-84-0	Di-n-octyl phthalate	ND	ug/kg dry	297	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
206-44-0	Fluoranthene	ND	ug/kg dry	174	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
86-73-7	Fluorene	ND	ug/kg dry	142	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
118-74-1	Hexachlorobenzene	ND	ug/kg dry	175	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
87-68-3	Hexachlorobutadiene	ND	ug/kg dry	100	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
77-47-4	Hexachlorocyclopentadiene	ND	ug/kg dry	221	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
67-72-1	Hexachloroethane	ND	ug/kg dry	84.9	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ug/kg dry	135	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
78-59-1	Isophorone	ND	ug/kg dry	102	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
91-57-6	2-Methylnaphthalene	ND	ug/kg dry	228	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
95-48-7	2-Methylphenol	ND	ug/kg dry	113	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
65794-96-9	3- & 4-Methylphenols	ND	ug/kg dry	129	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
91-20-3	Naphthalene	ND	ug/kg dry	73.0	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
99-09-2	3-Nitroaniline	ND	ug/kg dry	295	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
100-01-6	4-Nitroaniline	ND	ug/kg dry	123	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
98-95-3	Nitrobenzene	ND	ug/kg dry	87.3	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
100-02-7	4-Nitrophenol	ND	ug/kg dry	112	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
88-75-5	2-Nitrophenol	ND	ug/kg dry	80.7	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
621-64-7	N-nitroso-di-n-propylamine	ND	ug/kg dry	99.1	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR

Client Sample ID: SP-2 8-9 ft York Sample ID: 13D1004-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Notes:

Sample Prepared	by Method: EPA 3545A										
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	122	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	134	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	224	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
85-01-8	Phenanthrene	ND		ug/kg dry	155	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
108-95-2	Phenol	ND		ug/kg dry	128	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
129-00-0	Pyrene	ND		ug/kg dry	121	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
110-86-1	Pyridine	ND		ug/kg dry	208	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	107	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	230	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	151	297	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
	Dioxin Screen	0.00		ug/kg dry			1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:12	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	93.4 %			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	78.3 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	83.0 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	75.6 %			30-130						

15-110 30-130

Log-in Notes:

Pesticides, 8081 target list

4165-62-2

1718-51-0

Sample Prepared by Method: EPA 3550B

Surrogate: Phenol-d5

Surrogate: Terphenyl-d14

82.9 %

107 %

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
309-00-2	Aldrin	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW

Client Sample ID: SP-2 8-9 ft York Sample ID: 13D1004-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Pesticides, 8081 target list
Sample Prepared by Method: EPA 3550B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-20-8	Endrin	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.79	9.79	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.96	1.96	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
8001-35-2	Toxaphene	ND		ug/kg dry	99.1	99.1	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:16	JW
	Surrogate Recoveries	Result		Acce	ptance Ra	ange					
2051-24-3	Surrogate: Decachlorobiphenyl	116 %			30-150						
877-09-8	Surrogate: Tetrachloro-m-xylene	132 %			30-150						

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0202	0.0202	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:02	JW
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0202	0.0202	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:02	JW
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0202	0.0202	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:02	JW
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0202	0.0202	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:02	JW
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0202	0.0202	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:02	JW
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0202	0.0202	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:02	JW
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0202	0.0202	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:02	JW
1336-36-3	Total PCBs	ND		mg/kg dry	0.0202	0.0202	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:02	JW
	Surrogate Recoveries	Result		Acce	ptance Ra	inge					
877-09-8	Surrogate: Tetrachloro-m-xylene	110 %			30-150						
2051-24-3	Surrogate: Decachlorobiphenyl	88.6 %			30-150						

Metals, Target Analyte

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	11500		mg/kg dry	1.21	2.37	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-36-0	Antimony	ND		mg/kg dry	0.261	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-38-2	Arsenic	6.70		mg/kg dry	0.404	1.19	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-39-3	Barium	25.2		mg/kg dry	0.154	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW

Client Sample ID: SP-2 8-9 ft York Sample ID: 13D1004-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Metals, Target Analyte

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-41-7	Beryllium	ND		mg/kg dry	0.119	0.119	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.119	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-70-2	Calcium	955		mg/kg dry	0.047	5.94	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-47-3	Chromium	17.1		mg/kg dry	0.142	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-48-4	Cobalt	8.75		mg/kg dry	0.095	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-50-8	Copper	16.0		mg/kg dry	0.142	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7439-89-6	Iron	23700		mg/kg dry	0.772	2.37	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7439-92-1	Lead	7.52		mg/kg dry	0.202	0.356	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7439-95-4	Magnesium	3010		mg/kg dry	0.534	5.94	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7439-96-5	Manganese	261		mg/kg dry	0.131	1.19	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-02-0	Nickel	11.0		mg/kg dry	0.154	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-09-7	Potassium	1210		mg/kg dry	4.01	11.9	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7782-49-2	Selenium	3.23		mg/kg dry	0.594	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-22-4	Silver	ND		mg/kg dry	0.119	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-23-5	Sodium	127		mg/kg dry	6.26	11.9	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-28-0	Thallium	ND		mg/kg dry	0.380	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-62-2	Vanadium	23.5		mg/kg dry	0.131	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW
7440-66-6	Zinc	44.8		mg/kg dry	0.107	0.594	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:50	MW

Mercury by 7470/7471

Sample Prepared by Method: EPA 3050B

Sample Prepared by Method: EPA SW846-7471

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0392	0.0392	1	EPA SW846-7471	04/30/2013 09:06	04/30/2013 17:17	AA

<u>Total Solids</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	84.2		%	0.100	0.100	1	SM 2540G	04/30/2013 11:28	04/30/2013 11:28	AMC

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 32 of 142

Client Sample ID: SP-2 8-9 ft York Sample ID: 13D1004-04

Client Project ID Collection Date/Time York Project (SDG) No. Matrix Date Received

13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Log-in Notes:

Sample Notes:

Chromium, Hexavalent

Sample Prepared by Method: EPA SW846-3060

Date/Time Date/Time Analyzed Result Units MDL Dilution Reference Method CAS No. Parameter RLPrepared Analyst SW846-7196A 04/30/2013 14:38 04/30/2013 14:38 ND mg/kg dry 0.416 0.594 AMC 18540-29-9 Chromium, Hexavalent

Log-in Notes: Chromium, Trivalent **Sample Notes:**

Sample Prepared by Method: EPA SW846-3060

Date/Time Date/Time MDL Dilution Reference Method CAS No. Result Flag Units Parameter Prepared Analyzed Analyst 17.1 mg/kg 0.250 0.500 CALCULATION 04/30/2013 14:31 05/01/2013 10:16 AMC 16065-83-1 Chromium, Trivalent

Sample Information

Client Sample ID: SP-2 8-9 ft (Duplicate) **York Sample ID:** 13D1004-05

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Log-in Notes: Sample Notes: Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	112ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 33 of 142

Client Sample ID: SP-2 8-9 ft (Duplicate)

York Sample ID:

13D1004-05

York Project (SDG) No. 13D1004

<u>Client Project ID</u> #130030 11-28 31st Drive Queens NY Matrix Soil Collection Date/Time
April 24, 2013 3:00 pm

Date Received 04/26/2013

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A						
	Sample	Prepared	by	Method:	EPA	5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	59	120	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
67-64-1	Acetone	ND		ug/kg dry	2.9	12	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
71-43-2	Benzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
108-86-1	Bromobenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-25-2	Bromoform	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
67-66-3	Chloroform	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
74-95-3	Dibromomethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-09-2	Methylene chloride	ND		ug/kg dry	2.9	12	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
91-20-3	Naphthalene	ND		ug/kg dry	2.9	12	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 34 of 142

Client Sample ID: SP-2 8-9 ft (Duplicate)

York Sample ID:

13D1004-05

York Project (SDG) No. 13D1004

Client Project ID #130030 11-28 31st Drive Queens NY Matrix Soil Collection Date/Time
April 24, 2013 3:00 pm

Date Received 04/26/2013

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.9	12	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
100-42-5	Styrene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
108-88-3	Toluene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	dry 2.9 5.9		1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.8	18	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
108-05-4	Vinyl acetate	ND		ug/kg dry	2.9	5.9	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 15:48	SS
	Surrogate Recoveries	Result		Acce	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %			73-130						
460-00-4	Surrogate: p-Bromofluorobenzene	106 %			72-127						
2037-26-5	Surrogate: Toluene-d8	101 %			84-117						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	106	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	140	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
62-53-3	Aniline	ND		ug/kg dry	167	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
120-12-7	Anthracene	ND		ug/kg dry	160	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	109	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	116	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	245	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	97.2	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	293	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	293	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 35 of 142

Client Sample ID: SP-2 8-9 ft (Duplicate)

York Sample ID:

13D1004-05

York Project (SDG) No. 13D1004

<u>Client Project ID</u> #130030 11-28 31st Drive Queens NY Matrix Soil Collection Date/Time
April 24, 2013 3:00 pm

Date Received 04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3545A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	162	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	141	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	197	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	76.1	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	101	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	149	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	103	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	202	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	158	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	96.6	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	172	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
218-01-9	Chrysene	ND		ug/kg dry	135	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	118	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	136	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	119	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	191	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	180	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	92.5	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	153	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	239	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	184	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	205	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	131	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	255	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	369	585	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	246	585	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	150	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	129	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	293	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
206-44-0	Fluoranthene	ND		ug/kg dry	172	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
86-73-7	Fluorene	ND		ug/kg dry	140	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	173	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

X (203) 35<u>7-0100</u>

Client Sample ID: SP-2 8-9 ft (Duplicate)

York Sample ID:

13D1004-05

York Project (SDG) No. 13D1004

<u>Client Project ID</u> #130030 11-28 31st Drive Queens NY Matrix Soil Collection Date/Time
April 24, 2013 3:00 pm

Date/Time

Date Received 04/26/2013

Date/Time

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Prepared	Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	98.9	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	218	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	83.7	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	133	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
78-59-1	Isophorone	ND		ug/kg dry	101	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
91-57-6	2-Methylnaphthalene	386		ug/kg dry	225	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	111	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	127	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
91-20-3	Naphthalene	ND		ug/kg dry	72.0	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	291	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	121	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	86.0	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	110	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	79.6	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	97.8	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	120	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	132	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	221	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
85-01-8	Phenanthrene	ND		ug/kg dry	153	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
108-95-2		ND		ug/kg dry	126	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
	Phenol	ND		ug/kg dry	119	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
129-00-0	Pyrene							EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
110-86-1	Pyridine	ND		ug/kg dry	205	293	1				
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	106	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	227	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	149	293	1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
	Dioxin Screen	0.00		ug/kg dry			1	EPA SW-846 8270C	04/30/2013 14:34	04/30/2013 18:44	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	88.8 %			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	77.0 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	81.9 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	68.7 %			30-130						
4165-62-2	Surrogate: Phenol-d5	85.6 %			15-110						
1718-51-0	Surrogate: Terphenyl-d14	116 %			30-130						

Client Sample ID: SP-2 8-9 ft (Duplicate)

York Sample ID:

13D1004-05

York Project (SDG) No. 13D1004

Client Project ID #130030 11-28 31st Drive Queens NY Matrix Soil Collection Date/Time
April 24, 2013 3:00 pm

Date Received 04/26/2013

Pesticides, 8081 target list

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
309-00-2	Aldrin	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
72-20-8	Endrin	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.66	9.66	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.93	1.93	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
8001-35-2	Toxaphene	ND		ug/kg dry	97.8	97.8	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:31	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
2051-24-3	Surrogate: Decachlorobiphenyl	109 %			30-150						

877-09-8 Surrogate: Tetrachloro-m-xylene

120 % 30-150

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0199	0.0199	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:31	JW
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0199	0.0199	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:31	JW
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0199	0.0199	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:31	JW
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0199	0.0199	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:31	JW
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0199	0.0199	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:31	JW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 38 of 142

#130030 11-28 31st Drive Queens NY

Client Sample ID: SP-2 8-9 ft (Duplicate)

York Sample ID: 13D1004-05

York Project (SDG) No. Client Project ID

MatrixCollection Date/TimeSoilApril 24, 2013 3:00 pm

Date Received 04/26/2013

Polychlorinated Biphenyls (PCB)

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550B

13D1004

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0199	0.0199	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:31	JW
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0199	0.0199	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:31	JW
1336-36-3	Total PCBs	ND		mg/kg dry	0.0199	0.0199	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 16:31	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
877-09-8	Surrogate: Tetrachloro-m-xylene	98.0 %			30-150						
2051-24-3	Surrogate: Decachlorobiphenyl	81.6 %			30-150						

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	9660		mg/kg dry	1.19	2.34	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-36-0	Antimony	ND		mg/kg dry	0.258	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-38-2	Arsenic	6.35		mg/kg dry	0.398	1.17	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-39-3	Barium	21.8		mg/kg dry	0.152	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-41-7	Beryllium	ND		mg/kg dry	0.117	0.117	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.117	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-70-2	Calcium	1930		mg/kg dry	0.047	5.85	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-47-3	Chromium	16.5		mg/kg dry	0.140	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-48-4	Cobalt	6.63		mg/kg dry	0.094	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-50-8	Copper	12.9		mg/kg dry	0.140	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7439-89-6	Iron	20200		mg/kg dry	0.761	2.34	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7439-92-1	Lead	6.63		mg/kg dry	0.199	0.351	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7439-95-4	Magnesium	2560		mg/kg dry	0.527	5.85	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7439-96-5	Manganese	189		mg/kg dry	0.129	1.17	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-02-0	Nickel	8.02		mg/kg dry	0.152	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-09-7	Potassium	1190		mg/kg dry	3.96	11.7	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7782-49-2	Selenium	2.97		mg/kg dry	0.585	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-22-4	Silver	ND		mg/kg dry	0.117	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-23-5	Sodium	118		mg/kg dry	6.17	11.7	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-28-0	Thallium	ND		mg/kg dry	0.375	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-62-2	Vanadium	26.6		mg/kg dry	0.129	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW
7440-66-6	Zinc	33.3		mg/kg dry	0.105	0.585	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 11:55	MW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 39 of 142

SP-2 8-9 ft (Duplicate) **Client Sample ID:**

York Sample ID: 13D1004-05

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

13D1004

#130030 11-28 31st Drive Queens NY

Soil

April 24, 2013 3:00 pm

04/26/2013

Mercury by 7470/7471

Mercury

Log-in Notes:

Sample Notes:

Reference Method

Date/Time

Sample Prepared by Method: EPA SW846-7471

CAS No. **Parameter** 7439-97-6

Result Flag ND

mg/kg dry 0.0386

MDI

Units

0.0386

EPA SW846-7471

Prepared 04/30/2013 09:06

Date/Time

Date/Time

Prepared

Analyzed <u>An</u>alyst 04/30/2013 17:17

Log-in Notes:

Sample Notes:

Sample Notes:

Sample Notes:

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No

solids

Parameter % Solids

Result Flag 85.4

Units %

MDI 0 100 0.100

Log-in Notes:

Dilution SM 2540G

Dilution

Reference Method 04/30/2013 11:28 Date/Time Analyzed

Analyst 04/30/2013 11:28 AMC

Chromium, Hexavalent

Sample Prepared by Method: EPA SW846-3060

CAS No.

18540-29-9

16065-83-1

Parameter Chromium, Hexavalent Result

ND

Result

16.5

Units

mg/kg dry

MDI RI 0.585 0.410

Dilution

Reference Method SW846-7196A

Date/Time Prepared 04/30/2013 14:38 Date/Time Analyzed

nalyst 04/30/2013 14:38 AMC

Chromium, Trivalent

Sample Prepared by Method: EPA SW846-3060

Parameter

Chromium, Trivalent

Units mg/kg

Flag

RL 0.500

Log-in Notes:

Dilution

Reference Method

CALCULATION

Date/Time Prepared

York Sample ID:

04/30/2013 14:31

Date/Time Analyzed nalyst 05/01/2013 10:16

AMC

Sample Information

MDI

0.250

Client Sample ID: SP-3 0-2 ft

York Project (SDG) No. 13D1004

Client Project ID

#130030 11-28 31st Drive Queens NY

Matrix Soil

Collection Date/Time April 24, 2013 3:00 pm

13D1004-06 Date Received

04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

Date/Time Date/Time Dilution Flag Units MDL Reference Method CAS No Parameter Result Prepared Analyzed Analyst EPA SW846-8260B 04/30/2013 09:22 04/30/2013 16:23 ND ug/kg dry 2.5 5.0 SS 630-20-6 1,1,1,2-Tetrachloroethane 04/30/2013 09:22 04/30/2013 16:23 2.5 EPA SW846-8260B SS 71-55-6 1,1,1-Trichloroethane ND ug/kg dry 5.0 1 ND ug/kg dry 2.5 5.0 1 EPA SW846-8260B 04/30/2013 09:22 04/30/2013 16:23 SS 79-34-5 1.1.2.2-Tetrachloroethane ug/kg dry 2.5 5.0 EPA SW846-8260B 04/30/2013 09:22 04/30/2013 16:23 SS ,1,2-Trichloro-1,2,2-trifluoroethane (Freon 11?ND76-13-1 04/30/2013 09:22 04/30/2013 16:23 ND ug/kg dry 2.5 5.0 EPA SW846-8260B SS 79-00-5 1,1,2-Trichloroethane 04/30/2013 09:22 04/30/2013 16:23 2.5 1 EPA SW846-8260B SS ND ug/kg dry 5.0 75-34-3 1,1-Dichloroethane 04/30/2013 09:22 04/30/2013 16:23 ND ug/kg dry 2.5 5.0 1 EPA SW846-8260B SS 75-35-4 1.1-Dichloroethylene ND ug/kg dry 2.5 5.0 EPA SW846-8260B 04/30/2013 09:22 04/30/2013 16:23 SS 563-58-6 1,1-Dichloropropylene EPA SW846-8260B 04/30/2013 09:22 04/30/2013 16:23 2.5 5.0 1 SS ND ug/kg dry 87-61-6 1,2,3-Trichlorobenzene 04/30/2013 09:22 04/30/2013 16:23 ND ug/kg dry 2.5 5.0 EPA SW846-8260B SS 96-18-4 1,2,3-Trichloropropane

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 40 of 142

Client Sample ID: SP-3 0-2 ft York Sample ID: 13D1004-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

74-95-3

Dibromomethane

ND

Sample Prepared by M	Method: EPA 5035A								Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Prepared	Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	50	100	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
67-64-1	Acetone	ND		ug/kg dry	2.5	10	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
71-43-2	Benzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
108-86-1	Bromobenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
75-25-2	Bromoform	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
67-66-3	Chloroform	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

ug/kg dry 2.5

5.0

EPA SW846-8260B

Page 41 of 142

04/30/2013 09:22 04/30/2013 16:23

Client Sample ID: SP-3 0-2 ft York Sample ID: 13D1004-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
75-09-2	Methylene chloride	3.5	J, B	ug/kg dry	2.5	10	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
91-20-3	Naphthalene	ND		ug/kg dry	2.5	10	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.0	10	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
100-42-5	Styrene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
127-18-4	Tetrachloroethylene	3.9	J	ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
108-88-3	Toluene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.5	15	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
108-05-4	Vinyl acetate	ND		ug/kg dry	2.5	5.0	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:23	SS
	Surrogate Recoveries	Result			ptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	100 %		71000	73-130						
460-00-4	Surrogate: p-Bromofluorobenzene	110 %			72-127						
2037-26-5	Surrogate: Toluene-d8	107 %			84-117						

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

AX (203) 357-0166 Page 42 of 142

Client Sample ID: SP-3 0-2 ft York Sample ID: 13D1004-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:	Sample	Notes

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	499	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	661	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
62-53-3	Aniline	ND		ug/kg dry	788	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
120-12-7	Anthracene	ND		ug/kg dry	752	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	515	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	546	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	1150	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	458	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	1380	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	1380	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	761	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	664	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	929	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	358	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	474	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	703	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	485	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	951	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	744	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	455	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	808	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
218-01-9	Chrysene	ND		ug/kg dry	634	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	554	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	642	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	559	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	901	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	849	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	435	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	722	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	1120	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	865	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	965	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR

Client Sample ID: SP-3 0-2 ft York Sample ID: 13D1004-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:	Sample Notes

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
131-11-3	Dimethyl phthalate	ND		ug/kg dry	615	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	1740	2760	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	1200	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	1160	2760	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	708	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	609	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	1380	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
206-44-0	Fluoranthene	ND		ug/kg dry	808	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
86-73-7	Fluorene	ND		ug/kg dry	661	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	813	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	466	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	1030	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	394	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	628	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
78-59-1	Isophorone	ND		ug/kg dry	474	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	1060	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	524	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	598	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
91-20-3	Naphthalene	ND		ug/kg dry	339	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	1370	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	571	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	405	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	518	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	375	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	460	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	565	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	623	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	1040	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
85-01-8	Phenanthrene	ND		ug/kg dry	719	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
108-95-2	Phenol	ND		ug/kg dry	595	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
129-00-0	Pyrene	ND		ug/kg dry	562	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
110-86-1	Pyridine	ND		ug/kg dry	967	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 44 of 142

Client Sample ID: SP-3 0-2 ft York Sample ID: 13D1004-06

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	499	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	1070	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	700	1380	5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
	Dioxin Screen	0.00		ug/kg dry			5	EPA SW-846 8270C	04/30/2013 14:34	05/01/2013 21:04	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	56.9 %			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	85.7 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	57.7 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	75.1 %			30-130						
4165-62-2	Surrogate: Phenol-d5	63.6 %			15-110						
1718-51-0	Surrogate: Terphenyl-d14	75.1 %			30-130						

Pesticides, 8081 target list

Sample Prepared by Method: EPA 3550B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
309-00-2	Aldrin	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
72-20-8	Endrin	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW
72-43-5	Methoxychlor	ND		ug/kg dry	9.10	9.10	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 45 of 142

Client Sample ID: SP-3 0-2 ft York Sample ID: 13D1004-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Pesticides, 8081 target list
Sample Prepared by Method: EPA 3550B

Log-in Notes:

Log-in Notes:

Sample Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.82	1.82	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW	
8001-35-2	Toxaphene	ND		ug/kg dry	92.1	92.1	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 14:46	JW	
	Surrogate Recoveries	Result		Acce	ptance R	ange						
2051-24-3	Surrogate: Decachlorobiphenyl	108 %			30-150							
877-09-8	Surrogate: Tetrachloro-m-xylene	119 %			30-150							

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550B

CAS No.	. Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0187	0.0187	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:00	JW
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0187	0.0187	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:00	JW
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0187	0.0187	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:00	JW
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0187	0.0187	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:00	JW
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0187	0.0187	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:00	JW
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0187	0.0187	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:00	JW
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0187	0.0187	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:00	JW
1336-36-3	Total PCBs	ND		mg/kg dry	0.0187	0.0187	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:00	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
877-09-8	Surrogate: Tetrachloro-m-xylene	94.5 %			30-150						
2051-24-3	Surrogate: Decachlorobiphenyl	79.6 %			30-150						

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	9050		mg/kg dry	1.12	2.20	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-36-0	Antimony	ND		mg/kg dry	0.243	0.551	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-38-2	Arsenic	4.21		mg/kg dry	0.375	1.10	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-39-3	Barium	86.0		mg/kg dry	0.143	0.551	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-41-7	Beryllium	ND		mg/kg dry	0.110	0.110	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.110	0.551	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-70-2	Calcium	16400		mg/kg dry	0.044	5.51	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-47-3	Chromium	14.1		mg/kg dry	0.132	0.551	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-48-4	Cobalt	8.29		mg/kg dry	0.088	0.551	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7440-50-8	Copper	54.6		mg/kg dry	0.132	0.551	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7439-89-6	Iron	17200		mg/kg dry	0.717	2.20	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW
7439-92-1	Lead	96.8		mg/kg dry	0.187	0.331	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:00	MW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 46 of 142

SP-3 0-2 ft **Client Sample ID:** York Sample ID: 13D1004-06 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #130030 11-28 31st Drive Queens NY 13D1004 Soil April 24, 2013 3:00 pm 04/26/2013 **Log-in Notes:** Metals, Target Analyte **Sample Notes:** Sample Prepared by Method: EPA 3050B Date/Time Date/Time Dilution CAS No Result Flag Units MDI RI Reference Method Prepared Analyzed **Analyst** Parameter 3250 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 12:00 MW mg/kg dry 7439-95-4 Magnesium MW 458 EPA SW846-6010B 04/30/2013 12:00 Manganese mg/kg dry 0.121 1.10 1 04/30/2013 09:20 7439-96-5 EPA SW846-6010B 04/30/2013 12:00 MW Nickel 9.85 mg/kg dry 0.143 0.551 04/30/2013 09:20 7440-02-0 EPA SW846-6010B 04/30/2013 12:00 MW Potassium 1970 mg/kg dry 3.73 11.0 04/30/2013 09:20 7440-09-7 MW 2.22 0.551 0.551 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 12:00 Selenium mg/kg dry 7782-49-2 7440-22-4 ND mg/kg dry 0.110 0.551 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 12:00 MW Silver Sodium 282 5.81 11.0 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 12:00 MW mg/kg dry 7440-23-5 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 12:00 ND mg/kg dry 0.353 0.551 MW 7440-28-0 Thallium MW 45.2 0.121 0.551 EPA SW846-6010B 04/30/2013 09:20 04/30/2013 12:00 7440-62-2 Vanadium mg/kg dry MW EPA SW846-6010B 04/30/2013 12:00 0.099 0.551 04/30/2013 09:20 7440-66-6 Zinc 64.7 mg/kg dry **Log-in Notes: Sample Notes:** Mercury by 7470/7471 Sample Prepared by Method: EPA SW846-7471 Date/Time Date/Time Dilution Reference Method CAS No. Result Flag Units MDI RI Prepared Analyzed Analyst Parameter EPA SW846-7471 04/30/2013 09:06 04/30/2013 17:17 mg/kg dry ND 0.0364 0.0364 AA 7439-97-6 Mercury **Log-in Notes: Sample Notes: Total Solids** Sample Prepared by Method: % Solids Prep Date/Time Date/Time CAS No. Result Flag Units MDI Dilution Reference Method Analyzed Parameter RI Prepared Analyst 90.7 % 0.100 0.100 SM 2540G 04/30/2013 11:28 04/30/2013 11:28 AMC solids % Solids **Log-in Notes:** Sample Notes: Chromium, Hexavalent Sample Prepared by Method: EPA SW846-3060 Date/Time Date/Time Dilution CAS No Parameter Result Flag Units MDI Reference Method Prepared Analyzed Analyst 04/30/2013 14:38 04/30/2013 14:38 0.551 SW846-7196A ND 0.386 AMC 18540-29-9 Chromium, Hexavalent mg/kg dry Log-in Notes: **Sample Notes:** Chromium, Trivalent Sample Prepared by Method: EPA SW846-3060 Date/Time Date/Time CAS No. Parameter Result Flag Units MDI RI Dilution Reference Method Prepared Analyzed Analyst AMC 14.1 mg/kg 0.250 0.500 CALCULATION 04/30/2013 14:31 05/01/2013 10:16 16065-83-1 Chromium, Trivalent Sample Information **Client Sample ID:** SP-3 8-9 ft York Sample ID: 13D1004-07 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Log-in Notes:

Soil

#130030 11-28 31st Drive Queens NY

13D1004

Volatile Organics, 8260 List

04/26/2013

April 24, 2013 3:00 pm

Sample Notes:

Client Sample ID: SP-3 8-9 ft York Sample ID: 13D1004-07

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 13D1004
 #130030 11-28 31st Drive Queens NY
 Soil
 April 24, 2013 3:00 pm
 04/26/2013

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1	1 ² ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	47	93	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
67-64-1	Acetone	3.1	J	ug/kg dry	2.3	9.3	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
71-43-2	Benzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
108-86-1	Bromobenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-25-2	Bromoform	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS

Client Sample ID: SP-3 8-9 ft York Sample ID: 13D1004-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5035A

Log-in Notes:	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
67-66-3	Chloroform	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
74-95-3	Dibromomethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-09-2	Methylene chloride	ND		ug/kg dry	2.3	9.3	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
91-20-3	Naphthalene	ND		ug/kg dry	2.3	9.3	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.7	9.3	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
100-42-5	Styrene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
108-88-3	Toluene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.0	14	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 49 of 142

Client Sample ID: SP-3 8-9 ft York Sample ID: 13D1004-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
108-05-4	Vinyl acetate	ND		ug/kg dry	2.3	4.7	1	EPA SW846-8260B	04/30/2013 09:22	04/30/2013 16:58	SS	
	Surrogate Recoveries	Result		Acce	ptance R	lange						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			73-130							
460-00-4	Surrogate: p-Bromofluorobenzene	99.5 %			72-127							
2037-26-5	Surrogate: Toluene-d8	104 %			84-117							

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	96.9	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	128	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
62-53-3	Aniline	ND		ug/kg dry	153	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
120-12-7	Anthracene	ND		ug/kg dry	146	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	100	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	106	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	224	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	88.8	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	268	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	268	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	148	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	129	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	180	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	69.6	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	92.1	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	136	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	94.2	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	185	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	144	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	88.3	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	157	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
218-01-9	Chrysene	ND		ug/kg dry	123	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	108	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	125	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	109	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 50 of 142

Client Sample ID: SP-3 8-9 ft York Sample ID: 13D1004-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	175	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	165	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	84.6	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	140	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	218	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	168	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	187	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	119	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	337	535	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	233	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	225	535	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	138	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	118	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	268	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
206-44-0	Fluoranthene	ND		ug/kg dry	157	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
86-73-7	Fluorene	ND		ug/kg dry	128	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	158	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	90.4	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	199	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	76.5	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	122	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
78-59-1	Isophorone	ND		ug/kg dry	92.1	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	206	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	102	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	116	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
91-20-3	Naphthalene	ND		ug/kg dry	65.8	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	266	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	111	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	78.7	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	101	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	72.8	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	89.4	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR

Client Sample ID: SP-3 8-9 ft York Sample ID: 13D1004-07

Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3545A

Log-in Notes: Sample Notes:

Sample Notes:

Date/Time

Date/Time

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	110	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	121	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	202	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
85-01-8	Phenanthrene	ND		ug/kg dry	140	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
108-95-2	Phenol	ND		ug/kg dry	116	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
129-00-0	Pyrene	ND		ug/kg dry	109	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
110-86-1	Pyridine	ND		ug/kg dry	188	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	96.9	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	208	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	136	268	1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
	Dioxin Screen	0.00		ug/kg dry			1	EPA SW-846 8270C	04/30/2013 07:46	04/30/2013 16:05	SR
	Surrogate Recoveries	Result		Acce	ptance Ra	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	74.3 %			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	63.1 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	44.5 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	42.4 %			30-130						
4165-62-2	Surrogate: Phenol-d5	66.8 %			15-110						

30-130

Log-in Notes:

Pesticides, 8081 target list

1718-51-0

1031-07-8

Sample Prepared by Method: EPA 3550B

Surrogate: Terphenyl-d14

Endosulfan sulfate

88.0 %

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Prepared	Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
72-55-9	4,4'-DDE	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
50-29-3	4,4'-DDT	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
309-00-2	Aldrin	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
319-84-6	alpha-BHC	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
319-85-7	beta-BHC	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
5103-74-2	gamma-Chlordane	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
319-86-8	delta-BHC	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
60-57-1	Dieldrin	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
959-98-8	Endosulfan I	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
33213-65-9	Endosulfan II	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW

120 RESEARCH DRIVE FAX (203) 35<u>7-0166</u> STRATFORD, CT 06615 (203) 325-1371

Page 52 of 142

Client Sample ID: SP-3 8-9 ft York Sample ID: 13D1004-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYSoilApril 24, 2013 3:00 pm04/26/2013

Pesticides, 8081 target list

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-20-8	Endrin	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
7421-93-4	Endrin aldehyde	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
53494-70-5	Endrin ketone	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
76-44-8	Heptachlor	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
1024-57-3	Heptachlor epoxide	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
72-43-5	Methoxychlor	ND		ug/kg dry	8.83	8.83	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.77	1.77	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
8001-35-2	Toxaphene	ND		ug/kg dry	89.4	89.4	5	EPA SW 846-8081B	04/30/2013 07:39	04/30/2013 15:12	JW
	Surrogate Recoveries	Result		Acce	ptance R	ange					
2051-24-3	Surrogate: Decachlorobiphenyl	139 %			30-150						
877-09-8	Surrogate: Tetrachloro-m-xylene	147 %			30-150						

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA 3550B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0182	0.0182	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:29	JW
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0182	0.0182	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:29	JW
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0182	0.0182	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:29	JW
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0182	0.0182	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:29	JW
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0182	0.0182	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:29	JW
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0182	0.0182	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:29	JW
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0182	0.0182	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:29	JW
1336-36-3	Total PCBs	ND		mg/kg dry	0.0182	0.0182	1	EPA SW 846-8082A	04/30/2013 07:39	04/30/2013 17:29	JW
	Surrogate Recoveries	Result		Acce	ptance Ra	inge					
877-09-8	Surrogate: Tetrachloro-m-xylene	118 %			30-150						
2051-24-3	Surrogate: Decachlorobiphenyl	101 %			30-150						

Metals, Target Analyte

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	8960		mg/kg dry	1.09	2.14	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-36-0	Antimony	ND		mg/kg dry	0.235	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-38-2	Arsenic	3.93		mg/kg dry	0.364	1.07	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-39-3	Barium	36.3		mg/kg dry	0.139	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 53 of 142

Client Sample ID: SP-3 8-9 ft York Sample ID: 13D1004-07

Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-41-7	Beryllium	ND		mg/kg dry	0.107	0.107	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-43-9	Cadmium	ND		mg/kg dry	0.107	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-70-2	Calcium	617		mg/kg dry	0.043	5.35	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-47-3	Chromium	15.7		mg/kg dry	0.128	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-48-4	Cobalt	7.08		mg/kg dry	0.086	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-50-8	Copper	13.4		mg/kg dry	0.128	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7439-89-6	Iron	16600		mg/kg dry	0.696	2.14	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7439-92-1	Lead	5.18		mg/kg dry	0.182	0.321	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7439-95-4	Magnesium	3130		mg/kg dry	0.482	5.35	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7439-96-5	Manganese	413		mg/kg dry	0.118	1.07	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-02-0	Nickel	12.3		mg/kg dry	0.139	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-09-7	Potassium	1470		mg/kg dry	3.62	10.7	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7782-49-2	Selenium	2.65		mg/kg dry	0.535	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-22-4	Silver	ND		mg/kg dry	0.107	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-23-5	Sodium	142		mg/kg dry	5.64	10.7	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-28-0	Thallium	ND		mg/kg dry	0.343	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW
7440-62-2	Vanadium	21.7		mg/kg dry	0.118	0.535	1	EPA SW846-6010B	04/30/2013 09:20	04/30/2013 12:05	MW

Mercury by 7470/7471

7440-66-6

Sample Prepared by Method: EPA SW846-7471

Zinc

Log-in	Notes:

0.535

Sample Notes:

04/30/2013 09:20

04/30/2013 12:05

EPA SW846-6010B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0353	0.0353	1	EPA SW846-7471	04/30/2013 09:06	04/30/2013 17:17	AA

mg/kg dry 0.096

Log-in Notes: Sample Notes: **Total Solids**

34.0

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	93.4		%	0.100	0.100	1	SM 2540G	04/30/2013 11:28	04/30/2013 11:28	AMC

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 54 of 142

Client Sample ID: SP-3 8-9 ft York Sample ID: 13D1004-07

Client Project ID Collection Date/Time York Project (SDG) No. Matrix Date Received

13D1004 #130030 11-28 31st Drive Queens NY Soil April 24, 2013 3:00 pm 04/26/2013

Log-in Notes:

Sample Notes:

Chromium, Hexavalent

Sample Prepared by Method: EPA SW846-3060

Date/Time Date/Time Analyzed Result Flag Units MDL Dilution Reference Method CAS No. Parameter RLPrepared Analyst SW846-7196A 04/30/2013 14:38 04/30/2013 14:38 ND mg/kg dry 0.375 0.535 AMC 18540-29-9 Chromium, Hexavalent

Log-in Notes: Chromium, Trivalent **Sample Notes:**

Sample Prepared by Method: EPA SW846-3060

Date/Time Date/Time MDL Dilution Reference Method CAS No. Result Flag Units Parameter Prepared Analyzed Analyst 15.7 mg/kg 0.250 0.500 CALCULATION 04/30/2013 14:31 05/01/2013 10:16 AMC 16065-83-1 Chromium, Trivalent

Sample Information

Client Sample ID: Filed Blank **York Sample ID:** 13D1004-08

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 13D1004 #130030 11-28 31st Drive Queens NY Water April 24, 2013 3:00 pm 04/26/2013

Log-in Notes: Sample Notes: Volatile Organics, 8260 List

nnle Prenared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
30-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
1-55-6	1,1,1-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
9-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
6-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
9-00-5	1,1,2-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
5-34-3	1,1-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
5-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
63-58-6	1,1-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
7-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
6-18-4	1,2,3-Trichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
6-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
06-93-4	1,2-Dibromoethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
5-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
07-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
8-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
08-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 55 of 142

Client Sample ID: Filed Blank York Sample ID: 13D1004-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5030B

atile Organics, 8260 List Log-in Notes:

Sample Notes:

541-73-1 142-28-9 106-46-7 594-20-7 78-93-3 95-49-8 106-43-4	1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND	ug/L							
106-46-7 594-20-7 78-93-3 95-49-8		ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
594-20-7 78-93-3 95-49-8	1,4-Dichlorobenzene		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
78-93-3 95-49-8		ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
95-49-8	2,2-Dichloropropane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
	2-Butanone	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
106-43-4	2-Chlorotoluene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
	4-Chlorotoluene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
67-64-1	Acetone	12	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
71-43-2	Benzene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
108-86-1	Bromobenzene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
74-97-5	Bromochloromethane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
75-27-4	Bromodichloromethane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
75-25-2	Bromoform	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
74-83-9	Bromomethane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
56-23-5	Carbon tetrachloride	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
108-90-7	Chlorobenzene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
75-00-3	Chloroethane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
67-66-3	Chloroform	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
74-87-3	Chloromethane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
156-59-2	cis-1,2-Dichloroethylene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
124-48-1	Dibromochloromethane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
74-95-3	Dibromomethane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
75-71-8	Dichlorodifluoromethane	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
100-41-4	Ethyl Benzene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
87-68-3	Hexachlorobutadiene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
98-82-8	Isopropylbenzene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
75-09-2	Methylene chloride	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
91-20-3	Naphthalene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
104-51-8	n-Butylbenzene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
103-65-1	n-Propylbenzene	ND	ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 56 of 142

Client Sample ID: Filed Blank York Sample ID: 13D1004-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 24, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	5.0	10	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
135-98-8	sec-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
98-06-6	tert-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
127-18-4	Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
1330-20-7	Xylenes, Total	ND		ug/L	7.5	15	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
108-05-4	Vinyl acetate	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/29/2013 08:39	04/30/2013 18:14	SS
	Surrogate Recoveries	Result		Acc	eptance Ra	inge					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	99.6 %			72.6-129						
460-00-4	Surrogate: p-Bromofluorobenzene	132 %			63.5-145						
2037-26-5	Surrogate: Toluene-d8	105 %			81.2-127						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
208-96-8	Acenaphthylene	ND		ug/L	1.78	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
62-53-3	Aniline	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
120-12-7	Anthracene	ND		ug/L	1.22	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
56-55-3	Benzo(a)anthracene	ND		ug/L	1.34	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
50-32-8	Benzo(a)pyrene	ND		ug/L	1.33	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/L	1.45	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
100-51-6	Benzyl alcohol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	1.75	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
85-68-7	Benzyl butyl phthalate	ND		ug/L	0.874	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 57 of 142

Client Sample ID: Filed Blank York Sample ID: 13D1004-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

thod: EPA 3510C Parameter 4-Bromophenyl phenyl ether	Result							Date/Time	Date/Time	
1 Promonhanyl nhanyl other		Flag	Units	MDL	RL	Dilutio	n Reference Method	Prepared	Analyzed	Analyst
4-Bromophenyi phenyi emer	ND		ug/L	1.36	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
4-Chloro-3-methylphenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
4-Chloroaniline	ND		ug/L	3.06	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Bis(2-chloroethoxy)methane	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Bis(2-chloroethyl)ether	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Bis(2-chloroisopropyl)ether	ND		ug/L	3.07	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Bis(2-ethylhexyl)phthalate	ND		ug/L	4.90	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
2-Chloronaphthalene	ND		ug/L	2.26	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
2-Chlorophenol	ND		ug/L	1.84	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
4-Chlorophenyl phenyl ether	ND		ug/L	2.51	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Chrysene	ND		ug/L	1.51	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Dibenzo(a,h)anthracene	ND		ug/L	1.60	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Dibenzofuran	ND		ug/L	2.47	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Di-n-butyl phthalate	ND		ug/L	2.10	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
1,3-Dichlorobenzene	ND		ug/L	2.68	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
1,2-Dichlorobenzene	ND		ug/L	2.55	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
1,4-Dichlorobenzene	ND		ug/L	2.27	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
3,3'-Dichlorobenzidine	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
2,4-Dichlorophenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Diethyl phthalate	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
2,4-Dimethylphenol	ND		ug/L	1.64	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Dimethyl phthalate	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
4,6-Dinitro-2-methylphenol	ND		ug/L	1.66	10.3	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
2,4-Dinitrophenol	ND		ug/L	2.31	10.3	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
2,6-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
2,4-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Di-n-octyl phthalate	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Fluoranthene	ND		ug/L	1.27	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Fluorene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Hexachlorobenzene	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Hexachlorobutadiene	ND		ug/L	2.86	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
Hexachlorocyclopentadiene	ND		ug/L	2.59	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
	4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether 2-Chlorophenol 4-Chlorophenol phenyl ether Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine 2,4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,6-Dinitrotoluene 2,4-Dinitrotoluene Di-n-octyl phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene	4-Chloroaniline ND Bis(2-chloroethoxy)methane ND Bis(2-chloroethyl)ether ND Bis(2-chloroisopropyl)ether ND Bis(2-ethylhexyl)phthalate ND 2-Chloronaphthalene ND 2-Chlorophenol ND 4-Chlorophenyl phenyl ether ND Chrysene ND Dibenzo(a,h)anthracene ND Di-n-butyl phthalate ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 3,3'-Dichlorobenzene ND 2,4-Dichlorophenol ND Diethyl phthalate ND 2,4-Dimethylphenol ND Dimethyl phthalate ND 2,4-Dimitro-2-methylphenol ND 2,4-Dinitrotoluene ND 2,4-Dinitrotoluene ND 1-n-octyl phthalate ND Fluoranthene ND Hexachlorobenzene ND Hexachlorobenzene ND Hexachlorobenzene ND	4-Chloroaniline ND Bis(2-chloroethoxy)methane ND Bis(2-chloroethyl)ether ND Bis(2-chloroisopropyl)ether ND Bis(2-chloroisopropyl)ether ND Bis(2-chlorophenyl)phthalate ND 2-Chlorophenol ND 4-Chlorophenyl phenyl ether ND Chrysene ND Dibenzo(a,h)anthracene ND Dibenzofuran ND Di-n-butyl phthalate ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND 3,3'-Dichlorobenzene ND 2,4-Dichlorophenol ND Diethyl phthalate ND 2,4-Dimethylphenol ND Dimethyl phthalate ND 4,6-Dinitro-2-methylphenol ND 2,4-Dinitrophenol ND 2,4-Dinitrophenol ND 2,4-Dinitrotoluene ND 1,2-Dinitrotoluene ND 1,3-Dichlorobenzene ND 1,4-Dinitrotoluene ND 1,	4-Chloroaniline Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether ND Bis(2-chloroethyl)ether ND Bis(2-chloroisopropyl)ether ND Ug/L 2-Chloronaphthalene ND Ug/L Chrysene ND Ug/L Dibenzo(a,h)anthracene ND Ug/L Dibenzo(a,h)anthracene ND Ug/L Di-n-butyl phthalate ND Ug/L 1,3-Dichlorobenzene ND Ug/L 1,4-Dichlorobenzene ND Ug/L 3,3'-Dichlorobenzene ND Ug/L 2,4-Dichlorobenzidine ND Ug/L Diethyl phthalate ND Ug/L 2,4-Dimethylphenol ND Ug/L Dimethyl phthalate ND Ug/L 4,6-Dinitro-2-methylphenol ND Ug/L 2,4-Dinitrotoluene ND Ug/L 2,4-Dinitrotoluene ND Ug/L Pluoranthene ND Ug/L Fluoranthene ND Ug/L Hexachlorobutadiene ND Ug/L Hexachlorobutadiene ND Ug/L ## A-Chloroaniline ND ug/L 3.06 ## Bis(2-chloroethoxy)methane ND ug/L 1.82 ## Bis(2-chloroethyl)ether ND ug/L 1.54 ## Bis(2-chlorospropyl)ether ND ug/L 3.07 ## Bis(2-chlorospropyl)ether ND ug/L 3.07 ## Bis(2-chlorospropyl)ether ND ug/L 4.90 ## Bis(2-chlorospropyl)ether ND ug/L 2.26 ## Bis(2-chlorospropyl)ether ND ug/L 1.54 ## Bis(2-chlorospropyl)ether ND ug/L 2.26 ## Bis(2-chlorophenol ND ug/L 2.26 ## Bis(2-chlorospropyl)ether ND ug/L 2.26 ## Bis(2-chlorospropyl)ether ND ug/L 2.27 ## Discording ND ug/L 2.27 ## Bis(2-chlorospropyl)ether ND ug/L 2.26 ## Bis(2-chlorospropyl)ether	4-Chloroaniline ND ug/L 3.06 5.13 Bis(2-chloroethoxy)methane ND ug/L 1.82 5.13 Bis(2-chloroethyl)ether ND ug/L 1.54 5.13 Bis(2-chloroethyl)ether ND ug/L 3.07 5.13 Bis(2-chlorophopyl)ether ND ug/L 4.90 5.13 2-Chlorophenol ND ug/L 2.26 5.13 2-Chlorophenol ND ug/L 1.84 5.13 4-Chlorophenyl phenyl ether ND ug/L 2.51 5.13 Dibenzofura ND ug/L 2.47 5.13 Di-n-butyl phthalate ND ug/L 2.68 5.13	## A-Chloroaniline ND ug/L 3.06 5.13 1 ## Bis(2-chloroethoxy)methane ND ug/L 1.82 5.13 1 ## Bis(2-chloroethyl)ether ND ug/L 1.54 5.13 1 ## Bis(2-chloroisopropyl)ether ND ug/L 3.07 5.13 1 ## Bis(2-chloroisopropyl)ether ND ug/L 4.90 5.13 1 ## Bis(2-chloroaphthalate ND ug/L 4.90 5.13 1 ## 2-Chlorophenol ND ug/L 1.84 5.13 1 ## 2-Chlorophenol ND ug/L 1.84 5.13 1 ## 2-Chlorophenol ND ug/L 1.84 5.13 1 ## Chrysene ND ug/L 1.51 5.13 1 ## Dibenzo(a,h)anthracene ND ug/L 1.60 5.13 1 ## Dibenzo(a,h)anthracene ND ug/L 2.47 5.13 1 ## Di-n-butyl phthalate ND ug/L 2.47 5.13 1 ## 1,3-Dichlorobenzene ND ug/L 2.68 5.13 1 ## 1,3-Dichlorobenzene ND ug/L 2.68 5.13 1 ## 1,4-Dichlorobenzene ND ug/L 2.27 5.13 1 ## 3,3-Dichlorobenzene ND ug/L 2.27 5.13 1 ## 2,4-Dichlorobenzene ND ug/L 2.63 5.13 1 ## 2,4-Dimethylphenol ND ug/L 1.64 5.13 1 ## 2,4-Dimethylphenol ND ug/L 1.64 5.13 1 ## 2,4-Dimitro-2-methylphenol ND ug/L 1.66 10.3 1 ## 2,4-Dimitro-2-methylphenol ND ug/L 1.65 5.13 1 ## 2,4-Dimitro-2-methylphenol ND ug/L 1.65 5.13 1 ## 2,4-Dimitro-1-methylphenol ND ug/L 1.65 5.13 1 ## 3,1-Dichlorobenzene ND ug/L 1.65 5.13 1 ## 4,6-Dimitro-1-methylphenol ND ug/L 1.65 5.13 1 ## 3,1-Dichlorobenzene ND ug/L 1.65 5.13 1 ## 4,6-Dimitro-1-methylphenol ND ug/L 1.65 5.13 1 ## 4,6-Dimitro-1-methylph	A-Chloroaniline	### A-Chlorominine ND ug/L 3.06 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Bis(2-chlorocthoxy)methane ND ug/L 1.82 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Bis(2-chlorocthy))-ther ND ug/L 3.07 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Bis(2-chlorocthy))-ther ND ug/L 4.90 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlyhexyl)-phthalate ND ug/L 2.26 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlyhexyl)-phthalate ND ug/L 2.26 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 1.84 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 1.51 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 1.51 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 1.51 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 1.50 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.47 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.48 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.68 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.26 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.27 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.26 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.26 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.26 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 2.26 5.13 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 1.66 1.33 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 1.66 1.33 1 EPA SW-846 \$270CEPA 625 0501/2013 07:34 Pis(2-chlorocheny) phenyl ether ND ug/L 1.66 1.33 1 EPA SW-846 \$2	## A-Chloromithine ND	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 58 of 142

Client Sample ID: Filed Blank York Sample ID: 13D1004-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 24, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-72-1	Hexachloroethane	ND		ug/L	3.12	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	1.74	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
78-59-1	Isophorone	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
91-57-6	2-Methylnaphthalene	ND		ug/L	2.83	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
95-48-7	2-Methylphenol	ND		ug/L	1.19	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
91-20-3	Naphthalene	ND		ug/L	2.04	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
100-01-6	4-Nitroaniline	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
99-09-2	3-Nitroaniline	ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
88-74-4		ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
	2-Nitroaniline	ND		ug/L	1.73	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
98-95-3	Nitrobenzene				2.42	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
88-75-5	2-Nitrophenol	ND		ug/L							
100-02-7	4-Nitrophenol	ND		ug/L	1.70	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.399	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	5.13	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
87-86-5	Pentachlorophenol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
85-01-8	Phenanthrene	ND		ug/L	1.41	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
108-95-2	Phenol	ND		ug/L	1.13	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
129-00-0	Pyrene	ND		ug/L	1.77	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
110-86-1	Pyridine	ND		ug/L	4.01	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.53	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.79	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/01/2013 07:34	05/01/2013 12:28	SR
	Surrogate Recoveries	Result		Acc	eptance Ra	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	%			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	69.6 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	%			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	66.5 %			30-130						
4165-62-2	Surrogate: Phenol-d5	%			10-110						
1718-51-0	Surrogate: Terphenyl-d14	86.2 %			30-130						

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 59 of 142

Client Sample ID: Filed Blank York Sample ID: 13D1004-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 24, 2013 3:00 pm04/26/2013

Pesticides, 8081 target list

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-3510C Low Level

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
72-55-9	4,4'-DDE	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
50-29-3	4,4'-DDT	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
309-00-2	Aldrin	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
319-84-6	alpha-BHC	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
319-85-7	beta-BHC	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
5103-74-2	gamma-Chlordane	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
319-86-8	delta-BHC	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
60-57-1	Dieldrin	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
959-98-8	Endosulfan I	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
33213-65-9	Endosulfan II	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
1031-07-8	Endosulfan sulfate	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
72-20-8	Endrin	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
7421-93-4	Endrin aldehyde	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
53494-70-5	Endrin ketone	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
76-44-8	Heptachlor	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
1024-57-3	Heptachlor epoxide	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
5103-71-9	alpha-Chlordane	ND		ug/L	0.00100	0.00100	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
72-43-5	Methoxychlor	ND		ug/L	0.00500	0.00500	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
8001-35-2	Toxaphene	ND		ug/L	0.0500	0.0500	1 E	EPA SW 846-8081B	05/01/2013 07:30	05/01/2013 16:40	JW
	Surrogate Recoveries	Result		Acc	eptance Ra	ange					
2051-24-3	Surrogate: Decachlorobiphenyl	72.3 %			30-150						

Polychlorinated Biphenyls (PCB)

877-09-8

Sample Prepared by Method: EPA SW846-3510C Low Level

Surrogate: Tetrachloro-m-xylene

56.5 %

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8082A	05/01/2013 07:30	05/02/2013 10:52	JW
11104-28-2	Aroclor 1221	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8082A	05/01/2013 07:30	05/02/2013 10:52	JW
11141-16-5	Aroclor 1232	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8082A	05/01/2013 07:30	05/02/2013 10:52	JW
53469-21-9	Aroclor 1242	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8082A	05/01/2013 07:30	05/02/2013 10:52	JW
12672-29-6	Aroclor 1248	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8082A	05/01/2013 07:30	05/02/2013 10:52	JW

30-150

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 60 of 142

Client Sample ID: Filed Blank York Sample ID: 13D1004-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 24, 2013 3:00 pm04/26/2013

Polychlorinated Biphenyls (PCB)

Sample Prepared by Method: EPA SW846-3510C Low Level

Log-in Notes:

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
11097-69-1	Aroclor 1254	ND	1 1119	ug/L	0.0500	0.0500	1	EPA SW 846-8082A	05/01/2013 07:30	05/02/2013 10:52	JW
		ND		ug/L	0.0500	0.0500	1	EPA SW 846-8082A	05/01/2013 07:30	05/02/2013 10:52	JW
11096-82-5	Aroclor 1260			-							
1336-36-3	Total PCBs	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8082A	05/01/2013 07:30	05/02/2013 10:52	JW
	Surrogate Recoveries	Result		Acc	eptance R	ange					
877-09-8	Surrogate: Tetrachloro-m-xylene	53.5 %			30-150						
2051-24-3	Surrogate: Decachlorohinhenyl	59 7 %			30-150						

Metals, Target Analyte

Sample Prepared by Method: EPA 3010A

Sam

Sam	nle	No	tes

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	ND		mg/L	0.010	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-36-0	Antimony	ND		mg/L	0.003	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-38-2	Arsenic	ND		mg/L	0.004	0.004	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-39-3	Barium	ND		mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-41-7	Beryllium	ND		mg/L	0.001	0.001	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-43-9	Cadmium	ND		mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-70-2	Calcium	ND		mg/L	0.019	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-47-3	Chromium	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-48-4	Cobalt	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-50-8	Copper	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7439-89-6	Iron	ND		mg/L	0.010	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7439-92-1	Lead	ND		mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7439-95-4	Magnesium	ND		mg/L	0.010	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7439-96-5	Manganese	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-02-0	Nickel	ND		mg/L	0.001	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-09-7	Potassium	ND		mg/L	0.026	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7782-49-2	Selenium	ND		mg/L	0.007	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-22-4	Silver	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-23-5	Sodium	ND		mg/L	0.061	0.100	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-28-0	Thallium	ND		mg/L	0.003	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-62-2	Vanadium	ND		mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW
7440-66-6	Zinc	ND		mg/L	0.002	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:13	MW

Client Sample ID: Filed Blank York Sample ID: 13D1004-08

Client Project ID Collection Date/Time York Project (SDG) No. Matrix Date Received

13D1004 #130030 11-28 31st Drive Queens NY Water April 24, 2013 3:00 pm 04/26/2013

Log-in Notes:

Sample Notes:

Mercury by 7470/7471

Sample Prepared by Method: EPA SW846-7470

Date/Time Date/Time Result Units Flag MDL Dilution Reference Method Analyzed CAS No. **Parameter** Prepared Analyst EPA SW846-7470 04/30/2013 17:15 04/30/2013 17:15 ND mg/L 0.0002 0.0002 7439-97-6 Mercury

Log-in Notes: Sample Notes: HT-02 Chromium, Hexavalent

Sample Prepared by Method: Analysis Preparation

Date/Time Date/Time MDL Dilution CAS No. Result Flag Units Reference Method Parameter Prepared Analyzed Analyst 04/26/2013 16:25 04/26/2013 16:25 mg/L 0.00600 0.0100 SW846-7196A AMC 18540-29-9 Chromium, Hexavalent

Chromium, Trivalent **Log-in Notes: Sample Notes:**

Sample Prepared by Method: *** DEFAULT PREP ***

Date/Time Date/Time CAS No. Parameter Result Flag Units MDL Dilution Reference Method Prepared Analyzed Analyst 05/01/2013 10:15 ND mg/L 0.0100 Calculation 05/01/2013 10:15 16065-83-1 Chromium, Trivalent

Sample Information

Client Sample ID: MW-1 **York Sample ID:** 13D1004-09

York Project (SDG) No. Client Project ID Collection Date/Time Date Received Matrix 13D1004 #130030 11-28 31st Drive Queens NY Water April 25, 2013 3:00 pm 04/26/2013

Log-in Notes: Sample Notes: Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1	13ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
79-00-5	1,1,2-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
75-34-3	1,1-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
75-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
563-58-6	1,1-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
96-18-4	1,2,3-Trichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
106-93-4	1,2-Dibromoethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 62 of 142

Client Sample ID: MW-1 13D1004-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5030B

atile Organics, 8260 List Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
78-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
142-28-9	1,3-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
594-20-7	2,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
78-93-3	2-Butanone	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
95-49-8	2-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
106-43-4	4-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
67-64-1	Acetone	4.0	J, B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
108-86-1	Bromobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
74-97-5	Bromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
75-27-4	Bromodichloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
75-25-2	Bromoform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
74-83-9	Bromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
75-00-3	Chloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
67-66-3	Chloroform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
74-87-3	Chloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
124-48-1	Dibromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
74-95-3	Dibromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
100-41-4	Ethyl Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
87-68-3	Hexachlorobutadiene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
98-82-8	Isopropylbenzene	ND		ug/L	0.63	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	ВК
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK

Client Sample ID: MW-1 York Sample ID: 13D1004-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-09-2	Methylene chloride	3.0	J, B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
91-20-3	Naphthalene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
104-51-8	n-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
103-65-1	n-Propylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
95-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
179601-23-1	p- & m- Xylenes	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
99-87-6	p-Isopropyltoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
135-98-8	sec-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
98-06-6	tert-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
127-18-4	Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
1330-20-7	Xylenes, Total	ND		ug/L	2.5	15	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
108-05-4	Vinyl acetate	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 14:25	BK
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %			72.6-129						
460-00-4	Surrogate: p-Bromofluorobenzene	97.7 %			63.5-145						
2037-26-5	Surrogate: Toluene-d8	92.9 %			81.2-127						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	1.77	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
208-96-8	Acenaphthylene	ND		ug/L	1.74	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
62-53-3	Aniline	ND		ug/L	1.50	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
120-12-7	Anthracene	ND		ug/L	1.19	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
56-55-3	Benzo(a)anthracene	ND		ug/L	1.31	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
50-32-8	Benzo(a)pyrene	ND		ug/L	1.30	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/L	1.41	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR

Client Sample ID: MW-1 York Sample ID: 13D1004-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-51-6	Benzyl alcohol	ND		ug/L	1.45	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	1.71	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/L	1.83	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
85-68-7	Benzyl butyl phthalate	ND		ug/L	0.852	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	1.33	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.89	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
106-47-8	4-Chloroaniline	ND		ug/L	2.98	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	1.77	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.50	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	2.99	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	4.78	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
91-58-7	2-Chloronaphthalene	ND		ug/L	2.20	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
95-57-8	2-Chlorophenol	ND		ug/L	1.79	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.45	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
218-01-9	Chrysene	ND		ug/L	1.47	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	1.56	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
132-64-9	Dibenzofuran	ND		ug/L	2.41	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
34-74-2	Di-n-butyl phthalate	11.2		ug/L	2.05	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.49	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.61	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.21	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/L	1.27	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.89	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
84-66-2	Diethyl phthalate	ND		ug/L	2.56	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.60	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
131-11-3	Dimethyl phthalate	ND		ug/L	1.91	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	1.62	10.0	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.25	10.0	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/L	1.61	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/L	1.61	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
117-84-0	Di-n-octyl phthalate	ND		ug/L	1.12	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
206-44-0	Fluoranthene	ND		ug/L	1.24	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR

Client Sample ID: MW-1 York Sample ID: 13D1004-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
86-73-7	Fluorene	ND		ug/L	1.83	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
118-74-1	Hexachlorobenzene	ND		ug/L	1.27	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
87-68-3	Hexachlorobutadiene	ND		ug/L	2.79	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.53	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
67-72-1	Hexachloroethane	ND		ug/L	3.04	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	1.70	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
78-59-1	Isophorone	ND		ug/L	2.68	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
91-57-6	2-Methylnaphthalene	ND		ug/L	2.76	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.12	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
95-48-7	2-Methylphenol	ND		ug/L	1.16	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
91-20-3		ND		ug/L	1.99	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
100-01-6	Naphthalene	ND		ug/L	2.68	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
	4-Nitroaniline	ND		ug/L	1.68	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
99-09-2	3-Nitroaniline	ND		ug/L	1.68	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
88-74-4	2-Nitroaniline					5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
98-95-3	Nitrobenzene	ND		ug/L	1.69						
88-75-5	2-Nitrophenol	ND		ug/L	2.36	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
100-02-7	4-Nitrophenol	ND		ug/L	1.66	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.56	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.389	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	5.00	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
87-86-5	Pentachlorophenol	ND		ug/L	1.45	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
85-01-8	Phenanthrene	ND		ug/L	1.37	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
108-95-2	Phenol	ND		ug/L	1.10	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
129-00-0	Pyrene	ND		ug/L	1.73	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
110-86-1	Pyridine	ND		ug/L	3.91	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.47	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.75	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.91	5.00	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:05	SR
	Surrogate Recoveries	Result		Acc	eptance R	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	73.4 %			15-110	0.					
321-60-8	Surrogate: 2-Fluorobiphenyl	62.2 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	27.8 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	58.0 %			30-130						

Client Sample ID: MW-1 13D1004-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

Date/Time Analyzed Date/Time Dilution Reference Method CAS No. Parameter Result Flag Units MDL Prepared Analyst Surrogate: Phenol-d5 18.5 % 10-110 4165-62-2

1718-51-0 Surrogate: Terphenyl-d14 92.5 % 30-130

Pesticides/PCBs, EPA 8081/8082 List

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
8001-35-2	Toxaphene	ND	Flag	ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
72-43-5	Methoxychlor	ND		ug/L	0.00513	0.00513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
1024-57-3	Heptachlor epoxide	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
76-44-8	Heptachlor	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
53494-70-5	Endrin ketone	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
7421-93-4	Endrin aldehyde	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
72-20-8	Endrin	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
1031-07-8	Endosulfan sulfate	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
33213-65-9	Endosulfan II	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
959-98-8	Endosulfan I	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
60-57-1	Dieldrin	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
319-86-8	delta-BHC	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
57-74-9	Chlordane, total	ND		ug/L	0.00410	0.00410	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
319-85-7	beta-BHC	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
319-84-6	alpha-BHC	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
309-00-2	Aldrin	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
50-29-3	4,4'-DDT	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
72-55-9	4,4'-DDE	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
72-54-8	4,4'-DDD	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 16:55	JW
11096-82-5	Aroclor 1260	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:12	JW
11097-69-1	Aroclor 1254	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:12	JW
12672-29-6	Aroclor 1248	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:12	JW
53469-21-9	Aroclor 1242	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:12	JW
11141-16-5	Aroclor 1232	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:12	JW
11104-28-2	Aroclor 1221	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:12	JW
12674-11-2	Aroclor 1016	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:12	JW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 67 of 142

Client Sample ID: MW-1 York Sample ID: 13D1004-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #130030 11-28 31st Drive Queens NY 13D1004 Water April 25, 2013 3:00 pm 04/26/2013

Pesticides/PCBs, EPA 8081/8082 List Sample Prepared by Method: EPA SW846-3510C Low Level **Log-in Notes: Sample Notes:**

Date/Time Date/Time Dilution Reference Method Analyzed CAS No. Result Flag Units MDL Analyst Parameter Prepared 0.0513 EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 11:12 ND ug/L 0.0513 JW 1336-36-3 Total PCBs Surrogate Recoveries Result Acceptance Range Surrogate: Tetrachloro-m-xylene 59.9 % 30-150 877-09-8

30-150

Surrogate: Decachlorobiphenyl

Log-in Notes: Sample Notes: Metals, Target Analyte

54.8~%

Sample Prepared by Method: EPA 3010A

2051-24-3

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	0.280		mg/L	0.010	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-36-0	Antimony	ND		mg/L	0.003	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-38-2	Arsenic	ND		mg/L	0.004	0.004	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-39-3	Barium	0.065		mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-41-7	Beryllium	ND		mg/L	0.001	0.001	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-43-9	Cadmium	ND		mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-70-2	Calcium	50.9		mg/L	0.019	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-47-3	Chromium	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-48-4	Cobalt	0.006		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-50-8	Copper	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7439-89-6	Iron	0.243		mg/L	0.010	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7439-92-1	Lead	ND		mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7439-95-4	Magnesium	10.7		mg/L	0.010	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7439-96-5	Manganese	1.98		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-02-0	Nickel	0.007		mg/L	0.001	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-09-7	Potassium	4.59		mg/L	0.026	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7782-49-2	Selenium	ND		mg/L	0.007	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-22-4	Silver	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-23-5	Sodium	35.6		mg/L	0.061	0.100	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-28-0	Thallium	ND		mg/L	0.003	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-62-2	Vanadium	ND		mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW
7440-66-6	Zinc	ND		mg/L	0.002	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:18	MW

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 68 of 142

MW-1 **Client Sample ID:** York Sample ID: 13D1004-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received

13D1004 #130030 11-28 31st Drive Queens NY Water April 25, 2013 3:00 pm 04/26/2013

Log-in Notes:

Sample Notes:

Sample Notes:

Mercury by 7470/7471

Sample Prepared by Method: EPA SW846-7470

Date/Time Date/Time Dilution Reference Method Analyzed CAS No. **Parameter** Result Flag Units MDI Analyst Prepared EPA SW846-7470 04/30/2013 17:15 04/30/2013 17:15 ND mg/L 0.0002 0.0002 7439-97-6 Mercury

Log-in Notes: Sample Notes: HT-02 Chromium, Hexavalent

Sample Prepared by Method: Analysis Preparation

Date/Time Date/Time Dilution Result MDI Reference Method CAS No. Parameter | Flag Units Prepared Analyzed Analyst 04/26/2013 16:25 mg/L 0.00600 0.0100 SW846-7196A 04/26/2013 16:25 AMC 18540-29-9 Chromium, Hexavalent

Chromium, Trivalent **Log-in Notes: Sample Notes:**

Sample Prepared by Method: *** DEFAULT PREP ***

Date/Time Date/Time Result Flag Units MDI Dilution Reference Method Analyzed Analyst CAS No **Parameter** Prepared ND mg/L Calculation 05/01/2013 10:15 05/01/2013 10:15 16065-83-1 Chromium, Trivalent

Sample Information

Client Sample ID: MW-2 York Sample ID: 13D1004-10

Client Project ID Collection Date/Time York Project (SDG) No. Matrix Date Received 13D1004 #130030 11-28 31st Drive Queens NY Water April 25, 2013 3:00 pm 04/26/2013

Log-in Notes:

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Date/Time Date/Time Analyst **Parameter** Result MDI Dilution Reference Method Prepared Analyzed 2.5 5.0 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 630-20-6 ND ug/L BK 1,1,1,2-Tetrachloroethane 04/30/2013 13:58 04/30/2013 15:06 ND ug/L 2.5 5.0 EPA SW846-8260B BK 71-55-6 1.1.1-Trichloroethane 2.5 5.0 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 BK ND ug/L 79-34-5 1.1.2.2-Tetrachloroethane 2.5 5.0 1 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 BK ug/L 76-13-1 ,1,2-Trichloro-1,2,2-trifluoroethane (Freon 112ND EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 2.5 BK ND ug/L 5.0 79-00-5 1,1,2-Trichloroethane 04/30/2013 13:58 04/30/2013 15:06 ND ug/L 2.5 5.0 EPA SW846-8260B BK 75-34-3 1.1-Dichloroethane 2.5 5.0 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 BK ND ug/L 75-35-4 1,1-Dichloroethylene 2.5 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 вк 5.0 563-58-6 1,1-Dichloropropylene ND ug/L 2.5 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 BK ND ug/L 10 87-61-6 1,2,3-Trichlorobenzene 04/30/2013 13:58 04/30/2013 15:06 ND ug/L 2.5 5.0 EPA SW846-8260B BK 96-18-4 1.2.3-Trichloropropane 2.5 10 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 BK ND ug/L 120-82-1 1,2,4-Trichlorobenzene 2.5 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 вк 5.0 ND ug/L 95-63-6 1,2,4-Trimethylbenzene EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 2.5 BK 96-12-8 1,2-Dibromo-3-chloropropane ND ug/L 10 1 ND ug/L 2.5 5.0 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 15:06 RK 106-93-4 1.2-Dibromoethane

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 69 of 142

Client Sample ID: MW-2 York Sample ID: 13D1004-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
78-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
142-28-9	1,3-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
594-20-7	2,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
78-93-3	2-Butanone	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
95-49-8	2-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
106-43-4	4-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
67-64-1	Acetone	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
108-86-1	Bromobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
74-97-5	Bromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
75-27-4	Bromodichloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
75-25-2	Bromoform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
74-83-9	Bromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
75-00-3	Chloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
67-66-3	Chloroform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
74-87-3	Chloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
124-48-1	Dibromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
74-95-3	Dibromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
100-41-4	Ethyl Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
87-68-3	Hexachlorobutadiene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
98-82-8	Isopropylbenzene	ND		ug/L	0.63	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK

Client Sample ID: MW-2 York Sample ID: 13D1004-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-09-2	Methylene chloride	3.3	J, B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
91-20-3	Naphthalene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
104-51-8	n-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
103-65-1	n-Propylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
95-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
179601-23-1	p- & m- Xylenes	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
99-87-6	p-Isopropyltoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
135-98-8	sec-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
98-06-6	tert-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
127-18-4	Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
1330-20-7	Xylenes, Total	ND		ug/L	2.5	15	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
108-05-4	Vinyl acetate	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:06	BK
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	99.8 %			72.6-129						
460-00-4	Surrogate: p-Bromofluorobenzene	96.8 %			63.5-145						
2037-26-5	Surrogate: Toluene-d8	93.4 %			81.2-127						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
208-96-8	Acenaphthylene	ND		ug/L	1.78	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
62-53-3	Aniline	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
120-12-7	Anthracene	ND		ug/L	1.22	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
56-55-3	Benzo(a)anthracene	ND		ug/L	1.34	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
50-32-8	Benzo(a)pyrene	ND		ug/L	1.33	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/L	1.45	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR

Client Sample ID: MW-2 York Sample ID: 13D1004-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-51-6	Benzyl alcohol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	1.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
85-68-7	Benzyl butyl phthalate	ND		ug/L	0.874	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	1.36	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
106-47-8	4-Chloroaniline	ND		ug/L	3.06	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	3.07	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	4.90	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
91-58-7	2-Chloronaphthalene	ND		ug/L	2.26	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
95-57-8	2-Chlorophenol	ND		ug/L	1.84	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.51	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
218-01-9	Chrysene	ND		ug/L	1.51	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	1.60	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
132-64-9	Dibenzofuran	ND		ug/L	2.47	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.10	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.68	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.55	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.27	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
84-66-2	Diethyl phthalate	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.64	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
131-11-3	Dimethyl phthalate	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	1.66	10.3	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.31	10.3	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
117-84-0	Di-n-octyl phthalate	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
206-44-0	Fluoranthene	ND		ug/L	1.27	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR

Client Sample ID: MW-2 York Sample ID: 13D1004-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Schii-volatiles, 62/0 Taiget List

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilu	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
86-73-7	Fluorene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
118-74-1	Hexachlorobenzene	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
37-68-3	Hexachlorobutadiene	ND		ug/L	2.86	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.59	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
57-72-1	Hexachloroethane	ND		ug/L	3.12	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	1.74	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
78-59-1	Isophorone	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
91-57-6	2-Methylnaphthalene	ND		ug/L	2.83	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
95-48-7	2-Methylphenol	ND		ug/L	1.19	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
91-20-3	Naphthalene	ND		ug/L	2.04	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
100-01-6	4-Nitroaniline	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
99-09-2	3-Nitroaniline	ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
38-74-4	2-Nitroaniline	ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
98-95-3	Nitrobenzene	ND		ug/L	1.73	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
88-75-5	2-Nitrophenol	ND		ug/L	2.42	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
100-02-7	4-Nitrophenol	ND		ug/L	1.70	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
21-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
52-75-9	N-Nitrosodimethylamine	ND		ug/L	0.399	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
36-30-6	N-Nitrosodiphenylamine	ND		ug/L	5.13	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
87-86-5	Pentachlorophenol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
35-01-8	Phenanthrene	ND		ug/L	1.41	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
108-95-2	Phenol	ND		ug/L	1.13	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
29-00-0	Pyrene	ND		ug/L	1.77	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
10-86-1	Pyridine	ND		ug/L	4.01	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.53	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
38-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.79	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 15:37	SR
75-75-4	Surrogate Recoveries	Result			eptance R						
5175-83-7	Surrogate: 2,4,6-Tribromophenol	78.0 %		Att	15-110	50					
321-60-8	Surrogate: 2-Fluorobiphenyl	65.1 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	31.2 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	65.8 %			30-130						

Client Sample ID: MW-2 York Sample ID: 13D1004-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

Date/Time Analyzed Date/Time Dilution Reference Method CAS No. Parameter Result Flag Units MDL Prepared Analyst Surrogate: Phenol-d5 20.9 % 10-110 4165-62-2

1718-51-0 Surrogate: Terphenyl-d14 106 % 30-130

Pesticides/PCBs, EPA 8081/8082 List

Log-in Notes: Sample Notes:

Sample Prepared by M CAS No.	ethod: EPA SW846-3510C Low Level Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
8001-35-2	Toxaphene	ND	11111	ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
72-43-5	Methoxychlor	ND		ug/L	0.00500	0.00500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
1024-57-3	Heptachlor epoxide	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
76-44-8	Heptachlor	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
53494-70-5	Endrin ketone	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
7421-93-4	Endrin aldehyde	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
72-20-8	Endrin	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
1031-07-8	Endosulfan sulfate	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
33213-65-9	Endosulfan II	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
959-98-8	Endosulfan I	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
60-57-1	Dieldrin	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
319-86-8	delta-BHC	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
57-74-9	Chlordane, total	ND		ug/L	0.00400	0.00400	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
319-85-7	beta-BHC	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
319-84-6	alpha-BHC	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
309-00-2	Aldrin	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
50-29-3	4,4'-DDT	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
72-55-9	4,4'-DDE	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
72-54-8	4,4'-DDD	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:10	JW
11096-82-5	Aroclor 1260	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:31	JW
11097-69-1	Aroclor 1254	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:31	JW
12672-29-6	Aroclor 1248	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:31	JW
53469-21-9	Aroclor 1242	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:31	JW
11141-16-5	Aroclor 1232	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:31	JW
11104-28-2	Aroclor 1221	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:31	JW
12674-11-2	Aroclor 1016	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:31	JW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 74 of 142

Client Sample ID: MW-2 York Sample ID: 13D1004-10

Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Water April 25, 2013 3:00 pm 04/26/2013

Pesticides/PCBs, EPA 8081/8082 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-3510C Low Level

Surrogate: Decachlorobiphenyl

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
1336-36-3	Total PCBs	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:31	JW	
	Surrogate Recoveries	Result		Acc	eptance R	ange						
877-09-8	Surrogate: Tetrachloro-m-xylene	54.2 %			30-150							

30-150

Metals, Target Analyte

2051-24-3

Log-in Notes:

Sample Notes:

Sample Prepared by Metho	d: EPA 3010A								
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared
7429-90-5	Aluminum	1.91		mg/L	0.010	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34
7440-36-0	Antimony	ND		mg/L	0.003	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34

60.9 %

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	1.91		mg/L	0.010	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-36-0	Antimony	ND		mg/L	0.003	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-38-2	Arsenic	ND		mg/L	0.004	0.004	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-39-3	Barium	0.184		mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-41-7	Beryllium	ND		mg/L	0.001	0.001	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-43-9	Cadmium	ND		mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-70-2	Calcium	120		mg/L	0.019	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-47-3	Chromium	0.008		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-48-4	Cobalt	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-50-8	Copper	0.007		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7439-89-6	Iron	0.860		mg/L	0.010	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7439-92-1	Lead	0.003		mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7439-95-4	Magnesium	16.5		mg/L	0.010	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7439-96-5	Manganese	1.19		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-02-0	Nickel	0.005		mg/L	0.001	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-09-7	Potassium	4.94		mg/L	0.026	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7782-49-2	Selenium	ND		mg/L	0.007	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-22-4	Silver	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-23-5	Sodium	27.0		mg/L	0.061	0.100	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-28-0	Thallium	ND		mg/L	0.003	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-62-2	Vanadium	ND		mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW
7440-66-6	Zinc	0.027		mg/L	0.002	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:23	MW

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Date/Time

Client Sample ID: MW-2 York Sample ID: 13D1004-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Mercury by 7470/7471 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA SW846-7470

Date/Time Date/Time Result Units Flag MDL Dilution Reference Method Analyzed CAS No. **Parameter** Prepared Analyst EPA SW846-7470 04/30/2013 17:15 04/30/2013 17:15 ND mg/L 0.0002 0.0002 7439-97-6 Mercury

<u>Chromium, Hexavalent</u> <u>Log-in Notes:</u> <u>Sample Notes:</u> <u>HT-02</u>

Sample Prepared by Method: Analysis Preparation

Date/Time Date/Time MDL Dilution CAS No. Result Flag Units Reference Method **Parameter** Prepared Analyzed Analyst 04/26/2013 16:25 04/26/2013 16:25 mg/L 0.00600 0.0100 SW846-7196A AMC 18540-29-9 Chromium, Hexavalent

<u>Chromium, Trivalent</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: *** DEFAULT PREP ***

Date/Time Date/Time CAS No. Parameter Result Flag Units MDL Dilution Reference Method Prepared Analyzed Analyst 05/01/2013 10:15 ND mg/L 0.0100 Calculation 05/01/2013 10:15 16065-83-1 Chromium, Trivalent

Sample Information

Client Sample ID: MW-3 York Sample ID: 13D1004-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1	13ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
79-00-5	1,1,2-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
75-34-3	1,1-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
75-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
563-58-6	1,1-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
96-18-4	1,2,3-Trichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
106-93-4	1,2-Dibromoethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 76 of 142

Client Sample ID: MW-3 York Sample ID: 13D1004-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample	No	tes

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
78-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
142-28-9	1,3-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
594-20-7	2,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
78-93-3	2-Butanone	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
95-49-8	2-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
106-43-4	4-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
67-64-1	Acetone	3.6	J, B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
108-86-1	Bromobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
74-97-5	Bromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
75-27-4	Bromodichloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
75-25-2	Bromoform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
74-83-9	Bromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
75-00-3	Chloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
67-66-3	Chloroform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
74-87-3	Chloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
124-48-1	Dibromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
74-95-3	Dibromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
100-41-4	Ethyl Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
87-68-3	Hexachlorobutadiene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
98-82-8	Isopropylbenzene	ND		ug/L	0.63	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK

Client Sample ID: MW-3 York Sample ID: 13D1004-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u> <u>Sample Notes:</u>

Date/Time

Date/Time

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Prepared	Analyzed	Analyst
75-09-2	Methylene chloride	2.8	J, B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
91-20-3	Naphthalene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
104-51-8	n-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
103-65-1	n-Propylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
95-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
179601-23-1	p- & m- Xylenes	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
99-87-6	p-Isopropyltoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
135-98-8	sec-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
98-06-6	tert-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
127-18-4	Tetrachloroethylene	38		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
1330-20-7	Xylenes, Total	ND		ug/L	2.5	15	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
108-05-4	Vinyl acetate	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 15:46	BK
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	98.7 %			72.6-129						
460-00-4	Surrogate: p-Bromofluorobenzene	98.6 %			63.5-145						
2037-26-5	Surrogate: Toluene-d8	93.7 %			81.2-127						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
208-96-8	Acenaphthylene	ND		ug/L	1.78	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
62-53-3	Aniline	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
120-12-7	Anthracene	ND		ug/L	1.22	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
56-55-3	Benzo(a)anthracene	ND		ug/L	1.34	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
50-32-8	Benzo(a)pyrene	ND		ug/L	1.33	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/L	1.45	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 78 of 142

Client Sample ID: MW-3 York Sample ID: 13D1004-11

York Project (SDG) No. Client Project ID Collection Date/Time Matrix Date Received 13D1004 #130030 11-28 31st Drive Queens NY Water April 25, 2013 3:00 pm 04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-51-6	Benzyl alcohol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	1.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
35-68-7	Benzyl butyl phthalate	ND		ug/L	0.874	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	1.36	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
06-47-8	4-Chloroaniline	ND		ug/L	3.06	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
11-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
11-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
08-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	3.07	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
17-81-7	Bis(2-ethylhexyl)phthalate	470		ug/L	98.1	103	20	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:50	SR
1-58-7	2-Chloronaphthalene	ND		ug/L	2.26	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
5-57-8	2-Chlorophenol	ND		ug/L	1.84	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.51	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
18-01-9	Chrysene	ND		ug/L	1.51	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
3-70-3	Dibenzo(a,h)anthracene	ND		ug/L	1.60	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
32-64-9	Dibenzofuran	ND		ug/L	2.47	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
4-74-2	Di-n-butyl phthalate	ND		ug/L	2.10	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
41-73-1	1,3-Dichlorobenzene	ND		ug/L	2.68	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.55	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
06-46-7	1,4-Dichlorobenzene	ND		ug/L	2.27	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
01-94-1	3,3'-Dichlorobenzidine	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
20-83-2	2,4-Dichlorophenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
4-66-2	Diethyl phthalate	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
05-67-9	2,4-Dimethylphenol	ND		ug/L	1.64	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
31-11-3	Dimethyl phthalate	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	1.66	10.3	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
1-28-5	2,4-Dinitrophenol	ND		ug/L	2.31	10.3	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
06-20-2	2,6-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
21-14-2	2,4-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
17-84-0	Di-n-octyl phthalate	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
06-44-0	Fluoranthene	ND		ug/L	1.27	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Client Sample ID: MW-3 York Sample ID: 13D1004-11

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY Water April 25, 2013 3:00 pm 04/26/2013

Sample Notes:

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
86-73-7	Fluorene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
118-74-1	Hexachlorobenzene	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
87-68-3	Hexachlorobutadiene	ND		ug/L	2.86	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.59	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
67-72-1	Hexachloroethane	ND		ug/L	3.12	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	1.74	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
78-59-1	Isophorone	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
91-57-6	2-Methylnaphthalene	ND		ug/L	2.83	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
95-48-7	2-Methylphenol	ND		ug/L	1.19	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
91-20-3	Naphthalene	ND		ug/L	2.04	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
100-01-6	4-Nitroaniline	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
99-09-2	3-Nitroaniline	ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
88-74-4	2-Nitroaniline	ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
98-95-3	Nitrobenzene	ND		ug/L	1.73	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
88-75-5	2-Nitrophenol	ND		ug/L	2.42	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
100-02-7	4-Nitrophenol	ND		ug/L	1.70	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.399	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	5.13	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
87-86-5	Pentachlorophenol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
85-01-8	Phenanthrene	ND		ug/L	1.41	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
108-95-2	Phenol	ND		ug/L	1.13	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
129-00-0	Pyrene	ND		ug/L	1.77	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
110-86-1	Pyridine	ND		ug/L	4.01	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.53	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.79	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:08	SR
	Surrogate Recoveries	Result		Acc	eptance R	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	95.6 %			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	77.1 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	35.0 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	74.4 %			30-130						

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

MW-3 **Client Sample ID:** York Sample ID: 13D1004-11

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 13D1004 #130030 11-28 31st Drive Queens NY April 25, 2013 3:00 pm Water 04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

1718-51-0

Date/Time Date/Time Dilution Analyzed CAS No Parameter Result Flag Units MDL Reference Method Analyst Prepared Surrogate: Phenol-d5 10-110 4165-62-2 21.4 % 30-130

Pesticides/PCBs, EPA 8081/8082 List

Surrogate: Terphenyl-d14

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA SW846-3510C Low Level Date/Time Date/Time Flag Units MDI Dilution CAS No Parameter Result RI Reference Method Prepared 0.0500 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 ND ug/L 0.0500 8001-35-2 Toxaphene 0.00500 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 0.00500 ND ug/L 72-43-5 Methoxychlor

S-04

132 %

05/01/2013 07:30 05/01/2013 17:25 EPA SW 846-8081/8082 JW 1024-57-3 ND ug/L 0.00100 0.00100 Heptachlor epoxide 0.00100 0.00100 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 IW ND ug/L Heptachlor 76-44-8 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 JW ug/L 0.00100 0.00100 ND 58-89-9 gamma-BHC (Lindane) EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 0.00100 0.00100 53494-70-5 ND ug/L Endrin ketone EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 JW Endrin aldehyde ND ug/L 0.00100 0.00100 7421-93-4 05/01/2013 07:30 05/01/2013 17:25 0.00100 0.00100 EPA SW 846-8081/8082 IW ND ug/L 72-20-8 Endrin ug/L 0.00100 0.00100 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 JW ND 1031-07-8 Endosulfan sulfate EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 0.00100 0.00100 33213-65-9 Endosulfan II ND ug/L 05/01/2013 07:30 05/01/2013 17:25 EPA SW 846-8081/8082 JW ND ug/L 0.00100 0.00100 959-98-8 Endosulfan I 05/01/2013 07:30 05/01/2013 17:25 ug/L 0.00100 0.00100 EPA SW 846-8081/8082 IW ND 60-57-1 Dieldrin EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 JW ND 0.00100 0.00100 ug/L 319-86-8 delta-BHC 05/01/2013 07:30 05/01/2013 17:25 0.00400 0.00400 EPA SW 846-8081/8082 JW 57-74-9 ND ug/L Chlordane, total 05/01/2013 07:30 05/01/2013 17:25 EPA SW 846-8081/8082 JW ND ug/L 0.00100 0.00100 319-85-7 beta-BHC 05/01/2013 07:30 05/01/2013 17:25 ND ug/L 0.00100 0.00100 EPA SW 846-8081/8082 IW 319-84-6 alpha-BHC EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 JW ND 0.00100 0.00100 ug/L 309-00-2 Aldrin EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:25 0.00100 0.00100 50-29-3 4,4'-DDT ND ug/L 05/01/2013 07:30 05/01/2013 17:25 EPA SW 846-8081/8082 JW ND ug/L 0.00100 0.00100 72-55-9 4,4'-DDE 05/01/2013 07:30 05/01/2013 17:25 0.00100 0.00100 EPA SW 846-8081/8082 IW ND ug/L 72-54-8 4.4'-DDD EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 11:51 JW ND ug/L 0.0500 0.0500 11096-82-5 Aroclor 1260 EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 11:51 JW 0.0500 0.0500 ND 1 11097-69-1 ug/L Aroclor 1254 05/01/2013 07:30 05/02/2013 11:51 EPA SW 846-8081/8082 JW 12672-29-6 Aroclor 1248 ND ug/L 0.0500 0.0500 1 ND 0.0500 0.0500 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 11:51 IW ug/L Aroclor 1242 53469-21-9 EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 11:51 JW ND 0.0500 0.0500 ug/L 11141-16-5 Aroclor 1232 05/01/2013 07:30 05/02/2013 11:51 EPA SW 846-8081/8082 JW ND 0.0500 0.0500 11104-28-2 ug/L Aroclor 1221 EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 11:51 JW ND ug/L 0.0500 0.0500 12674-11-2 Aroclor 1016

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 81 of 142

Analyzed

Analyst

JW

JW

Client Sample ID: MW-3 York Sample ID: 13D1004-11

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #130030 11-28 31st Drive Queens NY 13D1004 Water April 25, 2013 3:00 pm 04/26/2013

Pesticides/PCBs, EPA 8081/8082 List

Log-in Notes: Sample Notes:

Date/Time

Prepared

Date/Time

Analyzed

Analyst

Sample Prepared by Method: EPA SW846-3510C Low Level

Surrogate: Decachlorobiphenyl

Parameter

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1336-36-3	Total PCBs	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 11:51	JW
	Surrogate Recoveries	Result		Acc	eptance Ra	ange					
877-09-8	Surrogate: Tetrachloro-m-xylene	52.0 %			30-150						

30-150

MDL

RL

Dilution

Reference Method

Metals, Target Analyte

CAS No.

Sample Prepared by Method: EPA 3010A

2051-24-3

Log-in Notes: Sample Notes:

Flag

Units

58.0~%

Result

MW 7429-90-5 Aluminum 0.053 mg/L 0.010 0.010 EPA SW846-6010B/EPA 200.7 04/30/2013 15:34 04/30/2013 18:28 EPA SW846-6010B/EPA 200.7 04/30/2013 15:34 04/30/2013 18:28 ND mg/L 0.003 0.005 MW 7440-36-0 Antimony 04/30/2013 15:34 04/30/2013 18:28 EPA SW846-6010B/EPA 200.7 7440-38-2 ND mg/L 0.004 0.004 MW Arsenic

7440-39-3	Barium	0.041	mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-41-7	Beryllium	ND	mg/L	0.001	0.001	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-43-9	Cadmium	ND	mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-70-2	Calcium	68.7	mg/L	0.019	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-47-3	Chromium	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-48-4	Cobalt	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-50-8	Copper	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7439-89-6	Iron	0.052	mg/L	0.010	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7439-92-1	Lead	ND	mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7439-95-4	Magnesium	14.4	mg/L	0.010	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7439-96-5	Manganese	0.019	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-02-0	Nickel	ND	mg/L	0.001	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-09-7	Potassium	2.16	mg/L	0.026	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7782-49-2	Selenium	ND	mg/L	0.007	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-22-4	Silver	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-23-5	Sodium	58.6	mg/L	0.061	0.100	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-28-0	Thallium	ND	mg/L	0.003	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-62-2	Vanadium	ND	mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW
7440-66-6	Zinc	ND	mg/L	0.002	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:28	MW

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 82 of 142

Client Sample ID: MW-3 York Sample ID: 13D1004-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Mercury by 7470/7471 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA SW846-7470

Date/Time Date/Time Result Units Flag MDL Dilution Reference Method Analyzed CAS No. **Parameter** Prepared Analyst EPA SW846-7470 04/30/2013 17:15 04/30/2013 17:15 ND mg/L 0.0002 0.0002 7439-97-6 Mercury

<u>Chromium, Hexavalent</u> <u>Log-in Notes:</u> <u>Sample Notes:</u> <u>HT-02</u>

Sample Prepared by Method: Analysis Preparation

Date/Time Date/Time MDL Dilution CAS No. Result Flag Units Reference Method Parameter Prepared Analyzed Analyst 04/26/2013 16:25 04/26/2013 16:25 mg/L 0.00600 0.0100 SW846-7196A AMC 18540-29-9 Chromium, Hexavalent

<u>Chromium, Trivalent</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: *** DEFAULT PREP ***

Date/Time Date/Time CAS No. Result Flag Units MDL Dilution Reference Method Prepared Analyzed Analyst Parameter 05/01/2013 10:15 ND mg/L 0.0100 Calculation 05/01/2013 10:15 16065-83-1 Chromium, Trivalent

Sample Information

Client Sample ID: MW-3 (Duplicate) York Sample ID: 13D1004-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	ВК
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
79-00-5	1,1,2-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
75-34-3	1,1-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
75-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
563-58-6	1,1-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
96-18-4	1,2,3-Trichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
106-93-4	1,2-Dibromoethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 83 of 142

Client Sample ID: MW-3 (Duplicate) York Sample ID: 13D1004-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
78-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
142-28-9	1,3-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
594-20-7	2,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
78-93-3	2-Butanone	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
95-49-8	2-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
106-43-4	4-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
67-64-1	Acetone	3.9	J,B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
108-86-1	Bromobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
74-97-5	Bromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
75-27-4	Bromodichloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
75-25-2	Bromoform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
74-83-9	Bromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
75-00-3	Chloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
67-66-3	Chloroform	4.7	J	ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
74-87-3	Chloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
124-48-1	Dibromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
74-95-3	Dibromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
100-41-4	Ethyl Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
87-68-3	Hexachlorobutadiene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
98-82-8	Isopropylbenzene	ND		ug/L	0.63	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 84 of 142

Client Sample ID: MW-3 (Duplicate)

York Sample ID:

13D1004-12

York Project (SDG) No. 13D1004

<u>Client Project ID</u> #130030 11-28 31st Drive Queens NY Matrix Water Collection Date/Time
April 25, 2013 3:00 pm

Date Received 04/26/2013

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-09-2	Methylene chloride	4.2	J, B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
91-20-3	Naphthalene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
104-51-8	n-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
103-65-1	n-Propylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
95-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
179601-23-1	p- & m- Xylenes	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
99-87-6	p-Isopropyltoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
135-98-8	sec-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
98-06-6	tert-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
127-18-4	Tetrachloroethylene	83		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
1330-20-7	Xylenes, Total	ND		ug/L	2.5	15	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
108-05-4	Vinyl acetate	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 16:27	BK
	Surrogate Recoveries	Result		Acceptance Range							
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	89.1 %			72.6-129						
460-00-4	Surrogate: p-Bromofluorobenzene	99.0 %			63.5-145						
2037-26-5	Surrogate: Toluene-d8	97.5 %			81.2-127						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
208-96-8	Acenaphthylene	ND		ug/L	1.78	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
62-53-3	Aniline	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
120-12-7	Anthracene	ND		ug/L	1.22	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
56-55-3	Benzo(a)anthracene	ND		ug/L	1.34	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
50-32-8	Benzo(a)pyrene	ND		ug/L	1.33	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/L	1.45	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 85 of 142

Client Sample ID: MW-3 (Duplicate) York Sample ID: 13D1004-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-51-6	Benzyl alcohol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	1.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
85-68-7	Benzyl butyl phthalate	ND		ug/L	0.874	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	1.36	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
106-47-8	4-Chloroaniline	ND		ug/L	3.06	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	3.07	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	4.90	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
91-58-7	2-Chloronaphthalene	ND		ug/L	2.26	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
95-57-8	2-Chlorophenol	ND		ug/L	1.84	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.51	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
218-01-9	Chrysene	ND		ug/L	1.51	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	1.60	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
132-64-9	Dibenzofuran	ND		ug/L	2.47	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
34-74-2	Di-n-butyl phthalate	ND		ug/L	2.10	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.55	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.68	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.27	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
84-66-2	Diethyl phthalate	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.64	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
131-11-3	Dimethyl phthalate	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	1.66	10.3	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.31	10.3	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
506-20-2	2,6-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
117-84-0	Di-n-octyl phthalate	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
206-44-0	Fluoranthene	ND		ug/L	1.27	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR

Client Sample ID: MW-3 (Duplicate)

York Sample ID:

13D1004-12

York Project (SDG) No. 13D1004

<u>Client Project ID</u> #130030 11-28 31st Drive Queens NY Matrix Water Collection Date/Time
April 25, 2013 3:00 pm

Date Received 04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

	by Method: EPA 3510C	_							Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution		Prepared	Analyzed	Analyst
86-73-7	Fluorene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
118-74-1	Hexachlorobenzene	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
87-68-3	Hexachlorobutadiene	ND		ug/L	2.86	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.59	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
67-72-1	Hexachloroethane	ND		ug/L	3.12	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	1.74	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
78-59-1	Isophorone	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
91-57-6	2-Methylnaphthalene	ND		ug/L	2.83	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
95-48-7	2-Methylphenol	ND		ug/L	1.19	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
91-20-3	Naphthalene	ND		ug/L	2.04	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
100-01-6	4-Nitroaniline	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
99-09-2	3-Nitroaniline	ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
		ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
88-74-4	2-Nitroaniline	ND		ug/L	1.73	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
98-95-3	Nitrobenzene								05/02/2013 07:57	05/02/2013 16:38	SR
88-75-5	2-Nitrophenol	ND		ug/L	2.42	5.13	1	EPA SW-846 8270C/EPA 625			
100-02-7	4-Nitrophenol	ND		ug/L	1.70	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/L	0.399	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	5.13	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
87-86-5	Pentachlorophenol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
85-01-8	Phenanthrene	ND		ug/L	1.41	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
108-95-2	Phenol	ND		ug/L	1.13	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
129-00-0	Pyrene	ND		ug/L	1.77	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
110-86-1	Pyridine	ND		ug/L	4.01	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.53	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.79	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 16:38	SR
•	Surrogate Recoveries	Result			eptance Ra	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	79.0 %		1111	15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	69.6 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	28.9 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	64.9 %			30-130						

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 87 of 142

Client Sample ID: MW-3 (Duplicate) York Sample ID:

13D1004-12

York Project (SDG) No.

CAS No.

4165-62-2

Client Project ID

Flag Units

Matrix

Dilution

Collection Date/Time

Date Received

13D1004

#130030 11-28 31st Drive Queens NY

Result

20.4 %

110 %

Water

April 25, 2013 3:00 pm

04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes:

Log-in Notes:

Sample Notes:

	Date/Time	Date/Time	
Reference Method	Prepared	Analyzed	Analyst

1718-51-0 Surrogate: Terphenyl-d14

Surrogate: Phenol-d5

Parameter

30-130

10-110

MDL RL

Sample Notes:

Pesticides/PCBs, EPA 8081/8082 List

Festicides/FCDs, EFA 0001/0002 List						_				
Method: EPA SW846-3510C Low Level Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Toxaphene	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Methoxychlor	ND		ug/L	0.00513	0.00513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Heptachlor epoxide	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Heptachlor	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
gamma-BHC (Lindane)	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Endrin ketone	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Endrin aldehyde	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Endrin	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Endosulfan sulfate	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Endosulfan II	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Endosulfan I	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Dieldrin	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
delta-BHC	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Chlordane, total	ND		ug/L	0.00410	0.00410	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
beta-BHC	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
alpha-BHC	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Aldrin	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
4,4'-DDT	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
4,4'-DDE	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
4,4'-DDD	ND		ug/L	0.00103	0.00103	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:40	JW
Aroclor 1260	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:11	JW
Aroclor 1254	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:11	JW
Aroclor 1248	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:11	JW
Aroclor 1242	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:11	JW
Aroclor 1232	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:11	JW
Aroclor 1221	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:11	JW
Aroclor 1016	ND		ug/L	0.0513	0.0513	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:11	JW
	Endrin Endosulfan sulfate Endosulfan II Endosulfan I Dieldrin delta-BHC Chlordane, total beta-BHC alpha-BHC Aldrin 4,4'-DDT 4,4'-DDE 4,4'-DDD Aroclor 1260 Aroclor 1254 Aroclor 1248 Aroclor 1242 Aroclor 1232 Aroclor 1221	Endrin ND Endosulfan sulfate ND Endosulfan II ND Endosulfan I ND Dieldrin ND delta-BHC ND Chlordane, total ND beta-BHC ND alpha-BHC ND Aldrin ND 4,4'-DDT ND 4,4'-DDE ND 4,4'-DDD ND Aroclor 1260 ND Aroclor 1254 ND Aroclor 1248 ND Aroclor 1242 ND Aroclor 1232 ND Aroclor 1232 ND	Endrin ND Endosulfan sulfate ND Endosulfan II ND Endosulfan I ND Dieldrin ND delta-BHC ND Chlordane, total ND beta-BHC ND alpha-BHC ND Aldrin ND 4,4'-DDT ND 4,4'-DDE ND 4,4'-DDD ND Aroclor 1260 ND Aroclor 1254 ND Aroclor 1248 ND Aroclor 1242 ND Aroclor 1232 ND Aroclor 1231 ND	Endrin ND ug/L Endosulfan sulfate ND ug/L Endosulfan II ND ug/L Endosulfan I ND ug/L Dieldrin ND ug/L delta-BHC ND ug/L Chlordane, total ND ug/L alpha-BHC ND ug/L Aldrin ND ug/L A,4'-DDT ND ug/L 4,4'-DDE ND ug/L 4,4'-DDD ND ug/L Aroclor 1254 ND ug/L Aroclor 1248 ND ug/L Aroclor 1242 ND ug/L Aroclor 1232 ND ug/L Aroclor 1221 ND ug/L	Endrin ND ug/L 0.00103 Endosulfan sulfate ND ug/L 0.00103 Endosulfan II ND ug/L 0.00103 Endosulfan I ND ug/L 0.00103 Dieldrin ND ug/L 0.00103 delta-BHC ND ug/L 0.00103 Chlordane, total ND ug/L 0.00410 beta-BHC ND ug/L 0.00103 Aldrin ND ug/L 0.00103 4,4'-DDT ND ug/L 0.00103 4,4'-DDE ND ug/L 0.00103 4,4'-DDE ND ug/L 0.00103 Aroclor 1260 ND ug/L 0.00103 Aroclor 1254 ND ug/L 0.0513 Aroclor 1248 ND ug/L 0.0513 Aroclor 1242 ND ug/L 0.0513 Aroclor 1242 ND ug/L 0.0513 Aroclor 1232 ND ug/L 0.0513 Aroclor 1232 ND ug/L 0.0513	Endrin ND ug/L 0.00103 0.00103 Endosulfan sulfate ND ug/L 0.00103 0.00103 Endosulfan II ND ug/L 0.00103 0.00103 Endosulfan II ND ug/L 0.00103 0.00103 Dieldrin ND ug/L 0.00103 0.00103 delta-BHC ND ug/L 0.00103 0.00103 Chlordane, total ND ug/L 0.00103 0.00103 delta-BHC ND ug/L 0.00103 0.00103 Aldrin ND ug/L 0.00103 0.00103 Aldrin ND ug/L 0.00103 0.00103 4,4'-DDT ND ug/L 0.00103 0.00103 4,4'-DDE ND ug/L 0.00103 0.00103 4,4'-DDD ND ug/L 0.00103 0.00103 Aroclor 1260 ND ug/L 0.00103 0.00103 Aroclor 1254 ND ug/L 0.0513 0.0513 Aroclor 1242 ND ug/L 0.0513 0.0513	Endrin ND ug/L 0.00103 0.00103 1 Endosulfan sulfate ND ug/L 0.00103 0.00103 1 Endosulfan II ND ug/L 0.00103 0.00103 1 Endosulfan II ND ug/L 0.00103 0.00103 1 Dieldrin ND ug/L 0.00103 0.00103 1 Dieldrin ND ug/L 0.00103 0.00103 1 Chlordane, total ND ug/L 0.00410 0.00410 1 beta-BHC ND ug/L 0.00103 0.00103 1 Chlordane, total ND ug/L 0.00103 0.00103 1 Aldrin ND ug/L 0.00103 0.00103 1 Aldrin ND ug/L 0.00103 0.00103 1 4,4'-DDT ND ug/L 0.00103 0.00103 1 4,4'-DDE ND ug/L 0.00103 0.00103 1 4,4'-DDD ND ug/L 0.00103 0.00103 1 Aroclor 1260 ND ug/L 0.00103 0.00103 1 Aroclor 1254 ND ug/L 0.0513 0.0513 1 Aroclor 1242 ND ug/L 0.0513 0.0513 1 Aroclor 1242 ND ug/L 0.0513 0.0513 1 Aroclor 1242 ND ug/L 0.0513 0.0513 1 Aroclor 1232 ND ug/L 0.0513 0.0513 1	Endrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Endosulfan sulfate ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Endosulfan II ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Endosulfan I ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Dieldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Dieldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Chlordane, total ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Chlordane, total ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Chlordane, total ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Aldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Aldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 4,4*-DDT ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 4,4*-DDD ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 4,4*-DDD ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 4,4*-DDD ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 Aroclor 1254 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 Aroclor 1254 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 Aroclor 1248 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 Aroclor 1232 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 Aroclor 1232 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082	Endrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Endosulfan sulfate ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Endosulfan II ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Endosulfan I ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Dieldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 delta-BHC ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Chlordane, total ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 beta-BHC ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 alpha-BHC ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 4,4'-DDT ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 4,4'-DDE ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1260 ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1264 ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1274 ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07/30 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07/30	Endrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Endosulfan sulfate ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Endosulfan II ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Endosulfan I ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Dieldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 delta-BHC ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Chlordane, total ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 beta-BHC ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Aldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Aldrin ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 4,4*-DDT ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 4,4*-DDE ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 4,4*-DDE ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 4,4*-DDD ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 4,4*-DDE ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 4,4*-DDE ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 4,4*-DDE ND ug/L 0.00103 0.00103 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Aroclor 1260 ND ug/L 0.0013 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Aroclor 1254 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/01/2013 17:40 Aroclor 1248 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 12:11 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 12:11 Aroclor 1242 ND ug/L 0.0513 0.0513 1 EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 12:11

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Client Sample ID: MW-3 (Duplicate) York Sample ID:

13D1004-12

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

13D1004

#130030 11-28 31st Drive Queens NY

Water

April 25, 2013 3:00 pm

04/26/2013

Analyst

Pesticides/PCBs, EPA 8081/8082 List

Log-in Notes:

Sample Notes:

Reference Method

Sample Prepared by Method: EPA SW846-3510C Low Level

CAS No.	Parameter

ug/L

Flag

0.0513 EPA SW 846-8081/8082 0.0513

Dilution

Date/Time Date/Time Analyzed Prepared

ND Result

Result

Acceptance Range

MDL

05/01/2013 07:30 05/02/2013 12:11 JW

Surrogate Recoveries Surrogate: Tetrachloro-m-xylene

2051-24-3 Surrogate: Decachlorobiphenyl

1336-36-3

877-09-8

70.3 %

30-150 30-150 65.2~%

Units

Metals, Target Analyte

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3010A

Total PCBs

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum	0.748		mg/L	0.010	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-36-0	Antimony	ND		mg/L	0.003	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-38-2	Arsenic	ND		mg/L	0.004	0.004	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-39-3	Barium	0.071		mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-41-7	Beryllium	ND		mg/L	0.001	0.001	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-43-9	Cadmium	ND		mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-70-2	Calcium	70.4		mg/L	0.019	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-47-3	Chromium	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-48-4	Cobalt	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-50-8	Copper	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7439-89-6	Iron	0.402		mg/L	0.010	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7439-92-1	Lead	ND		mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7439-95-4	Magnesium	14.8		mg/L	0.010	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7439-96-5	Manganese	0.165		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-02-0	Nickel	ND		mg/L	0.001	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-09-7	Potassium	2.23		mg/L	0.026	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7782-49-2	Selenium	ND		mg/L	0.007	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-22-4	Silver	ND		mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-23-5	Sodium	58.0		mg/L	0.061	0.100	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-28-0	Thallium	ND		mg/L	0.003	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-62-2	Vanadium	ND		mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW
7440-66-6	Zinc	0.021		mg/L	0.002	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:33	MW

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 89 of 142

MW-3 (Duplicate) **Client Sample ID:**

York Sample ID:

13D1004-12

York Project (SDG) No. 13D1004

Client Project ID

Matrix

Collection Date/Time

Date Received

#130030 11-28 31st Drive Queens NY

Water

April 25, 2013 3:00 pm

04/26/2013

Mercury by 7470/7471

Sample Prepared by Method: EPA SW846-7470

Log-in Notes:

Sample Notes:

Reference Method

Date/Time Prepared

Date/Time Analyzed Analyst

CAS No. 7439-97-6

Parameter

Mercury

Flag

Flag

0.0002 0.0002

MDI

MDI

MDI

EPA SW846-7470

Dilution

04/30/2013 17:15

04/30/2013 17:15

Chromium, Hexavalent

Sample Prepared by Method: Analysis Preparation

Log-in Notes:

Sample Notes: HT-02

Date/Time Date/Time

CAS No. 18540-29-9

Parameter

Chromium, Hexavalent

Result

Result

ND

Result

ND

Units mg/L

Units

mg/L

0.00600 0.0100 Dilution

Reference Method SW846-7196A

Prepared 04/26/2013 16:25 04/26/2013 16:25

05/01/2013 10:15

York Sample ID:

Analyzed Analyst

AMC

Chromium, Trivalent

Log-in Notes:

Sample Notes:

Sample Prepared by Method: *** DEFAULT PREP ***

Flag

16065-83-1

CAS No

Parameter Chromium, Trivalent

Units mg/L

Dilution Calculation

Date/Time Reference Method Prepared Date/Time Analyzed

05/01/2013 10:15

Analyst

Sample Information

Field Blank **Client Sample ID:**

Client Project ID

Matrix

13D1004-13

04/26/2013

York Project (SDG) No. 13D1004

#130030 11-28 31st Drive Queens NY

Water

Collection Date/Time April 25, 2013 3:00 pm Date Received

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

Date/Time Date/Time Analyst Parameter Result MDI Dilution Reference Method Prepared Analyzed 2.5 5.0 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 630-20-6 ND ug/L BK 1,1,1,2-Tetrachloroethane 04/30/2013 13:58 04/30/2013 17:07 ND ug/L 2.5 5.0 EPA SW846-8260B BK 71-55-6 1.1.1-Trichloroethane 2.5 5.0 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 BK ND ug/L 79-34-5 1.1.2.2-Tetrachloroethane 2.5 5.0 1 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 BK ug/L 76-13-1 ,1,2-Trichloro-1,2,2-trifluoroethane (Freon 112ND EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 2.5 BK ND ug/L 5.0 79-00-5 1,1,2-Trichloroethane 04/30/2013 13:58 04/30/2013 17:07 ND ug/L 2.5 5.0 EPA SW846-8260B BK 75-34-3 1.1-Dichloroethane 2.5 5.0 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 BK ND ug/L 75-35-4 1,1-Dichloroethylene 2.5 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 вк 5.0 563-58-6 1,1-Dichloropropylene ND ug/L 2.5 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 BK ND ug/L 10 87-61-6 1,2,3-Trichlorobenzene 04/30/2013 13:58 04/30/2013 17:07 ND ug/L 2.5 5.0 EPA SW846-8260B BK 96-18-4 1.2.3-Trichloropropane 2.5 10 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 BK ND ug/L 120-82-1 1,2,4-Trichlorobenzene 2.5 EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 BK 5.0 ND ug/L 95-63-6 1,2,4-Trimethylbenzene EPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 2.5 BK 96-12-8 1,2-Dibromo-3-chloropropane ND ug/L 10 1 ND ug/L 2.5 5.0 FPA SW846-8260B 04/30/2013 13:58 04/30/2013 17:07 RK 106-93-4 1.2-Dibromoethane

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 90 of 142

Client Sample ID: Field Blank York Sample ID: 13D1004-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
78-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
142-28-9	1,3-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
594-20-7	2,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
78-93-3	2-Butanone	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
95-49-8	2-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
106-43-4	4-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	ВК
67-64-1	Acetone	5.4	J, B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
108-86-1	Bromobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
74-97-5	Bromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
75-27-4	Bromodichloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
75-25-2	Bromoform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
74-83-9	Bromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	ВК
75-00-3	Chloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
67-66-3	Chloroform	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
74-87-3	Chloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
124-48-1	Dibromochloromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
74-95-3	Dibromomethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
100-41-4	Ethyl Benzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
87-68-3	Hexachlorobutadiene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
98-82-8	Isopropylbenzene	ND		ug/L	0.63	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 91 of 142

Client Sample ID: Field Blank York Sample ID: 13D1004-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-09-2	Methylene chloride	5.4	J, B	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
91-20-3	Naphthalene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
104-51-8	n-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
103-65-1	n-Propylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
95-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
179601-23-1	p- & m- Xylenes	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
99-87-6	p-Isopropyltoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
135-98-8	sec-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
98-06-6	tert-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
127-18-4	Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
1330-20-7	Xylenes, Total	ND		ug/L	2.5	15	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
108-05-4	Vinyl acetate	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:07	BK
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			72.6-129						
460-00-4	Surrogate: p-Bromofluorobenzene	94.2 %			63.5-145						
2037-26-5	Surrogate: Toluene-d8	94.4 %			81.2-127						

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes: Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
208-96-8	Acenaphthylene	ND		ug/L	1.78	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
62-53-3	Aniline	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
120-12-7	Anthracene	ND		ug/L	1.22	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
56-55-3	Benzo(a)anthracene	ND		ug/L	1.34	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
50-32-8	Benzo(a)pyrene	ND		ug/L	1.33	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/L	1.45	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 92 of 142

Client Sample ID: Field Blank York Sample ID: 13D1004-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-51-6	Benzyl alcohol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	1.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
85-68-7	Benzyl butyl phthalate	ND		ug/L	0.874	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	1.36	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
106-47-8	4-Chloroaniline	ND		ug/L	3.06	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	1.82	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	1.54	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	3.07	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/L	4.90	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
91-58-7	2-Chloronaphthalene	ND		ug/L	2.26	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
95-57-8	2-Chlorophenol	ND		ug/L	1.84	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	2.51	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
218-01-9	Chrysene	ND		ug/L	1.51	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	1.60	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
132-64-9	Dibenzofuran	ND		ug/L	2.47	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
84-74-2	Di-n-butyl phthalate	ND		ug/L	2.10	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.55	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.68	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.27	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
120-83-2	2,4-Dichlorophenol	ND		ug/L	1.94	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
84-66-2	Diethyl phthalate	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
105-67-9	2,4-Dimethylphenol	ND		ug/L	1.64	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
131-11-3	Dimethyl phthalate	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	1.66	10.3	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
51-28-5	2,4-Dinitrophenol	ND		ug/L	2.31	10.3	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/L	1.65	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
117-84-0	Di-n-octyl phthalate	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
206-44-0	Fluoranthene	ND		ug/L	1.27	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR

Client Sample ID: Field Blank York Sample ID: 13D1004-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
86-73-7	Fluorene	ND		ug/L	1.88	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
118-74-1	Hexachlorobenzene	ND		ug/L	1.30	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
87-68-3	Hexachlorobutadiene	ND		ug/L	2.86	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	2.59	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
67-72-1	Hexachloroethane	ND		ug/L	3.12	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	1.74	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
78-59-1	Isophorone	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
91-57-6	2-Methylnaphthalene	ND		ug/L	2.83	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	1.15	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
95-48-7	2-Methylphenol	ND		ug/L	1.19	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
91-20-3	Naphthalene	ND		ug/L	2.04	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
100-01-6	4-Nitroaniline	ND		ug/L	2.75	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
99-09-2	3-Nitroaniline	ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
88-74-4	2-Nitroaniline	ND		ug/L	1.72	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
98-95-3	Nitrobenzene	ND		ug/L	1.73	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
88-75-5		ND		ug/L	2.42	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
	2-Nitrophenol	ND		ug/L	1.70	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
100-02-7	4-Nitrophenol	ND		ug/L	2.63	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
621-64-7	N-nitroso-di-n-propylamine				0.399	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/L							
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	5.13	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
87-86-5	Pentachlorophenol	ND		ug/L	1.49	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
85-01-8	Phenanthrene	ND		ug/L	1.41	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
108-95-2	Phenol	ND		ug/L	1.13	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
129-00-0	Pyrene	ND		ug/L	1.77	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
110-86-1	Pyridine	ND		ug/L	4.01	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.53	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	1.79	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	1.96	5.13	1	EPA SW-846 8270C/EPA 625	05/02/2013 07:57	05/02/2013 17:06	SR
	Surrogate Recoveries	Result		Acc	eptance R	ange					
5175-83-7	Surrogate: 2,4,6-Tribromophenol	83.4 %			15-110						
321-60-8	Surrogate: 2-Fluorobiphenyl	74.3 %			30-130						
367-12-4	Surrogate: 2-Fluorophenol	34.0 %			15-110						
4165-60-0	Surrogate: Nitrobenzene-d5	72.7 %			30-130						

Client Sample ID: Field Blank York Sample ID: 13D1004-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

Date/Time Analyzed Date/Time Dilution Reference Method CAS No. Parameter Result Flag Units MDL Prepared Analyst Surrogate: Phenol-d5 22.5 % 10-110 4165-62-2

1718-51-0 Surrogate: Terphenyl-d14 118 % 30-130

<u>Pesticides/PCBs, EPA 8081/8082 List</u>
Sample Prepared by Method: EPA SW846-3510C Low Level

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
8001-35-2	Toxaphene	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
72-43-5	Methoxychlor	ND		ug/L	0.00500	0.00500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
1024-57-3	Heptachlor epoxide	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
76-44-8	Heptachlor	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
58-89-9	gamma-BHC (Lindane)	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
53494-70-5	Endrin ketone	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
7421-93-4	Endrin aldehyde	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
72-20-8	Endrin	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
1031-07-8	Endosulfan sulfate	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
33213-65-9	Endosulfan II	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
959-98-8	Endosulfan I	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
60-57-1	Dieldrin	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
319-86-8	delta-BHC	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
57-74-9	Chlordane, total	ND		ug/L	0.00400	0.00400	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
319-85-7	beta-BHC	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
319-84-6	alpha-BHC	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
309-00-2	Aldrin	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
50-29-3	4,4'-DDT	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
72-55-9	4,4'-DDE	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
72-54-8	4,4'-DDD	ND		ug/L	0.00100	0.00100	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/01/2013 17:55	JW
11096-82-5	Aroclor 1260	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:30	JW
11097-69-1	Aroclor 1254	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:30	JW
12672-29-6	Aroclor 1248	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:30	JW
53469-21-9	Aroclor 1242	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:30	JW
11141-16-5	Aroclor 1232	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:30	JW
11104-28-2	Aroclor 1221	ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:30	JW
		ND		ug/L	0.0500	0.0500	1	EPA SW 846-8081/8082	05/01/2013 07:30	05/02/2013 12:30	JW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 95 of 142

Client Sample ID: Field Blank York Sample ID: 13D1004-13

York Project (SDG) No. Client Project ID Collection Date/Time Date Received Matrix 13D1004 #130030 11-28 31st Drive Queens NY Water April 25, 2013 3:00 pm 04/26/2013

Pesticides/PCBs, EPA 8081/8082 List

Log-in Notes: Sample Notes:

Date/Time

Date/Time

Analyzed

Analyst

Sample Prepared by Method: EPA SW846-3510C Low Level

Date/Time Date/Time Dilution Analyzed CAS No. Result Flag Units MDL Reference Method Parameter Prepared Analyst EPA SW 846-8081/8082 05/01/2013 07:30 05/02/2013 12:30 ND ug/L 0.0500 0.0500 JW 1336-36-3 Total PCBs **Surrogate Recoveries** Result Acceptance Range Surrogate: Tetrachloro-m-xylene 53.1 % 30-150 877-09-8 30-150 2051-24-3 Surrogate: Decachlorobiphenyl $65.9\:\%$

Metals, Target Analyte

Sample Prepared by Method: EPA 3010A

Log-in Notes: Sample Notes:

CAS No. Parameter Result Flag Units MDL RL Dilution Reference Method Prepared

7429-90-5	Aluminum	ND	mg/L	0.010	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-36-0	Antimony	ND	mg/L	0.003	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-38-2	Arsenic	ND	mg/L	0.004	0.004	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-39-3	Barium	ND	mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-41-7	Beryllium	ND	mg/L	0.001	0.001	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-43-9	Cadmium	ND	mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-70-2	Calcium	6.05	mg/L	0.019	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-47-3	Chromium	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-48-4	Cobalt	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-50-8	Copper	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7439-89-6	Iron	ND	mg/L	0.010	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7439-92-1	Lead	ND	mg/L	0.002	0.003	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7439-95-4	Magnesium	0.953	mg/L	0.010	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7439-96-5	Manganese	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-02-0	Nickel	ND	mg/L	0.001	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-09-7	Potassium	0.654	mg/L	0.026	0.050	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7782-49-2	Selenium	ND	mg/L	0.007	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-22-4	Silver	ND	mg/L	0.002	0.005	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-23-5	Sodium	5.72	mg/L	0.061	0.100	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-28-0	Thallium	ND	mg/L	0.003	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-62-2	Vanadium	ND	mg/L	0.002	0.010	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW
7440-66-6	Zinc	ND	mg/L	0.002	0.020	1	EPA SW846-6010B/EPA 200.7	04/30/2013 15:34	04/30/2013 18:38	MW

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 96 of 142

Client Sample ID: Field Blank York Sample ID: 13D1004-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Mercury by 7470/7471 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA SW846-7470

Date/Time Date/Time Result Units Flag MDL Dilution Reference Method Analyzed CAS No. **Parameter** Prepared Analyst EPA SW846-7470 04/30/2013 17:15 04/30/2013 17:15 ND mg/L 0.0002 0.0002 7439-97-6 Mercury

<u>Chromium, Hexavalent</u> <u>Log-in Notes:</u> <u>Sample Notes:</u> <u>HT-02</u>

Sample Prepared by Method: Analysis Preparation

Date/Time Date/Time MDL Dilution CAS No. Result Flag Units Reference Method Parameter Prepared Analyzed Analyst 04/26/2013 16:25 04/26/2013 16:25 mg/L 0.00600 0.0100 SW846-7196A AMC 18540-29-9 Chromium, Hexavalent

<u>Chromium, Trivalent</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: *** DEFAULT PREP ***

Date/Time Date/Time CAS No. Parameter Result Flag Units MDL Dilution Reference Method Prepared Analyzed Analyst 05/01/2013 10:15 05/01/2013 10:15 ND mg/L 0.0100 Calculation 16065-83-1 Chromium, Trivalent

Sample Information

Client Sample ID: Trip Blank York Sample ID: 13D1004-14

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
79-00-5	1,1,2-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
75-34-3	1,1-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
75-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
563-58-6	1,1-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
96-18-4	1,2,3-Trichloropropane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
106-93-4	1,2-Dibromoethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 97 of 142

Client Sample ID: Trip Blank York Sample ID: 13D1004-14

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received13D1004#130030 11-28 31st Drive Queens NYWaterApril 25, 2013 3:00 pm04/26/2013

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5030B

olatile Organics, 8260 List Log-in Notes:

Sample Notes:

95-50-1 1,2-Dichloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 107-06-2 1,2-Dichloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 78-87-5 1,2-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-67-8 1,3,5-Trimethylbenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 541-73-1 1,3-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 142-28-9 1,3-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-46-7 1,4-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 594-20-7 2,2-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 78-93-3 2-Butanone ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-86-1 Bromobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58	17:48 BK 17:48 BK 17:48 BK
78-87-5 1,2-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-67-8 1,3,5-Trimethylbenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 541-73-1 1,3-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 142-28-9 1,3-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 594-20-7 2,2-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 78-93-3 2-Butanone ND ug/L 2.5 5.0 1 EPA SW846-8260B 95-49-8 2-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-64-1 Acetone 16 B ug/L 2.5 5.0 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 78-97-5 Bromochloromethane ND	04/30/2013 13:58 04/30/2013 04/30/2013 13:58 04/30/2013	17:48 BK 17:48 BK
108-67-8 1,3,5-Trimethylbenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 541-73-1 1,3-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 142-28-9 1,3-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-46-7 1,4-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 78-93-3 2-Butanone ND ug/L 2.5 5.0 1 EPA SW846-8260B 95-49-8 2-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L	04/30/2013 13:58 04/30/2013	17:48 BK
541-73-1 1,3-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 142-28-9 1,3-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-46-7 1,4-Dichlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 594-20-7 2,2-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 78-93-3 2-Butanone ND ug/L 2.5 10 1 EPA SW846-8260B 95-49-8 2-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromoform ND ug/L 2.		
142-28-9 1,3-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-46-7 1,4-Dichloropenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 594-20-7 2,2-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 78-93-3 2-Butanone ND ug/L 2.5 5.0 1 EPA SW846-8260B 95-49-8 2-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-86-1 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.	04/30/2013 13:58	17:48 BK
106-46-7		17.70 DK
594-20-7 2,2-Dichloropropane ND ug/L 2.5 5.0 1 EPA SW846-8260B 78-93-3 2-Butanone ND ug/L 2.5 10 1 EPA SW846-8260B 95-49-8 2-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-64-1 Acetone 16 B ug/L 2.5 5.0 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L	04/30/2013 13:58 04/30/2013	17:48 BK
78-93-3 2-Butanone ND ug/L 2.5 10 1 EPA SW846-8260B 95-49-8 2-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-64-1 Acetone 16 B ug/L 2.5 5.0 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-86-1 Bromobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-83-9 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5	04/30/2013 13:58 04/30/2013	17:48 BK
95-49-8 2-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-64-1 Acetone 16 B ug/L 2.5 5.0 1 EPA SW846-8260B 67-64-1 Acetone ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-86-1 Bromobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-86-1 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 168-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 76-66-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 76-66-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 76-66-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
106-43-4 4-Chlorotoluene ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-64-1 Acetone 16 B ug/L 2.5 10 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-86-1 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-83-9 Bromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chlorobenzene ND ug/L <	04/30/2013 13:58 04/30/2013	17:48 BK
67-64-1 Acetone 16 B ug/L 2.5 10 1 EPA SW846-8260B 71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-86-1 Bromobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-83-9 Bromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloroform ND ug/L 2.5	04/30/2013 13:58 04/30/2013	17:48 BK
71-43-2 Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-86-1 Bromobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-83-9 Bromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-66-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloromethane ND ug/L 2.5 <td< td=""><td>04/30/2013 13:58 04/30/2013</td><td>17:48 BK</td></td<>	04/30/2013 13:58 04/30/2013	17:48 BK
108-86-1 Bromobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-83-9 Bromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 </td <td>04/30/2013 13:58 04/30/2013</td> <td>17:48 BK</td>	04/30/2013 13:58 04/30/2013	17:48 BK
74-97-5 Bromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-83-9 Bromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
75-27-4 Bromodichloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-83-9 Bromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-66-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
75-25-2 Bromoform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-83-9 Bromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-66-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
74-83-9 Bromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-66-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
56-23-5 Carbon tetrachloride ND ug/L 2.5 5.0 1 EPA SW846-8260B 108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-66-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
108-90-7 Chlorobenzene ND ug/L 2.5 5.0 1 EPA SW846-8260B 75-00-3 Chloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-66-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
75-00-3 Chloroethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 67-66-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
67-66-3 Chloroform ND ug/L 2.5 5.0 1 EPA SW846-8260B 74-87-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
74-87-3 Chloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B 156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
156-59-2 cis-1,2-Dichloroethylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
130 37 2 CIS-1,2-Dichioloculyiche	04/30/2013 13:58 04/30/2013	17:48 BK
TRU GWOLG ORGAN	04/30/2013 13:58 04/30/2013	17:48 BK
10061-01-5 cis-1,3-Dichloropropylene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
124-48-1 Dibromochloromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
74-95-3 Dibromomethane ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
75-71-8 Dichlorodifluoromethane ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
100-41-4 Ethyl Benzene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
87-68-3 Hexachlorobutadiene ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
98-82-8 Isopropylbenzene ND ug/L 0.63 5.0 1 EPA SW846-8260B	04/30/2013 13:58 04/30/2013	17:48 BK
1634-04-4 Methyl tert-butyl ether (MTBE) ND ug/L 2.5 5.0 1 EPA SW846-8260B	04/30/2013 13:58	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 98 of 142

Client Sample ID: Trip Blank York Sample ID: 13D1004-14

York Project (SDG) No. Client Project ID Collection Date/Time Date Received Matrix 13D1004 #130030 11-28 31st Drive Queens NY Water April 25, 2013 3:00 pm 04/26/2013

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List

2037-26-5

Surrogate: Toluene-d8

93.7 %

by Method: EPA 5030B							<u></u>			
Parameter	Result	Flag	Units	MDL	RL	Dilutior	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Methylene chloride	12	В	ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Naphthalene	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
n-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
n-Propylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
o-Xylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
p- & m- Xylenes	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
p-Isopropyltoluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
sec-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Styrene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
tert-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Toluene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Xylenes, Total	ND		ug/L	2.5	15	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Vinyl acetate	ND		ug/L	2.5	10	1	EPA SW846-8260B	04/30/2013 13:58	04/30/2013 17:48	BK
Surrogate Recoveries	Result		Acc	eptance R	ange					
Surrogate: 1,2-Dichloroethane-d4	102 %			-	_					
Surrogate: p-Bromofluorobenzene	98.7 %			63.5-145						
	Parameter Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethylene trans-1,2-Dichloroethylene trans-1,3-Dichloropropylene Trichlorofluoromethane Vinyl Chloride Xylenes, Total Vinyl acetate Surrogate Recoveries Surrogate: 1,2-Dichloroethane-d4	Parameter Result Methylene chloride 12 Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND o-Xylene ND p- & m- Xylenes ND p-Isopropyltoluene ND sec-Butylbenzene ND Styrene ND Tetrachloroethylene ND trans-1,2-Dichloroethylene ND Trichlorofluoromethane ND Xylenes, Total ND Surrogate Recoveries Surrogate: 1,2-Dichloroethane-d4 ME 12 Result 12 Result Result ND ND ND ND ND ND ND ND ND N	Parameter Result Flag Methylene chloride 12 B Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND o-Xylene ND p- & m- Xylenes ND p-Isopropyltoluene ND sec-Butylbenzene ND Styrene ND Tetrachloroethylene ND trans-1,2-Dichloroethylene ND Trichlorofluoromethane ND Xylenes, Total ND Surrogate Recoveries Surrogate: 1,2-Dichloroethane-d4 102 %	Parameter Result Flag Units Methylene chloride 12 B ug/L Naphthalene ND ug/L n-Butylbenzene ND ug/L n-Propylbenzene ND ug/L o-Xylene ND ug/L p- & m- Xylenes ND ug/L sec-Butylbenzene ND ug/L Styrene ND ug/L Styrene ND ug/L Tetrachloroethylene ND ug/L Trichlorofluoromethane ND ug/L tvinyl acetate ND ug/L Surrogate: 1,2-Dichloroethane-d4 102 %	Parameter Result Flag Units MDL	Naphthalene ND	Parameter Result Flag Units MDL RL Dilution	Parameter Result Flag Units MDL RL Dilution Reference Method	Parameter Result Flag Units NUL RI Diluti Reference Method Parameter Result Flag Units NUL RI Diluti Reference Method Parameter Naphthalene ND Units Units Units Units Units Naphthalene ND Units Units Units Units Units Units Naphthalene ND Units Units	National National

81.2-127

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 Page 99 of 142

FAX (203) 35<u>7-0166</u>

Analytical Batch Summary

Batch ID: BD31353	Preparation Method:	Analysis Preparation	Prepared By:	AMC
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-08	Filed Blank	04/26/13		
13D1004-09	MW-1	04/26/13		
13D1004-10	MW-2	04/26/13		
13D1004-11	MW-3	04/26/13		
13D1004-12	MW-3 (Duplicate)	04/26/13		
13D1004-13	Field Blank	04/26/13		
BD31353-BLK1	Blank	04/26/13		
BD31353-BS1	LCS	04/26/13		
BD31353-DUP1	Duplicate	04/26/13		
BD31353-MS1	Matrix Spike	04/26/13		
Batch ID: BD31378	Preparation Method:	EPA 3550B	Prepared By:	SA
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-01	SP-1 0-2 ft	04/30/13		
13D1004-01	SP-1 0-2 ft	04/30/13		
13D1004-02	SP-1 8-9 ft	04/30/13		
13D1004-02	SP-1 8-9 ft	04/30/13		
13D1004-03	SP-2 0-2 ft	04/30/13		
13D1004-03	SP-2 0-2 ft	04/30/13		
13D1004-04	SP-2 8-9 ft	04/30/13		
13D1004-04	SP-2 8-9 ft	04/30/13		
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13		
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13		
13D1004-06	SP-3 0-2 ft	04/30/13		
13D1004-06	SP-3 0-2 ft	04/30/13		
13D1004-07	SP-3 8-9 ft	04/30/13		
13D1004-07	SP-3 8-9 ft	04/30/13		
BD31378-BLK1	Blank	04/30/13		
BD31378-BLK1	Blank	04/30/13		
BD31378-BS1	LCS	04/30/13		
BD31378-BS2	LCS	04/30/13		
BD31378-BSD1	LCS Dup	04/30/13		
BD31378-MS1	Matrix Spike	04/30/13		
Batch ID: BD31380	Preparation Method:	EPA 3545A	Prepared By:	CM
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-01	SP-1 0-2 ft	04/30/13		
13D1004-02	SP-1 8-9 ft	04/30/13		
13D1004-03	SP-2 0-2 ft	04/30/13		
13D1004-04	SP-2 8-9 ft	04/30/13		
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13		
13D1004-06	SP-3 0-2 ft	04/30/13		
13D1004-07	SP-3 8-9 ft	04/30/13		
BD31380-BLK1	Blank	04/30/13		
400 DECEADOU DDIVE	OTDATEODD OT 00045		EAV. (0	

 BD31380-BS1
 LCS
 04/30/13

 BD31380-BSD1
 LCS Dup
 04/30/13

 BD31380-MS1
 Matrix Spike
 04/30/13

Batch ID: BD31385	Preparation Method:	EPA SW846-3060	Prepared By:	AMC
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-01	SP-1 0-2 ft	04/30/13		
13D1004-02	SP-1 8-9 ft	04/30/13		
13D1004-03	SP-2 0-2 ft	04/30/13		
13D1004-04	SP-2 8-9 ft	04/30/13		
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13		
13D1004-06	SP-3 0-2 ft	04/30/13		
13D1004-07	SP-3 8-9 ft	04/30/13		
BD31385-BLK1	Blank	04/30/13		
BD31385-DUP1	Duplicate	04/30/13		
BD31385-MS1	Matrix Spike	04/30/13		
BD31385-SRM1	Reference	04/30/13		
Batch ID: BD31386	Preparation Method:	% Solids Prep	Prepared By:	AMC
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-01	SP-1 0-2 ft	04/30/13		
13D1004-02	SP-1 8-9 ft	04/30/13		
13D1004-03	SP-2 0-2 ft	04/30/13		
13D1004-04	SP-2 8-9 ft	04/30/13		
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13		
13D1004-06	SP-3 0-2 ft	04/30/13		
13D1004-07	SP-3 8-9 ft	04/30/13		
Batch ID: BD31390	Preparation Method:	EPA 5035A	Prepared By:	SS
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-01	SP-1 0-2 ft	04/30/13		
13D1004-02	SP-1 8-9 ft	04/30/13		
13D1004-03	SP-2 0-2 ft	04/30/13		
13D1004-04	SP-2 8-9 ft	04/30/13		
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13		
3D1004-06	SP-3 0-2 ft	04/30/13		
13D1004-07	SP-3 8-9 ft	04/30/13		
BD31390-BLK1	Blank	04/30/13		
BD31390-BS1	LCS	04/30/13		
BD31390-BSD1	LCS Dup	04/30/13		
Batch ID: BD31392	Preparation Method:	EPA 5030B	Prepared By:	EKM
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-09	MW-1	04/30/13		

13D1004-11	MW-3	04/30/13
13D1004-12	MW-3 (Duplicate)	04/30/13
13D1004-13	Field Blank	04/30/13
13D1004-14	Trip Blank	04/30/13
BD31392-BLK1	Blank	04/30/13
BD31392-BS1	LCS	04/30/13
BD31392-BSD1	LCS Dup	04/30/13
BD31392-MS1	Matrix Spike	04/30/13

Batch ID: BD31393 Preparation Method: EPA 5030B Prepared By: SS

YORK Sample ID	Client Sample ID	Preparation Date
13D1004-08	Filed Blank	04/29/13
BD31393-BLK1	Blank	04/30/13
BD31393-BS1	LCS	04/30/13
BD31393-BSD1	LCS Dup	04/30/13

Batch ID: BD31397 Preparation Method: EPA SW846-7471 Prepared By: AA

YORK Sample ID	Client Sample ID	Preparation Date
13D1004-01	SP-1 0-2 ft	04/30/13
13D1004-02	SP-1 8-9 ft	04/30/13
13D1004-03	SP-2 0-2 ft	04/30/13
13D1004-04	SP-2 8-9 ft	04/30/13
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13
13D1004-06	SP-3 0-2 ft	04/30/13
13D1004-07	SP-3 8-9 ft	04/30/13
BD31397-BLK1	Blank	04/30/13
BD31397-BS1	LCS	04/30/13

Batch ID: BD31400 **Preparation Method:** EPA 3050B **Prepared By:** MW

YORK Sample ID	Client Sample ID	Preparation Date
13D1004-01	SP-1 0-2 ft	04/30/13
13D1004-02	SP-1 8-9 ft	04/30/13
13D1004-03	SP-2 0-2 ft	04/30/13
13D1004-04	SP-2 8-9 ft	04/30/13
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13
13D1004-06	SP-3 0-2 ft	04/30/13
13D1004-07	SP-3 8-9 ft	04/30/13
BD31400-BLK1	Blank	04/30/13
BD31400-SRM1	Reference	04/30/13

Batch ID: BD31404 Preparation Method: EPA SW846-7470 Prepared By: AA

YORK Sample ID	Client Sample ID	Preparation Date	
13D1004-08	Filed Blank	04/30/13	
13D1004-09	MW-1	04/30/13	
13D1004-10	MW-2	04/30/13	

13D1004-11	MW-3	04/30/13
13D1004-12	MW-3 (Duplicate)	04/30/13
13D1004-13	Field Blank	04/30/13
BD31404-BLK1	Blank	04/30/13
BD31404-BS1	LCS	04/30/13
BD31404-BS2	LCS	04/30/13

BD31404-BLK1	Blank	04/30/13		
BD31404-BS1	LCS	04/30/13		
BD31404-BS2	LCS	04/30/13		
Batch ID: BD31431	Preparation Method:	EPA SW846-3060	Prepared By:	AMC
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-01	SP-1 0-2 ft	04/30/13		
13D1004-02	SP-1 8-9 ft	04/30/13		
13D1004-03	SP-2 0-2 ft	04/30/13		
13D1004-04	SP-2 8-9 ft	04/30/13		
13D1004-05	SP-2 8-9 ft (Duplicate)	04/30/13		
13D1004-06	SP-3 0-2 ft	04/30/13		
13D1004-07	SP-3 8-9 ft	04/30/13		
Batch ID: BD31432	Preparation Method:	*** DEFAULT PREP ***	Prepared By:	AMC
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-08	Filed Blank	05/01/13		
13D1004-09	MW-1	05/01/13		
13D1004-10	MW-2	05/01/13		
13D1004-11	MW-3	05/01/13		
13D1004-12	MW-3 (Duplicate)	05/01/13		
13D1004-13	Field Blank	05/01/13		
Batch ID: BD31437	Preparation Method:	EPA 3010A	Prepared By:	MW
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-08	Filed Blank	04/30/13		
13D1004-09	MW-1	04/30/13		
13D1004-10	MW-2	04/30/13		
13D1004-11	MW-3	04/30/13		
13D1004-12	MW-3 (Duplicate)	04/30/13		
13D1004-13	Field Blank	04/30/13		
BD31437-BLK1	Blank	04/30/13		
BD31437-SRM1	Reference	04/30/13		
BD31437-SRM2	Reference	04/30/13		
Batch ID: BE30004	Preparation Method:	EPA SW846-3510C Low Level	Prepared By:	KAM
YORK Sample ID	Client Sample ID	Preparation Date		
13D1004-08	Filed Blank	05/01/13		
13D1004-08	Filed Blank	05/01/13		
12D1004 00	MW 1	05/01/12		

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

MW-1

MW-2

MW-3

05/01/13

05/01/13

05/01/13

13D1004-09

13D1004-10

13D1004-11

MW-3 (Duplicate)	05/01/13
Field Blank	05/01/13
Blank	05/01/13
Blank	05/01/13
LCS	05/01/13
LCS	05/01/13
LCS	05/01/13
LCS Dup	05/01/13
LCS Dup	05/01/13
LCS Dup	05/01/13
	Field Blank Blank Blank LCS LCS LCS LCS LCS Dup LCS Dup

YORK Sample ID Client Sample ID Preparation Date

13D1004-08 Filed Blank 05/01/13

YORK Sample ID	Client Sample ID	Preparation Date
13D1004-09	MW-1	05/02/13
13D1004-10	MW-2	05/02/13
13D1004-11	MW-3	05/02/13
13D1004-12	MW-3 (Duplicate)	05/02/13
13D1004-13	Field Blank	05/02/13

Volatile Organic Compounds by EPA SW846-8260B - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (DD)390- BLK1)	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
1,1,1-7-tennehlocochane	Batch BD31390 - EPA 5035A											
1,1 Trichtemchane								Prepa	ared & Analy	yzed: 04/30/	2013	
1.1.1-Tichlorechance	1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg wet								
1.1.2.2 funchionechame From 113)	1,1,1-Trichloroethane											
1.1.3-11-fichiorechane ND 5.0	1,1,2,2-Tetrachloroethane		5.0	"								
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)			"								
1,1-Delhoteoporpue	1,1,2-Trichloroethane	ND	5.0	"								
1,1-10-klooperopleme	1,1-Dichloroethane	ND	5.0	"								
1.2.3-Trachorporgename	1,1-Dichloroethylene	ND	5.0	"								
1.3.3-Trienforropropane ND 5.0 1.2.4-Trienforberzere ND 10 1.2.4-Trienforberzere ND 50 1.2-Diboropopane ND 50 1.2-Diboropopane ND 50 1.2-Dichloroberzere ND 50 1.2-Dichloroberzere ND 50 1.2-Dichloroberzere ND 50 1.2-Dichloroberzere ND 50 1.3-Dichloropopane ND 50 1.3-Dichloroberzere ND 50 1.4-Dichloroberzere ND 50 2-Butanon ND 50 2-Butanon ND 50 2-Butanon ND 50 Bromochloromethane ND 50 Bromochloromethane	1,1-Dichloropropylene	ND	5.0	"								
1,2,4 Trinefuly Denzene ND	1,2,3-Trichlorobenzene	ND	10	"								
1,21-1 1	1,2,3-Trichloropropane	ND	5.0	"								
1,2-1-15 bromos-lahoroproprieme ND	1,2,4-Trichlorobenzene	ND	10	"								
1.2-Dieklorobenzene ND S.0 *	1,2,4-Trimethylbenzene	ND	5.0	"								
1,21-Dichloroetname	1,2-Dibromo-3-chloropropane	ND	10	"								
1,2-Diekloroethane ND 5.0 * 1,2-Diekloropropame ND 5.0 * 1,3-Diekloropropame ND 5.0 * 1,3-Diekloropropame ND 5.0 * 1,4-Dieklorobenzene ND 5.0 * 1,4-Dieklorobenzene ND 5.0 * 1,4-Dieklorobenzene ND 5.0 * 2-Butanone ND 5.0 * 2-Butanone ND 1.0 * 2-Butanone ND 5.0 * 2-Butanone ND 5.0 * 4-Chlorotoluene ND 5.0 * 4-Chlorotoluene ND 5.0 * Berunene ND 5.0 * Bromochloromethane ND 5.0 * Bromochloromethane ND 5.0 * Bromochloromethane ND 5.0 * Chloroform ND 5.0 * Chl		ND	5.0	"								
1,2-Dichloropropane ND 5,0 * 1,3,5-Timiechylbenzene ND 5,0 * 1,3-Dichloropropane ND 5,0 * 1,4-Dicknoropropane ND 5,0 * 1,4-Dicknoropropane ND 5,0 * 1,4-Dicknoropropane ND 5,0 * 2,2-Dicknoropropane ND 5,0 * 2-Butanone ND 5,0 * 2-Butanone ND 5,0 * 2-Chiorotoluene ND 5,0 * 4-Cklorotoluene ND 5,0 * 4-Cklorotoluene ND 5,0 * 8-mone ND	1,2-Dichlorobenzene	ND	5.0	"								
1,3-5-Trimethylbenzene ND 5.0 * 1,3-bichleoropane ND 5.0 * 1,4-bichlorobenzene ND 5.0 * 1,4-bichlorobenzene ND 5.0 * 2,4-bichloropopane ND 5.0 * 2-Butanone ND 10 * 2-Butanone ND 5.0 * 4-Chlorotoluene ND 5.0 * 4-Chlorotoluene ND 5.0 * 4-Cetone ND 5.0 * Bromochoromethane ND 5.0 * Bromochoromethane ND 5.0 * Bromochoromethane ND 5.0 * Bromochoromethane ND 5.0 * Curbon tetrachloride ND 5.0 * Curbon tetrachloride ND 5.0 * Chlorochorame ND 5.0 * Chlorochoruethane ND 5.0 *		ND	5.0	"								
1,3-Dichloropropane ND 5,0 *	1,2-Dichloropropane	ND	5.0	"								
1.3-Dichloropropane ND 5.0 " 1.4-Dicklorobenzene ND 5.0 " 1.4-Dickloropropane ND 5.0 " 2-Dichloroptopane ND 1.0 " 2-Butanone ND 1.0 " 2-Chilorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 1.0 " Bromed ND 5.0 " Bromedichloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromodema ND 5.0 " Bromodema ND 5.0 " Bromodema ND 5.0 " Bromodema ND 5.0 " Carbon eterachloride ND 5.0 " Chlorobenzene ND 5.0 " Chlorobenzene												
1,4-Dicklordenzene ND 5,0 " 1,4-Dickane ND 5,0 " 2,2-Dickloropropame ND 5,0 " 2-Butanone ND 1,0 " 2-Chiorotoluene ND 5,0 " 4-Chiorotoluene ND 5,0 " Acetone ND 1,0 " Benzne ND 5,0 " Bromochloromethane ND 5,0 " Bromochloromethane ND 5,0 " Bromochloromethane ND 5,0 " Bromochloromethane ND 5,0 " Chlorochare ND 5,0 " Chlorochare ND 5,0 " Chlorochare ND 5,0 " Chlorochare ND 5,0 " Chlorochylene ND 5,0 " cis-1,3-Dichloropropylene ND 5,0 " Dibromochloromethane </td <td></td> <td></td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			5.0									
1,4-Dioxane ND 50 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 1.0 " Benzene ND 5.0 " Bromochenzene ND 5.0 " Bromochichoromethane ND 5.0 " Bromochichloromethane ND 5.0 " Bromomethane ND 5.0 " Bromomethane ND 5.0 " Carbon tetrachloride ND 5.0 " Chlorothane ND 5.0 " Chlorothane ND 5.0 " Chlorothane ND 5.0 " Chlorothylene ND 5.0 " cis-1,2-Dichlorothylene ND 5.0 " cis-1,3-Dichlorothylene <td></td>												
2.2-Dichloropropane ND 5.0 " 2-Butanone ND 10 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromochloromethane ND 5.0 " Bromochloromethane ND 5.0 " Bromoform ND 5.0 " Bromoform ND 5.0 " Bromoform ND 5.0 " Bromoform ND 5.0 " Chlorothane ND 5.0 " Chlorothane ND 5.0 " Chlorothane ND 5.0 " Chlorothane ND 5.0 " Chlorothylene ND 5.0 " cis-1.2-Dichlorothylene ND 5.0 " Dibromochloromethane ND												
2-Butanone ND 10 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 5.0 " Benzene ND 5.0 " Bromobenzene ND 5.0 " Bromodichloromethane ND 5.0 " Bromofform ND 5.0 " Bromofform ND 5.0 " Bromofform ND 5.0 " Carbon tetrachloride ND 5.0 " Chlorobenzene ND 5.0 " Chloroform ND 5.0 " Chlorofenatea ND 5.0 " Chlorofethane ND 5.0 " Chlorofethane ND 5.0 " Chlorofethane ND 5.0 " Chloroform ND 5.0 " Dibromofethane ND 5.0 </td <td></td>												
2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 " Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromoferma ND 5.0 " Chlorototrachene ND 5.0 " Chlorototrachene ND 5.0 " Chlorotofrom ND 5.0 " Chlorotofrom ND 5.0 " Chlorotofrom ND 5.0 " Cis-1,3-Dichlorotroplylene ND 5.0 " cis-1,3-Dichlorotomethane ND 5.0 " Dibromomethane ND 5.0 " Dibromomethane ND 5.0 " Ethyl Benzene												
4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 " Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromofform ND 5.0 " Bromomethane ND 5.0 " Carbon tetrachloride ND 5.0 " Chlorobenzene ND 5.0 " Chloropethane ND 5.0 " Chloropethane ND 5.0 " Chloropethylene ND 5.0 " cis-1,3-Dichlorophylene ND 5.0 " cis-1,3-Dichloromethane ND 5.0 " Dibromomethane ND 5.0 " Dibromomethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobtuati												
Acetone ND 10 Benzene ND 5.0 Bromoebnezene ND 5.0 Bromoelichoromethane ND 5.0 Bromodichloromethane ND 5.0 Bromoform ND 5.0 Bromomethane ND 5.0 Bromomethane ND 5.0 Carbon tetrachloride ND 5.0 Carbon tetrachloride ND 5.0 Chlorochtane ND 5.0 Chlorochtane ND 5.0 Chlorochtane ND 5.0 Cis-1,2-Dichlorochtylene ND 5.0 cis-1,2-Dichloroptropylene ND 5.0 Dibromomethane ND 5.0 Ethyl Benzene ND 5.0 Ketyletr-buyl ether (MTBE) ND 5.0												
Benzene ND 5.0 " Bromochloromethane ND 5.0 " Bromochloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " Carbon tetrachloride ND 5.0 " Chlorotetrachloride ND 5.0 " Chlorothane ND 5.0 " cis-1,2-Dichlorothylene ND 5.0 " Dibromochloromethane ND 5.0 " Dibromochloromethane ND 5.0 " Ethyl Benzene												
Bromobenzene ND 5.0 " Bromochloromethane ND 5.0 " Bromoform ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " Carbon tetrachloride ND 5.0 " Chlorobenzene ND 5.0 " Chlorothane ND 5.0 " Chlorothylene ND 5.0 " Cis-1,3-Dichlorothylene ND 5.0 " Dibromochloromethane ND 5.0 " Dibromochlane ND 5.0 " Etyl Benzene ND 5.0 " Hexachlorothutadiene ND 5.0 " Methyl tert-butyl ether (MTB												
Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " Carbon terachloride ND 5.0 " Chlorobenzene ND 5.0 " Chlorofethane ND 5.0 " Chloroform ND 5.0 " Chloromethane ND 5.0 " cis-1,2-Dichloroethylene ND 5.0 " cis-1,3-Dichloropropylene ND 5.0 " Dibromoethane ND 5.0 " Dibromoethane ND 5.0 " Dichlorodifluromethane ND 5.0 " Dibromoethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Methylene chloride ND 5.0 "												
Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " Carbon tetrachloride ND 5.0 " Chlorostane ND 5.0 " Chloroform ND 5.0 " Chloromethane ND 5.0 " Chloromethane ND 5.0 " Dibromochloromethane ND 5.0 " Dibromochloromethane ND 5.0 " Dichlorodifluoromethane ND 5.0 " Eithyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride ND 5.0 " Methylene chloride ND 5.0 " Methylene chloride ND 5.0 "												
Bromoform ND 5.0 " Bromomethane ND 5.0 " Carbon tetrachloride ND 5.0 " Chlorobenzene ND 5.0 " Chlorothane ND 5.0 " Chloroform ND 5.0 " Chloromethane ND 5.0 " Cis-1,2-Dichloropthylene ND 5.0 " cis-1,3-Dichloropropylene ND 5.0 " Dibromomethane ND 5.0 " Dibromomethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 5.0 " ND 5.0 " ND 5.0				,,								
Bromomethane ND 5.0 " Carbon tetrachloride ND 5.0 " Chlorobenzene ND 5.0 " Chlorofethane ND 5.0 " Chloroform ND 5.0 " Chloromethane ND 5.0 " Chloromethane ND 5.0 " cis-1,2-Dichloropropylene ND 5.0 " Dibromochloromethane ND 5.0 " Dibromomethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride ND 5.0 " ND 5.0 " ND 5.0 " Methylene chloride ND 5.0 " ND 5.0 " <td></td>												
Carbon tetrachloride ND 5.0 " Chlorobenzene ND 5.0 " Chloroethane ND 5.0 " Chloroform ND 5.0 " Chloromethane ND 5.0 " Cis-1,2-Dichlorothylene ND 5.0 " cis-1,3-Dichloropropylene ND 5.0 " Dibromochloromethane ND 5.0 " Dibromomethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Maphthalene ND 5.0 " ND 5.0 " ND 5.0 " Methylene chloride 3.5 10 " ND 5.0 " ND 5.0 "				"								
Chlorobenzene ND 5.0 " Chloroethane ND 5.0 " Chloroform ND 5.0 " Chloromethane ND 5.0 " cis-1,2-Dichloroethylene ND 5.0 " cis-1,3-Dichloropropylene ND 5.0 " Dibromochloromethane ND 5.0 " Dibromomethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 5.0 " Naphthalene ND 5.0 "				"								
Chloroethane ND 5.0 " Chloroform ND 5.0 " Chloromethane ND 5.0 " cis-1,2-Dichloroethylene ND 5.0 " cis-1,3-Dichloropropylene ND 5.0 " Dibromochloromethane ND 5.0 " Dibromomethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 5.0 " Naphthalene ND 5.0 "				"								
Chloroform ND 5.0 " Chloromethane ND 5.0 " cis-1,2-Dichloroethylene ND 5.0 " cis-1,3-Dichloropropylene ND 5.0 " Dibromochloromethane ND 5.0 " Dibromomethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 5.0 " n-Butylbenzene ND 5.0 "	Chloroethane			"								
cis-1,2-Dichloroethylene ND 5.0 " cis-1,3-Dichloropropylene ND 5.0 " Dibromoethane ND 5.0 " Dibromomethane ND 5.0 " Dichlorodifluoromethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 10 " n-Butylbenzene ND 5.0 "	Chloroform			"								
cis-1,2-Dichloroethylene ND 5,0 " cis-1,3-Dichloropropylene ND 5,0 " Dibromoethane ND 5,0 " Dibromomethane ND 5,0 " Dichlorodifluoromethane ND 5,0 " Ethyl Benzene ND 5,0 " Hexachlorobutadiene ND 5,0 " Isopropylbenzene ND 5,0 " Methyl tert-butyl ether (MTBE) ND 5,0 " Methylene chloride 3,5 10 " Naphthalene ND 10 " n-Butylbenzene ND 5,0 "	Chloromethane		5.0	"								
Dibromochloromethane ND 5.0 " Dibromomethane ND 5.0 " Dichlorodifluoromethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 5.0 " n-Butylbenzene ND 5.0 "	cis-1,2-Dichloroethylene	ND		"								
Dibromomethane ND 5.0 " Dichlorodifluoromethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 10 " n-Butylbenzene ND 5.0 "	cis-1,3-Dichloropropylene	ND	5.0	"								
Dichlorodifluoromethane ND 5.0 " Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 10 " n-Butylbenzene ND 5.0 "	Dibromochloromethane	ND	5.0	"								
Ethyl Benzene ND 5.0 " Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 10 " n-Butylbenzene ND 5.0 "	Dibromomethane	ND	5.0	"								
Hexachlorobutadiene ND 5.0 " Isopropylbenzene ND 5.0 " Methyl tert-butyl ether (MTBE) ND 5.0 " Methylene chloride 3.5 10 " Naphthalene ND 10 " n-Butylbenzene ND 5.0 "	Dichlorodifluoromethane	ND	5.0	"								
IsopropylbenzeneND5.0"Methyl tert-butyl ether (MTBE)ND5.0"Methylene chloride3.510"NaphthaleneND10"n-ButylbenzeneND5.0"	Ethyl Benzene	ND	5.0	"								
Methyl tert-butyl ether (MTBE) Methylene chloride 3.5 10 Naphthalene ND 10 " n-Butylbenzene ND 5.0 "		ND	5.0	"								
Methylene chloride3.510"NaphthaleneND10"n-ButylbenzeneND5.0"		ND	5.0	"								
Naphthalene ND 10 " n-Butylbenzene ND 5.0 "	Methyl tert-butyl ether (MTBE)	ND	5.0	"								
n-Butylbenzene ND 5.0 "			10	"								
	_		10	"								
n-Propylbenzene ND 5.0 "			5.0	"								
	n-Propylbenzene	ND	5.0	"								

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BD31390 - EPA 5035A							
Blank (BD31390-BLK1)						Prep	pared & Analyzed: 04/30/2013
o-Xylene	ND	5.0	ug/kg wet				
p- & m- Xylenes	ND	10	ug/kg wet				
p-Isopropyltoluene	ND	5.0	"				
sec-Butylbenzene	ND	5.0	"				
Styrene	ND	5.0	"				
tert-Butylbenzene	ND	5.0	"				
Tetrachloroethylene	ND	5.0	"				
Toluene	ND	5.0	"				
trans-1,2-Dichloroethylene	ND	5.0	"				
trans-1,3-Dichloropropylene	ND	5.0	"				
Trichloroethylene	ND	5.0	"				
Trichlorofluoromethane	ND	5.0	"				
Vinyl Chloride	ND	5.0	"				
Xylenes, Total	ND	15	"				
Vinyl acetate	ND	10	"				
		10					
Surrogate: 1,2-Dichloroethane-d4	52.6		ug/L	50.0	105	73-130	
Surrogate: p-Bromofluorobenzene	49.8		"	50.0	99.5	72-127	
Surrogate: Toluene-d8	51.0		"	50.0	102	84-117	
LCS (BD31390-BS1)						Prep	pared & Analyzed: 04/30/2013
1,1,1,2-Tetrachloroethane	53		ug/L	50.0	105	72-132	
1,1,1-Trichloroethane	48		"	50.0	95.2	77-131	
1,1,2,2-Tetrachloroethane	62		"	50.0	124	68-129	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	40		"	50.0	81.0	75-143	
1,1,2-Trichloroethane	51		"	50.0	102	72-128	
1,1-Dichloroethane	46		"	50.0	91.9	78-133	
1,1-Dichloroethylene	40		"	50.0	80.4	71-142	
1,1-Dichloropropylene	44		"	50.0	88.2	77-124	
1,2,3-Trichlorobenzene	50		"	50.0	99.2	65-134	
1,2,3-Trichloropropane	56		"	50.0	113	65-127	
1,2,4-Trichlorobenzene	49		"	50.0	98.6	59-133	
1,2,4-Trimethylbenzene	47		"	50.0	94.9	68-128	
1,2-Dibromo-3-chloropropane	78		"	50.0	155	58-145	High Bias
1,2-Dibromoethane	55		"	50.0	110	73-128	
1,2-Dichlorobenzene	51		"	50.0	102	69-126	
1,2-Dichloroethane	50		"	50.0	100	78-131	
1,2-Dichloropropane	51		"	50.0	102	72-129	
1,3,5-Trimethylbenzene	48		"	50.0	96.1	67-125	
1,3-Dichlorobenzene	50		"	50.0	99.1	67-125	
1,3-Dichloropropane	53		"	50.0	106	73-126	
1,4-Dichlorobenzene	50		"	50.0	99.0	67-127	
1,4-Dioxane	84		"	50.0	167	10-265	
2,2-Dichloropropane	54		"	50.0	108	68-133	
2-Butanone	49		"	50.0	97.9	49-138	
2-Chlorotoluene	48		"	50.0	96.2	61-121	
4-Chlorotoluene	50		"	50.0	99.8	65-126	
Acetone	20		"	50.0	39.5	21-131	
Benzene	46		"	50.0	93.0	81-125	
Bromobenzene	53		"	50.0	106	65-125	
Bromochloromethane	52		"	50.0	104	78-127	
Bromodichloromethane	51		"	50.0	102	73-131	
Bromoform	57		"	50.0	114	66-137	

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BD31390 - EPA 5035A						
LCS (BD31390-BS1)					Pre	pared & Analyzed: 04/30/2013
Bromomethane	30	ug/L	50.0	59.6	55-144	
Carbon tetrachloride	49	"	50.0	97.5	74-137	
Chlorobenzene	51	"	50.0	101	75-127	
Chloroethane	38	"	50.0	75.0	65-138	
Chloroform	48	"	50.0	96.2	82-128	
Chloromethane	24	"	50.0	48.4	51-138	Low Bias
is-1,2-Dichloroethylene	46	"	50.0	92.2	77-130	
eis-1,3-Dichloropropylene	57	"	50.0	114	68-123	
Dibromochloromethane	55	"	50.0	110	73-136	
Dibromomethane	54	"	50.0	109	75-131	
Dichlorodifluoromethane	11	"	50.0	22.3	10-183	
Ethyl Benzene	51	"	50.0	101	75-130	
Iexachlorobutadiene	51	"	50.0	102	59-130	
sopropylbenzene	48	"	50.0	96.2	68-135	
Methyl tert-butyl ether (MTBE)	52	"	50.0	103	76-136	
Methylene chloride	48	"	50.0	95.4	55-143	
Japhthalene	44	"	50.0	87.9	65-140	
-Butylbenzene	46	"	50.0	92.1	63-123	
-Propylbenzene	48	"	50.0	95.5	65-127	
-Xylene	50	"	50.0	99.4	71-123	
- & m- Xylenes	100	"	100	101	72-127	
-Isopropyltoluene	48	"	50.0	96.7	69-128	
ec-Butylbenzene	50	"	50.0	99.6	69-125	
Styrene	52	"	50.0	103	74-127	
ert-Butylbenzene	51	"	50.0	101	59-164	
Tetrachloroethylene	40	"	50.0	80.6	65-151	
Toluene	48	"	50.0	96.6	72-127	
rans-1,2-Dichloroethylene	44	"	50.0	88.8	73-137	
rans-1,3-Dichloropropylene	61	"	50.0	122	67-131	
Trichloroethylene	47	"	50.0	93.8	73-129	
Frichlorofluoromethane	38	"	50.0	76.3	69-136	
/inyl Chloride	27	"	50.0	53.7	58-132	Low Bias
Vinyl acetate	77	"	50.0	155	10-84	High Bias
Surrogate: 1,2-Dichloroethane-d4	52.8	"	50.0	106	73-130	
Surrogate: p-Bromofluorobenzene	49.3	"	50.0	98.5	72-127	
Surrogate: Toluene-d8	49.8	"	50.0	99.5	84-117	

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

LCS Dup (BD31390-BSD1)					Prepared	& Analyzed: 04/30/2	013	
* * *			50.0	105		-		
1,1,1,2-Tetrachloroethane	52	ug/L	50.0	105	72-132	0.495	30	
1,1,1-Trichloroethane	51		50.0	101	77-131	6.35	30	
1,1,2,2-Tetrachloroethane	62		50.0	125	68-129	0.225	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	43	"	50.0	85.5	75-143	5.41	30	
1,1,2-Trichloroethane	50	"	50.0	99.6	72-128	2.09	30	
1,1-Dichloroethane	48	"	50.0	96.2	78-133	4.64	30	
1,1-Dichloroethylene	42	"	50.0	83.6	71-142	3.85	30	
1,1-Dichloropropylene	46	"	50.0	93.0	77-124	5.28	30	
1,2,3-Trichlorobenzene	53	"	50.0	106	65-134	6.40	30	
1,2,3-Trichloropropane	57	"	50.0	114	65-127	0.919	30	
1,2,4-Trichlorobenzene	51	"	50.0	102	59-133	3.02	30	
1,2,4-Trimethylbenzene	50	"	50.0	99.8	68-128	5.07	30	
1,2-Dibromo-3-chloropropane	61	"	50.0	122	58-145	23.8	30	
1,2-Dibromoethane	54	"	50.0	108	73-128	2.22	30	
1,2-Dichlorobenzene	51	"	50.0	102	69-126	0.646	30	
1,2-Dichloroethane	51	"	50.0	102	78-131	1.33	30	
1,2-Dichloropropane	53	"	50.0	105	72-129	3.31	30	
1,3,5-Trimethylbenzene	51	"	50.0	103	67-125	6.78	30	
1,3-Dichlorobenzene	49	n n	50.0	98.1	67-125	0.974	30	
1,3-Dichloropropane	53	"	50.0	107	73-126	1.13	30	
1,4-Dichlorobenzene	52	"	50.0	103	67-127	3.94	30	
1,4-Dioxane	52	"	50.0	103	10-265	47.3	30	Non-dir.
2,2-Dichloropropane	56	"	50.0	112	68-133	3.55	30	
2-Butanone	48	"	50.0	95.5	49-138	2.54	30	
2-Chlorotoluene	54	"	50.0	107	61-121	10.8	30	
4-Chlorotoluene	53	"	50.0	106	65-126	5.71	30	
Acetone	21	"	50.0	42.8	21-131	8.11	30	
Benzene	49	"	50.0	97.5	81-125	4.72	30	
Bromobenzene	54	"	50.0	108	65-125	2.40	30	
Bromochloromethane	52	"	50.0	104	78-127	0.249	30	
Bromodichloromethane	51	"	50.0	102	73-131	0.628	30	
Bromoform	56	"	50.0	111	66-137	2.59	30	
Bromomethane	32	"	50.0	63.6	55-144	6.53	30	
Carbon tetrachloride	51	"	50.0	101	74-137	3.76	30	
Chlorobenzene	51	"	50.0	101	75-127	0.0198	30	
Chloroethane	39	"	50.0	77.3	65-138	2.92	30	
Chloroform	49	"	50.0	98.9	82-128	2.73	30	
Chloromethane	26	"	50.0			5.66	30	
cis-1,2-Dichloroethylene		"		51.2	51-138	3.83		
	48	"	50.0	95.8	77-130		30	
cis-1,3-Dichloropropylene	56		50.0	113	68-123	1.27	30	
Dibromochloromethane	54		50.0	109	73-136	0.752	30	
Dibromomethane	52		50.0	105	75-131	3.65	30	
Dichlorodifluoromethane	10	"	50.0	20.6	10-183	7.74	30	
Ethyl Benzene	52	"	50.0	103	75-130	1.86	30	
Hexachlorobutadiene	52	"	50.0	104	59-130	2.85	30	
Isopropylbenzene	51	"	50.0	101	68-135	5.20	30	
Methyl tert-butyl ether (MTBE)	53	"	50.0	106	76-136	2.88	30	
Methylene chloride	48	"	50.0	96.4	55-143	1.04	30	
Naphthalene	47	"	50.0	93.6	65-140	6.28	30	
n-Butylbenzene	49	"	50.0	97.5	63-123	5.63	30	
n-Propylbenzene	50	"	50.0	101	65-127	5.42	30	

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
	-		·			·	·	·		·	

Batch BD31390 - EPA 5035A Prepared & Analyzed: 04/30/2013 LCS Dup (BD31390-BSD1) o-Xylene 1.36 50 ug/L 50.0 101 71-123 30 p- & m- Xylenes 100 100 103 72-127 2.56 30 p-Isopropyltoluene 51 50.0 101 69-128 4.45 30 sec-Butylbenzene 51 50.0 102 69-125 2.03 30 Styrene 53 50.0 106 74-127 2.35 30 tert-Butylbenzene 53 50.0 105 59-164 3.49 30 Tetrachloroethylene 43 50.0 86.6 65-151 7.13 30 Toluene 2.88 30 50 50.0 99.5 72-127 trans-1,2-Dichloroethylene 3.91 30 92.4 46 50.0 73-137 trans-1,3-Dichloropropylene 62 50.0 123 67-131 1.32 30 30 Trichloroethylene 3.48 49 50.0 97.1 73-129 Trichlorofluoromethane 1.79 30 39 50.0 77.7 69-136 Vinyl Chloride 27 50.0 54.3 58-132 Low Bias 1.15 30 Vinyl acetate 76 50.0 10-84 High Bias 1.22 30 Surrogate: 1,2-Dichloroethane-d4 52.0 50.0 104 73-130 102 Surrogate: p-Bromofluorobenzene 51.1 50.0 72-127 50.0 Surrogate: Toluene-d8 50.0 100 84-117 Batch BD31392 - EPA 5030B Prepared & Analyzed: 04/30/2013 Blank (BD31392-BLK1) 1,1,1,2-Tetrachloroethane ND 5.0 ug/L 1,1,1-Trichloroethane ND 5.0 1,1,2,2-Tetrachloroethane ND 5.0 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) ND 5.0 1,1,2-Trichloroethane ND 5.0 1,1-Dichloroethane ND 5.0 1,1-Dichloroethylene ND 5.0 1,1-Dichloropropylene ND 5.0 1,2,3-Trichlorobenzene ND 10 1,2,3-Trichloropropane ND 5.0 1,2,4-Trichlorobenzene ND 10 1,2,4-Trimethylbenzene ND 5.0 1,2-Dibromo-3-chloropropane ND 10 1,2-Dibromoethane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 1,3,5-Trimethylbenzene ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0 2,2-Dichloropropane ND 5.0 2-Butanone ND 10 2-Chlorotoluene ND 5.0 4-Chlorotoluene ND 5.0 Acetone 5.0 10 Benzene ND 5.0 Bromobenzene ND 5.0 Bromochloromethane ND 5.0 Bromodichloromethane ND 5.0

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

5.0

ND

Bromoform

Volatile Organic Compounds by EPA SW846-8260B - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BD31392 - EPA 5030B							
Blank (BD31392-BLK1)						Prepared & A	.nalyzed: 04/30/2013
Bromomethane	ND	5.0	ug/L				
Carbon tetrachloride	ND	5.0	"				
Chlorobenzene	ND	5.0	"				
Chloroethane	ND	5.0	"				
Chloroform	ND	5.0	"				
Chloromethane	ND	5.0	"				
cis-1,2-Dichloroethylene	ND	5.0	"				
cis-1,3-Dichloropropylene	ND	5.0	"				
Dibromochloromethane	ND	5.0	"				
Dibromomethane	ND	5.0	"				
Dichlorodifluoromethane	ND	5.0	"				
Ethyl Benzene	ND	5.0	"				
Hexachlorobutadiene	ND	5.0	"				
Isopropylbenzene	ND	5.0	"				
Methyl tert-butyl ether (MTBE)	ND	5.0	"				
Methylene chloride	4.4	10	"				
Naphthalene	ND	10	"				
n-Butylbenzene	ND	5.0	"				
n-Propylbenzene	ND	5.0	"				
o-Xylene	ND	5.0	"				
p- & m- Xylenes	ND	10	"				
p-Isopropyltoluene	ND	5.0	"				
sec-Butylbenzene	ND	5.0	"				
Styrene	ND	5.0	"				
tert-Butylbenzene	ND	5.0	"				
Tetrachloroethylene	ND	5.0	"				
Toluene	ND	5.0	"				
trans-1,2-Dichloroethylene	ND	5.0	"				
trans-1,3-Dichloropropylene	ND	5.0	"				
Trichloroethylene	ND	5.0	"				
Trichlorofluoromethane	ND	5.0	"				
Vinyl Chloride	ND	5.0	"				
Xylenes, Total	ND	15	"				
Vinyl acetate	ND	10	"				
Surrogate: 1,2-Dichloroethane-d4	50.4		"	50.0	101	72.6-129	
Surrogate: p-Bromofluorobenzene	49.2		"	50.0	98.5	63.5-145	
Surrogate: Toluene-d8	46.4		"	50.0	92.8	81.2-127	

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31392 - EPA 5030B										
LCS (BD31392-BS1)						Prep	ared & Analy	yzed: 04/30/	2013	
1,1,1,2-Tetrachloroethane	50	ug/L	50.0		99.6	82.3-130				
1,1,1-Trichloroethane	53	"	50.0		105	75.6-137				
1,1,2,2-Tetrachloroethane	48	"	50.0		96.7	71.3-131				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	50	"	50.0		100	71.1-129				
1,1,2-Trichloroethane	49	"	50.0		97.4	74.5-129				
1,1-Dichloroethane	52	"	50.0		104	79.6-132				
1,1-Dichloroethylene	51	"	50.0		102	80.2-146				
1,1-Dichloropropylene	48	"	50.0		96.9	75-136				
1,2,3-Trichlorobenzene	48	"	50.0		95.0	66.1-136				
1,2,3-Trichloropropane	51	"	50.0		102	63-131				
1,2,4-Trichlorobenzene	48	"	50.0		96.6	70.6-136				
1,2,4-Trimethylbenzene	45	"	50.0		90.1	75.3-135				
1,2-Dibromo-3-chloropropane	49	"	50.0		98.1	58.9-140				
1,2-Dibromoethane	51	"	50.0		103	79-130				
1,2-Dichlorobenzene	46	"	50.0		92.9	76.1-122				
1,2-Dichloroethane	55	"	50.0		111	74.6-132				
1,2-Dichloropropane	47	"	50.0		94.8	76.9-129				
1,3,5-Trimethylbenzene	46	"	50.0		91.2	70.6-127				
1,3-Dichlorobenzene	47	"	50.0		93.9	77-124				
1,3-Dichloropropane	50	"	50.0		99.9	75.8-126				
1,4-Dichlorobenzene	47	"	50.0		93.6	76.6-125				
2,2-Dichloropropane	53	"	50.0		106	69-133				
2-Butanone	55	"	50.0		110	70-130				
2-Chlorotoluene	45	"	50.0		90.0	66.3-119				
4-Chlorotoluene	47	"	50.0		94.6	69.2-127				
Acetone	42	"	50.0		85.0	70-130				
Benzene	52	"	50.0		105	76.2-129				
Bromobenzene	45	"	50.0		90.9	71.3-123				
Bromochloromethane	53	"	50.0		105	70.8-137				
Bromodichloromethane	50	"	50.0		100	79.7-134				
Bromoform	49	"	50.0		97.8	70.5-141				
Bromomethane	43	"	50.0		85.2	43.9-147				
Carbon tetrachloride	54	"	50.0		109	78.1-138				
Chlorobenzene	49	"	50.0		97.9	80.4-125				
Chloroethane	47	"	50.0		94.3	55.8-140				
Chloroform	54	"	50.0		108	76.6-133				
Chloromethane	31	"	50.0		62.2	48.8-115				
cis-1,2-Dichloroethylene	52	"	50.0		105	75.1-128				
cis-1,3-Dichloropropylene	52	"	50.0		103	74.5-128				
Dibromochloromethane	52	"	50.0		103	79.8-134				
Dibromomethane	51	"	50.0		102	79-130				
Dichlorodifluoromethane	13	"	50.0		26.5	47.1-101	Low Bias			
Ethyl Benzene	50	"	50.0		99.1	80.8-128				
Hexachlorobutadiene	45	"	50.0		89.8	64.8-128				
Isopropylbenzene	45	"	50.0		89.3	75.5-135				
Methyl tert-butyl ether (MTBE)	60	"	50.0		120	65.1-140				
Methylene chloride	56	"	50.0		113	61.3-120				
Naphthalene	53	"	50.0		106	62.3-148				
n-Butylbenzene	44	"	50.0		88.2	67.2-123				
n-Propylbenzene		"	50.0							
o-Xylene	46 48	"			91.1 95.5	70.5-127				
U-Asylene	48		50.0		95.5	75.9-122				

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BD31392 - EPA 5030B							
LCS (BD31392-BS1)					Prepared &	& Analyzed: 04/30/2	013
p- & m- Xylenes	98	ug/L	100	98.1	77.7-127		
p-Isopropyltoluene	46	"	50.0	91.8	75.6-129		
ec-Butylbenzene	46	"	50.0	91.2	71.5-125		
tyrene	50	"	50.0	101	77.8-123		
rt-Butylbenzene	46	"	50.0	91.3	75.9-151		
etrachloroethylene	45	"	50.0	90.9	63.6-167		
bluene	48	"	50.0	95.3	77-123		
ans-1,2-Dichloroethylene	52	"	50.0	104	76.3-139		
ans-1,3-Dichloropropylene	51	"	50.0	102	72.5-137		
richloroethylene	45	"	50.0	89.5	77.9-130		
ichlorofluoromethane	44	"	50.0	88.2	57.4-133		
nyl Chloride	34	"	50.0	67.5	54.9-124		
nyl acetate	49	"	50.0	98.9	70-130		
rrogate: 1,2-Dichloroethane-d4	53.9	"	50.0	108	72.6-129		
rrogate: p-Bromofluorobenzene	48.6	"	50.0	97.2	63.5-145		
ırrogate: Toluene-d8	46.5	"	50.0	93.0	81.2-127		
CS Dup (BD31392-BSD1)					Prepared &	& Analyzed: 04/30/2	2013
1,1,2-Tetrachloroethane	51	ug/L	50.0	101	82.3-130	1.65	21.1
1,1-Trichloroethane	53	"	50.0	106	75.6-137	0.247	19.7
1,2,2-Tetrachloroethane	45	"	50.0	89.5	71.3-131	7.80	20.8
,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	49	"	50.0	97.5	71.1-129	2.81	21.7
,2-Trichloroethane	49	"	50.0	97.3	74.5-129	0.0822	20.3
-Dichloroethane	51	"	50.0	101	79.6-132	2.73	20.6
-Dichloroethylene	50	"	50.0	99.0	80.2-146	2.77	20
-Dichloropropylene	48	"	50.0	96.0	75-136	0.892	19.3
3,3-Trichlorobenzene	46	"	50.0	92.6	66.1-136	2.64	21.6
2,3-Trichloropropane	47	"	50.0	94.0	63-131	8.67	23.9
2,4-Trichlorobenzene	47	"	50.0	93.8	70.6-136	2.92	21.7
2,4-Trimethylbenzene	46	,,	50.0	92.6	75.3-135	2.69	18.8
2-Dibromo-3-chloropropane	45	,,	50.0	90.0	58.9-140	8.59	27.7
2-Dibromoethane	50	,,	50.0	99.6	79-130	3.05	23
2-Dichlorobenzene		,,			79-130 76.1-122		19.8
2-Dichloroethane	46	"	50.0 50.0	92.8	74.6-132	0.129 4.53	20.2
2-Dichloropropane	53	"		106		0.00	20.2
	47	"	50.0	94.8	76.9-129	2.94	18.9
3,5-Trimethylbenzene 3-Dichlorobenzene	47		50.0	93.9	70.6-127		19.2
	47	"	50.0	94.6	77-124	0.806	19.2 22.1
3-Dichloropropane 4-Dichlorobenzene	49	"	50.0	97.9	75.8-126	1.98	
	47	"	50.0	93.4	76.6-125	0.235	18.6
2-Dichloropropane	52	"	50.0	104	69-133	2.59	19.8
Butanone	47	"	50.0	93.9	70-130	16.2	30
Chlorotoluene	46	"	50.0	92.9	66.3-119	3.11	21.6
Chlorotoluene	49		50.0	97.2	69.2-127	2.73	19
etone	39	"	50.0	78.2	70-130	8.31	30
enzene	51	"	50.0	102	76.2-129	2.81	19
omobenzene	46	"	50.0	92.5	71.3-123	1.77	20.3
omochloromethane	49	"	50.0	98.1	70.8-137	6.98	23.9
omodichloromethane	50	"	50.0	99.1	79.7-134	1.22	21
omoform	49	"	50.0	98.3	70.5-141	0.510	21.8
omomethane	41	"	50.0	81.9	43.9-147	3.95	28.4
arbon tetrachloride	53	"	50.0	107	78.1-138	1.90	20.1
hlorobenzene	49	"	50.0	99.0	80.4-125	1.08	19.9

	Ren	orting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS Dup (BD31392-BSD1)					Prep	ared & Analy	zed: 04/30/2	2013
Chloroethane	44	ug/L	50.0	87.3	55.8-140		7.76	23.3
Chloroform	53	"	50.0	105	76.6-133		2.48	20.3
Chloromethane	29	"	50.0	57.2	48.8-115		8.28	24.5
is-1,2-Dichloroethylene	52	"	50.0	104	75.1-128		0.594	20.5
is-1,3-Dichloropropylene	52	"	50.0	103	74.5-128		0.155	19.9
Dibromochloromethane	51	"	50.0	101	79.8-134		2.03	21.3
Dibromomethane	51	"	50.0	101	79-130		0.276	22.4
Dichlorodifluoromethane	11	"	50.0	22.0	47.1-101	Low Bias	18.7	23.9
Ethyl Benzene	50	"	50.0	99.5	80.8-128		0.423	19.2
Hexachlorobutadiene	46	"	50.0	91.5	64.8-128		1.79	20.6
sopropylbenzene	46	"	50.0	92.9	75.5-135		3.97	20
Methyl tert-butyl ether (MTBE)	55	"	50.0	109	65.1-140		8.97	23.6
Methylene chloride	54	"	50.0	107	61.3-120		5.40	20.4
Naphthalene	48	"	50.0	95.3	62.3-148		10.8	27.1
-Butylbenzene	45	"	50.0	89.3	67.2-123		1.22	19.1
-Propylbenzene	47	"	50.0	93.5	70.5-127		2.54	23.4
-Xylene	48	"	50.0	96.9	75.9-122		1.48	19.3
- & m- Xylenes	98	"	100	98.1	77.7-127		0.0102	18.6
-Isopropyltoluene	48	"	50.0	96.2	75.6-129		4.77	19.1
ec-Butylbenzene	47	"	50.0	93.9	71.5-125		2.94	18.9
Styrene	51	"	50.0	102	77.8-123		1.34	20.9
ert-Butylbenzene	48	"	50.0	95.1	75.9-151		4.10	20.9
etrachloroethylene	48	"	50.0	96.2	63.6-167		5.60	27.7
Coluene	49	"	50.0	97.0	77-123		1.83	18.7
rans-1,2-Dichloroethylene	51	"	50.0	102	76.3-139		1.34	19.5
rans-1,3-Dichloropropylene	50	"	50.0	99.9	72.5-137		1.92	19.3
Crichloroethylene	47	"	50.0	94.0	77.9-130		4.92	20.5
richlorofluoromethane	43	"	50.0	86.1	57.4-133		2.41	21.4
/inyl Chloride	32	"	50.0	63.2	54.9-124		6.61	22.3
/inyl acetate	45	"	50.0	89.3	70-130		10.2	30
Gurrogate: 1,2-Dichloroethane-d4	50.4	"	50.0	101	72.6-129			
Gurrogate: p-Bromofluorobenzene	50.5	"	50.0	101	63.5-145			
Surrogate: Toluene-d8	47.5	"	50.0	95.0	81.2-127			

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RD3	1392 .	. FPA	5030B

atrix Spike (BD31392-MS1)	*Source sample: 13D100	4-09 (MW-1)	Prepared & Analyzed: 04/30/2013				
1,1,2-Tetrachloroethane	50	ug/L	50.0	ND	99.4	82-138	
1,1-Trichloroethane	52	"	50.0	ND	105	85.7-133	
1,2,2-Tetrachloroethane	44	"	50.0	ND	87.4	78.6-136	
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	50	"	50.0	ND	99.6	74.8-131	
1,2-Trichloroethane	48	"	50.0	ND	96.4	82.5-129	
1-Dichloroethane	53	"	50.0	ND	106	81.4-137	
1-Dichloroethylene	51	"	50.0	ND	102	90-138	
1-Dichloropropylene	47	"	50.0	ND	94.1	91.7-131	
2,3-Trichlorobenzene	45	"	50.0	ND	89.7	75.9-130	
2,3-Trichloropropane	44	"	50.0	ND	87.3	77.1-140	
2,4-Trichlorobenzene	44	"	50.0	ND	87.7	69.8-135	
2,4-Trimethylbenzene	43	"	50.0	ND	87.0	79.4-131	
2-Dibromo-3-chloropropane	40	"	50.0	ND	80.3	66.6-143	
2-Dibromoethane	49	"	50.0	ND	97.7	79.8-136	
2-Dichlorobenzene	44	"	50.0	ND ND	88.4	79.9-130	
2-Dichloroethane	52	"	50.0	ND ND	105	85-133	
-Dichloropropane	47	,,	50.0	ND ND	93.5	81.1-132	
,5-Trimethylbenzene		"					
-Dichlorobenzene	44	"	50.0	ND ND	88.3	76.1-121	
	44	"	50.0	ND	88.2	79.1-124	
-Dichloropropane -Dichlorobenzene	48		50.0	ND	95.8	83.3-130	
	44	"	50.0	ND	87.9	79.4-128	
-Dichloropropane	50	"	50.0	ND	100	54.2-126	
Butanone	48	"	50.0	ND	96.6	70-130	
Chlorotoluene	44		50.0	ND	88.0	60.2-144	
hlorotoluene	45	"	50.0	ND	90.4	79.8-128	
tone	40	"	50.0	4.0	72.6	70-130	
zene	53	"	50.0	ND	105	74.1-134	
omobenzene	44	"	50.0	ND	87.2	76.6-125	
omochloromethane	53	"	50.0	ND	107	85-133	
modichloromethane	49	"	50.0	ND	98.0	80.8-143	
omoform	46	"	50.0	ND	91.5	65.8-164	
omomethane	39	"	50.0	ND	78.1	68.7-112	
rbon tetrachloride	53	"	50.0	ND	106	85.7-138	
orobenzene	49	"	50.0	ND	98.0	79.9-129	
loroethane	43	"	50.0	ND	86.4	74.7-127	
oroform	54	"	50.0	ND	108	50.6-145	
loromethane	27	"	50.0	ND	54.9	64-111	Low Bias
1,2-Dichloroethylene	53	"	50.0	ND	106	75.5-129	
-1,3-Dichloropropylene	50	"	50.0	ND	101	74.3-128	
promochloromethane	50	"	50.0	ND	99.1	76.8-150	
romomethane	49	"	50.0	ND	97.7	83.3-140	
chlorodifluoromethane	10	"	50.0	ND	20.5	51-100	Low Bias
yl Benzene	49	"	50.0	ND	98.3	82.9-127	
achlorobutadiene	44	"	50.0	ND	87.1	73-128	
propylbenzene	44	"	50.0	ND	87.7	78.7-131	
thyl tert-butyl ether (MTBE)	56	"	50.0	ND	113	81.2-134	
ethylene chloride	61	"	50.0	3.0	115	57.8-103	High Bias
phthalene	46	"	50.0	ND	91.2	80.1-122	
Butylbenzene	42	"	50.0	ND	85.0	72.4-120	
Propylbenzene	44	"	50.0	ND	88.1	74-130	
Kylene	47	"	50.0	ND	94.4	78.8-122	

Analyte Result Limit Units Level Result %REC Limits Flag RPD Limit Flag			Reporting		Spike	Source*		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Flag

Ratch	RD31	392 - EPA	5030R

Matrix Spike (BD31392-MS1)	*Source sample: 13D1004	-09 (MW-1)				Prep	pared & Analyzed: 04/30/2013
p- & m- Xylenes	97	ug/L	100	ND	96.8	82.5-123	
p-Isopropyltoluene	45	"	50.0	ND	89.7	64.9-132	
sec-Butylbenzene	44	"	50.0	ND	88.8	25.4-151	
Styrene	50	"	50.0	ND	100	74.1-134	
tert-Butylbenzene	45	"	50.0	ND	90.4	79.5-171	
Tetrachloroethylene	44	"	50.0	ND	87.4	72.5-130	
Toluene	47	"	50.0	ND	93.9	77.8-121	
trans-1,2-Dichloroethylene	52	"	50.0	ND	105	83.8-140	
trans-1,3-Dichloropropylene	49	"	50.0	ND	97.3	74.9-136	
Trichloroethylene	46	"	50.0	ND	92.2	84.4-125	
Trichlorofluoromethane	44	"	50.0	ND	87.2	78.7-127	
Vinyl Chloride	31	"	50.0	ND	62.1	72.1-116	Low Bias
Vinyl acetate	44	"	50.0	ND	89.0	70-130	
Surrogate: 1,2-Dichloroethane-d4	51.3	"	50.0		103	72.6-129	
Surrogate: p-Bromofluorobenzene	48.0	"	50.0		96.0	63.5-145	
Surrogate: Toluene-d8	46.9	"	50.0		93.7	81.2-127	

Batch BD31393 - EPA 5030B

Batch BD31393 - EPA 5030B				
Blank (BD31393-BLK1)				Prepared & Analyzed: 04/30/2013
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,1-Dichloroethylene	ND	5.0	"	
1,1-Dichloropropylene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
2-Butanone	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Acetone	ND	5.0	"	
Benzene	ND	5.0	"	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	

$Volatile\ Organic\ Compounds\ by\ EPA\ SW846-8260B\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

,						
Batch BD31393 - EPA 5030B						
Blank (BD31393-BLK1)						Prepared & Analyzed: 04/30/2013
Carbon tetrachloride	ND	5.0	ug/L			
Chlorobenzene	ND	5.0	"			
Chloroethane	ND	5.0	"			
Chloroform	ND	5.0	"			
Chloromethane	ND	5.0	"			
is-1,2-Dichloroethylene	ND	5.0	"			
cis-1,3-Dichloropropylene	ND	5.0	"			
Dibromochloromethane	ND	5.0	"			
Dibromomethane	ND	5.0	"			
Dichlorodifluoromethane	ND	5.0	"			
Ethyl Benzene	ND	5.0	"			
Hexachlorobutadiene	ND	5.0	"			
sopropylbenzene	ND	5.0	"			
Methyl tert-butyl ether (MTBE)	ND	5.0	"			
Methylene chloride	ND	5.0	"			
Vaphthalene	ND	5.0	"			
-Butylbenzene	ND	5.0	"			
-Propylbenzene	ND	5.0	"			
-Xylene	ND	5.0	"			
- & m- Xylenes	ND	10	"			
-Isopropyltoluene	ND	5.0	"			
ec-Butylbenzene	ND	5.0	"			
Styrene	ND	5.0	"			
ert-Butylbenzene	ND	5.0	"			
Tetrachloroethylene	ND	5.0	"			
Coluene	ND	5.0	"			
rans-1,2-Dichloroethylene	ND	5.0	"			
rans-1,3-Dichloropropylene	ND	5.0	"			
Frichloroethylene	ND	5.0	"			
richlorofluoromethane	ND	5.0	"			
7inyl Chloride	ND	5.0	"			
Zylenes, Total	ND	15	"			
/inyl acetate	ND	5.0	"			
Surrogate: 1,2-Dichloroethane-d4	10.3		"	10.0	103	72.6-129
Surrogate: p-Bromofluorobenzene	12.4		"	10.0	124	63.5-145
Surrogate: Toluene-d8	10.3		"	10.0	103	81.2-127

		Reporting		Spike	Source*		%REC			RPD		1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	I

Analyte	Result	Limit Units	Level	Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
Batch BD31393 - EPA 5030B										
LCS (BD31393-BS1)						Prep	ared & Analy	zed: 04/30/	2013	
1,1,1,2-Tetrachloroethane	11	ug/L	10.0		106	82.3-130				
1,1,1-Trichloroethane	10	"	10.0		102	75.6-137				
1,1,2,2-Tetrachloroethane	11	"	10.0		107	71.3-131				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.3	"	10.0		93.3	71.1-129				
1,1,2-Trichloroethane	10	"	10.0		102	74.5-129				
1,1-Dichloroethane	10	"	10.0		104	79.6-132				
1,1-Dichloroethylene	9.6	"	10.0		95.7	80.2-146				
1,1-Dichloropropylene	9.8	"	10.0		97.8	75-136				
1,2,3-Trichlorobenzene	10	"	10.0		102	66.1-136				
1,2,3-Trichloropropane	12	"	10.0		121	63-131				
1,2,4-Trichlorobenzene	9.8	"	10.0		97.6	70.6-136				
1,2,4-Trimethylbenzene	11	"	10.0		112	75.3-135				
1,2-Dibromo-3-chloropropane	13	"	10.0		132	58.9-140				
1,2-Dibromoethane	11	"	10.0		107	79-130				
1,2-Dichlorobenzene	9.9	"	10.0		99.4	76.1-122				
1,2-Dichloroethane	11	"	10.0		107	74.6-132				
1,2-Dichloropropane	9.8	"	10.0		98.5	76.9-129				
1,3,5-Trimethylbenzene	11	"	10.0		110	70.6-127				
1,3-Dichlorobenzene	10	"	10.0		104	77-124				
1,3-Dichloropropane	10	"	10.0		101	75.8-126				
1,4-Dichlorobenzene	10	"	10.0		101	76.6-125				
2,2-Dichloropropane	11	"	10.0		107	69-133				
2-Butanone	13	"	10.0		126	70-130				
2-Chlorotoluene	11	"	10.0		106	66.3-119				
4-Chlorotoluene	11	"	10.0		112	69.2-127				
Acetone	7.8	"	10.0		78.4	70-130				
Benzene	11	n n	10.0		105	76.2-129				
Bromobenzene	11	"	10.0		110	71.3-123				
Bromochloromethane	11	"	10.0		113	70.8-137				
Bromodichloromethane	10	"	10.0		103	79.7-134				
Bromoform	10	"	10.0		101	70.5-141				
Bromomethane	4.0	"	10.0		39.7	43.9-147	Low Bias			
Carbon tetrachloride	10	"	10.0		100	78.1-138				
Chlorobenzene	10	"	10.0		99.7	80.4-125				
Chloroethane	8.0	"	10.0		80.4	55.8-140				
Chloroform	11	"	10.0		107	76.6-133				
Chloromethane	3.8	"	10.0		38.4		Low Bias			
cis-1,2-Dichloroethylene	11	"	10.0		106	75.1-128				
cis-1,3-Dichloropropylene	10	"	10.0		101	74.5-128				
Dibromochloromethane	11	"	10.0		107	79.8-134				
Dibromomethane	11	"	10.0		112	79-130				
Dichlorodifluoromethane	2.1	"	10.0		21.3	47.1-101	Low Bias			
Ethyl Benzene	10	"	10.0		104	80.8-128				
Hexachlorobutadiene	10	"	10.0		102	64.8-128				
Isopropylbenzene	11	"	10.0		109	75.5-135				
Methyl tert-butyl ether (MTBE)	10	"	10.0		100	65.1-140				
Methylene chloride	12	"	10.0		116	61.3-120				
Naphthalene	9.5	"	10.0		94.9	62.3-148				
n-Butylbenzene	9.3	"	10.0		108	67.2-123				
n-Propylbenzene	11	"	10.0		108	70.5-127				
o-Xylene	9.9	"			99.0					
0-7xyrene	9.9		10.0		99.0	75.9-122				

		Reporting		Spike	Source*		%REC			RPD]
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Batch BD31393 - EPA 5030B								
LCS (BD31393-BS1)					Prep	ared & Analy	zed: 04/30/	2013
p- & m- Xylenes	21	ug/L	20.0	104	77.7-127			
p-Isopropyltoluene	11	"	10.0	108	75.6-129			
sec-Butylbenzene	11	"	10.0	110	71.5-125			
Styrene	10	"	10.0	100	77.8-123			
tert-Butylbenzene	11	"	10.0	111	75.9-151			
Tetrachloroethylene	9.8	"	10.0	98.0	63.6-167			
Toluene	10	"	10.0	102	77-123			
trans-1,2-Dichloroethylene	10	"	10.0	101	76.3-139			
trans-1,3-Dichloropropylene	10	"	10.0	104	72.5-137			
Trichloroethylene	10	"	10.0	103	77.9-130			
Trichlorofluoromethane	7.9	"	10.0	79.2	57.4-133			
Vinyl Chloride	5.4	"	10.0	54.0	54.9-124	Low Bias		
Vinyl acetate	9.6	"	10.0	95.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	10.2	"	10.0	102	72.6-129			
Surrogate: p-Bromofluorobenzene	10.7	"	10.0	107	63.5-145			
Surrogate: Toluene-d8	10.7	"	10.0	102	81.2-127			
_	10.2		10.0	102		ared & Analy	zod: 04/30/	2013
LCS Dup (BD31393-BSD1)			10.0			arcu & Allaly		
1,1,1,2-Tetrachloroethane	11	ug/L	10.0	109	82.3-130		2.97	21.1
1,1,1-Trichloroethane	10	"	10.0	101	75.6-137		1.67	19.7
1,1,2,2-Tetrachloroethane	11	"	10.0	109	71.3-131		2.04	20.8
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.1	"	10.0	91.2	71.1-129		2.28	21.7
1,1,2-Trichloroethane	10	"	10.0	100	74.5-129		2.27	20.3
1,1-Dichloroethane	10	"	10.0	100	79.6-132		3.72	20.6
1,1-Dichloroethylene	9.0	"	10.0	90.1	80.2-146		6.03	20
1,1-Dichloropropylene	9.9	"	10.0	99.4	75-136		1.62	19.3
1,2,3-Trichlorobenzene	11	"	10.0	108	66.1-136		5.15	21.6
1,2,3-Trichloropropane	14	"	10.0	142	63-131	High Bias	16.5	23.9
1,2,4-Trichlorobenzene	11	"	10.0	108	70.6-136		10.4	21.7
1,2,4-Trimethylbenzene	12	"	10.0	120	75.3-135		7.68	18.8
1,2-Dibromo-3-chloropropane	14	"	10.0	144	58.9-140	High Bias	9.42	27.7
1,2-Dibromoethane	10	"	10.0	101	79-130		5.97	23
1,2-Dichlorobenzene	11	"	10.0	108	76.1-122		8.39	19.8
1,2-Dichloroethane	9.9	"	10.0	99.2	74.6-132		7.75	20.2
1,2-Dichloropropane	11	"	10.0	106	76.9-129		7.71	20.7
1,3,5-Trimethylbenzene	12	"	10.0	119	70.6-127		8.15	18.9
1,3-Dichlorobenzene	11	"	10.0	111	77-124		6.79	19.2
1,3-Dichloropropane	10	"	10.0	100	75.8-126		0.695	22.1
1,4-Dichlorobenzene	12	"	10.0	117	76.6-125		14.8	18.6
2,2-Dichloropropane	10	"	10.0	103	69-133		3.61	19.8
2-Butanone	10	"	10.0	104	70-130		19.1	30
2-Chlorotoluene	12	"	10.0	120	66.3-119	High Bias	12.2	21.6
4-Chlorotoluene	13	"	10.0	126	69.2-127		11.5	19
Acetone	7.4	"	10.0	73.9	70-130		5.91	30
Benzene	10	"	10.0	101	76.2-129		4.47	19
Bromobenzene	12	"	10.0	117	71.3-123		6.44	20.3
Bromochloromethane	10	"	10.0	104	70.8-137		8.49	23.9
Bromodichloromethane	11	"	10.0	105	79.7-134		2.50	21
Bromoform	11	"	10.0	111	70.5-141		9.71	21.8
Bromomethane	4.0	"	10.0	40.1	43.9-147	Low Bias	1.00	28.4
Carbon tetrachloride	10	"	10.0	102	78.1-138		1.58	20.1
Chlorobenzene	11	"	10.0	105	80.4-125		5.27	19.9

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS Dup (BD31393-BSD1)					Prepared	d & Analyz	ed: 04/30/2	2013
Chloroethane	8.0	ug/L	10.0	79.9	55.8-140		0.624	23.3
Chloroform	11	"	10.0	105	76.6-133		1.60	20.3
Chloromethane	3.7	"	10.0	37.0	48.8-115 Lo	ow Bias	3.71	24.5
cis-1,2-Dichloroethylene	10	"	10.0	99.7	75.1-128		5.94	20.5
cis-1,3-Dichloropropylene	10	"	10.0	100	74.5-128		0.894	19.9
Dibromochloromethane	11	"	10.0	113	79.8-134		5.18	21.3
Dibromomethane	12	"	10.0	116	79-130		3.49	22.4
Dichlorodifluoromethane	2.2	"	10.0	21.9	47.1-101 Lo	ow Bias	2.78	23.9
Ethyl Benzene	11	"	10.0	109	80.8-128		4.69	19.2
Hexachlorobutadiene	12	"	10.0	117	64.8-128		14.0	20.6
Isopropylbenzene	12	"	10.0	119	75.5-135		8.86	20
Methyl tert-butyl ether (MTBE)	9.2	"	10.0	92.3	65.1-140		8.51	23.6
Methylene chloride	11	"	10.0	114	61.3-120		1.65	20.4
Naphthalene	11	"	10.0	111	62.3-148		15.6	27.1
n-Butylbenzene	12	"	10.0	121	67.2-123		11.5	19.1
n-Propylbenzene	12	"	10.0	119	70.5-127		8.41	23.4
o-Xylene	10	"	10.0	102	75.9-122		3.08	19.3
p- & m- Xylenes	22	"	20.0	110	77.7-127		5.23	18.6
p-Isopropyltoluene	12	"	10.0	121	75.6-129		11.1	19.1
sec-Butylbenzene	13	"	10.0	126	71.5-125 Hi	igh Bias	13.7	18.9
Styrene	10	"	10.0	104	77.8-123		4.11	20.9
tert-Butylbenzene	13	"	10.0	125	75.9-151		11.7	20.9
Tetrachloroethylene	10	"	10.0	101	63.6-167		3.41	27.7
Toluene	11	"	10.0	106	77-123		4.13	18.7
trans-1,2-Dichloroethylene	9.5	"	10.0	95.1	76.3-139		5.92	19.5
trans-1,3-Dichloropropylene	10	"	10.0	101	72.5-137		3.13	19.3
Trichloroethylene	11	"	10.0	114	77.9-130		10.2	20.5
Trichlorofluoromethane	8.0	"	10.0	79.9	57.4-133		0.880	21.4
Vinyl Chloride	5.2	"	10.0	52.4	54.9-124 Lo	ow Bias	3.01	22.3
Vinyl acetate	8.4	"	10.0	84.0	70-130		13.1	30
Surrogate: 1,2-Dichloroethane-d4	9.12	"	10.0	91.2	72.6-129			
Surrogate: p-Bromofluorobenzene	11.7	"	10.0	117	63.5-145			
Surrogate: Toluene-d8	10.2	"	10.0	102	81.2-127			

$Semivolatile\ Organic\ Compounds\ by\ EPA\ Method\ 8270C\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
1	Analyte Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Ratch RD31380 - EPA 3545	R	atch	RD3	1320	- FPA	35454
--------------------------	---	------	-----	------	-------	-------

Blank (BD31380-BLK1)				Prepared & Analyzed: 04/30/2013
Acenaphthene	ND	250	ug/kg wet	
Acenaphthylene	ND	250	"	
Aniline	ND	250	"	
nthracene	ND	250	"	
enzo(a)anthracene	ND	250	II .	
enzo(a)pyrene	ND	250	"	
enzo(b)fluoranthene	ND	250	II .	
enzo(g,h,i)perylene	ND	250	"	
enzyl alcohol	ND	250	"	
enzo(k)fluoranthene	ND	250	"	
enzyl butyl phthalate	ND	250	"	
-Bromophenyl phenyl ether	ND	250	"	
-Chloro-3-methylphenol	ND	250	"	
-Chloroaniline	ND	250	"	
is(2-chloroethoxy)methane	ND	250	"	
is(2-chloroethyl)ether	ND	250	"	
is(2-chloroisopropyl)ether	ND	250	"	
is(2-ethylhexyl)phthalate	ND ND	250	"	
-Chloronaphthalene	ND ND		"	
		250	"	
Chlorophenol	ND	250	"	
Chlorophenyl phenyl ether	ND	250	"	
hrysene	ND	250	"	
ibenzo(a,h)anthracene	ND	250		
ibenzofuran	ND	250	"	
i-n-butyl phthalate	ND	250	"	
2-Dichlorobenzene	ND	250	"	
4-Dichlorobenzene	ND	250	"	
3-Dichlorobenzene	ND	250	"	
3'-Dichlorobenzidine	ND	250	"	
4-Dichlorophenol	ND	250	"	
riethyl phthalate	ND	250	"	
4-Dimethylphenol	ND	250	"	
imethyl phthalate	ND	250	"	
6-Dinitro-2-methylphenol	ND	500	"	
Nitroaniline	ND	250	"	
4-Dinitrophenol	ND	500	"	
6-Dinitrotoluene	ND	250	"	
4-Dinitrotoluene	ND	250	"	
i-n-octyl phthalate	ND	250	"	
luoranthene	ND	250	II .	
uorene	ND	250	"	
exachlorobenzene	ND	250	"	
exachlorobutadiene	ND	250	"	
exachlorocyclopentadiene	ND	250	"	
exachloroethane	ND	250	"	
deno(1,2,3-cd)pyrene	ND	250	"	
ophorone	ND	250	"	
Methylnaphthalene	ND	250	"	
Methylphenol	ND	250	"	
· & 4-Methylphenols	ND	250	"	
aphthalene	ND	250	"	

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BD31380 - EPA 3545A							
Blank (BD31380-BLK1)						Prep	pared & Analyzed: 04/30/2013
3-Nitroaniline	ND	250	ug/kg wet				
l-Nitroaniline	ND	250	"				
Vitrobenzene	ND	250	"				
-Nitrophenol	ND	250	"				
-Nitrophenol	ND	250	"				
V-nitroso-di-n-propylamine	ND	250	"				
I-Nitrosodimethylamine	ND	250	"				
V-Nitrosodiphenylamine	ND	250	"				
entachlorophenol	ND	250	"				
henanthrene	ND	250	"				
henol	ND	250	"				
yrene	ND	250	"				
yridine	ND	250	"				
,2,4-Trichlorobenzene	ND	250	"				
,4,5-Trichlorophenol	ND	250	"				
,4,6-Trichlorophenol	ND	250	"				
Dioxin Screen	0.00		"				
urrogate: 2,4,6-Tribromophenol	2230		"	3750	59.5	15-110	
urrogate: 2-Fluorobiphenyl	1560		"	2500	62.5	30-130	
urrogate: 2-Fluorophenol	1950		"	3750	51.9	15-110	
urrogate: Nitrobenzene-d5	1060		"	2500	42.5	30-130	
urrogate: Phenol-d5	2860		"	3760	76.1	15-110	
urrogate: Terphenyl-d14	2020		"	2500	80.9	30-130	
.CS (BD31380-BS1)						Prer	pared & Analyzed: 04/30/2013
acenaphthene	2410	250	ug/kg wet	2500	96.3	31.1-109	
cenaphthylene	2260	250	ug/kg wei	2500	90.5	31.1-109	
niline	2050	250	,,	2500	82.1	5.07-149	
nthracene	2300	250	,,	2500	92.1	31.5-107	
enzo(a)anthracene	2400	250	"	2500	96.2	31.5-107	
enzo(a)pyrene	2690	250	"	2500	108	29.1-138	
enzo(b)fluoranthene	2670	250	"	2500	107	14.9-131	
enzo(g,h,i)perylene	2080	250	"	2500	83.1	6.56-121	
enzyl alcohol	2390	250	,,	2500	95.8	25.4-119	
enzo(k)fluoranthene	2660	250	"	2500	107	29.1-121	
enzyl butyl phthalate	2700	250	"	2500	108	31.3-112	
-Bromophenyl phenyl ether	2220	250	"	2500	88.8	25.2-113	
Chloro-3-methylphenol	2380	250	"	2500	95.4	29.5-124	
Chloroaniline	2820	250	"	2500	113	10-177	
is(2-chloroethoxy)methane	2400	250	"	2500	96.2	27.9-111	
is(2-chloroethyl)ether	2550	250	"	2500	102	18-122	
is(2-chloroisopropyl)ether	2630	250	"	2500	105	9.62-123	
is(2-ethylhexyl)phthalate	2620	250	"	2500	105	25-105	
Chloronaphthalene	2300	250	"	2500	91.8	31.7-108	
Chlorophenol	2290	250	"	2500	91.5	20.3-125	
Chlorophenyl phenyl ether	2270	250	"	2500	90.6	23.6-110	
hrysene	2380	250	"	2500	95.1	27.4-117	
ibenzo(a,h)anthracene	2110	250	"	2500	84.3	14.6-119	
ibenzofuran	2350	250	"	2500	93.9	30.2-108	
i-n-butyl phthalate		250	"	2500	105	33.5-100	High Bias
1-11-outy1 philialate	2620	250		2500	105	33.3-100	High Dias

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Abbellonbearene 2480 250	Batch BD31380 - EPA 3545A						
3-Boldinobenezue 1930 250 2500 77.2 20.6-119	LCS (BD31380-BS1)						Prepared & Analyzed: 04/30/2013
3-Bolikolon-baseade	1,4-Dichlorobenzene	2480	250	ug/kg wet	2500	99.0	19.8-121
A-Dictionophemol	1,3-Dichlorobenzene	1930	250	"	2500	77.2	20.6-119
birthy Inhabitate 270 250 " 2500 98.8 29.7.111 AD methylphenol 2280 250 " 2500 95.1 29.8.115 Annethylphenol 2200 300 " 2500 85.2 10-122 Ab Diatro-Penchylphenol 1380 500 " 2500 85.2 10-122 Ab Diatrophenol 1380 500 " 2500 55.2 10-151 Ab Diatrophenol 250 250 " 2500 102 26-1119 Ab Diatrophenol 250 250 " 2500 101 21-126 Ab Diatrophenol 250 250 " 2500 101 21-126 Ab Diatrophenol 250 250 " 2500 133 31-10 Increation 2630 250 " 2500 93.3 29-108 Increation 230 250 " 2500 93.3 29-108 Increation 2450 250 " 2500 93.3 29-108 Increation 2450 2500<	3,3'-Dichlorobenzidine	2220	250	"	2500	88.9	10-180
A-Dimethylphenol 230 250 " 2500 95.5 27.118 18.116 19.11	2,4-Dichlorophenol	2310	250	"	2500	92.3	23.3-125
Simestry Philadate 230 250 " 2500 85.2 27.1 18 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0 1.0 1.2 1.0	Diethyl phthalate	2470	250	"	2500	98.8	29.7-111
S-Dimiror-mently place of 200	2,4-Dimethylphenol	2380	250	"	2500	95.1	29.8-115
Nitronalline	Dimethyl phthalate	2390	250	"	2500	95.5	27-118
A-Dinitrophenol 1380 500 " 2500 55.2 10-151 A-Dinitrophenol 2520 250 " 2500 102 26-1-19 A-Dinitrophenol 2520 250 " 2500 101 21-4-126 A-Dinitrophenol 2520 250 " 2500 103 31-3-10 Incorathene 2630 250 " 2500 105 31-3-11 Incorathene 2450 250 " 2500 93.3 29-9-108 Incorathene 2450 250 " 2500 94.1 31-7-102 Incorathene 2520 250 " 2500 94.6 10-122 Incorathene 2520 250 " 2500 95.5 23.6-123 Incorathene 2520 250 " 2500 97.5 21.3-115 Incorathene 2520 250 " 2500 97.5 21.11 Incorathene 2520 250 " 2500 97.5 21.11 Incorathene 2520	4,6-Dinitro-2-methylphenol	2200	500	"	2500	88.2	10-122
A-Dinitrophenel 1380 500 " 2500 55.2 10.15 1.6 1.19	2-Nitroaniline	2390	250	"	2500	95.6	40-140
β-Dinitroluene 250 250 " 2500 102 26.1-19 4-Dinitroluene 250 250 " 2500 101 21.4-126 4-Dinitroluene 2630 250 " 2500 105 31.3-10 touronthene 2630 250 " 2500 98.1 31.7-10 teacehorobutadiene 2330 250 " 2500 98.1 31.7-102 teacehorobutadiene 2360 250 " 2500 98.1 31.7-102 teacehorobutadiene 2360 250 " 2500 98.6 10-122 teacehorobutadiene 220 250 " 2500 88.6 20-214 deachorosciopentadiene 170 250 " 2500 88.6 20-214 deachorosciopentadiene 1720 250 " 2500 88.6 20-214 deachorosciopentadiene 1720 250 " 2500 88.6 20-214	2,4-Dinitrophenol			"			
Democry Publishate 200 250 " 2500 123 19-129	2,6-Dinitrotoluene		250	"			
Districted 1980 250 " 2500 123 19-129	2,4-Dinitrotoluene			"			
Incomathene	Di-n-octyl phthalate			"			
Barene 2330 250 " 2500 93.3 29.9-108	Fluoranthene			"			
Exachlorobenzene 2450 250 " 2500 98.1 31.7-102	Fluorene			"			
Exachlorobutadiene 2360 250 " 2500 94.2 10.1-134	Hexachlorobenzene			"			
Exachlorocyclopentadiene 1910 250 " 2500 76.6 10-122	Hexachlorobutadiene			"			
Rexachloroethane 2220 250 " 2500 88.6 20.2-114	Hexachlorocyclopentadiene			"			
	Hexachloroethane			"			
sophorone 2630 250 " 2500 105 27.2-113 -Methylphaphthalene 2270 250 " 2500 90.8 17.4-119 -Methylphenols 2390 250 " 2500 95.5 23.6-125 - & 4-Methylphenols 2190 250 " 2500 87.7 21.3-115 alphthalene 2300 250 " 2500 92.0 25.2-111 -Nitropalline 1830 250 " 2500 103 97.3-147 -Nitrophenol 1830 250 " 2500 73.2 64-21.69 Nitrophenol 1410 250 " 2500 75.5 21.8-118 -Nitrophenol 2250 250 89.9 20.6-119 -Nitrophenol 2250 250 89.9 20.6-119 -Nitrophenol 2250 2500 103 35.8-132 -Nitrosodipenylamine 260 250 " 2500 113 36.				"			
-Methylnaphthalene 2270 250 " 2500 90.8 17.4-119 -Methylphenol 2390 250 " 2500 95.5 23.6-125 -& 4-Methylphenols 2190 250 " 2500 87.7 21.3-115 saphthalene 2300 250 " 2500 92.0 252-111 -Nitroaniline 1830 250 " 2500 73.2 6.42-169 ditrobenzene 2440 250 " 2500 97.5 21.8-118 -Nitrophenol 1410 250 " 2500 97.5 21.8-118 -Nitrophenol 2250 250 " 2500 89.9 20.6-119 -Nitrosodiphenol 2250 250 " 2500 103 358-132 -Nitrosodiphenylamine 2600 250 " 2500 82.5 10-142 -Nitrosodiphenylamine 280 250 " 2500 95.9 31.2-105 -en	Isophorone			"			
-Methylphenol 2390 250 " 2500 95.5 23.6-125 - Ac A-Methylphenols 2190 250 " 2500 87.7 21.3-115 - Ac A-Methylphenols 2190 250 " 2500 87.7 21.3-115 - Ac A-Methylphenols 2190 250 " 2500 92.0 25.2-111 - Achitroaniline 2570 250 " 2500 103 9.73-147 - Nitroaniline 1830 250 " 2500 73.2 6.42-169 - Hitrobenzene 2440 250 " 2500 75.5 21.8-118 - Nitrophenol 1410 250 " 2500 85.5 10-136 - Nitrophenol 2250 250 " 2500 89.9 20.6-119 - Anitroso-di-n-propylamine 250 250 " 2500 89.9 20.6-119 - Anitroso-di-n-propylamine 260 250 " 2500 89.9 20.6-119 - Anitroso-di-n-propylamine 2580 250 " 2500 85.5 10-142 - Witrosodimethylamine 2580 250 85.5 10-142 - Witrosodimethylamine 2580	2-Methylnaphthalene			"			
- & 4-Methylphenols 2190 250	2-Methylphenol			"			
Asphthalene 2300 250 " 2500 92.0 25.2-111 -Nitroaniline 2570 250 " 2500 103 9.73-147 -Nitroaniline 1830 250 " 2500 73.2 6.42-169 distribenzene 2440 250 " 2500 97.5 21.8-118 -Nitrophenol 1410 250 " 2500 56.5 10-136 -Nitroshenol 2250 250 " 2500 89.9 20.6-119 -Nitrosodimethylamine 2620 250 " 2500 105 25.3-118 -Nitrosodimethylamine 260 250 " 2500 82.5 10-142 -Nitrosodiphenylamine 2580 250 " 2500 82.5 10-142 -Nitrosodiphenylamine 2580 250 " 2500 95.9 31.2-105 -Nitrosodiphenylamine 2830 250 " 2500 94.3 23.2-117	• •			"			
Nitroaniline 2570 250 " 2500 103 9.73-147 Nitroaniline 1830 250 " 2500 73.2 6.42-169 Sitrobenzene 2440 250 " 2500 97.5 21.8-118 Nitrophenol 1410 250 " 2500 87.5 21.8-118 Nitrophenol 250 250 " 2500 89.9 20.6-119 Unitroso-di-n-propylamine 2620 250 " 2500 89.9 20.6-119 Unitrosodimethylamine 2660 250 " 2500 82.5 10-142 Nitrosodimethylamine 2580 250 " 2500 82.5 10-142 Nitrosodiphenol 2830 250 " 2500 113 35.8-132 Henanthrene 2400 250 " 2500 91.9 31.2-105 Henol 2360 250 " 2500 94.3 23.2-117 Yrene 2550 250 " 2500 94.3 23.2-117 Yrene 250 30.3-128 A,4-Frichlorophenol 2300 250 " 2500 99.0 19.5-131 A,6-Frichlorophenol 2300 250 " 2500 91.9 24.2-123 Yrengate: 2-Fluorobiphenol 3870 " 3750 99.3 15-110 Yrengate: 2-Fluorobiphenol 3870 " 3750 99.2 30-130 Yrengate: 2-Fluorobiphenol 3870 " 2500 99.2 30-130 Yrengate: 2-Fluorobiphenol 3870 " 2500 99.2 30-130 Yrengate: Yhenol-d5 4000 " 3760 107 15-110				"			
Politroaniline 1830 250 " 2500 73.2 6.42-169	3-Nitroaniline			"			
Sitrobenzene 2440 250	4-Nitroaniline			"			
-Nitrophenol 1410 250 " 2500 56.5 10-136 -Nitrophenol 2250 250 " 2500 89.9 20.6-119 -Nitrosodin-propylamine 2620 250 " 2500 105 25.3-118 -Nitrosodinethylamine 2660 250 " 2500 105 25.3-118 -Nitrosodinethylamine 2680 250 " 2500 105 25.3-118 -Nitrosodiphenylamine 2580 250 " 2500 103 35.8-132 -Nitrosodiphenylamine 2880 250 " 2500 113 3.68-146 -Nitrosodiphenylamine 2880 250 " 2500 113 3.68-146 -Nitrosodiphenylamine 2880 250 " 2500 113 3.68-146 -Nitrosodiphenol 2880 250 " 2500 112 26.3-124 -Virtine 2550 250 " 2500 102 26.3-124 -Virtine 2550 250 " 2500 102 26.3-124 -Virtine 2500 250 102 26.3-124 -Virtine 2500 250 102 26.3-124 -Virtine 2500 103 15-110 -Virtine 2500 103 103 15-110 -Virtine 2500 103 103 15-110 -Virtine 2500 103 103 103 103 103 103 103 103 103 1				"			
Nitrophenol 2250 250 " 2500 89.9 20.6-119 N-introso-di-n-propylamine 2620 250 " 2500 105 25.3-118 Nitrosodimethylamine 2060 250 " 2500 82.5 10-142 Nitrosodimethylamine 2580 250 " 2500 103 35.8-132 Nitrosodiphenylamine 2830 250 " 2500 113 3.68-146 Nenanthrene 2400 250 " 2500 95.9 31.2-105 Nenol 2360 250 " 2500 95.9 31.2-105 Nenol 2360 250 " 2500 96.9 31.2-105 Nenol 250 250 " 2500 102 26.3-124 Nyridine 721 250 " 2500 102 26.3-124 Nyridine 721 250 " 2500 98.8 10-122 Nyridine 2500 250 " 2500 99.0 19.3-128 Nyridine 2500 250 " 2500 99.0 19.5-131 Nyridine 2500 250 " 2500 99.0 19.5-131 Nyridine 2500 99.0 10.3 15-110 Nyridine 2500 99.0 10.3 15-110 Nyridine 2500 99.0 10.3 15-110 Nyridine 2500 99.2 30-130				"			
A-nitroso-di-n-propylamine 2620 250 " 2500 105 25.3-118 A-Nitrosodimethylamine 2660 250 " 2500 82.5 10-142 A-Nitrosodimethylamine 2580 250 " 2500 103 35.8-132 Pentachlorophenol 2830 250 " 2500 113 3.68-146 Phenanthrene 2400 250 " 2500 95.9 31.2-105 Phenol 2360 250 " 2500 94.3 23.2-117 Pyrene 2550 250 " 2500 102 26.3-124 Pyridine 721 250 " 2500 28.8 10-122 Pyridine 721 250 " 2500 92.0 19.3-128 Pyrichlorophenol 2300 250 " 2500 92.0 19.3-128 Pyrichlorophenol 2300 250 " 2500 99.3 15-110 Pyridine 2500 250 " 2500 99.3 15-110 Pyridine 2500 250 " 2500 99.3 15-110 Pyridine 2500 99.2 30-130 Pyridine 2500 Py				"			
A-Nitrosodimethylamine 2060 250 " 2500 82.5 10-142 A-Nitrosodiphenylamine 2580 250 " 2500 103 35.8-132 Pentachlorophenol 2830 250 " 2500 113 3.68-146 Pennanthrene 2400 250 " 2500 95.9 31.2-105 Pennol 2360 250 " 2500 94.3 23.2-117 Pyrene 2550 250 " 2500 94.3 23.2-117 Pyrene 2550 250 " 2500 102 26.3-124 Pyridine 721 250 " 2500 28.8 10-122 Pyridine 721 250 " 2500 92.0 19.3-128 Pyrichlorophenol 2220 250 " 2500 92.0 19.3-128 Pyrichlorophenol 2300 250 " 2500 99.0 19.5-131 Pyrene 2500 91.9 24.2-123 Pyrichlorophenol 3730 " 3750 99.3 15-110 Pyrene 2500 91.0 30-130 Pyrene 2500 91.0 30-	-			"			
A-Nitrosodiphenylamine 2580 250 " 2500 103 35.8-132 A-Nitrosodiphenylamine 2830 250 " 2500 113 3.68-146 A-Nitrosodiphenylamine 2830 250 " 2500 95.9 31.2-105 A-Nitrosodiphenylamine 2400 250 " 2500 94.3 23.2-117 A-Nitrosodiphenylamine 2500 250 " 2500 94.3 23.2-117 A-Nitrosodiphenylamine 2500 250 " 2500 250 102 26.3-124 A-Nitrosodiphenylamine 2300 250 " 2500 92.0 19.3-128 A-Nitrosodiphenylamine 2300 250 " 2500 98.9 19.5-131 A-Nitrosodiphenylamine 2500 250 " 2500 91.9 24.2-123 A-Nitrosodiphenylamine 2500 250 " 2500 91.0 30-130 A-Nitrosodiphenylamine 2500 2400 91.0 30-130 A-Nitrosodiphenylamine 2500 99.2 30-130 A-Nitrosomine 2500 99.2 30-130 A-				"			
rentachlorophenol 2830 250 " 2500 113 3.68-146 Thenanthrene 2400 250 " 2500 95.9 31.2-105 Thenol 2360 250 " 2500 94.3 23.2-117 Tyrene 2550 250 " 2500 102 26.3-124 Tyridine 721 250 " 2500 28.8 10-122 Tyridine 2300 250 " 2500 92.0 19.3-128 Tyrichlorophenol 2220 250 " 2500 92.0 19.3-128 Tyrichlorophenol 2220 250 " 2500 99.0 19.5-131 Tyrene 2300 250 " 2500 99.0 19.5-131 Tyrichlorophenol 2500 99.0 19.5-131 Tyrichlorophenol 3730 " 3750 99.3 15-110 Tyrichlorophenol 3870 " 3750 99.3 15-110 Tyrichlorophenol 3870 " 3750 99.0 30-130 Tyrichlorophenol 3870 " 3750 99.2 30-130 Tyrichlorophenol 3870 " 3760 107 15-110				"			
Chenanthrene 2400 250 " 2500 95.9 31.2-105 Chenol 2360 250 " 2500 94.3 23.2-117 Tyridine 2550 250 " 2500 102 26.3-124 Tyridine 721 250 " 2500 28.8 10-122 ,2,4-Trichlorobenzene 2300 250 " 2500 92.0 19,3-128 ,4,5-Trichlorophenol 2220 250 " 2500 88.9 19,5-131 ,4,6-Trichlorophenol 2300 250 " 2500 91.9 24,2-123 turrogate: 2,4,6-Tribromophenol 3730 " 3750 99.3 15-110 turrogate: 2-Fluorophenol 3870 " 3750 91.0 30-130 turrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 turrogate: Phenol-d5 4000 " 3760 107 15-110				"			
thenol 2360 250 " 2500 94.3 23.2-117 tyrene 2550 250 " 2500 102 26.3-124 tyridine 721 250 " 2500 28.8 10-122 2,2,4-Trichlorobenzene 2300 250 " 2500 92.0 19.3-128 3,4,5-Trichlorophenol 2220 250 " 2500 88.9 19.5-131 4,4,6-Trichlorophenol 2300 250 " 2500 91.9 24.2-123 turrogate: 2,4,6-Tribromophenol 3730 " 3750 99.3 15-110 turrogate: 2-Fluorobiphenyl 2280 " 2500 91.0 30-130 turrogate: 2-Fluorophenol 3870 " 3750 103 15-110 turrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 turrogate: Phenol-d5 4000 " 3760 107 15-110				"			
Tyrene 2550 250 " 2500 102 26.3-124 Tyridine 721 250 " 2500 28.8 10-122 2,2,4-Trichlorobenzene 2300 250 " 2500 92.0 19.3-128 2,4,5-Trichlorophenol 2220 250 " 2500 88.9 19.5-131 2,4,6-Trichlorophenol 2300 250 " 2500 91.9 24.2-123 2urrogate: 2,4,6-Tribromophenol 3730 " 3750 99.3 15-110 2urrogate: 2-Fluorobiphenyl 2280 " 2500 91.0 30-130 2urrogate: 2-Fluorophenol 3870 " 3750 99.2 30-130 2urrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 2urrogate: Phenol-d5 4000 " 3760 107 15-110				"			
Tyridine 721 250 " 2500 28.8 10-122 2,4-Trichlorobenzene 2300 250 " 2500 92.0 19.3-128 2,4-Trichlorophenol 2220 250 " 2500 88.9 19.5-131 2,4-Frichlorophenol 2300 250 " 2500 91.9 24.2-123 2.4-Trichlorophenol 2280 " 2500 91.0 30-130 2.4-Trichlorophenol 2280 " 2500 91.0 30-130 2.4-Trichlorophenol 3870 " 3750 103 15-110 2.4-Trichlorophenol 2480 " 2500 99.2 30-130 2.4-Trichlorophenol 2480 " 2500 99.2 30-130 2.4-Trichlorophenol 2500 99.2 30-130 2.4-Trichl				"			
2,2,4-Trichlorobenzene 2300 250 " 2500 92.0 19.3-128 ,4,5-Trichlorophenol 2220 250 " 2500 88.9 19.5-131 ,4,6-Trichlorophenol 2300 250 " 2500 91.9 24.2-123 **urrogate: 2,4,6-Tribromophenol 3730 " 3750 99.3 15-110 **urrogate: 2-Fluorobiphenyl 2280 " 2500 91.0 30-130 **urrogate: 2-Fluorophenol 3870 " 3750 103 15-110 **urrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 **urrogate: Phenol-d5 4000 " 3760 107 15-110				"			
4,4,5-Trichlorophenol 2220 250 " 2500 88.9 19.5-131 4,6-Trichlorophenol 2300 250 " 2500 91.9 24.2-123 Furrogate: 2,4,6-Tribromophenol 3730 " 3750 99.3 15-110 Furrogate: 2-Fluorobiphenyl 2280 " 2500 91.0 30-130 Furrogate: 2-Fluorophenol 3870 " 3750 103 15-110 Furrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 Furrogate: Phenol-d5 4000 " 3760 107 15-110	•			"			
4,46-Trichlorophenol 2300 250 " 2500 91.9 24.2-123 Surrogate: 2,4,6-Tribromophenol 3730 " 3750 99.3 15-110 Surrogate: 2-Fluorobiphenyl 2280 " 2500 91.0 30-130 Surrogate: 2-Fluorophenol 3870 " 3750 103 15-110 Surrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 Surrogate: Phenol-d5 4000 " 3760 107 15-110				,,			
furrogate: 2,4,6-Tribromophenol 3730 " 3750 99.3 15-110 furrogate: 2-Fluorobiphenyl 2280 " 2500 91.0 30-130 furrogate: 2-Fluorophenol 3870 " 3750 103 15-110 furrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 furrogate: Phenol-d5 4000 " 3760 107 15-110	· · ·			"			
turrogate: 2,4,0-11000mophenol 3730 3730 39.3 13-110 3730 3730 3730 3730 3730 3730 3730 3			230				
turrogate: 2-Fluorophenol 3870 " 3750 103 15-110 furrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 furrogate: Phenol-d5 4000 " 3760 107 15-110	- · ·						
Furrogate: Nitrobenzene-d5 2480 " 2500 99.2 30-130 (urrogate: Phenol-d5 4000 " 3760 107 15-110	Surrogate: 2-Fluorobiphenyl			"			
Turrogate: Phenol-d5 4000 " 3760 107 15-110	_			"			
	Surrogate: Nitrobenzene-d5			"			
Turrogate: Terphenyl-d14 2590 " 2500 103 30-130	Surrogate: Phenol-d5			"		107	
	Surrogate: Terphenyl-d14	2590		"	2500	103	30-130

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

CS Dup (BD31380-BSD1)						Prepared &	Analyzed: 04/30/2	2013
cenaphthene	2240	250	ug/kg wet	2500	89.7	31.1-109	7.12	30
cenaphthylene	2150	250	"	2500	85.9	31.1-106	5.26	30
niline	1950	250	"	2500	77.9	5.07-149	5.25	30
nthracene	2260	250	"	2500	90.5	31.5-107	1.84	30
enzo(a)anthracene	2290	250	"	2500	91.7	31.5-115	4.77	30
enzo(a)pyrene	2590	250	"	2500	104	29.1-138	3.75	30
enzo(b)fluoranthene	2590	250	"	2500	104	14.9-131	3.14	30
enzo(g,h,i)perylene	2010	250	"	2500	80.4	6.56-121	3.30	30
enzyl alcohol	2370	250	"	2500	94.9	25.4-119	0.902	30
enzo(k)fluoranthene	2560	250	"	2500	103	29.1-121	3.90	30
enzyl butyl phthalate	2570	250	"	2500	103	31.3-112	4.95	30
Bromophenyl phenyl ether	2160	250	"	2500	86.5	25.2-113	2.62	30
Chloro-3-methylphenol	2360	250	"	2500	94.5	29.5-124	0.969	30
Chloroaniline	2760	250	"	2500	110	10-177	2.38	30
is(2-chloroethoxy)methane	2290	250	"	2500	91.8	27.9-111	4.72	30
s(2-chloroethyl)ether	2600	250	"	2500	104	18-122	2.27	30
s(2-chloroisopropyl)ether	2520	250	"	2500	101	9.62-123	4.21	30
is(2-ethylhexyl)phthalate	2470	250	"	2500	98.7	25-105	5.90	30
Chloronaphthalene	2120	250	"	2500	84.8	31.7-108	7.93	30
Chlorophenol	2250	250	"	2500	90.1	20.3-125	1.54	30
Chlorophenyl phenyl ether	2180	250	"	2500	87.1	23.6-110	3.98	30
nrysene	2270	250	"	2500	90.8	27.4-117	4.65	30
benzo(a,h)anthracene	1970	250	"	2500	79.0	14.6-119	6.56	30
ibenzofuran	2230	250	"	2500	89.0	30.2-108	5.33	30
-n-butyl phthalate	2380	250	"	2500	95.4	33.5-100	9.54	30
2-Dichlorobenzene	2190	250	"	2500	87.4	22.8-114	2.82	30
1-Dichlorobenzene	2500	250	"	2500	99.8	19.8-121	0.805	30
3-Dichlorobenzene	1750	250	"	2500	70.1	20.6-119	9.61	30
3'-Dichlorobenzidine	2120	250	"	2500	84.9	10-180	4.70	30
4-Dichlorophenol	2190	250	"	2500	87.5	23.3-125	5.29	30
iethyl phthalate	2440	250	"	2500	97.4	29.7-111	1.41	30
4-Dimethylphenol	2300	250	"	2500	91.8	29.8-115	3.49	30
imethyl phthalate	2330	250	"	2500	93.1	27-118	2.52	30
6-Dinitro-2-methylphenol	2000	500	"	2500	80.2	10-122	9.50	30
Nitroaniline	2270	250	"	2500	90.7	40-140	5.28	30
4-Dinitrophenol	1310	500	"	2500	52.3	10-151	5.28	30
6-Dinitrotoluene	2480	250	"	2500	99.1	26.1-119	2.81	30
4-Dinitrotoluene	2470	250	"	2500	98.7	21.4-126	2.19	30
i-n-octyl phthalate	2990	250	"	2500	120	19-129	2.91	30
uoranthene	2430	250	"	2500	97.0	31.3-110	8.20	30
uorene	2270	250	"	2500	91.0	29.9-108	2.52	30
exachlorobenzene	2390	250	"	2500	95.6	31.7-102	2.64	30
exachlorobutadiene	2210	250	"	2500	88.4	10.1-134	6.35	30
exachlorocyclopentadiene	1750	250	,,	2500	70.1	10-122	8.87	30
exachloroethane	2180	250	,,	2500	87.1	20.2-114	1.66	30
deno(1,2,3-cd)pyrene	2000	250	,,	2500	80.0	12.6-120	14.9	30
ophorone	2560	250	,,	2500	103	27.2-113	2.65	30
Methylnaphthalene	2240	250	"	2500	89.5	17.4-119	1.40	30
Methylphenol	2380	250	"	2500	95.0		0.483	30
& 4-Methylphenols			"			23.6-125	0.463	30
aphthalene	2200 2210	250 250	,,	2500 2500	88.0 88.2	21.3-115 25.2-111	4.17	30

Spike

Source*

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31380 - EPA 3545A											
LCS Dup (BD31380-BSD1)							Prepa	ared & Anal	yzed: 04/30	2013	
3-Nitroaniline	2530	250	ug/kg wet	2500		101	9.73-147		1.35	30	
4-Nitroaniline	1580	250	"	2500		63.4	6.42-169		14.4	30	
Nitrobenzene	2320	250	"	2500		92.7	21.8-118		4.98	30	
4-Nitrophenol	1410	250	"	2500		56.3	10-136		0.354	30	
2-Nitrophenol	2030	250	"	2500		81.4	20.6-119		9.95	30	
N-nitroso-di-n-propylamine	2550	250	"	2500		102	25.3-118		2.65	30	
N-Nitrosodimethylamine	1670	250	"	2500		66.7	10-142		21.1	30	
N-Nitrosodiphenylamine	2470	250	"	2500		98.8	35.8-132		4.47	30	
Pentachlorophenol	2670	250	"	2500		107	3.68-146		5.86	30	
Phenanthrene	2260	250	"	2500		90.3	31.2-105		6.02	30	
Phenol	2310	250	"	2500		92.4	23.2-117		2.06	30	
Pyrene	2610	250	"	2500		105	26.3-124		2.26	30	
Pyridine	908	250	"	2500		36.3	10-122		23.0	30	
1,2,4-Trichlorobenzene	2190	250	"	2500		87.7	19.3-128		4.79	30	
2,4,5-Trichlorophenol	2140	250	"	2500		85.6	19.5-131		3.87	30	
2,4,6-Trichlorophenol	2140	250	"	2500		85.5	24.2-123		7.28	30	
Surrogate: 2,4,6-Tribromophenol	3620		"	3750		96.6	15-110				
Surrogate: 2-Fluorobiphenyl	2160		"	2500		86.2	30-130				
Surrogate: 2-Fluorophenol	3820		"	3750		102	15-110				
Surrogate: Nitrobenzene-d5	2330		"	2500		93.4	30-130				
Surrogate: Phenol-d5	3950		"	3760		105	15-110				
Surrogate: Terphenyl-d14	2600		"	2500		104	30-130				
		25100105/	ID 2 0 0 0)	2500		104		ared & Anal	azed: 04/30	/2013	
Matrix Spike (BD31380-MS1)	*Source sample: 13			2600	\ TD	04.1		arcu & Anai	y ZCd. 04/30/	2013	
Acceptable	2250	268	ug/kg dry "	2680	ND	84.1	31.1-109				
Acenaphthylene	2110	268	"	2680	ND	78.7	31.1-106				
Aniline	1630	268		2680	ND	61.0	21-140				
Anthracene	2170	268	"	2680	ND	81.3	31.5-107				
Benzo(a)anthracene	2310	268	"	2680	ND	86.2	31.5-115				
Benzo(a)pyrene	2480	268	"	2680	ND	92.7	29.1-138				
Benzo(b)fluoranthene	2560	268	"	2680	ND	95.6	14.9-131				
Benzo(g,h,i)perylene	2090	268	,,	2680	ND	78.3	6.56-121				
Benzyl alcohol	2250	268	"	2680	ND	84.0	25.4-119				
Benzo(k)fluoranthene	2510	268	"	2680	ND	93.7	29.1-121				
Benzyl butyl phthalate	2540	268	"	2680	ND	94.8	31.3-112				
4-Bromophenyl phenyl ether	2090	268	"	2680	ND	78.2	25.2-113				
4-Chloro-3-methylphenol	2100	268	"	2680	ND	78.4	29.5-124				
4-Chloroaniline	2530	268	,,	2680	ND	94.4	10-177				
Bis(2-chloroethoxy)methane	2180	268	"	2680	ND	81.5	27.9-111				
Bis(2-chloroethyl)ether	2270	268		2680	ND	84.8	18-122				
Bis(2-chloroisopropyl)ether	2310	268	"	2680	ND	86.3	9.62-123				
Bis(2-ethylhexyl)phthalate	2430	268	"	2680	ND	90.9	25-105				
2-Chloronaphthalene	2190	268	"	2680	ND	81.9	31.7-108				
2-Chlorophenol	2070	268	"	2680	ND	77.2	20.3-125				
4-Chlorophenyl phenyl ether	2160	268	"	2680	ND	80.8	23.6-110				
Chrysene Dibanga(a b)anthus cana	2230	268	"	2680	ND	83.2	27.4-117				
Dibenzo(a,h)anthracene	2060	268		2680	ND	76.8	14.6-119				
Dibenzofuran	2250	268	"	2680	ND	84.3	30.2-108				
Di-n-butyl phthalate	2480	268	"	2680	ND	92.7	33.5-100				
1,2-Dichlorobenzene	1940	268	"	2680	ND	72.7	22.8-114				
1,4-Dichlorobenzene	2150	268	"	2680	ND	80.2	19.8-121				

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

RPD

%REC

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Rate	h R	D31	1390	- FDA	3545A
Date	пb	11.7	เวลบ	- r,PA	3343A

Matrix Spike (BD31380-MS1)	*Source sample: 13D	1004-07 (S	SP-3 8-9 ft)				Prepared & Analyzed: 04/30/2013
1,3-Dichlorobenzene	1670	268	ug/kg dry	2680	ND	62.3	20.6-119
3,3'-Dichlorobenzidine	1510	268	"	2680	ND	56.3	10-180
2,4-Dichlorophenol	2010	268	"	2680	ND	75.2	23.3-125
Diethyl phthalate	2340	268	"	2680	ND	87.3	29.7-111
2,4-Dimethylphenol	1210	268	"	2680	ND	45.2	29.8-115
Dimethyl phthalate	2270	268	"	2680	ND	84.7	27-118
2-Nitroaniline	2310	268	"	2680	ND	86.3	40-140
4,6-Dinitro-2-methylphenol	1900	535	"	2680	ND	71.0	10-122
2,4-Dinitrophenol	1480	535	"	2680	ND	55.3	10-151
2,6-Dinitrotoluene	2410	268	"	2680	ND	90.0	26.1-119
2,4-Dinitrotoluene	2380	268	"	2680	ND	88.8	21.4-126
Di-n-octyl phthalate	2910	268	"	2680	ND	109	19-129
Fluoranthene	2600	268	"	2680	ND	97.2	31.3-110
Fluorene	2270	268	"	2680	ND	84.7	29.9-108
Hexachlorobenzene	2320	268	"	2680	ND	86.9	31.7-102
Hexachlorobutadiene	2130	268	"	2680	ND	79.4	10.1-134
Hexachlorocyclopentadiene	1860	268	"	2680	ND	69.5	10-122
Hexachloroethane	1930	268	"	2680	ND	72.0	20.2-114
Indeno(1,2,3-cd)pyrene	1730	268	"	2680	ND	64.8	12.6-120
Isophorone	2390	268	"	2680	ND	89.5	27.2-113
2-Methylnaphthalene	2170	268	"	2680	ND	81.0	17.4-119
2-Methylphenol	1690	268	"	2680	ND	63.2	23.6-125
3- & 4-Methylphenols	1710	268	"	2680	ND	63.9	21.3-115
Naphthalene	2130	268	"	2680	ND	79.8	25.2-111
3-Nitroaniline	2620	268	"	2680	ND	97.8	9.73-147
4-Nitroaniline	1820	268	"	2680	ND	68.2	6.42-169
Nitrobenzene	2150	268	"	2680	ND	80.5	21.8-118
4-Nitrophenol	1130	268	"	2680	ND	42.2	10-136
2-Nitrophenol	1980	268	"	2680	ND	74.2	20.6-119
N-nitroso-di-n-propylamine	2390	268	"	2680	ND	89.3	25.3-118
N-Nitrosodimethylamine	1600	268	"	2680	ND	59.9	21-140
N-Nitrosodiphenylamine	1730	268	"	2680	ND	64.7	35.8-132
Pentachlorophenol	2350	268	"	2680	ND	87.8	3.68-146
Phenanthrene	2260	268	"	2680	ND	84.6	31.2-105
Phenol	2050	268	"	2680	ND	76.6	23.2-117
Pyrene	2500	268	"	2680	ND	93.4	26.3-124
Pyridine	729	268	"	2680	ND	27.3	21-140
1,2,4-Trichlorobenzene	2120	268	"	2680	ND	79.3	19.3-128
2,4,5-Trichlorophenol	2010	268	"	2680	ND	75.2	19.5-131
2,4,6-Trichlorophenol	1980	268	"	2680	ND	74.1	24.2-123
Surrogate: 2,4,6-Tribromophenol	3300		"	4010		82.2	15-110
Surrogate: 2-Fluorobiphenyl	2150		"	2680		80.1	30-130
Surrogate: 2-Fluorophenol	3220		"	4010		80.2	15-110
Surrogate: Nitrobenzene-d5	2150		"	2680		80.5	30-130
Surrogate: Phenol-d5	3560		"	4020		88.7	15-110
Surrogate: Terphenyl-d14	2500		"	2680		93.3	30-130

Organochlorine Pesticides by EPA SW 846-8081 - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

						D
Blank (BD31378-BLK1)						Prepared & Analyzed: 04/30/2013
4,4'-DDD	ND	0.330	ug/kg wet			
4,4'-DDE	ND	0.330	"			
4,4'-DDT	ND	0.330	"			
Aldrin	ND	0.330	"			
lpha-BHC	ND	0.330	"			
eta-BHC	ND	0.330	"			
amma-Chlordane	ND	0.330	"			
elta-BHC	ND	0.330	"			
Pieldrin	ND	0.330	"			
ndosulfan I	ND	0.330	"			
ndosulfan II	ND	0.330	"			
ndosulfan sulfate	ND	0.330	"			
ndrin	ND	0.330	"			
ndrin aldehyde	ND	0.330	"			
ndrin ketone	ND	0.330	"			
amma-BHC (Lindane)	ND	0.330	"			
eptachlor	ND	0.330	"			
eptachlor epoxide	ND	0.330	"			
lethoxychlor	ND	1.65				
pha-Chlordane	ND	0.330	"			
oxaphene	ND	16.7	"			
		10.7	"			
urrogate: Decachlorobiphenyl	81.5			67.0	122	30-150
urrogate: Tetrachloro-m-xylene	91.5		"	66.7	137	30-150
CS (BD31378-BS1)						Prepared & Analyzed: 04/30/2013
4'-DDD	35.5	0.330	ug/kg wet	33.3	106	40-140
4'-DDE	32.8	0.330	"	33.3	98.5	40-140
4'-DDT	33.4	0.330	"	33.3	100	40-140
ldrin	31.4	0.330	"	33.3	94.2	40-140
pha-BHC	30.8	0.330	"	33.3	92.5	40-140
eta-BHC	36.3	0.330	"	33.3	109	40-140
amma-Chlordane	30.6	0.330	"	33.3	91.9	40-140
elta-BHC	29.8	0.330	"	33.3	89.3	40-140
vieldrin	31.3	0.330	"	33.3	93.8	40-140
ndosulfan I	32.7		"			
ndosulfan II		0.330	"	33.3	98.2	40-140
ndosulfan 11 ndosulfan sulfate	31.5	0.330	,,	33.3	94.4	40-140
	31.7	0.330	,,	33.3	95.2	40-140
ndrin	33.9	0.330	"	33.3	102	40-140
ndrin aldehyde	26.4	0.330		33.3	79.1	40-140
ndrin ketone	29.7	0.330	"	33.3	89.0	40-140
amma-BHC (Lindane)	30.3	0.330	"	33.3	90.8	40-140
eptachlor	30.2	0.330	"	33.3	90.5	40-140
eptachlor epoxide	29.6	0.330	"	33.3	88.8	40-140
Iethoxychlor	30.1	1.65	"	33.3	90.3	40-140
lpha-Chlordane	30.6	0.330	"	33.3	91.9	40-140
urrogate: Decachlorobiphenyl	68.0		"	67.0	101	30-150
urrogate: Tetrachloro-m-xylene	76.2		"	66.7	114	30-150

Organochlorine Pesticides by EPA SW 846-8081 - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31378 - EPA 3550B											
							Pren	ared & Analy	zed: 04/30/	2013	
LCS Dup (BD31378-BSD1) 4,4'-DDD	20.2	0.220	/	22.2		00.0		area ee 7 marj	15.8	200	
4,4'-DDE	30.3 27.9	0.330 0.330	ug/kg wet	33.3 33.3		90.8	40-140 40-140		16.4	200	
4,4'-DDT	31.0	0.330	"	33.3		83.6 92.9	40-140		7.47	200	
Aldrin	25.9	0.330	"	33.3		92.9 77.7	40-140		19.2	200	
alpha-BHC	23.9	0.330	"	33.3		71.6	40-140		25.6	200	
beta-BHC	24.7	0.330	"	33.3		74.2	40-140		38.0	200	
gamma-Chlordane	25.6	0.330	"	33.3		76.8	40-140		17.9	200	
delta-BHC	24.1	0.330	"	33.3		70.8	40-140		20.9	200	
Dieldrin	26.5	0.330	,,	33.3		72.4	40-140		16.3	200	
Endosulfan I	27.6	0.330	"	33.3		82.8	40-140		17.0	200	
Endosulfan II	26.6	0.330	"	33.3		79.7	40-140		16.9	200	
Endosulfan sulfate	27.2	0.330	"	33.3		81.5	40-140		15.4	200	
Endrin	28.9	0.330	"	33.3		86.8	40-140		15.4	200	
Endrin aldehyde	25.3	0.330	"	33.3		76.0	40-140		4.10	200	
Endrin ardenyde Endrin ketone	25.6 25.6		"	33.3					14.7	200	
gamma-BHC (Lindane)	24.3	0.330 0.330	"	33.3		76.8 72.8	40-140 40-140		21.9	200	
Heptachlor	25.2		"	33.3					18.0	200	
Heptachlor epoxide		0.330	"			75.6	40-140		16.7	200	
Methoxychlor	25.0	0.330	"	33.3		75.1	40-140		7.94	200	
alpha-Chlordane	32.6	1.65	"	33.3		97.8	40-140		18.4	200	
	25.5	0.330		33.3		76.5	40-140		10.4	200	
Surrogate: Decachlorobiphenyl	56.7		"	67.0		84.6	30-150				
Surrogate: Tetrachloro-m-xylene	61.5		"	66.7		92.2	30-150				
Matrix Spike (BD31378-MS1)	*Source sample: 1	3D1004-07 (S	SP-3 8-9 ft)				Prepa	ared: 04/30/2	2013 Analyz	ed: 05/01/2	013
4,4'-DDD	34.8	1.77	ug/kg dry	35.7	ND	97.6	30-150				
4,4'-DDE	32.8	1.77	"	35.7	ND	91.9	30-150				
4,4'-DDT	38.4	1.77	"	35.7	ND	108	30-150				
Aldrin	36.3	1.77	"	35.7	ND	102	30-150				
alpha-BHC	33.3	1.77	"	35.7	ND	93.3	30-150				
beta-BHC	32.9	1.77	"	35.7	ND	92.2	30-150				
gamma-Chlordane	34.7	1.77	"	35.7	ND	97.3	30-150				
delta-BHC	31.5	1.77	"	35.7	ND	88.4	30-150				
Dieldrin	40.2	1.77	"	35.7	ND	113	30-150				
Endosulfan I	39.2	1.77	"	35.7	ND	110	30-150				
Endosulfan II	37.2	1.77	"	35.7	ND	104	30-150				
Endosulfan sulfate	34.3	1.77	"	35.7	ND	96.1	30-150				
Endrin	41.4	1.77	"	35.7	ND	116	30-150				
Endrin aldehyde	34.3	1.77	"	35.7	ND	96.2	30-150				
Endrin ketone	33.7	1.77	"	35.7	ND	94.4	30-150				
gamma-BHC (Lindane)	33.8	1.77	"	35.7	ND	94.8	30-150				
Heptachlor	34.9	1.77	"	35.7	ND	97.9	30-150				
Heptachlor epoxide	34.7	1.77	"	35.7	ND	97.3	30-150				
Methoxychlor	33.8	8.83	"	35.7	ND	94.8	30-150				
alpha-Chlordane	36.3	1.77	"	35.7	ND	102	30-150				
Surrogate: Decachlorobiphenyl	83.2		"	71.7		116	30-150				
Surrogate: Tetrachloro-m-xylene	92.6		"	71.4		130	30-150				
and the second of the second o	72.0					-50					

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371

$Organochlorine\ Pesticides\ by\ EPA\ SW\ 846-8081\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

1 mary to	resur	2	Cinto	20101	rtesan / vrtEe	Liiiiii	- 6	
Batch BE30004 - EPA SW846-35100	C Low Level							
Blank (BE30004-BLK1)						Prepar	ed & Analyzed: 05/	01/2013
4,4'-DDD	ND	0.00100	ug/L					
Toxaphene	ND	0.0500	"					
4,4'-DDE	ND	0.00100	"					
4,4'-DDT	ND	0.00100	"					
Aldrin	ND	0.00100	"					
Methoxychlor	ND	0.00500	"					
alpha-BHC	ND	0.00100	"					
Heptachlor epoxide	ND	0.00100	"					
beta-BHC	ND	0.00100	"					
Heptachlor	ND	0.00100	"					
gamma-Chlordane	ND	0.00100	"					
gamma-BHC (Lindane)	ND	0.00100	"					
delta-BHC	ND	0.00100	"					
Endrin ketone	ND	0.00100	"					
Dieldrin	ND	0.00100	"					
Endrin aldehyde	ND	0.00100	"					
Endosulfan I	ND	0.00100	"					
Endrin	ND	0.00100	"					
Endosulfan II	ND	0.00100	"					
Endosulfan sulfate	ND	0.00100	,,					
Endosulfan sulfate	ND	0.00100	"					
Endosulfan II	ND	0.00100	"					
Endrin	ND	0.00100	,,					
Endosulfan I	ND	0.00100	,,					
Endrin aldehyde	ND ND	0.00100	,,					
Dieldrin	ND ND	0.00100	,,					
Endrin ketone	ND	0.00100	,,					
delta-BHC	ND ND	0.00100	,,					
gamma-BHC (Lindane)	ND ND	0.00100	,,					
Heptachlor	ND ND		"					
Chlordane, total	ND ND	0.00100 0.00400	,,					
Heptachlor epoxide	ND ND		,,					
beta-BHC		0.00100	,,					
Methoxychlor	ND	0.00100	,,					
alpha-Chlordane	ND	0.00500	,,					
alpha-BHC	ND	0.00100	,,					
•	ND	0.00100	,,					
Toxaphene	ND	0.0500	,,					
Aldrin	ND	0.00100	"					
4,4'-DDT	ND	0.00100	,,					
4,4'-DDE	ND	0.00100						
4,4'-DDD	ND	0.00100						
Aroclor 1260	ND	0.0500	"					
Aroclor 1254	ND	0.0500						
Aroclor 1248	ND	0.0500	"					
Arcelor 1242	ND	0.0500	"					
Aroclor 1232	ND	0.0500	"					
Aroclor 1221	ND	0.0500	"					
Aroclor 1016	ND	0.0500	"					
Total PCBs	ND	0.0500	"					
Surrogate: Tetrachloro-m-xylene	0.109		"	0.200	54.4	30-150		
Surrogate: Decachlorobiphenyl	0.192		"	0.201	95.4	30-150		

Organochlorine Pesticides by EPA SW 846-8081 - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BE30004-BLK1)						Prepared & Analyzed: 05/01/2013
urrogate: Decachlorobiphenyl	0.192		ug/L	0.201	95.4	30-150
urrogate: Tetrachloro-m-xylene	0.109		"	0.200	54.4	30-150
LCS (BE30004-BS1)						Prepared: 05/01/2013 Analyzed: 05/02/2013
,4'-DDD	0.0926	0.00100	ug/L	0.100	92.6	40-140
,4'-DDE	0.0890	0.00100	"	0.100	89.0	40-140
4'-DDT	0.0991	0.00100	"	0.100	99.1	40-140
ethoxychlor	0.0821	0.00500	"	0.100	82.1	40-140
drin	0.0843	0.00100	"	0.100	84.3	40-140
eptachlor epoxide	0.0833	0.00100	"	0.100	83.3	40-140
oha-BHC	0.0849	0.00100	"	0.100	84.9	40-140
eptachlor	0.0804	0.00100	"	0.100	80.4	40-140
eta-BHC	0.0845	0.00100	"	0.100	84.5	40-140
mma-Chlordane	0.0822	0.00100	"	0.100	82.2	40-140
mma-BHC (Lindane)	0.0829	0.00100	"	0.100	82.9	40-140
ndrin ketone	0.0787	0.00100	"	0.100	78.7	40-140
lta-BHC	0.0858	0.00100	"	0.100	85.8	40-140
ndrin aldehyde	0.0813	0.00100	"	0.100	81.3	40-140
eldrin	0.0839	0.00100	"	0.100	83.9	40-140
drin	0.0888	0.00100	"	0.100	88.8	40-140
idosulfan I	0.0885	0.00100	"	0.100	88.5	40-140
dosulfan sulfate	0.0787	0.00100	"	0.100	78.7	40-140
idosulfan II	0.0799	0.00100	"	0.100	79.9	40-140
dosulfan II	0.0799	0.00100	"	0.100	79.9	40-140
dosulfan sulfate	0.0787	0.00100	"	0.100	78.7	40-140
dosulfan I	0.0885	0.00100	"	0.100	88.5	40-140
drin	0.0888	0.00100	"	0.100	88.8	40-140
eldrin	0.0839	0.00100	"	0.100	83.9	40-140
drin aldehyde	0.0813	0.00100	"	0.100	81.3	40-140
lta-BHC	0.0858	0.00100	"	0.100	85.8	40-140
drin ketone	0.0787	0.00100	"	0.100	78.7	40-140
mma-BHC (Lindane)	0.0829	0.00100	"	0.100	82.9	40-140
eptachlor	0.0804	0.00100	"	0.100	80.4	40-140
eptachlor epoxide	0.0833	0.00100	"	0.100	83.3	40-140
ta-BHC	0.0845	0.00100	"	0.100	84.5	40-140
pha-Chlordane	0.0825	0.00100	"	0.100	82.5	40-140
ethoxychlor	0.0821	0.00500	"	0.100	82.1	40-140
bha-BHC	0.0849	0.00100	"	0.100	84.9	40-140
drin	0.0843	0.00100	"	0.100	84.3	40-140
I'-DDT	0.0991	0.00100	"	0.100	99.1	40-140
4'-DDE	0.0890	0.00100	"	0.100	89.0	40-140
4'-DDD	0.0926	0.00100	"	0.100	92.6	40-140
rrogate: Tetrachloro-m-xylene	0.191		"	0.200	95.7	30-150
rrogate: Decachlorobiphenyl	0.186		"	0.201	92.6	30-150
rrogate: Decachlorobiphenyl	0.186		"	0.201	92.6	30-150
rrogate: Tetrachloro-m-xylene	0.191		"	0.200	95.7	30-150

Organochlorine Pesticides by EPA SW 846-8081 - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BE30004-BS2)						Prepared: (05/01/2013 Analyze	ed: 05/02/201
aroclor 1260	1.02	0.0500	ug/L	1.00	102	40-140		
aroclor 1016	0.977	0.0500	"	1.00	97.7	40-140		
urrogate: Tetrachloro-m-xylene	0.138		"	0.200	69.0	30-150		
urrogate: Decachlorobiphenyl	0.160		"	0.201	79.6	30-150		
.CS Dup (BE30004-BSD1)						Prepared: (05/01/2013 Analyze	ed: 05/02/201
,4'-DDD	0.0914	0.00100	ug/L	0.100	91.4	40-140	1.28	200
,4'-DDE	0.0874	0.00100	"	0.100	87.4	40-140	1.77	200
4'-DDT	0.0945	0.00100	"	0.100	94.5	40-140	4.73	200
ldrin	0.0843	0.00100	"	0.100	84.3	40-140	0.0795	200
lethoxychlor	0.0774	0.00500	"	0.100	77.4	40-140	5.93	200
pha-BHC	0.0846	0.00100	"	0.100	84.6	40-140	0.348	200
eptachlor epoxide	0.0824	0.00100	"	0.100	82.4	40-140	1.09	200
eta-BHC	0.0836	0.00100	"	0.100	83.6	40-140	1.10	200
eptachlor	0.0807	0.00100	"	0.100	80.7	40-140	0.433	200
nmma-Chlordane	0.0815	0.00100	"	0.100	81.5	40-140	0.853	200
amma-BHC (Lindane)	0.0820	0.00100	"	0.100	82.0	40-140	1.14	200
elta-BHC	0.0839	0.00100	"	0.100	83.9	40-140	2.24	200
ndrin ketone	0.0753	0.00100	"	0.100	75.3	40-140	4.30	200
ieldrin	0.0805	0.00100	"	0.100	80.5	40-140	4.15	200
ndrin aldehyde	0.0786	0.00100	"	0.100	78.6	40-140	3.32	200
ndosulfan I	0.0876	0.00100	"	0.100	87.6	40-140	0.953	200
ndrin	0.0873	0.00100	"	0.100	87.3	40-140	1.71	200
ndosulfan sulfate	0.0740	0.00100	"	0.100	74.0	40-140	6.18	200
ndosulfan II	0.0776	0.00100	"	0.100	77.6	40-140	2.89	200
ndosulfan II	0.0776	0.00100	"	0.100	77.6	40-140	2.89	200
ndosulfan sulfate	0.0740	0.00100	"	0.100	74.0	40-140	6.18	200
ndosulfan I	0.0876	0.00100	"	0.100	87.6	40-140	0.953	200
ndrin	0.0873	0.00100	"	0.100	87.3	40-140	1.71	200
ieldrin	0.0805	0.00100	"	0.100	80.5	40-140	4.15	200
ndrin aldehyde	0.0786	0.00100	"	0.100	78.6	40-140	3.32	200
elta-BHC	0.0839	0.00100	"	0.100	83.9	40-140	2.24	200
ndrin ketone	0.0753	0.00100	"	0.100	75.3	40-140	4.30	200
amma-BHC (Lindane)	0.0820	0.00100	"	0.100	82.0	40-140	1.14	200
eptachlor	0.0807	0.00100	"	0.100	80.7	40-140	0.433	200
eta-BHC	0.0836	0.00100	"	0.100	83.6	40-140	1.10	200
eptachlor epoxide	0.0824	0.00100	"	0.100	82.4	40-140	1.09	200
pha-Chlordane	0.0810	0.00100	"	0.100	81.0	40-140	1.87	200
lethoxychlor	0.0774	0.00500	"	0.100	77.4	40-140	5.93	200
pha-BHC	0.0846	0.00100	"	0.100	84.6	40-140	0.348	200
ldrin	0.0843	0.00100	"	0.100	84.3	40-140	0.0795	200
4'-DDT	0.0945	0.00100	"	0.100	94.5	40-140	4.73	200
4'-DDE	0.0874	0.00100	"	0.100	87.4	40-140	1.77	200
4'-DDD	0.0914	0.00100	"	0.100	91.4	40-140	1.28	200
ırrogate: Tetrachloro-m-xylene	0.199		"	0.200	99.6	30-150		
urrogate: Decachlorobiphenyl	0.175		"	0.201	87.1	30-150		
urrogate: Decachlorobiphenyl	0.175		"	0.201	87.1	30-150		

$Organochlorine\ Pesticides\ by\ EPA\ SW\ 846-8081\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BE30004	- EPA S	W846-3510C	Low Level
---------------	---------	------------	-----------

LCS Dup (BE30004-BSD2)						Prepared: (05/01/2013 Analyze	ed: 05/02/2013
Aroclor 1260	1.03	0.0500	ug/L	1.00	103	40-140	0.720	200
Aroclor 1016	0.918	0.0500	"	1.00	91.8	40-140	6.27	200
Surrogate: Tetrachloro-m-xylene	0.131		"	0.200	65.5	30-150		
Surrogate: Decachlorobiphenyl	0.145		"	0.201	72.1	30-150		

Polychlorinated Biphenyls (PCB) by EPA SW 846-8082/EPA Compendium Methods - Quality Control Data York Analytical Laboratories, Inc.

Spike

Source*

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31378 - EPA 3550B											
Blank (BD31378-BLK1)							Prepa	ared & Analy	yzed: 04/30/	2013	
Aroclor 1016	ND	0.0170	mg/kg wet								
Aroclor 1221	ND	0.0170	"								
Aroclor 1232	ND	0.0170	"								
Aroclor 1242	ND	0.0170	"								
Aroclor 1248	ND	0.0170	"								
Aroclor 1254	ND	0.0170	"								
Aroclor 1260	ND	0.0170	"								
Total PCBs	ND	0.0170	"								
Surrogate: Tetrachloro-m-xylene	0.0913		"	0.0667		137	30-150				
Surrogate: Decachlorobiphenyl	0.0743		"	0.0670		111	30-150				
LCS (BD31378-BS2)							Prepa	ared & Analy	yzed: 04/30/	2013	
Aroclor 1016	0.294	0.0170	mg/kg wet	0.333		88.3	40-140				
Aroclor 1260	0.281	0.0170	"	0.333		84.3	40-140				
Surrogate: Tetrachloro-m-xylene	0.0737		"	0.0667		110	30-150				
Surrogate: Decachlorobiphenyl	0.0590		"	0.0670		88.1	30-150				
Batch BE30004 - EPA SW846-35100	C Low Level										
Blank (BE30004-BLK1)							Prepa	ared: 05/01/2	2013 Analyz	zed: 05/02/2	2013
Aroclor 1016	ND	0.0500	ug/L								
Aroclor 1221	ND	0.0500	"								
Aroclor 1232	ND	0.0500	"								
Aroclor 1242	ND	0.0500	"								
Aroclor 1248	ND	0.0500	"								
Aroclor 1254	ND	0.0500	"								
Aroclor 1260	ND	0.0500	"								
Total PCBs	ND	0.0500	"								
Surrogate: Tetrachloro-m-xylene	0.114		"	0.200		57.0	30-150				
	0.114			0.200							

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

RPD

%REC

Polychlorinated Biphenyls (PCB) by EPA SW 846-8082/EPA Compendium Methods - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BE30004 - EPA SW846-35100	C Low Level										
LCS (BE30004-BS2)							Prep	ared: 05/01/2	2013 Analyz	ed: 05/02/2	2013
Aroclor 1016	0.977	0.0500	ug/L	1.00		97.7	40-140				
Aroclor 1260	1.02	0.0500	"	1.00		102	40-140				
Surrogate: Tetrachloro-m-xylene	0.138		"	0.200		69.0	30-150				
Surrogate: Decachlorobiphenyl	0.160		"	0.201		79.6	30-150				
LCS Dup (BE30004-BSD2)							Prep	ared: 05/01/2	2013 Analyz	ed: 05/02/2	2013
Aroclor 1016	0.918	0.0500	ug/L	1.00		91.8	40-140		6.27	200	
Aroclor 1260	1.03	0.0500	"	1.00		103	40-140		0.720	200	
Surrogate: Tetrachloro-m-xylene	0.131		"	0.200		65.5	30-150				
Surrogate: Decachlorobiphenyl	0.145		"	0.201		72.1	30-150				

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371

RPD

$Metals\ by\ EPA\ 6000\ Series\ Methods\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BD31400 - EPA 3050B						
Blank (BD31400-BLK1)						Prepared & Analyzed: 04/30/2013
Aluminum	ND	2.00	mg/kg wet			
Antimony	ND	0.500	"			
Arsenic	ND	1.00	"			
Barium	ND	0.500	"			
Beryllium	ND	0.100	"			
Cadmium	ND	0.500	"			
Calcium	ND	5.00	"			
Chromium	ND	0.500	"			
Cobalt	ND	0.500	"			
Copper	ND	0.500	"			
Iron	ND	2.00	"			
Lead	ND	0.300	"			
Magnesium	ND	5.00	"			
Manganese	ND	1.00	"			
Nickel	ND	0.500	"			
Potassium	ND	10.0	"			
Selenium	ND	0.500	"			
Silver	ND	0.500	"			
Sodium	ND	10.0	"			
Thallium	ND	0.500	"			
Vanadium	ND	0.500	"			
Zinc	ND	0.500	"			
Reference (BD31400-SRM1)						Prepared & Analyzed: 04/30/2013
Aluminum	5260	2.00	mg/kg wet	8360	62.9	40.4-159
Antimony	79.3	0.500	"	92.9	85.4	24.8-272
Arsenic	91.6	1.00	"	94.5	97.0	69.2-131
Barium	153	0.500	"	166	92.2	72.9-127
Beryllium	51.9	0.100	"	52.6	98.6	73-127
Cadmium	57.4	0.500	"	59.9	95.8	73.1-127
Calcium	5630	5.00	"	6160	91.4	73.9-126
Chromium	60.8	0.500	"	69.3	87.8	68.4-132
Cobalt	99.9	0.500	"	101	98.9	74.2-125
Copper	78.6	0.500	"	78.0	101	73.6-126
Iron	9020	2.00	"	12800	70.4	31.8-168
Lead	85.7	0.300	"	91.7	93.5	70.2-130
Magnesium	2460	5.00	"	3030	81.2	66-134
Manganese	261	1.00	"	283	92.1	73.9-125
Nickel	56.7	0.500	"	56.6	100	70-130
Potassium	3220	10.0	"	3820	84.4	64.7-136
Selenium	159	0.500	"	159	100	67.9-133
Silver	30.7	0.500	"	33.9	90.7	65.5-135
Sodium	676	10.0	"	652	104	55.1-145
Thallium	111	0.500	"	119	93.0	67.6-133
Vanadium	46.9	0.500	"	56.3	83.2	53.3-147
Zinc	127	0.500	"	137	92.7	67.4-133

Metals by EPA 6000 Series Methods - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BD31437 - EPA 3010A						
Blank (BD31437-BLK1)						Prepared & Analyzed: 04/30/2013
Aluminum	ND	0.010	mg/L			
Antimony	ND	0.005	"			
Arsenic	ND	0.004	"			
Barium	ND	0.010	"			
Beryllium	ND	0.001	"			
Cadmium	ND	0.003	"			
Calcium	ND	0.050	"			
Chromium	ND	0.005	"			
Cobalt	ND	0.005	"			
Copper	ND	0.005	"			
Iron	ND	0.020	"			
Lead	ND	0.003	"			
Magnesium	ND	0.050	"			
Manganese	ND	0.005	"			
Nickel	ND	0.005	"			
Potassium	ND	0.050	"			
Selenium	ND	0.010	"			
Silver	ND	0.005	"			
Sodium	ND	0.100	"			
Thallium	ND	0.010	"			
Vanadium	ND	0.010	"			
Zinc	ND	0.020	"			
Reference (BD31437-SRM1)						Prepared & Analyzed: 04/30/2013
Aluminum	0.320	0.010	mg/L	0.292	110	72.6-129
Antimony	0.658	0.005	"	0.686	95.9	70.6-120
Arsenic	0.172	0.004	"	0.182	94.4	81.9-118
Barium	2.17	0.010	"	2.08	104	87-113
Beryllium	0.163	0.001	"	0.169	96.6	84.6-113
Cadmium	0.383	0.003	"	0.393	97.4	85.2-114
Chromium	0.596	0.005	"	0.611	97.6	87.1-113
Cobalt	0.292	0.005	"	0.290	101	87.6-112
Copper	0.580	0.005	"	0.569	102	90-110
Iron	0.460	0.020	"	0.462	99.5	87.9-114
Lead	0.264	0.003	"	0.259	102	85.7-114
Manganese	1.32	0.005	"	1.28	103	89.8-111
Nickel	0.298	0.005	"	0.279	107	88.5-113
Selenium	0.970	0.010	"	1.05	92.4	79.5-116
Silver	0.312	0.005	"	0.333	93.7	85.9-115
Thallium	0.511	0.010	"	0.487	105	80.1-120
Vanadium	0.439	0.010	"	0.455	96.5	87.5-112
Zinc	0.178	0.020	"	0.191	93.3	84.8-118

Metals by EPA 6000 Series Methods - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch	BD.	3143′	7 - EI	PA 30	010A
-------	-----	-------	--------	-------	------

Reference (BD31437-SRM2)						Prepared & Analyzed: 04/30/2013
Calcium	62.2	0.050	mg/L	62.7	99.2	86-114
Magnesium	29.1	0.050	"	29.0	100	86.2-114
Potassium	34.3	0.050	"	32.4	106	85.2-115
Sodium	85.2	0.100	"	85.1	100	85-115

Mercury by EPA 7000/200 Series Methods - Quality Control Data

York Analytical Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BD31397 - EPA SW846-7471											
Blank (BD31397-BLK1)							Prep	ared & Analy	yzed: 04/30/	2013	
Mercury	ND	0.0330	mg/kg wet								
LCS (BD31397-BS1)							Prep	ared & Analy	yzed: 04/30/	2013	
Mercury	3.09		mg/kg	3.73		82.8	67.6-131				
Batch BD31404 - EPA SW846-7470											
Blank (BD31404-BLK1)							Prep	ared & Analy	yzed: 04/30/	2013	
Mercury	ND	0.0002	mg/L								
LCS (BD31404-BS1)							Prep	ared & Analy	yzed: 04/30/	2013	
Mercury	0.002158	0.0002	mg/L	0.00200		108	80-120				
LCS (BD31404-BS2)							Prep	ared & Analy	yzed: 04/30/	2013	
Mercury	0.001952	0.0002	mg/L	0.00200		97.6	80-120				

Wet Chemistry Parameters - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BD31353 - Analysis Preparati	ion										
Blank (BD31353-BLK1)							Prep	ared & Analy	yzed: 04/26/	2013	
Chromium, Hexavalent	ND	0.0100	mg/L								
LCS (BD31353-BS1)							Prep	ared & Analy	yzed: 04/26/	2013	
Chromium, Hexavalent	0.495	0.0100	mg/L	0.500		99.0	80-120				
Duplicate (BD31353-DUP1)	*Source sample: 13	3D1004-09 (M	IW-1)				Prep	ared & Analy	yzed: 04/26/	2013	
Chromium, Hexavalent	ND	0.0100	mg/L		ND					20	
Matrix Spike (BD31353-MS1)	*Source sample: 13	3D1004-09 (M	IW-1)				Prep	ared & Analy	yzed: 04/26/	2013	
Chromium, Hexavalent	0.494	0.0100	mg/L	0.500	ND	98.8	75-125				
Batch BD31385 - EPA SW846-3060											
Blank (BD31385-BLK1)							Prep	ared & Analy	yzed: 04/30/	2013	
Chromium, Hexavalent	ND	0.500	mg/kg wet								
Duplicate (BD31385-DUP1)	*Source sample: 13	3D1004-07 (S	P-3 8-9 ft)				Prep	ared & Analy	yzed: 04/30/	2013	
Chromium, Hexavalent	ND	0.535	mg/kg dry		ND					35	
Matrix Spike (BD31385-MS1)	*Source sample: 13	3D1004-07 (S	P-3 8-9 ft)				Prep	ared & Analy	yzed: 04/30/	2013	
Chromium, Hexavalent	22.2	0.535	mg/kg dry	21.4	ND	104	75-125				
Reference (BD31385-SRM1)							Prep	ared & Analy	yzed: 04/30/	2013	
Chromium, Hexavalent	73.6		mg/L	76.7		96.0	20.2-180				

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
13D1004-01	SP-1 0-2 ft	8 oz. WM Clear Glass Cool to 4° C
13D1004-02	SP-1 8-9 ft	8 oz. WM Clear Glass Cool to 4° C
13D1004-03	SP-2 0-2 ft	8 oz. WM Clear Glass Cool to 4° C
13D1004-04	SP-2 8-9 ft	8 oz. WM Clear Glass Cool to 4° C
13D1004-05	SP-2 8-9 ft (Duplicate)	8 oz. WM Clear Glass Cool to 4° C
13D1004-06	SP-3 0-2 ft	8 oz. WM Clear Glass Cool to 4° C
13D1004-07	SP-3 8-9 ft	8 oz. WM Clear Glass Cool to 4° C
13D1004-08	Filed Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
13D1004-09	MW-1	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
13D1004-10	MW-2	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
13D1004-11	MW-3	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
13D1004-12	MW-3 (Duplicate)	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
13D1004-13	Field Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
13D1004-14	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Notes and Definitions

	rotes and Definitions
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL); therefore, the result is an estimated concentration.
HT-02	NON-COMPLIANT-This sample was received outside the EPA recommended holding time.
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
ND	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
MDL	METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the MDL, with values between the MDL and the RL being "J" flagged as estimated results.

Revision Description: Revised VOA, SVOA and Pesticide analyte list, per client request.

YORK

ANALYTICAL LABORATORIES, INC. 20 RESEARCH DR. STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract.

York Project No. 13 D1004

Report/Deliverable Type ORK Regulatory Comp Excel See Comment below ST RCP DQA/DUE Pkg NJDEP Reduced Deliv JDEP SRP HazSite NY ASP A Package NY ASP B Package Summary Report IYSDEC EQUIS 31S/KEY (std) compared to: QA Report CT RCP EQuIS Excel 5 days Part 360-Esoline Parl 360-Frank TCL Opmics Part 360-Rouine Full Lists Part 350-Eponde NYCOE Sowa NYSDECSewa Pull App. IX Full TCLP TAL Meton **Turn-Around Time** Pri.Poll. TAGM Mlsc. Org. NY 310-13 Air TO14A TPH GRO TPH DRO Standard (5-7day) TPH 1664 Air STARS RUSH-Same Day RUSH-Three Day Air TO15 CLETPH RUSH-Four Day RUSH-Next Day RUSH-Two Day Methane Air VPH Air TICs Helium TCLP Herb STPGTCLP Indiv. Metak NJDEP list TAGM list Dissolved LIST Below CTI 5 list PP13 list SPIP or TCL P Total TAL Semi-Vols. Pest/PCB/Reth Purchase Order # ICLP Pest Your Project ID Chlordane Site Spec. Samples from CT NY LAD 8151Herb TCLP BNA 608 Pest 8081Pest App. IX CTRCP SPIPOTICIP 608 PCB 11-28 31st Drive 5218 TRCPlist 8270 or 625 STARS list Acids Only TAGM list VIDEP list BN Only CL list AH list App. IX Suffolk Co. STPOTEL Nassau Co. NUDEP list Site Spec. Oxygenates TCLP list Ketones 524.2 502.2 Volatiles Company: Hydro Tech Env. Corp. 77 Arkay Dr. Suite G Hauppauge Ny CT RCP list Arom. only App.IX list STARS list TAGM list Halog.only 8021B list Print Clearly and Legibly. All Information must be complete. 8250 full Invoice To: TOLIST BTEX MIBE Samples will NOT be logged in and the turn-around time 624 Muslima Other - specify(oil, etc.) DW - drinking water clock will not begin until any questions by York are resolved. GW - groundwater Matrix Codes WW - wastewater Air-A - ambient air Air-SV - soil vapor SAME Address: Name: E-mail Soil Report to Collected/Authorized By (Signature) SAME Company: Address: Name: mental.com E-mail: Name (printed) 15 Ocean Ave. 2nd FI Bklyn , NY 11225 YOUR Information Company: Hydro Tech Env. Corp. pmatfi...hydrotechenv 718-636-0800 Paul I. Matli Address: Contact: hone.: E-mail:

				OTHER
Sample Identification	Date+Time Sampled	Matrix	Analysis Requested (List above includes common analysis)	Container Description
SP-1 0-2 ft	4/24/2013	S	EPA 8260/8270C/8081/8082/TAL Metals (incl.Chromium Hex)	4 terra core vials + 8 oz jar
SP-1 8-9 ft	×	×	×	×
SP-2 0-2 ft	×	×	×	×
SP-2 8-9 ft (Duplicate)	×	×	×	×
SP-3 0-2 ft	×	×	×	×
SP-3 8-9 ft	×	×	×	×
Filed Blank	×	×	X	2x40ml vial,2x250 plastic,-3x1L amber 1x500 ml plastic
Comments:		Preservation (check all appliciable)	4°C Irozen HCI MeOH HNO, H ₂ SO, Na	NaOH
x = same as before Samples referred to by job ID #120028 NYSDEC Part 375 Unrestricted and Restricted Residential Apply E -designation quote for billing	Samples referred to by job ID #120028 sstricted and Restricted Residential tote for billing	Special Instructions Field Filtered	Date/Time Sample's Received By	4-26-13 91 S. Temperature 1/26/13-1620 3.8 °C

YORK

120 RESEARCH DR. STRATFORC, DT 06615 (203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract.

York Project No. 13 D 100 4

YOUR Information	Report to:		Invoice To:	Your Project ID	Turn-Around Time	Report/Deliverable Type
Company, Hydro Tech Env. Corp.	SAME x	SAME		#130030	RUSH-Same Day	Summary Report x
<u></u>	Name:	Name:	Muslima	Queens NY	RUSH-Next Day	QA Report X
Bklyn , NY 11225	Company:	Company: H	Hydro Tech Env. Corp.	Purchase Order #	RUSH-Two Day	CT RCP
Γ	Address:		77 Arkay Dr. Suite G		RUSH-Three Day	CT RCP DQA/DUE Pkg
•	,		Hauppauge Ny	5218	RUSH-Four Day	NY ASP A Package
•	E-mail:	E-mail n	mward_hydrotechenvironmental.c	Samples from CT_NY MJ	Standard (5-7day) 5 days	NY ASP B Package
A Control of the Cont	The second of the Late of the second		Volatiles	Semi-Vols, PestPCBrien	Metals Mlsc. Org. Full Lists	NJDEP Reduced Deliv
Print Clearly and Legibly. All Information must be complete.	ly, All Information	on must be comple ha turn-around ti	216. 8260 full TICs	8270 cr 625 8082PCB	RCRAS TPH GRO Pri.Poll.	•
Samples will not be togged in and the tituth of one of the	togged at ana si til om anostions	hy Vark are resolved	STARS IIst	BN Only 8151Herb	CTETPH	NYSDEC EQUIS X
CIOCA WAR HOL DESTIL HAR	and ducations	Matrix Codes	BIEX	Co. Acids Only CTRCP PAH list Ann IX	CTI 5 list NY 310-13 Full TCLP TAGM 184 TPH 1664 Full App IX	EQUIS
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	S - soil	Totalist	S TAGM list Site Spec.	Air TO14A	GIS/KEY (std)
	MA NO	Str.	TAGM list T	list CTRCP list SPLP OTCLP	Total Air TO15 Pat 360 Basine	
	Imprized by (Signature)	GW - groundwater DW - drinking water	f Arom, only ster Halos only	NDEPlist TCLP Herb	24 24	8
Name	rinted)	Air-A - andient air Air-SV · soil vapor	ApplX list 8021B list	P TCLP BNA SYLPaTCLP	Methane Helium	NYSDEC GQS GA Standards OTHER:
Sample Identification	Date+Time Sampled	Matrix	Analysis Reques	Analysis Requested (List above includes common analysis)	common analysis)	Container Description
MW-1	4/25/2013	GW	EPA 8260/827	EPA 8260/g270C/8081/8082/TAL Metals (incl.Chromium Hex)	s (incl.Chromium Hex)	3x40ml via-3x500 plastic-3- 11, amber
MW-2	×	×		×	•	×
MW-3 (Duplicate)	×	×	-	×	•	×
Field Blank	×	Di	· T	×		×
Trip Blank	*	×		EPA 8260		2x40ml via
				10.14		TO:N
Comments:		Preservation (check all applicable)	4.C. Irrozen	en hel meon ZnAc Ascorbic Acid	d Other	haon
x = same as before	ens.	Special		1- 4-26-13@ W	Khal	26 73 90 Temperature
Apply E -designation quote for billing	billing	Lab to Filter (1)	Samples Relinquished By	ŀ		26/13-1620 3.8°C
Samples referred to by job ID #120028	120028		Samples Relinduished By	red By Date/Time	Samples Received in L. A. B. by '	Date/Time
3			—ï, —			

2013 Soil Vapor Lab Report

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 05/01/2013

Client Project ID: 11-28 31 Drive NY # 130030

York Project (SDG) No.: 13D0962

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005

New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 12

Report Date: 05/01/2013

Client Project ID: 11-28 31 Drive NY # 130030

York Project (SDG) No.: 13D0962

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on April 26, 2013 and listed below. The project was identified as your project: 11-28 31 Drive NY # 130030.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
13D0962-01	SV-1	Soil Vapor	04/25/2013	04/26/2013
13D0962-02	SV-2	Soil Vapor	04/25/2013	04/26/2013
13D0962-03	SV-3	Soil Vapor	04/25/2013	04/26/2013
1				

General Notes for York Project (SDG) No.: 13D0962

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia Laboratory Director

YORK

05/01/2013

Date:

Client Sample ID: SV-1 York Sample ID: 13D0962-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 13D0962
 11-28 31 Drive NY # 130030
 Soil Vapor
 April 25, 2013 3:00 pm
 04/26/2013

Volatile Organics, EPA TO15 Full List

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/m³	5.0	5.0	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
108-05-4	Vinyl acetate	ND		ug/m³	6.9	6.9	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
79-01-6	Trichloroethylene	ND		ug/m³	5.3	5.3	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	8.9	8.9	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	7.8	7.8	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
108-88-3	Toluene	48		ug/m³	7.4	7.4	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
109-99-9	Tetrahydrofuran	23		ug/m³	5.8	5.8	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
127-18-4	Tetrachloroethylene	140		ug/m³	13	13	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
100-42-5	Styrene	ND		ug/m³	8.4	8.4	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
115-07-01	Propylene	ND		ug/m³	3.4	3.4	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
622-96-8	p-Ethyltoluene	ND		ug/m³	48	48	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
179601-23-1	p- & m- Xylenes	43		ug/m³	8.6	8.6	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
95-47-6	o-Xylene	14		ug/m³	8.6	8.6	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
110-54-3	n-Hexane	9.0		ug/m³	6.9	6.9	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
142-82-5	n-Heptane	820		ug/m³	8.1	8.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
75-09-2	Methylene chloride	17		ug/m³	6.8	6.8	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	7.1	7.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	8.1	8.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
67-63-0	Isopropanol	2200	QCAL, E	ug/m³	4.8	4.8	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
87-68-3	Hexachlorobutadiene	ND		ug/m³	21	21	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
100-41-4	Ethyl Benzene	10		ug/m³	8.6	8.6	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
141-78-6	Ethyl acetate	230		ug/m³	7.1	7.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
110-82-7	Cyclohexane	ND		ug/m³	6.8	6.8	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	8.9	8.9	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	7.8	7.8	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
74-87-3	Chloromethane	ND		ug/m³	4.1	4.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
67-66-3	Chloroform	ND		ug/m³	9.6	9.6	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
75-00-3	Chloroethane	ND		ug/m³	5.2	5.2	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
56-23-5	Carbon tetrachloride	ND		ug/m³	6.2	6.2	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
75-15-0	Carbon disulfide	ND		ug/m³	6.1	6.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
74-83-9		ND		ug/m³	7.7	7.7	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
	Bromomethane	ND		ug/m³	20	20	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
75-25-2	Bromoform							-	04/29/2013 09:00	04/30/2013 20:01	
75-27-4	Bromodichloromethane	ND		ug/m³	12	12	19.38	EPA Compendium TO-15	04/27/2013 09:00	04/30/2013 20:01	TD

Client Sample ID: SV-1 York Sample ID: 13D0962-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 13D0962
 11-28 31 Drive NY # 130030
 Soil Vapor
 April 25, 2013 3:00 pm
 04/26/2013

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:
----------------------	---------------

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilutior	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-44-7	Benzyl chloride	ND		ug/m³	10	10	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
71-43-2	Benzene	ND		ug/m³	6.3	6.3	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
67-64-1	Acetone	900		ug/m³	4.7	4.7	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
591-78-6	2-Hexanone	ND		ug/m³	8.1	8.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
78-93-3	2-Butanone	40		ug/m³	5.8	5.8	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
123-91-1	1,4-Dioxane	ND		ug/m³	7.1	7.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	12	12	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	12	12	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
106-99-0	1,3-Butadiene	ND		ug/m³	8.5	8.5	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	9.7	9.7	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	14	14	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
78-87-5	1,2-Dichloropropane	ND		ug/m³	9.1	9.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
107-06-2	1,2-Dichloroethane	ND		ug/m³	8.0	8.0	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	12	12	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	9.7	9.7	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	15	15	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
75-35-4	1,1-Dichloroethylene	ND		ug/m³	7.8	7.8	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
75-34-3	1,1-Dichloroethane	ND		ug/m³	8.0	8.0	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	11	11	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	11	11	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/m³	15	15	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	14	14	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	11	11	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
75-71-8	Dichlorodifluoromethane	ND		ug/m³	9.7	9.7	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
106-93-4	1,2-Dibromoethane	ND		ug/m³	15	15	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
124-48-1	Dibromochloromethane	ND		ug/m³	16	16	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
80-62-6	Methyl Methacrylate	ND		ug/m³	8.1	8.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
108-90-7	Chlorobenzene	ND		ug/m³	9.1	9.1	19.38	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:01	TD
	Surrogate Recoveries	Result		Acc	eptance R	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			70-130	-					

Client Sample ID: SV-2 York Sample ID: 13D0962-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 13D0962
 11-28 31 Drive NY # 130030
 Soil Vapor
 April 25, 2013 3:00 pm
 04/26/2013

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:
LOL III I TOCCO.	Dampie 1 totes

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/m³	4.9	4.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
108-05-4	Vinyl acetate	ND		ug/m³	6.8	6.8	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
79-01-6	Trichloroethylene	9.3		ug/m³	5.2	5.2	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	8.7	8.7	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	7.6	7.6	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
108-88-3	Toluene	33		ug/m³	7.3	7.3	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
109-99-9	Tetrahydrofuran	25		ug/m³	5.7	5.7	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
127-18-4	Tetrachloroethylene	1600		ug/m³	13	13	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
100-42-5	Styrene	ND		ug/m^3	8.2	8.2	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
115-07-01	Propylene	ND		ug/m³	3.3	3.3	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
622-96-8	p-Ethyltoluene	ND		ug/m³	47	47	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
179601-23-1	p- & m- Xylenes	50		ug/m³	8.4	8.4	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
95-47-6	o-Xylene	15		ug/m³	8.4	8.4	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
110-54-3	n-Hexane	ND		ug/m³	6.8	6.8	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
142-82-5	n-Heptane	55		ug/m³	7.9	7.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-09-2	Methylene chloride	29		ug/m³	6.7	6.7	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	6.9	6.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	7.9	7.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
67-63-0	Isopropanol	210		ug/m³	4.7	4.7	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
87-68-3	Hexachlorobutadiene	ND		ug/m³	21	21	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
100-41-4	Ethyl Benzene	12		ug/m³	8.4	8.4	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
141-78-6	Ethyl acetate	ND		ug/m³	6.9	6.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
110-82-7	Cyclohexane	ND		ug/m³	6.6	6.6	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	8.7	8.7	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	7.6	7.6	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
74-87-3	Chloromethane	ND		ug/m³	4.0	4.0	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
67-66-3	Chloroform	ND		ug/m³	9.4	9.4	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-00-3	Chloroethane	ND		ug/m³	5.1	5.1	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
56-23-5	Carbon tetrachloride	ND		ug/m³	6.1	6.1	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-15-0	Carbon disulfide	8.4		ug/m³	6.0	6.0	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
74-83-9	Bromomethane	ND		ug/m³	7.5	7.5		EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-25-2	Bromoform	ND		ug/m³	20	20	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
		ND		ug/m³	12	12		EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-27-4	Bromodichloromethane	ND		ug/111	12	12	10.75				

Client Sample ID: SV-2 York Sample ID: 13D0962-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 13D0962
 11-28 31 Drive NY # 130030
 Soil Vapor
 April 25, 2013 3:00 pm
 04/26/2013

Log-in Notes:

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-44-7	Benzyl chloride	ND		ug/m³	10	10	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
71-43-2	Benzene	ND		ug/m³	6.2	6.2	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
67-64-1	Acetone	520		ug/m³	4.6	4.6	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
591-78-6	2-Hexanone	ND		ug/m³	7.9	7.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
78-93-3	2-Butanone	15		ug/m³	5.7	5.7	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
123-91-1	1,4-Dioxane	ND		ug/m³	6.9	6.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	12	12	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	12	12	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
106-99-0	1,3-Butadiene	ND		ug/m³	8.4	8.4	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	9.5	9.5	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	13	13	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
78-87-5	1,2-Dichloropropane	ND		ug/m³	8.9	8.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
107-06-2	1,2-Dichloroethane	ND		ug/m³	7.8	7.8	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	12	12	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
95-63-6	1,2,4-Trimethylbenzene	35		ug/m³	9.5	9.5	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	14	14	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-35-4	1,1-Dichloroethylene	ND		ug/m³	7.6	7.6	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-34-3	1,1-Dichloroethane	ND		ug/m³	7.8	7.8	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	11	11	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	11	11	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/m³	15	15	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	13	13	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	11	11	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
75-71-8	Dichlorodifluoromethane	ND		ug/m³	9.5	9.5	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
106-93-4	1,2-Dibromoethane	ND		ug/m³	15	15	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
124-48-1	Dibromochloromethane	ND		ug/m³	15	15	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
80-62-6	Methyl Methacrylate	ND		ug/m³	7.9	7.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
108-90-7	Chlorobenzene	ND		ug/m³	8.9	8.9	18.95	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 20:47	TD
,	Surrogate Recoveries	Result		-	eptance R						
460-00-4	Surrogate: p-Bromofluorobenzene	104 %		7100	70-130	gv					

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

AX (203) 357-0166 Page 6 of 12

Client Sample ID: SV-3 York Sample ID: 13D0962-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 13D0962
 11-28 31 Drive NY # 130030
 Soil Vapor
 April 25, 2013 3:00 pm
 04/26/2013

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:
----------------------	---------------

1806.54 Virya acetate ND	No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Properties		Vinyl Chloride	ND		ug/m³	5.8	5.8	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
1806-1-02-6 trans-1,3-Dichloropropylene ND ugin' 10 10 22.2 EPA Compendium TO-15 04/29/2013 0/90 04/30/2013 21/35 1808-88-3 Toluene 22 ugin' 8.5 8.5 22.2 EPA Compendium TO-15 04/29/2013 0/90 04/30/2013 21/35 1809-99 Tetrahydrofuram 20 ugin' 6.7 6.7 22.2 EPA Compendium TO-15 04/29/2013 0/90 04/30/2013 21/35 1809-99 Tetrahydrofuram 20 ugin' 6.7 6.7 22.2 EPA Compendium TO-15 04/29/2013 0/90 04/30/2013 21/35 1809-99 Tetrahydrofuram 20 ugin' 6.7 6.7 22.2 EPA Compendium TO-15 04/29/2013 0/90 04/30/2013 21/35 1809-99 1809-9		Vinyl acetate	ND		ug/m³	8.0	8.0	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
1866-65 trans-1,2-Dichlororethylene ND ug/m² 9,0 9,0 2,2 EPA Composition TO-15 04/20/11 09/00 04/30/2013 21/33 1868-83 Tolucne 22 ug/m² 8,5 8,5 2,2 EPA Composition TO-15 04/20/11 09/00 04/30/2013 21/33 1864-84 Tetrachlorocethylene 1400 ug/m² 6,7 6,7 2,2 EPA Composition TO-15 04/20/11 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,6 9,6 22,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,6 9,6 22,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 5,6 5,6 22,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,8 9,8 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,8 9,8 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,8 9,8 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 8,0 8,0 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 8,0 8,0 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,3 9,3 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,8 9,8 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,8 9,8 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,8 9,8 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,8 9,8 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 9,8 9,8 2,2 EPA Composition TO-15 04/20/2013 09/00 04/30/2013 21/33 1864-85 Stycene ND ug/m² 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8		Trichloroethylene	15		ug/m³	6.1	6.1	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
100.88-33 Toluene 22 ug/m² 8.5 8.5 2.2 EPA Compendium TO-15 04.29/2013 06-10 04.99/2013 21.53 100.99/9 Tetrahydrofurum 20 ug/m² 6.7 6.7 2.2 EPA Compendium TO-15 04.29/2013 06-10 04.99/2013 21.53 100.042-5 Styrene ND ug/m² 7.6 7.6 2.2 EPA Compendium TO-15 04.29/2013 06-10 04.99/2013 21.53 115.07-01 Propylene ND ug/m² 5.6 7.6 2.2 EPA Compendium TO-15 04.29/2013 06-10 04.99/2013 21.53 115.07-01 Propylene ND ug/m² 5.6 5.6 2.2 EPA Compendium TO-15 04.29/2013 06-10 04.99/2013 21.53 04.29/2013 06-10 04.99/2013 06-10	tr	trans-1,3-Dichloropropylene	ND		ug/m³	10	10	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
Tetrahydrofuran	t	trans-1,2-Dichloroethylene	ND		ug/m³	9.0	9.0	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
127-18-4 Tetrachloroethylene 1400 ug/m² 15 15 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 115-07-01 Propylene ND ug/m² 3.9 3.9 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 115-07-01 Propylene ND ug/m² 5.6 5.6 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 127-001-23-11 p- & m- Xylenes 41 ug/m² 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 127-001-23-11 p- & m- Xylenes 41 ug/m² 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 110-54-3 n-Hexane ND ug/m² 8.0 8.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 110-54-3 n-Hexane ND ug/m² 7.8 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 142-82-5 n-Heptane 32 ug/m² 7.8 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 142-82-5 n-Heptane 32 ug/m² 7.8 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 142-82-5 n-Heptane 32 ug/m² 7.8 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 142-84-44 Methyl-2-pentanone ND ug/m² 9.2 9.2 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 143-64-44 Methyl-2-pentanone ND ug/m² 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 141-78-6 Efthyl accetate ND ug/m² 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 141-78-6 Efthyl accetate ND ug/m² 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 141-78-6 Efthyl accetate ND ug/m² 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 141-78-6 Efthyl accetate ND ug/m² 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:35 141-78-6 Efthyl accetate ND ug/m² 7.8 7.8 22.2 EPA Compendium TO-15 04/2		Toluene	22		ug/m³	8.5	8.5	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
10042-5		Tetrahydrofuran	20		ug/m³	6.7	6.7	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
Propylene ND		Tetrachloroethylene	1400		ug/m³	15	15	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
Part		Styrene	ND		ug/m³	9.6	9.6	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
179601-23-1		Propylene	ND		ug/m³	3.9	3.9	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
110-54-3 n.Hexane ND ugʻm² 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 11:05-43 n.Hexane ND ugʻm² 8.0 8.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 11:05-43 n.Hexane ND ugʻm² 8.0 8.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 11:05-44 Methyl ene chloride 9.4 ugʻm² 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10:05-10-1 04-Methyl-2-pentanone ND ugʻm² 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10:05-10-1 04-Methyl-2-pentanone ND ugʻm² 5.6 5.6 5.6 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10:05-10-1 04-Methyl-2-pentanone ND ugʻm² 24 24 24 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10:05-10-1 04-Methyl-2-pentanone ND ugʻm² 24 24 24 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10:05-10-1 04-Methyl-2-pentanone ND ugʻm² 24 24 24 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10:05-10-1 04-Methyl-2-pentanone ND ugʻm² 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10:05-10-1 04-Methyl-2-pentanone ND ugʻm² 10:0 10 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10:05-10-1 04-Methyl-2-pentanone ND ugʻm² 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15:05-10-1 04-Methyl-2-pentanone ND ugʻm² 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15:05-10-1 04-Methyl-2-pentanone ND ugʻm² 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15:05-10-1 04-Methyl-2-pentanone ND ugʻm² 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15:05-10-1 04-Methyl-2-pentanone ND ugʻm² 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15:05-10-1 04-Methyl-2-pentanone ND ugʻm² 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15:05-10-1 04-Methyl-2-pentanone ND ugʻm² 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15:05-10-1 04-Methyl-2-pentanone ND ugʻm² 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:		p-Ethyltoluene	ND		ug/m³	56	56	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
110-54-3 n-Hexane ND ug/m³ 8.0 8.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 142-82-5 n-Heptane 32 ug/m³ 9.3 9.3 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 157-509-2 Methylene chloride 9.4 ug/m³ 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 163-40-4 Methyl tert-butyl ether (MTBE) ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 168-10-1 4-Methyl-2-pentanone ND ug/m³ 9.2 9.2 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 168-10-1 4-Methyl-2-pentanone ND ug/m³ 5.6 5.6 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 168-10-1 4-Methyl-2-pentanone ND ug/m³ 2.4 2.4 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 169-10-1 4-Methyl-2-pentanone ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 169-10-1 4-Methyl-2-pentanone ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 169-10-1 4-Methyl-2-pentanone ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 169-10-1 5 cis-1,3-Dichloroptropylene ND ug/m³ 10 10 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-59-2 cis-1,2-Dichloroethylene ND ug/m³ 9.0 9.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-69-2 cis-1,2-Dichloroethylene ND ug/m³ 4.7 4.7 2.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-69-3 Chloromethane ND ug/m³ 6.0 6.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-39-3 Chloroethane ND ug/m³ 7.1 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-23-5 Carbon tetrachloride ND ug/m³ 7.0 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-23-5 Carbon tetrachloride ND ug/m³ 7.0 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-23-5 Bromomethane ND ug/m³ 8.8 8.8 8.2 22 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-23-5 Bromomethane ND ug/m³ 7.0 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:33 166-23-5 Bromomethane ND u		p- & m- Xylenes	41		ug/m³	9.8	9.8	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
142-82-5 n-Heptane 32 ug/m³ 9.3 9.3 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 75:09-2 Methylene chloride 9.4 ug/m³ 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 1063-04-4 Methyl tert-butyl ether (MTBE) ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 108-10-1 4-Methyl-2-pentanone ND ug/m³ 9.2 9.2 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 108-10-1 4-Methyl-2-pentanone ND ug/m³ 5.6 5.6 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 100-10-1 4-Methyl-2-pentanone ND ug/m³ 2.4 2.4 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 100-14-4 Ethyl Benzene 9.8 ug/m³ 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 100-14-4 Ethyl Benzene 9.8 ug/m³ 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 100-14-4 Ethyl acetate ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 100-14-5 cis-1,3-Dichloroptropylene ND ug/m³ 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 100-10-15 cis-1,3-Dichloroptropylene ND ug/m³ 10 10 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:32 156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 9.0 9.0 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:33 156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:33 156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:33 156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:33 156-59-2 cis-1,3-Dichloroethylene ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:33 156-59-2 cis-1,3-Dichloroethylene ND ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:33 156-59-2 cis-1,3-Dichloroethylene ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 21:33 156-59-3 Carbon tetrachloride ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09.00 04/30/2013 2		o-Xylene	12		ug/m³	9.8	9.8	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
No.		n-Hexane	ND		ug/m³	8.0	8.0	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
1634-044 Methyl tert-butyl ether (MTBE) ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 108-10-1 4-Methyl-2-pentanone ND ug/m³ 9.2 9.2 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 57-63-0 Isopropanol 79 ug/m³ 5.6 5.6 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 87-68-3 Hexachlorobutadiene ND ug/m³ 24 24 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 160-41-4 Ethyl Benzene 9.8 ug/m³ 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 141-78-6 Ethyl Benzene 9.8 ug/m³ 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 110-82-7 Cyclohexane 44 ug/m³ 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 <td></td> <td>n-Heptane</td> <td>32</td> <td></td> <td>ug/m³</td> <td>9.3</td> <td>9.3</td> <td>22.2</td> <td>EPA Compendium TO-15</td> <td>04/29/2013 09:00</td> <td>04/30/2013 21:32</td> <td>TD</td>		n-Heptane	32		ug/m³	9.3	9.3	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
108-10-1		Methylene chloride	9.4		ug/m³	7.8	7.8	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
1. 1. 1. 1. 1. 1. 1. 1.	Me	lethyl tert-butyl ether (MTBE)	ND		ug/m³	8.1	8.1	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
87-68-3 Hexachlorobutadiene ND ug/m³ 24 24 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 100-41-4 Ethyl Benzene 9.8 ug/m³ 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 141-78-6 Ethyl acetate ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 110-82-7 Cyclohexane 44 ug/m³ 7.8 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 110-82-7 Cyclohexane ND ug/m³ 10 10 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 116-59-2 cis-1,3-Dichloropropylene ND ug/m³ 9.0 9.0 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 174-87-3 Chloromethane ND ug/m³ 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 174-87-3 Chloroform 18 ug/m³ 11 11 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-00-3 Chloroethane ND ug/m³ 6.0 6.0 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-00-3 Carbon disulfide 7.0 ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Carbon disulfide 7.0 ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 Bromoform ND ug/m³ 8.8 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09-00 04/30/2013 21:32 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15-0 175-15		4-Methyl-2-pentanone	ND		ug/m³	9.2	9.2	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
100-41-4 Ethyl Benzene 9.8 ug/m³ 9.8 9.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 141-78-6 Ethyl acetate ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 110-82-7 Cyclohexane 44 ug/m³ 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 110-61-01-5 cis-1,3-Dichloropropylene ND ug/m³ 10 10 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 110-65-59-2 cis-1,2-Dichloroethylene ND ug/m³ 9.0 9.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 17-66-3 Chloromethane ND ug/m³ 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-66-3 Chloroform 18 ug/m³ 11 11 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Chloroethane ND ug/m³ 6.0 6.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon tetrachloride ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 15-60-3 Carbon disulfide 7.0 ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04		Isopropanol	79		ug/m³	5.6	5.6	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
141-78-6 Ethyl acetate ND ug/m³ 8.1 8.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10061-01-5 cis-1,3-Dichloropropylene ND ug/m³ 10 10 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10061-01-5 cis-1,2-Dichloropropylene ND ug/m³ 9.0 9.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10061-01-5		Hexachlorobutadiene	ND		ug/m³	24	24	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
110-82-7 Cyclohexane 44 ug/m³ 7.8 7.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 10061-01-5 cis-1,3-Dichloropropylene ND ug/m³ 10 10 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 11:56-59-2 cis-1,2-Dichloroethylene ND ug/m³ 9.0 9.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 1		Ethyl Benzene	9.8		ug/m³	9.8	9.8	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
10061-01-5 cis-1,3-Dichloropropylene ND ug/m³ 10 10 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 1:32 1:32 1:32 1:32 1:32 1:32 1		Ethyl acetate	ND		ug/m³	8.1	8.1	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 9.0 9.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 074-87-3 Chloromethane ND ug/m³ 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07-66-3 Chloroform 18 ug/m³ 11 11 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07-60-3 Chloroethane ND ug/m³ 6.0 6.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07-60-3 Carbon tetrachloride ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07-15-0 Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07-4-83-9 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07-5-25-2 Bromoform ND ug/m³ 23 23 22 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07-5-25-2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07-5-2		Cyclohexane	44		ug/m³	7.8	7.8	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
Chloromethane ND ug/m³ 4.7 4.7 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:66-3 Chloroform 18 ug/m³ 11 11 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:50-3 Chloroethane ND ug/m³ 6.0 6.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:50-3 Carbon tetrachloride ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:51-0 Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-2 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-2 Bromoform ND ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 07:52-52-52 DROMOMETRIAL ND ug/m³ 23 23 23 22.2 EPA Compendium	(cis-1,3-Dichloropropylene	ND		ug/m³	10	10	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
Chloroform 18 ug/m³ 11 11 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-00-3 Chloroethane ND ug/m³ 6.0 6.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-00-3 Carbon tetrachloride ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-15-0 Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 174-83-9 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-25-2 Bromoform ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-25-2 EPA Compendium TO-15 04/29/2013 09:00		cis-1,2-Dichloroethylene	ND		ug/m³	9.0	9.0	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
75-00-3 Chloroethane ND ug/m³ 6.0 6.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 05-23-5 Carbon tetrachloride ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 05-25-2 Bromoform ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 05-25-2 EPA Compendium TO-15 04/29/2013 09:00		Chloromethane	ND		ug/m³	4.7	4.7	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
Chroroeniane ND ug/m³ 7.1 7.1 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-15-0 Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 174-83-9 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-25-2 Bromoform ND ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-25-2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-25-2 Bromoform ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 175-25-2 EPA Compendium TO		Chloroform	18		ug/m³	11	11	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 PA-83-9 Bromoform ND Ug/m³ 23 23 23 23 23 23 23 23 23 23 23 23 23		Chloroethane	ND		ug/m³	6.0	6.0	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
75-15-0 Carbon disulfide 7.0 ug/m³ 7.0 7.0 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 074-83-9 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-2 Bromoform ND ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-2 DROMOMETER ND ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-2 DROMOMETER ND ug/m³ 23 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-25-2 DROMOMETER ND ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 075-25-25-2 DROMOMETER ND ug/m³ 23 23 23 23 23 23 23 23 23 23 23 23 23		Carbon tetrachloride	ND		ug/m³	7.1	7.1	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
74-83-9 Bromomethane ND ug/m³ 8.8 8.8 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 Bromoform ND ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32 75-25-2 DROMOMETHAN ND Ug/m³ 23 23 23 23 23 23 23 23 23 23 23 23 23		Carbon disulfide	7.0		ug/m³	7.0	7.0	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
75-25-2 Bromoform ND ug/m³ 23 23 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32			ND		ug/m³	8.8	8.8	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
20.000.			ND		ug/m³	23	23	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
75-27-4 Bromodichloromethane ND ug/m³ 14 14 22.2 EPA Compendium TO-15 04/29/2013 09:00 04/30/2013 21:32					ug/m³	14	14	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD

Client Sample ID: SV-3 York Sample ID: 13D0962-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 13D0962 11-28 31 Drive NY # 130030 Soil Vapor April 25, 2013 3:00 pm 04/26/2013

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:
----------------------	---------------

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-44-7	Benzyl chloride	ND		ug/m³	12	12	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
71-43-2	Benzene	ND		ug/m³	7.2	7.2	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
67-64-1	Acetone	82		ug/m³	5.4	5.4	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
591-78-6	2-Hexanone	ND		ug/m³	9.2	9.2	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
78-93-3	2-Butanone	ND		ug/m³	6.7	6.7	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
123-91-1	1,4-Dioxane	ND		ug/m³	8.1	8.1	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	14	14	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	14	14	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
106-99-0	1,3-Butadiene	ND		ug/m³	9.8	9.8	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	11	11	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	16	16	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
78-87-5	1,2-Dichloropropane	ND		ug/m³	10	10	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
107-06-2	1,2-Dichloroethane	ND		ug/m³	9.1	9.1	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	14	14	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
95-63-6	1,2,4-Trimethylbenzene	29		ug/m³	11	11	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	17	17	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
75-35-4	1,1-Dichloroethylene	ND		ug/m³	9.0	9.0	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
75-34-3	1,1-Dichloroethane	ND		ug/m³	9.1	9.1	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	13	13	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	12	12	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/m³	17	17	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	16	16	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	12	12	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
75-71-8	Dichlorodifluoromethane	ND		ug/m³	11	11	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
106-93-4	1,2-Dibromoethane	ND		ug/m³	17	17	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
124-48-1	Dibromochloromethane	ND		ug/m³	18	18	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
80-62-6	Methyl Methacrylate	ND		ug/m³	9.2	9.2	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
108-90-7	Chlorobenzene	ND		ug/m³	10	10	22.2	EPA Compendium TO-15	04/29/2013 09:00	04/30/2013 21:32	TD
	Surrogate Recoveries	Result		Acc	eptance R	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	105 %			70-130	-					

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

FAX (203) 35<u>7-0166</u>

Analytical Batch Summary

YORK Sample ID	Client Sample ID	Preparation Date
13D0962-01	SV-1	04/29/13
13D0962-02	SV-2	04/29/13
13D0962-03	SV-3	04/29/13

Analyte Result Limit Units Level Result %REC Limits Flag RPD Limit Flag			Reporting		Spike	Source*	•	%REC	•		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Notes and Definitions

QCAL This analyte is outside calibration QC limits due to the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.

ND Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

MDL METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the MDL, with values between the MDL and the RL being "J" flagged as estimated results.

 $\begin{array}{c} \cdot YORK\\ {}_{\text{ANALYTICAL}} \text{ LABORATORIES, ING.} \\ \text{120 Research Or. *Strayford, CT 06615} \end{array}$ (203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record - AIR

NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization to York to proceed with the analyses requested and your

York Project No. / 3 D 0 9 6 A

Page Lof J

			ature binds you to	ork's Std. Terms & Condition	York's Std. Terms & Conditions unless superseded by written contract.	n contract,			
	YOUR Information	Report To:		Invoice To!	YOUR Project ID		Turn-Around Time	Report Type/Deliverables	es
Com	Company: Hy one that Charle	Company:	Company	Company: S A-T 15-	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RUSH	RUSH - Same Day	Summary Report	
Addı	Address: 5 10 (P C/W NoC	Address: SHE	Address:		18.00.00	RUSH	RUSH - Next Day	CT RCP Package	
	5			M M. J. Chinas	Purchase Order No	1	RUSH - Two Day	NY ASP A Package	
Phot	Phone No. 71 \$ 4 56 0 X 9	Phone No.	Phone No.				RUSH - Three Day	NY ASP B/CLP Pkg	
Con	Contact Person Contact Person	Attention:	Attention:		ひてる	RUSH	RUSH - Four Day	Electronic Deliverables:	1
<u>Б</u>		E-Mail Address:	E-Mail Address:	ddress:	Samples from: CT NY	NJ Standar	Standard(5-7 Days)	BDD (Specify Type)	
	inc. Clearly and Legibly	I All Informations m	ist beaconipieter	TO15 Volatiles a	TO15 Volatiles and Other Gas Analyses	Detect	Detection Limits Required	Regulatory Comparison Excel	
多數	ninies will NOT heriogsett und and			EPA 10-15 List	EPA TO-14A List		Ē	Special Instructions	
j) -			ນ	NYSDEC VI list	Tentatively Identified Compounds		miwi LIV DECIMAN		
. \	TON TON		Air Matrix Codes	NYSDEC STARS List	Air VPH	(VI septimental	LC VI LIIIILD		
الم	Samples Collected/Authorized By (Signature)	- AI -	INDOOR Ambient Air	Project Specific List by TO-15)-15 Helium		NJDEP low level		
	7 (- 2)	AE-	Vapor Extraction Well/	NJDEP Target List	Methane	Routin	Routine Survey		
	· Name (printed)	AS-	Process Gas/Emuent SOIL Vapor/Sub-Slab	CTDEP RCP Target List	OTHER	Other	6.36/1/2		
	Sample Identification	Date Sampled	AIR Matrix	Canister Vacuum Before Sampling (in. Hg) A	Canister Vacuum Choose, Afer Sampling (in. Hg)	malyses Needed from the	Choose Analyses Meeded from the Menu Above and Enter Below	elow Sampling Media	
	20-1	4/25	50		47	FOR T	0		4
	51-75		, <u> </u>	31/1				6 Liter Summa canister 7	17
.	17.72	>	>	0 1	\alpha \alpha \cdot	<i>y</i>		6 Liter Summa canister 2/~	1
								6 Liter Summa canister	
	•							6 Liter Summa canister	
İ								Tedlar Bag	
								Tedlar Bag	
	•							6 Liter Summa canister Tediar Bag	_
								6 Liter Summa canister Tedlar Bag	
[-							6 Liter Summa canister Tedlar Bag	
Pa								6 Liter Summa canister Tedlar Bag	
ge 12	Somments	+ '		A0 10	18 (C) WI-9G-h	~3	1.R. D.	4-36-72 9154	
2 of '	S. S. S. S.		7-1	Samples Relinquished By	_	Samples	es Received By	te/Time	
12	#	1200 JX	-	Samples Refinatiished Rv	Rv Date/Time	A Sumo	Sample Received in 1 A B tw	4/26/13-1620	
]-	1			מפוויום ואפשיולתופורים			S Navaivau III LA L		

2015 Groundwater Lab Report

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 01/20/2015

Client Project ID: #140344 11-28 31 Drive, LIC NY

York Project (SDG) No.: 15A0377

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005

New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 52

Report Date: 01/20/2015

Client Project ID: #140344 11-28 31 Drive, LIC NY

York Project (SDG) No.: 15A0377

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on January 14, 2015 and listed below. The project was identified as your project: #140344 11-28 31 Drive, LIC NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
15A0377-01	MW-1	Water	01/13/2015	01/14/2015
15A0377-02	MW-2	Water	01/13/2015	01/14/2015
15A0377-03	MW-3	Water	01/13/2015	01/14/2015
15A0377-04	MW-4	Water	01/13/2015	01/14/2015
15A0377-05	MW-5	Water	01/13/2015	01/14/2015
15A0377-06	MW-6	Water	01/13/2015	01/14/2015
15A0377-07	MW-7	Water	01/13/2015	01/14/2015
15A0377-08	MW-8	Water	01/13/2015	01/14/2015
15A0377-09	Field Blank	Water	01/13/2015	01/14/2015
15A0377-10	Trip Blank	Water	01/13/2015	01/14/2015

General Notes for York Project (SDG) No.: 15A0377

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Belf

Date: 01/20/2015

Benjamin Gulizia Laboratory Director

Client Sample ID: MW-1 15A0377-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sam	ple	Pre	pared	by	Method:	EPA	5030B

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
95-63-6	1,2,4-Trimethylbenzene	0.21	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS

Client Sample ID: MW-1 15A0377-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List - Low Level

	Iganics, 6200 List - Low Level										
CAS No	ed by Method: EPA 5030B Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	0.28	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
108-88-3	Toluene	0.28	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/17/2015 08:21	01/17/2015 14:59	SS

Client Sample ID: MW-1 15A0377-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Surrogate Recoveries	Result		Acce	ptance Range						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	112 %			69-130						
460-00-4	Surrogate: p-Bromofluorobenzene	103 %			79-122						
2037-26-5	Surrogate: Toluene-d8	99.1 %			81-117						

Sample Information

Client Sample ID: MW-2 York Sample ID: 15A0377-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS

Client Sample ID: MW-2 York Sample ID: 15A0377-02

York Project (SDG) No. Client Project ID Collection Date/Time Matrix Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

<u> Log-in Notes:</u>	<u> </u>	Samı	ole l	<u>Not</u>	tes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
67-66-3	Chloroform	0.35	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Client Sample ID: MW-2 York Sample ID: 15A0377-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample
---------------	--------

Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
127-18-4	Tetrachloroethylene	3.2		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/17/2015 08:21	01/17/2015 15:32	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			69-130						
460-00-4	Surrogate: p-Bromofluorobenzene	103 %			79-122						
2037-26-5	Surrogate: Toluene-d8	97.1 %			81-117						

Sample Information

Client Sample ID: MW-3 York Sample ID: 15A0377-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 15A0377
 #140344 11-28 31 Drive, LIC NY
 Water
 January 13, 2015 3:00 pm
 01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS

Client Sample ID: MW-3 York Sample ID: 15A0377-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Volatile Organics, 8260 List - Low Level

	rganics, 8260 List - Low Level										
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
67-66-3	Chloroform	0.54		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
156-59-2	cis-1,2-Dichloroethylene	1.1	CCV-E	E ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS

STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE (203) 325-1371

Client Sample ID: MW-3 York Sample ID: 15A0377-03

York Project (SDG) No. Client Project ID Collection Date/Time Matrix Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B								Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
127-18-4	Tetrachloroethylene	21		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
79-01-6	Trichloroethylene	0.52		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:04	SS
	Surrogate Recoveries	Result		Acce	eptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	123 %			69-130						
460-00-4	Surrogate: p-Bromofluorobenzene	103 %			79-122						
2037-26-5	Surrogate: Toluene-d8	98.0 %			81-117						

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Client Sample ID: MW-4 York Sample ID: 15A0377-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	. <u>s</u>	Sample I	Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	1.4		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
79-00-5	1,1,2-Trichloroethane	0.76		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-35-4	1,1-Dichloroethylene	0.46	ССV-Е, J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
67-64-1	Acetone	1.4	CCV-E, J	ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
		ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS

MW-4 **Client Sample ID:** York Sample ID: 15A0377-04

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List - Low Level

1330-20-7

* Xylenes, Total

Sample Prepare	ed by Method: EPA 5030B										
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
67-66-3	Chloroform	0.37	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
156-59-2	cis-1,2-Dichloroethylene	20	CCV-E	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	3.1		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
127-18-4	Tetrachloroethylene	3800		ug/L	50	120	250	EPA 8260C	01/17/2015 08:21	01/20/2015 14:05	SS
108-88-3	Toluene	0.34	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
79-01-6	Trichloroethylene	17		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS
75-01-4	Vinyl Chloride	0.81		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 16:36	SS

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

ug/L

ND

0.60

1.5

EPA 8260C

Client Sample ID: MW-4 York Sample ID: 15A0377-04

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received

#140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015 15A0377

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Surrogate Recoveries	Result		Acce	ptance Range						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	116 %			69-130						
460-00-4	Surrogate: p-Bromofluorobenzene	104 %			79-122						
2037-26-5	Surrogate: Toluene-d8	97.8 %			81-117						

Sample Information

York Sample ID: **Client Sample ID:** MW-5 15A0377-05

Collection Date/Time York Project (SDG) No. Client Project ID Matrix Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 13 of 52

Client Sample ID: MW-5 York Sample ID: 15A0377-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Volatile Organics, 8260 List - Low Level

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	0.39	J	ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS

Client Sample ID: **MW-5** York Sample ID: 15A0377-05

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #140344 11-28 31 Drive, LIC NY January 13, 2015 3:00 pm 01/14/2015 15A0377 Water

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B										
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
127-18-4	Tetrachloroethylene	5.6		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
79-01-6	Trichloroethylene	0.81		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/19/2015 12:54	01/19/2015 19:02	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %			69-130						
460-00-4	Surrogate: p-Bromofluorobenzene	107 %			79-122						
2037-26-5	Surrogate: Toluene-d8	99.3 %			81-117						

Sample Information

Client Sample ID: MW-6 York Sample ID: 15A0377-06

Client Project ID Date Received York Project (SDG) No. Matrix Collection Date/Time 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
563-58-6	1.1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 15 of 52

Client Sample ID: **MW-6** York Sample ID: 15A0377-06

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Volatile Organics, 8260 <u>List - Low Level</u>

Log-in Notes:

Sample Notes:

voiatile	Orga	mics,	0200	List -	LUW	Leve

Sample Prepare	ed by Method: EPA 5030B										
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
156-59-2	cis-1,2-Dichloroethylene	40		ug/L	2.0	5.0	10	EPA 8260C	01/17/2015 08:21	01/19/2015 19:31	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 16 of 52

Client Sample ID: MW-6 York Sample ID: 15A0377-06

York Project (SDG) No. Client Project ID Collection Date/Time Matrix Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List - Low Level

2037-26-5

Surrogate: Toluene-d8

	organics, 8200 List - Low Level				Eug III			Sumple 1 total	7.50		
	ed by Method: EPA 5030B				Reported to				Date/Time	Date/Time	
CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
127-18-4	Tetrachloroethylene	86		ug/L	2.0	5.0	10	EPA 8260C	01/17/2015 08:21	01/19/2015 19:31	SS
108-88-3	Toluene	0.28	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
156-60-5	trans-1,2-Dichloroethylene	0.28	CCV-E, J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
79-01-6	Trichloroethylene	8.9		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
75-01-4	Vinyl Chloride	0.42	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/17/2015 08:21	01/17/2015 17:40	SS
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	116 %			69-130						
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			79-122						

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

81-117

99.8 %

Page 17 of 52

Client Sample ID: MW-7 York Sample ID: 15A0377-07

Client Project ID Collection Date/Time York Project (SDG) No. Matrix Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List - Low Level

ND

ND

1.3

ND

ND

ND

ND

ND

ND

Sample Prepared by Method: EPA 5030B

591 106-43-4

108-10-1

67-64-1

71-43-2

108-86-1

74-97-5

75-27-4

75-25-2

74-83-9

4-Chlorotoluene

Acetone

Benzene

Bromobenzene

Bromoform

Bromomethane

Bromochloromethane

Bromodichloromethane

4-Methyl-2-pentanone

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

0.20

0.20

1.0

0.20

0.20

0.20

0.20

0.20

0.20

0.50

0.50

2.0

0.50

0.50

0.50

0.50

0.50

0.50

EPA 8260C

Page 18 of 52

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 20:00

01/19/2015 20:00

01/19/2015 20:00

01/19/2015 20:00

01/19/2015 20:00

01/19/2015 20:00

01/19/2015 20:00

01/19/2015 20:00

01/19/2015 20:00

SS

SS

SS

SS

SS

SS

SS

SS

Client Sample ID: MW-7 York Sample ID: 15A0377-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes	Log-in Notes:	Sample Notes:
----------------------------	---------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
67-66-3	Chloroform	1.0		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
127-18-4	Tetrachloroethylene	3.7		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:00	SS
	Surrogate Recoveries	Result		Acce	eptance Rang	e					

MW-7 Client Sample ID: York Sample ID: 15A0377-07

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015 15A0377

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Notes:

EPA 8260C

Date/Time

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

01/19/2015 12:54

Date/Time

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

01/19/2015 20:30

SS

Sample Prepared by Method: EPA 5030B	
	Reported to

ND

ug/L

CAS No	o. Parameter	Result	Flag	Units	LOD/MDL LO	Q Dilutio	n Reference Method	Prepared	Analyzed	Analyst
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %			69-130					_
460-00-4	Surrogate: p-Bromofluorobenzene	106 %			79-122					
2037-26-5	Surrogate: Toluene-d8	98.3 %			81-117					

Sample Information

MW-8 Client Sample ID: York Sample ID: 15A0377-08

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Log-in Notes:

Volatile Organics, 8260 List - Low Level

1,2,4,5-Tetramethylbenzene

1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1,2-Dibromoethane

1,2-Dichlorobenzene

1,2-Dichloroethane

1,2-Dichloropropane

1,3-Dichlorobenzene

1,3-Dichloropropane

1,4-Dichlorobenzene

1,3,5-Trimethylbenzene

Sample Prepared by Method: EPA 5030B

527-53-7

120-82-1

95-63-6

96-12-8

106-93-4

95-50-1

107-06-2

78-87-5

108-67-8

541-73-1

142-28-9

106-46-7

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 20 of 52

Client Sample ID: MW-8 York Sample ID: 15A0377-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
156-59-2	cis-1,2-Dichloroethylene	1.1		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS

Client Sample ID: MW-8 York Sample ID: 15A0377-08

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #140344 11-28 31 Drive, LIC NY January 13, 2015 3:00 pm 15A0377 Water 01/14/2015

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No). Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
127-18-4	Tetrachloroethylene	2.0		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
79-01-6	Trichloroethylene	1.2		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/19/2015 12:54	01/19/2015 20:30	SS
	Surrogate Recoveries	Result		Acce	eptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %			69-130						
460-00-4	Surrogate: p-Bromofluorobenzene	109 %			79-122						
2037-26-5	Surrogate: Toluene-d8	99.0 %			81-117						

Sample Information

Client Sample ID: Field Blank **York Sample ID:** 15A0377-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #140344 11-28 31 Drive, LIC NY 01/14/2015 15A0377 Water January 13, 2015 3:00 pm

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 5030B										
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 22 of 52

Client Sample ID: Field Blank York Sample ID: 15A0377-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received15A0377#140344 11-28 31 Drive, LIC NYWaterJanuary 13, 2015 3:00 pm01/14/2015

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS

Client Sample ID: Field Blank York Sample ID: 15A0377-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received #140344 11-28 31 Drive, LIC NY January 13, 2015 3:00 pm 01/14/2015 15A0377 Water

Volatile Organics, 8260 List - Low Level

Client Sample ID:

Trip Blank

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flog	Unita	Reported to		D1 4	Reference Method	Date/Time	Date/Time Analyzed	Analyst
			Flag	Units	LOD/MDL	LOQ 0.50	Dilution		Prepared		Analyst
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20		1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
95-47-6	o-Xylene	0.28	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
127-18-4	Tetrachloroethylene	0.53		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:16	SS
	Surrogate Recoveries	Result		Acce	eptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	119 %			69-130						
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			79-122						
2037-26-5	Surrogate: Toluene-d8	98.5 %			81-117						

Collection Date/Time York Project (SDG) No. Client Project ID Matrix Date Received 01/14/2015 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm

Sample Information

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 24 of 52

15A0377-10

York Sample ID:

Client Sample ID: Trip Blank

York Sample ID:

15A0377-10

York Project (SDG) No. 15A0377

Client Project ID #140344 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u>
January 13, 2015 3:00 pm

<u>Date Received</u> 01/14/2015

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Frepare	ed by Method: EPA 5030B				Reported to				Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
527-53-7	1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 25 of 52

Client Sample ID: Trip Blank York Sample ID:

15A0377-10

York Project (SDG) No. 15A0377

Client Project ID #140344 11-28 31 Drive, LIC NY Matrix Water

Collection Date/Time January 13, 2015 3:00 pm Date Received 01/14/2015

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
95-47-6	o-Xylene	0.29	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
105-05-5	p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
622-96-8	p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
127-18-4	Tetrachloroethylene	0.36	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
108-88-3	Toluene	0.22	J	ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
1330-20-7	* Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	01/17/2015 08:21	01/17/2015 19:48	SS
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	112 %			69-130						

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Client Sample ID: Trip Blank York Sample ID: 15A0377-10

York Project (SDG) No. Client Project ID Collection Date/Time Matrix Date Received 15A0377 #140344 11-28 31 Drive, LIC NY Water January 13, 2015 3:00 pm 01/14/2015

Sample Notes:

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
460-00-4	Surrogate: p-Bromofluorobenzene	105 %			79-122					
2037-26-5	Surrogate: Toluene-d8	98.5 %			81-117					

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 27 of 52

Analytical Batch Summary

Batch ID: BA50737	Preparation Method:	EPA 5030B	Prepared By:	OW
YORK Sample ID	Client Sample ID	Preparation Date		
15A0377-01	MW-1	01/17/15		
15A0377-02	MW-2	01/17/15		
15A0377-03	MW-3	01/17/15		
15A0377-04	MW-4	01/17/15		
15A0377-06	MW-6	01/17/15		
15A0377-09	Field Blank	01/17/15		
15A0377-10	Trip Blank	01/17/15		
BA50737-BLK1	Blank	01/17/15		
BA50737-BS1	LCS	01/17/15		
BA50737-BSD1	LCS Dup	01/17/15		
BA50737-MS1	Matrix Spike	01/17/15		
BA50737-MSD1	Matrix Spike Dup	01/17/15		
Batch ID: BA50787	Preparation Method:	EPA 5030B	Prepared By:	OW
YORK Sample ID	Client Sample ID	Preparation Date		
15A0377-04RE1	MW-4	01/19/15		
15A0377-05	MW-5	01/19/15		
15A0377-06RE1	MW-6	01/19/15		
15A0377-07	MW-7	01/19/15		
15A0377-08	MW-8	01/19/15		
BA50787-BLK1	Blank	01/19/15		
BA50787-BS1	LCS	01/19/15		
BA50787-BSD1	LCS Dup	01/19/15		
BA50787-MS1	Matrix Spike	01/19/15		
BA50787-MSD1	Matrix Spike Dup	01/19/15		
Batch ID: BA50837	Preparation Method:	EPA 5030B	Prepared By:	OW
YORK Sample ID	Client Sample ID	Preparation Date		
15A0377-04RE2	MW-4	01/20/15		
BA50837-BLK1	Blank	01/20/15		
BA50837-BS1	LCS	01/20/15		
BA50837-BSD1	LCS Dup	01/20/15		

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

lank (BA50737-BLK1)				Prepared & Analyzed: 01/17/2015
1,1,2-Tetrachloroethane	ND	0.50	ug/L	
1,1-Trichloroethane	ND	0.50	"	
1,2,2-Tetrachloroethane	ND	0.50	"	
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.50	"	
1,2-Trichloroethane	ND	0.50	"	
1-Dichloroethane	ND	0.50	"	
1-Dichloroethylene	ND	0.50	"	
1-Dichloropropylene	ND	0.50	"	
2,3-Trichlorobenzene	0.68	0.50	"	
2,3-Trichloropropane	ND	0.50	"	
2,4,5-Tetramethylbenzene	0.37	0.50	"	
2,4-Trichlorobenzene	0.53	0.50	"	
2,4-Trimethylbenzene	ND	0.50	"	
2-Dibromo-3-chloropropane	ND	0.50	"	
2-Dibromoethane	ND	0.50	"	
2-Dichlorobenzene	ND	0.50	"	
2-Dichloroethane	ND	0.50	II .	
2-Dichloropropane	ND	0.50	II .	
3,5-Trimethylbenzene	ND	0.50	II .	
3-Dichlorobenzene	ND	0.50	II .	
3-Dichloropropane	ND	0.50	"	
4-Dichlorobenzene	ND	0.50	II .	
2-Dichloropropane	ND	0.50	"	
Butanone	ND	0.50	II .	
Chlorotoluene	ND	0.50	"	
Hexanone	ND	0.50	"	
Chlorotoluene	ND	0.50	"	
Methyl-2-pentanone	ND	0.50	"	
etone	ND	2.0	"	
enzene	ND	0.50	"	
omobenzene	ND	0.50	"	
romochloromethane	ND	0.50	"	
romodichloromethane	ND	0.50	"	
romoform	ND	0.50	"	
romomethane	ND	0.50	m .	
arbon disulfide	ND	0.50	"	
arbon tetrachloride	ND	0.50	"	
llorobenzene	ND	0.50	"	
nloroethane	ND	0.50	"	
nloroform	ND	0.50	"	
hloromethane	ND	0.50	"	
-1,2-Dichloroethylene	ND	0.50	"	
-1,3-Dichloropropylene	ND	0.50	"	
bromochloromethane	ND	0.50	"	
bromomethane	ND	0.50	"	
ichlorodifluoromethane	ND	0.50	"	
hyl Benzene	ND	0.50	"	
exachlorobutadiene	0.60	0.50	"	
opropylbenzene	ND	0.50	"	
ethyl tert-butyl ether (MTBE)	ND	0.50	"	
ethylene chloride	ND	2.0	"	

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BA50737-BLK1)						Prepared & Analyzed: 01/17/2015
Naphthalene	ND	2.0	ug/L			
-Butylbenzene	0.36	0.50	"			
-Propylbenzene	ND	0.50	"			
Xylene	ND	0.50	"			
& m- Xylenes	ND	1.0	"			
Diethylbenzene	ND	0.50	"			
Ethyltoluene	ND	0.50	"			
Isopropyltoluene	0.23	0.50	"			
ec-Butylbenzene	0.21	0.50	"			
yrene	ND	0.50	"			
rt-Butylbenzene	ND	0.50	"			
etrachloroethylene	ND	0.50	"			
bluene	ND	0.50	"			
ans-1,2-Dichloroethylene	ND	0.50	"			
nns-1,3-Dichloropropylene	ND	0.50	"			
richloroethylene	ND	0.50	"			
richlorofluoromethane	ND	0.50	"			
inyl Chloride	ND	0.50	"			
ylenes, Total	ND	1.5	"			
urrogate: 1,2-Dichloroethane-d4	12.9		"	10.0	129	69-130
urrogate: p-Bromofluorobenzene	10.2		"	10.0	102	79-122
rrogate: Toluene-d8	9.78		"	10.0	97.8	81-117
arrogute. Totalene-uo	2.70			10.0	27.0	
CS (BA50737-BS1)						Prepared & Analyzed: 01/17/2015
1,1,2-Tetrachloroethane	10.4		ug/L	10.0	104	82-126
1,1-Trichloroethane	10.9		"	10.0	109	78-136
1,2,2-Tetrachloroethane	9.81		"	10.0	98.1	76-129
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.86		"	10.0	98.6	54-165
1,2-Trichloroethane	9.36		"	10.0	93.6	82-123
1-Dichloroethane	11.7		"	10.0	117	82-129
1-Dichloroethylene	12.3		"	10.0	123	68-138
1-Dichloropropylene	11.6		"	10.0	116	83-133
2,3-Trichlorobenzene	11.2		"	10.0	112	76-136
2,3-Trichloropropane	10.4		"	10.0	104	77-128
2,4,5-Tetramethylbenzene	10.8		"	10.0	108	85-140
2,4-Trichlorobenzene	11.0		"	10.0	110	76-137
2,4-Trimethylbenzene	10.7		"	10.0	107	82-132
2-Dibromo-3-chloropropane	10.8		"	10.0	108	45-147
2-Dibromoethane	10.3		"	10.0	103	83-124
2-Dichlorobenzene	10.8		"	10.0	108	79-123
2-Dichloroethane	11.2		"	10.0	112	73-132
2-Dichloropropane	10.6		"	10.0	106	78-126
3,5-Trimethylbenzene	10.5		"	10.0	105	80-131
3-Dichlorobenzene	10.6		"	10.0	106	86-122
3-Dichloropropane	10.6		"	10.0	106	81-125
4-Dichlorobenzene	10.5		"	10.0	105	85-124
2-Dichloropropane	15.0		,,	10.0	150	56-150
Butanone	11.2		,,	10.0	112	49-152
Chlorotoluene	10.9		,,	10.0	109	79-130
Hexanone	7.74		,,	10.0		51-146
Chlorotoluene			,,		77.4	
Methyl-2-pentanone	10.7 9.78		"	10.0 10.0	107 97.8	79-128 57-145

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	l

Ra	tch	RAA	5073	7 _ 1	FDA	5030R

LCS (BA50737-BS1)					Prepared & Analyzed: 01/17/2015
Acetone	9.58	ug/L	10.0	95.8	14-150
Benzene	11.1	"	10.0	111	85-126
Bromobenzene	10.9	"	10.0	109	78-129
Bromochloromethane	11.9	"	10.0	119	77-128
Bromodichloromethane	10.0	"	10.0	100	79-128
Bromoform	9.65	"	10.0	96.5	78-133
Bromomethane	9.78	"	10.0	97.8	43-168
Carbon disulfide	12.2	"	10.0	122	68-146
Carbon tetrachloride	11.0	"	10.0	110	77-141
Chlorobenzene	10.5	"	10.0	105	88-120
Chloroethane	9.53	"	10.0	95.3	65-136
Chloroform	11.0	"	10.0	110	82-128
Chloromethane	9.50	"	10.0	95.0	43-155
ris-1,2-Dichloroethylene	12.1	"	10.0	121	83-129
cis-1,3-Dichloropropylene	11.5	"	10.0	115	80-131
Dibromochloromethane	10.1	"	10.0	101	80-130
Dibromomethane	10.1	"	10.0	101	72-134
Dichlorodifluoromethane	8.56	"	10.0	85.6	44-144
thyl Benzene	10.7	"	10.0	107	80-131
Iexachlorobutadiene	11.3	"	10.0	113	67-146
sopropylbenzene	10.7	"	10.0	107	76-140
Methyl tert-butyl ether (MTBE)	10.3	"	10.0	103	76-135
fethylene chloride	12.1	"	10.0	121	55-137
Japhthalene	10.3	"	10.0	103	70-147
-Butylbenzene	11.3	"	10.0	113	79-132
-Propylbenzene	11.0	"	10.0	110	78-133
-Xylene	10.8	"	10.0	108	78-130
- & m- Xylenes	21.6	"	20.0	108	77-133
-Diethylbenzene	10.6	"	10.0	106	84-134
-Ethyltoluene	10.4	"	10.0	104	88-129
-Isopropyltoluene	10.9	"	10.0	109	81-136
ec-Butylbenzene	10.9	"	10.0	109	79-137
tyrene	11.1	"	10.0	111	67-132
ert-Butylbenzene	10.8	"	10.0	108	77-138
etrachloroethylene	10.6	"	10.0	106	82-131
oluene	10.4	"	10.0	104	80-127
rans-1,2-Dichloroethylene	11.8	"	10.0	118	80-132
ans-1,3-Dichloropropylene	10.8	"	10.0	108	78-131
richloroethylene	10.6	"	10.0	106	82-128
Crichlorofluoromethane	10.2	"	10.0	102	67-139
Vinyl Chloride	10.2	"	10.0	102	58-145
Surrogate: 1,2-Dichloroethane-d4	10.7	"	10.0	107	69-130
Gurrogate: p-Bromofluorobenzene	9.95	"	10.0	99.5	79-122
Surrogate: Toluene-d8	9.95	"	10.0	99.5	81-117

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BA50737 - EPA 5030B											
LCS Dup (BA50737-BSD1)							Pre	pared & Analy	zed: 01/17/	2015	
1,1,1,2-Tetrachloroethane	10.5		ug/L	10.0		105	82-126		1.34	30	
1,1,1-Trichloroethane	12.3		"	10.0		123	78-136		12.1	30	
1,1,2,2-Tetrachloroethane	10.0		"	10.0		100	76-129		2.22	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.3		"	10.0		103	54-165		4.66	30	
1,1,2-Trichloroethane	9.75		"	10.0		97.5	82-123		4.08	30	
1,1-Dichloroethane	12.5		"	10.0		125	82-129		5.95	30	
1,1-Dichloroethylene	12.6		"	10.0		126	68-138		2.25	30	
1,1-Dichloropropylene	13.2		"	10.0		132	83-133		13.1	30	
1,2,3-Trichlorobenzene	12.1		"	10.0		121	76-136		7.73	30	
1,2,3-Trichloropropane	10.8		"	10.0		108	77-128		3.57	30	
1,2,4,5-Tetramethylbenzene	10.9		"	10.0		109	85-140		1.57	30	
1,2,4-Trichlorobenzene	11.6		"	10.0		116	76-137		4.61	30	
1,2,4-Trimethylbenzene	10.6		"	10.0		106	82-132		0.848	30	
1,2-Dibromo-3-chloropropane	12.2		"	10.0		122	45-147		11.8	30	
1,2-Dibromoethane	9.97		"	10.0		99.7	83-124		3.26	30	
1,2-Dichlorobenzene	10.8		"	10.0		108	79-123		0.555	30	
1,2-Dichloroethane	12.8		"	10.0		128	73-132		13.7	30	
1,2-Dichloropropane	10.9		"	10.0		109	78-126		2.69	30	
1,3,5-Trimethylbenzene	10.6		"	10.0		106	80-131		0.190	30	
1,3-Dichlorobenzene	10.7		"	10.0		107	86-122		0.470	30	
1,3-Dichloropropane	10.7		"	10.0		107	81-125		0.936	30	
1,4-Dichlorobenzene	10.7		"	10.0		107	85-124		1.80	30	
2,2-Dichloropropane	16.5		"	10.0		165	56-150	High Bias	9.28	30	
2-Butanone	11.8		"	10.0		118	49-152		5.82	30	
2-Chlorotoluene	11.3		"	10.0		113	79-130		3.15	30	
2-Hexanone	10.3		"	10.0		103	51-146		28.8	30	
4-Chlorotoluene	11.0		"	10.0		110	79-128		2.68	30	
4-Methyl-2-pentanone	10.9		"	10.0		109	57-145		10.7	30	
Acetone	9.27		"	10.0		92.7	14-150		3.29	30	
Benzene	12.0		"	10.0		120	85-126		8.48	30	
Bromobenzene	10.2		"	10.0		102	78-129		6.55	30	
Bromochloromethane	13.9		"	10.0		139	77-128	High Bias	14.9	30	
Bromodichloromethane	10.7		"	10.0		107	79-128		7.04	30	
Bromoform	10.1		"	10.0		101	78-133		4.46	30	
Bromomethane	9.83		"	10.0		98.3	43-168		0.510	30	
Carbon disulfide	12.8		"	10.0		128	68-146		4.40	30	
Carbon tetrachloride	12.3		"	10.0		123	77-141		11.1	30	
Chlorobenzene	10.7		"	10.0		107	88-120		1.13	30	
Chloroethane	9.98		"	10.0		99.8	65-136		4.61	30	
Chloroform	12.3		"	10.0		123	82-128		11.3	30	
Chloromethane	9.57		"	10.0		95.7	43-155		0.734	30	
cis-1,2-Dichloroethylene	13.7		"	10.0		137	83-129	High Bias	12.2	30	
cis-1,3-Dichloropropylene	12.0		"	10.0		120	80-131	Ü	3.66	30	
Dibromochloromethane	10.3		"	10.0		103	80-130		1.37	30	
Dibromomethane	10.5		"	10.0		105	72-134		3.59	30	
Dichlorodifluoromethane	8.99		"	10.0		89.9	44-144		4.90	30	
Ethyl Benzene	10.8		"	10.0		108	80-131		1.21	30	
Hexachlorobutadiene	12.3		"	10.0		123	67-146		8.58	30	
Isopropylbenzene	10.9		"	10.0		109	76-140		1.76	30	
Methyl tert-butyl ether (MTBE)	10.9		,,	10.0		109	76-135		5.38	30	
Methylene chloride	12.8		"	10.0		128	55-137		5.88	30	
	12.0			10.0		120	33-137		2.00	50	

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

- mary to	resur	Ziiiii Ciiiio	Ec. c.	resure	7 UTLE C	Limito		
Batch BA50737 - EPA 5030B			_					
LCS Dup (BA50737-BSD1)						Prep	pared & Analyzed: 01/17/201:	5
Naphthalene	11.3	ug/L	10.0		113	70-147	8.80	30
n-Butylbenzene	11.4	"	10.0		114	79-132	1.59	30
n-Propylbenzene	11.0	"	10.0		110	78-133	0.0906	30
o-Xylene	10.8	"	10.0		108	78-130	0.0929	30
p- & m- Xylenes	21.8	n .	20.0		109	77-133	0.737	30
p-Diethylbenzene	11.1	"	10.0		111	84-134	4.90	30
p-Ethyltoluene	10.2	n .	10.0		102	88-129	1.26	30
p-Isopropyltoluene	10.9	n .	10.0		109	81-136	0.367	30
sec-Butylbenzene	11.2	"	10.0		112	79-137	2.63	30
Styrene	11.2	"	10.0		112	67-132	1.16	30
tert-Butylbenzene	10.9	"	10.0		109	77-138	0.645	30
Tetrachloroethylene	10.6	"	10.0		106	82-131	0.943	30
Toluene	10.7	"	10.0		107	80-127	2.64	30
trans-1,2-Dichloroethylene	12.6	"	10.0		126	80-132	6.73	30
trans-1,3-Dichloropropylene	11.4	"	10.0		114	78-131	5.12	30
Trichloroethylene	11.0	"	10.0		110	82-128	3.15	30
Trichlorofluoromethane	10.8	"	10.0		108	67-139	6.02	30
Vinyl Chloride	10.8	"	10.0		108	58-145	4.76	30
		"						
Surrogate: 1,2-Dichloroethane-d4	11.6	,,	10.0		116	69-130		
Surrogate: p-Bromofluorobenzene	9.91	"	10.0		99.1	79-122		
Surrogate: Toluene-d8	9.82	"	10.0		98.2	81-117		
Matrix Spike (BA50737-MS1)	*Source sample: 15A	.0377-05 (MW-5)				Prep	pared & Analyzed: 01/17/201:	5
1,1,1,2-Tetrachloroethane	10.9	ug/L	10.0	ND	109	45-161		
1,1,1-Trichloroethane	12.9	"	10.0	ND	129	70-146		
1,1,2,2-Tetrachloroethane	9.93	"	10.0	ND	99.3	74-121		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.0	"	10.0	ND	110	21-217		
1,1,2-Trichloroethane	10.0	"	10.0	ND	100	59-146		
1,1-Dichloroethane	13.4	"	10.0	ND	134	54-146		
1,1-Dichloroethylene	13.3	"	10.0	ND	133	44-165		
1,1-Dichloropropylene	13.7	"	10.0	ND	137	82-134	High Bias	
1,2,3-Trichlorobenzene	10.9	"	10.0	ND	109	40-161		
1,2,3-Trichloropropane	10.9	"	10.0	ND	109	74-127		
1,2,4,5-Tetramethylbenzene	10.8	"	10.0	ND	108	27-190		
1,2,4-Trichlorobenzene	10.8	"	10.0	ND	108	41-161		
1,2,4-Trimethylbenzene	10.4	"	10.0	ND	104	72-129		
1,2-Dibromo-3-chloropropane	9.46	"	10.0	ND	94.6	31-151		
1,2-Dibromoethane	10.8	"	10.0	ND	108	75-125		
1,2-Dichlorobenzene	10.5	"	10.0	ND	105	63-122		
1,2-Dichloroethane	13.4	"	10.0	ND	134	68-131	High Bias	
1,2-Dichloropropane	11.7	"	10.0	ND	117	77-121		
1,3,5-Trimethylbenzene	10.4	"	10.0	ND	104	69-126		
1,3-Dichlorobenzene	10.6	"	10.0	ND	106	74-119		
1,3-Dichloropropane	11.6	"	10.0	ND	116	77-119		
1,4-Dichlorobenzene	10.4	"	10.0	ND	104	70-124		
2,2-Dichloropropane	14.4	"	10.0	ND	144	10-160		
2-Butanone	13.4	"	10.0	ND	134	10-193		
2-Chlorotoluene	11.0	"	10.0	ND	110	70-126		
2-Hexanone	9.87	"	10.0	ND	98.7	53-133		
4-Chlorotoluene	10.6		10.0		106	69-124		
4-Ciliorototuciic	10.6	"	10.0	ND	106	09-124		
4-Methyl-2-pentanone	10.6	"	10.0	ND ND	113	38-150		

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RA50737	_ FDA	5030R

Matrix Spike (BA50737-MS1)	*Source sample: 15A037	7-05 (MW-5)				Pre	pared & Analyzed: 01/17/2015
Benzene	12.6	ug/L	10.0	ND	126	38-155	
Bromobenzene	10.9	"	10.0	ND	109	72-122	
Bromochloromethane	14.4	"	10.0	ND	144	75-121	High Bias
Bromodichloromethane	11.2	"	10.0	ND	112	70-129	
Bromoform	10.9	"	10.0	ND	109	66-136	
Bromomethane	10.1	"	10.0	ND	101	30-158	
Carbon disulfide	13.3	"	10.0	ND	133	10-138	
Carbon tetrachloride	12.9	"	10.0	ND	129	71-146	
Chlorobenzene	11.2	"	10.0	ND	112	81-117	
Chloroethane	10.7	"	10.0	ND	107	51-145	
Chloroform	12.7	"	10.0	ND	127	80-124	High Bias
Chloromethane	10.7	"	10.0	ND	107	16-163	
cis-1,2-Dichloroethylene	14.4	"	10.0	ND	144	76-125	High Bias
cis-1,3-Dichloropropylene	12.2	"	10.0	ND	122	58-131	
Dibromochloromethane	10.9	"	10.0	ND	109	71-129	
Dibromomethane	11.4	"	10.0	ND	114	76-120	
Dichlorodifluoromethane	9.07	"	10.0	ND	90.7	30-147	
Ethyl Benzene	11.4	"	10.0	ND	114	72-128	
Iexachlorobutadiene	10.9	"	10.0	ND	109	34-166	
sopropylbenzene	10.6	"	10.0	ND	106	66-139	
Methyl tert-butyl ether (MTBE)	11.6	"	10.0	0.390	112	75-128	
Methylene chloride	13.8	"	10.0	ND	138	57-128	High Bias
Naphthalene	10.4	"	10.0	ND	104	39-158	
-Butylbenzene	11.1	"	10.0	ND	111	61-138	
-Propylbenzene	11.0	"	10.0	ND	110	66-134	
-Xylene	11.4	"	10.0	ND	114	69-126	
- & m- Xylenes	23.0	"	20.0	ND	115	67-130	
-Diethylbenzene	10.5	"	10.0	ND	105	52-150	
p-Ethyltoluene	10.4	"	10.0	ND	104	76-127	
o-Isopropyltoluene	10.6	"	10.0	ND	106	64-137	
ec-Butylbenzene	10.8	"	10.0	ND	108	53-155	
Styrene	11.4	"	10.0	ND	114	69-125	
ert-Butylbenzene	10.7	"	10.0	ND	107	65-139	
Tetrachloroethylene	16.0	"	10.0	5.63	104	64-139	
Toluene	11.2	"	10.0	ND	112	76-123	
rans-1,2-Dichloroethylene	13.3	"	10.0	ND	133	79-131	High Bias
rans-1,3-Dichloropropylene	11.5	"	10.0	ND	115	55-130	
richloroethylene	12.1	"	10.0	0.810	113	53-145	
Prichlorofluoromethane	11.6	"	10.0	ND	116	61-142	
/inyl Chloride	11.4	"	10.0	ND	114	31-165	
Surrogate: 1,2-Dichloroethane-d4	12.1	"	10.0		121	69-130	
Surrogate: p-Bromofluorobenzene	9.60	"	10.0		96.0	79-122	
Surrogate: Toluene-d8	10.0	"	10.0		100	81-117	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 Page 34 of 52

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Batch BA50737 - EPA 5030B

2-Chlorotoluene

4-Chlorotoluene

Bromobenzene

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropylene

Dibromochloromethane

Dichlorodifluoromethane

Methyl tert-butyl ether (MTBE)

Hexachlorobutadiene

Isopropylbenzene

Methylene chloride

Dibromomethane

Ethyl Benzene

Chloroethane

Chloroform

Carbon tetrachloride

4-Methyl-2-pentanone

Bromochloromethane

Bromodichloromethane

2-Hexanone

Acetone

Benzene

Matrix Spike Dup (BA50737-MSD1)	*Source sample: 15A037			Prepared & Analyzed: 01/17/2015				015	
,1,1,2-Tetrachloroethane	10.6	ug/L	10.0	ND	106	45-161		2.97	30
,1,1-Trichloroethane	12.6	"	10.0	ND	126	70-146		2.42	30
,1,2,2-Tetrachloroethane	10.1	"	10.0	ND	101	74-121		1.50	30
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.5	"	10.0	ND	115	21-217		4.53	30
,1,2-Trichloroethane	10.0	"	10.0	ND	100	59-146		0.399	30
,1-Dichloroethane	13.3	"	10.0	ND	133	54-146		0.300	30
,1-Dichloroethylene	13.2	"	10.0	ND	132	44-165		0.754	30
,1-Dichloropropylene	13.5	"	10.0	ND	135	82-134	High Bias	1.10	30
,2,3-Trichlorobenzene	11.0	"	10.0	ND	110	40-161		1.37	30
,2,3-Trichloropropane	10.9	"	10.0	ND	109	74-127		0.0920	30
,2,4,5-Tetramethylbenzene	11.0	"	10.0	ND	110	27-190		1.56	30
,2,4-Trichlorobenzene	10.9	"	10.0	ND	109	41-161		0.735	30
,2,4-Trimethylbenzene	10.6	"	10.0	ND	106	72-129		2.19	30
,2-Dibromo-3-chloropropane	11.0	"	10.0	ND	110	31-151		15.1	30
,2-Dibromoethane	10.4	"	10.0	ND	104	75-125		3.95	30
,2-Dichlorobenzene	10.7	"	10.0	ND	107	63-122		1.99	30
,2-Dichloroethane	12.6	"	10.0	ND	126	68-131		5.62	30
,2-Dichloropropane	11.4	"	10.0	ND	114	77-121		2.94	30
,3,5-Trimethylbenzene	10.7	"	10.0	ND	107	69-126		2.93	30
,3-Dichlorobenzene	10.6	"	10.0	ND	106	74-119		0.284	30
,3-Dichloropropane	11.1	"	10.0	ND	111	77-119		4.23	30
,4-Dichlorobenzene	10.6	"	10.0	ND	106	70-124		1.71	30
2,2-Dichloropropane	13.5	"	10.0	ND	135	10-160		6.09	30
2-Butanone	14.1	"	10.0	ND	141	10-193		4.73	30

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

ND

0.390

ND

113

106

110

111

102

122

108

140

108

106

108

134

127

110

109

125

104

139

118

108

107

95.0

112

112

109

112

138

70-126

53-133

69-124

38-150

13-149

38-155

72-122

75-121

70-129

66-136

30-158

10-138

71-146

81-117

51-145

80-124

16-163

76-125

58-131

71-129

76-120

30-147

72-128

34-166

66-139 75-128

57-128

High Bias

High Bias

High Bias

High Bias

2.97

7.60

3.89

2.14

6.45

3.63

0.460

2.60

3.54

2.51

7.19

0.375

1.65

1.45

1.95

1.51

2.85

3.32

3.41

1.20

6.22

4.63

1.77

2.35

2.79

0.259

0.290

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

11.3

10.6

11.0

11.1

10.2

12.2

10.8

14.0

10.8

10.6

10.8

13.4

12.7

11.0

109

12.5

10.4

13.9

11.8

10.8

10.7

9.50

11.2

11.2

10.9

11.6

13.8

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Matrix Spike Dup (BA50737-MSD1)	*Source sample: 15A	.0377-05 (M	W-5)				Pre	pared & Analy	zed: 01/17/2	2015
Naphthalene	10.8		ug/L	10.0	ND	108	39-158		3.60	30
n-Butylbenzene	11.4		"	10.0	ND	114	61-138		3.20	30
n-Propylbenzene	11.2		"	10.0	ND	112	66-134		2.26	30
o-Xylene	11.3		"	10.0	ND	113	69-126		1.06	30
o- & m- Xylenes	22.8		"	20.0	ND	114	67-130		1.09	30
p-Diethylbenzene	10.9		"	10.0	ND	109	52-150		3.18	30
p-Ethyltoluene	10.7		"	10.0	ND	107	76-127		2.84	30
p-Isopropyltoluene	10.9		"	10.0	ND	109	64-137		2.78	30
sec-Butylbenzene	11.3		"	10.0	ND	113	53-155		4.24	30
Styrene	11.2		"	10.0	ND	112	69-125		2.04	30
ert-Butylbenzene	10.9		"	10.0	ND	109	65-139		2.12	30
Tetrachloroethylene	16.0		"	10.0	5.63	104	64-139		0.125	30
Toluene	11.0		"	10.0	ND	110	76-123		1.89	30
rans-1,2-Dichloroethylene	13.2		"	10.0	ND	132	79-131	High Bias	0.677	30
trans-1,3-Dichloropropylene	11.2		"	10.0	ND	112	55-130	J	2.29	30
Trichloroethylene	11.8		"	10.0	0.810	110	53-145		2.60	30
Frichlorofluoromethane	11.6		"	10.0	ND	116	61-142		0.345	30
Vinyl Chloride	12.0		"	10.0	ND	120	31-165		5.31	30
<u> </u>			"							
Surrogate: 1,2-Dichloroethane-d4	11.5		,,	10.0		115	69-130			
Surrogate: p-Bromofluorobenzene Surrogate: Toluene-d8	9.74 9.89		,,	10.0 10.0		97.4 98.9	79-122 81-117			
Batch BA50787 - EPA 5030B Blank (BA50787-BLK1)							Pre	pared & Analy	zed: 01/19/2	2015
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L							
	ND ND	0.50 0.50	ug/L							
1,1,1-Trichloroethane	ND	0.50								
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)			"							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND ND	0.50 0.50	"							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane	ND ND ND ND	0.50 0.50 0.50 0.50	"							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND ND	0.50 0.50 0.50 0.50 0.50	"							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene	ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50	" " "							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND ND ND ND	0.50 0.50 0.50 0.50 0.50	"""""""""""""""""""""""""""""""""""""""							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene	ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50	" " " " " " " " " " " " " " " " " " " "							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50	" " " " " " " " " " " " " " " " " " " "							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	" " " " " " " " " " " " " " " " " " " "							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	ND ND ND ND ND ND 0.81 ND 0.43	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	" " " " " " " " " " " " " " " " " " "							
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ND ND ND ND ND O.81 ND 0.43 0.65 ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dibromoethane	ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3,5-Trimethylbenzene	ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Trimethylbenzene 1,3-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene	ND ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene	ND ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Trimethylbenzene 1,3-Trimethylbenzene 1,3-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane	ND ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-5-Trimethylbenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 2,2-Dichloropropane 2-Butanone	ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropylene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,2-Trichlorobenzene 1,2,2-Trichlorobenzene 1,2,2-Trichlorobenzene 1,2,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane	ND ND ND ND ND ND ND 0.81 ND 0.43 0.65 ND ND ND ND ND ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50								

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Batch BA50787 - EPA 5030B						
Blank (BA50787-BLK1)						Prepared & Analyzed: 01/19/2015
4-Methyl-2-pentanone	ND	0.50	ug/L			
Acetone	ND	2.0	"			
Benzene	ND	0.50	"			
Bromobenzene	ND	0.50	"			
Bromochloromethane	ND	0.50	"			
Bromodichloromethane	ND	0.50	"			
Bromoform	ND	0.50	"			
Bromomethane	ND	0.50	"			
Carbon disulfide	ND	0.50	"			
Carbon tetrachloride	ND	0.50	"			
Chlorobenzene	ND	0.50	"			
Chloroethane	ND	0.50	"			
Chloroform	ND	0.50	"			
Chloromethane	ND	0.50	"			
cis-1,2-Dichloroethylene	ND	0.50	"			
cis-1,3-Dichloropropylene	ND	0.50	"			
Dibromochloromethane	ND	0.50	"			
Dibromomethane	ND	0.50	"			
Dichlorodifluoromethane	ND	0.50	"			
Ethyl Benzene	ND	0.50	"			
Hexachlorobutadiene	0.64	0.50	"			
Isopropylbenzene	ND	0.50	"			
Methyl tert-butyl ether (MTBE)	ND	0.50	"			
Methylene chloride	ND	2.0	"			
Naphthalene	ND	2.0	"			
n-Butylbenzene	0.38	0.50	"			
n-Propylbenzene	ND	0.50	"			
o-Xylene	ND	0.50	"			
p- & m- Xylenes	ND	1.0	"			
p-Diethylbenzene	0.31	0.50	"			
p-Ethyltoluene	ND	0.50	"			
p-Isopropyltoluene	0.25	0.50	"			
sec-Butylbenzene	0.24	0.50	"			
Styrene	ND	0.50	"			
tert-Butylbenzene	ND	0.50	"			
Tetrachloroethylene	ND	0.50	"			
Toluene	ND	0.50	"			
trans-1,2-Dichloroethylene	ND	0.50	"			
trans-1,3-Dichloropropylene	ND	0.50	"			
Trichloroethylene	ND	0.50	"			
Trichlorofluoromethane	ND	0.50	"			
Vinyl Chloride	ND	0.50	"			
Xylenes, Total	ND	1.5	"			
Surrogate: 1,2-Dichloroethane-d4	8.96		"	10.0	89.6	69-130
Surrogate: p-Bromofluorobenzene	11.3		"	10.0	113	79-122
Surrogate: Toluene-d8	9.95		"	10.0	99.5	81-117

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RA50787	_ FDA	5030R

LCS (BA50787-BS1)					Prepared & Analyzed: 01/19/2015
1,1,1,2-Tetrachloroethane	10.8	ug/L	10.0	108	82-126
1,1,1-Trichloroethane	11.3	"	10.0	113	78-136
1,1,2,2-Tetrachloroethane	10.5	"	10.0	105	76-129
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.80	"	10.0	98.0	54-165
1,1,2-Trichloroethane	9.88	"	10.0	98.8	82-123
,1-Dichloroethane	11.9	"	10.0	119	82-129
1,1-Dichloroethylene	11.9	"	10.0	119	68-138
,1-Dichloropropylene	11.7	"	10.0	117	83-133
,2,3-Trichlorobenzene	10.2	"	10.0	102	76-136
1,2,3-Trichloropropane	11.4	"	10.0	114	77-128
,2,4,5-Tetramethylbenzene	10.7	"	10.0	107	85-140
,2,4-Trichlorobenzene	10.4	"	10.0	104	76-137
,2,4-Trimethylbenzene	11.2	"	10.0	112	82-132
,2-Dibromo-3-chloropropane	9.84	"	10.0	98.4	45-147
,2-Dibromoethane	10.4	"	10.0	104	83-124
,2-Dichlorobenzene	11.0	"	10.0	110	79-123
,2-Dichloroethane	11.4	"	10.0	114	73-132
,2-Dichloropropane	11.3	"	10.0	113	78-126
,3,5-Trimethylbenzene	11.2	"	10.0	112	80-131
,3-Dichlorobenzene	11.0	"	10.0	110	86-122
,3-Dichloropropane	11.0	"	10.0	110	81-125
,4-Dichlorobenzene	11.0	"	10.0	110	85-124
,2-Dichloropropane	13.7	,,	10.0	137	56-150
g-Butanone		"			
-Chlorotoluene	12.8	"	10.0	128	49-152
	11.5 10.4	"	10.0 10.0	115 104	79-130 51-146
-Chlorotoluene	11.3	"	10.0	113	79-128
-Methyl-2-pentanone		"			
Acetone	11.3	"	10.0	113	57-145
Benzene	9.24	"	10.0	92.4	14-150
	11.4	"	10.0	114	85-126
Bromobenzene	11.5	"	10.0	115	78-129
Bromochloromethane	11.8	"	10.0	118	77-128
Bromodichloromethane	11.0		10.0	110	79-128
Bromoform	11.1		10.0	111	78-133
Bromomethane	10.8	"	10.0	108	43-168
Carbon disulfide	12.8		10.0	128	68-146
Carbon tetrachloride	11.8	"	10.0	118	77-141
Chlorobenzene	10.9	"	10.0	109	88-120
Chloroethane	10.1	"	10.0	101	65-136
Chloroform	11.3	"	10.0	113	82-128
Chloromethane	10.9	"	10.0	109	43-155
is-1,2-Dichloroethylene	11.9	"	10.0	119	83-129
is-1,3-Dichloropropylene	12.0	"	10.0	120	80-131
Dibromochloromethane	10.8	"	10.0	108	80-130
Dibromomethane	10.9	"	10.0	109	72-134
Dichlorodifluoromethane	11.6	"	10.0	116	44-144
Ethyl Benzene	11.0	"	10.0	110	80-131
Hexachlorobutadiene	10.8	"	10.0	108	67-146
sopropylbenzene	11.5	"	10.0	115	76-140
Methyl tert-butyl ether (MTBE)	10.8	"	10.0	108	76-135
Methylene chloride	12.0	"	10.0	120	55-137

Volatile Organic Compounds by GC/MS - Quality Control Data

York A	analytical	Laborato	ories, Inc.
--------	-------------------	----------	-------------

Spike

Source*

Reporting

	R	eporting	Spike	Source*		%REC			1412	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BA50787 - EPA 5030B										
LCS (BA50787-BS1)						Prep	ared & Analyzed	d: 01/19/	2015	
Naphthalene	9.51	ug/L	10.0		95.1	70-147				
n-Butylbenzene	11.2	· ·	10.0		112	79-132				
n-Propylbenzene	11.5	"	10.0		115	78-133				
o-Xylene	11.1	"	10.0		111	78-130				
p- & m- Xylenes	22.3	"	20.0		112	77-133				
p-Diethylbenzene	10.7	"	10.0		107	84-134				
p-Ethyltoluene	11.0	"	10.0		110	88-129				
p-Isopropyltoluene	11.1	"	10.0		111	81-136				
sec-Butylbenzene	11.4	"	10.0		114	79-137				
Styrene	11.4	"	10.0		114	67-132				
tert-Butylbenzene	11.4	"	10.0		114	77-138				
Tetrachloroethylene	10.8	· ·	10.0		108	82-131				
Toluene	10.9	"	10.0		109	80-127				
trans-1,2-Dichloroethylene	12.1	"	10.0		121	80-132				
trans-1,3-Dichloropropylene	11.4	"	10.0		114	78-131				
Trichloroethylene	11.1	"	10.0		111	82-128				
Trichlorofluoromethane	9.92	"	10.0		99.2	67-139				
Vinyl Chloride	10.9	"	10.0		109	58-145				
Surrogate: 1,2-Dichloroethane-d4	9.67	"	10.0		96.7	69-130				
Surrogate: p-Bromofluorobenzene	10.4	"	10.0		104	79-122				
Surrogate: Toluene-d8	9.96	"	10.0		99.6	81-117				
LCS Dup (BA50787-BSD1)							ared & Analyzed	1: 01/19/	2015	
1,1,1,2-Tetrachloroethane	10.6	ug/L	10.0		106	82-126		1.78	30	
1,1,1-Trichloroethane	11.5	"	10.0		115	78-136		1.75	30	
1,1,2,2-Tetrachloroethane	9.98	"	10.0		99.8	76-129		5.46	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.1	"	10.0		101	54-165		2.92	30	
1,1,2-Trichloroethane	9.47	"	10.0		94.7	82-123		4.24	30	
1,1-Dichloroethane	11.8	"	10.0		118	82-129		0.337	30	
1,1-Dichloroethylene	12.5	"	10.0		125	68-138		4.91	30	
1,1-Dichloropropylene	11.8	"	10.0		118	83-133		0.679	30	
1,2,3-Trichlorobenzene	9.68	,,	10.0		96.8	76-136		5.13	30	
1,2,3-Trichloropropane	10.9	"	10.0		109	77-128		4.31	30	
1,2,4,5-Tetramethylbenzene	10.9	"	10.0		109	85-140		1.02	30	
1,2,4-Trichlorobenzene	10.0	,,	10.0		100	76-137		3.34	30	
1,2,4-Trimethylbenzene	11.1	,,	10.0		111	82-132		0.629	30	
1,2-Dibromo-3-chloropropane		,,						17.5	30	
1,2-Dibromoethane	8.26 10.2	,,	10.0 10.0		82.6 102	45-147 83-124		2.62	30	
1,2-Dichlorobenzene		"						3.43	30	
1,2-Dichloroethane	10.6	"	10.0		106	79-123		0.883	30	
	11.3		10.0		113	73-132			30	
1,2-Dichloropropane	11.0		10.0		110	78-126		2.61		
1,3,5-Trimethylbenzene	11.2	,,	10.0		112	80-131		0.0896	30	
1,3-Dichlorobenzene	11.0		10.0		110	86-122		0.636	30	
1,3-Dichloropropane	10.8		10.0		108	81-125		2.48	30	
1,4-Dichlorobenzene	10.9	"	10.0		109	85-124		1.09	30	
2,2-Dichloropropane	13.4	"	10.0		134	56-150		2.21	30	
2-Butanone	10.8	"	10.0		108	49-152		17.4	30	
2-Chlorotoluene	11.5	"	10.0		115	79-130		0.435	30	
2-Hexanone	10.5	"	10.0		105	51-146		0.574	30	
4-Chlorotoluene	11.4	"	10.0		114	79-128		0.440	30	
4-Methyl-2-pentanone	10.8	"	10.0		108	57-145		5.34	30	
Acetone	9.83	"	10.0		98.3	14-150		6.19	30	
120 RESEARCH DRIVE	STRATEORD CT	20045		(203) 325 137	7.4		FΔY (203) 3F	-7 0400		

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 39 of 52

RPD

%REC

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

CS Dup (BA50787-BSD1) Prepared & Analyzed: 01/19/201							015
enzene	11.4	ug/L	10.0	114	85-126	0.00	30
romobenzene	11.1	"	10.0	111	78-129	3.62	30
romochloromethane	11.5	"	10.0	115	77-128	2.40	30
romodichloromethane	11.0	"	10.0	110	79-128	0.0910	30
romoform	10.0	"	10.0	100	78-133	10.3	30
romomethane	10.4	"	10.0	104	43-168	4.44	30
arbon disulfide	12.6	"	10.0	126	68-146	1.81	30
arbon tetrachloride	11.7	"	10.0	117	77-141	0.598	30
hlorobenzene	10.8	"	10.0	108	88-120	0.646	30
hloroethane	9.88	"	10.0	98.8	65-136	2.10	30
hloroform	11.2	"	10.0	112	82-128	0.622	30
hloromethane	10.9	"	10.0	109	43-155	0.275	30
s-1,2-Dichloroethylene	11.7	"	10.0	117	83-129	1.36	30
s-1,3-Dichloropropylene	12.2	"	10.0	122	80-131	1.32	30
ibromochloromethane	10.6	"	10.0	106	80-130	1.21	30
ibromomethane	10.8	"	10.0	108	72-134	0.460	30
richlorodifluoromethane	11.9	"	10.0	119	44-144	2.89	30
thyl Benzene	11.1	"	10.0	111	80-131	0.272	30
exachlorobutadiene	10.6	"	10.0	106	67-146	1.49	30
opropylbenzene	11.5	"	10.0	115	76-140	0.609	30
lethyl tert-butyl ether (MTBE)	10.4	"	10.0	104	76-135	3.20	30
ethylene chloride	11.8	"	10.0	118	55-137	2.35	30
aphthalene	8.91	"	10.0	89.1	70-147	6.51	30
Butylbenzene	11.5	"	10.0	115	79-132	2.65	30
Propylbenzene	11.6	"	10.0	116	78-133	0.867	30
Xylene	11.1	"	10.0	111	78-130	0.180	30
& m- Xylenes	22.6	"	20.0	113	77-133	1.11	30
Diethylbenzene	10.9	"	10.0	109	84-134	1.76	30
-Ethyltoluene	11.2	"	10.0	112	88-129	0.991	30
Isopropyltoluene	11.4	"	10.0	114	81-136	2.05	30
ec-Butylbenzene	11.6	"	10.0	116	79-137	2.09	30
yrene	11.3	"	10.0	113	67-132	0.441	30
rt-Butylbenzene	11.6	"	10.0	116	77-138	1.13	30
etrachloroethylene	11.1	"	10.0	111	82-131	2.38	30
oluene	10.9	"	10.0	109	80-127	0.183	30
ans-1,2-Dichloroethylene	12.2	"	10.0	122	80-132	0.412	30
ans-1,3-Dichloropropylene	11.6	"	10.0	116	78-131	2.34	30
richloroethylene	11.1	"	10.0	111	82-128	0.361	30
richlorofluoromethane	10.2	"	10.0	102	67-139	2.39	30
inyl Chloride	11.1	"	10.0	111	58-145	1.45	30
urrogate: 1,2-Dichloroethane-d4	9.82	"	10.0	98.2	69-130		
urrogate: p-Bromofluorobenzene	10.5	"	10.0	105	79-122		
urrogate: Toluene-d8	9.90	"	10.0	99.0	81-117		

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 Page 40 of 52

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BA50787	- EPA	5030R

Matrix Spike (BA50787-MS1)	*Source sample: 15A037	7-05 (MW-5)				Prepared & Analyzed: 01/19/2015
,1,1,2-Tetrachloroethane	10.1	ug/L	10.0	ND	101	45-161
,1,1-Trichloroethane	10.7	"	10.0	ND	107	70-146
1,2,2-Tetrachloroethane	9.31	"	10.0	ND	93.1	74-121
,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.92	"	10.0	ND	99.2	21-217
,2-Trichloroethane	9.23	"	10.0	ND	92.3	59-146
-Dichloroethane	10.6	"	10.0	ND	106	54-146
1-Dichloroethylene	10.6	"	10.0	ND	106	44-165
-Dichloropropylene	10.9	"	10.0	ND	109	82-134
2,3-Trichlorobenzene	9.49	"	10.0	ND	94.9	40-161
2,3-Trichloropropane	10.4	"	10.0	ND	104	74-127
2,4,5-Tetramethylbenzene	9.57	"	10.0	ND	95.7	27-190
2,4-Trichlorobenzene	9.45	"	10.0	ND	94.5	41-161
2,4-Trimethylbenzene	9.99	"	10.0	ND	99.9	72-129
2-Dibromo-3-chloropropane	7.92	"	10.0	ND	79.2	31-151
2-Dibromoethane	9.87	"	10.0	ND ND	98.7	75-125
2-Dichlorobenzene	9.68	"	10.0	ND ND	96.8	63-122
2-Dichloroethane	10.7	"	10.0	ND ND	107	68-131
2-Dichloropropane		"				
2-Dichloropropane 3,5-Trimethylbenzene	10.4		10.0	ND	104	77-121
	10.0	"	10.0	ND	100	69-126
3-Dichlorobenzene	9.64		10.0	ND	96.4	74-119
3-Dichloropropane	10.5	"	10.0	ND	105	77-119
4-Dichlorobenzene	9.70		10.0	ND	97.0	70-124
2-Dichloropropane	10.8	"	10.0	ND	108	10-160
Butanone	11.2	"	10.0	ND	112	10-193
Chlorotoluene	10.1	"	10.0	ND	101	70-126
Hexanone	10.2	"	10.0	ND	102	53-133
Chlorotoluene	9.93	"	10.0	ND	99.3	69-124
Methyl-2-pentanone	10.7	"	10.0	ND	107	38-150
etone	9.54	"	10.0	ND	95.4	13-149
enzene	10.6	"	10.0	ND	106	38-155
omobenzene	10.0	"	10.0	ND	100	72-122
romochloromethane	11.3	"	10.0	ND	113	75-121
romodichloromethane	10.4	"	10.0	ND	104	70-129
romoform	10.3	"	10.0	ND	103	66-136
romomethane	8.24	"	10.0	ND	82.4	30-158
rbon disulfide	10.7	"	10.0	ND	107	10-138
arbon tetrachloride	11.3	"	10.0	ND	113	71-146
lorobenzene	10.1	"	10.0	ND	101	81-117
aloroethane	9.40	"	10.0	ND	94.0	51-145
lloroform	10.7	"	10.0	ND	107	80-124
loromethane	9.57	"	10.0	ND	95.7	16-163
-1,2-Dichloroethylene	11.2	"	10.0	ND	112	76-125
-1,3-Dichloropropylene	10.6	"	10.0	ND	106	58-131
bromochloromethane	10.4	"	10.0	ND	104	71-129
bromomethane	10.4	"	10.0	ND	104	76-120
chlorodifluoromethane	7.85	"	10.0	ND	78.5	30-147
hyl Benzene	10.5	"	10.0	ND	105	72-128
exachlorobutadiene	10.1	"	10.0	ND	101	34-166
opropylbenzene	10.2	"	10.0	ND	102	66-139
ethyl tert-butyl ether (MTBE)	10.3	"	10.0	0.390	99.2	75-128
lethylene chloride	10.8	"	10.0	ND	108	57-128

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

1 mary to	resur	Ziiiii Ciiiii	Ec. c.	resure	, orthe	Diffito		
Batch BA50787 - EPA 5030B								
Matrix Spike (BA50787-MS1)	*Source sample: 15A	0377-05 (MW-5)				Prepa	ared & Analyzed: 01/19/201	5
Naphthalene	8.58	ug/L	10.0	ND	85.8	39-158		
n-Butylbenzene	10.6	"	10.0	ND	106	61-138		
n-Propylbenzene	10.3	"	10.0	ND	103	66-134		
o-Xylene	10.3	"	10.0	ND	103	69-126		
p- & m- Xylenes	21.1	"	20.0	ND	105	67-130		
p-Diethylbenzene	9.76	"	10.0	ND	97.6	52-150		
p-Ethyltoluene	9.73	"	10.0	ND	97.3	76-127		
p-Isopropyltoluene	10.4	"	10.0	ND	104	64-137		
sec-Butylbenzene	10.5	"	10.0	ND	105	53-155		
Styrene	9.91	"	10.0	ND	99.1	69-125		
tert-Butylbenzene	10.3	"	10.0	ND	103	65-139		
Tetrachloroethylene	15.0	"	10.0	5.63	94.1	64-139		
Toluene	10.2	"	10.0	ND	102	76-123		
trans-1,2-Dichloroethylene	10.6	"	10.0	ND	106	79-131		
trans-1,3-Dichloropropylene	10.3	"	10.0	ND	103	55-130		
Trichloroethylene	11.2	"	10.0	0.810	103	53-145		
Trichlorofluoromethane	10.0	"	10.0	ND	100	61-142		
Vinyl Chloride	9.87	"	10.0	ND	98.7	31-165		
S 12 Di. H		"						
Surrogate: 1,2-Dichloroethane-d4	10.1 9.90	"	10.0		101	69-130		
Surrogate: p-Bromofluorobenzene		,,	10.0		99.0	79-122		
Surrogate: Toluene-d8	9.92	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.0		99.2	81-117		
Matrix Spike Dup (BA50787-MSD1)	*Source sample: 15A	0377-05 (MW-5)				Prepa	ared & Analyzed: 01/19/201	5
1,1,1,2-Tetrachloroethane	10.1	ug/L	10.0	ND	101	45-161	0.00	30
1,1,1-Trichloroethane	11.0	"	10.0	ND	110	70-146	1.94	30
1,1,2,2-Tetrachloroethane	9.54	"	10.0	ND	95.4	74-121	2.44	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.1	"	10.0	ND	101	21-217	2.19	30
1,1,2-Trichloroethane	9.14	"	10.0	ND	91.4	59-146	0.980	30
1,1-Dichloroethane	10.8	"	10.0	ND	108	54-146	2.34	30
1,1-Dichloroethylene	10.8	"	10.0	ND	108	44-165	1.59	30
1,1-Dichloropropylene	11.1	"	10.0	ND	111	82-134	1.45	30
1,2,3-Trichlorobenzene	10.2	"	10.0	ND	102	40-161	7.31	30
1,2,3-Trichloropropane	10.2	"	10.0	ND	102	74-127	2.14	30
1,2,4,5-Tetramethylbenzene	9.83	"	10.0	ND	98.3	27-190	2.68	30
1,2,4-Trichlorobenzene	9.86	"	10.0	ND	98.6	41-161	4.25	30
1,2,4-Trimethylbenzene	10.0	"	10.0	ND	100	72-129	0.499	30
1,2-Dibromo-3-chloropropane	7.97	"	10.0	ND	79.7	31-151	0.629	30
1,2-Dibromoethane	10.1	"	10.0	ND	101	75-125	2.11	30
1,2-Dichlorobenzene	9.74	"	10.0	ND	97.4	63-122	0.618	30
1,2-Dichloroethane	10.7	"	10.0	ND	107	68-131	0.375	30
1,2-Dichloropropane	10.4	"	10.0	ND	104	77-121	0.0961	30
1,3,5-Trimethylbenzene	10.2	"	10.0	ND	102	69-126	1.87	30
1,3-Dichlorobenzene	9.81	"	10.0	ND	98.1	74-119	1.75	30
1,3-Dichloropropane	10.6	"	10.0	ND	106	77-119	0.760	30
1,4-Dichlorobenzene	9.84	"	10.0	ND	98.4	70-124	1.43	30
2,2-Dichloropropane	10.6	"	10.0	ND	106	10-160	2.53	30
2-Butanone	10.1	"	10.0	ND	101	10-193	10.3	30
2-Chlorotoluene	10.1	"	10.0	ND	101	70-126	0.00	30
2-Hexanone	9.29	"	10.0	ND	92.9	53-133	9.83	30
4-Chlorotoluene	10.2	"	10.0	ND	102	69-124	2.19	30
4-Methyl-2-pentanone	10.7	"	10.0	ND	107	38-150	0.654	30

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Matrix Spike Dup (BA50787-MSD1)	*Source sample: 15A037	7-05 (MW-5)				Prepared &	k Analyzed: 01/19/2	2015
Benzene	10.6	ug/L	10.0	ND	106	38-155	0.661	30
Bromobenzene	10.2	"	10.0	ND	102	72-122	2.17	30
Bromochloromethane	11.3	"	10.0	ND	113	75-121	0.0884	30
romodichloromethane	10.6	"	10.0	ND	106	70-129	2.19	30
Bromoform	10.2	"	10.0	ND	102	66-136	1.07	30
romomethane	8.53	"	10.0	ND	85.3	30-158	3.46	30
arbon disulfide	10.7	"	10.0	ND	107	10-138	0.187	30
arbon tetrachloride	11.4	"	10.0	ND	114	71-146	0.796	30
hlorobenzene	10.2	"	10.0	ND	102	81-117	1.09	30
hloroethane	9.17	"	10.0	ND	91.7	51-145	2.48	30
hloroform	11.0	"	10.0	ND	110	80-124	3.13	30
nloromethane	9.70	"	10.0	ND	97.0	16-163	1.35	30
s-1,2-Dichloroethylene	10.9	"	10.0	ND	109	76-125	2.72	30
s-1,3-Dichloropropylene	10.7	"	10.0	ND	107	58-131	0.942	30
bromochloromethane	10.7	"	10.0	ND	107	71-129	2.76	30
ibromomethane	10.3	"	10.0	ND	103	76-120	0.872	30
ichlorodifluoromethane	7.85	"	10.0	ND	78.5	30-147	0.00	30
hyl Benzene	10.5	"	10.0	ND	105	72-128	0.476	30
exachlorobutadiene	10.4	"	10.0	ND	104	34-166	3.31	30
propylbenzene	10.4	"	10.0	ND	104	66-139	2.14	30
ethyl tert-butyl ether (MTBE)	10.5	"	10.0	0.390	101	75-128	2.11	30
ethylene chloride	11.0	"	10.0	ND	110	57-128	2.30	30
phthalene	9.41	"	10.0	ND	94.1	39-158	9.23	30
Butylbenzene	10.7	"	10.0	ND	107	61-138	1.69	30
Propylbenzene	10.7	"	10.0	ND	107	66-134	1.07	30
Xylene	10.4	"	10.0	ND	104	69-126	0.483	30
& m- Xylenes	21.0	"	20.0	ND	105	67-130	0.428	30
Diethylbenzene	10.1	"	10.0	ND	103	52-150	3.13	30
Ethyltoluene	9.90	"	10.0	ND	99.0	76-127	1.73	30
Isopropyltoluene	10.5	"	10.0	ND	105	64-137	0.574	30
c-Butylbenzene	10.5	"	10.0	ND ND	105	53-155	0.664	30
yrene	10.0	"	10.0	ND	100	69-125	1.20	30
rt-Butylbenzene	10.4	"	10.0	ND	100	65-139	1.06	30
etrachloroethylene	14.8	"	10.0	5.63	92.2	64-139	1.27	30
bluene	14.8	"	10.0	5.65 ND	102	76-123	0.393	30
nns-1,2-Dichloroethylene	10.2	"	10.0	ND ND	102	76-123 79-131	3.26	30
nns-1,3-Dichloropropylene		"					1.54	30
ins-1,3-Dichloropropylene ichloroethylene	10.5		10.0	ND	105	55-130	0.982	30
ichlorofluoromethane	11.3	"	10.0	0.810	104	53-145		
inyl Chloride	9.84	"	10.0	ND	98.4	61-142	1.61 0.606	30 30
<u>* </u>	9.93		10.0	ND	99.3	31-165	0.000	
rrogate: 1,2-Dichloroethane-d4	10.3	"	10.0		103	69-130		
rrogate: p-Bromofluorobenzene	9.86	"	10.0		98.6	79-122		

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

10.0

97.0

81-117

9.70

Surrogate: Toluene-d8

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BA50837 - EPA 5030B											
Blank (BA50837-BLK1)							Prep	ared & Analy	yzed: 01/20/	2015	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L								
1,1,1-Trichloroethane	ND	0.50	"								
1,1,2,2-Tetrachloroethane	ND	0.50	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.50	"								
1,1,2-Trichloroethane	ND	0.50	"								
1,1-Dichloroethane	ND	0.50	"								
1,1-Dichloroethylene	ND	0.50	"								
1,1-Dichloropropylene	ND	0.50	"								
1,2,3-Trichlorobenzene	0.50	0.50	"								
1,2,3-Trichloropropane	ND	0.50	"								
1,2,4,5-Tetramethylbenzene	0.21	0.50	"								
1,2,4-Trichlorobenzene	0.38	0.50	"								
1,2,4-Trimethylbenzene	ND	0.50	"								
1,2-Dibromo-3-chloropropane	ND	0.50	"								
1,2-Dibromoethane	ND	0.50	"								
1,2-Dichlorobenzene	ND	0.50	"								
1,2-Dichloroethane	ND	0.50	"								
1,2-Dichloropropane	ND	0.50	"								
1,3,5-Trimethylbenzene	ND	0.50	"								
1,3-Dichlorobenzene	ND	0.50	"								
1,3-Dichloropropane	ND	0.50	"								
1,4-Dichlorobenzene	ND	0.50	"								
2,2-Dichloropropane	ND	0.50	"								
2-Butanone	ND	0.50	"								
2-Chlorotoluene	ND	0.50	"								
2-Hexanone	ND	0.50	"								
4-Chlorotoluene	ND	0.50	"								
4-Methyl-2-pentanone	ND	0.50	"								
Acetone	ND	2.0	"								
Benzene	ND	0.50	"								
Bromobenzene	ND	0.50	"								
Bromochloromethane	ND	0.50	"								
Bromodichloromethane	ND	0.50	"								
Bromoform	ND	0.50	"								
Bromomethane	ND	0.50	"								
Carbon disulfide	ND	0.50	"								
Carbon tetrachloride	ND	0.50	"								
Chlorobenzene	ND	0.50	"								
Chloroethane	ND	0.50	"								
Chloroform	ND	0.50	"								
Chloromethane	ND	0.50	"								
cis-1,2-Dichloroethylene	ND	0.50	"								
cis-1,3-Dichloropropylene	ND	0.50	"								
Dibromochloromethane	ND	0.50	"								
Dibromomethane	ND	0.50	"								
Dichlorodifluoromethane	ND	0.50	"								
Ethyl Benzene	ND	0.50	"								
Hexachlorobutadiene	0.22	0.50	"								
Isopropylbenzene	ND	0.50	"								
Methyl tert-butyl ether (MTBE)	ND	0.50	"								
Methylene chloride	ND	2.0	"								

Volatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BA50837 - EPA 5030B							
Blank (BA50837-BLK1)						Pre	pared & Analyzed: 01/20/2015
Naphthalene	ND	2.0	ug/L				
n-Butylbenzene	ND	0.50	"				
n-Propylbenzene	ND	0.50	"				
o-Xylene	ND	0.50	"				
o- & m- Xylenes	ND	1.0	"				
p-Diethylbenzene	ND	0.50	"				
-Ethyltoluene	ND	0.50	"				
-Isopropyltoluene	ND	0.50	"				
ec-Butylbenzene	ND	0.50	"				
Styrene	ND	0.50	"				
ert-Butylbenzene	ND	0.50	"				
Tetrachloroethylene	ND	0.50	"				
Coluene	ND	0.50	"				
rans-1,2-Dichloroethylene	ND	0.50	"				
rans-1,3-Dichloropropylene	ND	0.50	"				
Trichloroethylene	ND	0.50	"				
Trichlorofluoromethane	ND	0.50	"				
Vinyl Chloride	ND	0.50	"				
Kylenes, Total	ND	1.5	"				
Surrogate: 1,2-Dichloroethane-d4	11.0		"	10.0	110	69-130	
Surrogate: p-Bromofluorobenzene	9.69		"	10.0	96.9	79-122	
urrogate: Toluene-d8	9.80		"	10.0	98.0	81-117	
uiroguie. Ioiuene-uo	7.00			10.0	70.0		
LCS (BA50837-BS1)							pared & Analyzed: 01/20/2015
,1,1,2-Tetrachloroethane	10.2		ug/L	10.0	102	82-126	
,1,1-Trichloroethane	11.3		"	10.0	113	78-136	
,1,2,2-Tetrachloroethane	8.89		"	10.0	88.9	76-129	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.50		"	10.0	95.0	54-165	
,1,2-Trichloroethane	9.51		"	10.0	95.1	82-123	
,1-Dichloroethane	11.3		"	10.0	113	82-129	
,1-Dichloroethylene	11.2		"	10.0	112	68-138	
,1-Dichloropropylene	11.1		"	10.0	111	83-133	
,2,3-Trichlorobenzene	10.6		"	10.0	106	76-136	
,2,3-Trichloropropane	9.66		"	10.0	96.6	77-128	
,2,4,5-Tetramethylbenzene	11.1		"	10.0	111	85-140	
,2,4-Trichlorobenzene	11.1		"	10.0	111	76-137	
,2,4-Trimethylbenzene	10.6		"	10.0	106	82-132	
,2-Dibromo-3-chloropropane	9.56		"	10.0	95.6	45-147	
,2-Dibromoethane	9.86		"	10.0	98.6	83-124	
,2-Dichlorobenzene	10.2		"	10.0	102	79-123	
,2-Dichloroethane	10.7		"	10.0	107	73-132	
,2-Dichloropropane	10.5		"	10.0	105	78-126	
,3,5-Trimethylbenzene	10.5		"	10.0	105	80-131	
,3-Dichlorobenzene	10.5		"	10.0	105	86-122	
,3-Dichloropropane	10.2		"	10.0	102	81-125	
,4-Dichlorobenzene	10.4		"	10.0	104	85-124	
,2-Dichloropropane	15.2		"	10.0	152	56-150	High Bias
-Butanone	10.1		"	10.0	101	49-152	
-Chlorotoluene	10.7		"	10.0	107	79-130	
-Hexanone	9.33		"	10.0	93.3	51-146	
-Chlorotoluene	10.6		"	10.0	106	79-128	
4-Methyl-2-pentanone	7.26		"	10.0	72.6	57-145	

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch RA50837 - EPA 5030R

LCS (BA50837-BS1)					Prepared & Analyzed: 01/20/2015
Acetone	7.78	ug/L	10.0	77.8	14-150
Benzene	11.1	"	10.0	111	85-126
Bromobenzene	10.3	"	10.0	103	78-129
Bromochloromethane	10.9	"	10.0	109	77-128
Bromodichloromethane	10.5	"	10.0	105	79-128
Bromoform	10.4	"	10.0	104	78-133
Bromomethane	9.14	"	10.0	91.4	43-168
Carbon disulfide	12.5	"	10.0	125	68-146
Carbon tetrachloride	11.5	"	10.0	115	77-141
Chlorobenzene	10.3	"	10.0	103	88-120
Chloroethane	10.1	"	10.0	101	65-136
Chloroform	11.2	"	10.0	112	82-128
Chloromethane	8.94	"	10.0	89.4	43-155
cis-1,2-Dichloroethylene	11.8	"	10.0	118	83-129
cis-1,3-Dichloropropylene	11.9	"	10.0	119	80-131
Dibromochloromethane	10.3	"	10.0	103	80-130
Dibromomethane	10.2	"	10.0	102	72-134
Dichlorodifluoromethane	10.1	"	10.0	101	44-144
Ethyl Benzene	10.5	"	10.0	105	80-131
Hexachlorobutadiene	11.6	"	10.0	116	67-146
Isopropylbenzene	10.7	"	10.0	107	76-140
Methyl tert-butyl ether (MTBE)	10.4	"	10.0	104	76-135
Methylene chloride	11.3	"	10.0	113	55-137
Naphthalene	9.90	"	10.0	99.0	70-147
n-Butylbenzene	11.2	"	10.0	112	79-132
n-Propylbenzene	10.8	"	10.0	108	78-133
p-Xylene	10.5	"	10.0	105	78-130
o- & m- Xylenes	21.5	"	20.0	108	77-133
o-Diethylbenzene	10.8	"	10.0	108	84-134
o-Ethyltoluene	10.4	"	10.0	104	88-129
p-Isopropyltoluene	10.9	"	10.0	109	81-136
sec-Butylbenzene	10.8	"	10.0	108	79-137
Styrene	10.8	"	10.0	108	67-132
tert-Butylbenzene	10.7	"	10.0	107	77-138
Tetrachloroethylene	10.4	"	10.0	104	82-131
Toluene	10.4	"	10.0	104	80-127
rans-1,2-Dichloroethylene	11.4	"	10.0	114	80-132
rans-1,3-Dichloropropylene	11.2	"	10.0	112	78-131
Frichloroethylene	10.6	"	10.0	106	82-128
Trichlorofluoromethane	10.9	"	10.0	109	67-139
Vinyl Chloride	10.6	"	10.0	106	58-145
Surrogate: 1,2-Dichloroethane-d4	9.79	"	10.0	97.9	69-130
Surrogate: p-Bromofluorobenzene	9.73	"	10.0	97.3	79-122
Surrogate: Toluene-d8	9.94	"	10.0	99.4	81-117

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

		Reporting			Source*	Source* %REC			RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	KPD	Limit	Flag
Batch BA50837 - EPA 5030B											
LCS Dup (BA50837-BSD1)							Prepa	ared & Analy	zed: 01/20/	2015	
1,1,1,2-Tetrachloroethane	10.7		ug/L	10.0		107	82-126		4.79	30	
1,1,1-Trichloroethane	11.1		"	10.0		111	78-136		1.25	30	
1,1,2,2-Tetrachloroethane	9.35		"	10.0		93.5	76-129		5.04	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.60		"	10.0		96.0	54-165		1.05	30	
1,1,2-Trichloroethane	9.79		"	10.0		97.9	82-123		2.90	30	
1,1-Dichloroethane	11.3		"	10.0		113	82-129		0.00	30	
1,1-Dichloroethylene	11.4		"	10.0		114	68-138		2.30	30	
1,1-Dichloropropylene	11.0		"	10.0		110	83-133		1.36	30	
1,2,3-Trichlorobenzene	11.2		"	10.0		112	76-136		6.06	30	
1,2,3-Trichloropropane	10.5		"	10.0		105	77-128		8.43	30	
1,2,4,5-Tetramethylbenzene	11.4		"	10.0		114	85-140		2.59	30	
1,2,4-Trichlorobenzene	11.2		"	10.0		112	76-137		0.716	30	
1,2,4-Trimethylbenzene	10.6		"	10.0		106	82-132		0.0945	30	
1,2-Dibromo-3-chloropropane	9.02		"	10.0		90.2	45-147		5.81	30	
1,2-Dibromoethane	10.0		"	10.0		100	83-124		1.51	30	
1,2-Dichlorobenzene	10.6		"	10.0		106	79-123		3.66	30	
1,2-Dichloroethane	10.8		"	10.0		108	73-132		1.02	30	
1,2-Dichloropropane	10.8		"	10.0		108	78-126		2.64	30	
1,3,5-Trimethylbenzene	10.8		"	10.0		108	80-131		2.45	30	
1,3-Dichlorobenzene	10.8		"	10.0		108	86-122		2.53	30	
1,3-Dichloropropane	10.4		"	10.0		104	81-125		1.55	30	
1,4-Dichlorobenzene	10.6		"	10.0		106	85-124		1.80	30	
2,2-Dichloropropane	14.8		"	10.0		148	56-150		2.40	30	
2-Butanone	10.6		"	10.0		106	49-152		4.65	30	
2-Chlorotoluene	10.9		"	10.0		109	79-130		1.39	30	
2-Hexanone	9.59		"	10.0		95.9	51-146		2.75	30	
4-Chlorotoluene	10.7		"	10.0		107	79-128		0.843	30	
4-Methyl-2-pentanone	9.66		"	10.0		96.6	57-145		28.4	30	
Acetone	6.20		"	10.0		62.0	14-150		22.6	30	
Benzene	11.0		"	10.0		110	85-126		0.908	30	
Bromobenzene	10.6		"	10.0		106	78-129		2.78	30	
Bromochloromethane	10.8		"	10.0		108	77-128		1.47	30	
Bromodichloromethane	10.9		"	10.0		109	79-128		4.11	30	
Bromoform	10.4		"	10.0		104	78-133		0.386	30	
Bromomethane	9.87		"	10.0		98.7	43-168		7.68	30	
Carbon disulfide	12.3		"	10.0		123	68-146		1.37	30	
Carbon tetrachloride	11.1		"	10.0		111	77-141		3.55	30	
Chlorobenzene	10.5		"	10.0		105	88-120		1.92	30	
Chloroethane	10.0		"	10.0		100	65-136		0.695	30	
Chloroform	11.1		"	10.0		111	82-128		0.807	30	
Chloromethane	8.46		"	10.0		84.6	43-155		5.52	30	
cis-1,2-Dichloroethylene	11.7		"	10.0		117	83-129		0.597	30	
cis-1,3-Dichloropropylene	12.2		"	10.0		122	80-131		1.74	30	
Dibromochloromethane	10.5		"	10.0		105	80-131		1.82	30	
Dibromomethane	10.3		"	10.0		103	72-134		1.66	30	
Dichlorodifluoromethane	9.53		"	10.0		95.3	72-134 44-144		5.41	30	
Ethyl Benzene	10.7		"	10.0		93.3 107	80-131		1.51	30	
Hexachlorobutadiene	10.7		,,	10.0		107	67-146		3.06	30	
Isopropylbenzene			,,						0.743	30	
Methyl tert-butyl ether (MTBE)	10.8		,,	10.0		108	76-140		1.07	30	
Methylene chloride	10.2			10.0		102	76-135		0.883	30	
ivientylene chloride	11.4			10.0		114	55-137		0.883	30	

$\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

York Analytical Laboratories, Inc.

	Reporting	Reporting			Source* %REC			RPD		
Analyte Res	lt Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	D 450027	EDA	5020B

LCS Dup (BA50837-BSD1)					Prepared & Analyzed: 01/20/2015					
Naphthalene	10.3	ug/L	10.0	103	70-147	3.86	30			
n-Butylbenzene	11.3	"	10.0	113	79-132	1.16	30			
n-Propylbenzene	10.8	"	10.0	108	78-133	0.462	30			
o-Xylene	10.8	"	10.0	108	78-130	2.91	30			
p- & m- Xylenes	21.7	"	20.0	109	77-133	1.11	30			
p-Diethylbenzene	11.0	"	10.0	110	84-134	1.66	30			
p-Ethyltoluene	10.6	"	10.0	106	88-129	1.24	30			
p-Isopropyltoluene	11.1	"	10.0	111	81-136	1.82	30			
sec-Butylbenzene	11.0	"	10.0	110	79-137	1.56	30			
Styrene	11.1	"	10.0	111	67-132	1.92	30			
tert-Butylbenzene	10.9	"	10.0	109	77-138	1.48	30			
Tetrachloroethylene	10.5	"	10.0	105	82-131	0.959	30			
Toluene	10.6	"	10.0	106	80-127	1.62	30			
trans-1,2-Dichloroethylene	11.4	"	10.0	114	80-132	0.264	30			
trans-1,3-Dichloropropylene	11.5	"	10.0	115	78-131	2.21	30			
Trichloroethylene	10.8	"	10.0	108	82-128	1.77	30			
Trichlorofluoromethane	11.0	"	10.0	110	67-139	1.28	30			
Vinyl Chloride	10.5	"	10.0	105	58-145	0.568	30			
Surrogate: 1,2-Dichloroethane-d4	9.56	"	10.0	95.6	69-130					
Surrogate: p-Bromofluorobenzene	10.1	"	10.0	101	79-122					
Surrogate: Toluene-d8	9.98	"	10.0	99.8	81-117					

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
15A0377-01	MW-1	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-02	MW-2	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-03	MW-3	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-04	MW-4	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-05	MW-5	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-06	MW-6	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-07	MW-7	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-08	MW-8	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-09	Field Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
15A0377-10	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Notes and Definitions

QM-07	$The \ spike \ recovery \ was \ outside \ acceptance \ limits \ for \ the \ MS \ and/or \ MSD. \ The \ batch \ was \ accepted \ based \ on \ acceptable \ LCS \ recovery.$
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
CCV-E	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
B	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Diphenylamine.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

Report/Deliverable Type YORK Regulatory Comp Excel Container Description 4.5.0 York Project No. 1540 + **Temperature** on Receipt o See Comment below CT RCP DQA/DUE Pkg 3x40 mil vials 9x40 mil vials 3x40 mil vials NJDEP Reduced Deliv 2x40 mil vial NJDEP SRP HazSite NY ASP A Package VY ASP B Package Page Summary Report VYSDEC EQUIS × × 1705 GIS/KEY (std) QA Report ompared to: CT RCP OTHER: ate/Time Samples Received nLAB by Date/Time EQUIS xcel NaOH Mlsc. Org. Full Lists TCL Opmio Hull App IX Part 360 Ratre PET-500/12 Part 360 Broshy PullTCLP TALMMON NYSDECS Part 280 NYCOEPS Turn-Around Time Pri.Poll. IAGM H,SO TPH DRO Analysis Requested (List above includes common analysis) Samples Received By RUSH-Same Day TPH GRO NY 310-13 Standard (5-7day) Air TO14A RUSH-Three Day TPH 1664 CTETPH Air STARS RUSH-Next Day PICSH-Four Day NOTE: York's Nul. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your RUSH-Two Day Air TO15 Air VPH Air TICs Methine Field Chain-of-Custody Record HNO, signature binds you to York's Std. Terms & Conditions unless superseded by written contract Semi-Vols, PretPCB-Herb Metals STPOTICE TAGM LIST NIDEPLIN lacits Meak Dissolved CTI 5 list PP13 ligit JST Below RCRAS TAL Total Samples from CT NY Purchase Order # Your Project ID 11-28 31 Drive, LIC NY CT RCP list STP #TO.P TCLP Herb A scorble Acid 8270 a 625 8082PCB TCLP Pest Meon 8081 Pest 8151Herb CIRCE Site Spec. Chlordane App. IX APPLY IS STROTTLE TYLEBNA 608 Pest STPOTUP 608 PCB Samples Relinquished By Date/Time Date/Time 7168 × × × × × × STARS list Acids Only TAGM list NJDEP list Names Co. BN Only PAH list TCL list Арр. ГХ HC ZnAc Suffolk Co. Halog.only NJDEP list Oxygenates Site Spec. TCLPlist Samples Reinquished By Kelones Volatiles TICS CTRCP list 524.2 Arom, only 502.2 Hydro Tech Env. Corp. 77 Arkay Dr. Sulte G Hauppauge Ny Invoice To: STARSHE TAGM list Print Clearly and Legibly. All Information must be complete, \$200 toll 8021B list TOLIM MTBE BTEX Samples will NOT be logged in and the turn-around time as clock will not begin until any questions by York are resolved. S. soil Other - specify(cil, ec.) drinking water Matrix Codes groundwater WW - wastewater SAME Company: Air-A. ambient air Address: Air-SV - soil vapor Name: E-mail Field Filter | (check all applicable) nstructions Preservation Matrix GW. DW. GW × × × × ā Report to: Most Samples Collected/Authorized By (Signature) Date+Time Sampled × 1/13/2015 11711 20 RESEARCH DR. STRATFORD, CT 06615 SAME FAX (203) 357-0166 Company Address: LABORATORIES, INC. × Name: E-mail: Name (printed) 15 Ocean Ave. 2nd FI Compare to NYSDEC GOS TOGS 111 YOUR Information Bklyn , NY 11225 Company: Hydro Tech Env. Corp. Sample Identification 718-636-0800 Paul I. Matli MW-5 MS/MSD (203) 325-1371 ANALYTICAL Field Blank Trip Blank MW4 MW-1 MW-2 MW-3 MW-6 MW-7 MW-8 Sy lent = same as before Comments: Address: Contact hone -mail:

<u>ATTACHMENT N</u> UST Endpoint Sampling Lab Report

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 10/20/2017

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 17J0671

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 10/20/2017

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 17J0671

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on October 16, 2017 and listed below. The project was identified as your project: #170154 11-28 31 Drive, LIC NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
17J0671-01	EP-1 (5 ft)	Soil	10/16/2017	10/16/2017
17J0671-02	EP-2 (5 ft)	Soil	10/16/2017	10/16/2017
17J0671-03	EP-3 (5 ft)	Soil	10/16/2017	10/16/2017
17J0671-04	EP-4 (5 ft)	Soil	10/16/2017	10/16/2017
17J0671-05	EP-5 (6.5 ft)	Soil	10/16/2017	10/16/2017
17J0671-06	Trip Blank	Water	10/16/2017	10/16/2017

General Notes for York Project (SDG) No.: 17J0671

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

6 Ly

Benjamin Gulizia Laboratory Director **Date:** 10/20/2017

Client Sample ID: York Sample ID: 17J0671-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 17J0671
 #170154 11-28 31 Drive, LIC NY
 Soil
 October 16, 2017 12:00 pm
 10/16/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,		SR
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,N	10/18/2017 16:13	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,	10/18/2017 16:13	SR
123-91-1	1,4-Dioxane	ND		ug/kg dry	53	110	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,N	10/18/2017 16:13	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 4 of 67

Client Sample ID: EP-1 (5 ft)

<u>York Sample ID:</u> 17J0671-01

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time e Method Prepared Analyzed	Analyst
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-1	SR
78-93-3	2-Butanone	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
67-64-1	Acetone	ND		ug/kg dry	5.3	11	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
71-43-2	Benzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
108-86-1	Bromobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-	SR
74-97-5	Bromochloromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-1	SR
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
75-25-2	Bromoform	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
74-83-9	Bromomethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
108-90-7	Chlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
75-00-3	Chloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
67-66-3	Chloroform	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
74-87-3	Chloromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-1	SR
74-95-3	Dibromomethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-1	SR
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-	SR
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 16:13 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-1	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 5 of 67

Client Sample ID: EP-1 (5 ft)

<u>York Sample ID:</u> 17J0671-01

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
75-09-2	Methylene chloride	ND		ug/kg dry	5.3	11	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
91-20-3	Naphthalene	ND		ug/kg dry	2.7	11	1	EPA 8260C Certifications:	NELAC-NY	10/18/2017 07:30 /10854-CT,NJDEP,NE	10/18/2017 16:13 ELAC-NY10854-	SR
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
95-47-6	o-Xylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IELAC-NY10854	SR
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.3	11	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IELAC-NY10854	SR
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
100-42-5	Styrene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
108-88-3	Toluene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
79-01-6	Trichloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
108-05-4	Vinyl acetate	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	NELAC-NY	10/18/2017 07:30 710854-CT,NJDEP,NE	10/18/2017 16:13 ELAC-NY10854-1	SR
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.7	5.3	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.0	16	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:13 IJDEP,NELAC-N	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			77-125							
2037-26-5	Surrogate: Toluene-d8	100 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	98.0 %			76-130							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 6 of 67

Client Sample ID: EP-1 (5 ft) York Sample ID: 17J0671-01

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

17J0671

#170154 11-28 31 Drive, LIC NY

0.0

Soil

October 16, 2017 12:00 pm

10/16/2017

Volatile Organics, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No. Parameter

Reported to Result Flag Units LOD/MDL

LOQ

Reference Method Dilution

Date/Time Analyzed Date/Time Prepared

Analyst

SR

Tentatively Identified Compounds

ug/kg dry

EPA 8260C Certifications: 10/18/2017 07:30 10/18/2017 16:13

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time lethod Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications: C	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications: N	10/19/2017 07:38 IELAC-NY10854-CT,PADEP	10/19/2017 20:46	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications: N	10/19/2017 07:38 IELAC-NY10854-CT,PADEP	10/19/2017 20:46	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications: N	10/19/2017 07:38 IELAC-NY10854-CT,PADEP	10/19/2017 20:46	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	98.4	197	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	98.4	197	2	EPA 8270D Certifications: C	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications: C	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications: C	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 NJDEP,PADEP	SR
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications: N	10/19/2017 07:38 IELAC-NY10854-CT,NJDEP,PA	10/19/2017 20:46 ADEP	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	98.4	197	2	EPA 8270D Certifications: C	10/19/2017 07:38 TDOH,NELAC-NY10854-CT,N	10/19/2017 20:46 JJDEP,PADEP	SR

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

www.YORKLAB.com

(203) 325-1371

Page 7 of 67

Client Sample ID: EP-1 (5 ft)

York Sample ID: 17J0671-01

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

CAS No). Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	98.4	197	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	98.4	197	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	98.4	197	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
83-32-9	Acenaphthene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
62-53-3	Aniline	ND		ug/kg dry	197	394	2	EPA 8270D Certifications:		0/19/2017 07:38 854-CT,NJDEP,PA	10/19/2017 20:46 DEP	SR
120-12-7	Anthracene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D	1	0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46	SR
56-55-3	Benzo(a)anthracene	88.9	J	ug/kg dry	49.3	98.4	2	EPA 8270D	1	0/19/2017 07:38	10/19/2017 20:46	SR
50-32-8	Benzo(a)pyrene	97.5	J	ug/kg dry	49.3	98.4	2	Certifications: EPA 8270D		AC-NY10854-CT, 0/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NEL	AC-NY10854-CT,	NJDEP,PADEP	
205-99-2	Benzo(b)fluoranthene	84.1	J	ug/kg dry	49.3	98.4	2	EPA 8270D	1	0/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NEL	AC-NY10854-CT,	NJDEP,PADEP	
191-24-2	Benzo(g,h,i)perylene	70.0	J	ug/kg dry	49.3	98.4	2	EPA 8270D	1	0/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NEL	AC-NY10854-CT,	NJDEP,PADEP	
207-08-9	Benzo(k)fluoranthene	97.5	J	ug/kg dry	49.3	98.4	2	EPA 8270D		0/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NEL	AC-NY10854-CT,	NJDEP,PADEP	
100-51-6	Benzyl alcohol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 854-CT,NJDEP,PA	10/19/2017 20:46 DEP	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:		0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46 IJDEP,PADEP	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	49.3	98.4	2	EPA 8270D	1	0/19/2017 07:38 .C-NY10854-CT,N	10/19/2017 20:46	SR
218-01-9	Chrysene	101		ug/kg dry	49.3	98.4	2	EPA 8270D	1	0/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NEL	AC-NY10854-CT,	NJDEP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 8 of 67

Client Sample ID: EP-1 (5 ft)

York Sample ID: 17J0671-01

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
206-44-0	Fluoranthene	158		ug/kg dry	49.3	98.4	2	EPA 8270D		10/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NE	ELAC-NY10854-CT,	NJDEP,PADEP	
86-73-7	Fluorene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,NJDEP,PA	10/19/2017 20:46 DEP	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
193-39-5	Indeno(1,2,3-cd)pyrene	66.1	J	ug/kg dry	49.3	98.4	2	EPA 8270D		10/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NE	ELAC-NY10854-CT,	NJDEP,PADEP	
78-59-1	Isophorone	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
91-20-3	Naphthalene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
85-01-8	Phenanthrene	62.1	J	ug/kg dry	49.3	98.4	2	EPA 8270D		10/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NE	ELAC-NY10854-CT,	NJDEP,PADEP	
108-95-2	Phenol	ND		ug/kg dry	49.3	98.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
129-00-0	Pyrene	143		ug/kg dry	49.3	98.4	2	EPA 8270D		10/19/2017 07:38	10/19/2017 20:46	SR
								Certifications:	CTDOH,NE	ELAC-NY10854-CT,	NJDEP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 9 of 67

Client Sample ID: EP-1 (5 ft)

York Sample ID:

17J0671-01

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

17J0671

#170154 11-28 31 Drive, LIC NY

Soil

October 16, 2017 12:00 pm

Date/Time

Date/Time

10/16/2017

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS I	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Prepared	Analyzed	Analyst
110-86-1	Pyridine	ND		ug/kg dry	197	394	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 20:46 JDEP,PADEP	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	56.4 %			20-108							
4165-62-2	Surrogate: Phenol-d5	73.5 %			23-114							
4165-60-0	Surrogate: Nitrobenzene-d5	58.6 %			22-108							
321-60-8	Surrogate: 2-Fluorobiphenyl	62.7 %			21-113							
118-79-6	Surrogate: 2,4,6-Tribromophenol	62.9 %			19-110							
1718-51-0	Surrogate: Terphenyl-d14	53.3 %			24-116							

Semi-Volatiles, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag Units	Reported to LOD/MDL L	.oq	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Tentative	ly Identified Compounds	0.00	ug/kg dry			2	EPA 8270D	10/19/2017 07:38	10/19/2017 20:46	SR

Log-in Notes: Sample Notes: Total Solids

Sample Prepared by Method: % Solids Prep

CAS No).	Parameter	Result	Flag	Units	Reported LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
solids	* % Solids		84.8		%	0.100	1	SM 2540G		10/20/2017 10:10	10/20/2017 14:23	TAJ
								Certifications:	CTDOH			

Sample Information

Client Sample ID: EP-2 (5 ft) York Sample ID: 17J0671-02

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17J0671 #170154 11-28 31 Drive, LIC NY Soil October 16, 2017 12:00 pm 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035	
	Α

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications: CT	10/18/2017 07:30 DOH,NELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications: CT	10/18/2017 07:30 DOH,NELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications: CT	10/18/2017 07:30 DOH,NELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

ClientServices@

Page 10 of 67

Client Sample ID: EP-2 (5 ft)

York Sample ID: 17

17J0671-02

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

<u>Volatile Organics</u>, **8260** <u>List</u> Sample Prepared by Method: EPA 5035A **Log-in Notes:**

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47 NJDEP,NELAC-N	SR
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47 NJDEP,NELAC-N	SR
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47 NJDEP,NELAC-N	SR
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47 NJDEP,NELAC-N	SR
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	NELAC-NY	10/18/2017 07:30 10854-CT,NJDEP,N	10/18/2017 16:47 ELAC-NY10854-	SR
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 10854-CT,NJDEP,N	10/18/2017 16:47	SR
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 10854-CT,NJDEP,N	10/18/2017 16:47	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 10854-CT,NJDEP,N	10/18/2017 16:47	SR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47	SR
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47	SR
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,1	10/18/2017 16:47	SR
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,1	10/18/2017 16:47	SR
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,1	10/18/2017 16:47	SR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,1	10/18/2017 16:47	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,1	10/18/2017 16:47	SR
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 10854-CT,NJDEP,N	10/18/2017 16:47	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,1	10/18/2017 16:47	SR
123-91-1	1,4-Dioxane	ND		ug/kg dry	40	81	1	EPA 8260C Certifications:		10/18/2017 07:30 10854-CT,NJDEP,N	10/18/2017 16:47	SR
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 10854-CT,NJDEP,N	10/18/2017 16:47	SR
78-93-3	2-Butanone	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,1	10/18/2017 16:47	SR
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47	SR
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:		10/18/2017 07:30 LAC-NY10854-CT,	10/18/2017 16:47	SR
								Certifications.	CIDOII,NE	L/10-14 1 1005-1-C 1,1	WDLI,NELAC-N	

Client Sample ID: EP-2 (5 ft)

York Sample ID: 17J0671-02

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5035A				·							
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/kg dry	4.0	8.1	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 IJDEP,NELAC-N	SR
71-43-2	Benzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 IJDEP,NELAC-N	SR
108-86-1	Bromobenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	NELAC-N	10/18/2017 07:30 Y 10854-CT,NJDEP,NI	10/18/2017 16:47 ELAC-NY10854-	SR
74-97-5	Bromochloromethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	NELAC-N	10/18/2017 07:30 Y 10854-CT,NJDEP,NI	10/18/2017 16:47 ELAC-NY10854-	SR
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 IJDEP,NELAC-N	SR
75-25-2	Bromoform	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
74-83-9	Bromomethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
108-90-7	Chlorobenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
75-00-3	Chloroethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
67-66-3	Chloroform	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
74-87-3	Chloromethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JJDEP,NELAC-N	SR
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	NELAC-N	10/18/2017 07:30 Y 10854-CT,NJDEP,NI	10/18/2017 16:47 ELAC-NY10854-	SR
74-95-3	Dibromomethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	NELAC-N	10/18/2017 07:30 Y 10854-CT,NJDEP,NI	10/18/2017 16:47 ELAC-NY10854-	SR
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	NELAC-N	10/18/2017 07:30 Y 10854-CT,NJDEP,NI	10/18/2017 16:47 ELAC-NY10854-	SR
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 IJDEP,NELAC-N	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	NELAC-N	10/18/2017 07:30 Y 10854-CT,NJDEP,NI	10/18/2017 16:47 ELAC-NY10854-	SR
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 IJDEP,NELAC-N	SR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 IJDEP,NELAC-N	SR
75-09-2	Methylene chloride	ND		ug/kg dry	4.0	8.1	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 IJDEP,NELAC-N	SR
91-20-3	Naphthalene	ND		ug/kg dry	2.0	8.1	1	EPA 8260C Certifications:	NELAC-NY	10/18/2017 07:30 Y10854-CT,NJDEP,NI	10/18/2017 16:47 ELAC-NY10854-	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 12 of 67

Client Sample ID: EP-2 (5 ft)

York Sample ID:

17J0671-02

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil <u>Collection Date/Time</u> October 16, 2017 12:00 pm Date Received 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
95-47-6	o-Xylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 ELAC-NY10854	SR
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.0	8.1	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 ELAC-NY10854	SR
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
100-42-5	Styrene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
108-88-3	Toluene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
79-01-6	Trichloroethylene	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
108-05-4	Vinyl acetate	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	NELAC-NY	10/18/2017 07:30 /10854-CT,NJDEP,NE	10/18/2017 16:47 LAC-NY10854-0	SR
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.0	4.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
1330-20-7	Xylenes, Total	ND		ug/kg dry	6.1	12	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 16:47 JDEP,NELAC-N	SR
	Surrogate Recoveries	Result		Acce	ptance Range	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			77-125							
2037-26-5	Surrogate: Toluene-d8	102 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	104 %			76-130							

Volatile Organics, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL			Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0	υ	ug/kg dry			1	EPA 8260C Certifications:	10/18/2017 07:30	10/18/2017 16:47	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 13 of 67

Client Sample ID: EP-2 (5 ft)

York Sample ID: 17J0671-02

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,PADEP	10/19/2017 21:34	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,PADEP	10/19/2017 21:34	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,PADEP	10/19/2017 21:34	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	95.3	190	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	95.3	190	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,NJDEP,PA	10/19/2017 21:34 DEP	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	95.3	190	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	95.3	190	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JDEP,PADEP	SR

Client Sample ID: EP-2 (5 ft)

York Sample ID: 17J0671-02

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY <u>Matrix</u> Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-47-8	4-Chloroaniline	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	95.3	190	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JJDEP,PADEP	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	95.3	190	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JJDEP,PADEP	SR
83-32-9	Acenaphthene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
62-53-3	Aniline	ND		ug/kg dry	191	382	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,NJDEP,PA	10/19/2017 21:34 DEP	SR
120-12-7	Anthracene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
56-55-3	Benzo(a)anthracene	109		ug/kg dry	47.8	95.3	2	EPA 8270D		10/19/2017 07:38	10/19/2017 21:34	SR
								Certifications:	CTDOH,NI	ELAC-NY10854-CT,	NJDEP,PADEP	
50-32-8	Benzo(a)pyrene	93.7	J	ug/kg dry	47.8	95.3	2	EPA 8270D		10/19/2017 07:38	10/19/2017 21:34	SR
								Certifications:	CTDOH,NI	ELAC-NY10854-CT,	NJDEP,PADEP	
205-99-2	Benzo(b)fluoranthene	76.2	J	ug/kg dry	47.8	95.3	2	EPA 8270D		10/19/2017 07:38	10/19/2017 21:34	SR
								Certifications:	CTDOH,NI	ELAC-NY10854-CT,	NJDEP,PADEP	
191-24-2	Benzo(g,h,i)perylene	60.9	J	ug/kg dry	47.8	95.3	2	EPA 8270D		10/19/2017 07:38	10/19/2017 21:34	SR
	37 7/1 0	00.5	· ·		.,		_	Certifications:	CTDOH,NI	ELAC-NY10854-CT,		
207-08-9	Benzo(k)fluoranthene	90.6	J	ug/kg dry	47.8	95.3	2	EPA 8270D	,	10/19/2017 07:38	10/19/2017 21:34	SR
20, 00)	20.00(1).1.101.1.1.101.0	30.0	3	ug ng urj	47.0	75.5	2	Certifications:	CTDOH.NI	ELAC-NY10854-CT,		510
100 51 6	Devel also hal	ND		no/Iro dan	47.8	05.2	2					CD
100-51-6	Benzyl alcohol	ND		ug/kg dry		95.3	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,NJDEP,PA	10/19/2017 21:34 DEP	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
218-01-9	Chrysene	114		ug/kg dry	47.8	95.3	2	EPA 8270D		10/19/2017 07:38	10/19/2017 21:34	SR
								Certifications:	CTDOH,NI	ELAC-NY10854-CT,	NJDEP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 JJDEP,PADEP	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 21:34	SR
									. ,		*	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 15 of 67

Client Sample ID: EP-2 (5 ft)

York Sample ID: 17

17J0671-02

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No	o. Parameter	Result 1	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
131-11-3	Dimethyl phthalate	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
206-44-0	Fluoranthene	240		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,N	10/19/2017 07:38 ELAC-NY10854-CT,	10/19/2017 21:34 NJDEP,PADEP	SR
86-73-7	Fluorene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 /10854-CT,NJDEP,PA	10/19/2017 21:34 DEP	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
193-39-5	Indeno(1,2,3-cd)pyrene	54.8	J	ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH.N	10/19/2017 07:38 ELAC-NY10854-CT,	10/19/2017 21:34 NJDEP.PADEP	SR
78-59-1	Isophorone	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:		10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34	SR
91-20-3	Naphthalene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
35-01-8	Phenanthrene	171		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,N	10/19/2017 07:38 ELAC-NY10854-CT,I	10/19/2017 21:34 NJDEP,PADEP	SR
108-95-2	Phenol	ND		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 21:34 IJDEP,PADEP	SR
129-00-0	Pyrene	201		ug/kg dry	47.8	95.3	2	EPA 8270D Certifications:	CTDOH N	10/19/2017 07:38 ELAC-NY10854-CT,	10/19/2017 21:34	SR
110-86-1	Pyridine	ND		ug/kg dry	191	382	2	EPA 8270D Certifications:			10/19/2017 21:34	SR
	Surrogate Recoveries	Result		Acce	otance Rang	e			011,111			
367-12-4	Surrogate: 2-Fluorophenol	63.3 %			20-108							
1165-62-2	Surrogate: Phenol-d5	78.8 %			23-114							
	Surrogate: Nitrobenzene-d5	67.0 %			22-108							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 16 of 67

EP-2 (5 ft) **Client Sample ID:**

York Sample ID:

17J0671-02

York Project (SDG) No.

Client Project ID

Result

Result

Result

87.5

0.00

Matrix

Collection Date/Time

Date Received

17J0671

#170154 11-28 31 Drive, LIC NY

Soil

October 16, 2017 12:00 pm

10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

LOO

LOQ

Reported to

0.100

Sample Notes:

Date/Time Date/Time

CAS No. Parameter

> 69.4 % Surrogate: 2-Fluorobiphenyl Surrogate: 2,4,6-Tribromophenol 60.7 %

21-113 19-110

Reported to

LOD/MDL

Reference Method

Prepared

Analyzed Analyst

118-79-6 1718-51-0

321-60-8

Surrogate: Terphenyl-d14

Semi-Volatiles, Tentatively Identified Cmpds.

52.2 % 24-116

Units

Flag

Log-in Notes: Sample Notes:

Dilution

Sample Prepared by Method: EPA 3550C

Parameter

Reported to Units LOD/MDL Dilution Reference Method

Date/Time Prepared Date/Time Analyzed Analyst

CAS No.

Tentatively Identified Compounds

Flag ug/kg dry

Flag

Units

%

EPA 8270D Certifications:

Dilution

10/19/2017 07:38

Date/Time

10/20/2017 10:10

Prepared

10/19/2017 21:34 SR

Log-in Notes:

Sample Notes:

Total Solids

solids

Sample Prepared by Method: % Solids Prep

Date/Time

10/20/2017 14:23

Analyzed Analyst

CAS No. Parameter * % Solids

Certifications: CTDOH

SM 2540G

Reference Method

Sample Information

EP-3 (5 ft) **Client Sample ID:**

York Sample ID:

17J0671-03

TAJ

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil

Collection Date/Time October 16, 2017 12:00 pm Date Received 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 17 of 67

(203) 325-1371

FAX (203) 357-0166

Client Sample ID: EP-3 (5 ft) York Sample ID: 17J0671-03

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil

Collection Date/Time October 16, 2017 12:00 pm Date Received 10/16/2017

Volatile Organics, 8260 List Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Date/Time Prepared	Date/Time Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 IJDEP,NELAC-N	SR
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 54-CT,NJDEP,NI	10/18/2017 19:01 ELAC-NY10854-	SR
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 54-CT,NJDEP,NI	10/18/2017 19:01 ELAC-NY10854-	SR
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 54-CT,NJDEP,NI	10/18/2017 19:01 ELAC-NY10854-	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 54-CT,NJDEP,NI	10/18/2017 19:01 ELAC-NY10854-	SR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 IJDEP,NELAC-N	SR
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JJDEP,NELAC-N	SR
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 IJDEP,NELAC-N	SR
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 54-CT,NJDEP,NI	10/18/2017 19:01 ELAC-NY10854-	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
123-91-1	1,4-Dioxane	ND		ug/kg dry	34	68	1	EPA 8260C Certifications:	/18/2017 07:30 54-CT,NJDEP,NI	10/18/2017 19:01 ELAC-NY10854-	SR
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 54-CT,NJDEP,NI	10/18/2017 19:01 ELAC-NY10854-	SR
78-93-3	2-Butanone	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
95-49-8	2-Chlorotoluene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
106-43-4	4-Chlorotoluene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 IJDEP,NELAC-N	SR
67-64-1	Acetone	ND		ug/kg dry	3.4	6.8	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 IJDEP,NELAC-N	SR
71-43-2	Benzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 19:01 IJDEP,NELAC-N	SR
108-86-1	Bromobenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	/18/2017 07:30 54-CT,NJDEP,NE	10/18/2017 19:01 ELAC-NY10854-	SR

Client Sample ID: EP-3 (5 ft)

York Sample ID: 17J0671-03

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
74-97-5	Bromochloromethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NELA	10/18/2017 19:01 AC-NY10854-	SR
75-27-4	Bromodichloromethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
75-25-2	Bromoform	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
74-83-9	Bromomethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
56-23-5	Carbon tetrachloride	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
108-90-7	Chlorobenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
75-00-3	Chloroethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
67-66-3	Chloroform	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
74-87-3	Chloromethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
124-48-1	Dibromochloromethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NELA	10/18/2017 19:01 AC-NY10854-	SR
74-95-3	Dibromomethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NELA	10/18/2017 19:01 AC-NY10854-	SR
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NELA	10/18/2017 19:01 AC-NY10854-	SR
100-41-4	Ethyl Benzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NELA	10/18/2017 19:01 AC-NY10854-	SR
98-82-8	Isopropylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
75-09-2	Methylene chloride	ND		ug/kg dry	3.4	6.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
91-20-3	Naphthalene	ND		ug/kg dry	1.7	6.8	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NELA	10/18/2017 19:01 AC-NY10854-	SR
104-51-8	n-Butylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
103-65-1	n-Propylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NJE	10/18/2017 19:01 DEP,NELAC-N	SR
95-47-6	o-Xylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,NEI	10/18/2017 19:01 AC-NY10854	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

lientServices@ Page 19 of 67

FAX (203) 357-0166 ClientServices@

Client Sample ID: EP-3 (5 ft) York Sample ID:

17J0671-03

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil

Collection Date/Time October 16, 2017 12:00 pm Date Received 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	3.4	6.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 ELAC-NY10854	SR
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
135-98-8	sec-Butylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
100-42-5	Styrene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
98-06-6	tert-Butylbenzene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
127-18-4	Tetrachloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
108-88-3	Toluene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
79-01-6	Trichloroethylene	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
108-05-4	Vinyl acetate	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	NELAC-NY	10/18/2017 07:30 // 10854-CT,NJDEP,NE	10/18/2017 19:01 ELAC-NY10854-1	SR
75-01-4	Vinyl Chloride	ND		ug/kg dry	1.7	3.4	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
1330-20-7	Xylenes, Total	ND		ug/kg dry	5.1	10	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:01 JDEP,NELAC-N	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	110 %			77-125							
2037-26-5	Surrogate: Toluene-d8	100 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	94.5 %			76-130							

Volatile Organics, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Tentative	ely Identified Compounds	0.0		ug/kg dry			1	EPA 8260C	10/18/2017 07:30	10/18/2017 19:01	SR

Semi-Volatiles, 8270 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

120 RESEARCH DRIVE www.YORKLAB.com (203) 325-1371

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 20 of 67

Client Sample ID: EP-3 (5 ft)

<u>York Sample ID:</u> 17J0671-03

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
20-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,PADEP	10/19/2017 18:20	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,PADEP	10/19/2017 18:20	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,PADEP	10/19/2017 18:20	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
38-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	96.4	193	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
21-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR
506-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR
01-58-7	2-Chloronaphthalene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
01-57-6	2-Methylnaphthalene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	96.4	193	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20 JDEP,PADEP	SR
55794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR
01-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 10854-CT,NJDEP,PA	10/19/2017 18:20 DEP	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	96.4	193	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	96.4	193	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR
01-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 LAC-NY10854-CT,N	10/19/2017 18:20	SR

Client Sample ID: EP-3 (5 ft)

York Sample ID: 17J0671-03

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time e Method Prepared	Date/Time Analyzed	Analyst
106-47-8	4-Chloroaniline	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20 DEP,PADEP	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20 DEP,PADEP	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	96.4	193	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20 DEP,PADEP	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	96.4	193	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20 DEP,PADEP	SR
83-32-9	Acenaphthene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20 DEP,PADEP	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20 DEP,PADEP	SR
62-53-3	Aniline	ND		ug/kg dry	193	386	2	EPA 8270D Certifications:	10/19/2017 07:38 NELAC-NY10854-CT,NJDEP,PAI	10/19/2017 18:20 DEP	SR
120-12-7	Anthracene	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20 DEP,PADEP	SR
56-55-3	Benzo(a)anthracene	219		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 18:20 IDEP.PADEP	SR
50-32-8	Benzo(a)pyrene	224		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 18:20	SR
205-99-2	Benzo(b)fluoranthene	204		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38	10/19/2017 18:20	SR
191-24-2	Benzo(g,h,i)perylene	156		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NELAC-NY10854-CT,N 10/19/2017 07:38	10/19/2017 18:20	SR
207-08-9	Benzo(k)fluoranthene	222		ug/kg dry	48.3	96.4	2	EPA 8270D	CTDOH,NELAC-NY10854-CT,N 10/19/2017 07:38	10/19/2017 18:20	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	48.3	96.4	2	Certifications:	CTDOH,NELAC-NY10854-CT,N 10/19/2017 07:38	10/19/2017 18:20	SR
35-68-7	Benzyl butyl phthalate	ND		ug/kg dry	48.3	96.4	2	Certifications: EPA 8270D Certifications:	NELAC-NY10854-CT,NJDEP,PAI 10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20	SR
11-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20	SR
08-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,NJ	10/19/2017 18:20	SR
218-01-9	Chrysene	266		ug/kg dry	48.3	96.4	2	EPA 8270D	10/19/2017 07:38	10/19/2017 18:20	SR
								Certifications:	CTDOH,NELAC-NY10854-CT,N		
3-70-3	Dibenzo(a,h)anthracene	50.9	J	ug/kg dry	48.3	96.4	2	EPA 8270D	10/19/2017 07:38	10/19/2017 18:20	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	48.3	96.4	2	Certifications: EPA 8270D	CTDOH,NELAC-NY10854-CT,N 10/19/2017 07:38	10/19/2017 18:20	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	48.3	96.4	2	Certifications: EPA 8270D	CTDOH,NELAC-NY10854-CT,NJ 10/19/2017 07:38	DEP,PADEP 10/19/2017 18:20	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 22 of 67

Client Sample ID: EP-3 (5 ft)

York Sample ID:

17J0671-03

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No	o. Parameter	Result	Flag Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
131-11-3	Dimethyl phthalate	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
84-74-2	Di-n-butyl phthalate	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
117-84-0	Di-n-octyl phthalate	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
206-44-0	Fluoranthene	350	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH.N	10/19/2017 07:38 ELAC-NY10854-CT,1	10/19/2017 18:20 NJDEP.PADEP	SR
86-73-7	Fluorene	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 / 10854-CT,NJDEP,PA	10/19/2017 18:20	SR
118-74-1	Hexachlorobenzene	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20	SR
87-68-3	Hexachlorobutadiene	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:		10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20	SR
77-47-4	Hexachlorocyclopentadiene	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
67-72-1	Hexachloroethane	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
193-39-5	Indeno(1,2,3-cd)pyrene	143	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,N	10/19/2017 07:38 ELAC-NY10854-CT,I	10/19/2017 18:20 NJDEP,PADEP	SR
78-59-1	Isophorone	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
91-20-3	Naphthalene	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
98-95-3	Nitrobenzene	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
62-75-9	N-Nitrosodimethylamine	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
621-64-7	N-nitroso-di-n-propylamine	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
86-30-6	N-Nitrosodiphenylamine	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
87-86-5	Pentachlorophenol	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
85-01-8	Phenanthrene	143	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,N	10/19/2017 07:38 ELAC-NY10854-CT,1	10/19/2017 18:20 NJDEP,PADEP	SR
108-95-2	Phenol	ND	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20 IJDEP,PADEP	SR
129-00-0	Pyrene	303	ug/kg dry	48.3	96.4	2	EPA 8270D Certifications:	CTDOH,N	10/19/2017 07:38 ELAC-NY10854-CT,1	10/19/2017 18:20 NJDEP,PADEP	SR
110-86-1	Pyridine	ND	ug/kg dry	193	386	2	EPA 8270D Certifications:		10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 18:20	SR
	Surrogate Recoveries	Result	Acce	eptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	48.0 %		20-108							
4165-62-2	Surrogate: Phenol-d5	60.8 %		23-114							
4165-60-0	Surrogate: Nitrobenzene-d5	50.3 %		22-108							
120 RESEARCH DRIVE		STRATEORD CT 0	6615	_	131	2-02 89th A	WENLIE		RICHMOND HII	I NV 11/118	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 23 of 67

EP-3 (5 ft) **Client Sample ID:**

York Sample ID:

17J0671-03

York Project (SDG) No. 17J0671

Client Project ID

Matrix

Collection Date/Time

Date Received

#170154 11-28 31 Drive, LIC NY

Soil

October 16, 2017 12:00 pm

10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

LOO

LOQ

Reported to

ĹOQ

0.100

Sample Notes:

Date/Time Date/Time

CAS No. Parameter 321-60-8 Surrogate: 2-Fluorobiphenyl

Result 55.6 %

LOD/MDL 21-113

Reported to

Dilution

Reference Method Prepared Analyzed Analyst

118-79-6 1718-51-0 Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-d14

51.7 % 44.6 %

Flag

Units

Units

Units

%

19-110 24-116

Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

Result Flag

Result

86.5

Reported to LOD/MDL

Dilution Reference Method Date/Time Prepared

Date/Time

10/20/2017 10:10

Prepared

Date/Time Analyzed

Analyst

Tentatively Identified Compounds

Parameter

0.00 ug/kg dry

Flag

EPA 8270D Certifications:

SM 2540G

Certifications:

10/19/2017 07:38 10/19/2017 18:20 SR

Total Solids

CAS No.

Log-in Notes:

Sample Notes:

CTDOH

Reference Method

10/20/2017 14:23

Date/Time

Analyzed

10/18/2017 19:35

10/18/2017 19:35

10/18/2017 19:35

10/18/2017 19:35

10/18/2017 19:35

10/18/2017 19:35

Date/Time Analyzed Analyst

Sample Prepared by Method: % Solids Prep

CAS	No.	Parameter	
solids	* % Solids		

Sample Information

EP-4 (5 ft)

Flag

Units

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

Dilution

York Sample ID:

Date/Time

10/18/2017 07:30

10/18/2017 07:30

CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N

CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N 10/18/2017 07:30

CTDOH.NELAC-NY10854-CT.NJDEP.NELAC-N 10/18/2017 07:30

CTDOH.NELAC-NY10854-CT.NJDEP.NELAC-N

CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N

CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N

10/18/2017 07:30

10/18/2017 07:30

Prepared

17J0671-04

TAJ

York Project (SDG) No. 17J0671

Client Sample ID:

Parameter

1,1,2-Trichloroethane

1,1-Dichloroethane

Client Project ID #170154 11-28 31 Drive, LIC NY

Result

ND

ND

ND

ND

ND

ND

Matrix Soil

Dilution

Collection Date/Time October 16, 2017 12:00 pm Date Received 10/16/2017

Analyst

SR

SR

SR

SR

SR

SR

Volatile Organics, 8260 List Sample Prepared by Method: EPA 5035A

Log-in Notes:

LOO

4.8

4.8

4.8

Reported to

LOD/MDL

2.4

2.4

2.4

Sample Notes:

Reference Method

EPA 8260C

Certifications

EPA 8260C

EPA 8260C

Certifications

EPA 8260C

Certifications:

EPA 8260C

Certifications:

EPA 8260C

Certifications:

Certifications:

630-20-6	1,1,1,2-Tetrachloroethane
71-55-6	1,1,1-Trichloroethane
79-34-5	1,1,2,2-Tetrachloroethane
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)

79-00-5

75-34-3

CAS No.

STRATFORD, CT 06615

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 24 of 67

120 RESEARCH DRIVE www.YORKLAB.com

(203) 325-1371

Client Sample ID: EP-4 (5 ft)

<u>York Sample ID:</u> 17J0671-04

York Project (SDG) No. 17J0671 <u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

<u>Volatile Organics</u>, **8260** <u>List</u> Sample Prepared by Method: EPA 5035A **Log-in Notes:**

Sample Notes:

CAS No	o. Parameter	Result F	lag Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35 NJDEP,NELAC-N	SR
563-58-6	1,1-Dichloropropylene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NI	10/18/2017 19:35 ELAC-NY10854-1	SR
87-61-6	1,2,3-Trichlorobenzene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NI	10/18/2017 19:35 ELAC-NY10854-1	SR
96-18-4	1,2,3-Trichloropropane	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NI	10/18/2017 19:35 ELAC-NY10854-0	SR
120-82-1	1,2,4-Trichlorobenzene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NI	10/18/2017 19:35 ELAC-NY10854-0	SR
95-63-6	1,2,4-Trimethylbenzene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35 JJDEP,NELAC-N	SR
96-12-8	1,2-Dibromo-3-chloropropane	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
106-93-4	1,2-Dibromoethane	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
95-50-1	1,2-Dichlorobenzene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
107-06-2	1,2-Dichloroethane	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
78-87-5	1,2-Dichloropropane	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
108-67-8	1,3,5-Trimethylbenzene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
541-73-1	1,3-Dichlorobenzene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
142-28-9	1,3-Dichloropropane	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NI	10/18/2017 19:35	SR
106-46-7	1,4-Dichlorobenzene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
123-91-1	1,4-Dioxane	ND	ug/kg dry	48	97	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NI	10/18/2017 19:35	SR
594-20-7	2,2-Dichloropropane	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 NELAC-NY10854-CT,NJDEP,NI	10/18/2017 19:35	SR
78-93-3	2-Butanone	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
95-49-8	2-Chlorotoluene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
106-43-4	4-Chlorotoluene	ND	ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 CTDOH,NELAC-NY10854-CT,N	10/18/2017 19:35	SR
67-64-1	Acetone	ND	ug/kg dry	4.8	9.7	1	EPA 8260C	10/18/2017 07:30	10/18/2017 19:35	SR
71-43-2	Benzene	ND	ug/kg dry	2.4	4.8	1	Certifications:	CTDOH,NELAC-NY10854-CT,N 10/18/2017 07:30	10/18/2017 19:35	SR
108-86-1	Bromobenzene	ND	ug/kg dry	2.4	4.8	1	Certifications:	CTDOH,NELAC-NY10854-CT,N 10/18/2017 07:30	10/18/2017 19:35	SR
							Certifications:	NELAC-NY10854-CT,NJDEP,NI	±LAC-NY10854-	

Client Sample ID: EP-4 (5 ft)

York Sample ID: 17J0671-04

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time e Method Prepared Analyzed	Analyst
74-97-5	Bromochloromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-	SR
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
75-25-2	Bromoform	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
74-83-9	Bromomethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
108-90-7	Chlorobenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
75-00-3	Chloroethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
67-66-3	Chloroform	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
74-87-3	Chloromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-	SR
74-95-3	Dibromomethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-	SR
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-	SR
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-	SR
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
75-09-2	Methylene chloride	ND		ug/kg dry	4.8	9.7	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
91-20-3	Naphthalene	ND		ug/kg dry	2.4	9.7	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 NELAC-NY10854-CT,NJDEP,NELAC-NY10854-	SR
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N	SR
95-47-6	o-Xylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	10/18/2017 07:30 10/18/2017 19:35 CTDOH,NELAC-NY10854-CT,NELAC-NY10854	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 67

Client Sample ID: EP-4 (5 ft)

York Sample ID:

17J0671-04

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil <u>Collection Date/Time</u> October 16, 2017 12:00 pm Date Received 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.8	9.7	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 ELAC-NY10854	SR
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
100-42-5	Styrene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
108-88-3	Toluene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
79-01-6	Trichloroethylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
108-05-4	Vinyl acetate	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	NELAC-NY	10/18/2017 07:30 /10854-CT,NJDEP,NE	10/18/2017 19:35 LAC-NY10854-	SR
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.4	4.8	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.3	15	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 19:35 JDEP,NELAC-N	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			77-125							
2037-26-5	Surrogate: Toluene-d8	105 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	98.1 %			76-130							

Volatile Organics, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter Result Flag Units Reported to LOD/MDL LOQ Dilution Reference Method		Date/Time Prepared	Date/Time Analyzed	Analyst						
Tentatively Identified Compounds		0.0		ug/kg dry			1	EPA 8260C	10/18/2017 07:30	10/18/2017 19:35	SR

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

					Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Pa

Page 27 of 67

Client Sample ID: EP-4 (5 ft)

<u>York Sample ID:</u> 17J0671-04

York Project (SDG) No. 17J0671 Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	NELAC-NY108	/19/2017 07:38 54-CT,PADEP	10/19/2017 22:23	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	NELAC-NY108	/19/2017 07:38 54-CT,PADEP	10/19/2017 22:23	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	NELAC-NY108	/19/2017 07:38 54-CT,PADEP	10/19/2017 22:23	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:		/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:		//19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:		//19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	96.5	193	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
38-74-4	2-Nitroaniline	ND		ug/kg dry	96.5	193	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:)/19/2017 07:38 54-CT,NJDEP,PA	10/19/2017 22:23 DEP	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	96.5	193	2	EPA 8270D Certifications:		//19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	96.5	193	2	EPA 8270D Certifications:		//19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:		//19/2017 07:38 C-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:		/19/2017 07:38	10/19/2017 22:23	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 28 of 67

Client Sample ID: EP-4 (5 ft)

York Sample ID: 1

17J0671-04

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
106-47-8	4-Chloroaniline	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	96.5	193	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	96.5	193	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
83-32-9	Acenaphthene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
62-53-3	Aniline	ND		ug/kg dry	193	386	2	EPA 8270D Certifications:	10/19/2017 07:38 NELAC-NY10854-CT,NJDEP,Pa	10/19/2017 22:23 ADEP	SR
120-12-7	Anthracene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
56-55-3	Benzo(a)anthracene	57.8	J	ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT	10/19/2017 22:23 NJDEP.PADEP	SR
50-32-8	Benzo(a)pyrene	55.5	J	ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT.	10/19/2017 22:23	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23	SR
207-08-9	Benzo(k)fluoranthene	54.0	J	ug/kg dry	48.3	96.5	2	EPA 8270D	10/19/2017 07:38	10/19/2017 22:23	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	48.3	96.5	2	Certifications: EPA 8270D	CTDOH,NELAC-NY10854-CT 10/19/2017 07:38	10/19/2017 22:23	SR
100 21 0	Delizyi dicolloi	ND		ug ng un	10.5	70.0	-	Certifications:	NELAC-NY10854-CT,NJDEP,P		510
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
218-01-9	Chrysene	69.4	J	ug/kg dry	48.3	96.5	2	EPA 8270D	10/19/2017 07:38	10/19/2017 22:23	SR
								Certifications:	CTDOH,NELAC-NY10854-CT	NJDEP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP,PADEP	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,	10/19/2017 22:23 NJDEP.PADEP	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 29 of 67

Client Sample ID: EP-4 (5 ft)

York Sample ID: 17J0671-04

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil

Collection Date/Time October 16, 2017 12:00 pm Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
131-11-3	Dimethyl phthalate	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
206-44-0	Fluoranthene	116		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH.N	10/19/2017 07:38 ELAC-NY10854-CT,	10/19/2017 22:23 NJDEP.PADEP	SR
86-73-7	Fluorene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:		10/19/2017 07:38 / 10854-CT,NJDEP,PA	10/19/2017 22:23	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:		10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
78-59-1	Isophorone	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
91-20-3	Naphthalene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
85-01-8	Phenanthrene	57.8	J	ug/kg dry	48.3	96.5	2	EPA 8270D		10/19/2017 07:38	10/19/2017 22:23	SR
								Certifications:	CTDOH,N	ELAC-NY10854-CT,	NJDEP,PADEP	
108-95-2	Phenol	ND		ug/kg dry	48.3	96.5	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
129-00-0	Pyrene	103		ug/kg dry	48.3	96.5	2	EPA 8270D		10/19/2017 07:38	10/19/2017 22:23	SR
								Certifications:	CTDOH,N	ELAC-NY10854-CT,		
110-86-1	Pyridine	ND		ug/kg dry	193	386	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 22:23 IJDEP,PADEP	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	44.3 %			20-108							
4165-62-2	Surrogate: Phenol-d5	57.4 %			23-114							
4165-60-0	Surrogate: Nitrobenzene-d5	46.1 %			22-108							
120 RES	EARCH DRIVE	STRATEORD CT	06615			133	2-02 89th 4	WENLIE		RICHMOND HII	I NY 11418	

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 30 of 67

www.YORKLAB.com (203) 325-1371 ClientServices@

EP-4 (5 ft) **Client Sample ID:**

York Sample ID:

17J0671-04

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil

Collection Date/Time October 16, 2017 12:00 pm Date Received

10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

LOO

Sample Notes:

Reference Method

Date/Time Date/Time Prepared

Analyzed

321-60-8 Surrogate: 2-Fluorobiphenyl

CAS No.

48.9 % Surrogate: 2,4,6-Tribromophenol 43.1 % 21-113 19-110 24-116

Reported to

LOD/MDL

Analyst

118-79-6 1718-51-0

Surrogate: Terphenyl-d14

Parameter

37.1 %

Flag

Units

Units

Units

%

Semi-Volatiles, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

Result

0.00

Result

86.5

Result

Reported to LOD/MDL LOQ

Dilution Reference Method Date/Time Prepared

Date/Time Analyzed Analyst

CAS No.

Tentatively Identified Compounds

Parameter

Flag ug/kg dry

Flag

EPA 8270D Certifications:

Dilution

Dilution

10/19/2017 07:38

Date/Time

10/20/2017 10:10

Prepared

10/19/2017 22:23 SR

Total Solids

Log-in Notes:

Reported to

0.100

Sample Notes:

CTDOH

Reference Method

10/20/2017 14:23

Date/Time Analyzed Analyst

Sample Prepared by Method: % Solids Prep

CAS	No.	Paramete
solids	* % Solids	

Sample Information

SM 2540G

Certifications:

York Sample ID:

17J0671-05

TAJ

Client Sample ID:

EP-5 (6.5 ft)

Client Project ID

Matrix

Collection Date/Time

York Project (SDG) No. 17J0671

#170154 11-28 31 Drive, LIC NY

Soil

October 16, 2017 12:00 pm

Date Received 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 LAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 31 of 67

www.YORKLAB.com

(203) 325-1371

Client Sample ID: EP-5 (6.5 ft) York Sample ID: 17J0671-05

York Project (SDG) No. Client Project ID 17J0671 #170154 11-28 31 Drive, LIC NY Matrix Collection Date/Time Soil October 16, 2017 12:00 pm Date Received 10/16/2017

Volatile Organics, 8260 List Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		Date/Time Prepared	Date/Time Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10, CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY108	/18/2017 07:30 54-CT,NJDEP,NE	10/18/2017 20:09 LAC-NY10854-	SR
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY108	/18/2017 07:30 54-CT,NJDEP,NE	10/18/2017 20:09 LAC-NY10854-	SR
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY108	/18/2017 07:30 54-CT,NJDEP,NE	10/18/2017 20:09 LAC-NY10854-	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10 NELAC-NY108	/18/2017 07:30 54-CT,NJDEP,NE	10/18/2017 20:09 LAC-NY10854-	SR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10 NELAC-NY108	/18/2017 07:30 54-CT,NJDEP,NE	10/18/2017 20:09 LAC-NY10854-	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
123-91-1	1,4-Dioxane	ND		ug/kg dry	50	99	1	EPA 8260C Certifications:	10 NELAC-NY108	/18/2017 07:30 54-CT,NJDEP,NE	10/18/2017 20:09 LAC-NY10854-	SR
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10 NELAC-NY108	/18/2017 07:30 54-CT,NJDEP,NE	10/18/2017 20:09 LAC-NY10854-	SR
78-93-3	2-Butanone	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
95-49-8	2-Chlorotoluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10, CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
106-43-4	4-Chlorotoluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	10, CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
67-64-1	Acetone	ND		ug/kg dry	5.0	9.9	1	EPA 8260C Certifications:	10. CTDOH,NELAC	/18/2017 07:30 C-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
71-43-2	Benzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		/18/2017 07:30	10/18/2017 20:09	SR
108-86-1	Bromobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		/18/2017 07:30	10/18/2017 20:09	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 67

Client Sample ID: EP-5 (6.5 ft)

York Sample ID: 17

17J0671-05

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

<u>Volatile Organics</u>, **8260** <u>List</u> Sample Prepared by Method: EPA 5035A **Log-in Notes:**

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74-97-5	Bromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 0854-CT,NJDEP,NE	10/18/2017 20:09 LAC-NY10854-	SR
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
75-25-2	Bromoform	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
74-83-9	Bromomethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
108-90-7	Chlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
75-00-3	Chloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
67-66-3	Chloroform	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
74-87-3	Chloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 0854-CT,NJDEP,NE	10/18/2017 20:09	SR
74-95-3	Dibromomethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 0854-CT,NJDEP,NE	10/18/2017 20:09	SR
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 0854-CT,NJDEP,NE	10/18/2017 20:09	SR
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 0854-CT,NJDEP,NE	10/18/2017 20:09	SR
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
75-09-2	Methylene chloride	ND		ug/kg dry	5.0	9.9	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
91-20-3	Naphthalene	ND		ug/kg dry	2.5	9.9	1	EPA 8260C Certifications:		10/18/2017 07:30 0854-CT,NJDEP,NE	10/18/2017 20:09	SR
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:		10/18/2017 07:30 AC-NY10854-CT,N	10/18/2017 20:09	SR
	o-Xylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C		10/18/2017 07:30	10/18/2017 20:09	SR

Client Sample ID: EP-5 (6.5 ft) York Sample ID:

17J0671-05

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil

Collection Date/Time October 16, 2017 12:00 pm Date Received 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.0	9.9	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 ELAC-NY10854	SR
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
100-42-5	Styrene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
108-88-3	Toluene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
79-01-6	Trichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
108-05-4	Vinyl acetate	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	10/18/2017 07:30 Y10854-CT,NJDEP,NE	10/18/2017 20:09 ELAC-NY10854-1	SR
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.4	15	1	EPA 8260C Certifications:	CTDOH,NI	10/18/2017 07:30 ELAC-NY10854-CT,N	10/18/2017 20:09 JDEP,NELAC-N	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	107 %			77-125							
2037-26-5	Surrogate: Toluene-d8	102 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	95.8 %			76-130							

Volatile Organics, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Tentative	ly Identified Compounds	0.0		ug/kg dry			1	EPA 8260C	10/18/2017 07:30	10/18/2017 20:09	SR

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

	CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LOC	o Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
_											

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 34 of 67

Client Sample ID: EP-5 (6.5 ft) York Sample ID:

17J0671-05

Date/Time

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Soil

Collection Date/Time October 16, 2017 12:00 pm

Date/Time

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Log-in Notes:

Reported to

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	e Method	Prepared	Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 / 10854-CT,PADEP	10/19/2017 23:12	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 // 10854-CT,PADEP	10/19/2017 23:12	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 / 10854-CT,PADEP	10/19/2017 23:12	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	101	202	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	101	202	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	NELAC-NY	10/19/2017 07:38 / 10854-CT,NJDEP,PA	10/19/2017 23:12 DEP	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	101	202	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	101	202	2	EPA 8270D Certifications:	CTDOH,NE	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	CTDOH,NI	10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:		10/19/2017 07:38 ELAC-NY10854-CT,N	10/19/2017 23:12	SR

Client Sample ID: EP-5 (6.5 ft)

York Sample ID: 17J0671-05

 York Project (SDG) No.
 Client Project ID

 17J0671
 #170154 11-28 31 Drive, LIC NY

MatrixCollection Date/TimeSoilOctober 16, 2017 12:00 pm

Date Received 10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		ate/Time Analyzed	Analyst
106-47-8	4-Chloroaniline	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	101	202	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	101	202	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
83-32-9	Acenaphthene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
62-53-3	Aniline	ND		ug/kg dry	203	406	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ NELAC-NY10854-CT,NJDEP,PADEP	19/2017 23:12	SR
120-12-7	Anthracene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
56-55-3	Benzo(a)anthracene	51.0	J	ug/kg dry	50.8	101	2	EPA 8270D	10/19/2017 07:38 10/	19/2017 23:12	SR
								Certifications:	CTDOH,NELAC-NY10854-CT,NJDEF	P,PADEP	
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	/19/2017 23:12 P,PADEP	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	19/2017 23:12 P,PADEP	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	19/2017 23:12 P,PADEP	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
100-51-6	Benzyl alcohol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ NELAC-NY10854-CT,NJDEP,PADEP	19/2017 23:12	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	/19/2017 23:12 P,PADEP	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	/19/2017 23:12 P,PADEP	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	/19/2017 23:12 P,PADEP	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	19/2017 23:12 P,PADEP	SR
218-01-9	Chrysene	57.5	J	ug/kg dry	50.8	101	2	EPA 8270D	10/19/2017 07:38 10/	19/2017 23:12	SR
								Certifications:	CTDOH,NELAC-NY10854-CT,NJDEF	P,PADEP	
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	19/2017 23:12 P,PADEP	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	(19/2017 23:12 P,PADEP	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 10/ CTDOH,NELAC-NY10854-CT,NJDEP,	719/2017 23:12 P,PADEP	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 36 of 67

Log-in Notes:

Client Sample ID: EP-5 (6.5 ft)

York Sample ID: 17J0671-05

Date Received

York Project (SDG) No. 17J0671 Client Project ID

#170154 11-28 31 Drive, LIC NY

Matrix Soil <u>Collection Date/Time</u> October 16, 2017 12:00 pm

Sample Notes:

10/16/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
131-11-3	Dimethyl phthalate	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
206-44-0	Fluoranthene	98.0	J	ug/kg dry	50.8	101	2	EPA 8270D	10/19/2017 07:38	10/19/2017 23:12	SR
									CTDOH,NELAC-NY10854-CT,N		
86-73-7	Fluorene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: N	10/19/2017 07:38 NELAC-NY10854-CT,NJDEP,PA	10/19/2017 23:12 DEP	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
78-59-1	Isophorone	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
91-20-3	Naphthalene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
85-01-8	Phenanthrene	51.9	J	ug/kg dry	50.8	101	2	EPA 8270D	10/19/2017 07:38	10/19/2017 23:12	SR
								Certifications:	CTDOH,NELAC-NY10854-CT,N	NJDEP,PADEP	
108-95-2	Phenol	ND		ug/kg dry	50.8	101	2	EPA 8270D Certifications: C	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 JDEP,PADEP	SR
129-00-0	Pyrene	84.3	J	ug/kg dry	50.8	101	2	EPA 8270D Certifications:	10/19/2017 07:38 CTDOH,NELAC-NY10854-CT,N	10/19/2017 23:12 NJDEP,PADEP	SR

203

Acceptance Range

20-108

23-114

22-108

ug/kg dry

120 RESEARCH DRIVE www.YORKLAB.com

Pyridine

Surrogate Recoveries

Surrogate: 2-Fluorophenol

Surrogate: Nitrobenzene-d5

Surrogate: Phenol-d5

110-86-1

367-12-4

4165-62-2

4165-60-0

STRATFORD, CT 06615

ND

Result

57.7 %

74.2 %

56.6 %

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

406

EPA 8270D

Certifications:

RICHMOND HILL, NY 11418

10/19/2017 07:38 10/19/2017 23:12

CTDOH,NELAC-NY10854-CT,NJDEP,PADEP

ClientServices@

Page 37 of 67

SR

EP-5 (6.5 ft) **Client Sample ID:**

York Sample ID: 17J0671-05

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

17J0671

#170154 11-28 31 Drive, LIC NY

Flag

Units

Soil

October 16, 2017 12:00 pm

10/16/2017

Semi-Volatiles, 8270 Target List

Log-in Notes:

LOO

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No. Parameter Surrogate: 2-Fluorobiphenyl

59.3 % 51.2 %

Result

Result

Result

ND

ND

ND

ND

ND

ND

(203) 325-1371

82.3

0.00

Result

LOD/MDL 21-113 19-110

24-116

Reported to

Dilution

Reference Method

Date/Time Prepared

Date/Time Analyzed Analyst

321-60-8 118-79-6 1718-51-0

Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-d14

43.4 %

Log-in Notes:

Sample Notes:

Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3550C

Flag Units

Reported to LOD/MDL LOQ Dilution Reference Method Date/Time Prepared Date/Time

Analyzed Analyst

CAS No.

Tentatively Identified Compounds

Parameter

ug/kg dry

EPA 8270D Certifications:

10/19/2017 07:38 10/19/2017 23:12

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CTDOH

Date/Time

solids

CAS No. Parameter

* % Solids

Flag Units %

Reported to Dilution ĹOQ 0.100

SM 2540G

Certifications:

Reference Method Prepared 10/20/2017 10:10

Date/Time

Analyzed 10/20/2017 14:23

Date/Time

Analyzed

10/17/2017 12:50

10/17/2017 12:50

10/17/2017 12:50

10/17/2017 12:50

10/17/2017 12:50

10/17/2017 12:50

TAJ

Analyst

SR

Sample Information

Client Sample ID: Trip Blank

Client Project ID

Matrix

York Sample ID:

17J0671-06

York Project (SDG) No. 17J0671

#170154 11-28 31 Drive, LIC NY

Flag

Units

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Water

Dilution

Collection Date/Time October 16, 2017 12:00 pm

Date/Time

10/17/2017 07:30

10/17/2017 07:30

CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N

CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N 10/17/2017 07:30

CTDOH.NELAC-NY10854-CT.NJDEP.NELAC-N 10/17/2017 07:30

CTDOH.NELAC-NY10854-CT.NJDEP.NELAC-N

CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N

CTDOH,NELAC-NY10854-CT,NJDEP,NELAC-N

10/17/2017 07:30

10/17/2017 07:30

Prepared

Date Received 10/16/2017

Analyst

SR

SR

SR

SR

SR

SR

Volatile Organics, 8260 List

Log-in Notes:

LOO

5.0

5.0

5.0

5.0

Reported to

LOD/MDL

2.5

2.5

2.5

2.5

2.5

2.5

Sample Notes:

Reference Method

EPA 8260C

Certifications

EPA 8260C

EPA 8260C

Certifications

EPA 8260C

Certifications:

EPA 8260C

Certifications:

EPA 8260C

Certifications:

Certifications:

Sample Prepared by Method: EPA 5030B

CAS N	No. Parameter
630-20-6	1,1,1,2-Tetrachloroethane
71-55-6	1,1,1-Trichloroethane
79-34-5	1,1,2,2-Tetrachloroethane
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)

79-00-5

75-34-3

120 RESEARCH DRIVE

1,1,2-Trichloroethane

1,1-Dichloroethane

www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 38 of 67

Client Sample ID: Trip Blank

York Sample ID: 17J0671-06

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Water Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

<u>Volatile Organics</u>, **8260** <u>List</u> Sample Prepared by Method: EPA 5030B **Log-in Notes:**

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
563-58-6	1,1-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
96-18-4	1,2,3-Trichloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 NELAC-NY10854-CT,NJDEP,N	10/17/2017 12:50 NELAC-NY10854-1	SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
106-93-4	1,2-Dibromoethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
78-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT	10/17/2017 12:50 NJDEP,NELAC-N	SR
142-28-9	1,3-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
594-20-7	2,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 NELAC-NY10854-CT,NJDEP,N		SR
78-93-3	2-Butanone	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
95-49-8	2-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
106-43-4	4-Chlorotoluene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
67-64-1	Acetone	ND		ug/L	5.0	10	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT		SR
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 CTDOH,NELAC-NY10854-CT	10/17/2017 12:50	SR
108-86-1	Bromobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 NELAC-NY10854-CT,NJDEP,N	10/17/2017 12:50	SR
74-97-5	Bromochloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	10/17/2017 07:30 NELAC-NY10854-CT,NJDEP,N	10/17/2017 12:50	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 39 of 67

FAX (203) 357-0166 ClientSe

Client Sample ID: Trip Blank

York Sample ID: 17J0671-06

York Project (SDG) No. 17J0671

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-27-4	Bromodichloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NEI	10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50 IJDEP,NELAC-N	SR
75-25-2	Bromoform	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NEI	10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50 IJDEP,NELAC-N	SR
74-83-9	Bromomethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NEI	10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50 IJDEP,NELAC-N	SR
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NEI	10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50 IJDEP,NELAC-N	SR
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NEI	10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50 IJDEP,NELAC-N	SR
75-00-3	Chloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
67-66-3	Chloroform	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
74-87-3	Chloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
124-48-1	Dibromochloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
74-95-3	Dibromomethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 10854-CT,NJDEP,NI	10/17/2017 12:50	SR
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 10854-CT,NJDEP,NI	10/17/2017 12:50	SR
100-41-4	Ethyl Benzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
37-68-3	Hexachlorobutadiene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 10854-CT,NJDEP,NI	10/17/2017 12:50	SR
98-82-8	Isopropylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
75-09-2	Methylene chloride	ND		ug/L	2.5	10	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
91-20-3	Naphthalene	ND		ug/L	2.5	10	1	EPA 8260C Certifications:		10/17/2017 07:30 10854-CT,NJDEP,NI	10/17/2017 12:50	SR
104-51-8	n-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
03-65-1	n-Propylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
5-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:		10/17/2017 07:30 LAC-NY10854-CT,N	10/17/2017 12:50	SR
		ND		ug/L	5.0	10	1	EPA 8260C	CIDON,NE	10/17/2017 07:30	10/17/2017 12:50	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 40 of 67

Client Sample ID: Trip Blank

York Sample ID:

17J0671-06

York Project (SDG) No. 17J0671

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Water Collection Date/Time
October 16, 2017 12:00 pm

Date Received 10/16/2017

Volatile Organics, 8260 List

Log-in Notes:

Sample Notes:

Sample	Prepared	bv	Method:	EPA	5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
99-87-6	p-Isopropyltoluene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
135-98-8	sec-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
98-06-6	tert-Butylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
127-18-4	Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
108-05-4	Vinyl acetate	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	NELAC-NY	10/17/2017 07:30 /10854-CT,NJDEP,NE	10/17/2017 12:50 LAC-NY10854-4	SR
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
1330-20-7	Xylenes, Total	ND		ug/L	7.5	15	1	EPA 8260C Certifications:	CTDOH,NE	10/17/2017 07:30 ELAC-NY10854-CT,N	10/17/2017 12:50 JDEP,NELAC-N	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			69-130							
2037-26-5	Surrogate: Toluene-d8	99.0 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	95.2 %			79-122							

Volatile Organics, Tentatively Identified Cmpds.

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ Dilu	ıtion	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Tentative	ely Identified Compounds	0.0		ug/L		1	EPA 8260C Certifications:	10/17/2017 07:30	10/17/2017 12:50	SR

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 41 of 67

Analytical Batch Summary

Batch ID: BJ70847	Preparation Method:	EPA 5030B	Prepared By:	RDS
YORK Sample ID	Client Sample ID	Preparation Date		
17J0671-06	Trip Blank	10/17/17		
BJ70847-BLK1	Blank	10/17/17		
BJ70847-BS1	LCS	10/17/17		
BJ70847-BSD1	LCS Dup	10/17/17		
Batch ID: BJ70939	Preparation Method:	EPA 5035A	Prepared By:	RDS
YORK Sample ID	Client Sample ID	Preparation Date		
17J0671-01	EP-1 (5 ft)	10/18/17		
7J0671-02	EP-2 (5 ft)	10/18/17		
.7J0671-03	EP-3 (5 ft)	10/18/17		
7J0671-04	EP-4 (5 ft)	10/18/17		
17J0671-05	EP-5 (6.5 ft)	10/18/17		
BJ70939-BLK1	Blank	10/18/17		
BJ70939-BLK2	Blank	10/18/17		
BJ70939-BS1	LCS	10/18/17		
BJ70939-BSD1	LCS Dup	10/18/17		
BJ70939-MS1	Matrix Spike	10/18/17		
BJ70939-MSD1	Matrix Spike Dup	10/18/17		
Batch ID: BJ71019	Preparation Method:	EPA 3550C	Prepared By:	SGM
YORK Sample ID	Client Sample ID	Preparation Date		
17J0671-01	EP-1 (5 ft)	10/19/17		
17J0671-02	EP-2 (5 ft)	10/19/17		
7J0671-03	EP-3 (5 ft)	10/19/17		
7J0671-04	EP-4 (5 ft)	10/19/17		
7J0671-05	EP-5 (6.5 ft)	10/19/17		
BJ71019-BLK1	Blank	10/19/17		
BJ71019-BS1	LCS	10/19/17		
BJ71019-MS1	Matrix Spike	10/19/17		
BJ71019-MSD1	Matrix Spike Dup	10/19/17		
Batch ID: BJ71125	Preparation Method:	% Solids Prep	Prepared By:	TAJ
YORK Sample ID	Client Sample ID	Preparation Date		
7J0671-01	EP-1 (5 ft)	10/20/17		
7J0671-02	EP-2 (5 ft)	10/20/17		
7J0671-03	EP-3 (5 ft)	10/20/17		
17J0671-04	EP-4 (5 ft)	10/20/17		
17J0671-05	EP-5 (6.5 ft)	10/20/17		
BJ71125-DUP1	Duplicate	10/20/17		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 42 of 67

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BJ70847 - EPA 5030B							
Blank (BJ70847-BLK1)						Pre	pared & Analyzed: 10/17/2017
n-Propylbenzene	ND	5.0	ug/L				
o-Xylene	ND	5.0	"				
o- & m- Xylenes	ND	10	"				
o-Isopropyltoluene	ND	5.0	"				
ec-Butylbenzene	ND	5.0	"				
Styrene	ND	5.0	"				
ert-Butylbenzene	ND	5.0	"				
etrachloroethylene	ND	5.0	"				
oluene	ND	5.0	"				
rans-1,2-Dichloroethylene	ND	5.0	"				
rans-1,3-Dichloropropylene	ND	5.0	"				
Crichloroethylene	ND	5.0	"				
richlorofluoromethane	ND	5.0	"				
/inyl acetate	ND	5.0	"				
/inyl Chloride	ND ND	5.0	"				
Kylenes, Total	ND ND	15	"				
		1.5	"	10.0	110	60.126	
Surrogate: 1,2-Dichloroethane-d4	11.0		"	10.0	110	69-130	
Currogate: Toluene-d8	9.71			10.0	97.1	81-117	
Surrogate: p-Bromofluorobenzene	9.16		"	10.0	91.6	79-122	
LCS (BJ70847-BS1)						Pre	pared & Analyzed: 10/17/2017
,1,1,2-Tetrachloroethane	10.8		ug/L	10.0	108	70-132	
,1,1-Trichloroethane	11.9		"	10.0	119	68-138	
,1,2,2-Tetrachloroethane	8.89		"	10.0	88.9	73-132	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	12.6		"	10.0	126	67-136	
,1,2-Trichloroethane	9.36		"	10.0	93.6	79-125	
,1-Dichloroethane	10.8		"	10.0	108	78-128	
,1-Dichloroethylene	11.1		"	5.00	222	68-134	High Bias
,1-Dichloropropylene	11.0		"	10.0	110	74-130	
,2,3-Trichlorobenzene	9.54		"	10.0	95.4	77-140	
,2,3-Trichloropropane	9.26		"	10.0	92.6	79-127	
,2,4-Trichlorobenzene	10.1		"	10.0	101	75-141	
,2,4-Trimethylbenzene	10.6		"	10.0	106	78-127	
,2-Dibromo-3-chloropropane	9.24		"	10.0	92.4	60-150	
,2-Dibromoethane	9.42		"	10.0	94.2	86-123	
,2-Dichlorobenzene	9.74		"	10.0	97.4	79-125	
,2-Dichloroethane	10.9		"	10.0	109	69-133	
,2-Dichloropropane	9.48		"	10.0	94.8	76-124	
,3,5-Trimethylbenzene	10.3		"	10.0	103	78-128	
,3-Dichlorobenzene	10.4		"	10.0	104	81-124	
,3-Dichloropropane	9.32		"	10.0	93.2	79-125	
,4-Dichlorobenzene	10.1		"	10.0	101	82-124	
,2-Dichloropropane	11.9		"	10.0	119	61-139	
-Butanone	6.22		"	10.0	62.2	44-169	
-Chlorotoluene	10.4		"	10.0	104	74-130	
-Chlorotoluene	9.82		"	10.0	98.2	75-127	
acetone	10.3		"	10.0	103	29-163	
Benzene	10.3		"	10.0	103	72-134	
	9.48		,,				
Bromohenzene							
Bromobenzene Bromochloromethane	9.48		"	10.0 10.0	94.8 111	74-129 69-134	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 44 of 67

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

R	atch	RI7	10217	- FDA	5030R

LCS (BJ70847-BS1)					Prep	ared & Analyzed: 10/17/2017
Bromoform	9.63	ug/L	10.0	96.3	77-137	
Bromomethane	6.06	"	10.0	60.6	50-156	
Carbon tetrachloride	12.4	"	10.0	124	62-145	
Chlorobenzene	10.2	"	10.0	102	85-119	
Chloroethane	12.6	"	10.0	126	49-143	
Chloroform	10.5	"	10.0	105	74-131	
Chloromethane	10.7	"	10.0	107	43-134	
cis-1,2-Dichloroethylene	10.6	"	10.0	106	73-134	
cis-1,3-Dichloropropylene	9.78	"	10.0	97.8	77-128	
Dibromochloromethane	9.98	"	10.0	99.8	79-130	
Dibromomethane	9.38	"	10.0	93.8	78-128	
Dichlorodifluoromethane	18.0	"	10.0	180	38-139	High Bias
Ethyl Benzene	11.0	"	10.0	110	80-129	
Hexachlorobutadiene	13.5	"	10.0	135	72-141	
sopropylbenzene	11.1	"	10.0	111	76-128	
Methyl tert-butyl ether (MTBE)	9.82	"	10.0	98.2	64-142	
Methylene chloride	10.3	"	10.0	103	56-142	
Naphthalene	9.23	"	10.0	92.3	79-144	
-Butylbenzene	11.5	"	10.0	115	74-132	
-Propylbenzene	11.1	"	10.0	111	72-135	
-Xylene	10.7	"	10.0	107	81-123	
- & m- Xylenes	22.7	"	20.0	114	79-130	
-Isopropyltoluene	11.2	"	10.0	112	80-127	
ec-Butylbenzene	10.8	"	10.0	108	78-127	
Styrene	10.5	"	10.0	105	82-124	
ert-Butylbenzene	10.6	"	10.0	106	75-131	
Tetrachloroethylene	11.0	"	10.0	110	78-133	
Toluene	10.3	"	10.0	103	83-122	
rans-1,2-Dichloroethylene	10.6	"	10.0	106	59-145	
rans-1,3-Dichloropropylene	9.77	"	10.0	97.7	74-131	
richloroethylene	10.1	"	10.0	101	81-125	
richlorofluoromethane	14.4	"	10.0	144	61-144	
Vinyl acetate	16.6	"	10.0	166	32-165	High Bias
Vinyl Chloride	13.0	"	10.0	130	42-136	
Surrogate: 1,2-Dichloroethane-d4	10.6	"	10.0	106	69-130	
Surrogate: Toluene-d8	9.88	"	10.0	98.8	81-117	
Surrogate: p-Bromofluorobenzene	9.45	"	10.0	94.5	79-122	

120 RESEARCH DRIVE Swww.YORKLAB.com (

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 45 of 67

York Analytical Laboratories, Inc.

	Reporting		Spike	Source*		%REC			RPD		
Analyte Res	ılt Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	l

Batch	BJ /U84 /	- LPA	2030B

LCS Dup (BJ70847-BSD1)					Pre	pared & Analy	zed: 10/17/2	017	
1,1,1,2-Tetrachloroethane	10.8	ug/L	10.0	108	70-132		0.371	30	
1,1,1-Trichloroethane	2.22	"	10.0	22.2	68-138	Low Bias	137	30	Non-di
1,1,2,2-Tetrachloroethane	9.01	"	10.0	90.1	73-132		1.34	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	12.8	"	10.0	128	67-136		1.18	30	
1,1,2-Trichloroethane	9.75	"	10.0	97.5	79-125		4.08	30	
1,1-Dichloroethane	10.9	"	10.0	109	78-128		1.01	30	
1,1-Dichloroethylene	11.2	"	5.00	224	68-134	High Bias	0.717	30	
1,1-Dichloropropylene	11.2	"	10.0	112	74-130		2.25	30	
1,2,3-Trichlorobenzene	12.4	"	10.0	124	77-140		25.9	30	
1,2,3-Trichloropropane	9.31	"	10.0	93.1	79-127		0.539	30	
1,2,4-Trichlorobenzene	11.2	"	10.0	112	75-141		10.4	30	
1,2,4-Trimethylbenzene	10.0	"	10.0	100	78-127		5.35	30	
1,2-Dibromo-3-chloropropane	9.26	"	10.0	92.6	60-150		0.216	30	
1,2-Dibromoethane	9.79	"	10.0	97.9	86-123		3.85	30	
1,2-Dichlorobenzene	9.67	"	10.0	96.7	79-125		0.721	30	
1,2-Dichloroethane	11.5	"	10.0	115	69-133		4.82	30	
1,2-Dichloropropane	9.62	"	10.0	96.2	76-124		1.47	30	
1,3,5-Trimethylbenzene	9.83	"	10.0	98.3	78-128		4.86	30	
1,3-Dichlorobenzene	10.0	"	10.0	100	81-124		3.53	30	
1,3-Dichloropropane	9.76	"	10.0	97.6	79-125		4.61	30	
1,4-Dichlorobenzene	9.97	"	10.0	99.7	82-124		0.899	30	
2,2-Dichloropropane	11.8	"	10.0	118	61-139		0.677	30	
2-Butanone	7.06	"	10.0	70.6	44-169		12.7	30	
2-Chlorotoluene	9.84	"	10.0	98.4	74-130		5.15	30	
4-Chlorotoluene	9.44	"	10.0	94.4	75-127		3.95	30	
Acetone	11.0	"	10.0	110	29-163		6.46	30	
Benzene	10.5	"	10.0	105	72-134		1.93	30	
Bromobenzene	9.20	"	10.0	92.0	74-129		3.00	30	
Bromochloromethane	11.6	"	10.0	116	69-134		3.97	30	
Bromodichloromethane	10.2	"	10.0	102	76-127		1.48	30	
Bromoform	10.2	"	10.0	102	77-137		6.24	30	
Bromomethane	6.85	"	10.0	68.5	50-156		12.2	30	
Carbon tetrachloride	12.4	"	10.0	124	62-145		0.564	30	
Chlorobenzene	10.1	"	10.0	101	85-119		0.197	30	
Chloroethane	12.5	"	10.0	125	49-143		0.557	30	
Chloroform	10.9	"	10.0	109	74-131		4.03	30	
Chloromethane	10.3	"	10.0	103	43-134		3.14	30	
cis-1,2-Dichloroethylene	9.50	"	10.0	95.0	73-134		11.4	30	
cis-1,3-Dichloropropylene	10.0	"	10.0	100	77-128		2.42	30	
Dibromochloromethane	10.4	"	10.0	104	79-130		4.03	30	
Dibromomethane	9.79	"	10.0	97.9	78-128		4.28	30	
Dichlorodifluoromethane	18.0	"	10.0	180	38-139	High Bias	0.0556	30	
Ethyl Benzene	10.8	"	10.0	108	80-129		1.46	30	
Hexachlorobutadiene	16.1	"	10.0	161	72-141	High Bias	17.5	30	
Isopropylbenzene	10.4	"	10.0	104	76-128		6.61	30	
Methyl tert-butyl ether (MTBE)	10.7	"	10.0	107	64-142		8.67	30	
Methylene chloride	10.6	"	10.0	106	56-142		3.45	30	
Naphthalene	10.4	"	10.0	104	79-144		12.4	30	
n-Butylbenzene	11.1	"	10.0	111	74-132		3.64	30	
n-Propylbenzene	10.4	"	10.0	104	72-135		6.88	30	
o-Xylene	10.7	"	10.0	107	81-123		0.00	30	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418

Page 46 of 67 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@

York Analytical Laboratories, Inc.

Ranch B370847 - PA 50308			Reporting		Spike	Source*	0./F = -	%REC	El	DPD	RPD	E.
Populary Populary	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Page Page	Batch BJ70847 - EPA 5030B											
plespengen placements 10.7	LCS Dup (BJ70847-BSD1)							Prep	pared & Analy	zed: 10/17/	2017	
see Fluighenome 10.2 Syrone 10.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0	p- & m- Xylenes	22.3		ug/L	20.0		112	79-130		1.73	30	
Nome	p-Isopropyltoluene	10.7		"	10.0		107	80-127		4.49	30	
No. 10.0 1	sec-Butylbenzene	10.2		"	10.0		102	78-127		5.62	30	
Tennahisochalylane 10.7	Styrene	10.6		"	10.0		106	82-124		0.852	30	
Talleane	tert-Butylbenzene	10.0		"	10.0		100	75-131		6.11	30	
trans-1-2-Dichloredhylene 10.8 " 10.0 108 59.145 1.77 30 Trichloredhylene 10.1 " 10.0 101 74-13 3.02 30 Trichloredhylene 996 " 10.0 194 61-144 1.33 30 Vinyl Chloride 13.0 " 10.0 171 61-144 1.33 3.2 30 Vinyl Chloride 13.0 " 10.0 111 61-144 1.33 3.2 30 Surregute: 12-Dichlorechane-d4 11.1 " 10.0 111 61-15 111 61-15 111 8-15 1.7 30 Surregute: 12-Dichlorechane-d4 11.1 " 10.0 111 61-15 111 8-15 10.0 91.3 79-122 11-12-15 111 11.12-15 10.0 91.3 79-122 11-12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15 11.12-15<	Tetrachloroethylene	10.7		"	10.0		107	78-133		2.49	30	
Tinchlorocolopique	Toluene	10.2		"	10.0		102	83-122		0.878	30	
Thichlorothylane	trans-1,2-Dichloroethylene	10.8		"	10.0		108	59-145		1.77	30	
Tichlorodusormethane 142	trans-1,3-Dichloropropylene	10.1		"	10.0		101	74-131		3.02	30	
Virgi Calatabe	Trichloroethylene	9.96		"	10.0		99.6	81-125		1.79	30	
Nimp Chloride 13.0 " 10.0 130 42.136 0.154 30 30 30 30 30 30 30 3	Trichlorofluoromethane	14.2		"	10.0			61-144		1.33	30	
Night Chloride 13.0	Vinyl acetate	17.1		"	10.0		171	32-165	High Bias	3.27	30	
Surrogate: 1,2-Dichloroethame-d4	-			"					•			
No. No.				"								
Name Paramethiconochane 9,13	_											
Batch BJ70939 - EPA 50355A Blank (BJ70939 - EPA 50355A Blank	_											
Prepared & Analyzed: 10/18/2017 1,1,1,2-Tetrachloroethane ND SD ug/kg wet Tentatively Identified Compounds 0.0 " "	surrogaie: p-ьromojiuorovenzene	9.13			10.0		91.3	79-122				
1,1,1,2-Ternelloroethane	Batch BJ70939 - EPA 5035A											
Tentatively Identified Compounds 0.0 " 1,1,1-Trichlorochane ND 5.0 1,1,2-Trichlorochane ND 5.0 1,1,2-Trichlorochane ND 5.0 1,1,2-Trichlorochane ND 5.0 1,1,2-Trichlorochane ND 5.0 1,1-Dichlorochylore ND 5.0 1,2-Brichloropropane ND 5.0 1,2,3-Trichloropropane ND 5.0 1,2,4-Trimethylbenzene ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichlorochane ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane ND 5.0 1,4-Dichlorobenzene ND 5.0<	Blank (BJ70939-BLK1)							Prep	pared & Analy	zed: 10/18/	2017	
1,1,1-Trichloroethane ND 5,0 " 1,1,2-Trichloroethane ND 5,0 " 1,1,2-Trichloroethane (Freon 113) ND 5,0 " 1,1-Dichloroethane ND 5,0 " 1,1-Dichloroethane ND 5,0 " 1,1-Dichloroethylene ND 5,0 " 1,1-Dichloropropylene ND 5,0 " 1,2,3-Trichlorobenzene ND 5,0 " 1,2,3-Trichlorobenzene ND 5,0 " 1,2,4-Trichlorobenzene ND 5,0 " 1,2,4-Trimethylbenzene ND 5,0 " 1,2-Dirbomo-3-chloropropane ND 5,0 " 1,2-Dibihorobenzene ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,3-Dichloropropane ND 5,0 " 1,3-Dichloropropane ND 5,0 " 1,4-Dichloropropane ND 5,0 " 1,4-Dichloropropane <	1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg wet								
1,1,2,2-Tetrachloroethane ND 5,0 " 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) ND 5,0 " 1,1,2-Trichloroethane ND 5,0 " 1,1-Dichloroethane ND 5,0 " 1,1-Dichlorophylene ND 5,0 " 1,2,3-Trichlorophorame ND 5,0 " 1,2,3-Trichlorophorame ND 5,0 " 1,2,3-Trichlorophorame ND 5,0 " 1,2,4-Trinchlorophorame ND 5,0 " 1,2,4-Trinchlorophorame ND 5,0 " 1,2-Dibromoe-3-chloropropane ND 5,0 " 1,2-Dibromoe-3-chloropropane ND 5,0 " 1,2-Dichlorobarzene ND 5,0 " 1,2-Dichlorobarzene ND 5,0 " 1,2-Dichlorobarzene ND 5,0 " 1,3-Dichlorobarzene ND 5,0 " 1,4-Dicklorobarzene ND 5,0 "	Tentatively Identified Compounds	0.0		"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) ND 5,0 " 1,1,2-Trichloroethane ND 5,0 " 1,1-Dichloroethylee ND 5,0 " 1,1-Dichloroptylee ND 5,0 " 1,1-Dichloroppylee ND 5,0 " 1,2,3-Trichlorobenzee ND 5,0 " 1,2,4-Trichlorobenzee ND 5,0 " 1,2,4-Trinethylbenzee ND 5,0 " 1,2-Dibromo-3-chloropropane ND 5,0 " 1,2-Dibromo-3-chloropropane ND 5,0 " 1,2-Dichlorochane ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,3-Dichloropropane ND 5,0 " 1,4-Dichloropropane ND 5,0 " 1,4-Dichloropropane ND 5,0 " 1,4-Dichloropropane ND 5,0 " 2-Butanone	1,1,1-Trichloroethane	ND	5.0	"								
1,1,2-Trichloroethane ND 5,0 " 1,1-Dichloroethylene ND 5,0 " 1,1-Dichloroethylene ND 5,0 " 1,1-Dichloropropylene ND 5,0 " 1,2,3-Trichloropropane ND 5,0 " 1,2,3-Trichloropropane ND 5,0 " 1,2,4-Trichlorobenzene ND 5,0 " 1,2,4-Trinchlybenzene ND 5,0 " 1,2-Dibromoc-3-chloropropane ND 5,0 " 1,2-Dibromochane ND 5,0 " 1,2-Dichlorobenzene ND 5,0 " 1,2-Dichlorobenzene ND 5,0 " 1,3-Dichlorobenzene ND 5,0 " 1,3-Dichlorobenzene ND 5,0 " 1,4-Dichlorobenzene ND 5,0 " 1,4-Dichloropropane ND 5,0 " 1,4-Dichloropropane ND 5,0 " 1,4-Dichloropropane ND 5,0 " 2,2-Dichloropropane ND	1,1,2,2-Tetrachloroethane	ND	5.0	"								
1,1-Dichloroethane ND 5,0 " 1,1-Dichloroethylene ND 5,0 " 1,2,3-Trichloropenzene ND 5,0 " 1,2,3-Trichlorobenzene ND 5,0 " 1,2,4-Trichlorobenzene ND 5,0 " 1,2,4-Trichlorobenzene ND 5,0 " 1,2-Dirimethylbenzene ND 5,0 " 1,2-Dirimethylbenzene ND 5,0 " 1,2-Dichlorobenzene ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,3-Sirimethylbenzene ND 5,0 " 1,3-Dichloropropane ND 5,0 " 1,4-Dichlorobenzene ND 5,0 " 1,4-Dichlorobenzene ND 5,0 " 1,4-Dichloropropane ND 5,0 " 2-Bildanone ND 5,0 " 2-Bildanone ND	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"								
1,1-Dichloroethylene ND 5.0 " 1,1-Dichloropropylene ND 5.0 " 1,2,3-Trichlorobenzene ND 5.0 " 1,2,3-Trichlorobenzene ND 5.0 " 1,2,4-Trichlorobenzene ND 5.0 " 1,2,4-Trimethylbenzene ND 5.0 " 1,2-Dibromo-3-chloropropane ND 5.0 " 1,2-Dibromo-3-chloropropane ND 5.0 " 1,2-Dichlorobenzene ND 5.0 " 1,2-Dichloropenzene ND 5.0 " 1,2-Dichloropropane ND 5.0 " 1,2-Dichloropropane ND 5.0 " 1,3-Dichloropropane ND 5.0 " 1,3-Dichloropropane ND 5.0 " 1,4-Dickloropropane ND 5.0 " 1,4-Dickloropropane ND 5.0 " 1,4-Dickloropropane ND 5.0 " 2-Dickloropropane <td>1,1,2-Trichloroethane</td> <td>ND</td> <td>5.0</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,1,2-Trichloroethane	ND	5.0	"								
1,1-Dichloropropylene ND 5.0 " 1,2,3-Trichlorobenzene ND 5.0 " 1,2,4-Trichloroptropane ND 5.0 " 1,2,4-Trichlorobenzene ND 5.0 " 1,2,4-Trinchlorobenzene ND 5.0 " 1,2-Dibromo-3-chloropropane ND 5.0 " 1,2-Dichlorobenzene ND 5.0 " 1,2-Dichlorobenzene ND 5.0 " 1,2-Dichloroptopane ND 5.0 " 1,3-Dichloroptopane ND 5.0 " 1,3-Dichloroptopane ND 5.0 " 1,3-Dichloroptopane ND 5.0 " 1,4-Dichloroptopane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dichloroptopane ND 5.0 " 1,4-Dichloroptopane ND 5.0 " 1,4-Dichloroptopane ND 5.0 " 2,2-Dichloroptopane ND 5.0 " 2,2-Dichloroptopane ND	1,1-Dichloroethane	ND	5.0	"								
1,2,3-Trichlorobenzene ND 5.0 " 1,2,3-Trichloropropane ND 5.0 " 1,2,4-Trichlorobenzene ND 5.0 " 1,2-Pitriombylbenzene ND 5.0 " 1,2-Dibromo-3-chloropropane ND 5.0 " 1,2-Dichlorobenzene ND 5.0 " 1,2-Dichlorobenzene ND 5.0 " 1,2-Dichloropropane ND 5.0 " 1,3-Dichloropropane ND 5.0 " 1,4-Dickloropropane ND 5.0 " 1,4-Dickloropropane ND 5.0 " 2,2-Dichloropropane ND 5.0 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Butanone ND 5.0 <t< td=""><td>1,1-Dichloroethylene</td><td>ND</td><td>5.0</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1,1-Dichloroethylene	ND	5.0	"								
1,2,3-Trichloropropane ND 5.0 " 1,2,4-Trichlorobenzene ND 5.0 " 1,2,4-Trimethylbenzene ND 5.0 " 1,2-Dibromo-3-chloropropane ND 5.0 " 1,2-Dibromo-3-chloropropane ND 5.0 " 1,2-Dichlorobenzene ND 5.0 " 1,2-Dichloropropane ND 5.0 " 1,2-Dichloropropane ND 5.0 " 1,3-Sirimethylbenzene ND 5.0 " 1,3-Dichlorobenzene ND 5.0 " 1,4-Dichloropropane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dichloropropane ND 5.0 " 1,4-Dichloropropane ND 5.0 " 2,2-Dichloropropane ND 5.0 " 2-Edurance ND 5.0 " 2-Chlorotoluene ND 5.0 " Acetone ND 5.0 " Benzene ND 5.0 "	1,1-Dichloropropylene	ND	5.0	"								
1,2,4-Trichlorobenzene ND 5.0 " 1,2,4-Trimethylbenzene ND 5.0 " 1,2-Dibromo-3-chloropropane ND 5.0 " 1,2-Dibromoethane ND 5.0 " 1,2-Dichlorobenzene ND 5.0 " 1,2-Dichloroptopane ND 5.0 " 1,2-Dichloroptopane ND 5.0 " 1,3-S-Trimethylbenzene ND 5.0 " 1,3-Dichlorobenzene ND 5.0 " 1,4-Dichloropopane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dichloropopane ND 5.0 " 2,2-Dichloropropane ND 5.0 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " Acetone ND 5.0 " Benzene ND 5.0 " <t< td=""><td>1,2,3-Trichlorobenzene</td><td>ND</td><td>5.0</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1,2,3-Trichlorobenzene	ND	5.0	"								
1,2,4-Trimethylbenzene ND 5.0 " 1,2-Dibromo-3-chloropropane ND 5.0 " 1,2-Dibromoethane ND 5.0 " 1,2-Dichlorobenzene ND 5.0 " 1,2-Dichloropropane ND 5.0 " 1,3-Dichloroptopane ND 5.0 " 1,3-Dichlorobenzene ND 5.0 " 1,3-Dichloroptopane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dichloroptopane ND 5.0 " 1,4-Dichloroptopane ND 5.0 " 2,2-Dichloroptopane ND 5.0 " 2,2-Dichloroptopane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " 4-Cetone ND 5.0 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	1,2,3-Trichloropropane	ND	5.0	"								
1,2-Dibromo-3-chloropropane ND 5,0 " 1,2-Dibromoethane ND 5,0 " 1,2-Dichlorobenzene ND 5,0 " 1,2-Dichloroptopane ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,3-Frimethylbenzene ND 5,0 " 1,3-Dichlorobenzene ND 5,0 " 1,3-Dichloropropane ND 5,0 " 1,4-Dichlorobenzene ND 5,0 " 1,4-Dichloropropane ND 5,0 " 2,2-Dichloropropane ND 5,0 " 2,2-Dichloropropane ND 5,0 " 2-Butanone ND 5,0 " 2-Chlorotoluene ND 5,0 " 4-Chlorotoluene ND 5,0 " 4-Cetone ND 5,0 " Benzene ND 5,0 " Bromobenzene ND 5,0 "	1,2,4-Trichlorobenzene	ND	5.0	"								
1,2-Diomoethane ND 5,0 " 1,2-Dichlorobenzene ND 5,0 " 1,2-Dichloroethane ND 5,0 " 1,2-Dichloropropane ND 5,0 " 1,3-5-Trimethylbenzene ND 5,0 " 1,3-Dichlorobenzene ND 5,0 " 1,4-Dichlorobenzene ND 5,0 " 1,4-Dichlorobenzene ND 5,0 " 1,4-Dioxane ND 5,0 " 2,2-Dichloropropane ND 5,0 " 2-Butanone ND 5,0 " 2-Chlorotoluene ND 5,0 " 4-Chlorotoluene ND 5,0 " 4-Cetone ND 5,0 " Benzene ND 5,0 " Bromobenzene ND 5,0 "	1,2,4-Trimethylbenzene	ND	5.0	"								
1,2-Dichlorobenzene ND 5.0 " 1,2-Dichloroethane ND 5.0 " 1,2-Dichloropropane ND 5.0 " 1,3-5-Trimethylbenzene ND 5.0 " 1,3-Dichlorobenzene ND 5.0 " 1,3-Dichloropropane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	1,2-Dibromo-3-chloropropane	ND	5.0	"								
1,2-Dichloroethane ND 5.0 " 1,2-Dichloropropane ND 5.0 " 1,3,5-Trimethylbenzene ND 5.0 " 1,3-Dichlorobenzene ND 5.0 " 1,3-Dichloropropane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	1,2-Dibromoethane	ND	5.0	"								
1,2-Dichloropropane ND 5.0 " 1,3,5-Trimethylbenzene ND 5.0 " 1,3-Dichlorobenzene ND 5.0 " 1,3-Dichloropropane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	1,2-Dichlorobenzene	ND	5.0	"								
1,3,5-Trimethylbenzene ND 5.0 " 1,3-Dichlorobenzene ND 5.0 " 1,3-Dichloropropane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	1,2-Dichloroethane	ND	5.0	"								
1,3-Dichlorobenzene ND 5.0 " 1,3-Dichloropropane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	1,2-Dichloropropane	ND	5.0	"								
1,3-Dichloropropane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	1,3,5-Trimethylbenzene	ND	5.0	"								
1,3-Dichloropropane ND 5.0 " 1,4-Dichlorobenzene ND 5.0 " 1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "				"								
1,4-Dichlorobenzene ND 5.0 " 1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	1,3-Dichloropropane			"								
1,4-Dioxane ND 100 " 2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "				"								
2,2-Dichloropropane ND 5.0 " 2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "				"								
2-Butanone ND 5.0 " 2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	2,2-Dichloropropane			"								
2-Chlorotoluene ND 5.0 " 4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	2-Butanone			"								
4-Chlorotoluene ND 5.0 " Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	2-Chlorotoluene			"								
Acetone ND 10 " Benzene ND 5.0 " Bromobenzene ND 5.0 "	4-Chlorotoluene			"								
Benzene ND 5.0 " Bromobenzene ND 5.0 "				"								
Bromobenzene ND 5.0 "				"								
	Bromobenzene			"								
	Bromochloromethane			"								

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 47 of 67

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BJ70939-BLK1)						Prepared & Analyzed: 10/18/2017
Bromodichloromethane	ND	5.0	ug/kg wet			
Bromoform	ND	5.0	"			
Bromomethane	ND	5.0	"			
arbon tetrachloride	ND	5.0	"			
Chlorobenzene	ND	5.0	"			
Chloroethane	ND	5.0	"			
hloroform	ND	5.0	"			
hloromethane	ND	5.0	"			
s-1,2-Dichloroethylene	ND	5.0	"			
is-1,3-Dichloropropylene	ND	5.0	"			
Dibromochloromethane	ND	5.0	"			
Dibromomethane	ND	5.0	"			
richlorodifluoromethane	ND	5.0	"			
thyl Benzene	ND	5.0	"			
Iexachlorobutadiene	ND	5.0	"			
opropylbenzene	ND	5.0	"			
Iethyl tert-butyl ether (MTBE)	ND	5.0	"			
lethylene chloride	ND	10	"			
aphthalene	ND	10	"			
Butylbenzene	ND	5.0	"			
Propylbenzene	ND	5.0	"			
Xylene	ND	5.0	"			
& m- Xylenes	ND	10	"			
Isopropyltoluene	ND	5.0	"			
c-Butylbenzene	ND	5.0	"			
tyrene	ND	5.0	"			
ert-Butylbenzene	ND	5.0	"			
etrachloroethylene	ND	5.0	"			
oluene	ND	5.0	"			
ans-1,2-Dichloroethylene	ND	5.0	"			
ans-1,3-Dichloropropylene	ND	5.0	"			
richloroethylene	ND	5.0	"			
richlorofluoromethane	ND	5.0	"			
inyl acetate	ND	5.0	"			
inyl Chloride	ND	5.0	"			
ylenes, Total	ND	15	"			
urrogate: 1,2-Dichloroethane-d4	53.0		ug/L	50.0	106	77-125
urrogate: Toluene-d8	49.0		"	50.0	98.0	85-120
=	40.0					

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE

50.0

48.8

RICHMOND HILL, NY 11418

ClientServices@

97.7

76-130

 $Surrogate: p\hbox{-} Bromofluorobenzene$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ70939 - EPA 5035A											
Blank (BJ70939-BLK2)							Prep	ared & Anal	yzed: 10/18/	/2017	
1,1,1,2-Tetrachloroethane	ND	500	ug/kg wet								
Tentatively Identified Compounds	0.0	200	"								
1,1,1-Trichloroethane	ND	500	"								
1,1,2,2-Tetrachloroethane	ND	500	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	500	,,								
1,1,2-Trichloroethane	ND	500	"								
1,1-Dichloroethane	ND	500	"								
1,1-Dichloroethylene	ND	500	"								
1,1-Dichloropropylene	ND	500	"								
1,2,3-Trichlorobenzene	ND	500	"								
1,2,3-Trichloropropane	ND	500	"								
1,2,4-Trichlorobenzene	ND	500	"								
1,2,4-Trimethylbenzene	ND	500	"								
1,2-Dibromo-3-chloropropane	ND	500	"								
1,2-Dibromoethane	ND	500	"								
1,2-Dichlorobenzene	ND	500	"								
1,2-Dichloroethane	ND	500	"								
1,2-Dichloropropane	ND	500	"								
1,3,5-Trimethylbenzene	ND	500	"								
1,3-Dichlorobenzene	ND	500	"								
1,3-Dichloropropane	ND	500	"								
1,4-Dichlorobenzene	ND	500	"								
1,4-Dioxane	ND	10000	"								
2,2-Dichloropropane	ND	500	"								
2-Butanone	ND	500	"								
2-Chlorotoluene	ND	500	"								
4-Chlorotoluene	ND	500	"								
Acetone	ND	1000	"								
Benzene	ND	500	"								
Bromobenzene	ND	500	"								
Bromochloromethane	ND	500	"								
Bromodichloromethane	ND	500	"								
Bromoform	ND	500	"								
Bromomethane	ND	500	"								
Carbon tetrachloride	ND	500	"								
Chlorobenzene	ND	500	"								
Chloroethane	ND	500	"								
Chloroform	ND	500	"								
Chloromethane	ND	500	"								
cis-1,2-Dichloroethylene	ND	500	"								
cis-1,3-Dichloropropylene	ND	500	"								
Dibromochloromethane	ND	500	"								
Dibromomethane	ND	500	"								
Dichlorodifluoromethane	ND	500	"								
Ethyl Benzene	ND	500	"								
Hexachlorobutadiene	ND	500	"								
Isopropylbenzene	ND	500	"								
Methyl tert-butyl ether (MTBE)	ND	500	"								
Methylene chloride	ND	1000	"								
Naphthalene	ND	1000	"								

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

ND

500

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

n-Butylbenzene

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Kesuit	LIIIII	Units	Level	Result	/0KEC	Lillits	1 lag	KI D	Liiiit	1 lag
Batch BJ70939 - EPA 5035A											
Blank (BJ70939-BLK2)							Pre	pared & Anal	yzed: 10/18/20)17	
n-Propylbenzene	ND	500	ug/kg wet								
o-Xylene	ND	500	"								
p- & m- Xylenes	ND	1000	"								
p-Isopropyltoluene	ND	500	"								
sec-Butylbenzene	ND	500	"								
Styrene	ND	500	"								
tert-Butylbenzene	ND	500	"								
Tetrachloroethylene	ND	500	"								
Toluene	ND	500	"								
trans-1,2-Dichloroethylene	ND	500	"								
trans-1,3-Dichloropropylene	ND	500	"								
Trichloroethylene	ND	500	"								
Trichlorofluoromethane	ND	500	"								
Vinyl acetate	ND	500	"								
Vinyl Chloride	ND	500									
Xylenes, Total	ND	1500	"								
Surrogate: 1,2-Dichloroethane-d4	55.1		ug/L	50.0		110	77-125				
Surrogate: Toluene-d8	47.3		,,	50.0		94.5	85-120				
Surrogate: p-Bromofluorobenzene	46.7		"	50.0		93.3	76-130				
LCS (BJ70939-BS1)							Pre	pared & Anal	yzed: 10/18/20	017	
1,1,1,2-Tetrachloroethane	54.4		ug/L	50.0		109	75-129				
1,1,1-Trichloroethane	54.3		ug L	50.0		109	71-137				
1,1,2,2-Tetrachloroethane	54.8		"	50.0		110	79-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	53.3		"	50.0		107	58-146				
1,1,2-Trichloroethane	53.1		"	50.0		106	83-123				
1,1-Dichloroethane	52.3		,,	50.0		105	75-130				
1,1-Dichloroethylene	52.3		"	25.0		209	64-137	High Bias			
1,1-Dichloropropylene	52.1		"	50.0		104	77-127	8			
1,2,3-Trichlorobenzene	55.6		"	50.0		111	81-140				
1,2,3-Trichloropropane	57.3		"	50.0		115	81-126				
1,2,4-Trichlorobenzene	61.3		"	50.0		123	80-141				
1,2,4-Trimethylbenzene	53.9		"	50.0		108	84-125				
1,2-Dibromo-3-chloropropane	54.5		"	50.0		109	74-142				
1,2-Dibromoethane	53.3		"	50.0		107	86-123				
1,2-Dichlorobenzene	55.3		"	50.0		111	85-122				
1,2-Dichloroethane	50.9		,,	50.0		102	71-133				
1,2-Dichloropropane	52.2		"	50.0		104	81-122				
1,3,5-Trimethylbenzene	52.4		,,	50.0		105	82-126				
1,3-Dichlorobenzene	55.9		,,	50.0		112	84-124				
1,3-Dichloropropane	49.0		,,	50.0		98.0	83-123				
1,4-Dichlorobenzene	55.6		,,	50.0		111	84-124				
1,4-Dioxane	1010		,,	1000		101	10-228				
2,2-Dichloropropane	52.3		,,	50.0		105	67-136				
2-Butanone	74.6		,,	50.0		149	58-147	High Bias			
2-Chlorotoluene	53.9		,,	50.0		108	78-127	111611 15105			
4-Chlorotoluene	53.2		,,	50.0		106	79-125				
Acetone	39.3		,,	50.0		78.6	36-155				
Benzene	48.5		,,	50.0		96.9	77-127				
Bromobenzene	52.7		,,	50.0		105	77-127				
Bromochloromethane	51.6		,,	50.0		103	74-129				
2.0c.moromomuno	31.0			50.0		103	/=-147				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 50 of 67

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Bromodichloromethane	53.6	ug/L	50.0	107	81-124
Bromoform	57.0	"	50.0	114	80-136
Bromomethane	45.4	"	50.0	90.8	32-177
Carbon tetrachloride	54.6	"	50.0	109	66-143
Chlorobenzene	54.0	"	50.0	108	86-120
Chloroethane	49.8	"	50.0	99.6	51-142
Chloroform	51.3	"	50.0	103	76-131
Chloromethane	50.4	"	50.0	101	49-132
cis-1,2-Dichloroethylene	49.4	"	50.0	98.8	74-132
cis-1,3-Dichloropropylene	53.9	"	50.0	108	81-129
Dibromochloromethane	55.5	"	50.0	111	10-200
Dibromomethane	53.1	"	50.0	106	83-124
Dichlorodifluoromethane	52.4	"	50.0	105	28-158
Ethyl Benzene	53.7	"	50.0	107	84-125
Hexachlorobutadiene	51.4	"	50.0	103	83-133
Isopropylbenzene	52.8	"	50.0	106	81-127
Methyl tert-butyl ether (MTBE)	49.1	"	50.0	98.2	74-131
Methylene chloride	48.9	"	50.0	97.8	57-141
Naphthalene	56.0	"	50.0	112	86-141
n-Butylbenzene	57.7	"	50.0	115	80-130
n-Propylbenzene	54.0	"	50.0	108	74-136

Methylene chloride	48.9	"	50.0	97.8	57-141
Naphthalene	56.0	"	50.0	112	86-141
n-Butylbenzene	57.7	"	50.0	115	80-130
n-Propylbenzene	54.0	"	50.0	108	74-136
o-Xylene	54.0	"	50.0	108	83-123
p- & m- Xylenes	105	"	100	105	82-128
p-Isopropyltoluene	55.5	"	50.0	111	85-125
sec-Butylbenzene	55.4	"	50.0	111	83-125
Styrene	52.4	"	50.0	105	86-126
tert-Butylbenzene	53.3	"	50.0	107	80-127
Tetrachloroethylene	49.2	"	50.0	98.4	80-129
Toluene	54.2	"	50.0	108	85-121
trans-1,2-Dichloroethylene	48.0	"	50.0	96.1	72-132
trans-1,3-Dichloropropylene	55.4	"	50.0	111	78-132
Trichloroethylene	52.1	"	50.0	104	84-123
Trichlorofluoromethane	49.8	"	50.0	99.7	62-140
Vinyl acetate	57.0	"	50.0	114	67-136
Vinyl Chloride	46.4	"	50.0	92.9	52-130
Surrogate: 1,2-Dichloroethane-d4	52.0	"	50.0	104	77-125
Surrogate: Toluene-d8	49.4	"	50.0	98.9	85-120

50.0

48.7

Prepared & Analyzed: 10/18/2017

97.3

76-130

 ${\it Surrogate: p-Bromofluor obenzene}$

Batch BJ70939 - EPA 5035A

LCS (BJ70939-BS1)

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ70939 - EPA 5035A											
LCS Dup (BJ70939-BSD1)							Pre	pared & Analy	zed: 10/18/	2017	
1,1,1,2-Tetrachloroethane	53.3		ug/L	50.0		107	75-129		2.12	30	
1,1,1-Trichloroethane	49.4		"	50.0		98.9	71-137		9.32	30	
1,1,2,2-Tetrachloroethane	52.6		"	50.0		105	79-129		4.13	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	51.9		"	50.0		104	58-146		2.72	30	
1,1,2-Trichloroethane	53.3		"	50.0		107	83-123		0.433	30	
1,1-Dichloroethane	50.6		"	50.0		101	75-130		3.46	30	
1,1-Dichloroethylene	44.4		"	25.0		177	64-137	High Bias	16.4	30	
1,1-Dichloropropylene	51.5		"	50.0		103	77-127		1.10	30	
1,2,3-Trichlorobenzene	55.5		"	50.0		111	81-140		0.108	30	
1,2,3-Trichloropropane	58.4		"	50.0		117	81-126		1.97	30	
1,2,4-Trichlorobenzene	58.3		"	50.0		117	80-141		5.15	30	
1,2,4-Trimethylbenzene	50.4		"	50.0		101	84-125		6.71	30	
1,2-Dibromo-3-chloropropane	54.3		"	50.0		109	74-142		0.367	30	
1,2-Dibromoethane	51.3		"	50.0		103	86-123		3.75	30	
1,2-Dichlorobenzene	54.7		"	50.0		109	85-122		1.11	30	
1,2-Dichloroethane	51.9		"	50.0		104	71-133		2.00	30	
1,2-Dichloropropane	49.4		"	50.0		98.7	81-122		5.61	30	
1,3,5-Trimethylbenzene	54.0		"	50.0		108	82-126		2.93	30	
1,3-Dichlorobenzene	57.9		"	50.0		116	84-124		3.55	30	
1,3-Dichloropropane	50.5		"	50.0		101	83-123		3.14	30	
1,4-Dichlorobenzene	57.0		"	50.0		114	84-124		2.43	30	
1,4-Dioxane	1010		"	1000		101	10-228		0.0287	30	
2,2-Dichloropropane	51.2		"	50.0		102	67-136		2.01	30	
2-Butanone	72.3		"	50.0		145	58-147		3.20	30	
2-Chlorotoluene	55.9		"	50.0		112	78-127		3.72	30	
4-Chlorotoluene	56.4		"	50.0		113	79-125		5.88	30	
Acetone	30.7		"	50.0		61.5	36-155		24.5	30	
Benzene	49.8		"	50.0		99.5	77-127		2.67	30	
Bromobenzene	51.6		"	50.0		103	77-129		2.11	30	
Bromochloromethane	48.1		"	50.0		96.3	74-129		6.96	30	
Bromodichloromethane	54.3		"	50.0		109	81-124		1.30	30	
Bromoform	54.8		"	50.0		110	80-136		3.92	30	
Bromomethane	48.3		"	50.0		96.7	32-177		6.25	30	
Carbon tetrachloride	53.6		"	50.0		107	66-143		1.88	30	
Chlorobenzene	53.1		"	50.0		106	86-120		1.72	30	
Chloroethane	49.2		"	50.0		98.5	51-142		1.17	30	
Chloroform	50.9		"	50.0		102	76-131		0.783	30	
Chloromethane	50.6		"	50.0		101	49-132		0.356	30	
cis-1,2-Dichloroethylene	49.8		"	50.0		99.6	74-132		0.847	30	
cis-1,3-Dichloropropylene	53.4		"	50.0		107	81-129		0.839	30	
Dibromochloromethane	57.3		"	50.0		115	10-200		3.21	30	
Dibromomethane	52.3		"	50.0		105	83-124		1.56	30	
Dichlorodifluoromethane	49.8		"	50.0		99.7	28-158		5.03	30	
Ethyl Benzene	54.8		"	50.0		110	84-125		1.94	30	
Hexachlorobutadiene	53.8		"	50.0		108	83-133		4.47	30	
Isopropylbenzene	52.4		"	50.0		105	81-127		0.627	30	
Methyl tert-butyl ether (MTBE)	49.2		"	50.0		98.4	74-131		0.203	30	
Methylene chloride	43.4		"	50.0		86.9	57-141		11.8	30	
Naphthalene	52.2		"	50.0		104	86-141		7.08	30	
n-Butylbenzene	57.8		"	50.0		116	80-141		0.156	30	
n-Propylbenzene	55.2		"	50.0		110	74-136		2.23	30	
	J.J.2			50.0		110	/ -130			50	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Allaryte	Result	Limit Omis	Level	Result	/0KEC	Lillits	1 lag	KI D	Limit	1 lag
Batch BJ70939 - EPA 5035A										
LCS Dup (BJ70939-BSD1)						Pre	pared & Analy	zed: 10/18/	2017	
o-Xylene	50.5	ug/L	50.0		101	83-123		6.62	30	
p- & m- Xylenes	107	"	100		107	82-128		2.06	30	
p-Isopropyltoluene	55.8	"	50.0		112	85-125		0.557	30	
sec-Butylbenzene	56.5	"	50.0		113	83-125		1.93	30	
Styrene	52.3	"	50.0		105	86-126		0.172	30	
tert-Butylbenzene	56.3	"	50.0		113	80-127		5.49	30	
Tetrachloroethylene	52.3	"	50.0		105	80-129		6.07	30	
Toluene	53.1	"	50.0		106	85-121		2.05	30	
trans-1,2-Dichloroethylene	47.8	"	50.0		95.6	72-132		0.501	30	
trans-1,3-Dichloropropylene	55.2	"	50.0		110	78-132		0.235	30	
Trichloroethylene	52.4	"	50.0		105	84-123		0.536	30	
Trichlorofluoromethane	50.3	"	50.0		101	62-140		0.998	30	
Vinyl acetate	56.9	"	50.0		114	67-136		0.211	30	
Vinyl Chloride	47.4	"	50.0		94.8	52-130		2.00	30	
Surrogate: 1,2-Dichloroethane-d4	52.9	"	50.0		106	77-125				
Surrogate: 1,2-Dictioroeinane-a4 Surrogate: Toluene-d8	49.8	"	50.0		99.6	85-120				
9	49.8 47.8	"	50.0			76-130				
Surrogate: p-Bromofluorobenzene	47.8		30.0		95.6	/0-130				
Matrix Spike (BJ70939-MS1)	*Source sample: 17J	0671-03 (EP-3 (5 ft))				Prej	pared & Analy	zed: 10/18/	2017	
1,1,1,2-Tetrachloroethane	52.7	ug/L	50.0	ND	105	15-161				
1,1,1-Trichloroethane	48.7	"	50.0	ND	97.3	42-145				
1,1,2,2-Tetrachloroethane	56.3	"	50.0	ND	113	16-167				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	48.9	"	50.0	ND	97.7	11-160				
1,1,2-Trichloroethane	51.7	"	50.0	ND	103	44-145				
1,1-Dichloroethane	48.9	"	50.0	ND	97.7	46-142				
1,1-Dichloroethylene	44.8	"	25.0	ND	179	30-153	High Bias			
1,1-Dichloropropylene	47.1	"	50.0	ND	94.3	40-133				
1,2,3-Trichlorobenzene	31.8	"	50.0	ND	63.7	10-157				
1,2,3-Trichloropropane	61.7	"	50.0	ND	123	38-155				
1,2,4-Trichlorobenzene	34.1	"	50.0	ND	68.1	10-151				
1,2,4-Trimethylbenzene	54.4	"	50.0	ND	109	10-170				
1,2-Dibromo-3-chloropropane	44.6	"	50.0	ND	89.3	36-138				
1,2-Dibromoethane	44.8	"	50.0	ND	89.5	40-142				
1,2-Dichlorobenzene	46.6	"	50.0	ND	93.3	10-147				
1,2-Dichloroethane	49.9	"	50.0	ND	99.8	48-133				
1,2-Dichloropropane	52.8	"	50.0	ND	106	47-141				
1,3,5-Trimethylbenzene	52.2	"	50.0	ND	104	10-150				
1,3-Dichlorobenzene	46.2	"	50.0	ND	92.5	10-144				
1,3-Dichloropropane	47.9	"	50.0	ND	95.7	43-142				
1,4-Dichlorobenzene	44.7	"	50.0	ND	89.3	10-160				
1,4-Dioxane	952	"	1000	ND	95.2	10-191				
2,2-Dichloropropane	50.2	"	50.0	ND	100	38-130				
2-Butanone	72.9	"	50.0	ND	146	10-189				
2-Chlorotoluene	52.8	"	50.0	ND	106	14-144				
4-Chlorotoluene	49.3	"	50.0	ND	98.6	15-138				
Acetone	58.9	"	50.0	2.47	113	10-196				
Benzene	47.2	II .	50.0	ND	94.5	43-139				
	77.2				00.4					
Bromobenzene	49.7	"	50.0	ND	99.4	23-142				
Bromochloromethane		"	50.0 50.0	ND ND	99.4 95.6	23-142 38-145				
	49.7									

120 RESEARCH DRIVE

www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 53 of 67

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BJ70939	- FPA	5035A

Matrix Spike (BJ70939-MS1)	*Source sample: 17J0671	-03 (EP-3 (5 ft))				Prepared & Analyzed: 10/18/2017
Bromomethane	47.6	ug/L	50.0	ND	95.2	10-166
Carbon tetrachloride	50.5	"	50.0	ND	101	35-145
Chlorobenzene	46.9	n .	50.0	ND	93.9	21-154
Chloroethane	51.2	"	50.0	ND	102	15-160
Chloroform	51.1	"	50.0	ND	102	47-142
Chloromethane	45.5	n .	50.0	ND	90.9	10-159
ris-1,2-Dichloroethylene	48.5	n .	50.0	ND	97.0	42-144
sis-1,3-Dichloropropylene	48.8	n .	50.0	ND	97.5	18-159
Dibromochloromethane	50.7	"	50.0	ND	101	10-179
Dibromomethane	48.6	"	50.0	ND	97.2	47-143
Dichlorodifluoromethane	42.3	n .	50.0	ND	84.6	10-145
Ethyl Benzene	49.0	"	50.0	ND	98.1	11-158
Hexachlorobutadiene	35.2	"	50.0	ND	70.4	10-158
sopropylbenzene	56.6	"	50.0	ND	113	10-162
Methyl tert-butyl ether (MTBE)	50.0	"	50.0	ND	100	42-152
Methylene chloride	47.8	"	50.0	ND	95.5	28-151
Naphthalene	33.6	"	50.0	ND	67.1	10-158
n-Butylbenzene	47.7	"	50.0	ND	95.4	10-162
-Propylbenzene	54.3	"	50.0	ND	109	10-155
o-Xylene	47.3	"	50.0	ND	94.7	10-158
o- & m- Xylenes	99.2	"	100	ND	99.2	10-156
o-Isopropyltoluene	51.7	"	50.0	ND	103	10-147
ec-Butylbenzene	55.1	"	50.0	ND	110	10-157
Styrene	42.6	"	50.0	ND	85.2	13-171
ert-Butylbenzene	59.4	"	50.0	ND	119	10-160
Tetrachloroethylene	54.7	"	50.0	ND	109	30-167
Toluene	48.5	"	50.0	ND	97.1	21-160
rans-1,2-Dichloroethylene	46.2	"	50.0	ND	92.4	29-153
rans-1,3-Dichloropropylene	46.7	"	50.0	ND	93.3	18-155
Trichloroethylene	48.0	"	50.0	ND	96.0	24-169
richlorofluoromethane	46.3	"	50.0	ND	92.6	35-142
Vinyl acetate	34.0	"	50.0	ND	68.1	10-119
Vinyl Chloride	43.7	"	50.0	ND	87.4	12-160
Surrogate: 1,2-Dichloroethane-d4	49.6	"	50.0		99.1	77-125
Surrogate: Toluene-d8	48.8	"	50.0		97.6	85-120
Surrogate: p-Bromofluorobenzene	52.5	"	50.0		105	76-130

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		ĺ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	ĺ

Ratch	R 170030	- F. P.A	5035A

Matrix Spike Dup (BJ70939-MSD1)	*Source sample: 17J0671	-03 (EP-3 (5 ft))				Prepared &	Analyzed: 10/18/	2017	
1,1,1,2-Tetrachloroethane	43.0	ug/L	50.0	ND	86.0	15-161	20.3	33	
1,1,1-Trichloroethane	36.0	"	50.0	ND	72.1	42-145	29.8	30	
1,1,2,2-Tetrachloroethane	49.1	"	50.0	ND	98.3	16-167	13.6	56	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	34.3	"	50.0	ND	68.7	11-160	34.9	31	Non-di
1,1,2-Trichloroethane	48.2	"	50.0	ND	96.3	44-145	7.03	40	
1,1-Dichloroethane	41.3	"	50.0	ND	82.6	46-142	16.8	36	
1,1-Dichloroethylene	34.5	"	25.0	ND	138	30-153	25.8	31	
1,1-Dichloropropylene	37.7	"	50.0	ND	75.4	40-133	22.3	28	
1,2,3-Trichlorobenzene	26.7	"	50.0	ND	53.5	10-157	17.4	47	
1,2,3-Trichloropropane	56.4	n .	50.0	ND	113	38-155	9.06	48	
1,2,4-Trichlorobenzene	27.9	n .	50.0	ND	55.8	10-151	19.9	52	
1,2,4-Trimethylbenzene	40.0	"	50.0	ND	80.1	10-170	30.3	242	
1,2-Dibromo-3-chloropropane	48.3	"	50.0	ND	96.6	36-138	7.94	54	
1,2-Dibromoethane	44.5	"	50.0	ND	89.0	40-142	0.538	39	
1,2-Dichlorobenzene	38.0	"	50.0	ND	75.9	10-147	20.6	52	
1,2-Dichloroethane	47.0	"	50.0	ND	93.9	48-133	6.11	32	
1,2-Dichloropropane	44.3	"	50.0	ND	88.5	47-141	17.6	37	
1,3,5-Trimethylbenzene	39.7	n .	50.0	ND	79.5	10-150	27.1	62	
1,3-Dichlorobenzene	37.0	"	50.0	ND	73.9	10-144	22.3	51	
1,3-Dichloropropane	47.0	"	50.0	ND	94.1	43-142	1.73	36	
1,4-Dichlorobenzene	36.8	"	50.0	ND ND	73.7	10-160	19.2	52	
1,4-Dioxane	1200	"	1000	ND ND	120	10-191	22.7	196	
2,2-Dichloropropane	36.6	"		ND ND			31.3	31	Non-di
2-Butanone		"	50.0		73.2	38-130	11.6	67	Non-ui
2-Chlorotoluene	81.9 39.7	"	50.0 50.0	ND	164	10-189	28.3	49	
4-Chlorotoluene	39.4	"	50.0	ND ND	79.4	14-144 15-138	22.3	39	
Acetone		"	50.0		78.8		4.77	150	
Benzene	61.8	"		2.46	119	10-196	18.0	64	
Bromobenzene	39.4	"	50.0	ND	78.9	43-139	24.5	44	
Bromochloromethane	38.8		50.0	ND	77.7	23-142			
Bromodichloromethane	44.1	"	50.0	ND	88.2	38-145	8.01 16.2	30 37	
Bromoform	43.2	"	50.0	ND	86.4	38-147	14.3	51	
Bromomethane	47.7		50.0	ND	95.5	29-156			
Carbon tetrachloride	38.3		50.0	ND	76.6	10-166	21.7	42	NT 11
	36.5		50.0	ND	73.0	35-145	32.2	31	Non-di
Chlorobenzene	38.1	"	50.0	ND	76.3	21-154	20.7	32	
Chloroethane	34.9		50.0	ND	69.8	15-160	37.9	40	
Chloroform	40.6	"	50.0	ND	81.2	47-142	22.8	29	
Chloromethane	37.3		50.0	ND	74.5	10-159	19.8	31	
cis-1,2-Dichloroethylene	37.9	"	50.0	ND	75.9	42-144	24.4	30	
cis-1,3-Dichloropropylene	43.6	"	50.0	ND	87.1	18-159	11.3	39	
Dibromochloromethane	46.1	"	50.0	ND	92.1	10-179	9.65	41	
Dibromomethane	44.1	"	50.0	ND	88.2	47-143	9.66	41	
Dichlorodifluoromethane	29.1	"	50.0	ND	58.2	10-145	37.0	34	Non-di
Ethyl Benzene	37.7	"	50.0	ND	75.4	11-158	26.1	42	
Hexachlorobutadiene	30.8	"	50.0	ND	61.5	10-158	13.6	45	
Isopropylbenzene	38.8	"	50.0	ND	77.5	10-162	37.4	57	
Methyl tert-butyl ether (MTBE)	46.6	"	50.0	ND	93.2	42-152	7.06	47	
Methylene chloride	40.8	"	50.0	ND	81.6	28-151	15.7	49	
Naphthalene	29.7	"	50.0	ND	59.4	10-158	12.1	95	
n-Butylbenzene	38.0	"	50.0	ND	75.9	10-162	22.7	96	
n-Propylbenzene	39.3	"	50.0	ND	78.6	10-155	32.1	56	

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 55 of 67

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BJ70939	- FPA	5035A

Matrix Spike Dup (BJ70939-MSD1)	*Source sample: 17J0671	-03 (EP-3 (5 ft))				Prepared &	Analyzed: 10/18/2	2017	
o-Xylene	39.9	ug/L	50.0	ND	79.9	10-158	17.0	51	
p- & m- Xylenes	78.7	"	100	ND	78.7	10-156	23.0	47	
p-Isopropyltoluene	39.6	"	50.0	ND	79.1	10-147	26.6	60	
sec-Butylbenzene	39.7	"	50.0	ND	79.4	10-157	32.4	56	
Styrene	37.6	"	50.0	ND	75.1	13-171	12.6	39	
tert-Butylbenzene	41.8	"	50.0	ND	83.5	10-160	34.9	79	
Tetrachloroethylene	44.1	"	50.0	ND	88.1	30-167	21.5	33	
Toluene	39.7	"	50.0	ND	79.4	21-160	20.1	50	
trans-1,2-Dichloroethylene	35.1	"	50.0	ND	70.2	29-153	27.4	30	
trans-1,3-Dichloropropylene	41.6	"	50.0	ND	83.1	18-155	11.6	30	
Trichloroethylene	37.1	"	50.0	ND	74.2	24-169	25.7	30	
Trichlorofluoromethane	33.3	"	50.0	ND	66.5	35-142	32.7	30	Non-dir.
Vinyl acetate	28.7	"	50.0	ND	57.4	10-119	17.0	82	
Vinyl Chloride	35.3	"	50.0	ND	70.5	12-160	21.4	35	
Surrogate: 1,2-Dichloroethane-d4	55.1	"	50.0		110	77-125			
Surrogate: Toluene-d8	51.9	"	50.0		104	85-120			
Surrogate: p-Bromofluorobenzene	50.7	"	50.0		101	76-130			

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 56 of 67 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

$Semivolatile\ Organic\ Compounds\ by\ GC/MS\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BJ71019	- FPA	3550C

Blank (BJ71019-BLK1)				Prepared & Analyzed: 10/19/2017
Tentatively Identified Compounds	0.00	ι	ıg/kg wet	
1,2,4-Trichlorobenzene	ND	41.7	"	
,2-Dichlorobenzene	ND	41.7	"	
,3-Dichlorobenzene	ND	41.7	"	
,4-Dichlorobenzene	ND	41.7	"	
,4,5-Trichlorophenol	ND	41.7	"	
,4,6-Trichlorophenol	ND	41.7	"	
,4-Dichlorophenol	ND	41.7	"	
,4-Dimethylphenol	ND	41.7	"	
,4-Dinitrophenol	ND	83.3	"	
,4-Dinitrotoluene	ND	41.7	"	
,6-Dinitrotoluene	ND	41.7	"	
-Chloronaphthalene	ND	41.7	"	
-Chlorophenol	ND	41.7	"	
-Methylnaphthalene	ND	41.7	"	
-Methylphenol	ND	41.7	"	
-Nitroaniline	ND	83.3	"	
-Nitrophenol	ND	41.7	"	
- & 4-Methylphenols	ND	41.7	"	
,3-Dichlorobenzidine	ND	41.7	"	
-Nitroaniline	ND	83.3	"	
,6-Dinitro-2-methylphenol	ND	83.3	"	
-Bromophenyl phenyl ether	ND	41.7	"	
-Chloro-3-methylphenol	ND	41.7	"	
-Chloroaniline	ND	41.7	"	
-Chlorophenyl phenyl ether	ND	41.7	"	
Nitroaniline	ND	83.3	"	
-Nitrophenol	ND	83.3	"	
cenaphthene	ND	41.7	"	
cenaphthylene	ND	41.7	"	
niline	ND	167	"	
nthracene	ND	41.7	"	
enzo(a)anthracene	ND	41.7	"	
enzo(a)pyrene	ND	41.7	"	
enzo(b)fluoranthene	ND	41.7	"	
enzo(g,h,i)perylene	ND	41.7	"	
enzo(k)fluoranthene	ND	41.7	"	
enzyl alcohol	ND	41.7	"	
enzyl butyl phthalate	ND	41.7	"	
is(2-chloroethoxy)methane	ND	41.7	"	
sis(2-chloroethyl)ether	ND	41.7	"	
is(2-chloroisopropyl)ether	ND	41.7	"	
is(2-ethylhexyl)phthalate	ND	41.7	"	
hrysene	ND ND	41.7	"	
ibenzo(a,h)anthracene	ND ND	41.7	"	
bibenzofuran	ND ND	41.7	"	
riethyl phthalate	ND ND	41.7	"	
rimethyl phthalate	ND ND	41.7	"	
ri-n-butyl phthalate	ND ND	41.7	"	
i-n-octyl phthalate	ND ND	41.7	"	
luoranthene	ND ND	41.7	"	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 57 of 67

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BJ71019-BLK1)						Prepared & Analyzed: 10/19/2017
luorene	ND	41.7	ug/kg wet			
Iexachlorobenzene	ND	41.7	"			
Iexachlorobutadiene	ND	41.7	"			
exachlorocyclopentadiene	ND	41.7	"			
lexachloroethane	ND	41.7	"			
ndeno(1,2,3-cd)pyrene	ND	41.7	"			
sophorone	ND	41.7	"			
aphthalene	ND	41.7	"			
itrobenzene	ND	41.7	"			
-Nitrosodimethylamine	ND	41.7	"			
-nitroso-di-n-propylamine	ND	41.7	"			
-Nitrosodiphenylamine	ND	41.7	"			
entachlorophenol	ND	41.7	"			
henanthrene			,,			
henol	ND ND	41.7 41.7	,,			
yrene	ND ND	41.7	,,			
yridine			"			
	ND	167				
ırrogate: 2-Fluorophenol	1460		"	2510	58.1	20-108
ırrogate: Phenol-d5	1790		"	2570	69.7	23-114
ırrogate: Nitrobenzene-d5	1080		"	1730	62.4	22-108
rrogate: 2-Fluorobiphenyl	1090		"	1730	63.3	21-113
rrogate: 2,4,6-Tribromophenol	1550		"	2570	60.2	19-110
ırrogate: Terphenyl-d14	911		"	1680	54.3	24-116
CS (BJ71019-BS1)						Prepared & Analyzed: 10/19/2017
2,4-Trichlorobenzene	506	41.7	ug/kg wet	833	60.7	23-130
2-Dichlorobenzene	524	41.7	ug/kg wet	833	62.8	26-113
3-Dichlorobenzene	524	41.7	"	833	62.9	32-113
4-Dichlorobenzene	508	41.7	"	833	60.9	28-111
4,5-Trichlorophenol	536	41.7	"	833	64.4	14-138
l,6-Trichlorophenol			"			
4-Dichlorophenol	564	41.7	"	833	67.7	27-122
-	605	41.7	"	833	72.6	23-133
4-Dimethylphenol	577 505	41.7	"	833	69.2	15-131
4-Dinitrophenol	505	83.3	"	833	60.6	10-149
4-Dinitrotoluene	594	41.7	"	833	71.3	30-123
6-Dinitrotoluene	592	41.7	"	833	71.0	30-125
Chloronaphthalene	556	41.7	"	833	66.7	22-115
Chlorophenol	561	41.7	"	833	67.4	25-121
Methylnaphthalene	599	41.7		833	71.9	16-127
Methylphenol	539	41.7	"	833	64.7	10-146
Nitroaniline	585	83.3	"	833	70.2	24-126
Nitrophenol	554	41.7	"	833	66.5	17-129
& 4-Methylphenols	543	41.7	"	833	65.1	20-109
3-Dichlorobenzidine	655	41.7	"	833	78.6	10-147
Nitroaniline	529	83.3	"	833	63.4	23-123
6-Dinitro-2-methylphenol	482	83.3	"	833	57.9	10-149
Bromophenyl phenyl ether	556	41.7	"	833	66.8	30-138
-Chloro-3-methylphenol	609	41.7	"	833	73.1	16-138
-Chloroaniline	473	41.7	"	833	56.8	10-117
-Chlorophenyl phenyl ether	559	41.7	"	833	67.1	18-132
Nitroaniline	621	83.3	"	833	74.6	14-125

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	l

.CS (BJ71019-BS1)						Prepared & Analyzed: 10/19/2017
-Nitrophenol	538	83.3	ug/kg wet	833	64.5	10-136
cenaphthene	566	41.7	"	833	67.9	17-124
cenaphthylene	529	41.7	"	833	63.5	16-124
niline	404	167	"	833	48.4	10-111
nthracene	593	41.7	"	833	71.2	24-124
enzo(a)anthracene	545	41.7	"	833	65.4	25-134
nzo(a)pyrene	539	41.7	"	833	64.6	29-144
enzo(b)fluoranthene	538	41.7	"	833	64.6	20-151
enzo(g,h,i)perylene	601	41.7	"	833	72.1	10-153
enzo(k)fluoranthene	576	41.7	"	833	69.2	10-148
enzyl alcohol	540	41.7	"	833	64.8	17-128
enzyl butyl phthalate	558	41.7	"	833	67.0	10-132
is(2-chloroethoxy)methane	619	41.7	"	833	74.2	10-129
is(2-chloroethyl)ether	521	41.7	"	833	62.5	14-125
is(2-chloroisopropyl)ether	627	41.7	"	833	75.3	14-122
is(2-ethylhexyl)phthalate	552	41.7	"	833	66.2	10-141
hrysene	569	41.7	"	833	68.3	24-116
ibenzo(a,h)anthracene	585	41.7	"	833	70.2	17-147
ibenzofuran	574	41.7	"	833	68.8	23-123
ethyl phthalate	551	41.7	"	833	66.2	23-122
methyl phthalate	557	41.7	"	833	66.9	28-127
-n-butyl phthalate	582	41.7	"	833	69.9	19-123
-n-octyl phthalate	564	41.7	"	833	67.7	10-132
ioranthene	597	41.7	"	833	71.6	36-125
uorene	562	41.7	"	833	67.4	16-130
exachlorobenzene	560	41.7	"	833	67.2	10-129
exachlorobutadiene	513	41.7	"	833	61.6	22-153
exachlorocyclopentadiene	473	41.7	"	833	56.7	10-134
exachloroethane	535	41.7	"	833	64.2	20-112
deno(1,2,3-cd)pyrene	562	41.7	"	833	67.5	10-155
ophorone	572	41.7	"	833	68.6	14-131
aphthalene	598	41.7	"	833	71.8	20-121
trobenzene	529	41.7	"	833	63.4	20-121
Nitrosodimethylamine	541	41.7	"	833	64.9	10-124
nitroso-di-n-propylamine	531	41.7	"	833	63.8	21-119
Nitrosodiphenylamine	634	41.7	"	833	76.0	10-163
entachlorophenol	588	41.7	"	833	70.6	10-143
enanthrene	605	41.7	"	833	72.6	24-123
enol	475	41.7	"	833	57.0	15-123
rene	580	41.7	"	833	69.6	24-132
ridine	458	167	"	833	55.0	10-92
		107	"			
arrogate: 2-Fluorophenol	1340		,,	2510 2570	53.4	20-108
rrogate: Phenol-d5	1580		,,	2570	61.3	23-114
urrogate: Nitrobenzene-d5	998		"	1730	57.8	22-108
urrogate: 2-Fluorobiphenyl	925		"	1730	53.6	21-113
errogate: 2,4,6-Tribromophenol	1510			2570	58.8	30-130
rogate: Terphenyl-d14	806		"	1680	48.1	24-116

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 59 of 67

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BJ71019	- FPA	3550	\mathbf{C}

Matrix Spike (BJ71019-MS1)	*Source sample: 17J	0671-03 (EI	P-3 (5 ft))				Prepared & Analyzed: 10/19/2017
,2,4-Trichlorobenzene	685	96.4	ug/kg dry	963	ND	71.1	15-139
,2-Dichlorobenzene	662	96.4	"	963	ND	68.7	29-106
,3-Dichlorobenzene	601	96.4	"	963	ND	62.4	34-100
,4-Dichlorobenzene	621	96.4	"	963	ND	64.5	26-107
2,4,5-Trichlorophenol	718	96.4	"	963	ND	74.6	10-148
,4,6-Trichlorophenol	707	96.4	"	963	ND	73.4	12-138
,4-Dichlorophenol	785	96.4	"	963	ND	81.5	16-144
,4-Dimethylphenol	761	96.4	"	963	ND	79.0	11-133
,4-Dinitrophenol	387	193	"	963	ND	40.2	10-132
,4-Dinitrotoluene	697	96.4	"	963	ND	72.4	42-113
,6-Dinitrotoluene	770	96.4	"	963	ND	79.9	36-124
-Chloronaphthalene	726	96.4	"	963	ND	75.4	31-116
-Chlorophenol	732	96.4	"	963	ND	76.0	28-114
-Methylnaphthalene	832	96.4	"	963	ND	86.4	10-143
-Methylphenol	699	96.4	"	963	ND	72.6	10-160
Nitroaniline	702	193	"	963	ND	72.9	33-122
-Nitrophenol	733	96.4	"	963	ND	76.1	12-127
- & 4-Methylphenols	701	96.4	"	963	ND	72.8	16-115
3-Dichlorobenzidine	446	96.4	"	963	ND	46.3	10-134
-Nitroaniline	657	193	"	963	ND	68.2	24-128
6-Dinitro-2-methylphenol	429	193	"	963	ND	44.6	10-149
Bromophenyl phenyl ether	675	96.4	"	963	ND	70.1	32-148
-Chloro-3-methylphenol	794	96.4	"	963	ND	82.5	14-138
Chloroaniline	657	96.4	"	963	ND	68.2	10-124
-Chlorophenyl phenyl ether	699	96.4	"	963	ND	72.6	10-153
Nitroaniline	681	193	"	963	ND	70.7	10-151
Nitrophenol	757	193	"	963	ND	78.6	10-141
cenaphthene	737	96.4	"	963	ND	76.5	13-133
cenaphthylene	703	96.4	"	963	ND	73.0	25-125
niline	602	386	"	963	ND	62.5	10-112
nthracene	798	96.4	"	963	ND	82.9	27-128
enzo(a)anthracene	904	96.4	"	963	219	71.1	20-147
enzo(a)pyrene	915	96.4	"	963	224	71.1	18-153
enzo(b)fluoranthene	921	96.4	"	963	204	74.4	10-163
enzo(g,h,i)perylene	880	96.4	"				10-163
enzo(k)fluoranthene	910	96.4	"	963 963	156 222	75.2 71.4	10-137
enzyl alcohol	732	96.4	"	963	ND		20-122
enzyl butyl phthalate	689		,,			76.0	
is(2-chloroethoxy)methane		96.4	,,	963	ND	71.5	10-129
tis(2-chloroethyl)ether	843	96.4	,,	963	ND	87.5	12-128
sis(2-chloroisopropyl)ether	729	96.4	,,	963	ND	75.7	18-113
	787	96.4		963	ND	81.7	10-130
is(2-ethylhexyl)phthalate	695	96.4	"	963	ND	72.2	10-138
hrysene	979	96.4	"	963	266	74.1	18-133
bibenzo(a,h)anthracene	793	96.4	"	963	50.9	77.0	10-146
ibenzofuran	741	96.4	"	963	ND	77.0	26-134
riethyl phthalate	699	96.4		963	ND	72.6	30-119
imethyl phthalate	707	96.4	"	963	ND	73.4	34-120
i-n-butyl phthalate	741	96.4	"	963	ND	76.9	20-128
Di-n-octyl phthalate	702	96.4	"	963	ND	72.9	10-133
luoranthene	1140	96.4	"	963	350	82.4	10-155
luorene	744	96.4	"	963	ND	77.3	12-150

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		York Anal	ytical La								
Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
Batch BJ71019 - EPA 3550C											
Matrix Spike (BJ71019-MS1)	*Source sample: 1	7J0671-03 (El	P-3 (5 ft))				Prep	ared & Anal	yzed: 10/19/	2017	
Hexachlorobenzene	710	96.4	ug/kg dry	963	ND	73.8	16-142				
Hexachlorobutadiene	667	96.4	"	963	ND	69.2	11-150				
Hexachlorocyclopentadiene	398	96.4	"	963	ND	41.3	10-115				
Hexachloroethane	647	96.4	"	963	ND	67.2	14-106				
Indeno(1,2,3-cd)pyrene	813	96.4	"	963	143	69.6	10-155				
Isophorone	767	96.4	"	963	ND	79.6	14-127				
Naphthalene	841	96.4	"	963	ND	87.3	15-132				
Nitrobenzene	724	96.4	"	963	ND	75.1	18-125				
N-Nitrosodimethylamine	565	96.4	"	963	ND	58.6	10-123				
N-nitroso-di-n-propylamine	686	96.4	"	963	ND	71.2	23-115				
N-Nitrosodiphenylamine	797	96.4	"	963	ND	82.7	16-166				
Pentachlorophenol			"								
Phenanthrene	718	96.4	"	963	ND	74.6	10-160				
	983	96.4	"	963	143	87.3	10-151				
Phenol	674	96.4		963	ND	70.0	11-124				
Pyrene	1080	96.4	"	963	303	80.3	13-148				
Pyridine	527	386	"	963	ND	54.7	10-125				
Surrogate: 2-Fluorophenol	1910		"	2900		66.0	20-108				
Surrogate: Phenol-d5	2300		"	2970		77.4	23-114				
Surrogate: Nitrobenzene-d5	1420		"	2000		71.0	22-108				
Surrogate: 2-Fluorobiphenyl	1350		"	2000		67.5	21-113				
Surrogate: 2,4,6-Tribromophenol	1970		"	2970		66.6	30-130				
Surrogate: Terphenyl-d14	1050		"	1940		54.4	24-116				
Matrix Spike Dup (BJ71019-MSD1)	*Source sample: 1	7J0671-03 (E	P-3 (5 ft))				Prep	ared & Anal	yzed: 10/19/	2017	
1,2,4-Trichlorobenzene	431	96.4	ug/kg dry	963	ND	44.7	15-139		45.6	30	Non-dii
1,2-Dichlorobenzene	418	96.4	ug/kg ury	963	ND	43.4	29-106		45.1	30	Non-di
1,3-Dichlorobenzene	384	96.4	"	963	ND	39.8	34-100		44.1	30	Non-di
1,4-Dichlorobenzene	394	96.4	"		ND ND	40.9	26-107		44.8	30	Non-di
2,4,5-Trichlorophenol	647		"	963 963					10.4	30	INOII-GI
•		96.4	,,		ND	67.2	10-148		16.0	30	
2,4,6-Trichlorophenol	603	96.4	"	963	ND	62.6	12-138				N
2,4-Dichlorophenol	553	96.4		963	ND	57.4	16-144		34.7	30	Non-di
2,4-Dimethylphenol	552	96.4	"	963	ND	57.3	11-133		31.9	30	Non-di
2,4-Dinitrophenol	272	193	"	963	ND	28.2	10-132		34.9	30	Non-di
2,4-Dinitrotoluene	687	96.4	"	963	ND	71.4	42-113		1.45	30	
2,6-Dinitrotoluene	693	96.4	"	963	ND	71.9	36-124		10.5	30	
2-Chloronaphthalene	528	96.4	"	963	ND	54.8	31-116		31.6	30	Non-di
2-Chlorophenol	491	96.4	"	963	ND	51.0	28-114		39.4	30	Non-di
2-Methylnaphthalene	573	96.4	"	963	ND	59.4	10-143		37.0	30	Non-di
2-Methylphenol	490	96.4	"	963	ND	50.9	10-160		35.1	30	Non-di
2-Nitroaniline	642	193	"	963	ND	66.6	33-122		8.94	30	
2-Nitrophenol	465	96.4	"	963	ND	48.3	12-127		44.6	30	Non-di
3- & 4-Methylphenols	505	96.4	"	963	ND	52.5	16-115		32.4	30	Non-di
3,3-Dichlorobenzidine	530	96.4	"	963	ND	55.0	10-134		17.2	30	
3-Nitroaniline	636	193	"	963	ND	66.1	24-128		3.22	30	
4,6-Dinitro-2-methylphenol	367	193	"	963	ND	38.1	10-149		15.7	30	
4-Bromophenyl phenyl ether	633	96.4	"	963	ND	65.8	32-148		6.36	30	
4-Chloro-3-methylphenol	680	96.4	"	963	ND	70.6	14-138		15.5	30	
4-Chloroaniline	574	96.4	"	963	ND	59.6	10-124		13.4	30	
4-Chlorophenyl phenyl ether	630	96.4	"	963	ND ND	65.4	10-124		10.4	30	
4-Nitroaniline			"						0.567	30	
T-INITIOAIIIIIIC	677	193		963	ND	70.3	10-151		0.307	30	

120 RESEARCH DRIVE www.YORKLAB.com

4-Nitrophenol

STRATFORD, CT 06615

(203) 325-1371

838

193

132-02 89th AVENUE

963

RICHMOND HILL, NY 11418

10.1

10-141

87.0

FAX (203) 357-0166

ND

ClientServices@ Page 61 of 67

30

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

7 mary to	Result	Lillin	Omis	Lever	resurt	/orche	Lillins	1 146		2	- 16
Batch BJ71019 - EPA 3550C											
Matrix Spike Dup (BJ71019-MSD1)	*Source sample: 17J	J0671-03 (EP	P-3 (5 ft))				Prep	ared & Analyzed	l: 10/19/	/2017	
Acenaphthene	589	96.4	ug/kg dry	963	ND	61.1	13-133		22.3	30	
Acenaphthylene	560	96.4	"	963	ND	58.2	25-125		22.6	30	
Aniline	439	386	"	963	ND	45.6	10-112		31.2	30	Non-dir.
Anthracene	746	96.4	"	963	ND	77.4	27-128		6.79	30	
Benzo(a)anthracene	805	96.4	"	963	219	60.9	20-147		11.5	30	
Benzo(a)pyrene	814	96.4	"	963	224	61.2	18-153		11.8	30	
Benzo(b)fluoranthene	816	96.4	"	963	204	63.5	10-163		12.1	30	
Benzo(g,h,i)perylene	790	96.4	"	963	156	65.8	10-157		10.8	30	
Benzo(k)fluoranthene	810	96.4	"	963	222	61.0	10-157		11.6	30	
Benzyl alcohol	514	96.4	"	963	ND	53.4	20-122		35.0	30	Non-dir.
Benzyl butyl phthalate	669	96.4	"	963	ND	69.4	10-129		2.95	30	
Bis(2-chloroethoxy)methane	568	96.4	"	963	ND	59.0	12-128		39.0	30	Non-dir.
Bis(2-chloroethyl)ether	473	96.4	"	963	ND	49.1	18-113		42.6	30	Non-dir.
Bis(2-chloroisopropyl)ether	497	96.4	"	963	ND	51.6	10-130		45.1	30	Non-dir.
Bis(2-ethylhexyl)phthalate	677	96.4	"	963	ND	70.3	10-138		2.58	30	
Chrysene	874	96.4	"	963	266	63.1	18-133		11.4	30	
Dibenzo(a,h)anthracene	737	96.4	"	963	50.9	71.2	10-146		7.36	30	
Dibenzofuran	623	96.4	"	963	ND	64.7	26-134		17.3	30	
Diethyl phthalate	672	96.4	"	963	ND	69.8	30-119		3.93	30	
Dimethyl phthalate	645	96.4	"	963	ND	67.0	34-120		9.12	30	
Di-n-butyl phthalate	729	96.4	"	963	ND	75.7	20-128		1.57	30	
Di-n-octyl phthalate	679	96.4	"	963	ND	70.5	10-133		3.35	30	
Fluoranthene	986	96.4	"	963	350	66.1	10-155		14.8	30	
Fluorene	653	96.4	"	963	ND	67.8	12-150		13.1	30	
Hexachlorobenzene	672	96.4	"	963	ND	69.8	16-142		5.57	30	
Hexachlorobutadiene	417	96.4	"	963	ND	43.3	11-150		46.1	30	Non-dir.
Hexachlorocyclopentadiene	193	96.4	"	963	ND	20.0	10-115		69.5	30	Non-dir.
Hexachloroethane	405	96.4	"	963	ND	42.0	14-106		46.2	30	Non-dir.
Indeno(1,2,3-cd)pyrene	619	96.4	"	963	143	49.4	10-155		27.1	30	
Isophorone	527	96.4	"	963	ND	54.7	14-127		37.0	30	Non-dir.
Naphthalene	540	96.4	"	963	ND	56.1	15-132		43.5	30	Non-dir.
Nitrobenzene	473	96.4	"	963	ND	49.1	18-125		41.9	30	Non-dir.
N-Nitrosodimethylamine	469	96.4	"	963	ND	48.7	10-123		18.5	30	
N-nitroso-di-n-propylamine	451	96.4	"	963	ND	46.8	23-115		41.4	30	Non-dir.
N-Nitrosodiphenylamine	748	96.4	"	963	ND	77.7	16-166		6.28	30	
Pentachlorophenol	703	96.4	"	963	ND	73.0	10-160		2.17	30	
Phenanthrene	841	96.4	"	963	143	72.5	10-151		15.6	30	
Phenol	475	96.4	"	963	ND	49.4	11-124		34.6	30	Non-dir.
Pyrene	912	96.4	"	963	303	63.2	13-148		16.6	30	
Pyridine	387	386	"	963	ND	40.2	10-125		30.7	30	Non-dir.
Surrogate: 2-Fluorophenol	1290		"	2900		44.7	20-108			_	
Surrogate: Phenol-d5	1680		"	2970		56.5	23-114				
Surrogate: Nitrobenzene-d5	952		"	2000		47.7	22-108				
Surrogate: 2-Fluorobiphenyl	1020		"	2000		51.0	21-113				
Surrogate: 2,4,6-Tribromophenol	1950		"	2970		65.8	30-130				
						_					

120 RESEARCH DRIVE www.YORKLAB.com

Surrogate: Terphenyl-d14

STRATFORD, CT 06615 (203) 325-1371

1040

132-02 89th AVENUE FAX (203) 357-0166

53.9

24-116

1940

RICHMOND HILL, NY 11418

ClientServices@

Miscellaneous Physical Parameters - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*	Source* %REC			RPD				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag		

Batch BJ71125 - % Solids Prep

Duplicate (BJ71125-DUP1)	*Source sample: 17J0671-03 (EP-3 (5 ft))		Prepared & Analyzed: 10/20/2017
% Solids	86.5 0.100 %	86.5	0.0285 20

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
17J0671-01	EP-1 (5 ft)	40mL Vial with Stir Bar-Cool 4° C
17J0671-02	EP-2 (5 ft)	40mL Vial with Stir Bar-Cool 4° C
17J0671-03	EP-3 (5 ft)	8 oz. WM Clear Glass Cool to 4° C
17J0671-04	EP-4 (5 ft)	40mL Vial with Stir Bar-Cool 4° C
17J0671-05	EP-5 (6.5 ft)	40mL Vial with Stir Bar-Cool 4° C
17J0671-06	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were
	within acceptance limits showing that the laboratory is in control and the data are acceptable.

- QL-02 This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
- J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
- CCV-E The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).

Definitions and Other Explanations

- * Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
- ND NOT DETECTED the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
- RL REPORTING LIMIT the minimum reportable value based upon the lowest point in the analyte calibration curve.
- LOQ LIMIT OF QUANTITATION the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
- LOD LIMIT OF DETECTION a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
- MDL METHOD DETECTION LIMIT a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
- Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 65 of 67

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Corrective Action:

The containers for samples MW-4 and MW-5 were labeled EP-4 and EP-5 (logged as EP per client instructions). The MS/MSD containers were labeled EP-3 MS and EP-3 MSD and assigned to the EP-3 parent sample.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 66 of 67

www.YORKLAB.com (203) 325-1371

STRATFORD, CT 06615 20 RESEARCH DR. ANALYTICAL

FAX (203) 357-0166

(203) 325-1371

Field Chain-of-Custody Record

o

Page

York Project No.

This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract. NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

Report/Deliverable Type YORK Regulatory Comp Excel See Comment below CT RCP DQA/DUE Pkg NJDEP Reduced Deliv JUDEP SRP HazSite VY ASP A Package IY ASP B Package Summary Report VYSDEC EQUIS GIS/KEY (std) compared to: QA Report CT RCP EQuIS xcel Part360-Beseine Part360-Rottre Part 360 former TCL Opinios NYSDECSOR Full Lists NYCOPS Pull App. IX TALMERON Full TCLP Part 380-50-Pri.Poll. Turn-Around Time Misc. Org. NY 310-13 TPH GRO TPH DRO Air TO14A TPH 1664 Air STARS Standard (5-7day) CTETPH Air TO15 RUSH-Same Day RUSH-Three Day RUSH-Four Day Air TICs RUSH-Next Day Air VPH RUSH-Two Day Methane STPOTICE Indis Metak NIDEPLIST Metals TAGM list Dissolved IST Below CTIS list PP13 list RCRA8 Total TAL Semi-Vols, PestPCBHerb SPLPOTUP TCL.P Herb Purchase Order # TCLP Pest Your Project ID 11-28 31 Drive, LIC NY Samples from CT NY NJ Chlordane 8082PCB 8151Herb Site Spec. 8081Pest CTRCP 608 Pest ST POT TT P GOS DOTE App. IX 1666 CT RCP list TCLP BNA 8270 cr 625 STARS list Acids Only NIDEP list LAGM list BN Only App. IX PAH list TCL list SPIPOTUP Suffolk Co. NJDEP list Naman Co. Site Spec Oxygenates TCLP list Ketones 524.2 TICs 502.2 Volatiles Company: Hydro Tech Env. Corp. CT RCP list App.IX list 77 Arkay Dr. Sulte G Hauppauge Ny STARS list Arom. only TAGM list Halog.only SOZIH list 8260 full Invoice To: MTBE TOLE BTEX Samples will NOT be logged in and the turn-around time 624 Print Clearly and Legibly. All Information must be complete. DW - drinking water Other - specify(oil, etc.) clock will not begin until any questions by York are resolved. GW - groundwater WW - wastewater Matrix Codes Air-A - ambient air Air-SV - soil vapor SAME Address: Name: E-mail Soil Report to: Samples Collected/Authorized By (Signature) × Company: SAME Address: Name: E-mail: Name (printed) 1 15 Ocean Ave. 2nd FI **/OUR Information** Bklyn , NY 11225 Company: Hydro Tech Env. Corp. 718-636-0800 Paul I. Matli Address: Contact hone.: -mail:

			Indian Liaban	OTHER:
Sample Identification	Date+Time Sampled	Matrix	Analysis Requested (List above includes common analysis)	Container Description
EP-1 (5ft)	10/16/2017	GW	EPA 8260 + 10 TICs/EPA 8270 + 10 TICs	1 x (Terracore set + 8Oz Jar)
EP-2 (5 ft) (MS/MSD)	×	×	×	3 x (Terracore set + 8Oz Jar)
EP-3 (5ft)	×	×	×	1 x (Terracore set + 8Oz Jar)
MW-4 (5 ft)	×	×	×	×
MW-5 (6.5 ft)	×	×	×	×
Trip Blank	×	IQ	EPA 8260 + 10 TICs	2 x (40 mil vials)
Comments:		Preservation (check all appliciable)	4°C Frozen HCI MeoH HNOs HSO.	NaOH
x = same as before Compare to NYSDEC Part 375 UUSCO and RRSCOs	SCO and RRSCOs	Special Instructions Freld Filtered Lab to Filter		Date/Time 3.10 O.f.

ATTACHMENT O Data Usability Summary Reports

Pre-Injection Groundwater Data

Hydrology

Remediation

Water Supply

May 11, 2018

Mr. Paul I. Matli, Ph.D. Hydro Tech Environmental, Corp. 15 Ocean Ave., 2nd Floor Brooklyn, NY 11225

Re: Data Validation Report

February 2018 Ground Water Sampling Event

11-28 31 Drive, LIC, NY

Dear Dr. Matli:

The data usability summary report and data validation summaries are attached to this letter for the above referenced project. The data for York Analytical Laboratories, Inc. SDG 18B0738 were acceptable with some minor issues that are identified in the validation summary. There were no data that were qualified as rejected, unusable (R) in the data pack.

We have attached lists of data validation acronyms and data qualifiers to assist you in the interpretation of the reviews. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Hydro Tech Environmental, Corp.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- J- = Analyte is present. Reported value may be biased low and associated with a higher level of uncertainty than is normally expected with the analytical method.
- J+ = Analyte is present. Reported value may be biased high and associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Validation Acronyms

AA Atomic absorption, flame technique

BFB Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Hydrology

Remediation

Water Supply

Data Usability Summary Report for York Analytical Laboratories, Inc., SDG: 18B0738

5 Ground Water Samples, 1 Field Blank, and 1 Trip Blank Collected February 19, 2018

> Prepared by: Donald Anné May 11, 2018

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results of volatile analyses for 5 ground water samples, 1 field blank, and 1 trip blank.

The overall performance of the analysis is acceptable. York Analytical Laboratories, Inc. did fulfill the requirements of the volatile method.

The data are acceptable with minor issues that are identified in the accompanying data validation reviews. There were no data qualified as either estimated (J) or rejected (R); therefore, all data are considered usable. Detailed information on data quality is included in the data validation reviews.

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260C Volatiles Data for York Analytical Laboratories, Inc., SDG: 18B0738

5 Ground Water Samples, 1 Field Blank, and 1 Trip Blank Collected February 19, 2018

> Prepared by: Donald Anné May 11, 2018

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for 2-butanone and 2-hexanone were below the method minimums for VOA No.8 on 02-23-18. The %RSDs for bromomethane and methylene chloride were above the method maximum for VOA No.8 on 02-23-18. No action is taken on fewer than 20% of the compounds with method criteria outside control limits and no average RRF is less than 0.010, per calibration.

The average RRFs for target compounds were above the allowable minimum (0.010), as required.

The %RSD for bromomethane was above the allowable maximum (30%) for VOA No.8 on 02-23-18. Positive results for bromomethane should be considered estimated (J) in associated samples.

Continuing Calibration: The RRFs for 2-butanone, 4-methyl-2-pentanone, and 2-hexanone were below the method minimum on 02-25-18 (V803939.D). The %D for bromomethane was above the method maximum on 02-25-18 (V803939.D). No action is taken on fewer than 20% of the compounds with method criteria outside control limits and no average RRF is less than 0.010, per calibration.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %D for bromomethane was above the allowable maximum (25%) on 02-25-18 (V803939.D). Positive results for bromomethane should be considered estimated (J) in associated samples.

Page 1 of 2

- <u>Blanks</u>: The analyses of the method and trip blanks reported target compounds as not detected. The field blank contained a trace of acetone (5.6 ug/L). Positive results for acetone that are less than 10 times the highest blank level should be reported as not detected (U) in associated samples.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.
- <u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the ground water samples, field blank, and trip blank.
- Matrix Spike/Matrix Spike Duplicate: The relative percent difference for target compounds were below the allowable maximum and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-3.
- <u>Laboratory Control Sample</u>: The relative percent differences (RPDs) for target compounds were below the allowable maximums and the percent recoveries (%Rs) within QC limits for aqueous samples BB81103-BS1/BSD1.
- <u>Compound ID</u>: Checked compounds and surrogates were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Method Method

Path

C: \msdchem\1\methods\

```
29
                 28
                               26
                                      25
                                             24
                                                    23
                                                                                                                  26195
                                                          22
                                                                 21
                                                                         20
                                                                                19
                                                                                      18
                                                                                             17
                                                                                                    16
                                                                                                           15
                                                                                                                                                                                                                                                  0.5
                                                                                                                                                                                                                                                                                   Title
                                                                                                                                                                                                                                           80.0=V803904.D
                                                                                                                                                                                                                                                       Calibration Files
                                                                                                                                                                                                                                                                           Last Update
                                                                                                                                                                                                                                                                     Response Via
                                                                                                                                                                                                                                                 =V803898.D
                                                                                                                                                                                                                             Compound
         Bromochloromet.
    Chloroform
                Tetrahydrofuran
                       2,2-Dichloropr...
                                           Ethyl-tert-But...
                                                 Diisopropyl et..
                                                         Vinyl Acetate
                              2-Butanone
                                     cis-1,2-Dichlo.
                                                                                                                                    Acrolein
                                                                1,1-Dichloroet.
                                                                       tert-Butyl Met...
                                                                             trans-1, 2-Dich..
                                                                                     Acrylonitrile
                                                                                           Methylene Chlo..
                                                                                                  tert-Butyl Alc...
                                                                                                         Carbon disulfide
                                                                                                               Methyl Acetate
                                                                                                                       Iodomethane
                                                                                                                              Acetone
                                                                                                                                           1,1-Dichloroet.
                                                                                                                                                  Freon-113
                                                                                                                                                         Ethanol
                                                                                                                                                               Trichlorofluor
                                                                                                                                                                      Chloroethane
                                                                                                                                                                             Bromomethane
                                                                                                                                                                                   Vinyl Chloride
                                                                                                                                                                                          Chloromethane
                                                                                                                                                                                                 Dichlorodifluo.
                                                                                                                                                                                                        FLUOROBENZENE (ISTD)
                                                                                                                                                                                                                                                                         Volatile Organics EPA 8260C
: Sun Feb 25 13:19:17 2018
                                                                                                                                                                                                                                                                                        V8L00063.M
                                                                                                                                                                                                                                                                    Initial Calibration
                                                                                                                                                                                                                                           120
                                                                                                                                                                                                                                                 2.0
                                                                                                                                                                                                                                         =V803905.D
                                                                                                                                                                                                                                                =V803899.D
   0.918
                0.022
                       2.160
                              0.036
                                    2.141
                                                  3:248
                                                         0.770
                                                                2.539
                                                                      1.714
                                                                             1.996
                                                                                    0.100
                                                                                                                                   0.006
                                                                                                               0.356
                                                                                                                                          2.433
                                                                                                                                                              2.238
                                                                                                                                                 1.562
                                                                                                                                                                     0.770
                                                                                                                                                                            0.099
                                           .372
                                                                                                  .081
                                                                                                         .392
                                                                                                                                                                                   .. 203
                                                                                                                                                                                          .030
                                                                                                                                                                                                                            5
   N
         0.910
                0.036
                      2.340
                             0.042
                                    N
                                           N
                                                  W
                                                         0.771
                                                               2.643
                                                                      1.738
                                                                                   0.126
                                                                                                  0
                                                                                                                0
                                                                                                                      0
                                                                                                                                    0
                                                                                                                                                 1.581
                                                                                                                                                                     0.830
                                                                                                                                                                            0.104
                                                                                                                                                       0.003
                                                                                                                                   .005
                                    .289
                                           .664
                                                 .599
                                                                             .094
                                                                                          .584
                                                                                                  .079
                                                                                                        .345
                                                                                                                                          .518
                                                                                                                                                               .478
                                                                                                                                                                                   .335
                                                                                                                                                                                                                                         160
                                                                                                                                                                                                                                                4.0
                                                                                                               .330
                                                                                                                      .180
                                                                                                                             . 154
                                                                                                                                                                                                                                         =V803900.D
                     2.311
                0.036
                            0.045
                                                                                    0
                                    2.351
                                                        0.810
                                                               N
                                                                             N
                                                                                                 0.078
                                                                                                        W
                                                                                                               0
                                                                                                                      0
                                                                                                                                                        0
                                          . 683
                                                 . 625
                                                               .670
                                                                     .813
                                                                            .145
                                                                                   .126
                                                                                          .088
                                                                                                        .351
                                                                                                               ).315
                                                                                                                      .242
                                                                                                                            .124
                                                                                                                                                       .005
                                                                                                                                                              .170
                                                                                                                                                                    .748
                                                                                                                                   .006
                                                                                                                                          .499
                                                                                                                                                 .519
                     2.311
                                                       0.917
               0.036
                             0.043
                                   2.346
                                          2.606
                                                                            2.164
                                                                                                 0.076
                                                                                                                           0.130
                                                                                                                                  0.006
                                                 3.422
                                                              2.634
                                                                     1.890
                                                                                   0.121
                                                                                          1.795
                                                                                                        3.349
                                                                                                              0.293
                                                                                                                     0.380
                                                                                                                                                       0.003
                                                                                                                                                             2.061
                                                                                                                                                                    0.699
         .894
                                                                                                                                          .464
                                                                                                                                                .390
                                                                                                                                                                           .175
                                                                                                                                                                                                                            10.0
                                                                                                                                                                                         .022
                                                                                                                                                                                                                                              10.0=V803901.D
               0.037
                     2.199
                             0.041
                                                                                                 0.071
                                                                                                              0.290
                                   2.229
                                          2.893
                                                 3.749
                                                              2.490
                                                                     1.818
                                                                            2.023
                                                                                   0.119
                                                                                          1.604
                                                                                                       3.209
                                                                                                                     0.588
                                                                                                                            0.109
                                                                                                                                  0.007
                                                                                                                                         2.341
                                                                                                                                                       0.003
                                                                                                                                                             2.186
                                                                                                                                                                    0.753
                                                                                                                                                                           0.287
                                                                                                                                                1.444
                                                                                                                                                                                         1.092
                                                                                                                                                                                                                           20.0
                                                       .918
                                                                                                                    0.721
                            0.040
                                                                                                                           0.118
                                                                                                                                  0.007
                                                 3.640
                                                       0.917
                                                              2.405
                                                                                  0.126
                                                                                                0.070
                                                                                                       3.122
                                                                                                                                         2.220
                                                                                                                                                      0.004
                                                                                                                                                             2.050
                                                                                                                                                                   0.702
                                                                                                                                                                           0.397
                                                                                                                                                                                        1.045
                                                                                                                                               1.330
                                                                                                                                                                                  1.309
                                                                            1.966
                                                                                                                                                                                                                           40.0
                                                                                                              .302
                                   178
                                                                     .876
                                                                                          534
                                                                                                                                                                                                303
               0.038
                            0.039
                                   2.082
                                                                                  0.125
                                                                                                0.069
                                                                                                              0.294
                                                                                                                    0.827
                                                                                                                           0.094
                                                                                                                                  0.007
                                                                                                                                         2.128
                                                                                                                                                      0.003
                                                                                                                                                                   0.673
                                                                                                                                                             1.932
                                                                                                                                               1.298
                                                                                                                                                                                                                          80.0
                                         .812
                                                             . 255
                                                                                          .455
                                                379
                                                       . 936
                                                                     835
                                                                           893
                                                                                                       008
                                                                                                                                                                                        079
                                                                                                                                                                                                                                             20.0=V803902.D
              0.036
                    2.083
                           0.037
                                 2.088
                                                                                               0.069
                                                                                                                          0.089
                                                                                                                                 0.006
                                                                                                                                                      0.005
                                         2.828
                                                                    1.825
                                                                           1.894
                                                                                                      3.030
                                                                                                              0.286
                                                                                                                    0.898
                                                                                                                                                                          0.575
                                                                                                                                                            1.880
                                                                                          1.443
                                                                                                                                        2.133
                                                                                                                                               .. 281
                                                                                                                                                                                                                          120
                                                      .943
                                                             . 225
                                                .216
                                                                                  122
                                                                                                                                                                   . 650
                                                                                                                                                                                        253
                                                                                                                                       2.035
 2.049
              0.038
                    1.960
                                                                                                                          0.096
                           0.040
                                  2.010
                                                                                                      2.908
                                                                                                             0.296
                                                                                                                    0.811
                                                                                                                                 0.007
                                                                                                                                                                         0.549
                                                                                               0.065
                                                                                                                                                                   0.612
                                                                                                                                                      0.001
                                               3.047
                                                                                                                                                            1.720
                                        2.797
                                                             .105
                                                                    .. 836
                                                                           .. 787
                                                                                  .129
                                                                                         .420
                                                                                                                                                                                                                          160
                                                      .026
                                                                                                                                               243
                    2.190
0.040
2.171
                                                                                                                                0.006
       0.839
             0.035
                                                     0.890
                                               3.436
                                                                           1,996
                                                                                                             0:307
                                                                                                                    0.530
                                                                                                                                                     0.004
                                        2.731
                                                             2.441
                                                                    1.816
                                                                                 0.121
                                                                                               0.073
                                                                                                      3.190
                                                                                                                          0.114
                                                                                                                                        2.308
                                                                                                                                                           2.079
                                                                                                                                                                   0.715
                                                                                                                                                                         0.316
                                                                                        1.740
                                                                                                                                              1.405
                                                                                                                                                                                                                        Avg
                                                                                                                                                                                                                                             40.0=V803903.D
                                                                                       7.51
                                                                                                                  19.01
                                                                                                                                                                  4.47
63.32
9.35
                                                                                                                                                    10.68
             14.21
                                                                                                                                10.45
                                              9.78
8.97
                                                                   6.29
                    6.02
                                5.56
                                                                                                     5.64
                                                                                                           7.55
                                                                                                                                       7.92
                          7.01
                                                            8.42
                                                                                 7.06
                                                                                                                                             9.03
                                                                                                                                                                                       9.12
                                                                                                                                                                                                                         %RSD
```

Method Method

File

V8L00063.M

C:\msdchem\1\methods\

Path

```
67)
                                                                                                                          414950
                              64)
                                    63
                                               60
                                                         5555556
                                                                                                               8日
                                         62
                                                                                                                                               43
                                                                                                                                                     42
                                                                                                                                                          41
                                                                                                                                                                                37)
                                                                                                                                                                                          332)
                                                                                                                                                               40)
                                                                                                                                                                          39)
                                                                                                                                                                                                                           Title
                                   ннннннннннинннн
   HH
                                                                                                                                                                                                                     H
                                                                                                                                                                          ниннинн
                                                                                                                                                                                                               H
  1,2-DICHLOROBENZEN...
p-Ethyltoluene 5.2
                  Bromoform
                       Styrene
                             o-Xylene
                                            1,1,1,2-tetrac.
                                        Ethyl Benzene
                                                  Chlorobenzene
                                                       1,2-Dibromoethane
                                                             Dibromochlorom...
                                                                        Tetrachloroeth...
                                                                             1,3-Dichloropr...
                                                                                       trans-1,3-Dich...
                                                                                              Toluene
                                                                   2-Hexanone
                                                                                  1,1,2-Trichlor...
                                                                                                   Toluene-d8 (SURR)
                                                                                                        4-Methyl-2-Pen...
                                                                                                              cis-1,3-Dichlo...
                                                                                                                  2-Chloroethyl ...
                                                                                                                             1,2-Dichloropr...
                                                                                                                                  Bromodichlorom...
                                                                                                                                        Dibromomethane
                                                                                                                         1,4-Dioxane
                                                                                                                                              Methyl Methacr...
                                                                                                                                                   Methyl Cyclohe...
                                                                                                                                                        Trichloroethylene
                                                                                                                                                              CHLOROBENZENE-d5
                                                                                                                                                                         tert-Amyl meth.
                                                                                                                                                                               Benzene
                                                                                                                                                                                              Carbon Tetrach...
                                                                                                                                                                                                   d4-1,2-Dichlor..
                                                                                                                                                                                                              Cyclohexane
                                                                                                                                                                                    1,2-Dichloroet..
                                                                                                                                                                                        tert-Amyl alco...
                                                                                                                                                                                                         1,1-Dichloropr..
                                                                                                                                                                                                                    1,1-Trichlor...
                                   & m-Xylenes
                                                                                                                                                                                                                        Volatile Organics
                                                                                                                                                            · · ·
                  0.803
                                  1.892
                                                                                                                                                                        5.337
1.868
                            1.226
                                                       0.171
                                                             0.229
                                             0.348
                                                  1.114
                                                                  0.063
                                                                        0.588
                                                                             0.349
                                                                                  0.207
                                                                                        0.349
                                                                                                  1.523
                                                                                                        0.100
                                                                                                                              0.377
                                                                                                                                                         0
                                                                                                                                                                                        0.016
                                                                                             1.900
                                                                                                             0.406
                                                                                                                  0.053
                                                                                                                                   0.457
                                                                                                                                        0.154
                                                                                                                                              0.176
                                                                                                                                                   0.666
                                                                                                                                                                                   1.270
                                                                                                                                                                                                    0
                                                                                                                                                                                                         1.978
                                                                                                                                                                                                   .839
                                                                                                                                                                                                              2.237
                                                                                                                                                        . 485
                                                                                                                                                                                              .190
                                                                                                                                                                                                                    .426
  246
                                                                                                                                                                                                                        EPA 8260C
  S
                                                                             0.352
                                                                                 0.212
                                                                                                                                                                        5.455
                                                                                                                                                                                        0.014
                  0
                       1.041
                             1.476
                                  1.700
                                       2.138
                                                       0.180
                                                             0.244
                                                                                                                             0.395
                                                                                                                                                                                                   0.822
                                                  1.147
                                                                  0.064
                                                                       0.596
                                                                                       0.368
                                                                                                  1.515
                                                                                                        0.111
                                                                                                             0.476
                                                                                                                  0.057
                                                                                                                                   0.481
                                                                                                                                        0.154
                                                                                                                                                                                                                   2.620
                                                                                             1.961
                                                                                                                       0.000
                                                                                                                                             0.188
                                                                                                                                                   0
                                                                                                                                                         0
                                                                                                                                                                                   1.316
                                                                                                                                                                                              2.342
                                                                                                                                                  .752
                                                                                                                                                                                                        .189
                                                                                                                                                                                                              . 526
                                                                                                                                                        .498
                                             .377
  00
  347
  9
                       1.108
                                 1.737
                                                  1.133
                                                        0
                                                            0.250
                                                                  0.070
                                                                                                  1.515
                                                                                                                                                                            5.472
                                                                                                                                                                                  0.018
                                             0.389
                                                                       0.576
                                                                             0
                                                                                  0.214
                                                                                       0.389
                                                                                             1.943
                                                                                                       0.116
                                                                                                             0.527
                                                                                                                  0.062
                                                                                                                       0.000
                                                                                                                                                                                             2.357
                                                                                                                             0.394
                                                                                                                                  0.498
                                                                                                                                       0.154
                                                                                                                                             0.208
                                                                                                                                                  0.777
                                                                                                                                                                                                   0
                                                                                                                                                                                                         N
                                                                                                                                                                                                              N
                                       .208
                                                       1.185
                                                                             .360
                                                                                                                                                                                                   .800
                                                                                                                                                                                                                   .616
                                                                                                                                                        .507
                                                                                                                                                                                                        .133
                                                                                                                                                                                                              . 573
                            .596
 890
                                                                                                                                                                        . 995
                                                                                                                                                                            1.285
 S
                                            0.394
                                                       0
                                                                                                                                                                                       0.017
                                                 1.126
                                                                  0
                                                                       0.570
                                                                                 0.208
                                                                                       0.411
                                                                                            1.915
                                                                                                       0.124
                                                                                                             0.553
                                                                                                                  0.061
                                                                                                                       0.000
                                                                                                                                  0.501
                                                                                                                                       0.157
                                                                                                                                            0.226
                                                                                                                                                                                             2.375
                                                                                                                                                                                                        2.198
                                                                                                                            0.387
                                                                                                                                                  0.735
                                                                                                                                                       0.501
                                                                                                 1.508
                                                                                                                                                                        1.900
                                                                                                                                                                                                   0.811
                                       .203
                                                      186
                                                                  .078
                                                                            .359
                                                                                                                                                                                                             . 454
                                                                                                                                                                                                                   .620
                            . 629
                                 .714
 649
                      132
                                                            . 263
      ISTD-
                                                                                                                                                             ISTD-
 5
                                                                                                                                                                        1.192
5.076
2.134
                                                                                                                                                                                       2.284
                                                                                                                                                                                                  2.564
2.090
0.813
                                      2.060
                                            0.368
                                                       0.175
                                                                 0.075
                                                                                 0.194
                                                                                            1.775
                                                                                                       0.118
                                                                                                            0.529
                                                                                                                                  0.472
                                                                                                                                       0.146
                                                                                                                                                       0.470
                                                                                                 1.504
                                                                                                                            0.364
                                                                                                                                                                                                                  2.497
                                                                            .338
                                                                                                                  062
                                                                                                                       .000
 766
                       070
                            532
                                 575
                                                  041
                                                            . 250
                                                                       .524
                                                                                       .396
                                                                                                                                                  761
                                                                                                                                                                                                 0.820
 UI
                                                                                                                                                                             4.
                                 1.437
                                           0.351
                                                 0.991
                                                      0
                                                            0
                                                                 0.082
                                                                       0.506
                                                                            0
                                                                                 0.192
                                                                                            1.649
                                                                                                                       0.000
                                                                                       0.403
                                                                                                 1.481
                                                                                                       0.126
                                                                                                                 0.065
                                                                                                                                                                                  1.195
                                                                                                                                                                                        0
                      1.029
                           1.460
                                      1.894
                                                            .257
                                                                           .338
                                                                                                                            . 355
                                                                                                                                  .467
                                                                                                                                       . 144
                                                                                                                                                                                       .022
                                                                                                                                                                                            .161
                                                                                                                                                                                                            .363
                                                      .179
                                                                                                            .527
                                                                                                                                                  699
                                                                                                                                                                       174
                                                                                                                                                                            871
 23
                                                                                                                                                                                                        984
                                                                                                                                                                                                                  356
 N
                                                                           0.188
                                                                                           1.468
                                                                                                      0.512
                                                                                      0.397
 4
                                                                                                                 0.065
                                                                                                                                                                                            2.077
                           1.394
                                1.285
                                      1.752
                                           0.334
                                                 0.948
                                                                                                                                                                                                  0.
                      0
                                                      0.176
                                                           0,255
                                                                 0.082
                                                                     0.455
                                                                                                                      0.000
                                                                                                                            0.344
                                                                                                                                  0
                                                                                                                                       0.142
                                                                                                                                                                            4.560
                                                                                                                                                                                       0.022
                      .987
                                                                                                                                 .455
                                                                                                                                                  .694
                                                                                                                                                                       .107
 800
                                                                                                                                                                                  .136
                                                                                                                                                                                                  .794
                                                                                                                                                                                                       922
                                                                                                                                                       436
                                                                                                                                                                                                            231
                                           0.324
                                                                                                     0.125
                                                                                                                                                                           2.032
0.021
1.106
4.440
4.695
                      0
                           1.352
                                1.162
                                      1.650
                                                 00
                                                           0
                                                                 0
                                                                      000
                                                                                      0.393
                                                                                           1.482
                                                                                                 1.489
                                                                                                           0.512
                                                                                                                 0.064
                                                                                                                      0.000
                                                                                                                           0.346
                                                                                                                                 0.456
                                                                                                                                                                                                       1.880
                                                                                                                                       0.141
                                                                                                                                           0.231
                                                                                                                                                 0.687
                                                                                                                                                                       2.103
                                                                                                                                                                                                  0.763
                      .953
                                                 1.929
                                                      1.175
                                                           256
                                                                 0.081
                                                                     .454
                                                                                1.185
                                                                           .324
                                                                                                                                                       .435
                                                                                                                                                                                                            .157
                                                                                                                                                                                                                  191
                           1.245
                                                                                           1.355
                                                                                                                                                                       1.084
4.149
2.079
                                                                                                                                                                                      0.753
1.894
0.024
                                                                                                                                                                                                      2.035
1.979
1.748
 4
                 0
                     0
                                0
                                      H
                                           0
                                                 0
                                                     0
                                                           0
                                                                 0
                                                                      0
                                                                           0
                                                                                0
                                                                                      0
                                                                                                1.459
                                                                                                      0
                                                                                                           0.497
                                                                                                                0.067
                                                                                                                      0.000
                                                                                                                           0.336
                                                                                                                                 0
                                                                                                                                      0.141
                                                                                                                                           0.233
                                                                                                                                                 0.652
                     .891
                                .993
                                     .475
                                           .303
                                                 .880
                                                      1.176
                                                           .255
                                                                 0.085
                                                                     .435
                                                                                1.184
                                                                                                      1.130
                                                                                                                                                      1.414
                                                                           .324
                                                                                      .389
                                                                                                                                 .442
W
69
                                                           0.388
0.198
0.342
0.523
0.075
                     1.002
                                                                                           1.496
1.725
                                                                                                                                                                                                 2.014
                                                                                                                                                                                 1.211
S
                0
                           1.434
                                           0
                                                     0.178
                                1.452
                                                                                                      0.120
                                                                                                           0
                                                                                                                 0
                                                                                                                      0
                                                                                                                            0
                                                                                                                                 0
                                                                                                                                      0
                                                                                                                                            0
                                                                                                                                                 0
                                                                                                                                                                       AU
                                                                                                                                                                                       ON
                                                                                                                                                                                                           NN
                                           .354
                                                .. 034
                                                                                                           .504
                                                                                                                .061
                                                                                                                      .000
                                                                                                                           .366
                                                                                                                                 .470
                                                                                                                                      148
                                                                                                                                           216
                                                                                                                                                                       2.034
                                                                                                                                                                            1.970
                                                                                                                                                                                      0.019
                                                                                                                                                                                            2.190
                                                                                                                                                                                                           2.343
                                                                                                                                                                                                                 .401
                                     .919
97
11.
                10.5
                               18.06
                                                                                          1.52
13.05
                                                               12.1:
                                                                                                                                                                      8.76
8.79
7.53
3.48
7.58
15.63
19.87
9.87
                                     13.42
                                                                          4.87
5.98
4.18
                                                                                                     8.50
                                                                                                                9.71
4.38
4.28
6.23
148.96
7.16
                                               3.93
2.60
9.76
                                           8.68
                           6
                                                                                                                                                7.2
                                                                     .12
                           97
                                                                                                                                                 5
```

(#) = Out of Range

94)	27	6	Je Je	100	(A)		100	305	Page 1	[83	82)	81)	80)	79)	78)	77)	76)	75)	74)	73)	72)	71)	70)	69)	Ti	Me	Me
H H	- 1	3 1-	1 13	H	Η:	1 1-	11:	1	H	Н	H	H	H	Н	Н	H	H	Н	Н	T	Н	H	ß	Н	tle		thod
Naphchaiene 1,2,3-Trichlor	exacnic	, 2, 4-Trichio	,2,4,5-Tetra	,2-Dibr	-Butylbenzen	,2-Dichlor	-Diethylbenzen	1,2,3-Trime	1,4-Dichlorobe.	p-Isopropylto	1,3-Dichlorob	sec-Butylbenzen	1,2,4-Tri	tert-Bu	1,3,5-T	4-Chlor	2-Chlor	n-Propy	1,2,3-Trichlo	trans-1,4-Dic	Bromobenzen	1,1,2,2-Tetra	p-Bromofluor	Isopropylbenzene	: Volatil	File: V8L00063.M	Path : C:\msdchem
0.933	4	. 86	0	. 06	. 73	. 14	. 03	. 52	. 15	.09	. 41	. 78	. 87	.39	.46	.16	. 66	. 85	.16	. 75	. 91	0	. 31	. 90	nic		1\met
	0.47	0.91	3.14	0.07	5.79	2.12	2.55	4.20	0.16	5.18	2.55	5.79	4.77	4.05	4.96	4.37	4.94	7.53	0.16	0.78	1.88	0.56	1.30	5.88	A 8		\methods\
	0.51	1.03	3.75	0.07	6.19	2.14	2.83	4.27	0.17	5.65	2.66	6.26	5.11	4.41	5.33	4.59	5.17	7.94	0.17	0.83	1.96	0.58	1.33	6.45	2000		
0.057	0.54	1.11	3.85	0.08	6.20	2.10	2.80	4.20	0.17	5.70	2.59	6.38	5.09	4.49	5.30	4.49	5.02	7.91	0.15	0.83	1.91	0.57	1.33	6.47			
	0.52	1.08	4.08	0.08	5.92	1.97	2.86	4.28	0.16	5.35	2.39	6.01	4.75	4.25	4.94	4.21	4.72	7.33	0.15	0.78	1.80	0.52	1.35	6.02			
1.545	. 50	.10	9	.08	.51	. 91	. 66	. 06	. 15	. 98	. 24	. 61	. 46	.01	. 64	. 00	.40	. 73	. 15	. 77	. 76	.53	.35	. 61			
1.484	. 51	. 06	. 63	.08	. 15	. 81	. 51	. 78	. 15	. 57	. 02	. 22	.10	. 77	W L	.77	. 04	18	. 14	. 74	. 70	50	35	. 19			
1.517	. 54	.09	. 62	. 08	. 00	. 82	. 50	. 75	. 15	45	. 97	.16	. 02	. 81	28	. 77	. 94	92	14	75	. 75	. 50	40	. 14			
1.605	. 55	.13	.51	.09	. 66	. 81	.41	. 60	15	10	. 87	. 82	75	64	03	61	00 1	42	7 -	74	. 74	50	45	80			
1.376	0.51	1.04	3.55	0.08	5.46	1.98	2.57	3.96	0 16	4 90	2.30	5.56	4 44	3 . 98	4 60	4 17	4 57	מ מ	0 15	0 77	1 . 82	0.54	1 K	7 67			
16.68 22.97	6.9	. 0	wi	5	0	4	0	5	л I	1	у .	0 1	7 7	٠ ر	0 0	1 00 H	л	D H	4 0	u ;	٠, د) i	4	ů.			

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\V8022518\

Data File: V803939.D

Acq On : 25 Feb 2018 2:16 pm

Operator : RDS
InstName : VOA No. 8
Sample : SEQ-CCV1
Misc : QBV8022518A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 26 12:25:43 2018

Quant Method: C:\msdchem\1\methods\V8L00063.M Quant Title: Volatile Organics EPA 8260C QLast Update: Sun Feb 25 13:19:17 2018

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I	FLUOROBENZENE (ISTD)	1.000	1.000	0.0 102 0.00
2 T	Dichlorodifluoromethane	1.310	1.321	-0.9 109 0.00
3 T	Chloromethane	1.117	0.958	14.3 96 0.00
4 T	Vinyl Chloride	1.271	1.284	-1.0 106 0.00
5 T	Bromomethane	0.316	0.141	55.5# 82 0.00
6 T	Chloroethane	0.715	0.716	-0.1 105 0.00
7 T	Trichlorofluoromethane	2.079	2.118	-1.9 105 0.00
8	Ethanol	0.004	0.001	NA 62.9# 40# 0.00
9 T	Freon-113	1.405	1.434	-2.1 106 0.00
10 T	1,1-Dichloroethylene	2.308	2.200	4.7 91 0.00
11 T	Acrolein	0.006	0.046	NA 628.6# 768# 0.00
12 T	Acetone	0.114	0.124	-8.4 98 0.00
13 T	Iodomethane	0.530	0.330	№ 37.7# 89 0.00
14 T	Methyl Acetate	0.307	0.249	19.0 87 0.00
15 T	Carbon disulfide	3.191	3.084	3.3 94 0.00
16-T	tert-Butyl Alcohol (TBA)	0.073	0.065	11.7 87 0.00
17 T	Methylene Chloride	1.740	1.500	13.8 86 0.00
18 T	Acrylonitrile	0.121	0.104	14.2 88 0.00
19 T	trans-1,2-Dichloroethylene	1.996	1.925	3.6 91 0.00
20 T	tert-Butyl Methyl Ether (MT	1.816	1.695	6.7 92 0.00
21 T	1,1-Dichloroethane	2.441	2.373	2.8 92 0.00
22 T	Vinyl Acetate	0.890	0.811	8.9 91 0.00
23 T	Diisopropyl ether (DIPE)	3.436	3.352	2.4 100 0.00
24 T	Ethyl-tert-Butyl ether (ETB	2.731	2.635	3.5 103 0.00
25 T	cis-1,2-Dichloroethylene	2.191	2.158	1.5 94 0.00
26 T	2-Butanone	0.040	0.041	-1.7 98 0.00
27 T	2,2-Dichloropropane	2.171	2.321	-6.9 103 0.00
28 T	Tetrahydrofuran	0.035	0.030	14.7 86 0.00
29 T	Bromochloromethane	0.839	0.766	8.7 88 0.00
30 T	Chloroform	2.298	2.236	2.7 94 0.00
31-T	-1,1,1-Trichloroethane	2.401	2.429	=1.1 95 0.00
32 T	Cyclohexane	2.343	2.418	-3.2 101 0.00
33 T	1,1-Dichloropropylene	2.014	2.064	-2.5 96 0.00
34 S	d4-1,2-Dichloroethane (SURR	0.802	0.796	0.7 100 0.00
35 T	Carbon Tetrachloride	2.190	2.208	-0.8 95 0.00
36 T	tert-Amyl alcohol (TAA)	0.020	0.013	MA33.8# 76 -0.01
37 T	1,2-Dichloroethane	1.211	1.140	5.9 91 0.00

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\V8022518\

Data File: V803939.D

Acq On : 25 Feb 2018 2:16 pm

Operator : RDS

InstName : VOA No. 8 Sample : SEQ-CCV1 Misc : QBV8022518A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 26 12:25:43 2018

Quant Method: C:\msdchem\1\methods\V8L00063.M Quant Title: Volatile Organics EPA 8260C

QLast Update : Sun Feb 25 13:19:17 2018

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
38		Benzene	4.970	4.936	0.7 94	0.00
39	T	tert-Amyl methyl ether (TAM	2.034	1.938	4.7 104	0.00
	I	CHLOROBENZENE-d5 (ISTD)	1.000	1.000	0.0 106	0.00
41		Trichloroethylene	0.466	0.458	1.8 97	0.00
	T	Methyl Cyclohexane	0.714	0.735	-2.9 106	0.00
	T	Methyl Methacrylate	0.216	0.193	10.7 90	0.00
14		Dibromomethane	0.148	0.136	8.4 91	0.00
15 '		Bromodichloromethane	0.470	0.443	5.9 93	0.00
16		1,2-Dichloropropane	0.366	0.342	6.7 93	0.00
17		1,4-Dioxane	0.000	0.000	NA66.7# 32#	0.00
	T	2-Chloroethyl vinyl ether	0.061	0.059	3.6 103	0.00
19		cis-1,3-Dichloropropene	0.504	0.501	0.7 96	0.00
50	T-	4-Methyl-2-Pentanone	0.120	0.097	19.0 82	0.00
51 5		Toluene-d8 (SURR)	1.496	1.498	-0.1 105	0.00
2 :	Γ	Toluene	1.726	1.717	0.5 95	0.00
3 .	Γ	trans-1,3-Dichloropropene	0.388	0.365	6.0 94	0.00
4 5		1,1,2-Trichloroethane	0.198	0.183	7.5 93	0.00
5 :		1,3-Dichloropropane	0.342	0.315	7.8 93	0.00
6 7		Tetrachloroethylene	0.523	0.514	1.7 95	-0.01
7 7	Γ	2-Hexanone	0.075	0.071	6.5 96	0.00
8 7	Γ	Dibromochloromethane	0.251	0.236	5.9 95	0.00
9 7	Γ	1,2-Dibromoethane	0.178	0.163	8.5 93	0.00
0 7	C	Chlorobenzene	1.034	1.017	1.7 95	0.00
1 7	Γ	1,1,1,2-tetrachloroethane	0.354	0.353	0.2 95	-0.01
2 1	['	Ethyl Benzene	1.919	1.987	-3.5 95	-0.01
3 I	2	p- & m-Xylenes	1.452	1.549	-6.7 96	-0.01
4 1	7	o-Xylene	1.434	1.460	-1.8 95	0.00
5 1	-	Styrene	1.002	1.009	-0.7 94	-0.01
6 I	1	Bromoform	0.124	0.112	9.3 96	0.00
7 I	e e i	1,2-DICHLOROBENZENE-d4 (IST	1.000	1.000	0.0 106	0.00
8 T	?	p-Ethyltoluene	5.297	5.395	-1.9 101	-0.01
9 T		Isopropylbenzene	5.614	5.856	-4.3 95	0.00
0 S		p-Bromofluorobenzene (SURR)	1.355	1.325	2.2 104	0.00
1 T		1,1,2,2-Tetrachloroethane	0.540	0.480	11.1 88	0.00
2 T		Bromobenzene	1.828	1.694	7.3 93	0.00

V8L00063.M Mon Feb 26 14:13:29 2018

Page:

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\V8022518\

Data File: V803939.D

Acq On : 25 Feb 2018 2:16 pm

Operator : RDS

InstName : VOA No. 8
Sample : SEQ-CCV1
Misc : QBV8022518A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Feb 26 12:25:43 2018

Quant Method: C:\msdchem\1\methods\V8L00063.M Quant Title: Volatile Organics EPA 8260C

QLast Update : Sun Feb 25 13:19:17 2018

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
73	3 T	trans-1,4-Dichloro-2-butene	0.778	0.727	6.6	92	0.00
74	T	1,2,3-Trichloropropane	0.155	0.137	11.2		-0.01
	T	n-Propylbenzene	6.872	7.052	-2.6	94	-0.01
	T	2-Chlorotoluene	4.512	4.502	0,2	95	0.00
	T	4-Chlorotoluene	4.113	3.999	2.8	94	-0.01
	T	1,3,5-Trimethylbenzene	4.698	4.749	-1.1	95	-0.01
	T	tert-Butylbenzene	3.985	4.059	-1.9	95	-0.01
80		1,2,4-Trimethylbenzene	4.440	4.520	-1.8	94	0.00
	T	sec-Butylbenzene	5.563	5.682	-2.1	94	0.00
82		1,3-Dichlorobenzene	2.304	2.333	-1.3	95	0.00
83		p-Isopropyltoluene	4.901	5.102	-4.1	94	-0.01
84		1,4-Dichlorobenzene	0.161	0.155	4.2	95	0.00
85		1,2,3-Trimethylbenzene	3.966	3.935	0.8	99	0.00
86		p-Diethylbenzene	2.577	2,519	2.3	95	0.00
87		1,2-Dichlorobenzene	1.985	1.872	5.7	94	0.00
88		n-Butylbenzene	5.465	5.432	0.6	92	0.00
	T	1,2-Dibromo-3-chloropropane	0.082	0.068	16.4	86	0.00
90		1,2,4,5-Tetramethylbenzene	3.558	3.659	-2.8	100	0.00
91	T	1,2,4-Trichlorobenzene	1.046	1.000	4.4	94	0.00
92	T	Hexachloro-1,3-Butadiene	0.514	0.460	10.6	89	0.00
1000	T	Naphthalene	1.375	1.262	8.2	90	0.00
94	Ţ	1,2,3-Trichlorobenzene	0.054	0.051	4.3	95	0.00

^{(#) =} Out of Range

SPCC's out = 0 CCC's out = 0

V8L00063.M Mon Feb 26 14:13:29 2018 Page 160 of 199

Post-Injection Groundwater Data

Hydrology

Remediation

Water Supply

September 19, 2018

Mr. Paul I. Matli, Ph.D. Hydro Tech Environmental, Corp. 15 Ocean Ave., 2nd Floor Brooklyn, NY 11225

Re:

Data Validation Report

July 2018 Ground Water Sampling Event

11-28 31st Drive, LIC, NY

Dear Dr. Matli:

The data usability summary report and data validation summaries are attached to this letter for the above referenced project. The data for York Analytical Laboratories, Inc. SDG 18G1061 were acceptable with some minor issues that are identified in the validation summary. There were no data that were qualified as rejected, unusable (R) in the data pack.

We have attached lists of data validation acronyms and data qualifiers to assist you in the interpretation of the reviews. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Hydro Tech Environmental, Corp.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- J- Analyte is present. Reported value may be biased low and associated with a higher level of uncertainty than is normally expected with the analytical method.
- J+ = Analyte is present. Reported value may be biased high and associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Hydrology

Remediation

Water Supply

Data Usability Summary Report for York Analytical Laboratories, Inc., SDG: 18G1061

5 Ground Water Samples and 1 Trip Blank Collected July 24, 2018

Prepared by: Donald Anné September 19, 2018

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results of volatile analyses for 5 ground water samples and 1 trip blank.

The overall performance of the analysis is acceptable. York Analytical Laboratories, Inc. did fulfill the requirements of the volatile method.

The data are acceptable with some minor issues that are identified in the accompanying data validation reviews. The following data were qualified:

- The positive volatile results for tetrachloroethylene were qualified as "estimated, biased low" (J-) for all 5 ground water samples because 1 of 2 percent recoveries for tetrachloroethylene was below QC limits, but not below 30% in the associated aqueous LCS/LCSD.
- The "not detected" volatile result for tetrachloroethylene was qualified as "estimated" (UJ) for the trip blank because 1 of 2 percent recoveries for tetrachloroethylene was below QC limits, but not below 30% in the associated aqueous LCS/LCSD.

All data are considered usable with estimated (J- or UJ) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260C Volatiles Data for York Analytical Laboratories, Inc., SDG: 18G1061

5 Ground Water Samples and 1 Trip Blank Collected July 24, 2018

Prepared by: Donald Anné September 19, 2018

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The average RRFs for tetrachloroethylene and trichloroethylene were above the method minimums, as required.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRFs for tetrachloroethylene and trichloroethylene were below the method minimum, as required.

The RRFs for tetrachloroethylene and trichloroethylene were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (25%, as required.

The analyses of the method and trip blanks reported tetrachloroethylene and Blanks: trichloroethylene as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for the ground water samples and trip blank.

- Matrix Spike/Matrix Spike Duplicate: The relative percent difference for tetrachloroethylene and trichloroethylene were below the allowable maximum, but 1 of 2 percent recoveries for tetrachloroethylene was below QC limits, but not below 30% for aqueous MS/MSD sample MW-4. The positive result for tetrachloroethylene should be considered estimated, biased low (J-) in sample MW-4.
- Laboratory Control Sample: The relative percent differences tetrachloroethylene and trichloroethylene were below the allowable maximum, but 1 of 2 percent recoveries for tetrachloroethylene was below QC limits, but not below 30% for aqueous samples BG81295-BS1 and BG81295-BSD1. Positive results for tetrachloroethylene should be considered estimated, biased low (J-) and "not detected" results estimated (UJ) in associated aqueous samples.
- <u>Compound ID</u>: Checked compounds and surrogates were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY EPA 8260C

MW-4

Laboratory:

York Analytical Laboratories, Inc.

SDG:

18G1061

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BG81295

Laboratory ID:

BG81295-MS1

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Source Sample Name:

MW-4

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC.#	QC LIMITS REC.
Tetrachloroethylene	10.0	12.8	18.6	58.2 *	64 - 139
Trichloroethylene	10.0	0.430	8.41	79.8	53 - 145

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY EPA 8260C

MW-4

Laboratory:

York Analytical Laboratories, Inc.

SDG:

18G1061

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BG81295

Laboratory ID:

BG81295-MSD1

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Source Sample Name:

MW-4

	SPIKE MSD ADDED CONCENTRATION		MSD %	%	QC LIMITS	
COMPOUND	(ug/L)	(ug/L)	REC. #	RPD#	RPD	REC.
Tetrachloroethylene	10,0	20.1	72.8	22.3	30	64 - 139
Trichloroethylene	10.0	9.00	85.7	7.13	30	53 - 145

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM III

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

18G1061

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BG81295

Laboratory ID:

BG81295-BS1

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC. #	QC LIMITS REC.
Tetrachloroethylene	10.0	8.06	80.6 *	82 - 131
Trichloroethylene	10.0	8.83	88.3	82 - 128

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM III

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

18G1061

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BG81295

Laboratory ID:

BG81295-BSD1

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

	SPIKE	LCSD	LCSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC. #	% RPD#	RPD	REC.
Tetrachloroethylene	10.0	8.42	84.2	4.37	30	82 - 131
Trichloroethylene	10.0	9.24	92.4	4.54	30	82 - 128

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

UST Endpoint Samples

Hydrology

Remediation

Water Supply

April 30, 2018

Mr. Paul I. Matli, Ph.D. Hydro Tech Environmental, Corp. 15 Ocean Ave., 2nd Floor Brooklyn, NY 11225

Re:

Data Validation Report

October 2017 Soil Sampling Event

11-28 31 Drive, LIC, NY

Dear Dr. Matli:

The data usability summary report and data validation summaries are attached to this letter for the above referenced project. The data for York Analytical Laboratories, Inc. SDG 17J0671 were mostly acceptable with some issues that are identified in the validation summary. There were data that were qualified as unusable (R) in the data pack. The reasons for rejecting data are outlined in the associated DUSR and QA/QC reviews. The data is rejected based solely on the validation guidance criteria. The rejected data may be determined to be acceptable to the user based on additional information that is not contained in the data validation criteria.

We have attached lists of data validation acronyms and data qualifiers to assist you in the interpretation of the reviews. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Hydro Tech Environmental, Corp.

Sincerely,

Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- J- = Analyte is present. Reported value may be biased low and associated with a higher level of uncertainty than is normally expected with the analytical method.
- J+ = Analyte is present. Reported value may be biased high and associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for York Analytical Laboratories, Inc., SDG: 17J0671

5 Soil Samples and 1 Trip Blank Collected October 16, 2017

Prepared by: Donald Anné April 30, 2018

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results of volatile and semi-volatile analyses for 5 soil samples and volatile analyses only for 1 trip blank.

The overall performance of the analysis is acceptable. York Analytical Laboratories, Inc. did not fulfill the requirements of the methods.

The data are mostly acceptable with issues that are identified in the accompanying data validation reviews. The following data were qualified:

- The "not detected" volatile results for 1,4-dioxane were qualified as "rejected, unusable" (R) in all 5 soil samples because average RRF and RRF for 1,4-dioxane were below the allowable minimum in the associated initial and continuing calibrations.
- The "not detected" volatile result for 1,1,1-trichloroethane was qualified as "rejected, unusable" (R) in the Trip Blank because 1 of 2 percent recoveries for 1,1,1-trichloroethane was below QC limits and below 30% in the associated aqueous LCS/LCSD.
- The "not detected" semi-volatile result for hexachlorocyclopentadiene was qualified as "rejected, unusable" (R) in sample EP-3 (5 ft) because 2 of 2 percent recoveries for hexachlorocyclopentadiene were below QC limits and below 10% in soil MS/MSD sample EP-3 (5 ft).

All data that are not qualified rejected, unusable (R) are considered usable. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2015\15600 - 15620\15604-11-28 31 Drive\2018\17J0671.dus.wpd

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260C Volatiles Data for York Analytical Laboratories, Inc., SDG: 17J0671

5 Soil Samples and 1 Trip Blank Collected October 16, 2017

Prepared by: Donald Anné April 30, 2018

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The average RRF for 2-butanone was below the method minimums for VOA No.3 on 09-14-17. The average RRFs for 2-butanone and 2-hexanone were below the method minimums for VOA No.8 on 10-05-17. The %RSDs for methyl acetate and acetone were above the method maximum for VOA No.3 on 09-14-17. The %RSDs for bromomethane and cyclohexane were above the method maximum for VOA No.8 on 10-05-17. No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The %RSDs for methyl acetate and acetone were above the allowable maximum (30%) for VOA No.3 on 09-14-17. Positive results for these compounds should be considered estimated (J) in associated samples.

The average RRF for 1,4-dioxane was below the allowable minimum (0.005) for VOA No.3 on 09-14-17. Positive results for 1,4-dioxane should be considered estimated, biased low (J-) and "not detected" results rejected, unusable (R) in associated samples.

Continuing Calibration: The RRFs for 2-butanone and 2-hexanone were below the method minimums on 10-17-17 (V801633.D). The %Ds for 7 compounds (circled red on attached FORM VII) were above the method maximum on 10-17-17 (V801633.D). The %Ds for 2-butanone and 1,2,4-trichlorobenzene were above the method maximum on 10-18-17 (V3128543.D). No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The RRF for 1,4-dioxane was below the allowable minimum (0.005) on 10-17-17 (V801633.D). The RRF for 1,4-dioxane was below the allowable minimum (0.005) on 10-18-17 (V3128543.D). Positive results for 1,4-dioxane should be considered estimated, biased low (J-) and "not detected" results rejected, unusable (R) in associated samples.

The %Ds for dichlorodifluoromethane, bromomethane, trichlorofluoromethane, and cyclohexane were above the allowable maximum (25%) on 10-17-17 (V801633.D). The %D for 2-butanone was above the allowable maximum (25%) on 10-18-17 (V3128543.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of the method and trip blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the soil samples and trip blank.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for 5 compounds (circled red on the attached MS/MSD from) were above the allowable maximum and 1 of 2 percent recoveries for 1,1-dichloroethylene was above QC limits for soil MS/MSD sample EP-3 (5 ft). Positive results for compounds with RPDs above the allowable maximum should be considered estimated (J) and positive results for 1,1-dichloroethylene estimated, biased high (J+). Sample EP-3 (5 ft) reported these compounds as "not detected"; therefore, no action is taken.

Laboratory Control Sample: The relative percent difference (RPD) for 1,1,1-trichloroethane was above the allowable maximum; 2 of 2 percent recoveries (%Rs) for 1,1-dichloroethylene, dichlorodifluoromethane, and vinyl acetate and 1 of 2 %Rs for hexachlorobutadiene were above the QC limits; and 1 of 2 for 1,1,1-trichloroethane was below QC limits and below 30% for aqueous samples BJ70847-BS1/BSD1. Positive results for 1,1-dichloroethylene, dichlorodifluoromethane, vinyl acetate, and hexachlorobutadiene should be considered estimated, biased high (J+); positive results for 1,1,1-trichloroethane should be considered estimated, biased low (J-); and "not detected" results for 1,1,1-trichloroethane should be considered rejected, unusable (R) in associated aqueous samples.

The RPDs for target compounds were below the allowable maximum, but 2 of 2%Rs for 1,1-dichloroethylene and 1 of 2 %Rs for 2-butanone were above the QC limits for soil samples BJ70939-BS1/BSD1. Positive results for 1,1-dichloroethylene and 2-butanone should be considered estimated, biased high (J+) in associated soil samples.

Compound ID: Checked surrogates were within GC quantitation limits. The analyses of soil samples reported target compounds as not detected.

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

Laboratory ID:

BJ70847-BS1

Preparation:

BJ70847

EPA 5030B

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	10.0	10.8	108	70 - 132
1,1,1-Trichloroethane	10.0	11.9	119	68 - 138
1,1,2,2-Tetrachloroethane	10.0	8.89	88.9	73 - 132
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.0	12.6	126	67 - 136
1,1,2-Trichloroethane	10.0	9.36	93.6	79 - 125
1,I-Dichloroethane	10.0	10.8	108	78 - 128
1,1-Dichloroethylene	5.00	11.1	222 *	68 - 134
1,1-Dichloropropylene	10.0	11.0	110	74 - 130
1,2,3-Trichlorobenzene	10.0	9.54	95.4	77 - 140
1,2,3-Trichloropropane	10.0	9.26	92.6	79 - 127
1,2,4-Trichlorobenzene	10.0	10.1	101	75 - 141
1,2,4-Trimethylbenzene	10.0	10.6	106	78 - 127
1,2-Dibromo-3-chloropropane	10.0	9.24	92.4	60 - 150
1,2-Dibromoethane	10.0	9.42	94.2	86 - 123
1,2-Dichlorobenzene	10.0	9.74	97.4	79 - 125
1,2-Dichloroethane	10.0	10.9	109	69 - 133
1,2-Dichloropropane	10.0	9.48	94.8	76 - 124
1,3,5-Trimethylbenzene	10.0	10.3	103	78 - 128
1,3-Dichlorobenzene	10.0	10.4	104	81 - 124
1,3-Dichloropropane	10.0	9.32	93.2	79 - 125
1,4-Dichlorobenzene	10.0	10.1	101	82 - 124
2,2-Dichloropropane	10.0	11.9	119	61 - 139
2-Butanone	10.0	6.22	62.2	44 - 169
2-Chlorotoluene	10.0	10.4	104	74 - 130
4-Chlorotoluene	10.0	9.82	98.2	75 - 127
Acetone	10.0	10.3	103	29 - 163
Benzene	10.0	10.3	103	72 - 134
Bromobenzene	10.0	9.48	94.8	74 - 129
Bromochloromethane	10.0	11.1	111	69 - 134
Bromodichloromethane	10.0	10.0	100	76 - 127

LCS / LCS DUPLICATE RECOVERY **EPA 8260C**

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BS1

Initial/Final:

Preparation:	EPA 5030E

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
Bromoform	10.0	9.63	96.3	77 - 137
Bromomethane	10.0	6.06	60.6	50 - 156
Carbon tetrachloride	10.0	12.4	124	62 - 145
Chlorobenzene	10.0	10.2	102	85 - 119
Chloroethane	10.0	12.6	126	49 - 143
Chloroform	10.0	10.5	105	74 - 131
Chloromethane	10.0	10.7	107	43 - 134
cis-1,2-Dichloroethylene	10.0	10.6	106	73 - 134
cis-1,3-Dichloropropylene	10.0	9.78	97.8	77 - 128
Dibromochloromethane	10.0	9.98	99.8	79 - 130
Dibromomethane	10.0	9.38	93.8	78 - 128
Dichlorodifluoromethane	10.0	18.0	(180) *	38 - 139
Ethyl Benzene	10.0	11.0	110	80 - 129
Hexachlorobutadiene	10.0	13.5	135	72 - 141
(sopropylbenzene	10.0	11.1	111	76 - 128
Methyl tert-butyl ether (MTBE)	10.0	9.82	98.2	64 - 142
Methylene chloride	10.0	10.3	103	56 - 142
Naphthalene	10.0	9.23	92.3	79 - 144
n-Butylbenzene	10.0	11.5	115	74 - 132
n-Propylbenzene	10.0	11.1	111	72 - 135
o-Xylene	10.0	10.7	107	81 - 123
o- & m- Xylenes	20.0	22.7	114	79 - 130
o-Isopropyltoluene	10.0	11.2	112	80 - 127
ec-Butylbenzene	10.0	10.8	108	78 - 127
Styrene	10.0	10.5	105	82 - 124
ert-Butylbenzene	10.0	10.6	106	75 - 131
Tetrachloroethylene	10.0	11.0	110	78 - 133
Toluene	10.0	10.3	103	83 - 122
rans-1,2-Dichloroethylene	10.0	10.6	106	59 - 145
rans-1,3-Dichloropropylene	10.0	9.77	97.7	74 - 131

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BS1

Preparation:

EPA 5030B

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
Trichloroethylene	10.0	10.1	101	81 - 125
Trichlorofluoromethane	10.0	14.4	144	61 - 144
Vinyl acetate	10.0	16.6	(166) *	32 - 165
Vinyl Chloride	10.0	13,0	130	42 - 136

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY **EPA 8260C**

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BSD1

5 mL / 5 mL

Prepara	ation:

EPA 5030B

Initial/Final:

	SPIKE	LCSD	LCSD	0.0	QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	10.0	10.8	108	0.371	30	70 - 132
1,1,1-Trichloroethane	10.0	2.22	(22.2) *	137 *	30	68 - 138
1,1,2,2-Tetrachloroethane	10.0	9.01	90.1	1.34	30	73 - 132
1,1,2-Trichloro-1,2,2-trifluoroethane	10.0	12.8	128	1.18	30	67 - 136
1,1,2-Trichloroethane	10.0	9.75	97.5	4.08	30	79 - 125
1,1-Dichloroethane	10.0	10.9	109	1.01	30	78 - 128
1,1-Dichloroethylene	5.00	11.2	(224) *	0.717	30	68 - 134
1,1-Dichloropropylene	10.0	11.2	112	2.25	30	74 - 130
1,2,3-Trichlorobenzene	10.0	12.4	124	25.9	30	77 - 140
1,2,3-Trichloropropane	10.0	9.31	93.1	0.539	30	79 - 127
1,2,4-Trichlorobenzene	10.0	11.2	112	10.4	30	75 - 141
1,2,4-Trimethylbenzene	10.0	10.0	100	5.35	30	78 - 127
1,2-Dibromo-3-chloropropane	10.0	9.26	92.6	0.216	30	60 - 150
1,2-Dibromoethane	10.0	9.79	97.9	3.85	30	86 - 123
1,2-Dichlorobenzene	10.0	9.67	96.7	0.721	30	79 - 125
1,2-Dichloroethane	10.0	11.5	115	4.82	30	69 - 133
1,2-Dichloropropane	10.0	9.62	96.2	1.47	30	76 - 124
1,3,5-Trimethylbenzene	10.0	9.83	98.3	4.86	30	78 - 128
1,3-Dichlorobenzene	10.0	10.0	100	3.53	30	81 - 124
1,3-Dichloropropane	10.0	9.76	97.6	4.61	30	79 - 125
1,4-Dichlorobenzene	10.0	9.97	99.7	0.899	30	82 - 124
2,2-Dichloropropane	10.0	11.8	118	0.677	30	61 - 139
2-Butanone	10.0	7.06	70.6	12.7	30	44 - 169
2-Chlorotoluene	10.0	9.84	98.4	5.15	30	74 - 130
4-Chlorotoluene	10.0	9.44	94.4	3.95	30	75 - 127
Acetone	10.0	11.0	110	6.46	30	29 - 163
Benzene	10.0	10.5	105	1.93	30	72 - 134
Bromobenzene	10.0	9.20	92.0	3.00	30	74 - 129
Bromochloromethane	10.0	11.6	116	3.97	30	69 - 134
Bromodichloromethane	10.0	10.2	102	1.48	30	76 - 127

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BSD1

Preparation:

trans-1,2-Dichloroethylene

trans-1,3-Dichloropropylene

EPA 5030B

Initial/Final:

5 mL / 5 mL

	SPIKE	LCSD	LCSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
Bromoform	10.0	10.2	102	6.24	30	77 - 137
Bromomethane	10.0	6.85	68.5	12.2	30	50 - 156
Carbon tetrachloride	10.0	12.4	124	0.564	30	62 - 145
Chlorobenzene	10.0	10.1	101	0.197	30	85 - 119
Chloroethane	10.0	12.5	125	0.557	30	49 - 143
Chloroform	10.0	10.9	109	4.03	30	74 - 131
Chloromethane	10.0	10.3	103	3.14	30	43 - 134
cis-1,2-Dichloroethylene	10.0	9.50	95.0	11.4	30	73 - 134
cis-1,3-Dichloropropylene	10.0	10.0	100	2.42	30	77 - 128
Dibromochloromethane	10.0	10.4	104	4.03	30	79 - 130
Dibromomethane	10.0	9.79	97.9	4.28	30	78 - 128
Dichlorodifluoromethane	10.0	18.0	180 *	0.0556	30	38 - 139
Ethyl Benzene	10.0	10.8	108	1.46	30	80 - 129
Hexachlorobutadiene	10.0	16.1	(161) *	17.5	30	72 - 141
Isopropylbenzene	10.0	10.4	104	6.61	30	76 - 128
Methyl tert-butyl ether (MTBE)	10.0	10.7	107	8.67	30	64 - 142
Methylene chloride	10.0	10.6	106	3.45	30	56 - 142
Naphthalene	10.0	10.4	104	12.4	30	79 - 144
n-Butylbenzene	10.0	11.1	111	3.64	30	74 - 132
n-Propylbenzene	10.0	10.4	104	6.88	30	72 - 135
o-Xylene	10.0	10.7	107	0.00	30	81 - 123
p- & m- Xylenes	20.0	22.3	112	1.73	30	79 - 130
p-Isopropyltoluene	10.0	10.7	107	4.49	30	80 - 127
sec-Butylbenzene	10.0	10.2	102	5.62	30	78 - 127
Styrene	10.0	10.6	106	0.852	30	82 - 124
tert-Butylbenzene	10.0	10.0	100	6.11	30	75 - 131
Tetrachloroethylene	10.0	10.7	107	2.49	30	78 - 133
Toluene	10.0	10.2	102	0.878	30	83 - 122

10.8

10.1

10.0

10.0

30

30

59 - 145

74 - 131

1.77

3.02

108

101

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BJ70847

Laboratory ID:

BJ70847-BSD1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE LCSD LCSD		LCSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
Trichloroethylene	10.0	9.96	99.6	1.79	30	81 - 125
Trichlorofluoromethane	10.0	14.2	142	1.33	30	61 - 144
Vinyl acetate	10.0	17.1	(171) *	3.27	30	32 - 165
Vinyl Chloride	10.0	13.0	130	0.154	30	42 - 136

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG: 17J0671

Client:

Hydro Tech Environmental (Brooklyn)

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

Project:

Preparation:

EPA 5035A

BJ70939-BS1

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	50.0	54.4	109	75 - 129
1,1,1-Trichloroethane	50.0	54.3	109	71 - 137
1,1,2,2-Tetrachloroethane	50.0	54.8	110	79 - 129
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	50.0	53.3	107	58 - 146
1,1,2-Trichloroethane	50.0	53.1	106	83 - 123
1,1-Dichloroethane	50.0	52.3	105	75 - 130
1,1-Dichloroethylene	25.0	52.3	209 *	64 - 137
1,1-Dichloropropylene	50.0	52.1	104	77 - 127
1,2,3-Trichlorobenzene	50.0	55.6	111	81 - 140
1,2,3-Trichloropropane	50.0	57.3	115	81 - 126
1,2,4-Trichlorobenzene	50.0	61.3	123	80 - 141
1,2,4-Trimethylbenzene	50.0	53.9	108	84 - 125
1,2-Dibromo-3-chloropropane	50.0	54.5	109	74 - 142
1,2-Dibromoethane	50.0	53.3	107	86 - 123
1,2-Dichlorobenzene	50.0	55.3	111	85 - 122
1,2-Dichloroethane	50.0	50.9	102	71 - 133
1,2-Dichloropropane	50.0	52.2	104	81 - 122
1,3,5-Trimethylbenzene	50.0	52.4	105	82 - 126
1,3-Dichlorobenzene	50.0	55.9	112	84 - 124
1,3-Dichloropropane	50.0	49.0	98.0	83 - 123
1,4-Dichlorobenzene	50.0	55.6	111	84 - 124
1,4-Dioxane	1000	1010	101	10 - 228
2,2-Dichloropropane	50.0	52.3	105	67 - 136
2-Butanone	50.0	74.6	149 *	58 - 147
2-Chlorotoluene	50.0	53.9	108	78 - 127
4-Chlorotoluene	50.0	53.2	106	79 - 125
Acetone	50.0	39.3 78.6		36 - 155
Benzene	50.0	48.5	96.9	77 - 127
Bromobenzene	50.0	52.7	105	77 - 129
Bromochloromethane	50.0	51.6	103	74 - 129

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BS1

Preparation:

EPA 5035A

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.	
Bromodichloromethane	50.0	53.6	107	81 - 124	
Bromoform	50.0	57.0	114	80 - 136	
Bromomethane	50.0	45.4	90.8	32 - 177	
Carbon tetrachloride	50.0	54.6	109	66 - 143	
Chlorobenzene	50.0	54.0	108	86 - 120	
Chloroethane	50.0	49.8	99.6	51 - 142	
Chloroform	50.0	51.3	103	76 - 131	
Chloromethane	50.0	50.4	101	49 - 132	
cis-1,2-Dichloroethylene	50.0	49.4	98.8	74 - 132	
cis-1,3-Dichloropropylene	50.0	53.9	108	81 - 129	
Dibromochloromethane	50.0	55.5	111	10 - 200	
Dibromomethane	50.0	53.1	106	83 - 124	
Dichlorodifluoromethane	50.0	52.4	105	28 - 158	
Ethyl Benzene	50.0	53.7	107	84 - 125	
Hexachlorobutadiene	50.0	51.4	103	83 - 133	
Isopropylbenzene	50.0	52.8	106	81 - 127	
Methyl tert-butyl ether (MTBE)	50.0	49.1	98.2	74 - 131	
Methylene chloride	50.0	48.9	97.8	57 - 141	
Naphthalene	50.0	56.0	112	86 - 141	
n-Butylbenzene	50.0	57.7	115	80 - 130	
n-Propylbenzene	50.0	54.0	108	74 - 136	
o-Xylene	50,0	54.0	108	83 - 123	
p- & m- Xylenes	100	105	105	82 - 128	
p-Isopropyltoluene	50.0	55.5	111	85 - 125	
sec-Butylbenzene	50.0	55.4	111	83 - 125	
Styrene	50.0	52.4 105		86 - 126	
tert-Butylbenzene	50.0	53.3 107		80 - 127	
Tetrachloroethylene	50.0	49.2	98.4	80 - 129	
Toluene	50.0	54.2	108	85 - 121	
rans-1,2-Dichloroethylene	50.0	48.0	96.1	72 - 132	

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BS1

Preparation:

EPA 5035A

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
trans-1,3-Dichloropropylene	50.0	55.4	111	78 - 132
Trichloroethylene	50.0	52.1	104	84 - 123
Trichlorofluoromethane	50.0	49.8	99.7	62 - 140
Vinyl acetate	50.0	57.0	114	67 - 136
Vinyl Chloride	50.0	46.4	92.9	52 - 130

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY **EPA 8260C**

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BSD1

Preparation:

EPA 5035A

Initial/Final:

	SPIKE	LCSD	LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	50.0	53.3	107	2.12	30	75 - 129
1,1,1-Trichloroethane	50.0	49.4	98.9	9.32	30	71 - 137
1,1,2,2-Tetrachloroethane	50.0	52.6	105	4.13	30	79 - 129
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	51.9	104	2.72	30	58 - 146
1,1,2-Trichloroethane	50.0	53.3	107	0.433	30	83 - 123
1,1-Dichloroethane	50.0	50.6	101	3.46	30	75 - 130
1,1-Dichloroethylene	25.0	44.4	177 *	16.4	30	64 - 137
1,1-Dichloropropylene	50.0	51.5	103	1.10	30	77 - 127
1,2,3-Trichlorobenzene	50.0	55.5	111	0.108	30	81 - 140
1,2,3-Trichloropropane	50.0	58.4	117	1.97	30	81 - 126
1,2,4-Trichlorobenzene	50.0	58.3	117	5.15	30	80 - 141
1,2,4-Trimethylbenzene	50.0	50.4	101	6.71	30	84 - 125
1,2-Dibromo-3-chloropropane	50.0	54.3	109	0.367	30	74 - 142
1,2-Dibromoethane	50.0	51.3	103	3.75	30	86 - 123
1,2-Dichlorobenzene	50.0	54.7	109	1.11	30	85 - 122
1,2-Dichloroethane	50.0	51.9	104	2.00	30	71 - 133
1,2-Dichloropropane	50.0	49.4	98.7	5.61	30	81 - 122
1,3,5-Trimethylbenzene	50.0	54.0	108	2.93	30	82 - 126
1,3-Dichlorobenzene	50.0	57.9	116	3.55	30	84 - 124
1,3-Dichloropropane	50.0	50.5	101	3.14	30	83 - 123
1,4-Dichlorobenzene	50.0	57.0	114	2.43	30	84 - 124
1,4-Dioxane	1000	1010	101	0.0287	30	10 - 228
2,2-Dichloropropane	50.0	51.2	102	2.01	30	67 - 136
2-Butanone	50.0	72.3	145	3.20	30	58 - 147
2-Chlorotoluene	50.0	55.9	112	3.72	30	78 - 127
4-Chlorotoluene	50.0	56.4	113	5.88	30	79 - 125
Acetone	50.0	30.7	61.5	24.5	30	36 - 155
Benzene	50.0	49.8	99.5	2.67	30	77 - 127
Bromobenzene	50.0	51.6	103	2.11	30	77 - 129
Bromochloromethane	50.0	48.1	96.3	6.96	30	74 - 129

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory: Yor

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BSD1

Preparation:

EPA 5035A

Initial/Final

	SPIKE	LCSD	LCSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
Bromodichloromethane	50.0	54.3	109	1.30	30	81 - 124
Bromoform	50.0	54.8	110	3.92	30	80 - 136
Bromomethane	50.0	48.3	96.7	6.25	30	32 - 177
Carbon tetrachloride	50.0	53.6	107	1.88	30	66 - 143
Chlorobenzene	50.0	53.1	106	1.72	30	86 - 120
Chloroethane	50.0	49.2	98.5	1.17	30	51 - 142
Chloroform	50.0	50.9	102	0.783	30	76 - 131
Chloromethane	50.0	50.6	101	0.356	30	49 - 132
cis-1,2-Dichloroethylene	50.0	49.8	99.6	0.847	30	74 - 132
cis-1,3-Dichloropropylene	50.0	53.4	107	0.839	30	81 - 129
Dibromochloromethane	50.0	57.3	115	3.21	30	10 - 200
Dibromomethane	50.0	52.3	105	1.56	30	83 - 124
Dichlorodifluoromethane	50.0	49.8	99.7	5.03	30	28 - 158
Ethyl Benzene	50.0	54.8	110	1.94	30	84 - 125
Hexachlorobutadiene	50.0	53.8	108	4.47	30	83 - 133
Isopropylbenzene	50.0	52.4	105	0.627	30	81 - 127
Methyl tert-butyl ether (MTBE)	50.0	49.2	98.4	0.203	30	74 - 131
Methylene chloride	50.0	43.4	86.9	11.8	30	57 - 141
Naphthalene	50.0	52.2	104	7.08	30	86 - 141
n-Butylbenzene	50.0	57.8	116	0.156	30	80 - 130
n-Propylbenzene	50.0	55.2	110	2.23	30	74 - 136
o-Xylene	50.0	50.5	101	6.62	30	83 - 123
p- & m- Xylenes	100	107	107	2.06	30	82 - 128
p-Isopropyltoluene	50.0	55.8	112	0.557	30	85 - 125
sec-Butylbenzene	50.0	56.5	113	1.93	30	83 - 125
Styrene	50.0	52.3	105	0.172	30	86 - 126
ert-Butylbenzene	50.0	56.3	113	5.49	30	80 - 127
Tetrachloroethylene	50.0	52.3	105	6.07	30	80 - 129
Γoluene	50.0	53.1	106	2.05	30	85 - 121
rans-1,2-Dichloroethylene	50.0	47.8	95.6	0.501	30	72 - 132

LCS / LCS DUPLICATE RECOVERY **EPA 8260C**

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-BSD1

Preparation:

EPA 5035A

Initial/Final:

5 g / 5 ml

LCSD SPIKE LCSD

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	%	QC	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC. #	RPD#	RPD	REC.
trans-1,3-Dichloropropylene	50.0	55.2	110	0.235	30	78 - 132
Trichloroethylene	50.0	52.4	105	0.536	30	84 - 123
Trichlorofluoromethane	50.0	50.3	101	0.998	30	62 - 140
Vinyl acetate	50.0	56.9	114	0.211	30	67 - 136
Vinyl Chloride	50.0	47.4	94.8	2.00	30	52 - 130

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-MS1

Preparation:

EPA 5035A

Initial/Final:

5.6 g / 5 ml

Source Sample Name:

EP-3 (5 ft)

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	50.0	0.00	52.7	105	15 - 161
1,1,1-Trichloroethane	50.0	0.00	48.7	97.3	42 - 145
1,1,2,2-Tetrachloroethane	50.0	0.00	56.3	113	16 - 167
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	0.00	48.9	97.7	11 - 160
1,1,2-Trichloroethane	50.0	0.00	51.7	103	44 - 145
1,1-Dichloroethane	50.0	0.00	48.9	97.7	46 - 142
1,1-Dichloroethylene	25.0	0.00	44.8	(179) *	30 - 153
1,1-Dichloropropylene	50.0	0.00	47.1	94.3	40 - 133
1,2,3-Trichlorobenzene	50.0	0.00	31.8	63.7	10 - 157
1,2,3-Trichloropropane	50.0	0.00	61.7	123	38 - 155
1,2,4-Trichlorobenzene	50.0	0.00	34.1	68.1	10 - 151
1,2,4-Trimethylbenzene	50.0	0.00	54.4	109	10 - 170
1,2-Dibromo-3-chloropropane	50.0	0.00	44.6	89.3	36 - 138
1,2-Dibromoethane	50.0	0.00	44.8	89.5	40 - 142
1,2-Dichlorobenzene	50.0	0.00	46.6	93.3	10 - 147
1,2-Dichloroethane	50.0	0.00	49.9	99.8	48 - 133
1,2-Dichloropropane	50.0	0.00	52.8	106	47 - 141
1,3,5-Trimethylbenzene	50.0	0.00	52,2	104	10 - 150
1,3-Dichlorobenzene	50.0	0.00	46.2	92.5	10 - 144
1,3-Dichloropropane	50.0	0.00	47.9	95.7	43 - 142
1,4-Dichlorobenzene	50.0	0.00	44.7	89.3	10 - 160
1,4-Dioxane	1000	0.00	952	95.2	10 - 191
2,2-Dichloropropane	50.0	0.00	50.2	100	38 - 130
2-Butanone	50.0	0.00	72.9	146	10 - 189
2-Chlorotoluene	50.0	0.00	52.8	106	14 - 144
1-Chlorotoluene	50.0	0.00	49.3	98.6	15 - 138
Acetone	50.0	2.47	58.9	113	10 - 196
Benzene	50.0	0.00	47.2	94.5	43 - 139
Bromobenzene	50.0	0.00	49.7	99.4	23 - 142
Bromochloromethane	50.0	0.00	47.8	95.6	38 - 145
Bromodichloromethane	50.0	0.00	50.8	102	38 - 147
Bromoform	50.0	0.00	55.1	110	29 - 156

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG: 17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project: #170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

Preparation:

BJ70939

Laboratory ID:

EPA 5035A

BJ70939-MS1

Initial/Final:

5.6 g / 5 ml

Source Sample Name:

EP-3 (5 ft)

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC.#	QC LIMITS REC.
Bromomethane	50.0	0.00	47.6	95.2	10 - 166
Carbon tetrachloride	50.0	0.00	50.5	101	35 - 145
Chlorobenzene	50.0	0.00	46.9	93.9	21 - 154
Chloroethane	50.0	0.00	51.2	102	15 - 160
Chloroform	50.0	0.00	51.1	102	47 - 142
Chloromethane	50.0	0.00	45.5	90.9	10 - 159
cis-1,2-Dichloroethylene	50.0	0.00	48.5	97.0	42 - 144
cis-1,3-Dichloropropylene	50.0	0.00	48.8	97.5	18 - 159
Dibromochloromethane	50.0	0.00	50.7	101	10 - 179
Dibromomethane	50.0	0.00	48.6	97.2	47 - 143
Dichlorodifluoromethane	50.0	0.00	42.3	84.6	10 - 145
Ethyl Benzene	50.0	0.00	49.0	98.1	11 - 158
Hexachlorobutadiene	50.0	0.00	35.2	70.4	10 - 158
sopropylbenzene	50.0	0.00	56.6	113	10 - 162
Methyl tert-butyl ether (MTBE)	50.0	0.00	50.0	100	42 - 152
Methylene chloride	50.0	0.00	47.8	95.5	28 - 151
Naphthalene	50.0	0.00	33.6	67.1	10 - 158
-Butylbenzene	50.0	0.00	47.7	95.4	10 - 162
-Propylbenzene	50.0	0.00	54.3	109	10 - 155
-Xylene	50.0	0.00	47.3	94.7	10 - 158
- & m- Xylenes	100	0.00	99.2	99.2	10 - 156
-Isopropyltoluene	50.0	0.00	51.7	103	10 - 147
ec-Butylbenzene	50.0	0.00	55.1	110	10 - 157
tyrene	50.0	0.00	42.6	85.2	13 - 171
rt-Butylbenzene	50.0	0.00	59.4	119	10 - 160
etrachloroethylene	50.0	0.00	54.7	109	30 - 167
bluene	50.0	0.00	48.5	97.1	21 - 160
ns-1,2-Dichloroethylene	50.0	0.00	46.2	92.4	29 - 153
nns-1,3-Dichloropropylene	50.0	0.00	46.7	93.3	18 - 155
ichloroethylene	50.0	0.00	48.0	96.0	24 - 169
ichlorofluoromethane	50.0	0.00	46.3	92.6	35 - 142
nyl acetate	50.0	0.00	34.0	68.1	10 - 119

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

87.4

12 - 160

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

Preparation:

Vinyl Chloride

EPA 5035A

0.00

BJ70939-MS1

Initial/Final:

5.6 g / 5 ml

43.7

Source Sample Name:

EP-3 (5 ft)

SPIKE	SAMPLE	MS	MS	QC
ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
(ug/L)	(ug/L)	(ug/L)	REC.#	REC.

[#] Column to be used to flag recovery and RPD values with an asterisk

50.0

COMPOUND

^{*} Values outside of QC limits

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-MSD1

Preparation:

EPA 5035A

Initial/Final:

5.57 g / 5 ml

Source Sample Name: EP-3 (5 ft)

	SPIKE	MSD	MSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	50.0	43.0	86.0	20.3	33	15 - 161
1,1,1-Trichloroethane	50.0	36.0	72.1	29.8	30	42 - 145
1,1,2,2-Tetrachloroethane	50.0	49.1	98.3	13.6	56	16 - 167
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	34.3	68.7	34.9 *	31	11 - 160
1,1,2-Trichloroethane	50.0	48.2	96.3	7.03	40	44 - 145
1,1-Dichloroethane	50.0	41.3	82.6	16.8	36	46 - 142
1,1-Dichloroethylene	25.0	34.5	138	25.8	31	30 - 153
1,1-Dichloropropylene	50.0	37.7	75.4	22.3	28	40 - 133
1,2,3-Trichlorobenzene	50.0	26.7	53.5	17.4	47	10 - 157
1,2,3-Trichloropropane	50.0	56.4	113	9.06	48	38 - 155
1,2,4-Trichlorobenzene	50.0	27.9	55.8	19.9	52	10 - 151
1,2,4-Trimethylbenzene	50.0	40.0	80.1	30.3	242	10 - 170
1,2-Dibromo-3-chloropropane	50.0	48.3	96.6	7.94	54	36 - 138
1,2-Dibromoethane	50.0	44.5	89.0	0.538	39	40 - 142
1,2-Dichlorobenzene	50.0	38.0	75.9	20.6	52	10 - 147
1,2-Dichloroethane	50.0	47.0	93.9	6.11	32	48 - 133
1,2-Dichloropropane	50.0	44.3	88.5	17.6	37	47 - 141
1,3,5-Trimethylbenzene	50.0	39.7	79.5	27.1	62	10 - 150
1,3-Dichlorobenzene	50.0	37.0	73.9	22.3	51	10 - 144
1,3-Dichloropropane	50.0	47.0	94.1	1.73	36	43 - 142
1,4-Dichlorobenzene	50.0	36.8	73.7	19.2	52	10 - 160
1,4-Dioxane	1000	1200	120	22.7	196	10 - 191
2,2-Dichloropropane	50.0	36.6	73.2	(31.3) *	31	38 - 130
2-Butanone	50.0	81.9	164	11.6	67	10 - 189
2-Chlorotoluene	50.0	39.7	79.4	28.3	49	14 - 144
4-Chlorotoluene	50.0	39.4	78.8	22.3	39	15 - 138
Acetone	50.0	61.8	119	4.77	150	10 - 196
Benzene	50.0	39.4	78.9	18.0	64	43 - 139
Bromobenzene	50.0	38.8	77.7	24.5	44	23 - 142
Bromochloromethane	50.0	44.1	88.2	8.01	30	38 - 145
Bromodichloromethane	50.0	43.2	86.4	16.2	37	38 - 147
Bromoform	50.0	47.7	95.5	14.3	51	29 - 156
Bromomethane	50.0	38.3	76.6	21.7	42	10 - 166

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ70939

Laboratory ID:

BJ70939-MSD1

Preparation:

EPA 5035A

Initial/Final:

5.57 g / 5 ml

Source Sample Name: EP-3 (5 ft)

	SPIKE	MSD	MSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
Carbon tetrachloride	50.0	36.5	73.0	(32.2) *	31	35 - 145
Chlorobenzene	50.0	38.1	76.3	20.7	32	21 - 154
Chloroethane	50.0	34.9	69.8	37.9	40	15 - 160
Chloroform	50.0	40.6	81.2	22.8	29	47 - 142
Chloromethane	50.0	37.3	74.5	19.8	31	10 - 159
cis-1,2-Dichloroethylene	50.0	37.9	75.9	24.4	30	42 - 144
cis-1,3-Dichloropropylene	50.0	43.6	87.1	11.3	39	18 - 159
Dibromochloromethane	50.0	46.1	92.1	9.65	41	10 - 179
Dibromomethane	50.0	44.1	88.2	9.66	41	47 - 143
Dichlorodifluoromethane	50.0	29.1	58.2	37.0) *	34	10 - 145
Ethyl Benzene	50.0	37.7	75.4	26.1	42	11 - 158
Hexachlorobutadiene	50.0	30.8	61.5	13.6	45	10 - 158
Isopropylbenzene	50.0	38.8	77.5	37.4	57	10 - 162
Methyl tert-butyl ether (MTBE)	50.0	46.6	93.2	7.06	47	42 - 152
Methylene chloride	50.0	40.8	81.6	15.7	49	28 - 151
Naphthalene	50.0	29.7	59.4	12.1	95	10 - 158
n-Butylbenzene	50.0	38.0	75.9	22.7	96	10 - 162
n-Propylbenzene	50.0	39.3	78.6	32.1	56	10 - 155
o-Xylene	50.0	39.9	79.9	17.0	51	10 - 158
o- & m- Xylenes	100	78.7	78.7	23.0	47	10 - 156
-Isopropyltoluene	50.0	39.6	79.1	26.6	60	10 - 147
ec-Butylbenzene	50.0	39.7	79.4	32.4	56	10 - 157
tyrene	50.0	37.6	75.1	12.6	39	13 - 171
ert-Butylbenzene	50.0	41.8	83.5	34.9	79	10 - 160
etrachloroethylene	50.0	44.1	88.1	21.5	33	30 - 167
oluene	50.0	39.7	79.4	20.1	50	21 - 160
ans-1,2-Dichloroethylene	50.0	35.1	70.2	27.4	30	29 - 153
ans-1,3-Dichloropropylene	50.0	41.6	83.1	11.6	30	18 - 155
richloroethylene	50.0	37.1	74.2	25.7	30	24 - 169
richlorofluoromethane	50.0	33.3	66.5	(32.7) *	30	35 - 142
Tinyl acetate	50.0	28.7	57.4	17.0	82	10 - 119
inyl Chloride	50.0	35.3	70.5	21.4	35	12 - 160

Title : Volatile Organics EPA 8260C Last Update : Fri Oct 06 10:28:22 2017 Response Via : Initial Calibration

Calibration Files

A

Compound 1) I FUUROBENIZENE (ISTD) 2) T Dichlorodifiluo. 10.997 0.972 0.994 0.820 1.013 0.574 0.830 0.923 0.890 16. 3) T Chloromethane	120 =	=V801285.D 160 =V80	1286.D									
TILORORDENZENE (ISTD) 1) TOICHOROGIFIUS. 2) TOICHOROGIFIUS. 3) TOICHOROGIFIUS. 4) TOICHOROGIFIUS. 2) TOICHOROGIFIUS. 4) TOICHOROGIFIUS. 5) TOICHOROGIFIUS. 5) TOICHOROGIFIUS. 6)	1		0 1	• 1	. 1	0	0	0	12	9	Avg	%RSD
Dichlorodifiluo 0,997 0,972 0,994 0,820 1,013 0,574 0,830 0,923 0,890 16 3) T Dichlorodifiluo 0,997 0,994 0,820 1,013 0,574 0,830 0,923 0,890 16 1,0140 chiloromethane 1,647 1,310 1,293 1,201 1,329 1,343 1,518 1,536 1,397 10 1,0140 chiloromethane 1,338 0,325 0,340 0,380 0,579 0,625 0,579 0,540 0,640 0,70 0,70 0,000 0,	-					1 U			1	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10. Trinibrocalities		-	00	1	(HO	1 0			1	3	
Chloromethane 1.647 1.310 1.293 1.201 1.329 1.343 1.518 1.536 1.397 1.0 Uroxomethane 1.647 1.310 1.293 1.201 1.329 1.343 1.518 1.536 1.397 1.0 Uroxomethane 0.339 0.325 0.340 0.380 0.579 0.655 0.6510 0.640 0.660 0.595 0.611 0.607 0.640 0.61	_ ,	Dichiorogithuo	. y	2	. 2	.87	· OT	.5.	. 83	. 92	. 89	9.9
4) T Vinyl Chloride 1.338 1.162 1.187 1.104 1.234 0.960 1.094 1.116 1.149 28 15 T Excomentane 0.339 0.325 0.340 0.357 0.5579 0.5579 0.584 0.469 28 C Chlorocthane 0.339 0.325 0.340 0.680 0.5579 0.5611 0.643 1.689 1.66	_	Chloromethane	.64	.31	.29	.20	.32	.34	.51	.53	.39	0.8
Expression by the properties of the control of the	_	Vinyl Chloride	.33	.16	.18	.10	.23	96.	.09	.11	.14	9.6
Chloroethane 0.730 0.651 0.649 0.614 0.660 0.595 0.611 0.607 0.640 6	_	Bromomethane	.33	.32	.34	.38	.57	.62	.57	.58	.46	8.3
Trichlorofluor. 1.992 1.827 1.860 1.775 1.828 1.078 1.507 1.643 1.689 16 Ethanol	_	Chloroethane	.73	.65	.64	.61	.66	.59	.61	.60	.64	9
Bthanol Bth	_	Z	.99	.82	.86	.77	.82	.07	.50	.64	.68	6.9
9) T Freon-113 1.378 1.324 1.274 1.266 1.235 0.636 1.015 1.189 1.165 20 20 T 1.1-Dichloroet 1138 1.050 1.027 1.012 1.060 0.801 0.921 0.970 0.997 10 2) T Accolen 2) T Accolen 2) T Acetone 3) T Carbon disulfide 4.189 3.257 3.029 0.355 0.356 0.353 0.342 0.320 0.354 4 3) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 1.6 3) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 1.6 3) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 1.6 3) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 1.6 3) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 1.6 3) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 1.6 3) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 1.6 3) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 1.6 3) T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.167 0.158 0.156 0.157 0.140 1.284 1.770 1.885 0.156 0.157 0.140 1.284 1.770 1.885 0.156 0.157 0.140 1.284 1.770 1.885 0.156 0.157 0.140 1.284 1.770 1.885 0.156 0.157 0.140 1.288 1.247 0.158 0.156 0.157 0.154 0.159 0.159 0.199 0.053 0.051 0.059 0.053 0.051 0.059 0.053 0.051 0.059 0.053 0.051 0.059 0.053 0.051 0.059 0.053 0.051 0.058 0.052 0.050 0.053 0.051 0.049 0.053 0.051 0.058 0.052 0.050 0.053 0.051 0.049 0.053 0.051 0.058 0.052 0.050 0.053 0.051 0.059 0.0	8)	Ethanol		00.	.00	.00	.00	.00	.00	.00	.00	0.1
1) T Acrolein 1) T Actrolein 1) T Actrolein 2) T Actrolein 3) T Actrolein 3) T Actrolein 4) T Actrolein 2) T Actrolein 3) T Actrolein 3) T Actrolein 4) Expendit Actrolein 4) T Methyl Actrolein 5) T Carbon disulfide 4,189 3,257 3,029 2,925 3,042 2,533 0,342 0,335 0,354 1,472 1,680 1,7 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	_	Freon-113	.37	.32	.27	.26	.23	.63	.01	.18	.16	0.5
1) T Acrolein 0.100 0.074 0.080 0.078 0.081 0.084 0.080 0.075 0.081 10 20 dectone 0.158 0.144 0.127 0.123 0.122 0.121 0.132 11 11 11 11 11 11 11 11 11 11 11 11 11	(0	H	.13	.05	.02	.01	.06	.80	.92	.97	. 99	0.2
2) T Acetone 3) T Iodomethane 4) T Methyl Acetate 6) 0.345 0.376 0.359 0.355 0.356 0.353 0.342 0.353 0.354 4 5) T Carbon disulfide 6 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16 7) T Carbon disulfide 7) T Carbon disulfide 7) T Carbon disulfide 7) T Carbon disulfide 8 1.89 3.257 3.029 2.925 3.042 2.533 0.342 0.355 0.356 7) T Carbon disulfide 8 1.89 3.257 3.029 2.925 3.042 2.533 0.384 0.055 0.056 8) T Carbon disulfide 8 1.84 1.84 1.61 1.61 1.61 1.634 1.47 1.680 1.00 9) T Carbon disulfide 9 1.87 1.956 1.88 1.88 1.87 1.924 1.754 1.47 1.680 1.98 1.00 10 T Carbon disulfide 1.126 1.255 1.342 1.52 1.954 1.756 1.744 1.710 1.88 1.00 11 T 1,1-Dichloroet 11 T 1,1-Dichloroet 12 5.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 1.00 12	1)	Acrolein	.10	.07	.08	.07	.08	.08	.08	.07	.08	0.1
3) T Godomethane 4) T Methyl Acetate 6) 0.345 0.356 0.355 0.356 0.353 0.342 0.354 4 6) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16 6) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16 6) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16 6) T Methylene Chlo 2.038 1.846 1.688 1.634 1.616 1.617 1.534 1.472 1.680 10 8) T Acylonitrile 0.126 0.167 0.158 1.644 0.164 0.156 0.156 0.156 9) T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 0.156 1) T 1,1-Dichloroet 2.613 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 0.170	5	Acetone			.15	.14	.12	.12	.12	.12	.13	1.5
4) T Methyl Acetate 0.345 0.376 0.369 0.355 0.356 0.353 0.342 0.332 0.354 4 5) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16 6) T text-Butyl Alc 0.060 0.059 0.056 0.057 0.055 0.054 0.055 0.055 0.056 4 7) T Methylene Chlo 2.038 1.846 1.688 1.634 1.617 1.534 1.472 1.680 10 8) T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.161 0.158 0.156 8 9) T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8 1) T trans-1,2-Dich 2.613 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 77 1.1-Dichloroet 2.613 2.613 2.544 2.550 2.370 2.218 2.127 2.427 77 1.1-Dichloroet 2.613 2.613 2.544 2.259 3.956 3.956 3.956 3.974 3.139 3.313 6.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	3)	Iodomethane			.48	.79	.22	.20	.02	.99	.95	9.2
5) T Carbon disulfide 4.189 3.257 3.029 2.925 3.042 2.533 2.789 2.864 3.079 16 fert-Butyl Alc. 0.060 0.059 0.056 0.057 0.055 0.055 0.055 0.056 4 0.056 0.057 0.055 0.054 0.055 0.056 0.056 4 0.056 0.057 0.055 0.054 0.055 0.056 0.056 0.056 0.057 0.055 0.054 0.055 0.056 0.056 0.056 0.056 0.057 0.055 0.054 0.055 0.056 0.056 0.056 0.056 0.057 0.055 0.054 0.055 0.056 0.056 0.056 0.056 0.057 0.056 0.057 0.055 0.057 0.056 0.057 0.056 0.057 0.056 0.057 0.058 0.052 0.050 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.056 0.053 0.051 0.049 0.053 0.046 0.058 0.052 0.054 0.044 0.044 0.044 0.044 0.045 0.053 0.056 0.055 0.048 0.044 0.044 0.044 0.044 0.044 0.045 0.059 0.057 0.0	4)	1	.34	.37	.36	.35	.35	.35	.34	.33	.35	4.0
6) T text-Butyl Alc 0.060 0.059 0.056 0.055 0.054 0.055 0.053 0.056 4 Methylene Chlo 2.038 1.846 1.688 1.616 1.617 1.534 1.472 1.680 10 8) T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.161 0.158 0.156 8 9) T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8 1) T text-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 77 7 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	2)	Carbon disulfide	.18	. 25	.02	. 92	.04	.53	.78	.86	.07	6.1
Methylene Chlo 2.038 1.846 1.688 1.614 1.616 1.617 1.534 1.472 1.680 10 8) T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.161 0.158 0.156 8 1 trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8 1 tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7 1.966 1.710 1.885 1.168 1.247 1.885 1.710 1.885 1.88	(9)	tert-Butyl Alc	90.	.05	.05	.05	.05	.05	.05	.05	.05	4.1
8) T Acrylonitrile 0.126 0.167 0.154 0.159 0.157 0.164 0.161 0.158 0.156 8 9) T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8 0) T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7 2) T Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5 3) T Diisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 1.2 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6 5) T Cis-1,2-Dichlor. 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5 6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9 8) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.043 0.046 9 9) T Shomochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 1.007 T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6	7)	Methylene Chlo	. 03	.84	.68	.63	.61	.61	.53	.47	.68	0.8
9) T trans-1,2-Dich 2.235 1.956 1.881 1.875 1.924 1.756 1.744 1.710 1.885 8 0) T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7 1) T 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7 2) T Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5 3) T Diisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 1.2 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6 5) T Cis-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5 6) T 2-Butanone 0.053 0.058 0.052 0.050 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.051 0.049 0.053 0.054 1.874 1.903 2.029 9) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.044 0.046 9) T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6	8	Acrylonitrile	.12	.16	.15	.15	.15	.16	.16	.15	.15	8.0
0) T tert-Butyl Met 1.643 2.077 1.979 1.999 2.043 2.068 1.990 1.930 1.966 7 1 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7 1 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7 1 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7 1 2	6	trans-1,2-Dich	. 23	.95	.88	.87	.92	.75	.74	.71	. 88	00
1) T 1,1-Dichloroet 2.613 2.613 2.504 2.473 2.500 2.370 2.218 2.127 2.427 7 7 Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5 3 T Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5 3 T Diisopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 1.2 Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6 5 T cis-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5 5 T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7 7 7 7 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9 8 T Tetrahydrofuran 0.055 0.048 0.044 0.	0	tert-Butyl Met	. 64	.07	.97	.99	.04	90.	.99	.93	96.	0.
2) T Vinyl Acetate 1.126 1.255 1.342 1.252 1.305 1.240 1.288 1.168 1.247 5 5 1 1	î î	1,1-Dichloroet	.61	.61	.50	.47	.50	.37	.21	.12	.42	3
4) T Dllsopropyl et 4.025 4.667 4.550 4.403 4.259 3.956 3.507 3.249 4.077 12 4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6 5) T cis-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5 6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9 8) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.044 0.046 9 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10 0) T Chloroform	5	Vinyl Acetate	.12	. 25	.34	. 25	.30	.24	.28	.16	.24	9.
4) T Ethyl-tert-But 2.850 3.533 3.426 3.368 3.473 3.442 3.274 3.139 3.313 6 5) T cis-1,2-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 6) T 2-Butanone 7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 0.044 0.044 0.044 0.043 0.046 8) T Tetrahydrofuran 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 1.0 9) T Chloroform	3)	Dilsopropyl et	.02	99.	. 55	.40	.25	.95	.50	.24	.07	S
5) T C1S-1, Z-Dichlo 2.410 2.310 2.187 2.179 2.227 2.160 2.086 2.018 2.197 5 5 7 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7 7 7 2.2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 8) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.044 0.046 9 9 T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 1.00 T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6	4)	Ethyl-tert-But	. 85	. 53	.42	.36	.47	.44	.27	.13	.31	.7
6) T 2-Butanone 0.053 0.061 0.058 0.052 0.050 0.053 0.051 0.049 0.053 7 7 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 8) T Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.043 0.046 9 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 1.0 0) T Chloroform	200	cis-1, 2-Dichlo	.41	.31	.18	.17	.22	.16	.08	.01	.19	.5
7) T 2,2-Dichloropr 2.355 2.153 2.072 2.043 2.074 1.754 1.874 1.903 2.029 9 8) T Tetrahydrofuran 0.055 0.048 0.048 0.044 0.044 0.044 0.044 0.044 0.045 0.046 9 9) T Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 1.0 0) T Chloroform	0	2-Butanone	.05	.06	.05	.05	.05	.05	.05	.04	.05	3
8) I Tetrahydrofuran 0.055 0.048 0.044 0.044 0.044 0.044 0.043 0.046 9 9) I Bromochloromet 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10 0) I Chloroform		2,2-Dichloropr	.35	.15	.07	.04	.07	.75	.87	.90	.02	4
9) I BIOMOCALOTOMET 0.929 0.984 0.947 0.929 0.869 0.825 0.768 0.737 0.874 10 0) T Chloroform 1.258 1.446 1.416 1.437 1.514 1.546 1.489 1.447 1.444 6	000	Tetranydroiuran	.05	. 04	. 04	. 04	.04	.04	.04	.04	.04	4
o/ I CILLOLOLOLIII	200	Bromochloromet	0 C	. 98	. 94	. 92	. 86	. 82	.76	. 73	.87	10.23
	5	CITOTOTOTIII	2	. 44	.41	.43	.51	. 54	.48	.44	.44	0.

Page 158 of 520

Path

Method

Page 159 of 520

16.39

5.645

606.

4

4.828

4.644

5.285

	15.17	J. C	, u	5.	10	5.7	6.0	0.9	3	7.9	4.3	0.4	2.5	9.6	6.9	7.3	9	4.9	6.2	7.6	5	10	-	4.4	0	
	6.414	0/.	000	9 6	.18	.18	.07	. 58	.64	.61	.30	.43	.42	.53	.17	.61	. 88	.89	.53	.08	.27	.67	.16	.99	.02	Ī
	748	. /44 FFO	000.	814	.175	.307	.209	.181	606.	.279	.484	.751	.059	.751	991.	.220	.80I	.835	190	160.	.384	.711	.200	.034	.030	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	5.554	. A	0 0	80	.17	.19	.31	.14	.82	. 94	.56	.35	.11	.57	.16	.27	.61	. 83	. 85	.09	.26	.70	.15	.04	.03	
	70 -	H . C	2.0	0.79	0.17	5.79	4.44	4.22	4.64	3.38	4.61	4.40	2.21	3.96	0.16	4.27	2.18	1.82	3.96	0.08	2.87	0.61	0.09	0.97	0.02	1 1 1 1 1 1
	6.6.201	200	1.98	0.78	0.17	7.05	4.76	4.31	5.28	4.28	5.07	6.08	2.31	5.31	0.16	4.44	2.79	1.80	5.38	0.08	3.30	0.67	0.15	0.99	0.02	
	7.19	6 1 6 1	8 2.06	1 0.80	7 0.18	8 8.11	6 5.24	8 4.61	8 5.88	5 4.91	2 5.59	9 6.92	2 2.50	8 6.07	0 0.16	5 4.95	9 3.03	2 1.87	1 5.96	2 0.08	2 3.44	8 0.69	0 0.17	6 1.01	1 0.02	1
260	59 7.33	26 0 .6	81 2.0	33 0.8	98 0.1	91 8.2	01 5.3	98 4.6	17 5.9	79 4.9	91 5.6	50 7.0	66 2.5	57 6.0	75 0.1	47 4.8	51 3.0	91 1.8	19 5.9	83 0.0	44 3.3	82 0.6	82 0.1	95 0.9	29 0.0	1 1 1 1 1
hem/l/methods/ 8.M Organics EPA 8	7.6	18 0.	80 2.		.0 66	8	27 5.	25 4.	6	06 5.	64 5.	74 7.	53 2.	03 6.	00 00	19 4.	48 3.	70 1.	57 6.	72 0.	09 3.	57 0.	93 0.	01 0.		1
them/1/18.80 Organi		0	2	. 0	. 0	()	e 6.	e 2.	7	ene 6.	6	ne 8.	2	7 .	0	5	ne 3.	2	9	0	13.	. 0				
: C:\msdck : V8LO0058 Volatile C	sopropylbenze	-Tetrac	nzene	ans-1,4-Dich	-Trichlor	Propylbenzen	Chlorotoluen	lorotoluen	-Trimethy	-Butylbenz	4-Trimethy	-Butylbenzer	-Dichlorobe	sopropyltol	-Dichlorobe	2,3-Trimethy	iethylbenze	-Dichlorobe	Butylbenzene	-Dibromo-3-	,5-Tetram	-Trichlor	chloro-1,3	Tene	10	nge
Path: File:	Isoprop p-Bromo	1,1,2,2	Bromobenzene	trans-1	1,2,3-T	1	1	-	,3,	tert-Bu	1,2,4-T	F.	3		-	1,2,3-T	0	NI	n-Butyl	, 2-D	2,4	4	exachl	htha	1,2,3-T	Out of Rang
t tt tt	EH 03			H	H	HI	HI	H	Η (H F	7 1	HI	H	H I	H		H	H E	H 1	H 1	∃ E	Η 1	H 1	H 1	Η	10 =
Me Ti	(69)		72)	73)									82)				98			000	200		92)		74)	(#)

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\V8101717\
Data File : V801633.D

Acq On : 17 Oct 2017

Operator : SR

InstName : VOA No. 8 Sample : SEQ-CCV1 Misc : QBV8101717A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 17 10:13:52 2017

Quant Method: C:\msdchem\1\methods\V8L00058.M Quant Title : Volatile Organics EPA 8260C QLast Update : Fri Oct 06 10:28:22 2017

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	cea%	Dev(min)
1	I	FLUOROBENZENE (ISTD)	1.000	1.000	0.0	70	0.00
2	T	Dichlorodifluoromethane	0.890	1.663	(-86.8#)		0.00
3	T	Chloromethane	1.397	1.440	-3.0	84	0.00
4	_	Vinyl Chloride	1.149	1.430	(-24.4)	91	0.00
5	T	Bromomethane	0.469	0.187	60.2#	35#	
6		Chloroethane	0.640	0.784	-22.6	90	0.00
7	T	Trichlorofluoromethane	1.689	2.417	-43.1#	96	0.00
8		Ethanol	0.002	0.003	-18.2	83	0.00
	T	Freon-113	1.165	1.464	NA-25.7#	81	0.00
	T	1,1-Dichloroethylene	0.997	1.100	-10.3	77	0.00
11		Acrolein	0.081	0.062	NP23.6	56	0.00
12		Acetone	0.132.	0.143	-8.4	70	0.00
	T	Iodomethane	0.953	0.679	NA 28.7#	60	0.00
14		Methyl Acetate	0.353	0.396	-11.9	78	0.00
15		Carbon disulfide	3.079	3.093	-0.5	74	0.00
16		tert-Butyl Alcohol (TBA)	0.056	0.054	3.9	66	0.00
17		Methylene Chloride	1.680	1.763	-4.9	76	0.00
18		Acrylonitrile	0.156	0.159	-2.1	70	0.00
19		trans-1,2-Dichloroethylene	1.885	1.992	-5.7	75	0.00
20		tert-Butyl Methyl Ether (MT	1.966	2.051	-4.3	72	0.00
21		1,1-Dichloroethane	2.427	2.604	-7.3	74	0.00
22		Vinyl Acetate	1.247	1.329	-6.5	75	0.00
	T	Diisopropyl ether (DIPE)	4.077	4.661	-14.3	74	0.00
	T	Ethyl-tert-Butyl ether (ETB	3.313	3.582	-8.1	75	0.00
25		cis-1,2-Dichloroethylene	2.197	2.362	-7.5	76	0.00
26		2-Butanone	0.053	0.047	12.4	63	0.00
27		2,2-Dichloropropane	2.029	2.445	-20.5	84	0.00
28		Tetrahydrofuran	0.046	0.042	9.7	67	0.00
29 '		Bromochloromethane	0.874	1.007	-15.2	76	0.00
30 '		Chloroform	1.444	1.535	-6.3	75	0.00
31 '		1,1,1-Trichloroethane	2.125	2.514	-18.3	81	0.00
32		Cyclohexane	2.230	2.888	-29.5#	79	0.00
33 5		1,1-Dichloropropylene	1.793	1.992	-11.1	75	0.00
34 5		d4-1,2-Dichloroethane (SURR	0.894	0.970	-8.5	74	0.00
35		Carbon Tetrachloride	1.870	2.321	(24.1)	83	0.00
	r	tert-Amyl alcohol (TAA)	0.040	0.045	-13.2	76	0.00
37	Г	1,2-Dichloroethane	1.220	1.393	-14.2	80	0.00

pratuace contenuating carrotacton report

Data Path : C:\msdchem\1\data\V8101717\

Data File: V801633.D

Acq On : 17 Oct 2017 9:57 am

Operator : SR

InstName : VOA No. 8
Sample : SEQ-CCV1
Misc : QBV8101717A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 17 10:13:52 2017

Quant Method: C:\msdchem\1\methods\V8L00058.M

Quant Title : Volatile Organics EPA 8260C QLast Update : Fri Oct 06 10:28:22 2017

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
38	T	Benzene	4.824	4:936	-2.3	72	0.00
39	T	tert-Amyl methyl ether (TAM	2.376	2.559	-7.7	74	0.00
40	I	CHLOROBENZENE-d5 (ISTD)	1.000	1.000	0.0	73	0.00
41		Trichloroethylene	0.410	0.406	0.9	75	0.00
	T.	Methyl Cyclohexane	0.642	0.694	-8.0	77	0.00
43	T	Methyl Methacrylate	0.215	0.201	6.3	69	0.00
44		Dibromomethane	0.134	0.130	2.9	74	0.00
45		Bromodichloromethane	0.439	0.441	-0.3	75	0.00
46	T	1,2-Dichloropropane	0.372	0.352	5.1	71	0.00
47	T	1,4-Dioxane	0.001	0.001	-14.3	82	0.00
48	T	2-Chloroethyl vinyl ether	0.071	0.097	NA-36.6#		0.00
49		cis-1,3-Dichloropropene	0.512	0.504	1.4	73	0.00
50		4-Methyl-2-Pentanone	0.251	0.259	-3.0	74	0.00
51		Toluene-d8 (SURR)	1.378	1.335	3.1	72	0.00
52	T	Toluene	1.515	1.548	-2.2	74	0.00
53		trans-1,3-Dichloropropene	0.389	0.389	0.2	75	0.00
54	T	1,1,2-Trichloroethane	0.182	0.176	3.2	72	0.00
55		1,3-Dichloropropane	0.322	0.314	2.5	72	0.00
56		Tetrachloroethylene	0.416	0.447	-7.3	76	0.00
57		2-Hexanone	0.089	0.090	-1.5	74	0.00
58		Dibromochloromethane	0.235	0.239	-2.0	76	0.00
	T	1,2-Dibromoethane	0.176	0.170	3.3	73	0.00
	T	Chlorobenzene	0.950	0.959	-1.0	74	0.00
61		1,1,1,2-tetrachloroethane	0.331	0.359	-8.5	77	0.00
62		Ethyl Benzene	1.698	1.838	-8.2	75	0.00
63		p- & m-Xylenes	1.276	1.424	-11.6	76	0.00
64		o-Xylene	1.316	1.392	-5.8	75	0.00
65		Styrene	0.957	1.007	-5.3	74	0.00
66	Т	Bromoform	0.112	0.115	-2.6	78	0.00
67	I	1,2-DICHLOROBENZENE-d4 (IST	1.000	1.000	0.0	81	0.00
68 '	T	p-Ethyltoluene	5.645	5.594	0.9	78	0.00
	T	Isopropylbenzene	6.414	6.741	-5.1	76	0.00
70 5		p-Bromofluorobenzene (SURR)	1.703	1.561	8.3	75	0.00
	T	1,1,2,2-Tetrachloroethane	0.609	0.556	8.7	73	0.00
72 :	T	Bromobenzene	2.092	1.911	8.7	75	0.00
			220 127 127 207 207		J.,	, 5	0.00

matriace concinuing carribracton vehore

Data Path : C:\msdchem\1\data\V8101717\

Data File: V801633.D

Acq On : 17 Oct 2017 9:57 am

Operator : SR

InstName : VOA No. 8
Sample : SEQ-CCV1
Misc : QBV8101717A

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Oct 17 10:13:52 2017

Quant Method: C:\msdchem\1\methods\V8L00058.M

Quant Title : Volatile Organics EPA 8260C QLast Update : Fri Oct 06 10:28:22 2017

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
-							
	T	trans-1,4-Dichloro-2-butene	0.818	0.806	1.4	82	0.00
	T	1,2,3-Trichloropropane	0.184	0.173	5.9	76	0.00
	T	n-Propylbenzene	7.189	7.575	-5.4	76	0.00
76		2-Chlorotoluene	5.070	5.032	0.8	78	0.00
77		4-Chlorotoluene	4.587	4.363	4.9	77	0.00
78		1,3,5-Trimethylbenzene	5.644	5.594	0.9	77	0.00
79		tert-Butylbenzene	4.613	4.651	-0.8	77	0.00
80		1,2,4-Trimethylbenzene	5.306	5.386	-1.5	78	0.00
81		sec-Butylbenzene	6.431	6.637	-3.2	78	0.00
82		1,3-Dichlorobenzene	2.422	2.442	-0.8	79	0.00
83		p-Isopropyltoluene	5.536	5.937	-7.2	80	0.00
84	T	1,4-Dichlorobenzene	0.172	0.172	-0.1	85	0.00
85		1,2,3-Trimethylbenzene	4.614	4.572	0.9	75	0.00
86	T	p-Diethylbenzene	2.881	3.238	-12.4	87	0.00
87		1,2-Dichlorobenzene	1.891	1.803	4.6	78	0.00
88		n-Butylbenzene	5.533	6.097	-10.2	83	0.00
89		1,2-Dibromo-3-chloropropane	0.084	0.079	5.9	80	0.00
90	T ·	1,2,4,5-Tetramethylbenzene	3.276	3.782	-15.5	90	0.00
91		1,2,4-Trichlorobenzene	0.676	0.706	-4.4	83	0.00
92		Hexachloro-1,3-Butadiene	0.165	0.234	M-41.3#	107	0.00
93	T	Naphthalene	0.991	0.972	1.9	78	0.00
94	T	1,2,3-Trichlorobenzene	0.029	0.030	-5.9	87	0.00

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

Response Factor Report VOA No. 3

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)

Title : VOCs BY GC/MS EPA SW846-8260
Last Update : Thu Sep 14 15:49:54 2017

Response via : Initial Calibration

Calibration Files

5 =V3127773.D 10 =V3127774.D 20 =V3127775.D 50 =V3127776.D 100 =V3127777.D 200 =V3127778.D

		Compound	5	10	20	50	100	200) Avg	%RSD
1)	FLUOROBENZENE (ISTD)				-ISTD-				
2		Dichlorodifluoromet		1 285	1 360			1 240	1 200	2 07
3		Chloromethane	2 624	2 402	2 504	2 5 5 6	2 476	2.240	2.514	3.07
4		Vinyl Chloride							1.613	3.75
5		Bromomethane	0 776	0 726	1.076	1.543	0.722	1.536	0.749	4.43#
6		Chloroethane	0.770	0.730	0.708	0.763	0.733	0.776	0.749	3.67
7			0.733	1 1 1 1 0	1 100	1 205	0.748	0.765	0.757	1.49
8		Trichlorofluorometh	1 1.239	1.148	1.193	1.205	1.235	1.197		2.76
9)		Ethyl Ether Freon-113	0 000	0 005	0 000	0 051	0 000	0.000	0.000#	-1.00
10)			0.908	0.825	0.820	0.951	0.866	0.892	0.877	5.75
11)		I 1,1-Dichloroethyler Acrolein	0.686	0.678	0.677	0.727	0.650	0.674	0.682	3.70#
			0.060	0.071	0.074	0.092	0.081	0.079	0.076	13.99
12)		Iodomethane	0.904	0.974	1.068	1.246	1.120	1.237	1.092	12.65
-		Methyl Acetate	0.023	0.727	0.647	0.620	0.622	0.557	0.533	47.97
14)		tert-Butyl Alcohol		0.069	0.095	0.102	0.109	0.094	0.086	26.96
15)		trans-1,2-Dichloroe	2.135	2.091	2.027	2.128	2.034	2.021	2.073	2.52
16)		Carbon Disulfide	3.377	3.063	3.147	3.433	2.989	3.193	3.200	5.45
17)		Methylene Chloride	1.632	1.381	1.266	1.350	1.271	1.309	1.368	9.98
18)		Acrylonitrile	0.343	0.314	0.320	0.341	0.352	0.356	0.338	4.99
19)		tert-Butyl Methyl E								3.07
20)		Acetone	0.457	0.380	0.276	0.252	0.213	0.209	0.298	(33.53)
21)	P	1,1-Dichloroethane		2.653	2.578	2.711	2.603	2.562	2.621	2.07
22)		Vinyl Acetate	3.917	3.863	3.808	4.019	4.085	3.843	3.923	2.76
23)		cis-1,2-Dichloroeth	1.661	1.704	1.664	1.732	1.608	1.640	1.668	2.66
24)		2-Butanone	0.059	0.061	0.082	0.077	0.078	0.064	0.070	14.15
25)		2,2-Dichloropropane	1.650	1.884	1.638	1.905	1.571	1.830	1.746	8.22
26)		Bromochloromethane	1.295	1.247	1.307	1.316	1.241	1.219	1.271	3.19
27)	C	Chloroform	2.269	2.101	2.114	2.226	2.115	2.032	2.143	4.09#
28)		Tetrahydrofuran	0.129	0.120	0.103	0.106	0.112	0.100	0.111	9.93
29)		1,1-Dichloropropyle	2.238	2.021	1.918	2.106	1.913	1.777	1.995	8.16
30)		1,1,1-Trichloroetha	1.702	1.616	1.633	1.728	1.589	1.556	1.637	4.04
31)		Cyclohexane	2.635	2.829	2.709	2.744	2.628	2.427	2.662	5.15
32)	S	d4-1,2-Dichloroetha	1.068	1.069	1.083	1.073	1.009	0.988	1.049	3.75
33)		Carbon Tetrachlorid	1.558	1.468	1.425	1.578	1.493	1.420	1.490	4.44
34)		1,2-Dichloroethane	1.406	1.381	1.280	1.327	1.256	1.197	1.308	6.02
35)	M	Benzene		5.256	5.179	5.168	4.797	4.710	5.131	6.79
36)		CHLOROBENZENE-d5 (IST	rD			-ISTD	:			-
37)	M	Trichloroethylene	0.403	0.442	0.358	0.375	0.384	0.361	0.387	8 15
38)		Trichloroethylene Methyl Cyclohexane	0.607	0.718	0.630	0.636	0.646	0.562	0.633	8 11
39)		Dibromomethane	0.184	0.202	0.178	0.188	0.192	0.182	0.188	4 46
10)		Methyl Methacrylate	0.184	0.200	0.172	0.190	0.190	0 174	0 185	5 77
		Bromodichloromethan	0.390	0.413	0.398	0 423	0 407	0.400	0.105	2 01
		1,2-Dichloropropane	0 405	0.453	0 391	0.303	0.306	0.777	0.401	
/		-,- 2101110101100	5.205	0.100	0.001	0.333	0.500	0.3//	0.401	6.72#

Response Factor Report VOA No. 3

: C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator) Method

Title : VOCs BY GC/MS EPA SW846-8260 Last Update : Thu Sep 14 15:49:54 2017 Response via : Initial Calibration

Calibration Files

=V3127773.D 10 =V3127774.D 20 =V3127775.D 50 =V3127776.D 100 =V3127777.D 200 =V3127778.D

		1012///012	1	312777	7.2	200	- 1312	7770.1		
		Compound	5	10	20	50	100	200) Avg	%RSD
43))	1,4-Dioxane	0.002	0.003	0.002	0.002	0.002	0.002	0.002#	8.04
44))	2-Chloroethylvinyl							0.717	5.00
45)		cis-1,3-Dichloropro	0.590	0.597	0.536	0.572	0.549	0.558	0.567	4.18
46)		2-Hexanone		0.253	0.204	0.213	0.233	0.205	0.220	8.77
47)		Toluene-d8 (SURR)							1.186	5.29
48)		Toluene							1.310	8.25#
49)		trans-1,3-Dichlorop	0.421	0.415	0.406	0.438	0.446	0.442	0.428	3.81
50)		1,1,2-Trichloroetha								6.71
51)		1,3-Dichloropropane								4.64
52)		Tetrachloroethylene								13.08
53)		4-Methyl-2-Pentanon								9.09
54)		Dibromochloromethan								3.70
55)		1,2-Dibromoethane							0.268	5.33
56)		Chlorobenzene							0.893	6.98
57)	C	Ethyl Benzene							1.393	7.20#
58)		p- & m-Xylenes							1.004	11.95
59)		o-Xylene							1.041	9.55
60)		Styrene	0.987	1.008	0.883	0.895	0.870	0.812	0.909	8.21
61)		1,1,1,2-Tetrachloro	0.320	0.361	0.321	0.332	0.325	0.297	0.326	6.33
62)		1,2-DICHLOROBENZENE	-d			-ISTD-				
63)	p	Bromoform		0.415	0.442	0.541	0.557	0.593	0.499	14.79
64)	S	p-Bromofluorobenzen								7.18
65)		p-Ethyltoulene							3.182	5.47
66)		p-Diethylbenzene	1.492	1.458	1.505	1.562	1.515	-1.391	1.487	3.88
67)	P	1,1,2,2-Tetrachloro								5.74
68)		1,2,3-Trichloroprop	0.148	0.184	0.176	0.202	0.198	0.179	0.181	10.55
69)		Isopropylbenzene		3.345						5.08
70)		1,2-Dibromo-3-Chlor	0.082	0.093	0.092	0.103	0.102	0.101	0.095	8.23
71)		Bromobenzene	1.268	1.259	1.240	1.282	1.311	1.262	1.270	1.90
72)		trans-1,4-Dichloro-	0.764	0.721	0.713	0.804	0.827	1.190	0.836	21.41
73)		n-Propylbenzene	4.270	4.047	3.956	4.252	4.108	4.012	4.108	3.14
74)		2-Chlorotoluene	2.554	2.437	2.406	2.538	2.391	2.287	2.435	4.08
75)		4-Chlorotoluene	2.518	2.450	2.293	2.497	2.274	2.343	2.396	4.43
76)		tert-Butylbenzene								4.40
77)		1,3,5-trimethylbenz	3.046	2.659	2.672	2.743	2.556	2.594	2.712	6.49
78)		1,2,4-trimethylbenz	2.749	2.663	2.570	2.652	2.454	2.354	2.574	5.70
79)		sec-Butylbenzene	3.336	3.611	3.558	3.801	3.498	3.484	3.548	4.36
80)		1,3-Dichlorobenzene	1.755	1.610	1.602	1.667	1.480	1.418	1.588	7.73
81)		1,4-Dichlorobenzene								4.93
82)		1,2-Dichlorobenzene								4.79
83)		p-Isopropyltoluene								8.37
84)		n-Butylbenzene	3.149	3.184	2.991	3.182	2.981	2.936	3.071	3.68
85)		1,2,4,5-Tetramethyl	2.286	2.416	2.253	2.316	2.337	2.208	2.303	3.12
										ma secondo de la

Response Factor Report VOA No. 3

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)
Title : VOCs BY GC/MS EPA SW846-8260

Last Update : Thu Sep 14 15:49:54 2017 Response via : Initial Calibration

Calibration Files

5 =V3127773.D 10 =V3127774.D 20 =V3127775.D 50 =V3127776.D 100 =V3127777.D 200 =V3127778.D

-	1528,770,5		,,		200	- 1011	7770.2		
	Compound	5	10	20	50	100	200	Avg	%RSD
86) 87) 88) 89)	1,2,4-Trichlorobenz Naphthalene Hexachloro-1,3-Buta 1,2,3-Trichlorobenz	1.879	1.688	1.695 0.476	1.847 0.522	1.824	1.800	1.789	5.99 4.45 5.37 4.95

Evaluace contenuating carribraction vehore

Data File : C:\HPCHEM\1\DATA\V3101817\V3128543.D Vial: 2

Acq On : 18 Oct 2017 10:02 am
Sample : SEQ-CCV1
Misc : QBV3101817A Operator: SR Inst : VOA No. 3 Multiplr: 1.00

MS Integration Params: RTEINT1.P

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)

Title : VOCs BY GC/MS EPA SW846-8260 Last Update : Thu Sep 14 15:49:54 2017 Response via : Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 200%

1 2 3 P	FLUOROBENZENE (ISTD) Dichlorodifluoromethane	1.000				
3 P	Dichlorodifluoromethane	1.000	1.000	0.0	107	-0.02
	Dietitorodiritation office thatie	1.308	1.316	-0.6	107	-0.01
	Chloromethane	2.514	2.528	-0.6		-0.01
4 C	Vinyl Chloride	1.613	1.626	-0.8	113	-0.01
5	Bromomethane	0.749	0.702	6.3		-0.02
6	Chloroethane	0.757	0.702	7.3		-0.02
7	Trichlorofluoromethane	1.203	1.142	5.1	101	-0.02
8	Ethyl Ether	0.000	0.000#	0.0	126	-0.02
9	Freon-113	0.877	0.932	-6.3	105	-0.02
10 C, M	1,1-Dichloroethylene	0.682	0.694	-1.8	102	-0.02
11	Acrolein	0.076	0.080	-5.3	94	-0.02
12	Iodomethane	1.092	1.058	3.1		
13	Methyl Acetate	0.533	0.614	-15.2		-0.02
14	tert-Butyl Alcohol (TBA)	0.086	0.110	VA27.9#		-0.02
15	trans-1,2-Dichloroethylene	2.073	2.045	1.4		-0.01
16	Carbon Disulfide	3.200	2.961	7.5		-0.02
17	Methylene Chloride	1.368	1.297	5.2		-0.02
18	Acrylonitrile	0.338	0.353	-4.4		-0.02
19	tert-Butyl Methyl Ether (MT	2.420	2.494	-3.1	111	-0.02
20	Acetone	0.298	0.247	17.1	108	-0.02
21 P	1,1-Dichloroethane	2.621	2.717	-3.7	105	-0.02
22	Vinyl Acetate	3.923	4.457	-13.6	107	-0.02
23	cis-1,2-Dichloroethylene	1.668	1.678		119	-0.02
24	2-Butanone	0.070	0.116	-0.6 +65.7#	104	-0.02
25	2,2-Dichloropropane	1.746	1.862	-6.6		0.00
26	Bromochloromethane	1.271	1.302		105	-0.02
27 C	Chloroform	2.143	2.260	-2.4		-0.02
28	Tetrahydrofuran	0.111		-5.5		-0.02
29	1,1-Dichloropropylene	1.995	0.113			-0.02
30	1,1,1-Trichloroethane	1.637	1.996	-0.1		-0.02
31	Cyclohexane	2.662	1.757	-7.3		-0.03
32 S	d4-1,2-Dichloroethane(SURR)	1.049	2.859	-7.4		-0.02
33	Carbon Tetrachloride	1.490	1.121	-6.9		-0.02
34	1,2-Dichloroethane		1.523	-2.2		-0.02
35 M	Benzene	1.308	1.403	-7.3		-0.02
33 11	Delizerie	5.131	4.968	3.2	103	-0.02
36	CHLOROBENZENE-d5 (ISTD)	1.000	1.000	0.0	104	-0.02
37 M	Trichloroethylene	0.387	0.400	-3.4		-0.02
	Methyl Cyclohexane	0.633		-3.0		-0.02
	Dibromomethane	0.188		-4.3		-0.02
40	Methyl Methacrylate	0.185	0.194	-4.9		-0.02

Evaluace concenuing carrotaction report

Sample : SEQ-CCV1 Inst : VOA No. 3
Misc : QBV3101817A Multiplr: 1.00

MS Integration Params: RTEINT1.P

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)
Title : VOCs BY GC/MS EPA SW846-8260

Title : VOCs BY GC/MS EPA SW846-8260
Last Update : Thu Sep 14 15:49:54 2017
Response via : Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 200%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
41		Bromodichloromethane	0.405	0.430	-6.2	105	-0.02
42	C	1,2-Dichloropropane	0.401	0.398	0.7	105	-0.02
43		1,4-Dioxane	0.002	0.002#	0.0	108	-0.02
44		2-Chloroethylvinyl ether	0.717	0.722	-0.7	107	-0.02
45		cis-1,3-Dichloropropene	0.567	0.597	-5.3	108	-0.02
46		2-Hexanone	0.220	0.224	-1.8	109	-0.02
47	S	Toluene-d8 (SURR)	1.186	1.122	5.4	95	-0.02
48	C, M	Toluene	1.310	1.322	-0.9	104	-0.02
49		trans-1,3-Dichloropropene	0.428	0.458	-7.0	108	-0.02
50		1,1,2-Trichloroethane	0.226	0.235	-4.0	108	-0.02
51		1,3-Dichloropropane	0.459	0.470	-2.4	109	-0.02
52		Tetrachloroethylene	0.511	0.497	2.7	105	-0.02
53		4-Methyl-2-Pentanone	0.590	0.616	-4.4	111	-0.02
54		Dibromochloromethane	0.302	0.338	-11.9	111	-0.02
55		1,2-Dibromoethane	0.268	0.269	-0.4	107	-0.02
56	P,M	Chlorobenzene	0.893	0.944	-5.7	113	-0.02
57	C	Ethyl Benzene	1.393	1.436	-3.1	106	-0.03
58		p- & m-Xylenes	1.004	1.007	-0.3	102	-0.02
59		o-Xylene	1.041	1.071	-2.9	107	-0.02
60		Styrene	0.909	0.946	-4.1	110	-0.02
61		1,1,1,2-Tetrachloroethane	0.326	0.343	-5.2	107	-0.02
62		1,2-DICHLOROBENZENE-d4(ISTD	1.000	1.000	0.0	104	-0.02
63		Bromoform	0.499	0.582	-16.6	112	-0.02
64	S	p-Bromofluorobenzene (SURR)	0.933	0.922	1.2	104	-0.02
65		p-Ethyltoulene	3.182	3.683	-15.7	117	-0.03
66		p-Diethylbenzene	1.487	1.942	NA30.6#	129	-0.02
67	P	1,1,2,2-Tetrachloroethane	0.826	0.876	-6.1	108	-0.02
68		1,2,3-Trichloropropane	0.181	0.203	-12.2	104	-0.02
69		Isopropylbenzene	3.555	3.878	-9.1	106	-0.02
70		1,2-Dibromo-3-Chloropropane	0.095	0.111	-16.8	11.3	-0.02
71		Bromobenzene	1.270	1.335	-5.1	108	-0.02
72		trans-1,4-Dichloro-2-butene	0.836	0.896	-7.2	116	-0.02
73		n-Propylbenzene	4.108	4.471	-8.8	109	-0.02
74		2-Chlorotoluene	2.435	2.738	-12.4	112	-0.02
75		4-Chlorotoluene	2.396	2.717	-13.4	113	-0.02
76		tert-Butylbenzene	2.312	2.498	-8.0	107	-0.02
77		1,3,5-trimethylbenzene	2.712	2.772	-2.2	105	-0.02
78		1,2,4-trimethylbenzene	2.574	2.818	-9.5	111	-0.02
79		sec-Butylbenzene	3.548	3.730	-5.1	102	-0.02
80		1,3-Dichlorobenzene	1.588	1.855	-16.8	116	-0.02

^{(#) =} Out of Range V3128543.D V3C00289.M

evaluace concluding carribracton report

Data File : C:\HPCHEM\1\DATA\V3101817\V3128543.D Vial: 2 Acq On : 18 Oct 2017 10:02 am Operator: SR

Sample : SEQ-CCV1 Inst : VOA No. 3

Misc : QBV3101817A Multiplr: 1.00

MS Integration Params: RTEINT1.P

Method : C:\HPCHEM\1\METHODS\V3C00289.M (RTE Integrator)
Title : VOCs BY GC/MS EPA SW846-8260
Last Update : Thu Sep 14 15:49:54 2017 Response via : Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
81	1,4-Dichlorobenzene	1.579	1.884	-19.3	121	-0.02
82	1,2-Dichlorobenzene	1.433	1.573	-9.8	113	-0.02
83	p-Isopropyltoluene	2.866	3.254	-13.5	112	-0.02
84	n-Butylbenzene	3.071	3.609	-17.5	118	-0.02
85	1,2,4,5-Tetramethylbenzene	2.303	2.649	-15.0	119	-0.02
86	1,2,4-Trichlorobenzene	0.888	1.072	(20.7)	127	-0.02
87	Naphthalene	1.789	1.978	-10.6	111	-0.02
88	Hexachloro-1,3-Butadiene	0.517	0.518	-0.2	103	-0.02
89	1,2,3-Trichlorobenzene	0.765	0.891	-16.5	123	-0.02

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8270D Semi-Volatiles Data for York Analytical Laboratories, Inc., SDG: 17J0671

5 Soil Samples Collected October 16, 2017

Prepared by: Donald Anné April 30, 2018

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The average RRFs for applicable compounds were above the method minimums, as required. The %RSDs for hexachlorocyclopentadiene, 2,4-dinitrophenol, and pentachlorophenol were above the method maximum for BNA #1 on 10-09-17. No action is taken when fewer than 20% of the compounds per calibration do not meet either method %RSD or average RRF criteria, provided no average RRF is less than 0.010.

The average RRFs for target compounds were above the allowable minimum (0.010), as required.

The %RSD for 2,4-dinitrophenol was above the allowable maximum (30%) for BNA #1 on 10-09-17. Positive results for 2,4-dinitrophenol should be considered estimated (J) in associated samples.

Continuing Calibration: The RRFs for applicable compounds were above the method minimums and the %Ds were below the method maximum, as required.

The RRFs for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (25%), as required.

Blanks: The analysis of the method blank reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for the soil samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for 24 compounds (circled red on the attached MS/MSD from) were above the allowable maximum and 2 of 2 percent recoveries for hexachlorocyclopentadiene were below QC limits and below 10% for soil MS/MSD sample EP-3 (5 ft). The "not detected" result for hexachlorocyclopentadiene should be considered rejected, unusable (R) in sample EP-3 (5 ft).

<u>Laboratory Control Sample</u>: The percent recoveries for target compounds were within QC limits for soil sample BJ71019-BS1.

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

BJ71019-MS1

Preparation:

EPA 3550C

Initial/Final:

30 g / 1 mL

Source Sample Name: EP-3 (5 ft)

COMPOUND	SPIKE ADDED (ug/kg dry)	SAMPLE CONCENTRATION (ug/kg dry)	MS CONCENTRATION (ug/kg dry)	MS % REC.#	QC LIMITS REC.
1,2,4-Trichlorobenzene	963	ND	717	74.5	15 - 139
1,2-Dichlorobenzene	963	ND	707	73.4	29 - 106
1,3-Dichlorobenzene	963	ND	659	68.4	34 - 100
1,4-Dichlorobenzene	963	ND	652	67.7	26 - 107
2,4,5-Trichlorophenol	963	ND	744	77.3	10 - 148
2,4,6-Trichlorophenol	963	ND	732	76.0	12 - 138
2,4-Dichlorophenol	963	ND	814	84.5	16 - 144
2,4-Dimethylphenol	963	ND	798	82.9	11 - 133
2,4-Dinitrophenol	963	ND	377	39.1	10 - 132
2,4-Dinitrotoluene	963	ND	734	76.2	42 - 113
2,6-Dinitrotoluene	963	ND	781	81.1	36 - 124
2-Chloronaphthalene	963	ND	756	78.5	31 - 116
2-Chlorophenol	963	ND	787	81.7	28 - 114
2-Methylnaphthalene	963	ND	877	91.0	10 - 143
2-Methylphenol	963	ND	734	76.2	10 - 160
2-Nitroaniline	963	ND	729	75.7	33 - 122
2-NitrophenoI	963	ND	770	79.9	12 - 127
3- & 4-Methylphenols	963	ND	735	76.3	16 - 115
3,3-Dichlorobenzidine	963	ND	515	53.4	10 - 134
-Nitroaniline	963	ND	520	54.0	24 - 128
,6-Dinitro-2-methylphenol	963	ND	456	47.4	10 - 149
-Bromophenyl phenyl ether	963	ND	697	72.3	32 - 148
-Chloro-3-methylphenol	963	ND	818	85.0	14 - 138
-Chloroaniline	963	ND	645	67.0	10 - 124
-Chlorophenyl phenyl ether	963	ND	707	73.4	10 - 153
-Nitroaniline	963	ND	679	70.5	10 - 151
-Nitrophenol	963	ND	837	86.9	10 - 141
cenaphthene	963	ND	757	78.6	13 - 133
cenaphthylene	963	ND	724	75.2	25 - 125
niline	963	ND	668	69.4	10 - 112
nthracene	963	ND	825	85.7	27 - 128
enzo(a)anthracene	963	219	936	74.5	20 - 147

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

BJ71019-MS1

Preparation:

EPA 3550C

Initial/Final:

30 g / 1 mL

Source Sample Name:

COMPOUND	SPIKE ADDED (ug/kg dry)	SAMPLE CONCENTRATION (ug/kg dry)	MS CONCENTRATION (ug/kg dry)	MS % REC.#	QC LIMITS REC.
Benzo(a)pyrene	963	224	870	67.0	18 - 153
Benzo(b)fluoranthene	963	204	908	73.0	10 - 163
Benzo(g,h,i)perylene	963	156	536	39.5	10 - 157
Benzo(k)fluoranthene	963	222	933	73.8	10 - 157
Benzyl alcohol	963	ND	764	79.3	20 - 122
Benzyl butyl phthalate	963	ND	702	72.9	10 - 129
Bis(2-chloroethoxy)methane	963	ND	867	90.0	12 - 128
Bis(2-chloroethyl)ether	963	ND	722	75.0	18 - 113
Bis(2-chloroisopropyl)ether	963	ND	789	81.9	10 - 130
Bis(2-ethylhexyl)phthalate	963	ND	720	74.8	10 - 138
Chrysene	963	266	1020	78.2	18 - 133
Dibenzo(a,h)anthracene	963	50.9	580	55.0	10 - 146
Dibenzofuran	963	ND	760	78.9	26 - 134
Diethyl phthalate	963	ND	715	74.2	30 - 119
Dimethyl phthalate	963	ND	727	75.5	34 - 120
Di-n-butyl phthalate	963	ND	780	81.0	20 - 128
Di-n-octyl phthalate	963	ND	716	74.3	10 - 133
luoranthene	963	350	1230	91.1	10 - 155
luorene	963	ND	756	78.5	12 - 150
Iexachlorobenzene	963	ND	744	77.3	16 - 142
Iexachlorobutadiene	963	ND	702	72.9	11 - 150
Iexachlorocyclopentadiene	963	ND	84.0	8.72 *	10 - 115
exachloroethane	963	ND	578	60.0	14 - 106
ideno(1,2,3-cd)pyrene	963	143	618	49.4	10 - 155
ophorone	963	ND	799	83.0	14 - 127
aphthalene	963	ND	878	91.2	15 - 132
itrobenzene	963	ND	744	77.3	18 - 125
Nitrosodimethylamine	963	ND	658	68.3	10 - 123
nitroso-di-n-propylamine	963	ND	737	76.5	23 - 115
-Nitrosodiphenylamine	963	ND	823	85.4	16 - 166
ntachlorophenol	963	ND	737	76.5	10 - 160
enanthrene	963	143	1020	90.7	10 - 160

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

Preparation:

EPA 3550C

Initial/Final:

BJ71019-MS1 30 g / 1 mL

Source Sample Name:

COMPOUND	SPIKE ADDED (ug/kg dry)	SAMPLE CONCENTRATION (ug/kg dry)	MS CONCENTRATION (ug/kg dry)	MS % REC.#	QC LIMITS REC.
Phenol	963	ND	700	72.6	11 - 124
Pyrene	963	303	1120	85.0	13 - 148
Pyridine	963	ND	539	55.9	10 - 125

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

BJ71019-MSD1

Preparation:

EPA 3550C

Initial/Final:

30 g/1 mL

Source Sample Name:

	SPIKE	MSD	MSD		Q	CLIMITS
COMPOUND	ADDED (ug/kg dry)	CONCENTRATION (ug/kg dry)	% REC.#	% RPD#	RPD	REC.
1,2,4-Trichlorobenzene	963	458	47.6	(44.0) *	30	15 - 139
1,2-Dichlorobenzene	963	445	46.2	45.4 *	30	29 - 106
1,3-Dichlorobenzene	963	418	43.4	(44.8) *	30	34 - 100
1,4-Dichlorobenzene	963	413	42.9	(44.9) *	30	26 - 107
2,4,5-Trichlorophenol	963	690	71.6	7.63	30	10 - 148
2,4,6-Trichlorophenol	963	616	64.0	17.1	30	12 - 138
2,4-Dichlorophenol	963	582	60.4	(33.2) *	30	16 - 144
2,4-Dimethylphenol	963	586	60.8	(30.7) *	30	11 - 133
2,4-Dinitrophenol	963	311	32.3	19.0	30	10 - 132
2,4-Dinitrotoluene	963	716	74.3	2.45	30	42 - 113
2,6-Dinitrotoluene	963	726	75.4	7.36	30	36 - 124
2-Chloronaphthalene	963	552	57.3	31.2 *	30	31 - 116
2-Chlorophenol	963	515	53.4	41.8 *	30	28 - 114
2-Methylnaphthalene	963	596	61.9	38.1) *	30	10 - 143
2-Methylphenol	963	519	53.9	34.2 *	30	10 - 160
2-Nitroaniline	963	669	69.4	8.60	30	33 - 122
2-Nitrophenol	963	518	53.8	(39.1) *	30	12 - 127
3- & 4-Methylphenols	963	528	54.8	(32.8) *	30	16 - 115
3,3-Dichlorobenzidine	963	573	59.4	10.6	30	10 - 134
3-Nitroaniline	963	577	59.9	10.4	30	24 - 128
4,6-Dinitro-2-methylphenol	963	408	42.4	11.1	30	10 - 149
4-Bromophenyl phenyl ether	963	660	68.6	5.34	30	32 - 148
4-Chloro-3-methylphenol	963	730	75.8	11.4	30	14 - 138
4-Chloroaniline	963	564	58.6	13.4	30	10 - 124
l-Chlorophenyl phenyl ether	963	651	67.6	8.28	30	10 - 153
4-Nitroaniline	963	693	71.9	2.02	30	10 - 151
-Nitrophenol	963	798	82.9	4.71	30	10 - 141
Acenaphthene	963	605	62.8	22.3	30	13 - 133
Acenaphthylene	963	587	61.0	20.9	30	25 - 125
Aniline	963	485	50.4	31.7 *	30	10 - 112
Anthracene	963	774	80.3	6.46	30	27 - 128
Benzo(a)anthracene	963	840	64.5	10.8	30	20 - 147
Senzo(a)pyrene	963	781	57.8	10.8	30	18 - 153

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

Preparation:

EPA 3550C

Initial/Final:

30 g / 1 mL

BJ71019-MSD1

Source Sample Name:

	SPIKE	MSD	MSD		QC LIMITS	
COMPOUND	ADDED (ug/kg dry)	CONCENTRATION (ug/kg dry)	% REC. #	% RPD#	RPD	REC.
Benzo(b)fluoranthene	963	818	63.7	10.5	30	10 - 163
Benzo(g,h,i)perylene	963	510	36.8	5.01	30	10 - 157
Benzo(k)fluoranthene	963	823	62.4	12.5	30	10 - 157
Benzyl alcohol	963	546	56.7	33.2 *	30	20 - 122
Benzyl butyl phthalate	963	687	71.4	2.11	30	10 - 129
Bis(2-chloroethoxy)methane	963	581	60.3	39.5) *	30	12 - 128
Bis(2-chloroethyl)ether	963	457	47.4	45.0 *	30	18 - 113
Bis(2-chloroisopropyl)ether	963	489	50.7	47.0 *	30	10 - 130
Bis(2-ethylhexyl)phthalate	963	704	73.0	2.38	30	10 - 138
Chrysene	963	912	67.0	11.2	30	18 - 133
Dibenzo(a,h)anthracene	963	556	52.4	4.34	30	10 - 146
Dibenzofuran	963	652	67.7	15.3	30	26 - 134
Diethyl phthalate	963	689	71.5	3.73	30	30 - 119
Dimethyl phthalate	963	664	69.0	9.08	30	34 - 120
Di-n-butyl phthalate	963	749	77.8	4.03	30	20 - 128
Di-n-octyl phthalate	963	710	73.7	0.865	30	10 - 133
Fluoranthene	963	1020	69.6	18.4	30	10 - 155
Fluorene	963	683	70.9	10.2	30	12 - 150
Hexachlorobenzene	963	707	73.4	5.10	30	16 - 142
Hexachlorobutadiene	963	445	46.2	(44.7) *	30	11 - 150
Hexachlorocyclopentadiene	963	ND	() *		30	10 - 115
Hexachloroethane	963	364	37.8	(45.3) *	30	14 - 106
ndeno(1,2,3-cd)pyrene	963	589	46.4	4.72	30	10 - 155
sophorone	963	552	57.4	36.5 *	30	14 - 127
Naphthalene	963	574	59.6	41.9 *	30	15 - 132
Vitrobenzene	963	495	51.4	40.1 *	30	18 - 125
N-Nitrosodimethylamine	963	490	50.9	29.3	30	10 - 123
N-nitroso-di-n-propylamine	963	485	50.4	(41.1) *	30	23 - 115
I-Nitrosodiphenylamine	963	780	81.0	5.38	30	16 - 166
entachlorophenol	963	678	70.4	8.28	30	10 - 160
henanthrene	963	882	76.8	14.1	30	10 - 151
henol	963	502	52.2	(32.8) *	30	11 - 124
yrene	963	976	69.8	13.9	30	13 - 148

EP-3 (5 ft)

Laboratory:

York Analytical Laboratories, Inc.

SDG:

17J0671

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#170154 11-28 31 Drive, LIC NY

Matrix:

Soil

Batch:

BJ71019

Laboratory ID:

BJ71019-MSD1

Preparation:

EPA 3550C

Initial/Final:

30 g / 1 mL

Source Sample Name:

COMPOUND	SPIKE ADDED (ug/kg dry)	MSD CONCENTRATION (ug/kg dry)	MSD % REC. #	% RPD#	QC RPD	LIMITS REC.
Pyridine	963	398	41.4	29.9	30	10 - 125

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Response Factor Report BNA #1

```
Method : C:\HPCHEM\1\METHODS\BNA1RQB3.M (Chemstation Integrator)
Title : GC MS BNA 1 Semi Volatiles Calibration
     Last Update : Tue Oct 10 16:38:26 2017
     Response via : Initial Calibration
                                                 october 9,20m
     Calibration Files
     10 =SV109770.D 20 =SV109772.D 40.0 =SV109774.D 15.0 =SV109771.D 2.5 =SV109768.D 5 =SV109769.D
                                   10 20 40.0 15.0 2.5 5 Avg
         Compound
  1) I 1,4-Dichlorobenzene-d -----ISTD-----ISTD-----
           N-Nitrosodimethylam 1.371 1.477 1.495 1.419 1.757 1.727 1.551 10.27
  2) t
         Pyridine 2.481 2.175 2.113 2.360 2.598 2.342 7.77 2-Fluorophenol 1.999 1.952 2.000 2.005 1.987 1.980 1.47 Phenol-d5 2.304 2.161 2.130 2.254 2.461 2.237 5.92 Benzaldehyde 1.635 1.195 0.724 1.376 1.697 1.258 30.84 Aniline 2.546 2.424 2.317 2.506 2.625 2.460 4.87 Phenol 2.722 2.528 2.447 2.651 2.963 2.893 2.720 8.85
  3) t
  4) s
  5) s
  6) t
  7) t
  8) t
         Bis(2-chloroethyl)e 2.482 2.300 2.361 2.412 2.769 2.693 2.515 8.19
 9) t
10) t 2-Chlorophenol 1.867 1.798 1.829 1.842 2.006 1.956 1.895 5.24
11) t
           1,3-Dichlorobenzene 1.868 1.797 1.784 1.876 1.969 1.844 4.09 1,4-Dichlorobenzene 2.011 1.891 1.826 1.959 2.112 1.944 5.44
          1,4-Dichlorobenzene2.0111.8911.8261.9592.1121.9445.44Benzyl Alcohol1.2931.2361.1641.2941.3591.2575.731,2-Dichlorobenzene1.9121.7341.5881.8352.0471.8009.25
 12) t
13) t
14) t
15) t 2-Methylphenol 1.544 1.448 1.421 1.490 1.666 1.637 1.546 8.11 16) t Acetophenone 2.646 2.313 2.264 2.378 2.834 2.449 9.67
16) t Acetophenone 2.646 2.313 2.264 2.378 2.834 2.449 9.67 17) t Bis(2-chloroisoprop 3.380 3.106 2.949 3.252 3.787 3.643 3.382 10.76
18) t N-Nitroso-di-n-prop 1.591 1.455 1.275 1.544 1.794 1.712 1.567 12.40
19) t 4-Methylphenol 2.023 1.839 1.587 1.963 2.215 2.158 1.963 11.58 20) t Hexachloroethane 0.857 0.819 0.699 0.843 0.912 0.899 0.841 8.87
26) t 2,4-Dimethylphenol 0.497 0.447 0.389 0.475 0.532 0.541 0.480 12.66 27) t Bis(2-chloroethoxy) 0.797 0.719 0.616 0.766 0.872 0.738 12.70
28) t Benzoic acid 0.270 0.399 0.406 0.393 0.269 0.354 18.66
          2,4-Dichlorophenol 0.457 0.418 0.367 0.446 0.469 0.493 0.435 9.97
29) t
30) t 1,2,4-Trichlorobenz 0.501 0.452 0.385 0.477 0.555 0.544 0.487
                                                                                           13.80
31) t Naphthalene 1.449 1.211 0.881 1.360 1.455 1.233 32) t Alpha-Terpineol 0.470 0.433 0.345 0.457 0.511 0.433 33) t 4-Chloroaniline 0.685 0.635 0.511 0.669 0.749 0.635
                                                                          1.455 1.233 18.98
                                                                                           13.98
                                                                                           13.63
34) t
        Hexachlorobutadiene 0.260 0.234 0.198 0.248 0.294 0.287 0.253 14.23
35) t
         Caprolactam 0.270 0.256 0.256 0.205 0.288 0.252 11.44
36) t 4-Chloro-3-methylph 0.564 0.508 0.448 0.532 0.572 0.603 0.532 10.29
          1-Methylnaphthalene 0.921 0.747 0.609 0.803 0.988 0.788 18.64
2-Methylnaphthalene 0.976 0.851 0.697 0.925 1.070 0.879 15.84
37) t
38) t
39) I
        Acenaphthene-d10
                                      -----ISTD-----
          1,2,4,5-tetrachloro 0.897 0.792 0.666 0.831 1.025 0.821 15.69
40) t
41) t
          Hexachlorocyclopent 0.358 0.349 0.320 0.368 0.254 0.329 0.311 (21.34)
```

^{(#) =} Out of Range ### Number of calibration levels exceeded format ###

BNA1RQB3.M Tue Oct 10 16:38:39 2017 Page 418 of 520 1

Method : C:\HPCHEM\1\METHODS\BNA1RQB3.M (Chemstation Integrator)

Title : GC MS BNA 1 Semi Volatiles Calibration

Last Update : Tue Oct 10 16:38:26 2017

Response via : Initial Calibration

Calibration Files

10 =SV109770.D 20 =SV109772.D 40.0 =SV109774.D 15.0 =SV109771.D 2.5 =SV109768.D 5 =SV109769.D

		Compound	10	20	40.	0 15.	0 2.5	5	Avg	%RSD
42)	t	Biphenyl	0.890	0.748	0.621	0.789		0.989	0.787	17.19
43)		2,4,6-Trichlorophen								4.85
44)	t	2,4,5-Trichlorophen								9.04
45)	S	2-Fluorobiphenyl			1.340				1.663	15.82
46)	t	2-Chloronaphthalene							1.621	
47)	t	2-Nitroaniline			0.774				0.794	2.34
48)	t	Dimethylphthalate							2.181	9.18
49)	t	2,6-Dinitrotoluene	0.539	0.498	0.481	0.523	0.538		0.515	
50)	t	Acenaphthylene			2.197				2.597	12.91
51)	t	3-Nitroaniline		0.485	0.543	0.492			0.511	4.56
52)	t	Acenaphthene	1.665	1.518	1.393	1.610			1.570	9.03
53)	t	2,4-Dinitrophenol	0.332						0.297	(36.69)
54)	t	Dibenzofuran			2.091				2.368	10.27
55)	t	2,4-Dinitrotoluene	0.807	0.782	0.786	0.803	0.783			4.68
56)	t	4-Nitrophenol					0.491			5.41
57)	t	2,3,4,6-Tetrachloro							0.258	
58)	t	Diethyl phthalate			2.139			2.607	2.344	7.54
59)	t	Fluorene	1.972	1.747	1.611	1.871			1.837	10.91
60)	t	4-Chlorophenyl phen							0.920	12.24
61)	t	4-Nitroaniline			0.525			0.647	0.568	9.40
62)	I	Phenanthrene-d10				-ISTD-				
63)		4,6-Dinitro-2-methy								19.35
64)		Diphenylamine			0.684				0.769	9.95
65)	t	N-Nitrosodiphenylam					0.312			11.86
66)	t	Azobenzene					1.597			11.25
67)	S	2,4,6-Tribromopheno					20.453	0.204		3.92
68)	t	4-Bromophenyl pheny						0.363		7.42
69)	t	Atrazine					0.313			12.54
70)	t	Hexachlorobenzene					0.169			9.79
71)	t	Pentachlorophenol					0.131			(27.58)
72)	t	Pentachloronitroben					17.26.7	0.116		5.87
73)	t	Phenanthrene	1.416					1.528		8.07
74)	t	Anthracene	1.530					1.646		8.66
	t		1.136							12.30
76)		Di-n-butyl phthalat								10.10
		Parathion	0.375	0.362	0.346	0.375		0 375	0.364	3 49
		Fluoranthene	1.570	1.420	1.309	1 499		1 682	1.473	9 44
		Benzidine	0.245	0.254	0.192	0.264	0.102	0.283	0.224	27.25
80)	I	Chrysene-d12				ISTD				
81)	t	Pyrene	1.666	1.561	1.469	1.642		1.775	1.594	7.83
82)	S	Pyrene Terphenyl-d14	1.114	1.041	0.973	1.095		1.180	1.062	7.86
83)	t	Benzyl butyl phthal	1.069	1.017	0.986	1.056		1.090	1.033	4.38

^{(#) =} Out of Range ### Number of calibration levels exceeded format ###
BNA1RQB3.M Tue Oct 10 16:38:40 2017 Page 419 of 520 2020

Response Factor Report BNA #1

Method : C:\HPCHEM\1\METHODS\BNA1RQB3.M (Chemstation Integrator)
Title : GC MS BNA 1 Semi Volatiles Calibration

Last Update : Tue Oct 10 16:38:26 2017

Response via : Initial Calibration

Calibration Files

10 =SV109770.D 20 =SV109772.D 40.0 =SV109774.D 15.0 =SV109771.D 2.5 =SV109768.D 5 =SV109769.D

		Compound	10	20	40.	0 15.	0 2.5	5	Avg	%RSD
84) 85) 86) 87) 88) 89) 90)	t t t t t t	Bis(2-ethylhexyl) p Benz (a) anthracene 3,3-Dichlorobenzidi Chrysene Di-n-octyl phthalat Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyrene	1.623 0.456 1.433 2.516 1.541 1.520	1.553 0.454 1.336 2.412 1.490 1.435	1.525 0.422 1.306 2.418 1.421 1.279	1.606 0.456 1.394 2.506 1.523 1.495	1.742 0.345 1.606 1.597 1.648	1.710 0.412 1.540 2.542 1.590 1.610	1.628 0.421 1.452 2.469 1.543	4.45 5.44 9.43 9.70 2.35 4.13 9.75 5.32
92) 93) 94) 95)	t t	Perylene-d12 Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrace Benzo(g,h,i)perylen	1.731 1.383	1.649 1.298	1.549 1.174	-ISTD- 1.729 1.363	1.882 1.521	1.843 1.471	1.745 1.381	

2015 Groundwater Data

Geology

Hydrology

Remediation

Water Supply

February 16, 2015

Mr. Paul I. Matli, Ph.D. Hydro Tech Environmental, Corp. NYC Office 15 Ocean Avenue, 2nd Floor Brooklyn, NY 11225

Re: Data Validation Report

January 2015 Ground Water Sampling Event

11-28 31 Drive, LIC, NY

Dear Dr. Matli:

The data usability summary reports and data validation summaries are attached to this letter for the above referenced project. The data for York Analytical Laboratories, Inc. SDG 15A0377 were acceptable with some minor issues that are identified in the validation summary. There were no data that were rejected (R) in the data pack.

We have attached lists of data validation acronyms and data qualifiers to assist you in the interpretation of the reviews. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Stantec Consulting Services, Inc.

Sincerely,

Alpha Geoscience

Donald Anné

Senior Chemist

DCA:dca attachments

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane **BFB** Bromofluorobenzene

CCB Continuing calibration blank CCC Calibration check compound CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit Contract required quantitation limit CROL CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector **FNP** 1-Fluoronaphthalene GC Gas chromatography

Gas chromatography/mass spectrometry GC/MS

GPC Gel permeation chromatography

ICB Initial calibration blank

Inductively coupled plasma-atomic emission spectrometer ICP

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate MSA

Method of standard additions MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector **PCB** Polychlorinated biphenyl **PCDD** Polychlorinated dibenzodioxins **PCDF** Polychlorinated dibenzofurans

OA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260 Volatiles Data for York Analytical Laboratories, Inc., SDG: 15A0377

8 Ground Water Samples, 1 Field Blank, and 1 Trip Blank Collected January 13, 2015

Prepared by: Donald Anné February 16, 2015

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010), as required

The %RSD for acetone was above the allowable maximum (30%) for MSVOA6 on 01-14-15. Positive results for acetone should be considered estimated (J) in associated samples.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required

The %Ds for cis-1,2-dichloroethylene, 2-butanone, and 2,2-dicloropropane were above the allowable maximum (25%) on 01-17-15 (V6008080.D). The %D for 2,2-dicloropropane was above the allowable maximum (25%) on 01-17-15 (V6008108.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: Method blank BA50737-BLK1 contained traces of 1,2,3-trichlorobenzene (0.68 ug/L), 1,2,4,5-tetramethylbenzene, (0.37 ug/L), 1,2,4-trichlorobenzene (0.53 ug/L), hexachlorobutadiene (0.60 ug/L), n-butylbenzene (0.36 ug/L), p-isopropyltoluene (0.23 ug/L), and sec-butylbenzene (0.21 ug/L). Method blank BA50787-BLK1 contained traces of 1,2,3-trichlorobenzene (0.81 ug/L), 1,2,4,5-tetramethylbenzene, (0.43 ug/L), 1,2,4-trichlorobenzene (0.65 ug/L), 1,2-dichlorobenzene (0.22 ug/L), 1,3-dichlorobenzene (0.25 ug/L), 1,4-dichlorobenzene (0.23 ug/L), hexachlorobutadiene (0.64 ug/L), n-butylbenzene

Page 1 of 2

(0.38 ug/L), p-diethylbenzene (0.31 ug/L), p-isopropyltoluene (0.25 ug/L), and secbutylbenzene (0.24 ug/L). Method blank BA50837-BLK1 contained traces of 1,2,3-trichlorobenzene (0.50 ug/L), 1,2,4,5-tetramethylbenzene, (0.21 ug/L), 1,2,4-trichlorobenzene (0.38 ug/L), and hexachlorobutadiene (0.22 ug/L). The field blank contained traces of o-xylene (0.28 ug/L) and tetrachlroethylene (0.53 ug/L). The trip blank contained traces of o-xylene (0.29 ug/L), tetrachlroethylene (0.36 ug/L), and toluene (0.22ug/L). Positive results for these compounds that are less than 5 times the highest blank level should be reported as not detected (U) in associated samples.

- Internal Standard Area Summary: The internal standard areas and retention times were within control limits.
- <u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the soil salples, ground water sample, field blank, and trip blank.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for target compounds were below the allowable maximums and the percent recoveries (%Rs) were within the QC limits for aqueous MS/MSD sample MW-5, batch 50787.

The RPDs for target compounds were below the allowable maximum, but 13 of 138 %Rs were above QC limits for aqueous MS/MSD sample MW-5, batch 50737. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The relative percent differences (RPDs) for target compounds were below the allowable maximums and the percent recoveries (%Rs) were within the QC for aqueous samples BA50787-BS1 and BA50787-BSD1.

The RPDs for target compounds were below the allowable maximums, but 1 of 2 %Rs for 2,2-dichloropropane, bromochloromethane, and cis-1,2-dichloroethylene were above the QC limits for aqueous samples BA50737-BS1 and BA50737-BSD1. The RPDs for target compounds were below the allowable maximums, but 1 of 2 %Rs for 2,2-dichloropropane was above the QC limits for aqueous samples BA50837-BS1 and BA50837-BSD1. Positive results for 2,2-dichloropropane, bromochloromethane, and cis-1,2-dichloroethylene should be considered estimated (J) in associated aqueous samples.

<u>Compound ID</u>: Checked compounds and surrogates were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for York Analytical Laboratories, Inc., SDG: 15A0377

8 Ground Water Samples, 1 Field Blank, and 1 Trip Blank Collected January 13, 2015

Prepared by: Donald Anné February 16, 2015

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results of volatile analyses for 8 ground water samples, 1 field blank, and 1 trip blank.

The overall performances of the analyses are acceptable. York Analytical Laboratories, Inc. did fulfill the requirements of the volatile method. The laboratory an exceptionally large number of compounds in the method blanks. These compounds weren't detected in the associated samples; therefore, no action is taken. The laboratory should work to clean up their method blanks in the future.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- Positive volatile result for tetrachloroethylene was flagged as "not detected" (U) for sample MW-8 because the levels reported in the sample was not significantly greater than (more than 5 times) the highest associated blank level.
- The positive volatile results for cis-1,2-dichloroethylene were flagged as "estimated" (J) in samples MW-3 and MW-4 because %D for cis-1,2-dichloroethylene was above the allowable maximum in the associated continuing calibration.
- The positive volatile results for acetone were flagged as "estimated" (J) in samples MW-4 and MW-7 because %RSD for acetone was above the allowable maximum in the associated initial calibration.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2015\15600 - 15620\15604-11-28 31 Drive\15A0377.dus.wpd

MW-5

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-MS1

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Source Sample Name:

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	10.0	ND	10.9	109	45 - 161
1,1,1-Trichloroethane	10.0	ND	12.9	129	70 - 146
1,1,2,2-Tetrachlorocthane	10.0	ND	9.93	99.3	74 - 121
1,1,2-Trichloro-1,2,2-trifluoroethane	10.0	ND	11.0	110	21 - 217
1,1,2-Trichloroethane	10.0	ND	10.0	100	59 - 146
1,1-Dichloroethane	10.0	ND	13.4	134	54 - 146
1,1-Dichloroethylene	10.0	ND	13.3	133	44 - 165
1,1-Dichloropropylene	10.0	ND	13.7	(137) *	82 - 134
1,2,3-Trichlorobenzene	10.0	ND	10.9	109	
1,2,3-Trichloropropane	10.0	ND	10.9	109	40 - 161
1,2,4,5-Tetramethylbenzene	10.0	ND	10.8	109	74 - 127 27 - 190
1,2,4-Trichlorobenzene	10.0	ND	10.8	108	
1,2,4-Trimethylbenzene	10.0	ND	10.4	104	41 - 161
1,2-Dibromo-3-chloropropane	10.0	ND	9.46	94.6	72 - 129
1,2-Dibromoethane	10.0	ND	10.8	108	31 - 151
1,2-Dichlorobenzene	10.0	ND	10.5	105	75 - 125
1,2-Dichloroethane	10.0	ND	13.4	(134) *	63 - 122
1,2-Dichloropropane	10.0	ND	11.7	117	68 - 131
1,3,5-Trimethylbenzene	10.0	ND	10.4	104	77 - 121
1,3-Dichlorobenzene	10.0	ND	10.6		69 - 126
1,3-Dichloropropane	10.0	ND	11.6	106	74 - 119
1,4-Dichlorobenzene	10.0	ND	10.4	104	77 - 119
2,2-Dichloropropane	10.0	ND	14.4	144	70 - 124
2-Butanone	10.0	ND	13.4	134	10 - 160
2-Chlorotoluene	10.0	ND	11.0		10 - 193
2-Hexanone	10.0	ND	9.87	110	70 - 126
4-Chlorotoluene	10.0	ND	10.6	98.7	53 - 133
4-Methyl-2-pentanone	10.0	ND	11.3	106	69 - 124
Acetone	10.0	ND	10.9	113	38 - 150
Benzene	10.0	ND	12.6		13 - 149
Bromobenzene	10.0	ND	10.9	126	38 - 155
Bromochloromethane	10.0	ND	14.4	(144) *	72 - 122 75 - 121

MW-5

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-MS1

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Source Sample Name:

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC.#	QC LIMITS REC.
Bromodichloromethane	10.0	ND	11.2	112	70 - 129
Bromoform	10.0	ND	10.9	109	66 - 136
Bromomethane	10.0	ND	10.1	101	30 - 158
Carbon disulfide	10.0	ND	13.3	133	10 - 138
Carbon tetrachloride	10.0	ND	12.9	129	71 - 146
Chlorobenzene	10.0	ND	11.2	112	81 - 117
Chloroethane	10.0	ND	10.7	107	51 - 145
Chloroform	10.0	ND	12.7	(127) *	80 - 124
Chloromethane	10.0	ND	10.7	107	16 - 163
cis-1,2-Dichloroethylene	10.0	ND	14.4	(144) *	76 - 125
cis-1,3-Dichloropropylene	10.0	ND	12.2	122	58 - 131
Dibromochloromethane	10.0	ND	10.9	109	71 - 129
Dibromomethane	10.0	ND	11.4	114	76 - 120
Dichlorodifluoromethane	10.0	ND	9.07	90.7	30 - 147
Ethyl Benzene	10.0	ND	11.4	114	72 - 128
Hexachlorobutadiene	10.0	ND	10.9	109	34 - 166
Isopropylbenzene	10.0	ND	10.6	106	66 - 139
Methyl tert-butyl ether (MTBE)	10.0	0.390	11.6	112	75 - 128
Methylene chloride	10.0	ND	13.8	(138) *	57 - 128
Naphthalene	10.0	ND	10.4	104	39 - 158
n-Butylbenzene	10.0	ND	11.1	111	61 - 138
n-Propylbenzene	10.0	ND	11.0	110	66 - 134
o-Xylene	10.0	ND	11.4	114	69 - 126
o- & m- Xylenes	20.0	ND	23.0	115	67 - 130
o-Diethylbenzene	10.0	ND	10.5	105	52 - 150
e-Ethyltoluene	10.0	ND	10.4	104	76 - 127
o-Isopropyltoluene	10.0	ND	10.6	106	64 - 137
ec-Butylbenzene	10.0	ND	10.8	108	53 - 155
tyrene	10.0	ND	11.4	114	69 - 125
ert-Butylbenzene	10.0	ND	10.7	107	65 - 139
etrachloroethylene	10.0	5.63	16.0	104	64 - 139
oluene	10.0	ND	11.2	112	76 - 123

MW-5

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-MS1

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Source Sample Name:

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC.#	QC LIMITS REC.
trans-1,2-Dichloroethylene	10.0	ND	13.3	133) *	79 - 131
trans-1,3-Dichloropropylene	10.0	ND	11.5	115	55 - 130
Trichloroethylene	10.0	0.810	12.1	113	53 - 145
Trichlorofluoromethane	10.0	ND	11.6	116	61 - 142
Vinyl Chloride	10.0	ND	11.4	114	31 - 165

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

MW-5

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

Preparation:

EPA 5030B

BA50737-MSD1

Source Sample Name:

MW-5

Initial/Final: 25 mL / 25 mL

	SPIKE ADDED	MSD CONCENTRATION	MSD %	%	QC	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC. #	RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	10.0	10.6	106	2.97	30	45 - 161
1,1,1-Trichloroethane	10.0	12.6	126	2.42	30	70 - 146
1,1,2,2-Tetrachlorocthane	10.0	10.1	101	1.50	30	74 - 121
1,1,2-Trichloro-1,2,2-trifluoroethane	10.0	11.5	115	4.53	30	21 - 217
1,1,2-Trichloroethane	10.0	10.0	100	0.399	30	59 - 146
1,1-Dichloroethane	10.0	13.3	133	0.300	30	54 - 146
1,1-Dichloroethylene	10.0	13.2	132	0.754	30	44 - 165
1,1-Dichloropropylene	10.0	13,5	(135) *	1.10	30	82 - 134
1,2,3-Trichlorobenzene	10.0	11.0	110	1.37	30	40 - 161
1,2,3-Trichloropropane	10.0	10.9	109	0.0920	30	74 - 127
1,2,4,5-Tetramethylbenzene	10.0	11.0	110	1.56	30	27 - 190
1,2,4-Trichlorobenzene	10.0	10.9	109	0.735	30	41 - 161
1,2,4-Trimethylbenzene	10.0	10.6	106	2.19	30	72 - 129
1,2-Dibromo-3-chloropropane	10.0	11.0	110	15.1	30	31 - 151
1,2-Dibromoethane	10.0	10.4	104	3.95	30	75 - 125
1,2-Dichlorobenzene	10.0	10.7	107	1.99	30	63 - 122
1,2-Dichloroethane	10.0	12.6	126	5.62	30	68 - 131
1,2-Dichloropropane	10.0	11.4	114	2.94	30	77 - 121
1,3,5-Trimethylbenzene	10.0	10.7	107	2.93	30	69 - 126
1,3-Dichlorobenzene	10.0	10.6	106	0.284	30	74 - 119
,3-Dichloropropane	10.0	11.1	111	4.23	30	77 - 119
,4-Dichlorobenzene	10.0	10.6	106	1.71	30	70 - 124
2,2-Dichloropropane	10.0	13.5	135	6.09	30	10 - 160
-Butanone	10.0	14.1	141	4.73	30	10 - 193
-Chlorotoluene	10.0	11.3	113	2.97	30	70 - 126
-Hexanone	10.0	10.6	106	7.60	30	53 - 133
-Chlorotoluene	10.0	11.0	110	3.89	30	69 - 124
-Methyl-2-pentanone	10.0	11.1	111	2.14	30	38 - 150
cetone	10.0	10.2	102	6.45	30	13 - 149
enzene	10.0	12.2	122	3.63	30	38 - 155
romobenzene	10.0	10.8	108	0.460	30	72 - 122
romochloromethane	10.0	14.0	(140) *	2.60	30	75 - 121
romodichloromethane	10.0	10.8	108	3.54	30	70 - 129

MW-5

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-MSD1

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Source Sample Name:

	SPIKE ADDED	MSD	MSD		Q	C LIMITS
COMPOUND	(ug/L)	CONCENTRATION (ug/L)	% REC. #	% RPD#	RPD	REC.
Bromoform ·	10.0	10.6	106	2.51	30	66 - 136
Bromomethane	10.0	10.8	108	7.19	30	30 - 158
Carbon disulfide	10.0	13.4	134	0.375	30	10 - 138
Carbon tetrachloride	10.0	12.7	127	1.65	30	71 - 146
Chlorobenzene	10.0	11.0	110	1.45	30	81 - 117
Chloroethane	10.0	10.9	109	1.95	30	51 - 145
Chloroform	10.0	12.5	(125) *	1.51	30	80 - 124
Chloromethane	10.0	10.4	104	2.85	30	16 - 163
cis-1,2-Dichloroethylene	10.0	13.9	139 *	3.32	30	76 - 125
cis-1,3-Dichloropropylene	10.0	11.8	118	3.41	30	58 - 131
Dibromochloromethane	10.0	10.8	108	1.20	30	71 - 129
Dibromomethane	10.0	10.7	107	6.22	30	76 - 120
Dichlorodifluoromethane	10.0	9.50	95.0	4.63	30	30 - 147
Ethyl Benzene	10.0	11.2	112	1.77	30	72 - 128
Hexachlorobutadiene	10.0	11.2	112	2.35	30	34 - 166
Isopropylbenzene	10.0	10.9	109	2.79	30	66 - 139
Methyl tert-butyl ether (MTBE)	10.0	11.6	112	0.259	30	75 - 128
Methylene chloride	10.0	13.8	(138) *	0.290	30	57 - 128
Naphthalene	10.0	10.8	108	3.60	30	39 - 158
n-Butylbenzene	10.0	11.4	114	3.20	30	61 - 138
n-Propylbenzene	10.0	11.2	112	2.26	30	66 - 134
o-Xylene	10.0	11.3	113	1.06	30	69 - 126
p- & m- Xylenes	20.0	22.8	114	1.09	30	67 - 130
p-Diethylbenzene	10.0	10.9	109	3.18	30	52 - 150
o-Ethyltoluene	10.0	10.7	107	2.84	30	76 - 127
o-Isopropyltoluene	10.0	10.9	109	2.78	30	64 - 137
sec-Butylbenzene	10.0	11.3	113	4.24	30	53 - 155
Styrene	10.0	11.2	112	2.04	30	69 - 125
ert-Butylbenzene	10.0	10.9	109	2.12	30	65 - 139
Cetrachloroethylene	10.0	16.0	104	0.125	30	64 - 139
oluene	10.0	11.0	110	1.89	30	76 - 123
rans-1,2-Dichloroethylene	10.0	13.2	(132) *	0.677	30	79 - 131
ans-1,3-Dichloropropylene	10.0	11.2	112	2.29	30	55 - 130

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-BS1

Preparation:

EPA 5030B

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	10.0	10.4	104	82 - 126
1,1,1-Trichloroethane	10.0	10.9	109	78 - 136
1,1,2,2-Tetrachloroethane	10.0	9.81	98.1	76 - 129
1,1,2-Trichloro-1,2,2-trifluorocthane (Freon 113)	10.0	9.86	98.6	54 - 165
1,1,2-Trichloroethane	10.0	9.36	93.6	82 - 123
1,1-Dichloroethane	10.0	11.7	117	82 - 129
1,1-Dichloroethylene	10.0	12.3	123	68 - 138
1,1-Dichloropropylene	10.0	11.6	116	83 - 133
1,2,3-Trichlorobenzene	10.0	11.2	112	76 - 136
1,2,3-Trichloropropane	10.0	10.4	104	77 - 128
1,2,4,5-Tetramethylbenzene	10.0	10.8	108	85 - 140
1,2,4-Trichlorobenzene	10.0	11.0	110	76 - 137
1,2,4-Trimethylbenzene	10.0	10.7	107	82 - 132
1,2-Dibromo-3-chloropropane	10.0	10.8	108	45 - 147
1,2-Dibromoethane	10.0	10.3	103	83 - 124
1,2-Dichlorobenzene	10.0	10.8	108	79 - 123
1,2-Dichloroethane	10.0	11,2	112	73 - 132
1,2-Dichloropropane	10.0	10.6	106	78 - 126
1,3,5-Trimethylbenzene	10.0	10.5	105	80 - 131
,3-Dichlorobenzene	10.0	10.6	106	86 - 122
,3-Dichloropropane	10.0	10.6	106	81 - 125
,4-Dichlorobenzene	10.0	10.5	105	85 - 124
2,2-Dichloropropane	10.0	15.0	150	56 - 150
2-Butanone	10.0	11.2	112	49 - 152
-Chlorotoluene	10.0	10.9	109	79 - 130
-Hexanone	10.0	7.74	77.4	51 - 146
-Chlorotoluene	10.0	10.7	107	79 - 128
-Methyl-2-pentanone	10.0	9.78	97.8	57 - 145
cetone	10.0	9.58	95.8	14 - 150
Benzene	10.0	11.1	111	85 - 126

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-BS1

Preparation:

EPA 5030B

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
Bromobenzene	10.0	10.9	109	78 - 129
Bromochloromethane	10.0	11.9	119	77 - 128
Bromodichloromethane	10.0	10.0	100	79 - 128
Bromoform	10.0	9.65	96.5	78 - 133
Bromomethane	10.0	9.78	97.8	43 - 168
Carbon disulfide	10.0	12.2	122	68 - 146
Carbon tetrachloride	10.0	11.0	110	77 - 141
Chlorobenzene	10.0	10.5	105	88 - 120
Chloroethane	10.0	9.53	95.3	65 - 136
Chloroform	10.0	11.0	110	82 - 128
Chloromethane	10.0	9.50	95.0	43 - 155
cis-1,2-Dichloroethylene	10.0	12.1	121	83 - 129
cis-1,3-Dichloropropylene	10.0	11.5	115	80 - 131
Dibromochloromethane	10.0	10.1	101	80 - 130
Dibromomethane	10.0	10.1	101	72 - 134
Dichlorodifluoromethane	10.0	8.56	85.6	44 - 144
Ethyl Benzene	10.0	10.7	107	80 - 131
Hexachlorobutadiene	10.0	11.3	113	67 - 146
sopropylbenzene	10.0	10.7	107	76 - 140
Methyl tert-butyl ether (MTBE)	10.0	10.3	103	76 - 135
Methylene chloride	10.0	12.1	121	55 - 137
Naphthalene	10.0	10.3	103	70 - 147
n-Butylbenzene	10.0	11.3	113	79 - 132
n-Propylbenzene	10.0	11.0	110	78 - 133
-Xylene	10.0	10.8	108	78 - 130
- & m- Xylenes	20.0	21.6	108	77 - 133
-Diethylbenzene	10.0	10.6	106	84 - 134
-Ethyltoluene	10.0	10.4	104	88 - 129
-Isopropyltoluene	10.0	10.9	109	81 - 136
ec-Butylbenzene	10.0	10.9	109	79 - 137

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-BS1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE	LCS	LCS	QC
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC. #	LIMITS REC.
Styrene	10.0	41.1	111	67 - 132
tert-Butylbenzene	10.0	10.8	108	77 - 138
Tetrachloroethylene	10.0	10.6	106	82 - 131
Toluene	10.0	10.4	104	80 - 127
trans-1,2-Dichloroethylene	10.0	11.8	118	80 - 132
trans-1,3-Dichloropropylene	10.0	10.8	108	78 - 131
Trichloroethylene	10.0	10.6	106	82 - 128
Trichlorofluoromethane	10.0	10.2	102	67 - 139
Vinyl Chloride	10.0	10.2	102	58 - 145

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory: York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-BSD1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE	LCSD	LCSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	10.0	10.5	105	1.34	30	82 - 126
1,1,1-Trichloroethane	10.0	12.3	123	12.1	30	78 - 136
1,1,2,2-Tetrachloroethane	10.0	10.0	100	2.22	30	76 - 129
1,1,2-Trichloro-1,2,2-trifluoroethane	10.0	10.3	103	4.66	30	54 - 165
1,1,2-Trichloroethane	10.0	9.75	97.5	4.08	30	82 - 123
1,1-Dichloroethane	10.0	12.5	125	5.95	30	82 - 129
1,1-Dichloroethylene	10.0	12.6	126	2.25	30	68 - 138
1,1-Dichloropropylene	10.0	13.2	132	13.1	30	83 - 133
1,2,3-Trichlorobenzene	10.0	12.1	121	7.73	30	76 - 136
1,2,3-Trichloropropane	10.0	10.8	108	3.57	30	77 - 128
1,2,4,5-Tetramethylbenzene	10.0	10.9	109	1.57	30	85 - 140
1,2,4-Trichlorobenzene	10.0	11.6	116	4.61	30	76 - 137
1,2,4-Trimethylbenzene	10.0	10.6	106	0.848	30	82 - 132
1,2-Dibromo-3-chloropropane	10.0	12.2	122	11.8	30	45 - 147
1,2-Dibromoethane	10.0	9.97	99.7	3.26	30	83 - 124
1,2-Dichlorobenzene	10.0	10.8	108	0.555	30	79 - 123
1,2-Dichloroethane	10.0	12.8	128	13.7	30	73 - 132
1,2-Dichloropropane	10.0	10.9	109	2.69	30	78 - 126
1,3,5-Trimethylbenzene	10.0	10.6	106	0.190	30	80 - 131
1,3-Dichlorobenzene	10.0	10.7	107	0.470	30	86 - 122
1,3-Dichloropropane	10.0	10.7	107	0.936	30	81 - 125
,4-Dichlorobenzene	10.0	10.7	107	1.80	30	85 - 124
2,2-Dichloropropane	10.0	16.5	165) *	9.28	30	56 - 150
2-Butanone	10.0	11.8	118	5.82	30	49 - 152
2-Chlorotolucne	10.0	11.3	113	3.15	30	79 - 130
-Hexanone	10.0	10.3	103	28.8	30	51 - 146
-Chlorotoluene	10.0	11.0	110	2.68	30	79 - 128
-Methyl-2-pentanone	10.0	10.9	109	10.7	30	57 - 145
Acetone	10.0	9.27	92.7	3.29	30	14 - 150
Benzene	10.0	12.0	120	8.48	30	85 - 126

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-BSD1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	%	QC	LIMITS
COMPOUND	(ug/L)	(ug/L)	REC. #	RPD#	RPD	REC.
Bromobenzene	10.0	10.2	102	6.55	30	78 - 129
Bromochloromethane	10.0	13.9	(139) *	14.9	30	77 - 128
Bromodichloromethane	10.0	10.7	107	7.04	30	79 - 128
Bromoform	10.0	10.1	101	4.46	30	78 - 133
Bromomethane	10.0	9.83	98.3	0.510	30	43 - 168
Carbon disulfide	10.0	12.8	128	4.40	30	68 - 146
Carbon tetrachloride	10.0	12.3	123	11.1	30	77 - 141
Chlorobenzene	10.0	10.7	107	1.13	30	88 - 120
Chloroethane	10.0	9.98	99.8	4.61	30	65 - 136
Chloroform	10.0	12.3	123	11.3	30	82 - 128
Chloromethane	10.0	9.57	95.7	0.734	30	43 - 155
cis-1,2-Dichloroethylene	10.0	13.7	(137) *	12.2	30	83 - 129
cis-1,3-Dichloropropylene	10.0	12.0	120	3.66	30	80 - 131
Dibromochloromethane	10.0	10.3	103	1.37	30	80 - 130
Dibromomethane	10.0	10.5	105	3.59	30	72 - 134
Dichlorodifluoromethane	10.0	8.99	89.9	4.90	30	44 - 144
Ethyl Benzene	10.0	10.8	108	1.21	30	80 - 131
Hexachlorobutadiene	10.0	12.3	123	8.58	30	67 - 146
Isopropylbenzene	10.0	10.9	109	1.76	30	76 - 140
Methyl tert-butyl ether (MTBE)	10.0	10.9	109	5.38	30	76 - 135
Methylene chloride	10.0	12.8	128	5.88	30	55 - 137
Naphthalene	10.0	11.3	113	8.80	30	70 - 147
n-Butylbenzene	10.0	11.4	114	1.59	30	79 - 132
n-Propylbenzene	10.0	11.0	110	0.0906	30	78 - 133
o-Xylene	10.0	10.8	108	0.0929	30	78 - 130
o- & m- Xylenes	20.0	21.8	109	0.737	30	77 - 133
-Diethylbenzene	10.0	11.1	111	4.90	30	84 - 134
-Ethyltoluene	10.0	10.2	102	1.26	30	88 - 129
-Isopropyltoluene	10.0	10.9	109	0.367	30	81 - 136
ec-Butylbenzene	10.0	11.2	112	2.63	30	79 - 137

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50737

Laboratory ID:

BA50737-BSD1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE ADDED	LCSD	LCSD	0/	QC LIMITS	
COMPOUND	(ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
Styrene	10.0	11.2	112	1.16	30	67 - 132
tert-Butylhenzene	10.0	10.9	109	0.645	30	77 - 138
Tetrachloroethylene	10.0	10.6	106	0.943	30	82 - 131
Toluene	10.0	10.7	107	2.64	30	80 - 127
trans-1,2-Dichloroethylene	10.0	12.6	126	6.73	30	80 - 132
trans-1,3-Dichloropropylene	10.0	11.4	114	5.12	30	78 - 131
Trichloroethylene	10.0	11.0	110	3.15	30	82 - 128
Trichlorofluoromethane	10.0	10.8	108	6.02	30	67 - 139
Vinyl Chloride	10.0	10.8	108	4.76	30	58 - 145

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50837

Laboratory ID:

BA50837-BS1

Preparation:

EPA 5030B

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	10.0	10.2	102	82 - 126
1,1,1-Trichloroethane	10.0	11.3	113	78 - 136
1,1,2,2-Tetrachloroethane	10.0	8.89	88.9	76 - 129
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.0	9.50	95.0	54 - 165
1,1,2-Trichloroethane	10.0	9.51	95.1	82 - 123
1,1-Dichloroethane	10.0	11.3	113	82 - 129
1,1-Dichloroethylene	10.0	11.2	112	68 - 138
1,1-Dichloropropylene	10.0	11.1	111	83 - 133
1,2,3-Trichlorobenzene	10.0	10.6	106	76 - 136
1,2,3-Trichloropropane	10.0	9.66	96.6	77 - 128
1,2,4,5-Tetramethylbenzene	10.0	11.1	111	85 - 140
1,2,4-Trichlorobenzene	10.0	11.1	111	76 - 137
1,2,4-Trimethylbenzene	10.0	10.6	106	82 - 132
1,2-Dibromo-3-chloropropane	10.0	9.56	95.6	45 - 147
,2-Dibromoethane	10.0	9.86	98.6	83 - 124
,2-Dichlorobenzene	10.0	10.2	102	79 - 123
,2-Dichloroethane	10.0	10.7	107	73 - 132
,2-Dichloropropane	10.0	10.5	105	78 - 126
,3,5-Trimethylbenzene	10.0	10.5	105	80 - 131
,3-Dichlorobenzene	10.0	10.5	105	86 - 122
,3-Dichloropropane	10.0	10.2	102	81 - 125
,4-Dichlorobenzene	10.0	10.4	104	85 - 124
,2-Dichloropropane	10.0	15.2	(152) *	56 - 150
-Butanone	10.0	10.1	101	49 - 152
-Chlorotoluene	10.0	10.7	107	79 - 130
Hexanone	10.0	9.33	93.3	51 - 146
Chlorotoluene	10.0	10.6	106	79 - 128
Methyl-2-pentanone	10.0	7.26	72.6	57 - 145
cetone	10.0	7.78	77.8	14 - 150
enzene	10.0	11.1	111	85 - 126

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50837

Laboratory ID:

BA50837-BSI

Preparation:

EPA 5030B

Initial/Final:

25 mL/25 mL

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC,#	QC LIMITS REC.
Bromobenzene	10.0	10.3	103	78 - 129
Bromochloromethane	10.0	10.9	109	77 - 128
Bromodichloromethane	10.0	10.5	105	79 - 128
Bromoform	10.0	10.4	104	78 - 133
Bromomethane	10.0	9.14	91.4	43 - 168
Carbon disulfide	10.0	12.5	125	68 - 146
Carbon tetrachloride	10.0	11.5	115	77 - 141
Chlorobenzene	10.0	10.3	103	88 - 120
Chloroethane	10.0	10.1	101	65 - 136
Chloroform	10.0	11.2	112	82 - 128
Chloromethane	10.0	8.94	89.4	43 - 155
cis-1,2-Dichloroethylene	10.0	11.8	118	83 - 129
cis-1,3-Dichloropropylene	10.0	11.9	119	80 - 131
Dibromochloromethane	10.0	10.3	103	80 - 130
Dibromomethane	10.0	10.2	102	72 - 134
Dichlorodifluoromethane	10.0	10.1	101	44 - 144
Ethyl Benzene	10.0	10,5	105	80 - 131
Hexachlorobutadiene	10.0	11.6	116	67 - 146
Isopropylbenzenc	10.0	10.7	107	76 - 140
Methyl tert-butyl ether (MTBE)	10.0	10.4	104	76 - 135
Methylene chloride	10.0	11.3	113	55 - 137
Naphthalene	10.0	9.90	99.0	70 - 147
n-Butylbenzene	10.0	11.2	112	79 - 132
n-Propylbenzene	10.0	10.8	108	78 - 133
-Xylene	10.0	10.5	105	78 - 130
o- & m- Xylenes	20.0	21.5	108	77 - 133
-Diethylbenzene	10.0	10.8	108	84 - 134
-Ethyltoluene	10.0	10.4	104	88 - 129
-Isopropyltoluene	10.0	10.9	109	81 - 136
ec-Butylbenzene	10.0	10.8	108	79 - 137

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

Preparation:

BA50837

EPA 5030B

Laboratory ID:

Initial/Final:

BA50837-BS1 25 mL / 25 mL

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC.#	QC LIMITS REC.
Styrene	10,0	10.8	108	67 - 132
tert-Butylbenzene	10.0	10.7	107	77 - 138
Tetrachloroethylene	10.0	10.4	104	82 - 131
Toluene	10.0	10.4	104	80 - 127
trans-1,2-Dichloroethylene	10.0	11,4	114	80 - 132
trans-1,3-Dichloropropylene	10.0	11.2	112	78 - 131
Trichloroethylene	10.0	10.6	106	82 - 128
Trichlorofluoromethane	10.0	10.9	109	67 - 139
Vinyl Chloride	10.0	10.6	106	58 - 145

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50837

Laboratory ID:

BA50837-BSD1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE	LCSD	LCSD	0.4	QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC.#	% RPD#	RPD	REC.
1,1,1,2-Tetrachloroethane	10.0	10.7	107	4.79	30	82 - 126
1,1,1-Trichloroethane	10.0	11,1	111	1.25	30	78 - 136
1,1,2,2-Tetrachloroethane	10.0	9.35	93.5	5.04	30	76 - 129
1,1,2-Trichloro-1,2,2-trifluoroethane	10.0	9.60	96.0	1.05	30	54 - 165
1,1,2-Trichloroethane	10.0	9.79	97.9	2.90	30	82 - 123
1,1-Dichloroethane	10.0	11.3	113	0.00	30	82 - 129
1,1-Dichloroethylene	10.0	11.4	114	2.30	30	68 - 138
1,1-Dichloropropylene	10.0	11.0	110	1,36	30	83 - 133
1,2,3-Trichlorobenzene	10.0	11.2	112	6.06	30	76 - 136
1,2,3-Trichloropropane	10.0	10.5	105	8.43	30	77 - 128
1,2,4,5-Tetramethylbenzene	10.0	11.4	114	2.59	30	85 - 140
1,2,4-Trichlorobenzene	10.0	11.2	112	0.716	30	76 - 137
1,2,4-Trimethylbenzene	10.0	10.6	106	0.0945	30	82 - 132
1,2-Dibromo-3-chloropropane	10.0	9.02	90.2	5.81	30	45 - 147
1,2-Dibromoethane	10.0	10.0	100	1.51	30	83 - 124
1,2-Dichlorobenzene	10.0	10.6	106	3.66	30	79 - 123
1,2-Dichloroethane	10.0	10.8	108	1.02	30	73 - 132
1,2-Dichloropropane	10.0	10.8	108	2.64	30	78 - 126
1,3,5-Trimethylbenzene	10.0	10.8	108	2.45	30	80 - 131
1,3-Dichlorobenzene	10.0	10.8	108	2.53	30	86 - 122
1,3-Dichloropropane	10.0	10.4	104	1.55	30	81 - 125
1,4-Dichlorobenzene	10.0	10.6	106	1.80	30	85 - 124
2,2-Dichloropropane	10.0	14.8	148	2.40	30	56 - 150
2-Butanone	10.0	10.6	106	4.65	30	49 - 152
2-Chlorotoluene	10.0	10.9	109	1.39	30	79 - 130
-Hexanone	10.0	9.59	95.9	2.75	30	51 - 146
-Chlorotoluene	10.0	10.7	107	0.843	30	79 - 128
-Methyl-2-pentanone	10.0	9.66	96.6	28.4	30	57 - 145
Acetone	10.0	6.20	62.0	22.6	30	14 - 150
Benzene	10.0	11.0	110	0.908	30	85 - 126

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50837

Laboratory ID:

BA50837-BSD1

Preparation:

EPA 5030B

Initial/Final:

	SPIKE		LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC. #	% RPD#	RPD	REC.
Bromobenzene	10.0	10.6	106	2.78	30	78 - 129
Bromochloromethane	10.0	10.8	108	1.47	30	77 - 128
Bromodichloromethane	10.0	10.9	109	4.11	30	79 - 128
Bromoform	10.0	10.4	104	0.386	30	78 - 133
Bromomethane	10.0	9.87	98.7	7.68	30	43 - 168
Carbon disulfide	10.0	12.3	123	1.37	30	68 - 146
Carbon tetrachloride	10.0	11.1	111	3.55	30	77 - 141
Chlorobenzene	10.0	10.5	105	1.92	30	88 - 120
Chloroethane	10.0	10.0	100	0.695	30	65 - 136
Chloroform	10.0	11.1	111	0.807	30	82 - 128
Chloromethane	10.0	8.46	84.6	5.52	30	43 - 155
cis-1,2-Dichloroethylene	10.0	11.7	117	0.597	30	83 - 129
cis-1,3-Dichloropropylene	10.0	12.2	122	1.74	30	80 - 131
Dibromochloromethane	10.0	10.5	105	1.82	30	80 - 130
Dibromomethane	10.0	10.3	103	1.66	30	72 - 134
Dichlorodifluoromethane	10.0	9.53	95.3	5.41	30	44 - 144
Ethyl Benzene	10.0	10.7	107	1.51	30	80 - 131
Hexachlorobutadiene	10.0	12.0	120	3.06	30	67 - 146
(sopropylbenzene	10.0	10.8	108	0.743	30	76 - 140
Methyl tert-butyl ether (MTBE)	10.0	10.2	102	1.07	30	76 - 135
Methylene chloride	10.0	11.4	114	0.883	30	55 - 137
Naphthalene	10.0	10.3	103	3.86	30	70 - 147
n-Butylbenzene	10.0	11.3	113	1.16	30	79 - 132
n-Propylbenzene	10.0	10.8	108	0.462	30	78 - 133
o-Xylene	10.0	10.8	108	2.91	30	78 - 130
- & m- Xylenes	20.0	21.7	109	1.11	30	77 - 133
-Diethylbenzene	10.0	11.0	110	1.66	30	84 - 134
-Ethyltoluene	10.0	10.6	106	1.24	30	88 - 129
-Isopropyltoluene	10.0	11.1	111	1.82	30	81 - 136
ec-Butylbenzene	10.0	11.0	110	1.56	30	79 - 137

LCS / LCS DUPLICATE RECOVERY

EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Batch:

BA50837

Laboratory ID:

BA50837-BSD1

Preparation:

EPA 5030B

Initial/Final:

COMPOUND	SPIKE ADDED (ug/L)	LCSD CONCENTRATION (ug/L)	LCSD % REC.#	% RPD#	QC LIMITS	
					RPD	REC.
Styrene	10.0	11.1	111	1.92	30	67 - 132
tert-Butylbenzene	10.0	10.9	109	1.48	30	77 - 138
Tetrachloroethylene	10.0	10.5	105	0.959	30	82 - 131
Toluene	10.0	10.6	106	1.62	30	80 - 127
trans-1,2-Dichloroethylene	10.0	11.4	114	0.264	30	80 - 132
trans-1,3-Dichloropropylene	10.0	11.5	115	2.21	30	78 - 131
Trichloroethylene	10.0	10.8	108	1.77	30	82 - 128
Trichlorofluoromethane	10.0	11.0	110	1.28	30	67 - 139
Vinyl Chloride	10.0	10.5	105	0.568	30	58 - 145

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM I

METHOD BLANK DATA SHEET EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

BA50737-BLK1

File ID:

V6008083.D

Prepared:

01/17/15 08:21

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Analyzed:

01/17/15 12:35

Instrument:

Batch:

BA50737

Sequence:

MSVOA6

Calibration:

CAS NO.	COMPOUND	CONC. (ug/L)	
630-20-6	1,1,1,2-Tetrachloroethane	0.50	ι
71-55-6	1,1,1-Trichloroethane	0.50	t
79-34-5	1,1,2,2-Tetrachloroethane	0.50	ι
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.50	ι
79-00-5	1,1,2-Trichloroethane	0.50	ι
75-34-3	1,1-Dichloroethane	0.50	U
75-35-4	1,1-Dichloroethylene	0.50	τ
563-58-6	1,1-Dichloropropylene	0.50	t
87-61-6	1,2,3-Trichlorobenzene	0.68	
96-18-4	1,2,3-Trichloropropane	0.50	U
527-53-7	1,2,4,5-Tetramethylbenzene	0.37	J
120-82-1	1,2,4-Trichlorobenzene	0.53	
95-63-6	1,2,4-Trimethylbenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
106-93-4	1,2-Dibromocthane	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
108-67-8	1,3,5-Trimethylbenzene	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	U
142-28-9	1,3-Dichloropropane	0.50	U
106-46-7	1,4-Dichlorobenzene	0.50	U
594-20-7	2,2-Dichloropropane	0.50	U
78-93-3	2-Butanone	0.50	U
95-49-8	2-Chlorotoluene	0.50	U
591-78-6	2-Hexanone	0.50	U
106-43-4	4-Chlorotoluene	0.50	U
108-10-1	4-Methyl-2-pentanone	0.50	U
67-64-1	Acetone	2.0	U
71-43-2	Benzene	0.50	U

FORM I

METHOD BLANK DATA SHEET EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

sec-Butylbenzene

135-98-8

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

BA50737-BLK1

File ID:

V6008083.D

Prepared:

01/17/15 08:21

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Analyzed:

01/17/15 12:35

Instrument:

MSVOA6

Calibration:

Batch:

BA50737

Sequence:

COMPOUND CONC. (ug/L) Q CAS NO. U 0.50 108-86-1 Bromobenzene U 0.50 74-97-5 Bromochloromethane U Bromodichloromethane 0.50 75-27-4 U 0.50 75-25-2 Bromoform U 0.50 74-83-9 Bromomethane 0.50 U Carbon disulfide 75-15-0 U 0.50 56-23-5 Carbon tetrachloride Chlorobenzene 0.50 U 108-90-7 0.50 U Chloroethane 75-00-3 U 0.50 Chloroform 67-66-3 0.50 U 74-87-3 Chloromethane U 0.50 156-59-2 cis-1,2-Dichloroethylene U 10061-01-5 cis-1,3-Dichloropropylene 0.50 0.50 U Dibromochloromethane 124-48-1 0.50 U Dibromomethane 74-95-3 75-71-8 Dichlorodifluoromethane 0.50 U U 0.50 100-41-4 Ethyl Benzene 0.60 87-68-3 Hexachlorobutadiene Isopropylbenzene 0.50 U 98-82-8 0.50 U Methyl tert-butyl ether (MTBE) 1634-04-4 U 2.0 75-09-2 Methylene chloride 2.0 U 91-20-3 Naphthalene 0.36 J 104-51-8 n-Butylbenzene U 103-65-1 n-Propylbenzene 0.50 0.50 U 95-47-6 o-Xylene U 1.0 179601-23-1 p- & m- Xylenes 0.50 U 105-05-5 p-Diethylbenzene 0.50 U 622-96-8 p-Ethyltoluene 0.23 J 99-87-6 p-lsopropyltoluene

0.21)

J

FORM I

METHOD BLANK DATA SHEET EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

COMPOUND

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

BA50737-BLK1

File ID:

V6008083.D

Prepared:

01/17/15 08:21

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Analyzed:

01/17/15 12:35

Instrument:

MSVOA6

Calibration:

Batch:

BA50737

CAS NO.

Sequence:

CONC. (ug/L)

		Corre. (ug/L)	1	
100-42-5	Styrene	0.50	U	
98-06-6	tert-Butylbenzene	0.50	U	
127-18-4	Tetrachloroethylene	0.50	U	
108-88-3	Toluene	0.50	U	
156-60-5	trans-1,2-Dichloroethylene	0.50	U	
10061-02-6	trans-1,3-Dichloropropylene	0.50	U	
79-01-6	Trichloroethylene	0.50		
75-69-4	Trichlorofluoromethane 0.50		U	
75-01-4	Vinyl Chloride	0.50	υ	
1330-20-7	Xylenes, Total	1.5	U	

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	10.0	12.9	129	69 - 130	
p-Bromofluorobenzene	10.0	10.2	102	79 - 122	
Toluene-d8	10.0	9.78	97.8	81 - 117	

METHOD BLANK DATA SHEET EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

BA50787-BLK1

File ID:

V6008111.D

Prepared:

01/19/15 12:54

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Analyzed:

01/19/15 16:36

Instrument:

MSVOA6

Batch:

BA50787

Sequence:

CAS NO.	COMPOUND	CONC. (ug/L)	0
630-20-6	1,1,1,2-Tetrachloroethane	0.50	U
71-55-6	1,1,1-Trichloroethane	0.50	U
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.50	U
79-00-5	1,1,2-Trichloroethane	0.50	U
75-34-3	1,1-Dichloroethane	0.50	U
75-35-4	1,1-Dichloroethylene	0.50	U
563-58-6	1,1-Dichloropropylene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	(0.81)	
96-18-4	1,2,3-Trichloropropane	0,50	U
527-53-7	1,2,4,5-Tetramethylbenzene	0.43	J
120-82-1	1,2,4-Trichlorobenzene	0.65	
95-63-6	1,2,4-Trimethylbenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
95-50-1	1,2-Dichlorobenzene	0.22	J
107-06-2	1,2-Dichloroethane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	U
108-67-8	1,3,5-Trimcthylbenzene	0.50	U
541-73-1	1,3-Dichlorobenzene	0.25	J
142-28-9	1,3-Dichloropropane	0.50	U
106-46-7	1,4-Dichlorobenzene	0.23	J
594-20-7	2,2-Dichloropropane	0.50	U
78-93-3	2-Butanone	0.50	U
95-49-8	2-Chlorotoluene	0.50	U
591-78-6	2-Hexanone	0.50	U
106-43-4	4-Chlorotoluene	0.50	U
108-10-1	4-Methyl-2-pentanone	0.50	υ
67-64-1	Acetone	2.0	U
71-43-2	Benzene	0.50	U

METHOD BLANK DATA SHEET EPA 8260C

York Analytical Laboratories, Inc. Laboratory:

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

BA50787-BLK1

File ID:

V6008111.D

Prepared:

EPA 5030B

Initial/Final:

25 mL / 25 mL

01/19/15 12:54

Preparation:

Analyzed:

01/19/15 16:36

Instrument:

MSVOA6

Batch:

BA50787

Sequence:

CAS NO.	COMPOUND	CONC. (ug/L)	(
108-86-1	Bromobenzene	0.50	J
74-97-5	Bromochloromethane	0.50	ι
75-27-4	Bromodichloromethane	0.50	U
75-25-2	Bromoform	0.50	U
74-83-9	Bromomethane	0.50	U
75-15-0	Carbon disulfide	0,50	U
56-23-5	Carbon tetrachloride	0.50	U
108-90-7	Chlorobenzene	0.50	υ
75-00-3	Chloroethane	0.50	U
67-66-3	Chloroform	0.50	U
74-87-3	Chloromethane	0.50	U
156-59-2	cis-1,2-Dichloroethylene	0.50	U
10061-01-5	cis-1,3-Dichloropropylene	0.50	U
124-48-1	Dibromochloromethane	0.50	U
74-95-3	Dibromomethane	0.50	U
75-71-8	Dichlorodifluoromethane	0.50	U
100-41-4	Ethyl Benzene	0.50	U
87-68-3	Hexachlorobutadiene	0.64	1
98-82-8	Isopropylbenzene	0.50	U
1634-04-4	Methyl tcrt-butyl ether (MTBE)	0.50	U
75-09-2	Methylene chloride	2.0	U
91-20-3	Naphthalene	2.0	U
104-51-8	n-Butylbenzene	0.38	J
103-65-1	n-Propylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
179601-23-1	p- & m- Xylenes	1.0	U
105-05-5	p-Diethylbenzene	0.31	J
622-96-8	p-Ethyltoluene	0.50	U
99-87-6	p-Isopropyltoluene	0.25	J.
135-98-8	sec-Butylbenzene	0.24	J

METHOD BLANK DATA SHEET EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

BA50787-BLK1

File ID:

V6008111.D

Prepared:

01/19/15 12:54

Preparation:

EPA 5030B

Initial/Final:

25 mL/25 mL

Analyzed:

01/19/15 16:36

Instrument:

MSVOA6

Batch:

BA50787

Sequence:

CAS NO.	COMPOUND	CONC. (ug/L)	Q
100-42-5	Styrene	0.50	U
98-06-6	tert-Butylbenzene	0.50	U
127-18-4	Tetrachloroethylene	0.50	U
108-88-3	Toluene	0.50	U
156-60-5	trans-1,2-Dichloroethylene	0.50	U
10061-02-6	trans-1,3-Dichloropropylene	0.50	U
79-01-6	Trichloroethylene	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-01-4	Vinyl Chloride	0.50	U
1330-20-7	Xylenes, Total	1.5	U

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	10.0	8.96	89.6	69 - 130	
p-Bromofluorobenzene	10.0	11.3	113	79 - 122	
Toluene-d8	10.0	9.95	99.5	81 - 117	

METHOD BLANK DATA SHEET **EPA 8260C**

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

BA50837-BLK1

File ID:

V6008151.D

Prepared:

EPA 5030B

Initial/Final;

25 mL / 25 mL

Analyzed:

01/20/15 08:14

Preparation:

01/20/15 12:38

Instrument:

MSVOA6

Batch: BA50837 Sequence: Calibration:

CAS NO.	COMPOUND	CONC. (ug/L)	(
630-20-6	1,1,1,2-Tetrachloroethane	0.50	ı
71-55-6	1,1,1-Trichloroethane	0.50	ı
79-34-5	1,1,2,2-Tetrachloroethane	0.50	ι
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.50	ι
79-00-5	1,1,2-Trichloroethane	0.50	ı
75-34-3	1,1-Dichloroethane	0.50	ı
75-35-4	1,1-Dichloroethylene	0.50	U
563-58-6	1,1-Dichloropropylene	0.50	U
87-61-6	1,2,3-Trichlorobenzene	(0.50)	
96-18-4	1,2,3-Trichloropropane	0.50	U
527-53-7	1,2,4,5-Tetramethylbenzene	0.21	J
120-82-1	1,2,4-Trichlorobenzene	0.38	J
95-63-6	1,2,4-Trimethylbenzene	0.50	U
96-12-8	1,2-Dibromo-3-chloropropane	0.50	U
106-93-4	1,2-Dibromoethane	0.50	U
95-50-1	1,2-Dichlorobenzene	0.50	U
107-06-2	1,2-Dichloroethane	0.50	υ
78-87-5	1,2-Dichloropropane	0.50	U
108-67-8	1,3,5-Trimethylbenzene	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	υ
142-28-9	1,3-Dichloropropane	0.50	υ
106-46-7	1,4-Dichlorobenzene	0.50	U
594-20-7	2,2-Dichloropropane	0.50	U
78-93-3	2-Butanone	0.50	U
95-49-8	2-Chlorotoluene	0.50	U
591-78-6	2-Hexanone	0.50	U
106-43-4	4-Chlorotoluene	0.50	U
108-10-1	4-Methyl-2-pentanone	0.50	U
67-64-1	Acetone	2.0	U
71-43-2	Benzene	0.50	U

METHOD BLANK DATA SHEET EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

BA50837-BLK1

File ID:

V6008151.D

Prepared:

01/20/15 08:14

Preparation:

Analyzed:

EPA 5030B

Initial/Final:

25 mL / 25 mL

01/20/15 12:38

Instrument:

MSVOA6

Batch:

BA50837

Sequence:

CAS NO.	COMPOUND	CONC. (ug/L)	Q
108-86-1	Bromobenzene	0.50	U
74-97-5	Bromochloromethanc	0.50	U
75-27-4	Bromodichloromethane	0.50	U
75-25-2	Bromoform	0.50	U
74-83-9	Bromomethane	0.50	U
75-15-0	Carbon disulfide	0.50	U
56-23-5	Carbon tetrachloride	0.50	U
108-90-7	Chlorobenzene	0.50	U
75-00-3	Chloroethane	0.50	υ
67-66-3	Chloroform	0.50	υ
74-87-3	Chloromethane	0.50	υ
156-59-2	cis-1,2-Dichloroethylene	0.50	υ
10061-01-5	cis-1,3-Dichloropropylene	0.50	U
124-48-1	Dibromochloromethane	0.50	U
74-95-3	Dibromomethane	0.50	U
75-71-8	Dichlorodifluoromethane	0.50	υ
100-41-4	Ethyl Benzene	0.50	U
87-68-3	Hexachlorobutadiene	0.22	J
98-82-8	Isopropylbenzene	0.50	U
1634-04-4	Mcthyl tert-butyl ether (MTBE)	0.50	U
75-09-2	Methylene chloride	2.0	U
91-20-3	Naphthalene	2.0	U
104-51-8	n-Butylbenzene	0.50	U
103-65-1	n-Propylbenzene	0.50	U
95-47-6	o-Xylene	0.50	U
79601-23-1	p- & m- Xylenes	1.0	U
105-05-5	p-Diethylbenzene	0.50	U
622-96-8	p-Ethyltoluene	0.50	U
99-87-6	p-Isopropyltoluene	0.50	U
135-98-8	sec-Butylbenzene	0.50	U

METHOD BLANK DATA SHEET EPA 8260C

Laboratory:

York Analytical Laboratories, Inc.

SDG:

15A0377

Client:

Hydro Tech Environmental (Brooklyn)

Project:

#140344 11-28 31 Drive, LIC NY

Matrix:

Water

Laboratory ID:

File ID:

V6008151.D

Prepared:

01/20/15 08:14

BA50837

BA50837-BLK1

Analyzed:

Preparation:

EPA 5030B

Initial/Final:

25 mL / 25 mL

Batch:

01/20/15 12:38

Instrument: Sequence:

MSVOA6

CAS NO.	COMPOUND	CONC. (ug/L)	Q
100-42-5	Styrene	0.50	U
98-06-6	tert-Butylbenzene	0.50	U
127-18-4	Tetrachloroethylene	0.50	U
108-88-3	Toluene	0.50	U
156-60-5	trans-1,2-Dichloroethylene	0.50	U
10061-02-6	trans-1,3-Dichloropropylene	0.50	U
79-01-6	Trichloroethylene	0.50	U
75-69-4	Trichlorofluoromethane	0.50	U
75-01-4	Vinyl Chloride	0.50	U
1330-20-7	Xylenes, Total	1.5	υ

SYSTEM MONITORING COMPOUND	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	10.0	11.0	110	69 - 130	
p-Bromofluorobenzene	10.0	9.69	96.9	79 - 122	
Toluene-d8	10.0	9.80	98.0	81 - 117	

Response Factor Report MSVOA6

Method Path : C:\msdchem\1\METHODS\

Method File: V6L00032.M

: Volatile Organics EPA 8260C Last Update : Wed Jan 14 10:32:28 2015

Response Via : Initial Calibration

Calibration Files

Compound

0.5 = V6007922.D 2.0 = V6007923.D 4.0 = V6007924.D 10.0 = V6007925.D

20.0=V6007926.D 40.0=V6007927.D

V6L00032.M Wed Jan 14 10:33:35 2015

0.5 2.0 4.0 10.0 20.0 40.0 Avg ------1) I FLUOROBENZENE (ISTD) -----ISTD------Dichlorodifluo... 1.569 1.550 1.746 1.749 1.658 1.806 1.679 2) T 3) T Chloromethane 3.439 3.141 3.218 3.041 2.939 3.074 3.142 4) T Vinyl Chloride 2.332 2.558 2.565 2.527 2.529 2.701 2.535 4.68 Bromomethane 1.506 1.495 1.517 1.323 1.431 1.662 1.489 5) T Chloroethane 1.868 1.673 1.812 1.714 1.830 2.275 1.862 11.55 Trichlorofluor... 2.682 2.667 2.856 2.664 2.650 3.074 2.765 6.14 6) T 7) T 8) T Ethyl Ether 1.471 1.359 1.428 1.282 1.367 1.395 1.384 Freon-113 1.778 1.674 1.735 1.754 1.585 1.752 1.713 4.68 9) T 4.20 1,1-Dichloroet... 3.050 3.201 3.324 3.098 3.062 3.300 3.173 10) T 3.80 11) T Acrolein 0.108 0.148 0.126 0.107 0.124 0.106 0.120 13.68 12) T Acetone 0.576 0.432 0.320 0.298 0.279 0.381 (32.61) Iodomethane 1.386 1.246 1.197 1.191 1.333 1.442 1.299 13) T 8.01 Methyl Acetate 0.364 0.513 0.556 0.477 0.454 0.479 0.474 14) T 13.61 Carbon disulfide 5.621 5.828 5.978 5.768 5.819 6.098 5.852 tert-Butyl Alc... 0.293 0.202 0.197 0.139 0.131 0.144 0.184 15) T 16) T 33.27 NT 17) T Methylene Chlo... 2.563 2.818 2.402 2.515 2.587 2.577 5.92 Acrylonitrile 0.384 0.357 0.378 0.284 0.339 0.340 0.347 18) T 10.38 trans-1,2-Dich... 3.108 3.057 3.414 3.004 3.095 3.307 3.164 19) T 5.05 20) T tert-Butyl Met... 4.157 3.940 4.132 3.680 3.948 4.078 3.989 4.43 21) T 1,1-Dichloroet... 3.958 4.119 4.150 3.792 4.030 4.161 4.035 3.52 Vinyl Acetate 3.713 3.391 4.386 3.271 3.249 2.483 3.415 Diisopropyl et... 7.240 6.613 6.885 6.906 6.716 6.787 6.858 22) T 23) T 3.16 Ethyl-tert-But... 6.614 5.785 6.084 6.149 6.091 6.137 6.144 cis-1,2-Dichlo... 3.341 3.399 3.536 3.161 3.333 3.512 3.380 24) T 4.35 25) T 4.05 26) T 2-Butanone 0.094 0.122 0.123 0.100 0.099 0.109 0.108 11.40 27) T 2,2-Dichloropr... 2.053 2.341 2.152 2.179 2.245 2.454 2.237 6.40 28) T Tetrahydrofuran 0.147 0.134 0.106 0.094 0.095 0.115 20.66 Bromochloromet... 1.425 1.553 1.517 1.374 1.442 1.488 1.467 29) T 4.47 30) T Chloroform 3.324 3.323 3.545 3.167 3.319 3.388 3.344 3.66 31) T 1,1,1-Trichlor... 2.910 2.806 2.893 2.757 2.846 3.069 2.880 3.75 32) T Cyclohexane 4.271 3.667 3.899 3.891 3.446 3.788 3.827 7.19 1,1-Dichloropr... 2.855 2.889 2.995 2.792 2.800 3.055 2.898 33) T 3.68 3.91 d4-1,2-Dichlor... 1.025 0.960 0.971 0.989 0.916 0.943 0.967 34) S 35) T Carbon Tetrach... 2.000 2.227 2.300 2.188 2.276 2.467 2.243 6.82 36) T tert-Amyl alco... 0.084 0.080 0.094 0.094 0.100 0.105 0.093 10.14 1,2-Dichloroet... 2.192 2.040 2.187 1.936 2.032 2.176 2.094 37) T 5.08 38) T 8.787 8.676 9.042 8.124 8.302 8.514 8.574 3.89 39) T tert-Amyl meth... 4.917 4.361 4.576 4.492 4.409 4.535 4.548 40) I CHLOROBENZENE-d5 (... -----ISTD----ISTD----41) T Trichloroethylene 0.514 0.563 0.563 0.524 0.546 0.570 0.547 42) T Methyl Cyclohe... 0.936 0.984 1.036 1.000 0.966 1.038 0.993 4.03

> Page: 1 185 of 339

```
Method Path : C:\msdchem\1\METHODS\
 Method File: V6L00032.M
           : Volatile Organics EPA 8260C
 Title
        Methyl Methacr... 0.298 0.210 0.232 0.206 0.214 0.228 0.231
                                                                      14.70
43) T
        Dibromomethane 0.186 0.181 0.195 0.168 0.189 0.196 0.186
                                                                       5.49
44) T
        Bromodichlorom... 0.571 0.577 0.613 0.562 0.593 0.617 0.589
                                                                       3.85
45) T
        1,2-Dichloropr... 0.557 0.579 0.604 0.541 0.572 0.590 0.574
46) T
                                                                       5.63
47) T
                                0.001 0.001 0.001 0.001 0.001 0.001
        1,4-Dioxane
        2-Chloroethyl ...
                                                               0.000
                                                                      -1.00
48) T
        cis-1,3-Dichlo... 0.567 0.615 0.675 0.617 0.660 0.673 0.634
                                                                       6.72
49) T
        4-Methyl-2-Pen... 0.380 0.406 0.366 0.348 0.375 0.383 0.376
                                                                       5.12
50) T
        Toluene-d8 (SURR) 1.344 1.370 1.344 1.357 1.363 1.338 1.353
                                                                       0.92
51) S
                          2.651 2.551 2.576 2.306 2.378 2.410 2.479
                                                                       5.38
52) T
        Toluene
        trans-1,3-Dich... 0.500 0.494 0.524 0.497 0.530 0.558 0.517
                                                                       4.83
53) T
54) T
        1,1,2-Trichlor... 0.392 0.319 0.302 0.266 0.283 0.289 0.309
                                                                      14.49
        1,3-Dichloropr... 0.528 0.556 0.589 0.520 0.551 0.573 0.553
55) T
                                                                       4.77
        Tetrachloroeth... 0.446 0.458 0.472 0.429 0.444 0.464 0.452
56) T
                                                                       3.41
                                0.206 0.187 0.170 0.183 0.190 0.187
                                                                       6.85
57) T
        2-Hexanone
        Dibromochlorom... 0.276 0.285 0.299 0.281 0.307 0.324 0.295
                                                                       6.11
58) T
        1,2-Dibromoethane 0.277 0.239 0.251 0.223 0.237 0.252 0.247
                                                                      7.45
59) T
                      1.433 1.432 1.449 1.286 1.353 1.383 1.389
60) T
                                                                      4.47
        Chlorobenzene
        1,1,1,2-tetrac... 0.379 0.406 0.403 0.363 0.399 0.411 0.393
                                                                       4.68
61) T
        Ethyl Benzene 2.975 2.907 2.933 2.634 2.748 2.765 2.827
62) T
                                                                       4.66
63) T
        p- & m-Xylenes
                         2.213 2.224 2.266 2.035 2.116 2.110 2.161
                                                                       4.04
        o-Xylene
                        2.237 2.259 2.318 2.051 2.184 2.277 2.221
64) T
                                                                       4.26
65) T
                          1.546 1.546 1.604 1.473 1.594 1.676 1.573
                                                                       4.36
        Styrene
                        0.121 0.141 0.143 0.138 0.152 0.165 0.143
                                                                      10.15
66) T
        Bromofrom
        1,2-DICHLOROBENZEN... -----ISTD-----ISTD-----
67) I
        p-Ethyltoluene 6.306 6.253 6.119 5.958 5.683 5.683 6.000
                                                                      4.56
68) T
        Isopropylbenzene 5.946 6.172 6.073 5.769 5.599 5.587 5.858
                                                                       4.19
69) T
        p-Bromofluorob... 1.307 1.272 1.232 1.295 1.215 1.162 1.247
                                                                       4.40
70) S
        1,1,2,2-Tetrac... 1.025 0.801 0.775 0.719 0.734 0.722 0.796
71) T
                                                                      14.67
                        2.523 2.414 2.528 2.344 2.351 2.337 2.416
                                                                       3.68
72) T
        Bromobenzene
        trans-1,4-Dich... 0.775 0.857 0.811 0.732 0.728 0.730 0.772
                                                                       6.84
73) T
        1,2,3-Trichlor... 0.306 0.220 0.220 0.190 0.188 0.186 0.218
                                                                      20.92
74) T
        n-Propylbenzene 7.899 8.308 7.913 7.474 7.262 7.085 7.657
                                                                       6.03
75) T
        2-Chlorotoluene 4.882 5.234 5.112 4.851 4.820 4.826 4.954
                                                                       3.54
76) T
                          5.241 5.408 5.230 4.953 4.914 5.008 5.126
                                                                       3.83
77) T
        4-Chlorotoluene
        1,3,5-Trimethy... 5.362 5.407 5.228 4.943 4.936 5.012 5.148
78) T
                                                                       4.12
        tert-Butylbenzene 4.619 4.932 4.834 4.584 4.583 4.691 4.707
79) T
                                                                       3.08
        1,2,4-Trimethy... 5.424 5.594 5.300 4.980 4.989 4.986 5.212
                                                                       5.10
80) T
        sec-Butylbenzene 6.471 6.761 6.587 6.319 6.090 6.133 6.393
81) T
                                                                       4.10
                                                                       5.18
        1,3-Dichlorobe... 2.448 2.418 2.380 2.171 2.223 2.216 2.309
82) T
        p-Isopropyltol... 5.260 5.872 5.533 5.335 5.236 5.341 5.429
83) T
        1,4-Dichlorobe... 2.392 2.357 2.317 2.219 2.179 2.209 2.279
                                                                       3.87
84) T
       p-Diethylbenzene 3.725 3.481 3.280 3.263 3.202 3.380 3.389
                                                                       5.66
85) T
       1,2-Dichlorobe... 2.120 2.061 2.068 1.840 1.900 1.954 1.991
                                                                       5.49
86) T
       n-Butylbenzene 7.087 7.435 7.197 6.915 6.816 7.101 7.092
                                                                      3.06
87) T
        1,2-Dibromo-3-... 0.148 0.127 0.141 0.139 0.163 0.123 0.140
                                                                      10.22
88) T
        1,2,4,5-Tetram... 4.963 5.092 4.968 4.649 4.581 4.611 4.811
89) T
                                                                      4.61
        1,2,4-Trichlor... 1.413 1.423 1.340 1.235 1.229 1.225 1.311
                                                                      7.13
90) T
       Hexachloro-1,3... 0.819 0.811 0.795 0.729 0.714 0.755 0.770
                                                                    5.75
91) T
       Naphthalene 2.602 2.199 2.089 1.904 1.951 1.963 2.118 12.29
92) T
       1,2,3-Trichlor... 1.144 1.078 1.024 0.936 0.941 0.943 1.011 8.58
93) T
```

^{(#) =} Out of Range

Data Path : C:\msdchem\1\DATA\V6011715\

Data File : V6008080.D

Acq On : 17 Jan 2015 10:55 am

InstName : MSVOA6
Operator : SS

Sample : 10ppb VOA CAL CHECK STD
Misc : QBV6011715A < 2 OW Y14L041
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 19 14:57:24 2015

Quant Method : C:\msdchem\1\METHODS\V6L00032.M Quant Title : Volatile Organics EPA 8260C

QLast Update : Wed Jan 14 10:32:28 2015

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
1	I	FLUOROBENZENE (ISTD)	1.000	1.000	0.0	76	0.00
2	T	Dichlorodifluoromethane	1.679	1.573	6.3	68	0.00
3	T	Chloromethane	3.142	3.084	1.8	77	0.00
4	T	Vinyl Chloride	2.535	2.759	-8.8	83	0.00
5	T	Bromomethane	1.489	1.428	4.1	82	0.00
6	T	Chloroethane	1.862	1.847	0.8	82	0.00
7		Trichlorofluoromethane	2.765	3.021	-9.3	86	0.00
8		Ethyl Ether	1.384	1.510	-9.1	89	0.00
9	T	Freon-113	1.713	1.848	-7.9	80	0.00
10	T	1,1-Dichloroethylene	3.173	3.857	-21.6	94	0.00
11	T	Acrolein	0.120	0.097	19.2	69	0.00
12		Acetone	0.381	0.297	22.0	70	0.00
13	T	Iodomethane	1.299	1.345	-3.5	86	0.00
14	T	Methyl Acetate	0.474	0.680	NA-43.5#	108	0.00
15		Carbon disulfide	5.852	6.794	-16.1	89	0.00
16		tert-Butyl Alcohol (TBA)	0.184	0.163	11.4	89	0.00
17	T	Methylene Chloride	2.577	3.136	-21.7	99	0.00
18		Acrylonitrile	0.347	0.422	-21.6	113	0.00
19		trans-1,2-Dichloroethylene	3.164	3.841	-21.4	97	0.00
20		tert-Butyl Methyl Ether (MT	3.989	4.191	-5.1	86	0.00
21		1,1-Dichloroethane	4.035	4.814	-19.3	96	0.00
22	T	Vinyl Acetate	3.415	1.521	M 55.5#	35#	-0.01
23		Diisopropyl ether (DIPE)	6.858	0.003	M100.0#	0#	0.00
24		Ethyl-tert-Butyl ether (ETB	6.144	0.128	NA 97.9#	2#	0.13
25		cis-1,2-Dichloroethylene	3.380	4.299	(-27.2#	103	0.00
26		2-Butanone	0.108	0.137	-26.9#	104	0.00
27		2,2-Dichloropropane	2.237	3.529	(-57.8#)	123	0.00
28		Tetrahydrofuran	0.115	0.104	9.6	74	0.01
29		Bromochloromethane	1.467	1.831	-24.8	101	0.00
30	T	Chloroform	3.344	3.696	-10.5	88	0.00
31	T	1,1,1-Trichloroethane	2.880	3.327	-15.5	91	0.00
32		Cyclohexane	3.827	5.175	NA-35.2#	101	0.00
33		1,1-Dichloropropylene	2.898	3.510	-21.1	95	0.00
34		d4-1,2-Dichloroethane (SURR	0.967	1.007	-4.1	77	0.00
35		Carbon Tetrachloride	2.243	2.626	-17.1	91	0.00
36		tert-Amyl alcohol (TAA)	0.093	0.000	VA100.0#	0#	-5.46#
37	T	1,2-Dichloroethane	2.094	2.397	-14.5	94	0.01

Data Path : C:\msdchem\1\DATA\V6011715\

Data File : V6008080.D

Acq On : 17 Jan 2015 10:55 am

InstName : MSVOA6
Operator : SS

Sample : 10ppb VOA CAL CHECK STD Misc : QBV6011715A < 2 OW Y14L041 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 19 14:57:24 2015

Quant Method: C:\msdchem\1\METHODS\V6L00032.M Quant Title: Volatile Organics EPA 8260C QLast Update: Wed Jan 14 10:32:28 2015

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev Area% Dev(min)			
38	T	Benzene	8.574	9.462	-10.4	88	0.00	
39		tert-Amyl methyl ether (TAM	4.548	0.000	NA 100.0#	0#	-5.57#	
40	I	CHLOROBENZENE-d5 (ISTD)	1.000	1.000	0.0	75	0.00	
41	T	Trichloroethylene	0.547	0.601	-9.9	86	0.00	
42	T	Methyl Cyclohexane	0.993	1.164	-17.2	87	0.00	
43	T	Methyl Methacrylate	0.231	0.242	-4.8	88	0.00	
44	T	Dibromomethane	0.186	0.189	-1.6	84	0.01	
45	T	Bromodichloromethane	0.589	0.618	-4.9	82	0.00	
46	T	1,2-Dichloropropane	0.574	0.628	-9.4	87	0.00	
47	T	1,4-Dioxane	0.001	0.001	0.0	81	0.02	
48	T	2-Chloroethyl vinyl ether	0.000	0.272	0.0	0#	0.00	
49	T	cis-1,3-Dichloropropene	0.634	0.700	-10.4	85	0.00	
50	T	4-Methyl-2-Pentanone	0.376	0.389	-3.5	83	0.01	
51	S	Toluene-d8 (SURR)	1.353	1.340	1.0	74	0.00	
52	T	Toluene	2.479	2.718	-9.6	88	0.00	
53	T	trans-1,3-Dichloropropene	0.517	0.569	-10.1	86	0.00	
54	T	1,1,2-Trichloroethane	0.309	0.292	5.5	82	0.00	
55	T	1,3-Dichloropropane	0.553	0.625	-13.0	90	0.00	
56	T	Tetrachloroethylene	0.452	0.497	-10.0	87	0.00	
57		2-Hexanone	0.187	0.185	1.1	81	0.02	
58	T	Dibromochloromethane	0.295	0.300	-1.7	80	0.00	
59	T	1,2-Dibromoethane	0.247	0.255	-3.2	85	0.00	
60	T	Chlorobenzene	1.389	1.494	-7.6	87	0.00	
61	T	1,1,1,2-tetrachloroethane	0.393	0.418	-6.4	86	0.00	
62	T	Ethyl Benzene	2.827	3.150	-11.4	89	0.00	
63	T	p- & m-Xylenes	2.161	2.422	-12.1	89	0.00	
	T	o-Xylene	2.221	2.474	-11.4	90	0.00	
65	T	Styrene	1.573	1.717	-9.2	87	0.00	
66	T	Bromofrom	0.143	0.146	-2.1	79	0.00	
67	I	1,2-DICHLOROBENZENE-d4 (IST	1.000	1.000	0.0	81	0.00	
68	T	p-Ethyltoluene	6.000	6.255	-4.2	85	0.00	
	T	Isopropylbenzene	5.858	6.362	-8.6	89	0.00	
70	S	p-Bromofluorobenzene (SURR)	1.247	1.208	3.1	75	0.00	
	T	1,1,2,2-Tetrachloroethane	0.796	0.791	0.6	89	0.00	
72	T	Bromobenzene	2.416	2.608	-7.9	90	0.00	

Data Path : C:\msdchem\1\DATA\V6011715\

Data File : V6008080.D

Acq On : 17 Jan 2015 10:55 am

InstName : MSVOA6

Operator : SS

Sample : 10ppb VOA CAL CHECK STD
Misc : QBV6011715A < 2 OW Y14L041
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jan 19 14:57:24 2015

Quant Method : C:\msdchem\1\METHODS\V6L00032.M Quant Title : Volatile Organics EPA 8260C

QLast Update : Wed Jan 14 10:32:28 2015

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
73	T	trans-1,4-Dichloro-2-butene	0.772	0.771	0.1	. 85	0.00
74	T	1,2,3-Trichloropropane	0.218	0.194	11.0		0.00
75	T	n-Propylbenzene	7.657	8.546	-11.6	92	0.00
76	T	2-Chlorotoluene	4.954	5.608	-13.2	93	0.00
77	T	4-Chlorotoluene	5.126	5.713	-11.5	93	0.00
78	T	1,3,5-Trimethylbenzene	5.148	5.514	-7.1	90	0.00
79	T	tert-Butylbenzene	4.707	5.141	-9.2	90	0.00
80	T	1,2,4-Trimethylbenzene	5.212	5.625	-7.9	91	0.00
81	T	sec-Butylbenzene	6.393	7.199	-12.6	92	0.00
82	T	1,3-Dichlorobenzene	2.309	2.457	-6.4	91	0.00
83	T	p-Isopropyltoluene	5.429	6.057	-11.6	91	0.00
84	T	1,4-Dichlorobenzene	2.279	2.447	-7.4	89	0.00
85	T	p-Diethylbenzene	3.389	3.621	-6.8	89	0.00
86	T	1,2-Dichlorobenzene	1.991	2.095	-5.2	92	0.00
87	T	n-Butylbenzene	7.092	8.148	-14.9	95	0.00
88	T	1,2-Dibromo-3-chloropropane	0.140	0.118	15.7	68	0.00
89	T	1,2,4,5-Tetramethylbenzene	4.811	5.144	-6.9	89	0.00
90	T	1,2,4-Trichlorobenzene	1.311	1.450	-10.6	95	0.00
91	T	Hexachloro-1,3-Butadiene	0.770	0.895	-16.2	99	0.00
92	T	Naphthalene	2.118	2.139	-1.0	90	0.00
93	T	1,2,3-Trichlorobenzene	1.011	1.136	-12.4	98	0.00

^{(#) =} Out of Range

SPCC's out = 0 CCC's out = 0

Data Path : C:\msdchem\1\DATA\V6011915\

Data File : V6008108.D

Acq On : 19 Jan 2015 2:38 pm

InstName : MSVOA6
Operator : SS

Sample : 10PPB VOA CAL CHECK STD
Misc : QBV6011915B <2 BGS Y14L041
ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jan 20 12:20:28 2015

Quant Method : C:\msdchem\1\METHODS\V6L00032.M Quant Title : Volatile Organics EPA 8260C QLast Update : Wed Jan 14 10:32:28 2015

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	Area%	Dev(min)
	I	FLUOROBENZENE (ISTD)	1.000	1.000	0.0	86	0.00
2	T	Dichlorodifluoromethane	1.679	1.891	-12.6	93	0.00
3		Chloromethane	3.142	3.299	-5.0	93	0.00
4	7500	Vinyl Chloride	2.535	2.780	-9.7	95	0.00
5		Bromomethane	1.489	1.511	-1.5	98	0.00
6		Chloroethane	1.862	1.890	-1.5	95	0.00
7		Trichlorofluoromethane	2.765	2.925	-5.8	95	0.00
8		Ethyl Ether	1.384	1.334	3.6	90	0.00
9	T	Freon-113	1.713	1.944	-13.5	95	0.00
10	T	1,1-Dichloroethylene	3.173	3.648	-15.0	101	0.00
11	T	Acrolein	0.120	0.124	-3.3	100	0.00
12	T	Acetone	0.381	0.364	4.5	98	0.00
13	T	Iodomethane	1.299	1.366	-5.2	99	0.00
14	T	Methyl Acetate	0.474	0.606	NA -27.8#		0.00
15	T	Carbon disulfide	5.852	6.620	-13.1	99	0.00
16		tert-Butyl Alcohol (TBA)	0.184	0.152	17.4	94	0.00
17		Methylene Chloride	2.577	2.825	-9.6	101	0.00
18	T	Acrylonitrile	0.347	0.329	5.2	100	0.00
19	T	trans-1,2-Dichloroethylene	3.164	3.502	-10.7	100	0.00
20	T	tert-Butyl Methyl Ether (MT	3.989	3.974	0.4	93	0.00
21	T	1,1-Dichloroethane	4.035	4.458	-10.5	101	0.00
22	T	Vinyl Acetate	3.415	1.749	NA 48.8#		
23	T	Diisopropyl ether (DIPE)	6.858	0.003	WA 100.0#		
24	T	Ethyl-tert-Butyl ether (ETB	6.144	0.113	NA 98.2#		
25	T	cis-1,2-Dichloroethylene	3.380	3.790	-12.1	103	0.00
26	T	2-Butanone	0.108	0.107	0.9	92	0.00
27	T	2,2-Dichloropropane	2.237	2.843	(-27.1#		0.00
28	T	Tetrahydrofuran	0.115	0.098	14.8	79	0.00
29	T	Bromochloromethane	1.467	1.599	-9.0	100	0.00
30	T	Chloroform	3.344	3.570	-6.8	97	0.00
31	T	1,1,1-Trichloroethane	2.880	3.206	-11.3	100	0.00
32	T	Cyclohexane	3.827	4.683	-22.4	104	0.00
33	T	1,1-Dichloropropylene	2.898	3.243	-11.9	100	0.00
34	S	d4-1,2-Dichloroethane (SURR	0.967	0.967	0.0	84	0.00
35	T	Carbon Tetrachloride	2.243	2.557	-14.0	101	0.00
36	T	tert-Amyl alcohol (TAA)	0.093	0.000	NA 100.0#	0#	-5.46#
37	T	1,2-Dichloroethane	2.094	2.225	-6.3	99	0.00

Data Path : C:\msdchem\1\DATA\V6011915\

Data File : V6008108.D

Acq On : 19 Jan 2015 2:38 pm

InstName : MSVOA6
Operator : SS

Sample : 10PPB VOA CAL CHECK STD
Misc : QBV6011915B <2 BGS Y14L041
ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jan 20 12:20:28 2015

Quant Method: C:\msdchem\1\METHODS\V6L00032.M Quant Title: Volatile Organics EPA 8260C QLast Update: Wed Jan 14 10:32:28 2015

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
38	T	Benzene	8.574	9.214	-7.5	98	0.00
39		tert-Amyl methyl ether (TAM	4.548	0.000	NA 100.0#		-5.57#
40		CHLOROBENZENE-d5 (ISTD)	1.000	1.000	0.0	88	0.00
41	T	Trichloroethylene	0.547	0.589	-7.7	98	0.00
42	T	Methyl Cyclohexane	0.993	1.165	-17.3	102	0.00
43	T	Methyl Methacrylate	0.231	0.219	5.2	93	0.00
44	T	Dibromomethane	0.186	0.196	-5.4	102	0.00
45	T	Bromodichloromethane	0.589	0.618	-4.9	96	0.00
46	T	1,2-Dichloropropane	0.574	0.618	-7.7	100	0.00
47	T	1,4-Dioxane	0.001	0.001	0.0	102	0.00
48	T	2-Chloroethyl vinyl ether	0.000	0.257	0.0	0#	0.00
49	T	cis-1,3-Dichloropropene	0.634	0.686	-8.2	97	0.00
50	T	4-Methyl-2-Pentanone	0.376	0.420	-11.7	106	0.00
51	S	Toluene-d8 (SURR)	1.353	1.367	-1.0	88	0.00
52	T	Toluene	2.479	2.584	-4.2	98	0.00
53	T	trans-1,3-Dichloropropene	0.517	0.551	-6.6	97	0.00
54	T	1,1,2-Trichloroethane	0.309	0.286	7.4	94	0.00
55	T	1,3-Dichloropropane	0.553	0.575	-4.0	97	0.00
56	T	Tetrachloroethylene	0.452	0.480	-6.2	98	0.00
57	T	2-Hexanone	0.187	0.209	-11.8	107	0.00
58	T	Dibromochloromethane	0.295	0.300	-1.7	93	0.00
59	T	1,2-Dibromoethane	0.247	0.246	0.4	97	0.00
60	T	Chlorobenzene	1.389	1.410	-1.5	96	0.00
61	T	1,1,1,2-tetrachloroethane	0.393	0.398	-1.3	96	0.00
62	T	Ethyl Benzene	2.827	2.976	-5.3	99	0.00
63	T	p- & m-Xylenes	2.161	2.287	-5.8	98	0.00
64	T	o-Xylene	2.221	2.340	-5.4	100	0.00
65	T	Styrene	1.573	1.641	-4.3	98	0.00
66	T	Bromofrom	0.143	0.148	-3.5	94	0.00
67	I	1,2-DICHLOROBENZENE-d4 (IST	1.000	1.000	0.0	89	0.00
68		p-Ethyltoluene	6.000	6.551	-9.2	98	0.00
69	T	Isopropylbenzene	5.858	6.345	-8.3	98	0.00
70		p-Bromofluorobenzene (SURR)	1.247	1.283	-2.9	88	0.00
71	T	1,1,2,2-Tetrachloroethane	0.796	0.877	-10.2	109	0.00
72	T	Bromobenzene	2.416	2.703	-11.9	103	0.00

Data Path : C:\msdchem\1\DATA\V6011915\

Data File : V6008108.D

Acq On : 19 Jan 2015 2:38 pm

InstName : MSVOA6

Operator : SS

Sample : 10PPB VOA CAL CHECK STD Misc : QBV6011915B <2 BGS Y14L041 ALS Vial : 8 Sample Multiplier: 1

Quant Time: Jan 20 12:20:28 2015

Quant Method : C:\msdchem\1\METHODS\V6L00032.M Quant Title : Volatile Organics EPA 8260C QLast Update : Wed Jan 14 10:32:28 2015

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev A	Area%	Dev(min)
73	T	trans-1,4-Dichloro-2-butene	0.772	0.860	-11.4	105	0.00
74		1,2,3-Trichloropropane	0.218	0.213	2.3	100	0.00
75	T	n-Propylbenzene	7.657	8.311	-8.5	99	0.00
76	T	2-Chlorotoluene	4.954	5.488	-10.8	101	0.00
77	T	4-Chlorotoluene	5.126	5.551	-8.3	100	0.00
78	T	1,3,5-Trimethylbenzene	5.148	5.562	-8.0	100	0.00
79	T	tert-Butylbenzene	4.707	5.154	-9.5	100	0.00
80	T	1,2,4-Trimethylbenzene	5.212	5.570	-6.9	100	0.00
81	T	sec-Butylbenzene	6.393	6.952	-8.7	98	0.00
82	T	1,3-Dichlorobenzene	2.309	2.487	-7.7	102	0.00
83	T	p-Isopropyltoluene	5.429	5.823	-7.3	97	0.00
84	T	1,4-Dichlorobenzene	2.279	2.418	-6.1	97	0.00
85	T	p-Diethylbenzene	3.389	3.597	-6.1	98	0.00
86	T	1,2-Dichlorobenzene	1.991	2.138	-7.4	104	0.00
87	T	n-Butylbenzene	7.092	7.691	-8.4	99	0.00
88	T	1,2-Dibromo-3-chloropropane	0.140	0.130	7.1	83	0.00
89	T	1,2,4,5-Tetramethylbenzene	4.811	5.109	-6.2	98	0.00
90	T	1,2,4-Trichlorobenzene	1.311	1.300	0.8	94	0.00
91	T	Hexachloro-1,3-Butadiene	0.770	0.764	0.8	94	0.00
92	T	Naphthalene	2.118	1.967	7.1	92	0.00
93	T	1,2,3-Trichlorobenzene	1.011	0.971	4.0	93	0.00

(#) = Out of Range SPCC's out = 0 CCC's out = 0

ATTACHMENT P UST Removal Documentation

UST Closure and Removal Documentation

MERCURY TANK & PUMP SERVICE, INC.

88 Cabot Road Massapequa, N.Y. 11758 (917) 559-5519

New York City Fire Department Bulk Safety Unit 9 Metrotech Brooklyn, N.Y. 11201

Re: $11\text{--}28\ 31^{\text{ST}}$ Drive Queens; permanent removal of one 550 gallon underground gasoline tank

AFFIDAVIT

In accordance with FC 3404-01, the permanent removal of one 550 gallon underground gasoline tank at $11-28\ 31^{ST}$ Drive Queens has been completed.

- 1) The contents of the tanks were completely removed.
- 2) The tanks were thoroughly cleaned and purged of combustible vapors
- 3) All pipes were removed
- 4) The fill boxes were removed
- 5) The tanks were removed from the ground and disposed of off site
- 6) This work was completed on 16, October 2017 Sincerely

THE A
Mark Salamack
Underground Tank Installer
Certificate of License #80151715 (Expires 16, June 2018)
LASSALLE BEST JR. Notary Public, Stole of Misca York Ro. 24-02/20100 October in Occord County Commission Expires March 30, 19 Sworn before me this day of

Notary Public

.2017

PBS #: NEW You 2-612618

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Petroleum Bulk Storage Program

Facility Information Report

Page 1 of 1

pbsfacrpt_foil.rpt

Printed: 12/7/2017

HYDROTECH ENVIRONMENTAL CORP. Mail Correspondent Information BROOKLYN, NY 11225 ATTN: PAUL I. MATLI 15 OCEAN AVENUE SUITE B Owner Type: Corporate/Commercial/Other NEW HYDE PARK, NY 11040 GBT REAL ESTATE LLC Site Owner Information 1083 MAPLE LANE (917) 416-2002 Tax Map Information Boro/Sec.: Queens Block: 502 Lot: 22 ASTORIA, NY 11106 11-28 31ST DRIVE 11-28 31ST DRIVE Site Information Site Phone:

Facility Operator: NA

County: Queens

Town: New York City

Emergency Contact:

Authorized Representative: GEORGE MAN

Emergency Phone:

(718) 636-0800

		Tank Owner		
		Next Line Test		
		Next Tank Test		
pected:	d By:	(21) UDC		
Last Ins	Inspecte	(20) Pipe L.D	- 00	
		(19) <u>Pipe</u> SC	00	
0 :		(18) <u>Pipe</u> EP	00	
Fotal Active Tanks	ity: 0	(17) <u>Pipe</u> Type	00	
ctive	Capac	(16) Pipe Loc	00	
otal A	ctive ((15) Tank Disp	00	
	Total Active Capacit	(14) Tank SP	00	
06/22/2017		(13) <u>Tank</u> <u>OP</u>		
	06/22/2017	(12) Tank LD	00	
Cert Printed:	Issued:	(11) Tank SC	00	
22	Cert	(10) Tank EP	00	
06/22/	5.0	(9) Tank IP	00	
ires :	cessin	t Tank Type	01	
Reg Expires: 06/22/20	al)/Pro	(7) Product	6000	
R	Chemica	(6) Capacity 1 (gals)	200	
osed	Site Type: Manufacturing (Other than Chemical)/Processing	(5) <u>Date</u> <u>Closed</u>	3 02/04/1936 10/16/2017	
Site Status: Unregulated/Closed	cturing (C	$\begin{array}{c} (4) & (5) \\ \text{Status} & \underline{\text{Date}} \\ \underline{\text{Instal}} \end{array}$	02/04/1936	Category: 1
Unreg	annta	(4) Statu	3	Cate
tus: 1	e: M	(3) (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	w	
Site Sta	Site Typ	(2) Tank No	001	Subpart: 2

(See Reverse Side or Last Page for Code Keys)

PETROLEUM BULK STORAGE APLICATION - SECTION B - TANK INFORMATION - CODE KEYS

Piping Secondary Containment Under Dispenser Containment 02. Insterstitial Manual Monitoring 04. Double-Walled (Underground Double-Walled (Aboveground Pipe Leak Detection (20) 01. Diking (Aboveground Only) combined with code 01 or 06 ** Each of these codes must be separate sheet including tank 06. Remote Impounding Area 07. Pressurized Piping Leak 09. Exempt Suction Piping 01. Interstitial Electronic * If other, please list on a 10. Statistical Inventory 99. Other - Please List:* 04. Groundwater Well 99. Other-Please list:* to meet compliance Check Box if Present 02. Vault (w/access (UDC) (21) 07. Trench Liner Monitoring 03. Vapor Well Reconciliation reaniremente Detector (19)00. None number 00. None Pumping/Dispensing Method (15) 06. Fiberglass Reinforced Plastic 04. Product Level Gauge (AST) 03. Aboveground/Underground Overfill Protection (13) 05. Steel Encased in Concrete 06. Tank-Mounted Dispenser 02. Underground/On-ground 04. On-Site Heating System 05. On-Site Heating System Spill Prevention (14) 01. Steel/Carbon Steel/Iron Piping Location (16) Piberglass Coated Steel 08. Equivalent Technology 01. Presurized Dispenser 03. Stainless Steel Alloy 03. Automatic Shut-Off 99. Other-Please list:* 02. Suction Dispenser 02. High Level Alarm 99. Other-Please list:* Piping Type (17) 02. Galvanized Steel 01. Float Vent Valve 11. Flexible Piping (Supply/Return) 01. Aboveground 05. Vent Whistle Combination 01. Catch Basin 00. No Piping (Suction) 09. Concrete 03. Gravity 07. Plastic (FRP) 00. None 00. None 00. None Tank Secondary Containment (11) 07. Statistical Inventory Reconciliation (SIR) External Protection (10/18) 02. Interstitial Manual Monitoring 11. Double Bottom (AST Only)** Tank Leak Detection (12) 08. Retrofitted Impressed Current 06. Impervious Barrier/Concrete 07 Retrofitted Sacrificial Anode 12. Double-Walled (AST Only) 04. Double-Walled (UST Only) 05. In-Tank System (Auto Tank 03. Original Impressed Current Internal Protection (9) 02. Original Sacrificial Anode 06. Remote Impounding Area 10. Impervious Underlayment 09. Modified Double-Walled 01. Painted/Asphalt Coating 03. Fiberglass Liner (FRP) 01. Interstitial Electronic 99. Other - Please List:* 01. Diking (AST Only) 99. Other-Please list:* 06. Wrapped (Piping) 03. Vault (w/o access) 04. Groundwater Well 07. Excavation Liner 02. Vault (w/access) Pad (AST Only) 05. Synthetic Liner (AST Only)** 02. Rubber Liner 01 Epoxy Liner 04. Glass Liner (AST Only) Monitoring 03. Vapor Well 04. Fiberglass 09. Urethane 05. Jacketed 00. None 00. None 00. None Oils Used as Building Materials 06. Fiberglass Reinforced Plastic ubricating/Cutting Oils Transformer, Cable Oil) Mineral/Insulating Oils Waste/Used/Other Oils 0014. White/Mineral Spirits 01. Steel/Carbon Steel/Iron 04. Fiberglass Coated Steel 2626. Asphaltic Emulsions Galvanized Steel Alloy 05. Steel Tank in Concrete Equivalent Technology 0701. Crude Oil Fractions 0021. Transmission Fluid 0020. Insulating Oil (e.g., 2641. Aviation Gasoline 1044. Jet Fuel (Biofuel) 2712. Gasoline/Ethanol 9999. Other-Please list:* 03. Stainless Steel Alloy Urethane Clad Steel 1045. Gear/Spindle Oil Petroleum Spirits 99. Other-Please list:* 0022 Waste/Used Oil 0010. Hydraulic Oil Fank Type (8) 0007. Cutting Oil 836. Turbine Oil 2630. Mineral Oil 2710. Biodiesel Motor Fuels 0015. Motor Oil 0006. Crude Oil 0009. Gasoline 0748. Form Oil 0011. Jet Fuel 0013. Lube Oil 0008. Diesel 731. Nantha 09. Concrete Crude Oil 07. Plastic 4. Tank 10% or more below ground 3. Aboveground on saddles, leggs, 5. Underground including vaulted 6. Aboveground in Subterranean with no access for inspection 1. Aboveground-contact w/soil Recondition/Repair/Reline 2. Aboveground-contact w/ Heating Oils: On-Site 5. Tank converted to Non-Heating Oils: Resale/ Products Stored (7) 2711. Biodiesel (Heating) 2724. Biodiesel (Heating) 4. Information Correction 2642. Used Oil (Heating) Fank Location (3) Close/Remove Tank stilts, rack or cradle impervious barrier Closed-Removed 4. Closed- In Place 0591. Clarified Oil 2723. Clarified Oil 0003. #6 Fuel Oil Redistribution 2720. #5 Fuel Oil 0002. #4 Fuel Oil 0259. #5 Fuel Oil 2719. #4 Fuel Oil 2721. #6 Fuel Oil 0001. #2 Fuel Oil 2718. #2 Fuel Oil 2. Out-of-service Regulated use Consumption 0012. Kerosene . Initial Listing 2722. Kerosene Action (1) Status (4) 1. In-service 2. Add Tank

08. Weep holes in vaults with no access for

inspection.

UST Sediment Lab Report

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 11/03/2017

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 17J1208

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com Report Date: 11/03/2017

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 17J1208

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on October 30, 2017 and listed below. The project was identified as your project: #170154 11-28 31 Drive, LIC NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
17J1208-01	Sediments from UST	Soil	10/27/2017	10/30/2017

General Notes for York Project (SDG) No.: 17J1208

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia Laboratory Director **Date:** 11/03/2017

Client Sample ID: Sediments from UST

York Sample ID:

17J1208-01

York Project (SDG) No. 17J1208

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Soil Collection Date/Time
October 27, 2017 3:00 pm

Date Received 10/30/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
	1,1,2-Trichloroethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
563-58-6	1,1-Dichloropropylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: N	11/01/2017 07:30 IELAC-NY10854-CT,NJDEP,		SR
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: N	11/01/2017 07:30 IELAC-NY10854-CT,NJDEP,		SR
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: N	11/01/2017 07:30 IELAC-NY10854-CT,NJDEP,		SR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: N	11/01/2017 07:30 IELAC-NY10854-CT,NJDEP,		SR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
142-28-9	1,3-Dichloropropane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: N	11/01/2017 07:30 IELAC-NY10854-CT,NJDEP,		SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications: C	11/01/2017 07:30 TDOH,NELAC-NY10854-CT		SR
123-91-1	1,4-Dioxane	ND		ug/kg dry	64	130	1	EPA 8260C Certifications: N	11/01/2017 07:30 IELAC-NY10854-CT,NJDEP,		SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 3 of 40

Client Sample ID: Sediments from UST

York Sample ID: 17J1208-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 17J1208
 #170154 11-28 31 Drive, LIC NY
 Soil
 October 27, 2017
 3:00 pm
 10/30/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference !	Date/Time Method Prepared	Date/Time Analyzed	Analyst
594-20-7	2,2-Dichloropropane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 NELAC-NY10854-CT,NJDEP,N	11/01/2017 12:02 ELAC-NY10854-	SR
78-93-3	2-Butanone	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,	11/01/2017 12:02 NJDEP,NELAC-N	SR
95-49-8	2-Chlorotoluene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
106-43-4	4-Chlorotoluene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,	11/01/2017 12:02 NJDEP,NELAC-N	SR
67-64-1	Acetone	54		ug/kg dry	6.4	13	1	EPA 8260C	11/01/2017 07:30	11/01/2017 12:02	SR
								Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,NELAC-N	
71-43-2	Benzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
108-86-1	Bromobenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 NELAC-NY10854-CT,NJDEP,N	11/01/2017 12:02 ELAC-NY10854-	SR
74-97-5	Bromochloromethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 NELAC-NY10854-CT,NJDEP,N	11/01/2017 12:02 ELAC-NY10854-	SR
75-27-4	Bromodichloromethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
75-25-2	Bromoform	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,M	11/01/2017 12:02 NJDEP,NELAC-N	SR
74-83-9	Bromomethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
56-23-5	Carbon tetrachloride	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
108-90-7	Chlorobenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
75-00-3	Chloroethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
67-66-3	Chloroform	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
74-87-3	Chloromethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02 NJDEP,NELAC-N	SR
124-48-1	Dibromochloromethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	11/01/2017 07:30 NELAC-NY10854-CT,NJDEP,N	11/01/2017 12:02 ELAC-NY10854-	SR
74-95-3	Dibromomethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C	11/01/2017 07:30 NELAC-NY10854-CT,NJDEP,N	11/01/2017 12:02	SR
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C	11/01/2017 07:30 NELAC-NY10854-CT,NJDEP,N	11/01/2017 12:02	SR
100-41-4	Ethyl Benzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C	11/01/2017 07:30 CTDOH,NELAC-NY10854-CT,1	11/01/2017 12:02	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C	11/01/2017 07:30 NELAC-NY10854-CT,NJDEP,N	11/01/2017 12:02	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 4 of 40

Client Sample ID: Sediments from UST

<u>York Sample ID:</u> 17J1208-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 17J1208
 #170154 11-28 31 Drive, LIC NY
 Soil
 October 27, 2017
 3:00 pm
 10/30/2017

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 NJDEP,NELAC-N	SR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
75-09-2	Methylene chloride	ND		ug/kg dry	6.4	13	1	EPA 8260C Certifications:	CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
91-20-3	Naphthalene	ND		ug/kg dry	3.2	13	1	EPA 8260C Certifications:	NELAC-NY	11/01/2017 07:30 /10854-CT,NJDEP,NI	11/01/2017 12:02 ELAC-NY10854-	SR
104-51-8	n-Butylbenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
103-65-1	n-Propylbenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
95-47-6	o-Xylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 NELAC-NY10854	SR
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	6.4	13	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 NELAC-NY10854	SR
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
135-98-8	sec-Butylbenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
100-42-5	Styrene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
98-06-6	tert-Butylbenzene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
127-18-4	Tetrachloroethylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
108-88-3	Toluene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
79-01-6	Trichloroethylene	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
108-05-4	Vinyl acetate	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	NELAC-NY	11/01/2017 07:30 / 10854-CT,NJDEP,NI	11/01/2017 12:02 ELAC-NY10854-	SR
75-01-4	Vinyl Chloride	ND		ug/kg dry	3.2	6.4	1	EPA 8260C Certifications:	CTDOH,NE	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
1330-20-7	Xylenes, Total	ND		ug/kg dry	9.5	19	1	EPA 8260C Certifications:	CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 12:02 IJDEP,NELAC-N	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			77-125							
2037-26-5	Surrogate: Toluene-d8	106 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	100 %			76-130							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 5 of 40

Client Sample ID: Sediments from UST York Sample ID: 17J1208-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17J1208 #170154 11-28 31 Drive, LIC NY October 27, 2017 3:00 pm Soil 10/30/2017

Volatile Organics, TCLP RCRA List

Sample Prepared by Method: EPA 5030B/1311

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
78-93-3	2-Butanone	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
71-43-2	Benzene	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
56-23-5	Carbon tetrachloride	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
108-90-7	Chlorobenzene	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
67-66-3	Chloroform	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
127-18-4	Tetrachloroethylene	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
79-01-6	Trichloroethylene	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS
75-01-4	Vinyl Chloride	ND		ug/L	25	50	10	EPA 8260C/1311 Certifications: CTDOH,NI	11/01/2017 07:30 ELAC-NY10854-CT,N	11/01/2017 19:08 JDEP,NELAC-N	SS

Surrogate Recoveries Acceptance Range Result 120 % 77-125 17060-07-0 Surrogate: 1,2-Dichloroethane-d4 Surrogate: p-Bromofluorobenzene 460-00-4 76-130 103 % 2037-26-5 88.3 % 85-120 Surrogate: Toluene-d8

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 JDEP,PADEP	SR
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	NELAC-NY	11/02/2017 07:29 / 10854-CT,PADEP	11/02/2017 21:18	SR
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	NELAC-NY	11/02/2017 07:29 (10854-CT,PADEP	11/02/2017 21:18	SR
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	NELAC-NY	11/02/2017 07:29 / 10854-CT,PADEP	11/02/2017 21:18	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 JDEP,PADEP	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 JDEP,PADEP	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 JDEP,PADEP	SR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

(203) 325-1371

Page 6 of 40

Client Sample ID: Sediments from UST

York Sample ID: 17J1208-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 17J1208
 #170154 11-28 31 Drive, LIC NY
 Soil
 October 27, 2017
 3:00 pm
 10/30/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	114	227	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:		11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:		11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	114	227	2	EPA 8270D Certifications:		11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:		11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18	SR
91-94-1	3,3-Dichlorobenzidine	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	NELAC-NY	11/02/2017 07:29 10854-CT,NJDEP,P	11/02/2017 21:18 ADEP	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	114	227	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	114	227	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	114	227	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	114	227	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18 NJDEP,PADEP	SR
83-32-9	Acenaphthene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:		11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:		11/02/2017 07:29 LAC-NY10854-CT,1	11/02/2017 21:18	SR
62-53-3	Aniline	ND		ug/kg dry	228	456	2	EPA 8270D Certifications:		11/02/2017 07:29 10854-CT,NJDEP,P.	11/02/2017 21:18	SR
										- ,,		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 40

Client Sample ID: Sediments from UST

York Sample ID: 17J1208-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 17J1208
 #170154 11-28 31 Drive, LIC NY
 Soil
 October 27, 2017 3:00 pm
 10/30/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Date/Time Method Prepared	Date/Time Analyzed	Analyst
120-12-7	Anthracene	102	J	ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT	,NJDEP,PADEP	
56-55-3	Benzo(a)anthracene	361		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT	,NJDEP,PADEP	
50-32-8	Benzo(a)pyrene	337		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT	,NJDEP,PADEP	
205-99-2	Benzo(b)fluoranthene	300		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT	,NJDEP,PADEP	
191-24-2	Benzo(g,h,i)perylene	227		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT	,NJDEP,PADEP	
207-08-9	Benzo(k)fluoranthene	330		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT	,NJDEP,PADEP	
100-51-6	Benzyl alcohol	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
	,							Certifications:	NELAC-NY10854-CT,NJDEP,I	PADEP	
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
117.01.7	Di-(2 -4b-1b1)b4b-1-4-			4 1					CTDOH,NELAC-NY10854-CT,		GD.
117-81-7	Bis(2-ethylhexyl)phthalate	90.1	J	ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
									CTDOH,NELAC-NY10854-CT		
218-01-9	Chrysene	358		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT		
53-70-3	Dibenzo(a,h)anthracene	79.1	J	ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
								Certifications:	CTDOH,NELAC-NY10854-CT	,NJDEP,PADEP	
132-64-9	Dibenzofuran	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
									CTDOH,NELAC-NY10854-CT,		
84-66-2	Diethyl phthalate	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	11/02/2017 07:29 CTDOH,NELAC-NY10854-CT,	11/02/2017 21:18 NIDEP PADEP	SR
					57.0	114	2				an.
131-11-3	Dimethyl phthalate	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	11/02/2017 07:29 CTDOH,NELAC-NY10854-CT,	11/02/2017 21:18 NJDEP.PADEP	SR
84-74-2	Di-n-butyl phthalate	232		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
01 /12	Di li butyi pittiaiate	232		ug/kg ury	37.0	114	2		CTDOH,NELAC-NY10854-CT		Sit
117.04.0	D' (1.14.1)	MD		/ 4	57.0	114	2		,		CD
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	37.0	114	2	EPA 8270D Certifications:	11/02/2017 07:29 CTDOH,NELAC-NY10854-CT,	11/02/2017 21:18 NJDEP,PADEP	SR
206-44-0	Fluoranthene	767		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
		707			57.0		-	Certifications:	CTDOH,NELAC-NY10854-CT		
86-73-7	Fluorene	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
80-73-7	Fluorene	ND		ug/kg ury	37.0	114	2		NELAC-NY10854-CT,NJDEP,F		SK
118-74-1	Hexachlorobenzene	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
	110.tacinoroccinzone	, nD		-6 67		•	=		CTDOH,NELAC-NY10854-CT		
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	57.0	114	2	EPA 8270D	11/02/2017 07:29	11/02/2017 21:18	SR
		•							CTDOH,NELAC-NY10854-CT,		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 8 of 40

Client Sample ID: Sediments from UST York Sample ID: 17J1208-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17J1208 #170154 11-28 31 Drive, LIC NY Soil October 27, 2017 3:00 pm 10/30/2017

Semi-Volatiles, 8270 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

ference Method	Date/Time Prepared	Date/Time Analyzed	Anal
270D	11/02/2017 07:29	11/02/2017 21:18	SI

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NI	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NI	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
193-39-5	Indeno(1,2,3-cd)pyrene	207		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,N	11/02/2017 07:29 ELAC-NY10854-CT,I	11/02/2017 21:18 NJDEP,PADEP	SR
78-59-1	Isophorone	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NI	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
91-20-3	Naphthalene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
62-75-9	N-Nitrosodimethylamine	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NI	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
85-01-8	Phenanthrene	460		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,N	11/02/2017 07:29 ELAC-NY10854-CT,	11/02/2017 21:18 NJDEP,PADEP	SR
108-95-2	Phenol	ND		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,NE	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
129-00-0	Pyrene	596		ug/kg dry	57.0	114	2	EPA 8270D Certifications:	CTDOH,N	11/02/2017 07:29 ELAC-NY10854-CT,	11/02/2017 21:18 NJDEP,PADEP	SR
110-86-1	Pyridine	ND		ug/kg dry	228	456	2	EPA 8270D Certifications:	CTDOH,NI	11/02/2017 07:29 ELAC-NY10854-CT,N	11/02/2017 21:18 IJDEP,PADEP	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: 2-Fluorophenol	63.7 %			20-108							
4165-62-2	Surrogate: Phenol-d5	65.4 %			23-114							
4165-60-0	Surrogate: Nitrobenzene-d5	52.6 %			22-108							
321-60-8	Surrogate: 2-Fluorobiphenyl	57.0 %			21-113							
118-79-6	Surrogate: 2,4,6-Tribromophenol	69.0 %			19-110							

	Surrogate Recoveries	Result	Acceptance Kange
367-12-4	Surrogate: 2-Fluorophenol	63.7 %	20-108
4165-62-2	Surrogate: Phenol-d5	65.4 %	23-114
4165-60-0	Surrogate: Nitrobenzene-d5	52.6 %	22-108
321-60-8	Surrogate: 2-Fluorobiphenyl	57.0 %	21-113
118-79-6	Surrogate: 2,4,6-Tribromophenol	69.0 %	19-110
1718-51-0	Surrogate: Terphenyl-d14	49.0 %	24-116

Semi-Volatiles, TCLP RCRA Target List

Sample Prepared by Method: EPA 3510C/1311

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-46-7	1,4-Dichlorobenzene	ND		ug/L	6.45	10.0	1	EPA 8270D/1311 Certifications: NELAC-NY	11/01/2017 14:20 /10854-CT,PADEP	11/02/2017 15:22	КН
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	7.22	10.0	1	EPA 8270D/1311 Certifications: CTDOH,NE	11/01/2017 14:20 ELAC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 9 of 40

Client Sample ID: Sediments from UST

<u>York Sample ID:</u> 17J1208-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 17J1208
 #170154 11-28 31 Drive, LIC NY
 Soil
 October 27, 2017
 3:00 pm
 10/30/2017

Semi-Volatiles, TCLP RCRA Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C/1311	
---	--

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	6.54	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	4.73	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
95-48-7	2-Methylphenol	ND		ug/L	1.71	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
65794-96-9	3- & 4-Methylphenols	ND		ug/L	7.43	20.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	КН
1319-77-3	Cresols, total	ND		ug/L	7.40	30.0	1		11/01/2017 14:20 AC-NY10854-CT	11/02/2017 15:22	KH
118-74-1	Hexachlorobenzene	ND		ug/L	5.91	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	6.62	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
67-72-1	Hexachloroethane	ND		ug/L	7.26	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
98-95-3	Nitrobenzene	ND		ug/L	3.93	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
87-86-5	Pentachlorophenol	ND		ug/L	7.53	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
110-86-1	Pyridine	ND		ug/L	6.37	10.0	1		11/01/2017 14:20 AC-NY10854-CT,N	11/02/2017 15:22 JDEP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	72.7 %			11-76						
4165-62-2	Surrogate: Phenol-d5	50.5 %			10-62						
4165-60-0	Surrogate: Nitrobenzene-d5	53.6 %			15-105						
321-60-8	Surrogate: 2-Fluorobiphenyl	86.0 %			17-100						
118-79-6	Surrogate: 2,4,6-Tribromophenol	94.6 %			15-148						
1718-51-0	Surrogate: Terphenyl-d14	79.4 %			22-88						

Pesticides, TCLP RCRA List

Sample Prepared by Method: EPA 3510C/1311

L	⊿og-in	N	01	tes:	
_					•

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
57-74-9	Chlordane, total	ND		ug/L	0.222	0.222	1	EPA 8081B/1311 Certifications: CTDOH,NE	11/01/2017 09:02 ELAC-NY10854-CT,N	11/01/2017 14:26 JDEP,PADEP	SA
72-20-8	Endrin	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	11/01/2017 09:02 ELAC-NY10854-CT,N	11/01/2017 14:26 JDEP,PADEP	SA
58-89-9	gamma-BHC (Lindane)	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	11/01/2017 09:02 ELAC-NY10854-CT,N	11/01/2017 14:26 JDEP,PADEP	SA
76-44-8	Heptachlor	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	11/01/2017 09:02 ELAC-NY10854-CT,N	11/01/2017 14:26 JDEP,PADEP	SA
1024-57-3	Heptachlor epoxide	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,NE	11/01/2017 09:02 ELAC-NY10854-CT,N	11/01/2017 14:26 JDEP,PADEP	SA

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Client Sample ID: Sediments from UST

<u>York Sample ID:</u> 17J1208-01

York Project (SDG) No.

Client Project ID

<u>Matrix</u>

Collection Date/Time

Date Received

17J1208

#170154 11-28 31 Drive, LIC NY

Soil

October 27, 2017 3:00 pm

10/30/2017

Pesticides, TCLP RCRA List

Sample Prepared by Method: EPA 3510C/1311

Log-in Notes:

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-43-5	Methoxychlor	ND		ug/L	0.0444	0.0444	1	EPA 8081B/1311 Certifications: CTDOH,N	11/01/2017 09:02 ELAC-NY10854-CT,N	11/01/2017 14:26 NJDEP,PADEP	SA
8001-35-2	Toxaphene	ND		ug/L	1.11	1.11	1	EPA 8081B/1311 Certifications: CTDOH,N	11/01/2017 09:02 ELAC-NY10854-CT,N	11/01/2017 14:26 IJDEP,PADEP	SA
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
877-09-8	Surrogate: Tetrachloro-m-xylene	78.2 %			30-120						
2051-24-3	Surrogate: Decachlorobiphenyl	81.9 %			30-120						

Herbicides, TCLP Target List

Sample Prepared by Method: EPA 3535A/1311

Log-in Notes:

Sample Notes:

CAS N	To. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/L	5.00	1	EPA 8151A/1311 Certifications: CTDOH,NI	11/02/2017 08:34 ELAC-NY10854-CT,N	11/02/2017 10:30 NJDEP	LAB
94-75-7	2,4-D	ND		ug/L	5.00	1	EPA 8151A/1311 Certifications: CTDOH,NI	11/02/2017 08:34 ELAC-NY10854-CT,N	11/02/2017 10:30 NJDEP	LAB
	Surrogate Recoveries	Result		Acceptance	e Range					
19719-28-9	Surrogate: 2,4-Dichlorophenylacetic acid	(L 88.6 %		30-1	50					

Metals, Target Analyte

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS N	lo. Pa	rameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7429-90-5	Aluminum		8180	В	mg/kg dry	6.82	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,	NJDEP,PADEP	
7440-36-0	Antimony		3.74		mg/kg dry	0.682	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,	NJDEP,PADEP	
7440-38-2	Arsenic		4.57		mg/kg dry	1.36	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
									CTDOH,NELAC-NY10854-CT,NJDEP,PADEP			
7440-39-3	Barium		88.5		mg/kg dry	1.36	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,	NJDEP,PADEP	
7440-41-7	Beryllium		ND		mg/kg dry	0.136	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
								Certifications:	CTDOH,NE	ELAC-NY10854-CT,N	JDEP,PADEP	
7440-43-9	Cadmium		ND		mg/kg dry	0.409	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
								Certifications:	CTDOH,NE	ELAC-NY10854-CT,N	JDEP,PADEP	
7440-70-2	Calcium		49500		mg/kg dry	6.82	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,	NJDEP,PADEP	
7440-47-3	Chromium		16.4		mg/kg dry	0.682	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,	NJDEP,PADEP	
7440-48-4	Cobalt		8.01		mg/kg dry	0.682	1	EPA 6010C		10/31/2017 12:10	11/01/2017 06:05	KML
								Certifications:	CTDOH,N	ELAC-NY10854-CT,	NJDEP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 11 of 40

FAX (203) 357-0166

Client Sample ID: Sediments from UST York Sample ID: 17J1208-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17J1208 #170154 11-28 31 Drive, LIC NY Soil October 27, 2017 3:00 pm 10/30/2017

Metals, Target Analyte

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS N	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference M	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
7440-50-8	Copper	36.9	mg/kg dry	0.682	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7439-89-6	Iron	31600	mg/kg dry	2.73	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7439-92-1	Lead	179	mg/kg dry	0.682	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7439-95-4	Magnesium	2930	mg/kg dry	6.82	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7439-96-5	Manganese	353	mg/kg dry	0.682	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7440-02-0	Nickel	7.93	mg/kg dry	0.682	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7440-09-7	Potassium	1020	mg/kg dry	6.82	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7782-49-2	Selenium	3.42	mg/kg dry	1.36	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7440-22-4	Silver	ND	mg/kg dry	0.682	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications: C	TDOH,NELAC-NY10854-CT,N	IJDEP,PADEP	
7440-23-5	Sodium	129	mg/kg dry	13.6	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications: C	CTDOH,NELAC-NY10854-CT,	NJDEP	
7440-28-0	Thallium	ND	mg/kg dry	1.36	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications: C	TDOH,NELAC-NY10854-CT,N	IJDEP,PADEP	
7440-62-2	Vanadium	17.9	mg/kg dry	1.36	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	
7440-66-6	Zinc	109	mg/kg dry	2.05	1	EPA 6010C	10/31/2017 12:10	11/01/2017 06:05	KML
						Certifications:	CTDOH,NELAC-NY10854-CT,	NJDEP,PADEP	

Metals, TCLP RCRA

Sample Prepared by Method: EPA 3015A/1311

<u>Log-i</u>	n No	tes:

Sample Notes:

CAS N	No. Pa	arameter Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	ND		mg/L	0.004	1	EPA 6010C/1311 Certifications: CTDOH,NI	11/02/2017 14:34 ELAC-NY10854-CT,N	11/03/2017 10:36 JDEP,PADEP	KML
7440-39-3	Barium	0.640	В	mg/L	0.011	1	EPA 6010C/1311 Certifications: CTDOH,N	11/02/2017 14:34 ELAC-NY10854-CT,	11/03/2017 10:36 NJDEP,PADEP	KML
7440-43-9	Cadmium	0.004		mg/L	0.003	1	EPA 6010C/1311 Certifications: CTDOH,N	11/02/2017 14:34 ELAC-NY10854-CT,	11/03/2017 10:36 NJDEP,PADEP	KML
7440-47-3	Chromium	ND		mg/L	0.006	1	EPA 6010C/1311 Certifications: CTDOH,NI	11/02/2017 14:34 ELAC-NY10854-CT,N	11/03/2017 10:36 JDEP,PADEP	KML
7439-92-1	Lead	0.018		mg/L	0.006	1	EPA 6010C/1311 Certifications: CTDOH,N	11/02/2017 14:34 ELAC-NY10854-CT,	11/03/2017 10:36 NJDEP,PADEP	KML
7782-49-2	Selenium	0.015	В	mg/L	0.011	1	EPA 6010C/1311 Certifications: CTDOH,N	11/02/2017 14:34 ELAC-NY10854-CT,1	11/03/2017 10:36 NJDEP,PADEP	KML
7440-22-4	Silver	ND		mg/L	0.006	1	EPA 6010C/1311 Certifications: CTDOH,NI	11/02/2017 14:34 ELAC-NY10854-CT,N	11/03/2017 10:36 JDEP,PADEP	KML

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 12 of 40

					Sample .	Information					
Client San	nple ID:	Sediments from U	ST						York Sample	e ID: 17	J1208-01
York Proje	ect (SDG) N	· 0.	Client F	roject II	D		Ma	atrix Colle	ection Date/Time	Date	Received
1	7J1208	_	#170154 11-28 3	•					27, 2017 3:00 1	om 1	0/30/2017
Mercury b	oy 7473					Log-in Notes:		Sample Note	es:		
Sample Prepare	d by Method: E	EPA 7473 soil							D 4 (T)	D / //D!	
CAS No) .	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		0.151		mg/kg dry	0.0409	1	EPA 7473 Certifications: CTDOH,3	10/31/2017 09:49 NJDEP,NELAC-NY108	10/31/2017 14:26	SY
						T . N				54-C1,I ADLI	
Mercury 7						Log-in Notes:		Sample Note	es:		
Sample Prepared CAS No		Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	1 at affects	ND	Flag	mg/L	0.00020		EPA 7473/1311	11/02/2017 14:19	11/02/2017 17:01	SY
								Certifications: NELAC-N	Y10854-CT,NJDEP,CT	TDOH	
Total Solid	ds					Log-in Notes:		Sample Note	es:		
Sample Prepare	d by Method: %	% Solids Prep									
CAS No).	Parameter	Result	Flag	Units	Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		73.3		%	0.100	1	SM 2540G Certifications: CTDOH	11/03/2017 11:22	11/03/2017 15:51	ТЈМ
		r METALS EPA 13				<u>Log-in Notes:</u>		Sample Note	es: EXT-Temp		
CAS No) .	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	TCLP Extra	ction	Completed		N/A	1.00	1	EPA 1311 Certifications: NELAC-N	10/31/2017 20:52 Y10854-CT,CTDOH,N	11/01/2017 12:49 IJDEP,PADEP	TAJ
TCLP Ext	traction fo	r SVOCS/PEST/HI	ERB			Log-in Notes:		Sample Note	es: EXT-Temp		
Sample Prepare	d by Method: E	EPA SW 846-1311 TCLP extr	for SVOA/PEST/HERE	BS							
CAS No) .	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	TCLP Extra	ction	Completed		N/A	1.00	1	EPA 1311 Certifications: NELAC-N	10/31/2017 18:50 Y10854-CT,CTDOH,N	11/01/2017 12:38 IJDEP,PADEP	TAJ
TCLP Ext	traction fo	r VOA by EPA 131	1 ZHE			Log-in Notes:		Sample Note	es: EXT-Temp		
Sample Prepare	d by Method: E	EPA SW 846-1311 TCLP ZH	E for VOA								
CAS No) .	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	TCLP Extra	ection	Completed		%	1.00	1	EPA 1311 Certifications: NELAC-N	10/31/2017 20:58 Y10854-CT,CTDOH,N	11/01/2017 13:13 IJDEP,PADEP	TAJ

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 13 of 40

Analytical Batch Summary

	J	·		
Batch ID: BJ71593	Preparation Method:	EPA 7473 soil	Prepared By:	SY
YORK Sample ID	Client Sample ID	Preparation Date		
17J1208-01	Sediments from UST	10/31/17		
BJ71593-BLK1	Blank	10/31/17		
BJ71593-SRM1	Reference	10/31/17		
Batch ID: BJ71606	Preparation Method:	EPA 3050B	Prepared By:	SY
YORK Sample ID	Client Sample ID	Preparation Date		
17J1208-01	Sediments from UST	10/31/17		
BJ71606-BLK1	Blank	10/31/17		
BJ71606-SRM1	Reference	10/31/17		
Batch ID: BJ71627	Preparation Method:	EPA SW 846-1311 TCLP extr. for SV	Prepared By:	TAJ
YORK Sample ID	Client Sample ID	Preparation Date		
17J1208-01	Sediments from UST	10/31/17		
BJ71627-BLK1	Blank	10/31/17		
Batch ID: BJ71631	Preparation Method:	EPA SW 846-1311 TCLP ext. for met	Prepared By:	TAJ
YORK Sample ID	Client Sample ID	Preparation Date		
17J1208-01	Sediments from UST	10/31/17		
BJ71631-BLK1	Blank	10/31/17		
Batch ID: BJ71632	Preparation Method:	EPA SW 846-1311 TCLP ZHE for VC	Prepared By:	TAJ
YORK Sample ID	Client Sample ID	Preparation Date		
17J1208-01	Sediments from UST	10/31/17		
BJ71632-BLK1	Blank	10/31/17		
Batch ID: BK70013	Preparation Method:	EPA 5035A	Prepared By:	RDS
YORK Sample ID	Client Sample ID	Preparation Date		
17J1208-01	Sediments from UST	11/01/17		
BK70013-BLK1	Blank	11/01/17		
BK70013-BLK2	Blank	11/01/17		
BK70013-BS1	LCS	11/01/17		
BK70013-BSD1	LCS Dup	11/01/17		
Batch ID: BK70023	Preparation Method:	EPA 3510C/1311	Prepared By:	TMP
YORK Sample ID	Client Sample ID	Preparation Date		
120 RESEARCH DRIVE	STRATFORD, CT 06615	■ 132-02 89th AVENUE	RICHMO	ND HILL, NY 11418

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 14 of 40

 17J1208-01
 Sediments from UST
 11/01/17

 BK70023-BLK1
 Blank
 11/01/17

 BK70023-BS1
 LCS
 11/01/17

 BK70023-BSD1
 LCS Dup
 11/01/17

Batch ID: BK70047 **Preparation Method:** EPA 5030B/1311 Prepared By: **RDS** YORK Sample ID Client Sample ID Preparation Date 17J1208-01 Sediments from UST 11/01/17 BK70047-BLK1 Blank 11/01/17 BK70047-BLK2 11/01/17 Blank BK70047-BS1 LCS 11/01/17 BK70047-BSD1 LCS Dup 11/01/17 BK70047-DUP1 11/01/17 Duplicate

Batch ID: BK70048 Preparation Method: EPA 3510C/1311 Prepared By: TMP

YORK Sample ID Client Sample ID Preparation Date

 17J1208-01
 Sediments from UST
 11/01/17

 BK70048-BLK1
 Blank
 11/01/17

 BK70048-BS1
 LCS
 11/01/17

 BK70048-BSD1
 LCS Dup
 11/01/17

 BK70048-DUP1
 Duplicate
 11/01/17

Batch ID: BK70078 **Preparation Method:** EPA 3550C **Prepared By:** SGM

 YORK Sample ID
 Client Sample ID
 Preparation Date

 17J1208-01
 Sediments from UST
 11/02/17

 BK70078-BLK1
 Blank
 11/02/17

 BK70078-BS1
 LCS
 11/02/17

 YORK Sample ID
 Client Sample ID
 Preparation Date

 17J1208-01
 Sediments from UST
 11/02/17

 BK70088-BLK1
 Blank
 11/02/17

 BK70088-BS1
 LCS
 11/02/17

 BK70088-BSD1
 LCS Dup
 11/02/17

Batch ID: BK70118 Preparation Method: EPA 7473 water Prepared By: SY

 YORK Sample ID
 Client Sample ID
 Preparation Date

 17J1208-01
 Sediments from UST
 11/02/17

 BK70118-BLK1
 Blank
 11/02/17

 BK70118-SRM1
 Reference
 11/02/17

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Batch ID: BK70119 **Preparation Method:** EPA 3015A/1311 **Prepared By:** SY

YORK Sample ID Client Sample ID Preparation Date

17J1208-01 Sediments from UST 11/02/17

BK70119-BLK1 Blank 11/02/17

BK70119-BLK2 Blank 11/02/17 BK70119-SRM1 Reference 11/02/17

Batch ID: BK70195 Preparation Method: % Solids Prep Prepared By: TAJ

YORK Sample ID Client Sample ID Preparation Date

17J1208-01 Sediments from UST 11/03/17

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 16 of 40

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BK70013 - EPA 5035A	4
---------------------------	---

Blank (BK70013-BLK1)				Prepared & Analyzed: 11/01/2017
1,1,1,2-Tetrachloroethane	ND	5.0	ug/kg wet	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
,1-Dichloroethylene	ND	5.0	"	
,1-Dichloropropylene	ND	5.0	"	
,2,3-Trichlorobenzene	ND	5.0	"	
,2,3-Trichloropropane	ND	5.0	"	
,2,4-Trichlorobenzene	ND	5.0	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
,2-Dibromoethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
,2-Dichloropropane	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	II .	
,3-Dichlorobenzene	ND	5.0	"	
,3-Dichloropropane	ND	5.0	"	
,4-Dichlorobenzene	ND	5.0	"	
,4-Dioxane	ND	100	"	
,2-Dichloropropane	ND	5.0	"	
2-Butanone	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
-Chlorotoluene	ND	5.0	"	
Acetone	ND	10	"	
Benzene	ND	5.0	"	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND ND	5.0	"	
Carbon tetrachloride	ND ND	5.0	"	
Chlorobenzene	ND ND	5.0	"	
Chloroethane	ND ND	5.0	"	
Chloroform	ND ND	5.0	"	
Chloromethane			"	
cis-1,2-Dichloroethylene	ND ND	5.0 5.0	"	
sis-1,2-Dichloropropylene			"	
Dibromochloromethane	ND	5.0	"	
Dibromocnioromethane Dibromomethane	ND	5.0	"	
	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
Ethyl Benzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
sopropylbenzene	ND	5.0		
Methyl tert-butyl ether (MTBE)	ND	5.0	"	
Methylene chloride	ND	10	"	
Naphthalene	2.8	10	"	
n-Butylbenzene	ND	5.0	"	

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		ĺ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	İ
Batch BK70013 - EPA 5035A												•

Blank (BK70013-BLK1)						Prepared & Analyzed: 11/01/2017
n-Propylbenzene	ND	5.0	na/ka wat			
p-Xylene	ND ND	5.0	ug/kg wet			
o- & m- Xylenes			"			
p-Isopropyltoluene	ND	10	,,			
sec-Butylbenzene	ND	5.0	"			
Styrene	ND ND	5.0	,,			
ert-Butylbenzene		5.0	,,			
	ND	5.0	,,			
Γetrachloroethylene	ND	5.0	,,			
Toluene	ND	5.0				
rans-1,2-Dichloroethylene	ND	5.0	"			
rans-1,3-Dichloropropylene	ND	5.0	"			
Frichloroethylene	ND	5.0	"			
Γrichlorofluoromethane	ND	5.0	"			
Vinyl acetate	ND	5.0	"			
Vinyl Chloride	ND	5.0	"			
Xylenes, Total	ND	15	"			
Surrogate: 1,2-Dichloroethane-d4	49.8		ug/L	50.0	99.5	77-125
Surrogate: Toluene-d8	49.8		"	50.0	99.6	85-120
Surrogate: p-Bromofluorobenzene	47.5		"	50.0	95.0	76-130
Blank (BK70013-BLK2)						Prepared & Analyzed: 11/01/2017
,1,1,2-Tetrachloroethane	ND	500	ug/kg wet			
,1,1-Trichloroethane	ND	500	"			
,1,2,2-Tetrachloroethane	ND	500	"			
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	500	"			
,1,2-Trichloroethane	ND	500	"			
,1-Dichloroethane	ND	500	"			
,1-Dichloroethylene	ND	500	"			
,1-Dichloropropylene	ND	500	"			
,2,3-Trichlorobenzene	ND	500	"			
,2,3-Trichloropropane	ND	500	"			
,2,4-Trichlorobenzene	ND	500	"			
,2,4-Trimethylbenzene	ND	500	"			
,2-Dibromo-3-chloropropane	ND	500	"			
,2-Dibromoethane	ND	500	"			
,2-Dichlorobenzene	ND	500	"			
,2-Dichloroethane	ND	500	"			
,2-Dichloropropane	ND	500	"			
,3,5-Trimethylbenzene	ND	500	"			
,3-Dichlorobenzene	ND	500	"			
,3-Dichloropropane	ND	500	"			
,4-Dichlorobenzene	ND	500	"			
,4-Dioxane	ND	10000	"			
2,2-Dichloropropane	ND	500	"			
-Butanone	ND ND	500	"			
2-Chlorotoluene	ND ND	500	,,			
-Chlorotoluene			,,			
	ND ND	500	,,			
Acetone	ND	1000	"			
Benzene Bromohongono	ND	500				
Bromobenzene	ND	500	"			

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 18 of 40

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch	BK70013 -	EPA	5035A

Blank (BK70013-BLK2)						Prepared & Analyzed: 11/01/2017
Bromodichloromethane	ND	500	ug/kg wet			
Bromoform	ND	500	"			
Bromomethane	ND	500	"			
Carbon tetrachloride	ND	500	"			
Chlorobenzene	ND	500	"			
Chloroethane	ND	500	"			
Chloroform	ND	500	"			
Chloromethane	ND	500	"			
cis-1,2-Dichloroethylene	ND	500	"			
cis-1,3-Dichloropropylene	ND	500	"			
Dibromochloromethane	ND	500	"			
Dibromomethane	ND	500	"			
Dichlorodifluoromethane	ND	500	"			
Ethyl Benzene	ND	500	"			
Hexachlorobutadiene	ND	500	"			
sopropylbenzene	ND	500	"			
Methyl tert-butyl ether (MTBE)	ND	500	"			
Methylene chloride	ND	1000	"			
Naphthalene	ND	1000	"			
-Butylbenzene	ND	500	"			
n-Propylbenzene	ND	500	"			
o-Xylene	ND	500	"			
o- & m- Xylenes	ND	1000	"			
o-Isopropyltoluene	ND	500	"			
sec-Butylbenzene	ND	500	"			
Styrene	ND	500	"			
ert-Butylbenzene	ND	500	"			
Tetrachloroethylene	ND	500	"			
Toluene	ND	500	"			
rans-1,2-Dichloroethylene	ND	500	"			
rans-1,3-Dichloropropylene	ND	500	"			
Trichloroethylene	ND	500	"			
Trichlorofluoromethane	ND	500	"			
Vinyl acetate	ND	500	"			
Vinyl Chloride	ND	500	"			
Xylenes, Total	ND	1500	"			
Surrogate: 1,2-Dichloroethane-d4	50.3		ug/L	50.0	101	77-125
Surrogate: Toluene-d8	49.0		"	50.0	97.9	85-120
Surrogate: p-Bromofluorobenzene	50.2		"	50.0	100	76-130

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 19 of 40

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	l

Ratch	BK70013	- EPA	5035A

LCS (BK70013-BS1)					Prepared & Analyzed: 11/01/2017
1,1,1,2-Tetrachloroethane	56.0	ug/L	50.0	112	75-129
1,1,1-Trichloroethane	51.5	"	50.0	103	71-137
,1,2,2-Tetrachloroethane	55.3	"	50.0	111	79-129
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	50.0	"	50.0	100	58-146
,1,2-Trichloroethane	56.7	"	50.0	113	83-123
,1-Dichloroethane	53.9	"	50.0	108	75-130
,1-Dichloroethylene	104	"	25.0	415	64-137 High Bias
,1-Dichloropropylene	51.9	"	50.0	104	77-127
,2,3-Trichlorobenzene	57.5	"	50.0	115	81-140
,2,3-Trichloropropane	54.7	"	50.0	109	81-126
,2,4-Trichlorobenzene	60.9	"	50.0	122	80-141
,2,4-Trimethylbenzene	54.7	"	50.0	109	84-125
,2-Dibromo-3-chloropropane	55.5	"	50.0	111	74-142
,2-Dibromoethane	55.4	"	50.0	111	86-123
,2-Dichlorobenzene	56.6	"	50.0	113	85-122
,2-Dichloroethane	52.9	"	50.0	106	71-133
,2-Dichloropropane	54.5	"	50.0	109	81-122
,3,5-Trimethylbenzene	54.0	"	50.0	109	82-126
,3-Dichlorobenzene	57.9	"	50.0	116	84-124
,3-Dichloropropane	55.4	"	50.0	111	83-123
,4-Dichlorobenzene	58.4	"	50.0	117	84-124
,4-Dioxane	1180	"	1000	117	10-228
,2-Dichloropropane	52.8	"	50.0	106	67-136
-Butanone	81.3	"	50.0	163	58-147 High Bias
-Chlorotoluene	54.1	,,	50.0		78-127
-Chlorotoluene	56.0	"	50.0	108 112	79-125
acetone	34.2	"	50.0		
denzene		"		68.3	36-155
Bromobenzene	52.1	"	50.0	104	77-127
	54.2	"	50.0	108	77-129
Bromochloromethane Bromodichloromethane	50.1	"	50.0	100	74-129
Bromoform	59.4	"	50.0	119	81-124
	57.3	"	50.0	115	80-136
romomethane	47.5		50.0	94.9	32-177
Carbon tetrachloride	54.1	"	50.0	108	66-143
Chlorobenzene	55.0	"	50.0	110	86-120
Chloroethane	45.1		50.0	90.2	51-142
Chloroform	51.6		50.0	103	76-131
Chloromethane	46.5	"	50.0	93.0	49-132
is-1,2-Dichloroethylene	52.1		50.0	104	74-132
is-1,3-Dichloropropylene	57.4	"	50.0	115	81-129
Dibromochloromethane	58.2	"	50.0	116	10-200
Dibromomethane	54.9	"	50.0	110	83-124
Dichlorodifluoromethane	42.2	"	50.0	84.4	28-158
thyl Benzene	58.0	"	50.0	116	84-125
lexachlorobutadiene	53.8	"	50.0	108	83-133
sopropylbenzene	53.9	"	50.0	108	81-127
Methyl tert-butyl ether (MTBE)	50.8	"	50.0	102	74-131
Methylene chloride	47.8	"	50.0	95.5	57-141
Naphthalene	57.3	"	50.0	115	86-141
a-Butylbenzene	58.9	"	50.0	118	80-130
n-Propylbenzene	58.2	"	50.0	116	74-136

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 20 of 40 ClientServices@

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC		_	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK70013 - EPA 5035A											
LCS (BK70013-BS1)							Prep	ared & Analy	zed: 11/01/	2017	
o-Xylene	54.4		ug/L	50.0		109	83-123				
p- & m- Xylenes	114		"	100		114	82-128				
p-Isopropyltoluene	55.8		"	50.0		112	85-125				
sec-Butylbenzene	56.6		"	50.0		113	83-125				
Styrene	57.1		"	50.0		114	86-126				
tert-Butylbenzene	54.1		"	50.0		108	80-127				
Tetrachloroethylene	52.3		"	50.0		105	80-129				
Toluene	56.6		"	50.0		113	85-121				
trans-1,2-Dichloroethylene	51.6		"	50.0		103	72-132				
trans-1,3-Dichloropropylene	60.4		"	50.0		121	78-132				
Trichloroethylene	54.8		"	50.0		110	84-123				
Trichlorofluoromethane	45.0		"	50.0		89.9	62-140				
Vinyl acetate	60.3		"	50.0		121	67-136				
Vinyl Chloride	46.0		"	50.0		92.0	52-130				
Surrogate: 1,2-Dichloroethane-d4	49.3		"	50.0		98.7	77-125				
Surrogate: Toluene-d8	50.6		"	50.0		101	85-120				
Surrogate: p-Bromofluorobenzene	49.6		"	50.0		99.1	76-130				
LCS Dup (BK70013-BSD1)							Prep	ared & Analy	zed: 11/01/	2017	
1,1,1,2-Tetrachloroethane	54.7		ug/L	50.0		109	75-129		2.40	30	
1,1,1-Trichloroethane	52.4		"	50.0		105	71-137		1.64	30	
1,1,2,2-Tetrachloroethane	53.0		"	50.0		106	79-129		4.17	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	52.3		"	50.0		105	58-146		4.45	30	
1,1,2-Trichloroethane	54.1		"	50.0		108	83-123		4.66	30	
1,1-Dichloroethane	54.2		"	50.0		108	75-130		0.592	30	
1,1-Dichloroethylene	109		"	25.0		437	64-137	High Bias	5.26	30	
1,1-Dichloropropylene	53.2		"	50.0		106	77-127	_	2.63	30	
1,2,3-Trichlorobenzene	58.7		"	50.0		117	81-140		2.10	30	
1,2,3-Trichloropropane	52.8		"	50.0		106	81-126		3.61	30	
1,2,4-Trichlorobenzene	62.7		"	50.0		125	80-141		2.87	30	
1,2,4-Trimethylbenzene	54.5		"	50.0		109	84-125		0.458	30	
1,2-Dibromo-3-chloropropane	55.0		"	50.0		110	74-142		0.905	30	
1,2-Dibromoethane	53.8		"	50.0		108	86-123		3.11	30	
1,2-Dichlorobenzene	56.8		"	50.0		114	85-122		0.265	30	
1,2-Dichloroethane	52.8		"	50.0		106	71-133		0.0946	30	
1,2-Dichloropropane	53.4		"	50.0		107	81-122		2.09	30	
1,3,5-Trimethylbenzene	51.9		"	50.0		104	82-126		3.91	30	
1,3-Dichlorobenzene	56.8		"	50.0		114	84-124		1.94	30	
1,3-Dichloropropane	54.8		"	50.0		110	83-123		1.09	30	
1,4-Dichlorobenzene	58.4		"	50.0		117	84-124		0.0685	30	
1,4-Dioxane	1160		"	1000		116	10-228		1.58	30	
2,2-Dichloropropane	54.0		"	50.0		108	67-136		2.17	30	
2-Butanone	75.8		"	50.0		152	58-147	High Bias	6.91	30	
2-Chlorotoluene	56.9		"	50.0		114	78-127		4.99	30	
4-Chlorotoluene	55.1		"	50.0		110	79-125		1.71	30	
Acetone	39.6		"	50.0		79.1	36-155		14.7	30	
Benzene	53.7		"	50.0		107	77-127		3.02	30	
Bromobenzene	51.3		"	50.0		103	77-129		5.37	30	
Bromochloromethane	52.2		"	50.0		104	74-129		4.13	30	

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

56.2

55.4

www.YORKLAB.com (203) 325-1371

Bromodichloromethane

Bromoform

FAX (203) 357-0166

112

111

81-124

80-136

50.0

50.0

ClientServices@ Page 21 of 40

5.54

3.43

30

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BK70(13 - EPA	5035A
-------------	----------	-------

LCS Dup (BK70013-BSD1)					Prepared &	Analyzed: 11/01/2	2017
Bromomethane	46.4	ug/L	50.0	92.7	32-177	2.39	30
Carbon tetrachloride	54.4	"	50.0	109	66-143	0.700	30
Chlorobenzene	56.0	"	50.0	112	86-120	1.84	30
Chloroethane	47.4	"	50.0	94.9	51-142	5.10	30
Chloroform	53.3	"	50.0	107	76-131	3.28	30
Chloromethane	46.5	"	50.0	93.1	49-132	0.107	30
cis-1,2-Dichloroethylene	56.2	"	50.0	112	74-132	7.52	30
cis-1,3-Dichloropropylene	56.0	"	50.0	112	81-129	2.52	30
Dibromochloromethane	58.4	"	50.0	117	10-200	0.257	30
Dibromomethane	56.1	"	50.0	112	83-124	2.23	30
Dichlorodifluoromethane	41.6	"	50.0	83.2	28-158	1.41	30
Ethyl Benzene	56.6	"	50.0	113	84-125	2.44	30
Hexachlorobutadiene	53.8	"	50.0	108	83-133	0.149	30
sopropylbenzene	54.0	"	50.0	108	81-127	0.148	30
Methyl tert-butyl ether (MTBE)	51.7	"	50.0	103	74-131	1.78	30
Methylene chloride	47.5	"	50.0	95.1	57-141	0.504	30
Naphthalene	56.9	"	50.0	114	86-141	0.735	30
a-Butylbenzene	58.8	"	50.0	118	80-130	0.153	30
-Propylbenzene	54.8	"	50.0	110	74-136	5.88	30
-Xylene	55.1	"	50.0	110	83-123	1.22	30
o- & m- Xylenes	113	"	100	113	82-128	0.733	30
p-Isopropyltoluene	55.1	"	50.0	110	85-125	1.17	30
ec-Butylbenzene	55.3	"	50.0	111	83-125	2.25	30
Styrene	55.4	"	50.0	111	86-126	2.90	30
ert-Butylbenzene	54.7	"	50.0	109	80-127	0.974	30
Tetrachloroethylene	49.6	"	50.0	99.2	80-129	5.32	30
Toluene	55.4	"	50.0	111	85-121	2.20	30
rans-1,2-Dichloroethylene	52.5	"	50.0	105	72-132	1.84	30
rans-1,3-Dichloropropylene	58.8	"	50.0	118	78-132	2.58	30
Trichloroethylene	53.8	"	50.0	108	84-123	1.93	30
Trichlorofluoromethane	47.2	"	50.0	94.3	62-140	4.78	30
/inyl acetate	63.2	"	50.0	126	67-136	4.70	30
Vinyl Chloride	45.4	"	50.0	90.8	52-130	1.31	30
Surrogate: 1,2-Dichloroethane-d4	50.1	"	50.0	100	77-125		
Surrogate: Toluene-d8	49.8	"	50.0	99.6	85-120		
Surrogate: p-Bromofluorobenzene	47.6	"	50.0	95.3	76-130		

120 RESEARCH DRIVE STRATFORD, CT 06615

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
•											

Blank (BK70047-BLK1)						Prepared & Analyzed: 11/01/2017
1,1-Dichloroethylene	ND	5.0	ug/L			
1,2-Dichloroethane	ND	5.0	"			
1,4-Dichlorobenzene	ND	5.0	"			
2-Butanone	ND	5.0	"			
Benzene	ND	5.0	"			
Carbon tetrachloride	ND	5.0	"			
Chlorobenzene	ND	5.0	"			
Chloroform	ND	5.0	"			
Tetrachloroethylene	ND	5.0	"			
Trichloroethylene	ND	5.0	"			
Vinyl Chloride	ND	5.0	"			
Surrogate: 1,2-Dichloroethane-d4	58.6		"	50.0	117	77-125
Surrogate: p-Bromofluorobenzene	49.5		"	50.0	99.0	76-130
Surrogate: Toluene-d8	45.9		"	50.0	91.8	85-120
Blank (BK70047-BLK2)						Prepared & Analyzed: 11/01/2017
,1-Dichloroethylene	ND	50	ug/L			
,2-Dichloroethane	ND	50	"			
,4-Dichlorobenzene	ND	50	"			
2-Butanone	ND	50	"			
Benzene	ND	50	"			
Carbon tetrachloride	ND	50	"			
Chlorobenzene	ND	50	"			
Chloroform	ND	50	"			
Γetrachloroethylene	ND	50	"			
Trichloroethylene	ND	50	"			
Vinyl Chloride	ND	50	"			
Surrogate: 1,2-Dichloroethane-d4	61.4		"	50.0	123	77-125
Surrogate: p-Bromofluorobenzene	51.0		"	50.0	102	76-130
Surrogate: Toluene-d8	45.2		"	50.0	90.4	85-120

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 23 of 40

York Analytical Laboratories, Inc.

Spike

Source*

%REC

Reporting

47

56

50

47

53

58.7

51.9

45.7

Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK70047 - EPA 5030B/1311										
LCS (BK70047-BS1)						Pre	pared & Analy	zed: 11/01/	2017	
1,1-Dichloroethylene	55	ug/L	25.0		220	68-134	High Bias			
1,2-Dichloroethane	58	"	50.0		117	69-133				
1,4-Dichlorobenzene	46	"	50.0		92.9	82-124				
2-Butanone	52	"	50.0		104	44-169				
Benzene	48	"	50.0		96.3	72-134				
Carbon tetrachloride	61	· ·	50.0		122	62-145				
Chlorobenzene	46	"	50.0		92.8	85-119				
Chloroform	55	"	50.0		111	74-131				
Tetrachloroethylene	49	"	50.0		97.5	78-133				
Trichloroethylene	48	"	50.0		95.6	81-125				
Vinyl Chloride	51	"	50.0		102	42-136				
Surrogate: 1,2-Dichloroethane-d4	59.4	"	50.0		119	77-125				
Surrogate: p-Bromofluorobenzene	53.0	"	50.0		106	76-130				
Surrogate: Toluene-d8	46.0	"	50.0		92.1	85-120				
LCS Dup (BK70047-BSD1)						Pre	pared & Analy	zed: 11/01/	2017	
1,1-Dichloroethylene	56	ug/L	25.0		224	68-134	High Bias	1.91	30	
1,2-Dichloroethane	61	"	50.0		122	69-133		4.13	30	
1,4-Dichlorobenzene	45	"	50.0		90.0	82-124		3.11	30	
2-Butanone	51	"	50.0		102	44-169		2.27	30	
Benzene	49	"	50.0		98.2	72-134		1.95	30	
Carbon tetrachloride	60	"	50.0		121	62-145		0.907	30	

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

93.3

112

99.5

93.4

105

117

104

91.4

85-119

74-131

78-133

81-125

42-136

77-125

76-130

85-120

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Chlorobenzene

Tetrachloroethylene

Surrogate: Toluene-d8

Surrogate: 1,2-Dichloroethane-d4

 ${\it Surrogate: p-Bromofluor obenzene}$

Trichloroethylene

Vinyl Chloride

Chloroform

RPD

30

30

30

30

30

0.537

1.38

2.03

2.31

3.44

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BK70047.	- EPA	5030B/1311	1

Duplicate (BK70047-DUP1)	*Source sample: 17J1	208-01 (Sed	liments fro	m UST)		Prepared & Analyzed: 11/01/2017				
1,1-Dichloroethylene	ND	50	ug/L		ND			200		
1,2-Dichloroethane	ND	50	"		ND			200		
1,4-Dichlorobenzene	ND	50	"		ND			200		
2-Butanone	ND	50	"		ND			200		
Benzene	ND	50	"		ND			200		
Carbon tetrachloride	ND	50	"		ND			200		
Chlorobenzene	ND	50	"		ND			200		
Chloroform	ND	50	"		ND			200		
Tetrachloroethylene	ND	50	"		ND			200		
Trichloroethylene	ND	50	"		ND			200		
Vinyl Chloride	ND	50	"		ND			200		
Surrogate: 1,2-Dichloroethane-d4	61.2		"	50.0		122	77-125			
Surrogate: p-Bromofluorobenzene	51.0		"	50.0		102	76-130			
Surrogate: Toluene-d8	45.0		"	50.0		90.0	85-120			

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 25 of 40

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Blank (BK70048-BLK1)						Pre	pared & Analyzed: 11/01/2017
1,4-Dichlorobenzene	ND	5.00	ug/L				
2,4,5-Trichlorophenol	ND	5.00	"				
2,4,6-Trichlorophenol	ND	5.00	"				
2,4-Dinitrotoluene	ND	5.00	"				
2-Methylphenol	ND	5.00	"				
3- & 4-Methylphenols	ND	10.0	"				
Cresols, total	ND	15.0	"				
Hexachlorobenzene	ND	5.00	"				
Hexachlorobutadiene	ND	5.00	"				
Hexachloroethane	ND	5.00	"				
Nitrobenzene	ND	5.00	"				
Pentachlorophenol	ND	5.00	"				
Pyridine	ND	5.00	"				
Surrogate: 2-Fluorophenol	29.4		"	75.7	38.8	11-76	
Surrogate: Phenol-d5	17.7		"	75.7	23.4	10-62	
Surrogate: Nitrobenzene-d5	28.2		"	53.2	52.9	15-105	
Surrogate: 2-Fluorobiphenyl	38.6		"	51.5	75.0	17-100	
Surrogate: 2,4,6-Tribromophenol	59.8		"	75.5	79.2	15-148	
Surrogate: Terphenyl-d14	29.7		"	50.0	59.4	22-88	
LCS (BK70048-BS1)						Pre	pared: 11/01/2017 Analyzed: 11/02/20
,4-Dichlorobenzene	15.1	5.00	ug/L	25.0	60.5	42-82	
2,4,5-Trichlorophenol	18.6	5.00	"	25.0	74.4	36-112	
2,4,6-Trichlorophenol	19.8	5.00	"	25.0	79.0	41-107	
2,4-Dinitrotoluene	21.2	5.00	"	25.0	84.6	41-114	
2-Methylphenol	12.4	5.00	"	25.0	49.6	10-90	
3- & 4-Methylphenols	10.0	10.0	"	25.0	40.1	10-101	
Cresols, total	22.4	15.0	"	50.0	44.8	30-130	
Hexachlorobenzene	20.4	5.00	"	25.0	81.6	27-120	
Hexachlorobutadiene	18.4	5.00	"	25.0	73.4	25-106	
Hexachloroethane	17.7	5.00	"	25.0	70.8	33-84	
Nitrobenzene	16.1	5.00	"	25.0	64.4	32-113	
Pentachlorophenol	19.6	5.00	"	25.0	78.4	19-127	
Pyridine	ND	5.00	"	25.0		10-46	Low Bias
Surrogate: 2-Fluorophenol	25.0		"	75.7	33.0	11-76	
Surrogate: Phenol-d5	17.1		"	75.7	22.5	10-62	
Surrogate: Nitrobenzene-d5	38.0		"	53.2	71.4	15-105	
Surrogate: 2-Fluorobiphenyl	39.0		"	51.5	75.8	17-100	
Surrogate: 2,4,6-Tribromophenol	104		"	75.5	138	15-148	
Surrogate: Terphenyl-d14	29.9		"	50.0	59.8	22-88	

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 40

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK70048 - EPA 3510C/1311											
LCS Dup (BK70048-BSD1)							Prepa	ared: 11/01/2	2017 Analyz	ed: 11/02/2	2017
1,4-Dichlorobenzene	15.1	5.00	ug/L	25.0		60.3	42-82		0.265	20	
2,4,5-Trichlorophenol	19.5	5.00	"	25.0		77.9	36-112		4.62	20	
2,4,6-Trichlorophenol	21.0	5.00	"	25.0		84.2	41-107		6.32	20	
2,4-Dinitrotoluene	23.2	5.00	"	25.0		92.6	41-114		9.07	20	
2-Methylphenol	12.8	5.00	"	25.0		51.1	10-90		3.02	20	
3- & 4-Methylphenols	10.9	10.0	"	25.0		43.4	10-101		8.05	20	
Cresols, total	23.6	15.0	"	50.0		47.3	30-130		5.30	20	
Hexachlorobenzene	24.7	5.00	"	25.0		98.8	27-120		19.0	20	
Hexachlorobutadiene	17.3	5.00	"	25.0		69.2	25-106		5.89	20	
Hexachloroethane	14.9	5.00	"	25.0		59.5	33-84		17.4	20	
Nitrobenzene	13.9	5.00	"	25.0		55.5	32-113		14.9	20	
Pentachlorophenol	22.4	5.00	"	25.0		89.6	19-127		13.4	20	
Pyridine	3.46	5.00	"	25.0		13.8	10-46		8.43	20	
Surrogate: 2-Fluorophenol	26.9		"	75.7		35.5	11-76				
Surrogate: Phenol-d5	17.4		"	75.7		23.0	10-62				
Surrogate: Nitrobenzene-d5	37.3		"	53.2		70.2	15-105				
Surrogate: 2-Fluorobiphenyl	39.1		"	51.5		75.8	17-100				
Surrogate: 2,4,6-Tribromophenol	109		"	75.5		145	15-148				
Surrogate: Terphenyl-d14	33.0		"	50.0		66.1	22-88				
Duplicate (BK70048-DUP1)	*Source sample: 1	7J1208-01 (See	diments fro	m UST)			Prepa	ared: 11/01/2	2017 Analyz	ed: 11/02/2	2017
,4-Dichlorobenzene	ND	5.00	ug/L		ND					200	
2,4,5-Trichlorophenol	ND	5.00	"		ND					200	
2,4,6-Trichlorophenol	ND	5.00	"		ND					200	
2,4-Dinitrotoluene	ND	5.00	"		ND					200	
2-Methylphenol	ND	5.00	"		ND					200	
3- & 4-Methylphenols	ND	10.0	"		ND					200	
Cresols, total	ND	15.0	"		ND					200	
Hexachlorobenzene	ND	5.00	"		ND					200	
Hexachlorobutadiene	ND	5.00	"		ND					200	
Hexachloroethane	ND	5.00	"		ND					200	
Nitrobenzene	ND	5.00	"		ND					200	
Pentachlorophenol	ND	5.00	"		ND					200	
Pyridine	ND	5.00	"		ND					200	
Surrogate: 2-Fluorophenol	44.1		"	75.7		58.3	11-76				
Surrogate: Phenol-d5	30.9		"	75.7		40.8	10-62				
Surrogate: Nitrobenzene-d5	25.4		"	53.2		47.8	15-105				
Surrogate: 2-Fluorobiphenyl	34.0		"	51.5		66.1	17-100				
Surrogate: 2,4,6-Tribromophenol	73.6		"	75.5		97.5	15-148				
surroguie. 2,4,0-111010mophenoi											

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 27 of 40 ClientServices@

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratah	BK70078	FDA	25504	\neg

Blank (BK70078-BLK1)				Prepared & Analyzed: 11/02/2017
1,2,4-Trichlorobenzene	ND	41.7	ug/kg wet	
1,2-Dichlorobenzene	ND	41.7	"	
1,3-Dichlorobenzene	ND	41.7	"	
1,4-Dichlorobenzene	ND	41.7	"	
2,4,5-Trichlorophenol	ND	41.7	"	
2,4,6-Trichlorophenol	ND	41.7	"	
2,4-Dichlorophenol	ND	41.7	"	
2,4-Dimethylphenol	ND	41.7	"	
2,4-Dinitrophenol	ND	83.3	"	
2,4-Dinitrotoluene	ND	41.7	"	
,6-Dinitrotoluene	ND	41.7	"	
2-Chloronaphthalene	ND	41.7	"	
-Chlorophenol	ND	41.7	"	
-Methylnaphthalene	ND	41.7	"	
-Methylphenol	ND	41.7	"	
-Nitroaniline	ND	83.3	"	
2-Nitrophenol	ND	41.7	"	
- & 4-Methylphenols	ND	41.7	"	
,3-Dichlorobenzidine	ND	41.7	"	
-Nitroaniline	ND	83.3	"	
,6-Dinitro-2-methylphenol	ND	83.3	"	
-Bromophenyl phenyl ether	ND	41.7	"	
-Chloro-3-methylphenol	ND	41.7	"	
-Chloroaniline	ND	41.7	"	
-Chlorophenyl phenyl ether	ND	41.7	"	
-Nitroaniline	ND	83.3	"	
-Nitrophenol	ND	83.3	"	
Acenaphthene	ND	41.7	"	
cenaphthylene	ND	41.7	"	
Aniline	ND	167	"	
Anthracene	ND	41.7	"	
Benzo(a)anthracene	ND	41.7	"	
Benzo(a)pyrene	ND	41.7	"	
Benzo(b)fluoranthene	ND	41.7	"	
Benzo(g,h,i)perylene	ND	41.7	"	
Benzo(k)fluoranthene	ND	41.7	"	
Benzyl alcohol	ND	41.7	"	
Benzyl butyl phthalate	ND	41.7	"	
Bis(2-chloroethoxy)methane	ND	41.7	"	
Bis(2-chloroethyl)ether	ND	41.7	"	
Bis(2-chloroisopropyl)ether	ND	41.7	"	
Bis(2-ethylhexyl)phthalate	ND	41.7	"	
Chrysene	ND	41.7	"	
Dibenzo(a,h)anthracene	ND	41.7	"	
Dibenzofuran	ND	41.7	"	
Piethyl phthalate	ND	41.7	"	
Dimethyl phthalate	ND	41.7	"	
Pi-n-butyl phthalate	ND	41.7	"	
Di-n-octyl phthalate	ND	41.7	"	
luoranthene	ND	41.7	"	
Fluorene	ND	41.7	"	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 28 of 40

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BK70078-BLK1)						Prepared & Analyzed: 11/02/2017
Hexachlorobenzene	ND	41.7	ug/kg wet			
Hexachlorobutadiene	ND	41.7	"			
Hexachlorocyclopentadiene	ND	41.7	"			
Iexachloroethane	ND	41.7	"			
ndeno(1,2,3-cd)pyrene	ND	41.7	"			
ophorone	ND	41.7	"			
Iaphthalene	ND	41.7	"			
itrobenzene	ND	41.7	"			
I-Nitrosodimethylamine	ND	41.7	"			
-nitroso-di-n-propylamine	ND	41.7	"			
-Nitrosodiphenylamine	ND	41.7	"			
entachlorophenol	ND	41.7	"			
henanthrene	ND	41.7	"			
henol	ND	41.7	"			
yrene	ND	41.7	"			
yridine	ND	167	"			
-			"	2520	40.3	20.100
urrogate: 2-Fluorophenol	1020		"	2520	40.3	20-108
urrogate: Phenol-d5	994			2520	39.4	23-114
rrogate: Nitrobenzene-d5	671		"	1770	37.8	22-108
urrogate: 2-Fluorobiphenyl	631		"	1720	36.7	21-113
urrogate: 2,4,6-Tribromophenol	1050		"	2520	41.9	19-110
rrogate: Terphenyl-d14	513		"	1670	30.8	24-116
CS (BK70078-BS1)						Prepared & Analyzed: 11/02/2017
2,4-Trichlorobenzene	490	41.7	ug/kg wet	833	58.8	23-130
-Dichlorobenzene	453	41.7	"	833	54.3	26-113
-Dichlorobenzene	443	41.7	"	833	53.2	32-113
1-Dichlorobenzene	439	41.7	"	833	52.6	28-111
4,5-Trichlorophenol	469	41.7	"	833	56.2	14-138
4,6-Trichlorophenol	532	41.7	"	833	63.8	27-122
4-Dichlorophenol	572	41.7	"	833	68.7	23-133
4-Dimethylphenol	584	41.7	"	833	70.1	15-131
4-Dinitrophenol	176	83.3	"	833	21.1	10-149
4-Dinitrotoluene	555	41.7	"	833	66.6	30-123
6-Dinitrotoluene	587	41.7	"	833	70.5	30-125
Chloronaphthalene	491	41.7	"	833	59.0	22-115
Chlorophenol	519	41.7	"	833	62.3	25-121
Methylnaphthalene	548	41.7	"	833	65.8	16-127
Methylphenol	461	41.7	"	833	55.3	10-146
Nitroaniline	582	83.3	"	833	69.9	24-126
Nitrophenol	520	41.7	"	833	62.4	17-129
& 4-Methylphenols	411	41.7	"	833	49.3	20-109
3-Dichlorobenzidine	472	41.7	"	833	56.6	10-147
Vitroaniline	531	83.3	"	833	63.8	23-123
6-Dinitro-2-methylphenol	393	83.3	"	833	47.2	10-149
Bromophenyl phenyl ether	555	41.7	"	833	66.6	30-138
Chloro-3-methylphenol	550	41.7	"	833	66.0	16-138
Chloroaniline	465		,,	833		10-138
-Chlorophenyl phenyl ether	532	41.7	"	833	55.8 63.9	18-132
Nitroaniline	532 558	41.7 83.3	"	833	63.9 67.0	18-132 14-125

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD]
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

7 that y to	Result	Limit	Omts	Level	iccsuit	/orche	Lillitis	1 144 5		2	16
Batch BK70078 - EPA 3550C											
LCS (BK70078-BS1)							Prep	ared & Anal	lyzed: 11/02/2	2017	
Acenaphthene	549	41.7	ug/kg wet	833		65.9	17-124				
Acenaphthylene	526	41.7	"	833		63.2	16-124				
Aniline	441	167	"	833		52.9	10-111				
Anthracene	593	41.7	"	833		71.1	24-124				
Benzo(a)anthracene	586	41.7	"	833		70.3	25-134				
Benzo(a)pyrene	601	41.7	"	833		72.1	29-144				
Benzo(b)fluoranthene	587	41.7	"	833		70.4	20-151				
Benzo(g,h,i)perylene	617	41.7	"	833		74.0	10-153				
Benzo(k)fluoranthene	590	41.7	"	833		70.8	10-148				
Benzyl alcohol	515	41.7	"	833		61.8	17-128				
Benzyl butyl phthalate	576	41.7	"	833		69.1	10-132				
Bis(2-chloroethoxy)methane	539	41.7	"	833		64.7	10-129				
Bis(2-chloroethyl)ether	486	41.7	"	833		58.3	14-125				
Bis(2-chloroisopropyl)ether	478	41.7	"	833		57.3	14-122				
Bis(2-ethylhexyl)phthalate	582	41.7	"	833		69.9	10-141				
Chrysene	574	41.7	"	833		68.9	24-116				
Dibenzo(a,h)anthracene	602	41.7	"	833		72.2	17-147				
Dibenzofuran	521	41.7	"	833		62.5	23-123				
Diethyl phthalate	526	41.7	"	833		63.1	23-122				
Dimethyl phthalate	517	41.7	"	833		62.1	28-127				
Di-n-butyl phthalate	549	41.7	"	833		65.9	19-123				
Di-n-octyl phthalate	590	41.7	"	833		70.8	10-132				
Fluoranthene	590	41.7	"	833		70.8	36-125				
Fluorene	554	41.7	"	833		66.5	16-130				
Hexachlorobenzene	487	41.7	"	833		58.5	10-129				
Hexachlorobutadiene	480	41.7	"	833		57.6	22-153				
Hexachlorocyclopentadiene	335	41.7	"	833		40.2	10-134				
Hexachloroethane	441	41.7	"	833		53.0	20-112				
Indeno(1,2,3-cd)pyrene	583	41.7	"	833		70.0	10-155				
Isophorone	513	41.7	"	833		61.5	14-131				
Naphthalene	514	41.7	"	833		61.6	20-121				
Nitrobenzene	471	41.7	"	833		56.5	20-121				
N-Nitrosodimethylamine	439	41.7	"	833		52.7	10-124				
N-nitroso-di-n-propylamine	427	41.7	"	833		51.2	21-119				
N-Nitrosodiphenylamine	631	41.7	"	833		75.7	10-163				
Pentachlorophenol	414	41.7	"	833		49.6	10-143				
Phenanthrene	584	41.7	"	833		70.1	24-123				
Phenol	574	41.7	"	833		68.9	15-123				
Pyrene	595	41.7	"	833		71.4	24-132				
Pyridine	351	167	"	833		42.1	10-92				
Surrogate: 2-Fluorophenol	1570		"	2520		62.4	20-108				_
Surrogate: Phenol-d5	1610		"	2520		63.7	23-114				
Surrogate: Nitrobenzene-d5	1040		"	1770		58.6	22-108				
Surrogate: 2-Fluorobiphenyl	1010		"	1720		58.9	21-113				
Surrogate: 2,4,6-Tribromophenol	1790		"	2520		71.1	30-130				

120 RESEARCH DRIVE www.YORKLAB.com

Surrogate: Terphenyl-d14

STRATFORD, CT 06615 (203) 325-1371

854

132-02 89th AVENUE FAX (203) 357-0166

51.2

24-116

1670

RICHMOND HILL, NY 11418

ClientServices@ Page 30 of 40

Organochlorine Pesticides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BK70023-BLK1)						Prepared &	Analyzed: 11/01/2	2017
Chlordane, total	ND	0.200	ug/L					
Endrin	ND	0.0400	"					
gamma-BHC (Lindane)	ND	0.0400	"					
Heptachlor	ND	0.0400	"					
Heptachlor epoxide	ND	0.0400	"					
Methoxychlor	ND	0.0400	"					
Гохарhene	ND	1.00	"					
Surrogate: Tetrachloro-m-xylene	1.60		"	2.00	80.2	30-120		
Surrogate: Decachlorobiphenyl	1.64		"	2.00	81.9	30-120		
LCS (BK70023-BS1)						Prepared &	Analyzed: 11/01/2	2017
Endrin	1.17	0.0400	ug/L	1.00	117	40-120		
gamma-BHC (Lindane)	1.19	0.0400	"	1.00	119	40-120		
Heptachlor	1.09	0.0400	"	1.00	109	40-120		
Heptachlor epoxide	1.11	0.0400	"	1.00	111	40-120		
Methoxychlor	1.15	0.0400	"	1.00	115	40-120		
Surrogate: Tetrachloro-m-xylene	1.72		"	2.00	85.9	30-120		
Surrogate: Decachlorobiphenyl	1.63		"	2.00	81.7	30-120		
LCS Dup (BK70023-BSD1)						Prepared &	Analyzed: 11/01/2	2017
Endrin	1.08	0.0400	ug/L	1.00	108	40-120	8.47	30
gamma-BHC (Lindane)	1.18	0.0400	"	1.00	118	40-120	0.758	30
Heptachlor	1.14	0.0400	"	1.00	114	40-120	4.86	30
Heptachlor epoxide	1.19	0.0400	"	1.00	119	40-120	7.00	30
Methoxychlor	1.15	0.0400	"	1.00	115	40-120	0.532	30
Surrogate: Tetrachloro-m-xylene	1.78		"	2.00	89.1	30-120		
Surrogate: Decachlorobiphenyl	1.74		"	2.00	87.2	30-120		

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Chlorinated Herbicides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK70088 - EPA 3535A/1311											
Blank (BK70088-BLK1)							Prepa	ared & Analy	yzed: 11/02/	2017	
2,4,5-TP (Silvex)	ND	5.00	ug/L								
2,4-D	ND	5.00	"								
Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	130		"	125		104	30-150				
LCS (BK70088-BS1)							Prepa	ared & Analy	yzed: 11/02/	2017	
2,4,5-TP (Silvex)	22.8	5.00	ug/L	40.0		56.9	40-140				
2,4-D	26.2	5.00	"	40.0		65.6	40-140				
Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	90.5		"	125		72.4	30-150				
LCS Dup (BK70088-BSD1)							Prepa	ared & Analy	yzed: 11/02/	2017	
2,4,5-TP (Silvex)	22.5	5.00	ug/L	40.0		56.2	40-140		1.10	30	
2,4-D	27.2	5.00	"	40.0		68.1	40-140		3.74	30	
Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	91.5		"	125		73.2	30-150				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 32 of 40

Metals by ICP - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Satch BJ71606 - EPA 3050B						P d. 10/2	1/2017 A1 4: 11/01/201
lank (BJ71606-BLK1)						Prepared: 10/3	1/2017 Analyzed: 11/01/201
luminum	23.2	5.00	mg/kg wet				
ntimony	ND	0.500	"				
rsenic	ND	1.00	"				
nrium	ND	1.00	"				
eryllium	ND	0.100	"				
dmium	ND	0.300	"				
lcium	ND	5.00	"				
romium	ND	0.500	"				
balt	ND	0.500	"				
pper	ND	0.500	"				
n	ND	2.00	"				
ad	ND	0.500	"				
ignesium	ND	5.00	"				
nnganese	ND	0.500	"				
ckel	ND	0.500	"				
tassium	ND	5.00	"				
lenium	ND	1.00	"				
ver	ND	0.500	"				
dium	ND	10.0	"				
allium	ND	1.00	"				
nadium	ND	1.00	"				
nc	ND	1.50	"				
eference (BJ71606-SRM1)						Prepared: 10/3	1/2017 Analyzed: 11/01/201
uminum	8180	5.00	mg/kg wet	8770	93.2	39.6-160.89	
timony	122	0.500	"	117	104	19.6-259.6	
senic	29.0	1.00	"	29.6	98.0	67-161.9	
rium	200	1.00	"	198	101	72-129.1	
ryllium	89.7	0.100	"	92.0	97.5	73.8-126.4	
dmium	68.9	0.300	"	71.5	96.4	73.3-126.7	
leium	6220	5.00	"	6310	98.6	73.9-126.9	
romium	100	0.500	"	102	98.3	68.2-132	
balt	52.7	0.500	"	51.4	102	74.3-125.7	
pper	168	0.500	"	153	110	72.5-131.4	
n	14500	2.00	"	15200	95.4	36.4-163.9	
	133	0.500	"	139	95.9	69.7-130.8	
au	100		"	2760	96.7	64.6-135.1	
	2670	5.00				- 110 10011	
ngnesium	2670 267	5.00 0.500	"				
ngnesium nnganese	267	0.500		270	98.9	73.9-126	
ngnesium nganese ckel	267 131	0.500 0.500	"	270 129	98.9 102	73.9-126 70.3-129.7	
ngnesium nnganese ckel tassium	267 131 2180	0.500 0.500 5.00	"	270 129 2420	98.9 102 90.2	73.9-126 70.3-129.7 60.3-140.1	
ngnesium nganese ckel tassium lenium	267 131 2180 59.5	0.500 0.500 5.00 1.00	" "	270 129 2420 60.6	98.9 102 90.2 98.2	73.9-126 70.3-129.7 60.3-140.1 63.2-136.9	
agnesium anganese ckel tassium lenium ver	267 131 2180 59.5 34.8	0.500 0.500 5.00 1.00 0.500	""	270 129 2420 60.6 36.4	98.9 102 90.2 98.2 95.6	73.9-126 70.3-129.7 60.3-140.1 63.2-136.9 66.8-133.4	
ad agnesium anganese ckel tassium lenium lver dium	267 131 2180 59.5 34.8 733	0.500 0.500 5.00 1.00 0.500 10.0	" " " " " " " " " " " " " " " " " " " "	270 129 2420 60.6 36.4 819	98.9 102 90.2 98.2 95.6 89.4	73.9-126 70.3-129.7 60.3-140.1 63.2-136.9 66.8-133.4 59.2-141.1	
agnesium anganese ckel tassium lenium lver	267 131 2180 59.5 34.8	0.500 0.500 5.00 1.00 0.500	""	270 129 2420 60.6 36.4	98.9 102 90.2 98.2 95.6	73.9-126 70.3-129.7 60.3-140.1 63.2-136.9 66.8-133.4	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 33 of 40

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BK70119 - EPA 3015A/1311											
Blank (BK70119-BLK1)							Prep	pared: 11/02/2	2017 Analyz	zed: 11/03/2	2017
Arsenic	ND	0.004	mg/L								
Barium	ND	0.011	"								
Cadmium	ND	0.003	"								
Chromium	ND	0.006	"								
Lead	ND	0.006	"								
Selenium	ND	0.011	"								
Silver	ND	0.006	"								
Blank (BK70119-BLK2)							Prep	pared: 11/02/2	2017 Analyz	zed: 11/03/2	2017
Arsenic	ND	0.004	mg/L								
Barium	0.254	0.011	"								
Cadmium	ND	0.003	"								
Chromium	ND	0.006	"								
Lead	ND	0.006	"								
Selenium	0.021	0.011	"								
Silver	ND	0.006	"								
Reference (BK70119-SRM1)							Prep	pared: 11/02/2	2017 Analyz	zed: 11/03/2	2017
Arsenic	0.721		ug/mL	0.740		97.5	84.3-114.3				
Barium	0.534		"	0.500		107	85-115				
Cadmium	0.239		"	0.240		99.5	84.9-115				
Chromium	0.895		"	0.860		104	85-115				
Lead	0.650		"	0.640		101	85-115				
Selenium	0.650		"	0.680		95.6	85.1-115.1				
Silver	0.378		"	0.600		63.0	85-115	Low Bias			

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 34 of 40

Mercury by EPA 7000/200 Series Methods - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ71593 - EPA 7473 soil											
Blank (BJ71593-BLK1)							Prep	ared & Anal	yzed: 10/31/	/2017	
Mercury	ND	0.0300	mg/kg wet								
Reference (BJ71593-SRM1)							Prep	ared & Anal	yzed: 10/31/	/2017	
Mercury	12.673		mg/kg	13.8		91.8	51.4-168.8				
Batch BK70118 - EPA 7473 water											
Blank (BK70118-BLK1)							Prep	ared & Anal	yzed: 11/02/	/2017	
Mercury	ND	0.0002000	mg/L								
Reference (BK70118-SRM1)							Prep	ared & Anal	yzed: 11/02/	/2017	
Mercury	0.0057000		mg/L	0.00740		77.0	70-130				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 35 of 40

Wet Chemistry Parameters - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ71627 - EPA SW 846-1	311 TCLP extr. for SVO	A/PEST/HE	RBS								
Blank (BJ71627-BLK1)							Prep	ared: 10/31/2	2017 Analyz	zed: 11/01/2	2017
TCLP Extraction	Completed	1.00	N/A								
Batch BJ71631 - EPA SW 846-1	311 TCLP ext. for metal	S									
Blank (BJ71631-BLK1)							Prep	ared: 10/31/2	2017 Analyz	zed: 11/01/2	2017
TCLP Extraction	Completed	1.00	N/A								
Batch BJ71632 - EPA SW 846-1	311 TCLP ZHE for VO	1									
Blank (BJ71632-BLK1)							Prep	ared: 10/31/2	2017 Analyz	zed: 11/01/2	2017

%

1.00

Completed

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

TCLP Extraction

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

Page 36 of 40 ClientServices@

RPD

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
17J1208-01	Sediments from UST	40mL 01_Clear Vial Cool to 4° C
17J1208-01	Sediments from UST	40mL Vial with Stir Bar-Cool 4° C

Sample and Data Qualifiers Relating to This Work Order

QL-02 This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method

has certain limitations with respect to analytes of this nature.

Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC,

the result is an estimated concentration.

EXT-Temp Extraction temperture slightly exceeded acceptance range.

EXT-COMP Completed

CCV-E The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20%

Difference for average Rf or >20% Drift for quadratic fit).

Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. B

Definitions and Other Explanations

Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RLREPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOO LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the

lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is

based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably

detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a

99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA

600 and 200 series methods.

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located Reported to

above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and

semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

120 RESEARCH DRIVE STRATFORD, CT 06615 **RICHMOND HILL, NY 11418** 132-02 89th AVENUE (203) 325-1371 FAX (203) 357-0166 ClientServices@

Page 38 of 40

www.YORKLAB.com

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 39 of 40

www.YORKLAB.com (203) 325-1371

YORK
ANALYTICAL LABORATORIES, INC.

120 RESEARCH DR. STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are fisted on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract.

Vork Project No. 17/1208

of

Page

TOUR Information	Report to:		Invoice To:	Your Project ID	Turn-Around Time	Donott/Deliverable Tone
American Huden Teach Con.		200	L	ai voofe	allin pilpolecilini	RepoluDeliverable Type
	SAME X	SAME		#170154	RUSH-Same Day	Summary Report x
Address: 15 Ocean Ave. 2nd FI	Name:	Name:	Muslima	11-28 31 Drive, LIC NY	RUSH-Next Day	QA Report
	Company:	Company:	y; Hydro Tech Env. Corp.	Purchase Order #	RUSH-Two Day	CT RCP
Phone.: 718-636-0800	Address:	Address	77 Arkay Dr. Suite G	00/-	RUSH-Three Day	CT RCP DQA/DUE Pkg
Contact: Paul I. Matti			Hauppauge Ny	16+8	RUSH-Four Day X	NY ASP A Package
E-mail: prinsts hydrotechenescentel com	E-mail:	E-mail	mward. hydrotacharvirormental.p.	Samples from CT NY MJ	Standard (5-7day)	NY ASP B Package
Samples will NOT be logged in and the turn-around time clock will not begin until any questions by York are resolved. Samples Collected/Authorized By (Signature) Samples Collected/Authorized By (Signature) Sample Identification Sediments from UST Sediments from UST Sample Samples Sample Identification Sediments from UST Sediments from UST Sample Identification Sediments from UST Sample Identification Sample Identification Sample Identification Sediments from UST Sediments from UST Sample Identification Sa	arly and Legibly. All Information will NOT be logged in and the last and the last and the last and the last and	e turn-around time v York are resolved. Matrix Codes S. soil Other specifyou, ec.) WW. wastewater GW. groundwater DW. drinking wa'er Air-A. ambient vir Air-SV. soil vapor S	Complete S260 full TICS Hund time 624 Site Spic. Fesolved. STARS list Nasau Co STARS list Nasau Co BTEX Suffolk Co BTEX Suff	Semi-Vols, Psurchend R270 or 625 8082PCB R270 or 625 8082PCB R200 BN Only 8151Hetb RC0. Acids Only CTRCP R2 PAH list App. IX Rudes TAGM list Site Spec. FIST TCL list TCLP Peat NDEP list App. IX CTRCP list App. IX TCL list TCLP Herb FIST App. IX Chlordane APP. IX CHlordane APP. IX Chlordane APP. IX C	Metals Misc. Org. Full IJsts	m m 2 2 3 3 2 v v
Comments:		Preservation (check all appliciable)	4-C Prozen	HC McOH	HNO, H,SO,	NaOH
x = same as before Compare to NYSDEC Part 375 UUSCO and TCLP standards	SCO and TCLP standards	Special Instructions Field Filtered Lab to Filter	Samples Relinquished By	10/30/11 17:10/35 Date/Time	Sample	Date/Time

UST Sediment Disposal Manifest

,	NON-HAZADDOUG	Generator ID Number	2. Page	of 3. Em	nergency Response F	hone	4. Waste Tra	cking Num	nber		
1	NON-HAZARDOUS WASTE MANIFEST	N / A	1	(28	7) 406-0083	}			1578		
	5. Generator's Name and Mailir	ng Address	Alt: George M	Gene	rator's Site Address (if different th	an mailing addres	ss)			
Ш	GBT Real Estate	LLC	terri sanos Romas	cot a 4							
	11-26 31st Drive										
	Long latend City										
	Generator's Phone: 376 6. Transporter 1 Company Nam	ne					U.S. EPA ID N	lumber			
Ш		/cling Technologies, Inc.					NYR	0 0	0134	94	0
	7. Transporter 2 Company Nam	ne					U.S. EPA ID N				
Ш			~ 1 Penne				PAD	g a	2661	3 8	4
	8. Designated Facility Name an	enmantal Systems (Trans Gr nd Site Address	HILLIPPLE LA				U.S. EPA ID N				
	Republic Environ	mental Systems (PA), LLC									
Ш	2869 Sandstone	Drive									
Ш	Hatfield PA 1944						PAD	0.8	5690	5 9	2
Ш	Facility's Phone: 245 8	22 a (5:335)			10. Contain	ners	11. Total	12. Unit	42 42 45		-
Ш	9. Waste Shipping Nam	e and Description			No.	Туре	Quantity	Wt./Vol.			
	Service 1				1	- //					
	Non Hezardo	ue Purge Water					And the State of t				
¥	MON-DO I 1095	leheleM betelug			3			P			
GENERATOR					-						
晹	2. Non Hazardo	ua Sediment					7 77				
lı	Non-DOT Reg	guieted Material				- 1	$\mathcal{A}(\cdot)$	5			
П		1			1		1 168	2			
Ш	3.										
Ш		•				ļ					
Ш											
H	4.										
Ш					1 1						
П	13. Special Handling Instruction	as and Additional Information									1/2
Н	13. Special Handling Instructio	ns and Additional Information									
	9.2)	•									
	Doc#	1									
Н	3	Ķ.									
	14. GENERATOR'S/OFFERO	R'S CERTIFICATION: I hereby declare that the rded, and are in all respects in proper condition for	contents of this consignment represent according to	ent are full	y and accurately des	cribed above onal governm	by the proper shental regulations	ipping nam	ie, and are classif	ied, packag	jed,
	Generator's/Offeror's Printed/I		of transport according to	Signatur		ond governi	ioritar rogalitations	-	Month	Day	Year
11	Generators/Offerors Pfinted/1	Typed Name			Ť					1	
V	45 International Chiamanto			l							L
INT'L	15. International Shipments	Import to U.S.	L Export	from U.S.	Port of en	•					
100		orts only):			Date leavi	ng U.S.					
TRANSPORTER	16. Transporter Acknowledgm Transporter 1 Printed/Typed N			Signatur	e ~ 711	and the			Month	Day	Year
OR	Transporter i Filinew Typed N				(Sat A)				-112	1201	11/
g	Transporter 2 Printed/Typed N	CANA ZA		Signatur	е				Month	Day	Year
BA	Transporter 2 Fillited Typed I	Yamo		1					ĺ	1	
Ľ				1							
A	17. Discrepancy Indication S	pace			П		Π	la all i		Euli Dele	tlan
	17a. Discrepancy mulcation 5	Quantity	☐ Type		Residue		Partial Re	jection		Full Reject	tion
					Manifest Reference I	Jumber					
	17b. Alternate Facility (or Ger	nerator)			maillest Reletelice I	1JIIIJG1.	U.S. EPA ID	Number			
Ē	17b. Alternate Facility (or der	icialor									
2											
I C	Facility's Phone: 17c. Signature of Alternate Fa	politic (or Generator)							Month	n Day	Year
H H	17c. Signature of Alternate Fa	acilly (of Generator)		I						1	
NV.											
DESIGNATED FACILITY											
Ž.											
		O and the Court of	covered by the manifest	excent ac	noted in Itam 17a						
		er or Operator: Certification of receipt of materials	covered by the manifest	Signatu					Month	n Day	Year
	Printed/Typed Name			Januar	7 / /	1.			11.7	1 h	110

ATTACHMENT Q Pre and Post-Injection Groundwater Lab Reports

Pre-Injection Lab Report (Feb 2018)

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 02/26/2018

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 18B0738

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 02/26/2018

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 18B0738

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on February 20, 2018 and listed below. The project was identified as your project: #170154 11-28 31 Drive, LIC NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18B0738-01	MW-1	Water	02/19/2018	02/20/2018
18B0738-02	MW-2	Water	02/19/2018	02/20/2018
18B0738-03	MW-3	Water	02/19/2018	02/20/2018
18B0738-04	MW-4	Water	02/19/2018	02/20/2018
18B0738-05	MW-6	Water	02/19/2018	02/20/2018
18B0738-06	Field Blank	Water	02/19/2018	02/20/2018
18B0738-07	Trip Blank	Water	02/19/2018	02/20/2018

General Notes for York Project (SDG) No.: 18B0738

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Beniamin Gulizia

Date: 02/26/2018

Client Sample ID: MW-1 18B0738-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18B0738#170154 11-28 31 Drive, LIC NYWaterFebruary 19, 2018 3:00 pm02/20/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 / 10854,NELAC-NY12	02/25/2018 16:35 2058,NJDEP	RDS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 / 10854,NELAC-NY12	02/25/2018 16:35 2058,NJDEP,PADEP	RDS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 / 10854,NELAC-NY12	02/25/2018 16:35 2058,NJDEP,PADEP	RDS
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30	02/25/2018 16:35	RDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 / 10854,NELAC-NY12	02/25/2018 16:35 2058,NJDEP,PADEP	RDS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 710854,NELAC-NY12	02/25/2018 16:35 2058,NJDEP,PADEP	RDS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEI	RDS P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 4 of 40

Client Sample ID: MW-1

<u>York Sample ID:</u> 18B0738-01

York Project (SDG) No. 18B0738 <u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm <u>Date Received</u> 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 5030B									D . (77)	
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Met	hod Date/Time Prepared	Date/Time Analyzed	Analyst
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NEI	02/25/2018 07:30 AC-NY10854,NELAC-NY	02/25/2018 16:35 12058,NJDEP,PADEP	RDS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NEI	02/25/2018 07:30 AC-NY10854,NELAC-NY	02/25/2018 16:35 12058,NJDEP,PADEP	RDS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NEI	02/25/2018 07:30 AC-NY10854,NELAC-NY	02/25/2018 16:35 12058,NJDEP,PADEP	
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE		RDS P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE	02/25/2018 16:35 LAC-NY12058,NJDEI	RDS P,PADEP
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CTI	02/25/2018 07:30 OOH,NELAC-NY10854,NE		
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NEI	02/25/2018 07:30 AC-NY10854,NELAC-NY		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 5 of 40

Client Sample ID: MW-1

York Sample ID:

18B0738-01

York Project (SDG) No. 18B0738

Sample Prepared by Method: EPA 5030B

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY120	02/25/2018 16:35 058,NJDEP,PADEP	RDS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAC	02/25/2018 16:35 C-NY12058,NJDEF	RDS P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY120	02/25/2018 16:35 058,NJDEP,PADEP	RDS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAG	02/25/2018 16:35 C-NY12058,NJDEF	RDS P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELA	02/25/2018 16:35 C-NY12058,NJDEF	RDS P,PADEP
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:		02/25/2018 16:35	RDS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:		02/25/2018 16:35	RDS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELA	02/25/2018 16:35	RDS PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELA	02/25/2018 16:35	RDS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAG	02/25/2018 16:35	RDS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAG	02/25/2018 16:35	RDS
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30	02/25/2018 16:35	RDS
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30	02/25/2018 16:35	RDS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELA	02/25/2018 16:35 C-NV12058 NIDER	RDS
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAG	02/25/2018 16:35	RDS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELA	02/25/2018 16:35	RDS
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELA	02/25/2018 16:35	RDS
127-18-4	Tetrachloroethylene	0.28	J	ug/L	0.20	0.50	1	Certifications: EPA 8260C		02/25/2018 16:35	RDS
								Certifications:	CTDOH,NELAC-NY10854,NELA	C-NY12058,NJDE	P,PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAG	02/25/2018 16:35 C-NY12058,NJDEF	RDS P,PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAG	02/25/2018 16:35 C-NY12058,NJDEF	RDS P,PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAC	02/25/2018 16:35 C-NY12058,NJDEF	RDS P,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAG	02/25/2018 16:35 C-NY12058,NJDEF	RDS P,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NELAG	02/25/2018 16:35 C-NY12058,NJDEF	RDS P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 6 of 40

Client Sample ID: MW-1 18B0738-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18B0738#170154 11-28 31 Drive, LIC NYWaterFebruary 19, 2018 3:00 pm02/20/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEP,	RDS PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 16:35 AC-NY12058,NJDEP	RDS
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	97.4 %			69-130							
2037-26-5	Surrogate: Toluene-d8	99.7 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			79-122							

Sample Information

Client Sample ID: MW-2 York Sample ID: 18B0738-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18B0738#170154 11-28 31 Drive, LIC NYWaterFebruary 19, 2018 3:00 pm02/20/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP,
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY12	02/25/2018 17:02 2058,NJDEP	RDS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY12	02/25/2018 17:02 2058,NJDEP,PADEP	RDS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY12	02/25/2018 17:02 2058,NJDEP,PADEP	RDS
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30	02/25/2018 17:02	RDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY12	02/25/2018 17:02 2058,NJDEP,PADEP	RDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 7 of 40

Client Sample ID: MW-2

York Sample ID: 18B0738-02

York Project (SDG) No. 18B0738

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

	ed by Method: EPA 5030B											
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY	02/25/2018 17:02 12058,NJDEP,PADEP	RDS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY	02/25/2018 17:02 12058,NJDEP,PADEP	RDS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY	02/25/2018 17:02 12058,NJDEP,PADEP	RDS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY	02/25/2018 17:02 12058,NJDEP,PADEP	RDS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEI	02/25/2018 17:02 LAC-NY12058,NJDEI	RDS P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 8 of 40

Client Sample ID: MW-2

York Sample ID: 18B0738-02

York Project (SDG) No. 18B0738

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
156-59-2	cis-1,2-Dichloroethylene	0.56		ug/L	0.20	0.50	1	EPA 8260C		02/25/2018 07:30	02/25/2018 17:02	RDS
								Certifications:	CTDOH,N		LAC-NY12058,NJDE	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 17:02 2058,NJDEP,PADEP	RDS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY	02/25/2018 17:02 2058,NJDEP,PADEP	RDS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 17:02 2058,NJDEP,PADEP	RDS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	0.86		ug/L	0.20	0.50	1	EPA 8260C		02/25/2018 07:30	02/25/2018 17:02	RDS
								Certifications:	CTDOH,N		LAC-NY12058,NJDE	EP,PADEP
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY	02/25/2018 17:02 2058,NJDEP,PADEP	RDS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,NJDEI	RDS P,PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 .AC-NY12058,PADE	RDS P
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 17:02 AC-NY12058,PADE	RDS P
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30	02/25/2018 17:02	RDS
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30	02/25/2018 17:02	RDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 9 of 40

Client Sample ID: MW-2

York Sample ID:

18B0738-02

York Project (SDG) No. 18B0738 <u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
127-18-4	Tetrachloroethylene	25		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDE	RDS P,PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
79-01-6	Trichloroethylene	0.40	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDE	RDS P,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 17:02 AC-NY12058,NJDEP	RDS PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 17:02 AC-NY12058,NJDEP	RDS
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %			69-130							
2037-26-5	Surrogate: Toluene-d8	99.3 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

Sample Information

Client Sample ID: MW-3

York Sample ID:

18B0738-03

York Project (SDG) No. 18B0738 <u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Date/Time Method Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEI	02/25/2018 17:29 AC-NY12058,NJDEP	RDS PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEI	02/25/2018 17:29 AC-NY12058,NJDEP	RDS PADEP

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 10 of 40

Client Sample ID: MW-3

York Sample ID: 18B0738-03

York Project (SDG) No. 18B0738 Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY12	02/25/2018 17:29 2058,NJDEP	RDS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY12	02/25/2018 17:29 2058,NJDEP,PADEP	RDS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY12	02/25/2018 17:29 2058,NJDEP,PADEP	RDS
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30	02/25/2018 17:29	RDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY12	02/25/2018 17:29 2058,NJDEP,PADEP	RDS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY12	02/25/2018 17:29 2058,NJDEP,PADEP	RDS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 10854,NELAC-NY12	02/25/2018 17:29 2058,NJDEP,PADEP	RDS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 LAC-NY10854,NEL	02/25/2018 17:29 AC-NY12058,NJDEF	RDS P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 11 of 40

Client Sample ID: MW-3

Sample Prepared by Method: EPA 5030B

York Sample ID: 18B0738-03

York Project (SDG) No. 18B0738 <u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result 1	Flag Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Tir Method Prepared Analyz	
591-78-6	2-Hexanone	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
106-43-4	4-Chlorotoluene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
108-10-1	4-Methyl-2-pentanone	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
67-64-1	Acetone	ND	ug/L	1.0	2.0	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
71-43-2	Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
108-86-1	Bromobenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 NELAC-NY10854,NELAC-NY12058,NJDEP,P/	
74-97-5	Bromochloromethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 NELAC-NY10854,NELAC-NY12058,NJDEP,P/	
75-27-4	Bromodichloromethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
75-25-2	Bromoform	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
74-83-9	Bromomethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
75-15-0	Carbon disulfide	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
56-23-5	Carbon tetrachloride	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
108-90-7	Chlorobenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
75-00-3	Chloroethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
67-66-3	Chloroform	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
74-87-3	Chloromethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
156-59-2	cis-1,2-Dichloroethylene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
124-48-1	Dibromochloromethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
74-95-3	Dibromomethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 NELAC-NY10854,NELAC-NY12058,NJDEP,P/	
75-71-8	Dichlorodifluoromethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 NELAC-NY10854,NELAC-NY12058,NJDEP,P/	7:29 RDS
100-41-4	Ethyl Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 CTDOH,NELAC-NY10854,NELAC-NY12058,1	
87-68-3	Hexachlorobutadiene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 NELAC-NY10854,NELAC-NY12058,NJDEP,P/	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 40

Client Sample ID: MW-3

York Sample ID: 18B0738-03

York Project (SDG) No. 18B0738

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		e/Time alyzed	Analyst
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP,
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 NELAC-NY10854,NELAC-NY12058,NJD	2018 17:29 EP,PADEP	RDS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,PADEP	RDS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,PADEP	RDS
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2	2018 17:29	RDS
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2	2018 17:29	RDS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
127-18-4	Tetrachloroethylene	4.1		ug/L	0.20	0.50	1	EPA 8260C	02/25/2018 07:30	2018 17:29	RDS
								Certifications:	CTDOH,NELAC-NY10854,NELAC-NY12	2058,NJDEF	P,PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP,
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP,
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP,	RDS PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2 CTDOH,NELAC-NY10854,NELAC-NY12	2018 17:29 2058,NJDEP	RDS
	Surrogate Recoveries	Result		Acce	eptance Rang	e				-	
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %			69-130						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 13 of 40

MW-3 **Client Sample ID:** York Sample ID: 18B0738-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 18B0738 #170154 11-28 31 Drive, LIC NY Water February 19, 2018 3:00 pm 02/20/2018

Reported to

LOO

Dilution

Reference Method

Date/Time

Prepared

Date/Time

Analyzed

Analyst

Volatile Organics, 8260 List - Low Level

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No. Parameter Result Flag Units LOD/MDL 2037-26-5 98.8 % 81-117 Surrogate: Toluene-d8

460-00-4 100 % 79-122 Surrogate: p-Bromofluorobenzene

Sample Information

MW-4 **Client Sample ID: York Sample ID:** 18B0738-04

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received February 19, 2018 3:00 pm 18B0738 #170154 11-28 31 Drive, LIC NY Water 02/20/2018

Log-in Notes: Sample Notes: Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B Date/Time Date/Time Reported to Analyzed CAS No. Parameter Result Flag Units Reference Method Prepared Analyst LOD/MDI LOO Dilution 630-20-6 0.20 0.50 EPA 8260C 02/25/2018 07:30 02/25/2018 19:17 RDS 1,1,1,2-Tetrachloroethane ND ug/L Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP 02/25/2018 07:30 71-55-6 0.20 0.50 EPA 8260C 02/25/2018 19:17 RDS 1.1.1-Trichloroethane ND ug/L CTDOH.NELAC-NY10854.NELAC-NY12058.NJDEP.PADEP Certifications 02/25/2018 07:30 02/25/2018 19:17 0.20 0.50 EPA 8260C RDS 79-34-5 1.1.2.2-Tetrachloroethane ND ug/L Certifications CTDOH NELAC-NY10854 NELAC-NY12058 NIDEP PADEP EPA 8260C 02/25/2018 07:30 02/25/2018 19:17 RDS 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane ND ug/L 0.20 0.50 Certifications: CTDOH.NELAC-NY10854.NELAC-NY12058.NJDEP.PADEP (Freon 113) 79-00-5 1,1,2-Trichloroethane 0.20 0.50 EPA 8260C 02/25/2018 07:30 02/25/2018 19:17 RDS ND ug/L CTDOH.NELAC-NY10854.NELAC-NY12058.NJDEP.PADEP Certifications: 02/25/2018 07:30 02/25/2018 19:17 75-34-3 1.1-Dichloroethane ug/L 0.20 0.50 EPA 8260C RDS ND Certifications: CTDOH NELAC-NY10854 NELAC-NY12058 NIDEP PADEP 0.20 0.50 02/25/2018 07:30 02/25/2018 19:17 75-35-4 1,1-Dichloroethylene ND ug/L EPA 8260C RDS Certifications CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP 02/25/2018 07:30 02/25/2018 19:17 563-58-6 1,1-Dichloropropylene ND ug/L 0.20 0.50 EPA 8260C RDS Certifications NELAC-NY10854,NELAC-NY12058,NJDEP 87-61-6 0.20 0.50 EPA 8260C 02/25/2018 07:30 02/25/2018 19:17 RDS 1.2.3-Trichlorobenzene ND ug/L Certifications NELAC-NY10854,NELAC-NY12058,NJDEP,PADEF 0.50 02/25/2018 07:30 02/25/2018 19:17 96-18-4 1.2.3-Trichloropropane ND ug/L 0.20 EPA 8260C RDS NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP Certifications: 95-93-2 0.20 0.50 EPA 8260C 02/25/2018 07:30 02/25/2018 19:17 RDS ug/L * 1,2,4,5-Tetramethylbenzene ND Certifications: 0.20 0.50 EPA 8260C 02/25/2018 07:30 02/25/2018 19:17 120-82-1 RDS 1,2,4-Trichlorobenzene ND ug/L Certifications NELAC-NY10854, NELAC-NY12058, NJDEP, PADEP 0.20 02/25/2018 07:30 95-63-6 1,2,4-Trimethylbenzene ND ug/L 0.50 EPA 8260C 02/25/2018 19:17 RDS Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP 96-12-8 1,2-Dibromo-3-chloropropane ND ug/L 0.20 0.50 EPA 8260C 02/25/2018 07:30 02/25/2018 19:17 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP Certifications 106-93-4 0.20 0.50 EPA 8260C 02/25/2018 07:30 02/25/2018 19:17 1,2-Dibromoethane ND ug/L Certifications: CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 14 of 40

Client Sample ID: MW-4

York Sample ID: 18B0738-04

York Project (SDG) No. 18B0738

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method: EPA 5030B	-								-		
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 0854,NELAC-NY	02/25/2018 19:17 2058,NJDEP,PADEP	RDS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 0854,NELAC-NY	02/25/2018 19:17 2058,NJDEP,PADEP	RDS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 0854,NELAC-NY	02/25/2018 19:17 2058,NJDEP,PADEP	RDS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 0854,NELAC-NY1	02/25/2018 19:17 2058,NJDEP,PADEP	RDS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEI	02/25/2018 19:17 AC-NY12058,NJDE	RDS P,PADEP

Client Sample ID: MW-4

Sample Prepared by Method: EPA 5030B

York Sample ID: 1

18B0738-04

York Project (SDG) No. 18B0738

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS No.	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS
156-59-2	cis-1,2-Dichloroethylene	0.89		ug/L	0.20	0.50	1	EPA 8260C	02/25/2018 07:30		RDS
								Certifications:	CTDOH,NELAC-NY10854,N	ELAC-NY12058,NJDE	P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NB		RDS P,PADEP
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY		RDS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY	02/25/2018 19:17	RDS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY	02/25/2018 19:17	RDS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY	02/25/2018 19:17	RDS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS P.PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE	02/25/2018 19:17	RDS
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30		RDS
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30	02/25/2018 19:17	RDS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P.PADEP
	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	02/25/2018 07:30		RDS
135-98-8	sec-Butyloenzene	112		C				Certifications:	CTDOH,NELAC-NY10854,NE	LAC-NY12058.NIDEI	P.PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 16 of 40

Client Sample ID: MW-4 York Sample ID: 18B0738-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18B0738#170154 11-28 31 Drive, LIC NYWaterFebruary 19, 2018 3:00 pm02/20/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 19:17 AC-NY12058,NJDEP	RDS PADEP
127-18-4	Tetrachloroethylene	70		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:17 AC-NY12058,NJDEI	RDS P,PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 19:17 AC-NY12058,NJDEP	RDS PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:17 AC-NY12058,NJDEP	RDS PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:17 AC-NY12058,NJDEP	RDS PADEP
79-01-6	Trichloroethylene	0.66		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:17 AC-NY12058,NJDEI	RDS P,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:17 AC-NY12058,NJDEP	RDS PADEP
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:17 AC-NY12058,NJDEP	RDS PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:17 AC-NY12058,NJDEP	RDS
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: Toluene-d8	97.1 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

Sample Information

Client Sample ID: MW-6 York Sample ID: 18B0738-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18B0738#170154 11-28 31 Drive, LIC NYWaterFebruary 19, 2018 3:00 pm02/20/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 17 of 40

Client Sample ID: MW-6

York Sample ID: 18B0738-05

York Project (SDG) No. 18B0738 <u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B				D					Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP	RDS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30	02/25/2018 19:44	RDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N		02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 18 of 40

Client Sample ID: MW-6

York Sample ID:

18B0738-05

York Project (SDG) No. 18B0738 <u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared	d by Method: EPA 5030B											
CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
156-59-2	cis-1,2-Dichloroethylene	57		ug/L	0.20	0.50	1	EPA 8260C		02/25/2018 07:30	02/25/2018 19:44	RDS
								Certifications:	CTDOH,N	ELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	02/25/2018 07:30 ELAC-NY10854,NEI	02/25/2018 19:44 AC-NY12058,NJDEF	RDS PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	0.31	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NE	02/25/2018 19:44 LAC-NY12058,NJDE	RDS P,PADEP
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:		02/25/2018 07:30	02/25/2018 19:44 .AC-NY12058,NJDEF	RDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 19 of 40

Client Sample ID: MW-6 York Sample ID:

Date/Time

18B0738-05

York Project (SDG) No. 18B0738

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Water

Collection Date/Time February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared	by	Method:	EPA	5030B
-----------------	----	---------	-----	-------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:		02/25/2018 07:30 0854,NELAC-NY12	02/25/2018 19:44 2058,NJDEP,PADEP	RDS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,PADEF	RDS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,PADEF	RDS
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	,	02/25/2018 07:30	02/25/2018 19:44	RDS
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	1	02/25/2018 07:30	02/25/2018 19:44	RDS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
127-18-4	Tetrachloroethylene	75		ug/L	0.20	0.50	1	EPA 8260C		02/25/2018 07:30	02/25/2018 19:44	RDS
								Certifications:	CTDOH,NEL	LAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
156-60-5	trans-1,2-Dichloroethylene	0.22	J	ug/L	0.20	0.50	1	EPA 8260C		02/25/2018 07:30	02/25/2018 19:44	RDS
								Certifications:	CTDOH,NEL	LAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
79-01-6	Trichloroethylene	15		ug/L	0.20	0.50	1	EPA 8260C		02/25/2018 07:30	02/25/2018 19:44	RDS
								Certifications:	CTDOH,NEL	AC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:		02/25/2018 07:30 AC-NY10854,NEL	02/25/2018 19:44 AC-NY12058,NJDEP	RDS
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			69-130							
2037-26-5	Surrogate: Toluene-d8	96.5 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	100 %			79-122							

Client Sample ID: Field Blank

York Sample ID: 18B0738-06

York Project (SDG) No. 18B0738

Sample Prepared by Method: EPA 5030B

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		/Time epared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/20 CTDOH,NELAC-NY1	018 07:30 10854,NEL	02/25/2018 20:11 AC-NY12058,NJDE	RDS P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/20 CTDOH,NELAC-NY1	018 07:30 10854,NELA	02/25/2018 20:11 AC-NY12058,NJDE	RDS P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/20 CTDOH,NELAC-NY1)18 07:30 10854,NEL	02/25/2018 20:11 AC-NY12058,NJDE	RDS P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/20 CTDOH,NELAC-NY1	018 07:30 10854,NELA	02/25/2018 20:11 AC-NY12058,NJDE	RDS P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/20 CTDOH,NELAC-NY1)18 07:30 10854,NEL	02/25/2018 20:11 AC-NY12058,NJDE	RDS P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/20 CTDOH,NELAC-NY1)18 07:30 10854,NEL	02/25/2018 20:11 AC-NY12058,NJDE	RDS P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	, and the second	018 07:30	02/25/2018 20:11	RDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/20 NELAC-NY10854,NE	018 07:30 ELAC-NY12	02/25/2018 20:11 058.NJDEP.PADEP	RDS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS P.PADEP
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		018 07:30	02/25/2018 20:11	RDS
								certifications.	LL:10-14 1 10054,INE		oco,, would, and the	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 21 of 40

Client Sample ID: Field Blank

York Sample ID: 18B0738-06

York Project (SDG) No. 18B0738

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
78-93-3	2-Butanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
95-49-8	2-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
106-43-4	4-Chlorotoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
67-64-1	Acetone	5.6		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH,N	02/25/2018 07:30 ELAC-NY10854,NE	02/25/2018 20:11 LAC-NY12058,NJDE	RDS P,PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
108-86-1	Bromobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 20:11 2058,NJDEP,PADEP	RDS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 20:11 2058,NJDEP,PADEP	RDS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEF	RDS P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 20:11 2058,NJDEP,PADEP	RDS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY1	02/25/2018 20:11 2058,NJDEP,PADEP	RDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 22 of 40

Client Sample ID: Field Blank

York Sample ID: 18]

18B0738-06

York Project (SDG) No. 18B0738

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepar	ed by Method: EPA 5030B										
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDE	RDS P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: NE	02/25/2018 07:30 LAC-NY10854,NELAC-NY	02/25/2018 20:11 12058,NJDEP,PADEP	RDS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications: NE	02/25/2018 07:30 LAC-NY10854,NELAC-NY	02/25/2018 20:11 12058,NJDEP,PADEP	RDS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,PADE	RDS P
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,PADE	RDS P
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30	02/25/2018 20:11	RDS
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30	02/25/2018 20:11	RDS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
127-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11 LAC-NY12058,NJDEI	RDS P,PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: CT	02/25/2018 07:30 DOH,NELAC-NY10854,NEI		RDS P,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11	RDS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11	RDS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C	02/25/2018 07:30 DOH,NELAC-NY10854,NEI	02/25/2018 20:11	RDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 23 of 40

Client Sample ID: Field Blank

York Sample ID:

18B0738-06

York Project (SDG) No. 18B0738

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:11 AC-NY12058,NJDEP	RDS
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	107 %			69-130							
2037-26-5	Surrogate: Toluene-d8	96.8 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	99.5 %			79-122							

Sample Information

Client Sample ID: Trip Blank

York Sample ID:

18B0738-07

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

18B0738

Sample Prepared by Method: EPA 5030B

#170154 11-28 31 Drive, LIC NY

Water

February 19, 2018 3:00 pm

02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Date/Time Method Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY		RDS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY		RDS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY		RDS
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30	02/25/2018 20:38	RDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY		RDS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NE		RDS P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 24 of 40

Client Sample ID: Trip Blank

<u>York Sample ID:</u> 18B0738-07

York Project (SDG) No. 18B0738

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water <u>Collection Date/Time</u> February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
142-28-9	1,3-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	02/25/2018 07:30 Y10854,NELAC-NY12	02/25/2018 20:38 2058,NJDEP,PADEP	RDS

107-06-2	1,2-Dichloroethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
78-87-5	1,2-Dichloropropane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30
108-67-8	1,3,5-Trimethylbenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30
541-73-1	1,3-Dichlorobenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
142-28-9	1,3-Dichloropropane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
106-46-7	1,4-Dichlorobenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
594-20-7	2,2-Dichloropropane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
78-93-3	2-Butanone	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30
95-49-8	2-Chlorotoluene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
591-78-6	2-Hexanone	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
106-43-4	4-Chlorotoluene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30
108-10-1	4-Methyl-2-pentanone	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
67-64-1	Acetone	ND	ug/L	1.0	2.0	1	EPA 8260C Certifications:	02/25/2018 07:30
71-43-2	Benzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30
108-86-1	Bromobenzene	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
74-97-5	Bromochloromethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
75-27-4	Bromodichloromethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
75-25-2	Bromoform	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
74-83-9	Bromomethane	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP
75-15-0	Carbon disulfide	ND	ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 02/25/2018 20:38 RDS CTDOH,NELAC-NY10854,NELAC-NY12058,NJDEP,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 25 of 40

FAX (203) 357-0166

Client Sample ID: Trip Blank York Sample ID: 18B0738-07

York Project (SDG) No. 18B0738

Sample Prepared by Method: EPA 5030B

Client Project ID #170154 11-28 31 Drive, LIC NY Matrix Water

Collection Date/Time February 19, 2018 3:00 pm Date Received 02/20/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEF	RDS P,PADEP
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEF	RDS P,PADEP
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEF	RDS P,PADEP
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEF	RDS P,PADEP
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEF	RDS P,PADEP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEF	RDS P,PADEP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEF	RDS P,PADEP
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEF	RDS P,PADEP
74-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY1	02/25/2018 20:38 2058,NJDEP,PADEP	RDS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY1	02/25/2018 20:38 2058,NJDEP,PADEP	RDS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38	RDS P,PADEP
87-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY1	02/25/2018 20:38	RDS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38	RDS P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38	RDS
75-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38	RDS
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	02/25/2018 07:30 NELAC-NY10854,NELAC-NY1	02/25/2018 20:38	RDS
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38	RDS PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38	RDS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38	RDS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	02/25/2018 07:30 CTDOH,NELAC-NY10854,NEL	02/25/2018 20:38	RDS
105-05-5	* p-Diethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30	02/25/2018 20:38	RDS
622-96-8	* p-Ethyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	02/25/2018 07:30	02/25/2018 20:38	RDS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C	02/25/2018 07:30	02/25/2018 20:38	RDS
								Certifications:	CTDOH,NELAC-NY10854,NEL	AC-N Y 12058,NJDEF	,radep

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 40

Log-in Notes:

Client Sample ID: Trip Blank

York Sample ID:

18B0738-07

York Project (SDG) No. 18B0738

Client Project ID

Matrix

Collection Date/Time

Date Received

#170154 11-28 31 Drive, LIC NY

Water

February 19, 2018 3:00 pm

Sample Notes:

02/20/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
127-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NEL	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 20:38 AC-NY12058,NJDEP	RDS PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NI	02/25/2018 07:30 ELAC-NY10854,NELA	02/25/2018 20:38 AC-NY12058,NJDEP	RDS
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: Toluene-d8	97.7 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	100 %			79-122							

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@ Page 27 of 40

Analytical Batch Summary

Batch ID:	BB81103	Preparation Method:	EPA 5030B	Prepared By:	RDS		
YORK Sam	ple ID	Client Sample ID	Preparation Date				

YORK Sample ID	Client Sample ID	Preparation Date	
18B0738-01	MW-1	02/25/18	
18B0738-02	MW-2	02/25/18	
18B0738-03	MW-3	02/25/18	
18B0738-04	MW-4	02/25/18	
18B0738-05	MW-6	02/25/18	
18B0738-06	Field Blank	02/25/18	
18B0738-07	Trip Blank	02/25/18	
BB81103-BLK1	Blank	02/25/18	
BB81103-BS1	LCS	02/25/18	
BB81103-BSD1	LCS Dup	02/25/18	
BB81103-MS1	Matrix Spike	02/25/18	
BB81103-MSD1	Matrix Spike Dup	02/25/18	

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

7 that yee	Result	Lillin	Cinto	Level	resurt	/orch	Lillits	6	2	2	6
Batch BB81103 - EPA 5030B											
Blank (BB81103-BLK1)							Prep	ared & Anal	yzed: 02/25/2	018	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L								
1,1,1-Trichloroethane	ND	0.50	"								
1,1,2,2-Tetrachloroethane	ND	0.50	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.50	"								
1,1,2-Trichloroethane	ND	0.50	"								
1,1-Dichloroethane	ND	0.50	"								
1,1-Dichloroethylene	ND	0.50	"								
1,1-Dichloropropylene	ND	0.50	"								
1,2,3-Trichlorobenzene	ND	0.50	"								
1,2,3-Trichloropropane	ND	0.50	"								
1,2,4,5-Tetramethylbenzene	ND	0.50	"								
1,2,4-Trichlorobenzene	ND	0.50	"								
1,2,4-Trimethylbenzene	ND	0.50	"								
1,2-Dibromo-3-chloropropane	ND	0.50	"								
1,2-Dibromoethane	ND	0.50	"								
1,2-Dichlorobenzene	ND	0.50	"								
1,2-Dichloroethane	ND	0.50	"								
1,2-Dichloropropane	ND	0.50	"								
1,3,5-Trimethylbenzene	ND	0.50	"								
1,3-Dichlorobenzene	ND	0.50	"								
1,3-Dichloropropane	ND	0.50	"								
1,4-Dichlorobenzene	ND	0.50	"								
2,2-Dichloropropane	ND	0.50	"								
2-Butanone	ND	0.50	"								
2-Chlorotoluene	ND	0.50	"								
2-Hexanone	ND	0.50	"								
4-Chlorotoluene	ND	0.50	"								
4-Methyl-2-pentanone	ND	0.50	"								
Acetone	ND	2.0	"								
Benzene	ND	0.50	"								
Bromobenzene	ND	0.50	"								
Bromochloromethane	ND	0.50	"								
Bromodichloromethane	ND	0.50									
Bromoform	ND	0.50	"								
Bromomethane	ND	0.50	"								
Carbon disulfide	ND	0.50	"								
Carbon tetrachloride	ND	0.50	"								
Chlorobenzene	ND	0.50									
Chloroethane	ND	0.50	"								
Chloroform	ND	0.50	"								
Chloromethane	ND	0.50									
cis-1,2-Dichloroethylene	ND	0.50									
cis-1,3-Dichloropropylene	ND	0.50	"								
Dibromochloromethane	ND	0.50	"								
Dibromomethane	ND	0.50	"								
Dichlorodifluoromethane	ND	0.50	"								
Ethyl Benzene	ND	0.50	"								
Hexachlorobutadiene	ND ND	0.50	,,								
Isopropylbenzene	ND ND	0.50									
Methyl tert-butyl ether (MTBE)	ND	0.50	,,								
wienyr terr-butyr culer (WITBE)	ND	0.50									

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

York Analytical Laboratories, Inc.

.	ъ.	Reporting	** **	Spike	Source*	0/55	%REC	TP1	DDD	RPD	121
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB81103 - EPA 5030B											
Blank (BB81103-BLK1)							Prep	ared & Anal	yzed: 02/25/	2018	
Methylene chloride	ND	2.0	ug/L								
Naphthalene	ND	2.0	"								
n-Butylbenzene	ND	0.50	"								
n-Propylbenzene	ND	0.50	"								
o-Xylene	ND	0.50	"								
p- & m- Xylenes	ND	1.0	"								
p-Diethylbenzene	ND	0.50	"								
p-Ethyltoluene	ND	0.50	"								
p-Isopropyltoluene	ND	0.50	"								
sec-Butylbenzene	ND	0.50	"								
Styrene	ND	0.50	"								
tert-Butylbenzene	ND	0.50	"								
Tetrachloroethylene	ND	0.50	"								
Toluene	ND	0.50	"								
trans-1,2-Dichloroethylene	ND	0.50	"								
trans-1,3-Dichloropropylene	ND	0.50	"								
Trichloroethylene	ND	0.50	"								
Trichlorofluoromethane	ND	0.50	"								
Vinyl Chloride	ND	0.50	"								
Xylenes, Total	ND	1.5	"								
Surrogate: 1,2-Dichloroethane-d4	10.2		"	10.0		102	69-130				
Surrogate: Toluene-d8	9.90		"	10.0		99.0	81-117				
Surrogate: p-Bromofluorobenzene	10.0		"	10.0		100	79-122				
LCS (BB81103-BS1)							Prep	ared & Anal	yzed: 02/25/	2018	
1,1,1,2-Tetrachloroethane	9.68		ug/L	10.0		96.8	82-126				
1,1,1-Trichloroethane	9.39		"	10.0		93.9	78-136				
1,1,2,2-Tetrachloroethane	9.66		"	10.0		96.6	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.75		"	10.0		97.5	54-165				
1,1,2-Trichloroethane	8.97		"	10.0		89.7	82-123				
1,1-Dichloroethane	9.38		"	10.0		93.8	82-129				
1,1-Dichloroethylene	8.78		"	10.0		87.8	68-138				
1,1-Dichloropropylene	9.51		"	10.0		95.1	83-133				
1,2,3-Trichlorobenzene	10.4		"	10.0		104	76-136				
1,2,3-Trichloropropane	9.53		"	10.0		95.3	77-128				
1,2,4,5-Tetramethylbenzene	10.4		"	10.0		104	85-140				
1,2,4-Trichlorobenzene	9.92		"	10.0		99.2	76-137				
1,2,4-Trimethylbenzene	9.76		"	10.0		97.6	82-132				
1,2-Dibromo-3-chloropropane	9.27		"	10.0		92.7	45-147				
1,2-Dibromoethane	9.35		"	10.0		93.5	83-124				
1,2-Dichlorobenzene	9.45		"	10.0		94.5	79-123				
1,2-Dichloroethane	9.42		"	10.0		94.2	73-132				
1 2 D: 11											

120 RESEARCH DRIVE

1,2-Dichloropropane

1,3-Dichlorobenzene

1,3-Dichloropropane

1,4-Dichlorobenzene

2,2-Dichloropropane

2-Butanone

2-Hexanone

2-Chlorotoluene

1,3,5-Trimethylbenzene

STRATFORD, CT 06615

8.95

9.56

9.78

9.18

9.52

9.91

11.6

9.62

9.38

132-02 89th AVENUE

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

RICHMOND HILL, NY 11418

FAX (203) 357-0166

89.5

95.6

97.8

91.8

95.2

99.1

116

96.2

93.8

78-126

80-131

86-122

81-125

85-124

56-150

49-152

79-130

51-146

ClientServices@ Page 30 of 40

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Batch	BB81103	- EPA 5030	JΒ

LCS (BB81103-BS1)					Prepared & Analyzed: 02/25/2018
4-Chlorotoluene	9.30	ug/L	10.0	93.0	79-128
4-Methyl-2-pentanone	8.78	"	10.0	87.8	57-145
Acetone	10.6	"	10.0	106	14-150
Benzene	9.51	"	10.0	95.1	85-126
Bromobenzene	9.14	"	10.0	91.4	78-129
Bromochloromethane	9.08	"	10.0	90.8	77-128
Bromodichloromethane	8.92	"	10.0	89.2	79-128
Bromoform	9.28	"	10.0	92.8	78-133
Bromomethane	6.02	"	10.0	60.2	43-168
Carbon disulfide	9.95	"	10.0	99.5	68-146
Carbon tetrachloride	9.45	"	10.0	94.5	77-141
Chlorobenzene	9.39	"	10.0	93.9	88-120
Chloroethane	10.2	"	10.0	102	65-136
Chloroform	9.23	"	10.0	92.3	82-128
Chloromethane	9.63	"	10.0	96.3	43-155
cis-1,2-Dichloroethylene	9.32	"	10.0	93.2	83-129
cis-1,3-Dichloropropylene	9.50	"	10.0	95.0	80-131
Dibromochloromethane	9.53	"	10.0	95.3	80-130
Dibromomethane	9.05	"	10.0	90.5	72-134
Dichlorodifluoromethane	12.8	"	10.0	128	44-144
Ethyl Benzene	9.74	"	10.0	97.4	80-131
Hexachlorobutadiene	9.15	"	10.0	91.5	67-146
sopropylbenzene	9.71	"	10.0	97.1	76-140
Methyl tert-butyl ether (MTBE)	9.98	"	10.0	99.8	76-135
Methylene chloride	8.36	"	10.0	83.6	55-137
Naphthalene	10.2	"	10.0	102	70-147
n-Butylbenzene	9.77	"	10.0	97.7	79-132
n-Propylbenzene	9.66	"	10.0	96.6	78-133
o-Xylene	9.70	"	10.0	97.0	78-130
p- & m- Xylenes	19.9	"	20.0	99.4	77-133
p-Diethylbenzene	10.4	"	10.0	104	84-134
o-Ethyltoluene	10.1	"	10.0	101	88-129
o-Isopropyltoluene	10.1	"	10.0	101	81-136
ec-Butylbenzene	10.1	"	10.0	101	79-137
Styrene	9.31	"	10.0	93.1	67-132
ert-Butylbenzene	9.71	"	10.0	97.1	77-138
Tetrachloroethylene	8.84	"	10.0	88.4	82-131
Toluene	9.38	"	10.0	93.8	80-127
rans-1,2-Dichloroethylene	9.02	"	10.0	90.2	80-132
rans-1,3-Dichloropropylene	9.23	"	10.0	92.3	78-131
Trichloroethylene	9.20	"	10.0	92.0	82-128
Γrichlorofluoromethane	10.3	"	10.0	103	67-139
Vinyl Chloride	10.7	"	10.0	107	58-145
Surrogate: 1,2-Dichloroethane-d4	10.1	"	10.0	101	69-130
Surrogate: Toluene-d8	9.87	"	10.0	98.7	81-117
Surrogate: p-Bromofluorobenzene	10.0	"	10.0	100	79-122

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 31 of 40

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB81103 - EPA 5030B											
LCS Dup (BB81103-BSD1)							Prep	ared & Analy	zed: 02/25/	2018	
1,1,1,2-Tetrachloroethane	9.95		ug/L	10.0		99.5	82-126		2.75	30	
1,1,1-Trichloroethane	9.65		"	10.0		96.5	78-136		2.73	30	
1,1,2,2-Tetrachloroethane	9.83		"	10.0		98.3	76-129		1.74	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.71		"	10.0		97.1	54-165		0.411	30	
1,1,2-Trichloroethane	9.39		"	10.0		93.9	82-123		4.58	30	
1,1-Dichloroethane	9.73		"	10.0		97.3	82-129		3.66	30	
1,1-Dichloroethylene	9.09		"	10.0		90.9	68-138		3.47	30	
1,1-Dichloropropylene	9.72		"	10.0		97.2	83-133		2.18	30	
1,2,3-Trichlorobenzene	10.4		"	10.0		104	76-136		0.385	30	
1,2,3-Trichloropropane	9.76		"	10.0		97.6	77-128		2.38	30	
1,2,4,5-Tetramethylbenzene	10.5		"	10.0		105	85-140		0.766	30	
1,2,4-Trichlorobenzene	10.1		"	10.0		101	76-137		1.60	30	
1,2,4-Trimethylbenzene	9.82		"	10.0		98.2	82-132		0.613	30	
1,2-Dibromo-3-chloropropane	9.33		"	10.0		93.3	45-147		0.645	30	
1,2-Dibromoethane	9.63		"	10.0		96.3	83-124		2.95	30	
1,2-Dichlorobenzene	9.58		"	10.0		95.8	79-123		1.37	30	
1,2-Dichloroethane	9.86		"	10.0		98.6	73-132		4.56	30	
1,2-Dichloropropane	9.17		"	10.0		91.7	78-126		2.43	30	
1,3,5-Trimethylbenzene	9.55		"	10.0		95.5	80-131		0.105	30	
1,3-Dichlorobenzene	9.77		"	10.0		97.7	86-122		0.102	30	
1,3-Dichloropropane	9.51		"	10.0		95.1	81-125		3.53	30	
1,4-Dichlorobenzene	9.57		"	10.0		95.7	85-124		0.524	30	
2,2-Dichloropropane	10.2		"	10.0		102	56-150		2.98	30	
2-Butanone	11.3		"	10.0		113	49-152		3.06	30	
2-Chlorotoluene	9.56		"	10.0		95.6	79-130		0.626	30	
2-Hexanone	9.41			10.0		94.1	51-146		0.319	30	
4-Chlorotoluene	9.27		"	10.0		92.7	79-128		0.323	30	
4-Methyl-2-pentanone	9.46		"	10.0		94.6	57-145		7.46	30	
Acetone	10.5		"	10.0		105	14-150		1.13	30	
Benzene	9.82		,,	10.0		98.2	85-126		3.21	30	
Bromobenzene	9.19		"	10.0		91.9	78-129		0.546	30	
Bromochloromethane	9.49			10.0		94.9	77-128		4.42	30	
Bromodichloromethane	9.07		,,	10.0		90.7	79-128		1.67	30	
Bromoform	9.56		,,	10.0		95.6	78-133		2.97	30	
Bromomethane	7.95			10.0		79.5	43-168		27.6	30	
Carbon disulfide	10.4			10.0		104	68-146		4.04	30	
Carbon tetrachloride	9.69		,,	10.0		96.9	77-141		2.51	30	
Chlorobenzene	9.58			10.0		95.8	88-120		2.00	30	
Chloroethane	10.5		,,	10.0		105	65-136		2.32	30	
Chloroform	9.67			10.0		96.7	82-128		4.66	30	
Chloromethane	9.75			10.0		97.5	43-155		1.24	30	
cis-1,2-Dichloroethylene	9.73		,,	10.0		97.3	83-129		4.10	30	
cis-1,3-Dichloropropylene	9.79								3.01	30	
Dibromochloromethane			,,	10.0		97.9	80-131		4.01	30	
Dibromocnioromethane	9.92		"	10.0		99.2	80-130		1.21	30	
Dichlorodifluoromethane	9.16			10.0		91.6	72-134		4.05	30	
	13.4		"	10.0		134	44-144				
Ethyl Benzene Havsahlarahytadiana	9.89		"	10.0		98.9	80-131		1.53	30	
Hexachlorobutadiene	9.35			10.0		93.5	67-146		2.16	30	
Isopropylbenzene	9.76		"	10.0		97.6	76-140		0.514	30	
Methyl tert-butyl ether (MTBE)	10.6		"	10.0		106	76-135		6.12	30	
Methylene chloride	8.71		"	10.0		87.1	55-137		4.10	30	

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 32 of 40

York Analytical Laboratories, Inc.												
		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	
Batch BB81103 - EPA 5030B												
LCS Dup (BB81103-BSD1)							Prep	ared & Analy	zed: 02/25/	2018		
Naphthalene	10.6		ug/L	10.0		106	70-147		3.17	30		
n-Butylbenzene	9.77		ug/L	10.0		97.7	79-132		0.00	30		
n-Propylbenzene	9.64		"	10.0		96.4	78-133		0.207	30		
o-Xylene	9.95		"	10.0		99.5	78-130		2.54	30		
p- & m- Xylenes	20.2		"	20.0		101	77-133		1.75	30		
p-Diethylbenzene	10.5		"	10.0		105	84-134		0.958	30		
p-Ethyltoluene	10.1		"	10.0		101	88-129		0.00	30		
p-Isopropyltoluene	10.0		"	10.0		100	81-136		0.299	30		
sec-Butylbenzene	10.1		"	10.0		101	79-137		0.198	30		
Styrene	9.52		"	10.0		95.2	67-132		2.23	30		
tert-Butylbenzene	9.68		"	10.0		96.8	77-138		0.309	30		
Tetrachloroethylene	8.83		"	10.0		88.3	82-131		0.113	30		
Toluene	9.58		"	10.0		95.8	80-127		2.11	30		
trans-1,2-Dichloroethylene	9.41		"	10.0		94.1	80-132		4.23	30		
trans-1,3-Dichloropropylene	9.36		"	10.0		93.6	78-131		1.40	30		
Trichloroethylene	9.36		"	10.0		93.6	82-128		1.72	30		
Trichlorofluoromethane	10.5		"	10.0		105	67-139		2.01	30		
Vinyl Chloride	11.2		"	10.0		112	58-145		4.01	30		
Surrogate: 1,2-Dichloroethane-d4	10.3		"	10.0		103	69-130					
Surrogate: Toluene-d8	9.74		"	10.0		97.4	81-117					
Surrogate: p-Bromofluorobenzene	9.85		"	10.0		98.5	79-122					
Matrix Spike (BB81103-MS1)	*Source sample:	18B0738-03 (M	W-3)				Prep	ared & Analy	zed: 02/25/	2018		
1,1,1,2-Tetrachloroethane	19.4	`	ug/L	20.0	0.00	97.2	45-161					
1,1,1-Trichloroethane	19.6		"	20.0	0.00	98.2	70-146					
1,1,2,2-Tetrachloroethane	18.2		"	20.0	0.00	91.2	74-121					
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	16.3		"	20.0	0.00	81.6	21-217					
1,1,2-Trichloroethane	17.5		"	20.0	0.00	87.6	59-146					
1,1-Dichloroethane	18.5		"	20.0	0.00	92.7	54-146					
1,1-Dichloroethylene	17.9		"	20.0	0.00	89.4	44-165					
1,1-Dichloropropylene	19.1		"	20.0	0.00	95.4	82-134					
1,2,3-Trichlorobenzene	20.1		"	20.0	0.00	100	40-161					
1,2,3-Trichloropropane	18.2		"	20.0	0.00	91.2	74-127					
1,2,4,5-Tetramethylbenzene	19.5		"	20.0	0.00	97.4	27-190					
1,2,4-Trichlorobenzene	18.6		"	20.0	0.00	93.2	41-161					
1,2,4-Trimethylbenzene	18.7		"	20.0	0.00	93.5	72-129					
1,2-Dibromo-3-chloropropane	18.2		"	20.0	0.00	91.0	31-151					
1,2-Dibromoethane	18.1		"	20.0	0.00	90.6	75-125					
1,2-Dichlorobenzene	18.1		"	20.0	0.00	90.3	63-122					
1,2-Dichloroethane	18.4		"	20.0	0.00	91.8	68-131					
1,2-Dichloropropane	17.4		"	20.0	0.00	86.8	77-121					
1,3,5-Trimethylbenzene	18.4		"	20.0	0.00	92.0	69-126					
1,3-Dichlorobenzene	18.4		"	20.0	0.00	92.0	74-119					
1,3-Dichloropropane	18.0		"	20.0	0.00	90.1	77-119					
1,4-Dichlorobenzene	17.9		"	20.0	0.00	89.7	70-124					
2,2-Dichloropropane	18.5		"	20.0	0.00	92.4	10-160					
2-Butanone	19.0		"	20.0	0.00	94.8	10-193					
2-Chlorotoluene	18.4		"	20.0	0.00	91.8	70-126					
2-Hexanone	17.2		"	20.0	0.00	85.8	53-133					

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE

17.7

17.2

4-Chlorotoluene

4-Methyl-2-pentanone

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 33 of 40

20.0

20.0

0.00

0.00

88.4

85.9

69-124

38-150

RICHMOND HILL, NY 11418

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	l

Matrix Spike (BB81103-MS1)	*Source sample: 18B073	8-03 (MW-3)				Prepared & Analyzed: 02/25/2018
Acetone	13.4	ug/L	20.0	0.860	62.8	13-149
Benzene	19.0	"	20.0	0.00	94.8	38-155
Bromobenzene	17.7	"	20.0	0.00	88.6	72-122
Bromochloromethane	17.4	"	20.0	0.00	87.0	75-121
Bromodichloromethane	18.1	"	20.0	0.00	90.4	70-129
romoform	18.3	"	20.0	0.00	91.6	66-136
Bromomethane	15.0	"	20.0	0.00	74.9	30-158
arbon disulfide	18.3	"	20.0	0.00	91.6	10-138
Carbon tetrachloride	19.7	"	20.0	0.00	98.6	71-146
Chlorobenzene	18.4	"	20.0	0.00	91.8	81-117
Chloroethane	18.8	"	20.0	0.00	93.8	51-145
Chloroform	19.0	"	20.0	0.00	95.1	80-124
Chloromethane	15.7	"	20.0	0.00	78.7	16-163
is-1,2-Dichloroethylene	18.6	"	20.0	0.00	93.0	76-125
cis-1,3-Dichloropropylene	18.3	"	20.0	0.00	91.3	58-131
Dibromochloromethane	18.9	"	20.0	0.00	94.5	71-129
Dibromomethane	17.6	"	20.0	0.00	88.2	76-120
Dichlorodifluoromethane	17.3	"	20.0	0.00	86.6	30-147
Ethyl Benzene	19.1	"	20.0	0.00	95.6	72-128
exachlorobutadiene	16.0	"	20.0	0.00	80.2	34-166
opropylbenzene	19.2	"	20.0	0.00	96.0	66-139
ethyl tert-butyl ether (MTBE)	19.2	"	20.0	0.00	95.8	75-128
lethylene chloride	15.2	"	20.0	0.00	75.8	57-128
aphthalene	20.5	"	20.0	0.00	102	39-158
Butylbenzene	17.1	"	20.0	0.00	85.4	61-138
-Propylbenzene	18.2	"	20.0	0.00	91.2	66-134
Xylene	19.2	"	20.0	0.00	96.2	69-126
- & m- Xylenes	38.6	"	40.0	0.00	96.4	67-130
-Diethylbenzene	18.1	"	20.0	0.00	90.4	52-150
-Ethyltoluene	18.7	"	20.0	0.00	93.5	76-127
-Isopropyltoluene	18.5	"	20.0	0.00	92.6	64-137
ec-Butylbenzene	18.9	"	20.0	0.00	94.6	53-155
tyrene	14.6	"	20.0	0.00	72.9	69-125
ert-Butylbenzene	19.2	"	20.0	0.00	95.9	65-139
etrachloroethylene	20.5	"	20.0	4.10	82.2	64-139
oluene	18.5	"	20.0	0.00	92.4	76-123
ans-1,2-Dichloroethylene	18.1	"	20.0	0.00	90.3	79-131
ans-1,3-Dichloropropylene	17.8	"	20.0	0.00	88.8	55-130
richloroethylene	18.2	"	20.0	0.00	90.8	53-145
richlorofluoromethane	19.5	"	20.0	0.00	97.4	61-142
inyl Chloride	19.2	"	20.0	0.00	96.0	31-165
urrogate: 1,2-Dichloroethane-d4	9.99	"	10.0		99.9	69-130
arogaie. 1,2-Diemoroemane-a4	9.99		10.0		27.7	07-130

120 RESEARCH DRIVE
www.YORKLAB.com

Surrogate: Toluene-d8

 ${\it Surrogate: p-Bromofluor obenzene}$

STRATFORD, CT 06615 (203) 325-1371

9.96

9.88

132-02 89th AVENUE FAX (203) 357-0166

99.6

98.8

81-117

79-122

10.0

10.0

RICHMOND HILL, NY 11418

ClientServices@

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Analyte	Result	Limit Units	Level	Result	%REC	%REC Limits	Flag I	RPD	Limit	Flag
Tilalyte	Result	Limit Cints	Level	Result	70KLC	Limits				8
Batch BB81103 - EPA 5030B										
Matrix Spike Dup (BB81103-MSD1)	*Source sample: 1	8B0738-03 (MW-3)				Prepa	ared & Analyzed:	02/25/	2018	
1,1,1,2-Tetrachloroethane	20.6	ug/L	20.0	0.00	103	45-161	5	5.75	30	
1,1,1-Trichloroethane	20.4	"	20.0	0.00	102	70-146	3	3.85	30	
1,1,2,2-Tetrachloroethane	19.6	"	20.0	0.00	97.8	74-121	(5.88	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	17.4	"	20.0	0.00	87.0	21-217	(5.52	30	
1,1,2-Trichloroethane	19.4	"	20.0	0.00	97.2	59-146	1	10.4	30	
1,1-Dichloroethane	19.4	"	20.0	0.00	97.0	54-146	4	1.53	30	
1,1-Dichloroethylene	18.4	"	20.0	0.00	92.2	44-165	3	3.08	30	
1,1-Dichloropropylene	19.9	"	20.0	0.00	99.6	82-134	4	1.31	30	
1,2,3-Trichlorobenzene	21.6	"	20.0	0.00	108	40-161	7	7.29	30	
1,2,3-Trichloropropane	19.6	ii .	20.0	0.00	98.0	74-127	7	7.19	30	
1,2,4,5-Tetramethylbenzene	20.1	"	20.0	0.00	101	27-190	3	3.23	30	
1,2,4-Trichlorobenzene	19.8	ii .	20.0	0.00	98.9	41-161	4	5.99	30	
1,2,4-Trimethylbenzene	19.0	ii .	20.0	0.00	95.0	72-129	1	1.64	30	
1,2-Dibromo-3-chloropropane	20.2	"	20.0	0.00	101	31-151	1	10.4	30	
1,2-Dibromoethane	19.7	"	20.0	0.00	98.7	75-125	8	3.61	30	
1,2-Dichlorobenzene	18.8	ii .	20.0	0.00	93.8	63-122	3	3.75	30	
,2-Dichloroethane	19.5	"	20.0	0.00	97.4	68-131	4	5.81	30	
1,2-Dichloropropane	18.6	"	20.0	0.00	92.8	77-121	(5.79	30	
1,3,5-Trimethylbenzene	18.6	"	20.0	0.00	92.9	69-126	0	.919	30	
1,3-Dichlorobenzene	18.7	"	20.0	0.00	93.6	74-119	1	1.78	30	
1,3-Dichloropropane	19.5	"	20.0	0.00	97.7	77-119	8	3.09	30	
1,4-Dichlorobenzene	18.5	"	20.0	0.00	92.3	70-124	2	2.86	30	
2,2-Dichloropropane	18.7	"	20.0	0.00	93.7	10-160	1	1.34	30	
2-Butanone	20.1	"	20.0	0.00	101	10-193	4	5.99	30	
-Chlorotoluene	18.6	"	20.0	0.00	93.0	70-126	1	1.19	30	
2-Hexanone	19.7	"	20.0	0.00	98.6	53-133	1	13.9	30	
4-Chlorotoluene	18.1	"	20.0	0.00	90.6	69-124	2	2.57	30	
4-Methyl-2-pentanone	19.5	"	20.0	0.00	97.7	38-150	1	12.9	30	
Acetone	16.0	"	20.0	0.860	75.6	13-149	1	18.4	30	
Benzene	19.8	"	20.0	0.00	99.2	38-155	4	1.53	30	
Bromobenzene	18.4	"	20.0	0.00	91.8	72-122	3	3.66	30	
Bromochloromethane	18.7	"	20.0	0.00	93.4	75-121	7	7.04	30	
Bromodichloromethane	19.2	"	20.0	0.00	95.8	70-129	4	5.75	30	
Bromoform	20.0	"	20.0	0.00	100	66-136	8	3.97	30	
Bromomethane	17.5	"	20.0	0.00	87.6	30-158	1	15.6	30	
Carbon disulfide	18.9	"	20.0	0.00	94.6	10-138	3	3.17	30	
Carbon tetrachloride	20.4	"	20.0	0.00	102	71-146	3	3.20	30	
Chlorobenzene	19.2	"	20.0	0.00	96.2	81-117	2	1.79	30	
Chloroethane	19.5	ıı .	20.0	0.00	97.4	51-145	3	3.71	30	
Chloroform	19.8	"	20.0	0.00	98.8	80-124	3	3.87	30	
Chloromethane	16.5	"	20.0	0.00	82.4	16-163	2	1.59	30	
cis-1,2-Dichloroethylene	19.4	"	20.0	0.00	97.0	76-125	2	1.26	30	
eis-1,3-Dichloropropylene	19.3	ıı .	20.0	0.00	96.7	58-131	4	5.74	30	
Dibromochloromethane	20.3	ıı .	20.0	0.00	102	71-129	7	7.29	30	
Dibromomethane	19.1	n .	20.0	0.00	95.4	76-120	7	7.95	30	
Dichlorodifluoromethane	17.6	n n	20.0	0.00	88.2	30-147		1.77	30	
Ethyl Benzene	19.9	n n	20.0	0.00	99.6	72-128		1.00	30	
Hexachlorobutadiene	17.4	"	20.0	0.00	86.8	34-166		7.85	30	
sopropylbenzene	19.3	"	20.0	0.00	96.4	66-139		.416	30	
Methyl tert-butyl ether (MTBE)	20.9	"	20.0	0.00	104	75-128		3.54	30	
Methylene chloride	16.1	"	20.0	0.00	80.6	57-128		5.14	30	

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 35 of 40

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

	Reporting			Spike	Source*	%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Datah	RR81103	EDA	5020D

Matrix Spike Dup (BB81103-MSD1)	*Source sample: 18B0738	8-03 (MW-3)				Prepared &	& Analyzed: 02/25/2	2018
Naphthalene	23.1	ug/L	20.0	0.00	115	39-158	11.9	30
n-Butylbenzene	17.5	"	20.0	0.00	87.3	61-138	2.14	30
n-Propylbenzene	18.4	"	20.0	0.00	92.2	66-134	1.20	30
o-Xylene	20.2	"	20.0	0.00	101	69-126	4.62	30
p- & m- Xylenes	40.2	"	40.0	0.00	100	67-130	4.07	30
p-Diethylbenzene	18.4	"	20.0	0.00	92.1	52-150	1.81	30
p-Ethyltoluene	18.9	"	20.0	0.00	94.4	76-127	1.01	30
p-Isopropyltoluene	18.9	"	20.0	0.00	94.4	64-137	1.82	30
sec-Butylbenzene	19.1	"	20.0	0.00	95.7	53-155	1.21	30
Styrene	15.5	"	20.0	0.00	77.4	69-125	5.99	30
tert-Butylbenzene	19.4	"	20.0	0.00	97.1	65-139	1.24	30
Tetrachloroethylene	20.9	"	20.0	4.10	84.2	64-139	2.46	30
Toluene	19.3	"	20.0	0.00	96.6	76-123	4.44	30
trans-1,2-Dichloroethylene	19.1	"	20.0	0.00	95.4	79-131	5.49	30
trans-1,3-Dichloropropylene	19.2	"	20.0	0.00	96.0	55-130	7.79	30
Trichloroethylene	19.1	"	20.0	0.00	95.5	53-145	4.99	30
Trichlorofluoromethane	19.6	"	20.0	0.00	98.0	61-142	0.716	30
Vinyl Chloride	20.0	"	20.0	0.00	100	31-165	4.18	30
Surrogate: 1,2-Dichloroethane-d4	10.2	"	10.0		102	69-130		
Surrogate: Toluene-d8	9.83	"	10.0		98.3	81-117		
Surrogate: p-Bromofluorobenzene	9.77	"	10.0		97.7	79-122		

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 36 of 40

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
18B0738-01	MW-1	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18B0738-02	MW-2	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18B0738-03	MW-3	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18B0738-04	MW-4	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18B0738-05	MW-6	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18B0738-06	Field Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18B0738-07	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.

CCV-E The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and

semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 38 of 40

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 39 of 40 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

YORK

ANALYTICAL LABORATORIES, INC. 20 RESEARCH DR. STRATFORD, GT 06615 (203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract.

ont. York Project No. 1830738

o

Report/Deliverable Type Container Description YORK Regulatory Comp Excel **Temperature** on Receipt See Comment below 6 x 40 mils vials 3 x 40 mils vials 2 x 40 mils vials ST RCP DOA/DUE Pkg **NJDEP Reduced Deliv** NJDEP SRP HazSite VY ASP B Package NY ASP A Package × × Summary Report VYSDEC EQUIS GIS/KEY (std) compared to: 12705 QA Report Date/Time CT RCP OTHER: NaOH EQUIS Excel 31/02 Part 360 frank Full Lists Part360-Bestine TCL Ognics Part360-Rottne Pull App IX NYCOFFS NYSDECSON TAL MedCN Full TCLP Part 360-5-Turn-Around Time Pri.Poll. Samples Received in LAB by TAGM H,SO, Samples Received By Analysis Requested (List above includes common analysis) Misc. Org. NY 310-13 Air TO14A TPH GRO TPH DRO RUSH-Same Day RUSH-Three Day TPH 1664 Standard (5-7day) CTETPH Air TO15 Air STARS RUSH-Next Day RUSH-Four Day RUSH-Two Day Methane Air VPH Air TICs Helium HNO, Other Metals STPOTOP Indix Metak TAGM list NJDEP list Dissolved PP13 list CTIS list JST Below RCRAS PCE and TCE via EPA 8260B Total Semi-Vols, PestPCBHerb Ascorbic Acid Purchase Order # MeOH Your Project ID Samples from CT NY NJ STPOTUP 11-28 31 Drive, LIC NY TCLP Herb TCLP Pest 8082PCB 8151Herb Site Spec. Chlordane 8081Pest CTRCP App. IX 608 Pest SAPOTOT 608 PCB Date/Time Date/Time × × × × #170154 8270 cr 625 STARS list CT RCP list TCLP BNA Adds Only TAGM list NJDEP list BN Only CL list App. IX PAH list HCI ZnAc SPIPOTUP Nassau Co. Suffolk Co. Samples Relinquished By Samples Relinquished By NJDEP list Site Spec. Oxygenutes TCLPlist Ketones Frozen 524.2 Volatiles Hydro Tech Env. Corp. 77 Arkay Dr. Suite G Hauppauge Ny CT RCP list STARS list TAGM list Arom. only Halog.only App.IX list Invoice To: 8021B list 8260 full TCL list MTBE Print Clearly and Legibly. All Information must be complete. Samples will NOT be logged in and the turn-around time clock will not begin until any questions by York are resolved. S - soil Other - specify(oil, etc.) drinking water groundwater Matrix Codes WW - wastewater Air-A. ambient air Company: SAME Air-SV - soil vapor Address: Name: E-mail (check all appliciable) Field Filtered Preservation Special Lab to Filter Matrix GW. DW. Ø M B ā × Report to: Samples Collected/Authorized By (Signature) Date+Time Sampled 2/19/2018 × × × × SAME Company: Address: E-mail: Vame (printed) compare to NYSDEC - 1.1.1 TOGS- GQS 15 Ocean Ave. 2nd FI YOUR Information Bklyn, NY 11225 company: Hydro Tech Env. Corp. Sample Identification MW-1 (MS/MSD) 718-636-0800 Paul I. Matli Field Blank Trip Blank MW-2 MW-3 9-MM MW-4 = same as before Comments: \ddress: Contact: "hone: -mail:

Post-Injection Lab Report (July 2018)

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 **Attention: Paul Matli**

Report Date: 07/31/2018

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 18G1061

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 07/31/2018

Client Project ID: #170154 11-28 31 Drive, LIC NY

York Project (SDG) No.: 18G1061

Hydro Tech Environmental (Brooklyn)

15 Ocean Avenue Brooklyn NY, 11225 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on July 25, 2018 and listed below. The project was identified as your project: #170154 11-28 31 Drive, LIC NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18G1061-01	MW-1	Water	07/24/2018	07/25/2018
18G1061-02	MW-2	Water	07/24/2018	07/25/2018
18G1061-03	MW-3	Water	07/24/2018	07/25/2018
18G1061-04	MW-4	Water	07/24/2018	07/25/2018
18G1061-05	MW-6	Water	07/24/2018	07/25/2018
18G1061-06	Trip Blank	Water	07/24/2018	07/25/2018
1				

General Notes for York Project (SDG) No.: 18G1061

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

belf

Benjamin Gulizia Laboratory Director **Date:** 07/31/2018

Sample Information

Client Sample ID: MW-1 York Sample ID: 18G1061-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared	by	Method:	EPA	5030B	

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	0.22	J	ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 03:53	SS
								Certifications: 0	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 03:53	SS
								Certifications: C	TDOH,NE	ELAC-NY10854,NELA	AC-NY12058,NJDEP	,PADEP
	Surrogate Recoveries	Result		Acc	eptance Rango	•						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			69-130							
2037-26-5	Surrogate: Toluene-d8	101 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

Sample Information

Client Sample ID: MW-2 York Sample ID: 18G1061-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	20		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 04:25	SS
								Certifications:	CTDOH,N	IELAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
79-01-6	Trichloroethylene	0.63		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 04:25	SS
								Certifications:	CTDOH,N	IELAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: Toluene-d8	100 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	100 %			79-122							

Sample Information

Client Sample ID: MW-3 York Sample ID: 18G1061-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

<u>Volatile Organics, 8260 List - Low Level</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 4 of 12

Sample Information

Client Sample ID: MW-3 York Sample ID: 18G1061-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Iethod	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	1.2		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 04:57	SS
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	?,PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 04:57	SS
								Certifications: C	CTDOH,NE	ELAC-NY10854,NELA	AC-NY12058,NJDEP	,PADEP
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: Toluene-d8	100 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

Sample Information

Client Sample ID: MW-4 York Sample ID: 18G1061-04

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18G1061
 #170154 11-28 31 Drive, LIC NY
 Water
 July 24, 2018 3:00 pm
 07/25/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Met	Date/Time hod Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	13		ug/L	0.20	0.50	1	EPA 8260C	07/27/2018 12:28	07/28/2018 05:29	SS
								Certifications: CTI	OOH,NELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
79-01-6	Trichloroethylene	0.43	J	ug/L	0.20	0.50	1	EPA 8260C	07/27/2018 12:28	07/28/2018 05:29	SS
								Certifications: CTI	OOH,NELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
	Surrogate Recoveries	Result		Acce	eptance Rango	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			69-130						
2037-26-5	Surrogate: Toluene-d8	100 %			81-117						
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			79-122						

Sample Information

Client Sample ID: MW-6 York Sample ID: 18G1061-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18G1061#170154 11-28 31 Drive, LIC NYWaterJuly 24, 2018 3:00 pm07/25/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

120 RESEARCH DRIVE

Log-in Notes:	Sample Notes:
----------------------	---------------

132-02 89th AVENUE

RICHMOND HILL, NY 11418

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	43		ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 07:38	SS
								Certifications: C	CTDOH,NEL	LAC-NY10854,NEL	AC-NY12058,NJDEF	P,PADEP

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 5 of 12

STRATFORD, CT 06615

Sample Information

Client Sample ID: MW-6

York Sample ID:

18G1061-05

York Project (SDG) No. 18G1061

<u>Client Project ID</u> #170154 11-28 31 Drive, LIC NY Matrix Water Collection Date/Time
July 24, 2018 3:00 pm

Date Received 07/25/2018

Volatile Organics, 8260 List - Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Iethod	Date/Time Prepared	Date/Time Analyzed	Analyst
79-01-6	Trichloroethylene	0.46	J	ug/L	0.20	0.50	1	EPA 8260C		07/27/2018 12:28	07/28/2018 07:38	SS
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	108 %			69-130							
2037-26-5	Surrogate: Toluene-d8	98.4 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

Sample Information

Client Sample ID: Trip Blank

Client Project ID

York Sample ID:

18G1061-06

York Project (SDG) No. 18G1061

#170154 11-28 31 Drive, LIC NY

Matrix Water Collection Date/Time

Date Received

July 24, 2018 3:00 pm

07/25/2018

Volatile Organics, 8260 List - Low Level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	07/27/2018 12:28 ELAC-NY10854,NEL	07/28/2018 01:46 AC-NY12058,NJDEP	SS PADEP
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	07/27/2018 12:28 ELAC-NY10854,NEL	07/28/2018 01:46 AC-NY12058,NJDEP	SS PADEP
	Surrogate Recoveries	Result		Acce	ptance Range	e						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			69-130							
2037-26-5	Surrogate: Toluene-d8	100 %			81-117							
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			79-122							

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices@

Page 6 of 12

Analytical Batch Summary

Batch ID:	BG81295	Preparation Method:	EPA 5030B	Prepared By:	TAB

YORK Sample ID	Client Sample ID	Preparation Date	
18G1061-01	MW-1	07/27/18	
18G1061-02	MW-2	07/27/18	
18G1061-03	MW-3	07/27/18	
18G1061-04	MW-4	07/27/18	
18G1061-05	MW-6	07/27/18	
18G1061-06	Trip Blank	07/27/18	
BG81295-BLK1	Blank	07/27/18	
BG81295-BS1	LCS	07/27/18	
BG81295-BSD1	LCS Dup	07/27/18	
BG81295-MS1	Matrix Spike	07/27/18	
BG81295-MSD1	Matrix Spike Dup	07/27/18	

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BG81295 - EPA 5030B											
Blank (BG81295-BLK1)							Prep	pared: 07/27/20	018 Analyz	ed: 07/28/2	2018
Tetrachloroethylene	ND	0.50	ug/L								
Trichloroethylene	ND	0.50	"								
Surrogate: 1,2-Dichloroethane-d4	10.4		"	10.0		104	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: p-Bromofluorobenzene	10.4		"	10.0		104	79-122				
LCS (BG81295-BS1)							Prep	pared & Analy	zed: 07/27/	2018	
Tetrachloroethylene	8.06		ug/L	10.0		80.6	82-131	Low Bias			
Trichloroethylene	8.83		"	10.0		88.3	82-128				
Surrogate: 1,2-Dichloroethane-d4	9.82		"	10.0		98.2	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: p-Bromofluorobenzene	9.90		"	10.0		99.0	79-122				
LCS Dup (BG81295-BSD1)							Prep	pared: 07/27/20	018 Analyz	ed: 07/28/2	2018
Tetrachloroethylene	8.42		ug/L	10.0		84.2	82-131		4.37	30	
Trichloroethylene	9.24		"	10.0		92.4	82-128		4.54	30	
Surrogate: 1,2-Dichloroethane-d4	10.0		"	10.0		100	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: p-Bromofluorobenzene	9.93		"	10.0		99.3	79-122				
Matrix Spike (BG81295-MS1)	*Source sample: 180	G1061-04 (M	W-4)				Prep	pared: 07/27/20	018 Analyz	ed: 07/28/2	2018
Tetrachloroethylene	18.6		ug/L	10.0	12.8	58.2	64-139	Low Bias			
Trichloroethylene	8.41		"	10.0	0.430	79.8	53-145				
Surrogate: 1,2-Dichloroethane-d4	10.4		"	10.0		104	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				
Surrogate: p-Bromofluorobenzene	9.72		"	10.0		97.2	79-122				
Matrix Spike Dup (BG81295-MSD1)	*Source sample: 180	G1061-04 (M	W-4)				Prep	pared: 07/27/20	018 Analyz	ed: 07/28/2	2018
Tetrachloroethylene	20.1		ug/L	10.0	12.8	72.8	64-139		22.3	30	
Trichloroethylene	9.00		"	10.0	0.430	85.7	53-145		7.13	30	
Surrogate: 1,2-Dichloroethane-d4	10.4		"	10.0		104	69-130				
Surrogate: Toluene-d8	10.1		"	10.0		101	81-117				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 12

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
18G1061-01	MW-1	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-02	MW-2	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-03	MW-3	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-04	MW-4	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-05	MW-6	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
18G1061-06	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD.	The batch was accepted based on acceptable LCS
	recovery.	

QL-02 This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method

has certain limitations with respect to analytes of this nature.

Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 10 of 12

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 11 of 12

www.YORKLAB.com (203) 325-1371 York Project No. / 8 G- 106

Field Chain-of-Custody Record

This document serves as your written authorization to York to proceed with the analyses requested and your NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

120 RESEARCH DR. STRATFORD, CT 06615

signature binds you to York's Std. Terms & Conditions unless superseded by written contract.

Report/Deliverable Type CT RCP DOA/DUE Pkg NJDEP Reduced Deliv NY ASP A Package NY ASP B Package Summary Report 2A Report CT RCP Semi-Vols, Pestrebents Metals Misc. Org. Full II 18270 cr 625 8082PCB RCRA8 TPH GRO Pri.Poll. **Turn-Around Time** Standard (5-7day) RUSH-Three Day RUSH-Same Day RUSH-Four Day RUSH-Next Day RUSH-Two Day Samples from CT_NX_NJ Purchase Order # Your Project ID 11-28 31 Drive, LIC NY 52161 #170154 Invoice To: SAME x Company: Address: E-mail Name: Report to: × FAX (203) 357-0166 SAME Company: Address: E-mail: Name: Company: HydroTech Env. Eng Geol 15 Ocean Ave. 2nd FI YOUR Information **Bklyn**, NY 11225 718-636-0800 Paul I. Matli (203) 325-1371 Address: Sontact: Phone.: E-mail:

Volatiles

Site Spec. STARS list 8081Pest TAL Suffolk Co. Adds Only S131Herb TAL Suffolk Co. Adds Only CT RCP CTI5 list NY 310-13 Ketones PAH list App. IX TAGM list TPH 1664 Oxygendes TAGM list Site Spec. NUDEP list Air TO14 list 324.2 TCL list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest TCLP Pest Dissolved Air STARS oly 502.2 NUDEP list TCLP Pest TCLP	Diret Clanely and I am	ihly All Informa	tion must be complete.	Volatiles Semi-Vols, Pear Chier McLans Max. O.g.	Pri Poll.
RS list Nassau Co. BN Only 8151Herb TAL CTETPH TALMAGON Suffolk Co. Acide Only CTRCP CTI5 list Ny 310-13 Full TCLP List Ketones PAH list App. IX TAGM list Site Spec. NDEP list Air TO11A PAT500Bosine let to Coygandes TAGM list Site Spec. NDEP list Air TO11A PAT500Bosine let to Coygandes CTRCP list TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TO12 Pat500Bosine let to Chilotene India Air TO13 Pat500Bosine let to Chilotene India Air TO13 Pat500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air STARS PAT500Bosine let to Chilotene India Air TCLP Pest Dissolved Air TCLP	Frin Clearly and Leg	many, that may control	the time appared time	Site Spec. STARS list 8081Pest PP13 list TPH DRO	TICS
Matrix Codes NTBE Retones PAH list Site Spec. Soil for specify(sit, etc.) Tagm list Tagm list Site Spec. Tagm list Tagm list Site Spec. NW - wastewater W. wastewater Tagm list Tagm list Tagm list Tagm list Spec. W. drinking water Halogony NDEP list Amyo. NY Chilordene Interface Aron. App. NY ODEPsec. NY - wastewater W. drinking water Halogony NDEP list App. NY ODEPsec. NY - wastewater NY - wastewat	Samples will NOT be clock will not begin u	e logged in and intil any question:	me turn-uround turns s by York are resolved	RS list Nassau Co. BN Only 8151Herb TAL CTETPH XX Suffolk Co. Acids Only CTRCP CT15 list NY 310-13	
C March			Matrix Codes S - soil	MTBE Ketones PAH list App. IX TAGM list TPH 1664 ICL.list Oxygendes TAGM list Site Spec. NIDEP list Air TO14A	1 App. IX (Std.) 360-Route legulatory Comp Excel
C. Continue Cont	Samples Collected/Au	ithorized By (Signature		TAGM ist TCLP list CI KCP iist SCLFOLL 10kii Aii 1013 CTRCP list 524.2 TCL list TCLP Pest Dissolved Air STARS	(200 Feering Comment helps
Name (printed)	Lange	Mate,		Arom. only 502.2 Nadez us. 1 Cale and a Ari Tics Halog, only Nadez App. IX. Calordane hat Metak Ari Tics	Mile ODEser
Tigation Tigation	Name	(printed)	r-SV - soil v	ApplX list STROTICLE LICLE BINA 608 Fest LIST Below including \$102.00 His second lines and the second lines are second lines and the second lines are second lines and lines are second lines and lines are second	صائونت Description
X	Sample Identification	Date+Time Sampled		DCF and TCF via EPA 8260B	3 x 40 mils vials
ASD) X X X X X X X X X A DI Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X finds. This fix Relinquished X fixes. This fix fixes. This fixes. This fixes. This fixes is a fixed fixes. The fixes of the fixes of the fixes of the fixes. The fixes of the fixes o	MW-1	7/24/2018	AAD :	×	×
ANSD) X X X X X X X X X X X X X X X X X X X	MW-2	×	×	· >	×
nk x X X X X X X X X X X X X X X X X X X	MW-3	×	×	<	Aleksia Character
x x x x x x x x x x x x x x x x x x x	MW-4 (MS/MSD)	×	×	×	0 X 40 IIIIIS VIGIS
Relinjushed x Langer This 1/8 Relinjushed x Laborator This 1/8 Relinjushed x Laborator to the this the thing the thing the thing the thing the thing the thing the thing the thing the things the thing the thing the thing the things the thing	MW.6	×	×	×	3 x 40 mils vials
Reltrywshed x finder 7/h5/18 Reltrywshed x finder 7/h5/18 Reltrywshed x finder 1/h5/18 Reltrywshed x finder 1/h5/18 Reltrywshed x finder 1/h5/18	O-MINI STORY OF THE	•	ĪQ	×	2 x 40 mils vials
Preservation (check all appliciable) 4°C Frozen HCI MEOH HNO3 HSO	Inp biann	e e	Rel	12/5 7/NS/1	
Check all appliciable) 4°C Frozell HO MEOH HNO HSO			Res	unedbylub	
(check all appliciable) 4°C Frozen HCI MeOH HNO3 H,SO					
4°C Frozen HCI McOH HNO3 HSO	Comments:		Preservation (check all appliciable)		- 3.7°C
	x = same as before			Frozen HCI MeOH HNO3	i.

Compare to NYSDEC - 1.1.1 TOGS- GQS

Пе

12/18 12:18

Date/Time

Samples Received By

Special Instructions

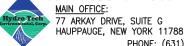
<u>ATTACHMENT R</u> Monitoring Well Construction Logs

N/A

Manhole Size:

NYC OFFICE: 15 OCEAN AVENUE, SECOND FLOOR BROOKLYN, NEW YORK 11238

PHONE: (631) 462-5866 FAX: (631) 462-5877


WELL CONSTRUCTION LOG

#2

Sand Size:

Job No:	130030	Date: <u>04-24-2013</u>	Page: <u>1 OF 1</u>
Location:	11-28 31st DRIVE, QUEENS NY		
Well Number:	MW-1	Screen Size:	0.020"
Drilling Method:	DIRECT PUSH	Screen Interval:	15.00'
Total Depth:	18.00'	Diameter:	1"
Depth to Water	r: <u>8.5' TO 10'</u>	Riser Length:	6.90"

Widillioic .	0120.				Suria Sizo.			
Depth Below Grade (ft.)	Sample Interval (ft.)	Well	Construction		Des	scription		
2		SOIL	Riser	1				
4		NATIVE		le Seal-	0'-2.00' -	Native	Soil.	
6				Bentonite	2.00'-3.00' -			
8					3'-18.00' -		nd.	
10					0'-3.00' - 3'-18.00' -	Riser	n	
12		#2 SAND	Screening 1 1 1 #2 SAND		3 13.00 –	55166		
14								
16								
18								
20								
22								
24								
26								
28								
30								
32								
34							DDII I ED.	CAMEDON
36							DRILLER: GEOLOGIST:	CAMERON PAUL

NYC OFFICE: 15 OCEAN AVENUE, SECOND FLOOR BROOKLYN, NEW YORK 11238

WELL CONSTRUCTION LOG

PHONE: (631) 462-5866 FAX: (631) 462-5877

Job No:	130030	Date: 04-24-2013	Page: 1 OF 1
			_

11-28 31st DRIVE, QUEENS NY Location:

MW-20.020" Well Number: Screen Size:

Screen Interval: 15.00 Drilling Method: DIRECT PUSH

18.00' 1" Total Depth: Diameter:

Depth to Water: <u>8.5'</u> TO 10' <u>5.70</u>" Riser Length:

NI /A

Manhole S	Size: N/A			Sand Size: <u>#2</u>
Depth Below Grade (ft.)	Sample Interval (ft.)	Well	Construction	Description
2		/E SOIL—	Riser	
4		NATIVE	nite S	0'-2.00' - Native Soil.
6			Bentonite	2.00'-3.00' — Bentonite Seal. 3'-18.00' — #2 Sand.
8				0'-3.00' - Riser
10				3'-18.00' - Screen
12		#2 SAND	Screening	
14				
16				
18		, ,		
20				
22				
24				
26				
28				
30				
32				
34				DRILLER: CAMERON
36				GEOLOGIST: PAUL

MAIN OFFICE: 77 ARKAY DRIVE, SUITE G HAUPPAUGE, NEW YORK 11788 NYC OFFICE:

15 OCEAN AVENUE, SECOND FLOOR BROOKLYN, NEW YORK 11238

PHONE: (631) 462-5866 FAX: (631) 462-5877

WELL CONSTRUCTION LOG

Page: <u>1 OF 1</u> 130030 Date: <u>04-24-2013</u> Job No: 11-28 31st DRIVE, QUEENS NY Location: 0.020" MW-3Well Number: Screen Size: Screen Interval: 15.00' Drilling Method: DIRECT PUSH Total Depth: 18.00' Diameter: Depth to Water: 8.5' TO 10' Riser Length: <u>4.50"</u> N/A #2 Manhole Size: Sand Size:

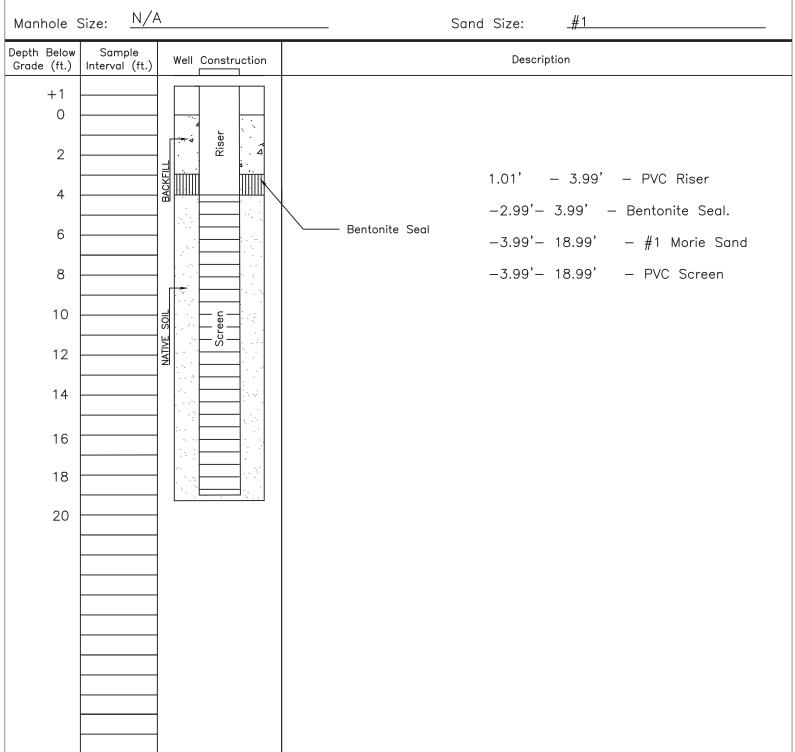
Depth Below Grade (ft.)	Sample Interval (ft.)		Constru	uction	Description
2		SOIL	Riser		
4		NATIVE		e Seal-	0'-2.00' - Native Soil.
6			_	Bentonite	2.00'-3.00' — Bentonite Seal.
8				Bei	3'-18.00' - #2 Sand.
		 		. ;	0'-3.00' - Riser
10		SAND		SAND	3'-18.00' - Screen
12		#2 SAI	creenii	#2 SAI	
14			_s_		
16					
18					
		_			
20					
22					
24					
26					
28		-			
30					
32					
34					DRILLER: CAMERON
36		1			GEOLOGIST: PAUL

Hydro Tech Environmental Engineering and Geology, DPC

NYC OFFICE 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718)636–0800 F (718)636–0900 77 Arkay Drive, Suite G Hauppauge, NY 11788 T (631)462-5866 F (631)462-5877

WELL CONSTRUCTION LOG

Job No: 170154 Date: _____ Page: 1 OF 1


Location: 11-28 31st DRIVE, QUEENS, NY

Well Number: MW-1 Screen Size: 0.010"

Drilling Method: DIRECT PUSH Screen Interval: 15

Total Depth: 18.99' Diameter: 2"

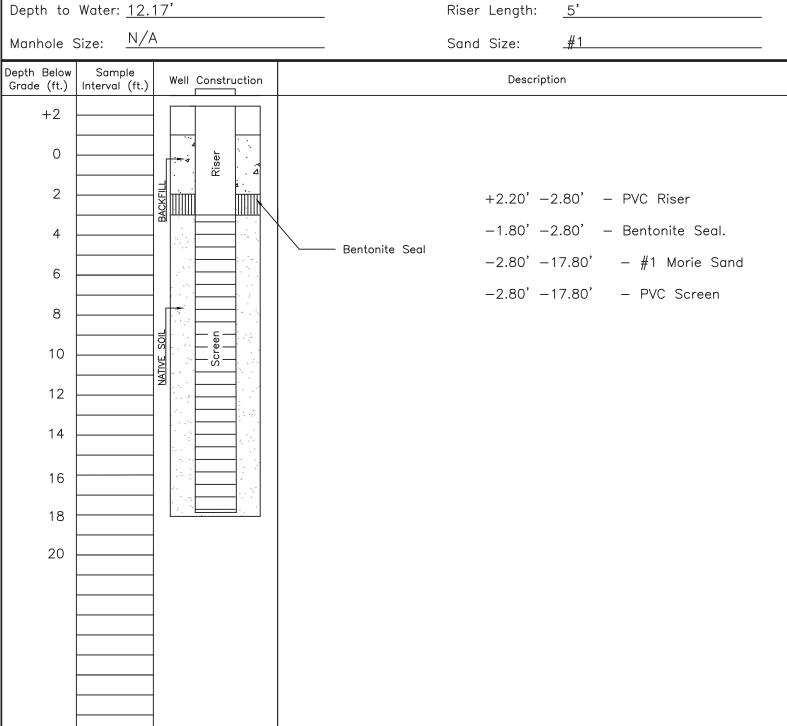
Depth to Water: 12.36' Riser Length: 5'

Hydro Tech Environmental Engineering and Geology, DPC

NYC OFFICE 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718)636–0800 F (718)636–0900 77 Arkay Drive, Suite G Hauppauge, NY 11788 T (631)462-5866 F (631)462-5877

WELL CONSTRUCTION LOG

 Job No:
 170154
 Date:
 Page: 1 OF 1

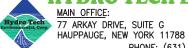

 Location:
 11-28 31st DRIVE, QUEENS, NY

 Well Number:
 MW-2
 Screen Size:
 0.010"

 Drilling Method:
 DIRECT PUSH
 Screen Interval:
 15

 Total Depth:
 17.80'
 Diameter:
 2"

 Pepth to Water:
 12.17'
 Riser Length:
 5'


Hydro Tech Environmental Engineering and Geology, DPC NYC OFFICE 15 Ocean Avenue, 2nd Floor Brooklyn, New York 11225 T (718)636-0800 F T (631)462-5866 F (631)462-5877

1 OFFICE 77 Arkay Drive, Suite G Hauppauge, NY 11788 T (631)462-5866 F (631)462-5877

WELL CONSTRUCTION LOG

170154 Page: 1 OF 1 Date: _____ Job No: 11-28 31st DRIVE, QUEENS, NY Location: MW-3<u>0.010"</u> Well Number: Screen Size: Drilling Method: DIRECT PUSH Screen Interval: 15' 20' <u>2</u>" Total Depth: Diameter:

Depth to W	Water: <u>12.5</u>	57'	Riser Length: <u>5'</u>
Manhole Si	ize: <u>N/A</u>	A	Sand Size: <u>#1</u>
Depth Below Grade (ft.)	Sample Interval (ft.)	Well Construction	Description
+2			
0		Riser	
2 –		BACKFILL R	+2.00' -3.00' - PVC Riser
4			-3.00' -4.00' - Bentonite Seal.
6			Bentonite Seal -4.00' -18.00' - #1 Morie Sand
8 –			-4.00' -18.00' - PVC Screen
10		NATIVE SOIL Screen	
12		VITAN	
14			
16			
18			
20		-	
		-	
-		-	
		-	
		-	

NYC OFFICE: 15 OCEAN AVENUE, SECOND FLOOR BROOKLYN, NEW YORK 11238

PHONE: (631) 462-5866 FAX: (631) 462-5877

WELL CONSTRUCTION LOG

140344 Date: <u>02-08-2015</u> Page: 1 OF 1 Job No: 11-28 31st DRIVE, QUEENS NY Location: MW-40.020" Screen Size: Well Number: Drilling Method: DIRECT PUSH Screen Interval: 15.00' 20.00' Total Depth: Diameter: Depth to Water: 10.5' Riser Length:

Manhole S	Size: <u>5"</u>			Sand Size: <u>#2</u>	
Depth Below Grade (ft.)	Sample Interval (ft.)	Well Constr	uction	Description	
2		SOIL			
4		NATIVE		0'-2.00' — Native Soil.	
6			Seal-	4.00'-5.00' — Bentonite Seal.	
8			Bentonite	5'-20.00' - #2 Sand.	
10			Ber	0'-5.00' — Riser 5'-20.00' — Screen	
12		SAND	SAND	5 -20.00 - Screen	
14		#2	#2		
16					
18					
20					
22					
24					
26					
28		_			
30					
32					
34					
36				DRILLER: OSCAR GEOLOGIST: NICK	

NYC OFFICE: 15 OCEAN AVENUE, SECOND FLOOR BROOKLYN, NEW YORK 11238

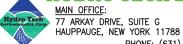
WELL CONSTRUCTION LOG

PHONE: (631) 462-5866 FAX: (631) 462-5877

140344 Date: <u>02-08-2015</u> Page: <u>1 OF 1</u> Job No:

11-20 31st DRIVE, QUEENS NY Location:

0.020" MW-5Well Number: Screen Size:


Drilling Method: DIRECT PUSH Screen Interval: 15.00'

20.00' 2" Total Depth: Diameter:

Depth to Water: 10.5' Riser Length:

#2 Manhole Size: Sand Size:

Depth Below Grade (ft.)	Sample Interval (ft.)		Construction	Description
2		SOIL	Riser	
4		NATIVE		0'-2.00' — Native Soil.
6				4.00'-5.00' — Bentonite Seal.
8			Bentonite	5'—20.00' — #2 Sand.
			. —	0'-5.00' - Riser
10		SAND	eening 	5'-20.00' - Screen
12		#2] - 5 - [🕌]	
14				
16				
18				
20		3.		
22				
24				
26				
28				
30				
32				
34 36				DRILLER: OSCAR GEOLOGIST: NICK

NYC OFFICE: 15 OCEAN AVENUE, SECOND FLOOR BROOKLYN, NEW YORK 11238

PHONE: (631) 462-5866 FAX: (631) 462-5877

WELL CONSTRUCTION LOG

140344 Page: 1 OF 1 Job No: Date: <u>02-08-2015</u> 11-35 31st DRIVE, QUEENS NY Location: MW-60.020" Well Number: Screen Size: Drilling Method: DIRECT PUSH Screen Interval: 15.00' Total Depth: 20.00' 2" Diameter: Depth to Water: 10.5' Riser Length: #2 Manhole Size: Sand Size:

Manhole Size: 5			Sand Size: <u>#</u> 2
Depth Below Grade (ft.)	Sample Interval (ft.)		Description
2		Soll-	
4		ANTIVE NATIVE	0'-2.00' - Native Soil.
6			
8		Bentonite	5'-20.00' - #2 Sand.
10		1	0'-5.00' - Riser 5'-20.00' - Screen
12		#2 SAND	
14		#2 - Scr #2	
16			
18			
20			
22			
24			
26			
28			
30			
32			
34			DRILLER: OSCAR
36			GEOLOGIST: NICK

77 ARKAY DRIVE, SUITE G
HAUPPAUGE, NEW YORK 11788

NYC OFFICE:

SUITE G 15 OCEAN AVENUE, SECOND FLOOR
WYORK 11788 BROOKLYN, NEW YORK 11238
PHONE: (631) 462–5866 FAX: (631) 462–5877

WELL CONSTRUCTION LOG

Job No: 140344

Date: <u>02-08-2015</u> Page: <u>1 OF 1</u>

Location: 11-44 31st DRIVE, QUEENS NY

Well Number: MW-7 Screen Size: 0.020"

Drilling Method: DIRECT PUSH Screen Interval: 15.00'

Total Depth: 20.00' Diameter: 2"

Depth to Water: 10.5' Riser Length: 5'

Depth to	Water: 10.5	Riser Length: 5
Manhole S	Size: <u>5"</u>	Sand Size: <u>#2</u>
Depth Below Grade (ft.)	Sample Well Construction Interval (ft.)	Description
2	SOIL—	
4	NA NA NA NA NA NA NA NA NA NA NA NA NA N	0'-2.00' — Native Soil.
6		4.00'-5.00' — Bentonite Seal.
8	Bentonite	5'-20.00' - #2 Sand.
		0'-5.00' - Riser
10	SAND SAND SAND SAND SAND	5'-20.00' - Screen
12	#2 SAND 1 1 1 Screening 1 1 1 1 2 SAND	
14		
16		
18		
20		
22		
24		
26		
28		
30		
32		
34		DRILLER: OSCAR
36		GEOLOGIST: NICK

Manhole Size:

MAIN OFFICE: 77 ARKAY DRIVE, SUITE G HAUPPAUGE, NEW YORK 11788

<u>5"</u>

15 OCEAN AVENUE, SECOND FLOOR BROOKLYN, NEW YORK 11238

NYC OFFICE:

PHONE: (631) 462-5866 FAX: (631) 462-5877

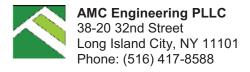
WELL CONSTRUCTION LOG

#2

Sand Size:

140344 Date: <u>02-08-2015</u> Page: 1 OF 1 Job No: 11-25 BROADWAY, QUEENS NY Location: 8-WM0.020" Well Number: Screen Size: Drilling Method: <u>DIRECT PUSH</u> Screen Interval: 15.00' 20.00' Total Depth: 2" Diameter: Depth to Water: 10.5' Riser Length:

Marinole			
Depth Below Grade (ft.)	Sample Interval (ft.)	Well Construction	Description
2		Soll-	
4		ATIVE	0'-2.00' — Native Soil.
6		<u> </u>	4.00'-5.00' — Bentonite Seal.
8		Bentonite	5'-20.00' - #2 Sand.
		B. B. B. B. B. B. B. B. B. B. B. B. B. B	
10		SAND SAND SAND SAND SAND	5'-20.00' - Screen
12		#5 #2	
14			
16			
18			
20			
22			
24			
26			
28			
30			
32			
34			DDILLED COOLS
36			DRILLER: OSCAR GEOLOGIST: NICK


ATTACHMENT S Approved ISCO Design Document

11-28 31st Drive QUEENS, NEW YORK Block 502 Lot 22

IN SITU CHEMICAL OXIDANT DESIGN DOCUMENT

Prepared for: Mr. George Man 11-28 31st Drive, Queens, NY 11106

Prepared By:

August 2016

CERTIFICATIONS

I, Ariel Czemerinski, certify that I am currently a NYS registered professional engineer and that this IN SITU CHEMICAL OXIDANT Design Document was prepared in accordance accepted engineering practices.

076508	9/2/216
NYS Professional Engineer #	Date

TABLE OF CONTENTS IN SITU CHEMICAL OXIDANT DESIGN DOCUMENT 11-28 31st Drive, Queens

1.0	SITE BACKGROUND
2.0	SITE DESCRIPTION AND HISTORY
3.0	IN SITU CHEMICAL OXIDANT SYSTEM DESCRIPTION

LIST OF FIGURES

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 ISCO System Layout Figure 4 GW Results Parameters

ATTACHMENTS

Attachment A ISCO System Specifications and Instructions

Attachment B Injection Calculations

1.0 SITE BACKGROUND

AMC Engineering, PLLC (AMC) has been retained by Mr. George Mann to conduct environmental remediation activities for a commercial property located 11-28 31st Drive in the Long Island City section of Queens (**Figure 1**). Site has formally entered into to the New York State Department of Environmental Conservation (NYSDEC) Brownfields Cleanup Program (BCP) and given Site Number C241159. The applicant has applied to this program as a Volunteer. The proposed future use of the Site will consist of residential use. The Site will be developed into 6-story building with slab on grade, plus stair/elevator and bulkhead.

The Site is 2,416.40-square feet and is bounded by 31st Drive to the north-northeast, a vacant land and a 1-story manufacturing building to the south-southwest, a 1-story cabinet manufacturing facility to the east-southeast and a vacant 1-story warehouse to the west-northwest. Currently, the Site is vacant and contains a 1-story building that was until most recently occupied by a manufacturing facility of wood cabinets

The Remedial Investigation (RI) conducted by Hydro Tech Environmental (HYDRO TECH) in July 2013 and subsequent monitoring activities on and offsite has revealed elevated levels of chlorinated volatile organic compounds (CVOCs), including tetrachloroethene (PCE) and trichloroethene (TCE), in soil gas above mitigation levels established within the State DOH soil vapor guidance matrix. TCE concentrations in soil gas ranged from 9.3 μ g/m³ to a high of 15 μ g/m³ onsite and 130 μ g/m³ offsite. PCE concentrations ranged from 140 μ g/m³ to 1600 μ g/m³ onsite and 1600 μ g/m³ offsite (see figure 4)

PCE, TCE and cis-1,2 Dichloroethylene (1,2 DCE) were also detected in groundwater samples obtained from one indoor and three outdoor monitoring wells. As depicted in Figure 4, MW3 resulted in 83 ug/L of PCE (2013) and 20.83 ug/L (2015); MW4 yielded 3799.83 ug/L of PCE, 17ug/L of TCE and 20 ug/L of 1,2 DCE; MW6 resulted in 85.83 ug/L of PCE, 8.9ug/L of TCE and 40 ug/L of 1,2 DCE. No other VOCs were detected.

Groundwater flow direction could not be thoroughly estimated, therefore there are injections wells located of both sides of the assumed source to account for uncertainty in the groundwater

flow direction. NYSDEC has determined that an existing onsite UST in the NE area of the site is the source of groundwater contamination.

An IN SITU CHEMICAL OXIDANT (ISCO) system has been proposed as part of the remedy outlined in the approved Remedial Action Work Plan (RAWP), to reduce the potential risk of vapor intrusion. The ISCO system will be installed beneath the slab. The chemical oxidant will be injected into the subsurface to destroy the contaminants in the NE portion of the site, where the UST is located.

2.0 SITE DESCRIPTION AND HISTORY

- 1. Elevation of the property is approximately 11 feet.
- 2. Depth to groundwater ranges from 8.47 to 10.03 feet at the Site.
- 3. Depth to bedrock is in excess of 40 feet at the Site.
- 4. The stratigraphy of the site, from the surface down, consists of historic fill (sand with traces of pebbles, silt, and ash) at variable depths ranging in thickness from zero to 5 feet. The fill layer is underlain by clayey sand to variable depths ranging from 2 to 10 feet. This layer is underlain by granular soils to 40 feet.
- 5. Soil samples collected during the RI indicated that Pesticides and PCBs were not detected in any of the soil samples. Trace concentrations VOCs including acetone, methylene chloride and PCE (3.9 ppb) was detected in 1 of 3 shallow soil samples at the Site. No other VOCs were detected in any soil samples. Trace levels of several SVOC's were detected in shallow soil samples (maximum total SVOCs of 6.33 ppm). No SVOC compounds exceeded Unrestricted Use SCOs. Metals including copper (maximum of 54.6 mg/kg), lead (maximum of 191 mg/kg), zinc (maximum of 111 mg/kg), chromium trivalent (maximum of 37.2 mg/kg) and chromium Hexavalent (maximum of 1.47 mg/kg) were detected in shallow soil samples at concentrations that exceeded the Track 1 Unrestricted SCOs. No metals exceeded Restricted Residential SCOs. Metal concentrations in deeper soils were all below Track 1 Unrestricted Use SCOs. Data collected during the RI is sufficient to delineate the vertical and horizontal distribution of contaminants in soil/fill at the Site.
- 6. Groundwater samples collected during the RI showed two chlorinated VOC, including PCE (maximum of 83 ug/l) and chloroform (maximum of 4.7 ug/l), acetone (4 ug/l) and methylene chloride (4 ug/l) in 1 of 3 monitoring wells installed at the Site. Only PCE concentrations exceeded 6NYCRR Part 703.5 Class GA Groundwater Quality Standards (GQS). One SVOC, Di-n-butyl phthalate, which is a common laboratory contaminant, was detected in one sample at a concentration (11.2 ppb), below its GQS. No pesticides or PCBs were detected in groundwater samples. Two dissolved metals, Sodium and magnesium were detected in groundwater above their GQS..
- 7. Soil vapor samples collected during the RI showed a wide range of compounds throughout the property including BTEX and associated derivative compounds and chlorinated hydrocarbons. BTEX were found in all soil vapor samples and included a wide number of compounds. These

compounds were not identified in soil or groundwater on the property. PCE was detected in all vapor samples at concentrations of 140 ug/m3, 1,400 ug/m3 and 1,600 ug/m3. TCE was detected in 2 of 3 vapor samples at a concentration of 9.5 ug/m3 and 15 ug/m3. TCA and carbon tetrachloride was not detected in any sample. Other chlorinated hydrocarbon compounds included chloroform (18 ug/m3), methylene chloride (maximum 29 ug/m3) and acetone (maximum 900 ug/m3). PCE (NYSDOH AGV of 100 μ g/m3) and TCE (AGV of 5 μ g/m3) concentrations detected in soil vapor at the site are above the NYSDOH guidance matrix.

Based upon the review of the Fire Insurance Maps and Regulatory Agency documents from the Phase I Environmental Site Assessment (ESA) Report prepared by Hydro Tech in March 2013, the Site was utilized as an auto repair shop between 1934 and 1936, a machine shop between 1945 and 1970 and commercial facility between 1977 and 2006. Until most recently, the site was utilized as a manufacturing facility of wood cabinets and then became vacant during the last quarter of 2012.

3.0 IN SITU CHEMICAL OXIDANT SYSTEM DESCRIPTION

Remediation of chlorinated solvents present in groundwater will be accomplished through a chemical oxidant injection program. The proposed area of injection surrounds the UST in every direction given the uncertainty of groundwater flow. Injections at these locations will deliver oxidant to the subsurface allowing it to flow with groundwater, treating both residual contaminants in soil and the groundwater.

3.1 Chemical Oxidant Treatment of Soil Excavation Area

Dry sodium persulfate may be utilized to treat residual VOCs in soil which may remain following the excavation procedure and tank removal. Sodium persulfate and a chelated iron activator will be delivered to the site as a dry powder and applied directly to the open excavation at a ratio of 9 lbs of FeEDTA powder to each 55 lb bag of sodium persulfate. The amount of oxidant to be applied will be dependent on the size of the excavation and the degree of residual contamination remaining. It is anticipated that approximately 5-6 bags of persulfate will be applied in this situation. If application is on dry soil, it will then be wetted with water prior to backfilling. Wetting is not required if the material is applied on wet soil or at or below the water table.

Activated sodium persulfate will be broadcast directly into the open excavation or trench (as a dry powder) prior to backfilling. The activated sodium persulfate power will be thoroughly mixed into subsurface soil utilizing a mini excavator bucket.

3.2 Injections: Probe injection or Well Installation

Six injection wells have been proposed; they will be located in the proximity of the UST. Their location is depicted in figure 3, attached.

Injections will be done either via injection probe or through the installation of 1" PVC injection wells. Chemical oxidant will be applied from 8 ft below the water table to 2 ft above the water table. If injections are conducted through PVC wells, then No. 1 Morie gravel pack will be placed around the screen to a depth of approximately 1 ft above the screen followed by a 1 ft hydrated bentonite pellet seal. The injection wells will be finished at the surface with a 5-inch

bold down manhole cover. In this case, and since remediation injection points for chemical oxidation are considered Class V UIC wells and are regulated through the USEPA UIC program, EPA will be notified of the construction of the injection well by filing form OMB No. 2040-0042 with the Region 1 USEPA office 30 days prior to performing any oxidant injection into oxidant injection wells.

If injections are done through an injection probe, then a small Geoprobe will be mobilized to the site and drive the injection point to 6 ft below water. An injection pump will inject the Klozur solution while slowly lifting the injection probe a total of 8 ft.

3.3 Oxidant Injection Events

The oxidant selected for this project is FeEDTA-activated sodium persulfate. Sodium persulfate is a robust oxidant which has a long residence time (anion lifetime) in the subsurface. Persulfate activation through iron provides fast contaminant reaction kinetics capable of destroying a wide range of organics including the petroleum VOCs present at the Site.

Sodium persulfate will be delivered to the site as a dry powder; it will be mixed with water on-site to provide a 9.3lb/gal solution. FeEDTA will be delivered to the site in 55 lb bags. The manufacturer's instructions for using FeEDTA-activated Klozur are attached.

The initial injection will consist of approximately 34 gallons of activated persulfate solution per injection point. The need for subsequent injections and the number/ location of injection points to be utilized for subsequent injections will be determined following the collection and analysis of performance monitoring samples.

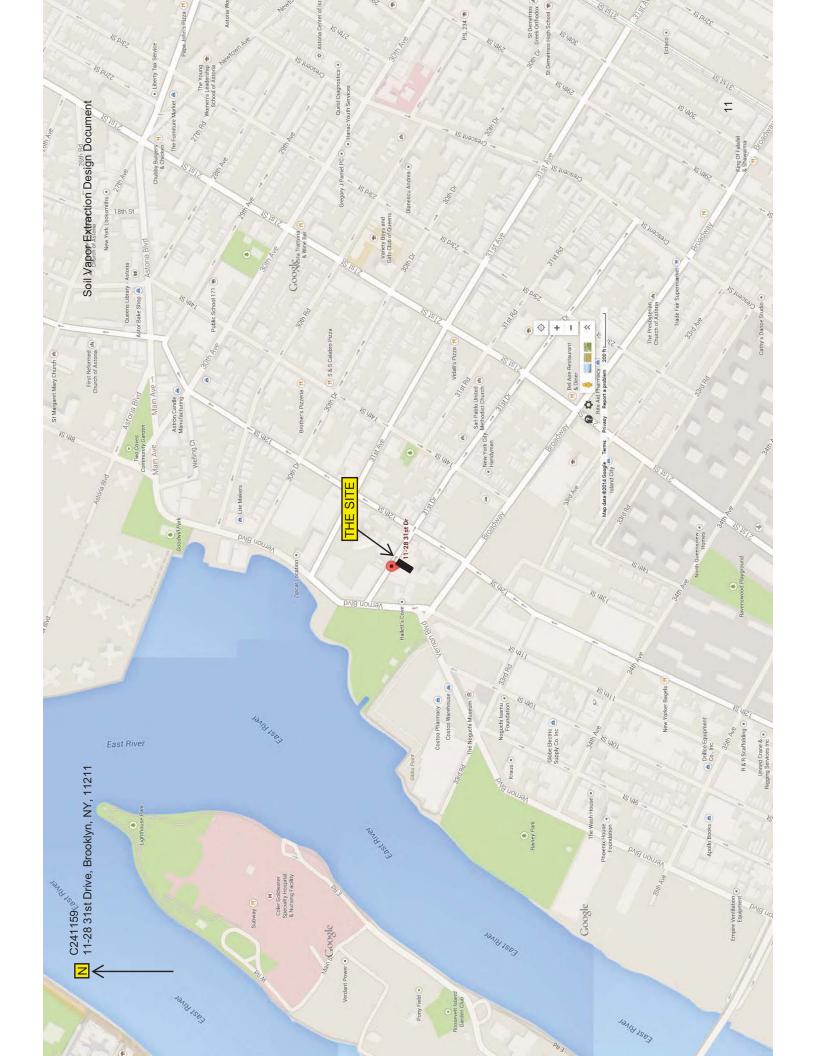
MW3 is located in the immediate vicinity of the UST. It is not anticipated that MW3 will be damaged during the UST removal process. There will be additional inspections of MW3 during and after tank removal to assess its usability. If MW3 is rendered unusable, a new monitoring well will be installed nearby the original location of MW3 in consultation with the DEC and remedial engineer.

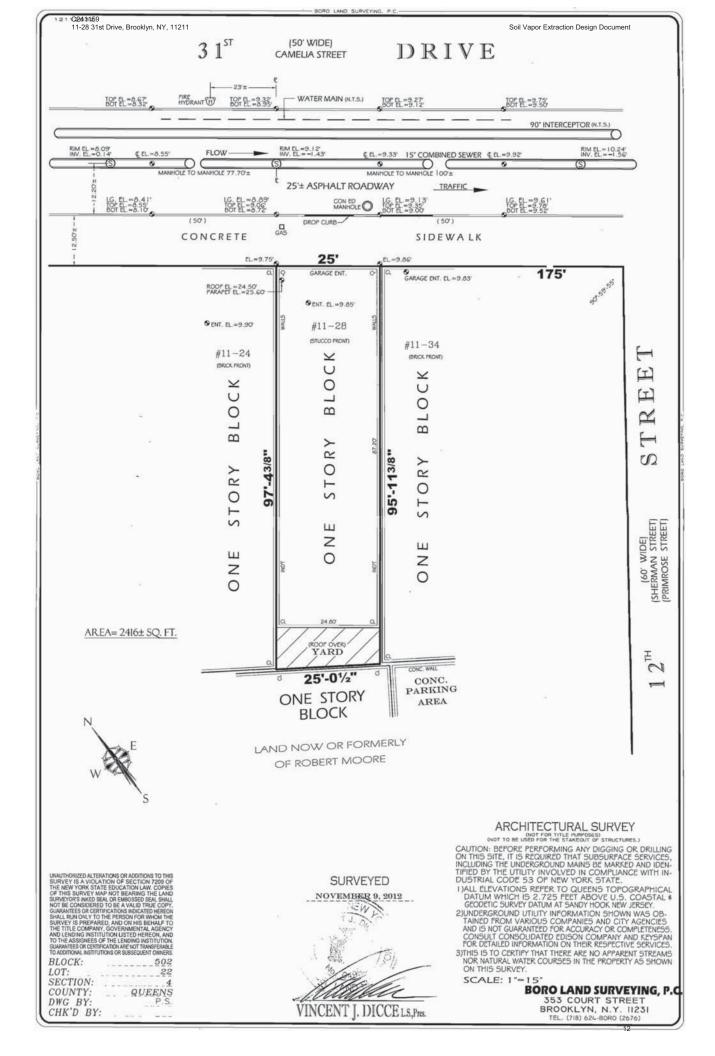
3.4 Basis of Calculation

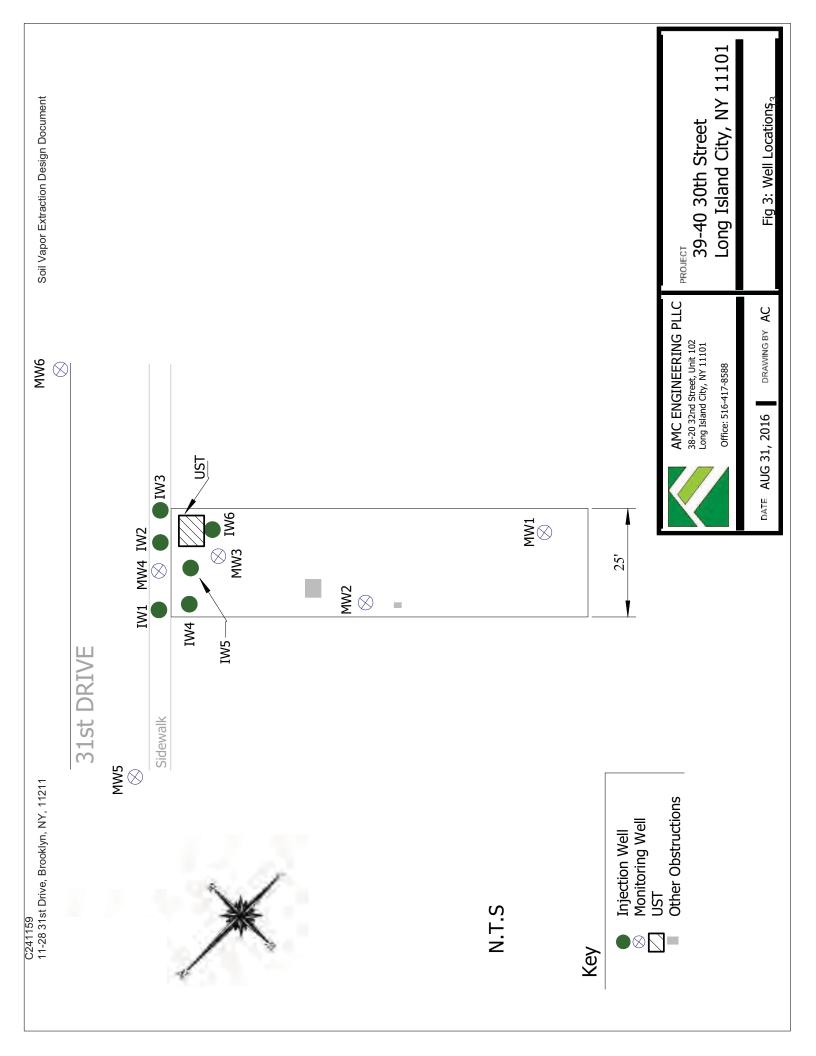
Stoichiometric relation for full oxidation of PCE is 3 pounds of persulfate per pound of PCE. Variable field conditions and presence of other parameters increases this amount. Attachment B contains the calculations and characteristics of the injected material. In designing the injection, we assume the impacted GW to contain 3.8 mg/L and the soil concentration 10.5 mg/Kg of PCE. It is assumed that the treatment zone is 500 ft² and the thickness is 7 ft. Including an assumed 1 g Klozur per kg of soil, the calculated persulfate demand is 1,886 lb.

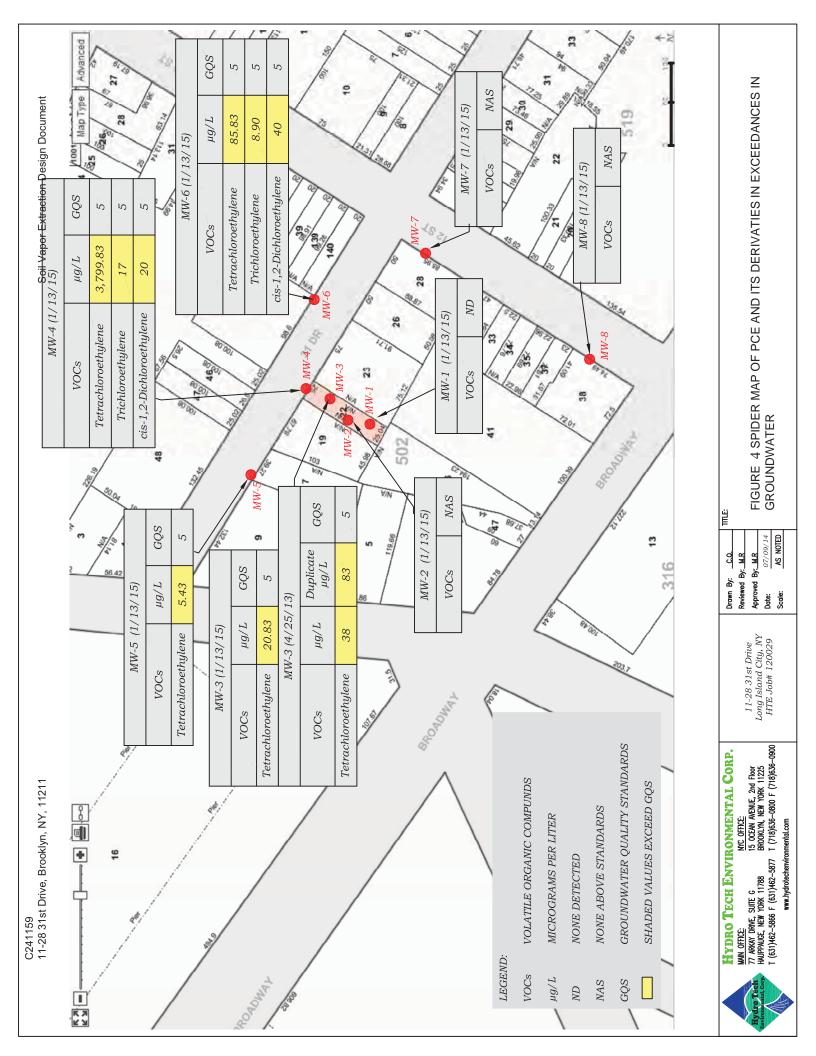
For activation, Peroxychem recommends a 200 ppm of Fe in groundwater. Based on the GW volume, 117 lbs of FeEDTA will be required. Attachment A contains additional information.

3.5 Pre- and post- injection control


Prior to commencement of injection activities, a round of sampling of groundwater will be conducted to establish background levels and be able to adjust the injected quantities based on these results. Samples will be obtained from MW1, MW2, MW3, MW4, MW5, and MW6.


Another round of sampling will be conducted six and twelve weeks after the initial injection event; this will assess the effectiveness of remedial action. If these results show presence of PCE in exceedance of 5 ug/L, another round of injections will be conducted and the QC protocol as described herein repeated.


During sampling events subsequent to chemical injections, the groundwater will be analyzed to determine the amount of oxidant remaining. The manufacturer Peroxychem sells Klozur Persulfate Field Test Kits; the instruments rely on iron reactions with the persulfate oxidant. The test kit is considered a reliable measure of persulfate in the groundwater. The specifications are included in Appendix A.


Location of injection locations will be modified if, as a result of the sampling, it is established that the PCE concentrations are different than anticipated.

FIGURES

Soil Vapor Extraction Design Document $\mu g/m^3$ 1,400 9.4 22 32 7.0 79 20 18 41 44 15 12 82 $\mu g/m^3$ 820 9.0 10 14 43 40 1,2,4-Trimethylbenzene Methylene chloride *Tetrachloroethylene* SV-3Tetrahydrofuran **Trichloroethylene** p- & m- Xylenes Carbon disulfide Ethyl Benzene Cyclohexane Isopropanol Chloroform n-Heptane o-Xulene TolueneAcetone p- & m- Xylenes SN-1Ethyl Benzene 2-Butanone n-Heptane n-Hexane o-Xylene Toluene VOCs SIDEWALK ADJACENT RESIDENTIAL (11-27 31st DRIVE) 31st DRIVE SIDEWALK THE SITE SV-3 SV-2 $\Delta SV-4$ $\mu g/m^3$ 210 8.4 33 55 15 50 15 12 $\mu g/m^3$ 1,600 130 10 14 30 13 45 46 20 23 18 41 16 1,2,4-Trimethylbenzene SV-2p- & m- Xylenes Carbon disulfide Ethyl Benzene 2-Butanone Isopropanol n-Heptane 1,2,4-Trimethylbenzene o-Xylene Toluene *Tetrachloroethylene* VOCs Methylene chloride Carbon disulfide **Trichloroethylene** p- & m- Xylenes Ethyl Benzene 2-Butanone Isopropanol n-Heptane n-Hexane Benzene o-Xylene Toluene Acetone 11-28 31st Drive, Brooklyn, NY, 11211 C241159

SOIL VAPOR SAMPLE (SV) - COLLECTED ON APRIL 25, 2013

LEGEND:

SOIL VAPOR SAMPLE (SV) - COLLECTED ON JULY 8, 2013

◁

MICROGRAMS PER CUBIC METER $\mu g/m^3$

VOLATILE ORGANIC COMPOUNDS VOC

HYDRO TECH ENVIRONMENTAL CORP. NYC OFFICE MAIN OFFICE:

77 ARKAY DRNE, SUITE G 15 OCEAN ANENUE, 2nd Floor HAUPPAUGE, NEW YORK 11788 BROOKLYN, NEW YORK 11225 T (631)462-5866 F (631)462-5877 T (718)636-0800 F (718)636-0900

www.hydrotechenvironmental.com

Date: 11-28 31st Drive Long Island City, NY HTE Job# 120029

AS NOTED 08/14/13 Reviewed By: M.R. Approved By: M.R. Drawn By: Scale:

FIGURE 5 SPIDER MAP OF SOIL VAPOR DATA

15

SCALE IN FEET (FT.)

2,200

23 90

Tetrahydrofuran

Acetone

Isopropanol

140

Tetrachloroethylene Methylene chloride

230

Ethyl acetate

SV-1

520

25

Tetrahydrofuran

Acetone

1,600

Tetrachloroethylene Methylene chloride

Trichloroethylene

29

ATTACHMENT A ISCO Specifications

KLOZUR® PERSULFATE

In Situ Chemical Oxidation

Product Sheet

The Field Proven and Versatile ISCO Solution to Address Soil & Groundwater Contamination

Klozur® persulfate is the oxidant of choice for *in situ* chemical oxidation (ISCO), because of its ability to treat a wide range of contaminants including chlorinated solvents, petroleum and PAHs. Klozur persulfate is ideal for contaminated source zones and hot spots that require rapid treatment. When properly activated, Klozur persulfate provides an unmatched combination of oxidative power, versatility, and control that can be delivered both safely and cost effectively.

Successful field applications of Klozur activated persulfate have been performed globally. These applications demonstrate the ability of Klozur activated persulfate to treat diverse organic contaminants of concern including: chlorinated ethenes (TCE, PCE, DCE and vinyl chloride), chlorinated ethanes (TCA and DCA), chlorinated methanes (carbon tetrachloride and methylene chloride), BTEX, MTBE, polyaromatic hydrocarbons (PAHs), petroleum hydrocarbons (TPHs, GRO, DRO), 1,4-dioxane and pesticides.

The benefits of Klozur Persulfate

When used with PeroxyChem's proprietary activation methods, Klozur persulfate provides a powerful multi-radical attack for the rapid destruction of recalcitrant compounds.

$$S_2O_8^{-2}$$
 + Activator $\rightarrow SO_4^{-1}$, OH^{-1}

Multiple activation options and methods of delivery provide for a flexible and custom solution based on site conditions. With a solubility limit of up to 40 wt%, Klozur can be applied as a fully soluble solution. Klozur persulfate is a remarkable stable oxidant given its high oxidation potential, with a typical active lifetime in the subsurface of 3-6 months, providing an extended radius of influence. Klozur persulfate is safe to handle with PeroxyChem's recommended use guidelines; does not generate heat or gas.

Examples of Contaminants of Concern

CHLORINATED SOLVENTS

PCE, TCE, DCE, VC, TCA, DCA, Methylene Chloride, Carbon Tetrachloride, Chlorobenzene

PETROLEUM TPH, BTEX, DRO, GRO

PAHs

Creosote, MGP residuals 1,4-dioxane, MTBE, TBA, energetics, Chlorinated pesticides

The sound science of Klozur Activated Persuflate

Klozur activated persulfate has a long history of documented success. Site and laborortory data prove successful treatment of some of the most recalcitrant compounds, such as chlorinated ethanes, and emerging contaminants, such as 1,4-dioxane and PFOS/PFOA.

Application methods

- Direct push injection
- Fixed well injection
- Soil blending

Measurement of Persulfate in Solution

The determination of persulfate concentration in groundwater post *in situ* application is critical in determining parameters such as the persulfate radius of influence (ROI) achieved and the residence time of the persulfate in the contaminated zone. In general, measurement of persulfate concentration in the field is problematic. Metals, either native to the soil or added for persulfate activation, may interfere with various persulfate analytical methods, yielding variable, inaccurate or misleading results. In addition, some methods, which may be suitable for the laboratory, may not be suitable for field application due to the need of sensitive or expensive detection equipment. In this edition of *Peroxygen Talk*, the measurement of persulfate in ground water is explored. A more detailed review, including comparisons between various persulfate analytical methods, can be found in Reference 1.

Analytical Methods Involving Persulfate – Iron Reactions

Persulfate anion will oxidize divalent iron [Fe(II)] to form trivalent iron [Fe(III)] in the reaction:

$$S_2O_8^{-2} + 2 Fe^{+2} \rightarrow 2 Fe^{+3} + 2 SO_4^{-2}$$

Equation 1

Quantitative determination of persulfate concentration can be achieved by first adding in excess a known amount of Fe (II) to the persulfate solution. A portion of the Fe(II) is then converted to Fe(III) via Equation 1. The remaining Fe (II) is then titrated with either a known concentration of potassium permanganate [$KMnO_4$] to a pink end-point or ceric sulfate [$Ce(SO_4)_2$] to a Ferroin indicator end-point (a color change from orange to clear or light blue). As an example, for permanganate:

$$MnO_4^- + 5 Fe^{+2} + 8 H^+ \rightarrow Mn^{+2} + 5 Fe^{+3} + 4 H_2O$$

Equation 2

Using the volume of permanganate or ceric sulfate needed to reach the endpoint (which occurs when all of the remaining Fe (II) is oxidized), allows for the determination of how much persulfate was originally present:

Fe (II) reacted with persulfate = Fe (II) total – Fe (II) reacted with permanganate

Equation 3

then:

Moles of persulfate = moles of Fe (II) reacted with persulfate / 2

Equation 4

As this method is dependent upon a known quantity of Fe (II) in the test solution, naturally occurring iron and other reduced metals and residual contaminant that may react with the permanganate or cerric sulfate, in the groundwater can significantly impact the quantification of the persulfate concentration. Also, additives such as chelates, as when using chelated metal activation for persulfate, may cause interference with the titration. For example, Fe(III)-EDTA will interfere with the permanganate titration, but not so with the ceric sulfate titration. Addition of other oxidants, such as hydrogen peroxide likewise will impact the accuracy of the method, as additional oxidant will also oxidize the Fe(II), making it difficult to determine the persulfate contribution. For hydrogen peroxide – persulfate combinations, it is possible to react the peroxide with ceric sulfate first, to a Ferroin end-point, as the ceric sulfate will preferentially react with hydrogen peroxide over persulfate. When the end-point is reached, the hydrogen peroxide will have been consumed (which will also give a quantifiable measurement of the peroxide in solution). Then the permanganate or ceric sulfate back-titration of Fe (II) can be utilized to quantify the remaining

persulfate. The above titration method can provide a very accurate measurement of persulfate in solution. But typically it is only applicable in a laboratory, due to the instrumentation and chemicals required.

Application in the field

We have developed an easy-to-use, onsite titration kit for the measurement of persulfate in groundwater that addresses the limitations mentioned above, the new Klozur® Persulfate Field Test Kits. Two kits are currently available, one for use when activating Klozur persulfate with either high pH or with iron sulfate, and a second kit for use when activating Klozur persulfate with chelated iron. If hydrogen peroxide is being used as the activator, please contact us for additional support.

lodiometric Methods

Persulfate anion will react with potassium iodide as:

$$S_2O_8^{-2} + 2 I^- \rightarrow 2 SO_4^{-2} + I_2$$

Equation 5

 I_2 forms a brown color. In the laboratory, this method can be made quantitative by titrating the resulting solution with thiosulfate, reducing the I_2 back to I_7 , the end-point identified by the disappearance of the brown color. This can be enhanced by the addition of starch, which will form an intense blue complex with I_2 in the presence of I_7 . Disappearance of the blue color indicates the end-point when I_7 has been consumed. This method will have less interference from native metals as compared to the persulfate - iron method described above. However, accuracy will be affected by the instability of I_2 and the sensitivity of the reaction to the timing of the addition of the starch indicator.

Application in the field

The presence of persulfate can be qualitatively assessed by looking for a color change when starch is added to a solution of the groundwater and potassium iodide. If persulfate is present, a blue color will appear. However, instability of thiosulfate solutions, oxidation of I⁻ by air and sunlight and the sensitivity of the end-point on the addition timing of the starch limit the use of this method as a *quantitative* assessment tool in the field for persulfate concentration.

Spectroscopic Methods

Huang, et al² developed a laboratory spectroscopic method for the quantification of persulfate. The method is based on the oxidation of Fe(II) by persulfate to Fe(III). The Fe (III) is then complexed with thiocyanate (SCN⁻), which forms an intense red color. A spectrophotometer is then used to determine the concentration of the iron - thiocyanate complex as a function of absorbance at a wavelength of 450 nm. As this method is dependent upon Equation 1, it is subject to the same interferences from background iron concentrations and chelating agents as described for the persulfate – iron methods.

Several other spectroscopic methods have been developed for persulfate as well. These have been reported in reference 1 and by Williams³. In general, spectroscopic methods can obtain a high degree of quantification in a laboratory setting. However, the applicability to use in the field is somewhat limited due to the need of spectrophotometers. These methods may be suitable to mobile field labs equipped with the appropriate devices.

Novel Techniques for Future Development

Gillian¹, in work supported by Arcadis, developed a couple of new spectroscopic methods for the analytical determination of persulfate concentration. One of these includes the use of indole as a reactant with persulfate, forming a distinctive blue-colored compound. A second method utilizes the reaction of persulfate with promethazine-HCL, which forms a red-colored compound. Gillian¹ reports that in particular, the promethazine-HCL procedure has potential to be developed into a field test method, provided that iron concentrations in the groundwater are not high. Rossabi⁴ et al described a novel approach to using ion chromatography to measure aqueous persulfate concentrations, and reported a measurement range of 0 – 500 mg persulfate / liter.

Other Field Measurement Methods

There are commercially available persulfate test kits on the market. These are predominately based on the permanganate back-titration of Fe (II), Equation 1, which relies on matching a shade of purple to a subsequent persulfate concentration. Such kits can have significant interference from native groundwater iron or residual contaminant. In addition, these kits can be too sensitive in that they may indicate the presence of persulfate into the mg / L range, far below the effective persulfate dosing for most contaminated sites.

Secondary parameters, such as conductivity and sulfate concentration can be used to monitor the effective movement of persulfate in the subsurface. Persulfate injection will significantly increase the conductance of groundwater due to the increase in ion concentrations. Down-well conductivity probes and direct-push rod probes have been used successfully to determine the presence of persulfate in groundwater. Commercially available sulfate concentration kits have also been used to determine the presence of persulfate in down-gradient monitoring wells, as persulfate is consumed through reaction, it generates sulfate. Dissolved oxygen, ORP and pH measurement can also be used to track persulfate in the subsurface through its impact on groundwater parameters.

- 1. Lai, Gillian. "Development of Analytical Methods for Estimation of Oxidants Concentrations". Master's thesis, Imperial College, London, September, 2007.
- 2. Huang, K.C., Couttenye, R.A. and Hoag, G.E. "Kinetics of heat-assisted persulfate oxidation of methyl terty-butyl ether (MTEBE)". **Chemosphere** 49, p 413-420, 2002.
- 3. Williams, W. J. Handbook of Anion Determination. 1979, London, Butterworths.
- 4. Rossabi, J. and B. Fassolt. "Ion Chromotography for Persulfate and Total Oxidant Demand Analysis". 1st Annual Southeastern *In Situ* Soil and Groundwater Remediation Conference, Raleigh, NC 2007.

The content in this document was originally published in Peroxygen Talk dated August 2010.

Klozur is a trademark of PeroxyChem. Copyright © 2016 PeroxyChem. All rights reserved. The information contained herein is presented to the best of our knowledge, PeroxyChem makes no representations or warranties regarding the accuracy, quality, or reliability of this information and shall under no circumstances be liable with respect to such information.

MATERIAL SAFETY DATA SHEET

KlozürTM

MSDS Ref. No.: 7775-27-1-12 Date Approved: 02/22/2005

Revision No.: 1

This document has been prepared to meet the requirements of the U.S. OSHA Hazard Communication Standard, 29 CFR 1910.1200; the Canada's Workplace Hazardous Materials Information System (WHMIS) and, the EC Directive, 2001/58/EC.

1. PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: KlozürTM

SYNONYMS: Sodium Persulfate, Sodium Peroxydisulfate; Disodium

Peroxydisulfate

GENERAL USE: In situ and ex situ chemical oxidation of contaminants and

compounds of concern for environmental remediation applications.

MANUFACTURER

EMERGENCY TELEPHONE NUMBERS

FMC CORPORATION Active Oxidants Division 1735 Market Street Philadelphia, PA 19103 (215) 299-6000 (General Information) (800) 424-9300 (CHEMTREC - U.S.) (303) 595-9048 (Medical - Call Collect)

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW:

- White, odorless, crystals
- Oxidizer.
- Decomposes in storage under conditions of moisture (water/water vapor) and/or excessive heat causing release of oxides of sulfur and oxygen that supports combustion. Decomposition could form a high temperature melt. See Section 10 ("Stability and Reactivity").

POTENTIAL HEALTH EFFECTS: Airborne persulfate dust may be irritating to eyes, nose, lungs, throat and skin upon contact. Exposure to high levels of persulfate dust may cause difficulty in breathing in sensitive persons.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Chemical Name	CAS#	Wt.%	EC No.	EC Class
Sodium Persulfate	7775-27-1	>99	231-892-1	Not classified as hazardous

4. FIRST AID MEASURES

EYES: Flush with plenty of water. Get medical attention if irritation occurs and persists.

SKIN: Wash with plenty of soap and water. Get medical attention if irritation occurs and persists.

INGESTION: Rinse mouth with water. Dilute by giving 1 or 2 glasses of water. Do not induce vomiting. Never give anything by mouth to an unconscious person. See a medical doctor immediately.

INHALATION: Remove to fresh air. If breathing difficulty or discomfort occurs and persists, contact a medical doctor.

NOTES TO MEDICAL DOCTOR: This product has low oral toxicity and is not irritating to the eyes and skin. Flooding of exposed areas with water is suggested, but gastric lavage or emesis induction for ingestions must consider possible aggravation of esophageal injury and the expected absence of system effects. Treatment is controlled removal of exposure followed by symptomatic and supportive care.

5. FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA: Deluge with water.

FIRE / EXPLOSION HAZARDS: Product is non-combustible. On decomposition releases oxygen which may intensify fire. Presence of water accelerates decomposition.

FIRE FIGHTING PROCEDURES: Do not use carbon dioxide or other gas filled fire extinguishers; they will have no effect on decomposing persulfates. Wear full protective clothing and self-contained breathing apparatus.

FLAMMABLE LIMITS: Non-combustible

SENSITIVITY TO IMPACT: No data available

SENSITIVITY TO STATIC DISCHARGE: Not available

6. ACCIDENTAL RELEASE MEASURES

RELEASE NOTES: Spilled material should be collected and put in approved DOT container and isolated for disposal. Isolated material should be monitored for signs of decomposition (fuming/smoking). If spilled material is wet, dissolve with large quantity of water and dispose as a hazardous waste. All disposals should be carried out according to regulatory agencies procedures.

7. HANDLING AND STORAGE

HANDLING: Use adequate ventilation when transferring product from bags or drums. Wear respiratory protection if ventilation is inadequate or not available. Use eye and skin protection. Use clean plastic or stainless steel scoops only.

STORAGE: Store (unopened) in a cool, clean, dry place away from point sources of heat, e.g. radiant heaters or steam pipes. Use first in, first out storage system. Avoid contamination of opened product. In case of fire or decomposition (fuming/smoking) deluge with plenty of water to control decomposition. For storage, refer to NFPA Bulletin 430 on storage of liquid and solid oxidizing materials.

COMMENTS: VENTILATION: Provide mechanical general and/or local exhaust ventilation to prevent release of dust into work environment. Spills should be collected into suitable containers to prevent dispersion into the air.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE LIMITS

Chemical Name	ACGIH	OSHA	Supplier
Sodium Persulfate	0.1 mg/m ³ (TWA)		

ENGINEERING CONTROLS: Provide mechanical local general room ventilation to prevent release of dust into the work environment. Remove contaminated clothing immediately and wash before reuse.

PERSONAL PROTECTIVE EQUIPMENT

EYES AND FACE: Use cup type chemical goggles. Full face shield may be used.

RESPIRATORY: Use approved dust respirator when airborne dust is expected.

KlozürTM (7775-27-1-12) Date: 02/22/2005

PROTECTIVE CLOTHING: Normal work clothes. Rubber or neoprene footwear.

GLOVES: Rubber or neoprene gloves. Thoroughly wash the outside of gloves with soap and water prior to removal. Inspect regularly for leaks.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR: None

APPEARANCE: White crystals

AUTOIGNITION TEMPERATURE: Not applicable. No evidence of combustion up to 800°C.

Decomposition will occur upon heating.

BOILING POINT: Not applicable

COEFFICIENT OF OIL / WATER: Not applicable

DENSITY / WEIGHT PER VOLUME: Not available

EVAPORATION RATE: Not applicable (Butyl Acetate = 1)

FLASH POINT: Non-combustible

MELTING POINT: Decomposes

ODOR THRESHOLD: Not applicable

OXIDIZING PROPERTIES: Oxidizer

PERCENT VOLATILE: Not applicable

pH: typically 5.0 - 7.0 @ 25 °C (1% solution)

SOLUBILITY IN WATER: 73 % @ 25 °C (by wt.)

SPECIFIC GRAVITY: $2.6 (H_2O=1)$

VAPOR DENSITY: Not applicable (Air = 1)

VAPOR PRESSURE: Not applicable

10. STABILITY AND REACTIVITY

CONDITIONS TO AVOID: Heat, moisture and contamination.

STABILITY: Stable (becomes unstable in presence of heat,

moisture and/or contamination).

POLYMERIZATION: Will not occur

INCOMPATIBLE MATERIALS: Acids, alkalis, halides (fluorides, chlorides,

bromides and iodides), combustible materials, most metals and heavy metals, oxidizable materials, other oxidizers, reducing agents, cleaners, and organic or carbon containing compounds. Contact

with incompatible materials can result in a material decomposition or other uncontrolled reactions.

Date: 02/22/2005

HAZARDOUS DECOMPOSITION PRODUCTS: Oxygen that

Oxygen that supports combustion and oxides of

sulfur.

COMMENTS: PRECAUTIONARY STATEMENT: Pumping and transport of Klozür persulfate requires appropriate precautions and design considerations for pressure and thermal relief.

Decomposing persulfates will evolve large volumes of gas and/or vapor, can accelerate exponentially with heat generation, and create significant and hazardous pressures if contained and not properly controlled or mitigated.

Use with alcohols in the presence of water has been demonstrated to generate conditions that require rigorous adherence to process safety methods and standards to prevent escalation to an uncontrolled reaction.

11. TOXICOLOGICAL INFORMATION

EYE EFFECTS: Non-irritating (rabbit) [FMC Study Number: ICG/T-79.029]

SKIN EFFECTS: Non-irritating (rabbit) [FMC Study Number: ICG/T-79.029]

DERMAL LD₅₀: > 10 g/kg [FMC Study Number: ICG/T-79.029]

ORAL LD₅₀: 895 mg/kg (rat) [FMC Study Number: ICG/T-79.029]

INHALATION LC₅₀: 5.1 mg/l (rat) [FMC 195-2017]

SENSITIZATION: May be sensitizing to allergic persons. [FMC Study Number: ICG/T-79.029]

TARGET ORGANS: Eyes, skin, respiratory passages

ACUTE EFFECTS FROM OVEREXPOSURE: Dust may be harmful and irritating. May be harmful if swallowed.

CHRONIC EFFECTS FROM OVEREXPOSURE: Sensitive persons may develop dermatitis and asthma [Respiration 38:144, 1979]. Groups of male and female rats were fed 0, 300 or 3000 ppm sodium persulfate in the diet for 13 weeks, followed by 5000 ppm for 5 weeks. Microscopic examination of tissues revealed some injury to the gastrointestinal tract at the high dose (3000 ppm) only. This effect is not unexpected for an oxidizer at high concentrations. [Ref. FMC I90-1151, Toxicologist 1:149, 1981].

KlozürTM (7775-27-1-12) Date: 02/22/2005

CARCINOGENICITY:

NTP: Not listed
IARC: Not listed
OSHA: Not listed

OTHER: ACGIH: Not listed

12. ECOLOGICAL INFORMATION

ECOTOXICOLOGICAL INFORMATION:

Bluegill sunfish, 96-hour $LC_{50} = 771$ mg/L [FMC Study I92-1250] Rainbow trout, 96-hour $LC_{50} = 163$ mg/L [FMC Study I92-1251] Daphnia, 48-hour $LC_{50} = 133$ mg/L [FMC Study I92-1252] Grass shrimp, 96-hour $LC_{50} = 519$ mg/L [FMC Study I92-1253]

CHEMICAL FATE INFORMATION: Biodegradability does not apply to inorganic substances.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHOD: Dispose as a hazardous waste in accordance with local, state and federal regulatory agencies.

14. TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT)

PROPER SHIPPING NAME: Sodium Persulfate
PRIMARY HAZARD CLASS / DIVISION: 5.1 (Oxidizer)

PRIMARY HAZARD CLASS / DIVISION: 5.1 (Oxidizer)

UN/NA NUMBER: UN 1505

PACKING GROUP: III

LABEL(S): 5.1 (Oxidizer)

PLACARD(S): 5.1 (Oxidizer)

MARKING(S): Sodium Persulfate, UN 1505

ADDITIONAL INFORMATION: Hazardous Substance/RQ: Not applicable

49 STCC Number: 4918733

This material is shipped in 225 lb. fiber drums, 55 lb. poly bags and 1000 - 2200 lb.

Date: 02/22/2005

IBC's (supersacks).

INTERNATIONAL MARITIME DANGEROUS GOODS (IMDG)

PROPER SHIPPING NAME: Sodium Persulfate

INTERNATIONAL CIVIL AVIATION ORGANIZATION (ICAO) / INTERNATIONAL AIR TRANSPORT ASSOCIATION (IATA)

PROPER SHIPPING NAME: Sodium Persulfate

OTHER INFORMATION:

Protect from physical damage. Do not store near acids, moisture or heat.

15. REGULATORY INFORMATION

UNITED STATES

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT)

SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355, APPENDIX A):

Not applicable

SECTION 311 HAZARD CATEGORIES (40 CFR 370):

Fire Hazard, Immediate (Acute) Health Hazard

SECTION 312 THRESHOLD PLANNING QUANTITY (40 CFR 370):

The Threshold Planning Quantity (TPQ) for this product, if treated as a mixture, is 10,000 lbs; however, this product contains the following ingredients with a TPQ of less than 10,000 lbs.: None

SECTION 313 REPORTABLE INGREDIENTS (40 CFR 372):

Not listed

CERCLA (COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION AND LIABILITY ACT)

CERCLA DESIGNATION & REPORTABLE QUANTITIES (RQ) (40 CFR 302.4):

Unlisted, RQ = 100 lbs., Ignitability

TSCA (TOXIC SUBSTANCE CONTROL ACT)

TSCA INVENTORY STATUS (40 CFR 710):

Listed

RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) RCRA IDENTIFICATION OF HAZARDOUS WASTE (40 CFR 261):

Waste Number: D001

CANADA

WHMIS (WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM):

Product Identification Number: 1505

Hazard Classification / Division: Class C (Oxidizer), Class D, Div. 2, Subdiv. B. (Toxic)

Date: 02/22/2005

Ingredient Disclosure List: Listed

INTERNATIONAL LISTINGS

Sodium persulfate: Australia (AICS): Listed

China: Listed

Japan (ENCS): (1)-1131 Korea: KE-12369

Philippines (PICCS): Listed

HAZARD, RISK AND SAFETY PHRASE DESCRIPTIONS:

EC Symbols: (Not classified as hazardous)

EC Risk Phrases: (Not classified as hazardous)

EC Safety Phrases: (Not classified as hazardous)

16. OTHER INFORMATION

HMIS

Health	1
Flammability	0
Physical Hazard	1
Personal Protection (PPE)	J

Protection = J (Safety goggles, gloves, apron & combination dust & vapor respirator)

HMIS = Hazardous Materials Identification System

Degree of Hazard Code:

4 = Severe

3 = Serious

- 2 = Moderate
- 1 = Slight
- 0 = Minimal

NFPA

Health	1
Flammability	0
Reactivity	1
Special	OX

SPECIAL = OX (Oxidizer)

NFPA = National Fire Protection Association

Degree of Hazard Code:

- 4 = Extreme
- 3 = High
- 2 = Moderate
- 1 = Slight
- 0 = Insignificant

REVISION SUMMARY:

New MSDS

Klozür and FMC Logo - FMC Trademarks

© 2005 FMC Corporation. All Rights Reserved.

FMC Corporation believes that the information and recommendations contained herein (including data and statements) are accurate as of the date hereof. NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED, IS MADE CONCERNING THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable where such product is used in combination with any other materials or in any process. It is a violation of Federal law to use this product in a manner inconsistent with its labeling. Further, since the conditions and methods of use are beyond the control of FMC Corporation, FMC Corporation expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information.

Date: 02/22/2005

٠.
~
~
.≃
Ħ
~
☱
#
9
.⊑
_
~
¥
Φ
reverse
Ľ
ē
?
æ
_
See
æ
'n.
ion.
ation.
nation.
mation.
ormation.
formation.
nformation.
information.
III information.
all information.
it all information.
int all information.
rint all information.
print all information.
rint all information.
rint all information.
rint all information.
rint all information.
rint all information.

OMB No. 2040-0042 Approval Expires 12/31/2011

		_	INVENTORY OF INJECTION WELLS	RY O	IN I	ECTIC	N N	STTS	1. DATE PREPARED (Year,	(Year, Month, Day)	2. FACILITY ID NUMBER	
(A)	⊗EPA	UNITED S OFFIC (This inform	UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF GROUND WATER AND DRINKING WATER (This information is collected under the authority of the Safe Drinking Water Act)	IRONM ND WA	IENTAL ATER A e authority	PROT ND DR	ECTIO INKING	OTECTION AGENCY DRINKING WATER e Safe Drinking Water Act)				
The publi instructio of inform for reduci NW, Wasi	c reporting burd ms, searching ev ation. Send con ing this burden, I	The public reporting burden for this collection of information is estimated at about 0.5 hour per response including time for review instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collect of information. Send comments regarding the burden estimate or any other aspect of this collection of information, includingsug for reducing this burden, Collection Strategies Division (2822), U.S. Environmental Protection Agency, 1200 Pennsylvania. NW, Washington, DC 20460, and to the Office of Management and Budget, Paperwork Reduction Project, Washington, DC 20503.	PAPERWORK REDUCTION ACT NOTICE to findermation is estimated at about 0.5 hour pugathering and maintaining the data needed, and e burden estimate or any other aspect of this co Strategies Division (2822), U.S. Environmental Price of Management and Budget, Paperwork Redu	EDUCTIOI stimated at taining the r any other 2822), U.S. nd Budget,	N ACT NC t about 0.5 data needs r aspect of t Environme	TICE hour per rei ed, and corr his collecti ntal Protect	sponse inc pleting an on of infor ion Agenc	The public reporting burden for this collection of information is estimated at about 0.5 hour per response including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of information, includingsuggestions for reducing this burden, Director, Collection Strategies Division (2822), U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, and to the Office of Management and Budget, Paperwork Reduction Project, Washington, DC20503.	3. TRANSACTION TYPE Deletion Entry Char	lease mark on	(Please mark one of the following) First Time Entry Replacement	
4. FAC	ILITY NAME	4. FACILITY NAME AND LOCATION	NO									
A. NAME		(last, first, and middle initial)	0				C. L	C. LATITUDE	DEG MIN SEC	E. 70	E. TOWNSHIP/RANGE	
B. STRE	ET ADDRESS	B. STREET ADDRESS/ROUTE NUMBER					_ D.L	D. LONGITUDE	DEG MIN SEC	DE L	TOWNSHIP RANGE SECT 1/4 SECT	СТ
F. CITY/TOWN	NMOL				G. STATE		H.	H. ZIP CODE	I. NUMERIC COUNTY CODE	CODE	J. INDIAN LAND (mark "x") Yes	° Z
5. LEG	5. LEGAL CONTACT:	CT:										
A. TYPE	A. TYPE (mark "x")		B. NAME (last, first, and middle initial)	first, an	d middle	initial)	П			C. PHONE		Ιī
	Owner	Operator								(area code and number)		
D. ORG	D. ORGANIZATION			. STREET	E. STREET/P.O. BOX	×			I. OWNERSHIP (mark "x")	("x")		
									PRIVATE	PUBLIC	IC SPECIFY OTHER	
F. CITY/TOWN	TOWN		O	G. STATE		H. ZIP	ZIP CODE					
							•		STATE	FEDERAL	RAL	٦
6. WEL	6. WELL INFORMATION:	ATION:										
A. CLASS		B. NUMBER OF WELLS	C. TOTAL		D. WELL OPERATION STATUS	PERATIO	N STATU	S COMMENTS	(Optional):			
TYPE	COMM	NON-COMM	OF WELLS	On	æ	ΤA	PA	AN				
			0									
			0									
			0) (ii)				
			0					KEY:	DEG = Degree MIN = Minute SEC = Second	COMM = Commercial NON-COMM = Non-Commercial	rcial on-Commercial	
			0						SECT = Section	AC = Active	efencefion	
			0						1/4 SECT = Quarter Section	TA = Temporarily Abandoned DA = Permanently Abandone	TA = Temporarily Abandoned A = Permanently Abandoned and Annovaed by State	
			0							AN = Permanentl	AN = Permanently Abandoned and not Approved by State	
EDA For	EPA Form 7520-16 (Bev. 12-08)	,ev. 12-08)										

SECTION 1. DATE PREPARED: Enter date in order of year, month, and day.

SECTION 2. FACILITY ID NUMBER: In the first two spaces, insert the appropriate U.S. Postal Service State Code. In the third space, insert one of the following one letter alphabetic identifiers:

- D DUNS Number,
- G GSA Number, or
- S State Facility Number.

In the remaining spaces, insert the appropriate nine digit DUNS, GSA, or State Facility Number. For example, A Federal facility (GSA - 123456789) located in Virginia would be entered as: VAG123456789.

SECTION 3. TRANSACTION TYPE: Place an "x" in the applicable

box. See below for further instructions.

Deletion. Fill in the Facility ID Number.

First Time Entry. Fill in all the appropriate information.

Entry Change. Fill in the Facility ID Number and the information that has changed.

Replacement.

SECTION 4. FACILITY NAME AND LOCATION:

- A. Name. Fill in the facility's official or legal name.
- B. Street Address. Self Explanatory.
- C. Latitude. Enter the facility's latitude (all latitudes assume North Except for American Samoa).
- D. Longitude. Enter the facility's longitude (all longitudes assume West except Guam).
- E. Township/Range. Fill in the complete township and range. The first 3 spaces are numerical and the fourth is a letter (N,S,E,W) specifying a compass direction. A township is North or South of the baseline, and a range is East or West of the principal meridian (e.g., 132N, 343W).
- $\textbf{F.} \qquad \textbf{City/Town.} \quad \textbf{Self Explanatory}.$
- G. State. Insert the U.S. Postal Service State abbreviation.
- **H. Zip Code.** Insert the five digit zip code plus any extension.

SECTION 4. FACILITY NAME & LOCATION (CONT'D.):

- I. Numeric County Code. Insert the numeric county code from the Federal Information Processing Standards Publication (FIPS Pub 6-1) June 15, 1970, U.S. Department of Commerce, National Bureau of Standards. For Alaska, use the Census Division Code developed by the U.S. Census Bureau.
- J. Indian Land. Mark an "x" in the appropriate box (Yes or No) to indicate if the facility is located on Indian land.

SECTION 5. LEGAL CONTACT:

- A. Type. Mark an "x" in the appropriate box to indicate the type of legal contact (Owner or Operator). For wells operated by lease, the operator is the legal contact.
- B. Name. Self Explanatory.
- C. Phone. Self Explanatory.
- D. Organization. If the legal contact is an individual, give the name of the business organization to expedite mail distribution.
- E. Street/P.O. Box. Self Explanatory.
- F. City/Town. Self Explanatory.
- **G. State.** Insert the U.S. Postal Service State abbreviation.
- H. Zip Code. Insert the five digit zip code plus any extension.
- Ownership. Place an "x" in the appropriate box to indicate ownership status.

SECTION 6. WELL INFORMATION:

- A. Class and Type. Fill in the Class and Type of injection wells located at the listed facility. Use the most pertinent code (specified below) to accurately describe each type of injection well. For example, 2R for a Class II Enhanced Recovery Well, or 3M for a Class III Solution Mining Well, etc.
- B. Number of Commercial and Non-Commercial Wells.
 Enter the total number of commercial and non-commercial wells for each Class/Type, as applicable.
- C. Total Number of Wells. Enter the total number of injection wells for each specified Class/Type.
- D. Well Operation Status. Enter the number of wells for each Class/Type under each operation status (see key on other side).

CLASS I Industrial, Municipal, and Radioactive Waste Disposal Wells used to inject waste below the lowermost Underground Source of Drinking Water (USDW).

TYPE 1I Non-Hazardous Industrial Disposal Well.

1M Non-Hazardous Municipal Disposal Well.

1H Hazardous Waste Disposal Well injecting below the lowermost USDW.

1R Radioactive Waste Disposal Well.

1X Other Class I Wells.

 ${\bf CLASS\ II}\ \ {\bf Oil\ and\ Gas\ Production\ and\ Storage\ Related\ Injection\ Wells.}$

TYPE 2A Annular Disposal Well.

2D Produced Fluid Disposal Well.

2H Hydrocarbon Storage Well.

2R Enhanced Recovery Well.

2X Other Class II Wells.

CLASS III Special Process Injection Wells.

TYPE 3G In Situ Gasification Well
3M Solution Mining Well.

CLASS III (CONT'D.)

TYPE 3S Sulfur Mining Well by Frasch Process.

3T Geothermal Well.

3U Uranium Mining Well.

3X Other Class III Wells.

CLASS IV Wells that inject hazardous waste into/above USDWs.

TYPE 4H Hazardous Facility Injection Well.

4R Remediation Well at RCRA or CERCLA site.

CLASS V Any Underground Injection Well not included in Classes I through IV.

TYPE 5A Industrial Well.

5B Beneficial Use Well.

5C Fluid Return Well.

5D Sewage Treatment Effluent Well.

5E Cesspools (non-domestic).

5F Septic Systems.

5G Experimental Technology Well.

5H Drainage Well.

5I Mine Backfill Well.

5J Waste Discharge Well.

PAPERWORK REDUCTION ACT The public reporting and record keeping burden for this collection of information is estimated to average 0.5 hours per response. Burden means the total time, effort, or financial resource expended by persons to generate, maintain, retain, or disclose or provide information to or for a Federal Agency. This includes the time needed to review instructions; develop, acquire, install, and utilize technology and systems for the purposes of collecting, validating, and verifying information, processing and maintaining information, and disclosing and providing information; adjust the existing ways to comply with any previously applicable instructions and requirements; train personnel to be able to respond to the collection of information; search data sources; complete and review the collection of information; and, transmit or otherwise disclose the information. An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including the use of automated collection techniques to Director, Collection Strategies Division, U.S. Environmental Protection Agency (2822), 1200 Pennsylvania Ave., NW., Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed forms to this address.

Activating Klozur® Persulfate with Iron-EDTA

BACKGROUND

Klozur[®] Persulfate can be activated with iron–EDTA (FeEDTA), a chelated iron, for the oxidative destruction of organic contaminants of concern, including PCE, TCE, DCE, vinyl chloride, BTEX, low molecular weight aromatic hydrocarbons, methyl-tert-butyl ether (MTBE), 1,4-dioxane, and others.

For the FeEDTA activation of Klozur Persulfate, the iron concentration in the groundwater needs to be maintained between 150 mg / L (ppm) and 600 mg / L (ppm). Iron concentrations below 150 ppm will result in kinetics that may not be favorable for the oxidation of various contaminants, and concentrations in excess of 600 ppm may lead to increased persulfate decomposition. FeEDTA is 13% iron by weight, thus requiring between 1,154 ppm and 4,615 ppm FeEDTA to maintain the desired groundwater iron concentrations.

PeroxyChem recommends the addition of FeEDTA as an activator when iron activation is selected, even if there is iron already present in the subsurface. Measured iron concentrations present in soils may not be available for persulfate activation or the iron may not be distributed evenly enough through the treatment zone to insure adequate activation of the persulfate.

SAFETY AND HANDLING

FeEDTA is a yellowish-green powder with slight health hazards. Appropriate Personal Protective Equipment (PPE), including chemical goggles and a respirator for dust is required when handling this product.

Review the Safety Data Sheets (SDS) with all workers prior to use and follow guidance within the SDS when handling FeEDTA.

PeroxyChem does not recommend combining FeEDTA with persulfate in the same batching tank, as persulfate decomposition may occur with subsequent generation of heat and oxidant loss.

PeroxyChem recommends the use of separate batch tanks to make up the persulfate solution and the FeEDTA solution. The solutions may then be mixed inline prior to the well-head and co-injected or injected separately in a serial fashion.

DETERMINING THE AMOUNT OF ACTIVATOR NEEDED

- 1. Determine the volume of groundwater to be treated with FeEDTA activated persulfate.
- 2. The minimum amount of FeEDTA needed to achieve 150 ppm of Fe in the groundwater can be determined by:

Lbs FeEDTA = # gallons of groundwater * 150 * 6.38×10^{-5}

At room temperature (20 C), FeEDTA is soluble up to a concentration of 90 g/L (0.75 lb/gallon).

Attachment B Injection Calculations

Klozur® Activated Persulfate Demand Calculations

25-Apr-2016

Customer: AMC Engineering

Contact: Ariel Czemerinski

Site Location: Queens, NY

Proposal Number: PeroxyChem Proposal-19279

Prepared by:

Ravi Srirangam PhD

1-312-480-5250

Ravi.Srirangam@peroxychem.com

PRODUCT OVERVIEW

Klozur® Activated Persulfate has been delivered safely and cost effectively to treat a wide variety of common contaminants of concern with an unmatched combination of power and control. With proper activation, Klozur activated persulfate can generate oxidative, reductive and nucleophilic pathways, giving Klozur Persulfate the power to destroy the most recalcitrant of contaminants.

For more information on Klozur Activated Persulfate, please contact your PeroxyChem representative or www.klozur.com.

SITE INFORMATION			
	<u>Value</u>	<u>Unit</u>	<u>Note</u>
Area of Treatment	500	ft2	customer supplied
Treatment Zone Thickness	7	ft	customer supplied
Treatment Volume	3,500	ft3	calculated value
Porosity	35	%	default value
Ground Water Volume	9,162	USG	calculated value
Soil Density	110	lbs/ft3	default value
Soil Mass	385,000	lb	calculated value
Fraction Soil Mass Contacted*	100	%	default value
Base Buffering Capacity (Alkaline Activation only)	3	g 25 percent NaOH / kg soil	estimated value, it is recommend that this be analytically determined
Soil Oxidant Demand	1	g Klozur / kg soil	estimated value, it is recommend that this be analytically determined

^{*} Fraction soil mass contacted may be less for sites with contact limitations such as fractured bedrock or those with low permeable materials.

page 1 of 4 4/25/2016

CONTAMINANTS OF CONCERN* (COCs)

Concentrations:

The following are estimates of the contaminant concentration in soil and groundwater within the target area. The total COC mass was calculated including estimated COC mass in groundwater, soil and NAPL, if present, within the targeted area.

	GW	Soil	NAPL	Total COC Mass**
Constituent	<u>(mg/L)</u>	<u>(mg/kg)</u>	<u>(lbs)</u>	(lb)
PCE	3.8	10.5	0.0	4.3

Remedial Goals and Target Mass Reductions:

The target demand is determined by also accounting for remedial goals for each contaminant and represents the estimated mass reductions targeted for each constituent.

				lotal COC Mass
	GW	Soil	NAPL	Targeted***
Constituent	<u>(mg/L)</u>	<u>(mg/kg)</u>	<u>(lbs)</u>	(lbs)
PCE	0	0	0	4.3

KLOZUR PERSULFATE DEMAND

The estimated mass of Klozur accounts for target demand with the COCs, non-target demand associated with the soils (SOD) and a safety factor applied to each. The safety factor is intended to account for potential variability in the COC and SOD estimates and any other uncertainties associated with the application or site.

The demand from COCs was estim	nated using:	Degradation	on Ratio	determined/verif	ied in a bench or field test
	Persulfate Demand	Safet	ty Factor	Persulfate I	
Demand from COCs	87		4.0	346	lb
Demand from SOD	385		4.0	1,540	lb
Total Klozur Persulfate Demand:	1,886	lb			

page 2 of 4 4/25/2016

The degradation ratio should be

^{*}Unless provided, sorbed concentrations were roughly estimated based on expected groundwater concentrations, foc and Koc values. For a more refined estimate, it is recommended that actual values be verified via direct sampling of the targeted treatment interval.

^{**} Includes estimated contaminant mass in soil, groundwater, and NAPL (if provided) at the site.

^{***} Includes estimated contaminant mass in soil, groundwater, and NAPL (if provided) at the site with the remedial goals subtracted from the total mass

KLOZUR PERSULFATE PACKAGING OPTIONS AND PRICING

Klozur Persulfate can be delivered to your site in a variety of packages including in bags, or two sizes of super sacks for your handling convenience.

Available Packaging Types	# of packages / pallet	lb Klozur® / pallet	# of packages needed
55.1 # bags	42	2,314	35
1,102 # super sacks	2	2,204	2
2,204 # super sacks	1	2,204	1
Available Packaging Types	Unit Rate (\$ / lb)	Total Mass (lbs)	Cost in USD (FOB Tonawanda, NY)
55.1 # bags	1.59	1,929	\$3,066
1,102 # super sacks	1.48	2,204	\$3,262
2,204 # super sacks	1.46	2,204	\$3,218

¹⁾ Number of packages needed is rounded up to nearest whole unit.

Disclaimer:

The estimated dosage and recommended application methodology described in this document are based on the site information provided to PeroxyChem, but are not meant to constitute a guaranty of performance or a predictor of the speed at which a given site is remediated. Klozur® persulfate and activator demand calculations do not take into account the kinetics, speed of the reaction, or ability to establish contact between the reagents and contamination in the subsurface. These calculations represent the minimum anticipated amount needed to treat the constituents of concern (COCs). As a result, these calculations should be used as a general approximation for purposes of an initial economic assessment. PeroxyChem recommends that oxidant demand and treatability testing be performed to verify the quantities of oxidant needed.

page 3 of 4 4/25/2016

²⁾ Price valid for 90 days from date at top of document. Terms: net 30 days.

³⁾ Any applicable taxes not included. Please provide a copy of your tax exempt certificate or resale tax number when placing your order. In accordance with the law, applicable state and local taxes will be applied at the time of invoicing if PeroxyChem has not been presented with your fully executed tax exemption documentation.

⁴⁾ Shipping not included. Freight rates from Tonawanda NY available upon request. Standard delivery time can vary from 1-3 weeks from time of order, depending upon volume. Expedited transport can be arranged at extra cost.

⁵⁾ Return Policy: Within 90 days after sale, following approval by PeroxyChem, products in their unopened containers, which by analysis meet the original specifications under which they were shipped, will be accepted for return at invoiced price, less 25% handling charge and return freight, excluding original freight paid by buyer. Products made to order or custom blended are non-returnable.

⁶⁾ All sales are per PeroxyChem's Terms and Conditions.

KLOZUR ACTIVATION CHEMISTRIES

Klozur Persulfate activation chemistries are used to convert Klozur Persulfate into the highly reactive radicals. Choosing the right activator chemistry for your contaminants of concern is important in obtaining a successful site remediation. The choice of activator will be dependent upon the target contaminants, site lithology and hydrogeology, and other site conditions. While activator demand quantities for all methods are given, not all activation methods are recommended for your given contaminant or site conditions. Please consult with an PeroxyChem Environmental Solutions technologist for proper selection of activation chemistry.

Note: Only one type of activator is typically needed.

Recommended methods to activate Klozur Persulfate:	FeEDTA	high pH	hydrogen

*PeroxyChem LLC is the owner or licensee under various patent applications relating to the use of activation chemistries

Calculation for FeEDTA demand:

Recommended concentration of Fe available in the groundwater	200	ppm
Calculated FeEDTA demand based on gw volume	117	lb
# of bags of FeEDTA needed (55.1 lb / 25 kg bags)	3	bags
Pricing	\$4.10	\$ / lb
Cost in USD (FOB Tonawanda, NY)	\$677.73	

Calculation for NaOH (high pH) demand:

NaOH demand = NaOH to neutralize generate HSO4 from persulfate decomposition + amount needed to raise ground water / soil to a pH > 10.5

NaOH demand for HSO4 neutralization	634	lb @ 100% basis
Soil buffering amount	289	lb @ 100% basis
Total NaOH demand	923	lb @ 100% basis

PeroxyChem recommends using a 25 wt% or less NaOH concentration **

Amount of	25	wt% solution needed	348	gal
			3 690	lh

25% NaOH Solution is available from PeroxyChem directly for convenience or from a third party:

Estimated Pricing from Third Party^:

FOB, Tonawanda, NY. Freight quote upon request

25% NaOH Solution Price Estimate

		4,110	
(^Please contact PeroxyChem for updated estimate at time of order)	0.235	\$/lb	in totes
	0.145	\$/lb	in tankers
Klozur Caustic provided directly from PeroxyChem:			
Klozur Caustic Pricing (25% NaOH solution)	0.390	\$/lb	in 560 # drums

^{**} note: the addition of concentrated NaOH to water is very exothermic. Add NaOH slowly to water, and allow for excess heat to dissipate.

0.255

0.520

\$/lb

\$/lb

page 4 of 4 4/25/2016

in drums

in 2800 # totes

Attachment C Methodology to calculate residual Persulfate in Groundwater

Klozur® Field Test Kits

Technical Data Sheet

Introduction

Klozur® Field Test kits provide an accurate quantitative measurement of remaining persulfate in the groundwater at a remediation site. There are two test kits available, depending on which activation method is used.

	Klozur Persulfate Activator Chemistries	Activator Examples	Primary Titration Chemistry	
Kit	High pH	Klozur [®] Caustic, sodium hydroxide, lime, Klozur [®] CR, Percarbonate	Permanganate back-titration of ferrous ammonium sulfate	
"K"	Iron	Iron Sulfate, FeSO₄		
	Heat	Steam, hot water		
Kit	Chelated iron	Dissolvine [®] E-FE-13, iron EDTA, FeEDTA, iron citrate	Cerric sulfate	
"C"	Hydrogen peroxide*	Hydrogen peroxide*	Ferroin end-point	

Kit Contents

Each kit contains materials for measuring ten (10) aqueous measurements of persulfate concentration.

Item	Kit "K"	Kit "C"
15 mL plastic vials	10	10
filters	11	11
Plastic syringes	11	11
Plastic pipettes	35	35
Centrifuge tubes containing Ferrous ammonium sulfate	10	10
Sulfuric acid (6N) 2 ml vials	10	10
Potassium Permangnate (0.1 N) 20 mL bottle	5	Not applicable
Ceric Sulfate solution (0.1N) 20 mL bottle	Not applicable	5
Ferroin Indicator 2 mL vial	Not applicable	1

Specifications

Measurement Range: 1 g / L to 100 g / L

Range 1 - 50 g / L + / - 1 g / LAccuracy:

Range 50 - 100 g / L +/- 2 g / L

Shelf Life: one year

Storage: cool, dry conditions

Operating Ranges:

Water temperature: 5 - 50 °C

pH ≤ 12

Fe(II): 0-500 mg/L

Prior to working with Klozur Field Test Kit consult the Safety Data Sheet and to understand proper safety, handling, storage and disposal procedures.

This information contained herein is, to our knowledge, true and accurate. Because conditions of use are beyond our control, we make no warranty or representation, expressed or implied, except that the products discussed herein conform to the chemical descriptions shown on their labels. Nothing contained herein should be construed as permission or recommendation to infringe any patent. No agent, representative or employee of this company is authorized to vary any of the terms of this notice.

© 2014 PeroxyChem. 71-01-TDS-14

^{*}Please contact PeroxyChem for more information

Each kit contains enough supplies for 10 tests:

11 each Syringes

11 each Filters

10 vials 6.0 N H₂SO₄

5 vials 0.1 N Ceric Sulfate

35 each Pipettes

1 vial Ferroin Indicator

10 each 10mL clear vials

10 each Centrifuge tubes with Ferrous Ammonium Sulfate

Instructions

Procedure for Klozur quantification 0-25 g/L & 25-50 g/L, Pages 2 – 6

Procedure for Klozur quantification 50-75 g/L & 75-100 g/L, Pages 7 – 11

Safety Data Sheet Package

- 1) Sulfuric Acid, 6.0 N
- 2) Ferrous Ammonium Sulfate
- 3) Ceric Sulfate, 0.1 N
- 4) Ferroin Indicator

Procedure for Quantification of Klozur Persulfate in Groundwater

Quantification Range: 0 – 25 g/L and 25 – 50 g/L

Suitable for use with the following Klozur Persulfate activation methods:

- Heat
- High pH (alkaline activation)
- Iron Sulfate
- Iron-EDTA

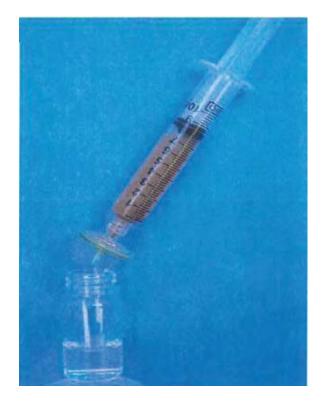
NOT suitable for use with the following Klozur Persulfate activation methods

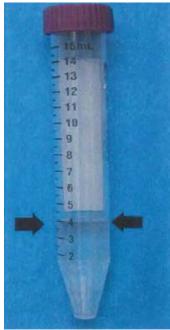
■ Hydrogen Peroxide

SAFETY: Personal protective equipment must be worn, including acid-resistant gloves and safety goggles for eye protection. Review the SDS's prior to use.

Procedure:

 Step 1 must be performed first. Transfer enough Sulfuric Acid with provided pipette into the purple-topped graduated tube to bring the level to the 2mL mark.


- 2) Fill a syringe with site groundwater* containing Klozur Persulfate.
 - *Important: If the groundwater is muddy, let it stand for approximately five minutes to allow the dirt to settle. Use the top water to fill the syringe.



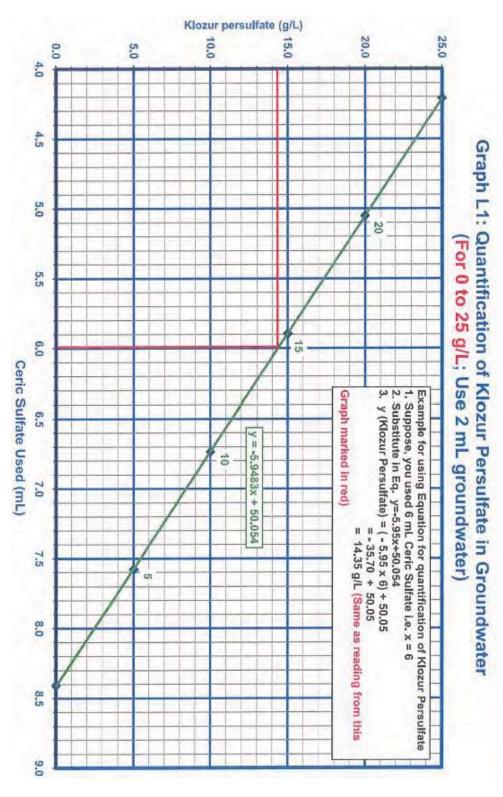
3) Screw on a filter disk to the end of the syringe and push the plunger slowly to collect about 5mL of filtered groundwater in a provided 10mL clear vial equipped with a Teflon-lined cap.

4) Carefully transfer 2mL of filtered groundwater from Step 3, using a new pipette, to the graduated tube from Step 1 until the total volume reaches the 4mL mark. Cap the graduated tube and shake until the solids are completely dissolved.

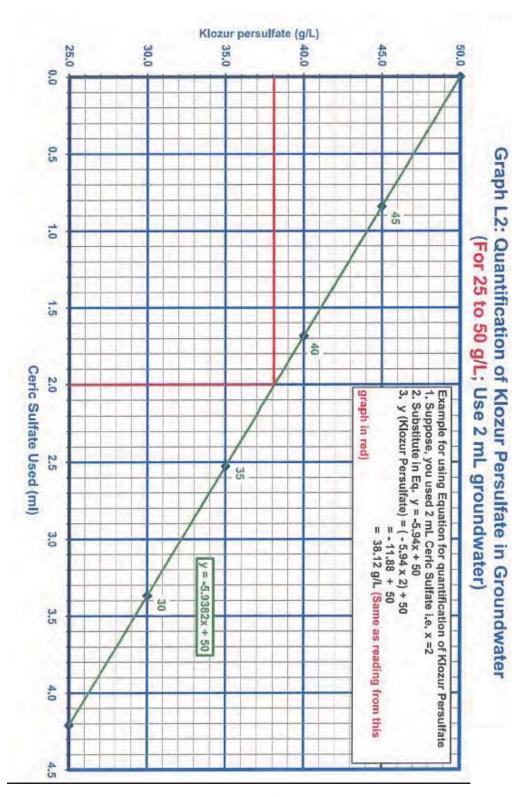
5) Add 2 drops of Ferroin indicator to the solution, cap the graduated tub, and shake well. The should should be orange.

Note: If the solution remains blue / light blue for more than 1 minute after shaking, the concentration of Klozur Persulfate in the groundwater is greater than 50 g/L. Follow the procedure for quantification of Klozur Persulfate, quantification range 50 – 75 g/L and 75 – 100 g/L.

- 6) Drop wise add the Ceric Sulfate, using a new pipette. Shake the graduated tube during the addition of Ceric Sulfate.
- 7) When the orange color disappears and light blue color shows up upon shaking, stop adding Ceric Sulfate and note the final volume.



- 8) Calculate the volume of Ceric Sulfate used:
 - Ceric Sulfate used (mL) = Final Volume 4
- 9) Use this volume with the provided graphs (L1 or L2) to find the concentration of Klozur Persulfate in the groundwater sample.
 - <u>DISPOSAL OF UNUSED REAGENTS</u>: Remaining unused reagents should be disposed per local, state, and federal regulations. Please review SDS's for disposal information.



Page 6 of 13

Procedure for Quantification of Klozur Persulfate in Groundwater

Quantification Range: 50 – 75 g/L and 75 – 100 g/L

Suitable for use with the following Klozur Persulfate activation methods:

- Heat
- High pH (alkaline activation)
- Iron Sulfate
- Iron-EDTA

NOT suitable for use with the following Klozur Persulfate activation methods

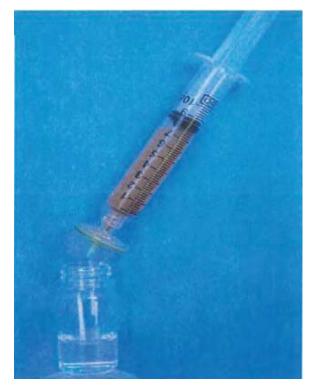
■ Hydrogen Peroxide

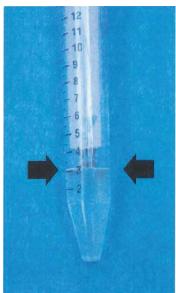
SAFETY: Personal protective equipment must be worn, including acid-resistant gloves and safety goggles for eye protection. Review the SDS's prior to use.

Procedure:

 Step 1 must be performed first. Transfer enough Sulfuric Acid with provided pipette into the purple-topped graduated tube to bring the level to the 2mL mark.

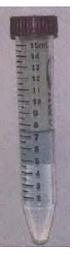
2) Fill a syringe with site groundwater* containing Klozur Persulfate.


*Important: If the groundwater is muddy, let it stand for approximately five minutes to allow the dirt to settle. Use the top water to fill the syringe.



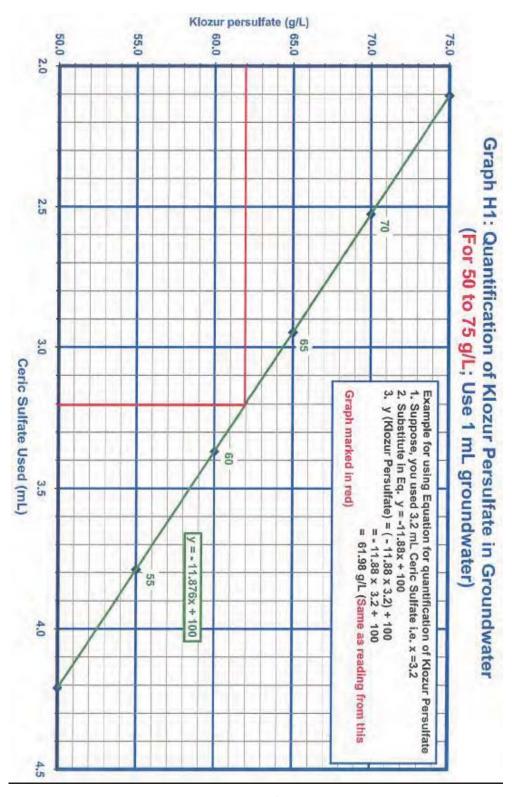
3) Screw on a filter disk to the end of the syringe and push the plunger slowly to collect about 5mL of filtered groundwater in a provided 10mL clear vial equipped with a Teflon-lined cap.

4) Carefully transfer 1mL of filtered groundwater from Step 3, using a new pipette, to the graduated tube from Step 1 until the total volume reaches the 3mL mark. Cap the graduated tube and shake until the solids are completely dissolved.

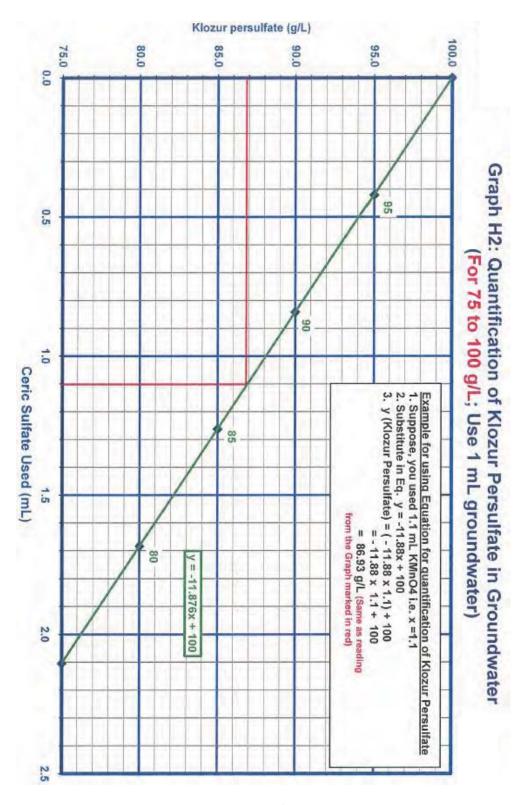


5) Add 2 drops of Ferroin indicator to the solution, cap the graduated tub, and shake well. The should should be orange.

- 6) Drop wise add the Ceric Sulfate, using a new pipette. Shake the graduated tube during the addition of Ceric Sulfate.
- 7) When the orange color disappears and light blue color shows up upon shaking, stop adding Ceric Sulfate and note the final volume.



- **8)** Calculate the volume of Ceric Sulfate used:
 - Ceric Sulfate used (mL) = Final Volume 3
- **9)** Use this volume with the provided graphs (H1 or H2) to find the concentration of Klozur Persulfate in the groundwater sample.
 - <u>DISPOSAL OF UNUSED REAGENTS</u>: Remaining unused reagents should be disposed per local, state, and federal regulations. Please review SDS's for disposal information.



Page 13 of 13

ATTACHMENT T EPA Authorization to Inject

Paul Matli

From: Kim, Lisa < Kim.Lisa@epa.gov>
Sent: Friday, November 17, 2017 3:01 PM

To: Paul Matli

Subject: Property - 11-28 31st Drive (UICID: 18NY04799009)

Property - 11-28 31st Drive (NYSDEC Brownfield Cleanup Program Site No. 241159) (UICID: 18NY04799009)

11-28 31st Drive, Queens, NY 11106, Queens County, Authorization to Inject

The U.S. Environmental Protection Agency is in receipt of inventory information addressing a well authorized by rule located at the above-referenced facility in accordance with 40 Code of Federal Regulations (CFR) §144.26. The operation of the following Underground Injection Control well is authorized by rule, pursuant to 40 CFR §144.24:

In situ chemical oxidation injection of a total of 1,886 pounds of persulfate along with a total of 117 pounds of FeEDTA for persulfate activation into six (6) injection points in the northern portion of the Site.

Lisa Kim Pelcyger, M.Eng. USEPA Region 2 290 Broadway, 20th Floor New York, NY 10007-1866

Tel: 212-637-4225

e-mail: kim.lisa@epa.gov
