18-46 Decatur Street Periodic Review Report

18-46 Decatur Street, Ridgewood, Queens, New York Block 3579, Lot 45 NYSDEC BCP Site Number: C241194

Prepared for: BHMQ Realty LLC 18-46 Decatur Street Ridgewood, Queens, New York 11385

For Submittal to: NYS Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau B 625 Broadway, 12th Floor Albany, NY 12233-7014

Prepared by: Matthew M. Carroll, PE & TENENVIRONMENTAL

Tenen Environmental, LLC 121 West 27th Street, Suite 702 New York, NY 10001

June 2020

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	BACKGROUND AND SETTING	2
2.1	Site Description	2
2.2	±	
2.3		
2.4		
3.0	ENGINEERING AND INSTITUTIONAL CONTROLS	4
3.1	Engineering Controls	4
3	3.1.1 Soil Cover System	
3	3.1.2 Sub-Slab Depressurization System (SSDS)	.4
3	3.1.3 Soil Vapor Extraction System (SVE)	.4
3.2	Institutional Controls	5
3	3.2.1 Compliance with SMP	.5
3	3.2.2 Use Restrictions	. 5
4.0	GROUNDWATER SAMPLING	6
	5.1 2019 Groundwater Sampling	
5	5.1.1 Methodology	
	5.1.2 Findings	
5.0		8
5.1		
5.2		
5.3		
6.0	CERTIFICATIONS	9
7.0	REFERENCES 1	10

Figures

- Figure 1 Site Location
- Figure 2 Site Layout
- Figure 3 Groundwater Monitoring Well Locations
- Figure 4 Groundwater Flow Map
- Figure 5 Contaminant Distribution in Groundwater

Table

- Table 1 Volatile Organic Compounds (VOCs) in Groundwater, June 2019
- Table 2 Volatile Organic Compounds (VOCs) in Groundwater, September 2019

Appendices

Appendix 1 – IC/EC Certifications and Checklists

Appendix 2 – Laboratory Reports

1.0 EXECUTIVE SUMMARY

On behalf of BHMQ Realty LLC (the Remedial Party), Matthew M. Carroll, P.E. and Tenen Environmental, LLC (Tenen) have prepared this Periodic Review Report (PRR) for the property located at 18-46 Decatur Street (Block 3579, Lot 45) in the Ridgewood neighborhood of the borough of Queens, New York (the Site). The Site is 0.11-acre, rectangular parcel located approximately 100 feet south of the intersection of Decatur Street and Forest Avenue in Queens Community Board 5.

The Site is currently improved with a two-story warehouse building with offices on the second floor. The warehouse is currently used by Forest Builders Supply, an outpost for construction materials, as storage for overstock materials. There is no basement beneath the building, which was reportedly constructed in 1953. The building floor slab consists of approximately six inches of concrete. Surrounding properties include commercial and residential use buildings. A Site location map is included in Figure 1 and current Site uses are shown on Figure 2.

This document has been prepared in accordance with the Site Management Plan (SMP) dated December 2018 and approved by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Site # C214149, which was executed on February 16, 2017. A Certificate of Completion was issued for the Site on December 20, 2018.

The work completed and reported in this PRR complies with the SMP and includes the following: quarterly groundwater sampling; monthly inspections of institutional and engineering controls; and, quarterly inspections of institution and engineering controls. The Site is currently in compliance with the material elements of the SMP. The remedial program, as detailed in the SMP, continues to be effective.

Based on the approved SMP and an email dated October 16, 2019, the sampling events described in this PRR complete the SMP requirements for a total of one quarterly and one annual groundwater sampling event with low or asymptotic concentrations at acceptable levels and monthly operations, maintenance and monitoring of the sub-slab depressurization system (SSDS) and soil vapor extraction system (SVE).

2.0 BACKGROUND AND SETTING

This section includes a description of the Site, and summaries of Site characteristics, historic operations and regulatory interactions.

2.1 Site Description

The Site is located at 18-46 Decatur Street in the Ridgewood neighborhood of Queens, New York. The site is a 0.11-acre rectangular shaped parcel located approximately 100 feet south of the intersection of Decatur Street and Forest Avenue in Queens Community Board 5. The Site is currently improved with a two-story warehouse building with offices on the second floor. The warehouse is currently used by Forest Builders Supply, an outpost for construction materials, as storage for overstock materials. The Site is zoned as M1-4D, a manufacturing district typically including light industrial uses. The surrounding properties include mixed-use commercial and residential use buildings.

The Site is identified as Queens County Block 3579, Lot 45 on the New York City Tax Map. The Site is bounded by a two-story multi-family walk-up building to the north, a two-family building to the south, railroad tracks followed by Evergreen Park to the east, and a two-family building and an industrial/manufacturing building to the west. A Site Location Map is included as Figure 1.

2.2 Geological Setting

According to the United States Geological Survey (USGS) Brooklyn-NY 7.5 Minute Topographic Quadrangle (2010), the Site elevation is approximately 80 feet above mean sea level (MSL) (NAVD). Based on the USGS map and observation of the local topography, the Site and surrounding area are generally flat with a slight slope downward from west to southwest.

The Site is underlain by approximately two-feet of light brown to dark brown medium sands and fill material, followed by glacial till, including light and dark brown fine to medium sand with cobbles. Prior boring logs completed during a 2016 Phase II Environmental Site Assessment were generally consistent with Tenen's finding. Refusals were encountered at all boring locations, likely due to the presence of cobles and boulders in the glacial till.

The depth to groundwater is approximately 67 feet below grade surface. Groundwater monitoring wells are shown on Figure 3. Based on the well survey, the groundwater flow is generally to the south, and is shown on Figure 4.

2.3 Historic Operations

The Site is currently used as a warehouse for building materials. Based on a review of historic information, the Site was used as a dry cleaner from at least 1991 to 2015. The former occupant of the Site, Full Dress Formals, was identified as a Small Quantity Generator of Hazardous Wastes on the regulatory database, with no violations. Prior uses include a warehouse of waterproofing materials, a knitting mill, wagon and auto storage and offices.

2.4 Regulatory Background

BHMQ Realty LLC and the New York State Department of Environmental Conservation (NYSDEC) entered into a Brownfield Cleanup Agreement (BCA) on February 16, 2017, pursuant to which BHMQ Realty LLC agreed to remediate the 0.11-acre property located at 18-46 Decatur Street, Queens, NY. The Site was managed and remediated in accordance with the BCA and the NYSDEC-approved Remedial Action Work Plan (RAWP) dated April 9, 2018 prepared by Tenen.

After completion of the remedial work described in the RAWP, a Final Engineering Report (FER) was prepared by Tenen and certified by Matthew Carroll, P.E. on December 5, 2018. In order to manage residual contamination at the Site, Tenen prepared a Site Management Plan (SMP) dated December 5, 2018 and subsequently approved by the NYSDEC. The work described in this Annual Environmental Compliance Report was completed in accordance with the SMP.

3.0 ENGINEERING AND INSTITUTIONAL CONTROLS

Several engineering controls (ECs) and institutional controls (ICs) are present at the Site to protect human health and the environment. A description of these controls and the current status of each are provided below. The Institutional and Engineering Controls Certification Form is included in Appendix 1.

3.1 Engineering Controls

3.1.1 Soil Cover System

Exposure to remaining contamination at the Site is prevented by a cover system. The cover system is comprised of a minimum of six inches of concrete building slab.

Current status: The soil cover system remains in place with no observed breach. The composite cover system is a permanent control and the quality and integrity of this system has been inspected annually as per the SMP. The inspection checklist is included in Appendix 1.

3.1.2 Sub-Slab Depressurization System (SSDS)

An active SSDS was installed to minimize the potential for vapor intrusion. The SSDS depressurizes below the current building slab as compared to the building environment. The SSDS consists of four suction pits installed beneath the building slab connected to a fan on the roof via cast iron (interior) and PVC (exterior) piping. The SSDS will continue to actively operate and will not be shut down unless written approval is obtained from the NYSDEC and NYSOH under a clear demonstration that the subsurface soil vapor conditions no longer present a potential impact to indoor air quality. Additional information on the SSDS is included in the SMP.

Current status: The active SSDS is functioning as designed. Monthly and quarterly inspection forms and checklists are included in Appendix 1.

3.1.3 Soil Vapor Extraction System (SVE)

An SVE System consists of three two-inch wells has been installed to remove remaining PCE contamination from the soil near the building foundations. The SVE system also addresses PCE in soil vapor and prevents off-Site migration of soil vapors. The three two-inch vertical SVE wells were constructed of four feet of slotted (0.020 inch) schedule 40 PVC screen. The extraction wells were installed to a depth of four feet below grade (ft-bg) and placed in a two-foot diameter gravel base. The extraction wells are plumbed into the same piping installed for the SSDS. The discharge location for the blower is located on the building roof, consistent with the NYSDEC DAR-1 guidance. The SVE system will continue to actively operate and will not be shut down unless written approval is obtained from the NYSDEC under a clear demonstration that the subsurface soil vapor conditions no longer present a potential impact to indoor air quality.

Current status: The SVE system is functioning as designed. Monthly and quarterly inspection forms and checklists are included in Appendix 1.

3.2 Institutional Controls

3.2.1 Compliance with SMP

The following ICs are required to document compliance with the SMP:

- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner defined in the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP; and
- Operation, maintenance and monitoring (OM&M), inspection and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;

Current status: The Environmental Easement remains in place. All systems are effective and currently operational. ICs requiring annual monitoring of groundwater, OM&M of engineering controls, and inspections of the engineering controls have been completed with the acceptance of this report. The required monitoring and inspections have been completed as required in the SMP.

3.2.2 Use Restrictions

The following use restrictions were placed on the property, in accordance with the Environmental Easement and SMP:

- The property may only be used for commercial use;
- New York City code prohibits the use of groundwater for potable purposes;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The potential for vapor intrusion must be evaluated for any buildings developed in within the IC boundaries, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited.

Current status: The Site is used in accordance with all restrictions. Current site uses are shown on Figure 2.

4.0 GROUNDWATER SAMPLING

In June and September 2019, quarterly groundwater sampling was completed at the Site in accordance with the SMP. The NYSDEC approved of a reduction in groundwater sampling frequency from quarterly to annually in an e-mail dated October 16, 2019, noting that all other requirements of the SMP remain in effect.

The methodology and findings from the quarterly 2019 groundwater sampling are included below.

5.1 2019 Groundwater Sampling

5.1.1 Methodology

Three groundwater monitoring wells (MW-1 through MW-3) were sampled in accordance with the SMP. Samples were collected for analysis for VOCs in accordance with the Quality Assurance Project Plan (QAPP) included in the SMP. Groundwater monitoring was conducted on the following dates: June 13, 2019 and September 26, 2019. The monitoring well locations are shown on Figure 3.

As required by the SMP, the following procedure was implemented during each sampling event:

- Depth-to-water measurements were obtained from each well prior to sample collection.
- The equivalent of three well volumes of water was removed from each well prior to sampling.
- Low-flow sampling techniques were implemented for sample collection.
- Field instrumentation was employed to measure water temperature, pH, and turbidity at each sampled well. Monitoring of indicator parameters was employed in order to stabilize parameters before sample collection.
- All groundwater samples were placed in 40-milliliter vials provided by the laboratory. All sample containers were appropriately labeled and closed with no trapped air.
- Chain-of-custody documents were completed before shipment. The samples were placed in ice and secured in a cooler during shipment to the laboratory.
- All groundwater samples were analyzed at Alpha Analytical, Inc. (Alpha) for volatile organic compounds (VOCs) by EPA Method 8260. Alpha is certified by the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) as LABID 11148.

Groundwater results were compared to the Division of Water TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations – Class GA (Class GA Standards). The Class GA Standards represent levels that are protective of the groundwater as a source of drinking water; however, groundwater is not utilized as potable water at the Site. Potable water for the Site is supplied to the City of New York from upstate New York reservoirs. Specifics regarding sampling protocol can be found in the SMP.

A summary of groundwater analytical results for the June and September 2019 sampling events are included on Figure 5. The concentrations of VOCs in groundwater from June 2019 and

September 2019 are provided in Tables 1 and 2 respectively. Laboratory deliverables are included in Appendix 3. A data usability summary report (DUSR) for the June 2019 and September 2019 sampling events are being prepared and will be provided when completed.

5.1.2 Findings

June 2019 Sampling Event

Groundwater samples were collected from monitoring wells MW-1, MW-2 and MW-3 for analysis of VOCs. Quality assurance/quality control samples were collected in accordance with the QAPP.

Groundwater quality parameters were not collected during the June 2019 sampling due to the presence of potassium permanganate in the groundwater. At a minimum, three well volumes were purged from the wells before a sample was collected.

PCE was detected in all samples ranging in concentration from 5.5 micrograms per liter (ug/l) in MW-3 to 26 ug/l in the MW-2 duplicate sample, in exceedance of the Class GA Standard of 5 ug/l. No other VOCs were detected in exceedance of the Class GA Standards.

September 2019 Sampling Event

Groundwater samples were collected from monitoring wells MW-1, MW-2 and MW-3 for analysis of VOCs. Quality assurance/quality control samples were collected in accordance with the QAPP.

PCE was detected in all samples ranging in concentration from 6 ug/l in MW-1 to 24 ug/l in the MW-2 duplicate sample, in exceedance of the Class GA Standard of 5 ug/l. No other VOCs were detected in exceedance of the Class GA Standards.

<u>Summary</u>

PCE remains the only compound detected above the Class GA Standards and at generally low and stable concentrations. TCE, previously undetected in groundwater, was present at an estimated concentration in one well during both post-remedial sampling events, which is an indication that the PCE is being oxidized.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Engineering and Institutional Controls

An Institutional and Engineering Controls Certification Form and inspection checklists are included in Appendix 1.

Based on sampling results detailed in Sections 4, residual PCE contamination continues to be present in groundwater at low, stable concentrations. The cover system, SSDS and SVE system are functioning as designed.

The cover system remains in place with no observed breaches or excavation below the cap. The active SSDs and SVE system are in working condition with no observations of compromised structural integrity.

5.2 Groundwater Monitoring

The most recent groundwater sampling indicated that residual PCE contamination associated with historic operations continues to be present in the groundwater.

A total of two rounds of sampling have been completed and the groundwater sampling frequency has been reduced to annually. Groundwater sampling will be conducted in September 2020.

5.3 Schedule

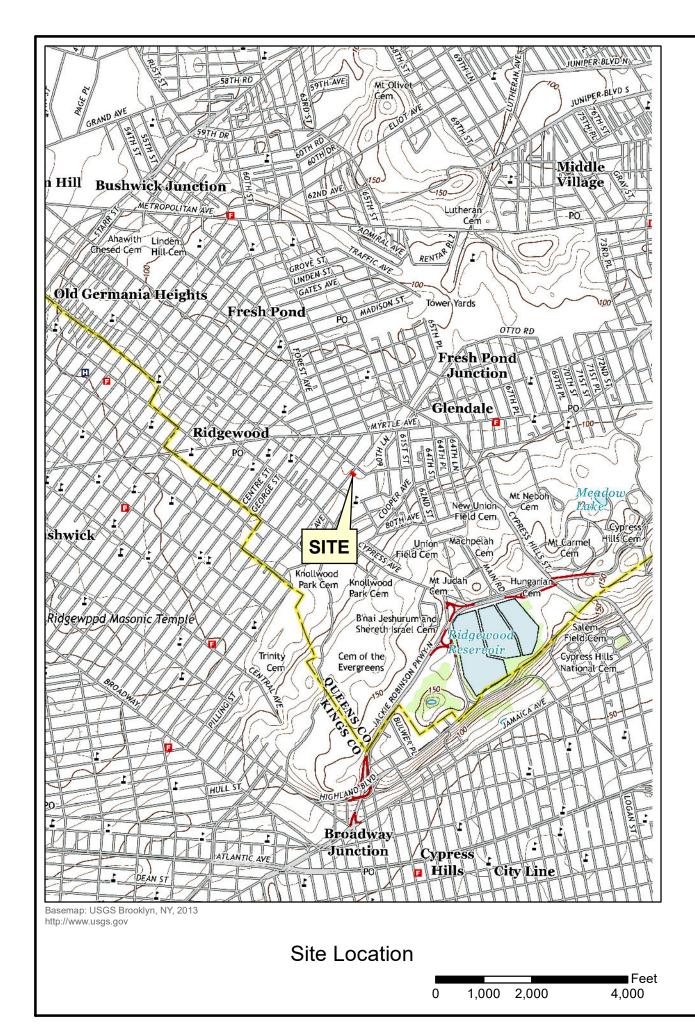
As noted above, groundwater sampling frequency has been reduced to annually. Groundwater sampling will be conducted in September 2020. ICs and ECs will continue to be inspected on a monthly and quarterly basis as required by the SMP.

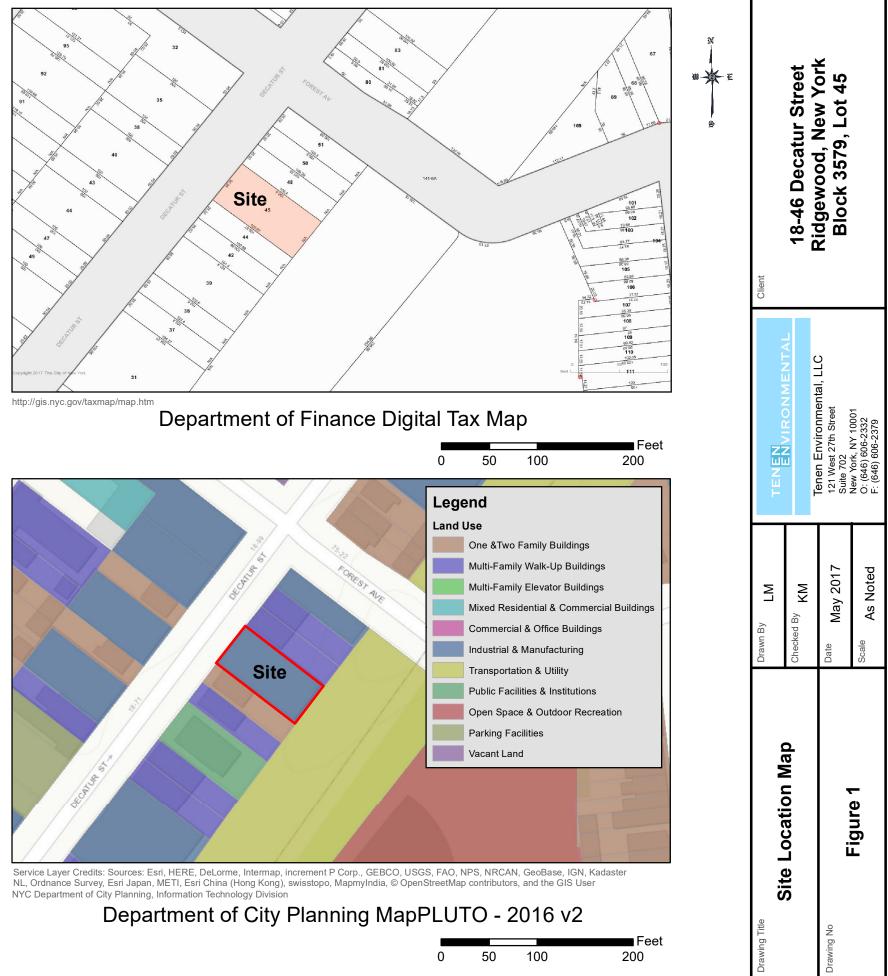
6.0 **CERTIFICATIONS**

I, Matthew Carroll, am a Professional Engineer licensed in the State of New York. I certify that:

- 1. The discussion and interpretation of the groundwater sample analysis results are based on all sampling data collected to-date.
- 2. The engineering and institutional controls are either unchanged or are compliant with NYSDEC-approved modifications.
- 3. NYSDEC can access the property.
- 4. The engineering and institutional controls continue to be protective of human health and the environment and do not constitute a violation or failure to comply with the SMP and subsequent NYSDEC-approved modifications.

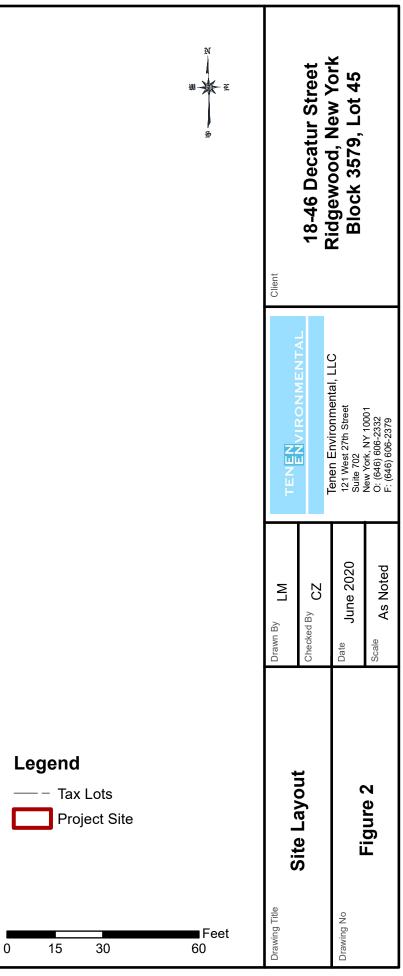
Matthew M. Carroll NYS PE License Number 091629

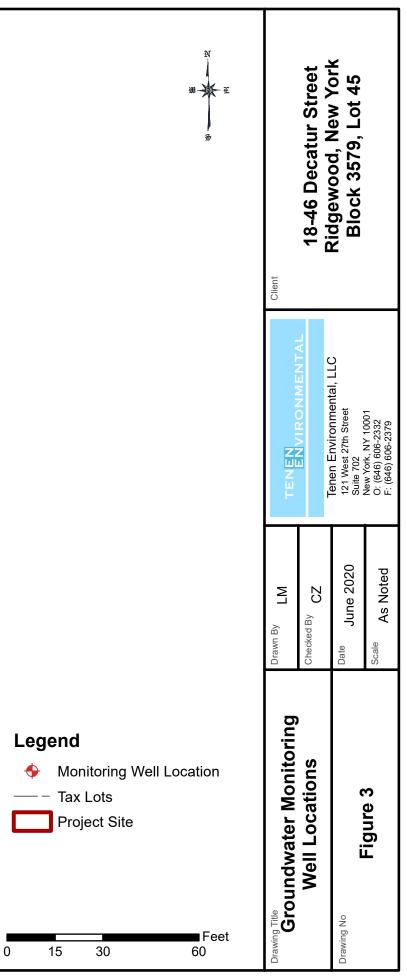

7.0 **REFERENCES**

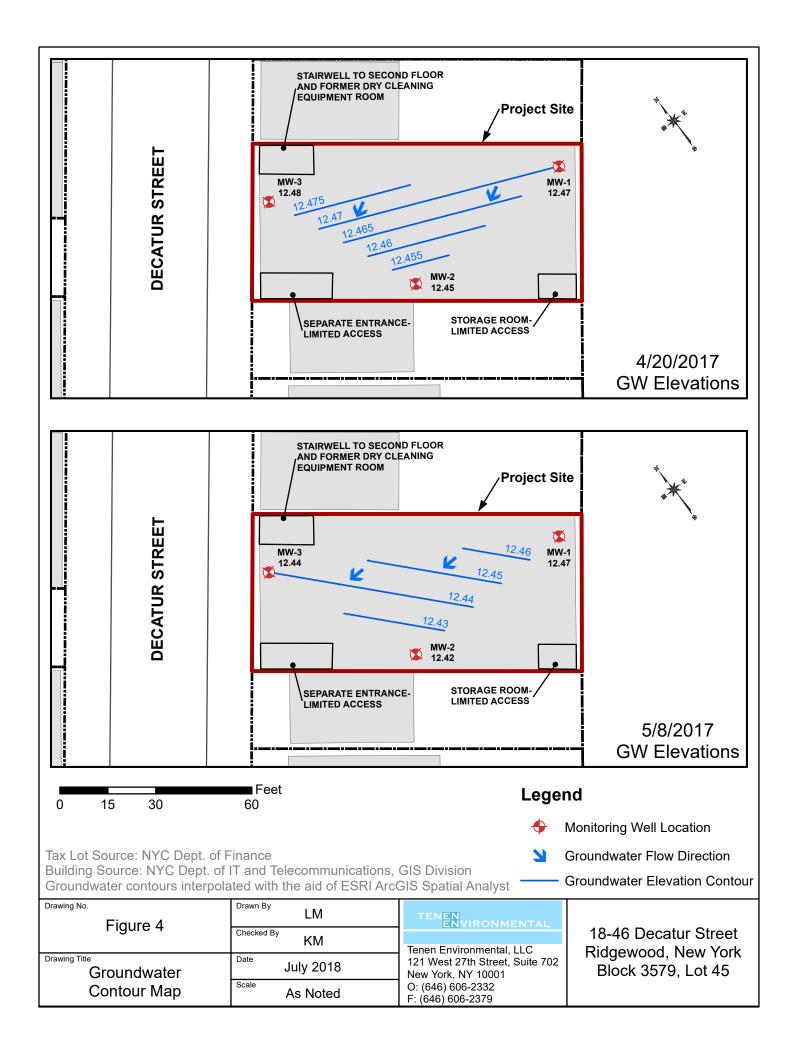

Site Management Plan, NYSDEC BCP Site No. C241194, Tenen Environmental LLC, December 2018.

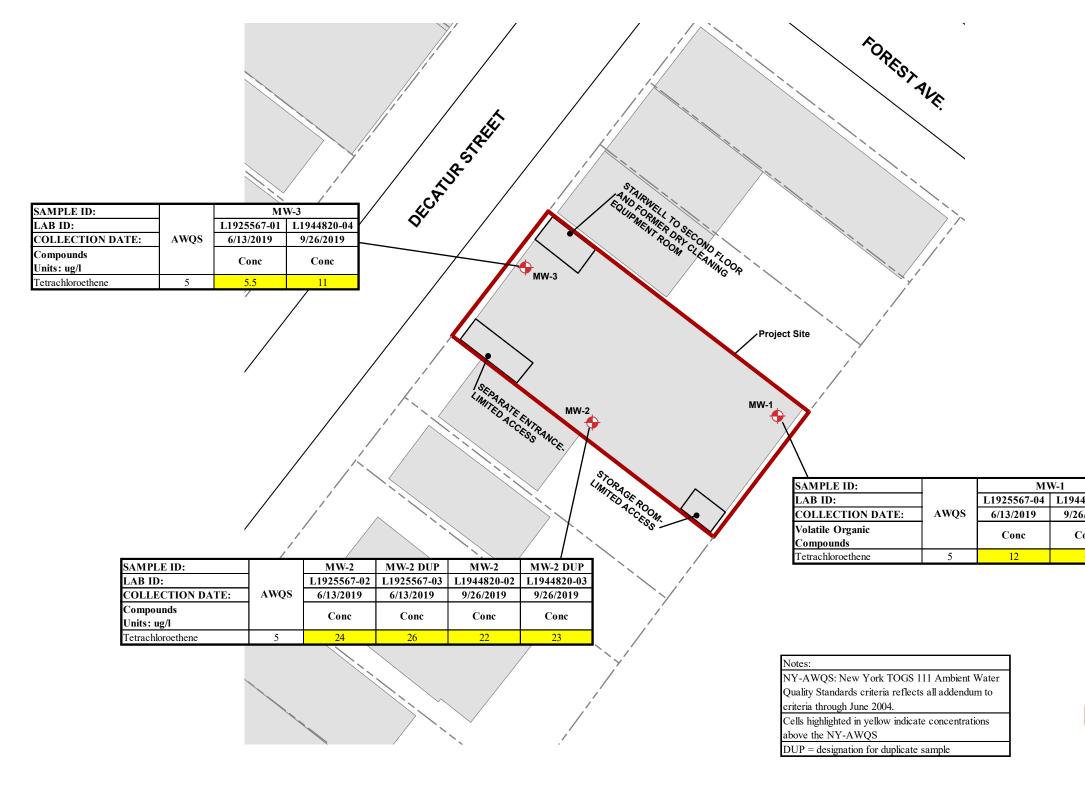
Environmental Easement, BMHQ Realty LLC, September 19, 2018.

Final Engineering Report, NYSDEC BCP Site No. C241194, Tenen Environmental LLC, December 2018.


Figures






Tax Lot Source: NYC Dept. of Finance Building Source: NYC Dept. of Information Technology and Telecommunications, GIS Division

W W S	Client	18-46 Decatur Street	Ridgewood, New Tork Block 3579, Lot 45	
	TENEN		Ienen Environmental, LLC 121 West 27th Street Suite 702	· New York, NY 10001 O: (646) 606-2332 F: (646) 606-2379
44820-01 26/2019 Conc 6	Drawn By LM	Checked By CZ	Date June 2020	Scale As Noted
 ▶ Monitoring Well Location → Tax Lots ▶ Project Site 	Drawing Title Contaminant Distribution	in Groundwater Samples	Drawing No	rigure o

Tables

Table 1 - Volatile Organic Compounds in Groundwater June 2019 18-46 Decatur Street - Queens, NY

SAMPLE ID:		MW-1	L	MW-2		MW-2 D	UP	MW-3	}	FIELD BL	ANK	TRIP BLA	NK
LAB ID:	1	L1925567-04 L1925567-02		-02	L1925567-03		L1925567-01		L1925567-05		L1925567-06		
COLLECTION DATE:	AWQS	6/13/201	19	6/13/201	9	6/13/201	9	6/13/201	19	6/13/20	19	6/13/201	19
Volatile Organic Compounds		Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Units: ug/l			-		-		-		_		-		_
Methylene chloride	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,1-Dichloroethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Chloroform	7	0.7	U	0.7	U	0.7	U	0.94	J	0.7	U	0.7	U
Carbon tetrachloride	5	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U
1,2-Dichloropropane	1	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U
Dibromochloromethane	50	0.15	U	0.15	U	0.15	U	0.15	U	0.15	U	0.15	U
1,1,2-Trichloroethane	1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Tetrachloroethene	5	12		24		26		5.5		0.18	U	0.18	U
Chlorobenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Trichlorofluoromethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2-Dichloroethane	0.6	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U
1,1,1-Trichloroethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Bromodichloromethane	50	0.19	U	0.19	U	0.19	U	0.19	U	0.19	U	0.19	U
trans-1,3-Dichloropropene	0.4	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
cis-1,3-Dichloropropene	0.4	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U
1,3-Dichloropropene, Total		0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U
1,1-Dichloropropene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Bromoform	50	0.65	U	0.65	U	0.65	U	5.9		0.65	U	0.65	U
1,1,2,2-Tetrachloroethane	5	0.17	U	0.17	U	0.17	U	0.17	U	0.17	U	0.17	U
Benzene	1	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U
Toluene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Ethylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Chloromethane		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Bromomethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Vinyl chloride	2	0.07	U	0.07	U	0.07	U	0.07	U	0.07	U	0.07	U
Chloroethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,1-Dichloroethene	5	0.17	U	0.17	U	0.17	U	0.17	U	0.17	U	0.17	U
trans-1,2-Dichloroethene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Trichloroethene	5	0.18	U	0.21	J	0.18	U	0.18	U	0.18	U	0.18	U
1,2-Dichlorobenzene	3	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,3-Dichlorobenzene	3	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,4-Dichlorobenzene	3	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Methyl tert butyl ether	10	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
p/m-Xylene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
o-Xylene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Xylenes, Total		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
cis-1,2-Dichloroethene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2-Dichloroethene, Total		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Dibromomethane	5	1	U	1	U	1	U	1	U	1	U	1	U
1,2,3-Trichloropropane	0.04	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Acrylonitrile	5	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U
Styrene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Dichlorodifluoromethane	5	1	U	1	U	1	U	1	U	1	U	1	U
Acetone	50	8.6	-	8.4	-	3.4	J	4.6	J	9.9	-	3.9	J
Carbon disulfide	60	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50	1.9	U	1.9	U	1.9	U	1.9	U	1.9	U	1.9	U
Vinyl acetate		1	U	1	U	1	U	1	U	1	U	1	U
4-Methyl-2-pentanone		1	U	1	U	1	U	1	U	1	U	1	U
2-Hexanone	50	1	U	1	U	1	U	1	U	1	U	1	U
Bromochloromethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
2,2-Dichloropropane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2-Dibromoethane	0.0006	0.65	U	0.65	U	0.65	U	0.65	U	0.65	U	0.65	U
1,3-Dichloropropane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,1,1,2-Tetrachloroethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Bromobenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
n-Butylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
sec-Butylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
tert-Butylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	
o-Chlorotoluene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	
p-Chlorotoluene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2-Dibromo-3-chloropropane	0.04	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Hexachlorobutadiene	0.04	0.7	U	0.7	U	0.7	U		U	0.7	U	0.7	
	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	
Isopropylbenzene p-Isopropyltoluene	5	0.7	U	0.7		0.7	U	0.7		0.7	U U	0.7	U
Naphthalene	10	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	
*		0.7	U	0.7		0.7	U U		U	0.7	U U	0.7	
n-Propylbenzene	5				_			0.7					-
1,2,3-Trichlorobenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2,4-Trichlorobenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,3,5-Trimethylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2,4-Trimethylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,4-Dioxane		61	U	61	U	61	U	61	U	61	U	61	U
p-Diethylbenzene		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
p-Ethyltoluene		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2,4,5-Tetramethylbenzene	5	0.54	U	0.54	U	0.54	U	0.54	U	0.54	U	0.54	U
Ethyl ether		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
trans-1,4-Dichloro-2-butene	5	0.7	U	0.7	U	0.7	U		U	0.7	U	0.7	U
Total VOCs		20.6	I -	32.61	I -	29.4	-	16.94	-	9.9	- 1	3.9	I -

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004. Cells highlighted in yellow indicate concentrations above the NY-AWQS Cells shaded in grey indicate MDL values above the NY-AWQS

DUP = designation for duplicate sample MDL = Maximum Detection Limit

RL = Reporting Limit Q = Laboratory Qualifier For U qualified entries, the MDL is shown

U = not detected at or above the MDL

For J qualified entries, the estimated concentration is shown

J = estimated value, indicating the detected value is below the RL, but above the MDL

-- = No standard

Results and MDL values are in micrograms per liter (ug/L)

Table 2 - Volatile Organic Compounds in Groundwater, September 2019 18-46 Decatur Street - Queens, NY

SAMPLE ID:		MW-1		MW-2		MW-2 D			MW-3 L1944820-04		NK	TRIP BLA	-
LAB ID: COLLECTION DATE:	NY-AWQS	L1944820 9/26/201		L1944820 9/26/201	-	L1944820 9/26/201		9/26/201		L1944820- 9/26/2019		L1944820 9/26/201	
Volatile Organic Compounds		Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Units: ug/l													
Methylene chloride 1,1-Dichloroethane	5	0.7	U U	0.7	U U	0.7	U U	0.7	U U	0.7	U U	0.7	U U
Chloroform	7	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Carbon tetrachloride	5	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U
1,2-Dichloropropane	1	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U
Dibromochloromethane	50	0.15	U	0.15	U	0.15	U	0.15	U	0.15	U	0.15	U
1,1,2-Trichloroethane Tetrachloroethene	1 5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U U	0.5 0.18	U U
Chlorobenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.13	U	0.10	U
Trichlorofluoromethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2-Dichloroethane	0.6	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U	0.13	U
1,1,1-Trichloroethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Bromodichloromethane trans-1,3-Dichloropropene	50 0.4	0.19 0.16	U U	0.19	U U	0.19 0.16	U U	0.19 0.16	U U	0.19 0.16	U U	0.19	U U
cis-1,3-Dichloropropene	0.4	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U	0.10	U
1,3-Dichloropropene, Total		0.14	U	0.14	U	0.14	U	0.14	U	0.14	U	0.14	U
1,1-Dichloropropene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Bromoform	50	0.65	U	0.65	U	0.65	U	0.65	U	0.65	U	0.65	U
1,1,2,2-Tetrachloroethane Benzene	5	0.17 0.16	U U	0.17 0.16	U U	0.17 0.16	U U	0.17 0.16	U U	0.17 0.16	U U	0.17	U U
Toluene	5	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	0.16	
Ethylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Chloromethane		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Bromomethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Vinyl chloride Chloroethane	2 5	0.07	U U	0.07	U U	0.07	U U	0.07	U U	0.07	U U	0.07	U U
1,1-Dichloroethene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	
trans-1,2-Dichloroethene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Trichloroethene	5	0.18	U	0.18	U	0.19	J	0.18	U	0.18	U	0.18	U
1,2-Dichlorobenzene	3	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3	0.7	U U	0.7	U U	0.7	U U	0.7	U U	0.7	U U	0.7	U U
Methyl tert butyl ether	10	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
p/m-Xylene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
o-Xylene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Xylenes, Total		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
cis-1,2-Dichloroethene 1,2-Dichloroethene, Total	5	0.7	U U	0.7	U U	0.7	U U	0.7	U U	0.7	U U	0.7	U U
Dibromomethane	5	0.7	U	1	U	1	U	1	U	0.7	U	1	U
1,2,3-Trichloropropane	0.04	0.7	U	0.7	Ū	0.7	U	0.7	U	0.7	U	0.7	U
Acrylonitrile	5	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U
Styrene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Dichlorodifluoromethane Acetone	5 50	1 3.3	U J	1 1.5	U U	1 1.5	U U	1 1.5	U U	1	U U	1	U U
Carbon disulfide	60	1	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	
2-Butanone	50	1.9	U	1.9	U	1.9	U	1.9	U	1.9	U	1.9	U
Vinyl acetate		1	U	1	U	1	U	1	U	1	U	1	U
4-Methyl-2-pentanone		1	U	1	U	1	U	1	U	1	U	1	U
2-Hexanone Bromochloromethane	50	1 0.7	U U	1 0.7	U U	1 0.7	U U	1 0.7	U U	0.7	U U	1 0.7	U U
2,2-Dichloropropane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2-Dibromoethane	0.0006	0.65	U	0.65	Ū	0.65	U	0.65	U	0.65	U	0.65	U
1,3-Dichloropropane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,1,1,2-Tetrachloroethane	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Bromobenzene n-Butylbenzene	5	0.7	U U	0.7	U U	0.7 0.7	U U	0.7	U U	0.7	U U	0.7	U U
sec-Butylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
tert-Butylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
o-Chlorotoluene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
p-Chlorotoluene	5	0.7	U	0.7	U U	0.7	U	0.7	U U	0.7	U	0.7	U
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	0.04 0.5	0.7	U U	0.7	UU	0.7	U U	0.7		0.7	U U	0.7	U U
Isopropylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
p-Isopropyltoluene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Naphthalene	10	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
n-Propylbenzene 1,2,3-Trichlorobenzene	5	0.7	U U	0.7	U U	0.7	U	0.7	U	0.7	U U	0.7	U U
1,2,3-Trichlorobenzene	5	0.7	U	0.7	U	0.7	U U	0.7	U U	0.7	UU	0.7	
1,3,5-Trimethylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,2,4-Trimethylbenzene	5	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,4-Dioxane		61	U	61	U	61	U		U	61	U	61	U
p-Diethylbenzene		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
p-Ethyltoluene 1,2,4,5-Tetramethylbenzene	5	0.7	U U	0.7 0.54	U U	0.7 0.54	U U	0.7	U U	0.7	U U	0.7	U U
Ethyl ether		0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	
trans-1,4-Dichloro-2-butene	5	0.7	U	0.7	U	0.7	U		U	0.7	U	0.7	U
Total VOCs		9.3	-	22	-	23.19	-	11	-	-	-	-	1_

Notes:

NV-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004. Cells highlighted in yellow indicate concentrations above the NY-AWQS Cells shaded in grey indicate MDL values above the NY-AWQS DUP = designation for duplicate sample MDL = Maximum Detection Limit

RL = Reporting Limit Q = Laboratory QualifierFor U qualified entries, the MDL is shown U = not detected at or above the MDL

For J qualified entries, the estimated concentration is shown

J = estimated value, indicating the detected value is below the RL, but above the MDL

-- = No standard

Results and MDL values are in micrograms per liter (ug/L)

Appendix 1 IC/EC Certifications and Checklists

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C241194	Site Details	Во	x 1		
Sit	e Name 18	-46 Decatur Street		r			
Cit Co	e Address: y/Town: Ric unty:Queen e Acreage: (S	Zip Code: 11385				
Re	porting Peric	od: December 20, 2018	to April 20, 2020				
				YE	S NO		
1.	Is the inforr	nation above correct?		X []			
	If NO, inclu	de handwritten above or	on a separate sheet.				
2.		or all of the site property pendment during this Rep	been sold, subdivided, merged, or porting Period?	undergone a $X\Box$			
3.		een any change of use a RR 375-1.11(d))?	at the site during this Reporting Pe	riod	X□		
4.		ederal, state, and/or loca property during this Rep	l permits (e.g., building, discharge) porting Period?) been issued	X□		
			s 2 thru 4, include documentation viously submitted with this certi				
5.	Is the site c	urrently undergoing deve	elopment?		$\mathbf{X}\square$		
				Вох	2 2		
				YES	S NO		
6.		nt site use consistent with and Industrial	h the use(s) listed below?	X□			
7.	Are all ICs/E	Cs in place and functior	ning as designed?	X□			
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
A C	orrective Me	aŝures Work Plan must	be submitted along with this form		ssues.		
Sian	ature of Own	er, Remedial Party or Des	signated Representative	6-5-20 Date			

	Box 2	A
8. Has any new information revealed that assumptions made in the Qualitative Exposure	YES	NO
Assessment regarding offsite contamination are no longer valid?		$\mathbf{X}\square$
If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
 Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years) 	X□	
If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE NO. C241194	Вох	3
Description of Institutional Controls		
ParcelOwnerInstitutional Control4-3579-45BMHQ Realty LLC	<u>ol</u>	
Monitoring Plan Site Management O&M Plan	Plan	
Ground Water Use Landuse Restrictio IC/EC Plan		ion
 requires the remedial party or site owner to complete and submit to the Department a period certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3); allows the use and development of the controlled property for commercial and industrial use defined by Part 375-1.8(g), although land use is subject to local zoning laws; restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or NYCDOHMH; and requires compliance with the Department approved Site Management Plan. 	es as	
	Box	4
Description of Engineering Controls		
Parcel Engineering Control 4-3579-45		
Cover System Air Sparging/Soil Vapor Extraction Monitoring Wells Vapor Mitigation		
1. A building foundation/slab currently exists across the Site and will be maintained to allow for commercial use of the Site.		
Soil vapor extraction (SVE) system to remove volatile organic compounds (VOCs) from the subsurface.		
3. A sub-slab depressurization system to prevent the migration of vapors into the building from soil and/or groundwater.		
4. In-situ chemical oxidation or reduction to treat volatile contaminants in groundwater.		

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the certification; 	ction of,	, and
	b) to the best of my knowledge and belief, the work and conclusions described i are in accordance with the requirements of the site remedial program, and gene engineering practices; and the information procented in accurate and compare	in this co rally acc	ertification cepted
	engineering practices; and the information presented is accurate and compete.	YES	NO
		$\mathbf{X}\square$	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below tha following statements are true:	• each In at all of t	nstitutional he
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is since the date that the Control was put in-place, or was last approved by the Dep		
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;		
	(d) nothing has occurred that would constitute a violation or failure to comply wit Site Management Plan for this Control; and	h the	
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the		
		YES	NO
		$\mathbf{X}\square$	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
F	A Corrective Measures Work Plan must be submitted along with this form to address th	iese iss	ues.
	KM 6-5-2	Ð	
ร	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. C241194

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

BEN MES	SING	7 4-02 Forest Avenue,	Ridgewood, NY 11385
print nar		print business ac	dress ,
am certifying as $\{}^{O}$	wner		(Owner or Remedial Party)
FL	•	on of this form. signated Representative	6-5-20 Date

	IC/EC CERTIFICATIONS
Qualif	Box 7 fied Environmental Professional Signature
	es 4 and 5 are true. I understand that a false statement made herein is neanor, pursuant to Section 210.45 of the Penal Law.
Matthew M. Carroll	1085 Sackett Avenue, Bronx, NY 10461
print name	print business address
m cortifuing as a Qualified Enviro	Owner
in certifying as a Qualified Enviro	onmental Professional for the
	(Owner or Remedial Party)
Signature of Qualified Environme	(Owner or Remedial Party)

18-46 Decatur Street Site Management - Quarterly Inspection

Engineering Controls	Condition	Field Notes/Observations:
	Observe visible components (fan, vacuum alarm/monitor, vacuum gauge,tubing, riser pipe, etc.) for physical wear, damage and operational issues, and replace as necessary	No signs of physical wear, domoge or operational issues
	Remove any blockages in vacuum monitor and gauge tubing and riser pipe taps	No blockages observad.
Sub-slab Depressurization (SSD) and Soil Vapor	Verify operation of vacuum monitor by disconnecting tubing from riser pipe and noting if the building notification system goes into alarm mode	Alaron operational
Extraction (SVE) System	Verify operation of vacuum gauge by disconnecting tubing from riser pipe and noting if the indicator moves to zero (check high and low pressure ports tosee if they are plugged correctly)	Vacuum gauge operational
	Inspect riser pipe penetrations in concrete slab for proper seal	Seeled properly
	Inspect riser pipe connections at fan for leaks and tightness	No leales
	Inspect power to fan by operating dedicated switch	Fan has power
Site Cover (annual)	Visual inspection of concrete floors and perforations through floor for cracking or degradation	No signs of coacting.

	Pressure Field Extension Testing	
MP-1	0.60	in-wc
MP-2	0.40	in-wc
MP-3	MA- flooding, location is water	in-wc
SVE-1	0.88	in-wc
SVE-2	1.45	in-wc
SVE-3	1.24	in-wc
M8-4	0.12	12-00,
Name of ins	spector:	
	ICRISTEN METSNER	

<u> 184</u> <u>6[13]19</u>
 MP-4
 Stainwell to

 SVE-1
 SVE-1

 SVE-2
 SVE-2

 SVE-3
 SVE Vertical

 Wellpoint (Typ.)
 Storage Room

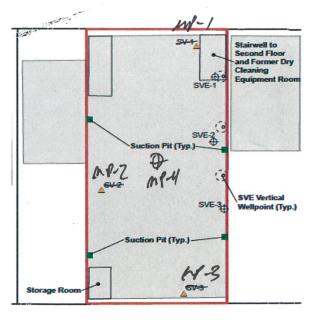
Signature of inspector:

Date of inspection:

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab	Has piping been inspected to		/	
Depressurization	confirm operation of appropriate			None.
System (SSDS)	valves			,
Soil Vapor Extraction	Has piping been inspected to		/	
Soil Vapor Extraction	confirm operation of appropriate		\checkmark	None.
(SVE) System	valves		·	70020

Comments/Notes:

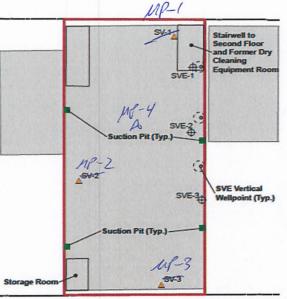
Name of inspector:	KRISTEN MERSNER	
Signature of inspector: ,	MAD	5
Date of inspection:	6/13/19	


18-46 Decatur Street Site Management Quarterly Inspection

λ.

Engineering Controls	Condition	Field Notes/Observations:
	Observe visible components (fan, vacuum alarm/monitor, vacuum gauge,tubing, riser pipe, etc.) for physical wear, damage and operational issues, and replace as necessary	No demage
	Remove any blockages in vacuum monitor and gauge tubing and riser pipe taps	N. blockapes
Sub-slab Depressurization (SSD) and Soil Vapor	Verify operation of vacuum monitor by disconnecting tubing from riser pipe and noting if the building notification system goes into alarm mode	Alara operational
Extraction (SVE) System	Verify operation of vacuum gauge by disconnecting tubing from riser pipe and noting if the indicator moves to zero (check high and low pressure ports tosee if they are plugged correctly)	bauge sperational
	Inspect riser pipe penetrations in concrete slab for proper seal	Secled properly
	Inspect riser pipe connections at fan for leaks and tightness	No leales
	Inspect power to fan by operating dedicated switch	Fran operational
Site Cover (annual)	Visual inspection of concrete floors and perforations through floor for cracking or degradation	No cometer

Pressure Field Extension Testing	
MP-1 0.60	in-wc
MP-2 0.42	in-wc
MP-3 MA water logged	in-wc
SVE-1 (·267	in-wc
SVE-2 1.655	in-wc
SVE-3 0-173	in-wc
North Dight Name of inspector: KRISTEN MELENET	د
Signature of inspector:	
Date of inspection:	


12

18-46 Decatur Street Site Management - Quarterly Inspection

Engineering Controls	Condition	Field Notes/Observations:
	Observe visible components (fan, vacuum alarm/monitor, vacuum gauge,tubing, riser pipe, etc.) for physical wear, damage and operational issues, and replace as necessary	No davage.
	Remove any blockages in vacuum monitor and gauge tubing and riser pipe taps	No blockayes. ~
Sub-slab Depressurization (SSD) and Soil Vapor	Verify operation of vacuum monitor by disconnecting tubing from riser pipe and noting if the building notification system goes into alarm mode	Alarms ak ~
Extraction (SVE) System	Verify operation of vacuum gauge by disconnecting tubing from riser pipe and noting if the indicator moves to zero (check high and low pressure ports tosee if they are plugged correctly)	Gauge ok -
	Inspect riser pipe penetrations in concrete slab for proper seal	Sealed properly in
	Inspect riser pipe connections at fan for leaks and tightness	No beaks ~
	Inspect power to fan by operating dedicated switch	Fan Operational
Site Cover (annual)	Visual inspection of concrete floors and perforations through floor for cracking or degradation	No cracter

	Pressure Field Extension Testing	
MP-1	No access due to constru	fr in-wc
MP-2	No access due to construct.	in-wc
MP-3	N/A water logged	in-wc
SVE-1	1,107	in-wc
SVE-2	No access due to construct	Sin-in-wc
SVE-3	No access due to construct	ion in-wc
MP-4	0.134 in-wc	
Name of in	ispector: KRISTEN Meisner	
Signature	of inspector:)
Date of ins	pection:	

Notes: active construction at site interior modifications No perforations to building slab.

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab Depressurization System (SSDS)	Has piping been inspected to confirm operation of appropriate valves			NONE
Soil Vapor Extraction (SVE) System	Has piping been inspected to confirm operation of appropriate valves			KO KA

Comments/Notes:

Name of inspector:

BERND MESSING

Signature of inspector:

Date of inspection:

SERT 4 th 2019

Engineering Controls	Condition	No	Yes	Deficiencies (if and)
Sub-slab	Has piping been inspected to			Deficiencies (if any):
Depressurization System (SSDS)	confirm operation of appropriate valves			NORE
Soil Vapor Extraction (SVE) System	Has piping been inspected to confirm operation of appropriate valves		V	NONE

Comments/Notes:

Name of inspector:	BERND MESSING
Signature of inspector:	All
Date of inspection:	JULY 7+6/2019

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab Depressurization System (SSDS)	Has piping been inspected to confirm operation of appropriate valves			NONE
Soil Vapor Extraction (SVE) System	Has piping been inspected to confirm operation of appropriate valves	*****	V	NONE

Comments/Notes:

Name of inspector:

Signature of inspector:

Date of inspection:

BERND MESSING AUGUST 15 44 / 2019

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab	Has piping been inspected to			
Depressurization	confirm operation of appropriate		, /	NONE
System (SSDS)	valves			
Soil Vapor Extraction	Has piping been inspected to			
(SVE) System	confirm operation of appropriate			NONE
(SVE) System	valves			

Comments/Notes:

Name of inspector:

BERND MESSING

Signature of inspector:

Date of inspection:

OCT 14 1/2 2019

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab Depressurization System (SSDS)	Has piping been inspected to confirm operation of appropriate valves			NONE
Soil Vapor Extraction (SVE) System	Has piping been inspected to confirm operation of appropriate valves			NONE
Comments/Notes:	EVERYTHING GOOD	O RDEN	l	
Name of inspector:	BERND MESSING			-
Signature of inspector:	The			-
Date of inspection:	11-12-19			_

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab Depressurization System (SSDS)	Has piping been inspected to confirm operation of appropriate valves		/	NONE
Soil Vapor Extraction (SVE) System	Has piping been inspected to confirm operation of appropriate valves		~	NONE

Comments/Notes:

Name of inspector:	BERND MESSING
Signature of inspector:	RM
Date of inspection:	12-3-19

Kmeisner

18-46 Decatur Street Site Management - Monthly Inspection Checklist

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab	Has piping been inspected to			/
Depressurization	confirm operation of appropriate			NONE
System (SSDS)	valves			
Soil Vapor Extraction	Has piping been inspected to			
(SVE) System	confirm operation of appropriate			NONE
	valves			

Comments/Notes:

- Name of inspector:	BEN MESSING
Signature of inspector:	Rh
Date of inspection:	1-7-2020

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab	Has piping been inspected to			
Depressurization	confirm operation of appropriate			NONE
System (SSDS)	valves			100100
Soil Vapor Extraction	Has piping been inspected to		,	
(SVE) System	confirm operation of appropriate			NONZ
(SVE) System	valves			

Comments/Notes:

Name of inspector:

ALFRED ZIEGLER

Signature of inspector:

<u> 1 - 2020</u>

2-

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab	Has piping been inspected to			
Depressurization	confirm operation of appropriate			NONE
System (SSDS)	valves		•	
Soil Vapor Extraction	Has piping been inspected to	*******	/	
(SVE) System	confirm operation of appropriate			NONE
(JVL) System	valves			

Comments/Notes:

Name of inspector:	ACFRET ZIEGLER
Signature of inspector:	allast Jente
Date of inspection:	3/9/2020

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab	Has piping been inspected to			
Depressurization System (SSDS)	confirm operation of appropriate			NONE
System (SSDS)	valves			
Soil Vapor Extraction (SVE) System	Has piping been inspected to confirm operation of appropriate			NONE
(SVE) System	valves		Ŭ,	

Comments/Notes:

Name of inspector:

Zieguer 1 ALFRED

UN Rev

2020

Signature of inspector:

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab	Has piping been inspected to	******	/	
Depressurization	confirm operation of appropriate			NONE
System (SSDS)	valves			100700
Soil Vapor Extraction	Has piping been inspected to			
(SVE) System	confirm operation of appropriate			NONE
	valves			10012

Comments/Notes:

Name of inspector:

TIEGLER ·lt

5

2020

Signature of inspector:

Engineering Controls	Condition	No	Yes	Deficiencies (if any):
Sub-slab	Has piping been inspected to			
Depressurization	confirm operation of appropriate			
System (SSDS)	valves			
Soil Vapor Extraction	Has piping been inspected to			
(SVE) System	confirm operation of appropriate			
	valves		Ý	

Comments/Notes:

Name of inspector:

ZIEGLER ALFREP

2020

Signature of inspector:

Appendix 2 Laboratory Deliverables

ANALYTICAL REPORT

Lab Number:	L1954437
Client:	Tenen Environmental, LLC
	121 West 27th Street
	Suite 702
	New York City, NY 10001
ATTN:	Mohamed Ahmed
Phone:	(646) 606-2332
Project Name:	18-46 DECATUR STREET
Project Number:	18-46 DECATUR STREET
Report Date:	11/19/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	18-46 DECATUR STREET
Project Number:	18-46 DECATUR STREET

Lab Number:	L1954437
Report Date:	11/19/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1954437-01	MW-3	WATER	QUEENS, NY	06/13/19 11:10	06/13/19
L1954437-02	MW-2	WATER	QUEENS, NY	06/13/19 12:30	06/13/19
L1954437-03	MW-2 DUP	WATER	QUEENS, NY	06/13/19 12:40	06/13/19
L1954437-04	MW-1	WATER	QUEENS, NY	06/13/19 13:45	06/13/19
L1954437-05	FIELD BLANK	WATER	QUEENS, NY	06/13/19 13:45	06/13/19
L1954437-06	TRIP BLANK	WATER	QUEENS, NY	06/13/19 00:00	06/13/19

Project Name:18-46 DECATUR STREETProject Number:18-46 DECATUR STREET

 Lab Number:
 L1954437

 Report Date:
 11/19/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:18-46 DECATUR STREETProject Number:18-46 DECATUR STREET

 Lab Number:
 L1954437

 Report Date:
 11/19/19

Case Narrative (continued)

Report Submission

This report contains the results of the Volatile Organics analysis.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1954437-01 and -03: The Client ID was specified by the client.

L1954437-05: Sample containers for the analysis of Volatile Organics were received for the "FIELD BLANK" sample, but were not listed on the chain of custody. The analysis was performed.

Volatile Organics

L1954437-05: The Field Blank has a result for acetone present above the reporting limit. The sample was verified as being labeled correctly by the laboratory and the previous analysis showed there was no potential for carry over. The Acetone result should be considered estimated due to co-elution with a non-target compound.

The WG1250654-8/-9 MS/MSD recoveries, performed on L1954437-01, are below the acceptance criteria for trans-1,3-dichloropropene (0%/0%), cis-1,3-dichloropropene (0%/0%), 1,1-dichloropropene (0%/0%), bromomethane (19%/20%), vinyl chloride (0%/0%), 1,1-dichloroethene (0%/0%), trans-1,2-dichloroethene (0%/0%), trichloroethene (14%/11%), p/m-xylene (44%/46%), cis-1,2-dichloroethene (0%/0%), acrylonitrile (0%/0%), styrene (0%/0%), vinyl acetate (24%/24%), naphthalene (40%/11%), 1,3,5-trimethylbenzene (0%/0%), 1,2,4-trimethylbenzene (0%/0%), 1,2,4,5-tetramethylbenzene (0%/0%) and trans-1,4-dichloro-2-butene (0%/0%) due to sample matrix interference. The MS/MSD set were reanalyzed and achieved similar results.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 11/19/19

ORGANICS

VOLATILES

			Serial_N	p:11191913:22
Project Name:	18-46 DECATUR STREET		Lab Number:	L1954437
Project Number:	18-46 DECATUR STREE		Report Date:	11/19/19
	S	SAMPLE RESULTS		
Lab ID:	L1954437-01		Date Collected:	06/13/19 11:10
Client ID:	MW-3		Date Received:	06/13/19
Sample Location:	QUEENS, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	06/19/19 17:11			
Analyst:	PK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.94	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	5.5		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	5.9		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	Serial_No	:11191913:22
Project Name:	18-46 DECATUR STREET	-			Lab Nu	mber:	L1954437
Project Number:	18-46 DECATUR STREE				Report	Date:	11/19/19
		SAMP	LE RESULTS	i			11/10/10
Lab ID:	L1954437-01				Date Coll	lected:	06/13/19 11:10
Client ID:	MW-3				Date Rec		06/13/19
Sample Location:	QUEENS, NY				Field Pre	p:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough La	b					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		4.6	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene sec-Butylbenzene		ND ND		ug/l	2.5 2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l ug/l	2.5	0.70	1
Hexachlorobutadiene	uno	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
				ugn	2.0	0.70	·

					ç	Serial_No	:11191913:22	
Project Name:	18-46 DECATUR STRE	ET			Lab Nu	mber:	L1954437	
Project Number:	18-46 DECATUR STRE	E			Report	Date:	11/19/19	
		SAMP		5				
Lab ID: Client ID: Sample Location:	L1954437-01 MW-3 QUEENS, NY				Date Col Date Rec Field Pre	ceived:	06/13/19 11:10 06/13/19 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough L	_ab						
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
p-Diethylbenzene		ND		ug/l	2.0	0.70	1	

2.0

2.5

2.5

Qualifier

ug/l

ug/l

ug/l

% Recovery

116

103

111

91

0.54

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

1

1

1

ND

ND

ND

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

Ethyl ether

		Serial_No:11191913:22
Project Name:	18-46 DECATUR STREET	Lab Number: L1954437
Project Number:	18-46 DECATUR STREE	Report Date: 11/19/19
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location: Sample Depth: Matrix:	L1954437-02 MW-2 QUEENS, NY Water	Date Collected:06/13/19 12:30Date Received:06/13/19Field Prep:Not Specified
Analytical Method: Analytical Date: Analyst:	1,8260C 06/19/19 02:34 PD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	24		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	erial No	:11191913:22
Project Name:	18-46 DECATUR STREET	г			Lab Nur		L1954437
Project Number:	18-46 DECATUR STREE				Report	Date:	11/19/19
		SAMP	LE RESULTS				
Lab ID:	L1954437-02				Date Coll	ected [.]	06/13/19 12:30
Client ID:	MW-2				Date Rec		06/13/19
Sample Location:	QUEENS, NY				Field Prep	o:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough La	b					
Trichloroethene		0.21	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND	5	ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		8.4		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1

					ç	Serial_No	:11191913:22	
Project Name:	18-46 DECATUR STR	EET			Lab Nu	mber:	L1954437	
Project Number:	18-46 DECATUR STR	EE			Report	Date:	11/19/19	
		SAMP		5				
Lab ID:	L1954437-02				Date Col	lected:	06/13/19 12:30	
Client ID:	MW-2				Date Red	ceived:	06/13/19	
Sample Location:	QUEENS, NY				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	n Lab						
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
p-Diethylbenzene		ND		ug/l	2.0	0.70	1	
p-Ethyltoluene		ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenze	ene	ND		ug/l	2.0	0.54	1	

2.5

2.5

Qualifier

ug/l

ug/l

% Recovery

118

97

90

109

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

1

1

ND

ND

Ethyl ether

trans-1,4-Dichloro-2-butene

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

Surrogate

Toluene-d8

		Serial_No:11191913:22
Project Name:	18-46 DECATUR STREET	Lab Number: L1954437
Project Number:	18-46 DECATUR STREE	Report Date: 11/19/19 E RESULTS
Lab ID: Client ID: Sample Location:	L1954437-03 MW-2 DUP QUEENS, NY	Date Collected:06/13/19 12:40Date Received:06/13/19Field Prep:Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/19/19 02:56 PD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	26		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	Serial_No	:11191913:22
Project Name:	18-46 DECATUR STREET	-			Lab Nu	mber:	L1954437
Project Number:	18-46 DECATUR STREE				Report	Date:	11/19/19
•		SAMP	LE RESULTS		•		
Lab ID: Client ID:	L1954437-03 MW-2 DUP				Date Coll Date Rec		06/13/19 12:40 06/13/19
Sample Location:	QUEENS, NY				Field Pre		Not Specified
	022100,111					Ρ.	
Sample Depth:		D ! !	0	11		MDI	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough La	0					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		3.4	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND ND		ug/l	2.5 2.5	0.70	1
sec-Butylbenzene				ug/l		0.70	
tert-Butylbenzene		ND ND		ug/l	2.5 2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-lsopropyltoluene		ND		ug/l ug/l	2.5	0.70	1
Naphthalene		ND		-	2.5	0.70	1
1 apriliaiene				ug/l	2.0	0.70	1

					Serial_No:11191913:22			
Project Name:	18-46 DECATUR STR	EET			Lab Nu	mber:	L1954437	
Project Number:	18-46 DECATUR STR	EE			Report	Date:	11/19/19	
		SAMP		S				
Lab ID:	L1954437-03				Date Co	llected:	06/13/19 12:40	
Client ID:	ent ID: MW-2 DUP		Date Re	ceived:	06/13/19			
Sample Location:	QUEENS, NY				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborough	h Lab						
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
p-Diethylbenzene		ND		ug/l	2.0	0.70	1	
p-Ethyltoluene		ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenze		ND		ug/l	2.0	0.54	1	

ug/l

ug/l

% Recovery

113

100

91

107

2.5

2.5

Qualifier

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

1

1

ND

ND

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

Ethyl ether

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

			Serial_No	p:11191913:22
Project Name:	18-46 DECATUR STREET		Lab Number:	L1954437
Project Number:	18-46 DECATUR STREE		Report Date:	11/19/19
	SAN	IPLE RESULTS		
Lab ID:	L1954437-04		Date Collected:	06/13/19 13:45
Client ID:	MW-1		Date Received:	06/13/19
Sample Location:	QUEENS, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	06/19/19 03:18			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	12		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	Serial_No	:11191913:22
Project Name:	18-46 DECATUR STREET	Г			Lab Nu	mber:	L1954437
Project Number:	18-46 DECATUR STREE				Report	Date:	11/19/19
•		SAMP	LE RESULTS		•		
Lab ID:	L1954437-04				Date Coll	ected:	06/13/19 13:45
Client ID:	MW-1				Date Rec	eived:	06/13/19
Sample Location:	QUEENS, NY				Field Pre	p:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough La	b					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		8.6		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1

					Serial_No:11191913:22			
Project Name:	18-46 DECATUR STR	EET			Lab Nu	mber:	L1954437	
Project Number:	18-46 DECATUR STR	EE			Report	Date:	11/19/19	
		SAMPI		6				
Lab ID:	L1954437-04				Date Col	lected:	06/13/19 13:45	
Client ID:	MW-1				Date Ree	ceived:	06/13/19	
Sample Location:	QUEENS, NY				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboroug	n Lab						
n-Propylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
p-Diethylbenzene		ND		ug/l	2.0	0.70	1	
p-Ethyltoluene		ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenze	ne	ND		ug/l	2.0	0.54	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	110	70-130	

ND

ND

2.5

2.5

ug/l

ug/l

0.70

0.70

1

1

Ethyl ether

trans-1,4-Dichloro-2-butene

			Serial_N	o:11191913:22
Project Name:	18-46 DECATUR STREET		Lab Number:	L1954437
Project Number:	18-46 DECATUR STREE		Report Date:	11/19/19
		SAMPLE RESULTS		
Lab ID:	L1954437-05		Date Collected:	06/13/19 13:45
Client ID:	FIELD BLANK		Date Received:	06/13/19
Sample Location:	QUEENS, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	06/19/19 01:06			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1				
Chloroform	ND		ug/l	2.5	0.70	1				
Carbon tetrachloride	ND		ug/l	0.50	0.13	1				
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1				
Dibromochloromethane	ND		ug/l	0.50	0.15	1				
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1				
Tetrachloroethene	ND		ug/l	0.50	0.18	1				
Chlorobenzene	ND		ug/l	2.5	0.70	1				
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1				
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1				
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1				
Bromodichloromethane	ND		ug/l	0.50	0.19	1				
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1				
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1				
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1				
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1				
Bromoform	ND		ug/l	2.0	0.65	1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1				
Benzene	ND		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Chloromethane	ND		ug/l	2.5	0.70	1				
Bromomethane	ND		ug/l	2.5	0.70	1				
Vinyl chloride	ND		ug/l	1.0	0.07	1				
Chloroethane	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1				
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				

					S	Serial_No	:11191913:22
Project Name:	18-46 DECATUR STREET	-			Lab Nu	mber:	L1954437
Project Number:	18-46 DECATUR STREE				Report	Date:	11/19/19
		SAMP	LE RESULTS				
Lab ID:	L1954437-05				Date Coll	ected:	06/13/19 13:45
Client ID:	FIELD BLANK				Date Rec		06/13/19
Sample Location:	QUEENS, NY				Field Pre		Not Specified
Comple Depthy							
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
	y GC/MS - Westborough La			•••••			
Volatile Organios 5		0					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		9.9		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
				-			

					;	Serial_No	:11191913:22
Project Name:	18-46 DECATUR STR	EET	ET			mber:	L1954437
Project Number:	18-46 DECATUR STR	EE			Report Date:		11/19/19
		SAMP	LE RESULT	S			
Lab ID:	L1954437-05				Date Col	llected:	06/13/19 13:45
Client ID:	ent ID: FIELD BLANK		Date Re	ceived:	06/13/19		
Sample Location:	QUEENS, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborough	n Lab					
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	61.	1
p-Diethylbenzene		ND		ug/l	2.0	0.70	1
p-Ethyltoluene		ND		ug/l	2.0	0.70	1

ND

ND

ug/l

ug/l

% Recovery

114

99

89

114

2.5

2.5

Qualifier

0.70

0.70

Acceptance Criteria

70-130 70-130

70-130

70-130

1

1

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

Ethyl ether

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

		Serial_N	o:11191913:22
18-46 DECATUR STREET		Lab Number:	L1954437
18-46 DECATUR STREE		Report Date:	11/19/19
	SAMPLE RESULTS		
L1954437-06		Date Collected:	06/13/19 00:00
TRIP BLANK		Date Received:	06/13/19
QUEENS, NY		Field Prep:	Not Specified
Water			
06/19/19 01:28			
PD			
	18-46 DECATUR STREE L1954437-06 TRIP BLANK QUEENS, NY Water 1,8260C 06/19/19 01:28	18-46 DECATUR STREE SAMPLE RESULTS L1954437-06 TRIP BLANK QUEENS, NY Water 1,8260C 06/19/19 01:28	18-46 DECATUR STREET Lab Number: 18-46 DECATUR STREE Report Date: 18-46 DECATUR STREE Date Collected: L1954437-06 Date Collected: TRIP BLANK Date Received: QUEENS, NY Field Prep: Water 1,8260C 06/19/19 01:28 Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					S	Serial No	:11191913:22
Project Name:	18-46 DECATUR STREET	-			Lab Nu		L1954437
Project Number:	18-46 DECATUR STREE				Report	Date:	11/19/19
•		SAMPI	LE RESULTS	5	•		
Lab ID:	L1954437-06				Date Coll	ected:	06/13/19 00:00
Client ID:	TRIP BLANK				Date Rec	eived:	06/13/19
Sample Location:	QUEENS, NY				Field Pre	p:	Not Specified
Sample Depth:							
Parameter	I	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough La	b					
Trichloroethene		ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
Xylenes, Total		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1
Dibromomethane		ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1
Acrylonitrile		ND		ug/l	5.0	1.5	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		3.9	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
Vinyl acetate		ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1
Bromobenzene		ND		ug/l	2.5	0.70	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
o-Chlorotoluene		ND		ug/l	2.5	0.70	1
p-Chlorotoluene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1
		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1

					:	Serial_No	0:11191913:22
Project Name:	18-46 DECATUR STR	REET			Lab Nu	mber:	L1954437
Project Number:	18-46 DECATUR STR	REE			Report	Date:	11/19/19
		SAMP	LE RESULT	S			
Lab ID:	L1954437-06				Date Co	llected:	06/13/19 00:00
Client ID:	TRIP BLANK				Date Re	ceived:	06/13/19
Sample Location:	QUEENS, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	h Lab					
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,4-Dioxane		ND		ug/l	250	61.	1
p-Diethylbenzene		ND		ug/l	2.0	0.70	1
p-Ethyltoluene		ND		ug/l	2.0	0.70	1

ug/l

ug/l

% Recovery

116

100

91

109

2.5

2.5

Qualifier

0.70

0.70

Acceptance Criteria

> 70-130 70-130

> 70-130

70-130

1

1

ND

ND

4-Bromofluorobenzene Dibromofluoromethane

1,2-Dichloroethane-d4

Ethyl ether

trans-1,4-Dichloro-2-butene

Surrogate

Toluene-d8

Project Name:	18-46 DECATUR STREET
Project Name:	18-46 DECATUR STREET

Project Number: 18-46 DECATUR STREET

Report Date:

 Lab Number:
 L1954437

 Report Date:
 11/19/19

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/18/19 21:49
Analyst:	KJD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS ·	- Westborough La	b for sample(s):	02-06 Batch:	WG1250464-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name:	18-46 DECATUR STREET
Project Name:	18-46 DECATUR STREET

Project Number: 18-46 DECATUR STREET

Lab Number: Report Date:

L1954437 11/19/19

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/18/19 21:49
Analyst:	KJD

arameter	Result	Qualifier Units	RL	MDL
platile Organics by GC/MS	- Westborough La	o for sample(s): 02-06	Batch:	WG1250464-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name:	18-46 DECATUR STREET

Project Number: 18-46 DECATUR STREET

Report Date:

 Lab Number:
 L1954437

 Report Date:
 11/19/19

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/18/19 21:49
Analyst:	KJD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	b for sample(s): 02-06	Batch:	WG1250464-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Surrogate	%Recovery Qualifier	Acceptance lifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	106	70-130	

L1954437

11/19/19

Lab Number:

Report Date:

Project Number: 18-46 DECATUR STREET

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/19/19 11:01
Analyst:	PK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS ·	- Westborough La	b for sample(s): 01	Batch:	WG1250654-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
rans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
sis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
/inyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
I,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L1954437

11/19/19

Lab Number:

Project Number: 18-46 DECATUR STREET

ET Report Date: Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/19/19 11:01
Analyst:	PK

arameter	Result	Qualifier Units	RL	MDL
platile Organics by GC/MS -	Westborough La	b for sample(s): 01	Batch:	WG1250654-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L1954437

11/19/19

Lab Number:

Report Date:

Project Name:	18-46 DECATUR STREET

Project Number: 18-46 DECATUR STREET

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	06/19/19 11:01
Analyst:	PK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	/estborough La	ab for sample(s):	01 Batch:	WG1250654-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Surrogate	%Recovery Qualifie	Acceptance Criteria
1.2-Dichloroethane-d4	114	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	110	70-130
Dibromofluoromethane	91	70-130

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1954437 Report Date: 11/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	RPL Qual Limi	
Volatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	02-06 Batch	: WG1250464-3	3 WG1250464-4			
Methylene chloride	100		99		70-130	1	20	
1,1-Dichloroethane	96		93		70-130	3	20	
Chloroform	96		93		70-130	3	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	95		96		70-130	1	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	97		96		70-130	1	20	
Tetrachloroethene	100		94		70-130	6	20	
Chlorobenzene	96		93		75-130	3	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	99		95		70-130	4	20	
1,1,1-Trichloroethane	93		93		67-130	0	20	
Bromodichloromethane	100		98		67-130	2	20	
trans-1,3-Dichloropropene	83		81		70-130	2	20	
cis-1,3-Dichloropropene	88		88		70-130	0	20	
1,1-Dichloropropene	92		90		70-130	2	20	
Bromoform	99		97		54-136	2	20	
1,1,2,2-Tetrachloroethane	91		90		67-130	1	20	
Benzene	97		95		70-130	2	20	
Toluene	93		88		70-130	6	20	
Ethylbenzene	92		87		70-130	6	20	
Chloromethane	91		91		64-130	0	20	
Bromomethane	140	Q	130		39-139	7	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: 18-46 DECATUR STREET Project Number: 18-46 DECATUR STREET Lab Number: L1954437 Report Date: 11/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	02-06 Batch: \	WG1250464-3	WG1250464-4			
Vinyl chloride	100		100		55-140	0	20	
Chloroethane	160	Q	170	Q	55-138	6	20	
1,1-Dichloroethene	100		92		61-145	8	20	
trans-1,2-Dichloroethene	93		87		70-130	7	20	
Trichloroethene	100		93		70-130	7	20	
1,2-Dichlorobenzene	92		87		70-130	6	20	
1,3-Dichlorobenzene	92		88		70-130	4	20	
1,4-Dichlorobenzene	90		86		70-130	5	20	
Methyl tert butyl ether	88		80		63-130	10	20	
p/m-Xylene	95		90		70-130	5	20	
o-Xylene	95		90		70-130	5	20	
cis-1,2-Dichloroethene	93		96		70-130	3	20	
Dibromomethane	110		100		70-130	10	20	
1,2,3-Trichloropropane	87		85		64-130	2	20	
Acrylonitrile	88		89		70-130	1	20	
Styrene	95		90		70-130	5	20	
Dichlorodifluoromethane	110		100		36-147	10	20	
Acetone	110		120		58-148	9	20	
Carbon disulfide	98		98		51-130	0	20	
2-Butanone	94		89		63-138	5	20	
Vinyl acetate	84		82		70-130	2	20	
4-Methyl-2-pentanone	82		84		59-130	2	20	
2-Hexanone	73		78		57-130	7	20	

Lab Control Sample Analysis

Batch Quality Control

Project Name:18-46 DECATUR STREETProject Number:18-46 DECATUR STREET

Lab Number: L1954437 Report Date: 11/19/19

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-06 Batch: WG1250464-3 WG1250464-4 Bromochloromethane 100 100 70-130 0 20 2,2-Dichloropropane 81 77 63-133 5 20 1.2-Dibromoethane 98 93 70-130 5 20 1,3-Dichloropropane 97 94 70-130 20 3 1,1,1,2-Tetrachloroethane 99 95 64-130 20 4 Bromobenzene 91 87 70-130 4 20 n-Butylbenzene 86 81 53-136 20 6 sec-Butylbenzene 88 83 70-130 6 20 tert-Butylbenzene 88 85 70-130 3 20 20 o-Chlorotoluene 85 80 70-130 6 20 p-Chlorotoluene 84 80 70-130 5 1,2-Dibromo-3-chloropropane 20 100 93 41-144 7 Hexachlorobutadiene 94 86 63-130 9 20 82 70-130 20 Isopropylbenzene 86 5 p-Isopropyltoluene 88 81 70-130 8 20 Naphthalene 76 76 70-130 0 20 n-Propylbenzene 87 82 69-130 6 20 1,2,3-Trichlorobenzene 87 70-130 20 88 1 1,2,4-Trichlorobenzene 70-130 20 88 85 3 1,3,5-Trimethylbenzene 87 82 64-130 6 20 1,2,4-Trimethylbenzene 87 82 70-130 6 20 1,4-Dioxane Q Q 20 56-162 8 184 200 20 p-Diethylbenzene 84 79 70-130 6

Lab Control Sample Analysis Batch Quality Control

Project Name: 18-46 DECATUR STREET

Project Number: 18-46 DECATUR STREET

 Lab Number:
 L1954437

 Report Date:
 11/19/19

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recover	y Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-06 Batch	: WG1250464-3	3 WG1250464-4				
p-Ethyltoluene	88		83		70-130	6		20	
1,2,4,5-Tetramethylbenzene	79		74		70-130	7		20	
Ethyl ether	91		95		59-134	4		20	
trans-1,4-Dichloro-2-butene	88		86		70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	108	70-130
Toluene-d8	99	100	70-130
4-Bromofluorobenzene	89	88	70-130
Dibromofluoromethane	108	102	70-130

Lab Control Sample Analysis

Batch Quality Control

Project Name:18-46 DECATUR STREETProject Number:18-46 DECATUR STREET

Lab Number: L1954437 Report Date: 11/19/19

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1250654-3 WG1250654-4 Methylene chloride 92 92 70-130 0 20 1,1-Dichloroethane 110 110 70-130 0 20 Chloroform 100 100 70-130 20 0 Carbon tetrachloride 97 94 63-132 20 3 70-130 20 1,2-Dichloropropane 110 110 0 Dibromochloromethane 88 89 63-130 1 20 1.1.2-Trichloroethane 100 110 70-130 10 20 Tetrachloroethene 92 89 70-130 3 20 Chlorobenzene 100 97 75-130 3 20 Trichlorofluoromethane 93 88 62-150 6 20 1.2-Dichloroethane 110 110 70-130 0 20 1,1,1-Trichloroethane 100 97 67-130 3 20 Bromodichloromethane 99 100 67-130 1 20 70-130 20 trans-1,3-Dichloropropene 100 100 0 cis-1,3-Dichloropropene 100 100 70-130 0 20 1,1-Dichloropropene 100 100 70-130 0 20 Bromoform 81 86 54-136 20 6 1,1,2,2-Tetrachloroethane 67-130 20 110 110 0 70-130 20 Benzene 100 100 0 Toluene 100 100 70-130 0 20 Ethylbenzene 110 100 70-130 10 20 20 Chloromethane 65 66 64-130 2 Q 20 Bromomethane 41 35 39-139 16

Lab Control Sample Analysis Batch Quality Control

Project Name: 18-46 DECATUR STREET Project Number: 18-46 DECATUR STREET Lab Number: L1954437 Report Date: 11/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0 ⁻	1 Batch: WG1	1250654-3	WG1250654-4		
Vinyl chloride	96		89		55-140	8	20
Chloroethane	110		100		55-138	10	20
1,1-Dichloroethene	90		86		61-145	5	20
trans-1,2-Dichloroethene	94		89		70-130	5	20
Trichloroethene	100		99		70-130	1	20
1,2-Dichlorobenzene	96		96		70-130	0	20
1,3-Dichlorobenzene	100		100		70-130	0	20
1,4-Dichlorobenzene	100		100		70-130	0	20
Methyl tert butyl ether	100		100		63-130	0	20
p/m-Xylene	105		100		70-130	5	20
o-Xylene	100		100		70-130	0	20
cis-1,2-Dichloroethene	97		94		70-130	3	20
Dibromomethane	92		96		70-130	4	20
1,2,3-Trichloropropane	110		120		64-130	9	20
Acrylonitrile	97		100		70-130	3	20
Styrene	95		95		70-130	0	20
Dichlorodifluoromethane	73		67		36-147	9	20
Acetone	110		110		58-148	0	20
Carbon disulfide	93		89		51-130	4	20
2-Butanone	110		120		63-138	9	20
Vinyl acetate	120		120		70-130	0	20
4-Methyl-2-pentanone	100		100		59-130	0	20
2-Hexanone	120		120		57-130	0	20

Lab Control Sample Analysis

Batch Quality Control

Project Name:18-46 DECATUR STREETProject Number:18-46 DECATUR STREET

Lab Number: L1954437 Report Date: 11/19/19

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1250654-3 WG1250654-4 Bromochloromethane 91 70-130 3 94 20 2,2-Dichloropropane 100 98 63-133 2 20 1.2-Dibromoethane 94 94 70-130 0 20 1,3-Dichloropropane 110 110 70-130 20 0 1,1,1,2-Tetrachloroethane 64-130 20 94 91 3 Bromobenzene 100 100 70-130 0 20 n-Butylbenzene 120 120 53-136 20 0 sec-Butylbenzene 120 110 70-130 9 20 tert-Butylbenzene 110 110 70-130 0 20 20 o-Chlorotoluene 120 120 70-130 0 20 p-Chlorotoluene 120 120 70-130 0 1,2-Dibromo-3-chloropropane 20 66 71 41-144 7 Hexachlorobutadiene 96 96 63-130 0 20 70-130 20 Isopropylbenzene 120 120 0 p-Isopropyltoluene 110 110 70-130 0 20 Naphthalene 74 81 70-130 9 20 n-Propylbenzene 130 120 69-130 8 20 1,2,3-Trichlorobenzene 77 70-130 20 73 5 1,2,4-Trichlorobenzene 84 70-130 20 82 2 1,3,5-Trimethylbenzene 120 120 64-130 0 20 1,2,4-Trimethylbenzene 110 110 70-130 0 20 1,4-Dioxane 76 56-162 20 86 12 20 p-Diethylbenzene 110 110 70-130 0

Lab Control Sample Analysis Batch Quality Control

Project Name: 18-46 DECATUR STREET Project Number: 18-46 DECATUR STREET Lab Number: L1954437 **Report Date:** 11/19/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: WG	1250654-3	WG1250654-4			
p-Ethyltoluene	120		120		70-130	0		20
1,2,4,5-Tetramethylbenzene	99		97		70-130	2		20
Ethyl ether	98		97		59-134	1		20
trans-1,4-Dichloro-2-butene	100		100		70-130	0		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	111	113	70-130
Toluene-d8	105	104	70-130
4-Bromofluorobenzene	109	110	70-130
Dibromofluoromethane	94	93	70-130

Matrix Spike Analysis Batch Quality Control

Project Name:	18-46 DECATUR STREET

Project Number: 18-46 DECATUR STREET

Lab Number: L1954437 Report Date: 11/19/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS	- Westborough I	_ab Asso	ciated sample(s	s): 01 QC Ba	tch ID: W	G1250654-	8 WG125065	4-9 Q	C Sample: L	195443	7-01 Client ID: MW-
Methylene chloride	ND	10	10	100		10	100		70-130	0	20
1,1-Dichloroethane	ND	10	12	120		12	120		70-130	0	20
Chloroform	0.94J	10	12	120		13	130		70-130	8	20
Carbon tetrachloride	ND	10	11	110		12	120		63-132	9	20
1,2-Dichloropropane	ND	10	12	120		12	120		70-130	0	20
Dibromochloromethane	ND	10	8.9	89		9.4	94		63-130	5	20
1,1,2-Trichloroethane	ND	10	11	110		11	110		70-130	0	20
Tetrachloroethene	5.5	10	16	105		16	105		70-130	0	20
Chlorobenzene	ND	10	11	110		11	110		75-130	0	20
Trichlorofluoromethane	ND	10	11	110		11	110		62-150	0	20
1,2-Dichloroethane	ND	10	12	120		12	120		70-130	0	20
1,1,1-Trichloroethane	ND	10	12	120		12	120		67-130	0	20
Bromodichloromethane	ND	10	11	110		11	110		67-130	0	20
trans-1,3-Dichloropropene	ND	10	ND	0	Q	ND	0	Q	70-130	NC	20
cis-1,3-Dichloropropene	ND	10	ND	0	Q	ND	0	Q	70-130	NC	20
1,1-Dichloropropene	ND	10	ND	0	Q	ND	0	Q	70-130	NC	20
Bromoform	5.9	10	13	71		14	81		54-136	7	20
1,1,2,2-Tetrachloroethane	ND	10	11	110		12	120		67-130	9	20
Benzene	ND	10	12	120		12	120		70-130	0	20
Toluene	ND	10	11	110		11	110		70-130	0	20
Ethylbenzene	ND	10	11	110		11	110		70-130	0	20
Chloromethane	ND	10	8.9	89		9.1	91		64-130	2	20
Bromomethane	ND	10	1.9J	19	Q	2.0J	20	Q	39-139	5	20
Vinyl chloride	ND	10	ND	0	Q	ND	0	Q	55-140	NC	20

Matrix Spike Analysis Batch Quality Control

Project Name:	18-46 DECATUR STREET

Project Number: 18-46 DECATUR STREET

```
        Lab Number:
        L1954437

        Report Date:
        11/19/19
```

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits	6
Volatile Organics by GC/M	1S - Westborough	Lab Assoc	iated sample(s): 01 QC Ba	tch ID: W	/G1250654-	8 WG125065	4-9 Q	C Sample: L	195443	7-01 Client ID	: MW-3
Chloroethane	ND	10	12	120		12	120		55-138	0	20	
1,1-Dichloroethene	ND	10	ND	0	Q	ND	0	Q	61-145	NC	20	
trans-1,2-Dichloroethene	ND	10	ND	0	Q	ND	0	Q	70-130	NC	20	
Trichloroethene	ND	10	1.4	14	Q	1.1	11	Q	70-130	24	Q 20	
1,2-Dichlorobenzene	ND	10	10	100		10	100		70-130	0	20	
1,3-Dichlorobenzene	ND	10	10	100		10	100		70-130	0	20	
1,4-Dichlorobenzene	ND	10	10	100		10	100		70-130	0	20	
Methyl tert butyl ether	ND	10	10	100		11	110		63-130	10	20	
p/m-Xylene	ND	20	8.9	44	Q	9.2	46	Q	70-130	3	20	
o-Xylene	ND	20	16	80		16	80		70-130	0	20	
cis-1,2-Dichloroethene	ND	10	ND	0	Q	ND	0	Q	70-130	NC	20	
Dibromomethane	ND	10	10	100		10	100		70-130	0	20	
1,2,3-Trichloropropane	ND	10	9.8	98		11	110		64-130	12	20	
Acrylonitrile	ND	10	ND	0	Q	ND	0	Q	70-130	NC	20	
Styrene	ND	20	ND	0	Q	ND	0	Q	70-130	NC	20	
Dichlorodifluoromethane	ND	10	7.6	76		7.6	76		36-147	0	20	
Acetone	4.6J	10	14	140		15	150	Q	58-148	7	20	
Carbon disulfide	ND	10	10	100		10	100		51-130	0	20	
2-Butanone	ND	10	12	120		13	130		63-138	8	20	
Vinyl acetate	ND	10	2.4J	24	Q	2.4J	24	Q	70-130	0	20	
4-Methyl-2-pentanone	ND	10	10	100		11	110		59-130	10	20	
2-Hexanone	ND	10	12	120		13	130		57-130	8	20	
Bromochloromethane	ND	10	9.6	96		10	100		70-130	4	20	
2,2-Dichloropropane	ND	10	10	100		10	100		63-133	0	20	

Matrix Spike Analysis Batch Quality Control

Project Name:	18-46 DECATUR STREET	

Project Number: 18-46 DECATUR STREET

Lab Number: L1954437 Report Date: 11/19/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS	- Westborough L	ab Assoc	ciated sample(s): 01 QC Ba	tch ID: WG	1250654-	8 WG125065	4-9 Q(C Sample: L	195443	7-01 C	Client ID: MW-3
1,2-Dibromoethane	ND	10	9.6	96		10	100		70-130	4		20
1,3-Dichloropropane	ND	10	11	110		12	120		70-130	9		20
1,1,1,2-Tetrachloroethane	ND	10	9.8	98		10	100		64-130	2		20
Bromobenzene	ND	10	10	100		11	110		70-130	10		20
n-Butylbenzene	ND	10	11	110		11	110		53-136	0		20
sec-Butylbenzene	ND	10	11	110		11	110		70-130	0		20
tert-Butylbenzene	ND	10	12	120		12	120		70-130	0		20
o-Chlorotoluene	ND	10	11	110		12	120		70-130	9		20
p-Chlorotoluene	ND	10	12	120		12	120		70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	7.1	71		7.5	75		41-144	5		20
Hexachlorobutadiene	ND	10	7.5	75		8.2	82		63-130	9		20
Isopropylbenzene	ND	10	12	120		12	120		70-130	0		20
p-Isopropyltoluene	ND	10	9.3	93		9.4	94		70-130	1		20
Naphthalene	ND	10	4.0	40	Q	1.1J	11	Q	70-130	114	Q	20
n-Propylbenzene	ND	10	13	130		13	130		69-130	0		20
1,2,3-Trichlorobenzene	ND	10	7.2	72		8.0	80		70-130	11		20
1,2,4-Trichlorobenzene	ND	10	8.0	80		8.5	85		70-130	6		20
1,3,5-Trimethylbenzene	ND	10	ND	0	Q	ND	0	Q	64-130	NC		20
1,2,4-Trimethylbenzene	ND	10	ND	0	Q	ND	0	Q	70-130	NC		20
1,4-Dioxane	ND	500	280	56		400	80		56-162	35	Q	20
p-Diethylbenzene	ND	10	8.7	87		8.9	89		70-130	2		20
p-Ethyltoluene	ND	10	9.3	93		9.4	94		70-130	1		20
1,2,4,5-Tetramethylbenzene	ND	10	ND	0	Q	ND	0	Q	70-130	NC		20
Ethyl ether	ND	10	10	100		10	100		59-134	0		20

Matrix Spike Analysis

Project Name: Project Number:	18-46 DECATU 18-46 DECATU			B	atch Quality Contr	rol	Lab Number: Report Date:	L1954437 11/19/19	
	Native	MS	MS	MS	MSD	MSD	Recoverv	RPD	

	Matric						III OD					
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD G	Qual Limits	
Volatile Organics by GC/MS	- Westborough	Lab Assoc	iated sample(s): 01 QC Ba	tch ID: W	G1250654-	-8 WG125065	4-9 QC	Sample: I	L1954437-0	01 Client ID:	MW-3
0 7	U		• •	,					•			
trans-1,4-Dichloro-2-butene	ND	10	ND	0	Q	ND	0	Q	70-130	NC	20	

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
- 1,2-Dichloroethane-d4	113	116	70-130
4-Bromofluorobenzene	110	110	70-130
Dibromofluoromethane	93	92	70-130
Toluene-d8	103	103	70-130

Serial_No:11191913:22

Project Name: 18-46 DECATUR STREET

Project Number: 18-46 DECATUR STREET

Lab Number: L1954437

Report Date: 11/19/19

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Footnotes

Report Format: DU Report with 'J' Qualifiers

Serial_No:11191913:22

Project Name:18-46 DECATUR STREETProject Number:18-46 DECATUR STREET

Lab Number: L1954437 Report Date: 11/19/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Project Name:18-46 DECATUR STREETProject Number:18-46 DECATUR STREET

 Lab Number:
 L1954437

 Report Date:
 11/19/19

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:11191913:22

Агрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	05	Pag				Rec'd Lab (0/1	1/19		L1954437
Westborough, MA 01581 8 Walkup Dr. TEL: 508-896-9220	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300	Project Information		la 1 Alaca	12010055	Lucit.	Delive	erable	s	-		8	Billing Information
FAX: 508-898-9193	FAX: 508-822-9300	Project Name: 19-2	the second se	a second s	PPT	-	-	ASP-			ASP		Same as Client Info
Client Information	and the second second	Project Location: 🕄 🗸	uens, i	UY .					S (1 File	9)		IS (4 File)	P0#
Client Information	all 2.20 av 1.00 - 1	Project #					-	Othe		10000	31127	NEW REAL	Discover Other Lations
Client: TENAN O	none whenter					-			Require	ement		1075	Disposal Site Information
Address: 121W L NY, NY 1000	TO STREFT	Project Manager: NO	nampa	Anne	4			NY TO				art 375	Please identify below location of applicable disposal facilities.
Phone: UAU-U		ALPHAQuote #:		Contractor of the	A	IE ICHO			Standard	8 E			
	W- 637L	Turn-Around Time							estricted L		Other		Disposal Facility:
Fax:	A 2010 -201 1	Standar	and the second se	Due Date					restricted				
the second se	the same in the same of the	WRush (only if pre approve	a) [# of Days	6				Sewer Dis	scharge			Other:
These samples have b Other project specific			-				ANAL	YSIS				<u> </u>	Sample Filtration
Please specify Metals								WT Y	Di Cathre				Done t Lab to do a Preservation l Lab to do B
ALPHA Lab ID	Sa	mple ID	Col	ection	Sample	Sampler's	245	PH H H	4-1				(Please Specify below)
(Lab Use Only)			Date	Time	Matrix	Initials	>		-				Sample Specific Comments
25567-01	MW-1		10/13/14	1110	N	KM	'X	X	X			11	
01	MW-1MS		6/15/19	1115	N	KIY	X			11			X VOLS ONLY
01	MW. IMSD		1	1120	w	KM	X				-		EVOUS DAVY
02	MW-2			1230	W	KM	x	×	X				
03	MW.2007			1240	N	KIN	X		L Î.				x vois only
04	MW-3		4	1345	N	KN	X	1	X		_	· · · · · · · · · · · · · · · · · · ·	
05	heidblünk	-	*	1345	N	KW	<u> </u>	X		1			+ PRAAS ONLY
06	TRIPPAL	IK	>	/	N	/	×						
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification Mansfield: Certification			<u> </u>	ntainer Type Preservative							Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	Relinquiched Rus					L		-		start until any ambiguities are		
3 = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH D = Other	O = Other E = Encore D = BOD Bottle	Condition	40 (~	6/3/09	Date/Time Received By: 15/19/1900 PS. TWA 15/19/1900 Con OST 14/09/1900 Con OST 14/09/1900 Con OST 14/09/1900 Con OST 14/09/1900 Con OST 14/09/1900 Con OST		AN CININ 15:2 OFL 12 20:02		TO BE BOUND BY ALPHA				
Form No: 01-25 HC (rev. 3)	0-Sept-2013)			-1		V		1	1	10	11/1	00.00	(See reverse side.)
ge 47 of 47		X		-				7					

ANALYTICAL REPORT

Lab Number:	L1944820
Client:	Tenen Environmental, LLC
	121 West 27th Street
	Suite 702
	New York City, NY 10001
ATTN:	Mohamed Ahmed
Phone:	(646) 606-2332
Project Name:	18-46 DECATUR
Project Number:	18-46 DECATUR
Report Date:	10/07/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10071911:30

Project Name:	18-46 DECATUR
Project Number:	18-46 DECATUR

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1944820-01	MW-1	WATER	18-46 DECATUR, QUEENS	09/26/19 13:45	09/27/19
L1944820-02	MW-2	WATER	18-46 DECATUR, QUEENS	09/26/19 11:45	09/27/19
L1944820-03	MW-2 DUP	WATER	18-46 DECATUR, QUEENS	09/26/19 11:47	09/27/19
L1944820-04	MW-3	WATER	18-46 DECATUR, QUEENS	09/26/19 10:25	09/27/19
L1944820-05	FIELD BLANK	WATER	18-46 DECATUR, QUEENS	09/26/19 13:25	09/27/19
L1944820-06	TRIP BLANK	WATER	18-46 DECATUR, QUEENS	09/26/19 00:00	09/27/19

Project Name: 18-46 DECATUR Project Number: 18-46 DECATUR

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:18-46 DECATURProject Number:18-46 DECATUR

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 10/07/19

ORGANICS

VOLATILES

		Serial_No	p:10071911:30
Project Name:	18-46 DECATUR	Lab Number:	L1944820
Project Number:	18-46 DECATUR	Report Date:	10/07/19
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1944820-01 MW-1 18-46 DECATUR, QUEENS	Date Collected: Date Received: Field Prep:	09/26/19 13:45 09/27/19 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 10/04/19 09:59 AD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	6.0		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

					:	Serial_No	:10071911:30		
Project Name:	18-46 DECATUR				Lab Nu		L1944820		
Project Number:	18-46 DECATUR				Report	Date:	10/07/19		
		SAMP		5			10/07/13		
Lab ID: Client ID: Sample Location:	L1944820-01 MW-1 18-46 DECATUR, Q	UEENS			Date Col Date Re Field Pre	ceived:	09/26/19 13:45 09/27/19 Not Specified		
Sample Depth:		Beault	Qualifier	Unito	ы	MDL	Dilution Footor		
Parameter		Result	Qualifier	Units	RL	MIDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab									
Trichloroethene		ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1		
p/m-Xylene		ND		ug/l	2.5	0.70	1		
o-Xylene		ND		ug/l	2.5	0.70	1		
Xylenes, Total		ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1		
1,2-Dichloroethene, Tota		ND		ug/l	2.5	0.70	1		
Dibromomethane		ND		ug/l	5.0	1.0	1		
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1		
Acrylonitrile		ND		ug/l	5.0	1.5	1		
Styrene		ND		ug/l	2.5	0.70	1		
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1		
Acetone		3.3	J	ug/l	5.0	1.5	1		
Carbon disulfide		ND		ug/l	5.0	1.0	1		
2-Butanone		ND		ug/l	5.0	1.9	1		
Vinyl acetate		ND		ug/l	5.0	1.0	1		
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1		
2-Hexanone		ND		ug/l	5.0	1.0	1		
Bromochloromethane		ND		ug/l	2.5	0.70	1		
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1		
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1		
1,1,1,2-Tetrachloroethan	9	ND		ug/l	2.5	0.70	1		
Bromobenzene		ND		ug/l	2.5	0.70	1		
n-Butylbenzene		ND		ug/l	2.5	0.70	1		
sec-Butylbenzene		ND		ug/l	2.5	0.70	1		
tert-Butylbenzene		ND		ug/l	2.5	0.70	1		
o-Chlorotoluene		ND		ug/l	2.5	0.70	1		
p-Chlorotoluene		ND		ug/l	2.5	0.70	1		
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1		
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1		
Isopropylbenzene		ND		ug/l	2.5	0.70	1		
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1		

ug/l

2.5

0.70

ND

1

Naphthalene

		Serial_N	o:10071911:30
Project Name:	18-46 DECATUR	Lab Number:	L1944820
Project Number:	18-46 DECATUR	Report Date:	10/07/19
	SAMPLE R	ESULTS	
Lab ID:	L1944820-01	Date Collected:	09/26/19 13:45
Client ID:	MW-1	Date Received:	09/27/19
Sample Location:	18-46 DECATUR, QUEENS	Field Prep:	Not Specified

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab								
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	250	61.	1			
ND		ug/l	2.0	0.70	1			
ND		ug/l	2.0	0.70	1			
ND		ug/l	2.0	0.54	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.0 ND ug/l 2.0	ND ug/l 2.5 0.70 ND ug/l 2.0 0.54 ND ug/l 2.5 0.70			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	97	70-130	

		Serial_No	p:10071911:30
Project Name:	18-46 DECATUR	Lab Number:	L1944820
Project Number:	18-46 DECATUR	Report Date:	10/07/19
	SAMPLE RESULTS		
Lab ID:	L1944820-02	Date Collected:	09/26/19 11:45
Client ID:	MW-2	Date Received:	09/27/19
Sample Location:	18-46 DECATUR, QUEENS	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/04/19 10:21		
Analyst:	AD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	22		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					;	Serial_No	:10071911:30	
Project Name:	18-46 DECATUR				Lab Nu	mber:	L1944820	
Project Number:	18-46 DECATUR				Report	Date:	10/07/19	
··· , ·····		SAMP		6			10/07/10	
Lab ID: Client ID: Sample Location:	L1944820-02 MW-2 18-46 DECATUR, QU	EENS			Date Col Date Rec Field Pre	ceived:	09/26/19 11:45 09/27/19 Not Specified	
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	CC/MC Mostborough		Quaimer	Units	RL.		Dilution Factor	
volatile Organics by	y GC/MS - Westborough	LaD						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	

ND

ug/l

2.5

0.70

1

Naphthalene

		Serial_N	o:10071911:30
Project Name:	18-46 DECATUR	Lab Number:	L1944820
Project Number:	18-46 DECATUR	Report Date:	10/07/19
	SAMPLE R	ESULTS	
Lab ID:	L1944820-02	Date Collected:	09/26/19 11:45
Client ID:	MW-2	Date Received:	09/27/19
Sample Location:	18-46 DECATUR, QUEENS	Field Prep:	Not Specified

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab								
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	250	61.	1			
ND		ug/l	2.0	0.70	1			
ND		ug/l	2.0	0.70	1			
ND		ug/l	2.0	0.54	1			
ND		ug/l	2.5	0.70	1			
ND		ug/l	2.5	0.70	1			
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.0 ND ug/l 2.0	ND ug/l 2.5 0.70 ND ug/l 2.0 0.54 ND ug/l 2.5 0.70			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	101	70-130	

		Serial_No	p:10071911:30
Project Name:	18-46 DECATUR	Lab Number:	L1944820
Project Number:	18-46 DECATUR	Report Date:	10/07/19
	SAMPLE RESULTS		
Lab ID:	L1944820-03	Date Collected:	09/26/19 11:47
Client ID:	MW-2 DUP	Date Received:	09/27/19
Sample Location:	18-46 DECATUR, QUEENS	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/04/19 10:43		
Analyst:	AD		
-			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	23		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

					ç	Serial_No	:10071911:30	
Project Name:	18-46 DECATUR				Lab Nu	mber:	L1944820	
Project Number:	18-46 DECATUR				Report	Date:	10/07/19	
		SAMPI	LE RESULTS	6			10/01/10	
Lab ID:	L1944820-03				Date Col	lected.	09/26/19 11:47	
Client ID:	MW-2 DUP				Date Red		09/27/19	
Sample Location:	18-46 DECATUR, QL	JEENS			Field Pre		Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	n Lab						
Trichloroethene		0.19	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

		Serial_No:10071911:30
Project Name:	18-46 DECATUR	Lab Number: L1944820
Project Number:	18-46 DECATUR	Report Date: 10/07/19
	SAMPLE RESULTS	
Lab ID:	L1944820-03	Date Collected: 09/26/19 11:47
Client ID:	MW-2 DUP	Date Received: 09/27/19
Sample Location:	18-46 DECATUR, QUEENS	Field Prep: Not Specified
Sample Depth:		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	102	70-130	

		Serial_No:10071911:30		
Project Name:	18-46 DECATUR	Lab Number:	L1944820	
Project Number:	18-46 DECATUR	Report Date:	10/07/19	
	SAMPLE RESULTS			
Lab ID: Client ID: Sample Location:	L1944820-04 MW-3 18-46 DECATUR, QUEENS	Date Collected: Date Received: Field Prep:	09/26/19 10:25 09/27/19 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 10/04/19 11:05 AD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	11		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

					ç	Serial No	:10071911:30	
Project Name:	18-46 DECATUR				Lab Nu		L1944820	
Project Number:	18-46 DECATUR				Report	Date:	10/07/19	
		SAMP	LE RESULTS	5			10/07/10	
Lab ID:	L1944820-04				Date Col	lected:	09/26/19 10:25	
Client ID:	MW-3				Date Rec		09/27/19	
Sample Location:	18-46 DECATUR, Q	UEENS			Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboroug	ıh Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone Bromochloromethane		ND ND		ug/l	5.0 2.5	1.0 0.70	1	
		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l ug/l	2.5	0.00	1	
1,1,1,2-Tetrachloroethane	3	ND		ug/l	2.5	0.70	1	
Bromobenzene	, 	ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

		Serial_No:10071911:30
Project Name:	18-46 DECATUR	Lab Number: L1944820
Project Number:	18-46 DECATUR	Report Date: 10/07/19
	SAMPLE RESULT	S
Lab ID:	L1944820-04	Date Collected: 09/26/19 10:25
Client ID:	MW-3	Date Received: 09/27/19
Sample Location:	18-46 DECATUR, QUEENS	Field Prep: Not Specified

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor				
/olatile Organics by GC/MS - Westborough Lab									
ND		ug/l	2.5	0.70	1				
ND		ug/l	2.5	0.70	1				
ND		ug/l	2.5	0.70	1				
ND		ug/l	2.5	0.70	1				
ND		ug/l	2.5	0.70	1				
ND		ug/l	250	61.	1				
ND		ug/l	2.0	0.70	1				
ND		ug/l	2.0	0.70	1				
ND		ug/l	2.0	0.54	1				
ND		ug/l	2.5	0.70	1				
ND		ug/l	2.5	0.70	1				
	h Lab ND ND ND ND ND ND ND ND ND ND ND ND ND	h Lab ND	h Lab ND ug/l	ND ug/l 2.5 ND ug/l 2.0 ND ug/l 2.0	ND ug/l 2.5 0.70 ND ug/l 2.0 0.54 ND ug/l 2.5 0.70				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	100	70-130	

		Serial_No	o:10071911:30
Project Name:	18-46 DECATUR	Lab Number:	L1944820
Project Number:	18-46 DECATUR	Report Date:	10/07/19
	SAMPLE RESULTS		
Lab ID:	L1944820-05	Date Collected:	09/26/19 13:25
Client ID:	FIELD BLANK	Date Received:	09/27/19
Sample Location:	18-46 DECATUR, QUEENS	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/04/19 11:27		
Analyst:	AD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	ND		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	ND		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1			
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1			
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			

					ç	Serial_No	:10071911:30	
Project Name:	18-46 DECATUR				Lab Nu	mber:	L1944820	
Project Number:	18-46 DECATUR				Report	Date:	10/07/19	
•		SAMPI	E RESULTS	5	•			
Lab ID:	L1944820-05				Date Col	lected:	09/26/19 13:25	
Client ID:	FIELD BLANK				Date Rec	eived:	09/27/19	
Sample Location:	18-46 DECATUR, QU	JEENS			Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane)	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					;	Serial_No	0:10071911:30	
Project Name:	18-46 DECATUR				Lab Nu	mber:	L1944820	
Project Number:	18-46 DECATUR				Report	Date:	10/07/19	
		SAMPL	E RESULTS	6				
Lab ID:	L1944820-05				Date Col	llected:	09/26/19 13:25	
Client ID:	FIELD BLANK				Date Ree	ceived:	09/27/19	
Sample Location:	18-46 DECATUR, QUE	ENS			Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough I	Lab						

n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	ND	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	91	70-130	
Dibromofluoromethane	99	70-130	

		Serial_No:10071911	:30
Project Name:	18-46 DECATUR	Lab Number: L1944	820
Project Number:	18-46 DECATUR	Report Date: 10/07/	19
	SAMPLE RESULTS		
Lab ID:	L1944820-06	Date Collected: 09/26/19	00:00
Client ID:	TRIP BLANK	Date Received: 09/27/19	
Sample Location:	18-46 DECATUR, QUEENS	Field Prep: Not Spec	ified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	10/04/19 11:49		
Analyst:	AD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	ND		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	ND		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1			
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1			
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			

					ç	Serial_No	:10071911:30	
Project Name:	18-46 DECATUR				Lab Nu	mber:	L1944820	
Project Number:	18-46 DECATUR				Report	Date:	10/07/19	
		SAMPI	E RESULTS	5			10/01/10	
Lab ID:	L1944820-06				Date Col	ected:	09/26/19 00:00	
Client ID:	TRIP BLANK				Date Rec		09/27/19	
Sample Location:	18-46 DECATUR, QU	EENS			Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	•	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					S	Serial_No	o:10071911:30
Project Name:	18-46 DECATUR				Lab Nu	mber:	L1944820
Project Number:	18-46 DECATUR				Report	Date:	10/07/19
		SAMPL	E RESULTS	5			
Lab ID:	L1944820-06				Date Col	lected:	09/26/19 00:00
Client ID:	TRIP BLANK				Date Red	ceived:	09/27/19
Sample Location:	18-46 DECATUR, QUE	ENS			Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough L	ab					

ug/l

% Recovery

99

101

94

99

0.70

0.70

0.70

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

Acceptance Criteria

70-130

70-130 70-130

70-130

1

1

1

1

1

1

1

1

1

1

1

2.5

2.5

2.5

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

Qualifier

ND

n-Propylbenzene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Dibromofluoromethane

Surrogate

Toluene-d8

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

Ethyl ether

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/04/19 08:22Analyst:AD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lat	o for sample(s): 01-06	Batch:	WG1292323-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:10/04/19 08:22Analyst:AD

arameter	Result	Qualifier Unit	ts RL	MDL	
blatile Organics by GC/MS -	Westborough La	o for sample(s):	01-06 Bat	ch: WG1292323-5	•
1,2-Dichlorobenzene	ND	ug	/I 2.5	0.70	
1,3-Dichlorobenzene	ND	ug	/l 2.5	0.70	
1,4-Dichlorobenzene	ND	ug	/l 2.5	0.70	
Methyl tert butyl ether	ND	ug	/l 2.5	0.70	
p/m-Xylene	ND	ug	/l 2.5	0.70	
o-Xylene	ND	ug	/l 2.5	0.70	
Xylenes, Total	ND	ug	/l 2.5	0.70	
cis-1,2-Dichloroethene	ND	ug	/l 2.5	0.70	
1,2-Dichloroethene, Total	ND	ug	/l 2.5	0.70	
Dibromomethane	ND	ug	/l 5.0	1.0	
1,2,3-Trichloropropane	ND	ug	/l 2.5	0.70	
Acrylonitrile	ND	ug	/I 5.0	1.5	
Styrene	ND	ug	/l 2.5	0.70	
Dichlorodifluoromethane	ND	ug	/I 5.0	1.0	
Acetone	ND	ug	/l 5.0	1.5	
Carbon disulfide	ND	ug	/l 5.0	1.0	
2-Butanone	ND	ug	/l 5.0	1.9	
Vinyl acetate	ND	ug	/I 5.0	1.0	
4-Methyl-2-pentanone	ND	ug	/l 5.0	1.0	
2-Hexanone	ND	ug	/I 5.0	1.0	
Bromochloromethane	ND	ug	/l 2.5	0.70	
2,2-Dichloropropane	ND	ug	/l 2.5	0.70	
1,2-Dibromoethane	ND	ug	/l 2.0	0.65	
1,3-Dichloropropane	ND	ug	/I 2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug	/l 2.5	0.70	
Bromobenzene	ND	ug	/l 2.5	0.70	
n-Butylbenzene	ND	ug	/l 2.5	0.70	
sec-Butylbenzene	ND	ug	/l 2.5	0.70	
tert-Butylbenzene	ND	ug	/l 2.5	0.70	

Project Name:	18-46 DECATUR
Project Number:	18-46 DECATUR

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	10/04/19 08:22
Analyst:	AD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lab	for sample(s): 01-06	Batch:	WG1292323-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Surrogate	%Recovery Qualifie	Acceptance Criteria
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	94	70-130
Dibromofluoromethane	97	70-130

		Qual	%Recovery	Qual	%Recovery Limits	RPD	RP. Qual Lim	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch:	WG1292323-3	WG1292323-4			
Methylene chloride	94		89		70-130	5	20)
1,1-Dichloroethane	110		99		70-130	11	20)
Chloroform	89		80		70-130	11	20)
Carbon tetrachloride	84		77		63-132	9	20)
1,2-Dichloropropane	110		99		70-130	11	20)
Dibromochloromethane	91		86		63-130	6	20)
1,1,2-Trichloroethane	100		94		70-130	6	20)
Tetrachloroethene	98		88		70-130	11	20)
Chlorobenzene	94		88		75-130	7	20)
Trichlorofluoromethane	80		76		62-150	5	20)
1,2-Dichloroethane	88		84		70-130	5	20)
1,1,1-Trichloroethane	78		74		67-130	5	20)
Bromodichloromethane	87		82		67-130	6	20)
trans-1,3-Dichloropropene	84		79		70-130	6	20)
cis-1,3-Dichloropropene	87		82		70-130	6	20)
1,1-Dichloropropene	94		89		70-130	5	20)
Bromoform	89		86		54-136	3	20)
1,1,2,2-Tetrachloroethane	96		92		67-130	4	20	J
Benzene	96		89		70-130	8	20	J
Toluene	100		92		70-130	8	20)
Ethylbenzene	100		89		70-130	12	20)
Chloromethane	120		110		64-130	9	20)
Bromomethane	82		74		39-139	10	20)

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): (01-06 Batch:	WG1292323-3	WG1292323-4			
Vinyl chloride	100		94		55-140	6		20
Chloroethane	92		80		55-138	14		20
1,1-Dichloroethene	94		89		61-145	5		20
trans-1,2-Dichloroethene	98		90		70-130	9		20
Trichloroethene	91		85		70-130	7		20
1,2-Dichlorobenzene	100		94		70-130	6		20
1,3-Dichlorobenzene	100		91		70-130	9		20
1,4-Dichlorobenzene	98		90		70-130	9		20
Methyl tert butyl ether	76		71		63-130	7		20
p/m-Xylene	95		90		70-130	5		20
o-Xylene	95		90		70-130	5		20
cis-1,2-Dichloroethene	91		94		70-130	3		20
Dibromomethane	89		84		70-130	6		20
1,2,3-Trichloropropane	99		99		64-130	0		20
Acrylonitrile	120		120		70-130	0		20
Styrene	95		90		70-130	5		20
Dichlorodifluoromethane	76		72		36-147	5		20
Acetone	100		100		58-148	0		20
Carbon disulfide	94		90		51-130	4		20
2-Butanone	100		94		63-138	6		20
Vinyl acetate	110		110		70-130	0		20
4-Methyl-2-pentanone	90		91		59-130	1		20
2-Hexanone	88		91		57-130	3		20
2-Hexanone	88		91		57-130	3		20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-06 Batch:	WG1292323-3	WG1292323-4		
Bromochloromethane	96		92		70-130	4	20
2,2-Dichloropropane	81		76		63-133	6	20
1,2-Dibromoethane	90		89		70-130	1	20
1,3-Dichloropropane	96		92		70-130	4	20
1,1,1,2-Tetrachloroethane	92		86		64-130	7	20
Bromobenzene	95		86		70-130	10	20
n-Butylbenzene	100		94		53-136	6	20
sec-Butylbenzene	98		91		70-130	7	20
tert-Butylbenzene	80		76		70-130	5	20
o-Chlorotoluene	96		92		70-130	4	20
p-Chlorotoluene	97		90		70-130	7	20
1,2-Dibromo-3-chloropropane	89		86		41-144	3	20
Hexachlorobutadiene	92		87		63-130	6	20
Isopropylbenzene	94		89		70-130	5	20
p-Isopropyltoluene	94		90		70-130	4	20
Naphthalene	78		76		70-130	3	20
n-Propylbenzene	97		92		69-130	5	20
1,2,3-Trichlorobenzene	86		82		70-130	5	20
1,2,4-Trichlorobenzene	88		81		70-130	8	20
1,3,5-Trimethylbenzene	96		90		64-130	6	20
1,2,4-Trimethylbenzene	100		88		70-130	13	20
1,4-Dioxane	100		110		56-162	10	20
p-Diethylbenzene	91		86		70-130	6	20

Project Name: 18-46 DECATUR Project Number: 18-46 DECATUR

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06 Batch:	WG1292323-3	WG1292323-4				
p-Ethyltoluene	94		90		70-130	4		20	
1,2,4,5-Tetramethylbenzene	85		79		70-130	7		20	
Ethyl ether	98		91		59-134	7		20	
trans-1,4-Dichloro-2-butene	110		110		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	92	92	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	96	94	70-130
Dibromofluoromethane	97	96	70-130

Matrix Spike Analysis Batch Quality Control

DECATUR

Project Number: 18-46 DECATUR

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2	- Westborough	Lab Assoc	iated sample(s): 01-06 QC	Batch ID:	WG12923	23-6 WG1292	2323-7	QC Sample	e: L1944	4820-02	Client ID:
Methylene chloride	ND	10	10	100		9.7	97		70-130	3		20
1,1-Dichloroethane	ND	10	10	100		9.8	98		70-130	2		20
Chloroform	ND	10	9.7	97		9.2	92		70-130	5		20
Carbon tetrachloride	ND	10	8.6	86		8.7	87		63-132	1		20
1,2-Dichloropropane	ND	10	11	110		10	100		70-130	10		20
Dibromochloromethane	ND	10	9.2	92		9.2	92		63-130	0		20
1,1,2-Trichloroethane	ND	10	9.9	99		9.9	99		70-130	0		20
Tetrachloroethene	22	10	28	60	Q	30	80		70-130	7		20
Chlorobenzene	ND	10	9.0	90		9.3	93		75-130	3		20
Trichlorofluoromethane	ND	10	7.6	76		8.0	80		62-150	5		20
1,2-Dichloroethane	ND	10	9.3	93		8.9	89		70-130	4		20
1,1,1-Trichloroethane	ND	10	8.4	84		8.5	85		67-130	1		20
Bromodichloromethane	ND	10	9.1	91		8.9	89		67-130	2		20
trans-1,3-Dichloropropene	ND	10	8.0	80		8.0	80		70-130	0		20
cis-1,3-Dichloropropene	ND	10	8.1	81		7.9	79		70-130	2		20
1,1-Dichloropropene	ND	10	8.9	89		9.5	95		70-130	7		20
Bromoform	ND	10	8.8	88		8.7	87		54-136	1		20
1,1,2,2-Tetrachloroethane	ND	10	9.5	95		9.5	95		67-130	0		20
Benzene	ND	10	9.7	97		9.4	94		70-130	3		20
Toluene	ND	10	9.2	92		9.7	97		70-130	5		20
Ethylbenzene	ND	10	9.0	90		9.5	95		70-130	5		20
Chloromethane	ND	10	13	130		13	130		64-130	0		20
Bromomethane	ND	10	8.0	80		7.7	77		39-139	4		20

Matrix Spike Analysis Batch Quality Control

Project Name:	18-46 DECATUR
Project Number:	18-46 DECATUR

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	, RPD		RPD Limits
Volatile Organics by GC/MS MW-2	- Westborough	Lab Assoc	iated sample(s): 01-06 QC	Batch ID: WG1292	323-6 WG129	2323-7 QC Samp	le: L194	4820-02	Client ID:
Vinyl chloride	ND	10	11	110	11	110	55-140	0		20
Chloroethane	ND	10	9.0	90	8.2	82	55-138	9		20
1,1-Dichloroethene	ND	10	9.5	95	9.5	95	61-145	0		20
trans-1,2-Dichloroethene	ND	10	9.7	97	9.5	95	70-130	2		20
Trichloroethene	ND	10	9.2	92	9.1	91	70-130	1		20
1,2-Dichlorobenzene	ND	10	8.9	89	9.5	95	70-130	7		20
1,3-Dichlorobenzene	ND	10	8.8	88	9.4	94	70-130	7		20
1,4-Dichlorobenzene	ND	10	8.7	87	9.0	90	70-130	3		20
Methyl tert butyl ether	ND	10	7.9	79	7.5	75	63-130	5		20
p/m-Xylene	ND	20	18	90	19	95	70-130	5		20
o-Xylene	ND	20	18	90	19	95	70-130	5		20
cis-1,2-Dichloroethene	ND	10	9.8	98	9.7	97	70-130	1		20
Dibromomethane	ND	10	9.3	93	9.1	91	70-130	2		20
1,2,3-Trichloropropane	ND	10	9.9	99	9.8	98	64-130	1		20
Acrylonitrile	ND	10	13	130	12	120	70-130	8		20
Styrene	ND	20	17	85	18	90	70-130	6		20
Dichlorodifluoromethane	ND	10	6.9	69	7.5	75	36-147	8		20
Acetone	ND	10	12	120	11	110	58-148	9		20
Carbon disulfide	ND	10	9.8	98	10	100	51-130	2		20
2-Butanone	ND	10	12	120	10	100	63-138	18		20
Vinyl acetate	ND	10	9.4	94	9.6	96	70-130	2		20
4-Methyl-2-pentanone	ND	10	9.9	99	9.5	95	59-130	4		20
2-Hexanone	ND	10	9.3	93	9.1	91	57-130	2		20

Matrix Spike Analysis Batch Quality Control

Project Name:	18-46 DECATUR
Project Number:	18-46 DECATUR

 Lab Number:
 L1944820

 Report Date:
 10/07/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2	- Westborough	Lab Assoc	iated sample(s): 01-06 QC	CBatch ID: \	VG12923	23-6 WG1292	2323-7	QC Sample	: L194	4820-02	Client ID:
Bromochloromethane	ND	10	9.6	96		9.4	94		70-130	2		20
2,2-Dichloropropane	ND	10	6.1	61	Q	6.2	62	Q	63-133	2		20
1,2-Dibromoethane	ND	10	9.1	91		9.0	90		70-130	1		20
1,3-Dichloropropane	ND	10	9.6	96		9.5	95		70-130	1		20
1,1,1,2-Tetrachloroethane	ND	10	8.7	87		9.0	90		64-130	3		20
Bromobenzene	ND	10	8.9	89		9.1	91		70-130	2		20
n-Butylbenzene	ND	10	8.8	88		9.5	95		53-136	8		20
sec-Butylbenzene	ND	10	8.6	86		9.6	96		70-130	11		20
tert-Butylbenzene	ND	10	7.2	72		7.8	78		70-130	8		20
o-Chlorotoluene	ND	10	8.8	88		9.4	94		70-130	7		20
p-Chlorotoluene	ND	10	8.7	87		9.1	91		70-130	4		20
1,2-Dibromo-3-chloropropane	ND	10	8.3	83		8.8	88		41-144	6		20
Hexachlorobutadiene	ND	10	8.0	80		9.0	90		63-130	12		20
Isopropylbenzene	ND	10	8.4	84		9.2	92		70-130	9		20
p-Isopropyltoluene	ND	10	8.3	83		9.2	92		70-130	10		20
Naphthalene	ND	10	7.4	74		7.5	75		70-130	1		20
n-Propylbenzene	ND	10	8.7	87		9.5	95		69-130	9		20
1,2,3-Trichlorobenzene	ND	10	8.0	80		8.3	83		70-130	4		20
1,2,4-Trichlorobenzene	ND	10	7.6	76		8.0	80		70-130	5		20
1,3,5-Trimethylbenzene	ND	10	8.5	85		9.2	92		64-130	8		20
1,2,4-Trimethylbenzene	ND	10	8.5	85		9.0	90		70-130	6		20
1,4-Dioxane	ND	500	540	108		560	112		56-162	4		20
p-Diethylbenzene	ND	10	8.2	82		8.8	88		70-130	7		20

Matrix Spike Analysis

Project Name:	18-46 DECATUR	Batch Quality Control	Lab Number:	L1944820
Project Number:	18-46 DECATUR		Report Date:	10/07/19

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2	- Westborough La	ab Assoc	iated sample(s	s): 01-06 Q	C Batch ID:	WG12923	323-6 WG1292	2323-7	QC Sample	: L1944	1820-02	Client ID:
p-Ethyltoluene	ND	10	8.5	85		9.2	92		70-130	8		20
1,2,4,5-Tetramethylbenzene	ND	10	7.2	72		7.9	79		70-130	9		20
Ethyl ether	ND	10	10	100		9.8	98		59-134	2		20
trans-1,4-Dichloro-2-butene	ND	10	8.5	85		10	100		70-130	16		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	96	94	70-130
4-Bromofluorobenzene	92	94	70-130
Dibromofluoromethane	98	96	70-130
Toluene-d8	97	99	70-130

Serial_No:10071911:30 *Lab Number:* L1944820 *Report Date:* 10/07/19

Sample Receipt and Container Information


Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН		Pres	Seal	Date/Time	Analysis(*)
L1944820-01A	Vial HCl preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-01B	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-01C	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-02A	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-02A1	Vial HCI preserved	А	NA		2.3	Υ	Absent		NYTCL-8260(14)
L1944820-02A2	Vial HCI preserved	А	NA		2.3	Υ	Absent		NYTCL-8260(14)
L1944820-02B	Vial HCI preserved	А	NA		2.3	Υ	Absent		NYTCL-8260(14)
L1944820-02B1	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-02B2	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-02C	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-02C1	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-02C2	Vial HCI preserved	А	NA		2.3	Υ	Absent		NYTCL-8260(14)
L1944820-03A	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-03B	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-03C	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-04A	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-04B	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-04C	Vial HCI preserved	А	NA		2.3	Υ	Absent		NYTCL-8260(14)
L1944820-05A	Vial HCI preserved	А	NA		2.3	Υ	Absent		NYTCL-8260(14)
L1944820-05B	Vial HCI preserved	А	NA		2.3	Υ	Absent		NYTCL-8260(14)
L1944820-05C	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-06A	Vial HCI preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)
L1944820-06B	Vial HCl preserved	А	NA		2.3	Y	Absent		NYTCL-8260(14)

Serial_No:10071911:30 *Lab Number:* L1944820 *Report Date:* 10/07/19

Container Information

Container ID Container Type

Initial Final Temp Cooler pH pH deg C

Temp deg C Pres Seal Frozen Date/Time

Analysis(*)

Project Name: 18-46 DECATUR

Project Number: 18-46 DECATUR

Lab Number: L1944820

Report Date: 10/07/19

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Report Format: DU Report with 'J' Qualifiers

Lab Number:	L1944820				
Report Date:	10/07/19				

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

 Lab Number:
 L1944820

 Report Date:
 10/07/19

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:10071911:30

Westborough, MA 01581 8 Walkup Dr. 320 Forbes Blvd B Walkup Dr. 320 Forbes Blvd					and a strain of the second sec		9/27/19			ALPHA Job #		
TEL: 508-898-9220 TEL: 508-822-9300 Project Name: B-46 FAX: 508-898-9193 FAX: 508-822-3288 Project Location: Queueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	whor			Deliverable	A S (1 File)		P-B ruIS (4 File	XL.s	Billing Information			
Client: TEAR Envi (Use Project name as Projec	(Use Project name as Project #)					Requireme		Part 375	Please	sal Site Information Identify below location of		
ALPHAQuote #: Phone: Turn-Around Time Fax: Standard X Email: Mahued & tenen-Qau, co-Rush (only if pre approved)	Turn-Around Time Standard X Due Date:					Standards estricted Use nrestricted Us Sewer Discha		Dispos	applicable disposal facilities. Disposal Facility: NJ NY Other:			
These samples have been previously analyzed by Alpha					ANALYSIS				Samp	one T		
Please specify Metals or TAL.					r				Prese	ab to do a ervation a b to do B se Specify below) t		
ALPHA Lab ID (Lab Use Only) Sample ID	Sample ID Collection Time		Sample Matrix						Sampl	Sample Specific Comments		
44870 -01 MW-1 9 -07 MW-2		1345	66	AK-	¥.				_	3		
- 03 MU-2 DUP - 02 NW-2 MS		1147		-	Ý X				_	3		
- 02 MW-2 MSD - 04 MW-3		1152			XX					3 3		
- of Field Black - of Trip Black	1	1325	1	1	×					3		
A = None P = Plastic B = HCI A = Amber Glass Mansfield: Certification No: M C = HNO3 V = Vial D = H2SO4 G = Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type Preservative					not not	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are		
E = NaOH B = Bacteria Cup F = MeOH C = Cube G = NaHSO4 O = Other H = Na ₂ S ₂ O3 E = Encore K/E = Zn Ac/NaOH D = BOD Bottle O = Other P3 .		Date/ 9/27/10 9/27/10 2/12/19	9:46	Criz. Alan	Received B S. A.C. a. Kigg		Date/Time 9/27/19 9:40 9/27/19 2130			resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S		