77-57 VLEIGH PLACE QUEENS COUNTY FLUSHING, NEW YORK

PERIODIC REVIEW REPORT

NYSDEC Site Number: C241168

Prepared for:

VP Capital Holdings, LLC 62 West 47th Street, Suite 603 New York, New York 10036

Prepared by:

EnviroTrac Engineering PE PC 5 Old Dock Road, Yaphank, NY 11980 (631) 924-3001

OCTOBER 2022

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No. C2	241168	Site Details		Box 1	
Sit	Site Name 77-57 Vleigh Place					
Cit Co	Site Address: 77-39/63 Vleigh Place Zip Code: 11367 City/Town: Flushing County: Queens Site Acreage: 0.669					
Re	porting Period:	April 24, 2021 to April	1 24, 2022			
					YES	NO
1.	Is the informati	on above correct?			X	
	If NO, include I	nandwritten above or	on a separate sheet.			
2.		ll of the site property t dment during this Rep	been sold, subdivided, merged, or porting Period?	undergone a		×
3.	Has there beer (see 6NYCRR		at the site during this Reporting Per	riod		X
4.		ral, state, and/or local operty during this Rep	permits (e.g., building, discharge) porting Period?	been issued		X
			s 2 thru 4, include documentation viously submitted with this certif			
5.	Is the site curre	ently undergoing deve	elopment?		X	
					Box 2	
					YES	NO
6.		site use consistent with sidential, Commercial,	h the use(s) listed below? and Industrial		X	
7.	Are all ICs in p	lace and functioning a	as designed?	X		
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
	Juny	Wall		9/15/2	2	
Sic	inature of Owner	Remedial Party or De	esignated Representative	Date		

SITE NO. C241168 Box 3

Description of Institutional Controls

Parcel

Owner

(portion of) 30-6630-1

VP Capital Holdings LLC

Institutional Control

Ground Water Use Restriction Monitoring Plan Site Management Plan O&M Plan IC/FC Plan

Landuse Restriction

Institutional Controls:

A series of ICs is required by the Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to Restricted Residential uses only. Adherence to these ICs on the site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

These ICs are:

- The property may be used for restricted residential use;
- · All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Queens Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP:
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP:
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 14, as well as nearby buildings in the vicinity of the Site, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the site are prohibited;

Box 4

<u>Parcel</u>

(portion of) 30-6630-1

Engineering Control

Groundwater Treatment System Vapor Mitigation Cover System Air Sparging/Soil Vapor Extraction

Engineering Controls:

Cover:

Exposure to remaining contamination at the Site is prevented by a cover system placed over the site. In the absence of a finalized building foundation design plan, an interim composite cover comprised of a minimum of 6 to 10 inches of ¾-inch bluestone underlain by a minimum of 24 inches of clean soil fill material was installed at the bottom of excavation. This cover system is designed to be capped in the future by a 6-inch thick mat building slab.

Vapor Mitigation:

Any on-site buildings will be required to have a sub-slab depressurization system, or similarly engineered systems, to mitigate the migration of contaminated soil vapor into on-site buildings.

Soil Vapor Extraction:

Soil vapor extraction (SVE) implemented to remove volatile organic compounds (VOCs) from the subsurface. VOCs will be physically removed from the soil by applying a vacuum to wells that have been installed into the vadose zone (the area below the ground but above the water table). The vacuum draws air through the soil matrix which carries the VOCs from the soil to the SVE well. The air extracted from the SVE wells is then treated as necessary prior to being discharged to the atmosphere.

Two off-site SVE wells are installed into the vadose zone to a depth of approximately 15 and 25 feet below ground surface. The air containing VOCs extracted from the SVE wells are treated by passing the air stream through activated carbon which removes the VOCs from the air prior to it being discharged to the atmosphere.

A final SVE system will be commissioned in concert with construction of the eventual planned on-site building and is expected to consist of a triangular shaped loop of horizontal interconnected perforated piping installed within a layer of bluestone beneath the building foundation. Similarly, effluent extracted from the horizontal extraction wells will be treated by passing it through two granulated active carbon drums prior to discharge to the atmosphere.

Off-Site Sub-Slab Depressurization System:

To mitigate the soil vapor intrusion impact at four buildings located at the Regency Gardens Apartment complex identified as 141-05, 141-12, 141-18 & 141-24 78th Avenue Corp. The designed SSDS for this property will consist of two suction pits installed beneath the basement slab of each of the four target buildings. Each suction pit will consist of a sub-slab cavity of approximately 2 feet by 2 feet in area by 2 feet in depth. A 4" diameter open-ended PVC pipe will be placed in the pit and held in place with a clamp. The pit will then be filled with crushed stone to prevent displacement of soil particles under vacuum and resurfaced. Each 2 suction pits per building will be manifolded into one riser and connected in the exterior of to a rooftop mounted suction fan with 4-inch diameter cast iron pipe.

Groundwater Treatment System:

Remediation of dissolved phase VOCs in groundwater will be accomplished through a chemical oxidant and bioremediation injection program. Remedial injections were mainly concentrated around the source area of PCE in the southeastern portion of the Site. Based on sampling results from continued groundwater monitoring, additional groundwater treatment via in-situ chemical oxidation or bioremediation may be necessary.

Periodic Review Report (PRR) Certification Statements

 I certify by checking "YES" below 	that:
---	-------

- a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
- b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative D

Date

IC CERTIFICATIONS SITE NO. C241168

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

point name	at EnviroTrackld. 5old print business addre	DOEK Ra, Yaphank, NY 1198		
am certifying as Owner for the	VP Capital Holdings	(Owner or Remedial Party)		
for the Site named in the Site Details Section of this form.				
) way sel		9/15/22		
Signature of Owner, Remedial Party Rendering Certification	, or Designated Representative	Date		

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name

print business address

print business add

and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Dale (Renes P.E.
9/15/22 DATE

IC/EC Certification forms are provided following the cover-page in this PRR.

PERIODIC REVIEW REPORT

Table of Contents

Secti	<u>on</u>	<u>Description</u>	<u>Page</u>
1.0	EXECUTIVE SUMMARY		
	1.1	Site Summary	1
	1.2	Effectiveness of the Remedial Program	6
	1.3	Compliance	7
	1.4	Recommendations	7
2.0	SITE O	VERVIEW	 9
	2.1	Site Location and Description	9
	2.2	Physical Setting	
		2.2.1 Land Use	9
	2.3	Investigation and Remedial History	10
3.0		DIAL PERFORMANCE, EFFECTIVENESS, AND)
	PROTE	CTIVENESS	13
	3.1	Interim SVE System	13
	3.2	Site Cover System	
	3.3	Off-Site SSD Systems at Regency Gardens	
	3.4	Groundwater Monitoring Well Results	15
4.0		UTIONAL AND ENGINEERING CONTROL PLAN	
	COMIT		
	4.1	IC/EC Compliance	17
		4.1.1 Institutional Controls	
		4.1.2 Engineering Controls	
		4.1.2.1 Cover	
		4.1.2.2 Interim SVE System	
		4.1.2.3 SSD Systems at Regency Gardens	
		4.1.2.4 Groundwater Monitoring Results	
	4.2	Corrective Measures	
	4.3	Conclusions and Recommendations	
	4.4	IC/EC Certification	24
5.0	MOI	NITORNG PLAN COMPLIANCE REPORT	26

	5.1	Components of the Monitoring Plan	26
		5.1.1 Interim SVE System	
		5.1.2 Quarterly Groundwater Monitoring	27
		5.1.3 Indoor Air Sampling at Regency Gardens	28
	5.2	Monitoring Deficiencies	
	5.3	Conclusions and Recommendations	
6.0 O	PERAT	IONS AND MAINTENANCE PLAN COMPLIANCE REPORT	30
	6.1	Components of the O&M Plan	30
		6.1.1 Interim SVE System	30
		6.1.2 SSD Systems at Regency Gardens	
	6.2	O&M Deficiencies	
	6.3	Conclusions and Recommendations	
7.0	OVER	ALL PRR CONCLUSIONS AND RECOMMENDATIONS	34
	7.1	Compliance with the SMP	34
	7.2	Effectiveness of the Remedial Program	
	7.3	Future PRR Submittals	
	7.4	Recommendations	35
List of Ta	ables		
Table 1	Summary of Interim SVE Influent and Effluent Air Sample Results– August 10, 2022		
Table 2	VOC Calculations for the Interim SVE Effluent Air Discharge – August 10, 2022		
Table 3	Soil Gas Sampling Results – November 2014 – January 2022		
Table 4	Indoor Air Sampling Results – Regency Gardens – December 2021		
Table 5	Pressure Test Point Vacuum Readings – SSD Systems Regency Gardens – September 2020 to August 2022		
Table 6	Water Level Measurements – March 2018 – August 2022		
Table 7	Water Level Study at MW-5D and MW-9 – January 2021		
Table 8	Summary of Groundwater Monitoring Well Results – August 10, 2022		
Table 9		cal Groundwater Monitoring Well Results for CVOCs – March 2018 –	

List of Figures

- Figure 1 Site Location Map
- Figure 2A Engineering Control Locations Interim SVE System
- Figure 2B Engineering Control Locations Site Cover System

Periodic Review Report 77-57 Vleigh Place Flushing, New York Site No. C241168

Figure 2C As-Built: SSDS Layout – Regency Gardens
Figure 3A Groundwater Contour Map – August 17, 2021
Figure 3B Groundwater Contour Map – November 30, 2021
Figure 3C Groundwater Contour Map – February 14, 2022
Figure 3D Groundwater Contour Map – May 4, 2022
Figure 3E Groundwater Contour Map – August 10, 2022
Figure 4 Institutional Control Boundaries

List of Appendices

A	Interim SVE Operations and Maintenance Logs – June 2021 – August 2022
В	Laboratory Reports
\mathbf{C}	Annual Compliance Inspection Form – Interim SVE System
D	Site Management Inspection Form – Regency Gardens

List of Acronyms

AS Air Sparging

ASP Analytical Services Protocol
BCA Brownfield Cleanup Agreement
BCP Brownfield Cleanup Program

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CAMP Community Air Monitoring Plan
C/D Construction and Demolition
CFR Code of Federal Regulation
CLP Contract Laboratory Program
COC Certificate of Completion

CO2 Carbon Dioxide CP Commissioner Policy

DER Division of Environmental Remediation

EC Engineering Control

ECL Environmental Conservation Law

ELAP Environmental Laboratory Approval Program

ERP Environmental Restoration Program

EWP Excavation Work Plan GHG Green House Gas

GWE&T Groundwater Extraction and Treatment

HASP Health and Safety Plan IC Institutional Control

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health NYCRR New York Codes, Rules, and Regulations

O&M Operation and Maintenance

OM&M Operation, Maintenance and Monitoring

OSHA Occupational Safety and Health Administration

OU Operable Unit

PID Photoionization Detector PRP Potentially Responsible Party PRR Periodic Review Report

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
RAO Remedial Action Objective
RAWP Remedial Action Work Plan

RCRA Resource Conservation and Recovery Act RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

List of Acronyms (continued)

RP Remedial Party

RSO Remedial System Optimization

SAC State Assistance Contract

SCG Standards, Criteria and Guidelines

SCO Soil Cleanup Objective SMP Site Management Plan

SOP Standard Operating Procedures

SOW Statement of Work

SPDES State Pollutant Discharge Elimination System

SSD Sub-slab Depressurization
SVE Soil Vapor Extraction
SVI Soil Vapor Intrusion
TAL Target Analyte List
TCL Target Compound List

TCLP Toxicity Characteristic Leachate Procedure
USEPA United States Environmental Protection Agency

UST Underground Storage Tank
VCA Voluntary Cleanup Agreement
VCP Voluntary Cleanup Program

1.0 EXECUTIVE SUMMARY

1.1 Site Summary

The property at 77-57 Vleigh Place (also known as 77-39/63 Vleigh Place), Flushing, NY 11367 (the Site) is currently in the New York State Brownfield Cleanup Program (BCP), Site No. C241168, which is administered by the New York State Department of Environmental Conservation (NYSDEC). This report is the Periodic Review Report (PRR) that was prepared in accordance with the Site Management Plan (SMP) for the Site. The PRR covers the period from June 2021 to August 2022.

Aldrich Management Co., LLC entered into a Brownfield Cleanup Agreement (BCA) as a Participant, on April 6, 2015, with the NYSDEC to remediate the Site. VP Capital Holdings, LLC was then added to BCA as a Participant following a purchase transaction of the Site from Aldrich Management Co., LLC on July 2, 2018, and pursuant to an amended BCA on July 10, 2018. A Certificate of Completion (COC) was provided by the NYSDEC for the Site on December 24, 2019.

The subsurface at the Site has been impacted with tetrachloroethylene (PCE), its breakdown products (cis-1,2-dichloroethylene and trichloroethylene), and chloroform, associated with a former dry cleaner that occupied the Site. The most impacted area at the Site included the southeastern corner where elevated concentrations of PCE were detected in soil and groundwater. Remedial work for the Site includes operation and maintenance of the original soil vapor extraction (SVE) system, the removal of all soil from the Site to approximately 25 feet below grade, operation and maintenance of the current interim SVE system, and four (4) rounds of insitu chemical oxidation (ISCO) at the southeast corner of the Site, which included the use of PersulfOx, 3_D Microemulsion Factory Emulsified (3DME) mixed with additives identified as Bio-Dechlor Innoculum Plus (BDI Plus) and Chemical Reducing Solution (CRS), and sodium permanganate.

Periodic Review Report 77-57 Vleigh Place Flushing, New York Site No. C241168

After completion of the remedial work, some contamination was left at this Site, which is hereafter referred to as "remaining contamination." Institutional and Engineering Controls (ICs and ECs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure the protection of public health and the environment. An Environmental Easement granted to the NYSDEC and recorded with the Office of the City Registrar of the City of New York (under recording number 2019000306865), requires compliance with the SMP and all ECs and ICs placed on the Site.

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance, and reporting activities required by the SMP:

Institutional Controls:

- 1. The property may be used for restricted residential use consistent with the recorded Environmental Easement;
- 2. All ECs must be operated and maintained as specified in this SMP and required by the Environmental Easement recorded for the Site;
- All ECs must be inspected at a frequency and in a manner defined in the SMP and required by the Environmental Easement:
- 4. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Queens Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- 5. Groundwater and other environmental or public health monitoring must be performed as defined in the SMP, consistent with the Environmental Easement;
- 6. Data and information pertinent to Site management must be reported at a frequency and in a manner as defined in the SMP and required by the Environmental Easement;
- 7. All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- 8. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- 9. Operation, maintenance, monitoring, inspection, and reported of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- 10. Access to the Site must be provided to agents, employees, or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified in the Environmental Easement;
- 11. The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries, as well as any nearby off-Site buildings, and any potential impacts that are identified must be monitored or mitigated;
- 12. Vegetable gardens and farming on the Site are prohibited consistent with the Environmental Easement in place on the property.

Engineering Controls:	Cover system			
Engineering condois.	 Soil Vapor Extraction (SVE) sys: 			
	3. Off-Site Sub-slab Depressuriz Regency Gardens			
	Additional In-situ Chemical Bioremediation Treatments as rec			
Inspections:		Frequency		
1. Cover inspection	Annually			
Monitoring/Maintenance:				
SVE System				
Blower on-off function	on	Monthly		
2. Effluent Parameters		Monthly		
3. Alarm sound and on/	of light	Monthly		
4. Flow, PID, Vacuum pro	Monthly			
5. Vacuum pressure at V	5. Vacuum pressure at Vacuum Monitoring Points			
6. Weather conditions	Monthly			
7. GAC drum testing	7. GAC drum testing			
8. Soil vapor sampling	from off-Site soil vapor points	Annually		
9. SVE Blower		As needed		
Monitoring/Maintenance:	Monitoring/Maintenance:			
Off-Site SSD system at Regency C	Gardens			
1. Fans on/off func	tion	Annually		
2. Alarm sound and	l on/off light	Annually		
3. Vacuum pressur	e at the Vacuum Monitoring Points	Annually		
4. Indoor air/outdoo	or air sampling	30 days after startup and Annually		
5. Soil vapor evalu	ations in adjacent structures	30 days after startup		

	6. SSD system fans	As needed
Monitoring:		
ISCO and B	ioremediation Treatment	
1.	All monitoring well sampling	Quarterly
2.	Select monitoring well sampling	60 days after ISCO injection
Reporting:		
1.	Groundwater Data	Quarterly
2.	Soil Vapor Data	Annually
3.	SVE System Monitoring	Monthly
4.	Cover System and SSD system inspections	Annually
5.	Periodic Review Report	Annually

1.2 Effectiveness of the Remedial Program

Monthly Site visits were conducted for the Interim SVE system (June 2021 to August 2022), groundwater monitoring was conducted on a quarterly basis (for this reporting period sampling occurred on August 2021, November 2021, February 2022, May 2022, and August 2022), and the four (4) sub-slab depressurization (SSD) systems at Regency Gardens Apartment complex and Site cover are inspected annually. The annual Site inspection was conducted on August 10, 2022. The ECs include the operation and maintenance (O&M) of an Interim SVE system and the maintenance of the Site cover system. Not included as an EC for the Site but included as part of the remedy to address off-Site contamination, O&M is conducted for four (4) SSD systems, off-Site at Regency Gardens to the south. The SSD systems have been operating since December 2020 and the Interim SVE system has been operating since January 2020. Beginning December 2020, only SVE well EW-6, located beneath the sidewalk, in front of the adjoining property to the east, has been operating, and the other two (2) SVE wells, EW-4 and EW-5, have been turned off. Turning off vacuum applied to EW-4 and EW-5 has increased the vacuum at EW-6 and improved the soil gas quality at off-Site wells SV-KG-1 and SV-9. Monitoring results for the SVE system and SSD systems showed that they were operating properly with no issues. Inspection of the Site cover indicated no issues, and during each monthly Site visit. The Site was recently redeveloped with a mixed commercial and residential-use building that is currently under construction. building will be four (4) stories when completed with a sub-cellar utilized as a parking garage and a cellar utilized for commercial purposes. The first floor will also be utilized for commercial purposes and the remaining upper floors will be utilized as residential apartments. Groundwater monitoring and soil gas sampling results indicate a reduction in on-Site and off-Site remaining groundwater and soil gas contamination since the removal of soil across the Site from grade to approximately 25 feet below grade during April and September 2019, the startup of the Interim SVE system in January 2020 and addition of SVE well EW-6 to address soil vapors in the area of off-Site soil gas wells

SV-KG-1 and SV-9, and implementation of ISCO groundwater injections in March 2018, August 2019, December 2019, and March 2021.

1.3 Compliance

No areas of non-compliance were noted for the Site. Based on the above inspections, monitoring, and sampling results, the Site ICs and ECs are in compliance with the SMP for the Site.

1.4 Recommendations

Since groundwater and soil gas concentrations for PCE have significantly decreased since (1) the removal of soil across the Site from grade to approximately 25 feet below grade, (2) the startup of the Interim SVE system, and (3) implementation of ISCO groundwater injections, EnviroTrac recommends that monthly O&M for the Interim SVE system, quarterly groundwater monitoring, annual soil gas sampling, and annual Site cover inspections and off-Site SSD system inspections at Regency Gardens continue as per the Site's SMP. EnviroTrac recently recommended that the annual indoor air sampling events during the certification of the SSD systems at Regency Gardens discontinue since two (2) consecutive years of indoor air sampling results for the Regency Gardens basements showed that none of the NYSDOH Air Guideline Values were exceeded. The NYSDEC and NYSDOH approved this request on September 8, 2022. EnviroTrac also recently recommended that four (4) groundwater monitoring wells (MW-1, MW-2, MW-6, and MW-13) be removed from the quarterly groundwater sampling list since total VOCs has been consistently below 50 micrograms per liter (ug/L) since October 2020 for MW-1 and MW-2, since August 2021 for MW-6, and since October 2019 for MW-13. The NYSDEC and the NYSDOH approved this request only for MW-1, MW-2, and MW-13 on September 8, 2022.

As per the Site's SMP, a Final SVE system was proposed to be installed at the southeast corner of the proposed Site building and the Interim SVE system would then be decommissioned. However, EnviroTrac was made aware of changes to the proposed

building foundation elevation, making it deeper. These changes will inherently impact the proper operation of the Final SVE system at the southeast corner. The new foundation elevation is approximately one (1) foot above the Site-specific water table at the southeast corner of the Site. Installation of horizontal slotted PVC piping connected to an SVE blower would draw groundwater into the PVC piping and system. Water drawn into the piping and SVE blower would counteract the purpose of the SVE system and damage the SVE blower and other system parts. Therefore, to address potential vapors at the Site, an SSD system was installed along the southern portion of the Site rather than an SVE system. A Pilot Test was recently conducted for the SSD system, which showed that acceptable vacuum levels could be achieved. A Pilot Test Report will be provided to the NYSDEC and the NYSDOH for review. To address additional vapor concerns a vapor barrier was installed across the Site beneath the building three (3) foot think foundation slab. Since elevated PCE soil gas vapors remain at off-Site soil gas well SV-KG-1, EnviroTrac recommends the continued operation of the Interim SVE system until soil gas concentrations at SV-KG-1 reach acceptable levels.

EnviroTrac will continue to conduct monthly O&M Interim SVE system inspections, quarterly groundwater monitoring events, annual SSD system certifications at Regency Gardens, annual Site cover inspections, and annual soil gas sampling events. Once the Final SSD system is operating and the Interim SVE system is discontinued, inspections for said system will be reduced to an annual frequency. The reporting frequency will not change and will continue as the following: (1) quarterly groundwater and Interim SVE system monitoring reports; and (2) annual PRRs.

2.0 SITE OVERVIEW

2.1 Site Location and Description

The Site is located in the County of Queens, New York and is identified as Block 6630 and Lot 1 on the Queens Tax Map. The Site is situated on an approximately 0.669-acre area bounded by 77th Road to the north and then property owned by North Queen Community High School, by 78th Avenue to the south and then Regency Gardens apartment complex, by Vleigh Place to the west and then Stepping Stone Day School, and by Kew Gardens apartment complex to the east. The owner of the Site parcel is VP Capital Holdings, LLC.

2.2 Physical Setting

2.2.1 Land Use

The Site consists of a partially constructed mixed-use (commercial/residential) building located at 141-15 78th Avenue in Flushing, New York. Former addresses associated with the Site include 77-39 – 77-63 Vleigh Place. The Site is bounded by 77th Road to the north, 78th Avenue to the south, Vleigh Place to the west, and Kew Gardens apartment complex to the east. The Site currently consists of a partially constructed mixed-use (commercial/residential) building with a sub-cellar parking garage and cellar level commercial space. The first floor will also be utilized for commercial use and the remaining upper floors will be residential apartments. A vapor barrier and a three (3) foot thick slab have been installed at the Site. The bottom of the building foundation is located approximately one (1) foot above the top of the water table.

The Site was formerly developed with a single-story commercial building with a basement that was present along the western portion of the Site, facing Vleigh Place. Paragon Cleaners formerly occupied the unit at 77-57 Vleigh Place. The Site was previously owned by Aldrich Management Co., LLC from June 2007 until July 2018 when it was purchased by VP Capital Holdings, LLC.

It is assumed that sanitary wastes and wastewater from the former commercial units discharged to the municipal sewerage system piping. The new building is also connected to the municipal sewer system. The Site is zoned for restricted-residential and commercial purposes.

The properties adjoining to the Site and in the neighborhood surrounding the Site primarily include commercial and residential properties. The properties immediately south and east of the Site include apartment complexes. The properties immediately to the north and west of the Site include schools.

2.3 Investigation and Remedial History

The subsurface at the Site has been impacted with PCE due to the historical use of the former unit at 77-57 Vleigh Place as a dry cleaner. Subsurface investigations and remedial activities were conducted at the Site from November 2015 to October 2016. The remedial investigation activities included several sampling events for soil, soil vapor, ambient air, and groundwater. Identified Areas of Concern (AOCs) included (1) the presence of chlorinated solvents in shallow and deep soil; (2) the presence of dissolved chlorinated solvents in groundwater on and off-Site; and (3) the presence of chlorinated solvents in soil vapor at the Site and off-Site. Remedial activities were implemented beginning in March 2018 to January 2020 and included (1) three (3) ISCO groundwater injections; (2) installation and operation of a SVE system at the southeast corner of the Site with three (3) wells: EW-1, EW-2, and EW-3; (3) removal of the soil across the Site to a depth of approximately 25 feet below grade with end point sample results that showed no detections of contaminants of concern (COC) above NYSDEC Soil Cleanup Objectives (SCOs) during April and September 2019, and (4) installation and operation of an Interim SVE system within the sidewalk, near the southeast corner of the Site, which consisted of two (2) SVE wells: EW-4 and EW-5, which began operating in January 2020. To address off-Site soil gas concentrations at the adjoining property to the east, within the garage area, SVE well EW-6 was added to the Interim SVE system and is located beneath the sidewalk, in front of the adjoining property to the east.

Based on the previous remedial investigations, the most contaminated areas of soil were removed from the Site along with all soil across the Site to a depth of approximately 25 feet below grade. Therefore, the source area at the southeast corner was properly removed from the Site and disposed off-Site.

After completion of the remedial work, some contamination was left at this Site, which included impacted groundwater and soil vapor, hereafter referred to as "remaining contamination." A Track 4 cleanup was implemented at the Site. Institutional and Engineering Controls (ICs and ECs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure the protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Queens County Clerk, requires compliance with the SMP and all ECs and ICs placed on the Site.

The ECs include an Interim SVE system and the Site cover (demarcation layer, approximately 24" clean soil backfill, and approximately 6" of blue stone). Four (4) SSD systems were also installed within four (4) buildings to the south at Regency Gardens to mitigate contaminated soil vapors present beneath these buildings adjoining to the south.

The original SVE system was installed and began operating at the southeast corner of the Site prior to soil removal in April 2019. Between April 2019 and January 2020, no systems were operating at the Site. The Interim SVE system was installed at the Site and began operating in January 2020. The previous purpose of the Interim SVE system was to reduce the levels of remaining soil vapor contamination over time at the southeast corner of the Site and at the adjoining property in the area of SV-KG-1. The client has since moved forward with the construction of the new building. A vapor barrier and a three (3) foot thick slab have been installed at the Site. In order to improve the soil gas conditions at SV-KG-1, all vacuum has been applied to SVE well EW-6 since October 2020, which was approved by the NYSDEC. Monitoring of the Interim SVE system is

conducted on a monthly basis and soil gas sampling is conducted at wells surrounding the Site on an annual basis.

The Site cover consists of a demarcation layer, approximately 24" clean soil backfill, and approximately 6" of blue stone. Maintaining the Site cover in good condition reduces exposure to vapors off-gassing from remaining soil vapor and groundwater contamination within and surrounding the Site. Recently construction on the new building was started, which included the placement of a vapor barrier on top of the clean backfill followed by the placement of a three (3) foot thick mat slab.

On March 10, 2021, EnviroTrac implemented an ISCO groundwater injection event around groundwater monitoring well MW-11. Concentrations of PCE at MW-11 overtime have decreased significantly; however, the sampling event in January 2021 had indicated that PCE remained elevated at MW-11 with a concentration of 500 micrograms per liter (ug/L). Due to the remaining elevated concentration of PCE at MW-11, the ISCO groundwater injection event was conducted. The ISCO groundwater injection event included advancing two (2) borings to the east and west of groundwater monitoring well MW-11 to a maximum depth of 45 feet below grade. A total of 48 gallons of Rem Ox L 40% sodium permanganate was reduced to a 10% solution mixed with water to produce approximately 246 gallons of the 10% solution. A total of 123 gallons was injected into each boring from 45 feet below grade to approximately 34 feet below grade. No indications of the sodium permanganate were observed seeping through the open pit wall. No daylighting events occurred during the injections also. Follow-up 60-day groundwater monitoring and the quarterly groundwater monitoring event occurred on May 10, 2021, which showed a significant reduction to 200 ug/L. The PCE concentration in MW-11 has varied since May 2021, but the most recent sampling event in August 2022 showed a concentration of PCE at 170 in MW-11. EnviroTrac recommends continuing to monitor natural attenuation of PCE at MW-11. Therefore, no additional ISCO injection events appear to be warranted at the Site at this time.

3.0 REMEDIAL PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

3.1 Interim SVE System

The performance, effectiveness, and protectiveness of the Interim SVE system is evaluated by conducting monthly O&M visits, collecting monthly vacuum readings at Pressure Test (PT) points, collecting SVE influent and effluent air samples, and collecting annual soil gas samples from soil gas wells surrounding the Site and adjoining property to the east. The July 2021 monthly visit was missed. Figure 2A shows the location of the Interim SVE system, PTs, and soil gas wells. Table 1 summarizes the Interim SVE influent and effluent air samples. The total VOC effluent discharge in pounds per hour were calculated and are summarized in Table 2. The results show that the Interim SVE effluent air discharge total VOC concentrations are below the NYSDEC air discharge standard of 0.5 pounds per hour. The Interim SVE O&M Logs are provided in Appendix A and include the PT vacuum readings. Table 3 summarizes soil gas well sample results from November 2014 to January 2022. The laboratory reports are provided in Appendix B. The Annual Compliance Inspection Form for the Interim SVE System is provided in Appendix C.

EnviroTrac recommends that the carbon drum for the SVE system be replaced as breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

3.2 Site Cover System

The Site Cover system consists of a demarcation layer, approximately 24" clean soil backfill, and approximately 6" of blue stone that were installed at the Site following the removal of the soil across the Site down to approximately 25 feet below grade. The construction of the new building at the Site has begun, which when completed, will be a four (4) story mixed commercial and residential-use building with a cellar and sub-cellar. Prior to the start of construction, a gravel layer replaced the blue stone on the southern portion of the Site and a vapor barrier was placed on top of the blue stone on the northern

portion and the gravel on the southern portion. The vapor barrier also continued up the walls of the subgrade levels. A three (3) foot thick building slab was placed on top of the vapor barrier. EnviroTrac observed and inspected the placement of the gravel, vapor barrier, and three (3) foot thick slab. Currently, the new building sub-cellar, cellar, first floor, and second floor have been constructed. The slab and portions of the new building were observed in good condition. During the annual inspection, the Site was observed to be an active construction site; however, no permeant occupants reside within the building. Figure 2B shows the Site Cover.

3.3 Off-Site Regency Gardens SSD Systems

The performance, effectiveness, and protectiveness of the four (4) Regency Gardens SSD systems were evaluated by conducting an annual certification, collection of annual indoor air samples, and collecting annual vacuum readings from beneath the basement slabs at pressure test points (PTPs). The annual certification of the Regency Gardens SSD systems is not due until December 2022. However, vacuum readings and system component inspections were conducted along with the annual Site inspection and Interim SVE system certification. No additional indoor air samples were collected during this inspection. Indoor air samples were last collected in December 2021 and are summarized in Table 4. A total of eight (8) PTPs were installed near the corners of the basement slabs in the four (4) apartment buildings following the installation of the SSD systems. The PTPs are utilized to determine if an optimal amount of vacuum is being applied to the sub-slab by the SSD system blowers (fans). Figure 2C shows the As Built SSDS Layout at Regency Gardens including the SSD system suction pits and PTPs. summarizes the PTP readings. Most of the vacuum measurements at the PTPs collected on August 10, 2022, were above the acceptable level of vacuum, at 0.01 inches of water, with the exception of PTP-5 and PTP-6. EnviroTrac monitored these PTP locations again on October 25, 2022, and the vacuums were shown to be within the acceptable level. The change in vacuum was likely a technical error in the field or instrument. The SSD systems are performing properly, appeared in good condition with no signs of damage,

and therefore, are protecting human health and the environment. The Site Inspection Management Form for the Regency Gardens SSD systems is provided in Appendix D.

3.4 Groundwater Monitoring Well Results

The performance, effectiveness, and protectiveness of the previous ISCO groundwater injection events as well as natural attenuation of contaminants in groundwater are evaluated by sampling the groundwater over time and tracking the changes. Groundwater monitoring events for this reporting period occurred in August 2021, November 2021, February 2022, May 2022, and August 2022. Since the startup of the original SVE system, removal of soil across the Site to a depth of 25 feet below grade, startup of the Interim SVE system, and four (4) previous ISCO groundwater injections, concentrations for the on and off-Site groundwater monitoring wells have significantly decreased by an order of magnitude. Figures 3A, 3B, 3C, 3D, and 3E show the monitoring well locations and groundwater flow contour lines. Table 6 summarizes the depth to water and water table elevation measurements from March 2018 to August 2022. Table 7 summarizes a water table elevation study conducted in January 2021 for wells MW-5D and MW-9. Table 8 summarizes the August 2022 groundwater monitoring Table 9 summarizes the chlorinated volatile organic compound (CVOC) (chloroform, cis-1,2-dichloroethylene, PCE, and TCE) concentrations detected in the wells from March 2018 to August 2022. The laboratory report for the August 2022 groundwater monitoring event is provided in Appendix B. The highest detected groundwater monitoring well sample concentration for PCE collected on August 10, 2022, was 260 ug/L in MW-3S. This is a similar concentration that was detected in May 2022, however, showed an increase from the prior sampling event in February 2022. The next highest detected groundwater monitoring well sample concentration for PCE collected on August 10, 2022, was 170 ug/L at MW-11. This is a similar concentration that was detected in May 2022, however showed a decrease from the prior sampling event in February 2022. The remaining detected PCE concentrations in the wells range from 0.53 ug/L at MW-13 to 78 ug/L at MW-12. Since the startup of the original SVE system, removal of soil across the Site from grade to approximately 25 feet below grade,

startup of the Interim SVE system, and a total of four (4) ISCO groundwater injection events, PCE concentrations have significantly decreased in all on and off-Site wells. Other CVOCs detected in groundwater overtime include chloroform, cis-1,2dichloroethylene (breakdown product of PCE), and TCE (breakdown product of PCE). The highest detected groundwater monitoring well sample concentration for TCE collected on August 10, 2022, was 4.3 ug/L in MW-1, which is below its NYSDEC Groundwater Standard. All other concentrations of TCE detected in the groundwater monitoring wells were either non-detect or at a concentration well below its NYSDEC Groundwater Standard. The highest detected groundwater monitoring well sample concentration for chloroform collected on August 10, 2022, was 28 ug/L in MW-7. The remaining detected chloroform concentrations in the wells ranged from non-detect in three (3) wells to 16 ug/L at MW-3D. The highest detected groundwater monitoring well sample concentration for cis-1,2-dichloroethylene collected on August 10, 2022, was 1.5 ug/L in MW-11 which is below its NYSDEC Groundwater Standard. The remaining detected cis-1,2-dichloroethylene concentrations in the wells ranged from non-detect in seven (7) wells to 0.72 ug/L in MW-12. TCE, chloroform, and cis-1,2-dichloroethylene have not shown to significantly impact the Site during previous monitoring events but have shown to decrease overall in concentration overt time.

The NYSDEC is recommending that additional groundwater injections be conducted around wells that show elevated concentrations of PCE. It has been agreed that following the next groundwater monitoring event (November 2022) the results will be evaluated to determine if another groundwater injection is necessary.

4.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN COMPLIANCE REPORT

4.1 IC/EC Compliance

Since remaining contamination exists at the Site, ICs and ECs are required to protect human health and the environment. IC compliance is conducted on an annual basis by performing a Site inspection to determine that activities conducted at the Site are not in violation with the Environmental Easement. EC compliance is conducted on a monthly, quarterly, and annual basis for the Interim SVE system (monthly), groundwater monitoring (quarterly), SSD systems at Regency Gardens (annually), and Site cover (annually).

4.1.1 Institutional Controls

Adherence to the ICs on the Site is required by the Environmental Easement. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are shown on Figure 4. These ICs:

- The property may be used for restricted residential use consistent with the recorded Environmental Easement;
- All ECs must be operated and maintained as specified in this SMP and required by the Environmental Easement recorded for the Site;
- All ECs must be inspected at a frequency and in a manner defined in the SMP and required by the Environmental Easement;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Queens Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP, consistent with the Environmental Easement;

- Data and information pertinent to Site management must be reported at a frequency and in a manner as defined in the SMP and required by the Environmental Easement;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Operation, maintenance, monitoring, inspection, and reported of any mechanical or physical component of the remedy shall be performed as defined in the SMP;
- Access to the Site must be provided to agents, employees, or other representatives
 of the State of New York with reasonable prior notice to the property owner to
 assure compliance with the restrictions identified in the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries, as well as any nearby off-Site buildings, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited consistent with the Environmental Easement in place on the property.
- The Environmental Easement allows for Restricted Residential use. A new building is currently being constructed at the Site and will be used for mixed commercial and residential-uses. No permanent occupants currently reside at the Site. Therefore, the adherence to the Environmental Easement was achieved.

4.1.2 Engineering Controls

4.1.2.1 Cover

The Site cover inspection was conducted on August 10, 2022. A new building is currently being constructed at the Site and will be used for mixed commercial and residential-uses. No permanent occupants currently reside at the Site. Prior to the start of construction a vapor barrier and three (3) foot thick slab were installed on top of the approximately 24" clean soil cover, demarcation layer, and blue stone/gravel layer. The

vapor barrier also continued up the subgrade walls. Therefore, the adherence to the Environmental Easement was achieved. The cover system remains in good condition; therefore, it is protecting human health and the environment.

4.1.2.2 Interim SVE System

Interim SVE O&M visits occurred on a monthly basis. The July 2021 monthly visit was missed. Figure 2A shows the Interim SVE system. An SVE pipe was damaged during construction of the building on June 27, 2022. The SVE system was temporarily shut down until the pipe could be replaced. EnviroTrac replaced the pipe on July 5, 2022. No other SVE issues or concerns were noted during this reporting period. Currently, only SVE well EW-6 is operating while SVE wells EW-4 and EW-5 are shutoff. This is so all vacuum from the blower is applied to EW-6, which has been shown to address the vapors in the vicinity of SV-KG-1. The SVE influent and effluent air samples were collected on August 10, 2022. Table 1 summarizes the Interim SVE influent and effluent air samples. The total VOC effluent discharge in pounds per hour were calculated and are summarized in Table 2. The results show that the Interim SVE effluent air discharge total VOC concentrations are below the NYSDEC air discharge standard of 0.5 pounds per hour. The Interim SVE O&M Logs are provided in Appendix A and include the PT vacuum readings. Table 3 summarizes soil gas well sample results from November 2014 to January 2022. Figure 1 shows the soil gas well locations. The laboratory reports are provided in Appendix B. The Annual Compliance Inspection Form for the Interim SVE System is provided in Appendix C. The Interim SVE system is performing properly, therefore, it is protecting human health and the environment. However, EnviroTrac recommends that the carbon drum for the SVE system be replaced as breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

4.1.2.3 SSD Systems at Regency Gardens

An annual certification and collection of vacuum readings at the PTPs from beneath the basement slabs of the four (4) buildings at Regency Gardens were conducted on August 10, 2022. Figure 2C shows the As Built SSDS Layout for Regency Gardens. No issues

were reported for the SSD systems, including the blowers (fans), piping, and gauges. The annual certification of the Regency Gardens SSD systems is not due until December 2022. However, vacuum readings and system component inspections were conducted along with the annual Site inspection and Interim SVE system certification. additional indoor air samples were collected during this inspection. Indoor air samples were last collected in December 2021 and are summarized in Table 4. On September 8, 2022, the NYSDEC and NYSDOH approved the request to discontinue future annual indoor air sampling at Regency Gardens. A total of eight (8) PTPs were installed near the corners of the basement slabs in the four (4) apartment buildings following the installation of the SSD systems. The PTPs are utilized to determine if an optimal amount of vacuum is being applied to the sub-slab by the SSD system blowers (fans). Figure 2C shows the As Built SSDS Layout at Regency Gardens including the SSD system suction Table 5 summarizes the PTP readings. Most of the vacuum pits and PTPs. measurements at the PTPs collected on August 10, 2022, were above the acceptable level of vacuum, at 0.01 inches of water, with the exception of PTP-5 and PTP-6. EnviroTrac monitored these PTP locations again on October 25, 2022, and the vacuums were shown to be within the acceptable level. The change in vacuum was likely a technical error in the field or instrument. The Site Inspection Management Form for the Regency Gardens SSD systems is provided in Appendix D.

4.1.2.4 Groundwater Monitoring Results

The performance, effectiveness, and protectiveness of the previous ISCO groundwater injection events as well as natural attenuation of contaminants in groundwater are evaluated by sampling the groundwater over time and tracking the changes. Groundwater monitoring events for this reporting period occurred in August 2021, November 2021, February 2022, May 2022, and August 2022. Since the startup of the original SVE system, removal of soil across the Site to a depth of 25 feet below grade, startup of the Interim SVE system, and four (4) prior ISCO groundwater injections, concentrations for the on and off-Site groundwater monitoring wells have significantly

decreased by an order of magnitude. Figures 3A, 3B, 3C, 3D, and 3E show the monitoring well locations and groundwater flow contour lines. Table 6 summarizes the depth to water and water table elevation measurements from March 2018 to August 2022. Table 7 summarizes a water table elevation study conducted in January 2021 for wells MW-5D and MW-9. Table 8 summarizes the August 2022 groundwater monitoring Table 9 summarizes the chlorinated volatile organic compound (CVOC) (chloroform, cis-1,2-dichloroethylene, PCE, and TCE) concentrations detected in the wells from March 2018 to August 2022. The laboratory report for the August 2022 groundwater monitoring event is provided in Appendix B. The highest detected groundwater monitoring well sample concentration for PCE collected on August 10, 2022, was 260 ug/L in MW-3S. This is a similar concentration that was detected in May 2022, however, showed an increase from the prior sampling event in February 2022. The next highest detected groundwater monitoring well sample concentration for PCE collected on August 10, 2022, was 170 ug/L at MW-11. This is a similar concentration that was detected in May 2022, however, showed a decrease from the prior sampling event in February 2022. The remaining detected PCE concentrations in the wells range from 0.53 ug/L at MW-13 to 78 ug/L at MW-12. Since the startup of the original SVE system, removal of soil across the Site from grade to approximately 25 feet below grade, startup of the Interim SVE system, and a total of four (4) ISCO groundwater injection events, PCE concentrations have significantly decreased in all on and off-Site wells. Other CVOCs detected in groundwater overtime include chloroform, cis-1,2dichloroethylene (breakdown product of PCE), and TCE (breakdown product of PCE). The highest detected groundwater monitoring well sample concentration for TCE collected on August 10, 2022, was 4.3 ug/L in MW-1, which is below its NYSDEC Groundwater Standard. All other concentrations of TCE detected in the groundwater monitoring wells were either non-detect or at a concentration well below its NYSDEC Groundwater Standard. The highest detected groundwater monitoring well sample concentration for chloroform collected on August 10, 2022, was 28 ug/L in MW-7. The remaining detected chloroform concentrations in the wells ranged from non-detect in three (3) wells to 16 ug/L at MW-3D. The highest detected groundwater monitoring well sample concentration for cis-1,2-dichloroethylene collected on August 10, 2022, was 1.5 ug/L in MW-11 which is below its NYSDEC Groundwater Standard. The remaining detected cis-1,2-dichloroethylene concentrations in the wells ranged from non-detect in seven (7) wells to 0.72 ug/L in MW-12. TCE, chloroform, and cis-1,2-dichloroethylene have not shown to significantly impact the Site during previous monitoring events but have shown to decrease overall in concentration overt time.

4.2 Corrective Measures

No areas of non-compliance were noted. Based on the above inspections, monitoring, and sampling results, the Site ICs and ECs are in compliance with the SMP for the Site. Therefore, no corrective measures are recommended for the ICs and ECs.

EnviroTrac recommends that the carbon drum for the SVE system be replaced as breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

4.3 Conclusions and Recommendations

The ICs/ECs are properly operating and being maintained at the Site in compliance with the Environmental Easement and SMP.

Since groundwater and soil gas concentrations for PCE have significantly decreased since (1) the removal of soil across the Site from grade to approximately 25 feet below grade, (2) the startup of the Interim SVE system, and (3) implementation of ISCO groundwater injections, EnviroTrac recommends that monthly O&M for the Interim SVE system, quarterly groundwater monitoring, annual soil gas sampling, and annual Site cover inspections and off-Site SSD system inspections at Regency Gardens continue as per the Site's SMP. EnviroTrac recently recommended that the annual indoor air sampling events during the certification of the SSD systems at Regency Gardens discontinue since two (2) consecutive years of indoor air sampling results for the Regency Gardens basements showed that none of the NYSDOH Air Guideline Values were exceeded. The

NYSDEC and NYSDOH approved this request on September 8, 2022. EnviroTrac also recently recommended that four (4) groundwater monitoring wells (MW-1, MW-2, MW-6, and MW-13) be removed from the quarterly groundwater sampling list since total VOCs has been consistently below 50 ug/L since October 2020 for MW-1 and MW-2, since August 2021 for MW-6, and since October 2019 for MW-13. The NYSDEC and the NYSDOH approved this request only for MW-1, MW-2, and MW-13 on September 8, 2022.

As per the Site's SMP, a Final SVE system was proposed to be installed at the southeast corner of the proposed Site building and the Interim SVE system would then be decommissioned. However, EnviroTrac was made aware of changes to the proposed building foundation elevation, making it deeper. These changes will inherently impact the proper operation of the Final SVE system at the southeast corner. The new foundation elevation is approximately one (1) foot above the Site-specific water table at the southeast corner of the Site. Installation of horizontal slotted PVC piping connected to an SVE blower would draw groundwater into the PVC piping and system. Water drawn into the piping and SVE blower would counteract the purpose of the SVE system and damage the SVE blower and other system parts. Therefore, to address potential vapors at the Site, an SSD system was installed along the southern portion of the Site rather than an SVE system. A Pilot Test was recently conducted for the SSD system, which showed that acceptable vacuum levels could be achieved. A Pilot Test Report will be provided to the NYSDEC and the NYSDOH for review. To address additional vapor concerns a vapor barrier was installed across the Site beneath the building's three (3) foot think foundation slab and up the subgrade walls. Since elevated PCE soil gas vapors remain at off-Site soil gas well SV-KG-1, EnviroTrac recommends the continued operation of the Interim SVE system until soil gas concentrations at SV-KG-1 reach acceptable levels.

4.4 IC/EC Certification

"For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Site management plan for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- *Use of the Site is compliant with the environmental easement;*
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the Site remedial program and generally accepted engineering practices; and
- *The information presented in this report is accurate and complete.*

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Dale Konas, PE, of EnviroTrac PC PE, 5 Old Dock Road, Yaphank, New York 11980, am certifying as Owner's/Remedial Party's Designated Site Representative: I have been authorized and designated by all Site owners/remedial parties to sign this certification for the Site."

• The assumptions made in the qualitative exposure assessment remain valid.

I <u>DALE KONAS</u> certify that I am currently a NYS registered professional engineer and that this Periodic Review Report was prepared in accordance with all applicable statutes

and regulations and in substantial conformance with the DER Technical Guidance for

Site Investigation and Remediation (DER-10).

Dale (, 12enes P.E. 9/15/22 DATE

IC/EC Certification forms are provided following the cover page in this PRR.

5.0 MONITORING PLAN COMPLAINCE REPORT

5.1 Components of the Monitoring Plan

Media sampled as part of the Monitoring Plan include soil gas well samples, Interim SVE influent and effluent air samples, groundwater samples, and indoor air samples at the four (4) buildings at Regency Gardens. The Interim SVE influent and effluent air sample results determine if the SVE system is in compliance with NYSDEC discharge guidance values. The soil gas well sample results determine if the Interim SVE system has addressed the soil gas surrounding the Site and off-Site, especially off-Site at SV-KG-1, adjoining to the east. The groundwater monitoring results determine if the remediation tasks conducted at the Site are removing contaminants from the groundwater beneath the Site. The indoor air results within the four (4) buildings at Regency Gardens determines if the SSD systems are operating properly. The following summarizes the monitoring conducted for the Site in compliance with the Monitoring Plan in the SMP.

5.1.1 Interim SVE System

Table 1 summarizes the Interim SVE influent and effluent air samples. The July 2021 monthly visit was missed. Figure 2C shows the Interim SVE system location. The total VOC effluent discharge in pounds per hour were calculated and are summarized in Table 2. The results show that the Interim SVE effluent air discharge total VOC concentrations are below the NYSDEC air discharge standard of 0.5 pounds per hour. Table 3 summarizes soil gas well sample results from November 2014 to January 2022. Figure 1 shows the soil gas well locations. The laboratory reports are provided in Appendix B. The Interim SVE system is performing properly, therefore, it is protecting human health and the environment. However, EnviroTrac recommends that the carbon drum for the SVE system be replaced as breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

5.1.2 Quarterly Groundwater Monitoring

The performance, effectiveness, and protectiveness of the previous ISCO groundwater injection events as well as natural attenuation of contaminants in groundwater are evaluated by sampling the groundwater over time and tracking the changes. Groundwater monitoring events occurred in August 2021, November 2021, February 2022, May 2022, and August 2022. Since the startup of the original SVE system, removal of soil across the Site to a depth of 25 feet below grade, startup of the Interim SVE system, and four (4) prior ISCO groundwater injections, concentrations for the on and off-Site groundwater monitoring wells have significantly decreased by an order of magnitude. Figures 3A, 3B, 3C, 3D, and 3E show the monitoring well locations and groundwater flow contour lines. Table 6 summarizes the depth to water and water table elevation measurements from March 2018 to August 2022. Table 7 summarizes a water table elevation study conducted in January 2021 for wells MW-5D and MW-9. Table 8 summarizes the August 2022 groundwater monitoring event. Table 9 summarizes the CVOC (chloroform, cis-1,2-dichloroethylene, PCE, and TCE) concentrations detected in the wells from March 2018 to August 2022. The laboratory report for the August 2022 groundwater monitoring event is provided in Appendix B. The highest detected groundwater monitoring well sample concentration for PCE collected on August 10, 2022, was 260 ug/L in MW-3S. This is a similar concentration that was detected in May 2022, however, showed an increase from the prior sampling event in February 2022. The next highest detected groundwater monitoring well sample concentration for PCE collected on August 10, 2022, was 170 ug/L at MW-11. This is a similar concentration that was detected in May 2022, however, showed a decrease from the prior sampling event in February 2022. The remaining detected PCE concentrations in the wells range from 0.53 ug/L at MW-13 to 78 ug/L at MW-12. Since the startup of the original SVE system, removal of soil across the Site from grade to approximately 25 feet below grade, startup of the Interim SVE system, and a total of four (4) ISCO groundwater injection events, PCE concentrations have significantly decreased in all on and off-Site wells. Other CVOCs detected in groundwater overtime include chloroform, cis-1,2-

dichloroethylene (breakdown product of PCE), and TCE (breakdown product of PCE). The highest detected groundwater monitoring well sample concentration for TCE collected on August 10, 2022, was 4.3 ug/L in MW-1, which is below its NYSDEC Groundwater Standard. All other concentrations of TCE detected in the groundwater monitoring wells were either non-detect or at a concentration well below its NYSDEC The highest detected groundwater monitoring well sample Groundwater Standard. concentration for chloroform collected on August 10, 2022, was 28 ug/L in MW-7. The remaining detected chloroform concentrations in the wells ranged from non-detect in three (3) wells to 16 ug/L at MW-3D. The highest detected groundwater monitoring well sample concentration for cis-1,2-dichloroethylene collected on August 10, 2022, was 1.5 ug/L in MW-11 which is below its NYSDEC Groundwater Standard. The remaining detected cis-1,2-dichloroethylene concentrations in the wells ranged from non-detect in seven (7) wells to 0.72 ug/L in MW-12. TCE, chloroform, and cis-1,2-dichloroethylene have not shown to significantly impact the Site during previous monitoring events but have shown to decrease overall in concentration overt time.

EnviroTrac recently recommended that four (4) groundwater monitoring wells (MW-1, MW-2, MW-6, and MW-13) be removed from the quarterly groundwater sampling list since total VOCs has been consistently below 50 ug/L since October 2020 for MW-1 and MW-2, since August 2021 for MW-6, and since October 2019 for MW-13. The NYSDEC and the NYSDOH approved this request only for MW-1, MW-2, and MW-13 on September 8, 2022.

5.1.3 Indoor Air Sampling at Regency Gardens

Indoor air samples were last collected in December 2021 and are summarized in Table 4. Figure 2C shows the As Built SSDS Layout for Regency Gardens. Based on the indoor air sample results, the SSD systems at Regency Gardens are operating properly. EnviroTrac recently recommended that the annual indoor air sampling events during the certification of the SSD systems at Regency Gardens discontinue since two (2) consecutive years of indoor air sampling results for the Regency Gardens basements

Periodic Review Report 77-57 Vleigh Place Flushing, New York Site No. C241168

showed that none of the NYSDOH Air Guideline Values were exceeded. The NYSDEC

and NYSDOH approved this request on September 8, 2022.

5.2 Monitoring Deficiencies

The July 2021 SVE O&M visit was missed; however, the SVE system was shown to be

operating properly in June and August 2021.

Deficiencies were identified within the SSD system at Regency Gardens for pressure

point readings at PTP-5 and PTP-6 on August 10, 2022. These pressure points were re-

tested during the October SVE O&M, it is likely that it was a measurement/instrument

error. The retest showed that the SSD system at Regency Gardens is operation properly.

EnviroTrac recommends that the carbon drum for the SVE system be replaced as

breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

5.3 Conclusions and Recommendations

The monitoring data summarized above for the Interim SVE system air samples,

groundwater samples, and indoor air samples at Regency Gardens indicate that the

Interim SVE system, previous groundwater injections, and SSD systems at Regency

Gardens are operating properly.

EnviroTrac recommends that the carbon drum for the SVE system be replaced as

breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

The NYSDEC is recommending that additional groundwater injections be conducted

around wells that show elevated concentrations of PCE. It has been agreed that following

the next groundwater monitoring event (November 2022) the results will be evaluated to

determine if another groundwater injection is necessary.

Envirolrac

6.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE REPORT

6.1 Components of the O&M Plan

O&M visits are conducted on a monthly basis for the Interim SVE system and on an annual basis for the four (4) SSD systems at Regency Gardens.

6.1.1 Interim SVE System

Interim SVE O&M visits occurred on a monthly basis. The July 2021 monthly visit was missed. The Interim SVE system is shown on Figure 2A. An SVE pipe was damaged during construction of the building on June 27, 2022. The SVE system was temporarily shut down until the pipe could be replaced. EnviroTrac replaced the pipe on July 5, 2022. No other SVE issues or concerns were noted during this reporting period. Currently, only SVE well EW-6 is operating while SVE wells EW-4 and EW-5 are shutoff. This is so all vacuum from the blower is applied to EW-6, which has been shown to address the vapors in the vicinity of SV-KG-1. The Interim SVE O&M Logs are provided in Appendix A and include the PT vacuum readings. The Annual Compliance Inspection Form for the Interim SVE System is provided in Appendix C. The Interim SVE system is performing properly, therefore, it is protecting human health and the environment. However, EnviroTrac recommends that the carbon drum for the SVE system be replaced as breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

6.1.2 SSD Systems at Regency Gardens

An annual certification and collection of vacuum readings at the PTPs from beneath the basement slabs of the four (4) buildings at Regency Gardens were conducted on August 10, 2022. No issues were reported for the SSD systems, including the blowers (fans), piping, and gauges. The annual certification of the Regency Gardens SSD systems is not due until December 2022. However, vacuum readings and system component inspections were conducted along with the annual Site inspection and Interim SVE system certification. A total of eight (8) PTPs were installed near the corners of the

basement slabs in the four (4) apartment buildings following the installation of the SSD systems. The PTPs are utilized to determine if an optimal amount of vacuum is being applied to the sub-slab by the SSD system blowers (fans). Figure 2C shows the As Built SSDS Layout at Regency Gardens including the SSD system suction pits and PTPs. Table 5 summarizes the PTP readings. Most of the vacuum measurements at the PTPs collected on August 10, 2022, were above the acceptable level of vacuum, at 0.01 inches of water, with the exception of PTP-5 and PTP-6. EnviroTrac monitored these PTP locations again on October 25, 2022, and the vacuums were shown to be within the acceptable level. The change in vacuum was likely a technical error in the field or instrument. The Site Inspection Management Form for the Regency Gardens SSD systems is provided in Appendix D.

6.2 **O&M Deficiencies**

The July 2021 SVE O&M visit was missed; however, the SVE system was shown to be operating properly in June and August 2021.

EnviroTrac recommends that the carbon drum for the SVE system be replaced as breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

Deficiencies were identified within the SSD system at Regency Gardens for pressure point readings at PTP-5 and PTP-6 on August 10, 2022. These pressure points were retested during the October SVE O&M, it is likely that it was a measurement/instrument error. The retest showed that the SSD system at Regency Gardens is operation properly.

6.3 Conclusions and Recommendations

The Interim SVE system continues to operate properly at the Site. The SSD systems at Regency Gardens continue to operate properly at the adjoining buildings to the south.

Since groundwater and soil gas concentrations for PCE have significantly decreased since (1) the removal of soil across the Site from grade to approximately 25 feet below grade,

(2) the startup of the Interim SVE system, and (3) implementation of ISCO groundwater injections, EnviroTrac recommends that monthly O&M for the Interim SVE system, quarterly groundwater monitoring, annual soil gas sampling, and annual Site cover inspections and off-Site SSD system inspections at Regency Gardens continue as per the Site's SMP. EnviroTrac recently recommended that the annual indoor air sampling events during the certification of the SSD systems at Regency Gardens discontinue since two (2) consecutive years of indoor air sampling results for the Regency Gardens basements showed that none of the NYSDOH Air Guideline Values were exceeded. The NYSDEC and NYSDOH approved this request on September 8, 2022. EnviroTrac also recently recommended that four (4) groundwater monitoring wells (MW-1, MW-2, MW-6, and MW-13) be removed from the quarterly groundwater sampling list since total VOCs has been consistently below 50 ug/L since October 2020 for MW-1 and MW-2, since August 2021 for MW-6, and since October 2019 for MW-13. The NYSDEC and the NYSDOH approved this request only for MW-1, MW-2, and MW-13 on September 8, 2022.

As per the Site's SMP, a Final SVE system was proposed to be installed at the southeast corner of the proposed Site building and the Interim SVE system would then be decommissioned. However, EnviroTrac was made aware of changes to the proposed building foundation elevation, making it deeper. These changes will inherently impact the proper operation of the Final SVE system at the southeast corner. The new foundation elevation is approximately one (1) foot above the Site-specific water table at the southeast corner of the Site. Installation of horizontal slotted PVC piping connected to an SVE blower would draw groundwater into the PVC piping and system. Water drawn into the piping and SVE blower would counteract the purpose of the SVE system and damage the SVE blower and other system parts. Therefore, to address potential vapors at the Site, an SSD system was installed along the southern portion of the Site rather than an SVE system. A Pilot Test was recently conducted for the SSD system, which showed that acceptable vacuum levels could be achieved. A Pilot Test Report will

Periodic Review Report 77-57 Vleigh Place Flushing, New York Site No. C241168

be provided to the NYSDEC and the NYSDOH for review. To address additional vapor concerns a vapor barrier was installed across the Site beneath the building's three (3) foot think foundation slab and up the subgrade walls. Since elevated PCE soil gas vapors remain at off-Site soil gas well SV-KG-1, EnviroTrac recommends the continued operation of the Interim SVE system until soil gas concentrations at SV-KG-1 reach acceptable levels.

EnviroTrac recommends that the carbon drum for the SVE system be replaced as breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

The NYSDEC is recommending that additional groundwater injections be conducted around wells that show elevated concentrations of PCE. It has been agreed that following the next groundwater monitoring event (November 2022) the results will be evaluated to determine if another groundwater injection is necessary.

EnviroTrac will continue to conduct monthly O&M Interim SVE system inspections, quarterly groundwater monitoring events, annual SSD system certifications at Regency Gardens, annual Site cover inspections, and annual soil gas sampling events. Once the Final SSD system is operating and the Interim SVE system is discontinued, inspections for said system will be reduced to an annual frequency. The reporting frequency will not change and will continue as the following: (1) quarterly groundwater and Interim SVE system monitoring reports; and (2) annual PRRs.

7.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

7.1 Compliance with the SMP

One monthly SVE monitoring event was missed for July 2021. No other areas of noncompliance were noted for the Site. The Environmental Easement allows for Restricted Residential use. A new building is currently being constructed at the Site and will be used for mixed commercial and residential-uses. No permanent occupants currently reside at the Site. Therefore, the adherence to the Environmental Easement was achieved.

7.2 Effectiveness of the Remedial Program

Monthly Site visits were conducted for the Interim SVE system (June 2021 to September 2022 with the exception of July 2021), groundwater monitoring was conducted on a quarterly basis (for this reporting period sampling occurred in August 2021, November 2021, February 2022, May 2022, and August 2022), and the Site cover is inspected annually. The SSD systems at Regency Gardens were also inspected and were found to be operating properly. The annual Site inspection was conducted on August 10, 2022. The ECs include the O&M of an Interim SVE system and the maintenance of the Site cover system. The SSD systems at Regency Gardens have been operating since December 2020 and the Interim SVE system has been operating since January 2020. Monitoring results for the Interim SVE system and SSD systems at Regency Gardens showed that they were operating properly with no issues. A new building is currently being constructed at the Site and will be used for mixed commercial and residential-uses. No permanent occupants currently reside at the Site. Prior to the start of construction perforated PVC piping was installed on the southern portion as part of a SSD system, and a vapor barrier and three (3) foot thick slab were installed on top of the approximately 24" clean soil cover, demarcation layer, and blue stone/gravel layer across the Site. The vapor barrier also continued up the subgrade walls. The Site is currently an active construction site. Groundwater monitoring results indicate a reduction in on-Site and off-Site remaining groundwater contamination since the startup of the original SVE system,

soil removal across the Site to a depth of approximately 25 feet below grade, startup of the Interim SVE system, and a total of four (4) groundwater ISCO injections.

7.3 Future PRR Submittals

PRR will continue to be submitted on an annual basis.

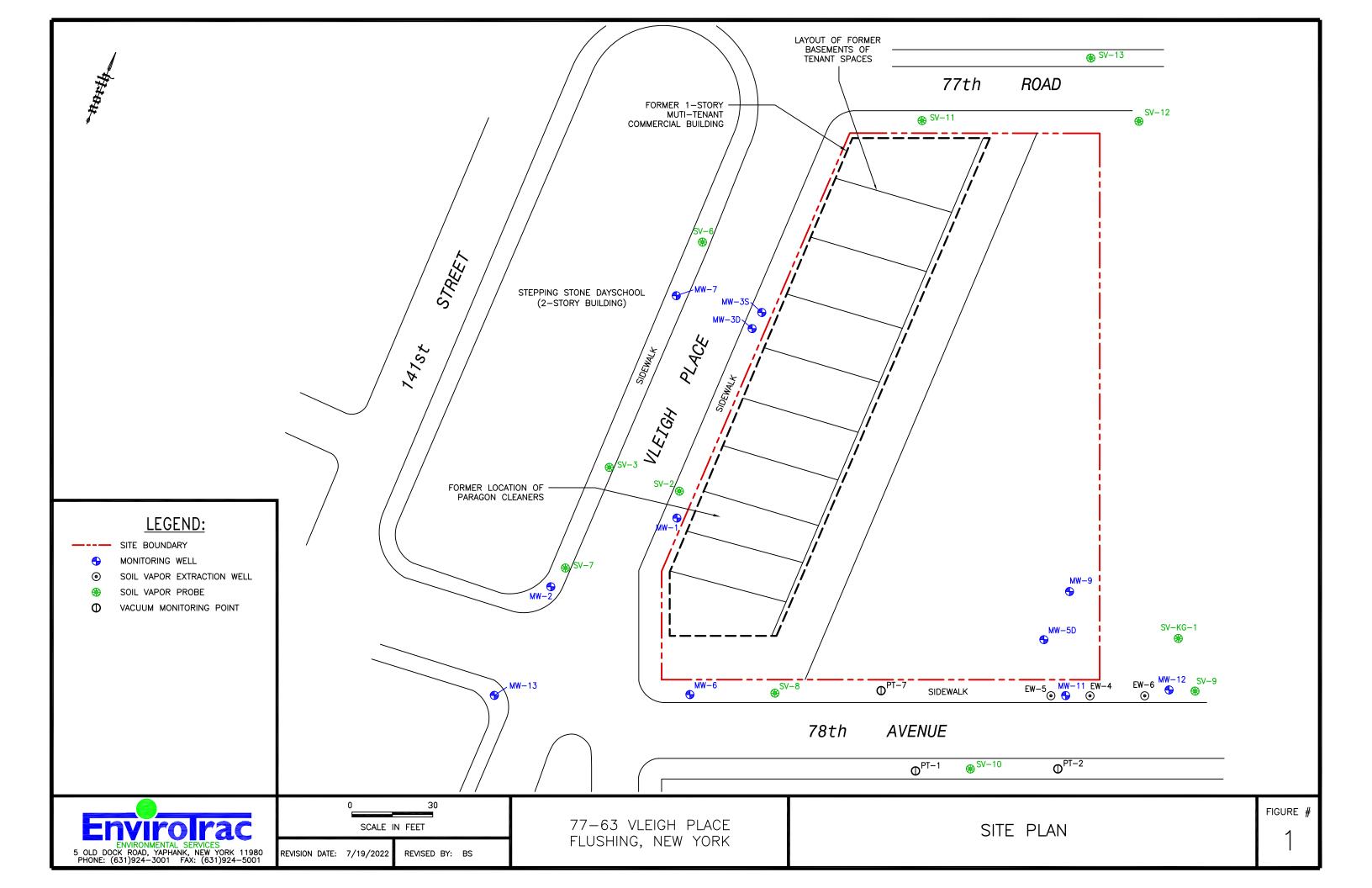
7.4 Recommendations

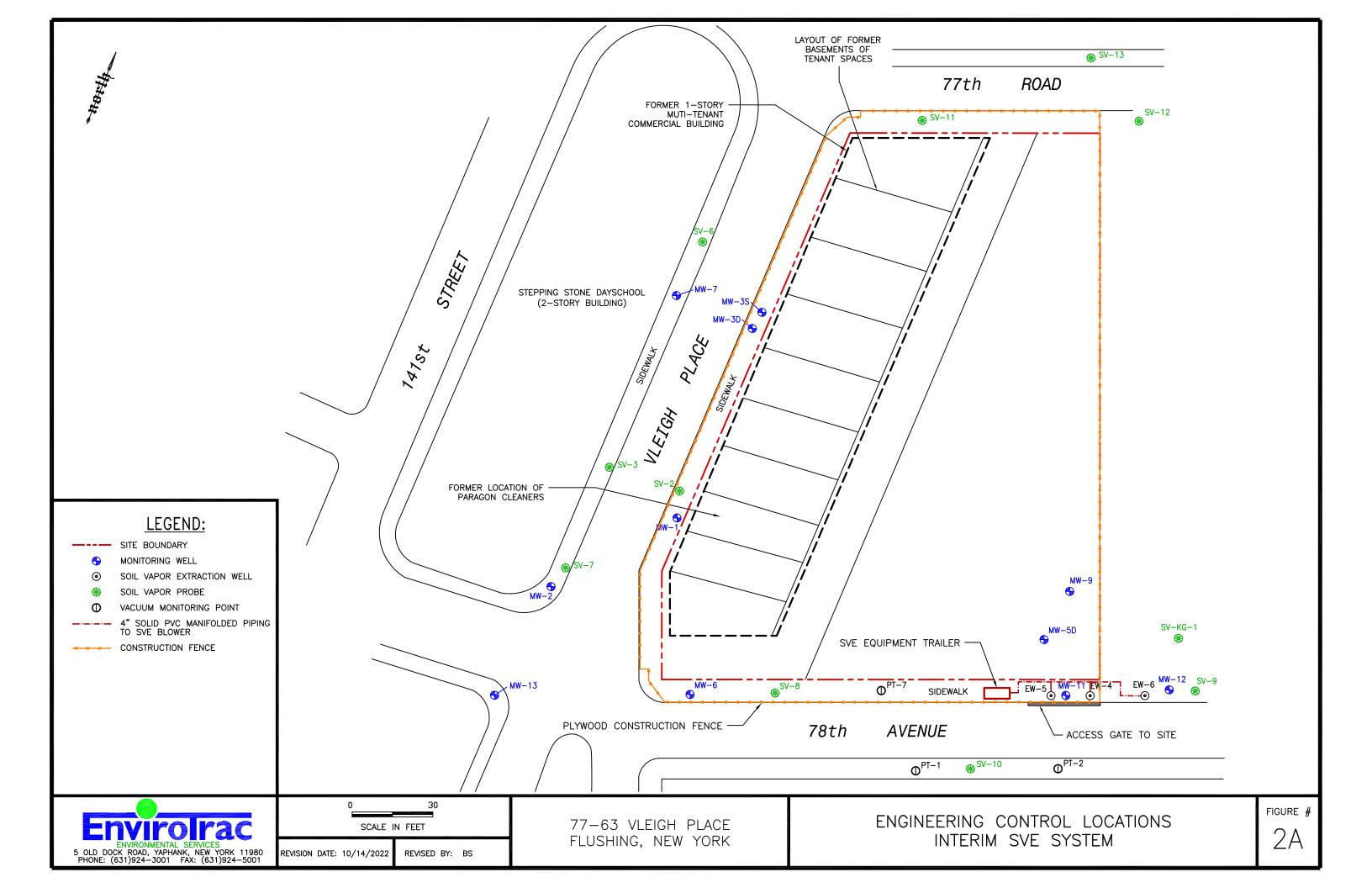
Since groundwater and soil gas concentrations for PCE have significantly decreased since (1) the removal of soil across the Site from grade to approximately 25 feet below grade, (2) the startup of the Interim SVE system, and (3) implementation of ISCO groundwater injections, EnviroTrac recommends that monthly O&M for the Interim SVE system, quarterly groundwater monitoring, annual soil gas sampling, and annual Site cover inspections and off-Site SSD system inspections at Regency Gardens continue as per the Site's SMP. EnviroTrac recently recommended that the annual indoor air sampling events during the certification of the SSD systems at Regency Gardens discontinue since two (2) consecutive years of indoor air sampling results for the Regency Gardens basements showed that none of the NYSDOH Air Guideline Values were exceeded. The NYSDEC and NYSDOH approved this request on September 8, 2022. EnviroTrac also recently recommended that four (4) groundwater monitoring wells (MW-1, MW-2, MW-6, and MW-13) be removed from the quarterly groundwater sampling list since total VOCs has been consistently below 50 micrograms per liter (ug/L) since October 2020 for MW-1 and MW-2, since August 2021 for MW-6, and since October 2019 for MW-13. The NYSDEC and the NYSDOH approved this request only for MW-1, MW-2, and MW-13 on September 8, 2022.

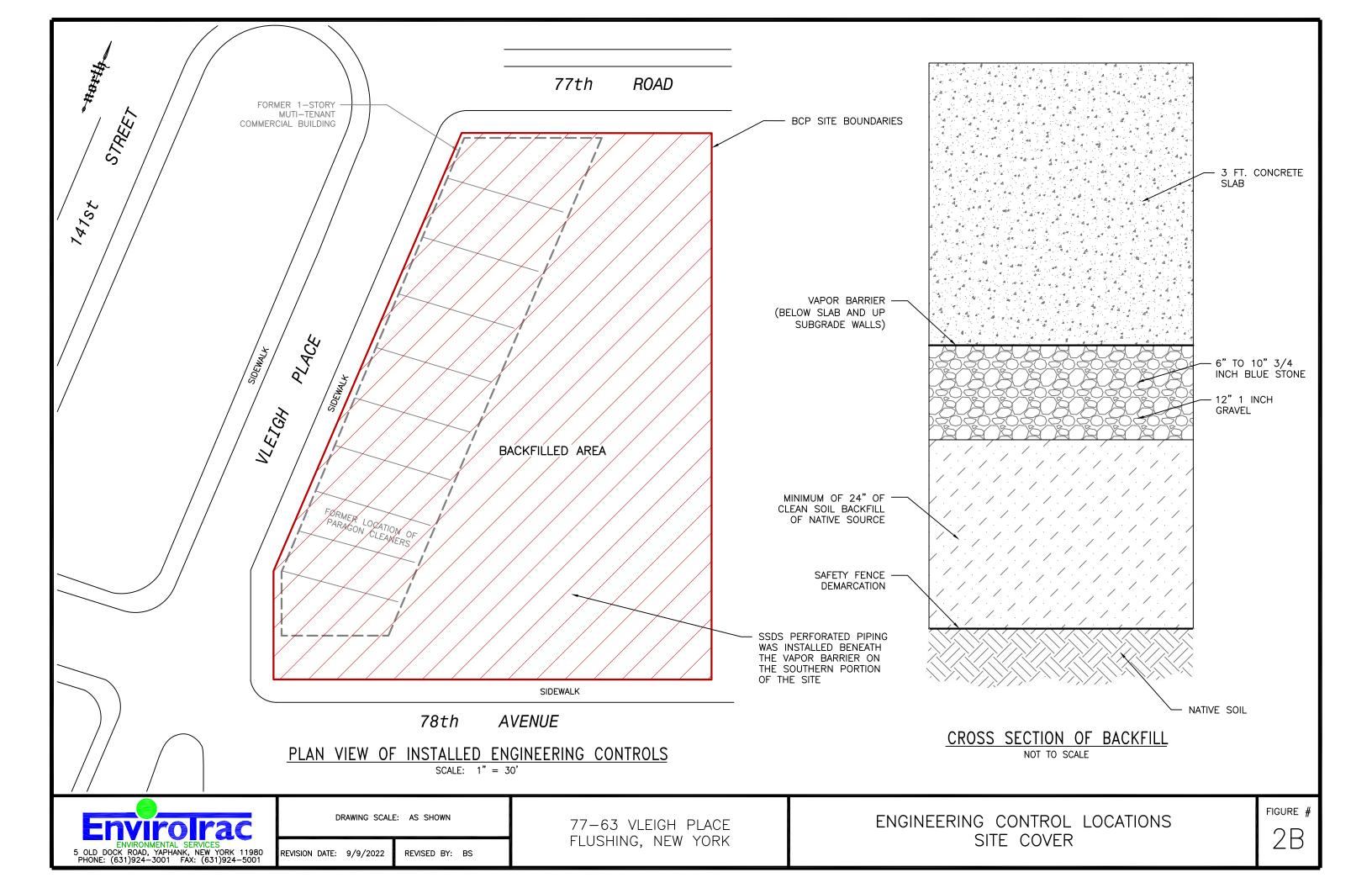
As per the Site's SMP, a Final SVE system was proposed to be installed at the southeast corner of the proposed Site building and the Interim SVE system would then be decommissioned. However, EnviroTrac was made aware of changes to the proposed building foundation elevation, making it deeper. These changes will inherently impact the proper operation of the Final SVE system at the southeast corner. The new

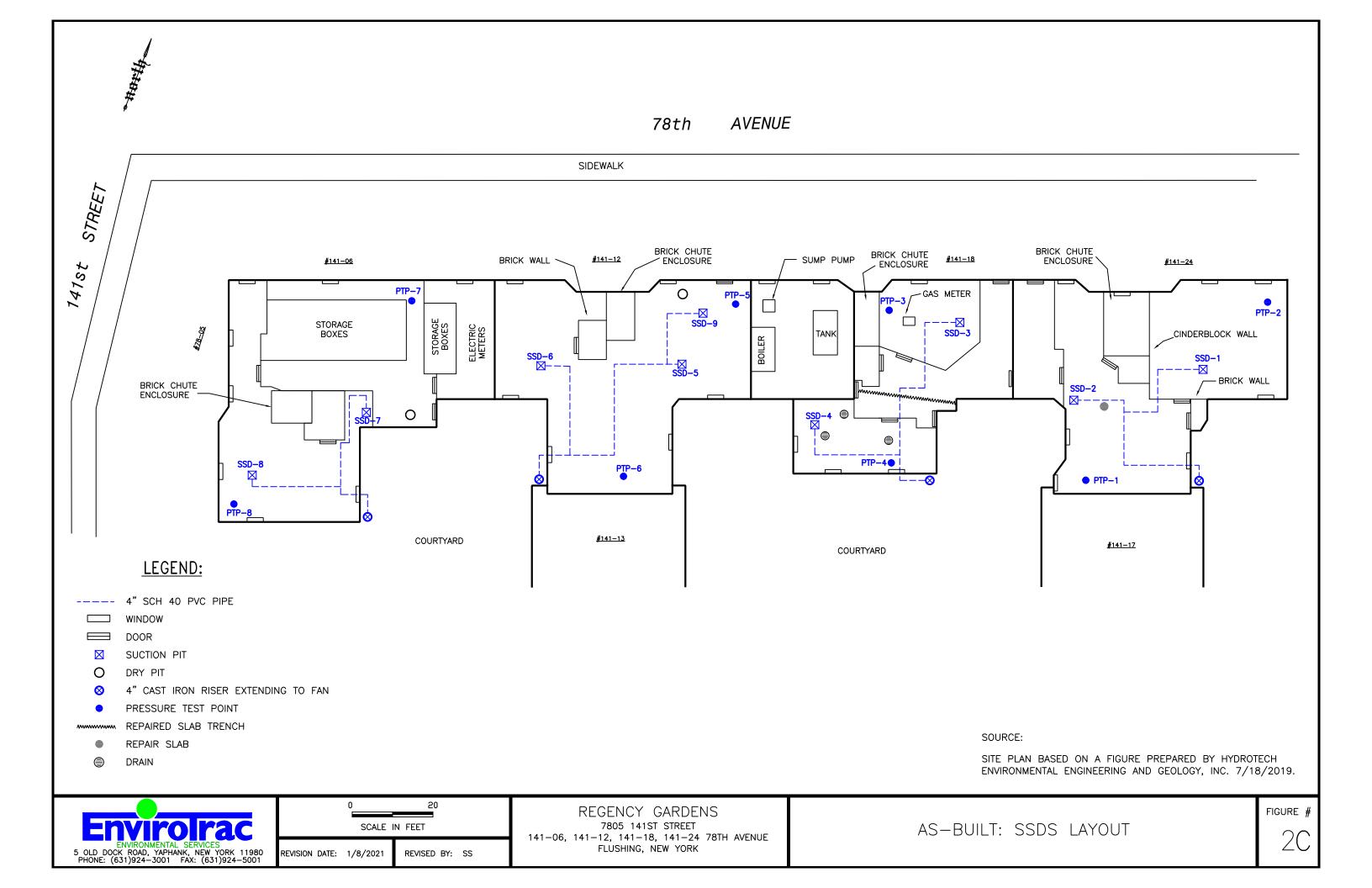
foundation elevation is approximately one (1) foot above the Site-specific water table at the southeast corner of the Site. Installation of horizontal slotted PVC piping connected to an SVE blower would draw groundwater into the PVC piping and system. Water drawn into the piping and SVE blower would counteract the purpose of the SVE system and damage the SVE blower and other system parts. Therefore, to address potential vapors at the Site, an SSD system was installed along the southern portion of the Site rather than an SVE system. A Pilot Test was recently conducted for the SSD system, which showed that acceptable vacuum levels could be achieved. A Pilot Test Report will be provided to the NYSDEC and the NYSDOH for review. To address additional vapor concerns a vapor barrier was installed across the Site beneath the building's three (3) foot think foundation slab. The vapor barrier also continued up the subgrade walls. Since elevated PCE soil gas vapors remain at off-Site soil gas well SV-KG-1, EnviroTrac recommends the continued operation of the Interim SVE system until soil gas concentrations at SV-KG-1 reach acceptable levels.

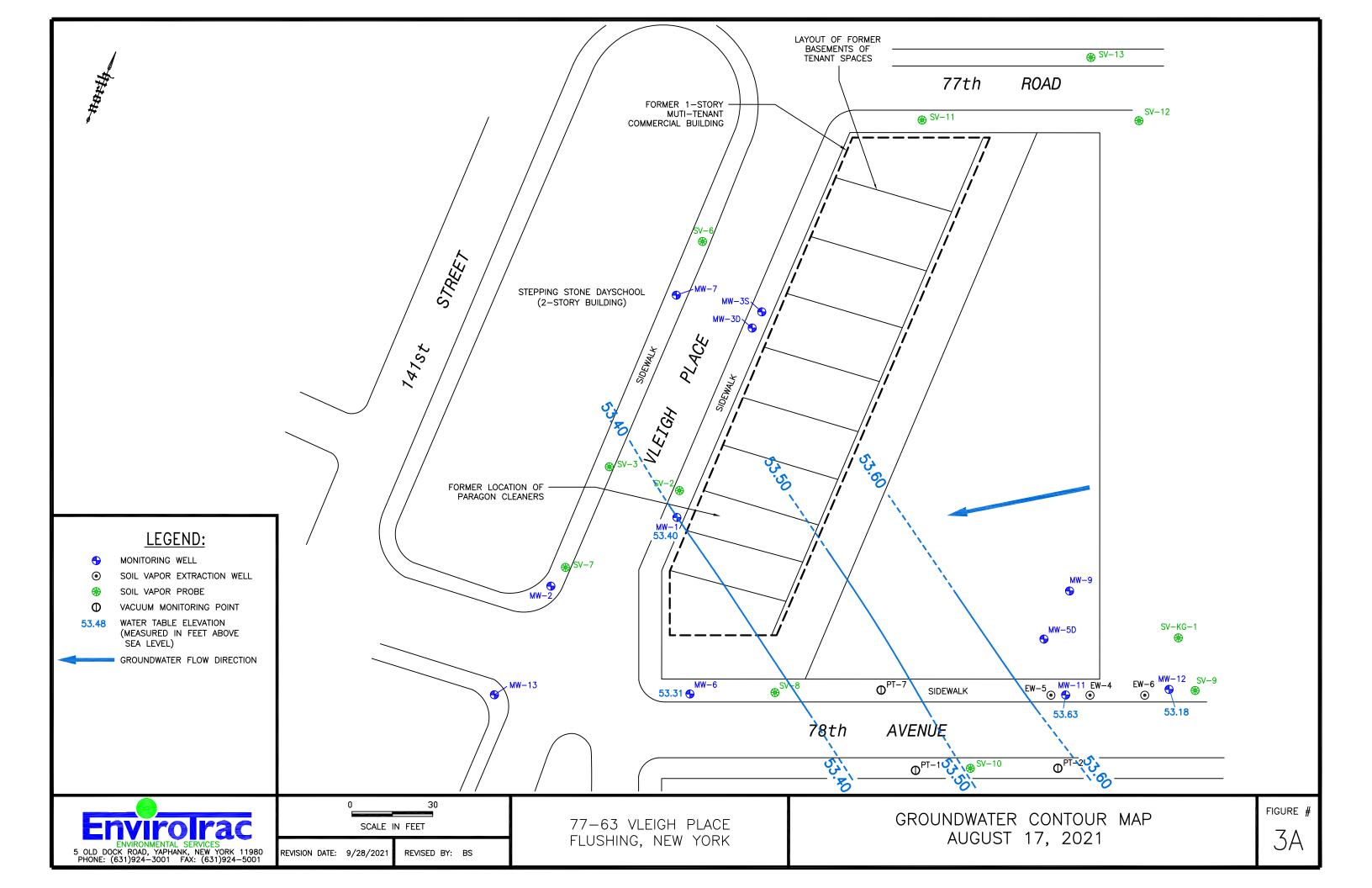
EnviroTrac will continue to conduct monthly O&M Interim SVE system inspections, quarterly groundwater monitoring events, annual SSD system certifications at Regency Gardens, annual Site cover inspections, and annual soil gas sampling events. Once the Final SSD system is operating and the Interim SVE system is discontinued, inspections for said system will be reduced to an annual frequency. The reporting frequency will not change and will continue as the following: (1) quarterly groundwater and Interim SVE system monitoring reports; and (2) annual PRRs.

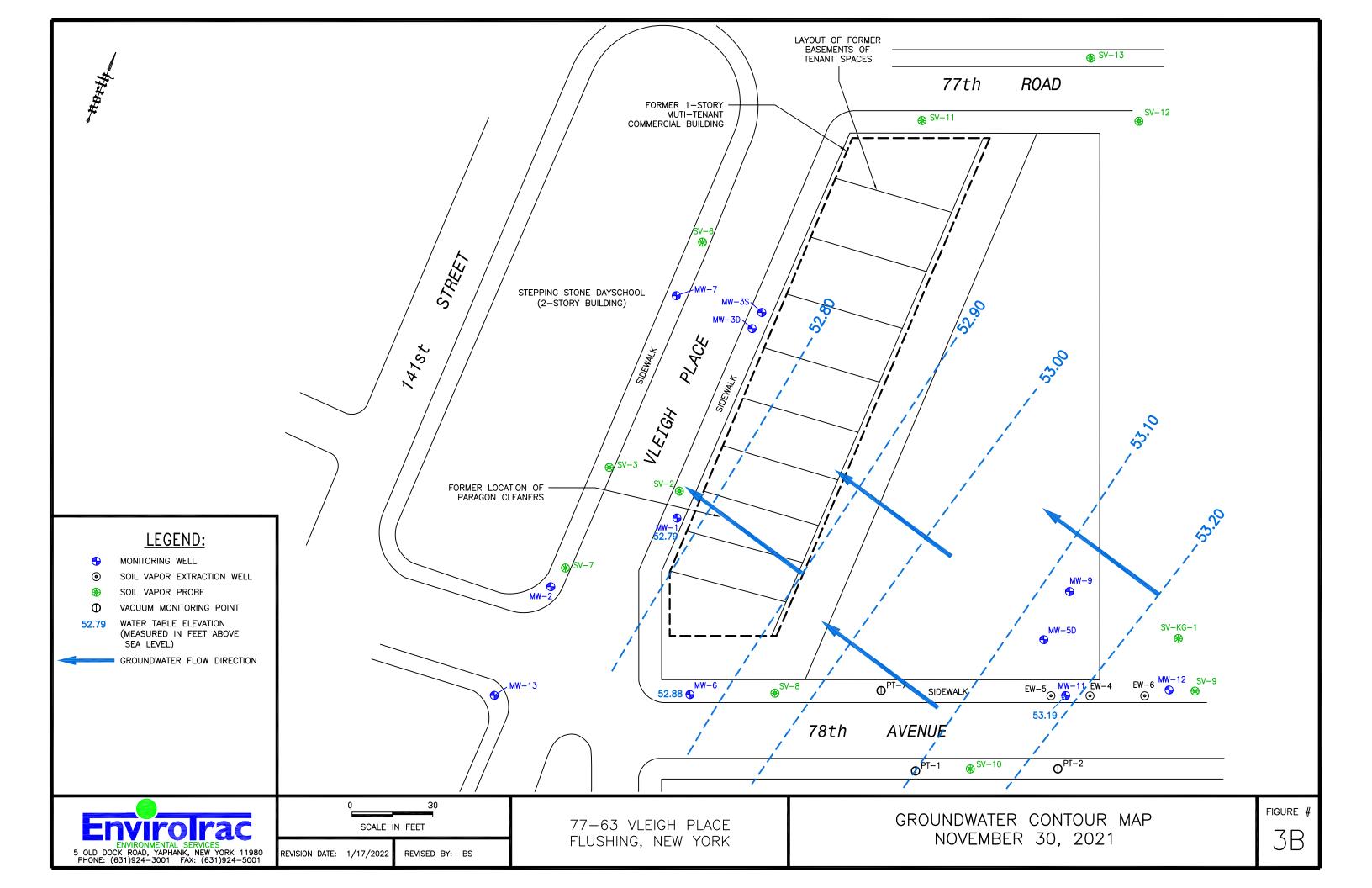

EnviroTrac recommends that the carbon drum for the SVE system be replaced as breakthrough has been noted for the most recent SVE Influent and Effluent Air Sampling.

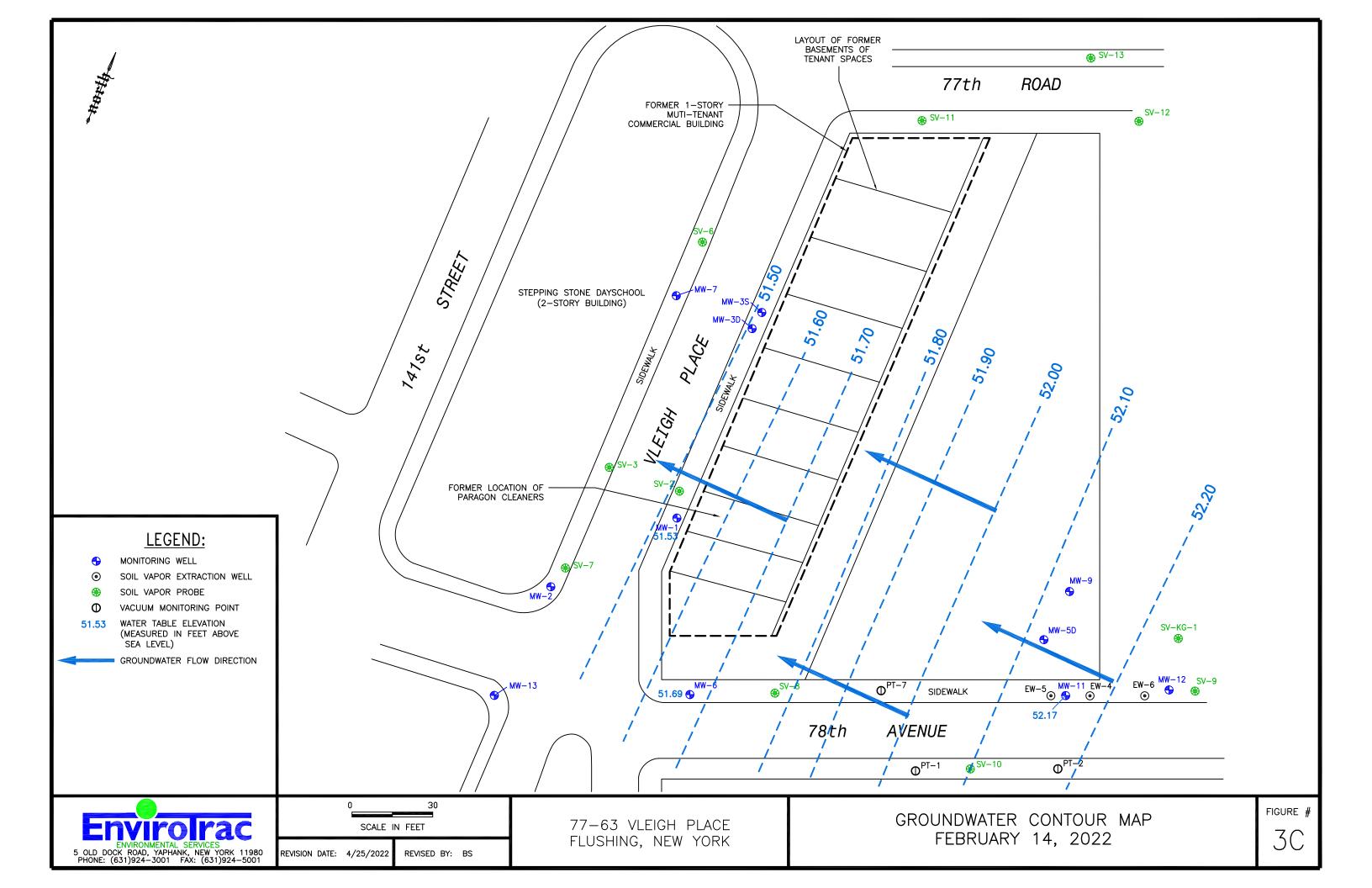

The NYSDEC is recommending that additional groundwater injections be conducted around wells that show elevated concentrations of PCE. It has been agreed that following the next groundwater monitoring event (November 2022) the results will be evaluated to determine if another groundwater injection is necessary.

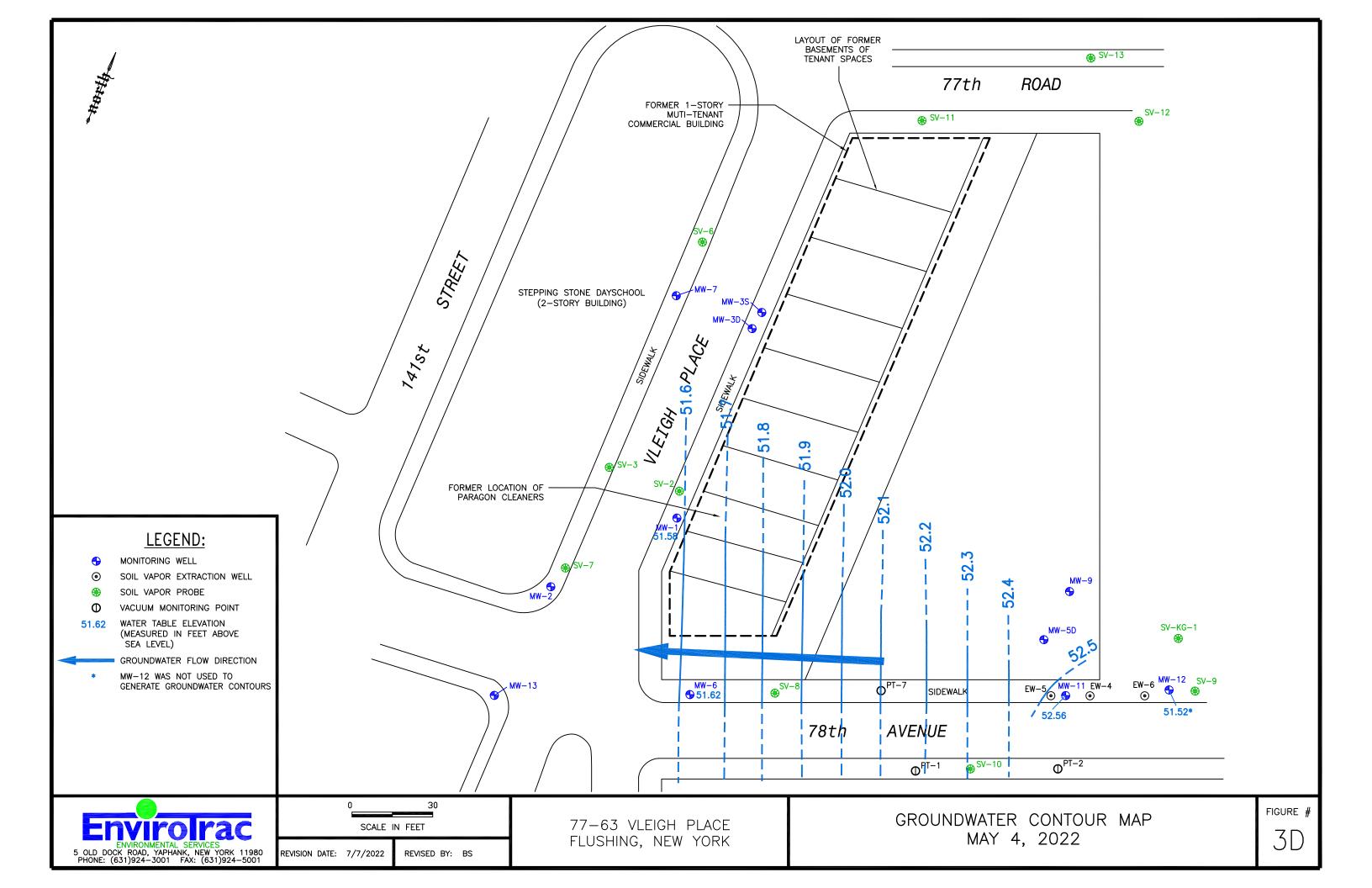


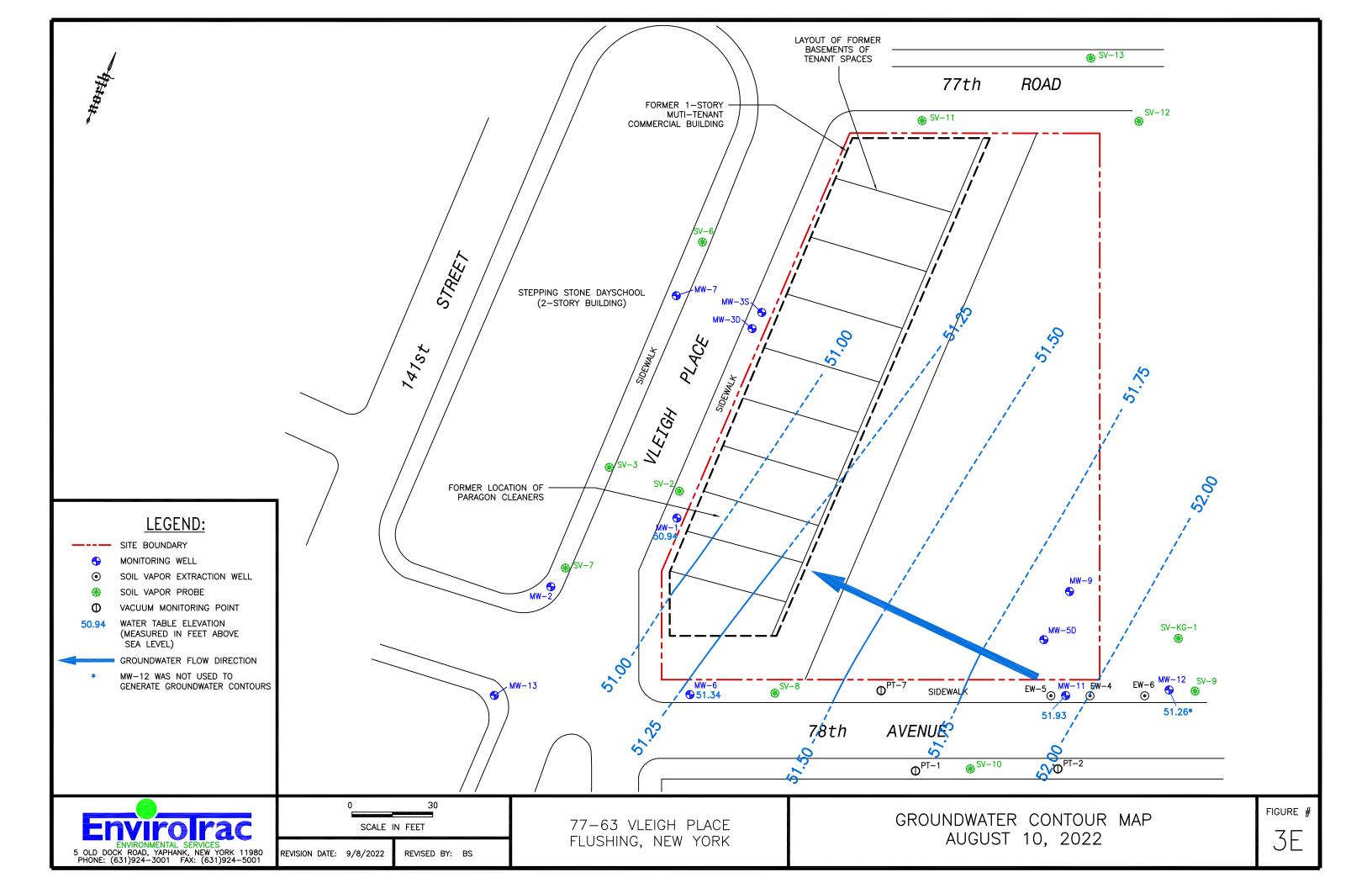

FIGURES

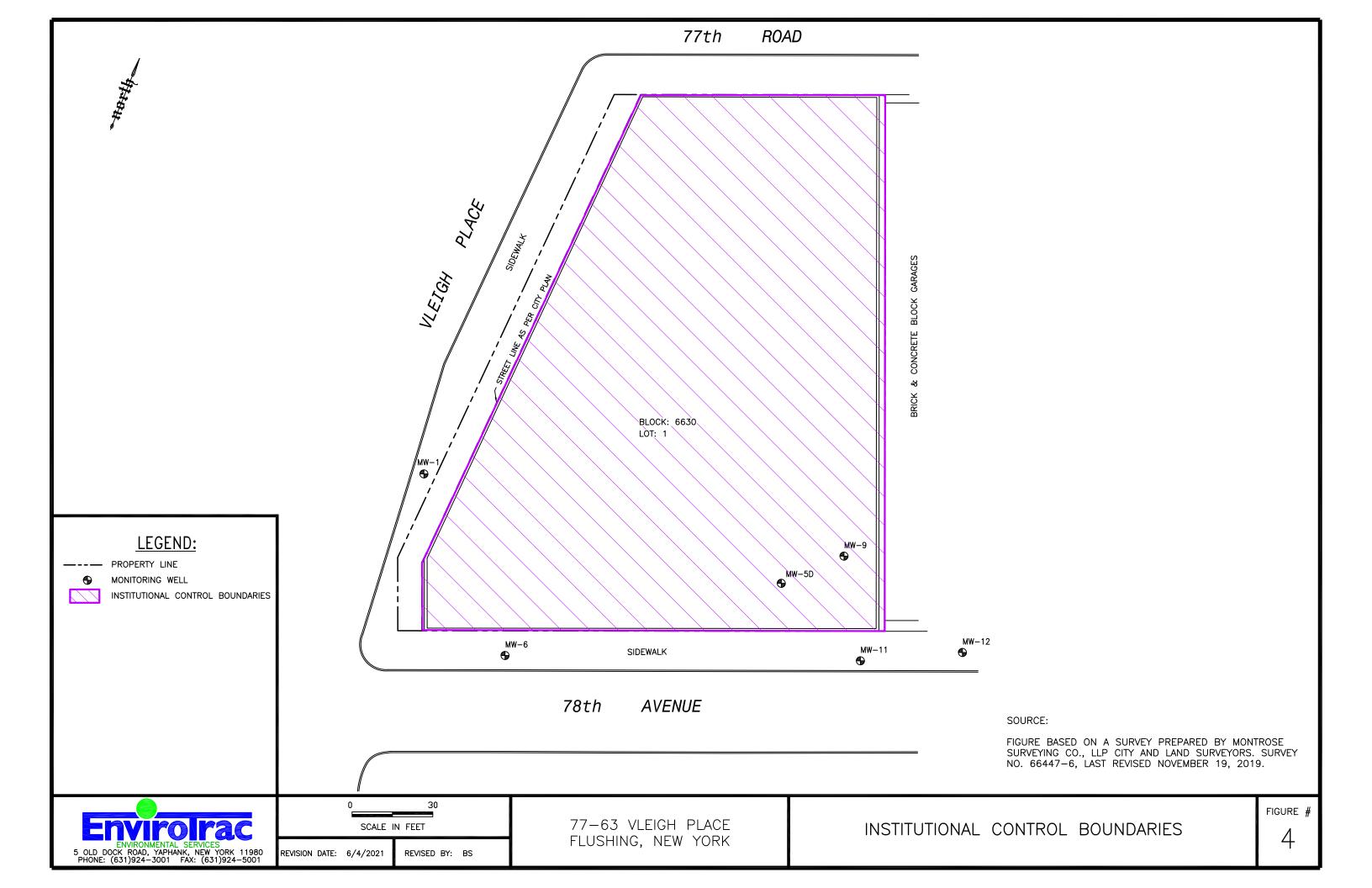












TABLES

Table 1 Summary of SVE Influent and Effluent Air Sample Results 77-57 Vleigh Place, Flushing, NY

Sample ID	SVE Influent	SVE Effluent
Sample Date	8/10/2022	8/10/2022
Volatile Organic Compo	unds (in micrograms per cubic meter of air)	
1,2,4-Trimethylbenzene	9.19	5.65
1,3,5-Trimethylbenzene	2.18	ND
2,2,4-Trimethylpentane	1.49	ND
2-Butanone	52.8	18.8
2-Hexanone	4.71	3.31
4-Ethyltoluene	1.65	ND
Acetone	33.5	141
Benzene	5.72	9.39
Bromodichloromethane	4.18	ND
Chloroform	60.1	33.5
Chloromethane	0.425	1.33
cis-1,2-Dichloroethene	1.23	ND
Cyclohexane	0.805	1.58
Dichlorodifluoromethane	2.22	2.11
Ethanol	32	43.3
Ethylbenzene	3.86	3.45
Heptane	3.21	2.47
Isopropanol	5.31	6.1
n-Hexane	1.83	1.63
o-Xylene	5.65	4.82
p/m-Xylene	12.9	11.2
Styrene	1.95	ND
Tertiary butyl Alcohol	3.91	24.7
Tetrachloroethene	645	1080
Toluene	17.3	15
Trichloroethene	8.55	8.44

Note:

Only detected analytes are reported.

ND = Not Detected

Table 2 VOC Calculations for SVE Effluent Air Discharge 77-57 Vleigh Place, Flushing, NY

Sample Date August 10, 2022

Air Emission VOCs-Pounds Per Hour

Emission rates in terms of pounds per hour (lbs/hr) for VOCs are calculated using the pollutant emission rate in parts per million (ppm/dry), flow rate in dscfm (Qs), molecular weight of the pollutant (MW), 60 minutes /hour, divided by $385.3 \times 10E^6$ dscf/lb-mole @ 68 F.

Lbs/hr= <u>PPM x Qs x MW x 60</u> 385.3x 10E⁶

Compound	MW	PPBv	PPM	CFM	Lbs/Hr	Lbs/Hr	Tons/Yr
1,2,4-Trimethylbenzene	120.19	0.000	0	60	0.000E+00	0.00000	1.14E - 04
2-Butanone	72.11	6.39	0.00639	60	4.305E-06	0.00000	5.50E-04
2-Hexanone	100.16	0.808	0.000808	60	7.562E-07	0.00000	2.89E-05
Acetone	58.08	59.200	0.0592	60	3.213E-05	0.00003	2.55E-04
Benzene	78.11	2.94	0.00294	60	2.146E-06	0.00000	9.40E-06
Chloroform	119.38	6.87	0.00687	60	7.663E-06	0.00001	7.51E-05
Chloromethane	50.49	0.646	0.000646	60	3.047E-07	0.00000	1.33E-06
Cyclohexane	84.16	0.46	0.00046	60	3.617E-07	0.00000	1.58E-06
Dichlorodifluoromethane	120.91	0.426	0.000426	60	4.813E-07	0.00000	2.11E-06
Ethanol	46.07	23.000	0.023	60	9.900E-06	0.00001	1.42E-04
Ethylbenzene	106.17	0.794	0.000794	60	7.876E-07	0.00000	3.45E-06
Heptane	100.21	0.602	0.000602	60	5.637E-07	0.00000	5.77E-06
Isopropanol	60.10	2.48	0.00248	60	1.393E-06	0.00000	6.10E-06
n-Hexane	86.18	0.462	0.000462	60	3.720E-07	0.00000	3.72E-06
o-Xylene	106.16	1.110	0.00111	60	1.101E-06	0.00000	4.82E-06
p/m-Xylene	106.16	2.570	0.00257	60	2.549E-06	0.00000	1.71E-05
Tertiary butyl Alcohol	74.12	8.15	0.00815	60	5.644E-06	0.00001	2.47E-05
Tetrachloroethylene	165.83	160.000	0.16	60	2.479E-04	0.00025	1.39E-03
Toluene	92.14	3.98	0.00398	60	3.426E-06	0.00000	2.18E-05
Trichloroethylene	131.39	1.57	0.00157	60	1.927E-06	0.00000	6.27E-05

Total Lbs/Hr:

0.00032

Table 3 Off-site Soil Vapor Analytical Results Post-SVE Temporary Installation 77-57 Vleigh Place, Flushing, New York

																			7-57 Viergn Frace, Frusming	, New York											_						
Sample ID	SV-KG-1	SV-KG-1	SV-KG-1	SV-KG-1	SV-KG-1	SV-KG-1	SV-KG-1	SV-2 SV-2	SV-2	SV-2	SV-2 SV	-2 SV-3	SV-3 SV-3	SV-6	SV-6 SV-6	SV-	7 SV-7	SV-7	SV-7 S	V-8 S	V-8 SV-8	SV-8	8 SV-8 SV-8	SV-9	SV-9	SV-9 SV-	.9 SV-9	SV-9 SV	10 SV-	-10 SV-10 SV-11	SV-11	SV-11	SV-11 SV-11	SV-12 SV	7-12 SV-12	SV-12	SV-13 SV-13
Sampling Date	4/4/2017	11/15/2018	10/9/2019	4/29/2020	12/16/2020	1/21/2021	1/10/2022	2 11/23/2014 11/15/201	018 10/9/200	019 4/29/2020	1/21/2021 1/24/	2022 11/23/2014 11/	15/2018 10/9/201	19 12/3/201	15 11/15/2018 10/9/20	19 12/3/2	015 11/15/20	18 10/9/20	1/30/2021 10/13	7/2016 11/13	5/2018 10/9/2019	4/28/2	1020 1/21/2021 1/24/2022	10/17/201	016 11/15/2018	10/9/2019 4/28/3	2020 1/21/2021	1/10/2022 10/17	2016 11/15/	/2018 10/9/2019 10/17/2016	11/15/2018	8 10/9/2019	1/21/2021 1/24/2022 1	0/17/2016 10/9	/2019 1/21/2021	1/10/2022	10/17/2016 10/9/2019
Client Matrix	Air	Air	Δir	Soil Vanor	Soil Vanor	Soil Vanor	Soil Vanor	Soil Vapor Air	Air	Air	Air A	r Soil Vapor	Air Air	Soil Vapo	or Air Air	Soil Va	por Air	Δir	Δir Soil	Vapor /	Air Air	Soil Va	nor Soil Vanor Soil Vanor	Soil Vapo	or Air	Air Soil V	anor Soil Vanor	Soil Vapor Soil 3	apor Ai	ir Air Soil Vapor	Δir	Air	Soil Varor Soil Varor S	oil Vapor	Air Soil Vanor	Soil Vapor	Soil Vapor Air
Compound	Pocult	Result	Populs	Result ug/m³ Q	Populs	Pocula	Pocula	Pocula Pocula	Pocula	a Popula	Populs Por	ula Pocula	Popula Popula	Popula	Pocula Pocula	Poor	ts Populs	Pocul	pocula Po	cult Do	cuts Pocuts	Door	ds Poculs Poculs	Pocula	Pocula	Pocula Poc	ult Pocult	Pozuli Po	uls Poor	ult Pacult Pacult	Populs	Popula	Pocula Pocula	Populs D	sult Result	Pocula	Pocula Pocula
Make To Consider The Total Follows	nosum			100 Mill		Result	rocsum	0 -/-1 0 -/-1	O/1	0	result o	L C	-1 O/-1	O (1	O -/-1 O -/-1	D1		0	C (-1 C (-	1 0	1 0	70094	O (-1 O (-1 C	1009011	0	result resi	1.0 -/-1.0	resum re-	100	1 O - (-1 O - (-1 O	1003011	0/-1 0	result result	-(1 C)(-	1 0	rocount	North Control Co
1.1.1-Trichloroethane	pg/m- Q	pg/m- Q	11 U	μg/m· Q	pg/m- Q	2 μg/m- Q	hg/m- C	О 18/11. О 18/11.	Q µg/m-	Q pg/m- Q	радин- Q радин	О ру/т О ру	m. Q pg/m.	Q pg/m-	Q pg/m- Q pg/m-	Kt. pg/m-	Q pg/m-	Q pg/m-	Q рg/не Q рg/н	n Q pg/n	n- Q μg/m- v	2 μg/m-	Q pg/m· Q pg/m· Q	2 μg/ms-	Q pg/m- Q	hg/m- Q hg/m-	Q pg/m- Q	ag/m- Q µg/m	Q pg/m	С 18/11 С 18/11 С	hg/m- (Q pg/m- Q	1.09 U 1.09 U	g/m- Q pg/r	n. 6 hg/m. 6	hg/m- C	billym. O billym. O
	13 U	1.04 U	11 U	129 U	143 U	27.3 U	6.82 L	U 1.1 U 0.9	U 1.6	U 1.09 U	1.09 U 1.09	U 1.10 U C	9 U 0.980	U <6.2	U 3.7 U 0.960	U <1.6	U 1.1	U 0.920	U 139 U 13	U 0.8	U 3.700 I	J 2.18	U 1309 U 1.4 U	14	U 0.9 U	8 U 145	U 1.09 U	1.09 U 13	U 0.7	U 0.850 U 12 U	0.7 L	U 0.950 U	1.09 U 1.09 U	13 U 6.50	0 D 2.40	1.09 E	14 U 24 D
1,1,1,2-Tetrachloroethane	17 U	1.3 U	14 U	163 U	NT	NT	NT	NT 1.1	U 2	U 1.37 U	NT NT	NT 1	1 U 1.2	U <7.9	U 4.6 U 1.200	U <2	U 1.4	U 1.200	U NT 16	U 1.0	U 4.600 I	J 2.75	U NT U NT	17	U 1.2 U	10 U 183	U NT	NT 16	U 0.9	U 1.100 U 15 U	0.9 L	U 1.200 U	NT NT	16 U 1.20	0 U NT	NT	18 U 1.200 U
1,1,2,2-Tetrachloroethane	17 U	1.3 U	14 U	163 U	181 U	34.3 U	8.58 L	U 1.4 U 1.1	U 2	U 1.37 U	1.37 U 1.37	U 1.40 U 1	1 U 1.2	U <7.9	U 4.6 U 1.200	U <2	U 1.4	U 1.200	U 1.37 U 16	U 1.0	U 4.600 1	J 2.75	U 1.37 U 1.76 U	17	U 1.2 U	10 U 183	U 1.37 U	137 U 16	U 0.9	U 1.100 U 15 U	0.9 L	U 1.200 U	1.37 U 1.37 U	16 U 1.20	0 U 1.37 L	1.37 L	18 U 1.200 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 11:	 19 U 	1.46 U	16 U	182 U	202 U	38.3 U	9.58 L	U 1.6 U 1.2	U 2.3	U 1.53 U	1.53 U 1.53	U 1.50 U 1	2 U 1.4	U <8.8	U 5.1 U 1.300	U <2.3	U 1.6	U 1.300	U 1.53 U 18	U 1.1	U 5.200 I	J 3.07	U 1.53 U 1.96 U	19	U 1.3 U	11 U 204	U 1.53 U	1.53 U 18	U 1.0	U 1.200 U 17 U	1.0 L	U 1.300 U	1.53 U 1.53 U	18 U 1.30	0 U 1.53 L	1.53 L	20 U 1.400 U
1,1,2-Trichloroethane	13 U	1.0 U	11 U	129 U	143 U	27.3 U	6.82 L	U 1.1 U 0.9	U 1.6	U 1.09 U	1.09 U 1.09	U 1.10 U 0	9 U 0.980	U <6.2	U 3.7 U 0.960	U <1.6	U 1.1	U 0.920	U 1.09 U 13	U 0.8	U 3.700 I	J 2.18	U 1.09 U 1.4 U	14	U 0.9 U	8 U 145	U 1.09 U	1.09 U 13	U 0.7	U 0.850 U 12 U	0.7 L	U 0.950 U	1.09 U 1.09 U	13 U 0.94	0 U 1.09 L	1.09 E	14 U 0.980 U
1.1-Dichloroethane	10 U	0.8 U	8.4 U	95.9 U	106 U	20.2 U	5.06 L	U 0.83 U 0.6	U 1.2	U 0.809 U	0.809 U 0.809	U 0.80 U 0	6 U 0.730	U <4.6	U 2.7 U 0.710	U <1.2	U 0.8	U 0.690	U 0.809 U 9.70	0 U 0.6	U 2,700 1	J 1.62	U 0.809 U 1.04 U	10	U 0.7 U	5.900 U 108	U 0.809 U	0.809 U 9.60	U 0.5	U 0.630 U 8.80 U	0.5 L	U 0.710 U	0.809 U 0.809 U	9.40 U 0.69	0 U 0.809 L	0.809 L	11 U 0.730 U
1,1-Dichloroethylene			2.1 U						11 03	U 105 U	0.793 11 0.793	II 0.78 II 0	2 II 0.180	11 <4.5	II 0.7 II 0.170	11 <1.2	11 02	II 0.170	II 0.793 II 9.50	0 11 01	11 0.670 1	1 159	II 0.793 II 1.01 II	10	11 02 11	1 500 II 105	II 0.793 II	0.793 11 9.40	11 01	U 0.150 U 8.60 U			0.793 U 0.793 U	9.20 11 0.17	0 11 0.793 1	0.793 [11 U 0.180 U
1,2,4-Trichlorobenzene				176 11		37.1 U			II 22	11 1.49 11	1.49 II 1.49	II 150 II 1	2 11 12	11 495	II 50 II 1300	11 (2.2	U 16	II 1.300	11 1.49 11 20	D 10	11 5 1	1 2.97	TI 149 TI 19 TI	19	U 12 U	11 11 197	11 1.49 11	1.49 11 19	11 10	U 1200 U 16 U	1.0 1		1.48 U 1.48 U	17 II 130	0 11 1.49 1	1.49 1	20 U 1.300 U
1,2,4-Trichertoeenzene	10 U	1.4 U	13 U	176 U	190 U	37.1 U	9.26 C	U 1.5 U 1.2	D 22	D 1.46 U	146 U 146	0 1.50 0 1	2 D 1.3	U 50.5	U 3.0 U 1.300	D 2.00	D 12.0	D 1.300	D 2.46 U 20	D 1.0	D 2200	2.97	0 148 0 1.9 0	19	U 13 U	7.200 11 121	U 146 U	1.46 U 18	U 1.0	D 20 D 11 U	1.0 0	D 45 D	1.46 U 1.46 U	17 U 1.30	0 U 1.46 U	1.46 €	20 U 1.300 U
1,2,4-17imethysenzene	12 0	54.1 17	11 17	117 U	129 U	24.6 U	6.15 L	U 6.3 1/ 54.1	1/ 3.0	D 0.983 U	23 1.94	9.60 17 2	2 1/ 0.890	U \3.8	U 3.3 U 3.7	D 2.80	D 126	17 1.4	1) 3.49 12	U 0.8	D 3.300 I	4.43	23 1.56 0	12	U 0.8 U	7.200 U 131	U 3.64	0.983 U 12	U 2001	D 39 D II U	0.9 1	D 4.3 D	2.52 1.26	11 U 0.84	U U 0.983 L	0.983 L	13 0 0.880 0
1,2-Dibromoethane 1,2-Dichlorobenzene	19 U	1.5 U	16 U	182 U	106 U	38.4 U	9.61 L	U 1.6 U 1.2	U 23	U 1.54 U	1.54 U 1.54	U 1.50 U 1	2 U 1.4	U <8.8	U 5.1 U 1.300	U <23	U 1.6	U 1.300	U 1.54 U 18	U 1.1	U 5:200 I	3.00	U 1.54 U 1.97 U	19	U 1.3 U	11 U 204	U 1.54 U	1.54 U 18	U 1.0	U 1.200 U 17 U	1.0 L		1.54 U 1.54 U	18 U 1.30	0 U 1.54 L	1.54 L	20 U 1.400 U
1,2-Dichlorobenzene		1.1 U				30.1 U			U 1.8	U 1.2 U	1.2 U 1.2	U 1.20 U 1	0 U 1.1	U <6.9	U 4.0 U 1.100	U <1.8	U 1.3	U 1	U 1.2 U 14	U 0.8	U 4 1	J 2.4	U 1.2 U 1.54 U	15	U 1.0 U	8.800 U 160	U 1.2 U		U 0.8		0.8 L		1.2 U 1.2 U	14 U 1	U 1.2 L	1.2 L	16 U 1.100 U
1,2-Dichloroethane	10 U	0.8 U	8.4 U	95.9 U	106 U	20.2 U	5.06 L	U 0.83 U 0.6	U 1.2	U 0.809 U	0.809 U 0.809	U 0.80 U 0	6 U 0.73	U <4.6	U 2.7 U 0.710	U <1.2	U 0.8	U 0.690	U 0.809 U 9.70	0.6 U	U 2.700 I	J 1.62	U 0.809 U 1.04 U	10	U 0.7 U	5.900 U 108	U 0.809 U	0.809 U 9.60	U 0.5	U 1.6 D 8.80 U	0.5 L	U 0.710 U	0.809 U 0.809 U	9.40 U 0.69	0 U 0.809 L	0.809 L	11 U 0.730 U
1,2-Dichloropropane	11 U	0.9 U	9.6 U	110 U	122 U	23.1 U	5.78 L	U 0.95 U 0.7	U 1.4	U 0.924 U	0.924 U 0.924	U 0.91 U 0	7 U 0.83	U <5.3	U 3.1 U 0.810	U <1.4	U 1.0	U 0.780	U 0.924 U 11	U 0.6	U 3.100 I	J 1.85	U 0.924 U 1.18 U	12	U 0.8 U	6.800 U 123	U 0.924 U	0.924 U 11	U 0.6	U 0.720 U 10 U	0.6 t	U 0.810 U	0.924 U 0.924 U	11 U 0.79	0 U 0.924 L	0.924 L	12 U 0.830 U
1,2-Dichloropropane 1,2-Dichlorotetrafluoroethane (Freon 114)	17 U	1.3 U	15 U	166 U	184 U	34.9 U	8.74 L	U 1.4 U 1.1	U 2.1	U 1.4 U	1.4 U 1.4	U 1.40 U 1	1 U 1.3	U <8	U 4.7 U 1.200	U <2.1	U 1.5	U 1.200	U 1.4 U 17	U 1.0	U 4.700 I	J 2.8	U 1.4 U 1.79 U	18	U 1.2 U	10 U 186	U 1.4 U	1.4 U 17	U 0.9	U 1.100 U 15 U	0.9 t	U 1.200 U	1.4 U 1.4 U	16 U 1.20	0 U 1.4 L	1.4 U	19 U 1.300 U
1.3.5-Trimethylbenzene	12 U	17.2 D	10 U	117 U	129 U	24.6 U	6 IS I	II 2.1 D 15.7	D 1.5	D 1.35	0.983 U 0.983	U 2.70 D 0	9 D 0.89	U <5.6	U 3.3 U 0.9	D <1.5	U 5.4	D 0.830	U 0.983 U 12	U 0.7	U 3,300 1	J 1.97	U 0.983 U 1.26 U	12	U 0.8 U	7.200 U 131	U 0.983 U	0.983 11 12	U 5.4	D 12 D 11 U	0.6 L	U 1.5 D	1.02 0.983 U	11 U 0.84	0 U 0.983 L	0.983 [13 U 0.880 U
1.3-Butadiene								U 0.89 U 1.1		U 0.442 U	0.442 U 0.447	U 0.86 U 1	1 U 12	U <15	U 4.4 U 1.200		U 1.4			U 10	U 4.500 1	J 0.885	U 0.442 U 0.566 II	17	U 1.1 II	9.700 U 58.8	U 0.442 II	0.442 11 16	U 09	U 1 U 14 U	0.9 1		0.442 U 0.442 U	15 U 1 10	0 U 0.442 I	0.442	18 U 1.200 U
1.3-Dichlorobenzene	15 11	1.1 U	13 II	142 11	158 II	301 11	7.52	II 12 II 10	11 18	11 120 11	120 11 12	111 120 11 1	0 11 11	11 <69	II 40 II 1100	11 <18	111 13	11 1	11 12 11 14	11 08	11 4 1	1 2.40	III 120 III 154 II	15	11 10 11	8.800 II 160	11 1 20 11	1.2 11 14	111 0.8	11 0940 11 13 11	0.8 1		1.20 U 1.4 U	14 II 1	11 120 1	12 1	16 III 1100 II
	11 11	0.0	96 11	110 11	159 11	NT.	NT.	NT 07	11 1.6	11 0.924 11	NT NT	NT 6	7 11 0.93	11 (53	11 21 11 0810	11 614	11 10	11 0.790	U NT 11	11 0.6	11 2 100 1	1 195	U NT U NT	12	11 09 11	6 900 11 122	II NT II	NT 11	11 0.6	11 0.730 11 10 11	0.6	11 0.910 11	NT U NT	11 11 0.79	0 II NT I	NT C	12 11 0.930 11
1,3-Dichloropropane	15 11	3.3 17	9.6 U	140 U	150 11	201 11	2.62	12 11 10	17 10	U 3.24 U	12 11 12	11 130 11 1	0 11 11	U 43.3	U 40 U 1300	U 41.0	1.0	0.780	U 13 U 11	U 0.6	3.100	1.65	U 130 U NI	122	U 0.0 U	0.000 U 123	11 120 11	10 11 14	11 0.0	U 0.720 U 10 U	0.0	C 0.040 U	130 U 11	24 0.79	U 120 I	12 .	12 U 0.830 U
1,4-DEBERODERIZERE	13 U	1.1 U	13 U	142 U	136 U	30.1 U	7.32 L	U 1.2 U 1.0	U 1.8	U 1.2 U	1.2 U 1.2	U 1.20 U 1	U U 1.1	U <6.9	U 4.0 U 1.100	U <1.8	U 1.3	0 1	U 1.2 U 14	U 0.8	0 4	2.40	U 1.20 U 1.54 U	15	U 1.0 U	6.600 U 160	U 1.20 U	1.2 0 14	U 0.8	U 0.940 U 13 U	U.8 L		1.20 U 1.2 U	14 U I	U 1.20 L	1.2	16 U 1.100 U
1,4-Dioxane			15 U						U 2.1	U 0.721 U	0.721 U 0.721	U 0.71 U 1	2 U 1.3	U <8.3	U 4.7 U 1.300	U <2.1	U 1.5	U 1.200	U 0.721 U 17	U 1.0	U 4.900 I	1.44	U 0.721 U 0.923 U	18	U 1.2 U	11 U 95.9	U 0./21 U	0.721 U 17	U 1.0	U 1.100 U 16 U	U.9 L		0.721 U 0.721 U	17 U 1.20	U U 0.721 L	0.721 E	19 U 1.300 U
2,2,4-Trimethylpentane	NT	NT	NT	NT	NT	NT	5.84 L	U NT NT	NT	NT	NT 0.934	U NT N	T NT	NT	NT NT	NT	NT	NT	NT NT	NT NT	NT	NT	NT 1.51	NT	NT	NT NT	NT	0.934 U NT	NT	NT NT	NT	NT	NT 0.934 U	NT NI	NT	0.934 L	NT NT
2-Butanone	7.3 U	32.4 D	6.1 U	175 U	194 U	36.9 U	9.2 t	U 1.7 D 8.3	D 100	D 21.9	2.11 5.57	5.20 D 5	9 D 1.2	D <3.4	U 4.7 D 5.1	D 1.30	D 15.3	D 6.8	D 3.54 7.80	0 D 2.0	D 100 1	38.3	3.13 10.3	7.40	U 1.0 D	4.300 U 196	U 1.47 U	1.47 U 7	U 6.2	D 0.8 D 6.40 U	2.4 I	D 130 D	14.3 5.78	6.90 U 0.51	0 U 1.470 L	1.47 L	7.80 U 0.530 U
2-Hexanone	20 U	2.9 D	17 U	97.1 U	108 U	20.5 U	5.12 L	U 1.7 U 1.3	U 14	D 0.82 U	0.82 U 0.82	U 1.60 U 1	4 U 1.5	U <9.4	U 5.3 U 1.400	U <2.4	U 1.7	U 1.400	U 0.82 U 20	U 1.2	U 5.500 I	3.11	0.820 1.05 U	21	U 1.4 U	12 U 109	U 0.820 U	0.82 U 19	U 1.1	U 1.300 U 18 U	1.1 t	U 29 D	0.820 U 0.82 U	19 U 1.40	0 U 0.820 L	0.82 L	22 U 1.500 U
3-Chloropropene	38 U	3.0 U	33 U	74.2 U	82.3 U	15.7 U	3.91 L	U NT 2.5	U 4.6	U 0.626 U	0.626 U 0.626	U NT 2	6 U 28	U <18	U 10.6 U 2.700	U <4.6	U 3.4	U 2.600	U 0.626 U 38	U 2.3	U 11 1	J 1.25	U 0.626 U 0.801 U	39	U 26 U	23 U 83.3	U 0.626 U	0.626 U 37	U 2.1	U 2.400 U 34 U	2.0 L	U 2,700 U	0.626 U 0.626 U	37 U 2.70	0 U 0.626 L	0.626 L	42 U 2.800 U
4.Mothyl.2.nontanone	10 11	0.8 11	85 II	243 11	220 11	51.2 []	12.8 I	11 0.84 11 0.7				U 0.81 U 0	9 D 0.740	11 <47	11 27 11 0.720	11 <1.2	11 09	11 0.690	U 2.05 U 9.80	0.8	D 2.800 I	1 41	11 2.05 11 2.63 11	10	11 07 11	6 II 273	11 2.05 11	2.05 11 9.70	11 05	U 1.1 D 8.90 U	10 I			9.60 11 0.70	0 U 2.05 L	2.05 I	11 U 0.740 U
Acatomo	29 D	71.2 D	99 11	290 11	216 11	594 11	15	U 0.84 U 0.7 29 D 23.7	D 19	D 100	11.2 1.190	39 D 2	7 D 7	D 16	D 16.9 D 8.5	D 22	D 106.9	D 73	D 221 59	D 19.6	9 D 16 I	3 29.2	11.5 1.450	37	D 64 D	7 11 216	U 763			D 36 D 27 D	23.7	D 21 D	8.41 5.84	47 D 13	D 5.99	0.49	30 D 31 D
Acetone	50 11	71.2 17	9.9 U	280 U	314 U	39.4 U	13	29 1/2 23.7	D 19	17 100 11	11.5 1,190	39 D 2	C7 D 7	11 -27	11 15 11 0.200	D 23	17 106.9	D 7.3	D 32.1 59	D 19.3) D 16 1	29.2		5.50	D 6.4 D	2 200 11 316	5 7.00			D 36 D 27 D	23.7			4/ D 13	D 3.79	9.40	30 D 31 D
Acrytonitriae	5.3 U	0.4 U	4.5 U	128 U	NI	NI NI	NI	NT 0.3 U 2.4 D 5.7 U 1.1 U 0.8	U 0.64	U 1.09 U	NI NI	NI 0.	47 U 0.390	U <25	U 1.5 U 0.380	U <0.64	U 0.5	U 0.370	U NT 5.20 D 1.55 7.70	U U 0.3	U 1.500 I	J 2.17	U NT NT	5.30	U 0.4 U	3.200 U 144	U NI U	NI 5.20	U 0.3	U 0.340 U 4.70 U	0.3 U	U 0.380 U	NI U NI	5.10 U 0.37	0 U NT	NI	5.80 U 0.990 U
Benzene	13 D	25.5 D	6.7 U	75.7 U	84 U	16 U	3.99 L	U 24 D 5.7	D 0.94	U 1.03	1.83 1.11	5.10 D 3	8 D 0.580	U <3.7	U 4.2 D 0.7	D 1.10	D 7.0	D 1.4	D 1.55 7.7L	U U 0.9	D 2.200 I	1.28	U 2.39 1.79	8.10	U 0.9 D	4.700 U 85.0	U 1.04	0.661 7.60	U 4.2	D 1.9 D 6.90 U	0.8 1	D 1.4 D	0.821 0.639 U	7.30 U 0.35	U U 0.639 L	0.639 L	8.50 U 0.5/0 U
Benzyl chloride	13 U	0.983 U	11 U	123 U	136 U	25.9 U	6.47 L	U 1.1 U 0.8	U 1.5	U 1.04 U	1.04 U 1.04	U 1 U 6	8 U 0.930	U <5.9	U 3.5 U 0.910	U <1.5	U 1.1	U 0.880	U 1.04 U 12	U 0.7	U 3.500 I	J 2.07	U 1.04 U 1.33 U	13	U 0.9 U	7.600 U 138	U 1.04 U	1.04 U 12	U 0.7	U 0.810 U 11 U	0.7 L	U 0.900 U	1.04 U 1.04 U	12 U 0.89	0 U 1.04 L	1.04 L	14 U 0.930 U
Bromodichloromethane													1 U 3	D <7.1	U 4.5 U 1.200	U <1.8	U 1.4	U 1.100	U 1.34 U 16	D 0.9	U 4.500 I	J 2.68	U 1.34 U 1.72 U	17	U 1.1 U	9.800 U 178	U 1.34 U	1.34 U 16	U 0.9	U 1 U 15 U	0.9 L	U 1.200 U	1.34 U 1.34 U	16 U 1.10	0 U 1.34 L	1.34 L	18 U 1.200 U
Bromoform	25 U	1.96 U	22 U	245 U	272 U	51.7 U	12.9 L	U 2.1 U 1.7	U 3.1	U 2.07 U	2.07 U 2.07	U 2 U 1	7 U 1.9	U <12	U 6.9 U 1.800	U <3.1	U 2.2	U 1.700	U 2.07 U 25	U 1.4	U 7 I	3 4.14						2.07 U 25	U 1.3	U 1.600 U 22 U	1.3 L	U 1.800 U	2.07 U 2.07 U	24 U 1.80	0 U 2.07 L	2.07 L	27 U 1.900 U
Bromomethane	9.5 U	0.7 U	8.1 U	92 U	102 U	19.4 U	4.85 L	U 0.80 U 0.6	U 1.1	U 0.777 U	0.777 U 0.777	U 0.77 U 0	6 U 0.7	U <4.4		U <1.1	U 0.8	U 0.660	U 0.777 U 9.30	0 U 0.5	U 2.600 1	J 1.55	U 2.07 U 2.65 U U 0.777 U 0.994 U	9.80	U 0.7 U	5.700 U 103	U 0.777 U	0.777 U 9.20	U 0.5	U 1.600 U 22 U U 0.600 U 8.40 U	0.5 L	U 0.680 U	0.777 U 0.777 U	9.10 U 0.67	0 U 0.777 L	0.777 L	10 U 0.700 U
Carbon disulfide	77 11	12.1 D	140 D	73.8 II	819 II	156 II	3.89 I	U 2.1 U 1.7 U 0.80 U 0.6 U 0.90 D 3.4 U 0.90 D 3.4 U 0.95 U 0.3 U 0.95 U 0.7 U 0.55 U 0.7 U 0.55 U 0.4 U 0.42 U 0.3 U 0.42 U 0.3	D 3	D 42.4	24.1 20.4	3 D 5	6 D 2	D 7.10	D 31 D 87	D 11	D 26.8	D 87	U 0.777 U 9.30 D 0.623 U 7.50 U 1.26 U 3.80 U 0.921 U 11 U 0.528 U 6.30 D 1.96 430 D 0.419 5	0 II 04	11 42 1	388	16.4 9.65	7.80	11 05 11	5.700 U 103 62 D 82.8 2.300 U 167	II 0.623 II	0.623 11 7.40	11 90	D 100 D 680 U				7.30 II 0.53	0 11 0.623 1	0.623 1	830 II 09 D
Carbon tetrachloride	3.9 []	0.3 11	33 II	149 11	165 II	31.5 II	2.96 I	U 032 II 03	11 0.46	II 126 II	1.26 II 1.26	11 031 11 0	3 11 09	D <18	II 11 II 06	D <0.47	II 03	II 0.270	II 126 II 380	0 11 02	11 1 100 1	1 2.52	II 126 II 161 II	4	II 03 II	2 300 11 167	II 126 II	1.26 11 3.70	II 02	II 03 D 340 II	0.2 1	U 07 D	0.732 1.62 1.26 U 1.26 U 0.921 U 0.921 U	3.70 II 0.27	0 II 126 I	1.26 1	4.20 11 0.280 11
Chlorobenzene	11 11	09 11	96 II	109 II	121 11	23 11	5.76 E	U 0.95 II 0.7	11 14	II 0.921 II	0.921 11 0.921	11 0.91 11 0	7 11 0.83	11 <53	U 31 U 0810	11 <14	11 10	11 0.780	11 0.921 11 11	II 06	II 3100 I	1 184	II 0.921 II 1.18 II	12	11 08 11	6800 II 123	11 0.921 11	0.021 U 11	II 06	II 0.720 II 10 II	0.6 1	11 0.800 11	0.921 U 0.921 U 0.528 U 0.528 U 5.62 11.3 0.413 U 0.413 U	11 II 0.79	0 11 0.921 1	0.921	12 11 0.830 11
Chloroofteno	45 11	0.5 11	5.0 U	62.5 U	69.4 II	122 11	3.76 €	U 0.54 U 0.4	11 0.79	11 0.529 11	0.520 11 0.520	11 0.52 11 6	4 II 0.49	U 0	11 19 11 0.460	11 <0.79	11 06	U 0.750	11 0529 11 630	0.0	II 1 200 I	1 1.04	U 0.921 U 1.18 U U 0.528 U 0.676 U 5.66 6.74 U 0.413 U 0.529 U	6.60	11 04 11	3.900 11 70.2	11 0.529 11	0.921 U 6.30	11 0.3	U 0.720 U 10 U U 0.410 U 5.70 U D 0.8 D 32 D U 0.320 U 4.50 U U 0.150 U 8.60 U	0.0 0	U 0.660 U	0.526 11 0.526 11	6.20 11 0.45	0 11 0.529 1	0.921 €	7 11 0.470 11
Charles	8.3 U	0.3 U	3.3 U	823 U	120 U	13.2 U	3.3 L	U 0.54 U 0.4	D 0.78	D 0.328 U	0.326 U 0.326	4 30 D 1	4 U 0.46	D 330	D 18 U 0.480	D 40.78	D 0.8	D 0.430	U 0.328 U 6.30	0 0 0.4	D 1300 I	3 176	0 0.328 0 0.606 0	0.00	D 0.4 U	3.900 U 70.2	U 0.528 U	0.528 U 0.30	U 0.3	D 0.410 D 3.70 D	0.3	D 0.460 D	0.328 U 0.328 U	0.20 U 0.45	0 U 0.328 U	0.528 L	7 U 0470 U
Chaptolorm	12 0	0.9	10 0	116 U	126 U	24.4 U	6.1 L	U 3.80 17 20.5	D 99	17 11.4	13.1 49.8	4.30 D F	C5 17 200	17 320	D 383.6 D 1.8	D 220	D 3.3	D 12	D 1.95 4.50) D 3.1	D 30 I	7 17.0	3.00 0.74	23	D 0.8 U	7.200 U 150	U 0.907 U	0.977 U 12	U 3.9	D 0.8 D 32 D	0.9 1	D 26 D	5.62 11.5	11 0 0.9	D 0.977 C	0.977 L	13 0 14 1
Chloromethane	5.1 U	0.4 U	4.3 U	48.9 U	54.3 U	10.3 U	2.58 L	U 0.42 U 0.3	U 0.61	U 0.413 U	0.413 U 0.65	1 D C	3 U 0.37	U <24	U 14 U 1	D <0.61	U 15.5	U 0.5	D 0.419 5	U 0.3	U 1.400 I	J 0.826	U 0.413 U 0.529 U	5.20	U 0.4 U	3 U 54.9 1.500 U 105	U 0.413 U	0.413 U 4.90	U 0.3	U 0.320 U 4.50 U	0.3 L	U 0.4 D	0.413 U 0.413 U	4.80 U 0.35	0 U 0.413 L	0.985	5.50 U 0.370 U
cis-1,2-Dichloroethylene	9.7 U	0.2 U	2.1 U	94 U	104 U	19.8 U	4.96 L	U 0.82 U 0.2	U 0.29	U 0.793 U	0.793 U 0.793	U 0.78 U 0	2 U 0.18	U <4.5	U 0.7 U 0.170 U 3.0 U 0.800 U 6.9 D 0.600 U 5.7 U 1.500 U 3.3 U 2.2	U <1.2	U 15.5	D 14	D 1.36 7,40	0 D 22.2	2 D 1200.0 I	706	255 204	29	D 0.2 U	1.500 U 105	U 0.793 U	0.793 U 9.40	U 0.1	U 0.150 U 8.60 U U 0.710 U 9.90 U D 0.8 D 7.50 U U 1.300 U 19 U D 1.8 D 11 U	0.1 U	U 0.170 U	0.793 U 0.793 U	9.20 U 0.17	0 U 0.793 L	0.793 L	11 U 0.180 U
cis-1,3-Dichloropropylene	11 U	0.9 U	7.2 U 7.2 U 18 U 10 U	108 U	119 U	22.7 U	5.67 L	U 0.92 U 0.2 U 0.93 U 0.7 U 1.30 D 8.9 U 1.70 U 1.4 U 2.50 D 2.1	U 1.3	U 0.908 U	0.908 U 0.908	U 0.90 U 0	7 U 0.82	U <5.2	U 3.0 U 0.800	U <1.3	U 1.0	U 0.770	U 0.908 U 11	U 0.6	U 3.100 I	J 1.82	U 0.908 U 1.16 U U 0.785 0.881 U U 1.7 U 2.18 U 2.11 2.61	11	U 0.8 U	6.700 U 121	U 0.908 U	0.908 U 11	U 0.6	U 0.710 U 9.90 U	0.6 L	U 0.790 U	0.908 U 0.908 U	11 U 0.78	0 U 0.908 L	0.908 L	12 U 0.820 U
Cyclohexane	8.5 U	25.8 D	7.2 U	81.6 U	90.5 U	17.2 U	4.3 L	U 1.30 D 8.9	D 1	U 0.688 U	0.688 U 0.688	U 3.40 D 1	.5 D 0.9	D <3.9	U 6.9 D 0.600	U <1	U 34.4	D 0.6	D 0.933 8.30	0 U 0.5	D 2.300 1	J 1.38	U 0.785 0.881 U	8.70	U 0.6 U	5 U 91.6	U 0.688 U	0.688 U 8.20	U 9.3	D 0.8 D 7.50 U	0.4 I	D 0.8 D	0.688 U 0.688 U	8 U 0.59	0 U 0.688 L	0.688 L	9.10 U 0.620 U
Dibromochloromethane	21 U	1.6 U	18 U	202 U	224 U	42.6 U	10.6 L	U 1.70 U 1.4	U 2.5	U 1.7 U	1.7 U 1.7	U 1.60 U 1	4 U 1.5	U <9.2	U 5.7 U 1.500	U <2.4	U 1.8	U 1.400	U 1.7 U 20	U 1.2	U 5,700 I	J 3.41	U 1.7 U 2.18 U	21	U 1.4 U	12 U 227	U 1.7 U	1.7 U 20	U 1.1	U 1.300 U 19 U	1.1 U	U 1.500 U	1.7 U 1.7 U	20 U 1.50	0 U 1.7 U	1.7 L	23 U 1.500 U
Dichlorodifluoromethane	12 U	1.8 D	10 U	117 U	130 U	24.7 U	6.18 L	U 2.50 D 2.1	D 2.5	D 2.05	1.99 2.86	2.20 D 1	9 D 23	D <5.7	U 3.3 U 2.2	D 4.50	D 1.9	D 1.8	D 2.26 25	D 2.0	D 3.7 1	2.25	2.11 2.61	12	U 2.1 D	7.300 U 132	U 2.22	1.88 12	U 1.9	D 18 D 11 U	2.0 I	D 22 D	2.19 2.64	12 U 1.9	D 2.09	1.99	13 U 14 D
Phanol	NT	NT	NT	NT	NT	NT	58.8 I	II NT NT	NT	NT	NT 149	NT N	T NT	NT	NT NT	NT	NT	NT	NT NT							NT NT	NT	9.42 II NT	NT	NT NT	NT	NT	NT 942 II	NT NT	NT	10.6	NT NT
Ethyl acetate	19 11	14 11	15 11	212 11	227 11	45 11	11.2	11 150 11 12	11 21	11 1.90 11	190 11 19	11 140 11 1	2 11 12	11 693	11 47 11 1300	11 621	11 16	D 1.200	11 19 11 17	11 42	D 4900 1	1 2.60	11 190 11 231 11	19	11 12 11	11 11 240	11 10 11	1.9 11 17	11 10	11 1 100 11 16 11	65 1	D 1300 II	1900 11 19 11	17 11 1.20	0 11 1500 1	1.9 1	19 11 1300 11
	11 11	69.4 D	9 11	102 11	114 11	21.7	5.42 I	U NT NT NT U 1.50 U 1.2 U 8.70 D 38.2 U 2.20 U 1.7	D 22	D 122	2 91 1 21	9.70 D 6	1 D 0.79	11 65	11 148 D 08	D 4.20	D 22.1	D 0.8	D 2.26 25 NT NT U 1.8 U 17 D 2.97 10 U 2.13 U 31	11 16	D 2900 1	2.40	NT 13.2 U 1.80 U 2.31 U 4.20 1.33 U 2.13 U 2.73 U	11	11 07 11	7.300 U 132 NT NT 11 U 240 6.400 U 116 16 U 284	11 2 66	1.25 11 10	11 20.4	NT NT U 1.100 U 16 U D 6.8 D 9.40 U U U 1.700 U 23 U U 0.760 U 11 U	20 1	D 22 D	NT 9.42 U 1.800 U 1.8 U 5.52 0.869 U 2.13 U 2.13 U	10 11 0.76	0 11 0.969 1	0.960 1	12 11 0.790 11
Hexachlorobutadione	27 11	97.4 D	22 11	202 U	201 11	53.2 U	12.2	U 230 U 17	11 22	11 2.12	2.22 11 2.22	3.70 D e	7 11 20	U 03	U 71 U 1000	11 420	11 221	11 1.000	D 2.00 10	D 1.6	D 2700 1	2.40	11 233 11 233 11		U 0.7 U	26 U 200	11 2.32 11	2.12 11 25	2004	11 1 200 11 23 11	20 1	U 1000 U	2.32 11 2.32 11	20 0.74	0 0.869 L	0.009 E	20 11 1000 11
FWACHEROOUGGER	26 U	2 U	22 U	233 U	261 U	33.3 U	13.3 L	U 2.20 U 1.7	0 3.2 D 1.5	U 2.13 U	2.13 U 2.13	U Z.IU U 1	2 0 1.9	0 <12	U 7.1 U 1.900	D 45	D 22	U 1.800	U 2.13 U 31	D 1.5	U 7.200 I	4.2/	U 2.13 U 2.73 U 1.23 U 6.61 U NT U NT U 0.721 U 0.923 U 1.74 U 1.74 U 2.44 U 5.16 2.38 U 1.74 U 2.44 U 5.16 2.38	2/	U 1.8 U	7.200 U 284	U 2.13 U	2.13 0 25	0 1.4	U 1.700 U 23 U	1.4	U 1.900 U	2.13 U 2.13 U	23 U 1.80	0 U 2.13 L	2.13 L	28 U 1.900 U
Isopropanol Methyl Methacrylate	12 U	1 U	10 0	140 F	162 U	30.7 U	7.67 L	O 9.10 D 2.7	D 1.5	U 13.6	1.25 U 31.5	82 1) 1	.3 D 1.2	D <2.6	U 3.2 U 1.9	υ 4.50	D 7.1	D 0.830	U 1.25 U 12	U 18.9	D 3.300 1	2.46	U 1.23 U 6.61	12	U 0.8 U	7.20U U 163	U 1.25 U	1.23 U 12	U 0.7	U 0.760 U 11 U	16.5 I	D 1.9 D	1.25 U 3.79	11 U 0.84	U 1.23 L	2.22	13 U 1.1 D
Methyl Methacrylate	10 U	0.8 U	8.5 U	242 U	NI	NÍ	Nf	0.84 U 1.4	D 9.7	D 2.05 U	NI NT	u.sl U 0	2 D 6.7	D <4.7	U 27 U 9.8	D <1.2	U 0.9	U 1.7	D NI 9.80	U U 2.3	D 2.800 I	J 4.09	U NI U NT	10	U 0.7 U	6 U 272	U NT	NI 9.70	U 0.5	U 5.9 D 8.90 U	1.8 I	D 0.710 U	NI U NT	9.60 U 3.4	D NT	Nf	11 U 16 D
Methyl tert-butyl ether (MTBE)	8.9 U	0.7 U	7.5 U	85.4 U	94.8 U	18 U	4.51 L	U 0.74 U 0.6	U 1.1	U 0.721 U	0.721 U 0.721	U 0.71 U 0	6 U 0.65	U <4.1	U 2.4 U 0.630	U <1.1	U 0.8	U 0.610	U 0.721 U 8.70	0 U 0.5	U 2.400 1	J 1.44	U 0.721 U 0.923 U	9.10	U 0.6 U	5.300 U 95.9	U 0.721 U	0.721 U 8.60	U 0.5	U 0.560 U 7.80 U	0.5 L	U 0.630 U	0.721 U 0.721 U	8.40 U 0.62	0 U 0.721 L	0.721 L	9.60 U 0.650 U
Methylene chloride	17 U	1.4 U	14 U	206 U	229 U	43.4 U	10.8 L	U 22 B ⁽¹⁾ D 16.0	D 55	D 1.74 U	1.74 U 2.42	6.7 B ⁽¹⁾ D 1	1 U 21	D <8	U 4.5 U 72	D <2.1	U 8.0	D 8.3	D 1.74 U 17	U 10.4	D 4.700 1	3.47	U 1.74 U 2.44	18	U 1.2 U	35 D 231	U 1.74 U	1.74 U 17	U 0.9	U 68 D 15 U	21.9 I	D 2.1 D	1.74 U 1.74 U	16 U 11	D 1.74 L	1.74 L	18 U 180 D
n-Heptane	10 U	45.1 D	8.5 U	97.1 U	108 U	20.5 U	5.12 L	U 4.30 D 16.8	D 4.1	D 2.57	3.99 1.18	6.5 D 9	8 D 0.74	U <4.7	U 12.7 D 0.720	U <1.2	U 24.6	D 0.690	U 4.34 9.80	0.6 U	U 2.800 I	1.64	U 5.16 2.38	10	U 0.7 U	6 U 109	U 2.28	0.82 U 9.70	U 11.9	D 2.4 D 8.90 U	0.5 t	U 4.1 D	1.61 0.82 U	9.60 U 0.70	0 U 0.820 L	0.82 L	11 U 0.740 U
n-Hexane	13 D	0.7 U	7.3 U	83.5 U	92.7 U	17.6 U	4.41 L	U 4.30 D 10.9	D 1	U 1.19	2.36 1.49	13 D 1	.3 D 0.64	U <4	U 9.5 D 1.1	D <1	U 88.1	D 1.2	D 2.12 8.50	0 U 1.4	D 2.400 I	J 1.41	U 3.06 3.24	8.90	U 0.8 D	5.200 U 93.7	U 1.28	1.46 8.40	U 8.8	D 0.8 D 7.70 U	1.9 I	D 1.4 D	1.32 0.705 U	8.20 U 0.60	0 U 0.705 L	0.705 L	9.40 U 0.630 U
e-Xylene	11 U	95.5 D	9 U	103 U	114 U	21.7 U	5.43 L	U 11 D 69.4	D 3.3	D 1.13	4.34 1.9	11 D 7	8 D 0.78	U <5	U 16.1 D 1.4	D 3.60	D 34.7	D 1.3	D 4.52 10	U 1.4	D 2.900 1	3.73	4.65 1.72	11	U 0.7 U	6.400 U 116	U 4.91	1.61 10	U 27.3	D 16 D 9.40 U	1.8 I	D 5.1 D	9.16 1.02	10 U 0.74	0 U 0.869 L	0,947	12 U 0.780 U
p- & m- Xylenes	30 D	251.7 D	18 II	206 II	228 II	43.4 U	10.9	II 32 D 143.2	D 65	D 3.17	13.8 539	33 D 1	8 D 160	II <9.9	II 356 D 25	D 24	D 694	D 26	D 11.4 21	11 48	D 5800 I	7.95	149 5.08	22	II 15 D	13 II 231	II 152	3 99 21	11 69.4	D 33 D 19 U	61 I	D 11 D	25.9 270	20 II 150	0 II 1740 I	2.47	23 II 1600 II
a Dibultologno	12 1	600 10	10 7	117 1	120 11	216	615	U 8.70 D 882 U 2.30 U 1.22 U 2.31 U 1.27 U 2.33 U 1.37 U 2.34 U 1.06 U 2.2 \$\tilde{\text{Pri}}\$ \ \text{1.05}\$ \ \text{1.07}\$ \ \text{1.07}	D 3	D 0.003 ***	0.003 11 0.003	11 9.40 E 2	2 D 080	11 (5.6	U 4.3 D 1.8	D 220	D 15.2	D 1	D 0.002 II 12	11 00	D 3.300	1 1.07	11 0.003 11 1~ **	12	11 00 11	7 200 11 121	11 0.003 ***	0.002 11 12	11 107	U 1.700 U 23 U U 23 U U 0.500 U 1.800	0.0	D 20 D	1.13 0.003 ***	11 II 0.00	0 11 0.003	0.002	13 11 0.990 11
Description	41 D	54 D	26 11	100 U	377	24.0 U	0.13 E	0.35 11 34.1	D 07	U 7.00	N. AUT	0 3.40 D 3	4 D 0.33	U 43.8	U 20 D 130	U 50.53	11 55.1	D 0.200	D 0.00 U 12	0.8	D 3.300 I	1.90	NT 128 U	1.20	U 40 D	2.500 U 131	U 577	V.70.2 C 12	11 64	D 0.220 U 0.20 U	0.9 1	D 0.200 U	0.300 11 577	4 11 0.39	0 U.983 L	U.763 L	1.00 11 0.330 11
гторунти	64 D	74 D	3.6 U	102 U	NI C	NI .	NI .	u.30 U 1.0	12 0.51	0 7.00	NI NI	0.54 U 2	• D 0.31	0 <2	U 29 D 0.300	U 40.51	0 55.1	17 0.290	U NI 4.10	0 0 0.8	D 1.200 I	3.98	NI NI	4.50	U 1.0 D	2.500 U 114	U NI	N1 4.10	U 8.4	D 0.20 U 3.70 U	0.9 1	D 0.300 U	0.300 U NI	4 U 0.30	O O NI L	NI NI	4.00 U 0.310 U
Styrene	10 U	0.8 U	8.9 U	101 U	112 U	21.3 U	5.32 L	U 0.88 U 0.7	□ 2.8	12 4.64	0.852 U 0.852	U 0.84 U 0	/ U 0.77	U <4.9	U 29 U 1	D <1.3	U 0.9	U 0.720	U 0.852 U 10	U 0.6	LI 2.900 I	3.11	0.852 1.09 U	11	U 0.7 U	6.200 U 113	U 0.852 U	0.852 U 10	U 0.6	U 1.4 D 9.30 U	U.6 L	U 24 D	0.9 U 0.852 U	9.90 U 0.73	U U 0.852 L	0.852 L	11 U 0.770 U
Tertiary butyl Alcohol	NT	NI	NI	NI	NI	NÍ	9.46 L	U NI NT	NT	NT	NI 8.03	Nf 5	I NT	NT	NI NT	NT	NT	NT	NI NT	NT	NT	NT	NI 7.82	NT	NT	NI NI	NT	21.9 NT	NT	NI NI	NT	NI	NI 2.41	NI NI	NT	1.52 L	NT NT NT NT 1 9 D 3.9 D 16 U 1.100 U 10 0.690 U
Tetrachloroethylene	13,000 D	10,169 D	66,000 D	65,900 D	33,800	7,870	1,930	370 g ⁽²⁾ D 5,085	D 1,400	D 336	155 198	10 g ⁽²⁾ D 2	8 D 18	D 130	D 41.4 D 1.1	D 72	D 35.9	D 110	D 1.36 U 37,00	00 D 8135	6 D 320 I	915	110 16.3	280,000	D 3.5 D	160,000 D 56,900	68.5	61.3 4,400	D 21.0	D 280 D 2,100 D	5.2 I	D 220 D	103 76.6	14 D 9.7	D 2.43	1.36 L	9 D 3.9 D
Tetrahydrofuran	15 U	20.3 D	12 U	175 U	194 U	36.9 U	9.2 L	U 0.61 U 11.2	D 7.4	D 5.31	3.13 1.55	5.20 D 5	0 D 1.1	U <6.8	U 5.6 D 31	D <1.7	U 8.8	D 47	D 1.47 U 14	U 0.9	U 23 1	4.25	4.66 2.87	15	U 1.0 U	8.700 U 196	U 1.47 U	1.47 U 14	U 6.5	D 0.920 U 13 U	0.8 t	U 3 D	1.47 U 1.47 U	14 U 1	U 1.47 L	5.01	16 U 1.100 U
Toluene	35 D	218.5 D	7.8 U	89.3 U	99.1 U	18.8 U	4.71 L	U 31 D 109.2	D 3.1	D 4.97	23.4 7.08	41 D 3	8 D 0.7	D 17	D 67.8 D 1.8	D 80	D 94.2	D 1.9	D 16.3 9	U 10.5	D 3.6 1	8.86	27.4 8.67	9.50	U 7.9 D	5.500 U 100	U 23	4.82 9	U 71.6	D 14 D 8.20 U	15.1 I	D 7.4 D	21.5 2.43	8.80 U 0.65	0 U 0.754 L	3.48	10 U 0.680 U
trans-1.2-Dichloroethylene	9.7 11	0.8	8.3 11	94 [I	104 11	19.8	4.96 T	II 0.82 U 0.6	U 1.200	U 0.793 II	0.793 U n 793	U 0.78 U c	6 U 0.72	U <4.5	U 2.7 U n.7nn	U <1?	U 14.3	D 13	D 1.52 21	D 06	U 15 1	10.5	4.96 5.63	10	U 0.7 II	5.800 U 105	U 0.793 II	0.793 11 9.40	U 05	D 14 D 8.20 U 8.60 U U 0.700 U 9.90 U 9.90 U 1.5 D 2.90 U U D 1.4 D 12 U U 0.550 U 7.60 U U 0.680 U 9.50 U U 0.680 U 9.50 U U 0.680 U 9.50 U 0 0.680 U 5.60 U 0 0.680 U 5.60 U U 0.680 U 5.60 U	0.5 1	U 0.690 II	0.793 U 0.793 II	9.20 U 0.68	0 U 0.793 I	0.793	11 U 0.710 II
trans-1,3-Dichloropropylene	11 11	09 11	95 11	108 II	143 11	22.7 11	5.67 L	U 093 II 07	11 1 300	11 0.908 11	0.908 11 0.908	11 0.90 11 0	7 11 0.82	11 <5.2	11 30 11 0800	11 <13	11 10	11 0.770	11 0.908 11 11	11 06	11 3 100 1	1 1.82	11 0.908 11 1.16 1	1 11	11 08 11	6 700 II 121	11 0.908 11	0.000 11 11	11 0.6	11 0.710 11 9.90 11	0.6 1	11 0.790 11	0.908 11 0.908 11	11 11 0.78	0 11 0.908 1	0.000 1	12 11 0.820 11
Trichloroethylene	12 D	15 D	45 D	127 U	141 11	269 11	5.07 E	17 D 591	D 21	D 656	4.72 10.7	0.64 D 1	0 D 51	D (15	11 09 11 0360	11 4.10	D 96	D 69	D 96 600	0 D 41.6	D 220 1	228	645 29.4	900	D 02 U	61 D 142	U 1.07 U	1.00 11 12	D 0.3	U 15 D 280 U	0.2	U 22 D	107 U 107 U	2 10 11 0.23	0.100 0.000 0	U. AS L	3.60 II 0.240 II
Trichlorofluoromethane (Freon 11)	23 D	12 D	12 U	122 U	140 1	20.9 U	6.72 L	U 27 D 39.1	D 21	D 0.30	1.21 200	3.04 D 3	2 2 3.1	D 41.3	U 30 U 0.240	0 4.10	D 13	11 16	D 0.0 8,00	U 41.4	12 2 2000 1	220	11 124 104	24	D 0.2 U	0.200 11 140	11 124	1.07 0 13	11 10	D 14 D 13 U	12 1	D 22 D	7.00 0 7.00	22 11 4.5	D 131	1.07 L	15 U 1.4 D
iricnioronuoromeunane (Freon 11)	14 U	1.1 U	12 U	133 U	140 U	28.1 U	7.02 L	U 1.60 D 1.1	D 1.7	D 1.12 U	1.21 26.6	3.40 1) 1	2 D 1.6	17 <6.4	U 3.6 U 1.5	D 2.70	D 1.2	U 1.6	1/ 1.10 13	U 1.3	17 3,800 1	2.25	U 1.24 1.94	14	U 1.0 U	6.200 U 149	0 1.24	1.12 [U 13	U 1.0	D 14 D 12 U	1.3 1	U 43 D	1.41 7.19	13 U 1.5	D 1.21	1.12 L	15 U 1.4 D
Vinyl acetate	8.7 U	0.7 U	7.3 U	415 U	NI	NÍ	Nf	0.72 U 0.6	U 1	U 3.52 U	NI NT	0.70 U 0	b U 0.64	U <4	U Z4 U 0.620	U <1	U 0.7	U 0.600	U NI 8.50	U U 0.5	U 2.400 I	7.04	U NI NT	8.90	U 0.6 U	5.200 U 468	U NT	NI 8.40	U 0.5	U 0.560 U 7.60 U	U.5 L	U 0.610 U	NI NT	8.20 U 0.60	U U NT	Nf	9.50 U 0.630 U
Vinyl bromide	11 U	0.8 U	9.1 U	104 U	115 U	21.9 U	5.47 t	U NT 0.7	U 1.3	U 0.874 U	0.874 U 0.874	U NT C	7 U 0.79	U <5	U 2.9 U 0.770	U <1.3	U 0.9	U 0.740	U 0.874 U 10	U 0.6	U 2.900 1	J 1.75	U 0.874 U 1.12 U	11	U 0.7 U	6.400 U 116	U 0.874 U	0.874 U 10	U 0.6	U 0.680 U 9.50 U	0.6 t	U 0.760 U	0.874 U 0.874 U	10 U 0.75	0 U 0.874 L	0.874 L	12 U 0.790 U
Vinyl Chloride	6.3 U	0.1 U	1.3 U	60.6 U	67.2 U	12.8 U	3.2 L	11 0.13 11 0.1	11 0.2	11 0511 11	0.511 11 0.511	11 0.13 11 0	1 11 0.12	11 <2.9	11 04 11 0110	11 ×0.76	111 01	11 0.110	11 0 511 11 50	D 01	111 19 1	3 1.02	11 0511 11 0654 11	6.40	11 01 11	0.940 11 68	11 0511 11	0.511 11 6.10	U 0.1	U 0.0990 U 5.60 U	0.1 1	11 0 110 11	0.511 11 0.511 11	6 11 011	0 11 0511 1	0.511	6.80 [1] 0.110 [1]

Trend Investments

13 | U | 03 | U | 03

Table 4 Off-site Indoor & Outdoor Air Results Regency Gardens Flushing, New York

Flushing, New York											
Sample ID	IA-RG		IA-RC		IA-RG		IA-RG		OA-RO		NYSDOH
Sampling Date	12/30/2	2021	12/30/2	2021	12/30/2	2021	12/30/2	2021	12/30/2	2021	Air Guidance
Client Matrix	Air		Values								
Compound	Resu	lt	Resu	lt	Resu	lt	Resul	t	Resul	lt	
Volatile Organics, EPA TO15 Full List	ug/m3	RL	ug/m3	RL	ug/m3	RL	ug/m3	RL	ug/m4	RL	ug/m3
1,1,1-Trichloroethane	0.278	0.109	ND	0.109	ND	0.109	ND	0.109	ND	0.109	-
1,1,2,2-Tetrachloroethane	ND	1.37	-								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.53	-								
1,1,2-Trichloroethane	ND	1.09	-								
1,1-Dichloroethane	ND	0.809	-								
1,1-Dichloroethylene	ND	0.079	-								
1,2,4-Trichlorobenzene	ND	1.48	-								
1,2,4-Trimethylbenzene	ND	0.983	-								
1,2-Dibromoethane	ND	1.54	-								
1,2-Dichlorobenzene	ND	1.2	-								
1,2-Dichloroethane	ND	0.809	-								
1,2-Dichloropropane	ND	0.924	-								
1,2-Dichlorotetrafluoroethane	ND	1.4	-								
1,3,5-Trimethylbenzene	ND	0.983	-								
1,3-Butadiene	ND	0.442	-								
1,3-Dichlorobenzene	ND	1.2	-								
1,4-Dichlorobenzene	ND	1.2	-								
1,4-Dioxane	ND	0.721	-								
2-Butanone	ND	1.47	-								
2-Hexanone	ND	0.82	-								
2,2,4-Trimethylpentane	ND	0.934									
3-Chloropropene	ND	0.626	-								
4-Ethyltoluene	ND	0.983									
4-Methyl-2-pentanone	ND	2.05	-								
Acetone	14.1	2.38	5.7	2.38	5.06	2.38	5.13	2.38	5.61	2.38	-
Benzene	0.997	0.639	1.04	0.639	1.1	0.639	0.987	0.639	0.821	0.639	
Benzyl chloride	ND	1.04									
Bromodichloromethane	ND	1.34	-								
Bromoform	ND	2.07									
Bromomethane	ND	0.777									
Carbon disulfide	ND	0.623	-								
Carbon tetrachloride	0.579	0.126	0.604	0.126	0.616	0.126	0.579	0.126	0.541	0.126	-
Chlorobenzene	ND	0.921	-								
Chloroethane	ND	0.528	-								
Chloroform	ND	0.977	1.12	0.977	ND	0.977	ND	0.977	ND	0.977	-
Chloromethane	1.14	0.413	1.16	0.413	1.13	0.413	1.14	0.413	1.11	0.413	-
cis-1,2-Dichloroethylene	ND	0.079	-								
cis-1,3-Dichloropropylene	ND	0.908	-								
Cyclohexane	ND	0.688	-								
Dibromochloromethane	ND	1.7	-								
Dichlorodifluoromethane	2.9	0.989	2.85	0.989	2.86	0.989	2.96	0.989	2.73	0.989	-
Ethanol	40.1	9.42	20.2	9.42	11.8	9.42	23.7	9.42	14.9	9.42	-
Ethyl acetate	ND	1.8	-								
Ethyl Benzene	ND	0.869	-								
Hexachlorobutadiene	ND	0.82	-								
Isopropanol	ND	2.13	-								
Methyl tert-butyl ether (MTBE)	5.41	1.23	7.45	1.23	4.06	1.23	3.96	1.23	5.38	1.23	-
Methylene chloride	ND	0.721	60								
n-Heptane	1.89	1.74	ND	1.74	ND	1.74	ND	1.74	ND	1.74	-
n-Hexane	0.786	0.705	0.916	0.705	0.814	0.705	0.796	0.705	ND	0.705	-
o-Xylene	ND	0.869	-								
p- & m- Xylenes	ND	1.74	-								
Styrene	ND	0.852	-								
Tertiary butyl Alcohol	ND	1.52									
Tetrachloroethylene	0.366	0.136	0.536	0.136	0.319	0.136	0.285	0.136	0.244	0.136	30
Tetrahydrofuran	ND	1.47	-								
Toluene	2.22	0.754	2.03	0.754	2	0.754	1.83	0.754	1.39	0.754	-
trans-1,2-Dichloroethylene	ND	0.793	-								
trans-1,3-Dichloropropylene	ND	0.908	-								
Trichloroethylene	ND	0.107	2								
Trichlorofluoromethane (Freon 11)	1.42	1.12	1.41	1.12	1.43	1.12	1.46	1.12	1.44	1.12	-
Vinyl bromide	ND	0.874	-								
Vinyl Chloride	ND	0.051	-								
Notes											

Notes
Not Detected
Bolded values indicate a detection above the laboratory reporting limit.
RL - Reporting Limit

Table 5 Pressure Test Point Vacuum Readings Regency Gardens Flushing, New York

Pressure Test Point ID	PTP-1						
Units	Vacuum (in H ₂ O)						
Date	9/25/2020 10/19/2020 1/10/2022 8/10/202						
Measurement	-0.017	-0.57	-0.07	-0.049			

Pressure Test Point ID	PTP-2						
Units	Vacuum (in H ₂ O)						
Date	9/25/2020 10/19/2020 1/10/2022 8/10/2022						
Measurement	-0.068 -0.038 -0.055 -0.04						

Pressure Test Point ID		PTP-3								
Units	Vacuum (in H ₂ O)									
Date	9/25/2020 10/19/2020 11/17/2020 12/30/2021 1/10/2022 8/10/2022									
Measurement	-0.002	-0.013	-0.020	-0.017	-0.024	-0.022				

Pressure Test Point ID	PTP-4								
Units	Vacuum (in H ₂ O)								
Date	9/25/2020 10/19/2020 11/17/2020 12/30/2021 8/10/2022								
Measurement	-0.001	-0.009	-0.011	-0.021	0.019				

Pressure Test Point ID				PTP-5							
Units		Vacuum (in H ₂ O)									
Date	9/25/2020	10/19/2020	11/17/2020	12/9/2020	12/30/2021	8/10/2022	10/25/2022				
Measurement	-0.003	0.000	0.000	-0.022	-0.024	-0.006	-0.023				

Pressure Test Point ID				PTP-6			
Units			,	Vacuum (in H	₂ O)		
Date	9/25/2020	10/19/2020	11/17/2020	12/9/2020	12/30/2021	8/10/2022	10/25/2022
Measurement	-0.016	-0.023	-0.035	-0.024	-0.022	-0.009	-0.018

Pressure Test Point ID	PTP-7						
Units	Vacuum (in H ₂ O)						
Date	9/25/2020 10/19/2020 12/30/2021 8/10/20						
Measurement	-0.001 -0.022 -0.020 -0.01						

Pressure Test Point ID		PT	P-8					
Units		Vacuum (in H ₂ O)						
Date	9/25/2020	9/25/2020 10/19/2020 12/30/2021 8/10/202						
Measurement	-0.455	-0.490	-0.499	-0.421				

<u>Note:</u> PTP = Pressure Test Point

Table 6 Water Level Measurements March 2018 - May 2022 77-57 Vleigh Place, Flushing NY

								,, ,, ,,,	ight race, rrushing ivi								
Well ID	Top of Casing Elevation (famsl)	DTW (fbg) 3/26/2018	Water Table Elevation (famsl) 3/26/2018	DTW (fbg) 8/28/2018	Water Table Elevation (famsl) 8/28/2018	DTW (fbg) 12/26/2018	Water Table Elevation (famsl) 12/26/2018	DTW (fbg) 4/28/2020	Water Table Elevation (famsl) 4/28/2020	DTW (fbg) 7/27/2020	Water Table Elevation (famsl) 7/27/2020	DTW (fbg) 10/9/2020	Water Table Elevation (famsl) 10/9/2020	DTW (fbg) 1/20/2021	Water Table Elevation (famsl) 1/20/2021	DTW (fbg) 5/10/2021	Water Table Elevation (famsl) 5/10/2021
MW-1	80.42	30.70	49.72	29.45	50.97	29.80	50.62	27.62	52.80	27.25	53.17	28.46	51.96	27.28	53.14	26.94	53.48
MW-2	-	30.05	-	28.95	-	29.00	-	28.09	-	27.27	-	28.62	-	27.80	-	27.18	-
MW-3S	-	28.75	-	28.80	-	28.55	-	26.45	-	29.40	-	27.06	-	30.82	-	21.03	-
MW-3D	-	28.80	-	NA	-	27.80	-	28.80	-	30.50	-	28.45	-	35.43	-	25.68	-
MW-5S	-	31.85	-	30.10	-	32.20	-	NA	-	NA	-	NA	-	NA	-	NA	-
MW-5D	59.06	31.73	NA	NA	NA	30.10	NA	5.70	53.36	5.91	53.15	6.27	52.79	5.61	53.45	4.71	54.35
MW-6	82.99	32.50	50.49	31.35	51.64	31.60	51.39	30.30	52.69	30.40	52.59	30.75	52.24	30.09	52.90	29.71	53.28
MW-7D	-	29.55	-	28.40	-	28.60	-	27.35	-	27.16	-	27.41	-	27.49	-	27.10	-
MW-8	-	30.80	-	29.70	-	30.00	-	NA	-	NA	-	NA	-	NA	-	NA	-
MW-9	58.68	31.50	NA	29.90	NA	30.00	NA	5.25	53.43	5.56	53.12	5.66	53.02	5.24	53.44	4.32	54.36
MW-11	84.86	32.51	52.35	30.00	54.86	30.20	54.66	31.40	53.46	31.65	53.21	32.10	52.76	31.51	53.35	31.12	53.74
MW-12	85.07	NA	NA	30.00	55.07	33.10	51.97	32.70	52.37	32.87	52.20	33.10	51.97	32.46	52.61	31.92	53.15
MW-13	-	30.35	-	29.00	-	28.90	-	26.80	-	27.76	-	28.03	-	27.73	-	26.52	-

Well ID	Top of Casing Elevation (famsl)	DTW (fbg) 8/17/2021	Water Table Elevation (famsl) 8/17/2021	DTW (fbg) 11/30/2021	Water Table Elevation (famsl) 11/30/2021	DTW (fbg) 2/22/2022	Water Table Elevation (famsl) 2/22/2022	DTW (fbg) 5/4/2022	Water Table Elevation (famsl) 5/4/2022	DTW (fbg) 8/10/2022	Water Table Elevation (famsl) 8/10/2022			
MW-1	80.42	27.02	53.40	27.63	52.79	28.89	51.53	28.84	51.58	29.48	50.94			
MW-2	-	27.55	-	28.04	-	29.09	-	29.17	-	29.63	-			
MW-3S	-	27.44	-	26.41	-	-	-	28.85	-	29.17	-			
MW-3D	-	27.79	-	28.45	-	27.63	-	27.79	-	28.22	-			
MW-5S	-	-	-	-	-	-	-	-	-	-	-			
MW-5D	59.06	-	-	-	-	-	-	-	-	-	-			
MW-6	82.99	29.68	53.31	30.11	52.88	31.30	51.69	31.37	51.62	31.65	51.34			
MW-7D	-	27.40	-	27.57	-	28.52	-	28.72	-	29.02	-			
MW-8	-	-	-	-	-	-	-	-	-	-	-			
MW-9	58.68	-	-	-	-	-	-	-	-	-	-			
MW-11	84.86	31.23	53.63	31.67	53.19	32.69	52.17	32.60	52.26	32.93	51.93			
MW-12	85.07	31.89	53.18	32.29	52.78	33.45	51.62	33.55	51.52	33.81	51.26			
MW-13	-	26.17	-	27.59	-	27.95	-	27.13	-	27.83	-			

All values reported in feet.

Not water sepon tea in sect.

DTW...Depth to Water from top of casing

NA...Not Available due to removal of well from the site or from sampling schedule

Depth to water measurements changed significantly for MW-5D and MW-9 when construction began at the property and the wells were installed in the future parking garage.

Table 7
Water Level Study at MW-5D & MW-9
77-57 Vleigh Place, Flushing, New York

	Top of Casing		Depth to Water	Water Level	Bottom of	Feet Between
	Elevation			Elevation	Foundation	Top of Water
Well ID		Date			Elevation	Table and Bottom
			(feet below			of Foundation
	(feet amsl)		top of casing)	(feet amsl)	(feet amsl)	(feet)
		4/28/2020	5.70	53.36		1.14
		7/27/2020	5.91	53.15		1.35
		10/9/2020	6.27	52.79		1.71
		1/4/2021	5.53	53.53		0.97
MW-5D	59.06	1/5/2021	5.57	53.49	54.50	1.01
WW-3D	39.06	1/6/2021	5.60	53.46	34.30	1.04
		1/7/2021	5.66	53.40		1.10
		1/8/2021	5.60	53.46		1.04
		1/9/2021	5.61	53.45		1.05
		1/10/2021	5.66	53.40		1.10
Average			5.71	53.35		1.15
Minimum			5.53	52.79		0.97
Maximum			6.27	53.53		1.71
		4/28/2020	5.25	53.43		1.07
		7/27/2020	5.56	53.12		1.38
		10/9/2020	5.66	53.02		1.48
		1/4/2021	5.12	53.56		0.94
MW-9	58.68	1/5/2021	5.16	53.52	54.50	0.98
10100-9	36.66	1/6/2021	5.19	53.49	34.30	1.01
		1/7/2021	5.20	53.48		1.02
		1/8/2021	5.19	53.49		1.01
		1/9/2021	5.20	53.48		1.02
		1/10/2021	5.27	53.41		1.09
Average			5.28	53.40		1.10
Minimum			5.16	53.02		0.94
Maximum			5.66	53.56		1.48

Notes:

Site elevations and casing elevations were provided from the site survey (Survey No. 66447-6), which was provided by the client.

As per the survey general notes, the elevations and established grades shown on the survey referred to NAVD 1988, which is 1.625 feet below the Queens topographical bureau datum.

The survey weas dated 11/1/2019 and revised 11/19/2019 and completed by Montrose Surveying Co., LLP.

Table 8 Groundwater Samples Analytical Results for VOC's 77-57 Vleigh Place, Flushing NY

							-57 Vleigh Place, Fl									
Sample ID	MW-1	MW-2	MW-3S	MW-3D	MW-5D	MW-6	MW-7	MW-9	MW-11	MW-12	MW-13	Equipment Blank	Field Blank	Trip Blank	Blind Duplicate	NYSDEC TOGS
Sampling Date	8/10/2022	8/10/2022	8/10/2022	8/10/2022	8/10/2022		8/10/2022	8/10/2022	8/10/2022	8/10/2022	8/10/2022	8/10/2022	8/10/2022	8/10/2022	8/10/2022	Standards and
Client Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	DI Water	Water	Guidance Values -
Compound	Result Q	Result Q	Result (Q Result	Q Result	Q Result	Q Result C	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result (Q Result Q	Result Q	GA
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,1,1,2-Tetrachloroethane	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
1,1,1-Trichloroethane	0.7 U	0.7 U	1.8 U		U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
1,1,2,2-Tetrachloroethane	0.17 U	0.17 U			U NS		U 0.17 U	J NS	0.33 U	0.17 U	0.17 U	0.17 U	0.17 U	J 0.17 U	0.17 U	5
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.7 U	0.7 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	U 0.7 U	0.7 U	5
1.1.2-Trichloroethane	0.5 U	0.5 U		J 0.5	U NS	0.5	U 0.5 U	J NS	1 U	0.5 U	0.5 U	0.5 U	0.5 U	J 0.5 U	0.5 U	1
1.1-Dichloroethane	0.7 U	0.5 U	1.8	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
1.1-Dichloroethylene		0.7 U	0.42				U 0.17 U		0.34 U		0.7 U					5
	0.17 U 0.7 U			J 0.17 J 0.7	U NS U NS		U 0.7 U	J NS		0.17 U 0.7 U	0.7 U	0.17 U 0.7 U	0.17 U		0.17 U 0.7 U	5
1,1-Dichloropropylene		0.7 U						J NS								
1,2,3-Trichlorobenzene	0.7 U	0.7 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U			5
1,2,3-Trichloropropane	0.7 U	0.7 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U			0.04
1,2,4,5-Tetramethylbenzene	0.54 U	0.54 U		J 0.54	U NS	0.54	U 0.54 U	J NS	1.1 U	0.54 U	0.54 U	0.54 U	0.54 U	J 0.54 U	0.54 U	~
1,2,4-Trichlorobenzene	0.7 U	0.7 U		J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
1,2,4-Trimethylbenzene	0.7 U	0.7 U	1.0	0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7	0.7 U	5
1,2-Dibromo-3-chloropropane	0.7 U	0.7 U	1.8 I	J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U		0.04
1,2-Dibromoethane	0.65 U	0.65 U	1.6 I	J 0.65	U NS	0.65	U 0.65 U	J NS	1.3 U	0.65 U	0.13 U	0.13 U	0.65 U	J 0.65 U	0.65 U	0.0006
1,2-Dichlorobenzene	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	3
1,2-Dichloroethane	0.13 U	0.13 U	0.33	J 0.13	U NS	0.13	U 0.13 U	J NS	0.26 U	0.13 U	0.65 U	0.65 U	0.13 U	J 0.13 U	0.13 U	0.6
1,2-Dichloropropane	0.15 U	0.14 U	0.34 I	J 0.14	U NS	0.14	U 0.14 U	J NS	0.27 U	0.14 U	0.14 U	0.14 U	0.14 U	J 0.14 U	0.14 U	1
1,3,5-Trimethylbenzene	0.7 U	0.7 U	1.8 U		U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U		5
1,3-Dichlorobenzene	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	3
1,3-Dichloropropane	0.7 U	0.7 U	1.8 U	J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
1,4-Dichlorobenzene	0.7 U	0.7 U		J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U		J 0.7 U		3
1,4-Dioxane	61 U	61 U	150 U	J 61	U NS	61	U 61 U	J NS	120 U	61 U	61 U	61 U	61 U	J 61 U	61 U	
2,2-Dichloropropane	0.7 U	07 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U		0.7 U	5
2-Butanone	1.9 U	19 U		0.7	U NS		U 19 U	I NS	3.9 U	19 U	1.9 U	1.9 U	19 I	0.7		50
2-Chlorotoluene (o)	0.7 U	0.7 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
2-Uniorototuene (o)	1 U	1 U		J 0.7	U NS		U 1 U	J NS	2 U	1 U	1 U	1 U	1 I		1 U	50
4-Chlorotoluene (p)	0.7 U	0.7 U		J 0.7	1 NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
4-Chlorototidene (p) 4-Methyl-2-pentanone	1 U	0.7	2.5	J 1	U NS	1	U 0.7 C	J NS	2 U	1 U	1 U	0.7 U	1 I	3 0.7 0	0.7 U	3
		1.5 U					U 15 U	J NS	10		1.5 U	1.5 U	1.5 U	J 1.5 U	1 U	50
Acetone	1.6 J			1.0	U NS	1.0	2.5			1.5 U				3 1.0 0	1.0	50
Acrylonitrile	1.5 U	1.5 U		J 1.5	U NS				3 U	1.5 U	1.5 U	1.5 U				
Benzene	0.16 U	0.16 U			U NS		U 0.16 U		0.32 U	0.16 U	0.16 U	0.16 U	0.16 U	0.110	0.16 U	1
Bromobenzene	0.7 U	0.7 U		J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
Bromochloromethane	0.7 U	0.7 U		J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
Bromodichloromethane	0.19 U	0.19 U	0.48 I	J 0.19	U NS	0.19	U 0.19 U	J NS	0.38 U	0.19 U	0.19 U	0.19 U	0.19 U	J 0.19 U	0.19 U	50
Bromoform	0.65 U	0.65 U			U NS		U 0.65 U		1.3 U	0.65 U	0.65 U	0.65 U	0.65 U		0.65 U	50
Bromomethane	0.7 U	0.7 U	-10	J 0.7	U NS		U 0.7 U		1.4 U	0.7 U	0.7 U	0.7 U	0.7 U		0	5
Carbon disulfide	1 U	1 U			U NS		U 1 U		2 U	1 U	1 U	1 U	1 U	, , ,		~
Carbon tetrachloride	0.13 U	0.13 U	0.34 I	J 0.13	U NS		U 0.13 U	J NS	0.27 U	0.5 U	0.13 U	0.13 U	0.13 U	0.10	0.13 U	5
Chlorobenzene	0.7 U	0.7 U		J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
Chloroethane	0.7 U	0.7 U	1.8 U	J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
Chloroform	0.7 U	5.1	14	16	NS	12	28	NS	1.4 U	2.4 J	0.7 U	0.7 U	0.7 U	J 0.7 U	28	7
Chloromethane	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
cis-1,2-Dichloroethylene	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.5 J	0.72 J	0.07 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
cis-1,3-Dichloropropylene	0.14 U	0.14 U	0.36	J 0.14	U NS	0.14	U 0.14 U	J NS	0.29 U	0.14 U	0.14 U	0.14 U	0.14 U	J 0.14 U	0.14 U	0.4
Dibromochloromethane	0.15 U	0.15 U	0.37	J 0.15	U NS	0.15	U 0.15 U	J NS	0.3 U	0.15 U	0.15 U	0.15 U	0.15 U	J 0.15 U	0.15 U	50
Dibromomethane	1 U	1 U	2.5		U NS		U 1 U	J NS	2 U	1 U	1 U	1 U	1 U	J 1 U	1 U	~
Dichlorodifluoromethane	1 U	1 U	2.5 I	J 1	U NS	1	U 1 U		2 U	1 U	1 U	1 U	1 U	J 1 U	1 U	5
Ethyl Benzene	0.7 U	0.7 U		J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 I	J 0.7 U	0.7 U	5
Ethyl ether	0.7 U	0.7 U			U NS		U 0.7 U		1.4 U	0.7 U	0.7 U	0.7 U	0.7 U			
Hexachlorobutadiene	0.7 U	0.7 U		J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U		J 0.7 U	0.7 U	0.5
Isopropylbenzene	0.7 U	0.7 U	1.8	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
Methyl tert-butyl ether (MTBE)	0.7 U	0.7 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U		0.7 U	10
Methylene chloride	0.7 U	0.7 U		J 0.7	U NS		U 0.7 U	I NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U		5
e.r.y.c.r.e		0.7 U	-10				U 0.7 U			0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U		10
Naphthalene n-Butylbenzene	0.7 U 0.7 U	0.7 U		J 0.7 J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 L	J 0.7 U	0.7 U 0.7 U	10 5
	0.7 U				U NS U NS	0.7	U 0.7 U	J NS		0.7 U	0.7 U	0.7 U	0.7 U		0.7 U	5
n-Propylbenzene		0.7 U						J NS								
o-Xylene	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
p- & m- Xylenes	0.7 U	0.7 U		0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 L	0.7	0.7 U	5
p-Diethylbenzene	0.7 U	0.7 U	-10	J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	~
p-Ethyltoluene	0.7 U	0.7 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U		0.7 U	~
p-Isopropyltoluene	0.7 U	0.7 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
sec-Butylbenzene	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
Styrene	0.7 U	0.7 U	1.8 I	J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U		0.7 U	5
tert-Butylbenzene	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U		0.7 U	5
Tetrachloroethylene	15	20	260	6.4	NS	11	55	NS	170	78	0.53	0.18 U	0.18 U	J 0.18 U	58	5
Toluene	0.7 U	0.7 U	1.8 U	J 0.7	U NS	0.7	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U		0.7 U	5
trans-1,2-Dichloroethylene	0.7 U	0.7 U		J 0.7	U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 U	J 0.7 U	0.7 U	5
trans-1,3-Dichloropropylene	0.16 U	0.16 U	0.41 U	J 0.16	U NS	0.16	U 0.16 U	J NS	0.33 U	0.16 U	0.16 U	0.16 U	0.16 U	J 0.16 U	0.16 U	0.4
trans-1,4-Dichloro-2-butene	0.7 U	0.7 U			U NS		U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.7 I		0.7 U	
Trichloroethylene	4.3	0.46 I		0.18	U NS		U 0.59	NS	1.7	1.4	0.18 U	0.18 U	0.18 U			5
Trichlorofluoromethane	0.7 U	0.7 U		J 0.7	U NS	0.05	U 0.7 U	J NS	1.4 U	0.7 U	0.7 U	0.7 U	0.15 U	0.110	0.7 U	5
Vinyl Acetate	1 U	1 U		J 1	U NS		U 1 U	J NS	2 U	1 U	1 U	1 U	1 L			
Vinyl Chloride	0.07 U	0.07 U		J 0.07	U NS	0.07	U 0.07 U	J NS	0.17 I	0.07 U	0.07 U	0.07 U	0.07 U	J 0.07 U	0.07 U	2
Total VOCs	20.9	25.56	276.1	22.4	NS NS	23.59	83.59	NS NS	183.37	82.52	0.53		0.07	0.07	86.52	-
TOTAL VOCS	20.9	20.06	2/6.1	22.4	NS	23.39	83.39	NS	183.3/	02.32	0.53	0	U	U	86.02	

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

J=analyte detected at or above the MDL (method detection limit) but below the NL (Reporting Limit) - data is estimated U=analyte in detected at or above the level indicated B=analyte found in the analysis batch blank E=result is estimated and cannot be accurately reported due to levels encountered or interferences NT=this indicates the analyte was not a target for this sample --this indicates that no regulatory limit has been established for this analyte sample exceeds NYSDEC TOGS Standards and Guidance Values - GA sample exceeds NYSDEC TOGS Standards and Guidance Values - GA

Table 9 77-57 Vleigh Place, Flushing NY Historical Groundwater Monitoring Well Results for CVOCs

				His	torical Ground	water Monito	ring Well Res									
Sample ID Sampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/3/2019	4/28/2020		V-1 10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	5/5/2
		, ,	, ,				1	VOCs (ug/L)		, ,						
hloroform is-1,2-DCE	0.57 1.6	1.2	0.88 1.85	1.65 6.57	4.42 3.49	3.04 0.51	ND ND	0.66 J ND	ND ND	ND ND	ND ND	0.96 J ND	0.98 J ND	ND ND	ND ND	NI NI
CE CE	280	397	222	535	264	145	50	64.4	32	27	38	9.2	30	20	15	15
CE	7	6.3	8.43	9.4	6.79	3.2	1	1.5	1.1	0.65	0.82	0.38 J	0.96	3.40	2.10	4.
otal VOCs ample ID	298.87	580.24	243.36	555.07	346.31	156.27	51	66.56	33.1 V-2	27.65	38.82	14.74	31.94	24.10	17.10	20
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/3/2019	4/28/2020	7/27/2020	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10/
								VOCs (ug/L)								
hloroform s-1,2-DCE	10	8.8 1.2	3.52 61.1	6.21 2.44	6.44 4.96	9.59 1.74	4.2 ND	3.8 0.55 J	3.8 ND	7.9 ND	9.2 ND	6.5 ND	16.0 ND	21 ND	6.5 ND	5. N
CE	200	175	8,250	176	874	119	55	76.5	37	8.8	24	12	19	20	14	2
CE	3.2	4.4	95	3.17	8	2.7	1	1.2	0.8	0.2 J	0.5 J	0.3 J	0.42 J	0.42	0.31	0.
otal VOCs ample ID	224.12	373.42	8,422.64	190.18	913.70	138.61	60	82.05	41.6 7-3S	17.65	33.65	18.76	35.42	41.42	20.81	25.
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/3/2019	4/28/2020	7/27/2020	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10,
								VOCs (ug/L)								
hloroform s-1,2-DCE	4.9 ND	2.9 0.3 J	25.9 ND	23.5 ND	1.57 ND	9.69 ND	16 ND	23.5 ND	14 ND	8.4 ND	14 ND	7.3 ND	41 ND	25 ND	12 ND	N N
CE	300	54.6	53	17.3	25	19.7	38	3.9	7	39	44	63	7	1.1	250	2
CE	4.7	1.2	0.49	ND	ND	ND	0.44 J	ND	ND	0.43 J	0.48 J	0.78	ND	ND	2.1	2
otal VOCs Sample ID	313.2	231.16	91.43	44.65	77.04	40.8	56	27.4 MW	20.5 7-3D	47.83	58.48	75.48	48.20	26.28	264.1	27
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/2/2019	4/28/2020	7/27/2020	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10
								VOCs (ug/L)								
hloroform s-1,2-DCE	8.5 0.74	0.2 J 1.8	8.03 5.65	12.8 3.79	26 ND	11.2 ND	18 ND	12.3 ND	13 ND	23 ND	32 ND	36 ND	13 ND	NS NS	14 ND	1 N
S-1,2-DCE CE	200	1.8	2,060	1,410	40	22.1	3	57.9	26	8.3	2.8	1.3	170	NS NS	4.7	6
CE	2.1	1	12.8	7.14	0.38 J	0.22	ND	0.93 J	0.39 J	ND	ND	ND	1.70	NS	ND	N
otal VOCs ample ID	221.35	164.35	2,096.90	1,436.78	128.16	23.45	20.6	71.13 MW	41.09 /-5D	31.3	34.8	37.3	184.7	NS	18.7	2:
ample ID ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/2/2019	4/28/2020	7/27/2020	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10
							1	VOCs (ug/L)								
hloroform is-1,2-DCE	ND 0.47 J	0.3 J 1.8	ND ND	0.31 J ND	NS NS	1.06 0.27	ND ND	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	N N
CE	2.9	1.6	1,170	856	NS NS	21.9	47	31.1	36	40	13	NS NS	NS NS	NS NS	NS NS	N
CE	0.29 J	1	1.26	1.23	NS	0.22 J	0.32 J	ND	0.6	0.34 J	0.18 J	NS	NS	NS	NS	N
otal VOCs ample ID	42.76	164.35	1,181.86	859.12	NS	23.45	47.3	31.1	38.25 V-6	40.34	14.68	NS	NS	NS	NS	N
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/3/2019	4/28/2020	7/27/2020	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10
								VOCs (ug/L)								1
hloroform s-1,2-DCE	9.1	8.9 38.4	5.58 40.4	2.6 22.4	NS NS	0.74	0.87	2.5 ND	2.4 J ND	1.5 J ND	4 ND	1.2 J ND	1.6 J ND	34 ND	11 ND	N N
CE	110	628	553	336	NS	61	150	80.5	37	63	51	24	15	28	20	1
CE	14	30.7	31.9	15.6	NS	2.46	3	1.7	1.0	1.3	1	0.74	0.54	0.74	0.7	0.
otal VOCs ample ID	171.48	736.59	641.75	396.10	NS	69.99	157.2	84.7 MV	41.85 V-7	65.8	56	25.94	17.14	32.14	31.7	23
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	9/30/2019	4/28/2020	7/27/2020	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10,
	10	40.5			-			VOCs (ug/L)				***				
hloroform is-1,2-DCE	19 ND	20.5 ND	13.1 ND	23.2 ND	26 ND	16 ND	15 ND	26.3 ND	20 ND	26 ND	41 ND	39 ND	25 ND	22 ND	21 ND	2 N
CE	ND	ND	ND	ND	ND	7.08	260	177	78	1.5	0.93	1	61	96	38	5
CE otal VOCs	ND 29.21	ND 277.93	ND 22.91	ND 24.85	ND 96.98	ND 27.39	2 277.0	1.6 204.9	0.65 98.65	ND 27.5	ND 41.93	ND 40	0.53 86.53	1 119	0.48 59.48	0. 83
ample ID	29.21	2/7.95	22.91	24.65	90.98	27.39	277.0		96.65 V-9	27.5	41.95	40	80.33	119	39.46	83
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/2/2019	4/28/2020	7/27/2020	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10,
Chloroform	2.3	1.2	0.89	0.37 J	NS	ND	ND	VOCs (ug/L) 0.89	ND	ND	ND	NS	NS	NS	NS	N
is-1,2-DCE	0.84	12.3	0.89 0.2 J	ND	NS	0.68 JD	23	46	36	47	22	NS NS	NS NS	NS NS	NS NS	N
CE	33,000	8,800	3,220	668	NS	145	150	120	130	210	120	NS	NS	NS	NS	N
CE otal VOCs	29 33,035.26	12.7 8,908.13	6.14 3,238.12	0.67 671.08	NS NS	ND 145.68	3 176.3	3.7 170.91	3.70 169.88	4.9 261.8	2.1 144.1	NS NS	NS NS	NS NS	NS NS	N N
ample ID	33,033.20	0,900.13	3,236.12	071.00	INS	145.00	170.3	170.91 MV		201.0	144.1	143	143	INS	143	18
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/2/2019	4/28/2020	7/27/2020	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10
hloroform	1.9	1.7	1.00	0.70	NC	1		VOCs (ug/L)	NID	NID	1.1	NID	NID	NID	NID	
hloroform is-1,2-DCE	2.1	1.7	1.89 1.77	0.69 1.22	NS NS	70.90	ND 3.4 J	2.4 J 13.7	ND 24	ND 4.15	1 J 2 J	ND 5.9	ND 1.6 J	ND 2.5	ND ND	N 1
CE	21,000	7,510	6,700	1,830	NS	1,640	330	908	520	500	200	260	96	400	170	17
CE invl Chlorida	36 ND	34.4 ND	37.7 ND	4.03 ND	NS NS	6.76 ND	4 ND	10.1 ND	6.1 ND	4.6 ND	1.8 ND	2.2 0.24 J	1.4 0.16 J	2.6 ND	1.5 ND	0.
inyl Chloride otal VOCs	ND 21,092.46	7,552.77	ND 6,763.5	ND 1,837.87	NS NS	1,720.98	337.6	935.7	550.50	ND 508.7	ND 233.30	0.24 J 275.04	0.16 J 107.56	ND 405.1	ND 171.5	183
ample ID								MV	V-12							
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/4/2019	4/28/2020	7/27/2020 VOCs (ug/L)	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10,
Chloroform	NS	12.1	6.38	5.43	NS	0.73	ND	1	ND	1.8 J	ND	ND	ND	1	1.7	2
is-1,2-DCE	NS	0.8	0.77	1.05	NS	1.7	ND	0.68 J	ND	6.5	ND	3.7	ND	ND	ND	0.
CE CE	NS NC	159	62.8	77.5	NS NS	104 5.9	28	32 1.2	35 1	100	19 0.54	190	33 0.53	33 0.65	47 0.8	7
otal VOCs	NS NS	5.1 381.47	2.45 83.57	28.5 114.61	NS NS	112.33	1.2 29.2	34.38	36	110.3	19.54	1.4 195.1	33.53	0.65 34.65	49.5	82
ample ID								MV	V-13							
ampling Date	3/26/2018	8/28/2018	12/26/2018	4/8/2019	7/22/2019	10/2/2019	4/28/2020	7/27/2020 VOCs (ug/L)	10/9/2020	1/20/2021	5/10/2021	8/17/2021	11/30/2021	2/22/2022	5/4/2022	8/10
hloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
s-1,2-DCE	0.27 J	2.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
CE CE	0.45 J ND	2 ND	ND ND	ND ND	ND ND	ND ND	0.28 J ND	ND ND	0.29 J ND	0.41 J 0.22 J	0.37 J 0.25 J	0.73 ND	0.34 J ND	0.39 ND	0.31 ND	0.
otal VOCs	9.52	ND 241.29	9.84	1.58	97.5	18.69	0.28	ND ND	1.99	2.13	0.25 J	5.13	0.34	0.39	0.31	0.
OTES: g/L = microgran																
D=result is from a =analyte detected ND=Not Detected PCE = Tetrachloro FCE = Trichloroel	an analysis tha d at or above t d oethylene	he MDL (meth		nit) but below	v the RL (Repor	ting Limit) - d	ata is estimate	ed					En	VIFO vironmental S	rac	

APPENDICES

APPENDIX A

SVE Operations and Maintenance Logs

Table 1 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	acuum	Blowe	er Eff	luent		EW-4	S	VE wells EW-5	1	EW-6	P	T-1	P	T-2		accum Mo T-7		Points V-8	S	V-9	SV-	KG-1	W	eathe	r Conc	ditons
Date/Time	Influent (before knockout tank)			PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Kain	Cloudy	Sunny Windy
6/22/2021 - Scenario A	-54	-62	50	0.2	185	1.9	0	5.6	0	0.2	-44	0.4	-0.006	0.60	-0.016	1	0.000	0.6	-0.312	0.2	-0.258	1.7	-0.008	75		Х	X

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on

Table 2 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE Va	acuum	Blow	er Eff	luent			SV	VE wells								accum Mo							W	/eather	Conc	ditons
							E W-4		EW-5		EW-6	P	'T-1	P	T-2	P	T-7	S	V-8	S	V-9	SV-	KG-1				
Date/Time	Influent (before knockout tank)	Effluent (after knockout tank)	Flow	PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain Snow	Cloudy	Sunny Windy
8/17/2021 - Scenario A	-56	-64	50	2.0	170	-	-	-	-	1.7	-42	0.0	-0.015	0.0	-0.091	0.7	-0.001	0.4	-3	0.1	-0.145	4.7	-0.098	75		Х	Х

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on

Table 1 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	acııım	Blow	er Fff	luent			S	VE wells							V	accum Mo	nitoring	Points					W	Veathe	er Cor	nditons
	SVEV	acaan	Diow	CI LII	ruciit	,	EW-4		EW-5		EW-6	F	T-1	P	T-2	P	T-7	S	V-8	S	SV-9	SV-	-KG-1		· catile	1 COI	laitons
Date/Time	Influent (before knockout tank)	Effluent (after knockout tank)		PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain	Snow	Sunny Windy
9/10/2021 - Scenario A	-55	-64	50	0.6	185	-	-	-	-	2.3	-44	0.4	0.000	0.40	-0.209	2.7	0.000	NA	NA	0.4	-0.309	4.1	-0.01	75		X	X

Vacuum --- Inch Water
PID --- ppm
Flow --- CFM
Temperature --- °F
Scenario A---Monitoring performed

Scenario A---Monitoring performed with only EW-6 turned on

Table 2 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	acuum	Blow	er Effl	luent		EW-4	_	VE wells EW-5		EW-6	I	T-1	P	T-2		accum Moi T-7		Points	S	V-9	SV-	KG-1	V	Veath	er Coı	nditons
Date/Time	Influent (before knockout tank)			PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain	Snow	y Sunny Windy
10/4/2021 - Scenario A	-55	-64	60	0.6	185	-	-	-	-	0.2	-44	0.4	-0.007	0.5	-0.018	1.1	0.000	0.4	-0.288	0.2	-0.242	1.6	-0.003	65		λ	(

Vacuum --- Inch Water PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on

Table 3 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	aciiim	Blow	er Fff	luent			S	VE wells							V	accum Mo	nitoring	Points					W	Veathe	er Co	nditons
	SVEV	acaani	Diow	CI LII	ruciii		EW-4		EW-5		EW-6	I	T-1	P	T-2	P	T-7	S	SV-8	S	SV-9	SV	-KG-1		·cutii	.i C0i	itaitoilo
Date/Time	Influent (before knockout tank)	Effluent (after knockout tank)		PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain	Snow	Cloudy Sunny Windy
11/30/2021 - Scenario A	-56	-68	50	0.7	64	-	-	-	-	0.2	-44	0.1	0.000	0.20	-0.014	0.6	-0.002	0.4	0	0.0	-0.315	0.1	-0.014	42)	K
																		•									

Vacuum --- Inch Water PID --- ppm Flow --- CFM Temperature --- °F Scenario A---Monitoring performed with only EW-6 turned on

Table 4 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE Va	acuum	Blowe	er Effl	uent				VE wells								accum Mo								Weat	ner Cond	ditons
						,	EW-4		EW-5		EW-6	I	PT-1	P	T-2	P	T-7	S	V-8	S	5V-9	SV-	·KG-1				
Date/Time	Influent (before knockout tank)			PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain	Snow Cloudy	Sunny Windy
12/30/2021 - Scenario A	-54	-66	50	0.0	155	-	-	-	-	0.3	-44	1.6	0.000	3.30	-0.032	-	-	-	-	0.8	-0.339	3.7	-0.012	46	Х	X	
																		•									
					-													•				·					

Vacuum --- Inch Water PID --- ppm Flow --- CFM Temperature --- °F Scenario A---Monitoring performed with only EW-6 turned on

Table 5 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	aciiiim	Rlow	or Eff	luent			S	VE wells							V	accum Mo	nitoring	Points					V	Veathe	r Coi	nditons
	SVEV	acuum	Diow	CI LII	luciit		EW-4		EW-5		EW-6	I	T-1	P	T-2	P	T-7	S	6V-8	S	V-9	SV	-KG-1] '	veathe	1 CUI	Iditolis
Date/Time	Influent (before knockout tank)	Effluent (after knockout tank)	Flow	PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain	Cloudy	Sunny Windy
1/24/2022 - Scenario A	-57	-68	50	0.6	155	-	-	-	-	0.1	-46	0.2	0.000	0.10	-0.022	0.3	0.000	0.4	0.000	0.2	-0.474	0.6	-0.015	30		λ	

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on

Table 6 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	acuum	Blow	er Eff	luent				VE wells								accum Mo						***	W	eather	Conc	ditons
Date/Time	Influent (before knockout tank)			PID	Temp		EW-4 Vacuum		Vacuum		EW-6 Vacuum		T-1 Vacuum		T-2 Vacuum		T-7 Vacuum		V-8 Vacuum		V-9 Vacuum		Vacuum	Temp	Snow	Cloudy	Sunny Windy
2/14/2022 - Scenario A	-60	-72	50	0.2	125	-	-	-	-	0.1	-50	0.7	-0.018	-	-	1	-	ı	-	0.1	-0.26	0.1	-0.007	3°F			Х
																											$oldsymbol{ol}oldsymbol{ol}oldsymbol{ol}}}}}}}}}}}}}}}}}}$

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on

Table 7 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	acuum	Blow	er Eff	luent		EW-4		VE wells EW-5		EW-6	ı	T-1	Р	T-2		accum Mo T-7		Points V-8	S	V-9	SV-	KG-1	,	Weath	er Co	onditor	ıs
Date/Time	Influent (before knockout tank)	Effluent (after knockout tank)	Flow	PID	Temp								Vacuum		Vacuum				Vacuum		Vacuum		Vacuum	Temp	Rain	Snow	Cloudy	Windy
3/24/2022 - Scenario A	-59	-70	50	0.0	150	-	-	-	-	0.2	-49	2.0	0.000	2.70	-0.045	-	-	-	-	0.5	-0.333	4.1	-0.009	27	Х		X	

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on NA --- Not Accessible Due to On-going Construction At The Site

Table 8 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	acuum	Blowe	er Effl	luent		EW-4	_	VE wells EW-5		EW-6	T.	T-1	Р	T-2		accum Mo T-7		Points V-8	S	V-9	SV.	-KG-1	,	Weath	er Co	ndito	ns
Date/Time	Influent (before knockout tank)	Effluent (after knockout tank)	Flow	PID	Temp						Vacuum				Vacuum				Vacuum		Vacuum	PID	Vacuum	Temp	Rain		Cloudy	Windy
4/20/2022 - Scenario A	-58	-68	77	0.5	113	-	-		-	0.4	-48	0.4	-0.007	0.20	-0.016	0.9	0.000	0.5	-0.010	0.4	-0.71	1.3	-0.015	54)	
																												T

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on NA --- Not Accessible Due to On-going Construction At The Site

Table 9 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE V	acuum	Blow	er Eff	luent		EW-4		VE wells EW-5		EW-6	I	T-1	P'	T-2		accum Mo T-7		Points V-8	S	V-9	SV-	KG-1	·	Neath	er Co	onditons
Date/Time	Influent (before knockout tank)			PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum		Vacuum	Temp	Rain	Snow	Cloudy Sunny Windy
5/4/2022 - Scenario A	-50	-66	50	0.1	158	-	-	-	-	0.6	-46	0.1	-0.185	0.0	0.000	0.0	0.000	0.1	0.000	0.1	-1.186	0.0	-0.015	57	Χ)	X
																				•		•					
																		·		•		•					

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on

Table 10 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE Va	acuum	Blowe	er Effl	luent		DY 17 4		VE wells								accum Mo					OY.	***	,	Veath	er Co	ndito	ns
n . m							EW-4		EW-5		EW-6	P	T-1	P	Г-2	P	Т-7	S	V-8	5	V-9	SV.	KG-1					
Date/Time	Influent (before knockout tank)			PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain		Cloudy	Windy
6/15/2022 - Scenario A	-55	-65	60	0.1	195	-	-	-	-	0.1	-44	0.1	-0.338	0.00	-0.108	1.8	-0.200	3.3	-0.013	0.0	-1.225	0.0	-1.095	75)	í l

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on NA --- Not Accessible Due to On-going Construction At The Site

Table 11 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE Va	acuum	Blowe	r Effl	uent				VE wells								accum Mo							,	Weath	er Co	nditons
							EW-4		EW-5		EW-6	I	PT-1	P	Т-2	P	T-7	S	V-8	S	V-9	SV-	KG-1				
Date/Time	Influent (before knockout tank)	Effluent (after knockout tank)	Flow	PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain	Snow	Cloudy Sunny Windy
7/25/2022 - Scenario A	-54	-66	70	0.7	190	-	-	-	-	0.6	-44	0.0	-1.429	0.00	-0.103	0.0	-0.527	1.8	-0.001	0.0	-0.195	0.0	-0.213	80)	X
																				•		·					

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on

Table 12 Monitoring Data Log Sheet - Interim SVE System Beneath Building Slab

77-57 Vleigh Place (77-39/63 Vleigh Place a.k.a. 141-15 78th Avenue), Flushing, New York, NYSDEC Site Number: C241168

	SVE Va	aciiim	Blow	er Eff	luent			S	VE wells							V	accum Mo	nitoring	Points					V	Veath	er Co	onditons
	31211	acadin	Dion	CI 2311.	ruciii		EW-4		EW-5		EW-6	I	PT-1	P	T-2	P	T-7	S	5V-8	S	V-9	SV-	KG-1	•	·cum		nanons
Date/Time	Influent (before knockout tank)			PID	Temp	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	PID	Vacuum	Temp	Rain	Snow	Cloudy Sunny Windy
8/10/2022 - Scenario A	-54	-64	60	0.1	90	-	-	-	-	0.1	-44	0.1	0.000	0.10	-0.001	3	-0.011	0.2	-0.002	0.0	0.000	0.0	-0.002	80			X
9/14/2022 - Scenario A	-55	-65	50	-	-	-	-	-	-	-	-45	-	-0.068	-	-0.027	-	0.000	-	-0.004	-	-0.227	-	-0.209	80			Х

Vacuum --- Inch Water

PID --- ppm Flow --- CFM

Temperature --- °F

Scenario A---Monitoring performed with only EW-6 turned on

APPENDIX B

Laboratory Reports

ANALYTICAL REPORT

Lab Number: L2243234

Client: Envirotrac Ltd.

5 Old Dock Road Yaphank, NY 11980

ATTN: Tracy Wall

Phone: (631) 924-3001

Project Name: Not Specified

Project Number: Not Specified

Report Date: 08/25/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: Not Specified Project Number: Not Specified

 Lab Number:
 L2243234

 Report Date:
 08/25/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2243234-	-01 INFLUENT	SOIL_VAPOR	77-63 VLEIGH	08/10/22 11:36	08/11/22
L2243234-	-02 EFFLUENT	SOIL_VAPOR	77-63 VLEIGH	08/10/22 11:46	08/11/22
L2243234-	-03 UNUSED CAN2621	AIR	77-63 VLEIGH		08/11/22

Project Name:Not SpecifiedLab Number:L2243234Project Number:Not SpecifiedReport Date:08/25/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:Not SpecifiedLab Number:L2243234Project Number:Not SpecifiedReport Date:08/25/22

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on August 10, 2022. The canister certification results are provided as an addendum.

L2243234-02D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

huy nohma Jennifer Jerome

Authorized Signature:

Title: Technical Director/Representative Date: 08/25/22

AIR

Project Number: Not Specified Report Date: 08/25/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/10/22 11:36

Client ID: INFLUENT Date Received: 08/11/22
Sample Location: 77-63 VLEIGH Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/23/22 23:14

Analyst: TS

ppbV			ug/m3			Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.449	0.200		2.22	0.989			1
Chloromethane	0.206	0.200		0.425	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	17.0	5.00		32.0	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	14.1	1.00		33.5	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	2.16	0.500		5.31	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	1.29	0.500		3.91	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	17.9	0.500		52.8	1.47			1
cis-1,2-Dichloroethene	0.311	0.200		1.23	0.793			1

Project Number: Not Specified Report Date: 08/25/22

SAMPLE RESULTS

 Lab ID:
 L2243234-01
 Date Collected:
 08/10/22 11:36

 Client ID:
 INFLUENT
 Date Received:
 08/11/22

Client ID: INFLUENT Date Received: 08/11/22
Sample Location: 77-63 VLEIGH Field Prep: Not Specified

Sample Depth:

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	12.3	0.200		60.1	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.519	0.200		1.83	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	1.79	0.200		5.72	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.234	0.200		0.805	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	0.624	0.200		4.18	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	1.59	0.200		8.55	1.07			1
2,2,4-Trimethylpentane	0.320	0.200		1.49	0.934			1
Heptane	0.784	0.200		3.21	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	4.58	0.200		17.3	0.754			1
2-Hexanone	1.15	0.200		4.71	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	95.1	0.200		645	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.888	0.200		3.86	0.869			1

Project Number: Not Specified Report Date: 08/25/22

SAMPLE RESULTS

 Lab ID:
 L2243234-01
 Date Collected:
 08/10/22 11:36

 Client ID:
 INFLUENT
 Date Received:
 08/11/22

Client ID: INFLUENT Date Received: 08/11/22
Sample Location: 77-63 VLEIGH Field Prep: Not Specified

Sample Depth:

	ppbV ug/m3					Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
2.98	0.400		12.9	1.74			1
ND	0.200		ND	2.07			1
0.458	0.200		1.95	0.852			1
ND	0.200		ND	1.37			1
1.30	0.200		5.65	0.869			1
0.336	0.200		1.65	0.983			1
0.444	0.200		2.18	0.983			1
1.87	0.200		9.19	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	2.98 ND 0.458 ND 1.30 0.336 0.444 1.87 ND ND ND ND ND	Results RL 2.98 0.400 ND 0.200 0.458 0.200 ND 0.200 1.30 0.200 0.336 0.200 0.444 0.200 1.87 0.200 ND 0.200	Results RL MDL d Lab 2.98 0.400 ND 0.200 0.458 0.200 ND 0.200 1.30 0.200 0.336 0.200 0.444 0.200 ND 0.200	Results RL MDL Results d Lab 2.98 0.400 12.9 ND 0.200 ND 0.458 0.200 ND 1.30 0.200 ND 1.30 0.200 5.65 0.336 0.200 1.65 0.444 0.200 9.19 ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL d Lab 2.98 0.400 12.9 1.74 ND 0.200 ND 2.07 0.458 0.200 ND 1.37 1.30 0.200 ND 1.37 1.30 0.200 5.65 0.869 0.336 0.200 1.65 0.983 0.444 0.200 2.18 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL 3 Lab 2.98 0.400 12.9 1.74 ND 0.200 ND 2.07 0.458 0.200 1.95 0.852 ND 0.200 ND 1.37 1.30 0.200 ND 1.37 1.30 0.200 5.65 0.869 0.336 0.200 1.65 0.983 0.444 0.200 2.18 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND	Results RL MDL Results RL MDL Qualifier d Lab 2.98 0.400 12.9 1.74 ND 0.200 ND 2.07 0.458 0.200 ND 1.37 ND 0.200 ND 1.37 1.30 0.200 ND 1.37 0.336 0.200 1.65 0.983 0.444 0.200 9.19 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	91		60-140

Project Number: Not Specified Report Date: 08/25/22

SAMPLE RESULTS

Lab ID: L2243234-02 D Date Collected: 08/10/22 11:46

Client ID: EFFLUENT Date Received: 08/11/22 Sample Location: 77-63 VLEIGH Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/23/22 23:51

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.426	0.400		2.11	1.98			2
Chloromethane	0.646	0.400		1.33	0.826			2
Freon-114	ND	0.400		ND	2.80			2
Vinyl chloride	ND	0.400		ND	1.02			2
1,3-Butadiene	ND	0.400		ND	0.885			2
Bromomethane	ND	0.400		ND	1.55			2
Chloroethane	ND	0.400		ND	1.06			2
Ethanol	23.0	10.0		43.3	18.8			2
Vinyl bromide	ND	0.400		ND	1.75			2
Acetone	59.2	2.00		141	4.75			2
Trichlorofluoromethane	ND	0.400		ND	2.25			2
Isopropanol	2.48	1.00		6.10	2.46			2
1,1-Dichloroethene	ND	0.400		ND	1.59			2
Tertiary butyl Alcohol	8.15	1.00		24.7	3.03			2
Methylene chloride	ND	1.00		ND	3.47			2
3-Chloropropene	ND	0.400		ND	1.25			2
Carbon disulfide	ND	0.400		ND	1.25			2
Freon-113	ND	0.400		ND	3.07			2
trans-1,2-Dichloroethene	ND	0.400		ND	1.59			2
1,1-Dichloroethane	ND	0.400		ND	1.62			2
Methyl tert butyl ether	ND	0.400		ND	1.44			2
2-Butanone	6.39	1.00		18.8	2.95			2
cis-1,2-Dichloroethene	ND	0.400		ND	1.59			2

Project Number: Not Specified Report Date: 08/25/22

SAMPLE RESULTS

Lab ID: L2243234-02 D Date Collected: 08/10/22 11:46

Client ID: EFFLUENT Date Received: 08/11/22 Sample Location: 77-63 VLEIGH Field Prep: Not Specified

Sample Depth:

Sample Depth:	ppbV ug/m3					Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Ethyl Acetate	ND	1.00		ND	3.60			2
Chloroform	6.87	0.400		33.5	1.95			2
Tetrahydrofuran	ND	1.00		ND	2.95			2
1,2-Dichloroethane	ND	0.400		ND	1.62			2
n-Hexane	0.462	0.400		1.63	1.41			2
1,1,1-Trichloroethane	ND	0.400		ND	2.18			2
Benzene	2.94	0.400		9.39	1.28			2
Carbon tetrachloride	ND	0.400		ND	2.52			2
Cyclohexane	0.460	0.400		1.58	1.38			2
1,2-Dichloropropane	ND	0.400		ND	1.85			2
Bromodichloromethane	ND	0.400		ND	2.68			2
1,4-Dioxane	ND	0.400		ND	1.44			2
Trichloroethene	1.57	0.400		8.44	2.15			2
2,2,4-Trimethylpentane	ND	0.400		ND	1.87			2
Heptane	0.602	0.400		2.47	1.64			2
cis-1,3-Dichloropropene	ND	0.400		ND	1.82			2
4-Methyl-2-pentanone	ND	1.00		ND	4.10			2
trans-1,3-Dichloropropene	ND	0.400		ND	1.82			2
1,1,2-Trichloroethane	ND	0.400		ND	2.18			2
Toluene	3.98	0.400		15.0	1.51			2
2-Hexanone	0.808	0.400		3.31	1.64			2
Dibromochloromethane	ND	0.400		ND	3.41			2
1,2-Dibromoethane	ND	0.400		ND	3.07			2
Tetrachloroethene	160	0.400		1080	2.71			2
Chlorobenzene	ND	0.400		ND	1.84			2
Ethylbenzene	0.794	0.400		3.45	1.74			2

Project Number: Not Specified Report Date: 08/25/22

SAMPLE RESULTS

Lab ID: L2243234-02 D Date Collected: 08/10/22 11:46

Client ID: EFFLUENT Date Received: 08/11/22
Sample Location: 77-63 VLEIGH Field Prep: Not Specified

Sample Depth:

	ppbV	ug/m3					Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab							
2.57	0.800		11.2	3.47			2
ND	0.400		ND	4.14			2
ND	0.400		ND	1.70			2
ND	0.400		ND	2.75			2
1.11	0.400		4.82	1.74			2
ND	0.400		ND	1.97			2
ND	0.400		ND	1.97			2
1.15	0.400		5.65	1.97			2
ND	0.400		ND	2.07			2
ND	0.400		ND	2.40			2
ND	0.400		ND	2.40			2
ND	0.400		ND	2.40			2
ND	0.400		ND	2.97			2
ND	0.400		ND	4.27			2
	Lab 2.57 ND ND 1.11 ND ND 1.15 ND ND ND ND ND ND ND ND ND N	Results RL Lab 2.57 0.800 ND 0.400 ND 0.400 ND 0.400 1.11 0.400 ND 0.400	Results RL MDL Lab 2.57 0.800 ND 0.400 ND 0.400 ND 0.400 1.11 0.400 ND 0.400	Results RL MDL Results Lab 2.57 0.800 11.2 ND 0.400 ND ND 0.400 ND ND 0.400 ND 1.11 0.400 ND ND 0.400 ND	Results RL MDL Results RL Lab 2.57 0.800 11.2 3.47 ND 0.400 ND 4.14 ND 0.400 ND 1.70 ND 0.400 ND 2.75 1.11 0.400 ND 1.97 ND 0.400 ND 1.97 ND 0.400 ND 2.07 ND 0.400 ND 2.40 ND 0.400 ND 2.40 ND 0.400 ND 2.40 ND 0.400 ND 2.40 ND 0.400 ND 2.97	Results RL MDL Results RL MDL Lab 2.57 0.800 11.2 3.47 ND 0.400 ND 4.14 ND 0.400 ND 1.70 ND 0.400 ND 2.75 1.11 0.400 ND 1.97 ND 0.400 ND 1.97 ND 0.400 ND 2.07 ND 0.400 ND 2.40 ND 0.400 ND 2.40 ND 0.400 ND 2.40 ND 0.400 ND 2.40 ND 0.400 ND 2.97	Results RL MDL Results RL MDL Qualifier Lab 2.57 0.800 11.2 3.47 ND 0.400 ND 4.14 ND 0.400 ND 1.70 ND 0.400 ND 2.75 1.11 0.400 ND 1.97 ND 0.400 ND 1.97 ND 0.400 ND 2.07 ND 0.400 ND 2.40 ND 0.400 ND 2.40 ND 0.400 ND 2.40 ND 0.400 ND 2.97

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

Project Name:Not SpecifiedLab Number:L2243234Project Number:Not SpecifiedReport Date:08/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/23/22 17:30

		ppbV			ug/m3		_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	-02 Batch	: WG16787	' 30-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: Not Specified Lab Number: L2243234 Project Number: Not Specified

Report Date: 08/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/23/22 17:30

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01	-02 Batch	n: WG16787	30-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: Not Specified Lab Number: L2243234 Project Number: Not Specified

Report Date: 08/25/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/23/22 17:30

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-02 Batch	n: WG16787	30-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

Project Name: Not Specified
Project Number: Not Specified

Lab Number: L2243234

Report Date: 08/25/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-02	Batch: WG167873	0-3				
Dichlorodifluoromethane	89		-		70-130	-		
Chloromethane	91		-		70-130	-		
Freon-114	95		-		70-130	-		
Vinyl chloride	92		-		70-130	-		
1,3-Butadiene	96		-		70-130	-		
Bromomethane	90		-		70-130	-		
Chloroethane	90		-		70-130	-		
Ethanol	81		-		40-160	-		
Vinyl bromide	81		-		70-130	-		
Acetone	82		-		40-160	-		
Trichlorofluoromethane	77		-		70-130	-		
Isopropanol	77		-		40-160	-		
1,1-Dichloroethene	93		-		70-130	-		
Tertiary butyl Alcohol	80		-		70-130	-		
Methylene chloride	100		-		70-130	-		
3-Chloropropene	97		-		70-130	-		
Carbon disulfide	94		-		70-130	-		
Freon-113	98		-		70-130	-		
trans-1,2-Dichloroethene	81		-		70-130	-		
1,1-Dichloroethane	88		-		70-130	-		
Methyl tert butyl ether	95		-		70-130	-		
2-Butanone	93		-		70-130	-		
cis-1,2-Dichloroethene	88		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: Not Specified
Project Number: Not Specified

Lab Number: L2243234

Report Date: 08/25/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG167873	80-3				
Ethyl Acetate	86		-		70-130	-		
Chloroform	89		-		70-130	-		
Tetrahydrofuran	95		-		70-130	-		
1,2-Dichloroethane	74		-		70-130	-		
n-Hexane	93		-		70-130	-		
1,1,1-Trichloroethane	91		-		70-130	-		
Benzene	105		-		70-130	-		
Carbon tetrachloride	90		-		70-130	-		
Cyclohexane	95		-		70-130	-		
1,2-Dichloropropane	102		-		70-130	-		
Bromodichloromethane	92		-		70-130	-		
1,4-Dioxane	102		-		70-130	-		
Trichloroethene	104		-		70-130	-		
2,2,4-Trimethylpentane	96		-		70-130	-		
Heptane	109		-		70-130	-		
cis-1,3-Dichloropropene	115		-		70-130	-		
4-Methyl-2-pentanone	109		-		70-130	-		
trans-1,3-Dichloropropene	94		-		70-130	-		
1,1,2-Trichloroethane	110		-		70-130	-		
Toluene	112		-		70-130	-		
2-Hexanone	120		-		70-130	-		
Dibromochloromethane	111		-		70-130	-		
1,2-Dibromoethane	118		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: Not Specified
Project Number: Not Specified

Lab Number: L2243234

Report Date: 08/25/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-02	Batch: WG167873	30-3				
Tetrachloroethene	113		-		70-130	-		
Chlorobenzene	116		-		70-130	-		
Ethylbenzene	119		-		70-130	-		
p/m-Xylene	116		-		70-130	-		
Bromoform	119		-		70-130	-		
Styrene	125		-		70-130	-		
1,1,2,2-Tetrachloroethane	112		-		70-130	-		
o-Xylene	118		-		70-130	-		
4-Ethyltoluene	113		-		70-130	-		
1,3,5-Trimethylbenzene	120		-		70-130	-		
1,2,4-Trimethylbenzene	120		-		70-130	-		
Benzyl chloride	92		-		70-130	-		
1,3-Dichlorobenzene	114		-		70-130	-		
1,4-Dichlorobenzene	113		-		70-130	-		
1,2-Dichlorobenzene	114		-		70-130	-		
1,2,4-Trichlorobenzene	101		-		70-130	-		
Hexachlorobutadiene	105		-		70-130	-		

Lab Number: L2243234

Report Date: 08/25/22

Project Number:

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2243234-01	INFLUENT	01717	Flow 2	08/10/22	396302		-	-	-	Pass	40.7	40.0	2
L2243234-01	INFLUENT	972	6.0L Can	08/10/22	396302	L2239490-05	Pass	-29.5	-5.9	-	-	-	-
L2243234-02	EFFLUENT	02128	Flow 2	08/10/22	396302		-	-	-	Pass	40.3	39.8	1
L2243234-02	EFFLUENT	2848	6.0L Can	08/10/22	396302	L2239490-05	Pass	-29.4	-8.4	-	-	-	-
L2243234-03	UNUSED_CAN2621	02167	Flow 2	08/10/22	396302		-	-	-	Pass	40.1	36.7	9
L2243234-03	UNUSED_CAN2621	2621	6.0L Can	08/10/22	396302	L2239490-05	Pass	-29.4	-29.3	-	-	-	-

Project Name:

L2239490

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/25/22

Air Canister Certification Results

Lab ID: L2239490-05

Date Collected: 07/22/22 18:00 Client ID: **CAN 1819 SHELF 33** Date Received: 07/25/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 07/25/22 20:38

Analyst: TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
,1-Dichloroethene	ND	0.200		ND	0.793			1

L2239490

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 08/25/22

Air Canister Certification Results

Lab ID: L2239490-05

Date Collected: 07/22/22 18:00 Client ID: **CAN 1819 SHELF 33** 07/25/22 Date Received:

Sample Location: Field Prep: Not Specified

Sample Depth:

Запіріє Беріп.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2239490

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 08/25/22

Air Canister Certification Results

Lab ID: L2239490-05

Date Collected: 07/22/22 18:00 Client ID: **CAN 1819 SHELF 33** Date Received: 07/25/22

Sample Location: Field Prep: Not Specified

Sample Depth:

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
richloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2239490

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 08/25/22

Air Canister Certification Results

Lab ID: L2239490-05

Date Collected: 07/22/22 18:00 Client ID: **CAN 1819 SHELF 33** Date Received: 07/25/22

Sample Location: Field Prep: Not Specified

Затріє Берті.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2239490

Project Number: CANISTER QC BAT **Report Date:** 08/25/22

Air Canister Certification Results

Lab ID: L2239490-05

Date Collected: 07/22/22 18:00 Client ID: **CAN 1819 SHELF 33** Date Received: 07/25/22

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	93		60-140

L2239490

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/25/22

Air Canister Certification Results

Lab ID: L2239490-05

Date Collected: 07/22/22 18:00 Client ID: **CAN 1819 SHELF 33** Date Received: 07/25/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 07/25/22 20:38

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2239490

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 08/25/22

Air Canister Certification Results

Lab ID: L2239490-05

Date Collected: 07/22/22 18:00 Client ID: **CAN 1819 SHELF 33** Date Received: 07/25/22

Sample Location: Field Prep: Not Specified

Sample Deptil.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2239490

Project Number: CANISTER QC BAT **Report Date:** 08/25/22

Air Canister Certification Results

Lab ID: L2239490-05

Date Collected: 07/22/22 18:00 Client ID: **CAN 1819 SHELF 33** Date Received: 07/25/22

Sample Location: Field Prep: Not Specified

, ,		ppbV		ug/m3			_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	93		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	93		60-140

Not Specified Lab Number: L2243234

Report Date: 08/25/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

NA Absent

Project Number: Not Specified

Container Info	ntainer Information		Initial	Final	Temp		Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C Pres	Seal	Date/Time	Analysis(*)
L2243234-01A	Canister - 6 Liter	NA	NA		Υ	Absent		TO15-LL(30)
L2243234-02A	Canister - 6 Liter	NA	NA		Υ	Absent		TO15-LL(30)
L2243234-03A	Canister - 6 Liter	NA	NA		Υ	Absent		CLEAN-FEE()

Project Name:Not SpecifiedLab Number:L2243234Project Number:Not SpecifiedReport Date:08/25/22

GLOSSARY

Acronyms

EDL

LCSD

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:Not SpecifiedLab Number:L2243234Project Number:Not SpecifiedReport Date:08/25/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:Not SpecifiedLab Number:L2243234Project Number:Not SpecifiedReport Date:08/25/22

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:Not SpecifiedLab Number:L2243234Project Number:Not SpecifiedReport Date:08/25/22

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

M	AIR	ANALYSIS		1	1		- A W 200	0	11212		11		NO.00252211	
ALPHA	CHAIN OF CUSTOD	Charles developed the	PA	GEOF	-	Date R	ec'd in La	b: 0	112/2	~	1	1000 F.1	b#: L22	4023
320 Forbes Blvd, M.	Particle de Barries	Project Inform	ation			Repo	rt Inform	ation - I	Data Deliv	erables			rmation	
	FAX: 508-822-3288	Project Name:				D FAX					M Sa	me as Cl	ient info PO#	
Client Information		Project Location:	7-63 Ule	igh		□ ADI	ex Criteria Ch	ecker.						
Client: Envin	oTrac Ltd	Project #.					(Default base Other Form	V 10 10 4 4	atory Criteria In	ckcateki)				
Address: 5 0	A Dock Road	Project Manager:	Project Manager: Tracy Wall EMAIL (standard pdf report)					Regulatory Requirements/Report						
Xaphon	K NY 11980	ALFRA Quote #			-			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			State	e/Fed	Program	Res / Comi
	243001	Turn-Around	ime			Report	to: of different	I than Project	Manager)					
Fax:		Standard	☐ RUSH (mit) o	anterned if pre-approv	vest()									
Email: Tracyw	Denuration (a)	n										1.7	YSIS	
These samples have	ve been previously analyzed by Al specific Requirements/C	pha Date Due:		Time:		Į					11	2	8/6	
											/ / ,	The state of the s	A. A	SPB
Project-Specific	: Target Compound List	. 4								/	1/	2 2 S	1//49	SPB : UIS/E
		All Colum	ns Bel	ow M	ust	Bel	Filled	10	ıt	40	SIM	Gas,	1/00	10
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date Start Ti	DLLECTIO	N Initial Vacuum V	Final acuum	Sample Matrix*	Sampler's	Can	Sen Cont	Flow Police	APH 348	Suntries & Marray	Sample Co	omments (i.e. Pl
13234-01	Inflent	B/10/22 10.05		-30.14=1		SV	TAT	972		1				
02	ERLINT	8/10/22 9:4	3 11:46	-29.89 -	7.84	SV	SAL	2848	0219	1				
												П		
												T		
		AA = Ambient Air (Ind	oor/Outdoor)								++	+		
*SAMPLI	E MATRIX CODES		A = Ambient Air (Indoor/Outdoor) V = Soil Vapor/Landfill Gas/SVE				C	ontainer	Туре	SV	11			dearly, legibly and Samples can not be
		Relinquished By:		Date/7	Time	1	1) Bloca	ived By:			Date/Tin	ne:	clock will not	turnaround time start until any amb
	1	(A) / Environ	CLID.	i i		Hul	Hac	e - 1	AML	8/11/2	2	9:30	submitted are	solved. All sample subject to Alpha's
) 1 00	124	Price A	AL	3/11/22	13:4	5	DN C	CHAI		841	22	2350	Terms and Co See reverse :	
age:33:0f233::(25	-Sep-15)	0/		100/10	7	-	-10	H I-I		6111	162	6 220		

ANALYTICAL REPORT

Lab Number: L2243252

Client: Envirotrac Ltd.

5 Old Dock Road Yaphank, NY 11980

ATTN: Tracy Wall
Phone: (631) 924-3001

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Report Date: 08/24/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

 Lab Number:
 L2243252

 Report Date:
 08/24/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2243252-01	MW-1	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 10:57	08/11/22
L2243252-02	MW-2	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 07:51	08/11/22
L2243252-03	MW-3S	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 09:49	08/11/22
L2243252-04	MW-3D	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 10:12	08/11/22
L2243252-05	MW-6	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 11:11	08/11/22
L2243252-06	MW-7	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 07:25	08/11/22
L2243252-07	MW-11	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 11:21	08/11/22
L2243252-08	MW-12	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 09:09	08/11/22
L2243252-09	MW-13	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 08:33	08/11/22
L2243252-10	TRIP BLANK	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 00:00	08/11/22
L2243252-11	FIELD BLANK	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 09:50	08/11/22
L2243252-12	EQUIPMENT BLANK	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 10:09	08/11/22
L2243252-13	BLIND DUPLICATE	WATER	77-63 VLEIGH PLACE, FLUSHING, NY	08/10/22 07:29	08/11/22

Project Name: 77-63 VLEIGH PLACE Lab Number: L2243252

Project Number: 01.002303.00

Project Number: 01.002303.00

Project Number: 01.002303.00

Project Number: 01.992302.00 **Report Date:** 08/24/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 77-63 VLEIGH PLACE Lab Number: L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Steven Gniadek

Authorized Signature:

Title: Technical Director/Representative

Date: 08/24/22

ORGANICS

VOLATILES

08/10/22 10:57

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

L2243252

Lab Number:

Date Collected:

Report Date: 08/24/22

Lab ID: L2243252-01

Client ID: MW-1

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Date Received: 08/11/22 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/16/22 14:40

Analyst: LAC

Volatile Organics by GC/MS - Westborough L Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND ND ND ND ND ND ND	ug/l ug/l ug/l	2.5 2.5	0.70 0.70	1
1,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND	ug/l			
Chloroform Carbon tetrachloride	ND ND		2.5	0.70	
Carbon tetrachloride	ND	ug/l			1
		ug/i	2.5	0.70	1
1,2-Dichloropropane	ND	ug/l	0.50	0.13	1
		ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	15	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	4.3	ug/l	0.50	0.18	1

L2243252

Lab Number:

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 Report Date: 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-01 Date Collected: 08/10/22 10:57

Client ID: Date Received: 08/11/22 MW-1 Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-01 Date Collected: 08/10/22 10:57

Client ID: MW-1 Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	100	70-130	

L2243252

08/10/22 07:51

Not Specified

08/11/22

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Report Date: 08/24/22

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2243252-02

Client ID: MW-2

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/16/22 15:06

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	5.1		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	20		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.46	J	ug/l	0.50	0.18	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-02 Date Collected: 08/10/22 07:51

Client ID: MW-2 Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-02 Date Collected: 08/10/22 07:51

Client ID: MW-2 Date Received: 08/11/22 Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	101	70-130	

08/10/22 09:49

Not Specified

08/11/22

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number: L2243252

Date Collected:

Date Received:

Field Prep:

Report Date: 08/24/22

SAMIFEE RESU

Lab ID: L2243252-03 D

Client ID: MW-3S

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/16/22 15:32

Analyst: LAC

1,1-Dichloroethane ND ug/l 6.2 1.8 2.5 Chloroform 14 ug/l 6.2 1.8 2.5 Carbon tetrachloride ND ug/l 1.2 0.34 2.5 1,2-Dichloropropane ND ug/l 1.2 0.34 2.5 Dibromochloromethane ND ug/l 1.2 0.37 2.5 Dibromochloromethane ND ug/l 1.2 0.45 2.5 Tetrachloroethane ND ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichloroflucromethane ND ug/l 6.2 1.8 2.5 Trichloroethane ND ug/l 1.2 0.48 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloromethane ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 6.2	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,1-Dichloroethane	Volatile Organics by GC/MS - We	estborough Lab						
Chloroform 14 ug/l 6.2 1.8 2.5 Carbon tetrachloride ND ug/l 1.2 0.34 2.5 L2-Dichloropropane ND ug/l 2.5 0.34 2.5 Dibromochloromethane ND ug/l 1.2 0.37 2.5 1,1,2-Trichloroethane ND ug/l 3.8 1.2 2.5 1,1,2-Trichloroethane ND ug/l 6.2 1.8 2.5 Chlorobanzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloromethane ND ug/l 1.2 0.44 2.5 Bromodichloropropene ND ug/l 6.2	Methylene chloride	ND		ug/l	6.2	1.8	2.5	
Carbon tetrachloride ND ug/l 1.2 0.34 2.5 1,2-Dichloropropane ND ug/l 2.5 0.34 2.5 Dibromochloromethane ND ug/l 1.2 0.37 2.5 1,1,2-Trichloroethane ND ug/l 3.8 1.2 2.5 Tetrachloroethane 260 ug/l 1.2 0.45 2.5 Chlorobarzene ND ug/l 6.2 1.8 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 6.	1,1-Dichloroethane	ND		ug/l	6.2	1.8	2.5	
1,2-Dichloropropane ND ug/l 2.5 0.34 2.5 Dibromochloromethane ND ug/l 1.2 0.37 2.5 1,1,2-Trichloroethane ND ug/l 3.8 1.2 2.5 Tetrachloroethene 260 ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 Trichloroethane ND ug/l 6.2 1.8 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.43 2.5 Bromodichloropropene ND ug/l 1.2 0.48 2.5 trans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 1.2 <td>Chloroform</td> <td>14</td> <td></td> <td>ug/l</td> <td>6.2</td> <td>1.8</td> <td>2.5</td> <td></td>	Chloroform	14		ug/l	6.2	1.8	2.5	
Dibromochloromethane ND ug/l 1.2 0.37 2.5 1,1,2-Trichloroethane ND ug/l 3.8 1.2 2.5 Tetrachloroethane 260 ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 6.2 1.8 2.5 Itans-1,3-Dichloropropene ND ug/l 1.2 0.48 2.5 Istans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 Istans-1,2-Tetrachloropropene ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 6.2	Carbon tetrachloride	ND		ug/l	1.2	0.34	2.5	
1,1,2-Trichloroethane ND ug/l 3.8 1.2 2.5 Tetrachloroethene 260 ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichloroffluoromethane ND ug/l 6.2 1.8 2.5 Trichloroethane ND ug/l 6.2 1.8 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 trans-1,3-Dichloropropene ND ug/l 1.2 0.48 2.5 trans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 Bromoform ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 6.2 1.8 2.5 Toluene ND ug/l 6.2 1.8	1,2-Dichloropropane	ND		ug/l	2.5	0.34	2.5	
Tetrachloroethene 260 ug/l 1.2 0.45 2.5 Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 Trichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 5.0 1.6 2.5 Benzene ND ug/l 6.2 1.8 2.5 Toluene ND ug/l 6.2 1.8 2.5 </td <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.2</td> <td>0.37</td> <td>2.5</td> <td></td>	Dibromochloromethane	ND		ug/l	1.2	0.37	2.5	
Chlorobenzene ND ug/l 6.2 1.8 2.5 Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 1,2-Dichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 5.0 1.6 2.5 Benzene ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5	1,1,2-Trichloroethane	ND		ug/l	3.8	1.2	2.5	
Trichlorofluoromethane ND ug/l 6.2 1.8 2.5 1,2-Dichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.36 2.5 1,1-Dichloropropene ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 5.0 1.6 2.5 1,1-2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Chlorocethane ND ug/l 6.2 1.8 2.5	Tetrachloroethene	260		ug/l	1.2	0.45	2.5	
1,2-Dichloroethane ND ug/l 1.2 0.33 2.5 1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5 Bromodichloromethane ND ug/l 1.2 0.48 2.5 Bromodichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.36 2.5 1,1-Dichloropropene ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 5.0 1.6 2.5 Bromoform ND ug/l 1.2 0.42 2.5 Bromoferm ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 6.2 1.8 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 <	Chlorobenzene	ND		ug/l	6.2	1.8	2.5	
1,1,1-Trichloroethane ND ug/l 6.2 1.8 2.5	Trichlorofluoromethane	ND		ug/l	6.2	1.8	2.5	
ND	1,2-Dichloroethane	ND		ug/l	1.2	0.33	2.5	
trans-1,3-Dichloropropene ND ug/l 1.2 0.41 2.5 cis-1,3-Dichloropropene ND ug/l 1.2 0.36 2.5 1,1-Dichloropropene ND ug/l 6.2 1.8 2.5 1,1-Dichloropropene ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.40 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.40 2.5 1,1,2,2-Tetrachloroethane ND ug/l 6.2 1.8 2.5 1,1,2,2-Tetrachloroethane ND ug	1,1,1-Trichloroethane	ND		ug/l	6.2	1.8	2.5	
cis-1,3-Dichloropropene ND ug/l 1.2 0.36 2.5 1,1-Dichloropropene ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Vinyl chloride ND ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 Chloroethene ND ug/l 6.2 1.8 2.5 Chloroethene ND ug/l 6.2 1.8 2.5 Chloroethene ND ug/l 6.2 1.8 2.5 <	Bromodichloromethane	ND		ug/l	1.2	0.48	2.5	
1,1-Dichloropropene ND ug/l 6.2 1.8 2.5 Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5	
Bromoform ND ug/l 5.0 1.6 2.5 1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride ND ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 6.2 1.8 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5	
1,1,2,2-Tetrachloroethane ND ug/l 1.2 0.42 2.5 Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride ND ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	1,1-Dichloropropene	ND		ug/l	6.2	1.8	2.5	
Benzene ND ug/l 1.2 0.40 2.5 Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride ND ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	Bromoform	ND		ug/l	5.0	1.6	2.5	
Toluene ND ug/l 6.2 1.8 2.5 Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride ND ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.42	2.5	
Ethylbenzene ND ug/l 6.2 1.8 2.5 Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride ND ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	Benzene	ND		ug/l	1.2	0.40	2.5	
Chloromethane ND ug/l 6.2 1.8 2.5 Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride ND ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	Toluene	ND		ug/l	6.2	1.8	2.5	
Bromomethane ND ug/l 6.2 1.8 2.5 Vinyl chloride ND ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	Ethylbenzene	ND		ug/l	6.2	1.8	2.5	
Vinyl chloride ND ug/l 2.5 0.18 2.5 Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	Chloromethane	ND		ug/l	6.2	1.8	2.5	
Chloroethane ND ug/l 6.2 1.8 2.5 1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	Bromomethane	ND		ug/l	6.2	1.8	2.5	
1,1-Dichloroethene ND ug/l 1.2 0.42 2.5 trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	Vinyl chloride	ND		ug/l	2.5	0.18	2.5	
trans-1,2-Dichloroethene ND ug/l 6.2 1.8 2.5	Chloroethane	ND		ug/l	6.2	1.8	2.5	
-91	1,1-Dichloroethene	ND		ug/l	1.2	0.42	2.5	
Trichloroethene 2.1 ug/l 1.2 0.44 2.5	trans-1,2-Dichloroethene	ND		ug/l	6.2	1.8	2.5	
~ ~	Trichloroethene	2.1		ug/l	1.2	0.44	2.5	

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-03 D Date Collected: 08/10/22 09:49

Client ID: MW-3S Date Received: 08/11/22 Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab					
1,2-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5	
1,3-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5	
1,4-Dichlorobenzene	ND	ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND	ug/l	6.2	1.8	2.5	
p/m-Xylene	ND	ug/l	6.2	1.8	2.5	
o-Xylene	ND	ug/l	6.2	1.8	2.5	
cis-1,2-Dichloroethene	ND	ug/l	6.2	1.8	2.5	
Dibromomethane	ND	ug/l	12	2.5	2.5	
1,2,3-Trichloropropane	ND	ug/l	6.2	1.8	2.5	
Acrylonitrile	ND	ug/l	12	3.8	2.5	
Styrene	ND	ug/l	6.2	1.8	2.5	
Dichlorodifluoromethane	ND	ug/l	12	2.5	2.5	
Acetone	ND	ug/l	12	3.6	2.5	
Carbon disulfide	ND	ug/l	12	2.5	2.5	
2-Butanone	ND	ug/l	12	4.8	2.5	
Vinyl acetate	ND	ug/l	12	2.5	2.5	
4-Methyl-2-pentanone	ND	ug/l	12	2.5	2.5	
2-Hexanone	ND	ug/l	12	2.5	2.5	
Bromochloromethane	ND	ug/l	6.2	1.8	2.5	
2,2-Dichloropropane	ND	ug/l	6.2	1.8	2.5	
1,2-Dibromoethane	ND	ug/l	5.0	1.6	2.5	
1,3-Dichloropropane	ND	ug/l	6.2	1.8	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	6.2	1.8	2.5	
Bromobenzene	ND	ug/l	6.2	1.8	2.5	
n-Butylbenzene	ND	ug/l	6.2	1.8	2.5	
sec-Butylbenzene	ND	ug/l	6.2	1.8	2.5	
tert-Butylbenzene	ND	ug/l	6.2	1.8	2.5	
o-Chlorotoluene	ND	ug/l	6.2	1.8	2.5	
p-Chlorotoluene	ND	ug/l	6.2	1.8	2.5	
1,2-Dibromo-3-chloropropane	ND	ug/l	6.2	1.8	2.5	
Hexachlorobutadiene	ND	ug/l	6.2	1.8	2.5	
Isopropylbenzene	ND	ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND	ug/l	6.2	1.8	2.5	
Naphthalene	ND	ug/l	6.2	1.8	2.5	
n-Propylbenzene	ND	ug/l	6.2	1.8	2.5	
1,2,3-Trichlorobenzene	ND	ug/l	6.2	1.8	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	6.2	1.8	2.5	

Project Name: 77-63 VLEIGH PLACE Lab Number: L2243252

Project Number: 01.992302.00 Report Date: 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-03 D Date Collected: 08/10/22 09:49

Client ID: Date Received: 08/11/22 MW-3S Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,4-Dioxane	ND		ug/l	620	150	2.5	
Freon-113	ND		ug/l	6.2	1.8	2.5	
p-Diethylbenzene	ND		ug/l	5.0	1.8	2.5	
p-Ethyltoluene	ND		ug/l	5.0	1.8	2.5	
1,2,4,5-Tetramethylbenzene	ND		ug/l	5.0	1.4	2.5	
Ethyl ether	ND		ug/l	6.2	1.8	2.5	
trans-1,4-Dichloro-2-butene	ND		ug/l	6.2	1.8	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	97	70-130	

L2243252

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number:

Report Date: 08/24/22

Lab ID: L2243252-04 Date Collected: 08/10/22 10:12

Client ID: Date Received: 08/11/22 MW-3D Field Prep: Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/16/22 15:58

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	16		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	6.4		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

L2243252

Lab Number:

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-04 Date Collected: 08/10/22 10:12

Client ID: MW-3D Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-04 Date Collected: 08/10/22 10:12

Client ID: MW-3D Date Received: 08/11/22
Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	101		70-130	

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

L2243252

Report Date: 08/24/22

L2243252-05 Client ID: MW-6

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep:

Lab Number:

Date Collected:

Date Received:

08/10/22 11:11 08/11/22 Not Specified

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/16/22 16:24

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	12		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	11		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	0.59		ug/l	0.50	0.18	1	

L2243252

Project Name: 77-63 VLEIGH PLACE **Lab Number:**

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-05 Date Collected: 08/10/22 11:11

Client ID: MW-6 Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 77-63 VLEIGH PLACE Lab Number: L2243252

Project Number: 01.992302.00 Report Date: 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-05 Date Collected: 08/10/22 11:11

Client ID: Date Received: 08/11/22 MW-6 Not Specified

Sample Location: Field Prep: 77-63 VLEIGH PLACE, FLUSHING, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	101	70-130	

08/10/22 07:25

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number: L2243252

Report Date: 08/24/22

Lab ID: L2243252-06

Client ID: MW-7

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Date Received: 08/11/22 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/16/22 16:50

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	28		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	55		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	0.59		ug/l	0.50	0.18	1	

L2243252

Lab Number:

Project Name: 77-63 VLEIGH PLACE

Project Number: Report Date:

01.992302.00 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-06 Date Collected: 08/10/22 07:25

Client ID: Date Received: 08/11/22 MW-7

Sample Location: Field Prep: 77-63 VLEIGH PLACE, FLUSHING, NY Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-06 Date Collected: 08/10/22 07:25

Client ID: MW-7 Date Received: 08/11/22 Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	99	70-130	

08/10/22 11:21

Not Specified

08/11/22

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number: L2243252

Report Date: 08/24/22

Date Collected:

Date Received:

Field Prep:

Lab ID: L2243252-07 D

Client ID: MW-11

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/16/22 17:16

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	170		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
1,1-Dichloropropene	ND		ug/l	5.0	1.4	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	0.17	J	ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
Trichloroethene	1.7		ug/l	1.0	0.35	2

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-07 D Date Collected: 08/10/22 11:21

Client ID: MW-11 Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	1.5	J	ug/l	5.0	1.4	2
Dibromomethane	ND		ug/l	10	2.0	2
1,2,3-Trichloropropane	ND		ug/l	5.0	1.4	2
Acrylonitrile	ND		ug/l	10	3.0	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	10		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
Vinyl acetate	ND		ug/l	10	2.0	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
2,2-Dichloropropane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,3-Dichloropropane	ND		ug/l	5.0	1.4	2
1,1,1,2-Tetrachloroethane	ND		ug/l	5.0	1.4	2
Bromobenzene	ND		ug/l	5.0	1.4	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
o-Chlorotoluene	ND		ug/l	5.0	1.4	2
p-Chlorotoluene	ND		ug/l	5.0	1.4	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Hexachlorobutadiene	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	ND		ug/l	5.0	1.4	2
n-Propylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-07 D Date Collected: 08/10/22 11:21

Client ID: MW-11 Date Received: 08/11/22 Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,4-Dioxane	ND		ug/l	500	120	2	
Freon-113	ND		ug/l	5.0	1.4	2	
p-Diethylbenzene	ND		ug/l	4.0	1.4	2	
p-Ethyltoluene	ND		ug/l	4.0	1.4	2	
1,2,4,5-Tetramethylbenzene	ND		ug/l	4.0	1.1	2	
Ethyl ether	ND		ug/l	5.0	1.4	2	
trans-1,4-Dichloro-2-butene	ND		ug/l	5.0	1.4	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	•
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	100	70-130	

08/10/22 09:09

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number: L2243252

Report Date: 08/24/22

Lab ID: L2243252-08

Client ID: MW-12

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Date Received: 08/11/22 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/17/22 11:02

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	2.4	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	78		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.4		ug/l	0.50	0.18	1

L2243252

Project Name: Lab Number: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 Report Date: 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-08 Date Collected: 08/10/22 09:09

Client ID: Date Received: 08/11/22 MW-12 Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND			2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	0.72	J	ug/l ug/l	2.5	0.70	1
Dibromomethane	ND	<u> </u>	-	5.0	1.0	1
1,2,3-Trichloropropane	ND ND		ug/l	2.5	0.70	1
Acrylonitrile	ND ND		ug/l	5.0	1.5	1
Styrene	ND ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND ND		ug/l	5.0	1.0	1
Acetone			ug/l			
Carbon disulfide	ND ND		ug/l	5.0	1.5	1
			ug/l			
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	<u> </u>
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	
Bromobenzene	ND		ug/l	2.5	0.70	<u> </u>
n-Butylbenzene	ND		ug/l	2.5	0.70	<u> </u>
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-08 Date Collected: 08/10/22 09:09

Client ID: MW-12 Date Received: 08/11/22 Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	99	70-130	

L2243252

08/10/22 08:33

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

. 33/2 ./22

Report Date: 08/24/22

Lab ID: L2243252-09

Client ID: MW-13

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY

Date Received: 08/11/22
Field Prep: Not Specified

Lab Number:

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/20/22 03:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.53		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

L2243252

Lab Number:

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 Report Date: 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-09 Date Collected: 08/10/22 08:33

Client ID: Date Received: 08/11/22 MW-13 Field Prep: Not Specified

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,2-Dichlorobenzene	ND		//	2.5	0.70	1
	ND ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND ND		ug/l	2.5		
Methyl tert butyl ether			ug/l		0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
-,-,:::::::::::::::::::::::::::::::::::	110		ug/i		5.70	·

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-09 Date Collected: 08/10/22 08:33

Client ID: MW-13 Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	101		70-130	

L2243252

08/10/22 00:00

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 08/24/22

Lab ID: L2243252-10

> Date Received: 08/11/22 Field Prep: Not Specified

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY

TRIP BLANK

Sample Depth:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/16/22 15:56

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-10 Date Collected: 08/10/22 00:00

Client ID: TRIP BLANK Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 77-63 VLEIGH PLACE L2243252

Project Number: 01.992302.00 Report Date: 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-10 Date Collected: 08/10/22 00:00

Client ID: Date Received: 08/11/22 TRIP BLANK

Sample Location: Field Prep: Not Specified 77-63 VLEIGH PLACE, FLUSHING, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	99	70-130	

L2243252

08/10/22 09:50

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 08/24/22

Lab ID: L2243252-11

Client ID: FIELD BLANK

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Date Received: 08/11/22 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/16/22 16:19

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-11 Date Collected: 08/10/22 09:50

Client ID: FIELD BLANK Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 77-63 VLEIGH PLACE L2243252

Project Number: 01.992302.00 Report Date: 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-11 Date Collected: 08/10/22 09:50

Client ID: Date Received: 08/11/22 FIELD BLANK Not Specified

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Accept Qualifier Crite	
1,2-Dichloroethane-d4	97	70-	-130
Toluene-d8	99	70-	-130
4-Bromofluorobenzene	98	70-	-130
Dibromofluoromethane	101	70-	-130

08/10/22 10:09

08/11/22

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number: L2243252

Report Date: 08/24/22

Lab ID: L2243252-12 Date Collected:

Client ID: Date Received: **EQUIPMENT BLANK**

Field Prep: Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/17/22 11:45

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1

L2243252

Lab Number:

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-12 Date Collected: 08/10/22 10:09

Client ID: EQUIPMENT BLANK Date Received: 08/11/22

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-12 Date Collected: 08/10/22 10:09

Client ID: EQUIPMENT BLANK Date Received: 08/11/22
Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	104	70-130	

08/10/22 07:29

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

SAMPLE RESULTS

Lab Number: L2243252

Report Date: 08/24/22

Lab ID: L2243252-13

Client ID: **BLIND DUPLICATE**

Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Date Received: 08/11/22 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/17/22 12:06

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	28		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	58		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.52		ug/l	0.50	0.18	1

Project Name: Lab Number: 77-63 VLEIGH PLACE L2243252

Project Number: 01.992302.00 Report Date: 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-13 Date Collected: 08/10/22 07:29

Client ID: Date Received: 08/11/22 **BLIND DUPLICATE**

Sample Location: Field Prep: 77-63 VLEIGH PLACE, FLUSHING, NY Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 77-63 VLEIGH PLACE **Lab Number:** L2243252

Project Number: 01.992302.00 **Report Date:** 08/24/22

SAMPLE RESULTS

Lab ID: L2243252-13 Date Collected: 08/10/22 07:29

Client ID: BLIND DUPLICATE Date Received: 08/11/22
Sample Location: 77-63 VLEIGH PLACE, FLUSHING, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	100		70-130	

Project Name: 77-63 VLEIGH PLACE Lab Number:

Project Number: 01.992302.00 **Report Date:** 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/16/22 08:36

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-07 Batch:	WG1676097-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Lab Number:

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 **Report Date:** 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/16/22 08:36

Parameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s):	01-07 Batch:	WG1676097-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Report Date: 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/16/22 08:36

Parameter	Result	Qualifier Unit	s RL	MDL	
olatile Organics by GC/MS - We	stborough Lab	for sample(s):	01-07 Batch:	WG1676097-5	
Hexachlorobutadiene	ND	ug/	/l 2.5	0.70	
Isopropylbenzene	ND	ug/	l 2.5	0.70	
p-Isopropyltoluene	ND	ug/	l 2.5	0.70	
Naphthalene	ND	ug/	1 2.5	0.70	
n-Propylbenzene	ND	ug/	1 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	1 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	1 2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/	l 2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/	Ί 2.5	0.70	
1,4-Dioxane	ND	ug/	l 250	61.	
Freon-113	ND	ug/	l 2.5	0.70	
p-Diethylbenzene	ND	ug/	Ί 2.0	0.70	
p-Ethyltoluene	ND	ug/	Ί 2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/	1 2.0	0.54	
Ethyl ether	ND	ug/	Ί 2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/	Ί 2.5	0.70	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	99		70-130	

Lab Number:

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 **Report Date:** 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C

08/16/22 09:15

Analyst: PD

Analytical Date:

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	10-11 Batch:	WG1676253-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Lab Number:

Project Name: 77-63 VLEIGH PLACE

1,8260C

08/16/22 09:15

Project Number: 01.992302.00 **Report Date:** 08/24/22

Method Blank Analysis Batch Quality Control

Batch Quality Control

Analytical Date: 08/ Analyst: PD

Analytical Method:

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 1	10-11 Batch:	WG1676253-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Report Date: 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/16/22 09:15

Parameter	Result Qu	alifier Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab for	sample(s): 10-11	Batch:	WG1676253-5
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	98	70-130

Project Name: 77-63 VLEIGH PLACE Lab Number:

Project Number: 01.992302.00 **Report Date:** 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/17/22 08:35

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	08,12-13 Ba	tch: WG1676914-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 77-63 VLEIGH PLACE Lab Number:

Project Number: 01.992302.00 **Report Date:** 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/17/22 08:35

arameter	Result	Qualifier Units	RL.	MDL	
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	08,12-13	Batch: WG1676914-5	5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Report Date: 08/24/22

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/17/22 08:35

Parameter	Result	Qualifier Unit	s RL	. MDL	
/olatile Organics by GC/MS - Wes	stborough Lab	for sample(s):	08,12-13	Batch: WG16	76914-5
Hexachlorobutadiene	ND	ug	/l 2.5	5 0.70	
Isopropylbenzene	ND	ug	'l 2.5	5 0.70	
p-Isopropyltoluene	ND	ug	1 2.5	0.70	
Naphthalene	ND	ug	l 2.5	0.70	
n-Propylbenzene	ND	ug	ʻl 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug	l 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug	l 2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug	l 2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug	l 2.5	0.70	
1,4-Dioxane	ND	ug	'l 250	61.	
Freon-113	ND	ug	'l 2.5	0.70	
p-Diethylbenzene	ND	ug	'l 2.0	0.70	
p-Ethyltoluene	ND	ug	'l 2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug	'l 2.0	0.54	
Ethyl ether	ND	ug	l 2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug	l 2.5	0.70	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	121		70-130		
Toluene-d8	98		70-130		
4-Bromofluorobenzene	100		70-130		
Dibromofluoromethane	104		70-130		

Project Name: 77-63 VLEIGH PLACE Lab Number:

Project Number: 01.992302.00 **Report Date:** 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/19/22 19:24

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	09 Batch:	WG1678140-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70

Lab Number:

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 **Report Date:** 08/24/22

Method Blank Analysis
Batch Quality Control

Batch Quality Control

1,8260C

08/19/22 19:24

Analyst: LAC

Analytical Method:

Analytical Date:

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s): 0	9 Batch:	WG1678140-5
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Report Date: 08/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/19/22 19:24

Analyst: LAC

Parameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS - We	stborough Lab	for sample(s):	09 Batch:	WG1678140-5	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance
Surrogate	%Recovery Qua	llifier Criteria
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	97	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Report Date: 08/24/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch: WG	91676097-	-3 WG1676097-4		
Methylene chloride	90		95		70-130	5	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	98		100		70-130	2	20
Carbon tetrachloride	96		100		63-132	4	20
1,2-Dichloropropane	94		100		70-130	6	20
Dibromochloromethane	87		94		63-130	8	20
1,1,2-Trichloroethane	92		100		70-130	8	20
Tetrachloroethene	99		98		70-130	1	20
Chlorobenzene	94		98		75-130	4	20
Trichlorofluoromethane	100		110		62-150	10	20
1,2-Dichloroethane	100		110		70-130	10	20
1,1,1-Trichloroethane	94		100		67-130	6	20
Bromodichloromethane	110		120		67-130	9	20
trans-1,3-Dichloropropene	92		97		70-130	5	20
cis-1,3-Dichloropropene	93		99		70-130	6	20
1,1-Dichloropropene	100		100		70-130	0	20
Bromoform	86		95		54-136	10	20
1,1,2,2-Tetrachloroethane	94		100		67-130	6	20
Benzene	100		100		70-130	0	20
Toluene	98		99		70-130	1	20
Ethylbenzene	98		99		70-130	1	20
Chloromethane	130		140	Q	64-130	7	20
Bromomethane	92		88		39-139	4	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Report Date: 08/24/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-07 Batch:	WG1676097-3	WG1676097-4			
Vinyl chloride	130		140		55-140	7		20
Chloroethane	210	Q	210	Q	55-138	0		20
1,1-Dichloroethene	99		100		61-145	1		20
trans-1,2-Dichloroethene	99		100		70-130	1		20
Trichloroethene	92		96		70-130	4		20
1,2-Dichlorobenzene	90		97		70-130	7		20
1,3-Dichlorobenzene	91		97		70-130	6		20
1,4-Dichlorobenzene	92		98		70-130	6		20
Methyl tert butyl ether	87		97		63-130	11		20
p/m-Xylene	95		95		70-130	0		20
o-Xylene	95		95		70-130	0		20
cis-1,2-Dichloroethene	90		100		70-130	11		20
Dibromomethane	95		100		70-130	5		20
1,2,3-Trichloropropane	88		100		64-130	13		20
Acrylonitrile	100		120		70-130	18		20
Styrene	95		100		70-130	5		20
Dichlorodifluoromethane	110		120		36-147	9		20
Acetone	99		110		58-148	11		20
Carbon disulfide	110		110		51-130	0		20
2-Butanone	81		110		63-138	30	Q	20
Vinyl acetate	130		150	Q	70-130	14		20
4-Methyl-2-pentanone	90		100		59-130	11		20
2-Hexanone	82		100		57-130	20		20

Lab Control Sample Analysis Batch Quality Control

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Report Date: 08/24/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD		RPD imits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07 Batch: W	G1676097-3 WG1676097-4			
Bromochloromethane	89		92	70-130	3		20
2,2-Dichloropropane	100		100	63-133	0		20
1,2-Dibromoethane	86		96	70-130	11		20
1,3-Dichloropropane	95		100	70-130	5		20
1,1,1,2-Tetrachloroethane	90		92	64-130	2		20
Bromobenzene	85		95	70-130	11		20
n-Butylbenzene	100		100	53-136	0		20
sec-Butylbenzene	98		98	70-130	0		20
tert-Butylbenzene	92		93	70-130	1		20
o-Chlorotoluene	94		98	70-130	4		20
p-Chlorotoluene	93		97	70-130	4		20
1,2-Dibromo-3-chloropropane	76		89	41-144	16		20
Hexachlorobutadiene	100		98	63-130	2		20
Isopropylbenzene	92		96	70-130	4		20
p-Isopropyltoluene	94		93	70-130	1		20
Naphthalene	68	Q	83	70-130	20		20
n-Propylbenzene	98		99	69-130	1		20
1,2,3-Trichlorobenzene	80		94	70-130	16		20
1,2,4-Trichlorobenzene	84		93	70-130	10		20
1,3,5-Trimethylbenzene	92		95	64-130	3		20
1,2,4-Trimethylbenzene	91		93	70-130	2		20
1,4-Dioxane	84		104	56-162	21	Q	20
Freon-113	110		120	70-130	9		20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual		.CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-07	Batch:	WG1676097-3	WG1676097-4				
p-Diethylbenzene	96			94		70-130	2		20	
p-Ethyltoluene	95			96		70-130	1		20	
1,2,4,5-Tetramethylbenzene	81			84		70-130	4		20	
Ethyl ether	96			100		59-134	4		20	
trans-1,4-Dichloro-2-butene	75			82		70-130	9		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	110	112	70-130
Toluene-d8	103	103	70-130
4-Bromofluorobenzene	92	93	70-130
Dibromofluoromethane	98	98	70-130

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	10-11 Batch:	WG1676253-3	WG1676253-4		
Methylene chloride	100		97		70-130	3	20
1,1-Dichloroethane	97		96		70-130	1	20
Chloroform	98		97		70-130	1	20
Carbon tetrachloride	98		100		63-132	2	20
1,2-Dichloropropane	92		93		70-130	1	20
Dibromochloromethane	96		98		63-130	2	20
1,1,2-Trichloroethane	97		99		70-130	2	20
Tetrachloroethene	100		100		70-130	0	20
Chlorobenzene	98		100		75-130	2	20
Trichlorofluoromethane	100		100		62-150	0	20
1,2-Dichloroethane	93		93		70-130	0	20
1,1,1-Trichloroethane	97		96		67-130	1	20
Bromodichloromethane	94		96		67-130	2	20
trans-1,3-Dichloropropene	98		100		70-130	2	20
cis-1,3-Dichloropropene	96		97		70-130	1	20
1,1-Dichloropropene	99		100		70-130	1	20
Bromoform	94		98		54-136	4	20
1,1,2,2-Tetrachloroethane	94		99		67-130	5	20
Benzene	98		98		70-130	0	20
Toluene	96		98		70-130	2	20
Ethylbenzene	96		98		70-130	2	20
Chloromethane	54	Q	55	Q	64-130	2	20
Bromomethane	62		66		39-139	6	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s):	10-11 Batch: W	/G1676253-3	WG1676253-4			
Vinyl chloride	96		95		55-140	1		20
Chloroethane	110		110		55-138	0		20
1,1-Dichloroethene	100		100		61-145	0		20
trans-1,2-Dichloroethene	100		100		70-130	0		20
Trichloroethene	100		100		70-130	0		20
1,2-Dichlorobenzene	97		99		70-130	2		20
1,3-Dichlorobenzene	98		100		70-130	2		20
1,4-Dichlorobenzene	96		98		70-130	2		20
Methyl tert butyl ether	96		100		63-130	4		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	100		100		70-130	0		20
cis-1,2-Dichloroethene	100		99		70-130	1		20
Dibromomethane	99		100		70-130	1		20
1,2,3-Trichloropropane	92		96		64-130	4		20
Acrylonitrile	86		88		70-130	2		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	87		86		36-147	1		20
Acetone	72		74		58-148	3		20
Carbon disulfide	99		99		51-130	0		20
2-Butanone	68		72		63-138	6		20
Vinyl acetate	91		93		70-130	2		20
4-Methyl-2-pentanone	81		86		59-130	6		20
2-Hexanone	73		80		57-130	9		20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

arameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	10-11 Batch:	WG1676253-3	WG1676253-4			
Bromochloromethane	110		110		70-130	0	20	
2,2-Dichloropropane	110		110		63-133	0	20	
1,2-Dibromoethane	96		100		70-130	4	20	
1,3-Dichloropropane	95		98		70-130	3	20	
1,1,1,2-Tetrachloroethane	96		99		64-130	3	20	
Bromobenzene	96		99		70-130	3	20	
n-Butylbenzene	98		100		53-136	2	20	
sec-Butylbenzene	98		100		70-130	2	20	
tert-Butylbenzene	97		99		70-130	2	20	
o-Chlorotoluene	94		96		70-130	2	20	
p-Chlorotoluene	95		96		70-130	1	20	
1,2-Dibromo-3-chloropropane	90		99		41-144	10	20	
Hexachlorobutadiene	100		110		63-130	10	20	
Isopropylbenzene	97		98		70-130	1	20	
p-Isopropyltoluene	99		100		70-130	1	20	
Naphthalene	90		110		70-130	20	20	
n-Propylbenzene	97		98		69-130	1	20	
1,2,3-Trichlorobenzene	96		110		70-130	14	20	
1,2,4-Trichlorobenzene	99		110		70-130	11	20	
1,3,5-Trimethylbenzene	95		97		64-130	2	20	
1,2,4-Trimethylbenzene	96		98		70-130	2	20	
1,4-Dioxane	112		116		56-162	4	20	
Freon-113	110		110		70-130	0	20	

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

arameter	LCS %Recovery	Qual	_	SD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	10-11 E	Batch:	WG1676253-3	WG1676253-4				
p-Diethylbenzene	100		1	100		70-130	0		20	
p-Ethyltoluene	98		1	100		70-130	2		20	
1,2,4,5-Tetramethylbenzene	96			99		70-130	3		20	
Ethyl ether	100		1	100		59-134	0		20	
trans-1,4-Dichloro-2-butene	100		1	110		70-130	10		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	92	92	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	98	98	70-130
Dibromofluoromethane	97	98	70-130

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s): 0	8,12-13 Batch:	WG1676914-3 WG1676914	-4	
Methylene chloride	95		96	70-130	1	20
1,1-Dichloroethane	110		110	70-130	0	20
Chloroform	99		100	70-130	1	20
Carbon tetrachloride	95		96	63-132	1	20
1,2-Dichloropropane	110		100	70-130	10	20
Dibromochloromethane	91		93	63-130	2	20
1,1,2-Trichloroethane	100		100	70-130	0	20
Tetrachloroethene	100		110	70-130	10	20
Chlorobenzene	98		100	75-130	2	20
Trichlorofluoromethane	120		120	62-150	0	20
1,2-Dichloroethane	110		110	70-130	0	20
1,1,1-Trichloroethane	99		98	67-130	1	20
Bromodichloromethane	95		94	67-130	1	20
trans-1,3-Dichloropropene	85		89	70-130	5	20
cis-1,3-Dichloropropene	84		82	70-130	2	20
1,1-Dichloropropene	110		110	70-130	0	20
Bromoform	83		85	54-136	2	20
1,1,2,2-Tetrachloroethane	93		98	67-130	5	20
Benzene	100		100	70-130	0	20
Toluene	98		100	70-130	2	20
Ethylbenzene	97		100	70-130	3	20
Chloromethane	120		120	64-130	0	20
Bromomethane	91		95	39-139	4	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	08,12-13 Batch:	WG1676914-3 WG1676914	4-4	
Vinyl chloride	120		130	55-140	8	20
Chloroethane	120		120	55-138	0	20
1,1-Dichloroethene	110		110	61-145	0	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	100		100	70-130	0	20
1,2-Dichlorobenzene	95		97	70-130	2	20
1,3-Dichlorobenzene	98		100	70-130	2	20
1,4-Dichlorobenzene	96		100	70-130	4	20
Methyl tert butyl ether	89		93	63-130	4	20
p/m-Xylene	100		100	70-130	0	20
o-Xylene	95		100	70-130	5	20
cis-1,2-Dichloroethene	96		97	70-130	1	20
Dibromomethane	95		96	70-130	1	20
1,2,3-Trichloropropane	93		99	64-130	6	20
Acrylonitrile	97		98	70-130	1	20
Styrene	100		100	70-130	0	20
Dichlorodifluoromethane	130		140	36-147	7	20
Acetone	120		120	58-148	0	20
Carbon disulfide	110		110	51-130	0	20
2-Butanone	100		110	63-138	10	20
Vinyl acetate	100		110	70-130	10	20
4-Methyl-2-pentanone	89		92	59-130	3	20
2-Hexanone	80		86	57-130	7	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - \	Westborough Lab Associated	sample(s): 08,1	2-13 Batch:	WG1676914-3 WG1676914	-4	
Bromochloromethane	100		97	70-130	3	20
2,2-Dichloropropane	90		91	63-133	1	20
1,2-Dibromoethane	98		100	70-130	2	20
1,3-Dichloropropane	98		100	70-130	2	20
1,1,1,2-Tetrachloroethane	94		98	64-130	4	20
Bromobenzene	92		96	70-130	4	20
n-Butylbenzene	99		100	53-136	1	20
sec-Butylbenzene	97		100	70-130	3	20
tert-Butylbenzene	93		97	70-130	4	20
o-Chlorotoluene	97		100	70-130	3	20
p-Chlorotoluene	95		99	70-130	4	20
1,2-Dibromo-3-chloropropane	70		78	41-144	11	20
Hexachlorobutadiene	98		100	63-130	2	20
Isopropylbenzene	92		96	70-130	4	20
p-Isopropyltoluene	94		98	70-130	4	20
Naphthalene	77		81	70-130	5	20
n-Propylbenzene	96		100	69-130	4	20
1,2,3-Trichlorobenzene	89		92	70-130	3	20
1,2,4-Trichlorobenzene	90		91	70-130	1	20
1,3,5-Trimethylbenzene	93		98	64-130	5	20
1,2,4-Trimethylbenzene	92		96	70-130	4	20
1,4-Dioxane	94		96	56-162	2	20
Freon-113	130		130	70-130	0	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	08,12-13 Batch:	WG167691	4-3 WG1676914	-4		
p-Diethylbenzene	92		97		70-130	5		20
p-Ethyltoluene	95		99		70-130	4		20
1,2,4,5-Tetramethylbenzene	80		84		70-130	5		20
Ethyl ether	100		100		59-134	0		20
trans-1,4-Dichloro-2-butene	90		91		70-130	1		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	110	111	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	102	97	70-130

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	09 Batch: WG1	678140-3	WG1678140-4		
Methylene chloride	94		96		70-130	2	20
1,1-Dichloroethane	91		93		70-130	2	20
Chloroform	88		92		70-130	4	20
Carbon tetrachloride	91		94		63-132	3	20
1,2-Dichloropropane	88		91		70-130	3	20
Dibromochloromethane	94		97		63-130	3	20
1,1,2-Trichloroethane	96		99		70-130	3	20
Tetrachloroethene	97		100		70-130	3	20
Chlorobenzene	95		95		75-130	0	20
Trichlorofluoromethane	92		94		62-150	2	20
1,2-Dichloroethane	87		90		70-130	3	20
1,1,1-Trichloroethane	90		91		67-130	1	20
Bromodichloromethane	90		93		67-130	3	20
trans-1,3-Dichloropropene	92		96		70-130	4	20
cis-1,3-Dichloropropene	87		90		70-130	3	20
1,1-Dichloropropene	91		94		70-130	3	20
Bromoform	93		97		54-136	4	20
1,1,2,2-Tetrachloroethane	97		99		67-130	2	20
Benzene	91		93		70-130	2	20
Toluene	94		95		70-130	1	20
Ethylbenzene	93		94		70-130	1	20
Chloromethane	47	Q	48	Q	64-130	2	20
Bromomethane	44		44		39-139	0	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (9 Batch: WG10	678140-3 V	VG1678140-4			
Vinyl chloride	85		84		55-140	1	20	
Chloroethane	95		95		55-138	0	20	
1,1-Dichloroethene	92		95		61-145	3	20	
trans-1,2-Dichloroethene	94		95		70-130	1	20	
Trichloroethene	96		96		70-130	0	20	
1,2-Dichlorobenzene	94		96		70-130	2	20	
1,3-Dichlorobenzene	95		97		70-130	2	20	
1,4-Dichlorobenzene	94		96		70-130	2	20	
Methyl tert butyl ether	91		97		63-130	6	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	92		94		70-130	2	20	
Dibromomethane	91		95		70-130	4	20	
1,2,3-Trichloropropane	88		90		64-130	2	20	
Acrylonitrile	90		94		70-130	4	20	
Styrene	95		95		70-130	0	20	
Dichlorodifluoromethane	73		73		36-147	0	20	
Acetone	72		80		58-148	11	20	
Carbon disulfide	92		93		51-130	1	20	
2-Butanone	73		80		63-138	9	20	
Vinyl acetate	91		96		70-130	5	20	
4-Methyl-2-pentanone	84		89		59-130	6	20	
2-Hexanone	83		92		57-130	10	20	

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s): 0	9 Batch: WG1	678140-3	WG1678140-4		
Bromochloromethane	100		100		70-130	0	20
2,2-Dichloropropane	100		100		63-133	0	20
1,2-Dibromoethane	94		100		70-130	6	20
1,3-Dichloropropane	94		97		70-130	3	20
1,1,1,2-Tetrachloroethane	92		96		64-130	4	20
Bromobenzene	95		96		70-130	1	20
n-Butylbenzene	95		97		53-136	2	20
sec-Butylbenzene	94		96		70-130	2	20
tert-Butylbenzene	93		95		70-130	2	20
o-Chlorotoluene	92		94		70-130	2	20
p-Chlorotoluene	93		94		70-130	1	20
1,2-Dibromo-3-chloropropane	90		94		41-144	4	20
Hexachlorobutadiene	95		95		63-130	0	20
Isopropylbenzene	95		97		70-130	2	20
p-Isopropyltoluene	95		97		70-130	2	20
Naphthalene	85		93		70-130	9	20
n-Propylbenzene	95		97		69-130	2	20
1,2,3-Trichlorobenzene	88		95		70-130	8	20
1,2,4-Trichlorobenzene	89		94		70-130	5	20
1,3,5-Trimethylbenzene	94		95		64-130	1	20
1,2,4-Trimethylbenzene	94		96		70-130	2	20
1,4-Dioxane	90		96		56-162	6	20
Freon-113	100		110		70-130	10	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

arameter	LCS %Recovery	Qual	_	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	09 Ba	atch: W0	G1678140-3	WG1678140-4				
p-Diethylbenzene	96			98		70-130	2		20	
p-Ethyltoluene	96			98		70-130	2		20	
1,2,4,5-Tetramethylbenzene	90			92		70-130	2		20	
Ethyl ether	92			97		59-134	5		20	
trans-1,4-Dichloro-2-butene	100			110		70-130	10		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	75110001019	, or receivery quar	
1,2-Dichloroethane-d4	95	97	70-130
Toluene-d8	102	102	70-130
4-Bromofluorobenzene	100	99	70-130
Dibromofluoromethane	98	99	70-130

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

	Native	MS	MS	MS	MSD	MSD	Recovery	,	RPD
Parameter	Sample	Added	Found	%Recovery	Qual Foun	d %Recovery	Qual Limits	RPD	Qual Limits
Volatile Organics by GC/MS - 13	- Westborough	Lab Asso	ciated sample(s): 09 QC Ba	tch ID: WG16781	40-6 WG167814	40-7 QC Sample:	L224325	2-09 Client ID: MW-
Methylene chloride	ND	10	9.0	90	8.7	87	70-130	3	20
1,1-Dichloroethane	ND	10	9.0	90	8.8	88	70-130	2	20
Chloroform	ND	10	9.0	90	8.6	86	70-130	5	20
Carbon tetrachloride	ND	10	9.4	94	9.2	92	63-132	2	20
1,2-Dichloropropane	ND	10	8.6	86	8.4	84	70-130	2	20
Dibromochloromethane	ND	10	9.0	90	8.4	84	63-130	7	20
1,1,2-Trichloroethane	ND	10	9.2	92	8.7	87	70-130	6	20
Tetrachloroethene	0.53	10	9.9	94	9.5	90	70-130	4	20
Chlorobenzene	ND	10	9.0	90	8.6	86	75-130	5	20
Trichlorofluoromethane	ND	10	9.6	96	9.2	92	62-150	4	20
1,2-Dichloroethane	ND	10	8.6	86	8.4	84	70-130	2	20
1,1,1-Trichloroethane	ND	10	9.1	91	8.7	87	67-130	4	20
Bromodichloromethane	ND	10	8.7	87	8.4	84	67-130	4	20
trans-1,3-Dichloropropene	ND	10	8.5	85	8.1	81	70-130	5	20
cis-1,3-Dichloropropene	ND	10	8.0	80	7.8	78	70-130	3	20
1,1-Dichloropropene	ND	10	9.2	92	8.7	87	70-130	6	20
Bromoform	ND	10	8.8	88	8.3	83	54-136	6	20
1,1,2,2-Tetrachloroethane	ND	10	8.9	89	8.5	85	67-130	5	20
Benzene	ND	10	8.9	89	8.6	86	70-130	3	20
Toluene	ND	10	9.3	93	8.9	89	70-130	4	20
Ethylbenzene	ND	10	8.9	89	8.6	86	70-130	3	20
Chloromethane	ND	10	5.0	50	Q 5.0	50	Q 64-130	0	20
Bromomethane	ND	10	4.1	41	4.6	46	39-139	11	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

	Native	MS	MS	MS	MSD	MSD	Recover	У	RPD
Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	Qual Limits	RPD	Qual Limits
Volatile Organics by GC/MS - 13	- Westborough	Lab Ass	sociated sample((s): 09 QC Ba	tch ID: WG167814	0-6 WG167814	10-7 QC Sample:	L224325	2-09 Client ID: MW-
Vinyl chloride	ND	10	8.6	86	8.3	83	55-140	4	20
Chloroethane	ND	10	9.6	96	9.4	94	55-138	2	20
1,1-Dichloroethene	ND	10	9.2	92	8.9	89	61-145	3	20
rans-1,2-Dichloroethene	ND	10	9.2	92	9.0	90	70-130	2	20
Trichloroethene	ND	10	9.4	94	8.9	89	70-130	5	20
1,2-Dichlorobenzene	ND	10	8.6	86	8.3	83	70-130	4	20
1,3-Dichlorobenzene	ND	10	8.7	87	8.4	84	70-130	4	20
1,4-Dichlorobenzene	ND	10	8.5	85	8.3	83	70-130	2	20
Methyl tert butyl ether	ND	10	8.8	88	8.5	85	63-130	3	20
o/m-Xylene	ND	20	18	90	17	85	70-130	6	20
o-Xylene	ND	20	18	90	17	85	70-130	6	20
cis-1,2-Dichloroethene	ND	10	8.9	89	8.7	87	70-130	2	20
Dibromomethane	ND	10	8.8	88	8.4	84	70-130	5	20
1,2,3-Trichloropropane	ND	10	8.7	87	8.4	84	64-130	4	20
Acrylonitrile	ND	10	8.4	84	8.4	84	70-130	0	20
Styrene	ND	20	13	65	Q 12	60	Q 70-130	8	20
Dichlorodifluoromethane	ND	10	7.6	76	7.1	71	36-147	7	20
Acetone	ND	10	8.6	86	7.6	76	58-148	12	20
Carbon disulfide	ND	10	9.0	90	8.8	88	51-130	2	20
2-Butanone	ND	10	6.8	68	6.9	69	63-138	1	20
Vinyl acetate	ND	10	7.4	74	7.0	70	70-130	6	20
4-Methyl-2-pentanone	ND	10	7.8	78	7.6	76	59-130	3	20
2-Hexanone	ND	10	10	100	9.2	92	57-130	8	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number: L2243252

	Native	MS	MS	MS	MSD	MSD	Recovery	,	RPD
Parameter	Sample	Added	Found	%Recovery	Qual Foun	d %Recovery	Qual Limits	RPD	Qual Limits
Volatile Organics by GC/MS -	- Westborough	Lab Ass	sociated sample((s): 09 QC Ba	tch ID: WG16781	40-6 WG16781	40-7 QC Sample: I	L224325	2-09 Client ID: MW-
Bromochloromethane	ND	10	9.4	94	9.4	94	70-130	0	20
2,2-Dichloropropane	ND	10	8.6	86	8.4	84	63-133	2	20
1,2-Dibromoethane	ND	10	8.8	88	8.6	86	70-130	2	20
1,3-Dichloropropane	ND	10	9.0	90	8.4	84	70-130	7	20
1,1,1,2-Tetrachloroethane	ND	10	8.9	89	8.5	85	64-130	5	20
Bromobenzene	ND	10	8.9	89	8.4	84	70-130	6	20
n-Butylbenzene	ND	10	8.4	84	8.0	80	53-136	5	20
sec-Butylbenzene	ND	10	8.7	87	8.3	83	70-130	5	20
ert-Butylbenzene	ND	10	8.8	88	8.4	84	70-130	5	20
o-Chlorotoluene	ND	10	8.9	89	8.5	85	70-130	5	20
o-Chlorotoluene	ND	10	8.7	87	8.3	83	70-130	5	20
1,2-Dibromo-3-chloropropane	ND	10	7.5	75	7.9	79	41-144	5	20
Hexachlorobutadiene	ND	10	7.4	74	7.2	72	63-130	3	20
sopropylbenzene	ND	10	9.1	91	8.6	86	70-130	6	20
o-Isopropyltoluene	ND	10	8.6	86	8.2	82	70-130	5	20
Naphthalene	ND	10	6.4	64	Q 7.1	71	70-130	10	20
n-Propylbenzene	ND	10	9.0	90	8.5	85	69-130	6	20
1,2,3-Trichlorobenzene	ND	10	6.5	65	Q 7.0	70	70-130	7	20
1,2,4-Trichlorobenzene	ND	10	7.0	70	7.2	72	70-130	3	20
1,3,5-Trimethylbenzene	ND	10	8.8	88	8.3	83	64-130	6	20
1,2,4-Trimethylbenzene	ND	10	8.7	87	8.4	84	70-130	4	20
1,4-Dioxane	ND	500	330	66	320	64	56-162	3	20
Freon-113	ND	10	10	100	9.8	98	70-130	2	20

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Lab Number:

L2243252

Report Date:

08/24/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		SD und	MSD %Recovery	Recov Qual Limi	•	RPD Qual Limits
Volatile Organics by GC/MS	S - Westborough	Lab Assoc	ciated sample(s	s): 09 QC Ba	tch ID: WG167	8140-	6 WG167814	0-7 QC Samp	le: L224325	2-09 Client ID: MW-
p-Diethylbenzene	ND	10	8.6	86	8	.2	82	70-13	0 5	20
p-Ethyltoluene	ND	10	9.0	90	8	.6	86	70-13	0 5	20
1,2,4,5-Tetramethylbenzene	ND	10	7.7	77	7	.4	74	70-13	0 4	20
Ethyl ether	ND	10	8.8	88	8	.6	86	59-13	4 2	20
trans-1,4-Dichloro-2-butene	ND	10	9.6	96	Ş	.0	90	70-13	0 6	20

	MS	MSD	Acceptance
Surrogate	% Recovery Quality	fier % Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	97	97	70-130
4-Bromofluorobenzene	100	98	70-130
Dibromofluoromethane	99	100	70-130
Toluene-d8	101	100	70-130

Serial_No:08242216:14 *Lab Number:* L2243252

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00 **Report Date:** 08/24/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2243252-01A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-01B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-01C	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-02A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-02B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-02C	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-03A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-03B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-03C	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-04A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-04B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-04C	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-05A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-05B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-05C	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-06A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-06B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-06C	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-07A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-07B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-07C	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-08A	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-08B	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)

Serial_No:08242216:14

Lab Number: L2243252

Report Date: 08/24/22

Project Name: 77-63 VLEIGH PLACE

Project Number: 01.992302.00

Container Info	Container Information		Initial Final Temp				Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2243252-08C	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09A1	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09A2	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09B1	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09B2	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09C	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09C1	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-09C2	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-10A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-10B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-11A	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-11B	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-11C	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-12A	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-12B	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-12C	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-13A	Vial HCI preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-13B	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)
L2243252-13C	Vial HCl preserved	Α	NA		3.3	Υ	Absent		NYTCL-8260(14)

Project Name: Lab Number: 77-63 VLEIGH PLACE L2243252 **Project Number:** 01.992302.00 **Report Date:** 08/24/22

GLOSSARY

Acronyms

EDL

EMPC

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 77-63 VLEIGH PLACE
 Lab Number:
 L2243252

 Project Number:
 01.992302.00
 Report Date:
 08/24/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 77-63 VLEIGH PLACE
 Lab Number:
 L2243252

 Project Number:
 01.992302.00
 Report Date:
 08/24/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_main_model} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:08242216:14

 Project Name:
 77-63 VLEIGH PLACE
 Lab Number:
 L2243252

 Project Number:
 01.992302.00
 Report Date:
 08/24/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:08242216:14

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPH		Project Info	rmation		-	Re		nform	ation		Deli	/erab	les		ng In		tion	-2243252 PO#
Louissen ===	HWA.						ADEx				dd'i De	siverab	(es					
Westborough, MA TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA TEL 508-822-9300 FAX: 508-822-3258	Project Name	: 77-63 Vleigh	Place				ry Re	quire	ment	s/Rep	ort L	imits	Criter	10			
Client Informat		Project Locati	on, 77-63 Vieig	h Place, Flu	shing, NY		SDEC							Quita				
Client: EnviroTrac	V- V-		992302.00, Ta	- No. 12 - 12		_			_	E CE							NFID	ENCE PROTOCOLS
Address: 5 Old D	N - 10		ger: Tracy Wal						No No	-					Confid		retered	s) Required7
Yaphank, NY 119		ALPHA Quote				_	ALYS		1 190		rue	1 1550	(Neas	2014EDIC	Conno	nine r	510001	1
Phone: 631-924-3		Turn-Aroun	F 9 To 5		7.3	Air	1			7-64	-	44						SAMPLE HANDLING
Fax: 631-924-500		⊠ Standard		sh (ONLY IF PR	e anonoi en													Filtration Done
Email: tracyw@er		_ Namualu	L 190	ar fourt it be	EN LHOYED													□ Not Needed □ Lab to do
		Due Date:	Time:															Preservation 1
	e been Previously analyzed by Alpha becific Requirements/Comment	111111111111111111111111111111111111111		-		1												☐ Lab to do (Please specify
NYSDEC Categor NYEQUIS EDD fo						8260												below)
ALPHA Lab ID	Sample ID	7.00	ellection	Sample Matrix	Sampler's Initials	VOCs												Sample Specific Comments
(Lab Use Only)	Tuest a	Date	Time		T. A	57												
3252 31	MVV-1	8/10/22	7:57	GW	JA	A	H	H	H	H	H	H	H	一	H	H	H	
757	MW-2		-			H	H	H	H	H	青	H	H	H	H	H	Ī	
-04	MW-3S MW-3D		10:12			17	F	H	Ħ	Ħ	Ħ	Ħ	H	H	H	Ħ	T	
20	MW-6		11:11			17								百				
706	MW-7		7:25			1												
FG-	MW-11		11:21			Ф												
30	MW-12		91,09	1		中												
	MW-13/MS/MSD		8:33		.11	W												
709	Trip Blank	V			A	[4]											П	
-US				Co	ntainer Type		46	.0	à i		3	- 8	4		+	4	-	Please print clearly, legibly and completely. Samples of
-10	QUESTIONS ABOVE				Preservative									_			_	not be logged in and
−/Ò LEASE ANSWER	S YOUR PROJECT		Raline	uished By:	Preservative	D	ate/Tim	d	-/	1-7	Regen	ed By:			_ 0	ate/Tin	ne.	furnaround time clock will no
LEASE ANSWER		Pu	Raline	-		100	ate/Tim	3:4	16	P	kegen	ed By	A	49	741	aterTin	7-3	

De	CHAIN OF	CUSTO	DY	PAGE 2 OF	2	Date	Rec'd	in Lab:		8	n.I	22	A	LPHA	Job #	: 6	2243252
ALPH	A	Project Info	rmation			Re	port Ir	ıform	ation	Data	Deliv	erable			Inform		
ANALY I							FAX			⊠ E	MAIL		Z	Same	e as Clier	nt info	PO#
Westborough, MA	Mansfield, MA		-				ADEX				dd'i Deli	verables					
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	77-63 Vleigh	Place		Reg	gulato	ry Re	equire	ment	s/Rep	ort Lin	nits				
FAX: 508-898-9193	FAX: 508-822-3288				- CO - 184		SDEC					-	0	riteria	_		
Client Informat		Project Location						-	IPTIV	E CEF	MIATS	TY-CT	REAS	ONA	BLE C	ONFID	ENCE PROTOCOL
Client: EnviroTrac		Project #: 01.9			2	П	Yes	J	□ No				_		Required		
Address: 5 Old Di Yaphank, NY 119		Project Manag				ANALYSIS Are CT RCP (Reasonable Confidence Protoco						Pretacol	s) Required?				
Phone: 631-924-3	140	ALPHA Quote	05-80%		-	AN	ALYS	S				-			1		SAMPLE HANDLING
Fax: 631-924-500		Turn-Aroun		N season in the second	e Despite and												Filtration
Email: tracyw@er		Standard Standard	LIRUS	Sh JONLY IF PR	E-APPROVED												☐ Nat Needed
	e been Proviously analyzed by Alpha	Due Date:	Time:														☐ Lab to do Preservation
	pecific Requirements/Commer					-								1K			☐ Lab to do (Please specify
NYSDEC Categor NYEQUIS EDD fo																	below
						s 8260						Н					
ALPHA Lab ID (Lab Use Only)	Sample ID	Co	Time	Sample Matrix	Sampler's Initials	Vocs						Ш		1.			Sample Specific Comminse
3252-11	Field Blank	8/10/22	9:50	GW	JL	×								III			
-12	Equipment Blank		10:09														
-13	Blind Duplicate	V	7:29	V	V												
									ш			1 1	-1	1	11 [14	
									블	븝	블					븁	
						_											
						_											
EASE ANSWER	QUESTIONS ABOVE!			Co	ntainer Type												
EASE ANSWER	QUESTIONS ABOVE!				ntainer Type Preservative												Please print clearly, legibly and completely. Samples
	QUESTIONS ABOVE!		Reling				ate/Time				Receive				Date/T	me	and completely. Samples not be logged in and turneround time clock will t
S YOUR		(Sa)	110				22		Ages	00000	Receive				Date/T		end completely. Samples not be logged in and turnaround time clock will i start until any embiguities : Gesolved. All samples
SYOUR	PROJECT	Son Park	110	uished By:			22		Algorithms of the state of the		Receive	1 [] [] [] [] [] [] [] [] [] [Datert	10000000000000000000000000000000000000	and completely. Samples not be logged in and turneround time clock will start until any embiguities:

ANALYTICAL REPORT

Lab Number: L2200423

Client: Envirotrac Ltd.

5 Old Dock Road Yaphank, NY 11980

ATTN: Tracy Wall
Phone: (631) 924-3001

Project Name: REGENCY GARDENS

Project Number: 01.992302.00

Report Date: 01/20/22

1100011 2410.

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Number: 01.992302.00

 Lab Number:
 L2200423

 Report Date:
 01/20/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2200423-01	IA-RG-1	AIR	Not Specified	12/30/21 14:37	01/05/22
L2200423-02	IA-RG-2	AIR	Not Specified	12/30/21 13:18	01/05/22
L2200423-03	IA-RG-3	AIR	Not Specified	12/30/21 13:13	01/05/22
L2200423-04	IA-RG-4	AIR	Not Specified	12/30/21 13:43	01/05/22
L2200423-05	OA-RG-2	AIR	Not Specified	12/30/21 13:33	01/05/22
L2200423-06	UNUSED CAN2630	AIR	Not Specified		01/05/22

L2200423

Lab Number:

Project Name: REGENCY GARDENS

Project Number: 01.992302.00 **Report Date:** 01/20/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:01202215:35

Project Name:REGENCY GARDENSLab Number:L2200423Project Number:01.992302.00Report Date:01/20/22

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on December 29, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/20/22

Christopher J. Anderson

AIR

Project Number: 01.992302.00

Lab Number: L2200423

Report Date: 01/20/22

SAMPLE RESULTS

Lab ID: L2200423-01

Client ID: IA-RG-1

Sample Location:

Date Collected: 12/30/21 14:37

Date Received: 01/05/22 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/19/22 22:39

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.586	0.200		2.90	0.989			1
Chloromethane	0.553	0.200		1.14	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	21.3	5.00		40.1	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	5.94	1.00		14.1	2.38			1
Trichlorofluoromethane	0.253	0.200		1.42	1.12			1
Isopropanol	2.20	0.500		5.41	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	0.545	0.500		1.89	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date: 01/20/22

SAMPLE RESULTS

Lab ID: L2200423-01 Client ID: IA-RG-1

Sample Location:

Date Collected:

12/30/21 14:37

Date Received: Field Prep:

01/05/22 Not Specified

Sample Depth:

Затріе Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.223	0.200		0.786	0.705			1
Benzene	0.312	0.200		0.997	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Foluene	0.590	0.200		2.22	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-01 Client ID: IA-RG-1

Sample Location:

Date Collected:

Date Received:

12/30/21 14:37

Field Prep:

01/05/22 Not Specified

Sample Depth:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	94		60-140

Project Number: 01.992302.00 Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-01

Client ID: IA-RG-1 Date Collected:

12/30/21 14:37

Sample Location:

Date Received:

01/05/22

Field Prep:

Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 01/19/22 22:39

Analyst:

RY

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	0.051	0.020		0.278	0.109			1
Carbon tetrachloride	0.092	0.020		0.579	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.054	0.020		0.366	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	95		60-140

Project Number: 01.992302.00

Lab Number: L2200423

Report Date: 01/20/22

SAMPLE RESULTS

Lab ID: L2200423-02 Client ID: IA-RG-2

Sample Location:

Date Collected: 12/30/21 13:18

Date Received: 01/05/22 Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 01/19/22 23:18

Analyst: RY

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.577	0.200		2.85	0.989			1
Chloromethane	0.563	0.200		1.16	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	10.7	5.00		20.2	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.40	1.00		5.70	2.38			1
Trichlorofluoromethane	0.251	0.200		1.41	1.12			1
Isopropanol	3.03	0.500		7.45	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.230	0.200		1.12	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 01.992302.00

Lab Number: L2200423

Report Date: 01/20/22

SAMPLE RESULTS

Lab ID: L2200423-02 Client ID: IA-RG-2

Sample Location:

Date Collected: 12/30/21 13:18

Date Received: 01/05/22 Field Prep: Not Specified

оапріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.260	0.200		0.916	0.705			1
Benzene	0.327	0.200		1.04	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
is-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.540	0.200		2.03	0.754			1
-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 01.992302.00 Lab Number:

L2200423 01/20/22

Report Date:

SAMPLE RESULTS

Lab ID:

L2200423-02

Client ID:

IA-RG-2

Sample Location:

Date Received:

12/30/21 13:18

Date Collected:

01/05/22

Field Prep:

Not Specified

Parameter		ppbV		ug/m3				Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	93		60-140

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date: 01/20/22

SAMPLE RESULTS

Lab ID: L2200423-02

Client ID: IA-RG-2

Date Collected:

12/30/21 13:18

Sample Location:

Date Received:

01/05/22

Sample Location:

Field Prep:

Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 01/19/22 23:18

Analyst:

RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.096	0.020		0.604	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.079	0.020		0.536	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	94		60-140

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-03 Client ID: IA-RG-3

Sample Location:

Date Collected:

12/30/21 13:13

Date Received:

01/05/22

Field Prep:

Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 01/20/22 00:36

Analyst:

RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.578	0.200		2.86	0.989			1
Chloromethane	0.546	0.200		1.13	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	6.24	5.00		11.8	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.13	1.00		5.06	2.38			1
Trichlorofluoromethane	0.254	0.200		1.43	1.12			1
Isopropanol	1.65	0.500		4.06	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-03 Client ID: IA-RG-3

Sample Location:

Date Collected:

12/30/21 13:13

Date Received: Field Prep:

01/05/22 Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.231	0.200		0.814	0.705			1
Benzene	0.343	0.200		1.10	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.532	0.200		2.00	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
I-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 01.992302.00 Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID:

L2200423-03

Client ID:

IA-RG-3

Sample Location:

Date Collected: Date Received: 12/30/21 13:13

Field Prep:

01/05/22 Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
₋ab							
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND	ND 0.200 ND 0.200	Results RL MDL Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Results Lab ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	94		60-140

Project Number: 01.992302.00 Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-03

Client ID:

IA-RG-3

Date Collected:

12/30/21 13:13

Date Received: Field Prep:

01/05/22 Not Specified

Sample Location:

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 01/20/22 00:36

Analyst:

RY

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
nsfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.109			1
0.098	0.020		0.616	0.126			1
ND	0.020		ND	0.107			1
0.047	0.020		0.319	0.136			1
	ND 0.098 ND	Results RL nsfield Lab ND 0.020 ND 0.020 0.020 ND 0.020	Results RL MDL nsfield Lab ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020	Results RL MDL Results ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND 0.098 0.020 ND ND 0.020 ND	Results RL MDL Results RL ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.098 0.020 ND 0.126 ND 0.020 ND 0.107	Results RL MDL Results RL MDL NSfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.109 ND 0.020 ND 0.126 ND 0.020 ND 0.107 ND 0.020 ND 0.107	Results RL MDL Results RL MDL Qualifier ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.098 0.020 ND 0.126 ND 0.020 ND 0.107

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	95		60-140

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-04 Client ID: IA-RG-4

Sample Location:

Date Collected:

12/30/21 13:43

Date Received:

01/05/22

Field Prep:

Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 01/20/22 01:15

Analyst:

RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.598	0.200		2.96	0.989			1
Chloromethane	0.553	0.200		1.14	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	12.6	5.00		23.7	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.16	1.00		5.13	2.38			1
Trichlorofluoromethane	0.260	0.200		1.46	1.12			1
Isopropanol	1.61	0.500		3.96	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date: 01/20/22

SAMPLE RESULTS

Lab ID: L2200423-04 Client ID: IA-RG-4

Sample Location:

Date Collected:

12/30/21 13:43

Date Received: Field Prep:

01/05/22 Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	0.200		ND	0.809			1
0.226	0.200		0.796	0.705			1
0.309	0.200		0.987	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
ND	0.200		ND	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.486	0.200		1.83	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
	ND 0.226 0.309 ND	Results RL	Results RL MDL 3 Lab 0.226 0.200 0.309 0.200 ND 0.	Results RL MDL Results ND 0.200 ND 0.226 0.200 0.796 0.309 0.200 ND ND 0.200 ND <td>Results RL MDL Results RL B Lab ND 0.200 ND 0.809 0.226 0.200 0.796 0.705 0.309 0.200 0.987 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09 <</td> <td>Results RL MDL Results RL MDL I Lab ND 0.200 ND 0.809 0.226 0.200 0.796 0.705 0.309 0.200 0.987 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.820 ND 0.200 ND</td> <td>Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 0.226 0.200 0.796 0.705 0.309 0.200 0.987 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 </td>	Results RL MDL Results RL B Lab ND 0.200 ND 0.809 0.226 0.200 0.796 0.705 0.309 0.200 0.987 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09 <	Results RL MDL Results RL MDL I Lab ND 0.200 ND 0.809 0.226 0.200 0.796 0.705 0.309 0.200 0.987 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.820 ND 0.200 ND	Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 0.226 0.200 0.796 0.705 0.309 0.200 0.987 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200

Project Number: 01.992302.00 Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-04 IA-RG-4

Client ID: Sample Location: Date Collected: Date Received: 12/30/21 13:43

01/05/22

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	92		60-140

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-04

Client ID: IA-RG-4

Date Collected:

12/30/21 13:43

Date Received: Field Prep:

01/05/22 Not Specified

Sample Location:
Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 01/20/22 01:15

Analyst:

RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.092	0.020		0.579	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.042	0.020		0.285	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	93		60-140

Project Number: 01.992302.00

Lab Number: L2200423

Report Date: 01/20/22

SAMPLE RESULTS

Lab ID: L2200423-05
Client ID: OA-RG-2

Sample Location:

Date Collected:

12/30/21 13:33

Date Received: Field Prep:

01/05/22 Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 01/19/22 22:00

Analyst:

RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.553	0.200		2.73	0.989			1
Chloromethane	0.537	0.200		1.11	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	7.89	5.00		14.9	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.36	1.00		5.61	2.38			1
Trichlorofluoromethane	0.257	0.200		1.44	1.12			1
Isopropanol	2.19	0.500		5.38	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-05 Client ID: OA-RG-2

Sample Location:

Date Collected:

12/30/21 13:33

Date Received: Field Prep:

01/05/22 Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
l Lab							
ND	0.200		ND	0.809			1
ND	0.200		ND	0.705			1
0.257	0.200		0.821	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
ND	0.200		ND	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.369	0.200		1.39	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
	ND N	Results RL I Lab ND 0.200 ND	Results RL MDL I Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 <	Results RL MDL Results I Lab ND 0.200 ND ND 0.200 ND ND 0.257 0.200 ND ND 0.200 ND ND	Results RL MDL Results RL I Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.257 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908	Results RL MDL Results RL MDL I Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.257 0.200 ND 0.639 ND 0.220 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.639 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.920 ND 0.200 ND 0.90	Results RL MDL Results RL MDL Qualifier I Lab ND 0.200 ND 0.809 <

Project Number: 01.992302.00 Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-05 Client ID: OA-RG-2

Sample Location:

Date Collected: Date Received: 12/30/21 13:33

01/05/22

Field Prep:

Not Specified

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
₋ab							
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND	Results RL _ab ND 0.200 ND 0.200	Results RL MDL Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Results Lab ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	97		60-140

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date:

01/20/22

SAMPLE RESULTS

Lab ID: L2200423-05 Client ID: OA-RG-2

Sample Location:

Date Collected:

12/30/21 13:33

Date Received:

01/05/22

ation: Field F

Field Prep:

Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 01/19/22 22:00

Analyst:

RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.086	0.020		0.541	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.036	0.020		0.244	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	99		60-140

Project Name: REGENCY GARDENS Lab Number: L2200423

Project Number: 01.992302.00 **Report Date:** 01/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 01/19/22 16:59

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab f	or sample	(s): 01-0	5 Batch: W	G159592	24-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: REGENCY GARDENS Lab Number: L2200423

Project Number: 01.992302.00 **Report Date:** 01/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/19/22 16:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01-	-05 Batch	: WG15959	26-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: REGENCY GARDENS Lab Number: L2200423

Project Number: 01.992302.00 **Report Date:** 01/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/19/22 16:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01	-05 Batch	: WG15959	26-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: REGENCY GARDENS Lab Number: L2200423

Project Number: 01.992302.00 **Report Date:** 01/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/19/22 16:20

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01-	-05 Batch	n: WG15959	26-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: REGENCY GARDENS

Project Number: 01.992302.00

Lab Number:

L2200423

Report Date:

01/20/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated s	ample(s):	01-05 Batch: W0	G1595924-3	3				
Vinyl chloride	88		-		70-130	-		25	
1,1-Dichloroethene	95		-		70-130	-		25	
cis-1,2-Dichloroethene	91		-		70-130	-		25	
1,1,1-Trichloroethane	94		-		70-130	-		25	
Carbon tetrachloride	107		-		70-130	-		25	
Trichloroethene	88		-		70-130	-		25	
Tetrachloroethene	86		-		70-130	-		25	

Project Name: REGENCY GARDENS

Project Number: 01.992302.00

Lab Number: L2200423

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s):	01-05	Batch: WG159592	:6-3				
Dichlorodifluoromethane	104		-		70-130	-		
Chloromethane	91		-		70-130	-		
Freon-114	100		-		70-130	-		
Vinyl chloride	95		-		70-130	-		
1,3-Butadiene	101		-		70-130	-		
Bromomethane	98		-		70-130	-		
Chloroethane	95		-		70-130	-		
Ethanol	86		-		40-160	-		
Vinyl bromide	96		-		70-130	-		
Acetone	117		-		40-160	-		
Trichlorofluoromethane	107		-		70-130	-		
Isopropanol	90		-		40-160	-		
1,1-Dichloroethene	99		-		70-130	-		
Tertiary butyl Alcohol	91		-		70-130	-		
Methylene chloride	93		-		70-130	-		
3-Chloropropene	110		-		70-130	-		
Carbon disulfide	100		-		70-130	-		
Freon-113	101		-		70-130	-		
trans-1,2-Dichloroethene	94		-		70-130	-		
1,1-Dichloroethane	91		-		70-130	-		
Methyl tert butyl ether	77		-		70-130	-		
2-Butanone	82		-		70-130	-		
cis-1,2-Dichloroethene	97		-		70-130	-		

Project Name: REGENCY GARDENS

Project Number: 01.992302.00

Lab Number: L2200423

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	sociated sample(s):	01-05	Batch: WG159592	26-3				
Ethyl Acetate	88		-		70-130	-		
Chloroform	101		-		70-130	-		
Tetrahydrofuran	78		-		70-130	-		
1,2-Dichloroethane	97		-		70-130	-		
n-Hexane	98		-		70-130	-		
1,1,1-Trichloroethane	98		-		70-130	-		
Benzene	83		-		70-130	-		
Carbon tetrachloride	110		-		70-130	-		
Cyclohexane	99		-		70-130	-		
1,2-Dichloropropane	90		-		70-130	-		
Bromodichloromethane	111		-		70-130	-		
1,4-Dioxane	95		-		70-130	-		
Trichloroethene	90		-		70-130	-		
2,2,4-Trimethylpentane	99		-		70-130	-		
Heptane	91		-		70-130	-		
cis-1,3-Dichloropropene	97		-		70-130	-		
4-Methyl-2-pentanone	90		-		70-130	-		
trans-1,3-Dichloropropene	87		-		70-130	-		
1,1,2-Trichloroethane	97		-		70-130	-		
Toluene	84		-		70-130	-		
2-Hexanone	84		-		70-130	-		
Dibromochloromethane	108		-		70-130	-		
1,2-Dibromoethane	90		-		70-130	-		

Project Name: REGENCY GARDENS

Project Number: 01.992302.00

Lab Number: L2200423

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-05	Batch: WG159592	26-3				
Tetrachloroethene	86		-		70-130	-		
Chlorobenzene	88		-		70-130	-		
Ethylbenzene	94		-		70-130	-		
p/m-Xylene	94		-		70-130	-		
Bromoform	119		-		70-130	-		
Styrene	93		-		70-130	-		
1,1,2,2-Tetrachloroethane	99		-		70-130	-		
o-Xylene	94		-		70-130	-		
4-Ethyltoluene	97		-		70-130	-		
1,3,5-Trimethylbenzene	92		-		70-130	-		
1,2,4-Trimethylbenzene	94		-		70-130	-		
Benzyl chloride	85		-		70-130	-		
1,3-Dichlorobenzene	100		-		70-130	-		
1,4-Dichlorobenzene	99		-		70-130	-		
1,2-Dichlorobenzene	99		-		70-130	-		
1,2,4-Trichlorobenzene	84		-		70-130	-		
Hexachlorobutadiene	89		-		70-130	-		

Project Name: REGENCY GARDENS Batch Quality Co

Lab Number: L2200423

Report Date: 01/20/22

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-05	QC Batch ID: WG1	595924-5	QC Sample: L2	2200423-02	Client ID: I	A-RG-2
Vinyl chloride	ND	ND	ppbV	NC		25	
1,1-Dichloroethene	ND	ND	ppbV	NC		25	
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25	
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25	
Carbon tetrachloride	0.096	0.101	ppbV	5		25	
Trichloroethene	ND	ND	ppbV	NC		25	
Tetrachloroethene	0.079	0.077	ppbV	3		25	

Project Number:

01.992302.00

Project Name: REGENCY GARDENS

Project Number: 01.992302.00

Lab Number: L2200423

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-05	QC Batch ID: WG1595926-5	QC Sample:	L2200423-	02 Client ID: IA-RG-2
Dichlorodifluoromethane	0.577	0.578	ppbV	0	25
Chloromethane	0.563	0.550	ppbV	2	25
Freon-114	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Ethanol	10.7	10.7	ppbV	0	25
Vinyl bromide	ND	ND	ppbV	NC	25
Acetone	2.40	2.17	ppbV	10	25
Trichlorofluoromethane	0.251	0.259	ppbV	3	25
Isopropanol	3.03	2.98	ppbV	2	25
Tertiary butyl Alcohol	ND	ND	ppbV	NC	25
Methylene chloride	ND	ND	ppbV	NC	25
3-Chloropropene	ND	ND	ppbV	NC	25
Carbon disulfide	ND	ND	ppbV	NC	25
Freon-113	ND	ND	ppbV	NC	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25
2-Butanone	ND	ND	ppbV	NC	25
Ethyl Acetate	ND	ND	ppbV	NC	25

Project Name: REGENCY GARDENS

Project Number: 01.992302.00

Lab Number:

L2200423

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-05	QC Batch ID: WG1595926-5	QC Sample:	L2200423-02	2 Client ID: IA-RG-2
Chloroform	0.230	0.222	ppbV	4	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	0.260	0.258	ppbV	1	25
Benzene	0.327	0.328	ppbV	0	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	0.540	0.536	ppbV	1	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25

Project Name: REGENCY GARDENS

Project Number: 01.992302.00

Lab Number:

L2200423

rameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
latile Organics in Air - Mansfield Lab	Associated sample(s): 01-05	QC Batch ID: WG1595926-5	QC Sample:	L2200423-0	02 Client ID:	IA-RG-2
p/m-Xylene	ND	ND	ppbV	NC		25
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	ND	ND	ppbV	NC		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC		25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25

Lab Number: L2200423

Report Date: 01/20/22

Керс

Canister and Flow Controller Information

			Media Type	Date	Bottle	Cleaning	Can Leak	Initial Pressure	Pressure on Receipt	Flow Controler	Flow Out	Flow In	a
Samplenum	Client ID	Media ID	-	Prepared	Order	Batch ID	Check	(in. Hg)	(in. Hg)	Leak Chk	Flow Out mL/min	mL/min	% RPD
L2200423-01	IA-RG-1	02060	Flow 4	12/29/21	374478		-	-	-	Pass	13.0	14.1	8
L2200423-01	IA-RG-1	1981	6.0L Can	12/29/21	374478	L2167798-03	Pass	-29.2	-6.8	-	-	-	-
L2200423-02	IA-RG-2	01566	Flow 4	12/29/21	374478		-	-	-	Pass	13.0	12.8	2
L2200423-02	IA-RG-2	2926	6.0L Can	12/29/21	374478	L2167798-04	Pass	-29.2	-6.8	-	-	-	-
L2200423-03	IA-RG-3	0758	Flow 3	12/29/21	374478		-	-	-	Pass	13.0	11.8	10
L2200423-03	IA-RG-3	1523	6.0L Can	12/29/21	374478	L2167798-03	Pass	-29.3	-9.1	-	-	-	-
L2200423-04	IA-RG-4	01663	Flow 4	12/29/21	374478		-	-	-	Pass	13.0	13.4	3
L2200423-04	IA-RG-4	2465	6.0L Can	12/29/21	374478	L2170457-08	Pass	-29.2	-7.9	-	-	-	-
L2200423-05	OA-RG-2	01668	Flow 4	12/29/21	374478		-	-	-	Pass	13.0	13.3	2
L2200423-05	OA-RG-2	2284	6.0L Can	12/29/21	374478	L2167798-03	Pass	-29.3	-6.4	-	-	-	-
L2200423-06	UNUSED_CAN2630	01582	Flow 4	12/29/21	374478		-	-	-	Pass	13.0	13.3	2
L2200423-06	UNUSED_CAN2630	2630	6.0L Can	12/29/21	374478	L2167798-03	Pass	-29.2	-29.3	-	-	-	

Project Name:

Project Number:

REGENCY GARDENS

01.992302.00

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/20/22

Air Canister Certification Results

Lab ID: L2167798-03

Date Collected: 12/09/21 14:00 Client ID: **CAN 3370 SHELF 56** Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 12/11/21 21:00

Analyst: TS

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
b							
ND	0.200		ND	0.707			1
ND	0.500		ND	0.861			1
ND	0.500		ND	0.902			1
ND	0.200		ND	0.989			1
ND	0.200		ND	0.413			1
ND	0.200		ND	1.40			1
ND	5.00		ND	6.55			1
ND	0.200		ND	0.511			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.475			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
ND	5.00		ND	9.42			1
ND	0.200		ND	0.842			1
ND	0.200		ND	0.874			1
ND	0.500		ND	1.15			1
ND	1.00		ND	2.38			1
ND	0.200		ND	0.336			1
ND	0.200		ND	1.12			1
ND	0.500		ND	1.23			1
ND	0.500		ND	1.09			1
ND	0.200		ND	0.590			1
ND	0.200		ND	0.606			1
ND	0.200		ND	0.793			1
	ND N	Results RL b ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.200 ND 0.200 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL b ND 0.200 ND 0.500 ND 0.500 ND 0.200 ND 0.500 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500 ND 0.200 ND 0.200	Results RL MDL Results b ND 0.200 ND ND 0.500 ND ND ND 0.500 ND ND ND 0.200 ND ND ND 0.200 ND ND ND 5.00 ND ND ND 0.200 ND ND ND 0.500 ND ND ND 0.200 ND ND ND 0.500 ND ND	Results RL MDL Results RL b ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.441 ND 0.200 ND 0.555 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND 0.200 ND 0.842 ND 0.500 ND 0.336 <td< td=""><td>Results RL MDL Results RL MDL ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 </td><td>Results RL MDL Results RL MDL Qualifier b ND 0.200 ND 0.7077 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND</td></td<>	Results RL MDL Results RL MDL ND 0.200 ND 0.707 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528	Results RL MDL Results RL MDL Qualifier b ND 0.200 ND 0.7077 ND 0.500 ND 0.861 ND 0.500 ND 0.902 ND 0.500 ND 0.989 ND 0.200 ND 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.511 ND 0.200 ND 0.442 ND 0.200 ND 0.475 ND 0.200 ND 0.528 ND 0.200 ND 0.842 ND

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-03

Date Collected: 12/09/21 14:00 Client ID: CAN 3370 SHELF 56 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-03

Date Collected: 12/09/21 14:00 Client ID: CAN 3370 SHELF 56 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

Запре Верш.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-03

Date Collected: 12/09/21 14:00 Client ID: CAN 3370 SHELF 56 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

	Vdqq			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
1-Chlorotoluene	ND	0.200		ND	1.04			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2167798

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-03

Date Collected: 12/09/21 14:00 Client ID: **CAN 3370 SHELF 56** Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	99		60-140

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/20/22

Air Canister Certification Results

Lab ID: L2167798-03

Date Collected: 12/09/21 14:00 Client ID: **CAN 3370 SHELF 56** Date Received: 12/10/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 12/11/21 21:00

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-03

Date Collected: 12/09/21 14:00 Client ID: CAN 3370 SHELF 56 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-03

Date Collected: 12/09/21 14:00 Client ID: CAN 3370 SHELF 56 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	98		60-140

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/20/22

Air Canister Certification Results

Lab ID: L2167798-04

Date Collected: 12/09/21 14:00 Client ID: CAN 2321 SHELF 57 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 12/11/21 21:39

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-04

Date Collected: 12/09/21 14:00 Client ID: CAN 2321 SHELF 57 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

Запре Берш.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-04

Date Collected: 12/09/21 14:00 CAN 2321 SHELF 57 Client ID: Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

Sample Deptil.		mmh\/			ug/m3			
Parameter	Results	ppbV RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab			IIIDE					
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

L2167798-04 Lab ID:

Date Collected: 12/09/21 14:00 Client ID: CAN 2321 SHELF 57 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
l-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2167798

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-04

Date Collected: 12/09/21 14:00 Client ID: CAN 2321 SHELF 57 Date Received:

12/10/21 Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	9/ Basayary	Qualifier	Acceptance Criteria
internal Standard	% Recovery	Quaimer	Oriteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	100		60-140

L2167798

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/20/22

Air Canister Certification Results

Lab ID: L2167798-04

Date Collected: 12/09/21 14:00 Client ID: CAN 2321 SHELF 57 Date Received: 12/10/21

Sample Location:

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 12/11/21 21:39

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2167798

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-04

Date Collected: 12/09/21 14:00 Client ID: CAN 2321 SHELF 57 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2167798

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2167798-04

Date Collected: 12/09/21 14:00 Client ID: CAN 2321 SHELF 57 Date Received: 12/10/21

Sample Location: Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	99		60-140

L2170457

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/20/22

Air Canister Certification Results

Lab ID: L2170457-08

Date Collected: 12/22/21 08:00 Client ID: CAN 3602 SHELF 40 Date Received: 12/22/21

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 12/24/21 01:39

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2170457

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2170457-08

Date Collected: 12/22/21 08:00 Client ID: CAN 3602 SHELF 40 Date Received: 12/22/21

Sample Location: Field Prep: Not Specified

Затріє Беріт.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2170457

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2170457-08

Date Collected: 12/22/21 08:00 Client ID: CAN 3602 SHELF 40 Date Received: 12/22/21

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Frichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2170457

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2170457-08

Date Collected: 12/22/21 08:00 Client ID: CAN 3602 SHELF 40 Date Received: 12/22/21

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2170457

Project Number: CANISTER QC BAT Report Date: 01/20/22

Air Canister Certification Results

Lab ID: L2170457-08

Client ID: CAN 3602 SHELF 40

Sample Location:

Date Collected:

12/22/21 08:00

Date Received:

12/22/21

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

L2170457

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 01/20/22

Air Canister Certification Results

Lab ID: L2170457-08

Date Collected: 12/22/21 08:00 Client ID: CAN 3602 SHELF 40 Date Received: 12/22/21

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 12/24/21 01:39

Analyst: TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2170457

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2170457-08

Date Collected: 12/22/21 08:00 Client ID: CAN 3602 SHELF 40 Date Received: 12/22/21

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2170457

Project Number: CANISTER QC BAT **Report Date:** 01/20/22

Air Canister Certification Results

Lab ID: L2170457-08

Date Collected: 12/22/21 08:00 Client ID: CAN 3602 SHELF 40 Date Received: 12/22/21

Sample Location: Field Prep: Not Specified

, ,		ppbV			ug/m3			Dilution
Parameter	Results	RL MDL		Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

Project Name: REGENCY GARDENS Lab Number: L2200423

Project Number: 01.992302.00 **Report Date:** 01/20/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

NA Absent

Container Info	rmation		Initial F		Temp			Frozen			
Container ID	Container Type	Cooler pH		pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2200423-01A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30)		
L2200423-02A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30)		
L2200423-03A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30)		
L2200423-04A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30)		
L2200423-05A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30)		
L2200423-06A	Canister - 6 Liter	NA	NA			Υ	Absent		CLEAN-FEE()		

Project Name:REGENCY GARDENSLab Number:L2200423Project Number:01.992302.00Report Date:01/20/22

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:REGENCY GARDENSLab Number:L2200423Project Number:01.992302.00Report Date:01/20/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:REGENCY GARDENSLab Number:L2200423Project Number:01.992302.00Report Date:01/20/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:REGENCY GARDENSLab Number:L2200423Project Number:01.992302.00Report Date:01/20/22

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 19 Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

	AIR	ΔΝΔΙ	YSIS		i	1		100	N. Front	N AND		-11,2	Se	nai_iv	10.0120221	0.30
ALPHA	CHAIN OF CUSTOD	Υ			PAGE	_ OF	Date	Rec'd in	n Lab:	116	122	-4	ALPH	A Job	#: LZ	200423
320 Forbes Blvd, M	Mansfield, MA 02048		ct Informa					ort Info	rmation	- Data	Delivera	ables	Billing	Infor	mation	
Client Informati	0 FAX: 508-822-3288	100 000	Name: 7	Ekgen	cy (lader	O FA	□ FAX					Same as Client info PO#:			
			Project Location:		LI AI	☐ ADEx Criteria Checker:				Minroies cerviratracia						
Env	· Tac Ltd.		# 01-9	12 30	2.00				based on Re	gulatory C	riteria Indicat	ed)				*
	I Doch Rd		Manager:	Tracy	Wall			MAIL (st	andard po)		Regul	atory F	Requiremen	ts/Report Lim
Phone: (03)	Mank, NY /1950		Quote #:					2010/12/0851	Deliverat				State/Fe	rd	Program	Res / Comi
		Turn	-Around Ti	me			Repo	rt to: (ra	ifferent than Pro	ject Manager	9			_		
Email: /	924- 5001	Stan	dard [RUSH (onl)	confirmed if pre-	approved)										
Trou	Ju cenirotreca	Deta 5				MENOCIOS.							/ A	NALY	rsis	
Other Project S	we been previously analyzed by Alp Specific Requirements/Co	mments	ue:		Time:								III	9//	2///	
	Target Compound List:											1	/ / / / / / / / / / / /	/ /1	g/ / /	
. reject opcome	rarget Compound List:	u										/	/ Ball	Mans b	///	
		All Co	lumn	s Be	low I	Must	Ве	Fills	ed C	TIT.		= /	IM MINETANO BESON	d Mercay	//	
(Lab Use Only)	Sample ID		CO te Start Time						er's Can		ID-Flow	70.15	APH Business Theor	Moes &	/	
0423-01	1A-RG-1	1/4	10827					Initia	7 7				/ * / * / ·	8//	Sample C	omments (i.e. Pli
02		1439			_			AA	(d		07060	1		++		
03	1A-KG-2 1A-KG-3			1318				+			01566			44		
04	1A-KG-5	1	0713						1	3465	01663	4		11		
oic .	1A-RG-4 0A-RG-2	1	0742	1343	-30,10	-8.03	15	V	W,	1523	0758	100				
0)	04 - K6-X	v	0731	1333	-30,17	-7.35	45	7	P	22.99	01668					
														++		
*04404	1/4700/05	AA = Ambie	nt Air (Indoor	(Outdoor)										+		
SAMPLE MATRIX CODES S		SV = Soil Va Other = Pleas	por/Landfill (e Specify	Gas/SVE				Container Type						Please print o	dearly, legibly and Samples can not be	
			ished By:		Date	e/Time	1	11 01	poissed D	y.			to/Times		logged in and	samples can not be turnaround time start until any ambi
	M	2011	200		1000000	16:0	Dal	100	ceived By	AA	1 ,	15	te/Time:	9.11	guities are res	solved. All samples subject to Alpha's
OFFI No.: 164-02 Days etc. 5	Pay	free	ne-	HA2	115/2	2 /3=	312	V	-	34		1/5/20	201	3/10	Terms and Co See reverse s	onditions.
Page 69 of 69	ep-15)	-	87-N	1///	1/6/	22 00130	1		2000	- 1	6/22	009	15		Out reverse s	NUC.

APPENDIX C

Annual Compliance Inspection Form – Interim SVE System

Site Management Inspection Form 141-05, 141-12, 141-18 & 141-24 78th Avenue

Flushing, New York

Name of Inspector:	Josh Levy	Inspection Date:	August 10, 2022							
Construction	December 2020	Date of Last Periodic	May 11, 2021							
Completion Date:		Compliance Inspection:								
Name and Address	ddress Regency Gardens Apartment Corp.									
Current Property	78-05 141st Street, 141-06, 141-12, 141-18, 141-24 78th Avenue									
Owner(s):	Flushing, New York									
Name of Site	Zulma Polanco	Telephone								
Contact:	Thomas Krahn	Number:	516-504-7020 ext. 3							
Operators	(Vision Enterprises Mgm	Telephone								
Name:		Number:	212-704-4209							
(if applicable)	VP Capital Holdings, LL0	1	212-704-4203							
,										
D D (D)	T 41 1 1 1 ACC	1	•							

Persons Present During Inspection include Affiliations:

ANNUAL COMPLIANCE INSPECTION FORM - Interim SVE System 77-57 Vleigh Place Flushing, Queens, NY NYSDEC Site Number: C241168 Josh Levy Name of Inspector: N/A Remedial Action Completion Date: **COC Issuance Date** December 24, 2019 August 10, 2022 **Inspection Date** Date of Last Periodic Compliance May 11, 2021 **Inspection:** VP Capital Holdings, LLC **Operators Name and** 212-704-4209 Tel# Persons Present During Inspection include Affiliations: EnviroTrac PC PE A. Remedy Description of Cover Systems 1. Review of the current remedy Identify the current remedy: Interim SVE System, Cover System XCover Slab∕ Top Soil XSVE **B. Remedy Performance Assessment** 1. Evaluate remedy effectiveness: Based on information collected since the last O&M review, do monitoring data indicate that the □ Yes system is failing or could eventually fail to meet remedy goals? XNo Since the last O&M review, have monitoring data exhibited trends indicative of a new or renewed □ Yes release? XNo Since the last O&M review, have changes in land and/or ground water use been suggested and or □ Yes implemented that have the potential to reduce the protectiveness of the SSDS remedy? XNo Interim SVE Since the last O&M review, have contaminants been identified in new locations or at higher □ Yes concentrations where they pose or have the potential to pose unacceptable risks to receptors? XNo If you answered yes to any of the above questions, did the information suggest the need for □ Immediate Action □ Monitor for future immediate action or is the condition being monitored to evaluate the need for future action? Use this space to comment. What actions, if any, have been taken and/or are planned in response to the new XN/A Based on your answers to the above questions, is there reason to evaluate the need for a contingent □ Yes remedy at this time? If yes, use this space to comment. XNo SVE blower and Piping X Yes Since the last O&M review for this system, has evidence of damages to system components been observed? Damage to the SVE piping was replaced in June 2022. \square No

Since the last O&M review, have system blower and piping components been consistently

operational

XYes

□ No

SVE			
PID Level at effluent	0.1		PPM
Vacuum Reading at Vacuum monitorig points	I		
PT-1	0.0		Inch WO
PT-2	-0.001		Inch WO
PT-7	-0.011		Inch WO
SV-8	-0.002		Inch WO
SV-9	-0.8		Inch WO
SV-KG-1	-0.002		Inch WO
Vacuum Gauge	-64		Inch WC
Alarm Condition Interim SVE System Was the Subslab Depressurization System (SSDS) operating upon arrival?		□ X Operational □ Damaged	
		□ X Yes	
If "No," explain below why the system was not running, efforts taken to restart the SSDS and if the		□ No	
Carbon Activated Carbon (GAC)drums Interim SVE System Is breakthrough detector on GAC drum for SSDS-1 turning from violet to brow/black Interim SVE System Is breakthrough detector on GAC drum for SSDS-1 turning from violet to brow/black		□ Yes XNo □ Yes XNo	
List below all pertinent observations and actions taken during this Inspection:			
Cover System			
Did you observe breaking of slab cover l?		□ Yes	
The current site cover includes the vapor barrier, three-foot thick slab, and new building.		□ X Vo	
If yes describe the level of alteration needed for repairs and remedies?	I		

APPENIDX D

Site Management Inspection Form – Regency Gardens

Date	Site Address	inspector name and title
August 10, 2022	141-05, 141-12, 141-18 & 141-24 78th Avenue, Flushing, New York	Josh Levy
Remedy Description of Cover Systems		
1. Review of the current remedy		
Identify the current remedy:		
XSSDS		
How many SSDS Systems are used? SSDS-1; SSDS-2	2; SSDS-3 and SSDS-4	
2. Review of the current remedy goals		
What schedule has been established for monitoring of SS Annual	DS?	
B. Summary of Remedy Performance Assessment		
1. Evaluate remedy effectiveness:		
Based on information collected since the last O&M review or could eventually fail to meet remedy goals?	w, do monitoring data indicate that the system is failing	□ Yes ¤XNo
Since the last O&M review, have monitoring data exhibit		□ Yes ≱No
Since the last O&M review, have changes in landuse been	n suggested and or implemented that have the potential	□ Yes
to reduce the protectiveness of the SSDS remedy?	ZNo.	
Since the last O&M review, have contaminants been	□ Yes	
concentrations where they pose or have the potential to p	∠ No	
If you answered yes to any of the above questions, did the is the condition being monitored to evaluate the need for actions, if any, have been taken and/or are planned in re	□ Immediate Action	
	□ Monitor for future	
		XN/A
Based on your answers to the above questions, is there re this time? If yes, use this space to comment.	eason to evaluate the need for a contingent remedy at	□ Yes
		ZNo.
SSDS		
PID at effluent - SSDS-1 = 0.0 ; SSDS-2 = 0.0 ; SSD		PPM
Vacuum guage - SSDS-1 = -4.65 ; SSDS-2 = -4.5 ; SSD	0S-3 = -4.2 ; SSDS-4 = -4.2 SSDS-5 = -2.5 SSDS-6 = -4.2 SSDS-8 = -4.2	-3.5 SSDS-7 = -4.2 SSDS-9 = -3 Dec 21 Inch H20
Vacuum Reading at the 8 vacuum monitorinbg points: PTP-4=-0.019; PTP-5=-0.023 PTP-6=-0.018; PTP-7=-0	PTP-1= -0.049, PTP-2= -0.044, PTP-3= -0.022, 016, PTP-8=-0.421 Aug 22	Inch H20
Fan Condition Good		∡Function □ Damage
Alarm Condition good		Function
5		□ Damage
Was the Subslab Depressurization System (SSDS) operat If "No," explain below why the system was not running, operational when leaving. If successful in making the SS	ıXYes	
		□ No
If measured, were all subslab probe vacuum readings grund if "Yes," the SSDS is deemed still effective and the vacuum new baseline readings.		ďYes

If "No," system must be adjusted/amended and the SSDS re-commissioned Discuss adjustments and amendments below:	□ No
List below all pertinent observations and actions taken during this Inspection: All 4 SSDSs appeared in good i.e., sagging/damaged pipes, construction changes to building that may affect the system, pipe leaks that may need has occupancy zoning changed (i.e. commercial to residential), are non-SSDS engineered systems still functioning as needed.	0
Cover slab	
Did you observe breaking or cracks in the slab cover	□ Yes
	¤No
If yes describe the level of alteration needed for repairs and remedies?	

