LANGAN

Technical Excellence Practical Experience Client Responsiveness

April 30, 2021

Christopher Allan Environmental Engineer New York State Department of Environmental Conservation Superfund and Brownfield Cleanup Section, Division of Environmental Remediation 47-20 21st Street Long Island City, NY 11101 Christopher.Allen@dec.ny.gov

Re: Remediation Test Pilot Work Plan Addendum ABC Block 26 Long Island City, NY BCP Site No.: C241174 Langan Project No.: 170340203

Dear Mr. Allan:

Langan Engineering, Environmental, Survey, Landscape Architecture and Geology, D.P.C (Langan) presents this addendum to the Remediation Pilot Test Work Plan, dated February 18, 2021 on behalf of PLAX B26, LLC for the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C241174. As suggested by the NYSDEC in the conditional approval letter for Remediation Pilot Test Work Plan (dated March 12, 2021), soil samples will also be collected to assess the performance of sulfate and carbon treatment technologies in reducing soil contaminants.

The soil sampling will be completed in accordance with this addendum, relevant procedures set forth in Langan's Remediation Pilot Test Work Plan (dated February 18, 2021), and the Revised Quality Assurance Work Plan (QAPP) (Attachment 1). The QAPP was revised to include protocols for the collection of soil samples for laboratory analysis of volatile organic compounds (VOCs) and to address additional comments received from the NYSDEC.

The soil sampling plan will consist of two events; baseline soil sample collection concurrent with the installation of monitoring wells and injection wells (as stipulated in the Remediation Pilot Test Work Plan) and post-pilot test sample collection concurrent with the last performance monitoring groundwater sampling event. Post-pilot test boring locations will be off-set from the baseline sampling locations by about 5 feet. The two events will include the following:

- Advancement of three soil borings via a direct push drilling rig or sonic drilling rig (if needed) within sulfate and activated carbon pilot test injection areas (see Figures 1 and 2);
- Classification of extracted soil cores and preparation of soil boring logs;

- Collection of two soil samples for laboratory analysis from each soil boring within the sulfate injection area; one from the 7-to 12-foot below ground surface (bgs) interval and one from the 13- to 22-foot bgs interval;
- Collection of one soil sample for laboratory analysis from each soil boring within the activated carbon injection area from the 10-to 22-foot bgs interval;
- Boreholes will be backfilled with hydrated bentonite and patched at the surface with concrete or asphalt; and
- Laboratory analysis of the soil samples for Target Compound List/Part 375 VOCs by USEPA Method 8260.

In addition and as a minor amendment to the Remediation Pilot Test Work Plan, we plan to advance three additional soil borings concurrent with activated carbon injections to a depth of 20 feet bgs (off-set from the temporary piezometer locations by about 3 feet) to visually screen extracted soil cores for the presence of activated carbon to assess the radius of influence (ROI) of the injections. Completed boreholes will be backfilled with hydrated bentonite and patched at the surface with concrete or asphalt.

The soil sampling analytical results will be validated, tabulated and evaluated and included in the final Remediation Pilot Test Report. Field observations and soil boring logs will also be included in the final report.

If you have any questions, please call us at 212-479-5400.

Sincerely,

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.

Stent H. almo

Stewart Abrams, PE Principal/Vice President

Jason Hayes, PE Principal/Vice President

- cc: T. Pfohl, M. Quigley, P. Kirby, J. Hare, (Plaxall)M. Chertok, E. Knauer (SPR)M. Raygorodetsky, G. Wyka, A. Oka, W. Kim, E. Smith (Langan)
- Enclosures: Figure 1 Proposed Performance Monitoring Soil Boring Location Map Sulfate Figure 2 Proposed Performance Monitoring Soil Boring Location Map - Carbon Attachment A – Quality Assurance Project Plan

FIGURES

heetFiles\Environmental_Block 26 - C241174\Pilot Study\Block 26 -Treatment Area Maps.dwg Date: 4	4/20/2021 Time: 12:46 User: astappenbeck S	tyle Table: Langan.stb Layout: ANSID-BL (4)

Drawing Title PROPOSED	Project No.	Drawing No.
	170340203	
PERFORMANCE	Date	
MONITORING SOIL	03/30/2021	
BORING LOCATION	Drawn By	
MAP - CARBON	EMS	
	Checked By	
k INJECTIONS	WK	Sheet 2 of 2

1. BASE MAP TAKEN FROM SURVEY PREPARED BY ALBERT W. TAY, DATED SEPTEMBER 6, 2012. 3. MONITORING WELL, SOIL BORING, AND TEMPORARY PIEZOMETER WELL LOCATIONS WILL BE FINALIZED BASED ON GEOPHYSICAL SURVEY RESULTS, FIELD OBSERVATIONS, AND SUBSURFACE OBSTRUCTIONS (IF ANY).

PROPOSED PERFORMANCE MONITORING SOIL BORING LOCATION

PROPOSED TEMPORARY INJECTION LOCATIONS AND APPROXIMATE ROI

PROPOSED TEMPORARY PIEZOMETER WELL LOCATION AND ID

APPROXIMATE EXTENT OF ACTIVATED CARBON TREATMENT AREA

APPROXIMATE BCP SITE BOUNDARY

ATTACHMENT A

QUALITY ASSURANCE PROJECT PLAN

LANGAN

Quality Assurance Project Plan

Remediation Pilot Test Work Plan ABC Block 26 Long Island City, New York NYSDEC BCP Site No. C241174

Prepared For:

PLAX B26, LLC 5-46 46th Avenue Long Island City, New York 11101

Prepared By:

Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

> April 20, 2021 Langan Project No. 170340203

 21 Penn Plaza, 360 West 31st Street, 8th Floor
 New York, NY 10001
 T: 212.479.5400
 F: 212.479.5444
 www.langan.com

 New Jersey
 New York
 Virginia
 California
 Pennsylvania
 Connecticut
 Florida
 Abu Dhabi
 Athens
 Doha
 Dubai
 Istanbul

TABLE OF CONTENTS

PAGE

1.0		PROJE	ECT DESCRIPTION1
	1.1		Introduction1
	1.2		Project Objectives1
	1.3		Scope of Work1
2.0		PROJE	ECT ORGANIZATION2
3.0		QUAL	ITY ASSURANCE OBJECTIVES FOR COLLECTION OF DATA3
	3.1		Introduction
	3.2		Precision
	3.3		Accuracy
	3.4		Completeness5
	3.5		Representativeness
	3.6		Comparability6
	3.7		Sensitivity7
4.0		SAMP	LE COLLECTION AND FIELD DATA ACQUISITION PROCEDURES8
	4.1		Field Documentation Procedures8
		4.1.1	Field Data and Notes8
		4.1.2	Sample Labeling9
	4.2		Equipment Calibration and Preventative Maintenance10
	4.3		Sample Collection
	4.4		Sample Containers and Handling12
	4.5		Sample Preservation
	4.6		Sample Shipment13
		4.6.1	Packaging13
		4.6.2	Shipping14
	4.7		Decontamination Procedures14
	4.8		Residuals Management14
	4.9		Chain of Custody Procedures15
	4.10)	Laboratory Sample Storage Procedures
5.0		DATA	REDUCTION, VALIDATION, AND REPORTING21
	5.1		Introduction21
	5.2		Data Reduction21
6.0		QUAL	ITY ASSURANCE PERFORMANCE AUDITS AND SYSTEM AUDITS 24
	6.1		Introduction24
	6.2		System Audits24
	6.3		Performance Audits
	6.4		Formal Audits

7.0		CORRECTIVE ACTION	26
7.	.1	Introduction	26
7.	.2	Procedure Description	26
8.0		REFERENCES	29

ATTACHMENTS

Attachment A:	Resumes
Attachment B:	Laboratory Reporting Limits and Method Detection Limits
Attachment C:	Analytical Methods/Quality Assurance Summary Table
Attachment D:	Sample Nomenclature

1.0 **PROJECT DESCRIPTION**

1.1 INTRODUCTION

This Quality Assurance Project Plan (QAPP) was prepared on behalf of PLAX B26, LLC (the Participant) for ABC Block 26, Long Island City, New York (the "site"). The site is enrolled in the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) as Site No. C241174. Additional site information including site maps and remedial treatment data is provided in the Remediation Pilot Test Work Plan.

This QAPP specifies the sampling procedures to be followed and the analytical methods to be used to ensure that data collected from the remedial investigation are precise, accurate, representative, comparable, and complete.

1.2 **PROJECT OBJECTIVES**

The objective of the remediation pilot test program is to assess the feasibility of and effectiveness of biosparging and application of sulfate reduction and/or injectable activated carbon in reducing petroleum-related volatile organic compounds (VOC) and semivolatile organic compound (SVOC) impacts to groundwater and VOC impacts to soil at the site and the other two ABC BCP Sites (ABC Block 25 [Site No. C241173] and ABC Block 27 [Site No. C241175]) with similar contamination. The pilot testing results will inform the remedial alternatives analyses for remedy selection across all three sites and will also be used to derive design criteria for full-scale implementation. This QAPP addresses necessary sampling and analytical methods in support of the Remediation Pilot Test Work Plan. These objectives were established in order to meet standards that will protect public health and the environment for the site.

1.3 SCOPE OF WORK

The scope of work includes a combined biosparging, sulfate-reduction, and injectable activated carbon pilot test. Additional details are included in the Remediation Pilot Test Work Plan.

2.0 PROJECT ORGANIZATION

The New York State Department of Environmental Conservation (NYSDEC)-approved Remediation Pilot Test Work Plan will be implemented by Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan), on behalf of PLAX B26, LLC. Langan will collect media samples and will subcontract with a qualified driller and accredited analytical laboratories.

For the scope of work described in the Remediation Pilot Test Work Plan, sampling will be conducted by Langan and analytical services will be performed by Microbial Insights of Knoxville, Tennessee (A2LA Certification #AT-2904) and New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory (Alpha Analytical, Inc. [Alpha] of Westborough, MA [ELAP ID #11148]). Data validation services will be performed by Joe Conboy. Resumes for key Langan project personnel are included as Attachment A.

Key contacts for this project are as follows:

_. . . . _ _ _

PLAX B26, LLC:	Mr. Jordan Hare Telephone: (718) 784-4800
Langan Project Manager:	Mrs. Mimi Raygorodetsky Telephone: (212) 479-5441
Langan Quality Assurance Officer (QAO):	Mr. Greg Wyka Telephone: (212) 479-5476
Program Quality Assurance Monitor:	Ms. Julia Leung, PE Telephone: (212) 479-5452
Data Validator:	Mr. Joe Conboy Telephone: (215) 845-8985
Laboratory Representatives:	Alpha Analytical Ben Rao Telephone: (201) 812-2633
	Microbial Insights Kate Clark Telephone: (865) 573-8188

3.0 QUALITY ASSURANCE OBJECTIVES FOR COLLECTION OF DATA

3.1 INTRODUCTION

The overall quality assurance and quality control (QA/QC) objectives are to develop and implement procedures for sampling, laboratory analysis, field measurements, and reporting that will provide data of sufficient quality for the remedial investigation at the site. The sample set, chemical analysis results, and interpretations must be based on data that meet or exceed quality assurance objectives established for the site. Quality assurance objectives are usually expressed in terms of accuracy or bias, sensitivity, completeness, representativeness, comparability, and sensitivity of analysis. Variances from the quality assurance objectives at any stage of the investigation will result in the implementation of appropriate corrective measures and an assessment of the impact of corrective measures on the usability of the data.

3.2 PRECISION

Precision is an expression of the reproducibility of measurements of the same parameter under a given set of conditions. Specifically, it is a quantitative measurement of the variability of a group of measurements compared to their average value. Precision is usually stated in terms of standard deviation, but other estimates such as the coefficient of variation (relative standard deviation), range (maximum value minus minimum value), relative range, and relative percent difference (RPD) are common.

For this project, field sampling precision will be determined by analyzing coded duplicate samples (labeled so that the laboratory does not recognize them as duplicates) for the same parameters, and then, during data validation (Section 5.0), calculating the RPD for duplicate sample results. For field duplicates, results less than 2x the reporting limit (RL) meet the precision criteria if the absolute difference is less than $\pm 2x$ the RL. For results greater than 2x the RL, the acceptance criteria is a RPD of \leq 50% (soil) and <30% (groundwater). RLs and method detection limits (MDL) are provided in Attachment B.

Analytical precision will be determined by the laboratory by calculating the RPD for the results of the analysis of internal laboratory duplicates and matrix spike duplicates. The formula for calculating RPD is as follows:

$$RPD = \frac{|V1 - V2|}{(V1 + V2)/2} \times 100$$

where:

RPD	=	Relative Percent Difference.
V1, V2	=	The two values to be compared.
V1 – V2	=	The absolute value of the difference between the two values.
(V1 + V2)/2	=	The average of the two values.

3.3 ACCURACY

Accuracy is a measure of the degree of agreement of a measured value with the true or expected value of the quantity of concern, or the difference between a measured value and the true or accepted reference value. The accuracy of an analytical procedure is best determined by the analysis of a sample containing a known quantity of material, and is expressed as the percent of the known quantity, which is recovered or measured. The recovery of a given analyte is dependent upon the sample matrix, method of analysis, and the specific compound or element being determined. The concentration of the analyte relative to the detection limit of the analytical method is also a major factor in determining the accuracy of the measurement. Concentrations of analytes, which are close to the detection limits are less accurate because they are more affected by such factors as instrument "noise."

Sampling accuracy may be determined through the assessment of the analytical results of field blanks for each sample delivery group. Field blanks should be non-detect when analyzed by the laboratory. Any contaminant detected in an associated field blank was evaluated against laboratory blanks (preparation or method) and evaluated against field samples collected on the same day to determine potential for bias.

Analytical accuracy is typically assessed by examining the percent recoveries of surrogate compounds that are added to each sample (organic analyses only), laboratory control sample and control sample duplicates (LCS/LCSD), internal standard responses, isotope dilution recoveries, the percent recoveries of matrix spike compounds added to selected samples, and the results of laboratory blanks. Additionally, initial and continuing calibrations must be performed and accomplished within the established method control limits to define the instrument accuracy before analytical accuracy can be determined for any sample set. Sample volume permitting, samples displaying outliers

should be reanalyzed. Associated method blanks should be non-detect when analyzed by the laboratory.

Accuracy is normally measured as the percent recovery (%R) of a known amount of analyte, called a spike, added to a sample (matrix spike) or to a blank (blank spike). The %R is calculated as follows:

$$\%R = \frac{SSR - R}{SA} \times 100$$

where:

% R = Percent recovery.

- SSR = Spike sample result: concentration of analyte obtained by analyzing the sample with the spike added.
- SR = Sample result: the background value, i.e., the concentration of the analyte obtained by analyzing the sample.
- SA = Spiked analyte: concentration of the analyte spike added to the sample.

3.4 COMPLETENESS

Laboratory completeness is the ratio of total number of samples analyzed and verified as acceptable compared to the number of samples submitted to the fixed-base laboratory for analysis, expressed as a percent. Three measures of completeness are defined:

- Sampling completeness, defined as the number of valid samples collected relative to the number of samples planned for collection;
- Analytical completeness, defined as the number of valid sample measurements relative to the number of valid samples collected; and
- Overall completeness, defined as the number of valid sample measurements relative to the number of samples planned for collection.

Data will meet a 90% completeness criterion. If the criterion is not met, sample results will be evaluated for trends in rejected and unusable data. The effect of unusable data required for a determination of compliance will also be evaluated.

3.5 REPRESENTATIVENESS

Representativeness expresses the degree to which data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition within a defined spatial and/or temporal boundary. Representativeness is dependent upon the adequate design of the sampling program and will be satisfied by ensuring that the scope of work is followed and that specified sampling and analysis techniques are used. This is performed by following applicable standard operating procedures (SOP) and this QAPP. All field technicians will be given copies of appropriate documents prior to sampling events and are required to read, understand, and follow each document as it pertains to the tasks at hand.

Representativeness in the laboratory is ensured by compliance to nationally-recognized analytical methods, meeting sample holding times, and maintaining sample integrity while the samples are in the laboratory's possession. This is performed by following all applicable United States Environmental Protection Agency (USEPA) methods, laboratory-issued SOPs, the laboratory's Quality Assurance Manual, and this QAPP. The laboratory is required to be properly certified and accredited.

3.6 COMPARABILITY

Comparability expresses the degree of confidence with which one data set can be compared to another. The comparability of all data collected for this project will be ensured by:

- Using identified standard methods for both sampling and analysis phases of this project;
- Requiring traceability of all analytical standards and/or source materials to the USEPA or National Institute of Standards and Technology (NIST);
- Requiring that all calibrations be verified with an independently prepared standard from a source other than that used for calibration (if applicable);
- Using standard reporting units and reporting formats including the reporting of QC data;
- Performing a complete data validation on a representative fraction of the analytical results, including the use of data qualifiers in all cases where appropriate; and

• Requiring that all validation qualifiers be used any time an analytical result is used for any purpose.

These steps will ensure all future users of either the data or the conclusions drawn from them will be able to judge the comparability of these data and conclusions.

3.7 SENSITIVITY

Sensitivity is the ability of the instrument or method to detect target analytes at the levels of interest. The project director will select, with input from the laboratory and QA personnel, sampling and analytical procedures that achieve the required levels of detection and QC acceptance limits that meet established performance criteria. Concurrently, the project director will select the level of data assessment to ensure that only data meeting the project data quality objectives (DQO) are used in decision-making.

Field equipment will be used that can achieve the required levels of detection for analytical measurements in the field. In addition, the field sampling staff will collect and submit full volumes of samples as required by the laboratory for analysis, whenever possible. Full volume aliquots will help ensure achievement of the required limits of detection and allow for reanalysis if necessary. The concentration of the lowest level check standard in a multi-point calibration curve will represent the reporting limit.

Analytical methods and quality assurance parameters associated with the sampling program are presented in Attachment C. The frequency of associated equipment blanks and duplicate samples will be based on the recommendations listed in the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated May 2010 (DER-10), and as described in Section 4.3.

Site-specific matrix spike (MS) and matrix spike duplicate (MSD) samples will be prepared and analyzed by the analytical laboratory by spiking an aliquot of submitted sample volume with analytes of interest. Additional sample volume is not required by the laboratory for this purpose. An MS/MSD analysis will be analyzed at a rate of 1 out of every 20 samples, or one per analytical batch.

4.0 SAMPLE COLLECTION AND FIELD DATA ACQUISITION PROCEDURES

Groundwater and soil sampling will be conducted in accordance with the established NYSDEC protocols contained in DER-10. The following sections describe procedures to be followed for specific tasks.

4.1 FIELD DOCUMENTATION PROCEDURES

Field documentation procedures will include summarizing field observations in field books, soil boring logs, monitoring well construction, completing forms for groundwater sampling, and proper sample labeling. These procedures are described in the following sections.

4.1.1 Field Data and Notes

Field notebooks contain the documentary evidence regarding procedures conducted by field personnel. Hard cover, bound field notebooks will be used because of their compact size, durability, and secure page binding. The pages of the notebook will not be removed.

Entries will be made in waterproof, permanent blue or black ink. No erasures will be allowed. If an incorrect entry is made, the information will be crossed out with a single strike mark and the change initialed and dated by the team member making the change. Each entry will be dated. Entries will be legible and contain accurate and complete documentation of the individual or sampling team's activities or observations made. The level of detail will be sufficient to explain and reconstruct the activity conducted. Each entry will be signed by the person(s) making the entry.

The following types of information will be provided for each sampling task, as appropriate:

- Project name and number
- Reasons for being on-site or taking the sample
- Date and time of activity
- Sample identification numbers

- Geographical location of sampling points with references to the site, other facilities or a map coordinate system. Sketches will be made in the field logbook when appropriate
- Physical location of sampling locations such as depth below ground surface
- Description of the method of sampling including procedures followed, equipment used and any departure from the specified procedures
- Description of the sample including physical characteristics, odor, etc.
- Readings obtained from health and safety equipment
- Weather conditions at the time of sampling and previous meteorological events that may affect the representative nature of a sample
- Photographic information including a brief description of what was photographed, the date and time, the compass direction of the picture and the number of the picture on the camera
- Other pertinent observations such as the presence of other persons on the site, actions by others that may affect performance of site tasks, etc.
- Names of sampling personnel and signature of persons making entries

Field records will also be collected on field data sheets including monitoring well construction logs and soil boring logs, which will be used for geologic and drilling data during injection activities. Field data sheets will include the project-specific number and stored in the field project files when not in use. At the completion of the field activities, the field data sheets will be maintained in the central project file.

4.1.2 Sample Labeling

Each sample collected will be assigned a unique identification number in accordance with the sample nomenclature guidance included in Attachment D, and placed in an appropriate sample container. Each sample container will have a sample label affixed to the outside with the date and time of sample collection and project name. In addition, the label will contain the sample identification number, analysis required and chemical preservatives added, if any. All documentation will be completed in waterproof ink.

4.2 EQUIPMENT CALIBRATION AND PREVENTATIVE MAINTENANCE

A photoionization detector (PID) will be used during the sampling activities to evaluate work zone action levels, screen soil samples, and collect monitoring well headspace readings. Field calibration and/or field checking of the PID will be the responsibility of the field team leader and the Site Health and Safety Officer (HSO), and will be accomplished by following the procedures outlined in the operating manual for the instrument. At a minimum, field calibration and/or field calibration will be documented in the field notebook. Entries made into the logbook regarding the status of field equipment will include the following information:

- Date and time of calibration
- Type of equipment serviced and identification number (such as serial number)
- Reference standard used for calibration
- Calibration and/or maintenance procedure used
- Other pertinent information

Water quality meters (Horiba U-52, or similar) will be used during purging of groundwater during baseline and post-injection sampling to measure pH, specific conductance, temperature, dissolved oxygen, turbidity and oxidation-reduction-potential (ORP), every five minutes. During injection events, water quality meters (Horiba U-52, YSI 600, or similar) and sulfide detection meters (Hach EZ4000, or similar) will be used to measure pH, specific conductance, temperature, dissolved oxygen, turbidity, ORP, and sulfide at the beginning and end of each day. Water-quality meters should be calibrated and the results documented before use each day using standardized field calibration procedures and calibration checks.

Equipment that fails calibration or becomes inoperable during use will be removed from service and segregated to prevent inadvertent utilization. The equipment will be properly tagged to indicate that it is out of calibration. Such equipment will be repaired and recalibrated to the manufacturer's specifications by qualified personnel. Equipment that cannot be repaired will be replaced.

Off-site calibration and maintenance of field instruments will be conducted as appropriate throughout the duration of project activities. All field instrumentation,

sampling equipment and accessories will be maintained in accordance with the manufacturer's recommendations and specifications and established field equipment practice. Off-site calibration and maintenance will be performed by qualified personnel. A logbook will be kept to document that established calibration and maintenance procedures have been followed. Documentation will include both scheduled and unscheduled maintenance.

4.3 SAMPLE COLLECTION

Soil Samples

Samples will be visually classified and field screened using a PID to assess potential impacts from volatile VOCs and for health and safety monitoring. Soil samples collected for analysis of VOCs will be collected using either EnCore® or Terra Core® sampling equipment. After collection, all sample jars will be capped and securely tightened, and placed in iced coolers and maintained at $4^{\circ}C \pm 2^{\circ}C$ until they are transferred to the laboratory for analysis, in accordance with the procedures outlined in Section 4.4. Analysis and/or extraction and digestion of collected soil samples will meet the holding times required for each analyte as specified in Attachment C. In addition, analysis of collected soil sample will meet all quality assurance criteria set forth by this QAPP and DER-10.

Groundwater Samples

Groundwater sampling will be conducted using low-flow sampling procedures following USEPA guidance ("Low Stress [low flow] Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", EQASOP-GW 001, Revised September 19, 2017).

During purging, field parameters including water level drawdown, purge rate, pH, specific conductance, temperature, dissolved oxygen, turbidity and ORP will be measured, every five minutes using a water quality meter (Horiba U-52 or similar) in accordance with the Remediation Pilot Test work Plan. The water quality meter and depth-to-water interface probe shall be decontaminated between monitoring wells. Samples should generally not be collected until the field parameters have stabilized. Field parameters will be considered stable once three sets of measurements are within ± 0.1 standard units for pH, $\pm 3\%$ for conductivity and temperature, ± 10 millivolts for ORP, and $\pm 10\%$ for turbidity and dissolved oxygen. Purge rates should be adjusted to keep the drawdown in the well to less than 0.3 feet, as practical. Additionally, an

attempt should be made to achieve a stable turbidity reading of less than 10 Nephelometric Turbidity Units (NTU) prior to sampling. If the turbidity reading does not stabilize at reading of less than 10 NTU for a given well, then both filtered and unfiltered samples should be collected from that well. If necessary, field filtration should be performed using a 0.45 micron disposable in-line filter. Groundwater samples should be collected after parameters have stabilized as noted above or the readings are within the precision of the meter. Deviations from the stabilization and drawdown criteria, if any, should be noted on the sampling logs.

Samples should be collected directly into laboratory-supplied jars. After collection, all sample jars will be capped and securely tightened, and placed in iced coolers and maintained at 4°C ±2°C until they are transferred to the laboratory for analysis, in accordance with the procedures outlined in Section 4.4. Analysis and/or extraction and digestion of collected groundwater samples will meet the holding times required for each analyte as specified in Attachment C. In addition, analysis of collected groundwater sample will meet all quality assurance criteria set forth by this QAPP and DER-10.

Sample Equipment Blanks and Duplicates

Equipment blanks will be collected for quality assurance purposes at a rate of one per 20 investigative samples per matrix. Equipment blanks will be obtained by pouring laboratory-demonstrated analyte-free water on or through a decontaminated sampling device following use and implementation of decontamination protocols. The water will be collected off of the sampling device into a laboratory-provided sample container for analysis. Equipment blank samples will be analyzed for the complete list of analytes on the day of sampling. Trip blanks will be collected at a rate of one per day if samples are analyzed for VOCs during that day.

Duplicate samples will be collected and analyzed for quality assurance purposes. Duplicate samples will be collected at a frequency of 1 per 20 investigative samples per matrix and will be submitted to the laboratory as "blind" samples. If less than 20 samples are collected during a particular sampling event, one duplicate sample will be collected.

4.4 SAMPLE CONTAINERS AND HANDLING

Certified, commercially clean sample containers will be obtained from the analytical laboratory. The laboratory will also prepare and supply the required trip blanks and equipment blank sample containers and reagent preservatives. Sample bottle

containers, including the equipment blank containers, will be placed into plastic coolers by the laboratory. These coolers will be received by the field sampling team within 24 hours of their preparation in the laboratory. Prior to the commencement of field work, Langan field personnel will fill the plastic coolers with ice in Ziploc® bags (or equivalent) to maintain a temperature of $4^{\circ} \pm 2^{\circ}$ C.

Samples collected in the field for laboratory analysis will be placed directly into the laboratory-supplied sample containers. Samples will then be placed and stored on-ice in laboratory provided coolers until shipment to the laboratory. The temperature in the coolers containing samples and associated equipment blanks will be maintained at a temperature of 4°±2°C while on-site and during sample shipment to the analytical laboratory.

Food and beverages will be prohibited near the sampling equipment.

Possession of samples collected in the field will be traceable from the time of collection until they are analyzed by the analytical laboratory or are properly disposed. Chain-of-custody procedures, described in Section 4.9, will be followed to maintain and document sample possession. Samples will be packaged and shipped as described in Section 4.6.

4.5 SAMPLE PRESERVATION

Sample preservation measures will be used in an attempt to prevent sample decomposition by contamination, degradation, biological transformation, chemical interactions and other factors during the time between sample collection and analysis. Preservation will commence at the time of sample collection and will continue until analyses are performed. Should chemical preservation be required, the analytical laboratory will add the preservatives to the appropriate sample containers before shipment to the office or field. Samples will be preserved according to the requirements of the specific analytical method selected, as shown in Attachment C.

4.6 SAMPLE SHIPMENT

4.6.1 Packaging

Groundwater sample containers will be placed in plastic coolers. Ice in Ziploc[®] bags (or equivalent) will be placed around sample containers. Cushioning material will be added around the sample containers if necessary. Chains-of-custody and other paperwork will

be placed in a Ziploc[®] bag (or equivalent) and placed inside the cooler. The cooler will be taped closed and custody seals will be affixed to one side of the cooler at a minimum. If the samples are being shipped by an express delivery company (e.g. FedEx) then laboratory address labels will be placed on top of the cooler.

4.6.2 Shipping

Standard procedures to be followed for shipping environmental samples to the analytical laboratory are outlined below.

- All environmental samples will be transported to the laboratory by a laboratoryprovided courier under the chain-of-custody protocols described in Section 4.9.
- Prior notice will be provided to the laboratory regarding when to expect shipped samples. If the number, type or date of shipment changes due to site constraints or program changes, the laboratory will be informed.

4.7 DECONTAMINATION PROCEDURES

Sampling equipment will be thoroughly decontaminated before mobilization and between sample locations. Field sampling equipment, including water level indicators and other non-dedicated equipment, requires cleaning between uses. Equipment will be rinsed using a three bucket rinse procedure. An about three-gallon solution of decontamination fluid consisting of Alconox® or Citranox® and deionized (DI) water will be prepared in a five-gallon bucket for the first equipment rinse. A second five-gallon bucket will be filled with about three gallons of DI water for the second rinse. A third five-gallon bucket will be filled with about three gallons of DI water for the final rinse. Powderless nitrile (non-latex) gloves will be donned during the handling of sampling equipment and sample containers.

4.8 **RESIDUALS MANAGEMENT**

Debris (e.g., paper, plastic and disposable personal protective equipment [PPE]) will be collected in plastic garbage bags and disposed of as non-hazardous industrial waste. Debris is expected to be transported to a local municipal landfill for disposal. If applicable, residual solids (e.g., leftover soil cuttings) will be placed back in the borehole from which it was sampled. If gross contamination is observed, soil will be collected and stored in Department of Transportation (DOT)-approved 55-gallon drums in a

designated storage area at the site. The residual materials stored in a designated storage area at the site for further characterization, treatment or disposal.

Residual fluids (such as purge water) will be collected and stored in DOT-approved (or equivalent) 55-gallon drums in a designated storage area at the site. The residual fluids will be analyzed, characterized and disposed off-site in accordance with applicable federal and state regulations. Residual fluids such as decontamination water may be discharged to the ground surface, however, if gross contamination is observed, the residual fluids will be collected, stored, and transported similar purge water or other residual fluids.

4.9 CHAIN OF CUSTODY PROCEDURES

A chain-of-custody protocol has been established for collected samples that will be followed during sample handling activities in both field and laboratory operations. The primary purpose of the chain-of-custody procedures is to document the possession of the samples from collection through shipping, storage and analysis to data reporting and disposal. Chain-of-custody refers to actual possession of the samples. Samples are considered to be in custody if they are within sight of the individual responsible for their security or locked in a secure location. Each person who takes possession of the samples, except the shipping courier, is responsible for sample integrity and safe keeping. Chain-of-custody procedures are provided below:

- Chain-of-custody will be initiated by the laboratory supplying the pre-cleaned and prepared sample containers. Chain-of-custody forms will accompany the sample containers.
- Following sample collection, the chain-of-custody form will be completed for the sample collected. The sample identification number, date and time of sample collection, analysis requested and other pertinent information (e.g., preservatives) will be recorded on the form. All entries will be made in waterproof, permanent blue or black ink.
- Langan field personnel will be responsible for the care and custody of the samples collected until the samples are transferred to another party, dispatched to the laboratory, or disposed. The sampling team leader will be responsible for enforcing chain-of-custody procedures during field work.
- When the form is full or when all samples have been collected that will fit in a single cooler, the sampling team leader will check the form for possible errors

and sign the chain-of-custody form. Any necessary corrections will be made to the record with a single strike mark, dated, and initialed.

Sample coolers will be accompanied by the chain-of-custody form, sealed in a Ziploc[®] bag (or equivalent) and placed on top of the samples or taped to the inside of the cooler lid. If applicable, a shipping bill will be completed for each cooler and the shipping bill number recorded on the chain-of-custody form.

Samples will be packaged for shipment to the laboratory with the appropriate chain-ofcustody form. A copy of the form will be retained by the sampling team for the project file and the original will be sent to the laboratory with the samples. Bills of lading will also be retained as part of the documentation for the chain-of-custody records, if applicable. When transferring custody of the samples, the individuals relinquishing and receiving custody of the samples will verify sample numbers and condition and will document the sample acquisition and transfer by signing and dating the chain-ofcustody form. This process documents sample custody transfer from the sampler to the analytical laboratory. A flow chart showing a sample custody process is included as Figure 1.1. Blank chain-of-custody forms from Alpha and Microbial Insights are included as Figure 1.2 and 1.3, respectively.

*SUMMA CANISTERS SHOULD NOT BE ICED ** REQUIRES SIGN-OFF ON CHAIN-OF-CUSTODY FORM

MEW YORK Bandward Bandwar	(See rever								0-Sept-2013)	Form No: 01-25 HC (rev. 3)
Alger Vork Baseling Status Sample Locating CUSTOPY Page Tensor (URAN OF Summa, N. 2002, Sampler, Sams CUSTOPY Page Of In Lab Date Rood In Lab Baseling Status Versite And CUSTOPY Versite And Project Location Project Location In Lab In Lab Baseling Status Project Location Project Location Project Location In Lab In Lab Baseling Status Project Location Project Location Project Location In Lab In Lab Baseling Status Project Location Project Location Project Location In Lab In In Lab <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>O = Other</td></t<>										O = Other
Algeving Sector Caluty (US TODY Sector Caluty (US TODY Page Of Table evenue, NU 702 Variance, NU 702 is thinken fit, Salve 100 of In Lab of In Lab evenue, NU 702 Variance, NU 702 is thinken fit, Salve 100 of In Lab Of In Lab evenue, NU 702 Variance, NU 702 is thinken fit, Salve 100 Project 100 Of In Lab Of In Lab evenue, NU 702 is thinken fit, Salve 100 Project 100 Project 100 Of Of Salve 200 Salve 200 Salve 200 Salve 200 Of Salve 200 Salve 200 Of Salve 200 Salve 200 Of Of Salve 200 Of Salve 200 Of Of Salve 200 Of Salve 200 Of Of <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>D = BOD Bottle</td><td>н – мазозоз K/E = Zn Ac/NaOH</td></td<>									D = BOD Bottle	н – мазозоз K/E = Zn Ac/NaOH
All PLAN OF Business Manual M. 1986 Samples Bank CUSTODY Sample Ansatz Sample Ansatz Sample Ansatz Sample Ansatz Sample Ansatz Sample Ansatz Sample Ansatz Sample Ansatz Sample Ansatz Sample Sample ID Page In Sample Sample Sample Ansatz Sample ID Date Recd In Sample Sample ID In Lab In Lab In Lab In Lab In Lab Sample Ansatz Sample Ansatz Sample ID In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In Lab In In Lab In Lab In In Lab In In L		Date/Time	eceived By:		y/lime	Date	3y:	Relinquished	O = Other E = Encore	G = NaHSO4
Allerian Sample Contract Contract CUSTOD Page Date Recd In Lab Beardy, N. 1983 of of in Lab Beardy, N. 1983 Proget Information Sample Andread Sample Andread Sample Andread Beardy, N. 1983 Proget Information Proget Information Sample Andread Sample Andread Sample Andread Beardy, N. 1983 Proget Information Proget Information Sample Andread Sample Andrean Sample Andread		, - 1		1		1]	C = Cube	
$ \begin{array}{ c c c c c c } \hline \matrix Cubra Samples Samples Samples Samples Samples Samples No. Sample Sample No. Sample Sample No. Sample Sample Sample No. Sample $				Preservative					V = Vial G = Glass B = Bacteria Cun	$C = HNO_3$ $D = H_2SO_4$
MEW Call of Centers Page Date Recd of Date Recd in Lab Business Fit Sampa M: 100: 25 Winners R, Suite 5 of in Lab of in Lab Business Fit Sampa M: 100: 25 Winners R, Suite 5 of in Lab of in Lab Business Fit Fit Die Bis 7 200 F				ontainer Type	Co		o: MA935 o: MA015	Westboro: Certification N Mansfield: Certification N	Container Code P = Plastic A = Amber Glass	Preservative Code: A = None B = HCI
NEW YORK CHAN OF Business für Standa Centers Business für Stand										
MEW YORK Bane, W YOR, Bane, W Y206: 14Wine Way Samp, W W Samp, W Y206: 14Wine Way Samp, W W Samp, W Y206: 14Wine Way Samp, W W Samp, W W S										
MEW YORK CHAN 07 Barried, March Busin, W1206: 14Winer Way Stans, W1206: 14Winer W100 Stans, W1206: 14Winer W										
NEW YORK Banuk, Na 0158 Berough, N										
NEW Correct Contrist Guine Recubine Red, Sample Beauge, MA 0581 Service Control Mater, IV 7205 SWinter Rd, Sain S Gater, IV 7205 SWinter Rd, Sain S Taken, IV 7205 SWInter Rd, Sain S Standards Page of Mater, IV 7205 SWInter Rd, Sain S Taken, IV 7205 SWInter Rd, Sain S Project Location Date Recd in Lab E Frequent Information SWINDERS Frequent Information Project Location Frequent Information Project Location Elverables Project Location Elverables Project Information Project Information Elverables Project Information Project Information Elverables Project Informatio										
MEW YORK CHAIN OF Submit Chain Of Submit of Submit of Submit Su						c c				
NEW YORK Banka, N 10730: 3 Wnitwy R, Suite 5 CUSTOD Page Date Rec'd in Lab of of in Lab teorug, M. 0130 Banka, W 1205: 14 Wniter W CUSTOD To coper Ave, Suite 10 of in Lab teorug, M. 0130 Banka, W 1205: 14 Wniter W Banka, W 1205: 14 Wniter W Bankad M, W 1205: 14 Wniter W Bankad M, W 1205: 14 Wniter W Bankad M, W 1205: 14 Wniter W Bankad M Bankad M, W 1205: 14 Wniter W Bankad M, W 1205: 14 Wniter W Bankad M Bankad M, W 1205: 14 Wniter W Bankad M Bankad M Bankad M, W 1205: 14 Wniter W Bankad M Bankad M Bank										
NEW YORK Guitter Barriee Cathers formation Page formation Date Reci in Lab eterony, M. 01581 Standards, M. 2206 : Stwinter yet, Suite 105 of of in Lab eterony, M. 01581 Standards, M. 2206 : Stwinter yet, Suite 105 Project Internation Project Project Internation Project Project Internation Project Project Project Internation Project Project Project Project										
NEW YORK GUIDE Samite Ontore Summer Autor Supervised Reveals and any N1226: 14 Walker Way Supervised Reveals and any N1226: 14 Walker Way Supervised Reveals and any N1226: 14 Walker Way Supervised Reveals and any N1226: 14 Walker Way Supervised Reveals Re										
NEW YORK Service Centers CHAIN OF CUSTOP: 4 where Rd, suite 5 Page of of in Lab of in Lab etwalue Dr. Bateny, W 12025: 14 where Way, Stateny Bateny Bateny Tomwanda, W 1419: 75 Gooper Ave, suite 105 of in Lab Froject Information 20 Fobel Bateny Project Information Date Rec'd in Lab SASP-A Bateny, W 12025: 14 where Way, Stateny Bateny Project Information Date Rec'd in Lab SASP-A Bateny, W 12025: 14 where Way, Stateny Bateny Project Information Date Rec'd in Lab SASP-A Bateny, W 12025: 14 where Way, Stateny Bateny Project Information Date Rec'd in Lab SASP-A Bateny, W 12025: 14 where Way, Stateny Bateny Project Information Date Rec'd in Lab SASP-A Bateny, W 12025: 14 where Way, Stateny Bateny Project Information Project Information SASP-A Bateny, W 12025: 14 where Way, Standard Due Date: NY Toos NY Restricted Use NY Toos NY Restricted Use NY CP-S1 Bateny	-			Initials	Matrix	Time	Date			(Lab Use Only)
NEW YORK Service Centers CHAIN OF CUSTODY Reside Centers Manual, NV 1226: 33 Withey Rd, Suite 5 Page Date Rec'd in Lab of of in Lab of in Lab of in Lab stange Project Information 328 Forbe Blod Project Information Defect and Project Information ASP-B Project Analoger: ASP-B Project Analoger: Project Information Defect and Project Information ASP-B Project Analoger: NV Forber Defect and Project Analoger: Project Information Project Analoger: NV Part 375 ess Lip Appender and Project #proved) Turn Around Time NV Part 375 NV Part 375 ess Rush (only if pre approved) # of Days: NV Part 375 NV Part 375 e samples have been previously analyzed by Apha Turn Around Time NV CP-51 NV CP-51 NV CP-51 NV CP-51 e samples have been previously analyzed by Apha # of Days: NV CS Sever Discharge Other NV CS Sever Discharge Other e samples have been previously analyzed by Apha # of Days # of Days MV Sever Discharge				Sampler's	Sample	ection	Colle	mnle ID	S	ALPHA Lab ID
NEW YORK CHAIN OF CUSTOD Service Centers atom, W1285: 44 Wolker Way reasonable MA 02047 Project Information Project Information of Date Rec'd in Lab tebrough, MA1581 Wansted, MA 02047 Froject Information The beserve and project Information Project Information Project Information Project Information tebrough, MA1581 Wansted, MA 02047 Froject Information Project Information										
NEW YORK Service Centers Page Page Date Rec'd GHAIN OF Auswah, NATER Mansfeld, MA 000 300 Froebe Bud Statumy, NY 1206: 14 Walker Way 300 Froebe Bud Statum, NY 1450: 272 Coope Ave, Suite 105 of Date Rec'd in Lab Et: 508-992-200 Walkup Dr, TEL: 508-992-200 AX 508-922-200 Froject Information Project Name: In Lab Et: 508-992-200 AX 508-992-200 Froject Location: In Lab Deliverables ASP-A Et: 508-992-200 AX 508-992-200 Froject Location: In Asp-A ASP-A ASP-A Et: 508-992-200 AX 508-992-200 Froject Location: In Asp-A ASP-A ASP-B Et: 508-992-200 AX 508-992-200 Froject Location: Froject Location: In Cab In Lab Et: 508-992-200 AX 508-992-200 Froject Name: Froject Asp-B ASP-A ASP-A Et: 508-992-200 Froject I Name: In Cab In Cab In Cab In Cab Et: 508-992-200 Froject I Nama; In Cab In Cab In Cab In Cab Et: 508-992-200 Froject I name as Froject # In Um Around Time In Vin Casi									or TAL.	Please specify Metals
NEW YORK CHAIN OF CUSTODY Sales Answn, NU 07400: 35 whithey Rd, suite 5 Albary, NY 12205: 14 Walker Way CUSTODY Page of Albary, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, suite 105 Page of of Date Rec'd in Lab tborough, MA 01581 Walkup Dr. Ex Bole-829-8203 Mansfield, MA 0204 Project Information Project Information Deliverables Project Name: Ex Bole-899-9203 Project Information Project Information ASP-A Project Iname as Project # ASP-A Project Iname as Project # ASP-A Project Manager: ASP-A Project Manager: ASP-A Project Manager: NY TOGS NY TOGS NY Part 375 NY Restricted Use NY Part 375 NY Restricted Use NY C P-51 NY Restricted Use NY C P-51 NY Restricted Use NY C P-51 NY Restricted Use NY C Sever Discharge Project specific requirements/comments: Mush (only if pre approved) # of Days: NY C Sever Discharge NY C Sever Discharge										
NEW YORK CHAIN OF CUSTODY Service Centers Mainwah, NU 0740: : 35 Whithey Rd, Suile 5 Albany, NY 1220: : 14 Walker Way CUSTODY Page of The Delect Project Project Information Date Rec'd in Lab tborough, MA 01581 Walkup Dr. : 30 Forbes Biva EL: 506-922-3298 Mansfield, MA 0246: Store Biva Project Information Project Information Deliverables Project Name: Project Location: Deliverables in Lab eL: 506-929-23298 Project Location: Project Location: Project Information Image: Project Location: Image: Project Location: Image: Project Project # Project Iname as Project # Project Manager: Image: Project Manager: <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ients:</td><td>requirements/comm</td><td>Other project specific</td></t<>	-							ients:	requirements/comm	Other project specific
NEW YORK Service Centrary Custor	-		INALYSIS	A				ed by Alpha	en previously analyze	These samples have be
NEW YORK Service Central Control Calmany, NU 07433:35 Whitey Rd, Suite 5 Page Date Rec'd CUSTODY Albany, NU 07433:35 Whitey Rd, Suite 5 of in Lab CUSTODY Tonewanda, NY 12205:14 Walker Way of in Lab tborough, MA 01501 Mansfield, MA 0204 Foject Information Deliverables in Lab tborough, MA 01501 Mansfield, MA 0204 Foject Information Deliverables In Lab tborough, MA 01501 TEL 506-8822-309 Project Name: In Lab In Lab Project Name: Project Information Project Location: In Lab In Lab ess: FAX 506-892-2328 Project Location: In Calla (I File) EQUIS (1 File) EQUIS (1 File) EQUIS (2 File) ess: Fax 506-892-2328 Project Ame as Project #) Interaction In Other In Other tr Use Project Manager: Vise Project Amager: NY Prot 375 NY Part 375 NY Part 375 ess: Information Standard Due Date: NY Part 375 In NY CP-51 In NY CP-51		je	NYC Sewer Discharg			# of Days		Rush (only if pre approved		Email:
NEW YORK Service Central Control Central Management Page Page CHAIN OF CHAIN OF Abiany, NV 107303 SW Intery Rd, Suite 5 of Date Rec'd CUSTODY Tonewanda, NV 12205; 14 Walker Way of in Lab In Lab Custody Tonewanda, NV 12205; 14 Walker Way Tonewanda, NV 12205; 14 Walker Way Of in Lab Custody Tonewanda, NV 12205; 14 Walker Way Tonewanda, NV 12205; 14 Walker Way Dellverables in Lab Custody Store Folget Blud Froject Information Dellverables Folget Management In Lab Store Folget Management Folget Information Folget Information In Rec'd In Lab In Lab Store Folget Management Froject Name: Folget Information In Caspe Aspendent In Lab In Lab Store Folget Management Folget Information Folget Information In Casper Aspendent In Lab In Lab Store Folget Management Folget Information Folget Information In Casper Aspendent In Casper Aspendent In Casper Aspendent Store Folget Management Folget Information In Casper Aspendent In Casper Aspendent In Casper Aspendent In Casper Aspendent Store Folget Management In Conter In Casper Aspendent In NY CP-51	-		NY Unrestricted Use			Due Date		Standarc		Fax:
NEW YORK Service Centre Mahwan, NU 07430 35 Whitey Rd, Suite 5 CHAIN OF Albany, NY 12205: 14 Walker Way CUSTODY Page of Towarda, NY 12205: 14 Walker Way Towarda, NY 14150: 275 Cooper Ave, Suite 10 Project Name: Page Project Name: Date Rec'd In Lab Base Association THE Lookase store State Store Holdes Store The Store AX 500-822 3288 Froject Name: Project Information Froject Name: Project Name: In Cash ASP-B In Cash Froject Name: In Cash ASP-B In Cash Froject Name: In Cash Froject Name: In Cash Froject Project # In Cash Froject Manager: In Cash Froject Name: In Cash Froject N		Other	NY Restricted Use					Turn-Around Time		Phone:
NEW YORK Service Central Manwah, NU 107430: 35 Whitey Rd, Suite 5 CUSTODY Page Date Rec'd CUSTODY CUSTODY Albany, NU 107430: 35 Whitey Rd, Suite 5 Albany, NU 107430: 35 Whitey Rd, Suite 5 of Date Rec'd tborough, MA 01581 Mansfeld, MA 02048 Froject Information Froject Information Dellverables 3.20 Forbes Bind 3.20 Forbes Divid Froject Information Froject Information Image: ASP-A Fill 1008-893-9133 Froject Name: Froject Information Image: Image: Image: Fill 1008-893-9133 Froject Information Image: Image: Image: Image: Image: Fill 1008-893-9133 Froject Information Image: Image: Image: Image: Image: Image: Image:		NY CP-51	AWQ Standards					ALPHAQuote #:		
NEW YORK Service Center (USTOD) Service Center (HAIN OF Allany N, N 107430: 35 Whitey Rd, suite 5 (CUSTOD) Page Date Rec'd (In Lab torough, MA 01501 Mansfeld, MA 02048 Froject Information of in Lab torough, MA 01501 Mansfeld, MA 02048 Froject Information Project Information 320 Forbes Bivd AX 008 4989-9220 Froject Information Project Name: In Lab FAX 508-822 32980 Project Information EQuils (1 File) ASP-A (In Caston) ent Information Project I ame as Project #) In Caston In Caston	-	NY Part 375	NY TOGS					Project Manager:		Address:
NEW YORK CLAIN OF CHAIN OF CUSTODY Service Center Shawan, NJ 0740:: 35 Whithey Rd, Suite 5 Page Date Rec'd toprough, MA 01581 Bwalkup Dr. SWalkup Dr. EL 500-989-4220 AX 500-989-4220 AX 500-989-4220 Mansfield, MA 2204 Project Information Project Information of Date Rec'd Project Information Project Information: Project Information Project Information Deliverables Bankary, NJ 2005: 14 Walker Way CUSTODY Project Information Project Information Deliverables Bwalkup Dr. EL 500-989-4220 AX 500-989-4220 Project Information Project Information Deliverables Project Location: Image: Imag			Regulatory Requirement	71			oject #)	(Use Project name as Pr		Client
NEW YORK Service Center CHAIN OF CHAIN OF CHAIN OF CHAIN OF CUSTODY Albany, NJ 07400: 35 Whithey Rd, Suite 5 CUSTODY Tonawanda, NY 14150: 14 Walker Way tborough, MA 01551 Mansfield, MA 2004 Swalkup Dr. 320 Forbes Bivd TEL: 508-829-9220 Project Information FX 508-922-2080 Project Name: Project Location: Custof (1 File)	_		Other]	Project #		Client Information
NEW YORK Service Centers Arrent CHAIN OF CHAIN OF CHAIN OF Albany, NU 7205: 14 Walker Way of CUSTODY Tonawanada, NY 14150: 275 Cooper Ave, Suite 105 tborough, Ma 01581 Mansfield, Ma 02048 B Walkup Dr. 320 Forbes Blvd IE L: 508-989-9220 Froject Information Project Name: Of		EQuIS (4 File)	EQuIS (1 File)					Project Location:	FPA. 300-022-3200	FAA. 200-090-9185
NEW YORK Service Centers Page ALPHA CHAIN OF Mahwah, NU 07508:35 Whithey Rd, Suite 5 Of Date Rec'd CUSTODY Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Of in Lab tobrough, MA 01561 Mansfield, MA 02048 Project Information Deliverables 8Wakup Dr. 320 Forbes Blvd Project Information Deliverables		ASP-B	ASP-A					Project Name:	TEL: 508-822-9300	TEL: 508-898-9220
NEW YORK Service Centers Page Date Rec'd CHAIN OF Albany, NJ 07430: 35 Whithey Rd, Suite 5 of Date Rec'd CUSTODY Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 of in Lab)eliverables	0				Project Information	Mansfield, MA 02048 320 Forbes Blvd	Westborough, MA 01581 8 Walkup Dr.
NEW YORK Service Centers ALPHA CHAIN OF Albany, NY 12205: 14 Walker Way Of Date Rec'd Date Chain D						5	per Ave, Suite 10	Tonawanda, NY 14150: 275 Cod	CUSTODY	A M A L MAT I C A L
NEW YORK Service Centers Page Page			Date Rec d	of	0		ay ay	Albany, NY 12205: 14 Walker W	CHAIN OF	DLPHA
				Ð	Pag		Dr Ouite A	Service Centers	NEW YORK	

Figure 1.2 Sample Chain-of-Custody Form - Alpha

	Rolinquished by:											MID (Lakoratery Live Only)		Please contact us with	EDD type:	Report Type:	Project No.:	Project Name:	Project Manager:	Fix.	Phone:	emait		A dd ness :	Company:	REPORT TO: Name:	
Failur Ir												Sample Name	Sample Infor	hany questions about the analy	Microbial Insights St.	Standard (default)											
months as fit												Date Sampled	nation	sesor filing	andard (def	Morobi											
live and w	Dute											Time Sampled		out the OOC	(imm	al Insights Le											
E is vital												Matrix		at (886) 513		velli raw d											
hato												Total Number of Containers		8188	the a	80(10)											
Binof												PLFA		(200		and a											
custo d	3											NGS	Analy	am to 5	eed	ġ.	NI QU	Suboo	Purch	ž	Phone			Addre	Comp	Nume:	
yisfik	ec ei v											QuantArray Chior	ŝ	28 p	8		de No	ntrad	ŝ					8	-	Ê	
inou	ad by											QuantArray Petro		8	2	Sec.	ſ	No	de l							<u>ö</u>	
8												C (Dehalococcoides)	B	N.	dan	2			ş							Forte	
ų.												DHC Functional genes bvc, ita, vc)	USU(ž	8	i di s										100	
Total State												DHBt (Dehalobacter)	P	8		2										5 paid	
												3HG (Dehalogenimonas)	8	5	ŝ	2 1										by a	
al la												DSM (Desulfuromonas)	ž.		Ň	2										hidp	
i de	0 th							⊢				DS8 (Desufficbacterium)	8	and a	3	de la										arly in	
												EBAC (Total)	ē.	100	18	8										in the	
sp.												SHS Sulfate Reducing Bacteria-APS)	ą.	28													
OVide D												MGN (Methanogens)	ŝ	8												1	
												MOB (Methanotrophs)	5	8		ŝ										1	
												SMMO	ŝ	8		3										1	
î L												DNF (Dentrifiers-rirS and nirK)	Ĩ.	L		2										8	
1												AMO ammonia oxidizing bactaria)		L		è.										provide	
i.								\vdash				PM1 (MTBE aerobic)	1	L		÷.										3	
1												RMO (Toluene Monocrygenase)	1	L	'	NO.			2	e s		8	5	ŝ	3		
i,												RDEG (Toluene Monooxygenese)	1	L		Č.	No.	Mon	800	- Nig		â	2 lla	8	2		
						Γ						PHE (Phenol Hydroxylase)	1	L		8	ŝ	ŝ	No.	a da		8	Z		3		
						\vdash		\vdash				NAH (Napithaliana-aerobic)	1	L			ğ	÷.	1	a a			122	\$	잁		
			Η		\vdash	\vdash	⊢	⊢	\vdash	Η	Η	BSSA		L		H SO	Sen	8							ă		
			\vdash			\vdash	\vdash	\vdash	\vdash	Η		Iduene/Kylene-Anaerobic) add. oPCR:		1		xica	10	Nollo							lin		
						\vdash		\vdash		\vdash		INA		L		Inte	-								ISI		
								-		H		Expression Option)*		1		apres 1									q		
		\vdash	\vdash		\vdash	\vdash	\vdash	⊢	\vdash	Н	\vdash	War-		1		8									its		
		\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	⊢	\vdash	Н	\vdash			1		201									41		
						Ĺ								1		<u> </u>											

Figure 1.3 Sample Chain-of-Custody Form – Microbial Insights

Laboratory chain-of-custody will be maintained throughout the analytical processes as described in the laboratory's Quality Assurance Manual. The analytical laboratory will provide a copy of the chain-of-custody in the analytical data deliverable package. The chain-of-custody becomes the permanent record of sample handling and shipment.

4.10 LABORATORY SAMPLE STORAGE PROCEDURES

The subcontracted laboratory will use a laboratory information management system (LIMS) to track and schedule samples upon receipt by the analytical laboratories. Any sample anomalies identified during sample log-in must be evaluated on individual merit for the impact upon the results and the DQOs of the project. When irregularities do exist, the environmental consultant must be notified to discuss recommended courses of action and documentation of the issue must be included in the project file.

For samples requiring thermal preservation, the temperature of each cooler will be immediately recorded. Each sample and container will be will be assigned a unique laboratory identification number and secured within the custody room walk-in coolers designated for new samples. Samples will be, as soon as practical, disbursed in a manner that is functional for the operational team. The temperature of all coolers and freezers will be monitored and recorded using a certified temperature sensor. Any temperature excursions outside of acceptance criteria (i.e., below 2°C or above 6°C) will initiate an investigation to determine whether any samples may have been affected. Samples for VOCs will be maintained in satellite storage areas within the VOC laboratory. Following analysis, the laboratory's specific procedures for retention and disposal will be followed as specified in the laboratory's SOPs and/or QA manual.

5.0 DATA REDUCTION, VALIDATION, AND REPORTING

5.1 INTRODUCTION

Data collected during the remediation test pilot program will be reduced and reviewed by the laboratory QA personnel, and a report on the findings will be tabulated in a standard format. The criteria used to identify and quantify the analytes will be those specified for the applicable methods in the USEPA SW-846 and subsequent updates. The methods for the laboratory analysis of soil and water samples and the quantitation limits are presented in Attachment B. The data package provided by the laboratory will contain all items specified in the USEPA SW-846 appropriate for the analyses to be performed, and be reported in standard format.

The completed copies of the chain-of-custody records (both external and internal) accompanying each sample from time of initial bottle preparation to completion of analysis shall be attached to the analytical reports.

5.2 DATA REDUCTION

The Analytical Services Protocol (ASP) Category B data packages and an electronic data deliverable (EDD) will be provided by the laboratory after receipt of a complete sample delivery group. The Project Manager will immediately arrange for archiving the results and preparation of result tables. These tables will form the database for assessment of the site contamination condition.

Each EDD deliverable must be formatted using a Microsoft Windows operating system and the NYSDEC data deliverable format for EQuIS. To avoid transcription errors, data will be loaded directly into the ASCII format from the LIMS. If this cannot be accomplished, the consultant should be notified via letter of transmittal indicating that manual entry of data is required for a particular method of analysis. All EDDs must also undergo a QC check by the laboratory before delivery. The original data, tabulations, and electronic media are stored in a secure and retrievable fashion.

The Project Manager or Task Manager will maintain close contact with the QA reviewer to ensure all non-conformance issues are acted upon prior to data manipulation and assessment routines. Once the QA review has been completed, the Project Manager may direct the Team Leaders or others to initiate and finalize the analytical data assessment.

5.3 DATA VALIDATION

Data validation will be performed in accordance with the USEPA validation guidelines for organic and inorganic data review. Validation will include the following:

- Verification of the QC sample results,
- Verification of the identification of sample results (both positive hits and nondetects),
- Recalculation of 10% of all investigative sample results, and
- Preparation of Data Usability Summary Reports (DUSR).

A DUSR will be prepared and reviewed by the QAO before issuance. The DUSR will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody (COC) procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. A detailed assessment of each sample delivery group (SDG) will follow. For each of the organic analytical methods, the following will be assessed:

- Holding times;
- Instrument tuning;
- Instrument calibrations;
- Blank results;
- System monitoring compounds or surrogate recovery compounds (as applicable);
- Internal standard recovery results;
- MS and MSD results;
- Target compound identification;
- Chromatogram quality;
- Pesticide cleanup (if applicable);
- Compound quantitation and reported detection limits;
- System performance; and
- Results verification.

For each of the inorganic compounds, the following will be assessed:

- Holding times;
- Calibrations;
- Blank results;
- Interference check sample;
- Laboratory check samples;
- Duplicates;
- Matrix Spike;
- Furnace atomic absorption analysis QC;
- ICP serial dilutions; and
- Results verification and reported detection limits.

Based on the results of data validation, the validated analytical results reported by the laboratory will be assigned one of the following usability flags:

- "U" Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank;
- "UJ" Not detected. Quantitation limit may be inaccurate or imprecise;
- "J" Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method
- "N" Tentative identification. Analyte is considered present in the sample;
- "R" Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample; and
- No Flag Result accepted without qualification.

6.0 QUALITY ASSURANCE PERFORMANCE AUDITS AND SYSTEM AUDITS

6.1 INTRODUCTION

Quality assurance audits may be performed by the project quality assurance group under the direction and approval of the QAO. These audits will be implemented to evaluate the capability and performance of project and subcontractor personnel, items, activities, and documentation of the measurement system(s). Functioning as an independent body and reporting directly to corporate quality assurance management, the QAO may plan, schedule, and approve system and performance audits based upon procedures customized to the project requirements. At times, the QAO may request additional personnel with specific expertise from company and/or project groups to assist in conducting performance audits. However, these personnel will not have responsibility for the project work associated with the performance audit.

6.2 SYSTEM AUDITS

System audits may be performed by the QAO or designated auditors, and encompass a qualitative evaluation of measurement system components to ascertain their appropriate selection and application. In addition, field and laboratory quality control procedures and associated documentation may be system audited. These audits may be performed once during the performance of the project. However, if conditions adverse to quality are detected or if the Project Manager requests, additional audits may be performed.

6.3 PERFORMANCE AUDITS

The laboratory may be required to conduct an analysis of Performance Evaluation samples or provide proof that Performance Evaluation samples submitted by USEPA or a state agency have been analyzed within the past twelve months.

6.4 FORMAL AUDITS

Formal audits refer to any system or performance audit that is documented and implemented by the QA group. These audits encompass documented activities performed by qualified lead auditors to a written procedure or checklists to objectively verify that quality assurance requirements have been developed, documented, and instituted in accordance with contractual and project criteria. Formal audits may be performed on project and subcontractor work at various locations.

Audit reports will be written by auditors who have performed the site audit after gathering and evaluating all data. Items, activities, and documents determined by lead auditors to be in noncompliance shall be identified at exit interviews conducted with the involved management. Non-compliances will be logged, and documented through audit findings, which are attached to and are a part of the integral audit report. These audit-finding forms are directed to management to satisfactorily resolve the noncompliance in a specified and timely manner.

The Project Manager has overall responsibility to ensure that all corrective actions necessary to resolve audit findings are acted upon promptly and satisfactorily. Audit reports must be submitted to the Project Manager within fifteen days of completion of the audit. Serious deficiencies will be reported to the Project Manager within 24 hours. All audit checklists, audit reports, audit findings, and acceptable resolutions are approved by the QAO prior to issue. Verification of acceptable resolutions may be determined by re-audit or documented surveillance of the item or activity. Upon verification acceptance, the QAO will close out the audit report and findings.

7.0 CORRECTIVE ACTION

7.1 INTRODUCTION

The following procedures have been established to ensure that conditions adverse to quality, such as malfunctions, deficiencies, deviations, and errors, are promptly investigated, documented, evaluated, and corrected.

7.2 PROCEDURE DESCRIPTION

When a significant condition adverse to quality is noted at site, laboratory, or subcontractor location, the cause of the condition will be determined and corrective action will be taken to preclude repetition. Condition identification, cause, reference documents, and corrective action planned to be taken will be documented and reported to the QAO, Project Manager, Field Team Leader and involved contractor management, at a minimum. Implementation of corrective action is verified by documented follow-up action.

All project personnel have the responsibility, as part of the normal work duties, to promptly identify, solicit approved correction, and report conditions adverse to quality. Corrective actions will be initiated as follows:

- When predetermined acceptance standards are not attained;
- When procedure or data compiled are determined to be deficient;
- When equipment or instrumentation is found to be faulty;
- When samples and analytical test results are not clearly traceable;
- When quality assurance requirements have been violated;
- When designated approvals have been circumvented;
- As a result of system and performance audits;
- As a result of a management assessment;
- As a result of laboratory/field comparison studies; and
- As required by USEPA SW-846, and subsequent updates, or by the NYSDEC ASP.

Project management and staff, such as field investigation teams, remedial response planning personnel, and laboratory groups, monitor on-going work performance in the

normal course of daily responsibilities. Work may be audited at the sites, laboratories, or contractor locations. Activities, or documents ascertained to be noncompliant with quality assurance requirements will be documented. Corrective actions will be mandated through audit finding sheets attached to the audit report. Audit findings are logged, maintained, and controlled by the Task Manager.

Personnel assigned to quality assurance functions will have the responsibility to issue and control Corrective Action Request (CAR) Forms (see next page). The CAR identifies the out-of-compliance condition, reference document(s), and recommended corrective action(s) to be administered. The CAR is issued to the personnel responsible for the affected item or activity. A copy is also submitted to the Project Manager. The individual to whom the CAR is addressed returns the requested response promptly to the QA personnel, affixing his/her signature and date to the corrective action block, after stating the cause of the conditions and corrective action to be taken. The QA personnel maintain the log for status of CARs, confirms the adequacy of the intended corrective action, and verifies its implementation. CARs will be retained in the project file for the records.

Any project personnel may identify noncompliance issues; however, the designated QA personnel are responsible for documenting, numbering, logging, and verifying the close out action. The Project Manager will be responsible for ensuring that all recommended corrective actions are implemented, documented, and approved.

CORRECTIVE ACTION REQUEST
Number: Date:
TO:
You are hereby requested to take corrective actions indicated below and as otherwise determined by you to (a) resolve the noted condition and (b) to prevent it from recurring. Your written response is to be returned to the project quality assurance manager by
CONDITION:
REFERENCE DOCUMENTS:
RECOMMENDED CORRECTIVE ACTIONS:
Originator Date Approval Date Approval Date
RESPONSE
CAUSE OF CONDITION
CORRECTIVE ACTION
(A) RESOLUTION
(B) PREVENTION
(C) AFFECTED DOCUMENTS
C.A. FOLLOWUP:
CORRECTIVE ACTION VERIFIED BY: DATE:

8.0 REFERENCES

- NYSDEC. Division of Environmental Remediation. DER-10/Technical Guidance for Site Investigation and Remediation, dated May 3, 2010.
- Taylor, J. K., 1987. Quality Assurance of Chemical Measurements. Lewis Publishers, Inc., Chelsea, Michigan
- USEPA, 1986. SW-846 "Test Method for Evaluating Solid Waste," dated November 1986. U.S. Environmental Protection Agency, Washington, D.C.
- USEPA, 1987. Data Quality Objectives for Remedial Response Actions Activities: Development Process, EPA/540/G-87/003, OSWER Directive 9355.0-7- U.S. Environmental Protection Agency, Washington, D.C.
- USEPA, 1992a. CLP Organics Data Review and Preliminary Review. SOP No. HW-6, Revision #8, dated January 1992. USEPA Region II.
- USEPA, 1992b. Evaluation of Metals Data for the Contract Laboratory Program (CLP) based on SOW 3/90. SOP No. HW-2, Revision XI, dated January 1992. USEPA Region II.

ATTACHMENT A

RESUMES

MIMI RAYGORODETSKY

PRINCIPAL/VICE PRESIDENT ENVIRONMENTAL ENGINEERING

Ms. Raygorodetsky sources and directs large, complex environmental remediation and redevelopment projects from the earliest stages of predevelopment diligence, through the remediation/construction phase, to long-term operation and monitoring of remedial systems and engineering controls. She has a comprehensive understanding of federal, state and local regulatory programs and she uses this expertise to guide her clients through a preliminary cost benefit analysis to select the right program(s) given the clients' legal obligations, development desires and risk tolerance. She is particularly strong at integrating the requirements of selected programs and client development needs to develop and design targeted and streamlined diligence programs and remediation strategies. Ms. Raygorodetsky is also highly skilled in integrating remediation with construction on large urban waterfront projects, which tend to more complex than landside projects.

SELECTED PROJECTS

- 25 Kent Avenue, Due Diligence for Purchase of a Brownfields Location, Brooklyn, NY
- Ferry Point Waterfront Park, Redevelopment of a Former Landfill into a Park, Bronx, NY
- Battery Maritime Building (10 South Street), Phase I ESA, New York, NY
- Residential Development at 351-357 Broadway, Phase 1 ESA, New York, NY
- 450 Union Street, Phase I and Phase II Remediation (NYS DEC Brownfield Cleanup Program), New York, NY
- Echo Bay Center, NYS DEC Brownfield Cleanup Program, New York, NY
- 420 Kent Avenue, NYS DEC Brownfield Cleanup Program, Brooklyn, NY
- 416 Kent Avenue, NYS DEC Brownfield Cleanup Program, Brooklyn, NY
- 264 Fifth Avenue, Phase I ESA, New York, NY
- 262 Fifth Avenue, Phase I ESA, New York, NY
- ABC Blocks 25-27 (Mixed-Use Properties), Brownfield Cleanup Program, Long Island City, NY
- Residences at 100 Barrow Street, Phase I ESA, New York, NY
- Residences at 22-12 Jackson Avenue, Due Diligence for Building Sale, Long Island City, NY
- Residences at 2253-2255 Broadway, Phase I and Phase II Services, New York, NY
- Prince Point, Phase I ESA, Staten Island, NY
- 787 Eleventh Avenue (Office Building Renovation), Phase I UST Closure, New York, NY
- 218 Front Street/98 Gold Street, Planning and Brownfield Consulting, Brooklyn, NY
- Mark JCH of Bensonhurst, Phase I and HazMat Renovation, Brooklyn, NY
- 39 West 23rd Street, E-Designation Brownfield, New York, NY

EDUCATION

B.A., Biology and Spanish Literature Colby College

AFFILIATIONS

New York Women Executives in Real Estate (WX) - Board Member; Networking and Special Events Committee Co-Chair

New York Building Congress, Council of Industry Women -Committee Member

New York City Brownfield Partnership - Founding Member and President

NYC Office of Environmental Remediation Technical Task Force - Committee Member

- 250 Water Street, Phase I and Phase II Property Transaction, New York, NY
- 27-19 44th Drive, Residential Redevelopment, Long Island City, NY
- 515 West 42nd Street, E-Designation, New York, NY
- 310 Meserole Street, Due Diligence Property Purchase, Brooklyn, NY
- Former Georgetown Heating Plant, HazMat and Phase I ESA, Washington D.C.
- 80-110 Flatbush Avenue, Brooklyn, NY
- 132 East 23rd Street, New York, NY
- 846 Sixth Avenue, New York, NY
- Greenpoint Landing, Remediation/Redevelopment, Brooklyn, NY
- 711 Eleventh Avenue, Due Diligence/Owner's Representative, New York, NY
- Brooklyn Bridge Park, Pier 1, Waste Characterization and Remediation, Brooklyn, NY
- Post-Hurricane Sandy Mold Remediation, Various Private Homes, Far Rockaway, NY
- Brooklyn Bridge Park, One John Street Development, Pre-Construction Due Diligence and Construction Administration, Brooklyn, NY
- 7 West 21st Street, Brownfields Remediation, New York, NY
- 546 West 44th Street, Brownfields Remediation, New York, NY
- Post-Hurricane Sandy Mold Remediation, Various Private Homes, Nassau and Suffolk Counties, Long Island, NY
- 55 West 17th Street, Brownfield Site Support, New York, NY
- Pratt Institute, 550 Myrtle Avenue Renovations, Environmental Remediation, Brooklyn, NY
- 42-02 Crescent Street Redevelopment, Phase I and II Environmental, Long Island City, NY
- IAC Building (555 West 18th Street), New York, NY
- Retirement Communities on100-acre Parcels in ME, NJ, MA, CT, and NJ
- 363-365 Bond Street/400 Carroll Street, Brooklyn, NY
- 160 East 22nd Street, New York, NY
- 110 Third Avenue, New York, NY
- Lycee Francais (East 76th Street & York Avenue), New York, NY
- Winchester Arms Munitions Factory, New Haven, CT

GREGORY C. WYKA, PG, LEED AP

SENIOR PROJECT GEOLOGIST ENVIRONMENTAL ENGINEERING

Mr. Wyka is a geologist with experience in regulatory government, brownfield development, and environmental liability consulting. His expertise includes site characterization, remedial investigation, waste characterization, conceptual site modeling, remedial design and implementation, construction management, GIS, and sustainability. Mr. Wyka's abilities integrate remediation with property redevelopment and he provides technical, regulatory, logistical, and risk management guidance to clients, including developers, owners, and environmental attorneys. He provides direct assistance for clients on construction and remediation projects in the New York State Inactive Hazardous Waste Disposal Site Program, New York State Spill Response Program, New York State Brownfield Cleanup Program (BCP), New York City E-Designation Program and New York City Voluntary Cleanup Program (VCP).

SELECTED PROJECTS

- Greenpoint Landing Waterfront Development, Brooklyn, NY: Brownfield Redevelopment, E-Designation, NYC VCP
- Anable Basin, Long Island City, NY; Brownfield Redevelopment, BCP.
- 82 King Street, New York, NY: Brownfield Redevelopment, BCP
- 300 West 122nd Street, New York, NY: Brownfield Redevelopment, BCP
- 2409 Jerome Avenue, Bronx, NY: Brownfield Redevelopment, BCP.
- City DPW Yard, New Rochelle, NY: Brownfield Redevelopment, BCP
- 160 Leroy Street, New York, NY: Brownfield Redevelopment; E-Designation, NYC VCP 685 First Avenue. New York, NY: Brownfield Redevelopment: NYSDEC Voluntary Cleanup Program
- 60 West Street, Brooklyn, NY: Brownfield Redevelopment, E-Designation
- 27-19 44th Drive, Long Island City, NY: Brownfield Redevelopment
- 515 West 42nd Street, New York, NY: E-Designation
- Brooklyn Bridge Park, Pierhouse: Brownfield Redevelopment 550 Myrtle Avenue, Brooklyn, NY: E-Designation
- 50 Jay Street, Phase I ESA, Brooklyn, NY
- 205 Water Street, Brooklyn, NY: Brownfield Redevelopment, E-Designation
- 29-01 Borden Avenue, Long Island City, NY; Brownfield Redevelopment, NYSDEC Spills
- 29-10 Hunters Point Avenue, Long Island City, NY: Brownfield Redevelopment
- 30-27 Greenpoint Avenue, Long Island City, NY: NYSDEC Spills
- 55 Water Street, New York, NY: Emergency petroleum spill closure (Tropical Storm Sandy)
- 144 East 201st Street, New York, NY: Brownfield Redevelopment, E-Designation
- 310 Meserole Street, Phase I ESA, Brooklyn, NY

EDUCATION

B.A., Geology, Chemistry and Environmental Studies Bowdoin College

PROFESSIONAL REGISTRATION

LEED Accredited Professional (LEED AP) Neighborhood Development

Professional Geologist (PG) in NY

10-Hour OSHA

CPR and First Aid Certified

AFFILIATIONS

New York State Council of Professional Geologists (NYSCPG)

NYSCPG Board of Directors

Urban Green Council

New York City Brownfield Partnership

- 13-17 Laight Street, Phase I ESA, New York, NY
- 460 Mother Gaston Boulevard, Phase I ESA, Brooklyn, NY
- 25 Kent Avenue, Phase I ESA, Brooklyn, NY
- 1110 Oak Point Avenue, Phase I ESA, Bronx, NY
- 859-863 Lexington Avenue, Phase I ESA, New York, NY
- 49 East 21st Street, Phase I ESA, New York, NY
- 1552-1560 Broadway, Phase I ESA, New York, NY
- 287-291 East Houston Street, Phase I ESA, New York, NY
- Big River Study Area (Superfund), Old Lead Belt, Park Hills and Desloge, MO: Remedial Investigation Berry's Creek Study Area (Superfund Site), Bergen County, NJ: Remedial Investigation
- Everglades Restoration Project, Clewiston, FL: Remedial Investigation
- Marble River Wind Farm, Ellenburg, NY: Wetland Delineation

JULIA LEUNG, PE

PROJECT ENGINEER

ENVIRONMENTAL ENGINEERING & WATER RESOURCES

Ms. Leung is an environmental engineer working in the New York Metro area. Her projects involve the investigation and assessment of environmental systems including physical/chemical processes, water chemistry, environmental system analysis, solid waste and water resources engineering, stormwater design and hydrology.

SELECTED PROJECTS

- Phase I ESA, Various Locations, NYC and Westchester County, NY
- Phase II ESI, 412 East 90th Street, New York, NY
- 420 Kent Avenue, Brooklyn, NY
- West and Watts Development, New York, NY
- 203 East 92nd Street, Mixed-Use Building, New York, NY
- BAM North Tower, Brooklyn, NY
- Phase II ESI, FedEx Distribution Facility (830 Fountain Avenue), Brooklyn, NY
- Waste Classification and Lead Delineation Investigation (261 Hudson Street), New York, NY
- Waste Classification Investigation (41-43 East 22nd Street), New York, NY
- Columbia University, Manhattanville Campus, New York, NY
- Riverside Building 5, New York, NY
- Condominium at 200 East 79th Street, New York, NY
- Mercedes Benz of Manhattan (536 West 41st Street), New York, NY
- Phase II ESI (627 Smith Street), Brooklyn, NY
- 340 Court Street, Brooklyn, NY
- 460 Washington Street, New York, NY
- 208 East 79th Street, New York, NY
- 320 Fordham Landing, Bronx, NY
- Greenpoint Landing, Brooklyn, NY
- ABC Block 25, ABC Block 26, ABC Block 27, Long Island City, NY
- 80 Flatbush Avenue, Brooklyn, NY
- 2409 Jerome Avenue, Bronx, NY
- Bronx Point, Bronx, NY
- 4650 Broadway, New York, NY
- 445 Gerard Avenue and 414 Gerard Avenue, Bronx, NY

EDUCATION

M.E., Environmental Engineering Cornell University

B.S., Biological Engineering (Environmental Studies Concentration) Cornell University

PROFESSIONAL REGISTRATION

Professional Engineer (PE) in NY

10-Hour OSHA

AFFILIATIONS

American Society of Civil Engineers (ASCE)

JOSEPH CONBOY

Mr. Conboy has seven years of environmental chemistry, quality assurance, and environmental database management experience, with a current emphasis on validation of laboratory data for submittal to NJDEP via the New Jersey Data of Known Quality Protocols and to NYSDEC. Previous work experience includes performing validation of data for projects in USEPA Regions 2 and 3 while employing appropriate validation guidelines for each region, managing large data sets, updating appropriate regulatory limits, performing statistical evaluations, and preparing electronic data deliverables and report deliverables using the Earthsoft EQuIS database program, and acted as an intermediary between project managers, field staff, and laboratories. Mr. Conboy also has experience in field sampling techniques and maintains current OSHA HAZWOPER certification.

SELECTED PROJECTS

- 1400 Ferris, Bronx, NY Completed validation of soil and groundwater data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOCs and SVOCs including 1,4-dioxane, and tangentially used based on professional judgment to perform validation of PFAS data.
- Broome Street Parking Lot, NY Completed validation of waste characterization data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOCs, SVOCs, herbicides, PCBs, pesticides, metals including mercury, ignitability temperature, pH, reactive cyanide, reactive sulfide, cyanide, and hexavalent chromium. Toxicity characteristic leachate procedure extraction data for VOCs, SVOCs, herbicides, pesticides, metals, and mercury were also validated.
- 215 North 10th Street, Brooklyn, NY Completed validation of soil and groundwater data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOC, SVOC, SVOC SIM, herbicide, PCB, pesticide, metals, mercury, cyanide, hexavalent chromium, trivalent chromium data.
- 35 Commercial Street, Brooklyn, NY Completed validation of soil data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOC, SVOC, SVOC SIM, herbicide, PCB, pesticide, metals, mercury, cyanide, hexavalent chromium, trivalent chromium data, and tangentially used based on professional judgment to perform validation of PFAS data.
- Suffolk Street, Lower East Side, NY- Completed validation of soil, groundwater, and soil vapor data and prepared the Data Usability Summary Report for submittal to NYSDEC. USEPA Region II

STAFF CHEMIST ENVIRONMNETAL

EDUCATION

B.Sc., Chemistry with a minor in Mathematics Rowan University

CERTIFICATIONS & TRAINING

OSHA 40-Hour HAZWOPER 29 CFR 1910.120(e)(4) Certification

NJ Analytical Guidance and Data Usability Training

USEPA Data Validation Training

Earthsoft EQuIS Environmental Database Training guidelines, with aide from National Functional Guidelines, were employed to perform validation of VOC, VOCs by USEPA TO-15, SVOC, SVOC SIM, herbicide, PCB, pesticide, metals, mercury, cyanide, hexavalent chromium, trivalent chromium data, and tangentially used based on professional judgment to perform validation of PFAS data.

- Managed a database for a confidential client containing 10+ years of environmental chemical data from multiple laboratories, requiring select data validation in accordance with New Jersey Data of Known Quality Protocols and identifying areas of delineation from historic field information. Once identified, NJDEP designated groundwater, surface water, soil, sediment, soil vapor, and custom screening criteria were researched and applied to each area, requiring individualized flagging for reporting.*
- Prepared the New Jersey Data of Known Quality Protocol Data Usability Evaluation and managed the database for a confidential client for a data set greater than 20 years old. A DUE or any validation effort was not prepared in the 20 years prior to current. This included data from variations of methods for volatile organic compounds, semivolatile organic compounds, total and dissolved metals, pesticides, herbicides, natural attenuation parameters, and per- and polyfluoroalkyl substances in multiple media.*
- Performed 200+ Stage 2a validations for a combined 87-acre USEPA designated Corrective Action site under the Resource Conservation and Recovery Act, including a quick-turn USEPA required PCB by soxhlet extraction investigation across multiple plants. Once a former train car painting facility, USEPA required a quick-turn PCB by soxhlet extraction soil investigation.
- Preparation of a quality assurance program for a confidential client in West Virginia. A quick turn QAPP was prepared in a service location new to the consultant, resulting in research into state requirements for data usability and auditing newly employed laboratories. The QAPP was understood to be prepared for groundwater only, but the client did not reveal the need for sediment and soil. Two QAPPs were submitted for review to governing agencies.*
- Used statistical software to determine a localized background upper confidence limit of chromium for a confidential client's sand and gravel site. Validation was used to confirm laboratory procedures, and data was used in ProUCL calculations to compare to researched background chromium levels for Pennsylvania soils. *
- Prepared daily perimeter dust and air monitoring summaries and validation of low level mirex data for a confidential client's superfund site. Low level mirex data was generated by university laboratories and subject to validation following national functional guidelines to aide in river clean-up, including sediment, surface water, and treatment system water matrices.*

*Project completed prior to employment at LANGAN.

ATTACHMENT B

LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

ATTACHMENT B

GROUNDWATER SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

ivietnod	IVIATRIX	Analyte	KL	MDL	Units
		Volatile Organic Compounds			
EPA 8260C	Groundwater	1,1,1,2-Tetrachloroethane	0.5	0.164	ug/L
EPA 8260C	Groundwater	1,1,1-Trichloroethane	0.5	0.158	ug/L
EPA 8260C	Groundwater	1,1,2,2-Tetrachloroethane	0.5	0.144	ua/L
EPA 8260C	Groundwater	1.1.2-Trichloro-1.2.2-Trifluoroethane	10	0.148	ua/L
EPA 8260C	Groundwater	1.1.2-Trichloroethane	0.75	0.144	ug/l
EPA 8260C	Groundwater	1 1-Dichloroethane	0.75	0.21	ug/L
EPA 92600	Groundwater	1 1-Dichloroothane	0.70	0.142	ug/L
EPA 8200C	Groundwater	1.1 Dichloroethere	0.5	0.142	ug/L
EPA 8260C	Groundwater	1, I-Dichloropropene	2.5	0.173	ug/L
EPA 8260C	Groundwater	1,2,3-Trichlorobenzene	2.5	0.234	ug/L
EPA 8260C	Groundwater	1,2,3-Trichloropropane	5	0.176	ug/L
EPA 8260C	Groundwater	1,2,4,5-Tetramethylbenzene	2	0.542	ug/L
EPA 8260C	Groundwater	1,2,4-Trichlorobenzene	2.5	0.22	ug/L
EPA 8260C	Groundwater	1,2,4-Trimethylbenzene	2.5	0.191	ug/L
EPA 8260C	Groundwater	1.2-Dibromo-3-chloropropane	2.5	0.327	ua/L
EPA 8260C	Groundwater	1.2-Dibromoethane	2	0.193	ua/l
EPA 8260C	Groundwater	1.2-Dichlorobenzene	2.5	0.184	ug/l
EPA 9260C	Groundwater	1.2 Dichloroothang	0.5	0.104	ug/L
EDA 0200C	Groundwater	1.2 Dichlerenrenene	1.75	0.132	ugrt
EFA 8280C	Groundwater	1,2-Dichloropropane	1.75	0.133	ug/L
EPA 8260C	Groundwater	1,3,5-Trimethylbenzene	2.5	0.174	ug/L
EPA 8260C	Groundwater	1,3-Dichlorobenzene	2.5	0.186	ug/L
EPA 8260C	Groundwater	1,3-Dichloropropane	2.5	0.212	ug/L
EPA 8260C	Groundwater	1,4-Dichlorobenzene	2.5	0.187	ug/L
EPA 8260C	Groundwater	1,4-Diethylbenzene	2	0.392	ug/L
EPA 8260C	Groundwater	2.2-Dichloropropane	2.5	0.204	uq/L
EPA 8260C	Groundwater	2-Butanone	5	1.94	ua/L
EPA 8260C	Groundwater	2-Hexanone	5	0.515	ug/l
EPA 8260C	Groundwater	4-Ethyltoluene	2	0.34	ug/L
EPA 02000	Groundwater	4 Methol 2 pontanona		0.34	ugru
EPA 62000	Groundwater	A-release -	5	0.410	ug/L
EPA 8260C	Groundwater	Acetone	5	1.46	ug/L
EPA 8260C	Groundwater	Acrolein	5	0.633	ug/L
EPA 8260C	Groundwater	Acrylonitrile	5	0.43	ug/L
EPA 8260C	Groundwater	Benzene	0.5	0.159	ug/L
EPA 8260C	Groundwater	Bromobenzene	2.5	0.152	ug/L
EPA 8260C	Groundwater	Bromochloromethane	2.5	0.138	ua/L
EPA 8260C	Groundwater	Bromodichloromethane	0.5	0.192	ug/l
EPA 82600	Groundwater	Bromoform	2	0.248	ug/L
EDA 8360C	Croundwater	Bromomothana	1	0.240	ug/L
EFA 8200C	Groundwater	Control lieutialle	5	0.200	ug/L
EPA 8260C	Groundwater	Carbon disulfide	5	0.299	ug/L
EPA 8260C	Groundwater	Carbon tetrachloride	0.5	0.134	ug/L
EPA 8260C	Groundwater	Chlorobenzene	0.5	0.178	ug/L
EPA 8260C	Groundwater	Chloroethane	1	0.134	ug/L
EPA 8260C	Groundwater	Chloroform	0.75	0.162	ug/L
EPA 8260C	Groundwater	Chloromethane	2.5	0.176	ug/L
EPA 8260C	Groundwater	cis-1.2-Dichloroethene	0.5	0.187	ua/L
EPA 8260C	Groundwater	cis-1.3-Dichloropropene	0.5	0.144	ua/l
EPA 8260C	Groundwater	Cyclobeyane	10	0.271	ua/l
EPA 82600	Groundwater	Dibromochloromethane	0.5	0.1/9	ug/L
EDA 9260C	Groundwater	Dibromomothane	6.5	0.140	ug/L
EPA 8200C	Groundwater		5	0.303	ug/L
EPA 8260C	Groundwater	Dichlorodifiuoromethane	5	0.245	ug/L
EPA 8260C	Groundwater	Ethyl ether	2.5	0.15	ug/L
EPA 8260C	Groundwater	Ethylbenzene	0.5	0.168	ug/L
EPA 8260C	Groundwater	Hexachlorobutadiene	0.5	0.217	ug/L
EPA 8260C	Groundwater	Isopropylbenzene	0.5	0.187	ug/L
EPA 8260C	Groundwater	Methyl Acetate	10	0.234	ug/L
EPA 8260C	Groundwater	Methyl cyclohexane	10	0.396	ug/L
EPA 8260C	Groundwater	Methyl tert butyl ether	1	0.16	ug/L
EPA 8260C	Groundwater	Methylene chloride	3	0.289	ua/L
EPA 8260C	Groundwater	Naphthalene	2.5	0.216	ug/l
EPA 82600	Groundwater	n-Butylbenzene	0.5	0.192	ug/L
EPA 92600	Groundwater	n-Propylhenzene	0.5	0.132	ug/L
EPA 02000	Croundwater		0.0	0.173	ug/L
EPA 82000	Groundwater	o-chlorotoluene	2.5	0.17	ug/L
EPA 8260C	Groundwater	o-Ayiene	1	0.33	ug/L
EPA 8260C	Groundwater	p/m-Xylene	1	0.332	ug/L
EPA 8260C	Groundwater	p-Chlorotoluene	2.5	0.185	ug/L
EPA 8260C	Groundwater	p-Isopropyltoluene	0.5	0.188	ug/L
EPA 8260C	Groundwater	sec-Butylbenzene	0.5	0.181	ug/L
EPA 8260C	Groundwater	Styrene	1	0.359	ug/L
EPA 8260C	Groundwater	tert-Butyl Alcohol	10	0.899	ug/L
EPA 8260C	Groundwater	tert-Butylbenzene	2.5	0.185	ua/l
EPA 8260C	Groundwater	Tetrachloroethene	0.5	0.181	ug/l
EPA 8260C	Groundwater	Toluene	0.75	0.161	ug/L
EDA 02000	Groundwater	trans 1.2 Disblarasthans	0.75	0.101	ugrt
EPA 02000	Groundwater	trans-1,2-bioliol0ettette	0.75	0.103	ug/L
EPA 8260C	Groundwater	trans-i, s-Dichloropropene	0.5	U.164	ug/L
EPA 8260C	Groundwater	trans-1,4-Dichloro-2-butene	2.5	0.173	ug/L
EPA 8260C	Groundwater	Irichloroethene	0.5	0.175	ug/L
EPA 8260C	Groundwater	Trichlorofluoromethane	2.5	0.161	ug/L
EPA 8260C	Groundwater	Vinyl acetate	5	0.311	ug/L
EPA 8260C	Groundwater	Vinyl chloride	1	0.0699	ug/L
EPA 8260C	Groundwater	Xylenes, Total	1	0.33	ug/L

ATTACHMENT B

GROUNDWATER SAMPLES LABORATORY REPORTING LIMITS AND METHOD DETECTION LIMITS

Method	Matrix	Analyte	RL	MDL	Units
	-	Semivolatile Organic Compounds			
EPA 8270D	Groundwater	1,2,4,5-Tetrachlorobenzene	10	0.357	ug/L
EPA 8270D	Groundwater	1,2,4-1 richlorobenzene	5	0.21	ug/L
EPA 8270D	Groundwater	1,2-Dichlorobenzene	2	0.302	ug/L
EPA 8270D	Groundwater	1,3-Dichlorobenzene	2	0.35	ug/L
EPA 82/0D	Groundwater	1,4-UIChlorobenzene	2	0.323	ug/L
EPA 62/00 EPA 9270D	Groundwater	2,3,4,0-retrachiorophenol	5	0.59	ug/L
EPA 8270D	Groundwater	2.4.6-Trichlorophenol	5	0.740	ug/L ua/l
EPA 8270D	Groundwater	2.4-Dichlorophenol	5	0.564	ua/L
EPA 8270D	Groundwater	2,4-Dimethylphenol	5	0.578	ua/L
EPA 8270D	Groundwater	2,4-Dinitrophenol	20	1.4081	ug/L
EPA 8270D	Groundwater	2,4-Dinitrotoluene	5	1.05	ug/L
EPA 8270D	Groundwater	2,6-Dinitrotoluene	5	0.89	ug/L
EPA 8270D	Groundwater	2-Chloronaphthalene	2	0.455	ug/L
EPA 8270D	Groundwater	2-Chlorophenol	2	0.58	ug/L
EPA 8270D	Groundwater	2-Methylnaphthalene	2	0.355	ug/L
EPA 8270D	Groundwater	2-Methylphenol	5	0.703	ug/L
EPA 8270D	Groundwater	2-Nitroaniline	5	0.956	ug/L
EPA 8270D	Groundwater	2-Nitrophenol	10	1.05	ug/L
EPA 8270D	Groundwater	3,3'-Dichlorobenzidine	5	0.478	ug/L
EPA 8270D	Groundwater	3-Methylphenol/4-Methylphenol	5	0.72	ug/L
EPA 8270D	Groundwater	3-Nitroaniline	5	0.668	ug/L
EPA 8270D	Groundwater	4,6-Dinitro-o-cresol 4 Bromonhand aband ather	10	0.429	ug/L
EPA 8270D	Groundwater	4-Chloroaniline	5	0.426	ug/L
EPA 8270D	Groundwater	4-Chlorophenyl phenyl ether	2	0.355	ug/L
EPA 8270D	Groundwater	4-Nitroaniline	5	0.83	ug/L
EPA 8270D	Groundwater	4-Nitrophenol	10	1.09	ug/L
EPA 8270D	Groundwater	Acenaphthene	2	0.284	ua/L
EPA 8270D	Groundwater	Acenaphthylene	2	0.372	ua/L
EPA 8270D	Groundwater	Acetophenone	5	0.428	ug/L
EPA 8270D	Groundwater	Anthracene	2	0.2	ug/L
EPA 8270D	Groundwater	Atrazine	10	0.794	ug/L
EPA 8270D	Groundwater	Azobenzene	2	0.537	ug/L
EPA 8270D	Groundwater	Benzaldehyde	5	0.986	ug/L
EPA 8270D	Groundwater	Benzidine	20	5.24	ug/L
EPA 8270D	Groundwater	Benzo(a)anthracene	2	0.323	ug/L
EPA 8270D	Groundwater	Benzola/pyrene	2	0.658	ug/L
EPA 82/0D	Groundwater	Benzo(philocalana	2	0.371	ug/L
EPA 82/00	Groundwater	Denzo(ghi/perylene	2	0.5/4	ug/L
EPA 82/00 EDA 9270D	Groundwater	Benzolk/hubranthene	2 50	0.3	ug/L
EFA 62/UU EPA 9270D	Groundwater	Benzul Alcohol	200	0.677	ug/L
EFA 8270D	Groundwater	Binhenyl	2	0.077	ug/L ug/l
EPA 8270D	Groundwater	Bis(2-chloroethoxy/methane	5	0.237	ug/L
EPA 8270D	Groundwater	Bis(2-chloroethyl)ether	2	0.300	ug/L
EPA 8270D	Groundwater	Bis(2-chloroisopropyl)ether	2	0.597	ug/L
EPA 8270D	Groundwater	Bis(2-Ethylhexyl)phthalate	3	0.928	ua/L
EPA 8270D	Groundwater	Butyl benzyl phthalate	5	1.13	ua/L
EPA 8270D	Groundwater	Caprolactam	10	0.3895	ug/L
EPA 8270D	Groundwater	Carbazole	2	0.374	ug/L
EPA 8270D	Groundwater	Chrysene	2	0.304	ug/L
EPA 8270D	Groundwater	Dibenzo(a,h)anthracene	2	0.438	ug/L
EPA 8270D	Groundwater	Dibenzofuran	2	0.218	ug/L
EPA 8270D	Groundwater	Diethyl phthalate	5	0.393	ug/L
EPA 8270D	Groundwater	Dimethyl phthalate	5	0.333	ug/L
EPA 8270D	Groundwater	Di-n-butylphthalate	5	0.768	ug/L
EPA 8270D	Groundwater	Di-n-octylphthalate	5	1.2	ug/L
EPA 8270D	Groundwater	Fluoranthene	2	0.401	ug/L
EPA 8270D	Groundwater	Fluorene	2	0.32	ug/L
EPA 82/0D	Groundwater	Hexachlorobenzene	2	0.396	ug/L
EPA 82/0D	Groundwater	Hexachlorobutadiene	2	0.41/	ug/L
EPA 8270D	Groundwater	Hexachlorocyclopentadiene	20	0.585	ug/L
EPA 8270D	Groundwater	Indepo/1.2.2.od/Pyropo	2	0.298	
EPA 8270D	Groundwater	Isophorope	5	0.433	ug/L
EPA 8270D	Groundwater	Naphthalene	2	0.332	ug/L
EPA 8270D	Groundwater	Nitrobenzene	2	0.401	ug/L
EPA 8270D	Groundwater	NitrosoDiPhenylAmine(NDPA)/DPA	2	0.34	ua/L
EPA 8270D	Groundwater	n-Nitrosodimethylamine	2	0.498	ug/L
EPA 8270D	Groundwater	n-Nitrosodi-n-propylamine	5	0.645	ug/L
EPA 8270D	Groundwater	P-Chloro-M-Cresol	2	0.543	ug/L
EPA 8270D	Groundwater	Pentachlorophenol	10	3.22	ug/L
EPA 8270D	Groundwater	Phenanthrene	2	0.23	ug/L
EPA 8270D	Groundwater	Phenol	5	0.27	ug/L
EPA 8270D	Groundwater	Pyrene	2	0.524	ug/L
EPA 8270D-SIM	Groundwater	2-Unioronaphthalene	0.2	0.035	ug/L
EPA 82/0D-SIM	Groundwater	z-ivietriyiriaphthaiene	0.2	0.045	ug/L
EFA 02/UD-SIW	Groundwater	Acenaphthylene	0.2	0.035	ug/L
EPA 8270D-SIM	Groundwater	Anthracene	0.2	0.035	ug/L ua/l
EPA 8270D-SIM	Groundwater	Benzo(a)anthracene	0.2	0.016	ug/L
EPA 8270D-SIM	Groundwater	Benzo(a)pyrene	0.2	0.039	ua/L
EPA 8270D-SIM	Groundwater	Benzo(b)fluoranthene	0.2	0.016	ug/L
EPA 8270D-SIM	Groundwater	Benzo(ghi)perylene	0.2	0.042	ug/L
EPA 8270D-SIM	Groundwater	Benzo(k)fluoranthene	0.2	0.042	ug/L
EPA 8270D-SIM	Groundwater	Chrysene	0.2	0.038	ug/L
EPA 8270D-SIM	Groundwater	Dibenzo(a,h)anthracene	0.2	0.039	ug/L
EPA 8270D-SIM	Groundwater	Fluoranthene	0.2	0.038	ug/L
EPA 8270D-SIM	Groundwater	Huorene	0.2	0.037	ug/L
EPA 8270D-SIM	Groundwater	Hexachlorobenzene	0.8	0.032	ug/L
EPA 8270D-SIM	Groundwater	Hexachlorobutadiene	0.5	0.036	ug/L
EPA 82/00-SIM	Groundwater	nexachioroethane	0.8	0.03	ug/L
EFA 62/UU-SIW	Groundwater	Naphthalana	0.2	0.04	ug/L
EFA 8270D-SIM	Groundwater	Pentachlorophenol	0.2	0.043	ug/L
EFA 8270D-SIM	Groundwater	Phenanthrene	0.0	0.015	ugrt ua/l
EPA 8270D-SIM	Groundwater	Pyrene	0.2	0.04	ug/L
	0.0010440101	METALS	0.2	5.57	499 L
EPA 6020B	Groundwater	Iron, Dissolved	0.05	0.0191	mg/L
EPA 6020B	Groundwater	Iron, Total	0.05	0.0191	mg/L
EPA 6020B	Groundwater	Manganese, Dissolved	0.001	0.00044	mg/L
EPA 6020B	Groundwater	Manganese, Total	0.001	0.00044	ug/L
		Wet Chemistry			
4500NH3-BH	Groundwater	Nitrogen, Ammonia	0.075	0.023	mg/L
4500NO3-F	Groundwater	Nitrate	0.1	0.0228	mg/L
4500P-E	Groundwater	Phosphorus, Orthophosphate	0.005	0.001	mg/L
4500SO4-E	Groundwater	Sulfate	10	1.37	mg/L
4500S2-D	Groundwater	Sulfide	0.1	0.1	mg/L
Unterstandi Di Com	Carrie	neterotrophic Plate Count and Gene Analysis			
Heterotrophic Plate Count	Groundwater	Anaeropic Heterotrophic Plate Count, Total	N/A	N/A	ctu/mL
Quantitative Polymerase Reactions	Groundwater	Decleria, rotal Sulfate Reducing Rectoria, Total	5,000 cells	100 cells	cells/g
asonatative i orginerase nedetions	GroundWater	conste neutring protonia, i Viai	0,000 Cells	100 cells	odia/y

Date Created: 12/08/20 Created By: Ben Rao File: PM9533-1 Page: 1

Langan Engineering & Environmental

TCL Volatiles - EPA 8260C/5035 High&Low (SOIL)

Holding Time: 14 days Container/Sample Preservation: 1 - 1 Vial MeOH/2 Vial Water

					LCS		MS		Duplicate	Surrogate	1
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
Methylene chloride	75-09-2	10	0.816	ua/ka	70-130	30	70-130	30	30	0.1100.114	
1.1-Dichloroethane	75-34-3	1.5	0.2952		70-130	30	70-130	30	30		
Chloroform	67-66-3	1.5	0.3246	ug/kg	70-130	30	70-130	30	30		
Carbon tetrachloride	56-23-5	1	0.2112	ua/ka	70-130	30	70-130	30	30		
1.2-Dichloropropane	78-87-5	3.5	0.255	ug/kg	70-130	30	70-130	30	30		
Dibromochloromethane	124-48-1	1	0.3078	ua/ka	70-130	30	70-130	30	30		
1.1.2-Trichloroethane	79-00-5	1.5	0.393	ug/kg	70-130	30	70-130	30	30		
Tetrachloroethene	127-18-4	1	0.3062	ug/kg	70-130	30	70-130	30	30		-
Chlorobenzene	108-90-7	1	0.1862	ug/kg	70-130	30	70-130	30	30		
Trichlorofluoromethane	75-69-4	5	0.3914	ug/kg	70-139	30	70-139	30	30		
1,2-Dichloroethane	107-06-2	1	0.2274	ug/kg	70-130	30	70-130	30	30		-
1.1.1-Trichloroethane	71-55-6	1	0.2698	ua/ka	70-130	30	70-130	30	30		
Bromodichloromethane	75-27-4	1	0.3848	ug/kg	70-130	30	70-130	30	30		-
trans-1,3-Dichloropropene	10061-02-6	1	0.3006	ug/kg	70-130	30	70-130	30	30		
cis-1,3-Dichloropropene	10061-01-5	1	0.2672	ug/kg	70-130	30	70-130	30	30		
1,1-Dichloropropene	563-58-6	5	0.4556	ug/kg	70-130	30	70-130	30	30		
Bromoform	75-25-2	4	0.4954	ug/kg	70-130	30	70-130	30	30		
1,1,2,2-Tetrachloroethane	79-34-5	1	0.2402	ug/kg	70-130	30	70-130	30	30		
Benzene	71-43-2	1	0.2972	ug/kg	70-130	30	70-130	30	30		
Toluene	108-88-3	1.5	0.2416	ug/kg	70-130	30	70-130	30	30		
Ethylbenzene	100-41-4	1	0.2214	ug/kg	70-130	30	70-130	30	30		
Chloromethane	74-87-3	5	0.7832	ug/kg	52-130	30	52-130	30	30		
Bromomethane	74-83-9	2	0.6478	ug/kg	57-147	30	57-147	30	30		
Vinyl chloride	75-01-4	2	0.7534	ug/kg	67-130	30	67-130	30	30		
Chloroethane	75-00-3	2	0.4384	ug/kg	50-151	30	50-151	30	30		
1,1-Dichloroethene	75-35-4	1	0.2598	ug/kg	65-135	30	65-135	30	30		
trans-1,2-Dichloroethene	156-60-5	1.5	0.3916	ug/kg	70-130	30	70-130	30	30		
Trichloroethene	79-01-6	1	0.224	ug/kg	70-130	30	70-130	30	30		
1,2-Dichlorobenzene	95-50-1	5	0.3642	ug/kg	70-130	30	70-130	30	30		
1,3-Dichlorobenzene	541-73-1	5	0.3996	ug/kg	70-130	30	70-130	30	30		
1,4-Dichlorobenzene	106-46-7	5	0.4198	ug/kg	70-130	30	70-130	30	30		
Methyl tert butyl ether	1634-04-4	2	0.487	ug/kg	66-130	30	66-130	30	30		
p/m-Xylene	179601-23-1	2	0.43	ug/kg	70-130	30	70-130	30	30		
o-Xylene	95-47-6	2	0.4174	ug/kg	70-130	30	70-130	30	30		
cis-1,2-Dichloroethene	156-59-2	1	0.3014	ug/kg	70-130	30	70-130	30	30		
Dibromomethane	74-95-3	10	0.4348	ug/kg	70-130	30	70-130	30	30		
Styrene	100-42-5	2	0.726	ug/kg	70-130	30	70-130	30	30		
Dichlorodifluoromethane	75-71-8	10	0.3888	ug/kg	30-146	30	30-146	30	30		
Acetone	67-64-1	10	3.235	ug/kg	54-140	30	54-140	30	30		
Carbon disulfide	75-15-0	10	0.3754	ug/kg	59-130	30	59-130	30	30		
2-Butanone	78-93-3	10	3.8772	ug/kg	70-130	30	70-130	30	30		
Vinyl acetate	108-05-4	10	0.751	ug/kg	70-130	30	70-130	30	30		

Please Note that the RL information provided in this table is calculated using a 100% Solids factor. (Soil/Solids only) Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

8 Walkup Drive, Westborough, Massachusetts 01581 • 508-898-9220 • www.alphalab.com

 Date Created:
 12/08/20

 Created By:
 Ben Rao

 File:
 PM9533-1

 Page:
 2

Langan Engineering & Environmental

TCL Volatiles - EPA 8260C/5035 High&Low (SOIL)

Holding Time: 14 days Container/Sample Preservation: 1 - 1 Vial MeOH/2 Vial Water

				1	LCS		MS	1	Duplicate	Surrogate	T
Analyte	CAS #	RL	MDL	Units	Criteria	LCS RPD	Criteria	MS RPD	RPD	Criteria	
4-Methyl-2-pentanone	108-10-1	10	0.8164	ua/ka	70-130	30	70-130	30	30		
1.2.3-Trichloropropane	96-18-4	10	0.387	ua/ka	68-130	30	68-130	30	30		1
2-Hexanone	591-78-6	10	0.3964	ug/kg	70-130	30	70-130	30	30		
Bromochloromethane	74-97-5	5	0.3022	ug/kg	70-130	30	70-130	30	30		1
2,2-Dichloropropane	594-20-7	5	0.795	ug/kg	70-130	30	70-130	30	30		
1,2-Dibromoethane	106-93-4	4	0.4088	ug/kg	70-130	30	70-130	30	30		
1,3-Dichloropropane	142-28-9	5	0.5656	ug/kg	69-130	30	69-130	30	30		
1,1,1,2-Tetrachloroethane	630-20-6	1	0.3284	ug/kg	70-130	30	70-130	30	30		
Bromobenzene	108-86-1	5	0.2202	ug/kg	70-130	30	70-130	30	30		
n-Butylbenzene	104-51-8	1	0.3144	ug/kg	70-130	30	70-130	30	30		
sec-Butylbenzene	135-98-8	1	0.2756	ug/kg	70-130	30	70-130	30	30		
tert-Butylbenzene	98-06-6	5	0.6032	ug/kg	70-130	30	70-130	30	30		
o-Chlorotoluene	95-49-8	5	0.313	ug/kg	70-130	30	70-130	30	30		
p-Chlorotoluene	106-43-4	5	0.3608	ug/kg	70-130	30	70-130	30	30		
1,2-Dibromo-3-chloropropane	96-12-8	5	0.8366	ug/kg	68-130	30	68-130	30	30		
Hexachlorobutadiene	87-68-3	5	0.4582	ug/kg	67-130	30	67-130	30	30		
Isopropylbenzene	98-82-8	1	0.177	ug/kg	70-130	30	70-130	30	30		
p-Isopropyltoluene	99-87-6	1	0.2732	ug/kg	70-130	30	70-130	30	30		
Naphthalene	91-20-3	5	0.7696	ug/kg	70-130	30	70-130	30	30		
Acrylonitrile	107-13-1	10	0.3756	ug/kg	70-130	30	70-130	30	30		
n-Propylbenzene	103-65-1	1	0.284	ug/kg	70-130	30	70-130	30	30		
1,2,3-Trichlorobenzene	87-61-6	5	0.4034	ug/kg	70-130	30	70-130	30	30		
1,2,4-Trichlorobenzene	120-82-1	5	0.7898	ug/kg	70-130	30	70-130	30	30		
1,3,5-Trimethylbenzene	108-67-8	5	0.6016	ug/kg	70-130	30	70-130	30	30		
1,2,4-Trimethylbenzene	95-63-6	5	0.573	ug/kg	70-130	30	70-130	30	30		
1,4-Dioxane	123-91-1	100	17.4	ug/kg	65-136	30	65-136	30	30		
1,4-Diethylbenzene	105-05-5	4	0.2	ug/kg	70-130	30	70-130	30	30		
4-Ethyltoluene	622-96-8	4	0.097	ug/kg	70-130	30	70-130	30	30		
1,2,4,5-Tetramethylbenzene	95-93-2	4	0.181	ug/kg	70-130	30	70-130	30	30		
Ethyl ether	60-29-7	5	0.3798	ug/kg	67-130	30	67-130	30	30		
trans-1,4-Dichloro-2-butene	110-57-6	5	1.478	ug/kg	70-130	30	70-130	30	30		
1,2-Dichloroethane-d4	17060-07-0									70-130	
2-Chloroethoxyethane											
Toluene-d8	2037-26-5									70-130	
4-Bromofluorobenzene	460-00-4									70-130	
Dibromofluoromethane	1868-53-7									70-130	
								1			
								1			

Please Note that the RL information provided in this table is calculated using a 100% Solids factor. (Soil/Solids only) Please Note that the information provided in this table is subject to change at anytime at the discretion of Alpha Analytical, Inc.

8 Walkup Drive, Westborough, Massachusetts 01581 • 508-898-9220 • www.alphalab.com

Westborough, MA • Mansfield, MA • Bangor, ME • Portsmouth, NH • Mahwah, NJ • Albany, NY • Buffalo, NY • Holmes, PA

ATTACHMENT C

ANALYTICAL METHODS/QUALITY ASSURANCE SUMMARY TABLE

ATTACHMENT C

ANALYTICAL METHODS/QUALITY ASSURANCE SUMMARY TABLE

Matrix Type	Field Parameters	Laboratory Parameters	Analytical Methods	Sample Preservation	Sample Container Volume and Type	Sample Hold Time	Field Duplicate Samples	Equipment Blank Samples	Trip Blank Samples	MS/MSD Samples
		Part 375 + TCL VOCs	EPA 8260C	Cool to 4°C; HCl to pH <2;no headspace	Three 40-mL VOC vials with Teflon®-lined cap	Analyze within 14 days of collection		1 per 20 samples (minimum 1)	1 per shipment of VOC samples	1 per 20 samples
		Part 375 + TCL SVOCs	EPA 8270D	Cool to 4°C	Two 1-Liter Amber Glass	7 days to extract, 40 days after extraction to analysis	1 per 20 samples (minimum 1)			
		Part 375 + TAL Metals	EPA 6020B, EPA 7470A	Cool to 4°C; HNO ₃	250 ml plastic	6 months, except Mercury 28 days				
		Sulfate (SO ₄ ³)	EPA 300.0, SM 4500SO4-E, EPA 9038	None	250mL plastic	28 days	N/A	N/A.	N/A	N/A
		Sulfide (S ²⁻)	SM 4500S2-AD, EPA 9030B	NaOH, Zinc Acetate	Two 250mL	7 days	N/A	N/A	N/A	N/A
Groundwater	Temperature, Turbidity, pH,	Nitrate (NO ₃ ¹)	EPA 300.0, SM4500NO ₃ -F, EPA 353.2	H2SO4	Two 250mL plastic	48 hours	N/A	N/A	N/A	N/A
Groundwater	ORP, Conductivity	Nitrite (NO ₂₋)	EPA 353.2, SM 4500NO2-B	H2SO4	Two 250mL plastic	48 hours	N/A	N/A	N/A	N/A
		Orthophosphate	SM 4500P-E	H2SO4	250 mL plastic	28 days	N/A	N/A	N/A	N/A
		Ammonia	SM 4500NH3-BH, EPA 350.1	H2SO4	250 mL plastic	28 days	N/A	N/A	N/A	N/A
		Anaerobic Heterotrophic Plate Count, Total	HPC	Cool to 4°C	Two 40mL VOAVials	48 hours	N/A	N/A.	N/A	N/A
		Bacteria, Total	qPCR	Cool to 4°C	One 1-Liter Plastic	48 hours	N/A	N/A	N/A	N/A
		Sulfate Reducing Bacteria	qPCR	Cool to 4°C	One 1-Liter Plastic	48 hours	N/A	N/A	N/A	N/A
Soil	Total VOCs via PID	Part 375 + TCL VOCs	EPA 8260C	Cool to 4°C	Two 40-ml VOC vials with 5ml H2O, one with MeOH or 3 Encore Samplers (separate container for % solids)	14 days	1 per 20 samples (minimum 1)	1 per 20 samples (minimum 1)	1 per shipment of VOC samples	1 per 20 samples

Notes: 1. PID - Photoionization Detector 2. VOC - Volatile organic compound 3. EPA - Environmental Protection Agency 4. TCL - Target compound list 5. TAL - Target analyte list 6. aPCR - Quantitative Polymerase Reactions 7. HPC - Heterotrophic Plate Count

ATTACHMENT D

SAMPLE NOMENCLATURE

SAMPLE NOMENCLATURE

The sample nomenclature outlined below provides consistency between sample events and projects but, most importantly, establish unique sample IDs that will avoid confusion months or years after the sample has been collected. Furthermore, unique sample IDs are required for any data submitted to the NYSDEC in EDD format or being uploaded to an EQUIS database.

1.0 INVESTIGATION LOCATION CODES

- SB Soil Boring
- WC Waste Characterization Boring
- TP Test Pit
- EPSW Endpoint Location (Sidewall)
- EPB Endpoint Location (Bottom)
- MW Monitoring Well
- TMW Temporary Monitoring Well
- SW Surface Water

- SV Soil Vapor Point
- IA Indoor Air
- AA Ambient Air
- SVE Vapor Extraction Well
- DS Drum
- IDW Investigation Derived Waste

Sampling Interval (y-y)

- SL Sludge
- FP Free Product

2.0 SAMPLE NOMENCLATURE

Each sample at a site must have a unique value.

• Soil/Sediment Samples:

SBxx_y-y

Sample Location Code + Number (two digits minimum)

Sampling Sample Location Depth or Interval Sample Type Sample Name Code (feet bgs or approx. elevation) Phase II/Remedial Investigation SB01 2 to 4 SB01_2-4 Grab Soil Sample SB02 4 SB02_4 Waste Characterization WC01 WC01 2-4 2 to 4 Grab Soil Sample WC02 WC02_4 4 Composite Soil Sample COMP01 or 0 to 10 from one or more COMP01_0-10 COMP02 + COMP03 (Fill) locations

1

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Sample Type	Sample Location Code	Sampling Depth or Interval (feet bgs or approx. elevation)	Sample Name				
Endpoint Sampling							
	EPSW01_N	5	EPSW01_N_5				
	EPSW01_S	5	EPSW01_S_5				
Grab Soil Sample	EPSW01_E	5	EPSW01_E_5				
	EPSW01_W	5	EPSW01_W_5				
	EPB01	6	EPB01_6				

Groundwater/Surface Water Samples:

MWxx_MMDDYY \geq 1

Sampling Date (MMDDYY)

Sample Location Code + Number (two digits minimum)

Sample Type	Sample Location Code	Sampling Date	Sample Name
Groundwater Sample	MW01	02/21/2013	MW01_022113

• <u>Air/Soil Vapor Samples:</u>

IAxx_MMDDYY

Sampling Date (MMDDYY)

Sample Location Code + Number (two digits minimum)

Sample Type	Sample Location Code	Date	Sample Name
Air Sample	IA01	02/21/2013	IA01_022113
Soil Vapor Sample	SV01	02/21/2013	SV01_022113
Vapor Extraction Well	SVE01		SVE01_IN_022113
Sample	(INLET/MIDPOINT/OUTLET)	02/21/2013	SVE01_ MID_022113 SVE01_ OUT_022113

<u>QA/QC Samples:</u>

Sample Matrix Codes

SO	Soil	AS	Air
SE	Sediment	SV	Soil Vapor
GW	Groundwater	SL	Sludge
SW	Surface Water	FP	Free Product

2

o Duplicates Samples

Sample Matrix Code Sample Type + Sampling Date (MMDDYY) Number (two digits minimum)

Sample Type	Parent Sample Code	Date	Sample Name
Groundwater Duplicate Sample (DUP)	MW01_022113	02/21/2013	GWDUP01_022113
Soil boring Duplicate Sample (DUP)	SBP01_022113	02/21/2013	SODUP01_022113
Grab Waste Characterization	WC01	02/21/2013	WCDUP01_022113
Composite Waste Characterization	COMP01	02/21/2013	COMPDUP01_022113

o Field Blanks and Trip Blanks

Sample Type	Date	Sample Name
Groundwater Field Blank (FB)	02/21/2013	GWFB01_022113
Groundwater Trip Blank (TB)	02/21/2013	GWTB01_022113
Soil Field Blank	02/21/2013	SOFB01_022113
Soil Trip Blank	02/21/2013	SOTB01_022113

• Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Parent Sample Name_MS or MSD

Sample Type	Sample Location	Parent Sample Name	Sample Name
Matrix Spike Soil (MS)	SB01	SB01_2-4	SB01_2-4_MS
Matrix Spike Soil Duplicate (MSD)	SB01	SB01_2-4	SB01_2-4_MSD
Matrix Spike GW (MS)	MW01	MW01	MW01_MS
Matrix Spike GW Duplicate (MSD)	MW01	MW01	MW01_MSD

3.0 NOTES

- 1. The sample location code should not exceed 20 characters and the sample name should not exceed 40 characters.
- 2. Sample location code (**SB01**, **MW01**, **etc.**) is a sequential number (starting with 01) and should be a minimum of two digits.
- 3. Sample Interval (SB01_0-5) is separated from the sample location code with an underscore, and the top and bottom interval with a dash. Soil and sediment sample intervals should always be in

SOP: Sample Nomenclature_v02 | 03/06/2013

feet. Soil and sediment sample intervals should contain no "/" or "()" or unit.

- 4. Sample date (MW01_022113) is separated from the sample location code with an underscore and should be provided in MMDDYY format [the date should contain no "/" or "-"].
- 5. If groundwater samples are collected from multiple intervals within one well, you may assign a letter designation (in lower case) to the well ID to differentiate between intervals (i.e., MW01a_022113, MW01b_022113, and MW01c_022113). The letter "a" would indicate the shallowest interval and "c" the deepest. The actual depth intervals should be documented in the project field book or field sheets and the letter designations should be used consistently between sampling events.
- 6. According to USEPA's Contract Laboratory Program (CLP) Guidance for Field Samplers (January 2011), field duplicate samples should remain "blind" to the laboratory (i.e., they should have separate CLP Sample numbers). Assign two separate (unique) CLP sample numbers (i.e., one number to the field sample and one to the duplicate). Submit blind to the laboratory. (http://www.epa.gov/superfund/programs/clp/download/sampler/CLPSamp-01-2011.pdf)

