18-46 Decatur Street Periodic Review Report

18-46 Decatur Street, Ridgewood, Queens, New York Block 3579, Lot 45 NYSDEC BCP Site Number: C241194

Prepared for:

18-46 Decatur Street Holding LLC 175 Blake Avenue Brooklyn, NY 11212

For Submittal to:

NYS Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau B 625 Broadway, 12th Floor Albany, NY 12233-7014

Prepared by:

Matthew M. Carroll, PE

&

Tenen Environmental, LLC 121 West 27th Street, Suite 702 New York, NY 10001

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	BACKGROUND AND SETTING	2
2.1		
2.2	•	
2.3		
2.4	•	
3.0	ENGINEERING AND INSTITUTIONAL CONTROLS	4
3.1	Engineering Controls	4
3	3.1.1 Soil Cover System	
3	3.1.2 Sub-Slab Depressurization System (SSDS)	4
3	3.1.3 Soil Vapor Extraction System (SVE)	4
3.2	Institutional Controls	5
3	3.2.1 Compliance with SMP	5
3	3.2.2 Use Restrictions	5
4.0	GROUNDWATER SAMPLING	6
5	5.1 2019 Groundwater Sampling	6
5	5.1.1 Methodology	6
5	5.1.2 Findings	7
5.0	CONCLUSIONS AND RECOMMENDATIONS	8
5.1	Engineering and Institutional Controls	8
5.2		
5.3	<u> </u>	
6.0	CERTIFICATIONS	9
7.0	REFERENCES	

Periodic Review Report 18-46 Decatur Street – Ridgewood, Queens, New York

Figures

Figure 1 – Site Location

Figure 2 – Site Layout

Figure 3 – Groundwater Monitoring Well Locations

Figure 4 – Groundwater Flow Map

Figure 5 – Contaminant Distribution in Groundwater

Table

Table 1 – Volatile Organic Compounds (VOCs) in Groundwater, March 2022

Appendices

Appendix 1 – IC/EC Certifications and Checklists

Appendix 2 – Laboratory Reports and DUSR

Appendix 3 – Groundwater Trends

1.0 EXECUTIVE SUMMARY

On behalf of 18-46 Decatur Street Holding LLC (the Remedial Party), Matthew M. Carroll, P.E. and Tenen Environmental, LLC (Tenen) have prepared this Periodic Review Report (PRR) for the property located at 18-46 Decatur Street (Block 3579, Lot 45) in the Ridgewood neighborhood of the borough of Queens, New York (the Site). The Site is 0.11-acre, rectangular parcel located approximately 100 feet south of the intersection of Decatur Street and Forest Avenue in Queens Community Board 5.

The Site is currently improved with a two-story warehouse building with offices on the second floor. The warehouse is currently used by Forest Builders Supply, an outpost for construction materials, as storage for overstock materials. There is no basement beneath the building, which was reportedly constructed in 1953. The building floor slab consists of approximately six inches of concrete. Surrounding properties include commercial and residential use buildings. A Site location map is included in Figure 1 and current Site uses are shown on Figure 2.

This document has been prepared in accordance with the Site Management Plan (SMP) dated December 2018 and approved by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Site # C214149, which was executed on February 16, 2017. A Certificate of Completion was issued for the Site on December 20, 2018.

The work completed and reported in this PRR complies with the SMP and includes the following: groundwater sampling; monthly inspections of institutional and engineering controls; and, quarterly inspections of institution and engineering controls. The Site is currently in compliance with the material elements of the SMP. The remedial program, as detailed in the SMP, continues to be effective.

Based on the approved SMP and an email dated October 16, 2019, the sampling events described in this PRR complete the SMP requirements for a total of one annual groundwater sampling event with low or asymptotic concentrations at acceptable levels and monthly operations, maintenance and monitoring of the sub-slab depressurization system (SSDS) and soil vapor extraction system (SVE).

2.0 BACKGROUND AND SETTING

This section includes a description of the Site, and summaries of Site characteristics, historic operations and regulatory interactions.

2.1 Site Description

The Site is located at 18-46 Decatur Street in the Ridgewood neighborhood of Queens, New York. The site is a 0.11-acre rectangular shaped parcel located approximately 100 feet south of the intersection of Decatur Street and Forest Avenue in Queens Community Board 5. The Site is currently improved with a two-story warehouse building with offices on the second floor. The warehouse is currently used by Forest Builders Supply, an outpost for construction materials, as storage for overstock materials. The Site is zoned as M1-4D, a manufacturing district typically including light industrial uses. The surrounding properties include mixed-use commercial and residential use buildings.

The Site is identified as Queens County Block 3579, Lot 45 on the New York City Tax Map. The Site is bounded by a two-story multi-family walk-up building to the north, a two-family building to the south, railroad tracks followed by Evergreen Park to the east, and a two-family building and an industrial/manufacturing building to the west. A Site Location Map is included as Figure 1.

2.2 Geological Setting

According to the United States Geological Survey (USGS) Brooklyn-NY 7.5 Minute Topographic Quadrangle (2010), the Site elevation is approximately 80 feet above mean sea level (MSL) (NAVD). Based on the USGS map and observation of the local topography, the Site and surrounding area are generally flat with a slight slope downward from west to southwest.

The Site is underlain by approximately two-feet of light brown to dark brown medium sands and fill material, followed by glacial till, including light and dark brown fine to medium sand with cobbles. Prior boring logs completed during a 2016 Phase II Environmental Site Assessment were generally consistent with Tenen's finding. Refusals were encountered at all boring locations, likely due to the presence of cobles and boulders in the glacial till.

The depth to groundwater is approximately 67 feet below grade surface. Groundwater monitoring wells are shown on Figure 3. Based on the well survey, the groundwater flow is generally to the south, and is shown on Figure 4.

2.3 Historic Operations

The Site is currently used as a warehouse for building materials. Based on a review of historic information, the Site was used as a dry cleaner from at least 1991 to 2015. The former occupant of the Site, Full Dress Formals, was identified as a Small Quantity Generator of Hazardous Wastes on the regulatory database, with no violations. Prior uses include a warehouse of waterproofing materials, a knitting mill, wagon and auto storage and offices.

2.4 Regulatory Background

BHMQ Realty LLC and the New York State Department of Environmental Conservation (NYSDEC) entered into a Brownfield Cleanup Agreement (BCA) on February 16, 2017, pursuant to which BHMQ Realty LLC agreed to remediate the 0.11-acre property located at 18-46 Decatur Street, Queens, NY. The Site was managed and remediated in accordance with the BCA and the NYSDEC-approved Remedial Action Work Plan (RAWP) dated April 9, 2018 prepared by Tenen.

After completion of the remedial work described in the RAWP, a Final Engineering Report (FER) was prepared by Tenen and certified by Matthew Carroll, P.E. on December 5, 2018. In order to manage residual contamination at the Site, Tenen prepared a Site Management Plan (SMP) dated December 5, 2018 and subsequently approved by the NYSDEC. The work described in this Annual Environmental Compliance Report was completed in accordance with the SMP.

A change of ownership notification was issued by the NYSDEC on June 18, 2020. A post transfer notice was issued on July 27, 2020, indicating the new owner of the Site is 18-46 Decatur Street Holding LLC.

3.0 ENGINEERING AND INSTITUTIONAL CONTROLS

Several engineering controls (ECs) and institutional controls (ICs) are present at the Site to protect human health and the environment. A description of these controls and the current status of each are provided below. The Institutional and Engineering Controls Certification Form is included in Appendix 1.

3.1 Engineering Controls

3.1.1 Soil Cover System

Exposure to remaining contamination at the Site is prevented by a cover system. The cover system is comprised of a minimum of six inches of concrete building slab.

Current status: The soil cover system remains in place with no observed breach. The composite cover system is a permanent control and the quality and integrity of this system has been inspected annually as per the SMP. The inspection checklist is included in Appendix 1.

3.1.2 Sub-Slab Depressurization System (SSDS)

An active SSDS was installed to minimize the potential for vapor intrusion. The SSDS depressurizes below the current building slab as compared to the building environment. The SSDS consists of four suction pits installed beneath the building slab connected to a fan on the roof via cast iron (interior) and PVC (exterior) piping. The SSDS will continue to actively operate and will not be shut down unless written approval is obtained from the NYSDEC and NYSOH under a clear demonstration that the subsurface soil vapor conditions no longer present a potential impact to indoor air quality. Additional information on the SSDS is included in the SMP.

Current status: The active SSDS is functioning as designed. Monthly and quarterly inspection forms and checklists are included in Appendix 1.

3.1.3 Soil Vapor Extraction System (SVE)

The SVE System consists of three two-inch wells installed to remove remaining PCE contamination from the soil near the building foundations. The SVE system also addresses PCE in soil vapor and prevents off-Site migration of soil vapors. The three two-inch vertical SVE wells were constructed of four feet of slotted (0.020 inch) schedule 40 PVC screen. The extraction wells were installed to a depth of four feet below grade (ft-bg) and placed in a two-foot diameter gravel base. The extraction wells are plumbed into the same piping installed for the SSDS. The discharge location for the blower is located on the building roof, consistent with the NYSDEC DAR-1 guidance. The SVE system will continue to actively operate and will not be shut down unless written approval is obtained from the NYSDEC under a clear demonstration that the subsurface soil vapor conditions no longer present a potential impact to indoor air quality.

Current status: The SVE system is functioning as designed. Monthly and quarterly inspection forms and checklists are included in Appendix 1.

3.2 Institutional Controls

3.2.1 Compliance with SMP

The following ICs are required to document compliance with the SMP:

- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner defined in the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP; and
- Operation, maintenance and monitoring (OM&M), inspection and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;

Current status: The Environmental Easement remains in place. All systems are effective and currently operational. ICs requiring annual monitoring of groundwater, OM&M of engineering controls, and inspections of the engineering controls have been completed with the acceptance of this report. The required monitoring and inspections have been completed as required in the SMP.

3.2.2 Use Restrictions

The following use restrictions were placed on the property, in accordance with the Environmental Easement and SMP:

- The property may only be used for commercial use;
- New York City code prohibits the use of groundwater for potable purposes;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The potential for vapor intrusion must be evaluated for any buildings developed in within the IC boundaries, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited.

Current status: The Site is used in accordance with all restrictions. Current site uses are shown on Figure 2.

4.0 GROUNDWATER SAMPLING

In March 2022, annual groundwater sampling was completed at the Site in accordance with the SMP. The NYSDEC approved of a reduction in groundwater sampling frequency from quarterly to annually in an e-mail dated October 16, 2019, noting that all other requirements of the SMP remain in effect.

The methodology and findings from the annual 2022 groundwater sampling are included below.

4.1 2022 Groundwater Sampling

4.1.1 *Methodology*

Three groundwater monitoring wells (MW-1 through MW-3) were sampled in accordance with the SMP. Samples were collected for analysis for VOCs in accordance with the Quality Assurance Project Plan (QAPP) included in the SMP. Groundwater monitoring was conducted on March 31, 2021. The monitoring well locations are shown on Figure 3.

As required by the SMP, the following procedure was implemented during each sampling event:

- Depth-to-water measurements were obtained from each well prior to sample collection.
- The equivalent of three well volumes of water was removed from each well prior to sampling.
- Low-flow sampling techniques were implemented for sample collection.
- Field instrumentation was employed to measure water temperature, pH, and turbidity at each sampled well. Monitoring of indicator parameters was employed in order to stabilize parameters before sample collection.
- All groundwater samples were placed in 40-milliliter vials provided by the laboratory. All sample containers were appropriately labeled and closed with no trapped air.
- Chain-of-custody documents were completed before shipment. The samples were placed in ice and secured in a cooler during shipment to the laboratory.
- All groundwater samples were analyzed at Alpha Analytical, Inc. (Alpha) for volatile organic compounds (VOCs) by EPA Method 8260. Alpha is certified by the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) as LABID 11148.

Groundwater results were compared to the Division of Water TOGS 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations — Class GA (Class GA Standards). The Class GA Standards represent levels that are protective of the groundwater as a source of drinking water; however, groundwater is not utilized as potable water at the Site. Potable water for the Site is supplied to the City of New York from upstate New York reservoirs. Specifics regarding sampling protocol can be found in the SMP.

A summary of groundwater analytical results for March 2022 sampling event is included on Figure 5. The concentrations of VOCs in groundwater from April 2021 are included in Table 1. Laboratory deliverables and a data usability summary report (DUSR) are included in Appendix

2.4.1.2 Findings

March 2022 Sampling Event

Groundwater samples were collected from monitoring wells MW-1, MW-2 and MW-3 for analysis of VOCs. Quality assurance/quality control samples were collected in accordance with the QAPP.

PCE was detected in all samples ranging in concentration from 11 micrograms per liter (ug/l) in MW-1 and MW-3 to 13 ug/l in the MW-2 duplicate sample (MW-2DUP). PCE was detected in exceedance of the Class GA Standard of 5 ug/l in all three sampling locations (MW-1, MW-2/MW-2-DUP and MW-3). No other VOCs were detected in exceedance of the Class GA Standards.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Engineering and Institutional Controls

An Institutional and Engineering Controls Certification Form and inspection checklists are included in Appendix 1.

Based on sampling results detailed in Sections 4, residual PCE contamination continues to be present in groundwater at low concentrations. The cover system, SSDS and SVE system are functioning as designed.

The cover system remains in place with no observed breaches or excavation below the cap. The active SSDS and SVE system are in working condition with no observations of compromised structural integrity.

5.2 Groundwater Monitoring

The most recent groundwater sampling indicated that residual PCE contamination associated with historic operations continues to be present in the groundwater, however, at low concentrations. Groundwater trends are included in Appendix 3. Based on the overall continued low concentrations, discontinuation of groundwater sampling is proposed.

5.3 Schedule

As noted above, based on the detected concentrations, groundwater sampling is proposed to be discontinued. ICs and ECs, including the SDSS and SVE system, will continue to be inspected on a monthly and quarterly basis as required by the SMP.

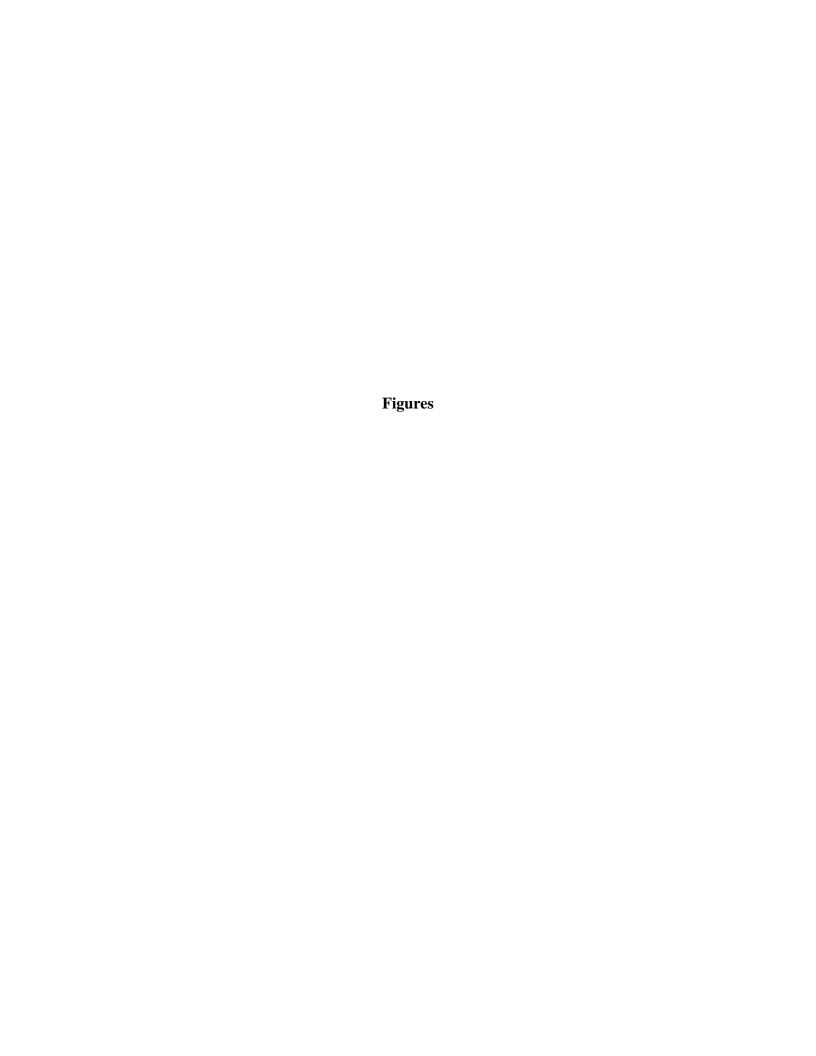
6.0 **CERTIFICATIONS**

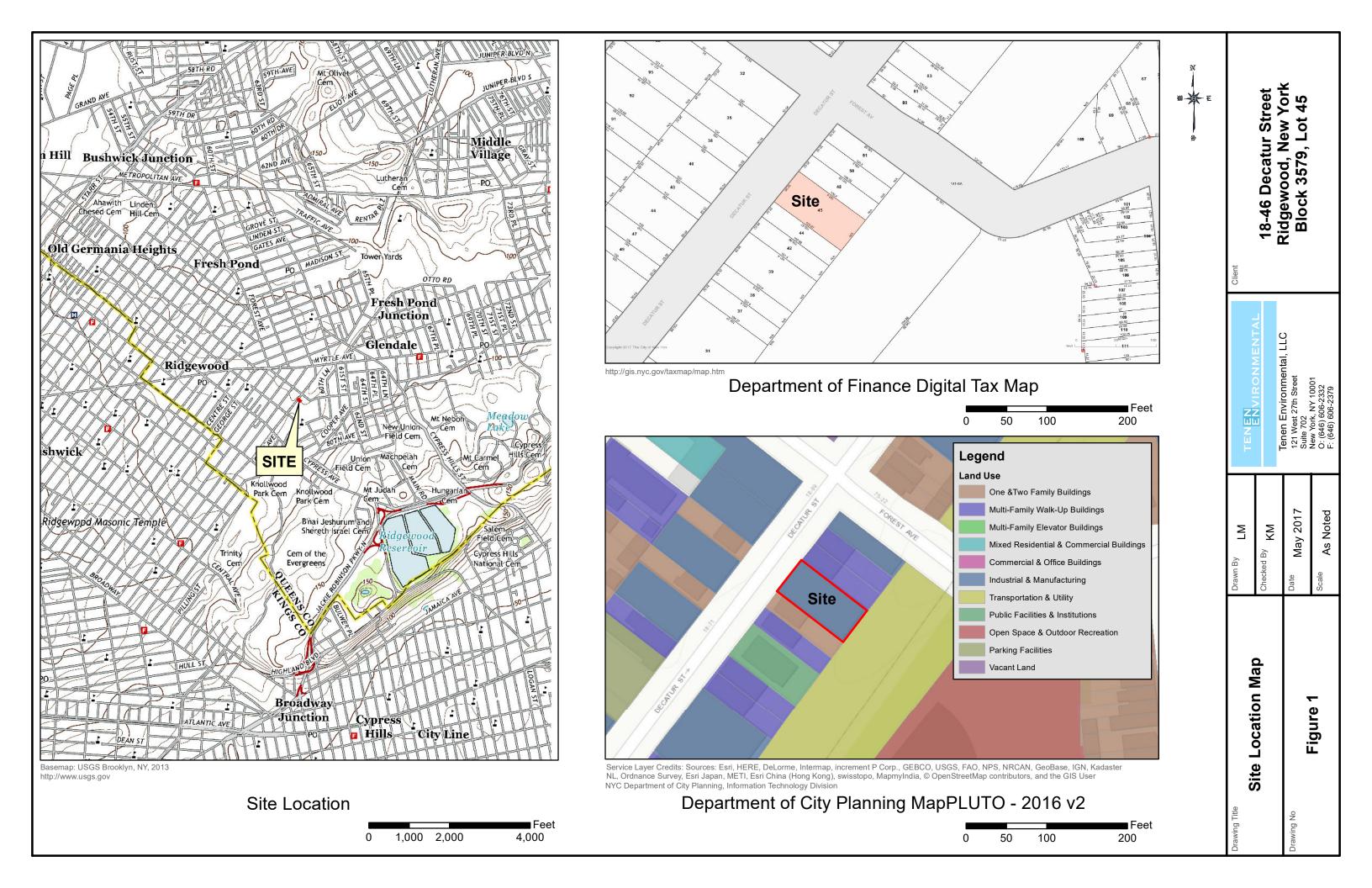
I, Matthew Carroll, am a Professional Engineer licensed in the State of New York. I certify that:

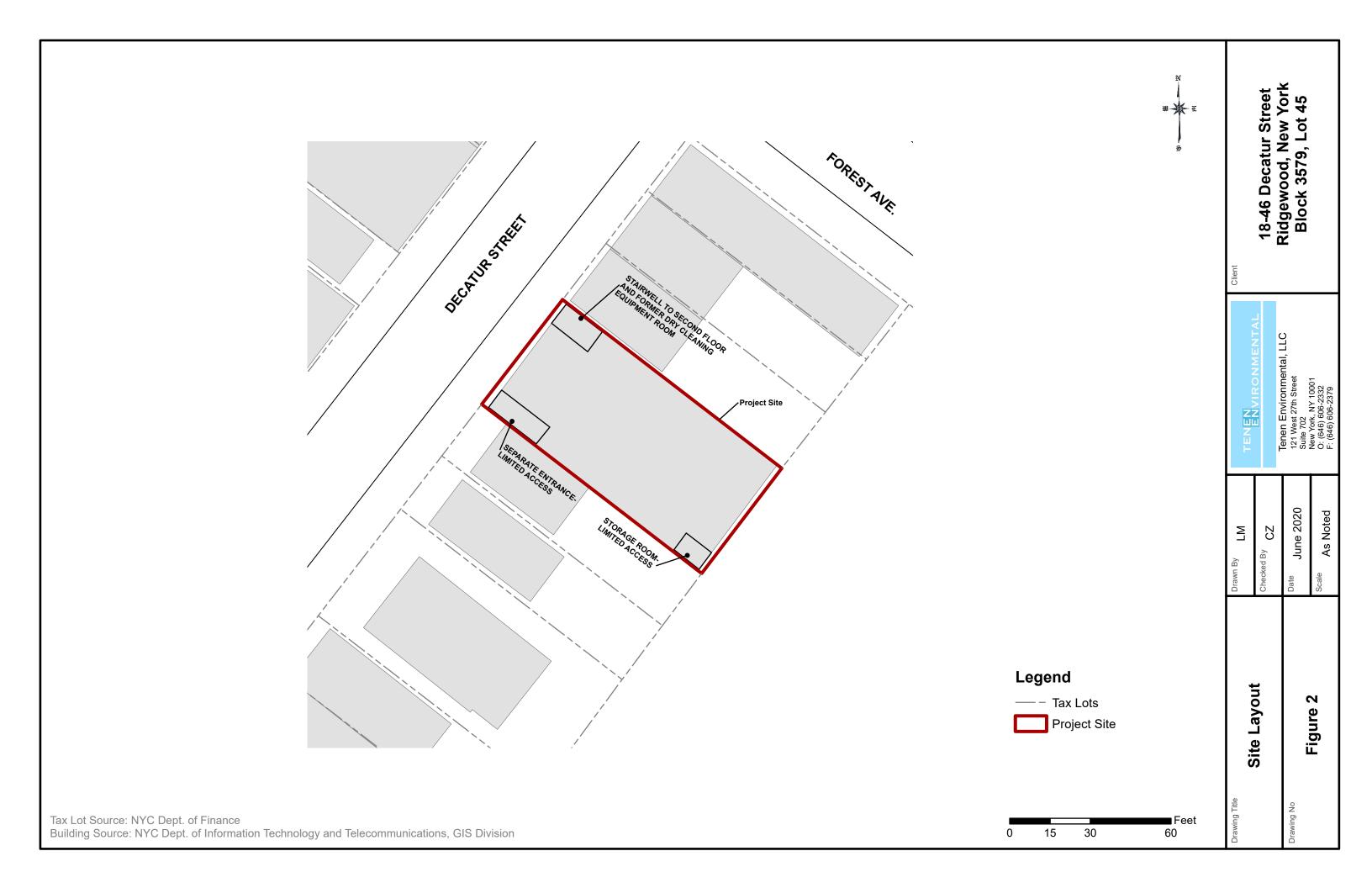
- 1. The discussion and interpretation of the groundwater sample analysis results are based on all sampling data collected to-date.
- 2. The engineering and institutional controls are either unchanged or are compliant with NYSDEC-approved modifications.
- 3. NYSDEC can access the property.
- 4. The engineering and institutional controls continue to be protective of human health and the environment and do not constitute a violation or failure to comply with the SMP and subsequent NYSDEC-approved modifications.

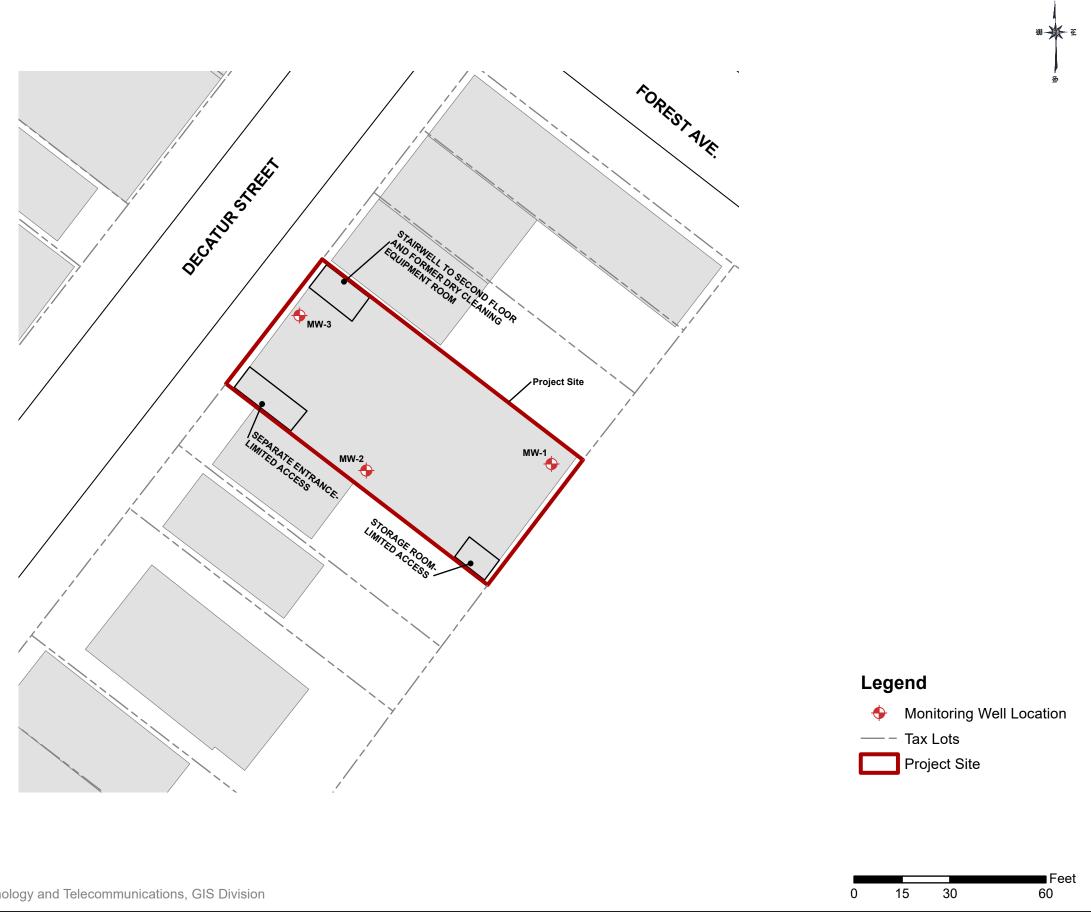
DRAFT			

Matthew M. Carroll


NYS PE License Number 091629


7.0 REFERENCES

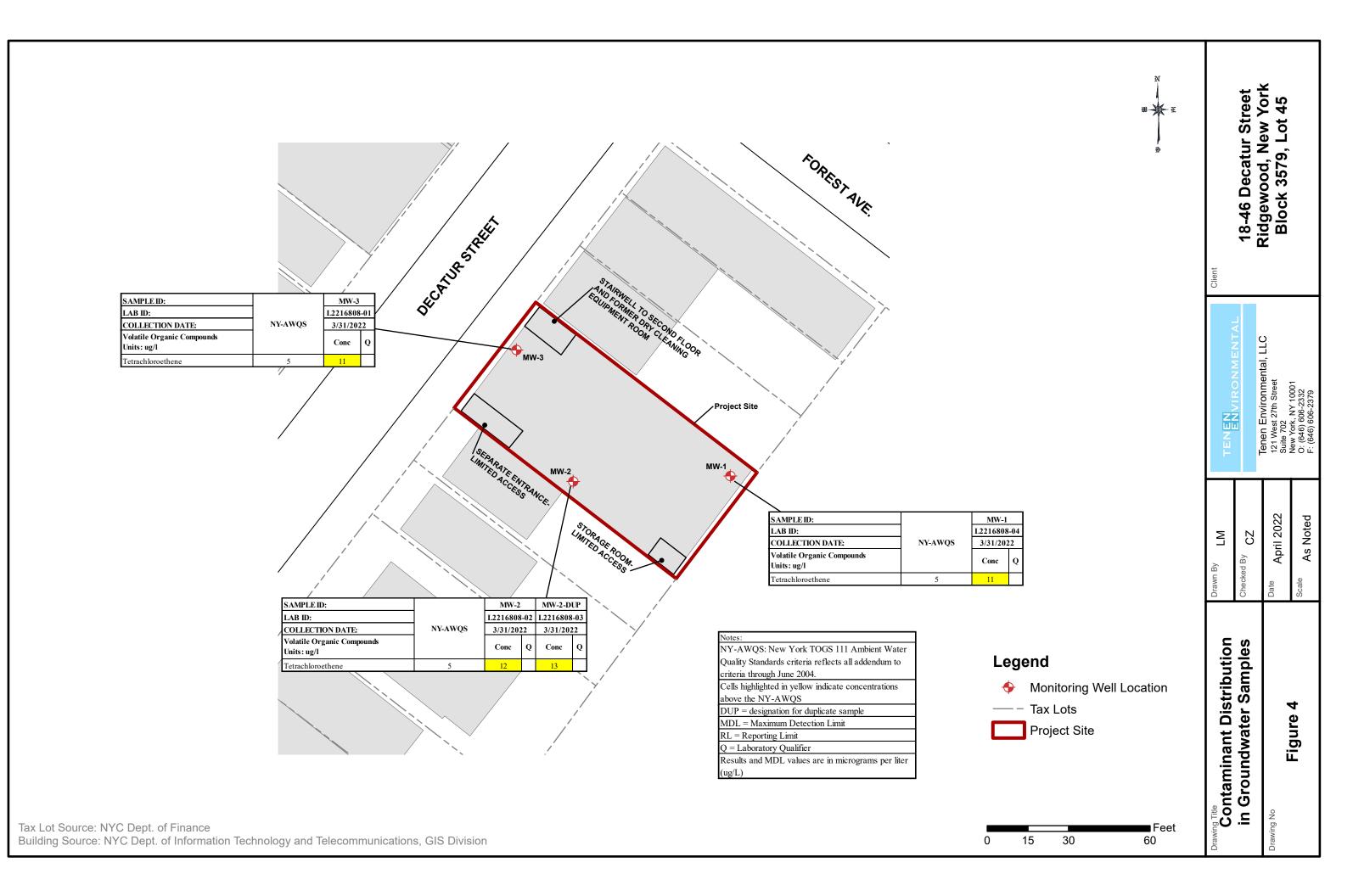

Site Management Plan, NYSDEC BCP Site No. C241194, Tenen Environmental LLC, December 2018.

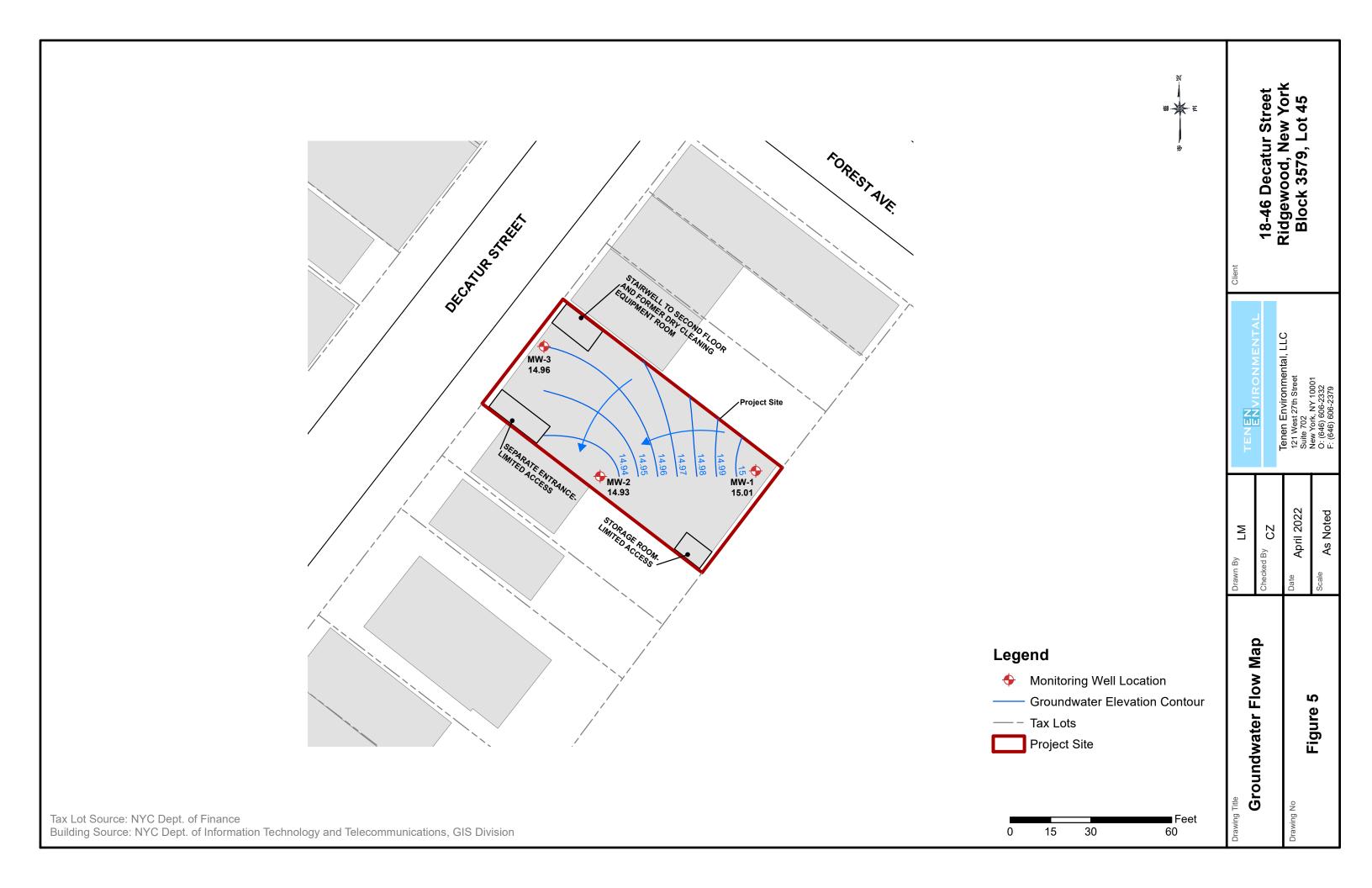

Environmental Easement, BMHQ Realty LLC, September 19, 2018.

Final Engineering Report, NYSDEC BCP Site No. C241194, Tenen Environmental LLC, December 2018.

18-46 Decatur Street Ridgewood, New York Block 3579, Lot 45

ENENVIRONMENTA Tenen Environmental, LLC 121 West 27th Street Suite 702. New York, NY 10001 O: (646) 606-2332 F: (646) 606-2379 Σ CZ


June 2020 As Noted


Figure 3

Groundwater Monitoring Well Locations

Tax Lot Source: NYC Dept. of Finance

Building Source: NYC Dept. of Information Technology and Telecommunications, GIS Division

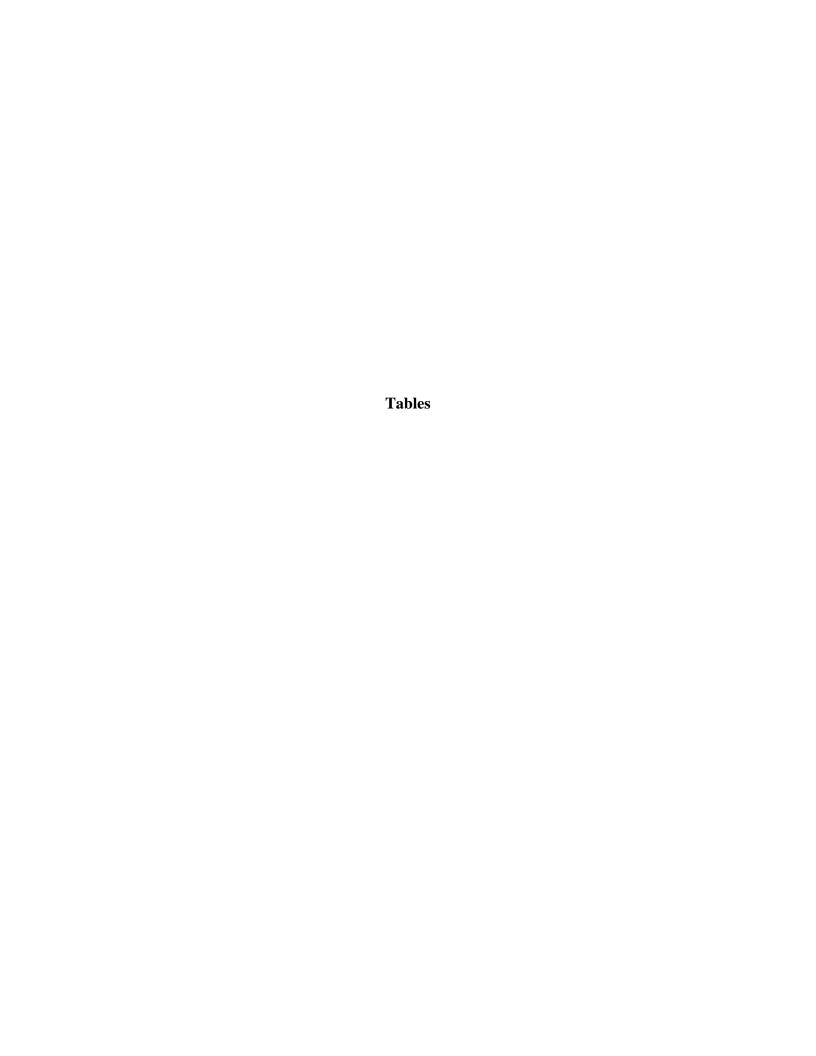


Table 1 - Volatile Organic Compounds in Groundwater 18-46 Decatur Street - Queens, NY

Mellyeline chloride				MW-1		MW-2		UP	MW-3		TRIP BLANK	
Volatic Organic Compounds Conc. Q Q Q Q Q Q Q Q Q									L2216808		L2216808	
Units Unit	AW		3/31/20	22	3/31/202	22	3/31/202	22	3/31/202	22	3/31/202	<u> 22</u>
Methydrochloride			Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Chloroform	5		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Carbon tetrachloride	5		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
12-Dichicropropage 1								U	0.7	U	0.7	U
Dibomochloromechane	5							U	0.13	U	0.13	U
11.2-Trickloroethane	1			_					0.14	U	0.14	U
Tetrachrorethene	<u> </u>	—							0.13	U	0.13	U
Chlorobenzene	5								11		0.18	U
12-Dichlorocethane			0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
II.1-Trichloroschane								U	0.7	U	0.7	U
Bromonichloromethane				_				U	0.13	U	0.13	U
Inans-1.3-Dichloropropene									0.7	U	0.7	U
Cis-1_3-Dichloropropene									0.19	U	0.19	U
13-Dichloropropene								U	0.10	U	0.10	U
Bromofrom								U	0.14	U	0.14	U
Indicate S	5		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Benzene								U	0.65	U	0.65	U
Toluene								U	0.17	U	0.17	U
Ethylbenzene	1			_				U	0.16	U	0.16	U
Chloromethane		—							0.7	U	0.7	U
Bromomethane		_						U	0.7	U	0.7	U
Vinyl chloride								U	0.7	U	0.7	U
I.1-Dichloroethene		_			0.07		0.07	U	0.07	U	0.07	U
trans-1,2-Dichloroethene 5 0.7 U 0.								U	0.7	U	0.7	U
Trichloroethene								U	0.17	U	0.17	U
1,2-Dichlorobenzene 3				+		_		_	0.7	U	0.7	U
1,3-Dichlorobenzene 3				_					0.22	J U	0.18	U
1.4-Dichlorobenzene 3		—		0					0.7	U	0.7	U
Methyl tert butyl ether								U	0.7	U	0.7	U
6-Xylene 5 0.7 U 0.7 <								U	0.7	U	0.7	U
Xylenes, Total	5		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
cis-1,2-Dichloroethene 5 0,7 U 1,1 U 1 U 1	5			_				U	0.7	U	0.7	U
1,2-Dichloroethene, Total								U	0.7	U	0.7	U
Dibromomethane									0.7	U	0.7	U
1,2,3-Trichloropropane		—	+						1	U	1	U
Acrylonitrile								U	0.7	U	0.7	U
Styrene								U	1.5	U	1.5	U
Acetone			0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
Carbon disulfide 60 1 U 1 U 1 U 1.9 U 1.1 U 1 0 2 2 2 <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>U</td><td>1</td><td>U</td><td>1</td><td>U</td></t<>					_			U	1	U	1	U
2-Butanone 50								U	1.5	U	1.5	U
Vinyl acetate 1 U 0				_		_			1.9	U	1.9	U
4-Methyl-2-pentanone		_	+						1.9	U	1.9	U
2-Hexanone 50					_			U	1	U	1	U
2,2-Dichloropropane 5 0.7 U 0.7 U 0.7 U 1,2-Dibromoethane 0.0006 0.65 U 0.65 U 0.65 U 1,3-Dichloropropane 5 0.7 U 0.7 U 0.7 U 1,1,1,2-Tetrachloroethane 5 0.7 U 0.7 U 0.7 U Bromobenzene 5 0.7 U 0.7 U 0.7 U Bromobenzene 5 0.7 U 0.7 U 0.7 U n-Butylbenzene 5 0.7 U 0.7 U 0.7 U sec-Butylbenzene 5 0.7 U 0.7	50				1			U	1	U	1	U
1,2-Dibromoethane	5		0.7	U	0.7	U	0.7	U	0.7	U	0.7	U
1,3-Dichloropropane	_			_				U	0.7	U	0.7	U
1,1,1,2-Tetrachloroethane		_						U	0.65	U	0.65	U
Bromobenzene 5 0.7 U 0.7 U 0.7 U n-Butylbenzene 5 0.7 U 0.7 U 0.7 U sec-Butylbenzene 5 0.7 U 0.7 U 0.7 U tert-Butylbenzene 5 0.7 U 0.7 U 0.7 U o-Chlorotoluene 5 0.7 U 0.7 U 0.7 U p-Chlorotoluene 5 0.7 U 0.7 U 0.7 U p-Chlorotoluene 5 0.7 U 0.7 U 0.7 U p-Chlorotoluene 5 0.7 U 0.7 U 0.7 U 1,2-Dibromo-3-chloropropane 0.04 0.7 U		_							0.7	U	0.7	U
n-Butylbenzene		_						U	0.7	U	0.7	U
sec-Butylbenzene 5 0.7 U 0.7 U 0.7 U ectr-Butylbenzene 5 0.7 U 0.7								U	0.7	U	0.7	U
tert-Butylbenzene 5 0.7 U 0.7								U	0.7	U	0.7	U
p-Chlorotoluene 5 0.7 U 0.7 U 0.7 U 1,2-Dibromo-3-chloropropane 0.04 0.7 U 0.7 </td <td>5</td> <td></td> <td>0.7</td> <td>U</td> <td></td> <td>U</td> <td></td> <td>U</td> <td>0.7</td> <td>U</td> <td>0.7</td> <td>U</td>	5		0.7	U		U		U	0.7	U	0.7	U
1,2-Dibromo-3-chloropropane 0.04 0.7 U		_						U	0.7	U	0.7	U
Hexachlorobutadiene 0.5 0.7 U 0.7								U	0.7	U	0.7	U
Isopropylbenzene								U	0.7	U	0.7	U
p-Isopropyltoluene 5 0.7 U 0.7 U 0.7 U Naphthalene 10 0.7 U 0.7 U 0.7 U n-Propylbenzene 5 0.7 U 0.7 U 0.7 U 1,2,3-Trichlorobenzene 5 0.7 U 0.7 U 0.7 U 1,2,4-Trichlorobenzene 5 0.7 U 0.7 U 0.7 U 1,3,5-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,2,4-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,4-Dioxane 61 U 61 U 61 U p-Diethylbenzene 0.7 U 0.7 U 0.7 U		—							0.7	U	0.7	U
Naphthalene 10 0.7 U 0.7 U 0.7 U n-Propylbenzene 5 0.7 U 0.7 U 0.7 U 1,2,3-Trichlorobenzene 5 0.7 U 0.7 U 0.7 U 1,2,4-Trichlorobenzene 5 0.7 U 0.7 U 0.7 U 1,3,5-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,2,4-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,4-Dioxane 61 U 61 U 61 U p-Diethylbenzene 0.7 U 0.7 U 0.7 U		_						U	0.7	U	0.7	U
n-Propylbenzene 5 0.7 U 0.7 U 0.7 U 1,2,3-Trichlorobenzene 5 0.7 U 0.7 U 0.7 U 1,2,4-Trichlorobenzene 5 0.7 U 0.7 U 0.7 U 1,3,5-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,2,4-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,4-Dioxane 61 U 61 U 61 U p-Diethylbenzene 0.7 U 0.7 U 0.7 U								U	0.7	U	0.7	U
1,2,4-Trichlorobenzene 5 0.7 U 0.7 U 0.7 U 1,3,5-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,2,4-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,4-Dioxane 61 U 61 U 61 U p-Diethylbenzene 0.7 U 0.7 U 0.7 U	5				0.7		0.7	U	0.7	U	0.7	U
1,3,5-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,2,4-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,4-Dioxane 61 U 61 U 61 U p-Diethylbenzene 0.7 U 0.7 U 0.7 U								U	0.7	U	0.7	U
1,2,4-Trimethylbenzene 5 0.7 U 0.7 U 0.7 U 1,4-Dioxane 61 U 61 U 61 U p-Diethylbenzene 0.7 U 0.7 U 0.7 U		_						U	0.7	U	0.7	U
1,4-Dioxane 61 U 61 U 61 U p-Diethylbenzene 0.7 U 0.7 U 0.7 U								U	0.7	U	0.7	U
p-Diethylbenzene 0.7 U 0.7 U 0.7 U		_						U	0.7	U	0.7	U
		—							61 0.7	U	0.7	U
p-Ethyltoluene 0.7 U 0.7 U 0.7 U		_		_				U	0.7	U	0.7	U
· '								U	0.54	U	0.54	U
								U	0.7	U	0.7	Ü
trans-1,4-Dichloro-2-butene 5 0.7 U 0.7 U 0.7 U	5			U		U		U	0.7	U	0.7	U
Total VOCs 119.52 - 120.29 - 121.27 - Notes:			119.52	-	120.29	-	121.27	-	119.27	-	108.41	-

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004. Cells highlighted in yellow indicate concentrations above the NY-AWQS

Cells shaded in grey indicate MDL values above the NY-AWQS

DUP = designation for duplicate sample

MDL = Maximum Detection Limit

RL = Reporting Limit
Q = Laboratory Qualifier
For U qualified entries, the MDL is shown
U = not detected at or above the MDL

-- = No standard

Results and MDL values are in micrograms per liter (ug/L)

Appendix 1 IC/EC Certifications and Checklists

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	te No.	C241194	Site Details		Box 1						
Si	te Name 18	-46 Decatur Street									
Ci Co	te Address: ty/Town: Ric ounty: Queen te Acreage:	S	Zip Code: 11385								
Re	eporting Perio	od: April 20, 2021 to Ap	ril 20, 2022								
					YES	NO					
1.	Is the inforr	mation above correct?			X						
	If NO, inclu										
2.	Has some of tax map am		×								
3.	Has there b (see 6NYC		×								
4.		ederal, state, and/or loca property during this Rep	ll permits (e.g., building, dis porting Period?	scharge) been issued		X					
			s 2 thru 4, include docum viously submitted with th								
5.	Is the site co	urrently undergoing deve	elopment?			X					
					Box 2						
					YES	NO					
		nt site use consistent wit and Industrial	h the use(s) listed below?		×						
7.	Are all ICs ir	n place and functioning a	as designed?	×							
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.										
A C	orrective Me	asures Work Plan must	be submitted along with t	this form to address th	ese issı	ies.					
Sign	ature of Own	er, Remedial Party or De	signated Representative	Date							

Ω	Has any now information revealed that accumptions made in the Qualitative Functions	YES	NO				
0.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?						
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.						
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	×					
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.						

SITE NO. C241194 Box 3

Description of Institutional Controls

Parcel

<u>Owner</u>

4-3579-45

18-46 Decatur Street Holding LLC

Institutional Control

Monitoring Plan

Site Management Plan

O&M Plan

Ground Water Use Restriction Landuse Restriction IC/EC Plan

- 1. requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- 2. allows the use and development of the controlled property for commercial and industrial uses as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- 3. restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or NYCDOHMH; and
- 4. requires compliance with the Department approved Site Management Plan.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

4-3579-45

Cover System

Air Sparging/Soil Vapor Extraction

Monitoring Wells Vapor Mitigation

- 1. A building foundation/slab currently exists across the Site and will be maintained to allow for commercial use of the Site.
- Soil vapor extraction (SVE) system to remove volatile organic compounds (VOCs) from the subsurface.
- A sub-slab depressurization system to prevent the migration of vapors into the building from soil and/or groundwater.
- 4. In-situ chemical oxidation or reduction to treat volatile contaminants in groundwater.

		Box 5								
	Periodic Review Report (PRR) Certification Statements									
1.	I certify by checking "YES" below that:									
	 a) the Periodic Review report and all attachments were prepared under the direction of, a reviewed by, the party making the Engineering Control certification; 	and								
 b) to the best of my knowledge and belief, the work and conclusions described in this cert are in accordance with the requirements of the site remedial program, and generally accept engineering practices; and the information presented is accurate and compete. 										
		NO								
	×									
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:									
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;									
	(b) nothing has occurred that would impair the ability of such Control, to protect public heat the environment;	alth and								
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;									
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and									
	(e) if a financial assurance mechanism is required by the oversight document for the site, mechanism remains valid and sufficient for its intended purpose established in the document									
	YES	NO								

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

X

Date

IC CERTIFICATIONS SITE NO. C241194

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at 318 BOERUM S71	
am certifying as 1846 DECATUR ST. HOUDING	(Owner) or Remedial Party)
for the Site named in the Site Details Section of this form.	
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	5-10-22 Date
	print name print business address am certifying as 1846 DECATUR ST. HOUDING for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Matthew M. Carroll	1085 Sackett Avenue, Bronx, NY 10461						
print name	print business address	,					
am certifying as a Qualified Environn	nental Professional for theOwner						
TION OF THE PARTY	COwner or F	Remedial Party)					
Signature of Qualified Environmenta the Owner or Remedial Party, Rende	•	Date E)					

18-46 Decatur Street Site Management - Monthly Inspection Checklist

	ondition No Yes Deficiencies (if any):		·/ ()						
				\	7		\	7	
	N	2							
	Condition		Has piping been inspected to	confirm operation of annronriate	Valves	Has piping been inspected to	confirm operation of appropriate	valves	
	Engineering Controls	Clib clab	Jub-sidb	Depressurization	System (SSDS)	Soil Vapor Extraction	(SVE) System	e s	

Comments/Notes:

Name of inspector: ALFIED 71ETH

Signature of inspector:

Date of inspection:

5/1/2021

18-46 Decatur Street Site Management - Monthly Inspection Checklist

			Deficiencies (if any).	·/ kim ii) cara	2						
	Yes				`	7		\	7		
		Z									
		Condition		Has piping been inspected to	confirm operation of agreement	about of appropriate	valves	Has piping been inspected to	confirm operation of appropriate	valves	
	Engineering Controls		Suh-clah	380	Depressurization		System (SSDS)	Soil Vapor Extraction	(SVE) System		

Comments/Notes:

Name of inspector: ALFRD ZIECLE

Signature of inspector:

Date of inspection:

12021 1/9

Site Management - Monthly Inspection Checklist 18-46 Decatur Street

		Deficiencies (if any).	· (Aug 11) co	6						
	o Yes			_	7			7		
	SN SN	ON								
	Condition		Has piping been inspected to	confirm operation of appropriate	יייין איייין	Valves	Has piping been inspected to	confirm operation of appropriate	valves	
Francount	Liigiileering Controls	Suh-clah	342-3140	Depressurization	System (SSDS)		Soil Vapor Extraction	(SVE) System	·	

Name of inspector:

Comments/Notes:

Signature of inspector:

Date of inspection:

18-46 Decatur Street Site Management - Monthly Inspection Checklist

	Deficiencies (if any).	· ((in ii)								
7.7	No Yes		7			\	7			
S.									,	
Condition		Has piping been inspected to confirm operation of appropriate	valves	1200000	ids piping been inspected to	confirm operation of appropriate	valves			
Engineering Controls	Suh-clah	Depressurization	System (SSDS)		Soil Vapor Extraction	(SVE) System		Comments/Notes:		

Name of inspector:

ALPROD ZIEGER

Signature of inspector:

Date of inspection:

8/1/2021

Site Management - Monthly Inspection Checklist 18-46 Decatur Street

Engineering Controls	Condition	No	Yes	Deficiencies (if anv):
Sub-slab	Has piping been inspected to		\	
Depressurization	confirm operation of appropriate		_	
System (SSDS)	valves		.	
Soil Vapor Extraction (SVE) System	Has piping been inspected to confirm operation of appropriate valves		7	
Comments/Notes:				

Signature of inspector: Name of inspector:

Date of inspection:

18-46 Decatur Street Site Management - Monthly Inspection Checklist

	Deficiencies (if any).	:(All all):							
	Yes		\	`	S		\	7	
	No								
Condition		Has bibing heen inchested to	confirm operation of appropriets	בובו מו מאאוסאוומום	valves	Has piping been inspected to	confirm operation of appropriate	valves	
Engineering Controls	Acla dia	Jun-Sidb	Depressurization	(2023) 800+3/2	System (SSDS)	Soil Vapor Extraction			

Comments/Notes:

Name of inspector: AUPVEJ THE CUE

Signature of inspector:

Date of inspection:

1202/1/8

18-46 Decatur Street Site Management - Monthly Inspection Checklist

J. J	Deficiencies (If any);								
Yes			\	2	/	/	7	1	
ON	2								
Condition		Has piping been inspected to	confirm operation of appropriate	valves		Has piping been inspected to	confirm operation of appropriate	valves	
Engineering Controls	City class	Jun-slan	Depressurization	System (SSDS)		Soil Vapor Extraction	(SVE) System		

Comments/Notes:

Name of inspector:

MURIED ZIEGLER

Signature of inspector:

. .

Date of inspection:

Site Management - Monthly Inspection Checklist 18-46 Decatur Street

	Deficiencies (if anv):	.11							
207	res	\	\	>	,	>	S		
S	2								*
Condition		Has piping been inspected to	confirm operation of appropriate	valves	nds piping been inspected to	confirm operation of appropriate	valves		
Engineering Controls	Sub-clah	מסור מסר	Depressurization	System (SSDS)	Soil Vapor Extraction	(SVE) System		Comments/Notes:	

Name of inspector:

Signature of inspector:

Date of inspection:

18-46 Decatur Street Site Management - Monthly Inspection Checklist

	Deficiencies (if any):	(i an i)						
	Yes	\	7			/	>	
	No							
Condition	Has piping heap increased +	Confirm operation of	geration of appropriate	Valves	Has piping been inspected to	confirm operation of appropriate	valves	
Engineering Controls	Sub-slab	Depressurization	System (SSDS)		Soil Vapor Extraction	(SVE) System		

Comments/Notes:

Name of inspector: ALFPEJ ZIEGLER

Signature of inspector:

Date of inspection:

12/1/2021

Site Management - Monthly Inspection Checklist 18-46 Decatur Street

Engineering Controls	Condition	S	Voc	D-f: -: -: -:
C.th alat		2	CD-	Deficiencies (IT anv):
Sub-stab	Has piping been inspected to			
Depressurization	confirm operation of appropriate		\	
(000)	יייייייייייייייייייייייייייייייייייייי		>	
oystem (SSDS)	valves			
Soil Vapor Extraction	Has piping been inspected to		_	
	The standard waithout		<u> </u>	
(SVE) System	committee		_	
	valves			
Commonte /Nictor.				
comments/Notes:				

Signature of inspector: Name of inspector:

Date of inspection:

18-46 Decatur Street Site Management - Monthly Inspection Checklist

Fraincoring Control				
Firgineeling Collitols	Condition	S S	Yes	Deficionation (if a mil)
Sub-slab	Has nining hoon inspected to			Deliciences (II any):
-	ol palpadeni napa Sindid car.		`	
Depressurization	confirm operation of appropriate			
System (SSDS)			_	
3ystell (33D3)	valves			
Soil Vanor Extraction	Has piping been inspected to			
יייי ייייי יייייי יייייייייייייייייייי	in the state of th	*****	\	
(SVF) System	committed oberation of appropriate		`~	
			>	
	valves	e de la composição de l		

Comments/Notes:

Name of inspector:

Signature of inspector:

Date of inspection:

2/2/2021

Site Management - Monthly Inspection Checklist 18-46 Decatur Street

Engineering Controls	Condition	SI	Ves	
Cirkelak		2	S	Deficiencies (if any):
Jun-sian	Has piping been inspected to			
Depressurization	confirm operation of appropriate		\	
(202) 200	שנים באלם האומים		>	
System (SSDS)	valves		.	
Soil Vapor Extraction	Has piping been inspected to		\	
	Confirm operation of agents		\	
(SVE) System	committed and a phopulate		\	
	valves		_	
Comments /N/ - 1				
comments/Notes:				

12021 Signature of inspector: Name of inspector: Date of inspection:

Appendix 2 Laboratory Deliverables

ANALYTICAL REPORT

Lab Number: L2216808

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 702

New York City, NY 10001

ATTN: Mohamed Ahmed Phone: (646) 606-2332

Project Name: 18-46 DECATUR ST

Project Number: 18-46 DECATUR ST

Report Date: 04/15/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Lab Number:
 L2216808

 Report Date:
 04/15/22

Alpha Sampl	e ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L22168	308-01	MW-3	WATER	18-46 DECATUR ST, QUEENS, NY	03/31/22 09:30	04/01/22
L22168	308-02	MW-2	WATER	18-46 DECATUR ST, QUEENS, NY	03/31/22 12:30	04/01/22
L22168	308-03	MW-2-DUP	WATER	18-46 DECATUR ST, QUEENS, NY	03/31/22 12:35	04/01/22
L22168	308-04	MW-1	WATER	18-46 DECATUR ST, QUEENS, NY	03/31/22 14:00	04/01/22
L22168	308-05	TRIP BLANK	WATER	18-46 DECATUR ST, QUEENS, NY	03/31/22 00:00	04/01/22

Project Name:18-46 DECATUR STLab Number:L2216808Project Number:18-46 DECATUR STReport Date:04/15/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:18-46 DECATUR STLab Number:L2216808Project Number:18-46 DECATUR STReport Date:04/15/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/15/22

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

L2216808

Project Name: 18-46 DECATUR ST

Project Number: 18-46 DECATUR ST

Lab Number:

Report Date: 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-01 Date Collected: 03/31/22 09:30

Client ID: MW-3

18-46 DECATUR ST, QUEENS, NY

Date Received: 04/01/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 04/06/22 15:46

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	11		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 18-46 DECATUR ST L2216808

Project Number: Report Date: 18-46 DECATUR ST 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-01 Date Collected: 03/31/22 09:30

Client ID: Date Received: 04/01/22 MW-3

Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	0.22	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 18-46 DECATUR ST **Lab Number:** L2216808

Project Number: 18-46 DECATUR ST **Report Date:** 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-01 Date Collected: 03/31/22 09:30

Client ID: MW-3 Date Received: 04/01/22 Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	106	70-130	

L2216808

04/15/22

Project Name: 18-46 DECATUR ST

Project Number: 18-46 DECATUR ST

SAMPLE RESULTS

Date Collected: 03/31/22 12:30

Lab ID: L2216808-02

Client ID: MW-2

Sample Location: 18-46 DECATUR ST, QUEENS, NY

Date Received: 04/01/22
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 04/06/22 16:09

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	12		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 18-46 DECATUR ST Lab Number: L2216808

Project Number: 18-46 DECATUR ST **Report Date:** 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-02 Date Collected: 03/31/22 12:30

Client ID: MW-2 Date Received: 04/01/22 Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Trichloroethene	0.24	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name:18-46 DECATUR STLab Number:L2216808

Project Number: 18-46 DECATUR ST **Report Date:** 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-02 Date Collected: 03/31/22 12:30

Client ID: MW-2 Date Received: 04/01/22 Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	106	70-130	

L2216808

04/15/22

Project Name: 18-46 DECATUR ST

Project Number: 18-46 DECATUR ST

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2216808-03 Date Collected: 03/31/22 12:35

Client ID: Date Received: 04/01/22 MW-2-DUP Field Prep: Sample Location: 18-46 DECATUR ST, QUEENS, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/06/22 16:32

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	13		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: Lab Number: 18-46 DECATUR ST L2216808

Project Number: Report Date: 18-46 DECATUR ST 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-03 Date Collected: 03/31/22 12:35

Client ID: MW-2-DUP Date Received: 04/01/22

Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroethene	0.22	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	J	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 18-46 DECATUR ST **Lab Number:** L2216808

Project Number: 18-46 DECATUR ST **Report Date:** 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-03 Date Collected: 03/31/22 12:35

Client ID: MW-2-DUP Date Received: 04/01/22 Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	106	70-130	

L2216808

03/31/22 14:00

Not Specified

Dilution Factor

04/01/22

Project Name: 18-46 DECATUR ST

Project Number: 18-46 DECATUR ST

Report Date: 04/15/22

Lab Number:

Date Collected:

Date Received:

Field Prep:

RL

MDL

SAMPLE RESULTS

Lab ID: L2216808-04

Client ID: MW-1

Sample Location: 18-46 DECATUR ST, QUEENS, NY

Sample Depth:

Parameter

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/06/22 16:55

Analyst: MV

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	0.79	J	ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	11		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Qualifier

Result

Units

Project Name: Lab Number: 18-46 DECATUR ST L2216808

Project Number: Report Date: 18-46 DECATUR ST 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-04 Date Collected: 03/31/22 14:00

Client ID: MW-1 Date Received: 04/01/22

Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	0.38	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 18-46 DECATUR ST **Lab Number:** L2216808

Project Number: 18-46 DECATUR ST **Report Date:** 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-04 Date Collected: 03/31/22 14:00

Client ID: MW-1 Date Received: 04/01/22 Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	106	70-130	

04/01/22

Not Specified

Project Name: 18-46 DECATUR ST

Project Number: 18-46 DECATUR ST

SAMPLE RESULTS

L2216808

Lab Number:

Date Received:

Field Prep:

Report Date: 04/15/22

Lab ID: L2216808-05 Date Collected: 03/31/22 00:00

Client ID: TRIP BLANK

Sample Location: 18-46 DECATUR ST, QUEENS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 04/08/22 20:10

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 18-46 DECATUR ST L2216808

Project Number: Report Date: 18-46 DECATUR ST 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-05 Date Collected: 03/31/22 00:00

Client ID: Date Received: 04/01/22 TRIP BLANK

Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroothono	ND		//	0.50	0.10	4
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	<u> </u>
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 18-46 DECATUR ST **Lab Number:** L2216808

Project Number: 18-46 DECATUR ST **Report Date:** 04/15/22

SAMPLE RESULTS

Lab ID: L2216808-05 Date Collected: 03/31/22 00:00

Client ID: TRIP BLANK Date Received: 04/01/22 Sample Location: 18-46 DECATUR ST, QUEENS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	102	70-130	

Lab Number: L2216808 **Report Date:** 04/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/06/22 08:31

Analyst: PD

arameter	Result	Qualifier Un	its	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s)	: 01-04	Batch:	WG1624720-5
Methylene chloride	ND	u	g/l	2.5	0.70
1,1-Dichloroethane	ND	u	g/l	2.5	0.70
Chloroform	ND	u	g/l	2.5	0.70
Carbon tetrachloride	ND	u	g/l	0.50	0.13
1,2-Dichloropropane	ND	u	g/l	1.0	0.14
Dibromochloromethane	ND	u	g/l	0.50	0.15
1,1,2-Trichloroethane	ND	u	g/l	1.5	0.50
Tetrachloroethene	ND	u	g/l	0.50	0.18
Chlorobenzene	ND	u	g/l	2.5	0.70
Trichlorofluoromethane	ND	u	g/l	2.5	0.70
1,2-Dichloroethane	ND	u	g/l	0.50	0.13
1,1,1-Trichloroethane	ND	u	g/l	2.5	0.70
Bromodichloromethane	ND	u	g/l	0.50	0.19
trans-1,3-Dichloropropene	ND	u	g/l	0.50	0.16
cis-1,3-Dichloropropene	ND	u	g/l	0.50	0.14
1,3-Dichloropropene, Total	ND	u	g/l	0.50	0.14
1,1-Dichloropropene	ND	u	g/l	2.5	0.70
Bromoform	ND	u	g/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	u	g/l	0.50	0.17
Benzene	ND	u	g/l	0.50	0.16
Toluene	ND	u	g/l	2.5	0.70
Ethylbenzene	ND	u	g/l	2.5	0.70
Chloromethane	ND	u	g/l	2.5	0.70
Bromomethane	ND	u	g/l	2.5	0.70
Vinyl chloride	ND	u	g/l	1.0	0.07
Chloroethane	ND	u	g/l	2.5	0.70
1,1-Dichloroethene	ND	u	g/l	0.50	0.17
trans-1,2-Dichloroethene	ND	u	g/l	2.5	0.70
Trichloroethene	ND	u	g/l	0.50	0.18

Lab Number: L2216808 **Report Date:** 04/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/06/22 08:31

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-04 Batch:	WG1624720-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Lab Number: L2216808 **Report Date:** 04/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/06/22 08:31

Analyst: PD

Parameter	Result (Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough Lab f	or sample(s):	01-04 Batch:	WG1624720-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	99		70-130		
Toluene-d8	97		70-130		
4-Bromofluorobenzene	97		70-130		
Dibromofluoromethane	105		70-130		

Project Name:18-46 DECATUR STLab Number:Project Number:18-46 DECATUR STReport Date:

Report Date: 04/15/22

L2216808

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/22 17:53

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	· Westborough Lab	for sample(s):	05 Batch:	WG1626803-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name:18-46 DECATUR STLab Number:L2216808Project Number:18-46 DECATUR STReport Date:04/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/22 17:53

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	05 Batch:	WG1626803-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Lab Number: L2216808 **Report Date:** 04/15/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 04/08/22 17:53

Analyst: TMS

Parameter	Result (Qualifier Units	RL	MDL
Volatile Organics by GC/MS - We	estborough Lab f	or sample(s): 05	Batch:	WG1626803-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Acceptance					
%Recovery 0	Qualifier Criteria				
115	70-130				
99	70-130				
106	70-130				
103	70-130				
	115 99 106				

Project Name: 18-46 DECATUR ST **Project Number:** 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-04 Batch: V	WG1624720-3	WG1624720-4		
Methylene chloride	120		120		70-130	0	20
1,1-Dichloroethane	120		120		70-130	0	20
Chloroform	120		120		70-130	0	20
Carbon tetrachloride	120		130		63-132	8	20
1,2-Dichloropropane	110		120		70-130	9	20
Dibromochloromethane	110		110		63-130	0	20
1,1,2-Trichloroethane	110		110		70-130	0	20
Tetrachloroethene	120		130		70-130	8	20
Chlorobenzene	110		120		75-130	9	20
Trichlorofluoromethane	130		130		62-150	0	20
1,2-Dichloroethane	100		110		70-130	10	20
1,1,1-Trichloroethane	120		120		67-130	0	20
Bromodichloromethane	110		120		67-130	9	20
trans-1,3-Dichloropropene	110		110		70-130	0	20
cis-1,3-Dichloropropene	100		110		70-130	10	20
1,1-Dichloropropene	120		120		70-130	0	20
Bromoform	100		110		54-136	10	20
1,1,2,2-Tetrachloroethane	99		110		67-130	11	20
Benzene	120		120		70-130	0	20
Toluene	120		120		70-130	0	20
Ethylbenzene	120		120		70-130	0	20
Chloromethane	120		110		64-130	9	20
Bromomethane	95		88		39-139	8	20

Project Name: 18-46 DECATUR ST **Project Number:** 18-46 DECATUR ST

Lab Number: L2216808

Report Date: 04/15/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch: W	G1624720-3 WG1624720-4		
Vinyl chloride	130		130	55-140	0	20
Chloroethane	110		110	55-138	0	20
1,1-Dichloroethene	130		130	61-145	0	20
trans-1,2-Dichloroethene	120		120	70-130	0	20
Trichloroethene	110		110	70-130	0	20
1,2-Dichlorobenzene	110		110	70-130	0	20
1,3-Dichlorobenzene	110		120	70-130	9	20
1,4-Dichlorobenzene	110		110	70-130	0	20
Methyl tert butyl ether	100		110	63-130	10	20
p/m-Xylene	120		125	70-130	4	20
o-Xylene	115		120	70-130	4	20
cis-1,2-Dichloroethene	120		120	70-130	0	20
Dibromomethane	100		110	70-130	10	20
1,2,3-Trichloropropane	95		100	64-130	5	20
Acrylonitrile	96		110	70-130	14	20
Styrene	110		115	70-130	4	20
Dichlorodifluoromethane	140		140	36-147	0	20
Acetone	86		100	58-148	15	20
Carbon disulfide	120		120	51-130	0	20
2-Butanone	100		110	63-138	10	20
Vinyl acetate	110		120	70-130	9	20
4-Methyl-2-pentanone	92		100	59-130	8	20
2-Hexanone	93		110	57-130	17	20

Project Name: 18-46 DECATUR ST **Project Number:** 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
atile Organics by GC/MS - Westbo	orough Lab Associated	sample(s):	01-04 Batch: \	WG1624720-3	WG1624720-4		
Bromochloromethane	110		110		70-130	0	20
2,2-Dichloropropane	130		130		63-133	0	20
1,2-Dibromoethane	98		100		70-130	2	20
1,3-Dichloropropane	110		110		70-130	0	20
1,1,1,2-Tetrachloroethane	110		110		64-130	0	20
Bromobenzene	110		110		70-130	0	20
n-Butylbenzene	120		120		53-136	0	20
sec-Butylbenzene	120		120		70-130	0	20
tert-Butylbenzene	110		120		70-130	9	20
o-Chlorotoluene	110		120		70-130	9	20
p-Chlorotoluene	110		110		70-130	0	20
1,2-Dibromo-3-chloropropane	85		100		41-144	16	20
Hexachlorobutadiene	120		120		63-130	0	20
Isopropylbenzene	120		120		70-130	0	20
p-Isopropyltoluene	120		120		70-130	0	20
Naphthalene	94		110		70-130	16	20
n-Propylbenzene	120		120		69-130	0	20
1,2,3-Trichlorobenzene	100		110		70-130	10	20
1,2,4-Trichlorobenzene	110		120		70-130	9	20
1,3,5-Trimethylbenzene	110		120		64-130	9	20
1,2,4-Trimethylbenzene	110		120		70-130	9	20
1,4-Dioxane	98		114		56-162	15	20
p-Diethylbenzene	110		110		70-130	0	20

Project Name: 18-46 DECATUR ST **Project Number:** 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-04	Batch:	WG1624720-3	WG1624720-4				
p-Ethyltoluene	110			110		70-130	0		20	
1,2,4,5-Tetramethylbenzene	100			110		70-130	10		20	
Ethyl ether	97			98		59-134	1		20	
trans-1,4-Dichloro-2-butene	92			110		70-130	18		20	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	100	101	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	98	99	70-130
Dibromofluoromethane	102	102	70-130

Project Name: 18-46 DECATUR ST **Project Number:** 18-46 DECATUR ST

Lab Number: L2216808

Report Date:

ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPI Qual Limi	
atile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	5 Batch: WG1	1626803-3	WG1626803-4			
Methylene chloride	110		100		70-130	10	20	
1,1-Dichloroethane	110		100		70-130	10	20	
Chloroform	110		100		70-130	10	20	
Carbon tetrachloride	110		110		63-132	0	20	
1,2-Dichloropropane	120		110		70-130	9	20	
Dibromochloromethane	110		110		63-130	0	20	
1,1,2-Trichloroethane	120		110		70-130	9	20	
Tetrachloroethene	100		96		70-130	4	20	
Chlorobenzene	110		100		75-130	10	20	
Trichlorofluoromethane	110		100		62-150	10	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	110		100		67-130	10	20	
Bromodichloromethane	110		110		67-130	0	20	
trans-1,3-Dichloropropene	110		110		70-130	0	20	
cis-1,3-Dichloropropene	110		110		70-130	0	20	
1,1-Dichloropropene	110		100		70-130	10	20	
Bromoform	110		110		54-136	0	20	
1,1,2,2-Tetrachloroethane	110		120		67-130	9	20	
Benzene	110		100		70-130	10	20	
Toluene	110		99		70-130	11	20	
Ethylbenzene	110		100		70-130	10	20	
Chloromethane	110		110		64-130	0	20	
Bromomethane	62		60		39-139	3	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: 18-46 DECATUR ST **Project Number:** 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:	04/15/22
--------------	----------

arameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	RPD Qual Limit	
platile Organics by GC/MS - Westborough L	_ab Associated s	ample(s): 05	Batch:	WG1626803-3	WG1626803-4			
Vinyl chloride	120		110		55-140	9	20	
Chloroethane	120		110		55-138	9	20	
1,1-Dichloroethene	100		96		61-145	4	20	
trans-1,2-Dichloroethene	110		100		70-130	10	20	
Trichloroethene	110		100		70-130	10	20	
1,2-Dichlorobenzene	110		100		70-130	10	20	
1,3-Dichlorobenzene	110		100		70-130	10	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	100		100		63-130	0	20	
p/m-Xylene	110		105		70-130	5	20	
o-Xylene	110		100		70-130	10	20	
cis-1,2-Dichloroethene	110		100		70-130	10	20	
Dibromomethane	110		110		70-130	0	20	
1,2,3-Trichloropropane	120		120		64-130	0	20	
Acrylonitrile	120		120		70-130	0	20	
Styrene	115		105		70-130	9	20	
Dichlorodifluoromethane	110		110		36-147	0	20	
Acetone	140		120		58-148	15	20	
Carbon disulfide	100		97		51-130	3	20	
2-Butanone	120		120		63-138	0	20	
Vinyl acetate	120		110		70-130	9	20	
4-Methyl-2-pentanone	120		120		59-130	0	20	
2-Hexanone	120		130		57-130	8	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: 18-46 DECATUR ST **Project Number:** 18-46 DECATUR ST

Lab Number: L2216808

roject Number:	18-46 DECATUR ST	Report Date:	04/15/22
	10 40 DEG/(101(01		0-1/10/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 05	Batch: WG	1626803-3	WG1626803-4		
Bromochloromethane	100		99		70-130	1	20
2,2-Dichloropropane	110		100		63-133	10	20
1,2-Dibromoethane	110		110		70-130	0	20
1,3-Dichloropropane	120		110		70-130	9	20
1,1,1,2-Tetrachloroethane	110		99		64-130	11	20
Bromobenzene	110		99		70-130	11	20
n-Butylbenzene	110		110		53-136	0	20
sec-Butylbenzene	110		110		70-130	0	20
tert-Butylbenzene	110		100		70-130	10	20
o-Chlorotoluene	110		110		70-130	0	20
p-Chlorotoluene	110		100		70-130	10	20
1,2-Dibromo-3-chloropropane	110		110		41-144	0	20
Hexachlorobutadiene	83		81		63-130	2	20
Isopropylbenzene	110		100		70-130	10	20
p-Isopropyltoluene	110		100		70-130	10	20
Naphthalene	110		110		70-130	0	20
n-Propylbenzene	120		110		69-130	9	20
1,2,3-Trichlorobenzene	100		97		70-130	3	20
1,2,4-Trichlorobenzene	100		98		70-130	2	20
1,3,5-Trimethylbenzene	110		100		64-130	10	20
1,2,4-Trimethylbenzene	110		100		70-130	10	20
1,4-Dioxane	104		112		56-162	7	20
p-Diethylbenzene	110		100		70-130	10	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 18-46 DECATUR ST **Project Number:** 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 05	Batch: WG	1626803-3	WG1626803-4			
p-Ethyltoluene	110		110		70-130	0		20
1,2,4,5-Tetramethylbenzene	120		98		70-130	20		20
Ethyl ether	92		98		59-134	6		20
trans-1,4-Dichloro-2-butene	120		120		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	107	70-130
Toluene-d8	101	99	70-130
4-Bromofluorobenzene	103	102	70-130
Dibromofluoromethane	97	98	70-130

Project Name: 18-46 DECATUR STProject Number: 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-3	- Westborough	Lab Asso	ociated sample(s): 01-04 Q0	C Batch ID: WG16247	720-6 WG162	4720-7	QC Sample	: L2210	6808-01	Client ID:
Methylene chloride	ND	10	11	110	12	120		70-130	9		20
1,1-Dichloroethane	ND	10	12	120	12	120		70-130	0		20
Chloroform	ND	10	12	120	12	120		70-130	0		20
Carbon tetrachloride	ND	10	13	130	13	130		63-132	0		20
1,2-Dichloropropane	ND	10	11	110	12	120		70-130	9		20
Dibromochloromethane	ND	10	11	110	12	120		63-130	9		20
1,1,2-Trichloroethane	ND	10	12	120	12	120		70-130	0		20
Tetrachloroethene	11	10	24	130	25	140	Q	70-130	4		20
Chlorobenzene	ND	10	11	110	12	120		75-130	9		20
Trichlorofluoromethane	ND	10	14	140	14	140		62-150	0		20
1,2-Dichloroethane	ND	10	11	110	11	110		70-130	0		20
1,1,1-Trichloroethane	ND	10	12	120	12	120		67-130	0		20
Bromodichloromethane	ND	10	12	120	12	120		67-130	0		20
trans-1,3-Dichloropropene	ND	10	11	110	11	110		70-130	0		20
cis-1,3-Dichloropropene	ND	10	10	100	10	100		70-130	0		20
1,1-Dichloropropene	ND	10	12	120	13	130		70-130	8		20
Bromoform	ND	10	11	110	12	120		54-136	9		20
1,1,2,2-Tetrachloroethane	ND	10	11	110	12	120		67-130	9		20
Benzene	ND	10	12	120	12	120		70-130	0		20
Toluene	ND	10	12	120	12	120		70-130	0		20
Ethylbenzene	ND	10	11	110	12	120		70-130	9		20
Chloromethane	ND	10	12	120	13	130		64-130	8		20
Bromomethane	ND	10	5.5	55	7.1	71		39-139	25	Q	20

Project Name: 18-46 DECATUR STProject Number: 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		SD und	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-3	- Westborough	Lab Asso	ciated sample	(s): 01-04 Q	C Batch ID: WG	16247	20-6 WG1624	4720-7	QC Sample	: L2216	808-01	Client ID:
Vinyl chloride	ND	10	14	140	1	14	140		55-140	0		20
Chloroethane	ND	10	12	120	1	12	120		55-138	0		20
1,1-Dichloroethene	ND	10	13	130	1	13	130		61-145	0		20
trans-1,2-Dichloroethene	ND	10	12	120	1	12	120		70-130	0		20
Trichloroethene	0.22J	10	10	100	1	11	110		70-130	10		20
1,2-Dichlorobenzene	ND	10	11	110	1	12	120		70-130	9		20
1,3-Dichlorobenzene	ND	10	11	110	1	12	120		70-130	9		20
1,4-Dichlorobenzene	ND	10	11	110	1	11	110		70-130	0		20
Methyl tert butyl ether	ND	10	11	110	1	11	110		63-130	0		20
o/m-Xylene	ND	20	24	120	2	25	125		70-130	4		20
o-Xylene	ND	20	24	120	2	25	125		70-130	4		20
cis-1,2-Dichloroethene	ND	10	11	110	1	12	120		70-130	9		20
Dibromomethane	ND	10	11	110	1	11	110		70-130	0		20
1,2,3-Trichloropropane	ND	10	11	110	1	11	110		64-130	0		20
Acrylonitrile	ND	10	11	110	1	11	110		70-130	0		20
Styrene	ND	20	22	110	2	22	110		70-130	0		20
Dichlorodifluoromethane	ND	10	15	150	Q 1	15	150	Q	36-147	0		20
Acetone	ND	10	11	110	1	12	120		58-148	9		20
Carbon disulfide	ND	10	13	130	1	13	130		51-130	0		20
2-Butanone	ND	10	12	120	1	12	120		63-138	0		20
Vinyl acetate	ND	10	11	110	1	12	120		70-130	9		20
4-Methyl-2-pentanone	ND	10	12	120	1	12	120		59-130	0		20
2-Hexanone	ND	10	12	120	1	12	120		57-130	0		20

Project Name: 18-46 DECATUR STProject Number: 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-3	- Westborough	Lab Asso	ciated sample(s): 01-04 Q	C Batch ID: WG16247	720-6 WG162	4720-7 QC Sample	e: L221	6808-01	Client ID:
Bromochloromethane	ND	10	11	110	12	120	70-130	9		20
2,2-Dichloropropane	ND	10	11	110	12	120	63-133	9		20
1,2-Dibromoethane	ND	10	11	110	11	110	70-130	0		20
1,3-Dichloropropane	ND	10	12	120	12	120	70-130	0		20
1,1,1,2-Tetrachloroethane	ND	10	11	110	12	120	64-130	9		20
Bromobenzene	ND	10	11	110	11	110	70-130	0		20
n-Butylbenzene	ND	10	12	120	12	120	53-136	0		20
sec-Butylbenzene	ND	10	12	120	12	120	70-130	0		20
ert-Butylbenzene	ND	10	11	110	12	120	70-130	9		20
o-Chlorotoluene	ND	10	12	120	13	130	70-130	8		20
o-Chlorotoluene	ND	10	11	110	11	110	70-130	0		20
1,2-Dibromo-3-chloropropane	ND	10	10	100	10	100	41-144	0		20
Hexachlorobutadiene	ND	10	11	110	11	110	63-130	0		20
sopropylbenzene	ND	10	12	120	12	120	70-130	0		20
o-Isopropyltoluene	ND	10	11	110	12	120	70-130	9		20
Naphthalene	ND	10	10	100	11	110	70-130	10		20
n-Propylbenzene	ND	10	12	120	12	120	69-130	0		20
1,2,3-Trichlorobenzene	ND	10	11	110	11	110	70-130	0		20
1,2,4-Trichlorobenzene	ND	10	11	110	12	120	70-130	9		20
1,3,5-Trimethylbenzene	ND	10	11	110	12	120	64-130	9		20
1,2,4-Trimethylbenzene	ND	10	11	110	12	120	70-130	9		20
1,4-Dioxane	ND	500	570	114	570	114	56-162	0		20
p-Diethylbenzene	ND	10	11	110	12	120	70-130	9		20

Project Name: 18-46 DECATUR STProject Number: 18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-3	- Westborough	Lab Asso	ciated sample	e(s): 01-04	QC Batch ID	: WG16247	720-6 WG1624	720-7	QC Sample	e: L2216	6808-01	Client ID:
p-Ethyltoluene	ND	10	12	120		12	120		70-130	0		20
1,2,4,5-Tetramethylbenzene	ND	10	11	110		11	110		70-130	0		20
Ethyl ether	ND	10	11	110		10	100		59-134	10		20
trans-1,4-Dichloro-2-butene	ND	10	9.8	98		10	100		70-130	2		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	104	103	70-130
4-Bromofluorobenzene	98	101	70-130
Dibromofluoromethane	102	102	70-130
Toluene-d8	100	101	70-130

Serial_No:04152213:56

Project Name: 18-46 DECATUR ST Lab Number: L2216808 Project Number: 18-46 DECATUR ST

Report Date: 04/15/22

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information				Initial	Final	Temp			Frozen			
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
	L2216808-01A	Vial HCI preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-01A1	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-01A2	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-01B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-01B1	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-01B2	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-01C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-01C1	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-01C2	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-02A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-02B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-02C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-03A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-03B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-03C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-04A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-04B	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-04C	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-05A	Vial HCl preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		
	L2216808-05B	Vial HCI preserved	Α	NA		2.9	Υ	Absent		NYTCL-8260(14)		

Project Name: Lab Number: 18-46 DECATUR ST L2216808 **Project Number:** 18-46 DECATUR ST **Report Date:** 04/15/22

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:18-46 DECATUR STLab Number:L2216808Project Number:18-46 DECATUR STReport Date:04/15/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:18-46 DECATUR STLab Number:L2216808Project Number:18-46 DECATUR STReport Date:04/15/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:04152213:56

Project Name:18-46 DECATUR STLab Number:L2216808Project Number:18-46 DECATUR STReport Date:04/15/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:04152213:56

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information	Vay	5	Page / o	20 12	Delive	ate Rec'	'd 4/	1/2	2	ALPHA Job# U22-1680 Billing Information	8
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 18-4. Project Location: 18-4.	6 Decalus 166 Decad	st. urse, 8	Queers	NY.		ASP-A EQuIS (1 I		ASP-	B S (4 File)	Same as Client Info	NAME OF TAXABLE PARTY.
Client: Tenen	En. 1116	Project # (Use Project name as Project name)	roject#\X				-	Other story Requ	uirement	100000	Sales of	Disposal Site Information	200
Address: [2] W7	104, NY,NY	Project Manager: Make ALPHAQuote #: Turn-Around Time Standard	med.	Due Date:				NY TOGS NWQ Stand NY Restricte NY Unrestri	ards [NY Pa		Please identify below location applicable disposal facilities. Disposal Facility: NJ NY	of
Email: Mahmedo	levenon lon	Rush (only if pre approved	i) 🗌	# of Days:				NYC Sewer	Discharge			Other:	
These samples have t							ANAL	YSIS			,	Sample Filtration	T
Please specify Metal		nents:	Colle	otion		1-	Vecs					□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a i
(Lab Use Only)	Sa	imple ID	Date	Time	Sample Matrix	Sampler's Initials	3					Sample Specific Comments	- 1
16808- 01	MW	- 3	3/31/22	- 430	Gu	UDC	X	_	+	_		Sample Specific Comments	3
1,70	MU	-3-US	3/3/22		GW	UNC	2		+				3
V	Può	-3-USD	3/31/22	440	GW	HPC	X						3
07	MW	-2+	331/22		GW	HPC	X		-				3
03	1910	-2- Pup	3/31/22	1235	GW	HM	2	_	+	_	\vdash		3
04	Trip B	lank	331/22	1400	GW	HILL	X		\vdash	+			3
	ny -		Piles		au		/						1
Preservative Code: A = None B = HCl C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N			Cor	ntainer Type						Please print clearly, legi and completely. Sample not be logged in and	
$D = H_2SO_4$ $E = NaOH$ $F = MeOH$ $G = NaHSO_4$ $H = Na_2S_2O_3$ $K/E = Zn Ac/NaOH$	G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relipquished Hulf feese	MAZ	Date/		HIL	Receive M M2	Marso	JA 4	11/3	Time	turnaround time clock w start until any ambiguitie resolved. BY EXECUTION THIS COC, THE CLIEN HAS READ AND AGRE	es are NG IT ES
O = Other Form No: 01-25 HC (rev. 3 age 46 of 46	0-Sept-2013)	Paul Mars		11/37	1	2	7/1	320	3/	12	240	TERMS & CONDITIONS (See reverse side.)	

DATA USABILITY SUMMARY REPORT – DUSR DATA VALIDATION SUMMARY

ORGANIC ANALYSES

VOLATILES BY GC/MS METHOD 8260C

For Groundwater Samples Collected March 31, 2022 18-46 Decatur Street Queens, New York

Collected by Tenen Environmental

SAMPLE DELIVERY GROUP NUMBER: L2216808

BY ALPHA ANALYTICAL (ELAP #11148)

SUBMITTED TO:

Ms. Claire Zaccheo Tenen Environmental 121 West 27th Street, Suite 702 New York, NY 10001

April 24, 2022

PREPARED BY:

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

18-46 Decatur Street, Queens, New York

Groundwater Data Usability Summary Report (Data Validation) Sampling and Analysis – March 31, 2022, Sampling Event. Analysis for Volatile Organics

Table of Contents:

Introduction
Data Qualifier Definitions
Sample Receipt

- 1.0 Volatile Organics by GC/MS SW846 Method 8260C
 - 1.1 Holding Time
 - 1.2 System Monitoring Compound (Surrogate) Recovery
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD)
 - 1.4 Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check (Tuning)
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Field Duplicates
 - 1.10 Target Compound List Identification
 - 1.11 Non-Target Compounds (TICs)
 - 1.12 Compound Quantification and Reported Detection Limits
 - 1.13 Overall System Performance

APPENDICES:

- A. Chain of Custody Document and Sample Receipt Checklist
- B. Case Narrative
- C. Validated Form I's with Qualifications

A validation was performed on groundwater samples and the associated quality control samples (Field Duplicate, MS/MSD and Trip Blank) for organic analysis for samples collected under chain of custody documentation by Tenen Environmental and submitted to Alpha Analytical for subsequent analysis. This report contains the laboratory and validation results for the field samples itemized below. Analysis was performed in accordance with requested tests per the chain of custody document.

The samples were analyzed by Alpha Analytical, utilizing SW846 Methods and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodologies employed. The analytical testing for groundwater samples consisted of Volatile Organics. The data was evaluated in accordance with EPA Region II National Functional Guidelines for Organic Data Review and EPA Region II SOP for 8260 and in conjunction with the analytical methodologies for which the samples were analyzed, where applicable and relevant.

The data validation report pertains to the following groundwater samples:

Sample ID	Lab ID	Analysis	Date Collected/
			Received
MW-3 (plus MS/MSD)	L2216808-01	Volatiles by SW846 Method 8260C	03/31/2022
MW-2	L2216808-02	Volatiles by SW846 Method 8260C	03/31/2022
MW-2-DUP	L2216808-03	Volatiles by SW846 Method 8260C	03/31/2022
MW-1	L2216808-04	Volatiles by SW846 Method 8260C	03/31/2022
Trip Blank	L2216808-05	Volatiles by SW846 Method 8260C	03/31/2022

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate quantity.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- Analyte concentration is from diluted analysis.

Sample Receipt:

The Chain of Custody document indicates that the samples were received at Alpha Analytical via laboratory courier upon completion of the sampling event. Sample login notes were generated. The cooler temperature for the sample receipt was recorded upon receipt and determined to be acceptable (<6.0 degrees C). The actual temperature (2.9 degrees C) is recorded on the sample receipt checklist provided in Appendix A of this report. No problems and/or discrepancies were noted, consequently, the integrity of the samples has been assumed to be good.

The data summary Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above. The Form I's summarize the detailed narrative section of the report.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by GC/MS SW846 Method 8260C

The following method criteria were reviewed: holding times, SMCs, MS, MSD, LCS, Laboratory Spiked Blanks, Field Duplicate, Method Blanks, Tunes, Calibrations, Internal Standards, Target Component Identification, Quantitation, Reported Quantitation Limits and Overall System

Performance. The Volatile results are valid and usable except for non-detects in all samples for 1,4-Dioxane due to low calibration responses as noted within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J." The non-detects (sample quantitation limits) are required to be flagged as estimated, "J," or unusable, "R," if the holding times are grossly exceeded.

Samples were analyzed within the Method required holding times as well as the technical holding times for data validation of 14 days from collection for acid preserved vials. No data validation qualifiers were required based upon holding time or sample preservation.

1.2 System Monitoring Compound (Surrogate) Recovery

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract specification, qualifications are required to be applied to associated samples and analytes.

Surrogate recoveries (%R) for Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene were found to be within acceptable limits for surrogate compounds for all analyses.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

MS/MSD analysis was performed on MW-3. Tetrachloroethene recovered above limits at 140% in the MSD due to high parent concentration (11 ug/L) relative to spike amount. Data was not qualified based on this outlier. Dichlorodifluoromethane (150%150%) also recovered above in house laboratory criteria in both the MS and MSD. This target analyte was not detected in the parent sample. Reported results are not impacted. RPD for Bromomethane (25%) was above criteria (20%). Based on professional judgment, the data was not qualified for this outlier

The National Functional Guidelines and EPA Region 2 SOPs state that "No qualifications to the data are necessary based on MS data alone."

1.4 Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)
The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

LCS/LCS Duplicates were analyzed for each sequence. Recovery met acceptance criteria for all spiked analytes. RPD for was also acceptable.

1.5 Blank Contamination

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations.

The following table was utilized to qualify target analyte results due to contamination. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples		
Method, Storage,	Detects	Not Detected	No qualification required		
field, Trip,	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U		
Instrument		>/= CRQL* and $<2x$	No qualification required		
		the CRQL**			
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U		
		>/=CRQL* and =</td <td>Report blank value for sample</td>	Report blank value for sample		
		blank concentration	concentration with a U		
		>/= CRQL* and >	No qualification required		
		blank concentration			
	=CRQL*	= CRQL*</td <td colspan="3">Report CRQL value with a U</td>	Report CRQL value with a U		
		>CRQL*	No qualification required		
	Gross	Detects	Report blank value for sample		
	Contamination**		concentration with a U		

^{*2}x the CRQL for methylene chloride, 2-butanone, and acetone.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

A) Method Blank Contamination:

No target analytes were detected in the method blanks.

^{**4}x the CRQL for methylene chloride, 2-butanone, and acetone

^{***}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

- B) Field Blank Contamination: Field Blank analysis was not required.
- C) Trip Blank Contamination:
 No target analytes were detected in the Trip Blank.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency for Bromofluorobenzene (BFB) for all analyses.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can produce acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. Initial calibration verifications were acceptable.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J." All non-detects for that compound in the corresponding samples will be rejected, "R." Method 8260C allows for a minimum response factor of 0.1 for Acetone and 2-Butanone. Validation criteria allows response factor to be /=>0.01 for poor responders (Acetone, MEK, Carbon Disulfide, Chloroethane, Chloromethane, Cyclohexane, 1,2-Dibromoethane, Dichlorodifluoromethane, cis-1,2-Dichloroethene, 1,2-Dichloropropane, 1,2-Dibromo-3-chloropropane, Isopropylbenzene, Methyl Acetate, Methylene Chloride, Methylcyclohexane, MTBE, trans-1,2-Dichloroethene, 4-Methyl-2-Pentanone, 2-Hexanone, Trichlorofluoromethane, 1,1,2-Trichloro-1,2,2-Trifluoroethane.

All the response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) and (>/= 0.01 for poor responders) and minimum response criteria in Table 4 of Method 8260C, for the initial and continuing calibrations for all reported analytes except for 1,4-Dioxane (0.001). 1,4-Dioxane non-detects have been rejected in all samples.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <20% and %D must be <20%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ." If %RSD and %D grossly exceed QC criteria, non-detect data may be qualified, "R," unusable. Additionally, in cases where the %RSD is >20% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 20% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

level results will be qualified, "J" in the portion of the curve where non-linearity exists. Closing CCV must meet 30% criteria. Poor responders must be </= 40%.

*Method 8260C allows for several analytes to be outside requirements due to the large number of compounds.

Initial Calibrations: The initial calibrations provided and the %RSD were within acceptable limits (20%) and (40% for poor responders) for all reported compounds.

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (20%) and (40% for poor responders) for all reported compounds except as noted below:

CCAL VOA105 04/06/2022 – Dichlorodifluoromethane – 44.4%, 1,1-Dichloroethene – 31.2%, trans-1,2-Dichloroethene – 23.6%, 2,2-Dichloropropane – 33.4%, Carbon Tetrachloride – 23.7%, 1,1,1-Trichloroethane – 20.3%, 1,1-Dichloropropene – 23.8%, Benzene – 21.7%, Tetrachloroethene – 23.7%, m/p-Xylene – 20.5%; "J/UJ" results in MW-1, MW-2, MW-2-DUP, and MW-3.

CCAL VOA130 -4/08/2022 - Bromomethane - 38.1%; "UJ" non-detects in the Trip Blank.

1.8 — Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than \pm 30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to \pm 100%) range of the associated standard, all the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

All samples were spiked with the internal standards Fluorobenzene, Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4 prior to sample analysis. The area responses and retention time of each internal standard met QC criteria in all samples.

1.9 Field Duplicates

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples.

An acceptable RPD is 25% as documented in EPA Region 2 SOP HW33. Professional judgment is utilized for analytes that demonstrate high percent difference.

Field duplicate analysis was collected on MW-2 as MW-2-DUP. Acceptable precision was obtained for target analytes Tetrachloroethene (12 ug/L vs. 13 ug/L), and Trichloroethene (0.24 ug/L vs. 0.22 ug/L).

1.10 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/- 0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

GC/MS spectra met the qualitative criteria for identification. Retention times were within required specifications.

1.11 Tentatively Identified Compounds (TICs)

TICs were not required for these sampling events. When detected the identification must be considered tentative (both quantitative and qualitative) due to the lack of required compound specific response factors. Consequently, all concentrations should be considered estimated, "J" due to the qualitative uncertainty should be qualified, "N" where an identification has been made.

TICS were not required.

1.12 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis is acceptable. Correct internal standards per SW846 and response factors were used to calculate final concentrations.

As required, the laboratory reported "J" values between the reporting limits (RL) and Method Detection Limits (MDLs). This is consistent with common laboratory practices and a requirement of the National Environmental Laboratory Approval Program (NELAP).

Samples were analyzed undiluted at 10mls.

1.13 Overall System Performance

Good resolution and chromatographic performance were observed.

Reviewer's Signature four O. Buy Date 04/24/8022

Appendix A
Chain of Custody Document
And Sample Receipt Checklist

ALPHA	CHAIN OF	Albany, NY 12205: 14 Walker Way, Tonawanda, NY 1450: 275 Cooper Ave, Suite 105	Way. Soper Ave, Suite 105		l of	1	Date Rec'd in Leb		たた/ソト	ALPHA Job # 1.80X	ix
Westborough, MA 01561 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information				e u	Detverables			Billing Information	
TEL: 508-898-8193 FAX: 508-898-8193 Client information	TEL-508-822-9300 FAX: 508-822-3288	Project Name: 18-46 Project Location: 18-46	6 Decelul	58 X	Less 1		ASP.A EQuis (1 File)		ASP-B EQUIS (4 File)	1	
	Bus U.C.	(Use Project name as Project	roject#) 💢				Regulatory Requirement	urement		Disposal Site Information	
Address: [2] MIZ	OX WW	Project Manager: Hol	-				NY TOGS		NY Part 375	Please identify below location of	1 5
10001	>						AWO Standards	ands [NY CP-51	applicable disposal facilities.	
Phone: 646 -6	606-737	Tum-Around Time	2783.54 N				NY Restricted Use	asn pa	Other	Disposal Facility.	
Fax:			Ŕ	Due Date:			NY Unrestricted Use	cted Use		Z _	
nail: Kahwedo	Email: Kahwedo ferren Dary 1000	Rush (only if pre approved)	d)	# of Days:		-	☐ NYC Sewer Discharge	Discharge		4	
rese samples have b	These samples have been previously analyzed by Alpha	ed by Alpha					ANALYSIS		1	Sample Filtration	
ther project specific	Other project specific requirements/comments:	nents:								Done	ර ර
							- 111117			Preservation	
Please specify Metals or TAL.	or TAL.					8	5			Lab to do	සා
Al PHA Lah ID			Collection				79/			(Please Specify below)	• •• •
(Lab Use Only)	Sa	Sample ID	Date	Time	Matrix	Samplers	1			Sample Specific Comments	e
10 -8084	MW	-3	3/3/1/24	83	Colo	MAX	×				u
	MU	-3-HS		925	640	MA	×				M
A	STAN COM	-3-4SD	331/24	940	GW	JOH.	<u>بر</u>				M,
Co	SM	20.	3/3/12	(330	GU	HPC	بر				0
0.3	NIC	1-2- Pup	321/2	135	GW.	HP	<				Λ
10	Ze.	1-1	321/22	1400	an	HOL	l x			36	M
0.2	This B	lank	33122		KO	un.	×				7
9	3					NT)					-
											-
Preservative Code: A = None B × HCI C = HNO.	Container Code P = Plastic A = Amber Glass	Westboro: Certification Nor MA935 Mansfield: Certification No. MA015	Vo: MA935		Conta	Container Type				Please print clearly, legibly and completely. Samples can	oly s can
D = H;SO, E = NaOH	G = Glass B = Bacteria Cup				P	Preservative	-			turnaround time clock will not start until any ambientities ere	Il not
ó	C = Cube	Ralipquished By:		, Cate/Time	me	1) 13	Received By:		1 Date/Time	resolved, BY EXECUTING	9
HOBN	E = Encors D = 800 Bottle	A Comment	142 4	STATE OF THE PARTY	2-45	A Land	M mage	Op.	1139 1	THIS COC, THE CLIENT HAPPEAD AND AGREES TO BE BOUND BY ALPHA'S TEDMS & CONDITIONS	ES HA'S
Form: No: 01-25 HC (rev. 30-Sept-2013)	-Sept-2013)		1/1/12/	1		1	1	K	1375	(See reverse side.)	ė
			1 1 1 1	,		1)	111		ŀ

Sample Delivery Group Summary

Alpha Job Number: L2216808

Received Reviewer # 01-APR-2022 : Caitlin Cronin

Account Name

: Tenen Environmental, LLC

Project Number : 18-46 DECATUR ST

Project Name

: 18-46 DECATUR ST

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody

: Present

Cooler Information

Cooler Seal/Seal#

Α

Preservation

lce

Temperature(°C) Additional Information

Absent/

Condition Information

1) All samples on COC received?

YES ...

2.9

2) Extra samples received?

NO

3) Are there any sample container discrepancies?

NO

4) Are there any discrepancies between sample labels & COC?

NO YES

5) Are samples in appropriate containers for requested analysis?

YES

6) Are samples properly preserved for requested analysis? 7) Are samples within holding time for requested analysis?

YES

8) All sampling equipment returned?

NA

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

NO

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Appendix B
Case Narrative

Project Name:18-46 DECATUR STLab Number:Project Number:18-46 DECATUR STReport Date:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

L2216808

Project Name: Project Number: 18-46 DECATUR ST

18-46 DECATUR ST

Lab Number:

L2216808

Report Date:

THE RESIDENCE STREET

04/15/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Liffani Morrissey_

Report Date: 04/15/22

Title: Technical Director/Representative

L.A.B. Validation Corp, 14 West Point Drive, East Northport, NY 11731

Appendix C
Data Summary Form I's
With Qualifications

Client : Tenen Environmental, LLC Lab Number

Project Name : 18-46 DECATUR ST Project Number : 18-46 DECATUR ST Date Collected : 03/31/22 14:00 Date Received : 04/01/22

Lab ID : L2216808-04 Client ID : MW-1

Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:55

Sample Matrix : WATER Dilution Factor : 1 Analytical Method Analyst : 1,8260C a MV Lab File ID : V05220406A26 Instrument ID : VOA105 : RTX-502.2 Sample Amount : 10 ml GC Column

Level %Solids : LOW : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	0.79	2.5	0.70	J
56-23-5	Carbon tetrachloride	ND	0.50	0.13	JI UJ
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	11	0.50	0.18	J
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	JU UT
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
642-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	ル ひ丁
'5-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
'1-43-2	Benzene	ND	0.50	0.16	+ UJ
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

: L2216808

Client Tenen Environmental, LLC

Project Name : 18-46 DECATUR ST

Lab ID : L2216808-04

Client ID : MW-1

Sample Location : 18-46 DECATUR ST, QUEENS, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220406A26

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2216808

Project Number : 18-46 DECATUR ST

Date Collected : 03/31/22 14:00

Date Received : 04/01/22
Date Analyzed : 04/06/22 16:55

Dilution Factor : 1
Analyst : MV
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L CAS NO. Results RL MDL Qualifier **Parameter** 75-00-3 Chloroethane ND 2.5 0.70 U 75-35-4 1,1-Dichloroethene ND 0.50 0.17 U 156-60-5 trans-1,2-Dichloroethene ND 2.5 0.70 79-01-6 Trichloroethene 0.38 0.50 0.18 л 95-50-1 1,2-Dichlorobenzene ND 2.5 0.70 U 541-73-1 1,3-Dichlorobenzene ND 2.5 0.70 U 106-46-7 1,4-Dichlorobenzene ND 2.5 0.70 U 1634-04-4 Methyl tert butyl ether ND 2.5 0.70 U 179601-23-1 p/m-Xylene ND 2.5 0.70 1 95-47-6 o-Xylene ND 2.5 0.70 U 1330-20-7 Xylenes, Total ND 2.5 0.70 -U 156-59-2 cis-1,2-Dichloroethene ND 0.70 U 2.5 540-59-0 1,2-Dichloroethene, Total ND 2.5 0.70 -11 74-95-3 U Dibromomethane ND 5.0 1.0 96-18-4 1,2,3-Trichloropropane ND U 2.5 0.70 107-13-1 Acrylonitrile ND 5.0 1.5 U 100-42-5 ND 2.5 0.70 U Styrene 75-71-8 Dichlorodifluoromethane ND 5.0 1.0 u 67-64-1 Acetone ND 5.0 u 1.5 75-15-0 Carbon disulfide ND 5.0 1.0 U 78-93-3 2-Butanone ND 5.0 1.9 U 108-05-4 Vinyl acetate ND 5.0 1.0 U 108-10-1 4-Methyl-2-pentanone ND 5.0 1.0 U 591-78-6 U 2-Hexanone ND 5.0 1.0 0.70 74-97-5 Bromochloromethane ND 2.5 U

Client : Tenen Environmental, LLC Lab Number : L2216808

Project Name : 18-46 DECATUR ST Project Number : 18-46 DECATUR ST Lab ID Date Collected : 03/31/22 14:00

 Lab ID
 : L2216808-04
 Date Collected
 : 03/31/22 14:00

 Client ID
 : MW-1
 Date Received
 : 04/01/22

Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:55
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260C Analyst : MV
Lab File ID : V05220406A26 Instrument ID : VOA105
Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A
Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
					, —
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61,	w R
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

Client: Tenen Environmental, LLC: Lab Number: L2216808

Project Name : 18-46 DECATUR ST
Lab ID : L2216808-04 Project Number : 18-46 DECATUR ST
Date Collected : 03/31/22 14:00

Client ID : MW-1 Date Received : 04/01/22 Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:55

Sample Matrix : 1 : WATER **Dilution Factor Analytical Method** 1,8260C Analyst ≥ MV Lab File ID : V05220406A26 Instrument ID : VOA105 Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A
Extract Volume (MeOH) : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client Tenen Environmental, LLC Lab Number : L2216808

Client ID : MW-2 Date Received : 04/01/22

Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:09
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MV

Lab File ID : V05220406A24 Instrument ID : VOA105
Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		0=	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	υ
56-23-5	Carbon tetrachloride	ND	0.50	0.13	- UT
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	12	0.50	0.18	J
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	+ UT
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	- UJ
75-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	4 UJ
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
5-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : Tenen Environmental, LLC

Project Name 18-46 DECATUR ST

Lab ID : L2216808-02

Client ID : MW-2

Sample Location : 18-46 DECATUR ST, QUEENS, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220406A24

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2216808

Project Number : 18-46 DECATUR ST

Date Collected : 03/31/22 12:30

Date Received : 04/01/22 Date Analyzed : 04/06/22 16:09

Dilution Factor : 1
Analyst : MV

Instrument ID : VOA105 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

		7	ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	u (J.T
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	4
79-01-6	Trichloroethene	0.24	0.50	0.18	J
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	JU UT
95-47-6	o-Xylene	ND	2.5	0.70	U
330-20-7	Xylenes, Total	ND	2.5	0.70	+ UJ
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	II (J.J
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
07-13-1	Acrylonitrile	ND	5.0	1.5	U
00-42-5	Styrene	ND	2,5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	ш ()
67-64-1	Acetone	ND	5.0	1.5	U
' 5-15-0	Carbon disulfide	ND	5.0	1.0	U
'8-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
74-97-5	Bromochloromethane	ND	2.5	0.70	U

Client : Tenen Environmental, LLC

Project Name : 18-46 DECATUR ST Project Number : 18-46 DECATUR ST Date Collected : 03/31/22 12:30

Lab ID : L2216808-02 Client ID : MW-2

Date Received : 04/01/22 Date Analyzed : 04/06/22 16:09 : 18-46 DECATUR ST, QUEENS, NY Sample Location

Sample Matrix : WATER Analytical Method : 1,8260C Lab File ID : V05220406A24

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) :: N/A

Dilution Factor : 1 Analyst : MV Instrument ID : VOA105 GC Column : RTX-502.2 %Solids : N/A

: L2216808

Injection Volume : N/A

Lab Number

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	w (J)	
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U	
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U	
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U	
108-86-1	Bromobenzene	ND	2.5	0.70	U	
104-51-8	n-Butylbenzene	ND	2.5	0.70	U	
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U	
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U	
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U	
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U	
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U	
98-82-8	Isopropylbenzene	ND	2.5	0.70	U	
99-87-6	p-isopropyltoluene	ND	2.5	0.70	U	
91-20-3	Naphthalene	ND	2.5	0.70	U	
103-65-1	n-Propyibenzene	ND	2.5	0.70	U	
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U	
123-91-1	1,4-Dioxane	ND	250	61.	J-R	
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U	
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U	
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U	
60-29-7	Ethyl ether	ND	2.5	0.70	U	

Client : Tenen Environmental, LLC Lab Number : L2216808

Project Name : 18-46 DECATUR ST
Lab ID : L2216808-02 Project Number : 18-46 DECATUR ST
Date Collected : 03/31/22 12:30

Client ID : MW-2 Date Received : 04/01/22 Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:09

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MV
Lab File ID : V05220406A24 Instrument ID : VOA105
Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A
Extract Volume (MeOH) : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Image: Case of trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : Tenen Environmental, LLC Lab Number : L2216808

Client ID : MW-2-DUP Date Received : 04/01/22
Sample Location : 18-46 DECATUR ST QUEENS NV Date Analyzed : 04/06/22 16:32

Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:32
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MV

 Lab File ID
 : V05220406A25
 Instrument ID
 : V0A105

 Sample Amount
 : 10 ml
 GC Column
 : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.			ug/L		
	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U UT
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	13	0.50	0.18	一丁
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	# UJ
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
0061-02-6	trans-1,3-Dichioropropene	ND	0.50	0.16	U
0061-01-5	cls-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	U UI
75-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	- UJ
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
'4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
'5-01 - 4	Vinyl chloride	ND	1.0	0.07	U

Client : Tenen Environmental, LLC Lab Number ; L2216808

 Project Name
 : 18-46 DECATUR ST
 Project Number
 : 18-46 DECATUR ST

 Lab ID
 : L2216808-03
 Date Collected
 : 03/31/22 12:35

Client ID But Received : 04/01/22
Sample Location 18 46 DECATUR ST. OHEENS NV Date Received : 04/06/23 16:33

Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:32
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MV

 Lab File ID
 : V05220406A25
 Instrument ID
 : VOA105

 Sample Amount
 : 10 ml
 GC Column
 : RTX-502.2

Level: LOW: %Solids: N/A
Extract Volume (MeOH): N/A: Injection Volume: N/A

CAS NO.			ug/L		
	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	w UJ
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	J. U.J.
79-01-6	Trichloroethene	0.22	0.50	0.18	J
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	JU UJ
95-47-6	o-Xylene	ND	2.5	0.70	U
330-20-7	Xylenes, Total	ND	2.5	0.70	-0 VJ
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	I ITI
4-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
07-13-1	Acrylonitrile	ND	5.0	1.5	U
00-42-5	Styrene	ND	2.5	0.70	U
7 5-71-8	Dichlorodifluoromethane	ND	5.0	1.0	TU T
67-64-1	Acetone	ND	5.0	1.5	U
′5-15 - 0	Carbon disulfide	ND	5.0	1.0	U
'8-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U

Client : Tenen Environmental, LLC Lab Number : L2216808

Project Name : 18-46 DECATUR ST Project Number : 18-46 DECATUR ST Lab ID Date Collected : 03/31/22 12:35

Client ID : MW-2-DUP Date Received : 04/01/22

Sample Legation : 18-46 DECATURIST OUEFNS NV Date Applying : 04/06/22 16:32

Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:32 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260C Analyst : MV
Lab File ID : V05220406A25 Instrument ID : VOA105
Sample Amount : 10 ml GC Column : RTX-502.2

Level: LOW: %Solids: N/A
Extract Volume (MeOH): N/A: 1njection Volume: N/A

CAS NO.			ug/L		
	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	w Ut
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chiorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
37-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
37-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
08-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
23-91-1	1,4-Dioxane	ND	250	61.	v R
05-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
0-29-7	Ethyl ether	ND	2.5	0.70	U

Client Tenen Environmental, LLC Lab Number : L2216808

Client ID : MW-2-DUP Date Received : 04/01/22 Sample Location 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 16:32

Sample Matrix : WATER Dilution Factor 5 1 **Analytical Method** : 1,8260C Analyst : MV Lab File ID : V05220406A25 Instrument ID : VOA105 Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : Tenen Environmental, LLC

Project Name : 18-46 DECATUR ST

Lab ID : L2216808-01

Client ID : MW-3

Sample Location : 18-46 DECATUR ST, QUEENS, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05220406A23

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2216808

Project Number : 18-46 DECATUR ST

Date Collected : 03/31/22 09:30 Date Received : 04/01/22

Date Analyzed : 04/06/22 15:46

Dilution Factor : 1 Analyst : MV

Instrument ID : VOA105 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

		ug/L			
CAS NO.	Parameter	Results	RL	✓ MDL	Qualifier
			4		
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	of Ut
78-87-5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
127-18-4	Tetrachloroethene	11	0.50	0.18	T
108-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
107-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
71-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	* Ut
75-27-4	Bromodichloromethane	ND	0.50	0.19	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	0.14	U
542-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
563-58-6	1,1-Dichloropropene	ND	2.5	0.70	& UT
75-25-2	Bromoform	ND	2.0	0.65	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
71-43-2	Benzene	ND	0.50	0.16	4 (1.1
108-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
'4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : Tenen Environmental, LLC Lab Number

Project Name : 18-46 DECATUR ST Project Number : 18-46 DECATUR ST Date Collected : 03/31/22 09:30

Lab ID : L2216808-01 Client ID : MW-3

Date Received : 04/01/22 Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 15:46 Dilution Factor

Sample Matrix : WATER **Analytical Method** : 1,8260C Lab File ID : V05220406A23

Instrument ID : VOA105 Sample Amount : 10 ml GC Column : RTX-502.2 Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	y UT
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	W (JJ
79-01-6	Trichloroethene	0.22	0.50	0.18	J
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	u (F.T
95-47-6	o-Xylene	ND	2.5	0.70	U
1330-20-7	Xylenes, Total	ND	2.5	0.70	W 17.1
156-59-2	cls-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
107-13-1	Acrylonitrile	ND	5.0	1.5	U
100-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	せひす
67 - 64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
78-93-3	2-Butanone	ND	5.0	1.9	U
108-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U

: L2216808

: 1

: MV

Analyst

Client : Tenen Environmental, LLC Lab Number ; L2216808

 Project Name
 : 18-46 DECATUR ST
 Project Number
 : 18-46 DECATUR ST

 Lab ID
 : L2216808-01
 Date Collected
 : 03/31/22 09:30

Client ID : MW-3 Date Received : 04/01/22

Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 15:46
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MV

Lab File ID : V05220406A23 Instrument ID : V0A105
Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
					111
594-20 - 7	2,2-Dichloropropane	ND	2.5	0.70	400
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12 - 8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
B 7- 68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87 - 6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
87-61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	UR
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
622-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

Client Tenen Environmental, LLC Lab Number : L2216808

Project Name : 18-46 DECATUR ST
Lab ID : L2216808-01 Project Number : 18-46 DECATUR ST
Date Collected : 03/31/22 09:30

Client ID : MW-3 Date Received : 04/01/22 Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/06/22 15:46

Sample Matrix : WATER Dilution Factor **£ 1 Analytical Method** : 1,8260C Analyst € MV Lab File ID : V05220406A23 Instrument ID : VOA105 Sample Amount GC Column : RTX-502.2 : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 110-57-6
 trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Client : Tenen Environmental, LLC Lab Number : L2216808

Client ID : TRIP BLANK Date Received : 04/01/22
Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/08/22 20:10

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MV
Lab File ID : V30220408N12 Instrument ID : VOA130
Sample Amount : 10 ml GC Column : RTX-502.2

Level: LOW: %Solids: N/A
Extract Volume (MeOH): N/A: Injection Volume: N/A

CAS NO.			ug/L		
	Parameter	Results	RL	MDL	Qualifier
75-09-2	Methylene chloride	ND	2.5	0.70	U
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
67-66-3	Chloroform	ND	2.5	0.70	U
56-23-5	Carbon tetrachloride	ND	0.50	0.13	U
78-87 - 5	1,2-Dichloropropane	ND	1.0	0.14	U
124-48-1	Dibromochloromethane	ND	0.50	0.15	U
79-00-5	1,1,2-Trichloroethane	ND	1.5	0.50	U
27-18-4	Tetrachloroethene	ND	0.50	0.18	U
08-90-7	Chlorobenzene	ND	2.5	0.70	U
75-69-4	Trichlorofluoromethane	ND	2.5	0.70	U
07-06-2	1,2-Dichloroethane	ND	0.50	0.13	U
1-55-6	1,1,1-Trichloroethane	ND	2.5	0.70	U
5-27-4	Bromodichloromethane	ND	0.50	0.19	U
0061-02-6	trans-1,3-Dichloropropene	ND	0.50	0.16	U
0061-01-5	cls-1,3-Dichloropropene	ND	0.50	0.14	U
42-75-6	1,3-Dichloropropene, Total	ND	0.50	0.14	U
63-58-6	1,1-Dichloropropene	ND	2.5	0.70	U
5-25-2	Bromoform	ND	2.0	0.65	U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	0.17	U
1-43-2	Benzene	ND	0.50	0.16	U
08-88-3	Toluene	ND	2.5	0.70	U
00-41-4	Ethylbenzene	ND	2.5	0.70	U
4-87-3	Chloromethane	ND	2.5	0.70	U
4-83-9	Bromomethane	ND	2.5	0.70	* UJ
5-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : Tenen Environmental, LLC Lab Number : L2216808

Client ID : TRIP BLANK Date Received : 04/01/22 Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/08/22 20:10

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MV
Lab File ID : V30220408N12 Instrument ID : VOA130
Sample Amount : 10 ml GC Column : RTX-502.2

Level: LOW: %Solids: N/A
Extract Volume (MeOH): N/A: Injection Volume: N/A

CAS NO.			ug/L		
	Parameter	Results	RL	MDL	Qualifier
75-00-3	Chloroethane	ND	2.5	0.70	U
75-35-4	1,1-Dichloroethene	ND	0.50	0.17	U
156-60-5	trans-1,2-Dichloroethene	ND	2.5	0.70	U
79-01-6	Trichloroethene	ND	0.50	0.18	U
95-50-1	1,2-Dichlorobenzene	ND	2.5	0.70	U
541-73-1	1,3-Dichlorobenzene	ND	2.5	0.70	U
106-46-7	1,4-Dichlorobenzene	ND	2.5	0.70	U
1634-04-4	Methyl tert butyl ether	ND	2.5	0.70	U
179601-23-1	p/m-Xylene	ND	2.5	0.70	U
95-47 - 6	o-Xylene	ND	2.5	0.70	U
330-20-7	Xylenes, Total	ND	2.5	0.70	U
156-59-2	cis-1,2-Dichloroethene	ND	2.5	0.70	U
540-59-0	1,2-Dichloroethene, Total	ND	2.5	0.70	U
74-95-3	Dibromomethane	ND	5.0	1.0	U
96-18-4	1,2,3-Trichloropropane	ND	2.5	0.70	U
07-13-1	Acrylonitrile	ND	5.0	1.5	U
00-42-5	Styrene	ND	2.5	0.70	U
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	U
7-64-1	Acetone	ND	5.0	1.5	U
75-15-0	Carbon disulfide	ND	5.0	1.0	U
'8-93-3	2-Butanone	ND	5.0	1.9	U
08-05-4	Vinyl acetate	ND	5.0	1.0	U
08-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	U
91-78-6	2-Hexanone	ND	5.0	1.0	U
4-97-5	Bromochloromethane	ND	2.5	0.70	U

Client Tenen Environmental, LLC Lab Number : L2216808

Project Name : 18-46 DECATUR ST
Lab ID : L2216808-05 Project Number : 18-46 DECATUR ST
Date Collected : 03/31/22 00:00

Client ID : TRIP BLANK Date Received : 04/01/22
Sample Location : 18-46 DECATUR ST, QUEENS, NY Date Analyzed : 04/08/22 20:10

Sample Matrix : WATER Dilution Factor : 1 **Analytical Method** : 1,8260C Analyst : MV Lab File ID : V30220408N12 Instrument ID : VOA130 : RTX-502.2 Sample Amount : 10 ml GC Column

Level : LOW %Solids : N/A
Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.			ug/L		
	Parameter	Results	RL	MDL	Qualifier
594-20-7	2,2-Dichloropropane	ND	2.5	0.70	U
106-93-4	1,2-Dibromoethane	ND	2.0	0.65	U
142-28-9	1,3-Dichloropropane	ND	2.5	0.70	U
630-20-6	1,1,1,2-Tetrachloroethane	ND	2.5	0.70	U
108-86-1	Bromobenzene	ND	2.5	0.70	U
104-51-8	n-Butylbenzene	ND	2.5	0.70	U
135-98-8	sec-Butylbenzene	ND	2.5	0.70	U
98-06-6	tert-Butylbenzene	ND	2.5	0.70	U
95-49-8	o-Chlorotoluene	ND	2.5	0.70	U
106-43-4	p-Chlorotoluene	ND	2.5	0.70	U
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.5	0.70	U
87-68-3	Hexachlorobutadiene	ND	2.5	0.70	U
98-82-8	Isopropylbenzene	ND	2.5	0.70	U
99-87-6	p-Isopropyltoluene	ND	2.5	0.70	U
91-20-3	Naphthalene	ND	2.5	0.70	U
103-65-1	n-Propylbenzene	ND	2.5	0.70	U
B 7- 61-6	1,2,3-Trichlorobenzene	ND	2.5	0.70	U
120-82-1	1,2,4-Trichlorobenzene	ND	2.5	0.70	U
108-67-8	1,3,5-Trimethylbenzene	ND	2.5	0.70	U
95-63-6	1,2,4-Trimethylbenzene	ND	2.5	0.70	U
123-91-1	1,4-Dioxane	ND	250	61.	-UR
105-05-5	p-Diethylbenzene	ND	2.0	0.70	U
522-96-8	p-Ethyltoluene	ND	2.0	0.70	U
95-93-2	1,2,4,5-Tetramethylbenzene	ND	2.0	0.54	U
60-29-7	Ethyl ether	ND	2.5	0.70	U

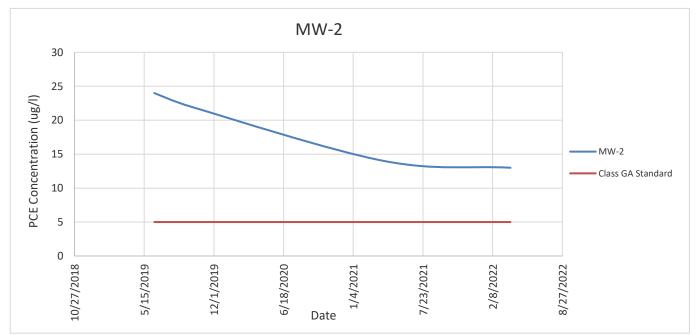
Client : Tenen Environmental, LLC Lab Number : L2216808

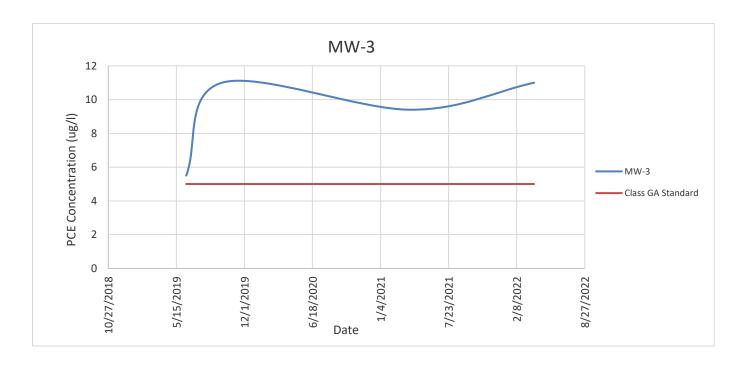
Project Name : 18-46 DECATUR ST
Lab ID : L2216808-05 Project Number : 18-46 DECATUR ST
Date Collected : 03/31/22 00:00

Client ID Sample Location TRIP BLANK Date Received : 04/01/22

Sample Location Date Analyzed : 04/08/22 20:10

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MV
Lab File ID : V30220408N12 Instrument ID : VOA130
Sample Amount : 10 ml GC Column : RTX-502.2


Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A


 CAS NO.
 Parameter
 Image: Test of trans-1,4-Dichloro-2-butene
 ND
 2.5
 0.70
 U

Appendix 3 PCE in Groundwater Concentration Trends

PCE in Groundwater Trends 18-46 Decatur Street - Queens, NY

