

HydroTech Environmental ENGINEERING AND GEOLOGY, DPC

231 West 29th Street, Suite 1104 New York, New York 10001 USA Tel: (631) 462-5866

Email: Info@hydrotechenvironmental.com WWW.HYDROTECHENVIRONMENTAL.COM USA - Middle East - North Africa

Periodic Review Report

January 29, 2023 to January 29, 2024

107-02 Queens Boulevard, Queens, NY NYSDEC Site # C241196

Prepared For:

RJ Capital Holdings, LLC, AVG Capital LLC and De Boulevard LLC 215-15 Northern Boulevard, Bayside, NY 11361

Prepared By:

Hydro Tech Environmental Engineering and Geology, DPC 231 West 29th Street, Suite 1104, New York, NY 10001

June 14, 2024

CERTIFICATION STATEMENT

I, Tarek Z Khouri, certify that I am currently a NYS registered Professional Engineer and that this Periodic Review Report for the 107-02 Queens Boulevard Site, Queens, NY (Site Number: C241196) was prepared for the reporting period 2023-2024 in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification statement are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I, Tarek Z. Khouri at Hydro Tech Environmental Engineering and Geology, DPC, am certifying as a Professional Engineer for the site owner De Boulevard LLC.

NYS Professional Engineer Date Signature/Stamp

086611 6-14-2024

TABLE OF CONTENTS

CERTIFICATION STATEMENT	i
TABLE OF CONTENTS	iii
1.0 Executive Summary	1
2.0 Site Overview	3
3.0 Evaluation of Remedy Performances, Effectiveness, and Protectiveness	6
3.1 Post SSD System Start-Up Indoor Air Assessment	7
3.1.1 Indoor Air Sampling	7
3.1.2 Indoor Air Sampling Results	9
3.1.3 Indoor Air Results Summary	9
3.2 ACTIVE SUB-SLAB DEPRESSURIZATION SYSTEM MONITORING DATA	9
3.3 Influent and Effluent Sampling at the GAC Drums	11
4.0 Institutional Control/Engineering Control Compliance	13
4.1 Institutional Controls	13
4.2 Engineering Controls	14
5.0 Operation & Maintenance Compliance Report	15
5.1 COMPONENT OF OPERATION & MAINTENANCE (O&M) PLAN	15
5.2 SUMMARY OF O&M COMPLETED DURING REPORTING PERIOD	15
5.3 EVALUATION OF REMEDIAL SYSTEM	16
6.0 Conclusions and Recommendations	17
6.1 COMPLIANCE	17
6.2 PERFORMANCE AND EFFECTIVENESS OF REMEDY	17
6.3 RECOMMENDATION	18

Figures

Figure 1	As-Build Plans of SSD System - Plan View
Figure 2	As-Build Plans of SSD System - Sections View
Figure 3	As-Build Plans of SSD System - Blowers System Details
Figure 4	Indoor Air Sampling Map

<u>Tables</u>

Table 1	Post SSD System Start-up Indoor Air Samples Analytical Results
Table 2	Semi-Annual SSD System Monitoring Results Over Time
Table 3	Semi-Annual GAC Influent/Effluent Samples Analytical Results - April 2023
	and January 2024

Appendices

1 1	Photographs
Appendix 2	NYSDOH Indoor Air Quality Questionnaire and Building Inventory
Appendix 3	Indoor and Outdoor Air Samples Laboratory Analytical Report
Appendix 4	DUSR
Appendix 5	Semi-Annual SSD System Inspection Reports
Appendix 6	Monthly SSD System Inspections Checklists
Appendix 7	GAC Influent/Effluent Samples Laboratory Analytical Reports
Appendix 8	EC/IC Inspection and Certification Form

1.0 EXECUTIVE SUMMARY

The site is located at 107-02 Queens Boulevard in the Forest Hills neighborhood of the County of Queens, New York and consists of one parcel identified as Block 3238 and Lot 44 on the New York City Tax Map. The Site was previously identified as 107-02 to 107-16 Queens Boulevard and this information was referenced in the Certificate of Completion (COC) dated September 2021. The site is an approximately 0.390-acre area (17,090 square feet). The site is zoned C4-5X (commercial district) and is currently developed with a 10-story residential and commercial building with a partial sub-grade cellar and a full cellar occupying 100% of the lot area. The partial sub-cellar level is approximately 5,750 square feet in the western portion of the site and is used for building mechanics and residential storage spaces. The full cellar is occupied by a gym identified as Planet Fitness. The first floor consists of a residential lobby and four commercial units. One commercial unit is currently vacant. The other 3 units are occupied by Planet Fitness, Sear Physical Therapy and a restaurant that is still undergoing interior finishings. The second floor consists of a parking. Floors 3 to 10 consist of 72 condominium units, of which, 11 units remain unoccupied and are being listed in the real estate market for sale.

This site is enrolled in the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) and referred to as site No. C241196. The site was remediated by RJ Capital Holdings, LLC, AVG Capital LLC and De Boulevard LLC in accordance with a Brownfield Cleanup Agreement (BCA), which was executed on March 01, 2017. Following site remediation, a Certificate of Completion (COC) was issued by NYSDEC on September 29, 2021.

This annual Periodic Review Report (PRR) was prepared for the reporting period 2023 – 2024 in accordance with NYSDEC-approved Site Management Plan (SMP) dated September 2021. This PRR documents the annual site wide inspection of engineering controls consisting of an active sub-slab depressurization system (SSDS), the post SSD

system start-up indoor air assessment results, the monthly inspections and semi-annual monitoring of the SSD system, the sampling of influents and effluents of two Granulated Activated Carbon (GAC) treatment drums associated with two SSD system blowers.

Findings of this PRR indicate the Site is currently in compliance with the requirements of the September 2021 SMP. No evidence of indoor soil vapor intrusion impact is identified at the site. The installed engineering and institutional controls at this suite continue to be effective and are operating satisfactorily. No change to the frequency for submittal of the annual PRR is recommended at this time.

2.0 SITE OVERVIEW

The PRR is prepared for the property located at 107-02 Queens Boulevard (site) in the Forest Hills neighborhood of the Queens County of New York. This site consists of one parcel identified as Block 3238 and Lot 44 on the New York City Tax Map. The site was previously addressed as 107-02 to 107-16 Queens Boulevard and this information was referenced in the Certificate of Completion (COC) dated September 2021. This site is an approximately 0.390-acre area (17,090 square feet) and is bounded on the north by Queen Boulevard service road followed by MacDonald Park, on the south by a 7-story residential building and a synagogue, on the east by a 5-story warehouse/utility (Verizon) building, and on the west by 70 Avenue followed by a US Post Office. It is zoned C4-5X (commercial district) and is currently developed with a 10-story residential and commercial building with a partial sub-grade cellar and a full cellar occupying 100 % of the lot area. The partial sub-cellar level is approximately 5,750 square feet in the western portion of the Site and is used for building mechanics and residential storage spaces. The full cellar is occupied by a gym identified as Planet Fitness. The first floor consists of a residential lobby and four commercial units. Only three commercial units have been occupied by Planet Fitness, Sear Physical Therapy and a restaurant that is still undergoing interior finishings. The second floor consists of a parking. Floors 3 to 10 consist of 72 condominium units, of which, 11 units remain unoccupied and are being listed in the real estate market for sale.

The site was historically occupied by stables in the northwestern portion around 1902, a 2-story dwelling in the western portion in 1914. The Site became vacant in 1932 and was then developed with the former 1-story commercial building with a rear parking in 1950. The commercial building housed 7 storefronts with shared basements. Past uses of the commercial units included retail shops, restaurants, beauty salons, and drycleaners. The drycleaner at the Site was located at 107-06 Queens Boulevard and was identified

as Discount Cleaners in 1983, Double D Cleaners in 1991 and Liz Cleaners from 2005 until building demolition in preparation for remedial construction.

RJ Capital Holdings, LLC, AVG Capital LLC and De Boulevard LLC and the New York State Department of Environmental Conservation (NYSDEC) entered into a Brownfield Cleanup Agreement (BCA) on March 01, 2017. The site was then characterized in a Remedial Investigation Report (RIR) prepared by HydroTech and dated August 2017. The RIR identified contaminants of concern at the site that exceeded the applicable Site Cleanup Goals (SCGs) including volatile organic compounds (VOCs) particularly tetrachloroethylene, or PCE in soil, in dry sewer pit sediments, in groundwater and in soil vapors and also pesticides in soil.

The site was then remediated in accordance with a Remedial Action Work Plan (RAWP) prepared by HydroTech and in compliance with the Decision Document dated June 2018. A Final Engineering Report (FER) prepared by HydroTech and dated September 2021 summarized the completed remedial actions at the Site, which included the following:

- Excavation and off-site disposal of approximately 8,600 tons of contaminated soil/historic fill material exceeding the unrestricted use soil cleanup objectives (UUSCOs).
- Import of clean fill meeting the UUSCOs to complete the backfilling of the excavation and establish the design grades at the site.
- Installation of an active sub-slab depressurization system (SSDS) beneath the cellar and sub-cellar to mitigate the potential for soil vapor intrusion into the building.
- Development of a Site Management Plan (SMP) for long-term management of residual contamination as required by the Environmental Easement, including

- plans for: (1) Institutional and Engineering Controls (IC/ECs); (2) monitoring; (3) operation and maintenance; and (4) reporting.
- Recording of an Environmental Easement to prevent future exposure to any contamination remaining at the site and to ensure implementation of the SMP.

Pursuant to the SMP prepared by HydroTech and dated September 2021 and consistent with the requirements of a Certificate of Completion (COC) issued by NYSDEC on September 29, 2021, this annual Periodic Review Report (PRR) was prepared for this site for the period of 2023-2024 to document the annual site wide inspection, the post SSD system start-up indoor air assessment during the heating season, the monthly inspections and semi-annual monitoring of the SSD system and the sampling of influents and effluents of two Granulated Activated Carbon (GAC) treatment drums associated with two SSD system blowers.

3.0 EVALUATION OF REMEDY PERFORMANCES, EFFECTIVENESS, AND PROTECTIVENESS

The monitoring and sampling plan contemplated in the September 2021 Site Management Plan (SMP) outlines the following activities:

Monitoring	Frequency/	Monitoring/	Analytical	Analytical
Program	Schedule	Sampling Points	Parameter	Method
Site-Wide	Annually	Engineering Controls	Not Applicable	Not Applicable
	Monthly	Color ofBreakthrough DetectorVacuum at BlowerTelemetryBlowers On/off	Not Applicable	Not Applicable
SSD system	Semi-Annually	- Vacuum at TP-1 to TP-5 - Vacuum at Blower - Flow/PID at Ef-1 & Ef-2 - Telemetry - Blowers On/off	Not Applicable	Not Applicable
	First heating season after start- up and after system interruption/ re- start	- IF-1/EF-1 & IF-2/EF-2 - AI-1 to AI-5	VOCs	EPA Method TO-15

A copy of the SSD system monitoring locations is included in **Figure 1**, **Figure 2**, and **Figure 3**. A copy of the SSD system sampling locations is provided in **Figure 4**. **Appendix 1** provides photographs of the site-wide inspection.

3.1 Post SSD System Start-Up Indoor Air Assessment

As part of SSD system monitoring protocol presented in the September 2021 SMP, indoor air assessment was required post system start-up inside the new development during the heating season in 2022. This sampling was delayed due to unfinished interior insulation of the new building at the site, and it was performed on March 14, 2023 during the heating season in 2023. The purpose of this sampling was to assess the indoor air quality inside the building and to verify the effectiveness of the active SSD system in mitigating vapor intrusion beneath the building.

3.1.1 Indoor Air Sampling

Consistent with the sampling plan in the September 2021 SMP, five (5) indoor air samples designated IA-1 to IA-5 and one background outdoor air sample designated OA-1 were collected during this assessment. Specifically, IA-1 to IA-3 were collected inside the cellar, which is currently occupied by a gym facility. IA-4 and IA-5 were collected inside the sub-cellar, which is used as a bike room, building maintenance workshop and residential storage units. Specifically, IA-4 was obtained from the bottom of the elevator pit. In addition, one (1) background outdoor air sample designated OA-1 was also collected in the open lounge area on the third floor. Due to building condition and the lack of security within and around the Site at the time of sampling, this outdoor air sample could not be collected at the first-floor level. **Figure 4** provides the indoor air sampling locations map.

The ambient air sampling was conducted in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006). Prior to the

indoor air sampling, a pre-sampling inspection was conducted across the cellar and subcellar of the building in accordance with the NYSDOH Indoor Air Sampling and Analysis Guidance dated February 2005. The inspection also included a product inventory of chemicals currently stored inside these spaces and a preliminary screening of indoor vapor concentrations utilizing a Photoionization Detector (PID). The presampling inspection identified no olfactory evidence of petroleum odors, and no organic vapors (<0.1 ppm) using the PID. This inspection identified several sealed containers in the sub-cellar that are labelled as paint and caulk mostly used in building maintenance. The average indoor air temperature in the sub-cellar and cellar during sampling was approximately 67 degrees Fahrenheit. Despite the frequent entry and exit of gym customers to the cellar through a staircase from a gym lobby on the first floor of the building, this cellar area was considered tight. **Appendix 1** provides photographs. **Appendix 2** provides a New York State Department of Health Indoor Air Quality Questionnaire and Building Inventory.

Except for the IA-4, all other indoor and outdoor air samples were obtained from typical breathing zone height between 4 and 5 feet. Ambient air samples were then collected utilizing 6-liter Summa Canisters fitted with a 24-hour laboratory flow regulator to provide an adequate residential exposure scenario. The ambient air samples were analyzed for VOCs via EPA Method TO-15. **Appendix 3** provides the indoor and outdoor air samples laboratory analytical report.

A Data Usability Summary Report (DUSR) was prepared for the analytical results for ambient indoor/outdoor air samples by an independent data reviewer, Dr. Hanibal Tayeh, an independent contractor, who has been approved by DER to perform data validation. The results of the DUSR for analytical results indicate that the data is acceptable with minor issues in data summaries. All data was considered usable. A copy of the DUSR is provided in **Appendix 4**.

The ambient indoor/outdoor air data were submitted electronically to the NYSDEC on March 31, 2023, through the Environmental Information Management System using the NYSDEC standardized Electronic Data Deliverable (EDD) format. The EDD was accepted by NYSDEC on April 5, 2023.

3.1.2 Indoor Air Sampling Results

Table 1 provides the organic compounds detected in the indoor and outdoor air samples. As **Table 1** indicates, tetrachloroethylene and trichloroethylene were not detected in any of the five indoor air samples. Other chlorinated compounds were detected in the indoor air samples at relatively low concentrations and included carbon tetrachloride (maximum of $0.55 \, \mu g/m^3$), chloroform (maximum of $0.54 \, \mu g/m^3$) and methylene chloride (maximum of $2.1 \, \mu g/m^3$). Detected concentrations of methylene chloride does not exceed its NYSDOH air guideline values of $60 \, \mu g/m^3$.

3.1.3 Indoor Air Results Summary

The overall finding of this post-SSD system start-up indoor air assessment during the heating season is consistent with the previous investigation conducted in July 2021. The indoor air data continues to indicate that no soil vapor intrusion impact is present in the indoor air of the building.

3.2 Active Sub-Slab Depressurization System Monitoring Data

SSD system inspections have been performed semi-annually by a Qualified Environmental Professional (QEP) and monthly SSD system inspections have been conducted by the building maintenance personnel since building occupancy in January 2022. For the period covered in this report, the first semi-annual monitoring of the SSD system was performed on April 26, 2023. The second semi-annual monitoring of the SSD system was performed on January 29, 2024, approximately two months past its due date in November 2023 due to a delayed access into the building to conduct this monitoring.

During each semi-annual monitoring event, the vacuum at the sub-slab monitoring points TP-1 to TP-5 was measured utilizing a digital micro-manometer. The SSD system components including the suction blowers, telemetry systems and breakthrough detectors at SSDS-1 and SSD-2 were also visually inspected for proper functioning in accordance with the SSD system Operation and Maintenance Plan in the SMP by recording any physical wear, damage and operational issues associated with the airflow readings, vacuum readings, temperature at the GAC drums and change in color of the activated carbon bed Breakthrough Detectors mounted on each GAC drum. In addition, organic vapors were measured at the effluent of each SSD system utilizing a Photoionization detector (PID). The SSD system monitoring data from these two events are summarized in **Table 2**.

The results of the semi-annual SSD system monitoring for this reporting period indicate a steady vacuum of -30-inch H2O (WC) was recorded at the influent to SSDS-1. The vacuum at the influent to SSDS-2 was recorded at -38 WC during April 2023 and increased to -42 during January 2024. The Photoionization Detector (PID) measurements performed at the exhaust from SSDS-1 and SSDS-2 continue to indicate no organic vapors (<0.1 ppm).

The vacuum measured at sub-slab monitoring points associated with SSDS-1 ranged between -0.48 WC at TP-2 during April 2023 to -2.41 WC at TP-3 during January 2024. The vacuum at the sub-slab monitoring points associated with SSDS-2 ranged between -0.48 WC at TP-4 during April 2023 and -1.58 at TP-5 during January 2024. Overall vacuum measurements at the vacuum monitoring points at SSDS and SSDS-2 were within the range of negative pressure of -0.04 WC and -2.53 WC that was recorded at SSD system start-up during June 2021.

Despite the minor variations in the vacuum measured at SSDS-2 blower and in the vacuum measured sub-slab beneath the cellar and sub-cellar during this reporting

period, the overall monitoring data continues to be within the operating ranges specified in the SMP and as such the SSD system continues to operate as designed to render the Site protective of human health and the environment.

Based upon the two semi-annual SSD system inspections results and the review of the monthly SSD system inspections, no evidence of current or former deficiencies undermining the operation or function of the SSD system were noted.

Appendix 5 provides the semi-annual SSD system inspection checklist. **Appendix 6** provides the monthly SSD system inspections checklists.

3.3 Influent and Effluent Sampling at the GAC Drums

Influent and effluent of each of the two GAC drums associated with the two blowers at SSDS-1 and SSDS-2 were sampled on a semi-annual basis during the two SSD system semi-annual inspection events. Air samples were collected on April 26, 2023, and January 29, 2024, via sampling valves installed at the port of entry and exit of the GAC drums, which are designated as IF-1 and EF-1 at SSDS-1 and IF-2 and EF-2 at SSDS-2. The location of influents and effluents at the GAC drums are shown in the as-build drawings in **Figure 3**.

The air samples were obtained utilizing passivated and evacuated whole air 6-liter Summa® Canisters for the duration of 2 hours. Collected air samples were analyzed for VOCs via EPA Method TO-15. A copy of the laboratory analytical reports for the GAC influent and effluent samples is provided in **Appendix 7**.

Table 3 provides the tabulated analytical data for the influents and effluents samples for the period covered in this report. The results of the April 2023 testing revealed that tetrachloroethylene (PCE) was detected in both IF-1 and IF-2 at concentrations of 13 micrograms per cubic meter (ug/m³) and 16 ug/m³, respectively. Trichloroethylene

(TCE), was detected in IF-2 at 0.5 ug/m³. TCE was not detected in IF-1. The January 2024 influent concentrations for PCE have decreased to 2.8 ug/m³ in IF-1 and 8 ug/m³ in IF-2. No PCE concentrations were detected in the two effluents samples EF-1 or EF-2 during January 2024. In addition, TCE was not detected in any influent or effluents samples collected from the two GAC drums during the sampling events. These findings do not warrant the replacement of the GAC drums at this time.

4.0 Institutional Control/Engineering Control Compliance

4.1 Institutional Controls

The following Institutional Controls are included in the SMP for the site:

- The property may be used for restricted residential use.
- All ECs must be operated and maintained as specified in this SMP.
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or NYC Department of Health and Mental Hygiene to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP.
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP.
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP.
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP.
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP.
- Access to the site must be provided to agents, employees or other representatives
 of the State of New York with reasonable prior notice to the property owner to
 assure compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries, and any potential impacts that are identified must be monitored or mitigated.

• Vegetable gardens and farming on the site are prohibited.

The site-wide inspection determined that Institutional Controls have been complied with including compliance with the Environmental Easement and the SMP. There are no recommendations for change of Institutional Controls at this time.

4.2 Engineering Controls

The Engineering Control (EC) listed at the site includes the following:

Active SSD system

The EC present at the site appears to be operating satisfactorily as designed to render the site protective to human health and the environment. The SSD system operation is in compliance with the SMP. There are no new conclusions that would trigger any necessary changes or modifications to improve the operation of the EC present at the site.

Based upon the information evaluated in this report, the Institutional and Engineering Controls Certification Form was filled in and certified by Tarek Z. Khouri, a New York State Licensed Professional Engineer (PE). A copy of the EC/IC Certification statement and form is included in **Appendix 8**.

5.0 OPERATION & MAINTENANCE COMPLIANCE REPORT

5.1 Component of Operation & Maintenance (O&M) Plan

The SSD system installed at this Site is includes two individual blowers that will continuously extract chlorinated VOCs from beneath the Site and these vapors are treated via GAC drums prior to being discharged into the ambient air. Routine maintenance and balancing inspection of the two active SSD systems were performed monthly by the building maintenance personnel. Field screening (PID) and recording system readings (vacuum/flow) and vacuum at monitoring points were performed by HydroTech QEP semi-annually.

5.2 Summary of O&M Completed During Reporting Period

Confirmation of the operation of each of the two SSD systems is documented by routine inspections performed by appropriate personnel. The required inspection scope consisted of visual inspections to confirm the integrity of the SSD system piping and floor seals, confirmation that each blower is operating properly by observing switches, telemetry, vacuum gauges, activated carbon bed Breakthrough Detectors on the GAC drums, PID, and collection of differential pressure readings at each existing vacuum monitoring points. The routine check also noted any unusual conditions, if present (e.g., unusual odors, spills, leaks, blower noise, etc.).

In accordance with the required O&M inspection schedule in the SMP, monthly observations of the blower were recorded by the building management in the monthly inspection checklists. The QEP, under the direction of the Remedial Engineer, performed semi-annual site visits to complete the semi-annual SSD system inspection checklists for this reporting year in April 2023 and in January 2024.

The semi-annual SSD system inspections checklists are provided in **Appendix 5** and the monthly SSD system inspections checklists are included in **Appendix 6**.

5.3 Evaluation of Remedial System

According to building management, the active SSD system remained on a continuous operation schedule without interruption during this reporting period. In addition, no evidence of current or former deficiencies undermining the operation or functions of the SSD system were identified during this period.

The semi-annual readings of applied vacuum on the two SSD systems piping lines ranged from -30 WC to -40 WC, which exceeded the critical threshold of -20 WC. Differential pressure readings collected semi-annually from the five existing sub-slab vacuum monitoring points (TP-1 to TP-5) ranged from -0.48 WC to -2.41 WC and were within the background thresholds of -0.04 WC and -2.53 WC and confirmed that negative pressure was maintained below the building slabs. The observation of the GAC breakthrough detectors at SSDS-1 and SSD-2 and the evaluation of the organic vapor measured with the PID at less than the threshold of 10 ppm along with the level of concentrations of chlorinated vapor detected in analyzed air samples collected at the influent and effluents of the GAC drum did not warrant the replacement of these drums during this period.

6.0 CONCLUSIONS AND RECOMMENDATIONS

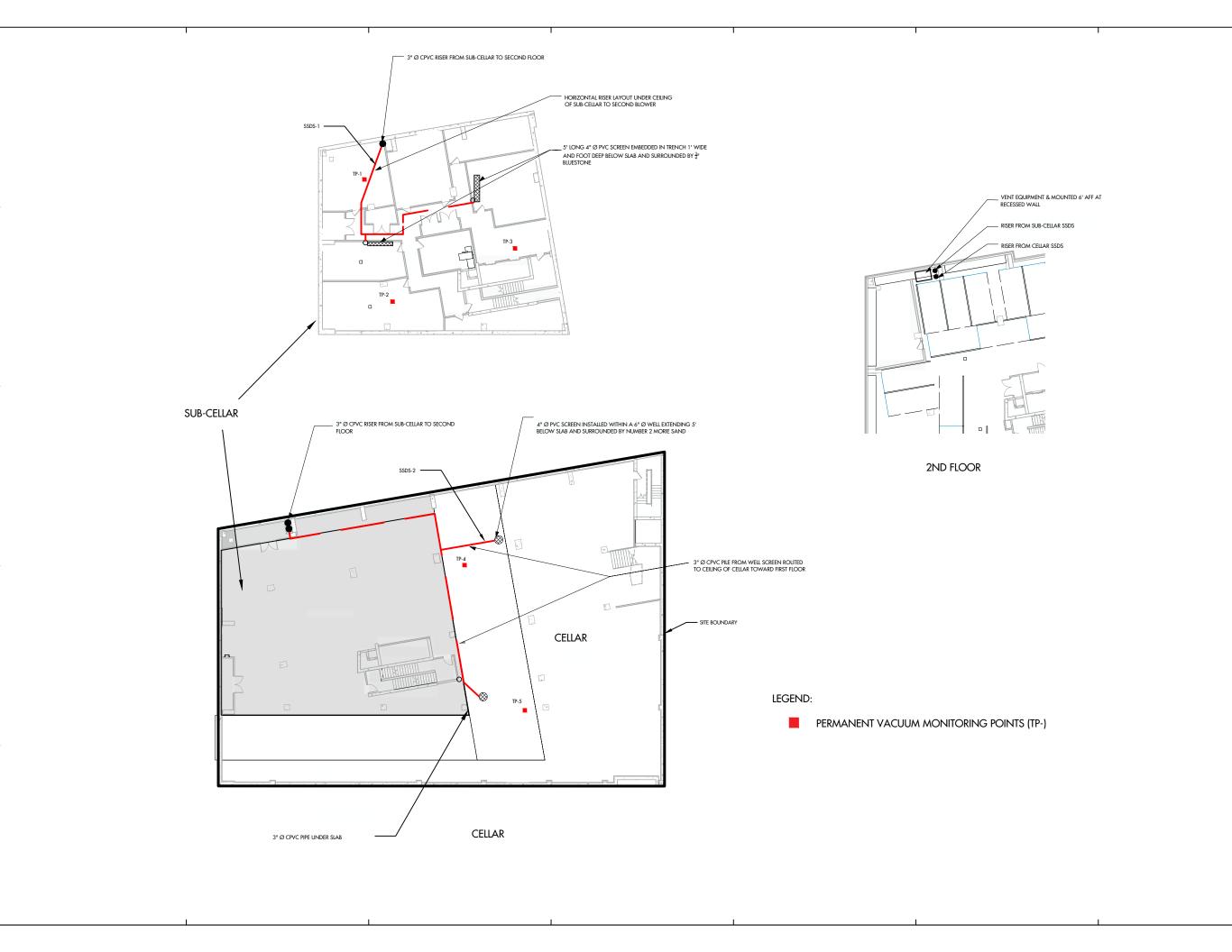
6.1 Compliance

The remedial construction at the Site was finished with a 10-story residential and commercial building with two sub-grade cellar levels. Currently, 1 of the 4 commercial units on the ground floor is vacant and 11 of 72 condominiums are unoccupied and are being listed in the real estate market for sale.

The EC installed as part of this new development consisted of an active SSD system.

The requirements stipulated in the September 2021 SMP regarding IC/ECs and the monitoring and O&M Plan in relation to the SSD system monitoring were met during the reporting period. No disturbance was observed in the land use and the SSD system was maintained in good condition without the need for any repairs or maintenance as confirmed during the monthly and the two semi-annual SSD system inspections and monitoring events.

6.2 Performance and Effectiveness of Remedy


An evaluation of the components of the SMP during this reporting period indicates that the IC/EC controls are protective of human health and the environment. This is evidenced by the March 2023 indoor air sampling results, which indicate no soil vapor intrusion impact exists beneath the new building at the Site, consistent with the former indoor air sampling performed in July 2021. This finding is also supported by the SSD system monitoring data, which shows the system continues to be operating as designated. The influent and effluent data collected during this reporting period from the two GAC drums indicates the activated carbon in these drums is still efficiently treating VOCs emissions from the SSD system.

6.3 Recommendation

A summary of the recommended ICs/EC inspection, monitoring and sampling activities is provided below:

- The monthly SSD system inspections by the building maintenance personnel will continue, along with the semi-annual SSD system monitoring and sampling by a QEP to ensure the proper implementation of O&M plan and monitoring and sampling schedule listed in the September 2021 SMP.
- No change shall be made to the frequency for submittal of the annual PRR at this
 time. In accordance with the September 2021 SMP, the next PRR for this site in
 due annually or at another frequency as may be required by the NYSDEC. As
 such, the next PRR shall be due during February 2025.

FIGURES

© HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC

ALL RIGHTS RESERVED. THE PRESENTED DRAWINGS, DESIGNS, AND IDEAS EMBODIED THEREIN ARE THE PROPERTY OF HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC AND SHALL NOT BE COPIED, REPRODUCED, DISCLOSED TO OTHERS, OR USED IN CONNECTION WITH ANY WORK OTHER THAN THE SPECIFIED PROJECT FOR WHICH THEY HAVE BEEN PREPARED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN AUTHORIZATION OF HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC.

DATE	DESCRIPTION	CHK

SEAL & SIGNATURE

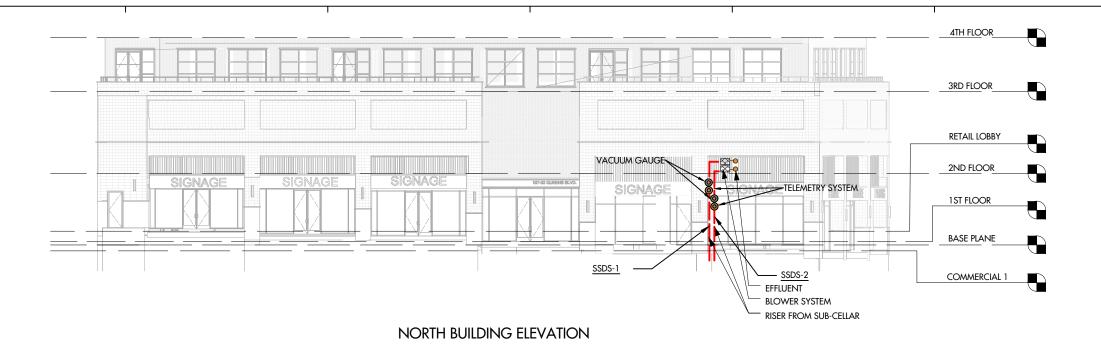
HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC

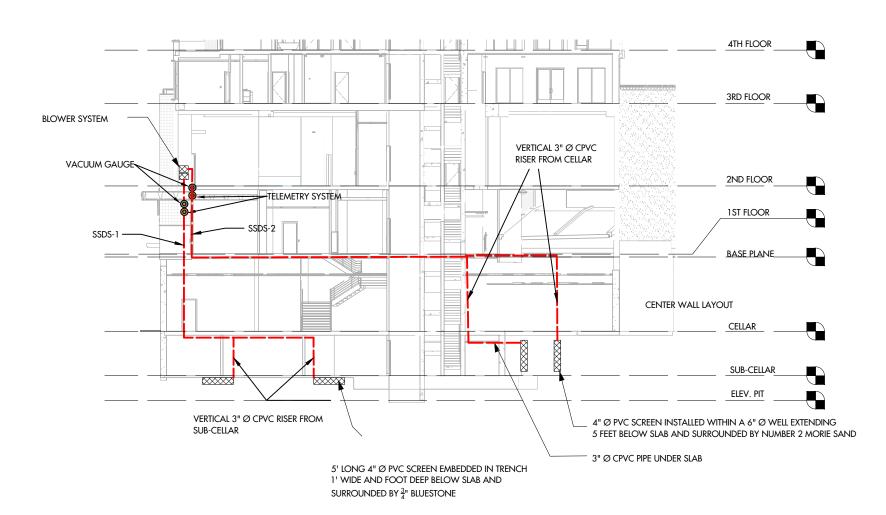
231 WEST 29TH STREET, SUITE 1104, NEW YORK, NY 10001

TEL: (631) 462-5866

BASE DRAWING PREPARED BY

JARMEL KIZEL ARCHITECTS AND ENGINEERS INC.


PROJECT NAME AND ADDRESS


107-02 QUEENS BLVD, QUEENS, NEW YORK

PROJECT FIGURE

FIGURE 1: AS-BUILD PLANS OF SSD SYSTEM - PLAN VIEW

PROJECT NO. 230063	DATE 1/26/2024
DRAWN BY G.T.	REVIEWED BY P.M.
SCALE (11X17) AS SHOWN	APPROVED BY P.M.

BUILDING SECTION 2

© HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC

ALL RIGHTS RESERVED. THE PRESENTED DRAWINGS, DESIGNS, AND IDEAS EMBODIED THEREIN ARE THE PROPERTY OF HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC AND SHALL NOT BE COPIED, REPRODUCED, DISCLOSED TO OTHERS, OR USED IN CONNECTION WITH ANY WORK OTHER THAN THE SPECIFIED PROJECT FOR WHICH THEY HAVE BEEN PREPARED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN AUTHORIZATION OF HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC.

DATE	DESCRIPTION	CHK	
			1

SEAL & SIGNATURE

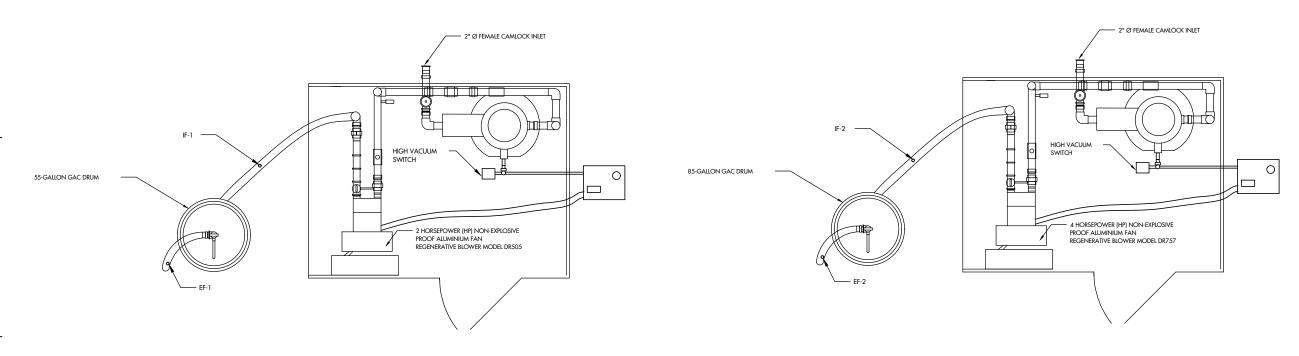
HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC

231 WEST 29TH STREET, SUITE 1104, NEW YORK, NY 10001

TEL: (631) 462-5866

BASE DRAWING PREPARED BY

JARMEL KIZEL ARCHITECTS AND ENGINEERS INC.


PROJECT NAME AND ADDRESS

107-02 QUEENS BLVD, QUEENS, NEW YORK

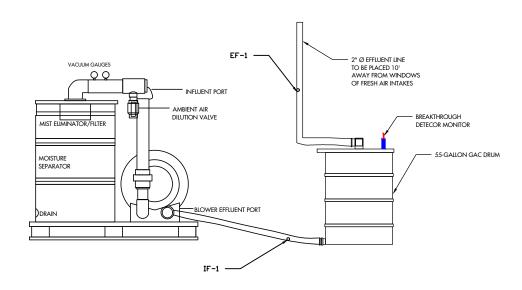
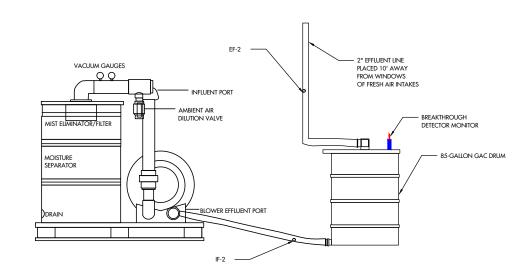

PROJECT FIGURE

FIGURE 2: AS-BUILD PLANS OF SSD SYSTEM -SECTIONS VIEW

PROJECT NO. 230063	DATE 1/26/2024
230003	1/20/2024
DRAWN BY	REVIEWED BY
G.T.	P.M.
SCALE (11X17)	APPROVED BY
AS SHOWN	P.M.

SSDS-2 EQUIPMENT PLAN VIEW



SSDS-1 EQUIPMENT PLAN VIEW

SSDS-1 EQUIPMENT CROSS SECTION VIEW

EF = EFFLUENT

IF = INFLUENT

SSDS-2 EQUIPMENT CROSS SECTION VIEW

© HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC

ALL RIGHTS RESERVED. THE PRESENTED DRAWINGS, DESIGNS, AND IDEAS EMBODIED THEREIN ARE THE PROPERTY OF HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC AND SHALL NOT BE COPIED, REPRODUCED, DISCLOSED TO OTHERS, OR USED IN CONNECTION WITH ANY WORK OTHER THAN THE SPECIFIED PROJECT FOR WHICH THEY HAVE BEEN PREPARED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN AUTHORIZATION OF HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC.

DATE	DESCRIPTION	CHK

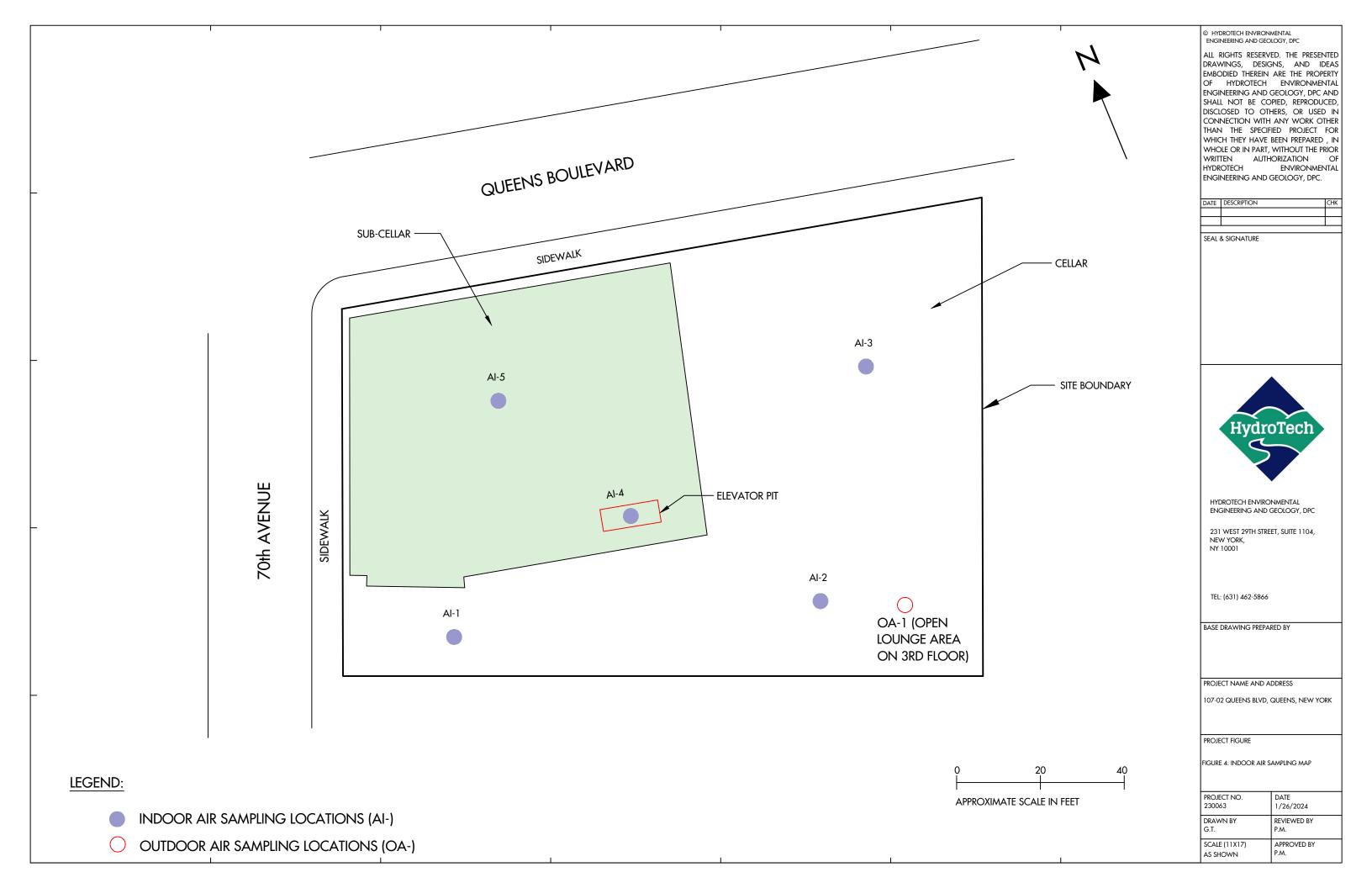
SEAL & SIGNATURE

HYDROTECH ENVIRONMENTAL ENGINEERING AND GEOLOGY, DPC

231 WEST 29TH STREET, SUITE 1104, NEW YORK, NY 10001

TEL: (631) 462-5866

BASE DRAWING PREPARED BY


PROJECT NAME AND ADDRESS

107-02 QUEENS BLVD, QUEENS, NEW YORK

PROJECT FIGURE

FIGURE 3: AS-BUILD PLANS OF SSD SYSTEM -BLOWER SYSTEM DETAILS

PROJECT NO. 230063	DATE 1/26/2024
DRAWN BY	REVIEWED BY
G.T.	P.M.
SCALE (11X17) AS SHOWN	APPROVED BY P.M.

TABLES

Table 1
Post SSD System Start-up Indoor Air Samples Analytical Results
107-02 Queens Boulevard, Queens, NY

Sample ID AI-1 AI-2 AI-3 AI-4 AI-5 AO-1												
Sample ID	AI-1			AI-2			AI-4		AI-5		AO-1	
Sampling Date	3/14/20		3/14/20		3/14/20				3/14/2023			
Client Matrix	Indoor		Indoor				Indoor				Outdoor	
Compound Units	Result ug/m3	Q	Result ug/m3	Q	Result ug/m3	Q	Result ug/m3	Q	Result ug/m3	Q	Result ug/m3	Q
1,1,1,2-Tetrachloroethane	0.690	U	0.690	U	0.670	U	0.640	U	0.630	U	0.730	U
1,1,1-Trichloroethane	0.550	U	0.550	U	0.530	U	0.510	U	0.500	U	0.580	U
1,1,2,2-Tetrachloroethane	0.690	U	0.690	U	0.670	U	0.640	U	0.630	U	0.730	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freor		U	0.770	U	0.740	U	0.720	U	0.710	U	0.820	U
1,1,2-Trichloroethane	0.550	U	0.550	U	0.530	U	0.510	U	0.500	U	0.580	U
1,1-Dichloroethane	0.410	U	0.400	U	0.390	U	0.380	U	0.370	U	0.430	U
1,1-Dichloroethylene	0.100	U	0.0990	U	0.0960	U	0.0930	U	0.0910	U	0.110	U
1,2,4-Trichlorobenzene	0.750	U	0.740	U	0.720	U	0.700	U	0.680	U	0.790	U
1,2,4-Trimethylbenzene	0.99	D	1.10	D	1.10	D	0.460	U	0.91	D	0.520	U
1,2-Dibromoethane	0.770	U	0.770	U	0.750	U	0.720	U	0.710	U	0.820	U
1,2-Dichlorobenzene	0.610	U	0.600	U	0.580	U	0.560	U	0.550	U	0.640	U
1,2-Dichloroethane	0.410	U	0.400	U	0.390	U	0.380	U	0.370	U	0.430	U
1,2-Dichloropropane	0.470	U	0.460	U	0.450	U	0.430	U	0.430	U	0.490	U
1,2-Dichlorotetrafluoroethane	0.700 0.500	U	0.700	U	0.680	U	0.660	U	0.640	U U	0.750	U U
1,3,5-Trimethylbenzene 1,3-Butadiene	0.500	U	0.490 0.660	U	0.480 0.650	U	0.460	U U	0.450 0.610	U	0.520 0.710	U
1,3-Dichlorobenzene	0.670	U	0.600	U	0.630	U	0.620	U	0.550	U	0.710	U
1,3-Dichloropropane	0.470	U	0.460	U	0.450	Ū	0.430	U	0.430	U	0.490	U
1,4-Dichlorobenzene	0.610	U	0.600	U	0.580	U	0.560	U	0.550	U	0.640	U
1,4-Dioxane	0.730	U	0.720	U	0.700	U	0.680	U	0.660	U	0.770	U
2-Butanone	7.10	D	5.90	D	13	D	1	D	1.40	D	10	D
2-Hexanone	0.830	U	0.820	U	0.800	U	0.770	U	0.750	U	0.870	U
3-Chloropropene	1.600	U	1.600	U	1.500	U	1.500	U	1.400	U	1.700	U
4-Methyl-2-pentanone	0.58	D	0.450	D	0.56	D	0.50	D	1.20	D	0.440	U
Acetone	29	D	26	D	29	D	26	D	29	D	16	D
Acrylonitrile	0.220	U	0.220	U	0.210	U	0.200	U	0.200	U	0.230	U
Benzene	0.68	D		D		D		D		D		D
Benzyl chloride	0.520	U	0.520	U	0.500	U	0.490	U	0.480	U	0.550	U
Bromodichloromethane	0.670	U	0.670	U	0.650	U	0.630	U	0.620	U	0.710	U
Bromoform	1	U	1	U	1	U	0.970	U	0.950	U	1.100	U
Bromomethane Carbon disulfide	0.390	U	0.390	U	0.380	U	0.360	U U	0.360	U	0.410	U U
Carbon distinde Carbon tetrachloride	0.310 0.44	D	0.310 0.44	D	0.300 0.55	D	0.290 0.530	D	0.290 0.52	D	0.330 0.470	D
Chlorobenzene	0.44	U	0.44	U	0.35	U	0.430	U	0.32	U	0.470	U
Chloroethane	0.400	U	0.460	U	0.260	Ū	0.450	U	0.420	U	0.490	U
Chloroform	0.54	D	0.54	D	0.47	D	1.30	D	0.72	D	0.520	U
Chloromethane	1.40	D	1.50	D	1.50	D	1.60	D	1.40	D	1.60	D
cis-1,2-Dichloroethylene	0.100	U	0.0990	U	0.0960	U	0.0930	U	0.0910	U	0.110	U
cis-1,3-Dichloropropylene	0.460	U	0.450	U	0.44	U	0.430	U	0.420	U	0.480	U
Cyclohexane	0.350	U	0.340	U	0.330	U	0.320	U	0.320	U	0.370	U
Dibromochloromethane	0.860	U	0.850	U	0.830	U	0.800	U	0.780	U	0.910	U
Dichlorodifluoromethane	2.60	D	2.80	D	3.20	D	3	D	2.60	D	3.30	D
Ethyl acetate	0.730	U	0.72	D	0.700	U	0.680	U	17	D	0.770	U
Ethyl Benzene	1.30	D	1.40	D	1.60	D	0.410	U	13	D	0.830	D
Hexachlorobutadiene	1.100	U	1.100	U	1	U	1	U	0.980	U	1.100	U
Isopropanol	91	BD		BD	81	BD	100	BD	71	BD	5.80	BE
Methyl Methacrylate Methyl tert-butyl ether (MTBE)	0.410	U	0.410	U	0.400 0.350	U	0.380	U U	0.380	U	0.440	U
Methylene chloride	1.50	D	2.10	D	1.90	D	1.50	D	1.40	D	1.30	D
n-Heptane	0.410	U	0.41	D	0.56	D	0.380	U	0.38	D	0.44	U
n-Hexane	0.410	U	0.350	U	0.58	D	0.330	U	0.320	U	0.44	D
o-Xylene	1	D	1.10	D	1.20	D	0.410	U	9.80	D	0.51	D
p- & m- Xylenes	3	D	3	D	3.30	D	0.820	U	38	D	1.60	D
p-Ethyltoluene	0.94	D	0.93	D	1	D	0.460	U	0.68	D	0.520	U
Propylene	0.170	U	0.170	U	0.170	U	0.160	U	0.160	U	0.180	U
Styrene	0.47	D	0.43	D	0.46	D	0.400	U	0.390	U	0.450	U
Tetrachloroethylene	0.680	U	0.680	U	0.660	U	0.640	U	0.620	U	0.720	U
Tetrahydrofuran	22	D	26	D	40	D	0.58	D	0.540	U	29	D
Toluene	3	D	3.20	D	4	D	1.50	D	1.40	D	2.30	D
trans-1,2-Dichloroethylene	0.400	U	0.400	U	0.390	U	0.370	U	0.370	U	0.420	U
trans-1,3-Dichloropropylene	0.460	U	0.450	U	0.440	U	0.430	U	0.420	U	0.480	U
Trichloroethylene	0.140	U	0.130	U	0.130	U	0.130	U	0.120	U	0.140	U
Trichlorofluoromethane (Freon 11)	1.40	D	1.30	D	1.40	D	1.40	D	1.30	D	1.50	D
Vinyl acetate	0.350	U	0.350	U	0.340	U	0.330	U	0.320	U	0.380	U
Vinyl bromide	0.440	U	0.440	U	0.430	U	0.410	U	0.400	U	0.470	U
Vinyl Chloride	0.130	U	0.130	U	0.120	U	0.120	U	0.120	U	0.140	U

NOTES:

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

 $\textit{J=} analyte \ detected \ at \ or \ above \ the \ MDL \ (method \ detection \ limit) \ but \ below \ the \ RL \ (Reporting \ Limit) \ - \ data \ is \ estimated$

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

Table 2 Semi-Annual SSD System Monitoring Results Over Time 107-02 Queens Boulevard, NY

		SSDS-1								SSDS-2							
Date/Time		Blower				Vacuum Monitoring Points			Blo	wer	Vacuum Monitoring Points						
	II	IF-1		EF-1 Vacuum		TP-2	TP-3	IF-2		EF-2	Vacuum	TP-4	TP-5				
	PID	Flow	PID	vacuum	TP-1	11'-2	1F-3	PID	Flow	PID	Vacuum	11-4	117-5				
6/1/2021 (Start-Up)	0	67.67	0	-28	-0.83	-0.69	-2.53	0	74.15	0	-38	-1.37	-1.05				
3/21/2022	0	66.06	0	-30	-0.65	-0.60	-2.32	0	71.9	0	-37.5	-0.88	-0.93				
10/19/2022	0	66.93	0	-30	-0.69	-0.66	-2.38	0	73.03	0	-38	-0.46	-1.52				
4/26/2023	0	NM	0	-30	-0.57	-0.48	-2.09	0	NM	0	-38	-0.48	-1.34				
1/29/2024	0	65.6	0	-30	-0.67	-0.57	-2.41	0	80.92	0	-42	-0.52	-1.58				
PIDppm	-																
VacuumInch Water																	
Flowm ³ /hour																	
Tomp Tomporature in aE																	

Temp...Temperature in °F NM...Not measured

IF-...Inlet into the Carbon Activated drum

EF-...Outlet from the Carbon Activated drum

Table 3 Semi- Annual GAC Influent/Effluent Samples Analytical Results - April 2023 and Januray 2024

			Senn- Annual V	JAC I	nfluent/Effluent					iiuiay	2024					
Sample ID	IF-1		EF-1		IF-2		Boulevard, Queens, NY EF-2		IF-1		EF-1		IF-2	EF-2		
Sampling Date	66D0 (- #		4/26		6/2023						1/29/					
Client Matrix	SSDS-1 Influent		SSDS-1 Efdfluent		SSDS-2 Influent		SSDS-2 Efdfluent		SSDS-1 Influent		SSDS-1 Efdfluent		SSDS-2 Influent		SSDS-2 Efdfluent	
Compound 1,1,1,2-Tetrachloroethane	Result 1.200	Q U	Result 1.200	Q U	Result 1.100	Q U	Result 1.200	Q U	Result 1	Q U	Result 1.200	Q U	Result 1	Q U	Result 1.300	Q U
1,1,1-Trichloroethane	0.940	U	0.980	U	0.840	U	0.980	U	0.830	U	0.920	U	0.810	U	0.990	U
1,1,2,2-Tetrachloroethane	1.200	U	1.200	U	1.100	Ū	1.200	U	1	U	1.200	U	1	U	1.300	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freo		Ū	1.400	Ū	1.200	Ū	1.400	Ū	1.200	U	1.300	Ū	1.100	Ū	4.50	D
1,1,2-Trichloroethane	0.940	U	0.980	U	0.840	U	0.980	U	0.830	U	0.920	U	0.810	U	0.990	U
1,1-Dichloroethane	0.700	U	0.720	U	0.620	U	0.730	U	0.620	U	0.680	U	0.600	U	0.740	U
1,1-Dichloroethylene	0.170	U	0.180	U	0.150	U	0.180	U	0.150	U	0.170	U	0.150	U	0.180	U
1,2,4-Trichlorobenzene	2.60	J	2.700	U	2.300	U	2.700	U	1.100	U	1.200	U	1.100	U	1.400	U
1,2,4-Trimethylbenzene	2	D	1.90	D	1.70	D	0.880	U	1.10	D	2.10	D	2.40	D	2.40	D
1,2-Dibromoethane	1.300	U	1.400	U	1.200	U	1.400	U	1.200	U	1.300	U	1.100	U	1.400	U
1,2-Dichlorobenzene 1,2-Dichloroethane	0.700	U	1.100 0.720	U	0.930 0.620	U	1.100 0.730	U	0.920 0.620	U	0.680	U	0.890 0.600	U	1.100 0.740	U
1,2-Dichloropropane	0.800	U	0.830	U	0.710	U	0.830	U	0.710	U	0.780	U	0.690	U	0.740	U
1,2-Dichlorotetrafluoroethane	1.200	U	1.300	U	1.100	U	1.300	U	1.100	U	1.200	U	1	U	1.300	U
1,3,5-Trimethylbenzene	0.850	U	0.880	U	0.760	U	0.880	U	0.750	U	0.830	U	0.730	U	0.900	U
1,3-Butadiene	1.100	Ū	1.200	U	1	Ū	1.200	U	1	U	1.100	Ū	0.990	Ū	1.200	U
1,3-Dichlorobenzene	1	U	1.100	U	0.930	U	1.100	U	0.920	U	1	U	0.890	U	1.100	U
1,3-Dichloropropane	0.800	U	0.830	U	0.710	U	0.830	U	0.710	U	0.780	U	0.690	U	0.840	U
1,4-Dichlorobenzene	1	U	1.100	U	0.930	U	1.100	U	0.920	U	1	U	0.890	U	1.100	U
1,4-Dioxane	1.200	U	1.300	U	1.100	U	1.300	U	1.100	U	1.200	U	1.100	U	1.300	U
2-Butanone	4.40	D	31	D	2	D	1.30	D	2.70	D	9.30	D	15	D	12	D
2-Hexanone	1.400	U	1.500	U	1.300	U	1.500	U	1.300	U	1.400	U	1.200	U	1.500	U
3-Chloropropene	2.700 0.710	U	2.800 0.730	U	2.400 0.630	U	2.800 0.740	U	2.400 0.630	U	2.600	U	2.300 0.610	U	2.900 0.750	U
4-Methyl-2-pentanone Acetone	15	D	21	D	7.40	D	4.30	D	18	D	0.69 23	D	40	D	19	D
Acrylonitrile	0.370	U	0.390	U	0.330	U	0.390	U	0.66	I	0.73	I	0.650	U	0.79	I
Benzene	0.94	D	0.570	U	1.30	D	0.570	U	1.30	D	0.540	Ü	0.67	D	0.580	Ü
Benzyl chloride	0.890	U	0.930	Ū	0.800	U	0.930	Ū	0.790	U	0.870	Ū	0.770	U	0.940	Ū
Bromodichloromethane	1.200	U	1.200	U	1	U	1.200	U	1	U	1.100	U	1	U	1.200	U
Bromoform	1.800	U	1.900	U	1.600	U	1.900	U	1.600	U	1.700	U	1.500	U	1.900	U
Bromomethane	0.670	U	0.700	U	0.600	U	0.700	U	0.590	U	0.650	U	0.580	U	0.710	U
Carbon disulfide	0.540	U	0.560	U	0.480	U	0.560	U	0.480	U	0.520	U	0.460	U	0.570	U
Carbon tetrachloride	0.65	D	0.56	D	0.58	D	0.280	U	0.48	D	0.53	D	0.56	D	0.46	D
Chlorobenzene	0.790	U	0.820	U	0.710	U	0.830	U	0.700	U	0.770	U	0.690	U	0.840	U
Chloroethane Chloroform	0.450 32	U D	0.470 18	D	0.410 56	U	0.470 29	U D	0.400 1.50	U D	0.440	D	0.390 19	U D	0.480	U D
Chloromethane	0.360	U	0.370	U	0.320	U	0.370	U	2.80	D	1.10	D	0.92	D	1.10	D
cis-1,2-Dichloroethylene	0.170	U	0.180	U	0.150	U	0.180	U	0.150	U	0.170	U	0.150	U	0.180	U
cis-1,3-Dichloropropylene	0.780	U	0.810	U	0.700	Ū	0.820	U	0.690	U	0.760	U	0.680	U	0.830	U
Cyclohexane	0.590	U	0.620	U	0.530	U	0.620	U	0.530	U	0.580	U	0.51	D	0.630	U
Dibromochloromethane	1.500	U	1.500	U	1.300	U	1.500	U	1.300	U	1.400	U	1.300	U	1.600	U
Dichlorodifluoromethane	3	D	0.890	U	3.10	D	3.20	D	4.10	D	2.90	D	4.40	D	4.40	D
Ethyl acetate	1.200	U	1.300	U	1.100	U	1.300	U	1.100	U	1.200	U	1.100	U	1.300	U
Ethyl Benzene	0.90	D	0.93	D	0.80	D	0.780	U	1.30	D	0.95	D	1.70	D	1.10	D
Hexachlorobutadiene	1.800	U	1.900	U	1.600	U	1.900	U	1.600	U	1.800	U	1.600	U	1.900	U
Isopropanol Methyl Methacrylate	24 0.700	D U	26 0.730	D U	18 0.630	D U	23 0.740	D U	16 0.630	BD	380 0.690	BDE	20 0.610	BD U	0.750	BDE U
Methyl tert-butyl ether (MTBE)	0.620	11	0.650	11	0.560	II	0.650	U	0.550	II	0.690	U	0.540	U	0.750	11
Methylene chloride	1.200	U	1.200	U	1.100	U	1.200	U	1.50	D	1.200	U	1	U	1.300	U
n-Heptane	0.710	Ū	0.730	Ū	0.630	Ū	0.740	Ū	1	D	0.690	Ū	0.73	D	0.750	Ū
n-Hexane	0.610	U	0.630	U	0.71	D	0.630	U	1.90	D	0.590	U	0.520	U	0.640	U
o-Xylene	1.30	D	1.50	D	1.10	D	0.780	U	2.10	D	1.20	D	2.20	D	1.60	D
p- & m- Xylenes	3.60	D	3.90	D	3.20	D	1.600	U	5.20	D	4	D	7.30	D	4.80	D
p-Ethyltoluene	1.40	D	1.50	D	1.30	D	0.880	U	0.750	U	1.40	D	1.70	D	1.30	D
Propylene	0.300	U	0.310	U	0.270	U	0.310	U	0.260	U	0.290	U	0.260	U	0.310	U
Styrene	0.730	U	0.760	U	0.660	U	0.770	U	0.85	D	0.720	U	0.630	U	0.780	U
Tetrachloroethylene	13	D	1.200	U	16	D	1.200	U	2.80	D	1.100	U	8	D	1.200	U
Tetrahydrofuran Toluene	10 2.80	D	100 2.40	D D	2.60	D D	2.80 0.680	D U	1.10 8.40	D D	1.80	D D	5.50 22	D D	20 1.90	D D
trans-1,2-Dichloroethylene	0.680	U	0.710	U	0.610	U	0.710	U	0.610	U	0.670	U	0.590	U	0.720	U
trans-1,3-Dichloropropylene	0.780	U	0.810	U	0.700	U	0.820	U	0.690	U	0.760	U	0.680	U	0.830	U
Trichloroethylene	0.230	U	0.240	U	0.50	D	0.240	U	0.210	U	0.230	U	0.200	U	0.240	U
Trichlorofluoromethane (Freon 11)	1.50	D	1.40	D	3.90	D	3.90	D	2	D	1.30	D	5.200	D	4.80	D
Vinyl acetate	0.610	U	0.630	U	0.540	U	0.630	U	0.540	U	0.590	U	0.520	U	0.640	U
Vinyl bromide	0.750	U	0.780	U	0.670	U	0.790	U	0.670	U	0.730	U	0.650	U	0.800	U
Vinyl Chloride	0.220	U	0.230	U	0.200	U	0.230	U	0.200	U	0.210	U	0.190	U	0.230	U

NOTES:
Q is the Qualifier Column with definitions as follows:
D=result is from an analysis that required a dilution

U=analyte not detected at or above the level indicated

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

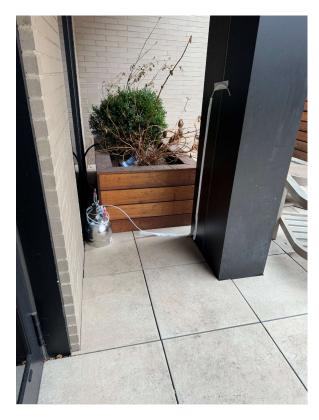
B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

APPENDICES

APPENDIX 1 Photographs

1- Organic vapor assessment in indoor air with PID


2-Paint containers in subcellar

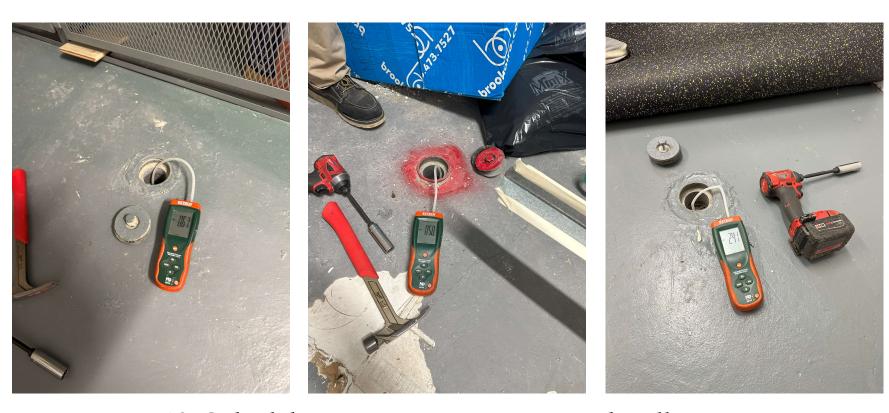
3- Indoor air sampling inside the cellar

4- Indoor air sampling inside the elevator shaft in sub-cellar

5- Outdoor air sampling in open lounge area on third floor

6- View of active telemetry system

7- View of vacuum gauge at SSDS-2 blower



8- View of vacuum gauge at SSDS-1 blower

9- Sub-slab vacuum monitoring in cellar

10-Sub-slab vacuum monitoring in sub-cellar

11-View of effluent monitoring of organic vapors/air flow and GAC sampling

APPENDIX 2 NYSDOH Indoor Air Quality Questionnaire and Building Inventory

Residential

Industrial

School

Church

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

The state of the control of the state of the
Preparer's Name Paul T Cathertime Prepared 3/14/23 10100 At Preparer's Affiliation 6 3 consultary one No. 631241216) Purpose of Investigation 5 VI post - 55D5 start.
Purpose of Investigation SVI post-55Ds start. up
1. OCCUPANT:
Interviewed: (Y) N
Last Name: First Name: John Address: / O7 - 3 2 Gulon, Rl vl
Address: 107.02 Gulen, Pl vl
County:
Home Phone: 7 9 9 9 9 9 Office Phone:
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y/N
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)

Commercial/Multi-use

Other:

If the property is residential, type? (Circle appropriate response)

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how man	y? 74	,
If the property is commercial	\	
Business Type(s)	you, voc	aut - retail-online
Does it include residence		
Other characteristics:		
Number of floors_/O	В	uilding age 24eo~
Is the building insulated	(У)и н	ow air tight? (Tight) Average / Not Tight
4. AIRFLOW		
Use air current tubes or tra	icer smoke to evaluat	te airflow patterns and qualitatively describe:
Airflow between floors	te +A	MVS
A		
Airflow near source	VAS +	AIM Vs
Outdoor air infiltration	HVA	
Infiltration into air ducts	Vulcu	ou_

			3		
5.	BASEMENT AND CONSTRUC	CTION CHARA	ACTERISTICS	(Circle all that	apply)
	a. Above grade construction:	wood frame	concrete	stone	brick
	b. Basement type:	full	crawlspace	slab	other part I Solo
	c. Basement floor:	concrete	dirt	stone	other
	d. Basement floor:	uncovered	covered	covered with	Corpet for Cy
	e. Concrete floor:	unsealed	sealed	sealed with _	Vapor barren (porto
	f. Foundation walls:	poured	block	stone	other
	g. Foundation walls:	unsealed	sealed	sealed with _	
	h. The basement is:	wet	damp	dry	moldy
	i. The basement is:	finished	unfinished	partially finis	ned Slob Collar
	j. Sump present?	Y (N)	<i>).</i>		
	k. Water in sump? Y/N	not applicable)	elle-+	allew-
Bas	sement/Lowest level depth below g	grade: 45	(feet)	ella 1	
Ide	ntify potential soil vapor entry po	ints and appro	ximate size (e.g.	, cracks, utility	ports, drains)
,					
6.	HEATING, VENTING and AIR	CONDITIONI	NG (Circle all th	nat apply)	
Тур	e of heating system(s) used in this	s building: (circ	cle all that apply	y – note primar	y)
	Hot air circulation	Heat pump		ater baseboard	

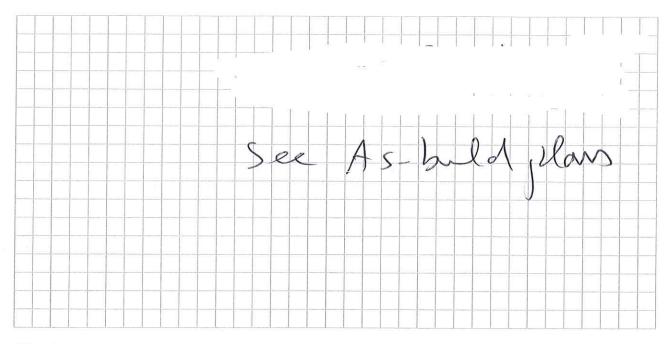
Hot air circulation	Heat pump	Hot water baseboard		
Space Heaters	Stream radiation	Radiant floor		
Electric baseboard	Wood stove	Outdoor wood boiler	Other	

The primary type of fuel used is:

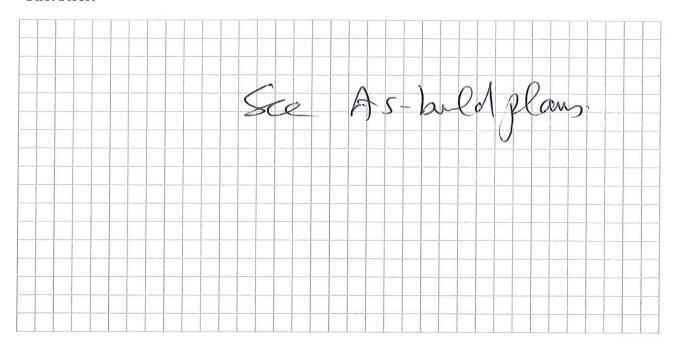
Natural Gas	Fuel Oil	Kerosene
Electric	Propane	Solar
Wood	Coal	

Domestic hot water tank fueled by: Outdoors Boiler/furnace located in: Basement Main Floor Other

Air conditioning: Central Air Window units Open Windows None


Describe the s	distribution ducts present? YNS supply and cold air return ductwork, and i	ts condition. Indicate t	n where visible, including whether the locations on the floor plan	
7. OCCUPA Is basement/lo		casionally	Seldom Almost Never	_
Level	General Use of Each Floor (e.g., familyr	oom, bedro	oom, laundry, workshop, storage)	
Basement Ist Floor 2nd Floor 3rd Floor 4th Floor	Storge for Corporal + Oy President	bwlo m lo	My randets thy	
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR	QUALITY	<i>I</i>	
a. Is there ar	n attached garage?		()/N	
b. Does the g	garage have a separate heating unit?		Y/N/NA	
	eum-powered machines or vehicles he garage (e.g., lawnmower, atv, car)		Y/N/NA Please specify Elic bod	up bestur
d. Has the bu	uilding ever had a fire?		Y (N) When?	- 1
e. Is a kerose	ene or unvented gas space heater present?		Y N Where?	- 28
f. Is there a v	workshop or hobby/craft area?	YN	Where & Type?	=
g. Is there sn	noking in the building?	YN	How frequently?	
h. Have clear	ning products been used recently?	YN	When & Type?	
i. Have cosm	etic products been used recently?	YN	When & Type?	

j. Has painting/staining been done in the last 6 months?	Y (N) Where & When?
k. Is there new carpet, drapes or other textiles?	Where & When?
I. Have air fresheners been used recently?	YN When & Type?
m. Is there a kitchen exhaust fan?	N If yes, where vented?
n. Is there a bathroom exhaust fan?	YN If yes, where vented?
o. Is there a clothes dryer?	YN If yes, is it vented outside? Y/N
p. Has there been a pesticide application?	Y (N) When & Type?
Are there odors in the building? If yes, please describe:	
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist	Y/N Whathauthauthauthauthauthauthauthauthauth
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work at a response)	a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Passive	e?(Y) N Date of Installation: 2011
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driver	n Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentia	al emergency)
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to frie	ends/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursemen	nt explained? Y/N
d. Relocation package provided and explained to resider	nts? Y/N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

	Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>W/N</u>
-w	selle	Point 5gl+ligh		Sealor	Saphot	0.0	4
	Parks	Point 5 golflyl Coull tube		Seolo	See elisto.	6-0	4
	To the state of th						
					ing-		
	12						
	7					1.	
					-100		
- (4 -	T. T.	2-1-1-2-31		1 _ J		
	A	V			h =		
					A		
.5							
5					Al _{2,3}		
							*.
			¥				
						1	
			1				

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX 3 Indoor and Outdoor Air Samples Laboratory Analytical Report

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

231 West 29th Street, Suite 1104
New York NY, 10001
Attention: Paul Matli

Report Date: 03/21/2023

Client Project ID: 220059 107-02 Queens Blvd., Queens, NY

York Project (SDG) No.: 23C0874

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com Report Date: 03/21/2023

Client Project ID: 220059 107-02 Queens Blvd., Queens, NY

York Project (SDG) No.: 23C0874

Hydro Tech Environmental (Brooklyn)

231 West 29th Street, Suite 1104 New York NY, 10001 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 15, 2023 and listed below. The project was identified as your project: 220059 107-02 Queens Blvd., Queens, NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
23C0874-01	AI-1 20230314	Indoor Ambient Air	03/14/2023	03/15/2023
23C0874-02	AI-2 20230314	Indoor Ambient Air	03/14/2023	03/15/2023
23C0874-03	AI-3 20230314	Indoor Ambient Air	03/14/2023	03/15/2023
23C0874-04	AI-4 20230314	Indoor Ambient Air	03/14/2023	03/15/2023
23C0874-05	AI-5 20230314	Indoor Ambient Air	03/14/2023	03/15/2023
23C0874-06	AO-1 20230314	Dutdoor Ambient Ai	03/14/2023	03/15/2023

General Notes for York Project (SDG) No.: 23C0874

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager

Och I most

Date: 03/21/2023

Client Sample ID: AI-1 20230314

York Sample ID: 23C0874-01

York Project (SDG) No.

76-14-2

108-67-8

106-99-0

541-73-1

142-28-9

106-46-7

123-91-1

78-93-3

591-78-6

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 7:19 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method: EPA TO15 PREP									
CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.69	1.007	EPA TO-15 Certifications:	03/20/2023 11:00	03/20/2023 22:10	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.55	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.69	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10 s	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.77	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10 s	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.55	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.41	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.10	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.75	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH
95-63-6	1,2,4-Trimethylbenzene	0.99		ug/m³	0.50	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Quee	03/20/2023 22:10 ns	VH
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.77	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.61	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.41	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 JELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.47	1.007	EPA TO-15 Certifications: N	03/20/2023 11:00 IELAC-NY12058,NJDEP-Queen	03/20/2023 22:10	VH

 ug/m^3

ug/m³

ug/m³

ug/m3

 ug/m^3

 ug/m^3

ug/m³

ug/m³

120 RESEARCH DRIVE
www.YORKLAB.com

1,2-Dichlorotetrafluoroethane

1,3,5-Trimethylbenzene

1,3-Dichlorobenzene

* 1,3-Dichloropropane

1,4-Dichlorobenzene

1,4-Dioxane

2-Butanone

* 2-Hexanone

1,3-Butadiene

STRATFORD, CT 06615 (203) 325-1371

ND

ND

ND

ND

ND

ND

ND

132-02 89th AVENUE

0.70

0.50

0.67

0.61

0.47

0.61

0.73

0.30

0.83

1.007

1.007

1.007

1.007

1.007

1.007

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

Certifications

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

Certifications:

RICHMOND HILL, NY 11418

03/20/2023 11:00

03/20/2023 11:00

03/20/2023 11:00

NELAC-NY12058,NJDEP-Queens

NELAC-NY12058,NJDEP-Queens

NELAC-NY12058.NJDEP-Oueens

NELAC-NY12058,NJDEP-Queens

NELAC-NY12058,NJDEP-Queens

NELAC-NY12058,NJDEP-Queens

NELAC-NY12058,NJDEP-Queens

03/20/2023 11:00

03/20/2023 22:10

03/20/2023 22:10

03/20/2023 22:10

03/20/2023 22:10

03/20/2023 11:00 03/20/2023 22:10

03/20/2023 11:00 03/20/2023 22:10

VH

VH

VH

VH

VH

VH

VH

VH

VH

FAX (203) 357-0166 ClientServices@

Page 4 of 33

Client Sample ID: AI-1 20230314 **York Sample ID:**

23C0874-01

York Project (SDG) No. 23C0874

Client Project ID 220059 107-02 Queens Blvd., Queens, NY

Matrix Indoor Ambient Air

Collection Date/Time March 14, 2023 7:19 am Date Received 03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Commis	Dagagaaad	L. M.	+1	EDA	TO 15	DDED	

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Date/Time Date/Time e Method Prepared Analyzed Ana	alyst
107-05-1	3-Chloropropene	ND		ug/m³	1.6	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03/20/2023 22:10 V NELAC-NY12058,NJDEP-Queens	VH
108-10-1	4-Methyl-2-pentanone	0.58		ug/m³	0.41	1.007	EPA TO-15	03/20/2023 11:00	VH
							Certifications:	NELAC-NY12058,NJDEP-Queens	
67-64-1	Acetone	29		ug/m^3	0.48	1.007	EPA TO-15	03/20/2023 11:00	VH
							Certifications:	NELAC-NY12058,NJDEP-Queens	
107-13-1	Acrylonitrile	ND		ug/m³	0.22	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03/20/2023 22:10 V NELAC-NY12058,NJDEP-Queens	VH
71-43-2	Benzene	0.68		ug/m³	0.32	1.007	EPA TO-15	03/20/2023 11:00	VH
							Certifications:	NELAC-NY12058,NJDEP-Queens	
100-44-7	Benzyl chloride	ND		ug/m^3	0.52	1.007	EPA TO-15 Certifications:	03/20/2023 11:00	VH
75-27-4	Bromodichloromethane	ND		ug/m³	0.67	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03/20/2023 22:10 V NELAC-NY12058,NJDEP-Queens	VH
75-25-2	Bromoform	ND		ug/m³	1.0	1.007	EPA TO-15 Certifications:		VH
74-83-9	Bromomethane	ND	TO-CC	ug/m³	0.39	1.007	EPA TO-15 Certifications:		VH
			V, TO-LCS -L				Certifications:	NELAC-N 1 12038, NJDEP-Queens	
75.15.0	~		-L	/ 2	0.21	1.007	ED4 TO 15	02/20/2022 11 00 02/20/2022 22 10 17	
75-15-0	Carbon disulfide	ND		ug/m³	0.31	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03/20/2023 22:10 V NELAC-NY12058,NJDEP-Queens	VH
56-23-5	Carbon tetrachloride	0.44		ug/m³	0.16	1.007	EPA TO-15	03/20/2023 11:00	VH
							Certifications:	NELAC-NY12058,NJDEP-Queens	
108-90-7	Chlorobenzene	ND		ug/m³	0.46	1.007	EPA TO-15 Certifications:	03/20/2023 11:00	VH
75-00-3	Chloroethane	ND		ug/m³	0.27	1.007	EPA TO-15 Certifications:	03/20/2023 11:00	VH
67-66-3	Chloroform	0.54		ug/m³	0.49	1.007	EPA TO-15	03/20/2023 11:00	VH
							Certifications:	NELAC-NY12058,NJDEP-Queens	
74-87-3	Chloromethane	1.4		ug/m³	0.21	1.007	EPA TO-15	03/20/2023 11:00	VH
							Certifications:	NELAC-NY12058,NJDEP-Queens	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.10	1.007	EPA TO-15 Certifications:	03/20/2023 11:00	VH
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m^3	0.46	1.007	EPA TO-15 Certifications:	03/20/2023 11:00	VH
110-82-7	Cyclohexane	ND		ug/m³	0.35	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03/20/2023 22:10 V NELAC-NY12058,NJDEP-Queens	VH
124-48-1	Dibromochloromethane	ND		ug/m³	0.86	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03/20/2023 22:10 V NELAC-NY12058,NJDEP-Queens	VH
75-71-8	Dichlorodifluoromethane	2.6		ug/m³	0.50	1.007	EPA TO-15		VH
		2.0		<i>3</i>	0.50	1.007	Certifications:	NELAC-NY12058,NJDEP-Queens	
141-78-6	* Ethyl acetate	ND		ug/m³	0.73	1.007	EPA TO-15 Certifications:		VH
100-41-4	Ethyl Benzene	1.3		ug/m³	0.44	1.007	EPA TO-15	03/20/2023 11:00	VH
1	. ,	1.3		@·***	V.TT	1.007	Certifications:	NELAC-NY12058,NJDEP-Queens	••

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 5 of 33

Client Sample ID: AI-1 20230314

<u>York Sample ID:</u> 23C0874-01

York Project (SDG) No. 23C0874

Sample Prepared by Method: EPA TO15 PREP

<u>Client Project ID</u> 220059 107-02 Queens Blvd., Queens, NY <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 14, 2023 7:19 am

Date Received 03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference		Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND	CAL-E, TO-CC V, TO-LCS -L	ug/m³	1.1	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
67-63-0	Isopropanol	91	В	ug/m³	0.50	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
80-62-6	Methyl Methacrylate	ND		ug/m³	0.41	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.36	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
75-09-2	Methylene chloride	1.5		ug/m³	0.70	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
142-82-5	n-Heptane	ND		ug/m³	0.41	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
110-54-3	n-Hexane	ND		ug/m³	0.35	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
95-47-6	o-Xylene	1.0		ug/m³	0.44	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
179601-23-1	p- & m- Xylenes	3.0		ug/m³	0.87	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
622-96-8	* p-Ethyltoluene	0.94		ug/m³	0.50	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03	3/20/2023 22:10	VH
115-07-1	* Propylene	ND		ug/m³	0.17	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03	3/20/2023 22:10	VH
100-42-5	Styrene	0.47		ug/m³	0.43	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
127-18-4	Tetrachloroethylene	ND		ug/m³	0.68	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
109-99-9	* Tetrahydrofuran	22		ug/m³	0.59	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03	3/20/2023 22:10	VH
108-88-3	Toluene	3.0		ug/m^3	0.38	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.40	1.007	EPA TO-15 Certifications:		3/20/2023 22:10	VH
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.46	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
79-01-6	Trichloroethylene	ND		ug/m³	0.14	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
75-69-4	Trichlorofluoromethane (Freon 11)	1.4		ug/m³	0.57	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
108-05-4	Vinyl acetate	ND		ug/m³	0.35	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH
593-60-2	Vinyl bromide	ND		ug/m³	0.44	1.007	EPA TO-15 Certifications:	03/20/2023 11:00 03 NELAC-NY12058,NJDEP-Queens	3/20/2023 22:10	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 6 of 33

Client Sample ID: AI-1 20230314

York Sample ID:

23C0874-01

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 7:19 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No.		Parameter Res	Result Flag Units			ed to Dilution Reference		Date/Time e Method Prepared		Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/m³	0.13	1.007	EPA TO-15		03/20/2023 11:00	03/20/2023 22:10	VH
							Certifications:	NELAC-NY	12058,NJDEP-Queens	š	

Sample Information

Client Sample ID: AI-2 20230314

York Sample ID:

23C0874-02

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

Sample Prepared by Method: EPA TO15 PREP

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 7:17 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.69	0.999	EPA TO-15 Certifications:	03/20/2023 11:00	03/20/2023 23:09	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.55	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.69	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09 as	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.77	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09 as	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.55	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.40	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09 as	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.099	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
20-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.74	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
95-63-6	1,2,4-Trimethylbenzene	1.1		ug/m³	0.49	0.999	EPA TO-15	03/20/2023 11:00	03/20/2023 23:09	VH
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.77	0.999	EPA TO-15	NELAC-NY12058,NJDEP-Quee 03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.60	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.40	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.46	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.70	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 WELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.49	0.999	EPA TO-15 Certifications: N	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queer	03/20/2023 23:09	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 7 of 33

Client Sample ID: AI-2 20230314 **York Sample ID:** 23C0874-02

York Project (SDG) No. 23C0874

Client Project ID 220059 107-02 Queens Blvd., Queens, NY

Matrix Indoor Ambient Air

Collection Date/Time March 14, 2023 7:17 am Date Received 03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

	ed by Method: EPA TO15 PREP		200 111100050	<u>Sample 100001</u>							
CAS No		Result	Flag	Units	Reported to LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-99-0	1,3-Butadiene	ND		ug/m³	0.66	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.60	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.46	0.999	EPA TO-15 Certifications:		03/20/2023 11:00	03/20/2023 23:09	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.60	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
123-91-1	1,4-Dioxane	ND		ug/m³	0.72	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
78-93-3	2-Butanone	5.9		ug/m^3	0.29	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queen:		
591-78-6	* 2-Hexanone	ND		ug/m³	0.82	0.999	EPA TO-15 Certifications:		03/20/2023 11:00	03/20/2023 23:09	VH
107-05-1	3-Chloropropene	ND		ug/m³	1.6	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
108-10-1	4-Methyl-2-pentanone	0.45		ug/m³	0.41	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
(7. (4.1	Acetone			/ 3	0.45	0.000	Certifications:	NELAC-N	(Y12058,NJDEP-Queen: 03/20/2023 11:00		177
57-64-1	Acetone	26		ug/m³	0.47	0.999	EPA TO-15 Certifications:	NELAC-N	V12058,NJDEP-Queen:	03/20/2023 23:09	VH
107-13-1	Acrylonitrile	ND		ug/m³	0.22	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
71-43-2	Benzene	0.70		ug/m³	0.32	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queens	S	
100-44-7	Benzyl chloride	ND		ug/m³	0.52	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
75-27-4	Bromodichloromethane	ND		ug/m³	0.67	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
75-25-2	Bromoform	ND		ug/m³	1.0	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
74-83-9	Bromomethane	ND	TO-CC V,	ug/m³	0.39	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
			TO-LCS				Cerumeunons.		112030;1 WB21 Queens		
			-L								
75-15-0	Carbon disulfide	ND		ug/m³	0.31	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
56-23-5	Carbon tetrachloride	0.44		ug/m^3	0.16	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queen:		
108-90-7	Chlorobenzene	ND		ug/m³	0.46	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
75-00-3	Chloroethane	ND		ug/m³	0.26	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queens	03/20/2023 23:09	VH
67-66-3	Chloroform	0.54		ug/m^3	0.49	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queen		
74-87-3	Chloromethane	1.5		ug/m³	0.21	0.999	EPA TO-15	NEL CO	03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 8 of 33

Client Sample ID: AI-2 20230314 **York Sample ID:** 23C0874-02

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 7:17 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.099	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/20/2023 23:09	VH
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.45	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/20/2023 23:09	VH
110-82-7	Cyclohexane	ND		ug/m³	0.34	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 712058,NJDEP-Queen	03/20/2023 23:09	VH
124-48-1	Dibromochloromethane	ND		ug/m³	0.85	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 712058,NJDEP-Queen	03/20/2023 23:09	VH
75-71-8	Dichlorodifluoromethane	2.8		ug/m³	0.49	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/20/2023 23:09	VH
141-78-6	* Ethyl acetate	0.72		ug/m³	0.72	0.999	EPA TO-15 Certifications:		03/20/2023 11:00	03/20/2023 23:09	VH
100-41-4	Ethyl Benzene	1.4		ug/m³	0.43	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/20/2023 23:09	VH
87-68-3	Hexachlorobutadiene	ND	CAL-E, TO-CC V, TO-LCS -L		1.1	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 712058,NJDEP-Queen	03/20/2023 23:09 s	VH
67-63-0	Isopropanol	46	В	ug/m³	0.49	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/20/2023 23:09	VH
80-62-6	Methyl Methacrylate	ND		ug/m³	0.41	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/20/2023 23:09	VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.36	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/20/2023 23:09 s	VH
75-09-2	Methylene chloride	2.1		ug/m³	0.69	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/20/2023 23:09 ns	VH
142-82-5	n-Heptane	0.41		ug/m³	0.41	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/20/2023 23:09	VH
110-54-3	n-Hexane	ND		ug/m³	0.35	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/20/2023 23:09	VH
95-47-6	o-Xylene	1.1		ug/m³	0.43	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/20/2023 23:09 ns	VH
179601-23-1	p- & m- Xylenes	3.0		ug/m³	0.87	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/20/2023 23:09	VH
622-96-8	* p-Ethyltoluene	0.93		ug/m³	0.49	0.999	EPA TO-15 Certifications:		03/20/2023 11:00	03/20/2023 23:09	VH
115-07-1	* Propylene	ND		ug/m³	0.17	0.999	EPA TO-15 Certifications:		03/20/2023 11:00	03/20/2023 23:09	VH
100-42-5	Styrene	0.43		ug/m³	0.43	0.999	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/20/2023 23:09	VH
127-18-4	Tetrachloroethylene	ND		ug/m³	0.68	0.999	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/20/2023 23:09	VH
109-99-9	* Tetrahydrofuran	26		ug/m³	0.59	0.999	EPA TO-15 Certifications:		03/20/2023 11:00	03/20/2023 23:09	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 9 of 33

(203) 325-1371

ClientServices@

Client Sample ID: AI-2 20230314

York Sample ID:

23C0874-02

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 7:17 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log	-ın	No	tes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported t	o Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-88-3	Toluene	3.2		ug/m³	0.38	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Quee	ns	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.40	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-NY	712058,NJDEP-Queen	S	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.45	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-NY	/12058,NJDEP-Queen	s	
79-01-6	Trichloroethylene	ND		ug/m³	0.13	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
	·						Certifications:	NELAC-NY	/12058,NJDEP-Queen	s	
75-69-4	Trichlorofluoromethane (Freon 11)	1.3		ug/m³	0.56	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Quee	ns	
108-05-4	Vinyl acetate	ND		ug/m³	0.35	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
	,			-			Certifications:	NELAC-NY	712058,NJDEP-Queen	s	
593-60-2	Vinyl bromide	ND		ug/m³	0.44	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
	•			-			Certifications:	NELAC-NY	712058,NJDEP-Queen	s	
75-01-4	Vinyl Chloride	ND		ug/m³	0.13	0.999	EPA TO-15		03/20/2023 11:00	03/20/2023 23:09	VH
	,			-			Certifications:	NELAC-NY	/12058,NJDEP-Queen	s	

Sample Information

Client Sample ID: AI-3 20230314

York Sample ID:

23C0874-03

York Project (SDG) No. 23C0874

Client Project ID

<u>Matrix</u>

Collection Date/Time

Date Received

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air Marc

March 14, 2023 7:14 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes: Sample N

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Metho	Date/Time od Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.67	0.972	EPA TO-15 Certifications:	03/20/2023 11:00	03/21/2023 00:08	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.53	0.972	EPA TO-15 Certifications: NELA	03/20/2023 11:00 C-NY12058,NJDEP-Queens	03/21/2023 00:08	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.67	0.972	EPA TO-15 Certifications: NELAG	03/20/2023 11:00 C-NY12058,NJDEP-Queens	03/21/2023 00:08	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.74	0.972	EPA TO-15 Certifications: NELA	03/20/2023 11:00 C-NY12058,NJDEP-Queens	03/21/2023 00:08	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.53	0.972	EPA TO-15 Certifications: NELA	03/20/2023 11:00 C-NY12058,NJDEP-Queens	03/21/2023 00:08	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.39	0.972	EPA TO-15 Certifications: NELA	03/20/2023 11:00 C-NY12058,NJDEP-Queens	03/21/2023 00:08	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.096	0.972	EPA TO-15 Certifications: NELA	03/20/2023 11:00 C-NY12058,NJDEP-Queens	03/21/2023 00:08	VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.72	0.972	EPA TO-15 Certifications: NELA	03/20/2023 11:00 C-NY12058,NJDEP-Queens	03/21/2023 00:08	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 10 of 33

Client Sample ID: AI-3 20230314 **York Sample ID:** 23C0874-03

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 7:14 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP									
CAS No.	Parameter								

CAS N	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	1.1		ug/m³	0.48	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.75	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.58	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.39	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.45	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.68	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.48	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
106-99-0	1,3-Butadiene	ND		ug/m³	0.65	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.58	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.45	0.972	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 00:08	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.58	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
123-91-1	1,4-Dioxane	ND		ug/m³	0.70	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
78-93-3	2-Butanone	13		ug/m³	0.29	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
591-78-6	* 2-Hexanone	ND		ug/m³	0.80	0.972	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 00:08	VH
107-05-1	3-Chloropropene	ND		ug/m³	1.5	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
108-10-1	4-Methyl-2-pentanone	0.56		ug/m³	0.40	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	is	
67-64-1	Acetone	29		ug/m³	0.46	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
107-13-1	Acrylonitrile	ND		ug/m³	0.21	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
71-43-2	Benzene	0.84		ug/m³	0.31	0.972	EPA TO-15 Certifications:	NEL AC N	03/20/2023 11:00 Y12058,NJDEP-Queer	03/21/2023 00:08	VH
100 44 7				/ 2	0.50	0.072		NELAC-N			
100-44-7	Benzyl chloride	ND		ug/m³	0.50	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:		VH
75-27-4	Bromodichloromethane	ND		ug/m³	0.65	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH
75-25-2	Bromoform	ND		ug/m³	1.0	0.972	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 00:08	VH

Client Sample ID: AI-3 20230314

York Sample ID: 23C0874-03

York Project (SDG) No. 23C0874

<u>Client Project ID</u> 220059 107-02 Queens Blvd., Queens, NY <u>Matrix</u> Indoor Ambient Air Collection Date/Time
March 14, 2023 7:14 am

Date Received 03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

1	organics, ETA TOTS Fun Lis	<u>L</u>			Log In Process	Sample Potes.						
Sample Prepar CAS N	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference Me		/Time	Date/Time Analyzed	Analyst	
74-83-9	Bromomethane	ND	TO-CC V, TO-LCS -L	_	0.38	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
75-15-0	Carbon disulfide	ND		ug/m³	0.30	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
56-23-5	Carbon tetrachloride	0.55		ug/m³	0.15	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ	023 11:00 IDEP-Queen:	03/21/2023 00:08 s	VH	
108-90-7	Chlorobenzene	ND		ug/m³	0.45	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
75-00-3	Chloroethane	ND		ug/m³	0.26	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
67-66-3	Chloroform	0.47		ug/m³	0.47	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ	023 11:00 IDEP-Queen:	03/21/2023 00:08 s	VH	
74-87-3	Chloromethane	1.5		ug/m³	0.20	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ	023 11:00 IDEP-Queen:	03/21/2023 00:08 s	VH	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.096	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.44	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
110-82-7	Cyclohexane	ND		ug/m³	0.33	0.972	EPA TO-15 Certifications: NE	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
124-48-1	Dibromochloromethane	ND		ug/m³	0.83	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
75-71-8	Dichlorodifluoromethane	3.2		ug/m³	0.48	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ	023 11:00 IDEP-Queen:	03/21/2023 00:08 s	VH	
141-78-6	* Ethyl acetate	ND		ug/m³	0.70	0.972	EPA TO-15 Certifications:	03/20/20	023 11:00	03/21/2023 00:08	VH	
100-41-4	Ethyl Benzene	1.6		ug/m³	0.42	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ	023 11:00 IDEP-Queen:	03/21/2023 00:08 s	VH	
87-68-3	Hexachlorobutadiene	ND	CAL-E, TO-CC V, TO-LCS -L		1.0	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI	023 11:00 DEP-Queens	03/21/2023 00:08	VH	
67-63-0	Isopropanol	81	В	ug/m³	0.48	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ	023 11:00 IDEP-Queen:	03/21/2023 00:08 s	VH	
80-62-6	Methyl Methacrylate	ND		ug/m³	0.40	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI		03/21/2023 00:08	VH	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.35	0.972	EPA TO-15 Certifications: NI	03/20/20 ELAC-NY12058,NJI		03/21/2023 00:08	VH	
75-09-2	Methylene chloride	1.9		ug/m³	0.68	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ		03/21/2023 00:08 s	VH	
142-82-5	n-Heptane	0.56		ug/m³	0.40	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ	023 11:00 IDEP-Queen:	03/21/2023 00:08 s	VH	
110-54-3	n-Hexane	0.58		ug/m³	0.34	0.972	EPA TO-15 Certifications: N	03/20/20 ELAC-NY12058,NJ	023 11:00 IDEP-Queen:	03/21/2023 00:08 s	VH	
100 DEG	SEADOU DDIVE	CTDATEODD (T 06615		_ 122	02 90th A	WENTIE	BICUMO	NID LIII I	NIV 11/10		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 33

Client Sample ID: AI-3 20230314

York Sample ID:

23C0874-03

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 7:14 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS N	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-47-6	o-Xylene	1.2		ug/m³	0.42	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	IY12058,NJDEP-Queer	ıs	
179601-23-1	p- & m- Xylenes	3.3		ug/m³	0.84	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	IY12058,NJDEP-Queer	ns	
622-96-8	* p-Ethyltoluene	1.0		ug/m³	0.48	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:				
115-07-1	* Propylene	ND		ug/m³	0.17	0.972	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 00:08	VH
100-42-5	Styrene	0.46		ug/m³	0.41	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
127-18-4	Tetrachloroethylene	ND		ug/m³	0.66	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
	•						Certifications:	NELAC-N	Y12058,NJDEP-Queen	s	
109-99-9	* Tetrahydrofuran	40		ug/m^3	0.57	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:				
108-88-3	Toluene	4.0		ug/m³	0.37	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	VY12058,NJDEP-Queer	ıs	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.39	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	s	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.44	0.972	EPA TO-15		03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
79-01-6	Trichloroethylene	ND		ug/m³	0.13	0.972	EPA TO-15	NEV LON	03/20/2023 11:00	03/21/2023 00:08	VH
	T. I. G. 40						Certifications:	NELAC-N	Y12058,NJDEP-Queen		
75-69-4	Trichlorofluoromethane (Freon 11)	1.4		ug/m³	0.55	0.972	EPA TO-15	NEV 10 N	03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	IY12058,NJDEP-Queer		
108-05-4	Vinyl acetate	ND		ug/m³	0.34	0.972	EPA TO-15	NEL AC N	03/20/2023 11:00	03/21/2023 00:08	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queen		
593-60-2	Vinyl bromide	ND		ug/m³	0.43	0.972	EPA TO-15 Certifications:	NEL AC-N	03/20/2023 11:00 Y12058,NJDEP-Queen	03/21/2023 00:08	VH
75.01.4	V. 1011 11	NID		/3	0.12	0.072		HELAC-N			VIII
75-01-4	Vinyl Chloride	ND		ug/m³	0.12	0.972	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queen	03/21/2023 00:08 s	VH

Sample Information

Client Sample ID: AI-4 20230314

York Sample ID:

23C0874-04

York Project (SDG) No. 23C0874

www.YORKLAB.com

<u>Client Project ID</u> 220059 107-02 Queens Blvd., Queens, NY

(203) 325-1371

<u>Matrix</u> Indoor Ambient Air

FAX (203) 357-0166

Collection Date/Time
March 14, 2023 8:14 am

ClientServices@

Date Received 03/15/2023

Page 13 of 33

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Samp	le I	Prepar	ed by	Method:	EPA	TO15	PREP	

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.64	0.939	EPA TO-15 Certifications:	03/20/2023 11:00	03/21/2023 01:07	VH
120 RES	SEARCH DRIVE	STRATFORD, CT	Г 06615		132	2-02 89th <i>A</i>	AVENUE	RICHMOND HIL	L, NY 11418	

Client Sample ID: AI-4 20230314

York Sample ID: 23C0874-04

York Project (SDG) No.

Client Project ID

<u>Matrix</u>

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 8:14 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sampl	<u>e N</u>	101	tes:
---------------	-------	------------	-----	------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.51	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.64	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.72	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.51	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.38	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.093	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.70	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.46	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.72	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.56	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.38	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.43	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.66	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.46	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
106-99-0	1,3-Butadiene	ND		ug/m³	0.62	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.56	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.43	0.939	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 01:07	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.56	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
123-91-1	1,4-Dioxane	ND		ug/m³	0.68	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
78-93-3	2-Butanone	1.0		ug/m³	0.28	0.939	EPA TO-15		03/20/2023 11:00	03/21/2023 01:07	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	s	
591-78-6	* 2-Hexanone	ND		ug/m³	0.77	0.939	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 01:07	VH
107-05-1	3-Chloropropene	ND		ug/m³	1.5	0.939	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queens	03/21/2023 01:07	VH
108-10-1	4-Methyl-2-pentanone	0.50		ug/m³	0.38	0.939	EPA TO-15		03/20/2023 11:00	03/21/2023 01:07	VH
				-			Certifications:	NEL AC N	Y12058,NJDEP-Queen		

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 14 of 33

FAX (203) 357-0166

Client Sample ID: AI-4 20230314 **York Sample ID:** 23C0874-04

York Project (SDG) No. 23C0874

Client Project ID 220059 107-02 Queens Blvd., Queens, NY

Matrix Indoor Ambient Air

Collection Date/Time March 14, 2023 8:14 am Date Received

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

03/15/2023

Sample Prepared	by Method:	EPA TO15	PREP

CAS	No.	Paramete
67-64-1	Acetone	

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	26		ug/m³	0.45	0.939	EPA TO-15	0	3/20/2023 11:00	03/21/2023 01:07	VH
							Certifications:	NELAC-NY12	2058,NJDEP-Queen	s	
107-13-1	Acrylonitrile	ND		ug/m³	0.20	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
71-43-2	Benzene	0.54		ug/m³	0.30	0.939	EPA TO-15	0	3/20/2023 11:00	03/21/2023 01:07	VH
							Certifications:	NELAC-NY12	2058,NJDEP-Queen	S	
100-44-7	Benzyl chloride	ND		ug/m³	0.49	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
75-27-4	Bromodichloromethane	ND		ug/m³	0.63	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
75-25-2	Bromoform	ND		ug/m³	0.97	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
74-83-9	Bromomethane	ND	TO-CC V, TO-LCS	-	0.36	0.939	EPA TO-15 Certifications:		03/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
			-L								
75-15-0	Carbon disulfide	ND		ug/m³	0.29	0.939	EPA TO-15 Certifications:		03/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
56-23-5	Carbon tetrachloride	0.53		ug/m³	0.15	0.939	EPA TO-15		3/20/2023 11:00	03/21/2023 01:07	VH
							Certifications:	NELAC-NY12	2058,NJDEP-Queen	S	
108-90-7	Chlorobenzene	ND		ug/m³	0.43	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
75-00-3	Chloroethane	ND		ug/m³	0.25	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
67-66-3	Chloroform	1.3		ug/m^3	0.46	0.939	EPA TO-15	0	3/20/2023 11:00	03/21/2023 01:07	VH
							Certifications:	NELAC-NY12	2058,NJDEP-Queen	S	
74-87-3	Chloromethane	1.6		ug/m^3	0.19	0.939	EPA TO-15	0	3/20/2023 11:00	03/21/2023 01:07	VH
							Certifications:	NELAC-NY12	2058,NJDEP-Queen	S	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.093	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.43	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
110-82-7	Cyclohexane	ND		ug/m³	0.32	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
124-48-1	Dibromochloromethane	ND		ug/m³	0.80	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
75-71-8	Dichlorodifluoromethane	3.0		ug/m^3	0.46	0.939	EPA TO-15	0	3/20/2023 11:00	03/21/2023 01:07	VH
							Certifications:	NELAC-NY12	2058,NJDEP-Queen	S	
141-78-6	* Ethyl acetate	ND		ug/m³	0.68	0.939	EPA TO-15 Certifications:	0	3/20/2023 11:00	03/21/2023 01:07	VH
100-41-4	Ethyl Benzene	ND		ug/m³	0.41	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH
87-68-3	Hexachlorobutadiene	ND	CAL-E, TO-CC V, TO-LCS -L		1.0	0.939	EPA TO-15 Certifications:		3/20/2023 11:00 058,NJDEP-Queens	03/21/2023 01:07	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 15 of 33

Client Sample ID: AI-4 20230314 **York Sample ID:** 23C0874-04

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 8:14 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in	Notes:	
L/UZ-III	TIULUS.	

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Date/Tin ethod Prepare		Analyst
67-63-0	Isopropanol	100	В	ug/m³	0.46	0.939	EPA TO-15	03/20/2023 11		VH
							Certifications: N	NELAC-NY12058,NJDEP-	-Queens	
80-62-6	Methyl Methacrylate	ND		ug/m³	0.38	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.34	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
75-09-2	Methylene chloride	1.5		ug/m³	0.65	0.939	EPA TO-15	03/20/2023 11	:00 03/21/2023 01:07	VH
							Certifications:	NELAC-NY12058,NJDEP-	-Queens	
142-82-5	n-Heptane	ND		ug/m³	0.38	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-0		VH
110-54-3	n-Hexane	ND		ug/m³	0.33	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
95-47-6	o-Xylene	ND		ug/m³	0.41	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
179601-23-1	p- & m- Xylenes	ND		ug/m³	0.82	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
622-96-8	* p-Ethyltoluene	ND		ug/m³	0.46	0.939	EPA TO-15 Certifications:	03/20/2023 11	:00 03/21/2023 01:07	VH
115-07-1	* Propylene	ND		ug/m³	0.16	0.939	EPA TO-15 Certifications:	03/20/2023 11	:00 03/21/2023 01:07	VH
100-42-5	Styrene	ND		ug/m³	0.40	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
127-18-4	Tetrachloroethylene	ND		ug/m³	0.64	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
109-99-9	* Tetrahydrofuran	0.58		ug/m³	0.55	0.939	EPA TO-15 Certifications:	03/20/2023 11	:00 03/21/2023 01:07	VH
108-88-3	Toluene	1.5		ug/m³	0.35	0.939	EPA TO-15	03/20/2023 11	:00 03/21/2023 01:07	VH
		-10						NELAC-NY12058,NJDEP-	-Queens	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.37	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.43	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
79-01-6	Trichloroethylene	ND		ug/m³	0.13	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
75-69-4	Trichlorofluoromethane (Freon 11)	1.4		ug/m³	0.53	0.939	EPA TO-15	03/20/2023 11	:00 03/21/2023 01:07	VH
							Certifications: N	NELAC-NY12058,NJDEP-	-Queens	
108-05-4	Vinyl acetate	ND		ug/m³	0.33	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
593-60-2	Vinyl bromide	ND		ug/m³	0.41	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH
75-01-4	Vinyl Chloride	ND		ug/m³	0.12	0.939	EPA TO-15 Certifications: N	03/20/2023 11 ELAC-NY12058,NJDEP-		VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 16 of 33

(203) 325-1371

Client Sample ID: AI-5 20230314 **York Sample ID:** 23C0874-05

York Project (SDG) No. 23C0874

Client Project ID 220059 107-02 Queens Blvd., Queens, NY

Matrix Indoor Ambient Air

Collection Date/Time March 14, 2023 7:23 am Date Received

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

03/15/2023

voiatile	OIE	zamics,	LIA	10	13	run	LID

Sample Prepared	l by	Method: EPA TO15 PREP
-----------------	------	-----------------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.63	0.921	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 02:06	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.50	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.63	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.71	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.50	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.37	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.091	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.68	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
95-63-6	1,2,4-Trimethylbenzene	0.91		ug/m³	0.45	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queer	03/21/2023 02:06	VH
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.71	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.55	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.37	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.43	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.64	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.45	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
106-99-0	1,3-Butadiene	ND		ug/m³	0.61	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.55	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.43	0.921	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 02:06	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.55	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
123-91-1	1,4-Dioxane	ND		ug/m³	0.66	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH
78-93-3	2-Butanone	1.4		ug/m³	0.27	0.921	EPA TO-15	NEV 4 C NO	03/20/2023 11:00	03/21/2023 02:06	VH
591-78-6	* 2-Hexanone	ND		ug/m³	0.75	0.921	Certifications: EPA TO-15 Certifications:	NELAC-NY	712058,NJDEP-Queer 03/20/2023 11:00	03/21/2023 02:06	VH
107-05-1	3-Chloropropene	ND		ug/m³	1.4	0.921	EPA TO-15	NELAC-NY	03/20/2023 11:00 12058,NJDEP-Queen:	03/21/2023 02:06	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 17 of 33

Client Sample ID: AI-5 20230314

23C0874

York Sample ID: 23C0874-05

York Project (SDG) No.

<u>Client Project ID</u> 220059 107-02 Queens Blvd., Queens, NY Matrix Indoor Ambient Air Collection Date/Time
March 14, 2023 7:23 am

Date Received 03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP Date/Time Date/Time Reported to LOQ CAS No. Parameter Result Flag Units Dilution Reference Method Prepared Analyzed Analyst 4-Methyl-2-pentanone 03/20/2023 11:00 03/21/2023 02:06 108-10-1 1.2 ug/m³ 0.38 0.921 EPA TO-15 VH Certifications: NELAC-NY12058,NJDEP-Queens 03/20/2023 11:00 03/21/2023 02:06 67-64-1 Acetone 29 ug/m3 0.44 0.921 EPA TO-15 VH Certifications NELAC-NY12058 NIDEP-Queens 107-13-1 Acrylonitrile ND ug/m³ 0.20 0.921 EPA TO-15 03/20/2023 11:00 03/21/2023 02:06 VH Certifications: NELAC-NY12058,NJDEP-Queens 71-43-2 Benzene 0.47 ug/m3 0.29 0.921 EPA TO-15 03/20/2023 11:00 03/21/2023 02:06 VH Certifications: NELAC-NY12058,NJDEP-Oueens 100-44-7 Benzyl chloride ND ug/m³ 0.48 0.921 EPA TO-15 03/20/2023 11:00 03/21/2023 02:06 VH Certifications: NELAC-NY12058,NJDEP-Queens 75-27-4 Bromodichloromethane 0.62 0.921 EPA TO-15 03/20/2023 11:00 03/21/2023 02:06 VH ND ug/m3 Certifications NELAC-NY12058,NJDEP-Queens 0.95 0.921 03/20/2023 11:00 03/21/2023 02:06 75-25-2 Bromoform ND ug/m³ EPA TO-15 VH NELAC-NY12058,NJDEP-Queens Certifications: TO-CC ug/m3 0.36 0.921 03/20/2023 11:00 03/21/2023 02:06 74-83-9 EPA TO-15 VH Bromomethane ND V, Certifications: NELAC-NY12058.NJDEP-Queens TO-LCS -L 0.29 0.921 03/20/2023 11:00 VH 75-15-0 Carbon disulfide EPA TO-15 03/21/2023 02:06 ND ug/m3 Certifications: NELAC-NY12058,NJDEP-Oueens Carbon tetrachloride 03/20/2023 11:00 03/21/2023 02:06 56-23-5 EPA TO-15 VH 0.52 ug/m3 0.14 0.921 NELAC-NY12058.NJDEP-Oueens Certifications: 0.42 0.921 EPA TO-15 03/20/2023 11:00 03/21/2023 02:06 VH 108-90-7 Chlorobenzene ND ug/m3 Certifications: NELAC-NY12058,NJDEP-Oueens 03/20/2023 11:00 75-00-3 Chloroethane ND ug/m³ 0.24 0.921 EPA TO-15 03/21/2023 02:06 VH Certifications: NELAC-NY12058,NJDEP-Queens Chloroform 03/20/2023 11:00 03/21/2023 02:06 67-66-3 0.72 ug/m³ 0.45 0.921 EPA TO-15 VH Certifications NELAC-NY12058,NJDEP-Queens Chloromethane 03/20/2023 11:00 03/21/2023 02:06 74-87-3 1.4 ug/m3 0.19 0.921 EPA TO-15 VH Certifications: NELAC-NY12058.NJDEP-Oueens 0.091 03/20/2023 11:00 03/21/2023 02:06 156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 0.921 EPA TO-15 VH Certifications: NELAC-NY12058,NJDEP-Queens 10061-01-5 cis-1,3-Dichloropropylene ND ug/m³ 0.42 0.921 EPA TO-15 03/20/2023 11:00 03/21/2023 02:06 VH

120 RESEARCH DRIVE www.YORKLAB.com

Cyclohexane

* Ethyl acetate

Ethyl Benzene

Dibromochloromethane

Dichlorodifluoromethane

110-82-7

124-48-1

75-71-8

141-78-6

100-41-4

STRATFORD, CT 06615

ND

ND

2.6

17

13

(203) 325-1371

132-02 89th AVENUE

0.32

0.78

0.46

0.66

0.40

ug/m³

ug/m3

ug/m³

ug/m³

ug/m³

0.921

0.921

0.921

0.921

0.921

RICHMOND HILL, NY 11418

ClientServices@ Page 18 of 33

NELAC-NY12058,NJDEP-Queen

NELAC-NY12058,NJDEP-Queens

NELAC-NY12058, NJDEP-Queens

NELAC-NY12058,NJDEP-Queens

NELAC-NY12058,NJDEP-Queens

03/20/2023 11:00

03/20/2023 11:00

03/20/2023 11:00

03/20/2023 11:00

03/20/2023 11:00

03/21/2023 02:06

03/21/2023 02:06

03/21/2023 02:06

03/21/2023 02:06

03/21/2023 02:06

VH

VH

VH

VH

VH

FAX (203) 357-0166

Certifications

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

Certifications:

EPA TO-15

Certifications

EPA TO-15

Certifications

Client Sample ID: AI-5 20230314 **York Sample ID:** 23C0874-05

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Indoor Ambient Air

March 14, 2023 7:23 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND	CAL-E, TO-CC V, TO-LCS -L		0.98	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06 s	VH
67-63-0	Isopropanol	71	В	ug/m³	0.45	0.921	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Quee	03/21/2023 02:06	VH
80-62-6	Methyl Methacrylate	ND		ug/m^3	0.38	0.921	EPA TO-15 Certifications:		03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06	VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.33	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06 s	VH
75-09-2	Methylene chloride	1.4		ug/m³	0.64	0.921	EPA TO-15		03/20/2023 11:00	03/21/2023 02:06	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Quee	ns	
142-82-5	n-Heptane	0.38		ug/m³	0.38	0.921	EPA TO-15		03/20/2023 11:00	03/21/2023 02:06	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Quee	ns	
110-54-3	n-Hexane	ND		ug/m³	0.32	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06 s	VH
5-47-6	o-Xylene	9.8		ug/m³	0.40	0.921	EPA TO-15		03/20/2023 11:00	03/21/2023 02:06	VH
							Certifications:	NELAC-N	Y12058,NJDEP-Quee	ns	
79601-23-1	p- & m- Xylenes	38		ug/m³	0.80	0.921	EPA TO-15		03/20/2023 11:00	03/21/2023 02:06	VH
,,001 25 1	P 33 33 33 33 33 33 33 33 33 33 33 33 33	30		ug	0.00	0.521	Certifications:	NELAC-N	Y12058,NJDEP-Quee		***
22-96-8	* n Ethyltoluono	0.60		22 c/ma3	0.45	0.021	EPA TO-15	TILLIE I	03/20/2023 11:00	03/21/2023 02:06	VH
22-90-8	* p-Ethyltoluene	0.68		ug/m³	0.45	0.921			03/20/2023 11:00	03/21/2023 02.00	VП
							Certifications:				
5-07-1	* Propylene	ND		ug/m³	0.16	0.921	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 02:06	VH
00-42-5	Styrene	ND		ug/m³	0.39	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06 s	VH
27-18-4	Tetrachloroethylene	ND		ug/m³	0.62	0.921	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06 s	VH
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.54	0.921	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 02:06	VH
08-88-3	Toluene	1.4		ug/m³	0.35	0.921	EPA TO-15		03/20/2023 11:00	03/21/2023 02:06	VH
		1.1		0			Certifications:	NELAC-N	Y12058,NJDEP-Quee		
56-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.37	0.921	EPA TO-15 Certifications:		03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06	VH
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m^3	0.42	0.921	EPA TO-15 Certifications:		03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06	VH
79-01-6	Trichloroethylene	ND		ug/m³	0.12	0.921	EPA TO-15 Certifications:		03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06	VH
15.60.4	T-2-1-1			/ 2				NELAC-N1			1777
5-69-4	Trichlorofluoromethane (Freon 11)	1.3		ug/m³	0.52	0.921	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Quee	03/21/2023 02:06	VH
108-05-4	Vinyl acetate	ND		ug/m³	0.32	0.921	EPA TO-15 Certifications:		03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06	VH
593-60-2	Vinyl bromide	ND		ug/m³	0.40	0.921	EPA TO-15 Certifications:		03/20/2023 11:00 /12058,NJDEP-Queen	03/21/2023 02:06	VH
75-01-4	Vinyl Chloride	ND		ug/m^3	0.12	0.921	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 02:06	VH
									/12058,NJDEP-Queen		
120 RES	EARCH DRIVE	STRATFORD, C	CT 06615		132	-02 89th <i>A</i>	WENUE	F	RICHMOND HIL	L, NY 11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

Page 19 of 33 ClientServices@

<u>Client Sample ID:</u> AI-5 20230314 <u>York Sample ID:</u> 23C0874-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C0874220059 107-02 Queens Blvd., Queens, NYIndoor Ambient AirMarch 14, 2023 7:23 am03/15/2023

Sample Information

<u>Client Sample ID:</u> AO-1 20230314 <u>York Sample ID:</u> 23C0874-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23C0874220059 107-02 Queens Blvd., Queens, NYOutdoor Ambient AirMarch 14, 2023 8:17 am03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes: Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.73	1.066	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 03:06	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.58	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.73	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.82	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.58	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.43	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.11	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.79	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.52	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.82	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.64	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.43	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.49	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.75	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.52	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
106-99-0	1,3-Butadiene	ND		ug/m³	0.71	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.64	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.49	1.066	EPA TO-15 Certifications:		03/20/2023 11:00	03/21/2023 03:06	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.64	1.066	EPA TO-15 Certifications:	NELAC-NY	03/20/2023 11:00 Y12058,NJDEP-Queen:	03/21/2023 03:06	VH

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 20 of 33

Client Sample ID: AO-1 20230314

York Sample ID: 23C0874-06

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Outdoor Ambient Air

March 14, 2023 8:17 am

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

<u>Log-in Notes:</u>	Sample Notes:
----------------------	----------------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
123-91-1	1,4-Dioxane	ND		ug/m³	0.77	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
78-93-3	2-Butanone	10		ug/m³	0.31	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications:	NELAC-NY12058,NJDEP-Queer	is	
591-78-6	* 2-Hexanone	ND		ug/m³	0.87	1.066	EPA TO-15 Certifications:	03/20/2023 11:00	03/21/2023 03:06	VH
107-05-1	3-Chloropropene	ND		ug/m³	1.7	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	0.44	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
67-64-1	Acetone	16		ug/m³	0.51	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications:	NELAC-NY12058,NJDEP-Queer	ıs	
107-13-1	Acrylonitrile	ND		ug/m³	0.23	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
71-43-2	Benzene	0.61		ug/m³	0.34	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications:	NELAC-NY12058,NJDEP-Queen	ıs	
100-44-7	Benzyl chloride	ND		ug/m³	0.55	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
75-27-4	Bromodichloromethane	ND		ug/m³	0.71	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
75-25-2	Bromoform	ND		ug/m³	1.1	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
74-83-9	Bromomethane	ND	TO-CC V, TO-LCS	ug/m³	0.41	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
			-L							
75-15-0	Carbon disulfide	ND		ug/m³	0.33	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
56-23-5	Carbon tetrachloride	0.47		ug/m³	0.17	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications:	NELAC-NY12058,NJDEP-Queen	ıs	
108-90-7	Chlorobenzene	ND		ug/m³	0.49	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
75-00-3	Chloroethane	ND		ug/m³	0.28	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
67-66-3	Chloroform	ND		ug/m³	0.52	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
74-87-3	Chloromethane	1.6		ug/m³	0.22	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications:	NELAC-NY12058,NJDEP-Queen	ıs	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.11	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.48	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
110-82-7	Cyclohexane	ND		ug/m³	0.37	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH
124-48-1	Dibromochloromethane	ND		ug/m³	0.91	1.066	EPA TO-15 Certifications:	03/20/2023 11:00 NELAC-NY12058,NJDEP-Queens	03/21/2023 03:06	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 21 of 33

Sample Information

Client Sample ID: AO-1 20230314 **York Sample ID:** 23C0874-06

York Project (SDG) No. 23C0874

Client Project ID 220059 107-02 Queens Blvd., Queens, NY

Matrix Outdoor Ambient Air

Collection Date/Time March 14, 2023 8:17 am Date Received 03/15/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

	ed by Method: EPA TO15 PREP				not in 1 totals.		Sample	Totes:		
CAS No		Result	Flag	Units	Reported to LOQ	Dilution	Reference Met	Date/Time nod Prepared	Date/Time Analyzed	Analyst
75-71-8	Dichlorodifluoromethane	3.3		ug/m³	0.53	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications: NEI	AC-NY12058,NJDEP-Quee	ens	
141-78-6	* Ethyl acetate	ND		ug/m³	0.77	1.066	EPA TO-15 Certifications:	03/20/2023 11:00	03/21/2023 03:06	VH
100-41-4	Ethyl Benzene	0.83		ug/m³	0.46	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications: NEI	AC-NY12058,NJDEP-Quee	ens	
87-68-3	Hexachlorobutadiene	ND	CAL-E, TO-CC V, TO-LCS		1.1	1.066	EPA TO-15 Certifications: NEL	03/20/2023 11:00 AC-NY12058,NJDEP-Queer	03/21/2023 03:06 as	VH
			-L							
67-63-0	Isopropanol	5.8	В	ug/m³	0.52	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications: NEI	AC-NY12058,NJDEP-Quee	ens	
80-62-6	Methyl Methacrylate	ND		ug/m³	0.44	1.066	EPA TO-15 Certifications: NEL	03/20/2023 11:00 AC-NY12058,NJDEP-Queen	03/21/2023 03:06 ns	VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.38	1.066	EPA TO-15 Certifications: NEL	03/20/2023 11:00 AC-NY12058,NJDEP-Queen	03/21/2023 03:06 ns	VH
75-09-2	Methylene chloride	1.3		ug/m³	0.74	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications: NEI	AC-NY12058,NJDEP-Quee	ens	
142-82-5	n-Heptane	ND		ug/m³	0.44	1.066	EPA TO-15 Certifications: NEL	03/20/2023 11:00 AC-NY12058,NJDEP-Queen	03/21/2023 03:06	VH
110-54-3	n-Hexane	0.38		ug/m³	0.38	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications: NEI	AC-NY12058,NJDEP-Quee	ens	
95-47-6	o-Xylene	0.51		ug/m³	0.46	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications: NEI	AC-NY12058,NJDEP-Quee	ens	
179601-23-1	p- & m- Xylenes	1.6		ug/m³	0.93	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
							Certifications: NEI	AC-NY12058,NJDEP-Quee	ens	
622-96-8	* p-Ethyltoluene	ND		ug/m³	0.52	1.066	EPA TO-15 Certifications:	03/20/2023 11:00	03/21/2023 03:06	VH
115-07-1	* Propylene	ND		ug/m³	0.18	1.066	EPA TO-15 Certifications:	03/20/2023 11:00	03/21/2023 03:06	VH
100-42-5	Styrene	ND		ug/m³	0.45	1.066	EPA TO-15 Certifications: NEL	03/20/2023 11:00 AC-NY12058,NJDEP-Queen	03/21/2023 03:06	VH
127-18-4	Tetrachloroethylene	ND		ug/m³	0.72	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
	477.4							AC-NY12058,NJDEP-Queer		
109-99-9	* Tetrahydrofuran	29		ug/m³	0.63	1.066	EPA TO-15	03/20/2023 11:00	03/21/2023 03:06	VH
100.00.2	Talasana			/ 2			Certifications:	02/20/2022 11 00	02/21/2022 02 04	1777
108-88-3	Toluene	2.3		ug/m³	0.40	1.066	EPA TO-15 Certifications: NEI	03/20/2023 11:00 .AC-NY12058,NJDEP-Quee	03/21/2023 03:06	VH
156 60 5	10.5:11	NID.		/ 2	0.42	1.066				1777
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.42	1.066	EPA TO-15 Certifications: NEL	03/20/2023 11:00 AC-NY12058,NJDEP-Queen	03/21/2023 03:06 ns	VH
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.48	1.066	EPA TO-15 Certifications: NEL	03/20/2023 11:00 AC-NY12058,NJDEP-Queen	03/21/2023 03:06 ns	VH
79-01-6	Trichloroethylene	ND		ug/m³	0.14	1.066	EPA TO-15 Certifications: NEL	03/20/2023 11:00 AC-NY12058,NJDEP-Queen	03/21/2023 03:06	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Page 22 of 33

FAX (203) 357-0166

ClientServices@

Sample Information

Client Sample ID: AO-1 20230314

York Sample ID: 23C0874-06

York Project (SDG) No.

Client Project ID

<u>Matrix</u>

Collection Date/Time

Date Received

23C0874

220059 107-02 Queens Blvd., Queens, NY

Outdoor Ambient Air

March 14, 2023 8:17 am

Sample Notes:

03/15/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Sample Frepai	ed by Method: EFA 1013 FREF										
CAS N	o. Parameter	Result	Flag	Units	Reported t LOQ	o Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane (Freon 11)	1.5		ug/m³	0.60	1.066	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Quee	03/21/2023 03:06	VH
108-05-4	Vinyl acetate	ND		ug/m³	0.38	1.066	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queen	03/21/2023 03:06 s	VH
593-60-2	Vinyl bromide	ND		ug/m³	0.47	1.066	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queen	03/21/2023 03:06 s	VH
75-01-4	Vinyl Chloride	ND		ug/m³	0.14	1.066	EPA TO-15 Certifications:	NELAC-N	03/20/2023 11:00 Y12058,NJDEP-Queen	03/21/2023 03:06 s	VH

Log-in Notes:

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 23 of 33

Analytical Batch Summary

Batch ID: BC31384	Preparation Method:	EPA TO15 PREP	Prepared By:	VH
YORK Sample ID	Client Sample ID	Preparation Date		
23C0874-01	AI-1 20230314	03/20/23		
23C0874-02	AI-2 20230314	03/20/23		
23C0874-03	AI-3 20230314	03/20/23		
23C0874-04	AI-4 20230314	03/20/23		
23C0874-05	AI-5 20230314	03/20/23		
23C0874-06	AO-1 20230314	03/20/23		
BC31384-BLK1	Blank	03/20/23		
BC31384-BS1	LCS	03/20/23		
BC31384-DUP1	Duplicate	03/20/23		

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RC31384 -	. FPA	TO15	PRFP

lank (BC31384-BLK1)				Prepared & Analyzed: 03/20/2
1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
1,1-Trichloroethane	ND	0.55	"	
1,2,2-Tetrachloroethane	ND	0.69	"	
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.77	"	
3)) ID	0.55	"	
1,2-Trichloroethane	ND	0.55	,,	
1-Dichloroethane	ND	0.40		
1-Dichloroethylene	ND	0.099		
2,4-Trichlorobenzene	ND	0.74		
2,4-Trimethylbenzene	ND	0.49	"	
-Dibromoethane	ND	0.77	"	
2-Dichlorobenzene	ND	0.60	"	
-Dichleronne	ND	0.40		
-Dichloropropane	ND	0.46		
-Dichlorotetrafluoroethane	ND	0.70	"	
5-Trimethylbenzene	ND	0.49	"	
Butadiene	ND	0.66	"	
Dichlorobenzene	ND	0.60	"	
Dichloropropane	ND	0.46	"	
Dichlorobenzene	ND	0.60	"	
Dioxane	ND	0.72	"	
utanone	ND	0.29	"	
exanone	ND	0.82	"	
nloropropene	ND	1.6	"	
ethyl-2-pentanone	ND	0.41	"	
one	ND	0.48	"	
lonitrile	ND	0.22	"	
zene	ND	0.32	"	
zyl chloride	ND	0.52	"	
modichloromethane	ND	0.67	"	
moform	ND	1.0	"	
momethane	ND	0.39	"	
bon disulfide	ND	0.31	"	
bon tetrachloride	ND	0.16	"	
orobenzene	ND	0.46	"	
oroethane	ND	0.26	"	
oroform	ND	0.49	"	
oromethane	ND	0.21	"	
1,2-Dichloroethylene	ND	0.099	"	
1,3-Dichloropropylene	ND	0.45	"	
clohexane	ND	0.34	"	
romochloromethane	ND	0.85	"	
hlorodifluoromethane	ND	0.49	"	
yl acetate	ND	0.72	"	
yl Benzene	ND	0.43	"	
xachlorobutadiene	ND	1.1	"	
propanol	0.66	0.49	"	
ethyl Methacrylate	ND	0.41	"	
ethyl tert-butyl ether (MTBE)	ND	0.36	"	
ethylene chloride	ND	0.69	"	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 25 of 33

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

		Reporting		Spike	Source*		%REC			10.2	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BC31384 - EPA TO15 PREP											
Blank (BC31384-BLK1)							Prep	ared & Analy	yzed: 03/20/	/2023	
n-Heptane	ND	0.41	ug/m³								
n-Hexane	ND	0.35	"								
o-Xylene	ND	0.43	"								
p- & m- Xylenes	ND	0.87	"								
p-Ethyltoluene	ND	0.49	"								
Propylene	ND	0.17	"								
Styrene	ND	0.43	"								
Tetrachloroethylene	ND	0.68	"								
Tetrahydrofuran	ND	0.59	"								
Toluene	ND	0.38	"								
trans-1,2-Dichloroethylene	ND	0.40	"								
trans-1,3-Dichloropropylene	ND	0.45	"								
Trichloroethylene	ND	0.13	"								
Trichlorofluoromethane (Freon 11)	ND	0.56	"								
Vinyl acetate	ND	0.35	"								
Vinyl bromide	ND	0.44	"								
Vinyl Chloride	ND	0.13	"								
LCS (BC31384-BS1)							Prep	ared & Analy	yzed: 03/20/	/2023	
1,1,1,2-Tetrachloroethane	9.72		ppbv	10.0		97.2	70-130				
1,1,1-Trichloroethane	11.2		"	10.0		112	70-130				
1,1,2,2-Tetrachloroethane	11.1		"	10.0		111	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.6		"	10.0		106	70-130				
1,1,2-Trichloroethane	9.03		"	10.0		90.3	70-130				
1,1-Dichloroethane	10.6		"	10.0		106	70-130				
1,1-Dichloroethylene	11.8		"	10.0		118	70-130				
1,2,4-Trichlorobenzene	8.13		"	10.0		81.3	70-130				
1,2,4-Trimethylbenzene	8.17		"	10.0		81.7	70-130				
1,2-Dibromoethane	9.19		"	10.0		91.9	70-130				
1,2-Dichlorobenzene	7.98		"	10.0		79.8	70-130				
1,2-Dichloroethane	11.4		"	10.0		114	70-130				
1,2-Dichloropropane	8.93		"	10.0		89.3	70-130				
1,2-Dichlorotetrafluoroethane	10.1		"	10.0		101	70-130				
1,3,5-Trimethylbenzene	8.28		"	10.0		82.8	70-130				
1,3-Butadiene	11.0		"	10.0		110	70-130				
1,3-Dichlorobenzene	8.29		"	10.0		82.9	70-130				
1,3-Dichloropropane	9.48		"	10.0		94.8	70-130				
1,4-Dichlorobenzene	8.06		"	10.0		80.6	70-130				
1,4-Dioxane	11.2		"	10.0		112	70-130				
2-Butanone	10.8		"	10.0		108	70-130				
2-Hexanone	8.23		"	10.0		82.3	70-130				
3-Chloropropene	11.8		"	10.0		118	70-130				
4-Methyl-2-pentanone	8.79		"	10.0		87.9	70-130				
Acetone	9.09		"	10.0		90.9	70-130				
Acrylonitrile	12.5		"	10.0		125	70-130				
Benzene	7.89		"	10.0		78.9	70-130				
Benzyl chloride	8.78		"	10.0		87.8	70-130				
Bromodichloromethane	9.65		"	10.0		96.5	70-130				
Bromoform	9.09		"	10.0		90.9	70-130				
Bromomethane	6.97		"	10.0		69.7	70-130	Low Bias			
Carbon disulfide	10.4		"	10.0		104	70-130				

www.YORKLAB.com

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Page 26 of 33

RPD

FAX (203) 357-0166 ClientServices@

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Second 10.3 10.0 10.3 70.130 10.0 10.10 70.130 10.0	LCS (BC31384-BS1)					Pre	pared & Analyzed: 03/20/2023
Description 11.6 10.0 11.6 70.130	Carbon tetrachloride	9.91	ppbv	10.0	99.1	70-130	
Inforform 10.8 10.0 108 70-130 100 105 70-130 100 105 70-130 100 105 70-130 100 119 70-130 10-120 10	Chlorobenzene	10.3	"	10.0	103	70-130	
10.5 10.0 10.5 70.130 10.5 70.130 10.5 70.130 10.5 10.0 119 70.130 10.5 10.0 119 70.130 10.5 10.0 119 70.130 10.5 10.0	Chloroethane	11.6	"	10.0	116	70-130	
1.2-Dichloroethylene	Chloroform	10.8	"	10.0	108	70-130	
10.2 10.0 10.2 70.130	Chloromethane	10.5	"	10.0	105	70-130	
Part	eis-1,2-Dichloroethylene	11.9	"	10.0	119	70-130	
Promochloromethane 9.35 " 10.0 93.5 70.130 10.0 1	eis-1,3-Dichloropropylene	10.2	"	10.0	102	70-130	
chlorodifluoromethane	Cyclohexane	9.76	"	10.0	97.6	70-130	
hyl acetate 11.1 " 10.0 111 70-130 hyl Benzene 10.8 " 10.0 108 70-130 hyl Benzene 10.8 " 10.0 108 70-130 hyl Benzene 5.64 " 10.0 56.4 70-130 Low Bias proposed 10.4 " 10.0 56.4 70-130 Low Bias proposed 10.4 " 10.0 104 70-130 hyl Benzene 8.78 " 10.0 87.8 70-130 hyl Benzene 11.7 " 10.0 117 70-130 hyl Benzene 11.0 hyl Benzene 11	Dibromochloromethane	9.35	"	10.0	93.5	70-130	
No. 10.0 108 70-130 108 20-130 20-	Dichlorodifluoromethane	10.9	"	10.0	109	70-130	
Exachlorobutadiene 5.64 " 10.0 56.4 70.130 Low Bias opropanol 10.4 " 10.0 104 70.130 ethyl Methacrylate 8.78 " 10.0 17.7 " 10.0 117 70.130 ethyl methyl ether (MTBE) 11.7 " 10.0 117 70.130 ethylene chloride 10.2 " 10.0 117 70.130 ethylene chloride 10.2 " 10.0 102 70.130 ethylene chloride 10.0 10.0 17.5 70.130 ethylene chloride 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	Ethyl acetate	11.1	"	10.0	111	70-130	
propanol 10.4 " 10.0 104 70-130 ethyl Methacrylate 8.78 " 10.0 87.8 70-130 ethyl Methacrylate 8.78 " 10.0 117 70-130 ethylene chloride 10.2 " 10.0 102 70-130 ethylene chloride 10.2 " 10.0 77.5 70-130 ethylene chloride 9.65 " 10.0 96.5 70-130 ethylene chloride 8.03 " 10.0 96.5 70-130 ethylene 9.65 " 10.0 96.5 70-130 ethylene 9.81 " 10.0 124 70-130 ethylene 9.81 " 10.0 124 70-130 ethylene 9.81 " 10.0 124 70-130 ethylene 11.6 " 10.0 124 70-130 ethylene 11.6 " 10.0 124 70-130 ethylene 11.6 " 10.0 124 70-130 ethylene 11.4 " 10.0 125 70-130 ethylene 11.4 " 10.0 126 70-130 ethylene 11.4 " 10.0 127 70	Ethyl Benzene	10.8	"	10.0	108	70-130	
tethyl Methacrylate 8.78 " 10.0 87.8 70-130 ethyl tert-butyl ether (MTBE) 11.7 " 10.0 117 70-130 ethylene chloride 10.2 " 10.0 102 70-130 ethylene chloride 10.2 " 10.0 102 70-130 ethylene chloride 10.2 " 10.0 102 70-130 ethylene chloride 10.2 " 10.0 77.5 70-130 ethylene chloride 10.0 96.5 70-130 ethylene 8.03 " 10.0 96.5 70-130 ethylene 8.03 " 10.0 80.3 70-130 ethylene 8.03 " 10.0 80.3 70-130 ethylene 14.6 " 20.0 72.8 70-130 ethylene 12.4 " 10.0 72.2 70-130 ethylene 12.4 " 10.0 72.2 70-130 ethylene 12.4 " 10.0 124 70-130 ethylene 12.4 " 10.0 124 70-130 ethylene 12.4 " 10.0 124 70-130 ethylene 14.6 " 10.0 98.1 70-130 ethylene 14.6 " 10.0 116 70-130 ethylene 14.6 " 10.0 116 70-130 ethylene 15.1 ethylene 16.0 " 10.0 116 70-130 ethylene 16.1 ethylene 10.0 11.4 " 10.0 11.4 70-130 ethylene 10.2 " 10.0 100 70-130 ethylene 10.2 " 10.0 100 70-130 ethylene 10.2 " 10.0 100 70-130 ethylene 10.0 " 10.	Iexachlorobutadiene	5.64	"	10.0	56.4	70-130	Low Bias
ethyl tert-butyl ether (MTBE) 11.7 " 10.0 117 70-130 ethylene chloride 10.2 " 10.0 102 70-130 ethylene chloride 10.2 " 10.0 102 70-130 ethylene chloride 10.0 77.5 70-130 ethylene chloride 10.0 77.5 70-130 ethylene 60.0 77.5 " 10.0 96.5 70-130 ethylene 60.0 " 10.0 96.5 70-130 ethylene 60.0 " 10.0 96.5 70-130 ethylene 60.0 72.8 70-130 ethylene 70.0 72.8 70-130 ethylene 70.10 72.8 70-130 ethylene 70.10 72.8 70-130 ethylene 70.10 72.8 70-130 ethylene 70.10 70-130 ethylene 70.0	sopropanol	10.4	"	10.0	104	70-130	
tethylene chloride 10.2 " 10.0 102 70-130 Heptane 7.75 " 10.0 77.5 70-130 Heptane 9.65 " 10.0 77.5 70-130 Hexane 9.65 " 10.0 96.5 70-130 Kylene 8.03 " 10.0 80.3 70-130 Kylene 8.03 " 10.0 80.3 70-130 Kylene 8.03 " 10.0 72.8 70-130 Kylene 8.03 " 10.0 72.8 70-130 Kylene 8.03 " 10.0 72.8 70-130 Kylene 8.03 To-130 Kylene 7.92 " 10.0 72.8 70-130 Kylene 6.0 Kylene 7.92 " 10.0 72.8 70-130 Kylene 7.68 " 10.0 72.8 70-130 Kylene	Iethyl Methacrylate	8.78	"	10.0	87.8	70-130	
Heptane 7.75 " 10.0 77.5 70-130 Hexane 9.65 " 10.0 96.5 70-130 Hexane 9.65 " 10.0 96.5 70-130 Hexane 8.03 " 10.0 80.3 70-130 Hexane 8.03 " 10.0 80.3 70-130 Hexane 8.03 " 10.0 80.3 70-130 Hexane 8.03 " 10.0 72.8 70-130 Hexane 8.03 " 10.0 79.2 70-130 Hexane 9.92 " 10.0 79.2 70-130 Hexane 9.92 " 10.0 79.2 70-130 Hexane 9.94 " 10.0 79.2 70-130 Hexane 9.94 " 10.0 76.8 70-130 Hexane 9.95 " 10.0 76.8 70-130 Hexane 9.96 " 10.0 98.1 70-130 Hexane 9.98 " 10.0 98.1 70-130 Hexane 9.98 " 10.0 116 70-130 Hexane 9.98 Hexane 9.98 " 10.0 116 70-130 Hexane 9.99 Hexane 9	Iethyl tert-butyl ether (MTBE)	11.7	"	10.0	117	70-130	
Hexane 9.65 " 10.0 96.5 70-130 Xylene 8.03 " 10.0 80.3 70-130 Xylene 8.03 " 10.0 80.3 70-130 Xylenes 14.6 " 20.0 72.8 70-130 Yrene 7.92 " 10.0 79.2 70-130 Yrene 7.68 " 10.0 124 70-130 Yrene 7.68 " 10.0 76.8 70-130 Yrene 7.68 " 10.0 76.8 70-130 Yrene 7.68 " 10.0 98.1 70-130 Yrene Yrene 8.76 " 10.0 98.1 70-130 Yrene Yrene 8.76 " 10.0 116 70-130 Yrene Yrene 8.76 " 10.0 116 70-130 Yrene 7.0130 Yrene 8.76 " 10.0 110 70-130 Yrene 7.0130	lethylene chloride	10.2	"	10.0	102	70-130	
Xylene 8.03 " 10.0 80.3 70-130 & m- Xylenes 14.6 " 20.0 72.8 70-130 Ethyltoluene 7.92 " 10.0 79.2 70-130 opylene 12.4 " 10.0 124 70-130 yrene 7.68 " 10.0 76.8 70-130 trachloroethylene 9.81 " 10.0 98.1 70-130 trachloroethylene 11.6 " 10.0 116 70-130 duene 8.76 " 10.0 87.6 70-130 ms-1,2-Dichloroethylene 11.4 " 10.0 116 70-130 ms-1,3-Dichloroptylene 10.2 " 10.0 114 70-130 ms-1,3-Dichloroptylene 10.0 " 10.0 100 70-130 ichloroethylene 10.0 " 10.0 100 70-130 ichloroethylene 10.0 " 10.0 100 70-130 ichloroethylene 10.0 " 10.0 100 70-130 ichlorofluoromethane (Freon 11) 10.7 " 10.0 107 70-130 myl acetate 8.23 " 10.0 82.3 70-130 myl bromide 11.9 " 10.0 119 70-130	Heptane	7.75	"	10.0	77.5	70-130	
& m- Xylenes 14.6 " 20.0 72.8 70-130 Ethyltoluene 7.92 " 10.0 79.2 70-130 opylene 12.4 " 10.0 124 70-130 syrene 7.68 " 10.0 98.1 70-130 strachloroethylene 9.81 " 10.0 98.1 70-130 strachloroethylene 11.6 " 10.0 116 70-130 shuene 8.76 " 10.0 87.6 70-130 sms-1,2-Dichloroethylene 11.4 " 10.0 114 70-130 sms-1,3-Dichloropropylene 10.2 " 10.0 102 70-130 sichloroethylene 10.0 " 10.0 107 70-130 sichlorofluoromethane (Freon 11) 10.7 " 10.0 107 70-130 snyl acetate 8.23 " 10.0 82.3 70-130 snyl bromide 11.9 " 10.0 119 70-130	Hexane	9.65	"	10.0	96.5	70-130	
Ethyltoluene 7.92 " 10.0 79.2 70-130 opylene 12.4 " 10.0 124 70-130 yrene 7.68 " 10.0 76.8 70-130 opylene 9.81 " 10.0 98.1 70-130 opylene 11.6 " 10.0 98.1 70-130 opylene 11.6 " 10.0 116 70-130 opylene 11.4 " 10.0 116 70-130 opylene 11.4 " 10.0 116 70-130 opylene 11.4 " 10.0 114 70-130 opylene 11.4 " 10.0 114 70-130 opylene 10.2 " 10.0 100 70-130 opylene 10.2 " 10.0 100 70-130 opylene 10.0 "	-Xylene	8.03	"	10.0	80.3	70-130	
12.4 10.0 124 70-130	- & m- Xylenes	14.6	"	20.0	72.8	70-130	
yrene 7.68 " 10.0 76.8 70-130 trachloroethylene 9.81 " 10.0 98.1 70-130 trachloroethylene 11.6 " 10.0 116 70-130 trachloroethylene 8.76 " 10.0 87.6 70-130 trachloroethylene 11.4 " 10.0 114 70-130 trachloroethylene 11.4 " 10.0 114 70-130 trachloroethylene 10.2 " 10.0 102 70-130 trachloroethylene 10.0 " 10.0 100 70-130 trachloroethylene 10.0 " 10.0 100 70-130 trachloroethylene 10.7 " 10.0 107 70-130 trachloroethylene 8.23 " 10.0 82.3 70-130 trachloroethylene 8.23 " 10.0 82.3 70-130 trachloroethylene 11.9 " 10.0 119 70-130	Ethyltoluene	7.92	"	10.0	79.2	70-130	
trachloroethylene 9.81 " 10.0 98.1 70-130 traphydrofuran 11.6 " 10.0 116 70-130 traphydrofuran 11.6 " 10.0 116 70-130 traphydrofuran 11.4 " 10.0 87.6 70-130 traphydrofuran 11.4 " 10.0 114 70-130 traphydrofuran 11.4 " 10.0 114 70-130 traphydrofuran 10.2 " 10.0 102 70-130 traphydrofuran 10.0 " 10.0 100 70-130 traphydrofuran 10.7 " 10.0 107 70-130 traphydrofuran (Freon 11) 10.7 " 10.0 107 70-130 traphydrofuran 10.0 10.0 10.0 10.0 traphydrofuran 10.0 traphydrofuran 10.0 10.0 10.0 traphydrofuran 10.0 traphydrofuran 10.0 10.0 10.0 traphydrofuran 10.0 traphydrofuran 10.0 10.0 traphydrofuran 10.0 traph	ropylene	12.4	"	10.0	124	70-130	
trahydrofuran 11.6 " 10.0 116 70-130 duene 8.76 " 10.0 87.6 70-130 duene 11.4 " 10.0 114 70-130 duene 11.4 " 10.0 114 70-130 duene 11.4 " 10.0 114 70-130 duene 11.4 " 10.0 102 70-130 duene 10.2 " 10.0 102 70-130 duene 10.0 " 10.0 100 70-130 duene 10.0 " 10.0 100 70-130 duene 10.0 " 10.0 107 70-130 duene 10.0 duene 10.0 " 10.0 107 70-130 duene 10.0 duene 11.9 " 10.0 10.0 119 70-130 duene 11.9 " 10.0 duene 11.9 "	tyrene	7.68	"	10.0	76.8	70-130	
bluene 8.76 " 10.0 87.6 70-130 ms-1,2-Dichloroethylene 11.4 " 10.0 114 70-130 ms-1,3-Dichloroptylene 10.2 " 10.0 102 70-130 ichloroethylene 10.0 " 10.0 100 70-130 ichlorofluoromethane (Freon 11) 10.7 " 10.0 107 70-130 myl acetate 8.23 " 10.0 82.3 70-130 myl bromide 11.9 " 10.0 119 70-130	etrachloroethylene	9.81	"	10.0	98.1	70-130	
ins-1,2-Dichloroethylene 11.4 " 10.0 114 70-130 ins-1,3-Dichloropropylene 10.2 " 10.0 102 70-130 ichloroethylene 10.0 " 10.0 100 70-130 ichlorofluoromethane (Freon 11) 10.7 " 10.0 107 70-130 ichlorofluoromethane (Freon 12) 10.7 " 10.0 107 70-130 inyl acetate 8.23 " 10.0 82.3 70-130 inyl bromide 11.9 " 10.0 119 70-130	etrahydrofuran	11.6	"	10.0	116	70-130	
ins-1,3-Dichloropropylene 10.2 " 10.0 102 70-130 ichloropthylene 10.0 " 10.0 100 70-130 ichlorofluoromethane (Freon 11) 10.7 " 10.0 107 70-130 ichlorofluoromethane (Freon 12) 10.7 " 10.0 107 70-130 ichlorofluoromethane (Freon 13) 10.0 82.3 70-130 inyl acetate 8.23 " 10.0 119 70-130	oluene	8.76	"	10.0	87.6	70-130	
ichloroethylene 10.0 " 10.0 100 70-130 ichlorofluoromethane (Freon 11) 10.7 " 10.0 107 70-130 nyl acetate 8.23 " 10.0 82.3 70-130 nyl bromide 11.9 " 10.0 119 70-130	ans-1,2-Dichloroethylene	11.4	"	10.0	114	70-130	
ichlorofluoromethane (Freon 11) 10.7 " 10.0 107 70-130 nyl acetate 8.23 " 10.0 82.3 70-130 nyl bromide 11.9 " 10.0 119 70-130	ans-1,3-Dichloropropylene	10.2	"	10.0	102	70-130	
nyl acetate 8.23 " 10.0 82.3 70-130 nyl bromide 11.9 " 10.0 119 70-130	richloroethylene	10.0	"	10.0	100	70-130	
nyl bromide 11.9 " 10.0 119 70-130	richlorofluoromethane (Freon 11)	10.7	"	10.0	107	70-130	
	inyl acetate	8.23	"	10.0	82.3	70-130	
nyl Chloride 9.13 " 10.0 91.3 70-130	inyl bromide	11.9	"	10.0	119	70-130	
	inyl Chloride	9.13	"	10.0	91.3	70-130	

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 27 of 33

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ouplicate (BC31384-DUP1)	*Source sample: 230	C0735-09 (D	uplicate)		Prepared & Analyzed: 03/20/2	023
,1,1,2-Tetrachloroethane	ND	0.66	ug/m³	ND		25
,1,1-Trichloroethane	ND	0.52	"	ND		25
1,2,2-Tetrachloroethane	ND	0.66	"	ND		25
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.74	"	ND		25
3)						
1,2-Trichloroethane	ND	0.52	"	ND		25
1-Dichloroethane	ND	0.39	"	ND		25
1-Dichloroethylene	ND	0.095	"	ND		25
2,4-Trichlorobenzene	ND	0.71	"	ND		25
2,4-Trimethylbenzene	ND	0.47	"	ND		25
2-Dibromoethane	ND	0.74	"	ND		25
2-Dichlorobenzene	ND	0.58	"	ND		25
2-Dichloroethane	ND	0.39	"	ND		25
2-Dichloropropane	ND	0.44	"	ND		25
2-Dichlorotetrafluoroethane	ND	0.67	"	ND		25
3,5-Trimethylbenzene	ND	0.47	"	ND		25
3-Butadiene	ND	0.64	"	ND		25
3-Dichlorobenzene	ND	0.58	"	ND		25
3-Dichloropropane	ND	0.44	"	ND		25
4-Dichlorobenzene	ND	0.58	"	ND		25
1-Dioxane	ND	0.69	"	ND		25
Butanone	1.2	0.28	"	1.3	11.2	25
Hexanone	ND	0.79	"	ND		25
Chloropropene	ND	1.5	"	ND		25
Methyl-2-pentanone	0.43	0.39	"	0.43	0.00	25
etone	9.9	0.46	"	10	1.37	25
rylonitrile	ND	0.21	"	ND		25
enzene	0.92	0.31	"	0.92	0.00	25
nzyl chloride	ND	0.50	"	ND		25
omodichloromethane	ND	0.64	"	ND		25
romoform	ND	0.99	"	ND		25
romomethane	ND	0.37	"	ND		25
rbon disulfide	ND	0.30	"	ND		25
rbon tetrachloride	0.48	0.15	"	0.48	0.00	25
llorobenzene	ND	0.44	"	ND		25
lloroethane	ND	0.25	"	ND		25
aloroform	ND	0.47	"	ND		25
loromethane	1.4	0.20	"	1.5	4.14	25
-1,2-Dichloroethylene	0.30	0.095	"	0.27	13.3	25
-1,3-Dichloropropylene	ND	0.44	"	ND		25
rclohexane	ND	0.33	"	ND		25
bromochloromethane	ND	0.82	"	ND		25
chlorodifluoromethane	2.6	0.47	"	2.7	3.64	25
hyl acetate	ND	0.69	"	ND		25
hyl Benzene	0.71	0.42	"	0.75	5.71	25
exachlorobutadiene	ND	1.0	"	ND		25
ppropanol	25	0.47	"	25	1.31	25
ethyl Methacrylate	ND	0.39	"	ND		25
ethyl tert-butyl ether (MTBE)	ND	0.35	"	ND		25
ethylene chloride	1.2	0.67	"	1.2	0.00	25
Heptane	ND	0.39	"	ND		25

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 28 of 33

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BC31384 - EPA TO15 PREP

Duplicate (BC31384-DUP1)	*Source sample: 23C	0735-09 (Dı	uplicate)		Prepared & Analyzed: 03/20/2	2023
n-Hexane	0.85	0.34	ug/m³	0.85	0.00	25
o-Xylene	0.54	0.42	"	0.58	7.41	25
p- & m- Xylenes	1.3	0.83	"	1.4	3.08	25
p-Ethyltoluene	ND	0.47	"	ND		25
Propylene	ND	0.17	"	ND		25
Styrene	ND	0.41	"	ND		25
Tetrachloroethylene	1.2	0.65	"	1.2	0.00	25
Tetrahydrofuran	0.74	0.57	"	0.76	3.77	25
Toluene	2.5	0.36	"	2.6	4.26	25
trans-1,2-Dichloroethylene	ND	0.38	"	ND		25
trans-1,3-Dichloropropylene	ND	0.44	"	ND		25
Trichloroethylene	ND	0.13	"	ND		25
Trichlorofluoromethane (Freon 11)	1.3	0.54	"	1.3	0.00	25
Vinyl acetate	ND	0.34	"	ND		25
Vinyl bromide	ND	0.42	"	ND		25
Vinyl Chloride	ND	0.12	"	ND		25

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 29 of 33

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-LCS-L	The result reported for this compound may be biased low due to its behavior in the analysis batch LCS where it recovered less 70%
	- 641

of the expected value.

TO-CCV The value reported is ESTIMATED for this compound due to its behavior during continuing calibration verification (>30%

Difference from initial calibration).

CAL-E The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)

B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab

contaminants.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon

NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect.

This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200

series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the

LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile

target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to

either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

STRATFORD, CT 06615

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 31 of 33

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 ClientServices@ Page 32 of 33

www.YORKLAB.com (203) 325-1371

YORK Reg. Comp. Compared to the following Regulation(s): (please fill in) 33CO 874 **Turn-Around Time** Sampling Media 6 Liter Canister 70 Standard (5-7 Day) RUSH - Three Day RUSH - Next Day RUSH - Four Day RUSH - Two Day Tedlar Bag Page Analysis Requested Agdd 100 O TO L Sue He Reporting Units: ug/m³ ► NJDEP SRP HazSite Standard Excel EDD YOUR Project Number EQuIS (Standard) サクル NYSDEC EQUIS Field Chain-of-Custody Record - AIR 5 TO BB 2200 59 **NYSDEC V1 Limits Detection Limits Required** Report / EDD Type (circle selections) samples Received by / Company Gueens NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document This document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions. 2 Flow Cont. ID NJDEP Reduced Deliv YOUR PO#: 204 CT RCP DQA/DUE Routine Survey NJDKOP 1 ug/m² १ व्याप Please enter the following REQUIRED Field Data Canister ID 299 NY ASP A Package NY ASP B Packag Invoice To: GA Report Other: 21 Samples From Canister Vacuum Before Sampling (in Hg) Pennsylvania Connecticut 20 New Jersey New York Other ontact. Samples Received by / Compan AS - Soil Vapor/Sub-Slab Air Matrix Codes AI - Indoor Ambient Air AO - Outdoor Amb. Air Air Matrix An-Report To: 132-02 89th Ave Queens, NY 11418 Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved. DN-22 w Church 71. 9:0×A Date/Time Sampled York Analytical Laboratories, Inc. clientservices@yorklab.com / Individual samples Collected by: (print your name above and sign below www.yorklab.com SIE Contact: 120 Research Drive Stratford, CT 06615 Sample Identification Certified Canisters: Batch laway 1222 YOUR Information Comments: Page 33 of 33

APPENDIX 4 DUSR

Date: April 14th, 2023

Mr. Paul I. Matli, Ph.D., P.G. Project Manager Hydro Tech Environmental Engineering And Geology, DPC 231 West 29th Street, Suite 1104 New York, NY 10001

Re: Data Usability Summary Reports and Quality Assurance Validation Analyses for York Analytical Laboratories Project (**SDGs**) **No:** 23C0874

Client Project ID: 220059 107-02 Queens Boulevard, Queens, NY

Dear Mr. Matli,

I thank you for your confidence in our data validation services and look forward to the growth of our business relationship. I Have enclosed with this letter the data usability summary reports (DUSRs) and data validation summaries for the above referenced laboratory sample delivery group (SDG).

The overall evaluation of the SDG # 23C0874 displays good degree of confidence and acceptance in accordance with the guidelines in the USEPA National Functional Guidelines and the method and QC Criteria specified in NYSDEC ASP Documents except for some qualified results that are identified in the validation summaries based solely on the stated above validation guidance criteria. However, the qualified data (Bias low, Bias High, Unreliable or unusable) may be subject to the user's reconsideration or determination in the circumstances of obtaining additional information that is not contained in the data validation criteria.

If you have any questions or comments regarding any of the attached data usability summary reports and or the data validation summaries, please do not hesitate to contact me at (413) 875-5049 or via email at hanibaltayeh@gmail.com.

Sincerely.

Hanibal C. Tayeh, Ph.D.

Data Validation and Forensic Geochemistry Expert

Files: DUSR-HTE-220059-107-02 Queens Boulevard-Queens-NY-23C0874

DATA USABILITY SUMMARY REPORT (DUSR)

Site Location: 220059-107-02 Queens Boulevard-Queens-NY

York Analytical Laboratories, Inc.

Laboratory (SDG) # 23C0874

Project No. 220059

Prepared for:

Mr. Paul I. Matli, Ph.D., P.G. Project Manager
Hydro Tech Environmental Engineering
And Geology, DPC

231 West 29th Street, Suite 1104
New York, NY 10001

Prepared by:

Hanibal Tayeh, Ph.D.

Data Validation and Forensic Geochemistry Expert

On

April 14th, 2023

CONTENTS

- GLOSSARY OF ACRONYMS & TERMS
- GLOSSARY OF DATA VALIDATION QUALIFIERS
- 3. NYS DEC DATA UASABILITY SUMMARY PARAMETERS
- 4. DATA VALIDATION PARAMETERS
- DATA VALIDATION REPORT NARRATIVE

SUPPORT DOCUMENTATION (Refer to the electronic Data

Package PDF file)

1. GLOSSARY OF ACRONYMS & TERMS

The following acronyms and terms may have been used in the descriptive process of the Organic and Inorganic Data Validation.

Acronyms:

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane

BFB Bromofluorobenzene (volatile instrument performance check)

BNA Base/Neutral/Acid

CARD CLP Analytical Results Database
CCB Continuing Calibration Blank
CCCs Calibration Check Compounds
CCS Contract Compliance Screening
CCV Continuing Calibration Verification

CF Calibration Factor

CLP Contract Laboratory Program

CN Cyanide

COC Chain of Custody

CRDL Contract Required Detection Limit
CRQL Contract Required Quantitation Limit

CSF Complete SDG File

CV Cold Vapor

%D Percent Difference

DAS Delivery of Analytical Services DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl (Pesticide/PCB/ surrogate compound)

DFTPP Decafluorotriphenylphosphine (semivolatile instrument performance check)

DSF Data Summary Form

DVA Data Validation Assessment ECD Electron-Capture Detector EICP Extended Ion Current Profile

EPA United States Environmental Protection Agency

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas Chromatography

GC/EC Gas Chromatography/Electron Capture GC/MS Gas Chromatography/Mass Spectra

GPC Gel Permeation Chromatography (Clean Up)

ICAL Initial Calibration

ICB Initial Calibration Blank
ICP Inductively Coupled Plasma
ICS Interference Check Sample
ICV Initial Calibration Verification
IDL Instrument Detection Limit

IRDA Inorganic Regional Data Assessment

IS Internal Standard

LCS Laboratory Control Sample

LCL Lower Control Limit

MCL Maximum Contamination Level

MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix Spike Duplicate

m/z The ratio of mass (m) to charge (z) of ions measured by GC/MS

OADS Organic Analysis Data Sheet (Form 1)
ORDA Organic Regional Data Assessment

PB Preparation Blank

PCB Poly Chlorinated Biphenyl

PEM Performance Evaluation Mixture

PFAS Polyfluorinated Alkyl Substances (PFAS analytes are listed below)

PRP Potential Responsible Party
QA/QC Quality Assurance/Quality Control
QAPiP Quality Assurance Project Plan

QC Quality Control

%R Percent Recovery of spiked amount

RAS Routine Analytical Services

RF Response Factor

RIC Reconstructed Ion Chromatogram

RPD Relative Percent Difference RRF Relative Response Factor RSD Relative Standard Deviation

RT Retention Time

RTW Retention Time Window SDG Sample Delivery Group

SMC System Monitoring Compound SMO Sample Management Office SOP Standard Operation Procedures

SOW Statement of Work

SPCCs System Performance Check Compounds

SSL Samples Shipping Log

SVOA Semivolatile Organic Analyte

TAL Target Analyte List
TCL Target Compound List

TCX Tetrachloro-m-Xylene (Pesticide/PCB surrogate compound)

TIC Tentatively Identified Compound TPH Total Petroleum Hydrocarbons

TR Traffic Report
UCL Upper Control Limit
VOA Volatile Organic Analyte

VTSR Validated Time of Sample Receipt

Polyfluorinated Alkyl Substances (PFAS) Acronyms

PFBA	Perfluorobutanoic acid
PFPeA	Perfluoropentanoic acid
PFHxA	Perfluorohexanoic acid
PFHpA	Perfluoroheptanoic acid
PFOA	Perfluorooctanoic acid
PFNA	Perfluorononanoic acid
PFDA	Perfluorodecanoic acid
PFUnA	Perfluoroundecanoic acid
PFDoA	Perfluorododecanoic acid
PFTriA or PFTrDA	Perfluorotridecanoic acid
PFTeA or PFTA	Perfluorotetradecanoic acid
PFBS	Perfluorobutanesulfonic acid
PFPeS	Perfluoropentanesulfonic acid
PFHxS	Perfluorohexanesulfonic acid
PFHpS	Perfluoroheptanesulfonic acid
PFOS	Perfluorooctanesulfonic acid
PFNS	Perfluorononanesulfonic acid
PFDS	Perfluorodecanesulfonic acid
FOSA	Perfluorooctane Sulfonamide
NMeFOSAA	N-methyl perfluorooctane sulfon

NMeFOSAA
N-methyl perfluorooctane sulfonamidoacetic acid
NEtFOSAA
N-ethyl perfluorooctane sulfonamidoacetic acid
4:2 FTS or 4:2
1H, 1H, 2H, 2H-perfluorohexanesulfonic acid
1H, 1H, 2H, 2H-perfluorooctanesulfonic acid

or 6:2 Fluorotelomersulfonate

8:2 FTS or 8:2 1H. 1H. 2H. 2H-perfluorodecanesulfonic acid

or 8:2 Fluorotelomersulfonate

Terms:

Associated Samples: Any sample related to a particular QC analysis.

Case: A finite, usually predetermined number of samples collected over a given time period for a particular site. A Case consists of one or more Sample Delivery Group(s).

Continuing Calibration Blank (CCB): A deionized water sample run every ten (10) samples designed to detect any carryover contamination.

Continuing Calibration Verification (CCV): A deionized water sample run every ten (10) samples designed to detect any carryover contamination.

Contract Compliance Screening (CCS): A process in which the SMO inspects the data for contractual compliance and provides EMSL-LV laboratories and the Regions with their findings.

Contractual Holding Time: The time from VTSR (validated time of sample receipt) to laboratory extraction and /or analysis.

Data Validation Qualifier (DVQ): This refers to the column on the data summary form in which EPA Region III and other qualifiers have been placed by the data validator.

Data Validation Result (DVR): This refers to the column on the data summary form used to report results that have been modified by the data validator. A result in the DVR column that is qualified "U" indicates a modification of the reporting limit.

Field Blank Field blanks are intended to identify contaminants that may have been introduced in the field. Examples are rinsate blank (RB), field blanks (FB) and trip blank (TB).

Field Duplicate: A duplicate sample generated in the field; not in the laboratory.

Initial Calibration (ICAL): The establishment of a calibration curve with the appropriate number of standards and concentration ranges. The calibration curve plots absorbances and/or emissions versus concentration of the standards.

Initial Calibration Blank (ICB): First blank run after the calibration curve.

Initial Calibration Verification (ICV): First standard run after the calibration curve.

Matrix Spike/Matrix Spike Duplicate (MS/MSD): Introduction of a known concentration of a compound into a sample to provide information about the effect of sample matrix on the extraction and/or measurement methodology.

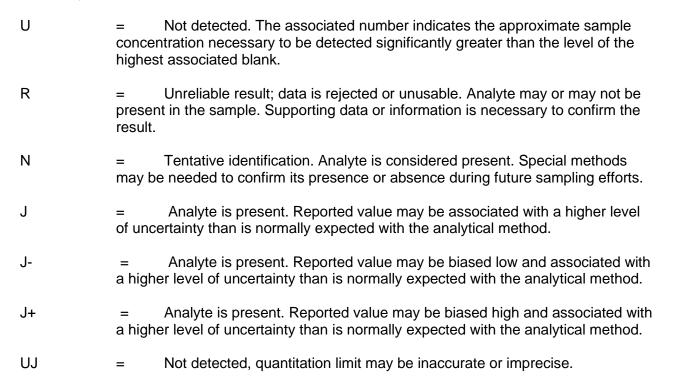
Post Digestion Spike: The addition of known amount of standard after digestion. (Also identified as analytical spike, or spike, for furnace analyses).

Preparation Blank (PB): Blank taken through the digestion process to detect internal laboratory contamination.

Performance Evaluation Mixture: A standard used to verify that the ICAL sequence is stable throughout the GC or GC/MS analyses.

Sample Delivery Group (SDG): Defined by one of the following, whichever occurs first:

- case of sample
- each twenty field samples in a case or
- each 14-day calendar period during which field samples in a case are received, beginning with the receipt of the first sample in the SDG.


Serial Dilution: A sample run at a specific dilution to determine whether any significant chemical or physical interferences exist due to sample matrix effect, for ICP only.

Technical Holding Time: The time from sample collection to laboratory extraction and /or analysis.

2. GLOSSARY OF DATA VALIDATION QUALIFIERS

(Used in the QA/QC Reviews for USEPA Region II)

The qualifiers listed below are used for data usability summary report (DUSR) purposes. However, it is important to note that the data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

3. NYS DEC DATA USABILITY SUMMARY PARAMETERS

The parameters listed below are used for data usability summary report (DUSR) evaluation.

Samples Handling and Management
Data Validation References
Laboratory Data Packages
Laboratory Analytical Methods
DATA Usability Assessment Summary

4. DATA VALIDATION SUMMARY PARAMETERS

The parameters listed below are used for data validation evaluation.

	Organic Data	Inorganic Data
Data Completeness	Χ	X
Holding Time	Χ	X
Chromatographic Behavior	Χ	
Compound Identification	X	X
GC/MS Tuning and Mass Calibration	X	
Initial Calibration Verification	X	X
Continuing Calibration	X	X
Method Blank Verification	X	X
Internal Standard Area Summary	X	
Surrogate Recoveries	Χ	
Matrix Spike/Matrix Spike Duplicate	Χ	X
Laboratory Control Sample (LCS)	X	X
Laboratory and Field Duplicates	X	X
ICP Interference Check Sample results		X
ICP Serial Dilution results		X
ICP CRDL Standard		X
Post Digestion Spike Analysis		Χ
Analyte Quantitation		Χ

5. DATA VALIDATION REPORT NARRATIVE

NYS DEC Data Usability Summary Report	SDGs # 23C0874
---------------------------------------	----------------

NYS DEC Data Usability Summary Report SDGs # 23C0874

Site Location	220059 107-02 Queens Blvd., Queens, NY
Data Validation for	Volatile Organic Compounds in Air by GC/MS
Analytical Methods	EPA TO15 Method
Analytical Laboratory	York Analytical Laboratories, Inc
Number of Samples &	5 Indoor Ambient Air and 1 Outdoor Ambient Air
Matrix	Samples
Sampled On	03/14/2023
Laboratory Report Number	23C0874 (01 Through 06)
Data Validation Reviewer	Hanibal Tayeh, Ph.D.
Data Validation Completed	April 14 th , 2023

• SAMPLE HANDLING AND MANAGEMENT: As per the chain of custody (COC) record included in this specific SDG, samples associated with this data set were collected on 03/14/2023 using the proper containers (Summa Canisters) in accordance with the Sample Integrity and Preservation section of USEPA TO15 method and received by the laboratory on 03/15/2023. The attached chain of custody (COC) displays a satisfactory record in terms of client and project information, site location, field sampling details (sampler, collection date and time), sample identification and matrix, preservation, required analysis, deliverable type and date, data management process and comparison.

Laboratory	Client
Sample Identification	Sample Identification
23C0874-01	Al-1 20230314
23C0874-02	AI-2 20230314
23C0874-03	Al-3 20230314
23C0874-04	AI-4 20230314
23C0874-05	AI-5 20230314
23C0874-06	AO-1 20230314

- DATA VALIDATION REFERNCES: The volatile organic compounds in air data validation is conducted in accordance with the guidelines in the USEPA Hazardous Waste Support Section-SOP NO. HW-31, Revision 6 Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method T0-15 and the method and QC Criteria specified in NYSDEC ASP Documents.
- LABORATORY DATA PACKAGES: The laboratory data packages for the stated SDG above is considered satisfactory in terms of pagination, quality control narration and completeness. Each package contained the laboratory quality assurance summary report, quality control summary data, sample nonconformance summaries, the required

data package forms and tables in accordance with NYSDEC ASP documents, instrument tuning information, sample preparation and analysis batch and all associated standard, quality control and sample raw data.

- LABORATORY ANALYTICAL METHODS: A peer review of the quality assurance criteria listed in the laboratory data package shows with good degree of certainty the laboratory's compliance with the procedures set forth in the required USEPA analytical methods as indicated in the chain of custody. No deviations from the said methods have been noticed.
- DATA USABILITY ASSESSMENT SUMMARY: The overall data package assessment provided by the laboratory for the stated above sample delivery group (SDG) suggests acceptable laboratory performances of the required methods. All samples were successfully analyzed for all target compounds in accordance with the Quality Assurance/Quality Control (QA/QC) requirements for the USEPA analytical methods used for the analyses. In view of the data usability and completeness, the minor issues listed below regarding biases identified during data validation should be taken into high degree of consideration. They are as follows:

√ Volatile Organic Compounds in Air by GC/MS-EPA TO15 Method

	Data Assessment Judgement (Refer to Data Validation Assessment of a specific method for technical reasoning and argument behind such judgement)	DVA Reference
1	-Detected results of Hexachlorobutadiene , in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Estimated (J).	ICV
2	-Detected results of Bromomethane, Hexachlorobutadiene , in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Estimated (J).	CCV
3	-Detected results of Isopropanol , that are less than 2X the highest blank concentration (1.32 ug/m³) in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Not Detected (U).	Blank
4	-Detected results of Bromomethane, Hexachlorobutadiene , in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Estimated Bias Low (J-).	LCS

-Non-Detected results of **Bromomethane, Hexachlorobutadiene**, in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Estimated (UJ).

Data Validation Assessment SDGs # 23C0874

Data Validation for	Volatile Organic Compounds in Air by GC/MS
Analytical Method	EPA TO15 Method
Number of Samples &	5 Indoor Ambient Air and 1 Outdoor Ambient Air
Matrix	Samples
Sampled On	03/14/2023
Laboratory Report Number	23C0874 (01 Through 06)
Data Validation Reviewer	Hanibal Tayeh, Ph.D.
Data Validation Completed	April 14 th , 2023

- **Data Completeness:** The data deliverable package provided by the laboratory in accordance with the ASP B deliverable standards is considered complete.
- Holding Time: According to the laboratory quality assurance report and its associated data package, the samples set listed in this SDG number were analyzed within the method holding times as recommended by USEPA and SW846 Methods.
- Chromatographic Behavior: This laboratory data package including but not limited to the standards, quality control samples and field sample analyses raw data (data reduction and chromatograms) display with good degree of certainty the laboratory's full compliance with the chromatographic criteria set forth in the USEPA and SW846 methods.
- Compound Identification: Target compounds, internal standards and surrogates were thoroughly checked and found to be within the gas chromatograph/mass spectrometry (GCMS) method quantitation limits and in accordance with the USEPA and SW846 methods for mass spectra identification and quantification using both the primary and secondary ions as defined in the method.
- GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits as outlined in the EPA and SW846 methods.
- Initial Calibration Verification (ICV): As indicated in the method calibration criteria, the initial calibration standards of this data set have been evaluated for compliance with method criteria for the Average Response Factor (RRFs) and Percent Relative Standard Deviation (%RSD): (Average RRF > 0.010 for poor response volatile target compounds and > 0.050 for all other volatile target compounds. %RSD must be < 30% as the allowable maximum, and the coefficient of determination (COD) must be greater than 0.995). This evaluation displays the following:</p>
 - -The initial calibration (SB30018 calibrated on 02/09/2023) met the required criteria for the Average Response Factor (RRFs) and the coefficient of determination (CODs) of various target compounds that were greater than 0.995. (RRF > 0.010 for poor response

volatile target compounds and RRF > 0.050 for all other volatile target compounds; %RSD < 30% as the allowable maximum), EXCEPT:

*COD Value for Hexachlorobutadiene, was below the allowable minimum.

-A second source calibration standard (S3B1020-SCV1) was analyzed on 02/10/2023 and confirmed the initial calibration full compliance with the method criteria. %Ds were below the allowable maximum (%Ds <30%), EXCEPT:

*%Ds for Hexachlorobutadiene, was above the allowable maximum.

Quality Judgement:

-Detected results of Hexachlorobutadiene, in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Estimated (J).

- Continuing Calibration Verification (CCV): As indicated in the method calibration criteria, the continuing calibration standard of this data set has been evaluated for compliance with method criteria for Relative Response Factor (RRFs) and Percent Difference (%Ds) and confirmed the following:
 - -The continuing calibration (S3C2151-CCV1 analyzed on 03/20/2023) met the required criteria for the Response Factor (RRFs) and %D (RRF > 0.010 for poor response volatile target compounds and RRF > 0.050 for all other volatile target compounds; %D < 30% as the allowable maximum) EXCEPT:

%Ds for Bromomethane, Hexachlorobutadiene, were above the allowable maximum.

No action is required when less than 20% of the continuing calibration target compounds are outside the method control limits provide no Average Relative Response Factor (RRFs) is less than 0.01 for all target compounds.

Quality Judgement:

-Detected results of Bromomethane, Hexachlorobutadiene, in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Estimated (J).

- Method Blank Verification (Blank): Method blank analyses included in this data set of laboratory data package concluded no detection for the TO15 target compounds in the following Blank samples:
 - In BC31384-BLK1, analyzed on 03/20/2023, All Target TO15 compounds were below the method reporting limits (RL), EXCEPT:
 *Isopropanol, was detected @ 0.66 (ug/m³)

Quality Judgement:

-Detected results of **Isopropanol**, that are less than 2X the highest blank concentration (1.32 ug/m³) in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314,

23C0874-03/AI-3 20230314, 23C0874-04/AI-4 20230314, 23C0874-05/AI-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Not Detected (U).

- Internal Standard Area Summary (IS): As indicated in the method internal standard criteria, the laboratory data package for the stated SDG confirmed the following:
 - -The internal standard retention times were within method control limits.
 - -The internal standard areas were within method control limits.
 - -Internal Standards for all samples and QCs were within method control limits.

Quality Judgement: No actions are required.

 Surrogate Recoveries (SR): An evaluation of the surrogate standard behavior in the SDG data set concluded that the surrogate recoveries were within method control limits (70% < SURR <130%).

Surrogate summary was not included in the data package. Below is the Surrogate table evaluation that is generated from the samples raw data:

Sample Identification	Lab Sample Identification	Surrogate Standard ID	Area Response	% Surrogate	Control Limits (%)
Al-1 20230314	23C0874-01	p-Bromofluorobenzene	252497	116	70-130%
Al-2 20230314	23C0874-02	p-Bromofluorobenzene	251628	116	70-130%
Al-3 20230314	23C0874-03	p-Bromofluorobenzene	276593	115	70-130%
AI-4 20230314	23C0874-04	p-Bromofluorobenzene	238011	110	70-130%
AI-5 20230314	23C0874-05	p-Bromofluorobenzene	259902	121	70-130%
AO-1 20230314	23C0874-06	p-Bromofluorobenzene	229771	112	70-130%

Quality Judgement: No actions are required.

- Laboratory Control Sample (LCS): As required by the method quality assurance/quality control criteria, the laboratory control sample in this data set has been evaluated for method compliance purposes. The following summarizes this evaluation:
 - -The percent Recoveries (%Rs) for target TO15 analysis in (BC31384-BS1) were within the method control limits (70-130%), EXCEPT:

Quality Judgement:

-Detected results of Bromomethane, Hexachlorobutadiene, in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Estimated Bias Low (J-).

-Non-Detected results of Bromomethane, Hexachlorobutadiene, in samples 23C0874-01/Al-1 20230314, 23C0874-02/Al-2 20230314, 23C0874-03/Al-3 20230314, 23C0874-04/Al-4 20230314, 23C0874-05/Al-5 20230314, 23C0874-06/AO-1 20230314, should be qualified Estimated (UJ).

^{*%}Rs for Bromomethane, Hexachlorobutadiene, were below control limits.

- Laboratory and Field Duplicates (DUP): As required by the method quality assurance/quality control criteria, the laboratory duplicate sample in this data set has been evaluated for method compliance purposes. The following summarizes this evaluation:
 - -No field duplicate sample was included in this data set.
 - -No Laboratory Duplicate sample was analyzed in this data set.

Quality Judgement: No actions are required.

- Canister Integrity: According to both the chain of custody record and the Work Order Narrative for this set of samples, the canisters were received in the laboratory and displayed a residual vacuum below zero as required by EPA TO15 method.
- Analyte Quantitation: Target compounds were quantitated using the proper method calculation criteria in accordance with the USEPA and SW846 methods procedures and guidelines.

ATTACHMENT

(All Validated Quality Control Forms, Tables, Chromatograms, Raw Data)

FORM VI

INITIAL CALIBRATION DATA (Continued) EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: Hydro Tech Environmental (Brooklyn) Project: 220059 107-02 Queens Blvd., Queens, NY

Calibration: SB30018 Instrument: 5975C

Calibration Date: <u>02/09/23 15:26</u>

Compound	Mean RF	RF RSD	Mean RT	RT RSD	Linear r	Quad COD	LIMIT	Q
1,1,1,2-Tetrachloroethane	0.5679118	32.62832	19.124	1.814462E-02		0.9998113	0.99	
1,1,1-Trichloroethane	1.88483	25.33712	12.729	3.358103E-02			30	
1,1,2,2-Tetrachloroethane	0.8254239	26.21371	20.93263	1.593841E-02			30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	1.931202	26.03835	8.545	5.002134E-02			30	
1,1,2-Trichloroethane	0.4023671	42.49058	16.97725	0.0093742		0.9983165	0.99	
1,1-Dichloroethane	1.463808	22.24976	10.744	1.613346E-02			30	
1,1-Dichloroethylene	1.182463	21.87709	8.7745	5.582412E-02			30	
1,2,4-Trichlorobenzene	0.450397	95.60095	27.1255	3.174914E-02		0.9971271	0.99	
1,2,4-Trimethylbenzene	1.222911	46.85064	22.6765	2.509121E-02		0.9992843	0.99	
1,2-Dibromoethane	0.5647201	45.42937	18.28175	2.189936E-02		0.9990897	0.99	
1,2-Dichlorobenzene	0.8808777	48.03752	24.38425	1.949391E-02		0.9986445	0.99	
1,2-Dichloroethane	1.091627	21.45167	13.25675	2.004608E-02			30	
1,2-Dichloropropane	0.3045277	36.67135	14.633	1.652544E-02		0.9973047	0.99	
1,2-Dichlorotetrafluoroethane	4.215403	15.10676	5.602	1.229547E-02			30	
1,3,5-Trimethylbenzene	1.211731	41.29969	21.84025	2.248195E-02		0.9995852	0.99	
1,3-Butadiene	0.6943268	17.39814	6.17225	1.497752E-02			30	
1,3-Dichlorobenzene	0.8736577	49.70458	23.50237	8.786833E-03		0.9987538	0.99	
1,3-Dichloropropane	0.4466001	37.00864	17.40075	9.728599E-03		0.9991713	0.99	
1,4-Dichlorobenzene	0.8472971	55.27094	23.6885	1.682563E-02		0.9981662	0.99	
1,4-Dioxane	0.1550428	40.21201	14.96438	6.852251E-02		0.9992273	0.99	
2-Butanone	1.605231	20.35645	11.34787	9.339091E-02			30	
2-Hexanone	0.5592923	52.37606	16.98738	0.0606424		0.9940145	0.99	
3-Chloropropene	0.8602626	26.03995	9.35525	1.620967E-02			30	
4-Methyl-2-pentanone	0.6123209	35.75343	15.52875	0.067238		0.998339	0.99	
Acetone	1.459811	17.72442	8.404	0.1306927			30	
Acrolein	0.2906823	21.88941	8.2955	0.1075137			30	
Acrylonitrile	0.5273167	25.08819	9.59175	0.103936			30	
Benzene	2.801228	33.2528	13.3865	5.252933E-03		0.9984487	0.99	
Benzyl chloride	0.2079255	71.61796	23.83414	4.619463E-03		0.9962667	0.99	
Bromodichloromethane	0.6193978	34.2256	14.993	1.496715E-02		0.9993134	0.99	
Bromoform	0.7296276	49.49904	20.68337	2.124702E-02		0.9992479	0.99	
Bromomethane	1.670006	51.91917	6.952286	9.668786E-02		0.9946113	0.99	

FORM VI

INITIAL CALIBRATION DATA (Continued) EPA TO-15

Laboratory: <u>York Analytical Laboratories, Inc. - Stratford</u> SDG: <u>23C0874</u>

Client: <u>Hydro Tech Environmental (Brooklyn)</u> Project: <u>220059 107-02 Queens Blvd., Queens, NY</u>

Calibration: SB30018 Instrument: 5975C

Calibration Date: <u>02/09/23 15:26</u>

Compound	Mean RF	RF RSD	Mean RT	RT RSD	Linear r	Quad COD	LIMIT	Q
Carbon disulfide	2.199716	23.56304	9.64375	2.541917E-02			30	
Carbon tetrachloride	1.929495	34.86459	13.188	1.413336E-02		0.9997715	0.99	
Chlorobenzene	0.955844	22.85887	19.0795	1.064394E-02			30	
Chloroethane	0.4059188	14.44435	7.122875	7.975285E-02			30	
Chloroform	1.85026	23.6293	11.997	2.229023E-02			30	
Chloromethane	0.8582864	14.43323	5.82725	7.599228E-02			30	
cis-1,2-Dichloroethylene	1.005026	25.6162	11.727	4.098107E-02			30	
cis-1,3-Dichloropropylene	0.3911601	42.10937	15.87475	8.551144E-03		0.9993211	0.99	
Cyclohexane	1.117996	35.76124	12.89625	1.887354E-02		0.9995798	0.99	
Dibromochloromethane	0.7225939	48.80897	17.90938	1.869637E-02		0.9992972	0.99	
Dichlorodifluoromethane	2.498374	20.1003	5.346375	4.070055E-02			30	
Ethanol	0.5401632	70.5422	7.2595	0.1154342		0.9989992	0.99	
Ethyl acetate	1.836021	25.62991	11.64425	7.243901E-02			30	
Ethyl Benzene	1.385254	26.4869	19.18	1.330794E-02			30	
Hexachlorobutadiene	0.8807332	54.22884	27.393	1.988581E-02		0.9864156	0.99	*
Isopropanol	1.895388	31.21437	8.18375	0.1830071		0.9998121	0.99	
Isopropylbenzene	1.518796	39.57423	20.75825	1.282842E-02		0.9991552	0.99	
Methyl Methacrylate	0.2716714	51.9275	14.6435	3.163053E-02		0.9970402	0.99	
Methyl tert-butyl ether (MTBE)	1.929202	29.02179	9.908	0.1334182			30	
Methylene chloride	1.245314	32.89409	9.504	2.627446E-02		0.9997639	0.99	
Naphthalene	0.9520446	87.23956	27.52143	0.0412689		0.9919905	0.99	
n-Butylbenzene	1.366133	52.29818	24.12175	1.552221E-02		0.9955364	0.99	
n-Heptane	1.528945	41.81157	13.3975	1.635777E-02		0.996748	0.99	
n-Hexane	1.114725	32.98459	10.378	9.747037E-03		0.9996587	0.99	
n-Propylbenzene	1.796593	34.30909	21.52725	1.740294E-02		0.9985213	0.99	
o-Xylene	1.097207	39.93537	20.10913	1.189213E-02		0.9982891	0.99	
p- & m- Xylenes	1.132692	34.85683	19.3275	1.472818E-02		0.9972675	0.99	
p-Ethyltoluene	1.454004	43.85898	21.75112	1.674701E-02		0.9985519	0.99	
p-Isopropyltoluene	1.598368	50.98184	23.33075	1.585434E-02		0.9975952	0.99	
Propylene	0.4411641	19.61581	5.27675	6.168698E-02			30	
sec-Butylbenzene	1.94325	42.65853	23.066	2.044526E-02		0.9984025	0.99	
Styrene	0.8405435	54.70295	20.1245	8.966005E-03		0.9974073	0.99	

FORM VI

INITIAL CALIBRATION DATA (Continued) EPA TO-15

Laboratory: <u>York Analytical Laboratories, Inc. - Stratford</u> SDG: <u>23C0874</u>

Client: <u>Hydro Tech Environmental (Brooklyn)</u> Project: <u>220059 107-02 Queens Blvd., Queens, NY</u>

Calibration: SB30018 Instrument: 5975C

Calibration Date: <u>02/09/23 15:26</u>

Compound	Mean RF	RF RSD	Mean RT	RT RSD	Linear r	Quad COD	LIMIT	Q
tert-Butylbenzene	1.413862	44.91042	22.60175	2.144217E-02		0.9995083	0.99	
Tetrachloroethylene	0.6279522	45.94898	17.71687	0.0165038		0.9995003	0.99	
Tetrahydrofuran	0.867238	24.99612	12.3305	0.099741			30	
Toluene	1.015961	31.3337	16.53125	1.786222E-02		0.9990214	0.99	
trans-1,2-Dichloroethylene	1.08078	26.5724	10.1005	0.0256283			30	
trans-1,3-Dichloropropylene	0.353279	44.29718	16.68163	1.960388E-02		0.9992871	0.99	
Trichloroethylene	0.3610332	33.26443	14.41	1.822042E-02		0.9995612	0.99	
Trichlorofluoromethane (Freon 11)	2.433652	19.82609	7.69275	2.776429E-02			30	
Vinyl acetate	1.996925	34.30398	10.69287	5.366061E-02		0.9992837	0.99	
Vinyl bromide	0.7965432	23.8465	7.576375	4.335981E-02			30	
Vinyl Chloride	1.176271	29.6445	6.095	7.003539E-02			30	

SECOND-SOURCE CALIBRATION VERIFICATION EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: Hydro Tech Environmental (Brooklyn) Project: 220059 107-02 Queens Blvd., Queens, NY

Calibration: SB30018 Laboratory ID: S3B1020-SCV1

Sequence: S3B1020 Standard ID: S23B027

Sequence: 53B1020		1		
ANALYTE	EXPECTED (ppbv)	FOUND (ppbv)	% DIFF	QC LIMIT
1,1,1,2-Tetrachloroethane	10.0	9.26	-7.4	30.00
1,1,1-Trichloroethane	10.0	10.4	4.5	30.00
1,1,2,2-Tetrachloroethane	10.0	11.1	11.3	30.00
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.0	10.1	0.6	30.00
1,1,2-Trichloroethane	10.0	7.97	-20.3	30.00
1,1-Dichloroethane	10.0	10.2	1.7	30.00
1,1-Dichloroethylene	10.0	11.0	9.9	30.00
1,2,4-Trichlorobenzene	10.0	8.15	-18.5	30.00
1,2,4-Trimethylbenzene	10.0	8.41	-15.9	30.00
1,2-Dibromoethane	10.0	8.46	-15.4	30.00
1,2-Dichlorobenzene	10.0	7.97	-20.3	30.00
1,2-Dichloroethane	10.0	10.6	5.7	30.00
1,2-Dichloropropane	10.0	7.81	-21.9	30.00
1,2-Dichlorotetrafluoroethane	10.0	8.30	-17.0	30.00
1,3,5-Trimethylbenzene	10.0	8.71	-12.9	30.00
1,3-Butadiene	10.0	8.66	-13.4	30.00
1,3-Dichlorobenzene	10.0	8.30	-17.0	30.00
1,3-Dichloropropane	10.0	8.51	-14.9	30.00
1,4-Dichlorobenzene	10.0	8.12	-18.8	30.00
1,4-Dioxane	10.0	9.89	-1.1	30.00
2-Butanone	10.0	11.0	10.4	30.00
2-Hexanone	10.0	7.83	-21.7	30.00
3-Chloropropene	10.0	11.6	16.3	30.00
4-Methyl-2-pentanone	10.0	8.32	-16.8	30.00
Acetone	10.0	8.75	-12.5	30.00
Acrylonitrile	10.0	11.9	18.6	30.00
Benzene	10.0	8.02	-19.8	30.00

SECOND-SOURCE CALIBRATION VERIFICATION EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: Hydro Tech Environmental (Brooklyn) Project: 220059 107-02 Queens Blvd., Queens, NY

Calibration: SB30018 Laboratory ID: S3B1020-SCV1

Sequence: S3B1020 Standard ID: S23B027

Sequence: S3B1020		Standard ID: 52	,3D027	
ANALYTE	EXPECTED (ppbv)	FOUND (ppbv)	% DIFF	QC LIMIT
Benzyl chloride	10.0	8.14	-18.6	30.00
Bromodichloromethane	10.0	8.52	-14.8	30.00
Bromoform	10.0	8.36	-16.4	30.00
Bromomethane	10.0	8.25	-17.5	30.00
Carbon disulfide	10.0	10.4	3.5	30.00
Carbon tetrachloride	10.0	9.57	-4.3	30.00
Chlorobenzene	10.0	10.5	5.2	30.00
Chloroethane	10.0	10.8	8.4	30.00
Chloroform	10.0	10.4	4.2	30.00
Chloromethane	10.0	8.00	-20.0	30.00
cis-1,2-Dichloroethylene	10.0	11.4	13.5	30.00
cis-1,3-Dichloropropylene	10.0	9.18	-8.2	30.00
Cyclohexane	10.0	9.50	-5.0	30.00
Dibromochloromethane	10.0	8.29	-17.1	30.00
Dichlorodifluoromethane	10.0	10.5	5.0	30.00
Ethyl acetate	10.0	11.1	11.4	30.00
Ethyl Benzene	10.0	11.3	13.1	30.00
Hexachlorobutadiene	10.0	5.25	-47.5 *	30.00
Isopropanol	10.0	10.4	4.0	30.00
Methyl Methacrylate	10.0	7.68	-23.2	30.00
Methyl tert-butyl ether (MTBE)	10.0	11.3	13.4	30.00
Methylene chloride	10.0	9.51	-4.9	30.00
n-Heptane	10.0	7.73	-22.7	30.00
n-Hexane	10.0	9.41	-5.9	30.00
o-Xylene	10.0	8.24	-17.6	30.00
p- & m- Xylenes	20.0	15.7	-21.4	30.00
p-Ethyltoluene	10.0	8.29	-17.1	30.00

SECOND-SOURCE CALIBRATION VERIFICATION EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: Hydro Tech Environmental (Brooklyn)

Project: 220059 107-02 Queens Blvd., Queens, NY

Calibration: SB30018 Laboratory ID: S3B1020-SCV1

Sequence: S3B1020 Standard ID: S23B027

ANALYTE	EXPECTED (ppbv)	FOUND (ppbv)	% DIFF	QC LIMIT
Propylene	10.0	11.0	10.5	30.00
Styrene	10.0	7.92	-20.8	30.00
Tetrachloroethylene	10.0	8.58	-14.2	30.00
Tetrahydrofuran	10.0	11.3	13.2	30.00
Toluene	10.0	8.35	-16.5	30.00
trans-1,2-Dichloroethylene	10.0	10.9	8.6	30.00
trans-1,3-Dichloropropylene	10.0	9.10	-9.0	30.00
Trichloroethylene	10.0	8.79	-12.1	30.00
Trichlorofluoromethane (Freon 11)	10.0	9.95	-0.5	30.00
Vinyl acetate	10.0	9.03	-9.7	30.00
Vinyl bromide	10.0	11.0	10.0	30.00
Vinyl Chloride	10.0	7.20	-28.0	30.00

^{*} Values outside of QC limits

FORM VII

CONTINUING CALIBRATION CHECK EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: <u>Hydro Tech Environmental (Brooklyn)</u> Project: <u>220059 107-02 Queens Blvd., Queens, NY</u>

Instrument ID: 5975C Calibration: SB30018

Lab File ID: <u>TO298083.D</u> Calibration Date: <u>02/09/23 15:26</u>

Sequence: $\underline{S3C2151}$ Injection Date: $\underline{03/20/23}$

Lab Sample ID: S3C2151-CCV1 Injection Time: 11:53

		CONC	. (ppbv)	RESPONSE FACTOR			% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
1,1,1,2-Tetrachloroethane	A	10.0	9.43	0.5679118	0.613922		-5.7	30
1,1,1-Trichloroethane	A	10.0	10.4	1.88483	1.956336		3.8	30
1,1,2,2-Tetrachloroethane	A	10.0	11.1	0.8254239	0.913483		10.7	30
1,1,2-Trichloro-1,2,2-trifluoroeth ane (Freon 113)	A	10.0	9.73	1.931202	1.879751		-2.7	30
1,1,2-Trichloroethane	A	10.0	8.90	0.4023671	0.4686945		-11.0	30
1,1-Dichloroethane	A	10.0	9.98	1.463808	1.460465		-0.2	30
1,1-Dichloroethylene	A	10.0	10.8	1.182463	1.279888		8.2	30
1,2,4-Trichlorobenzene	A	10.0	8.43	0.450397	0.4317739		-15.7	30
1,2,4-Trimethylbenzene	A	10.0	8.51	1.222911	1.450891		-14.9	30
1,2-Dibromoethane	A	10.0	9.05	0.5647201	0.6394941		-9.5	30
1,2-Dichlorobenzene	A	10.0	8.37	0.8808777	1.002729		-16.3	30
1,2-Dichloroethane	A	10.0	11.0	1.091627	1.201221		10.0	30
1,2-Dichloropropane	A	10.0	8.48	0.3045277	0.3584054		-15.2	30
1,2-Dichlorotetrafluoroethane	A	10.0	9.63	4.215403	4.058585		-3.7	30
1,3,5-Trimethylbenzene	A	10.0	8.57	1.211731	1.392518		-14.3	30
1,3-Butadiene	A	10.0	10.7	0.6943268	0.7439786		7.2	30
1,3-Dichlorobenzene	A	10.0	8.59	0.8736577	1.02396		-14.1	30
1,3-Dichloropropane	A	10.0	9.39	0.4466001	0.5324602		-6.1	30
1,4-Dichlorobenzene	A	10.0	8.38	0.8472971	0.9900243		-16.2	30
1,4-Dioxane	A	10.0	10.0	0.1550428	0.1945642		0.5	30
2-Butanone	A	10.0	10.1	1.605231	1.615373		0.6	30
2-Hexanone	Q	10.0	8.12	0.5592923	0.7331601		-18.8	30
3-Chloropropene	A	10.0	10.4	0.8602626	0.8978156		4.4	30
4-Methyl-2-pentanone	A	10.0	8.40	0.6123209	0.6993221		-16.0	30
Acetone	A	10.0	8.31	1.459811	1.213354		-16.9	30
Acrylonitrile	A	10.0	11.4	0.5273167	0.6012182		14.0	30
Benzene	A	10.0	7.54	2.801228	2.724097		-24.6	30
Benzyl chloride	A	10.0	9.20	0.2079255	0.2773469		-8.0	30
Bromodichloromethane	A	10.0	9.15	0.6193978	0.7138686		-8.5	30

FORM VII

CONTINUING CALIBRATION CHECK EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: <u>Hydro Tech Environmental (Brooklyn)</u> Project: <u>220059 107-02 Queens Blvd., Queens, NY</u>

Instrument ID: 5975C Calibration: SB30018

Lab File ID: <u>TO298083.D</u> Calibration Date: <u>02/09/23 15:26</u>

Sequence: $\underline{S3C2151}$ Injection Date: $\underline{03/20/23}$

Lab Sample ID: S3C2151-CCV1 Injection Time: 11:53

		CONC	(ppbv)	RES	PONSE FACTO	OR	% DIFF / DRIFT	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Bromoform	A	10.0	9.13	0.7296276	0.8468165		-8.7	30
Bromomethane	A	10.0	6.22	1.670006	0.8762949		-37.8	30 *
Carbon disulfide	A	10.0	9.88	2.199716	2.173714		-1.2	30
Carbon tetrachloride	A	10.0	9.52	1.929495	2.066499		-4.8	30
Chlorobenzene	A	10.0	10.0	0.955844	0.9567163		0.09	30
Chloroethane	A	10.0	10.3	0.4059188	0.4179367		3.0	30
Chloroform	A	10.0	10.1	1.85026	1.872774		1.2	30
Chloromethane	A	10.0	10.4	0.8582864	0.8921478		3.9	30
cis-1,2-Dichloroethylene	A	10.0	10.9	1.005026	1.099216		9.4	30
cis-1,3-Dichloropropylene	A	10.0	9.53	0.3911601	0.4739458		-4.7	30
Cyclohexane	A	10.0	8.92	1.117996	1.190702		-10.8	30
Dibromochloromethane	A	10.0	9.33	0.7225939	0.8215234		-6.7	30
Dichlorodifluoromethane	A	10.0	9.31	2.498374	2.326689		-6.9	30
Ethyl acetate	A	10.0	10.1	1.836021	1.859969		1.3	30
Ethyl Benzene	A	10.0	10.5	1.385254	1.452283		4.8	30
Hexachlorobutadiene	A	10.0	6.48	0.8807332	0.8835316		-35.2	30 *
Isopropanol	A	10.0	9.44	1.895388	1.450793		-5.6	30
Methyl Methacrylate	A	10.0	8.57	0.2716714	0.3481541		-14.3	30
Methyl tert-butyl ether (MTBE)	A	10.0	10.5	1.929202	2.01788		4.6	30
Methylene chloride	A	10.0	9.30	1.245314	0.9621235		-7.0	30
n-Heptane	A	10.0	7.27	1.528945	1.669695		-27.3	30
n-Hexane	A	10.0	8.72	1.114725	1.150988		-12.8	30
o-Xylene	A	10.0	7.97	1.097207	1.265149		-20.3	30
p- & m- Xylenes	A	20.0	14.3	1.132692	1.223359		-28.4	30
p-Ethyltoluene	A	10.0	8.15	1.454004	1.680712		-18.5	30
Propylene	A	10.0	10.1	0.4411641	0.4475108		1.4	30
Styrene	A	10.0	7.73	0.8405435	1.007245		-22.7	30
Tetrachloroethylene	A	10.0	9.89	0.6279522	0.7034274		-1.1	30
Tetrahydrofuran	A	10.0	10.9	0.867238	0.9452496		9.0	30

FORM VII

CONTINUING CALIBRATION CHECK EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: <u>Hydro Tech Environmental (Brooklyn)</u> Project: <u>220059 107-02 Queens Blvd., Queens, NY</u>

Instrument ID: 5975C Calibration: SB30018

Lab File ID: <u>TO298083.D</u> Calibration Date: <u>02/09/23 15:26</u>

 Sequence:
 S3C2151
 Injection Date:
 03/20/23

 Lab Sample ID:
 S3C2151-CCV1
 Injection Time:
 11:53

		CONC	(ppbv)	RESPONSE FACTOR		% DIFF / DRIFT		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Toluene	A	10.0	8.57	1.015961	1.050509		-14.3	30
trans-1,2-Dichloroethylene	A	10.0	10.4	1.08078	1.121753		3.8	30
trans-1,3-Dichloropropylene	A	10.0	9.69	0.353279	0.4468936		-3.1	30
Trichloroethylene	A	10.0	9.50	0.3610332	0.4228296		-5.0	30
Trichlorofluoromethane (Freon 11)	A	10.0	9.85	2.433652	2.396814		-1.5	30
Vinyl acetate	A	10.0	7.86	1.996925	1.889633		-21.4	30
Vinyl bromide	A	10.0	10.2	0.7965432	0.8145918		2.3	30
Vinyl Chloride	A	10.0	8.95	1.176271	1.053027		-10.5	30

[#] Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

^{*} Values outside of QC limits

FORM I

METHOD BLANK DATA SHEET EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: <u>Hydro Tech Environmental (Brooklyn)</u> Project: <u>220059 107-02 Queens Blvd., Queens, NY</u>

Matrix: Air Laboratory ID: BC31384-BLK1 File ID: TO298085.D

Prepared: 03/20/23 11:00 Preparation: EPA TO15 PREP Initial/Final: 400 mL / 400 mL

Analyzed: <u>03/20/23 14:16</u> Instrument: <u>5975C</u>

Batch: <u>BC31384</u> Sequence: <u>S3C2151</u> Calibration: <u>SB30018</u>

CAS NO.	COMPOUND	CONC. (ug/m³)	Q
630-20-6	1,1,1,2-Tetrachloroethane	0.69	U
71-55-6	1,1,1-Trichloroethane	0.55	U
79-34-5	1,1,2,2-Tetrachloroethane	0.69	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.77	U
79-00-5	1,1,2-Trichloroethane	0.55	U
75-34-3	1,1-Dichloroethane	0.40	U
75-35-4	1,1-Dichloroethylene	0.099	U
120-82-1	1,2,4-Trichlorobenzene	0.74	U
95-63-6	1,2,4-Trimethylbenzene	0.49	U
106-93-4	1,2-Dibromoethane	0.77	U
95-50-1	1,2-Dichlorobenzene	0.60	U
107-06-2	1,2-Dichloroethane	0.40	U
78-87-5	1,2-Dichloropropane	0.46	U
76-14-2	1,2-Dichlorotetrafluoroethane	0.70	U
108-67-8	1,3,5-Trimethylbenzene	0.49	U
106-99-0	1,3-Butadiene	0.66	U
541-73-1	1,3-Dichlorobenzene	0.60	U
142-28-9	1,3-Dichloropropane	0.46	U
106-46-7	1,4-Dichlorobenzene	0.60	U
123-91-1	1,4-Dioxane	0.72	U
78-93-3	2-Butanone	0.29	U
591-78-6	2-Hexanone	0.82	U
107-05-1	3-Chloropropene	1.6	U
108-10-1	4-Methyl-2-pentanone	0.41	U
67-64-1	Acetone	0.48	U
107-13-1	Acrylonitrile	0.22	U
71-43-2	Benzene	0.32	U
100-44-7	Benzyl chloride	0.52	U
75-27-4	Bromodichloromethane	0.67	U
75-25-2	Bromoform	1.0	U

FORM I

METHOD BLANK DATA SHEET EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: <u>Hydro Tech Environmental (Brooklyn)</u> Project: <u>220059 107-02 Queens Blvd., Queens, NY</u>

Matrix: Air Laboratory ID: BC31384-BLK1 File ID: TO298085.D

Prepared: 03/20/23 11:00 Preparation: EPA TO15 PREP Initial/Final: 400 mL / 400 mL

Analyzed: <u>03/20/23 14:16</u> Instrument: <u>5975C</u>

Batch: <u>BC31384</u> Sequence: <u>S3C2151</u> Calibration: <u>SB30018</u>

CAS NO.	COMPOUND	CONC. (ug/m³)	Q
74-83-9	Bromomethane	0.39	U
75-15-0	Carbon disulfide	0.31	U
56-23-5	Carbon tetrachloride	0.16	U
108-90-7	Chlorobenzene	0.46	U
75-00-3	Chloroethane	0.26	U
67-66-3	Chloroform	0.49	U
74-87-3	Chloromethane	0.21	U
156-59-2	cis-1,2-Dichloroethylene	0.099	U
10061-01-5	cis-1,3-Dichloropropylene	0.45	U
110-82-7	Cyclohexane	0.34	U
124-48-1	Dibromochloromethane	0.85	U
75-71-8	Dichlorodifluoromethane	0.49	U
141-78-6	Ethyl acetate	0.72	U
100-41-4	Ethyl Benzene	0.43	U
87-68-3	Hexachlorobutadiene	1.1	U
67-63-0	Isopropanol	0.66	
80-62-6	Methyl Methacrylate	0.41	U
1634-04-4	Methyl tert-butyl ether (MTBE)	0.36	U
75-09-2	Methylene chloride	0.69	U
142-82-5	n-Heptane	0.41	U
110-54-3	n-Hexane	0.35	U
95-47-6	o-Xylene	0.43	U
179601-23-1	p- & m- Xylenes	0.87	U
622-96-8	p-Ethyltoluene	0.49	U
115-07-1	Propylene	0.17	U
100-42-5	Styrene	0.43	U
127-18-4	Tetrachloroethylene	0.68	U
109-99-9	Tetrahydrofuran	0.59	U
108-88-3	Toluene	0.38	U
156-60-5	trans-1,2-Dichloroethylene	0.40	U

FORM I

METHOD BLANK DATA SHEET EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: <u>Hydro Tech Environmental (Brooklyn)</u> Project: <u>220059 107-02 Queens Blvd., Queens, NY</u>

Matrix: Air Laboratory ID: BC31384-BLK1 File ID: TO298085.D

Prepared: 03/20/23 11:00 Preparation: EPA TO15 PREP Initial/Final: 400 mL / 400 mL

Analyzed: <u>03/20/23 14:16</u> Instrument: <u>5975C</u>

Batch: <u>BC31384</u> Sequence: <u>S3C2151</u> Calibration: <u>SB30018</u>

CAS NO.	COMPOUND	CONC. (ug/m³)	Q
10061-02-6	trans-1,3-Dichloropropylene	0.45	U
79-01-6	Trichloroethylene	0.13	U
75-69-4	Trichlorofluoromethane (Freon 11)	0.56	U
108-05-4	Vinyl acetate	0.35	U
593-60-2	Vinyl bromide	0.44	U
75-01-4	Vinyl Chloride	0.13	U

INTERNAL STANDARD	AREA	RT	REF AREA	REF RT	Q
Bromochloromethane	259320	12.227	200784	12.22	
ISTD: 1,4-Difluorobenzene	773034	13.771	584609	13.771	
ISTD: d5-Chlorobenzene	556180	19.006	615197	19.006	

Data Path : D:\032023A\ Data File : TO298093.D

Acq On : 20 Mar 2023 10:10 pm Operator : VH Sample : 23C0874-01

: QBTO1032023A 0.533X/750ML ALS Vial : 8 Sa InstName : 5975C Sample Multiplier: 1.007

Quant Time: Mar 21 16:13:40 2023

Quant Method : C:\msdchem\1\methods\AIR160.M

Quant Title : TO15 VOC Analysis QLast Update : Fri Feb 10 06:43:41 2023 Response via : Initial Calibration

Response via : iniciai calibia	acion					
Compound	R.T.	QIon	Response	Conc U	nits I	Dev(Min)
Internal Standards						
1) Methane, bromochloro-	12.226	49	208720	10.00	ppbv	0.00
38) 1,4-Difluorobenzene	13.777	114	591138	10.00	ppbv	0.00
54) d5-Chlorobenzene	19.006	117	472835	10.00	ppbv	-0.01
System Monitoring Compounds						
65) p-Bromofluorobenzene	21.171	95	252497	11.55	ppbv	0.00
Spiked Amount 10.000	Range 70	- 130	Recove		115.5	50%
Target Compounds						Ovalue
3) Dichlorodifluoromethane	5.329	85	27453	0 53	ppbv	~
4) 1,2-Dichlorotetrafluor.			2228		ppbv	86
5) Chloromethane	5.813	50	11879m	0.65	ppbv	00
6) Vinyl Chloride	6.079	62	665		ppbv	# 42
10) ethanol	7.283	45	5266640	520.28		π 42 88
12) Trichlorofluoromethane	7.692	101	12047		ppbv	99
13) Isopropanol	8.188	45	1278015	36.87		100
14) Acrolein	8.306		1853m	0.31	ppbv	100
15) Acetone	8.412	43	368629	12.10	ppbv	98
16) Freon-113	8.567		2900		vdqq	97
19) Methylene Chloride	9.516		9031		vdqq	97
27) 2-Butanone	11.346		80199		ppbv	97
28) Ethyl Acetate	11.650	43	7226		ppbv	
30) Chloroform	12.003		4067		ppbv	
31) Tetrahydrofuran	12.326		134286		ppbv	94
34) Carbon Tetrachloride	13.194		2931		ppbv	97
36) Benzene	13.393	78	15831		ppbv	
37) n-Heptane	13.399		4543	0.09	ppbv	# 75
44) Methyl Isobutyl Ketone	15.527		7063		ppbv	
46) Toluene	16.531		54836		ppbv	99
51) Tetrachloroethylene	17.716		1439		ppbv	98
57) Ethylbenzene	19.180	91	19350		ppbv	97
58) p- & m-Xylenes	19.323	91	57264	0.68	ppbv	94
59) o-Xylene	20.104		17802		ppbv	99
60) Styrene	20.123		7013		ppbv	
62) n-Propylbenzene	21.525		5678		ppbv	100
63) Isopropylbenzene	20.756		4132		ppbv	96
66) 4-Ethyltoluene	21.705		18950		ppbv	
67) 1,3,5-Trimethylbenzene	21.835		4464		ppbv	
69) 1,2,4-Trimethylbenzene	22.672		15574		vdqq	
71) p-Isopropyltoluene	23.324		3322		ppbv	
-, r 100p10p1100100110	23.321		0022	0.00	PP~ V	20

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : D:\032023A\ Data File : TO298094.D

Acq On : 20 Mar 2023 11:09 pm Operator : VH Sample : 23C0874-02

: QBTO1032023A 0.533X/750ML ALS Vial : 9 Sample Multiplier: 0.999 InstName : 5975C

Quant Time: Mar 21 16:17:33 2023

Quant Method : C:\msdchem\1\methods\AIR160.M

Quant Title : TO15 VOC Analysis QLast Update : Fri Feb 10 06:43:41 2023

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits D	ev(Min)
Internal Standards						
1) Methane, bromochloro-	12.227	49	207206	10.00	pphy	0.00
38) 1,4-Difluorobenzene	13.777		588380	10.00	T T	0.00
54) d5-Chlorobenzene	19.006	117	468406	10.00		-0.01
,					LL	
System Monitoring Compounds						
65) p-Bromofluorobenzene	21.171	95	251628	11.62	ppbv	0.00
Spiked Amount 10.000	Range 70	- 130	Recove	ry =	116.2	0%
Target Compounds						Ovalue
3) Dichlorodifluoromethane	5.329	85	29111	0 56	vdqq	~
4) 1,2-Dichlorotetrafluor.		85	2646		vdqq	89
5) Chloromethane	5.819	50	13332m		ppbv	0,7
10) ethanol	7.270	45	1860030	243.42		88
12) Trichlorofluoromethane	7.704	101	12056		vdqq	99
13) Isopropanol	8.188	45	609924	18.65		100
14) Acrolein	8.312	56	1150		vdqq	
15) Acetone	8.412	43	327512	10.83		98
16) Freon-113	8.561	101	3052		ppbv	97
19) Methylene Chloride	9.516	49	12756		vdqq	95
27) 2-Butanone	11.352	43	66258		ppbv	95
28) Ethyl Acetate	11.650	43	7556		ppbv	
30) Chloroform	12.003	83	4089		vdqq	
31) Tetrahydrofuran	12.326	42	158518		ppbv	94
34) Carbon Tetrachloride	13.194	117	3038		ppbv	
36) Benzene	13.393	78	16542		ppbv	
37) n-Heptane	13.399	43	4696		ppbv	96
44) Methyl Isobutyl Ketone	15.539	43	5426		vdqq	
46) Toluene	16.531	91	59385		ppbv	99
51) Tetrachloroethylene	17.716	166	3131		ppbv	97
57) Ethylbenzene	19.180	91	20454		ppbv	98
58) p- & m-Xylenes	19.323	91	58455		ppbv	93
59) o-Xylene	20.104	91	18574	0.25	ppbv	99
60) Styrene	20.123	104	6432	0.10	ppbv	# 74
62) n-Propylbenzene	21.525	91	6047	0.05	ppbv	100
63) Isopropylbenzene	20.756	105	4027	0.04	ppbv	98
66) 4-Ethyltoluene	21.705	105	18730	0.19	ppbv	# 86
67) 1,3,5-Trimethylbenzene	21.835	105	4452		ppbv	
69) 1,2,4-Trimethylbenzene	22.679	105	18044		ppbv	
71) p-Isopropyltoluene	23.324	119	3511	0.03	ppbv	# 100

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : D:\032023A\ Data File : TO298095.D

Acq On : 21 Mar 2023 12:08 am Operator : VH Sample : 23C0874-03

: QBTO1032023A 0.533X/750ML ALS Vial : 11 Sample Multiplier: 0.972 InstName : 5975C

Quant Time: Mar 21 16:20:53 2023

Quant Method: C:\msdchem\1\methods\AIR160.M

Quant Title : TO15 VOC Analysis QLast Update : Fri Feb 10 06:43:41 2023 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits I	ev	(Min)
Internal Standards							
1) Methane, bromochloro-	12.226		217087	10.00			0.00
38) 1,4-Difluorobenzene	13.777		648686	10.00			0.00
54) d5-Chlorobenzene	19.006	117	518483	10.00	ppbv		-0.01
System Monitoring Compounds							
65) p-Bromofluorobenzene	21.171	95	276593	11.54	ppbv		0.00
Spiked Amount 10.000	Range 70	- 130	Recove	ry =	115.4	10%	
Target Compounds						0.77	alue
3) Dichlorodifluoromethane	5.335	85	36253	0 67	ppbv		93
4) 1,2-Dichlorotetrafluor.		85	2846		ppbv	#	89
5) Chloromethane	5.819	50	14013m		ppbv		0,5
10) ethanol	7.276	45	4296994	439.01			88
12) Trichlorofluoromethane	7.698	101	13572		ppbv		96
13) Isopropanol	8.182	45	1211509	33.88			100
14) Acrolein	8.300	56	3051		ppbv	#	100
15) Acetone	8.405	43	404786	12.77		"	100
16) Freon-113	8.554		3226		ppbv		95
19) Methylene Chloride	9.516	49	12180		ppbv		96
24) Hexane	10.384	57	4578		vdqq	#	43
27) 2-Butanone	11.346	43	155431		ppbv		98
28) Ethyl Acetate	11.643	43	6768		ppbv	#	73
30) Chloroform	12.003	83	3845		ppbv		93
31) Tetrahydrofuran	12.319	42	260787	13.85	ppbv		95
34) Carbon Tetrachloride	13.188	117	3684	0.09	ppbv		99
36) Benzene	13.393	78	21043		ppbv	#	100
37) n-Heptane	13.399	43	7283	0.14	ppbv		98
44) Methyl Isobutyl Ketone	15.526	43	7554		ppbv	#	72
46) Toluene	16.525	91	84829		ppbv		99
51) Tetrachloroethylene	17.716		1747		ppbv		93
57) Ethylbenzene	19.180	91	26642	0.37	ppbv		97
58) p- & m-Xylenes	19.323	91	72402	0.78	ppbv		94
59) o-Xylene	20.104	91	23522		ppbv		99
60) Styrene	20.123	104	7671		ppbv	#	74
62) n-Propylbenzene	21.519	91	7106	0.05	ppbv		99
63) Isopropylbenzene	20.749		5231		ppbv		98
66) 4-Ethyltoluene	21.711	105	23013		ppbv	#	87
67) 1,3,5-Trimethylbenzene	21.835	105	5724		ppbv		91
69) 1,2,4-Trimethylbenzene	22.679		19555		ppbv		90
71) p-Isopropyltoluene	23.324	119 	4622 	0.04	ppbv	#	99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : D:\032023A\ Data File : TO298096.D

Acq On : 21 Mar 2023 Operator : VH Sample : 23C0874-04 1:07 am

: QBTO1032023A 0.533X/750ML ALS Vial : 12 Sample Multiplier: 0.939
InstName : 5975C

Quant Time: Mar 21 16:24:01 2023

Quant Method: C:\msdchem\1\methods\AIR160.M

Quant Title : TO15 VOC Analysis QLast Update : Fri Feb 10 06:43:41 2023

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits I	ev(Min)
Internal Standards 1) Methane, bromochloro- 38) 1,4-Difluorobenzene 54) d5-Chlorobenzene	12.227 13.777 19.006	49 114 117	208884 599713 466567	10.00 10.00 10.00	ppbv		0.00 0.00 -0.01
System Monitoring Compounds 65) p-Bromofluorobenzene Spiked Amount 10.000	21.171 Range 70	95	238011 Recove	11.03 ry =	ppbv 110.3		0.00
Target Compounds 3) Dichlorodifluoromethane 4) 1,2-Dichlorotetrafluor. 5) Chloromethane 10) ethanol 12) Trichlorofluoromethane 13) Isopropanol 14) Acrolein 15) Acetone 16) Freon-113 19) Methylene Chloride 24) Hexane 27) 2-Butanone 28) Ethyl Acetate 30) Chloroform 31) Tetrahydrofuran 34) Carbon Tetrachloride 36) Benzene 44) Methyl Isobutyl Ketone 46) Toluene 57) Ethylbenzene 58) p- & m-Xylenes 59) o-Xylene 60) Styrene 66) 4-Ethyltoluene	5.329 5.595 5.819 7.277 7.705 8.188 8.306 8.412 8.567 9.516 10.352 11.650 12.003 12.332 13.194 13.393 15.533 16.525 19.180 19.329 20.104 20.123	85 85 50 45 101 45 56 43 101 49 57 43 43 83 42 117 78 43 91 91 91 104	33763 3009 14375m 4192268 13887 1579944 1143 349130 3473 9663 1648 12249 5384 10910 3715 3506m 13122 6488 30046 4636 11237 4581 3318 4805	0.03 0.80 443.34 0.27 44.62 0.19 11.45 0.09 0.46 0.37 0.14 0.28 0.21 0.09 0.18 0.13 0.42 0.07 0.14 0.06	ppbv ppbv	# # # #	11ue 94 87 88 97 100 100 97 96 94 86 96 75 100 84 99 95 100 74
66) 4-Ethyltoluene 69) 1,2,4-Trimethylbenzene 71) p-Isopropyltoluene 73) 1,4-Dichlorobenzene	21.717 22.679 23.324 23.684		4805 5148 2764 1853	0.07 0.02	ppbv ppbv ppbv	#	94 87 99 78

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : D:\032023A\ Data File : TO298097.D

2:06 am

Acq On : 21 Mar 2023 Operator : VH Sample : 23C0874-05

: QBTO1032023A 0.533X/750ML ALS Vial : 13 Sample Multiplier: 0.921 InstName : 5975C

Quant Time: Mar 21 16:27:38 2023

Quant Method: C:\msdchem\1\methods\AIR160.M

Quant Title : TO15 VOC Analysis QLast Update : Fri Feb 10 06:43:41 2023

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits D	ev ((Min)
Internal Standards 1) Methane, bromochloro- 38) 1,4-Difluorobenzene 54) d5-Chlorobenzene	12.226 13.777 19.006	114	202234 581028 465922	10.00	ppbv		0.00 0.00 -0.01
System Monitoring Compounds 65) p-Bromofluorobenzene Spiked Amount 10.000	21.171 Range 70	95	259902 Recove	12.06 ry =	ppbv 120.6	10%	0.00
Target Compounds						Qva	lue
3) Dichlorodifluoromethane	5.335	85	29071	0.58	ppbv	#	94
4) 1,2-Dichlorotetrafluor.	5.602	85	2734		ppbv		88
5) Chloromethane	5.825	50	12954m	0.75	ppbv		
10) ethanol	7.270	45	2961410	353.04	ppbv		88
12) Trichlorofluoromethane	7.704	101	12659	0.26	ppbv		97
13) Isopropanol	8.182	45	1030602	31.17	ppbv		100
14) Acrolein	8.300	56	1282	0.22	ppbv	#	100
15) Acetone	8.405	43	389158	13.18	ppbv		97
16) Freon-113	8.567	101	3169	0.08	ppbv		94
19) Methylene Chloride	9.516	49	8757	0.43	ppbv		94
24) Hexane	10.384	57	1680		ppbv	#	84
27) 2-Butanone	11.352	43	16110		ppbv		95
28) Ethyl Acetate	11.643	43	191611	5.16	ppbv		98
30) Chloroform	12.003	83	5989		ppbv		92
34) Carbon Tetrachloride	13.188	117	3439		ppbv		90
36) Benzene	13.393	78	11637		ppbv	#	100
37) n-Heptane	13.399	43	4856		ppbv		99
44) Methyl Isobutyl Ketone	15.533	43	15626		ppbv	#	92
46) Toluene	16.525	91	28554		ppbv		97
57) Ethylbenzene	19.180	91	216172		ppbv		95
58) p- & m-Xylenes	19.323	91	772398		ppbv		91
59) o-Xylene	20.104	91	184675	2.46	ppbv		98
62) n-Propylbenzene	21.525	91	6873	0.06	ppbv		97
66) 4-Ethyltoluene	21.705	105	13979		ppbv		87
69) 1,2,4-Trimethylbenzene	22.679	105	15636	0.20	ppbv	#	95
71) p-Isopropyltoluene	23.324	119	7451		ppbv	#	99
73) 1,4-Dichlorobenzene	23.683	146	3376	0.06	ppbv		97

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : D:\032023A\ Data File : TO298098.D

Acq On : 21 Mar 2023 Operator : VH Sample : 23C0874-06 3:06 am

: QBTO1032023A 0.533X/750ML ALS Vial : 14 Sample Multiplier: 1.066 InstName : 5975C

Quant Time: Mar 21 16:30:52 2023

Quant Method: C:\msdchem\1\methods\AIR160.M

Quant Title : TO15 VOC Analysis QLast Update : Fri Feb 10 06:43:41 2023 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits I	ev	(Min)
Internal Standards 1) Methane, bromochloro- 38) 1,4-Difluorobenzene 54) d5-Chlorobenzene	12.226 13.777 19.006		200886 567649 442745	10.00 10.00 10.00	ppbv		0.00 0.00 -0.01
System Monitoring Compounds 65) p-Bromofluorobenzene Spiked Amount 10.000	21.171 Range 70	95 - 130			ppbv 112.2		0.00
Target Compounds 3) Dichlorodifluoromethane 4) 1,2-Dichlorotetrafluor. 5) Chloromethane 10) ethanol 12) Trichlorofluoromethane 13) Isopropanol 14) Acrolein 15) Acetone 16) Freon-113 19) Methylene Chloride 24) Hexane 27) 2-Butanone 31) Tetrahydrofuran 34) Carbon Tetrachloride 36) Benzene 37) n-Heptane 46) Toluene 57) Ethylbenzene	5.341 5.608 5.825 7.270 7.698 8.194 8.306 8.412 8.554 9.516 10.390 11.352 12.326 13.194 13.393 13.393 16.531 19.180	85 50 45 101 45 56 43 101 49 57 43 42 117 78 43 91	31535 2649 12845 179596 12277 66552 1870 179947 2984 6960 2470 103390 162212 2794 13192 3056 38372 11231	0.03 0.74 31.93 0.25 2.20 0.32 6.14 0.08 0.34 0.10 3.21 9.31 0.07 0.18 0.06	ppbv ppbv ppbv ppbv ppbv ppbv ppbv ppbv	# # #	91 85 98 87 99 100 100 97 95 94 71 97 94 98 100 99
57) Echylbenzene 58) p- & m-Xylenes 59) o-Xylene 60) Styrene 62) n-Propylbenzene 63) Isopropylbenzene 66) 4-Ethyltoluene 69) 1,2,4-Trimethylbenzene	19.323 20.104 20.129 21.525 20.749 21.711 22.685	91 91 104 91 105	27313 8063 2345 2385 1904 5612 3806	0.35 0.11 0.04 0.02 0.02 0.06	ppbv ppbv ppbv ppbv ppbv ppbv	# # #	93 99 74 92 89 94 95

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

FORM III

LCS / LCS DUPLICATE RECOVERY EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: Hydro Tech Environmental (Brooklyn) Project: 220059 107-02 Queens Blvd., Queens, NY

Matrix: <u>Air</u>

Batch: BC31384 Laboratory ID: BC31384-BS1

Preparation: EPA TO15 PREP Initial/Final: 400 mL / 400 mL

COMPOUND	SPIKE ADDED (ppbv)	LCS CONCENTRATION (ppbv)	LCS % REC. #	QC LIMITS REC.
1,1,1,2-Tetrachloroethane	10.0	9.72	97.2	70 - 130
1,1,1-Trichloroethane	10.0	11.2	112	70 - 130
1,1,2,2-Tetrachloroethane	10.0	11.1	111	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.0	10.6	106	70 - 130
1,1,2-Trichloroethane	10.0	9.03	90.3	70 - 130
1,1-Dichloroethane	10.0	10.6	106	70 - 130
1,1-Dichloroethylene	10.0	11.8	118	70 - 130
1,2,4-Trichlorobenzene	10.0	8.13	81.3	70 - 130
1,2,4-Trimethylbenzene	10.0	8.17	81.7	70 - 130
1,2-Dibromoethane	10.0	9.19	91.9	70 - 130
1,2-Dichlorobenzene	10.0	7.98	79.8	70 - 130
1,2-Dichloroethane	10.0	11.4	114	70 - 130
1,2-Dichloropropane	10.0	8.93	89.3	70 - 130
1,2-Dichlorotetrafluoroethane	10.0	10.1	101	70 - 130
1,3,5-Trimethylbenzene	10.0	8.28	82.8	70 - 130
1,3-Butadiene	10.0	11.0	110	70 - 130
1,3-Dichlorobenzene	10.0	8.29	82.9	70 - 130
1,3-Dichloropropane	10.0	9.48	94.8	70 - 130
1,4-Dichlorobenzene	10.0	8.06	80.6	70 - 130
1,4-Dioxane	10.0	11.2	112	70 - 130
2-Butanone	10.0	10.8	108	70 - 130
2-Hexanone	10.0	8.23	82.3	70 - 130
3-Chloropropene	10.0	11.8	118	70 - 130
4-Methyl-2-pentanone	10.0	8.79	87.9	70 - 130
Acetone	10.0	9.09	90.9	70 - 130
Acrylonitrile	10.0	12.5	125	70 - 130
Benzene	10.0	7.89	78.9	70 - 130
Benzyl chloride	10.0	8.78	87.8	70 - 130
Bromodichloromethane	10.0	9.65	96.5	70 - 130
Bromoform	10.0	9.09	90.9	70 - 130

FORM III

LCS / LCS DUPLICATE RECOVERY EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: Hydro Tech Environmental (Brooklyn) Project: 220059 107-02 Queens Blvd., Queens, NY

Matrix: <u>Air</u>

Batch: BC31384 Laboratory ID: BC31384-BS1

Preparation: EPA TO15 PREP Initial/Final: 400 mL / 400 mL

COMPOUND	SPIKE ADDED (ppbv)	LCS CONCENTRATION (ppbv)	LCS % REC.#	QC LIMITS REC.
Bromomethane	10.0	6.97	69.7 *	70 - 130
Carbon disulfide	10.0	10.4	104	70 - 130
Carbon tetrachloride	10.0	9.91	99.1	70 - 130
Chlorobenzene	10.0	10.3	103	70 - 130
Chloroethane	10.0	11.6	116	70 - 130
Chloroform	10.0	10.8	108	70 - 130
Chloromethane	10.0	10.5	105	70 - 130
cis-1,2-Dichloroethylene	10.0	11.9	119	70 - 130
cis-1,3-Dichloropropylene	10.0	10.2	102	70 - 130
Cyclohexane	10.0	9.76	97.6	70 - 130
Dibromochloromethane	10.0	9.35	93.5	70 - 130
Dichlorodifluoromethane	10.0	10.9	109	70 - 130
Ethyl acetate	10.0	11.1	111	70 - 130
Ethyl Benzene	10.0	10.8	108	70 - 130
Hexachlorobutadiene	10.0	(5.64)	(56.4) *	70 - 130
Isopropanol	10.0	10.4	104	70 - 130
Methyl Methacrylate	10.0	8.78	87.8	70 - 130
Methyl tert-butyl ether (MTBE)	10.0	11.7	117	70 - 130
Methylene chloride	10.0	10.2	102	70 - 130
n-Heptane	10.0	7.75	77.5	70 - 130
n-Hexane	10.0	9.65	96.5	70 - 130
o-Xylene	10.0	8.03	80.3	70 - 130
p- & m- Xylenes	20.0	14.6	72.8	70 - 130
p-Ethyltoluene	10.0	7.92	79.2	70 - 130
Propylene	10.0	12.4	124	70 - 130
Styrene	10.0	7.68	76.8	70 - 130
Tetrachloroethylene	10.0	9.81	98.1	70 - 130
Tetrahydrofuran	10.0	11.6	116	70 - 130
Toluene	10.0	8.76	87.6	70 - 130
trans-1,2-Dichloroethylene	10.0	11.4	114	70 - 130

FORM III

LCS / LCS DUPLICATE RECOVERY EPA TO-15

Laboratory: York Analytical Laboratories, Inc. - Stratford SDG: 23C0874

Client: Hydro Tech Environmental (Brooklyn) Project: 220059 107-02 Queens Blvd., Queens, NY

Matrix: <u>Air</u>

Batch: BC31384 Laboratory ID: BC31384-BS1

Preparation: EPA TO15 PREP Initial/Final: 400 mL / 400 mL

COMPOUND	SPIKE ADDED (ppbv)	LCS CONCENTRATION (ppbv)	LCS % REC. #	QC LIMITS REC.
trans-1,3-Dichloropropylene	10.0	10.2	102	70 - 130
Trichloroethylene	10.0	10.0	100	70 - 130
Trichlorofluoromethane (Freon 11)	10.0	10.7	107	70 - 130
Vinyl acetate	10.0	8.23	82.3	70 - 130
Vinyl bromide	10.0	11.9	119	70 - 130
Vinyl Chloride	10.0	9.13	91.3	70 - 130

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

APPENDIX 5 Semi-Annual SSD System Inspection Reports

Inspector name and title	Site Address	Date
Paul I. Matli	107-02 Queens Boulevard, Queens, NY (Site # C241196)	4/26/2023
1. Review of the current remedy		
Identify the current remedy:		
x SSDS		
How many SSDS Systems are used? SSDS-1; SSDS	<u> </u>	
2. Review of the current remedy goals	. –	
What schedule has been established for monitoring of SS	DS? Semi Annual	
B. Summary of Remedy Performance Assessment		
1. Evaluate remedy effectiveness:		
Based on information collected since the last O&M revie	w, do monitoring data indicate that the system is failing	□ Yes
or could eventually fail to meet remedy goals?		
		x No
Since the last O&M review, have monitoring data exhibi	ted trends indicative of a new or renewed release?	□ Yes
		x No
Since the last O&M review, have changes in landuse bee	n suggested and or implemented that have the potential	□ Yes
to reduce the protectiveness of the SSDS remedy?		x No
Circuit lat 00 M miles la contrata la cont	Man CC - A to a real background bloken	X INO
Since the last O&M review, have contaminants been concentrations where they pose or have the potential to	Ŭ	□ Yes
		x No
If you answered yes to any of the above questions, did the is the condition being monitored to evaluate the need for if any, have been taken and/or are planned in response	future action? Use this space to comment. What actions,	□ Immediate Action
in any, have been taken and, or are planned in response	to the new information:	□ Monitor for future
		x N/A
Based on your answers to the above questions, is there rethis time? If yes, use this space to comment.	eason to evaluate the need for a contingent remedy at	□ Yes
		x No
SSDS		
PID at influent into the carbon activated drum: IF-1 at S	SDS-1 = 0.0 ; IF-2 at SSDS-2 = 0.0	PPM
PID at effluent nto the carbon activated drum: EF-1 at St		PPM
Vacuum guage - SSDS-1 = -30 ; SSDS-2 = -38	,	Inch H20
Vacuum Reading at the 5 vacuum monitorinbg points: TP-4= -0.48 ; TP-5= -1.34	TP-1= -0.52 ; TP-2= -0.48 ; TP-3= -2.09 ;	Inch H20
Blower Condition at SSDS-1		x Function
		□ Damage
Blower Condition at SSDS-2		x Function
		□ Damage
Telemetry System Condition		x Function
		□ Damage
Was the Subslab Depressurization System (SSDS) operat If "No," explain below why the system was not running, operational when leaving. If successful in making the SS		x Yes

	□ No
Were all sub-slab vacuum readings less than of equal to - 0.01 inches of water? If "Yes," the SSDS is deemed still effective and the vacuum readings taken during this inspection are now the new baseline readings.	x Yes
If "No," system must be adjusted/amended and the SSDS re-commissioned. Discuss adjustments and amendments below:	□ No
List below all pertinent observations and actions taken during this Inspection: i.e., sagging/damaged pipes, construction changes to building that may affect the system, pipe leaks that may nee has occupancy zoning changed (i.e. commercial to residential), are non-SSDS engineered systems still functioning as needed.	
Did you observe breaking or cracks in the slab cover	x Yes □ No
If yes describe the level of alteration needed for repairs and remedies? Fine cracks consistent with those observed	at system start-up in June 2021

107-02 Queens Boulevard, Queens, NY (Site # C241196) Semi Annual	1/29/2024
Semi Annual	
monitoring data indicate that the system is failing	□ Yes
	x No
ands indicative of a pay or reported release?	
ends indicative of a new or renewed release?	□ Yes
gracted and or implemented that have the notential	x No
gested and of implemented that have the potential	□ Yes
	x No
	□ Yes
unacceptable risks to receptors:	x No
ormation suggest the need for immediate action or	X 1 V O
re action? Use this space to comment. What actions,	□ Immediate Action
	□ Monitor for future
	x N/A
to evaluate the need for a contingent remedy at	□ Yes
	x No
1 = 0.0 ; IF-2 at SSDS-2 = 0.0	PPM
	PPM
,	Inch H20
= -0.67 ; TP-2= -0.57 ; TP-3= -2.41 ;	Inch H20
	x Function
	□ Damage
	x Function
	□ Damage
	x Function
	□ Damage
ts taken to restart the SSDS and if the system was	x Yes
	pomonitoring data indicate that the system is failing rends indicative of a new or renewed release? ggested and or implemented that have the potential ritified in new locations or at higher unacceptable risks to receptors? formation suggest the need for immediate action or reaction? Use this space to comment. What actions, enew information? If to evaluate the need for a contingent remedy at to evaluate the need for a contingent remedy at to evaluate the need for a contingent remedy at to evaluate the need for a contingent remedy at to evaluate the need for a contingent remedy at to evaluate the need for a contingent remedy at the system was perational, complete the remainder of the checklist.

	□ No
Were all sub-slab vacuum readings less than of equal to - 0.01 inches of water? If "Yes," the SSDS is deemed still effective and the vacuum readings taken during this inspection are now the new baseline readings. If "No," system must be adjusted/amended and the SSDS re-commissioned. Discuss adjustments and	x Yes
amendments below:	□ No
List below all pertinent observations and actions taken during this Inspection: i.e., sagging/damaged pipes, construction changes to building that may affect the system, pipe leaks that may nee has occupancy zoning changed (i.e. commercial to residential), are non-SSDS engineered systems still functioning as needed.	
Did you observe breaking or cracks in the slab cover	x Yes □ No
If yes describe the level of alteration needed for repairs and remedies? Fine cracks continue to be obsreved in slab in sub-cellar. Slab in cellar is covered by a gym rubber mat and cerami	17

APPENDIX 6 Monthly SSD System Inspections Checklists

Monthly Inspection Checklist Active Sub Slab Depressurization System (SSDS) Building Management Form – Site C241196

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Checklist for SSDS-1 - Sub-Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		_	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 - Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building locat	ion and be available on inspection.
Name of Building Maintenance Personnel Performing Inspection:	ISAT KOLAR
Signature of Building Maintenance Personnel Performing Inspection:	I. K
Date of Inspection:	_1/31/2023

Monthly Inspection Checklist Active Sub Slab Depressurization System (SSDS) Building Management Form – Site C241196

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Checklist for SSDS-1 - Sub-Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		_	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 - Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building locat	ion and be available on inspection.
Name of Building Maintenance Personnel Performing Inspection:	ISAT KOLAR
Signature of Building Maintenance Personnel Performing Inspection:	I. K
Date of Inspection:	_2 / 28 / 2023

Monthly Inspection Checklist Active Sub Slab Depressurization System (SSDS) Building Management Form – Site C241196

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Checklist for SSDS-1 - Sub-Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		_	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 - Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building locat	ion and be available on inspection.
Name of Building Maintenance Personnel Performing Inspection:	ISAT KOLAR
Signature of Building Maintenance Personnel Performing Inspection:	I. K
Date of Inspection:	_3 / 31 / 2023

Monthly Inspection Checklist Active Sub Slab Depressurization System (SSDS) Building Management Form – Site C241196

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Checklist for SSDS-1 - Sub-Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		х	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate a proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	x		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		v	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 – Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building location a	nd be available on inspection.
Name of Building Maintenance Personnel Performing Inspection:	SHABAN KOLAR
Signature of Building Maintenance Personnel Performing Inspection:	S. K
Date of Inspection:	_4 / 28 / 2023

Monthly Inspection Checklist Active Sub Slab Depressurization System (SSDS) Building Management Form – Site C241196

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Checklist for SSDS-1 - Sub-Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		v	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 - Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building locat	ion and be available on inspection.
Name of Building Maintenance Personnel Performing Inspection:	ISAT KOLAR
Signature of Building Maintenance Personnel Performing Inspection:	I. K
Date of Inspection:	_5 / 31 / 2023

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		_	If "No," add comment and	
intact ?		^	contact HydroTech	

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building locati	on and be available on inspection.
Name of Building Maintenance Personnel Performing Inspection:	ISAT KOLAR
Signature of Building Maintenance Personnel Performing Inspection:	I. K
Date of Inspection:	_6 / 30 / 2023

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		_	If "No," add comment and	
intact ?		^	contact HydroTech	

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building location and be available on inspection.									
Name of Building Maintenance Personnel Performing Inspection:	ISAT KOLAR								
Signature of Building Maintenance Personnel Performing Inspection:	I. K								
Date of Inspection:	_7 / 31 / 2023								

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		_	If "No," add comment and	
intact ?		^	contact HydroTech	

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building locati	ion and be available on inspection.
Name of Building Maintenance Personnel Performing Inspection:	ISAT KOLAR
Signature of Building Maintenance Personnel Performing Inspection:	I. K
Date of Inspection:	_8/31/2023

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		х	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate a proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	x		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		v	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 – Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building location a	nd be available on inspection.
Name of Building Maintenance Personnel Performing Inspection:	SHABAN KOLAR
Signature of Building Maintenance Personnel Performing Inspection:	S. K
Date of Inspection:	9 / 30 / 2023

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		х	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate a proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-26
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	x		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		v	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 – Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		х	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20, then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-28
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building location and be available on inspection.								
Name of Building Maintenance Personnel Performing Inspection:	SHABAN KOLAR							
Signature of Building Maintenance Personnel Performing Inspection:	S. K							
Date of Inspection:	_10 / 31 / 2023							

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		х	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate a proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-25
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	x		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	x		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		v	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 – Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	Х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building location and be available on inspection.								
Name of Building Maintenance Personnel Performing Inspection:	SHABAN KOLAR							
Signature of Building Maintenance Personnel Performing Inspection:	S. K							
Date of Inspection:	_11 / 30 / 2023							

This system protects public safety and must be operating properly to ensure the safety of occupants of the building. If you identify any problems with this system, contact HydroTech Environmental Engineering and Geology DPC for instructions and directions.

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		х	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate a proper vacuum?		х	If "No," add comment and contact HydroTech	
What is the pressure gauge reading – Inch H2O?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-25
Is the system Telemetry operational?		х	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		х	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		х	If "No," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If "No," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	x		If "Yes," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	x		If "Yes," add comment and contact HydroTech	
Are vacuum monitoring points TP-1, TP-2 and TP-3		v	If "No," add comment and	
intact ?		^	contact HydroTech	

Checklist for SSDS-2 – Cellar

Question	No	Yes	Directions	Comments
Is the system pressure gauge operational?		x	If " No ," add comment and contact HydroTech	
Does the system pressure gauge indicate proper vacuum?		х	If " No ," add comment and contact HydroTech	
What is the pressure gauge reading?			If reading is less than 20 , then contact HydroTech to assist with a diagnostic to increase the vacuum and request a repair, if needed	-27
Is the system Telemetry operational?		x	If " No ," add comment and contact HydroTech	
Is the knockout drum emptied	х		If "Yes," add how many gallons discharged and where liquid is stored for proper disposal	
Is the system blower operating?		x	If " No ," add comment and contact HydroTech	
What color is the breakthrough detector on GAC drum			If brown color, add comment and contact HydroTech	PINK
Is air being discharged from the system vent?		Х	If " No ," add comment and contact HydroTech	
Are clamps in system piping properly fastened and seals near the blower intact and properly sealed?		х	If " No ," add comment and contact HydroTech	
Are there any holes, cracks, or other physical deficiencies in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	

Are there any blockages in SSDS piping?	х		If " Yes ," add comment and contact HydroTech	
Are vacuum monitoring points TP-4 and TP-5 intact?		Х	If " No ," add comment and contact HydroTech	

This form must be signed, kept on file at the building location and be available on inspection.								
Name of Building Maintenance Personnel Performing Inspection:	SHABAN KOLAR							
Signature of Building Maintenance Personnel Performing Inspection:	S. K							
Date of Inspection:	12 / 28 / 2023							

APPENDIX 7 GAC Influent/Effluent Samples Laboratory Analytical Reports

Technical Report

prepared for:

Hydro Tech Environmental (Brooklyn)

231 West 29th Street, Suite 1104
New York NY, 10001
Attention: Paul Matli

Report Date: 05/04/2023

Client Project ID: 230021 - 107-02 Queens Blvd Queens, NY

York Project (SDG) No.: 23D1527

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	Box 1		
Sit	e Name 107	7-02 Queens Boulevard		
Cit Co	e Address: 1 y/Town: Quounty: Queens e Acreage: (S		
Re	porting Perio	od: January 29, 2023 to January 29, 2024		
			YES	NO
1.	Is the inform	mation above correct?	×	
	If NO, inclu	de handwritten above or on a separate sheet.		
2.		or all of the site property been sold, subdivided, merged, or undergone a nendment during this Reporting Period?	ı X	
3.		peen any change of use at the site during this Reporting Period RR 375-1.11(d))?		X
4.	Have any fe for or at the		×	
	-	wered YES to questions 2 thru 4, include documentation or evideno nentation has been previously submitted with this certification forn		
5.	Is the site c	currently undergoing development?		×
			Box 2	
			YES	NO
6.		ent site use consistent with the use(s) listed below? Residential, Commercial, and Industrial	X	
7.	Are all ICs i	in place and functioning as designed?	I 🗆	
	IF TH	HE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
A	Corrective M	easures Work Plan must be submitted along with this form to address	these iss	ues.
Sig	nature of Ow	vner, Remedial Party or Designated Representative Date		

		Box 2	Α
_		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		×
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	×	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C241196 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u>

3238-44 De Boulevard LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

Institutional Control

IC/EC Plan

O&M Plan

The property may be used for: restricted residential; commercial, industrial.

All ECs must be operated and maintained as specified in this SMP;

All ECs must be inspected at a frequency and in a manner defined in the SMP.

The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the NYCDOH;

All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;

The potential for vapor intrusion must be evaluated for any buildings developed on the site.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

3238-44

Vapor Mitigation

The engineering control is a sub-slab depressurization system (SSDS) for vapor mitigation installed at the site. The SSDS will be operated, monitored and maintained per the SMP.

Box :	5
-------	---

	Periodic Review Report (PRR) Certification Statements
	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	f X
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	f X
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
ļ	Corrective Measures Work Plan must be submitted along with this form to address these issues.
	ignature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C241196

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Rudolf Abramov	at 215-015 Northern Blvd, Bayside, NY 11361	
print name	print business address	',
am certifying as	_LC(Owner or Remedia	l Party)
for the Site named in the Site Details	s Section of this form.	

	EC CERTIFICAT	ONS				
	Professional Engineer Signature Tify that all information in Boxes 4 and 5 are true. I understand that a false statemen ishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. HydroTech Environmental Engineering Geology, DPC print name print business address Certifying as a Professional Engineer for the Owner or Remedial Party, Rendering Certification De Boulevard LLC (Owner or Remedial Party, Rendering Certification Required for PE)					
punishable as a Class "A" misdem	eanor, pursuant to Sec HydroTech Geology, D	tion 210.45 of the Penal Environmental Engi	Law.			
print name		business address	,			
am certifying as a Professional En	gineer for the De Bo	oulevard LLC				
am contrying ac a rivorcocional Ent	Professional Engineer Signature fy that all information in Boxes 4 and 5 are true. I understand that a false stater hable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law HydroTech Environmental Engine Geology, DPC print name print business address ertifying as a Professional Engineer for the Owner or Stamp Professional Engineer, for the Owner or Stamp					
-		-	 Date			

Report Date: 05/04/2023

Client Project ID: 230021 - 107-02 Queens Blvd Queens, NY

York Project (SDG) No.: 23D1527

Hydro Tech Environmental (Brooklyn)

231 West 29th Street, Suite 1104 New York NY, 10001 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on April 26, 2023 and listed below. The project was identified as your project: 230021 - 107-02 Queens Blvd Queens, NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
23D1527-01	IF-1	Soil Vapor	04/26/2023	04/26/2023
23D1527-02	EF-1	Soil Vapor	04/26/2023	04/26/2023
23D1527-03	IF-2	Soil Vapor	04/26/2023	04/26/2023
23D1527-04	EF-2	Soil Vapor	04/26/2023	04/26/2023

General Notes for York Project (SDG) No.: 23D1527

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Och I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 05/04/2023

Client Sample ID: York Sample ID: 23D1527-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:31 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.2	1.722	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 16:43	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.94	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.2	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.3	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.94	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.70	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.17	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	2.6	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
95-63-6	1,2,4-Trimethylbenzene	2.0		ug/m³	0.85	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 16:43	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.3	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.0	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.70	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.80	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.2	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.85	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
106-99-0	1,3-Butadiene	ND		ug/m³	1.1	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.0	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.80	1.722	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 16:43	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.0	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
123-91-1	1,4-Dioxane	ND		ug/m³	1.2	1.722	EPA TO-15 Certifications:	NELAC-NY	05/03/2023 09:00 12058,NJDEP-Queens	05/03/2023 16:43	YR
78-93-3	2-Butanone	4.4		ug/m³	0.51	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 16:43	YR
591-78-6	* 2-Hexanone	ND		ug/m³	1.4	1.722	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 16:43	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 24

Client Sample ID: IF-1

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 23D1527 230021 - 107-02 Queens Blvd Queens, NY Soil Vapor April 26, 2023 10:31 am 04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

York Sample ID:

23D1527-01

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Date/Time Method Prepared		Analyst
107-05-1	3-Chloropropene	ND	ug/m³	2.7	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
108-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.71	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
67-64-1	Acetone	15	ug/m³	0.82	1.722	EPA TO-15	05/03/2023 09:0	0 05/03/2023 16:43	YR
						Certifications:	NELAC-NY12058,NJDEP-Q	ueens	
107-13-1	Acrylonitrile	ND	ug/m³	0.37	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
71-43-2	Benzene	0.94	ug/m³	0.55	1.722	EPA TO-15	05/03/2023 09:0	0 05/03/2023 16:43	YR
						Certifications:	NELAC-NY12058,NJDEP-Q	ueens	
100-44-7	Benzyl chloride	ND	ug/m³	0.89	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
75-27-4	Bromodichloromethane	ND	ug/m³	1.2	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
75-25-2	Bromoform	ND	ug/m³	1.8	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
74-83-9	Bromomethane	ND	ug/m³	0.67	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
75-15-0	Carbon disulfide	ND	ug/m³	0.54	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
56-23-5	Carbon tetrachloride	0.65	ug/m³	0.27	1.722	EPA TO-15	05/03/2023 09:0	0 05/03/2023 16:43	YR
						Certifications:	NELAC-NY12058,NJDEP-Q	ueens	
108-90-7	Chlorobenzene	ND	ug/m³	0.79	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
75-00-3	Chloroethane	ND	ug/m³	0.45	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
67-66-3	Chloroform	32	ug/m³	0.84	1.722	EPA TO-15	05/03/2023 09:0	0 05/03/2023 16:43	YR
						Certifications:	NELAC-NY12058,NJDEP-Q	ueens	
74-87-3	Chloromethane	ND	ug/m³	0.36	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
156-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.17	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.78	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
110-82-7	Cyclohexane	ND	ug/m³	0.59	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
124-48-1	Dibromochloromethane	ND	ug/m³	1.5	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR
75-71-8	Dichlorodifluoromethane	3.0	ug/m³	0.85	1.722	EPA TO-15	05/03/2023 09:0	0 05/03/2023 16:43	YR
						Certifications:	NELAC-NY12058,NJDEP-Q	ueens	
141-78-6	* Ethyl acetate	ND	ug/m³	1.2	1.722	EPA TO-15 Certifications:	05/03/2023 09:0	0 05/03/2023 16:43	YR
100-41-4	Ethyl Benzene	0.90	ug/m³	0.75	1.722	EPA TO-15	05/03/2023 09:0	0 05/03/2023 16:43	YR
						Certifications:	NELAC-NY12058,NJDEP-Q	ueens	
87-68-3	Hexachlorobutadiene	ND	ug/m³	1.8	1.722	EPA TO-15 Certifications:	05/03/2023 09:0 NELAC-NY12058,NJDEP-Qu		YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 5 of 24

Client Sample ID: York Sample ID: 23D1527-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:31 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-63-0	Isopropanol	24		ug/m³	0.85	1.722	EPA TO-15		05/03/2023 09:00	05/03/2023 16:43	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queer	ıs	
80-62-6	Methyl Methacrylate	ND		ug/m³	0.70	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43 s	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.62	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
75-09-2	Methylene chloride	ND		ug/m³	1.2	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
142-82-5	n-Heptane	ND		ug/m³	0.71	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
110-54-3	n-Hexane	ND		ug/m³	0.61	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
95-47-6	o-Xylene	1.3		ug/m³	0.75	1.722	EPA TO-15		05/03/2023 09:00	05/03/2023 16:43	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queer	ns	
179601-23-1	p- & m- Xylenes	3.6		ug/m³	1.5	1.722	EPA TO-15		05/03/2023 09:00	05/03/2023 16:43	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queer	ns	
622-96-8	* p-Ethyltoluene	1.4		ug/m³	0.85	1.722	EPA TO-15		05/03/2023 09:00	05/03/2023 16:43	YR
							Certifications:				
115-07-1	* Propylene	ND		ug/m³	0.30	1.722	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 16:43	YR
100-42-5	Styrene	ND		ug/m³	0.73	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
127-18-4	Tetrachloroethylene	13		ug/m³	1.2	1.722	EPA TO-15		05/03/2023 09:00	05/03/2023 16:43	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queer	ıs	
109-99-9	* Tetrahydrofuran	10		ug/m³	1.0	1.722	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 16:43	YR
108-88-3	Toluene	10		na/m3	0.65	1.722	EPA TO-15		05/03/2023 09:00	05/03/2023 16:43	YR
100-00-3	Totache	2.8		ug/m³	0.65	1.722		NELAC-N	IY12058,NJDEP-Queer		I K
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.68	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.78	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
79-01-6	Trichloroethylene	ND		ug/m³	0.23	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
75-69-4	Trichlorofluoromethane (Freon 11)	1.5		ug/m³	0.97	1.722	EPA TO-15		05/03/2023 09:00	05/03/2023 16:43	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queer	ıs	
108-05-4	Vinyl acetate	ND		ug/m³	0.61	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.75	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.22	1.722	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 16:43	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 6 of 24

Client Sample ID: York Sample ID: 23D1527-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:32 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.2	1.79	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 17:46	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.98	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.2	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.4	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.98	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.72	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.18	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	2.7	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
95-63-6	1,2,4-Trimethylbenzene	1.9		ug/m³	0.88	1.79	EPA TO-15		05/03/2023 09:00	05/03/2023 17:46	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.4	1.79	Certifications: EPA TO-15	NELAC-N	Y12058,NJDEP-Queer 05/03/2023 09:00	05/03/2023 17:46	YR
100-93-4	1,2-Dioromoemane	ND		ug/III	1.4	1.79	Certifications:	NELAC-N	Y12058,NJDEP-Queen		1 K
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.1	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46 s	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.72	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.83	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.3	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.88	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
106-99-0	1,3-Butadiene	ND		ug/m³	1.2	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.1	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.83	1.79	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 17:46	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.1	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46 s	YR
123-91-1	1,4-Dioxane	ND		ug/m³	1.3	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46 s	YR
78-93-3	2-Butanone	31		ug/m³	0.53	1.79	EPA TO-15		05/03/2023 09:00	05/03/2023 17:46	YR
							Certifications:	NELAC-N	Y12058,NJDEP-Queer		
591-78-6	* 2-Hexanone	ND		ug/m³	1.5	1.79	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 17:46	YR
107-05-1	3-Chloropropene	ND		ug/m³	2.8	1.79	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 17:46	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 24

FAX (203) 357-0166

Client Sample ID: EF-1

York Sample ID:

23D1527-02

York Project (SDG) No. 23D1527

<u>Client Project ID</u> 230021 - 107-02 Queens Blvd Queens, NY <u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> April 26, 2023 10:32 am Date Received 04/26/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

1985 1985	CAS N	o. Parameter	Result I	flag Units	Reported to LOQ I	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed Analy	yst
	108-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.73	1.79			3
1971-11-11-11-11-11-11-11-11-11-11-11-11-1	67-64-1	Acetone	21	ug/m³	0.85	1.79	EPA TO-15	05/03/2023 09:00	R
Part							Certifications:	NELAC-NY12058,NJDEP-Queens	
10-14-17 Penzyl Ichloride Panzyl Ichloride	107-13-1	Acrylonitrile	ND	ug/m³	0.39	1.79			3
Part	71-43-2	Benzene	ND	ug/m³	0.57	1.79			3
Part	100-44-7	Benzyl chloride	ND	ug/m³	0.93	1.79			3
Part	75-27-4	Bromodichloromethane	ND	ug/m³	1.2	1.79			R
Part	75-25-2	Bromoform	ND	ug/m³	1.9	1.79		05/03/2023 09:00	R
Part	74-83-9	Bromomethane	ND	ug/m³	0.70	1.79		05/03/2023 09:00	2
108-90-7 Chlorobername 108-90-7 Chloro	75-15-0	Carbon disulfide	ND	ug/m³	0.56	1.79	EPA TO-15	05/03/2023 09:00	R
Part	56-23-5	Carbon tetrachloride	0.56	ug/m³	0.28	1 79			R
Confidence Con					v. <u>-</u> v				
Chloroform 18	108-90-7	Chlorobenzene	ND	ug/m³	0.82	1.79			R
Table Tabl	75-00-3	Chloroethane	ND	ug/m³	0.47	1.79			R
Table Tabl	67-66-3	Chloroform	18	ug/m³	0.87	1.79	EPA TO-15	05/03/2023 09:00	R
							Certifications:	NELAC-NY12058,NJDEP-Queens	
1061-01-5	74-87-3	Chloromethane	ND	ug/m³	0.37	1.79			3
Certifications NEAC-NY12058,NIDEP-Questroom NEAC-NY12058	156-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.18	1.79			3
124-48-1 Dibromochloromethane ND ug/m³ 1.5 1.79 EPA TO-15 05/03/2023 09:00 05/03/2023 17:46 YR	10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.81	1.79			3
Total Tota	110-82-7	Cyclohexane	ND	ug/m³	0.62	1.79			3.
141-78-6 Ethyl acetate ND Ug/m³ 1.3 1.79 EPA TO-15 O5/03/2023 09:00 O5/03/2023 17:46 YR	124-48-1	Dibromochloromethane	ND	ug/m³	1.5	1.79			3.
100-41-4 Ethyl Benzene 1.093 1.79 1.79 EPA TO-15 1.79 1.79 EPA TO-15 1.79 EPA TO-15 1.79 EPA TO-15 1.79 1	75-71-8	Dichlorodifluoromethane	ND	ug/m³	0.89	1.79			3.
R7-68-3 Hexachlorobutadiene ND ug/m³ 1.9 1.79 EPA TO-15 Certifications: NELAC-NY12058,NJDEP-Que-r VR NELAC-NY1	141-78-6	* Ethyl acetate	ND	ug/m³	1.3	1.79		05/03/2023 09:00	R
87-68-3 Hexachlorobutadiene ND ug/m³ 1.9 1.79 EPA TO-15 Certifications: 05/03/2023 09:00 O5/03/2023 17:46 PARCHITICATION OF CONTROL OF CONTROL OF CERTIFICATION OF CONTROL OF CERTIFICATION	100-41-4	Ethyl Benzene	0.93	ug/m³	0.78	1.79	EPA TO-15	05/03/2023 09:00	R
Certifications: Certifications: NELAC-NY12058,NJDEP-Queens September							Certifications:	NELAC-NY12058,NJDEP-Queens	
	87-68-3	Hexachlorobutadiene	ND	ug/m³	1.9	1.79			3
Certifications: NELAC-NY12058,NJDEP-Queens	67-63-0	Isopropanol	26	ug/m³	0.88	1.79	EPA TO-15	05/03/2023 09:00	R
							Certifications:	NELAC-NY12058,NJDEP-Queens	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 8 of 24

Client Sample ID: York Sample ID: 23D1527-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:32 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Note	es:
---------------	-------------	-----

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Date/Time Prepared	Date/Time Analyzed	Analyst
80-62-6	Methyl Methacrylate	ND		ug/m³	0.73	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.65	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
75-09-2	Methylene chloride	ND		ug/m³	1.2	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
142-82-5	n-Heptane	ND		ug/m³	0.73	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
110-54-3	n-Hexane	ND		ug/m³	0.63	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
95-47-6	o-Xylene	1.5		ug/m³	0.78	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46	YR
170(01 22 1	0 V-1			/ 2						MD
179601-23-1	p- & m- Xylenes	3.9		ug/m³	1.6	1.79	EPA TO-15	05/03/2023 09:00	05/03/2023 17:46	YR
	* F4 k l						Certifications:	NELAC-NY12058,NJDEP-Que		
622-96-8	* p-Ethyltoluene	1.5		ug/m³	0.88	1.79	EPA TO-15 Certifications:	05/03/2023 09:00	05/03/2023 17:46	YR
115-07-1	* Propylene	ND		ug/m³	0.31	1.79	EPA TO-15 Certifications:	05/03/2023 09:00	05/03/2023 17:46	YR
100-42-5	Styrene	ND		ug/m³	0.76	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46	YR
127-18-4	Tetrachloroethylene	ND		ug/m³	1.2	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46	YR
109-99-9	* Tetrahydrofuran	100		ug/m³	1.1	1.79	EPA TO-15	05/03/2023 09:00	05/03/2023 17:46	YR
							Certifications:			
108-88-3	Toluene	2.4		ug/m³	0.67	1.79	EPA TO-15	05/03/2023 09:00	05/03/2023 17:46	YR
							Certifications:	NELAC-NY12058,NJDEP-Que	ens	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.71	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.81	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
79-01-6	Trichloroethylene	ND		ug/m³	0.24	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
75-69-4	Trichlorofluoromethane (Freon 11)	1.4		ug/m³	1.0	1.79	EPA TO-15	05/03/2023 09:00	05/03/2023 17:46	YR
							Certifications:	NELAC-NY12058,NJDEP-Que	ens	
108-05-4	Vinyl acetate	ND		ug/m³	0.63	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.78	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.23	1.79	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Quee	05/03/2023 17:46 ns	YR

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 9 of 24

Client Sample ID: York Sample ID: 23D1527-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:30 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Note	<u>::</u>	<u>Sample</u>	Not	es:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.1	1.542	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 18:49	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.84	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.1	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.2	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.84	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.62	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.15	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	2.3	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
95-63-6	1,2,4-Trimethylbenzene	1.7		ug/m³	0.76	1.542	EPA TO-15 Certifications:	NEL AC N	05/03/2023 09:00 IY12058,NJDEP-Queen	05/03/2023 18:49	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.2	1.542	EPA TO-15 Certifications:		05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.93	1.542	EPA TO-15 Certifications:		05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.62	1.542	EPA TO-15 Certifications:		05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.71	1.542	EPA TO-15 Certifications:		05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.1	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.76	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
106-99-0	1,3-Butadiene	ND		ug/m³	1.0	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.93	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.71	1.542	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 18:49	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.93	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
123-91-1	1,4-Dioxane	ND		ug/m³	1.1	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
78-93-3	2-Butanone	2.0		ug/m³	0.45	1.542	EPA TO-15		05/03/2023 09:00	05/03/2023 18:49	YR
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
591-78-6	* 2-Hexanone	ND		ug/m³	1.3	1.542	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 18:49	YR
107-05-1	3-Chloropropene	ND		ug/m³	2.4	1.542	EPA TO-15 Certifications:	NEL AC N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 10 of 24

FAX (203) 357-0166

Client Sample ID: IF-2 **York Sample ID:** 23D1527-03

York Project (SDG) No.

Client Project ID

Matrix Collection Date/Time Date Received

23D1527

230021 - 107-02 Queens Blvd Queens, NY

Soil Vapor

April 26, 2023 10:30 am

04/26/2023

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method: EPA TO15 PREP										
CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	0.63	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
57-64-1	Acetone	7.4		ug/m³	0.73	1.542	EPA TO-15		05/03/2023 09:00	05/03/2023 18:49	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queen	S	
107-13-1	Acrylonitrile	ND		ug/m³	0.33	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
71-43-2	Benzene	1.3		ug/m³	0.49	1.542	EPA TO-15		05/03/2023 09:00	05/03/2023 18:49	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queen	S	
100-44-7	Benzyl chloride	ND		ug/m³	0.80	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
75-27-4	Bromodichloromethane	ND		ug/m³	1.0	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
75-25-2	Bromoform	ND		ug/m³	1.6	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
74-83-9	Bromomethane	ND		ug/m³	0.60	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
75-15-0	Carbon disulfide	ND		ug/m³	0.48	1.542	EPA TO-15 Certifications:		05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
56-23-5	Carbon tetrachloride	0.58		ug/m³	0.24	1.542	EPA TO-15	TILLITE-IT	05/03/2023 09:00	05/03/2023 18:49	YR
		0.50		-9	0.2	1.5.2	Certifications:	NELAC-N	IY12058,NJDEP-Queen		
108-90-7	Chlorobenzene	ND		ug/m³	0.71	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
75-00-3	Chloroethane	ND		ug/m³	0.41	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
7-66-3	Chloroform	56		ug/m³	0.75	1.542	EPA TO-15		05/03/2023 09:00	05/03/2023 18:49	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queen	S	
74-87-3	Chloromethane	ND		ug/m³	0.32	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
56-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.15	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.70	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
10-82-7	Cyclohexane	ND		ug/m³	0.53	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
124-48-1	Dibromochloromethane	ND		ug/m³	1.3	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
75-71-8	Dichlorodifluoromethane	3.1		ug/m³	0.76	1.542	EPA TO-15		05/03/2023 09:00	05/03/2023 18:49	YR
		0.1					Certifications:	NELAC-N	IY12058,NJDEP-Queen	s	
41-78-6	* Ethyl acetate	ND		ug/m³	1.1	1.542	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 18:49	YR
00-41-4	Ethyl Benzene	0.80		ug/m³	0.67	1.542	EPA TO-15		05/03/2023 09:00	05/03/2023 18:49	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queen	s	
37-68-3	Hexachlorobutadiene	ND		ug/m³	1.6	1.542	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queens	05/03/2023 18:49	YR
7-63-0	Isopropanol	18		ug/m³	0.76	1.542	EPA TO-15		05/03/2023 09:00	05/03/2023 18:49	YR
							Certifications:	NELAC-N	IY12058,NJDEP-Queen	5	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 11 of 24

Client Sample ID: York Sample ID: 23D1527-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:30 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	<u>s</u>	sample	: No	<u> tes:</u>

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Date/Time Method Prepared	Date/Time Analyzed	Analyst
80-62-6	Methyl Methacrylate	ND		ug/m³	0.63	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.56	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
75-09-2	Methylene chloride	ND		ug/m³	1.1	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
142-82-5	n-Heptane	ND		ug/m³	0.63	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
110-54-3	n-Hexane	0.71		ug/m³	0.54	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
95-47-6	o-Xylene	1.1		ug/m³	0.67	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
179601-23-1	p- & m- Xylenes	3.2		ug/m³	1.3	1.542	EPA TO-15 Certifications:		05/03/2023 18:49	YR
622-96-8	* p-Ethyltoluene	1.3		ug/m³	0.76	1.542	EPA TO-15 Certifications:	05/03/2023 09:00	05/03/2023 18:49	YR
115-07-1	* Propylene	ND		ug/m³	0.27	1.542	EPA TO-15 Certifications:	05/03/2023 09:00	05/03/2023 18:49	YR
100-42-5	Styrene	ND		ug/m³	0.66	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
127-18-4	Tetrachloroethylene	16		ug/m³	1.0	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
109-99-9	* Tetrahydrofuran	4.0		ug/m³	0.91	1.542	EPA TO-15 Certifications:	05/03/2023 09:00	05/03/2023 18:49	YR
108-88-3	Toluene	2.6		ug/m³	0.58	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.61	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.70	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
79-01-6	Trichloroethylene	0.50		ug/m³	0.21	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
75-69-4	Trichlorofluoromethane (Freon 11)	3.9		ug/m³	0.87	1.542	EPA TO-15 Certifications:		05/03/2023 18:49	YR
108-05-4	Vinyl acetate	ND		ug/m³	0.54	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.67	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.20	1.542	EPA TO-15 Certifications:	05/03/2023 09:00 NELAC-NY12058,NJDEP-Queens	05/03/2023 18:49	YR

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 12 of 24

www.YORKLAB.com (203) 325-1371

Client Sample ID: York Sample ID: 23D1527-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:33 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.2	1.798	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 19:52	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.98	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.2	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.4	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.98	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.73	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.18	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	2.7	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.88	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.4	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.1	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.73	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.83	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.3	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.88	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
106-99-0	1,3-Butadiene	ND		ug/m³	1.2	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.1	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.83	1.798	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 19:52	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.1	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
123-91-1	1,4-Dioxane	ND		ug/m³	1.3	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR
78-93-3	2-Butanone	1.3		ug/m³	0.53	1.798	EPA TO-15		05/03/2023 09:00	05/03/2023 19:52	YR
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
591-78-6	* 2-Hexanone	ND		ug/m³	1.5	1.798	EPA TO-15 Certifications:		05/03/2023 09:00	05/03/2023 19:52	YR
107-05-1	3-Chloropropene	ND		ug/m³	2.8	1.798	EPA TO-15 Certifications:	NELAC-N	05/03/2023 09:00 Y12058,NJDEP-Queen	05/03/2023 19:52	YR

120 RESEARCH DRIVE STRATFORD, CT 06615 • 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 13 of 24

Client Sample ID: York Sample ID:

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:33 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	o. Parameter	Result I	Flag Units	Reported to LOQ	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed An	Analyst
108-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.74	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
67-64-1	Acetone	4.3	ug/m³	0.85	1.798	EPA TO-15	05/03/2023 09:00	YR
						Certifications:	NELAC-NY12058,NJDEP-Queens	
107-13-1	Acrylonitrile	ND	ug/m³	0.39	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
71-43-2	Benzene	ND	ug/m³	0.57	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
100-44-7	Benzyl chloride	ND	ug/m³	0.93	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
75-27-4	Bromodichloromethane	ND	ug/m³	1.2	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
75-25-2	Bromoform	ND	ug/m³	1.9	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
74-83-9	Bromomethane	ND	ug/m³	0.70	1.798	EPA TO-15 Certifications:		YR
75-15-0	Carbon disulfide	ND	ug/m³	0.56	1.798	EPA TO-15 Certifications:		YR
56-23-5	Carbon tetrachloride	ND	ug/m³	0.28	1.798	EPA TO-15 Certifications:	05/03/2023 09:00	YR
108-90-7	Chlorobenzene	ND	ug/m³	0.83	1.798	EPA TO-15		YR
75-00-3	Chloroethane	ND	ug/m³	0.47	1.798	Certifications: EPA TO-15	NELAC-NY12058,NJDEP-Queens 05/03/2023 09:00 05/03/2023 19:52	YR
						Certifications:	NELAC-NY12058,NJDEP-Queens	
67-66-3	Chloroform	29	ug/m³	0.88	1.798	EPA TO-15		YR
						Certifications:	NELAC-NY12058,NJDEP-Queens	
74-87-3	Chloromethane	ND	ug/m³	0.37	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
156-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.18	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.82	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
110-82-7	Cyclohexane	ND	ug/m³	0.62	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
124-48-1	Dibromochloromethane	ND	ug/m³	1.5	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
75-71-8	Dichlorodifluoromethane	3.2	ug/m³	0.89	1.798	EPA TO-15	05/03/2023 09:00	YR
						Certifications:	NELAC-NY12058,NJDEP-Queens	
141-78-6	* Ethyl acetate	ND	ug/m³	1.3	1.798	EPA TO-15 Certifications:	05/03/2023 09:00	YR
100-41-4	Ethyl Benzene	ND	ug/m³	0.78	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
87-68-3	Hexachlorobutadiene	ND	ug/m³	1.9	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03/2023 19:52 NELAC-NY12058,NJDEP-Queens	YR
67-63-0	Isopropanol	23	ug/m³	0.88	1.798	EPA TO-15		YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 14 of 24

23D1527-04

Client Sample ID: York Sample ID: 23D1527-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23D1527230021 - 107-02 Queens Blvd Queens, NYSoil VaporApril 26, 2023 10:33 am04/26/2023

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	<u>:</u>	sample	3 No	<u>tes:</u>

Page 15 of 24

CAS No). Parameter	Result	Flag	Units	Reported to	Dilution	Reference		ate/Time Analyzed	Analyst
80-62-6	Methyl Methacrylate	ND		ug/m³	0.74	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.65	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
75-09-2	Methylene chloride	ND		ug/m³	1.2	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
142-82-5	n-Heptane	ND		ug/m³	0.74	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
110-54-3	n-Hexane	ND		ug/m³	0.63	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
95-47-6	o-Xylene	ND		ug/m³	0.78	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
179601-23-1	p- & m- Xylenes	ND		ug/m³	1.6	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
622-96-8	* p-Ethyltoluene	ND		ug/m³	0.88	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03	3/2023 19:52	YR
115-07-1	* Propylene	ND		ug/m³	0.31	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03	3/2023 19:52	YR
100-42-5	Styrene	ND		ug/m³	0.77	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
127-18-4	Tetrachloroethylene	ND		ug/m³	1.2	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
109-99-9	* Tetrahydrofuran	2.8		ug/m³	1.1	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03	3/2023 19:52	YR
108-88-3	Toluene	ND		ug/m³	0.68	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.71	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.82	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
79-01-6	Trichloroethylene	ND		ug/m³	0.24	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
75-69-4	Trichlorofluoromethane (Freon 11)	3.9		ug/m³	1.0	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
108-05-4	Vinyl acetate	ND		ug/m³	0.63	1.798	EPA TO-15 Certifications:	05/03/2023 09:00 05/03 NELAC-NY12058,NJDEP-Queens	3/2023 19:52	YR
593-60-2	Vinyl bromide	ND		ug/m³	0.79	1.798	EPA TO-15 Certifications:		3/2023 19:52	YR
75-01-4	Vinyl Chloride	ND		ug/m³	0.23	1.798	EPA TO-15 Certifications:		3/2023 19:52	YR

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 1

Analytical Batch Summary

Batch ID: BE30308	Preparation Method:	EPA TO15 PREP	Prepared By:	YR
YORK Sample ID	Client Sample ID	Preparation Date		
23D1527-01	IF-1	05/03/23		
23D1527-02	EF-1	05/03/23		
23D1527-03	IF-2	05/03/23		
23D1527-04	EF-2	05/03/23		
BE30308-BLK1	Blank	05/03/23		
BE30308-BS1	LCS	05/03/23		
BE30308-DUP1	Duplicate	05/03/23		

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratah	RF30308_	EDA	TO 15	DDFD

Trichloroethane	Blank (BE30308-BLK1)				Prepared & Analyzed: 05/03/
Trichlorochame	,1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
2-Ternachbrovechame (Freon ND 0,699 " Tirichlorov-1,2-4-rithorovechame (Freon ND 0,77 " Tirichlorovechame (Freon ND 0,555 " hichlorovechame (Freon ND 0,400 " hichlorovechame (ND 0,400 " Tirichlorovechyleme (ND 0,699 " Tirichlorovechyleme (ND 0,699 " Tirichlorovechyleme (ND 0,699 " Tirichlorovechyleme (ND 0,690 " hichlorovechame (ND 0,600 " hichlorovechame (ND 0,60	,1,1-Trichloroethane	ND			
Trichloroethane inchloroethane inchloroethane inchloroethylene ND 0.099	,1,2,2-Tetrachloroethane	ND	0.69	"	
inchlorochlane inchlo	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.77	"	
inchlorochlane inchlo	3)				
richloroethylene	1,2-Trichloroethane		0.55		
Trimethylbenzene ND 0.49 " bibbromoethane ND 0.60 " bibbromoethane ND 0.60 " bibbroopenzene bibbroopenzene ND 0.40 " bibbroopenzene ND 0.42 " anone ND 0.42 " bibbroopenzene ND 0.41 " bibbroopenzene ND 0.42 " bibroopenzene ND 0.40 " bibroopenzene ND 0.41 " bibroopenzene ND 0.42 " bibroopenzene ND 0.45 " bibroo	-Dichloroethane		0.40	"	
Trimethylbenzene ND	-Dichloroethylene		0.099		
the thoromethane ND			0.74	"	
ichlorobenzene ND 0.60 " ichlorobenzene ND 0.40 " ichlorobenzene ND 0.40 " ichlorobenzene ND 0.46 " ichlorobenzene ND 0.49 " ichlorobenzene ND 0.46 " ichlorobenzene ND 0.66 " ichlorobenzene ND 0.66 " ichlorobenzene ND 0.60 " ichlorobenzene ND 0.82 " ichlorobenzene ND 0.82 " ichlorobenzene ND 0.41 " ichlorobenzene ND 0.41 " ichlorobenzene ND 0.41 " ichlorobenzene ND 0.42 " ichlorobenzene ND 0.43 " ichlorobenzene ND 0.52 " ichlorobenzene ND 0.52 " ichlorobenzene ND 0.60 " ichlorobenzene ND 0.65 " ichlorobenzene ND 0.60 " ichlorobenzene ND 0.44 " ichlorobenzene ND 0.45 " ichlorobenzene ND 0.49 " ichlorobenzene ND 0.4	,4-Trimethylbenzene		0.49	"	
techloroperpane ND 0.40 " techloroperpane ND 0.46 " techloroperpane ND 0.70 " Trimethylbenzene ND 0.70 " trimethylbenzene ND 0.60 " techloroperpane ND 0.72 " anone ND 0.22 " techloroperpane ND 0.60 " thyl-2-pentanone ND 0.41 " thyl-2-pentanone ND 0.41 " thyl-2-pentanone ND 0.41 " thyl-2-pentanone ND 0.42 " techloroperpane ND 0.52 " thyl-2-pentanone ND 0.52 " thyl-2-pentanone ND 0.52 " thyl-2-pentanone ND 0.52 " techloroperpane ND 0.52 " techloroperpane ND 0.52 " techloroperpane ND 0.50 " techloroperpane ND 0.50 " techloroperpane ND 0.50 " thyl-2-pentanone ND 0.50 " thy	-Dibromoethane		0.77	"	
ichloropropane	Dichlorobenzene	ND	0.60	"	
No.	Dichloroethane		0.40		
Trimethylbenzene ND 0.49 " tutadiene ND 0.66 " tutadiene ND 0.66 " ND 0.67 " ND 0.60 " ND 0.62 " ND 0.64 " ND 0.65 " ND 0.64 " ND 0.65 " ND 0.64 " ND 0.65 " ND 0.66 " ND 0.67 " ND 0.69 " ND 0.69 " ND 0.69 " ND 0.69 " ND 0.60 "	Dichloropropane	ND	0.46	"	
utadiene ND 0.66 " hichlorobenzene hichlorobenzene ND 0.60 " hichlorobenzene ND 0.66 " hichlorobenzene ND 0.66 " hichlorobenzene ND 0.60 " hicklorobenzene ND 0.60 " hicklorobenzene ND 0.60 " hicklorobenzene ND 0.62 " hicklorobenzene ND 0.72 " hicklorobenzene ND 0.29 " hicklorobenzene ND 0.83 " hicklorobenzene ND 0.41 " hicklorobenzene ND 0.44 " hicklorobenzene ND 0.44 " hicklorobenzene ND 0.44 " hicklorobenzene ND 0.45 " hicklorobenzene ND 0.45 " hicklorobenzene ND 0.52 " hicklorobenzene ND 0.52 " hicklorobenzene ND 0.67 " hicklorobenzene ND 0.50 " hicklorobenzene ND 0.51 " hicklorobenzene ND 0.50 " hicklorobenzene ND 0.51 " hicklorobenzene ND 0.66 " hicklorobenzene ND 0.67 " hicklorobenzene ND 0.68 " hicklorobenzene ND 0.69 " hicklorobenzene ND 0.44 " hicklorobenzene ND 0.45 " hicklorobenzene ND 0.46 " hicklorobenzene ND 0.47 " hicklorobenzene ND 0.48 " hicklorobenzene ND 0.49 " hicklorobenzene ND 0.40 " hicklorobenzene ND 0.40 " hicklorobenzene ND 0.40 " hicklorob	Dichlorotetrafluoroethane	ND	0.70	"	
decliorobenzene ND 0.60 " declioropopane ND 0.46 " discliorobenzene ND 0.60 " disclarobenzene ND 0.60 " disclarobenzene ND 0.72 " disclarobenzene ND 0.29 " danone ND 0.82 " danone ND 0.82 " danone ND 0.41 " displacement ND 0.41 " displacement ND 0.48 " displacement ND 0.48 " displacement ND 0.52 " displacement ND 0.67 " displacement ND 0.67 " displacement ND 0.31 " displacement ND 0.31 " displacement ND 0.46 " displacement ND	5-Trimethylbenzene	ND	0.49	"	
tichloropropane ND 0.46 " tichlorobanzene ND 0.60 " tickane ND 0.72 " anone ND 0.29 " canone ND 0.82 " corpropene ND 0.41 " tickly1-2-pentanoe ND 0.48 " onitrile ND 0.22 " onitrile ND 0.52 " olchoride ND 0.52 " olchoride ND 0.52 " olchoromethane ND 0.67 " oform ND 0.10 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " obenzene ND 0.26 " oform ND 0.21 " oform ND 0.24 " oform ND 0.49 "	Butadiene	ND	0.66	"	
ND	Dichlorobenzene	ND	0.60	"	
ND 0.72 " " " " " " " " "	Dichloropropane	ND	0.46	"	
canone ND 0.29 " canone ND 0.82 " cropropene ND 0.41 " thyl-2-pentanone ND 0.48 " one ND 0.48 " one ND 0.22 " chee ND 0.32 " ol chloride ND 0.67 " oform ND 1.0 " oform ND 1.0 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " oberazene ND 0.46 " oform ND 0.26 " oform ND 0.21 " oform ND 0.24 " oform ND 0.24 " oform ND 0.49 " oform ND 0.49 " ofbehave N	bichlorobenzene	ND	0.60	"	
stanone ND 0.82 " corpropene ND 1.6 " thyl-2-pentanone ND 0.41 " one ND 0.48 " onitrile ND 0.22 " ene ND 0.52 " cyl chloride ND 0.52 " ofform ND 0.67 " ofform ND 0.10 " onethalane ND 0.31 " on tetrachloride ND 0.16 " obenzene ND 0.46 " octhane ND 0.46 " octhane ND 0.49 " octhane ND 0.49 " octhane ND 0.49 " octhane ND 0.49 " 2-Dichloroethylene ND 0.43 " 3-Dichloropropylene ND 0.85 " <t< td=""><td>bioxane</td><td>ND</td><td>0.72</td><td>"</td><td></td></t<>	bioxane	ND	0.72	"	
ND	anone	ND	0.29	"	
bropropene ND 1.6 " hyl-2-pentanone ND 0.41 " ne ND 0.48 " mittile ND 0.22 " ne ND 0.32 " ne ND 0.32 " ne ND 0.52 " ne ND 0.52 " oldehorded ND 0.67 " ofform ND 1.0 " omethane ND 0.31 " n tetrachloride ND 0.16 " oberane ND 0.46 " oberane ND 0.26 " ofform ND 0.49 " oberane ND 0.49 " oberane ND 0.45 " oblichloroptylene ND 0.45 " oberane ND 0.45 " ordifluoromethane	anone	ND		"	
thyl-2-pentanone me	oropropene		1.6	"	
Description	hyl-2-pentanone	ND		"	
Second S	ne			"	
ND	onitrile			"	
A chloride	ene			"	
odichloromethane ND 0.67 " oform ND 1.0 " omethane ND 0.39 " on disulfide ND 0.31 " on tetrachloride ND 0.16 " obenzene ND 0.46 " octhane ND 0.26 " oform ND 0.49 " omethane ND 0.09 " 3-Dichloroethylene ND 0.45 " 3-Dichloropropylene ND 0.45 " obexane ND 0.34 " mochloromethane ND 0.85 " orodifluoromethane ND 0.49 " acetate ND 0.72 " Benzene ND 0.43 " chlorobutadiene ND 0.49 " opanol ND 0.41 "	yl chloride			"	
offerm ND 1.0 " omethane ND 0.39 " off disulfide ND 0.31 " off tetrachloride ND 0.16 " obenzene ND 0.46 " off thane ND 0.26 " off thane ND 0.49 " off thane ND 0.09 " 2-Dichloroethylene ND 0.09 " 3-Dichloropropylene ND 0.45 " off became ND 0.34 " omochloromethane ND 0.85 " orodifluoromethane ND 0.49 " acetate ND 0.43 " Benzene ND 0.43 " chlorobutadiene ND 0.49 " opanol ND 0.49 " opanol ND 0.41 "	nodichloromethane			"	
comethane ND 0.39 " of disulfide ND 0.31 " of tetrachloride ND 0.16 " obenzene ND 0.46 " obenzene ND 0.26 " ofform ND 0.49 " ofform ND 0.49 " ofform ND 0.21 " ofform ND 0.21 " 2-Dichloroethylene ND 0.099 " 3-Dichloropropylene ND 0.45 " obekane ND 0.34 " omochloromethane ND 0.85 " orodifluoromethane ND 0.49 " acetate ND 0.72 " Benzene ND 0.43 " chlorobutadiene ND 0.49 " oppnol ND 0.41 " oppnol ND 0.41 "<	noform			"	
nd isulfide n tetrachloride n to	nomethane			"	
ND	on disulfide			"	
volenzene ND 0.46 " voethane ND 0.26 " volentane ND 0.49 " vomethane ND 0.099 " 2-Dichloroethylene ND 0.045 " 3-Dichloropropylene ND 0.45 " shexane ND 0.34 " smochloromethane ND 0.85 " orodifluoromethane ND 0.49 " acetate ND 0.43 " Benzene ND 0.43 " chlorobutadiene ND 0.49 " opanol ND 0.41 "	on tetrachloride			"	
rootform ND 0.26 " roofform ND 0.49 " roomethane ND 0.21 " 22-Dichloroethylene ND 0.099 " 3-Dichloropropylene ND 0.45 " shexane ND 0.34 " orodifluoromethane ND 0.85 " orodifluoromethane ND 0.49 " acetate ND 0.72 " Benzene ND 0.43 " chlorobutadiene ND 1.1 " opanol ND 0.49 " yl Methacrylate ND 0.41 "	robenzene			"	
ND	roethane			"	
ND	roform			"	
2-Dichloroethylene				"	
3-Dichloropropylene ND 0.45 " shexane ND 0.34 " smoothloromethane ND 0.85 " orodifluoromethane ND 0.49 " acetate ND 0.72 " Benzene ND 0.43 " chlorobutadiene ND 1.1 " opanol ND 0.49 " yl Methacrylate ND 0.41 "				"	
whexane ND 0.34 " mochloromethane ND 0.85 " orodifluoromethane ND 0.49 " acetate ND 0.72 " Benzene ND 0.43 " chlorobutadiene ND 1.1 " opanol ND 0.49 " yl Methacrylate ND 0.41 "				"	
omochloromethane ND 0.85 " orodifluoromethane ND 0.49 " acetate ND 0.72 " Benzene ND 0.43 " chlorobutadiene ND 1.1 " opanol ND 0.49 " yl Methacrylate ND 0.41 "				"	
orodifluoromethane ND 0.49 " acetate ND 0.72 " Benzene ND 0.43 " chlorobutadiene ND 1.1 " opanol ND 0.49 " yl Methacrylate ND 0.41 "					
acetate					
ND					
chlorobutadiene ND 1.1 " opanol ND 0.49 " yl Methacrylate ND 0.41 "					
opanol ND 0.49 " yl Methacrylate ND 0.41 "					
yl Methacrylate ND 0.41 "					
yr tert-outyr etter (IVLL DE) ND 0.36 "					
ylene chloride ND 0.69 "	thyl tert-butyl ether (MTBE) thylene chloride				

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 17 of 24

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting	_	Spike	Spike Source*		%REC		_	RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	
Batch BE30308 - EPA TO15 PREP												
Blank (BE30308-BLK1)							Prep	pared & Anal	yzed: 05/03/	2023		
n-Heptane	ND	0.41	ug/m³									
n-Hexane	ND	0.35	"									
o-Xylene	ND	0.43	"									
p- & m- Xylenes	ND	0.87	"									
p-Ethyltoluene	ND	0.49	"									
Propylene	ND	0.17	"									
Styrene	ND	0.43	"									
Tetrachloroethylene	ND	0.68	"									
Tetrahydrofuran	ND	0.59	"									
Toluene	ND	0.38	"									
trans-1,2-Dichloroethylene	ND	0.40	"									
trans-1,3-Dichloropropylene	ND	0.45	"									
Trichloroethylene	ND	0.13	"									
Trichlorofluoromethane (Freon 11)	ND	0.56	"									
Vinyl acetate	ND	0.35	"									
Vinyl bromide	ND	0.44	"									
Vinyl Chloride	ND	0.13	"									
LCS (BE30308-BS1)							Prep	pared & Anal	yzed: 05/03/	2023		
1,1,1,2-Tetrachloroethane	11.7		ppbv	10.0		117	70-130					
1,1,1-Trichloroethane	12.1		"	10.0		121	70-130					
1,1,2,2-Tetrachloroethane	11.6		"	10.0		116	70-130					
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	12.5		"	10.0		125	70-130					
1,1,2-Trichloroethane	11.8		"	10.0		118	70-130					
1,1-Dichloroethane	11.2		"	10.0		112	70-130					
1,1-Dichloroethylene	10.9		"	10.0		109	70-130					
1,2,4-Trichlorobenzene	13.8		"	10.0		138	70-130	High Bias				
1,2,4-Trimethylbenzene	11.4		"	10.0		114	70-130					
1,2-Dibromoethane	11.6		"	10.0		116	70-130					
1,2-Dichlorobenzene	12.0		"	10.0		120	70-130					
1,2-Dichloroethane	11.2		"	10.0		112	70-130					
1,2-Dichloropropane	10.8		"	10.0		108	70-130					
1,2-Dichlorotetrafluoroethane	12.1		"	10.0		121	70-130					
1,3,5-Trimethylbenzene	11.2		"	10.0		112	70-130					
1,3-Butadiene	10.3		"	10.0		103	70-130					
1,3-Dichlorobenzene	12.2		"	10.0		122	70-130					
1,3-Dichloropropane	10.9		"	10.0		109	70-130					
1,4-Dichlorobenzene	12.0		"	10.0		120	70-130					
1,4-Dioxane	12.0		"	10.0		120	70-130					
2-Butanone	11.2		"	10.0		112	70-130					
2-Hexanone	10.0		"	10.0		100	70-130					
3-Chloropropene	10.5		"	10.0		105	70-130					
4-Methyl-2-pentanone	9.88		"	10.0		98.8	70-130					
Acetone	10.1		"	10.0		101	70-130					
Acrylonitrile	11.8		"	10.0		118	70-130					
Benzene	12.1		"	10.0		121	70-130					
Benzyl chloride	12.3		"	10.0		123	70-130					

120 RESEARCH DRIVE www.YORKLAB.com

Bromodichloromethane

Bromoform

Bromomethane

Carbon disulfide

12.0 STRATFORD, CT 06615

(203) 325-1371

11.0

12.5

12.5

132-02 89th AVENUE

10.0

10.0

10.0

10.0

RICHMOND HILL, NY 11418

70-130

70-130

70-130

70-130

110

125

125

120

FAX (203) 357-0166

ClientServices@ Page 18 of 24

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch RE30308 - EPA TO15 PREP

LCS (BE30308-BS1)					Prepared & Analyzed: 05/03/2023
Carbon tetrachloride	12.0	ppbv	10.0	120	70-130
Chlorobenzene	12.0	"	10.0	120	70-130
Chloroethane	12.2	"	10.0	122	70-130
Chloroform	12.1	"	10.0	121	70-130
Chloromethane	11.0	"	10.0	110	70-130
eis-1,2-Dichloroethylene	10.9	"	10.0	109	70-130
is-1,3-Dichloropropylene	11.1	"	10.0	111	70-130
Cyclohexane	11.7	"	10.0	117	70-130
ibromochloromethane	11.8	"	10.0	118	70-130
Dichlorodifluoromethane	11.8	"	10.0	118	70-130
Ethyl acetate	11.1	"	10.0	111	70-130
thyl Benzene	11.5	"	10.0	115	70-130
exachlorobutadiene	11.7	"	10.0	117	70-130
sopropanol	11.1	"	10.0	111	70-130
lethyl Methacrylate	11.0	"	10.0	110	70-130
lethyl tert-butyl ether (MTBE)	11.7	"	10.0	117	70-130
lethylene chloride	11.1	"	10.0	111	70-130
Heptane	11.0	"	10.0	110	70-130
Hexane	11.6	"	10.0	116	70-130
Xylene	11.4	"	10.0	114	70-130
- & m- Xylenes	23.2	"	20.0	116	70-130
-Ethyltoluene	11.4	"	10.0	114	70-130
ropylene	10.3	"	10.0	103	70-130
tyrene	12.2	"	10.0	122	70-130
etrachloroethylene	11.6	"	10.0	116	70-130
etrahydrofuran	11.2	"	10.0	112	70-130
oluene	11.0	"	10.0	110	70-130
ans-1,2-Dichloroethylene	11.7	"	10.0	117	70-130
rans-1,3-Dichloropropylene	11.2	"	10.0	112	70-130
richloroethylene	10.6	"	10.0	106	70-130
richlorofluoromethane (Freon 11)	11.9	"	10.0	119	70-130
inyl acetate	9.58	"	10.0	95.8	70-130
inyl bromide	13.1	"	10.0	131	70-130 High Bias
inyl Chloride	9.44	"	10.0	94.4	70-130

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 19 of 24

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Duplicate (BE30308-DUP1)	*Source sample: 231	D1591-06 (D	Prepared: 05/03/2023 Analyzed: 05/04/2023			
,1,1,2-Tetrachloroethane	ND	0.55	ug/m³	ND		25
,1,1-Trichloroethane	ND	0.44	"	ND		25
1,2,2-Tetrachloroethane	ND	0.55	"	ND		25
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	0.74	0.62	"	0.74	0.00	25
13)						
1,2-Trichloroethane	ND	0.44	"	ND		25
1-Dichloroethane	ND	0.33	"	ND		25
1-Dichloroethylene	ND	0.080	"	ND		25
2,4-Trichlorobenzene	ND	0.60	"	ND		25
2,4-Trimethylbenzene	ND	0.40	"	ND		25
2-Dibromoethane	ND	0.62	"	ND		25
2-Dichlorobenzene	ND	0.48	"	ND		25
2-Dichloroethane	ND	0.33	"	ND		25
2-Dichloropropane	ND	0.37	"	ND		25
2-Dichlorotetrafluoroethane	ND	0.56	"	ND		25
3,5-Trimethylbenzene	ND	0.40	"	ND		25
3-Butadiene	ND	0.53	"	ND		25
3-Dichlorobenzene	ND	0.48	"	ND		25
3-Dichloropropane	ND	0.37	"	ND		25
4-Dichlorobenzene	ND	0.48	"	ND		25
4-Dioxane	ND	0.58	"	ND		25
Butanone	0.95	0.24	"	1.2	22.2	25
Hexanone	ND	0.66	"	ND		25
Chloropropene	ND	1.3	"	ND		25
Methyl-2-pentanone	ND	0.33	"	ND		25
cetone	9.0	0.38	"	9.1	1.06	25
crylonitrile	ND	0.17	"	ND		25
enzene	0.67	0.26	"	0.67	0.00	25
enzyl chloride	ND	0.42	"	ND		25
romodichloromethane	ND	0.54	"	ND		25
romoform	ND	0.83	"	ND		25
romomethane	ND	0.31	"	ND		25
arbon disulfide	ND	0.25	"	ND		25
arbon tetrachloride	0.51	0.13	"	0.51	0.00	25
hlorobenzene	ND	0.37	"	ND		25
nloroethane	ND	0.21	"	ND		25
hloroform	ND	0.39	"	ND		25
hloromethane	1.4	0.17	"	1.4	2.41	25
s-1,2-Dichloroethylene	ND	0.080	"	ND		25
s-1,3-Dichloropropylene	ND	0.37	"	ND		25
vclohexane	ND	0.28	"	ND		25
bromochloromethane	ND	0.69	"	ND		25
chlorodifluoromethane	2.8	0.40	"	2.9	1.40	25
hyl acetate	ND	0.58	"	ND		25
hyl Benzene	ND	0.35	"	ND		25
exachlorobutadiene	ND	0.86	"	ND		25
ppropanol	2.8	0.40	"	2.8	0.717	25
ethyl Methacrylate	ND	0.33	"	ND		25
ethyl tert-butyl ether (MTBE)	ND	0.29	"	ND		25
ethylene chloride	0.87	0.56	"	0.87	0.00	25
-Heptane	ND	0.33	"	ND		25

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 20 of 24

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BE30308 - EPA TO15 PREP

Duplicate (BE30308-DUP1)	*Source sample: 23D	1591-06 (Di	uplicate)		Prepared: 05/03/2023 Analyzo	alyzed: 05/04/2023		
n-Hexane	0.48	0.28	ug/m³	0.51	5.71	25		
o-Xylene	ND	0.35	"	ND		25		
p- & m- Xylenes	0.98	0.70	"	1.0	3.51	25		
p-Ethyltoluene	ND	0.40	"	ND		25		
Propylene	ND	0.14	"	ND		25		
Styrene	ND	0.34	"	ND		25		
Tetrachloroethylene	ND	0.55	"	ND		25		
Tetrahydrofuran	ND	0.48	"	ND		25		
Toluene	1.4	0.30	"	1.4	0.00	25		
trans-1,2-Dichloroethylene	ND	0.32	"	ND		25		
trans-1,3-Dichloropropylene	ND	0.37	"	ND		25		
Trichloroethylene	0.61	0.11	"	0.61	0.00	25		
Trichlorofluoromethane (Freon 11)	1.5	0.45	"	1.5	0.00	25		
Vinyl acetate	ND	0.28	"	ND		25		
Vinyl bromide	ND	0.35	"	ND		25		
Vinyl Chloride	ND	0.10	"	ND		25		

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 21 of 24 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

STRATFORD, CT 06615 120 RESEARCH DRIVE www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

Definitions and Other Explanations

*	Analyte is not certified	or the state of the sample	es origination does not	offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOO LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the Reported to LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

Not reported NR

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

STRATFORD, CT 06615 **RICHMOND HILL, NY 11418** 120 RESEARCH DRIVE 132-02 89th AVENUE Page 23 of 24 www YORKI AB com (203) 325-1371 FAX (203) 357-0166 ClientServices@

York Analytical Laboratories, Inc.

120 Research Drive 132-02 89th Ave Queens, Stratford, CT 06615 NY 11418

Field Chain-of-Custody Record - AIR

YORK Project No.

clientservices@yorklab.com www.vorklah.com

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization for YORK to proceed with the analyses requested below:

2301527

AKAKNTIGAL LAMORATORING MIC	.yorkiab.com		sign	ature binds you to YO	RK's Standard Terms &	Conditions	rour	Pageof\
YOUR Information	Repo	rt To:	1	Invoice To:			Project Number	Turn-Around Time
of the tel from fort fee	Company:	ME	Company:	1M G				RUSH - Next Day
231 W ZAH SIC	Address:		Address:	,		730	021	1
North Wa						YOUR	Project Name	RUSH - Two Day
Phone. 621 2 41 2-16	Phone		Phone _			107-0	a Divery Blee	RUSH - Three Day
Contecty 0 1 1 0	Contact		Contact:					RUSH - Four Day
E-mast Y WALL CONTROL	E-mail:		E-mail:			gueen	NyE	Standard (5-7 Day)
Please print clearly and legibly, All information m	ust be complete. Samples will	T				YOUR PO#:	53009	
Please print clearly and legibly. All information m not be logged in and the turn-around-time clock to questions by YORK are resolved.	vill not begin until any	Air Matrix Codes	Samples From	m	Report / El	DD Type (circle se	lections)	YORK Reg. Comp
JONALAN EC	hialds	Al - Indoor Ambient Air AO - Outdoor Amb. Air	New York New Jersey	Summary Re QA Report	Marriedan	CP DQA/DUE	Standard Excel EDD EQuIS (Slandard)	Compared to the following Regulation(s): (please fill in)
Samples Collected by: (print your name	above and sign below	AE - Vapor Extraction Well/	Connecticut	NY ASP A Pa	ackage NJDE	P Reduced Deliv.	NYSDEC EQUIS	
Call Coll		Process Gas/Efficient AS - Soil Vapor/Sub-Slab	Pennsylvania Other	NY ASP B Pa	rocket (description)		NJDEP SRP HazSile	
Certified Canisters: Batch	Individual		Please enter the f	ollowing REQUI	RED Field Data		Reporting Units: ug/m³	ppbv ppmv
Sample Identification	Date/Time Sampled	Air Matrix	Canister Vacuum Before Sampling (in Hg)	Canister Vacuum After Sampling (in Hg)	Canister ID	Flow Cont. ID		Requested
エ(-1	4/26/23 1031	AS	-30	_9	10044		COA To	Requested
FFN	10124	IT	-30	-8'		(3563	HH-10-	1)
TIE	10,30		-70		4 931	1390		
C = 9	10137	11.	-10	$-\gamma$	28302	17-204		
	10.2	V		-10	37382	7081	V	
The state of the s								
		H						
				,				
			7.00 m					
Comments:			- Indiana - Land			l Petection Limits F	Required	Sampling Media
					≤ 1 ug/m		C V1 Limits	6 Liter Canister 4
					Routine S		ther	a control was a control
Samples Relinquished by / Company	Date/Time	Samples Received by / Compan	У	Date/Time		Samples Relinquished by		Tedlar Bag
Bri Gyman	4/14							Cotorrane
Samples Received by / Company	Date/Time	Samples Relinquished by / Com	pany	Date/Time		Samples Received by / Co	mpany	Date/Time
						•		
Samples Relinquisited by / Company	Date/Time	Samples Received by / Company	у	Date/Time		Samples Received in LAB	by .	Date/Time
					,	1 . 7	4	
						again,	and Ju /Yoll	4/26/23 13.40

Technical Report

prepared for:

Hydro Tech Environmental

231 West 29th Street, Suite 1104
New York NY, 10001
Attention: Paul Matli

Report Date: 02/07/2024

Client Project ID: 230063 - 107-02 Queens Blvd., Queens, NY

York Project (SDG) No.: 24A1531

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 02/07/2024

Client Project ID: 230063 - 107-02 Queens Blvd., Queens, NY

York Project (SDG) No.: 24A1531

Hydro Tech Environmental

231 West 29th Street, Suite 1104 New York NY, 10001 Attention: Paul Matli

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on January 29, 2024 and listed below. The project was identified as your project: 230063 - 107-02 Queens Blvd., Queens, NY.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

24A1531-01 IF-1	C-:1 V		
24A1331-01 IF-1	Soil Vapor	01/29/2024	01/29/2024
24A1531-02 EF-1	Soil Vapor	01/29/2024	01/29/2024
24A1531-03 IF-2	Soil Vapor	01/29/2024	01/29/2024
24A1531-04 EF-2	Soil Vapor	01/29/2024	01/29/2024

General Notes for York Project (SDG) No.: 24A1531

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Och I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 02/07/2024

Client Sample ID: York Sample ID: 24A1531-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24A1531230063 - 107-02 Queens Blvd., Queens, NYSoil VaporJanuary 29, 2024 11:46 am01/29/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.0	1.527	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 02:06	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.83	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 02:06	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.0	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.2	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.83	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.62	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.15	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.1	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
95-63-6	1,2,4-Trimethylbenzene	1.1		ug/m³	0.75	1.527	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY03	02/07/2024 02:06	VH
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.2	1.527	EPA TO-15 Certifications:		02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.92	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.62	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 02:06	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.71	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 02:06	VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.1	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.75	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
106-99-0	1,3-Butadiene	ND		ug/m³	1.0	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.92	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.71	1.527	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 02:06	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.92	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
123-91-1	1,4-Dioxane	ND		ug/m³	1.1	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY037	02/07/2024 02:06	VH
78-93-3	2-Butanone	2.7		ug/m³	0.45	1.527	EPA TO-15		02/06/2024 09:00	02/07/2024 02:06	VH
591-78-6	* 2-Hexanone	ND		ug/m³	1.3	1.527	Certifications: EPA TO-15 Certifications:	NELAC-N	Y12058,NJDEP-NY03 02/06/2024 09:00	7 02/07/2024 02:06	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 23

FAX (203) 357-0166

Client Sample ID: IF-1

York Sample ID:

24A1531-01

York Project (SDG) No. 24A1531

<u>Client Project ID</u> 230063 - 107-02 Queens Blvd., Queens, NY <u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> January 29, 2024 11:46 am Date Received 01/29/2024

Log-in Notes:

Sample Notes:

Volatile Organics, EPA TO15 Full List
Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag Units	Reported to	o Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-05-1	3-Chloropropene	ND	ug/m³	2.4	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 (12058,NJDEP-NY03)	02/07/2024 02:06 7	VH
108-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.63	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH
67-64-1	Acetone	18	ug/m³	0.73	1.527	EPA TO-15		02/06/2024 09:00	02/07/2024 02:06	VH
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	37	
107-13-1	Acrylonitrile	ND	ug/m³	0.66	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH
71-43-2	Benzene	1.3	ug/m³	0.49	1.527	EPA TO-15		02/06/2024 09:00	02/07/2024 02:06	VH
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	37	
100-44-7	Benzyl chloride	ND	ug/m³	0.79	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH
75-27-4	Bromodichloromethane	ND	ug/m³	1.0	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH
75-25-2	Bromoform	ND	ug/m³	1.6	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY03	02/07/2024 02:06 7	VH
74-83-9	Bromomethane	ND	ug/m³	0.59	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY03	02/07/2024 02:06 7	VH
75-15-0	Carbon disulfide	ND	ug/m³	0.48	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03/	02/07/2024 02:06 7	VH
56-23-5	Carbon tetrachloride	0.48	ug/m³	0.24	1.527	EPA TO-15		02/06/2024 09:00	02/07/2024 02:06	VH
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	37	
108-90-7	Chlorobenzene	ND	ug/m³	0.70	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH
75-00-3	Chloroethane	ND	ug/m³	0.40	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH
67-66-3	Chloroform	1.5	ug/m³	0.75	1.527	EPA TO-15		02/06/2024 09:00	02/07/2024 02:06	VH
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	37	
74-87-3	Chloromethane	2.8	TO-LCS ug/m ³	0.32	1.527	EPA TO-15		02/06/2024 09:00	02/07/2024 02:06	VH
			-Н			Certifications:	NELAC-N	Y12058,NJDEP-NY03	37	
156-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.15	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY03	02/07/2024 02:06 7	VH
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.69	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03/	02/07/2024 02:06 7	VH
110-82-7	Cyclohexane	ND	ug/m³	0.53	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH
124-48-1	Dibromochloromethane	ND	ug/m³	1.3	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH
75-71-8	Dichlorodifluoromethane	4.1	ug/m³	0.76	1.527	EPA TO-15		02/06/2024 09:00	02/07/2024 02:06	VH
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	37	
141-78-6	* Ethyl acetate	ND	ug/m³	1.1	1.527	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 02:06	VH
100-41-4	Ethyl Benzene	1.3	ug/m³	0.66	1.527	EPA TO-15		02/06/2024 09:00	02/07/2024 02:06	VH
						Certifications:	NELAC-N	Y12058,NJDEP-NY03	37	
87-68-3	Hexachlorobutadiene	ND	ug/m³	1.6	1.527	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 /12058,NJDEP-NY03	02/07/2024 02:06 7	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 5 of 23

Client Sample ID: IF-1 **York Sample ID:** 24A1531-01

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 24A1531 230063 - 107-02 Queens Blvd., Queens, NY January 29, 2024 11:46 am Soil Vapor 01/29/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA TO15 PREP									
CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
67-63-0	Isopropanol	16	В	ug/m³	1.9	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
80-62-6	Methyl Methacrylate	ND		ug/m³	0.63	1.527	EPA TO-15 Certifications: N	02/06/2024 09:00 IELAC-NY12058,NJDEP-NY03	02/07/2024 02:06	VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.55	1.527	EPA TO-15 Certifications: N	02/06/2024 09:00 ELAC-NY12058,NJDEP-NY03	02/07/2024 02:06	VH
75-09-2	Methylene chloride	1.5		ug/m³	1.1	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
142-82-5	n-Heptane	1.0		ug/m³	0.63	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
110-54-3	n-Hexane	1.9		ug/m³	0.54	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
95-47-6	o-Xylene	2.1		ug/m³	0.66	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
179601-23-1	p- & m- Xylenes	5.2		ug/m³	1.3	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
622-96-8	* p-Ethyltoluene	ND		ug/m³	0.75	1.527	EPA TO-15 Certifications:	02/06/2024 09:00	02/07/2024 02:06	VH
115-07-1	* Propylene	ND		ug/m³	0.26	1.527	EPA TO-15 Certifications:	02/06/2024 09:00	02/07/2024 02:06	VH
100-42-5	Styrene	0.85		ug/m³	0.65	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
127-18-4	Tetrachloroethylene	2.8		ug/m³	1.0	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
109-99-9	* Tetrahydrofuran	1.1		ug/m³	0.90	1.527	EPA TO-15 Certifications:	02/06/2024 09:00	02/07/2024 02:06	VH
108-88-3	Toluene	8.4		ug/m³	0.58	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.61	1.527	EPA TO-15 Certifications: N	02/06/2024 09:00 IELAC-NY12058,NJDEP-NY03	02/07/2024 02:06 7	VH
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.69	1.527	EPA TO-15 Certifications: N	02/06/2024 09:00 IELAC-NY12058,NJDEP-NY03	02/07/2024 02:06	VH
79-01-6	Trichloroethylene	ND		ug/m³	0.21	1.527	EPA TO-15 Certifications: N	02/06/2024 09:00 IELAC-NY12058,NJDEP-NY03	02/07/2024 02:06	VH
75-69-4	Trichlorofluoromethane (Freon 11)	2.0		ug/m³	0.86	1.527	EPA TO-15	02/06/2024 09:00	02/07/2024 02:06	VH
							Certifications:	NELAC-NY12058,NJDEP-NY0	37	
108-05-4	Vinyl acetate	ND		ug/m³	0.54	1.527	EPA TO-15 Certifications: N	02/06/2024 09:00 IELAC-NY12058,NJDEP-NY03	02/07/2024 02:06	VH
593-60-2	Vinyl bromide	ND		ug/m³	0.67	1.527	EPA TO-15 Certifications: N	02/06/2024 09:00 IELAC-NY12058,NJDEP-NY03	02/07/2024 02:06	VH
75-01-4	Vinyl Chloride	ND		ug/m³	0.20	1.527	EPA TO-15 Certifications: N	02/06/2024 09:00 IELAC-NY12058,NJDEP-NY03	02/07/2024 02:06	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 6 of 23

Client Sample ID: EF-1 **York Sample ID:** 24A1531-02

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 24A1531 230063 - 107-02 Queens Blvd., Queens, NY Soil Vapor January 29, 2024 11:11 am 01/29/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes: Sa	ample I	<u>No1</u>	tes:
------------------	---------	------------	------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.2	1.679	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 03:09	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.92	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.2	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.3	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.92	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.68	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.17	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.2	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
95-63-6	1,2,4-Trimethylbenzene	2.1		ug/m³	0.83	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY03	02/07/2024 03:09	VH
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.3	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.0	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.68	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.78	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.2	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.83	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
106-99-0	1,3-Butadiene	ND		ug/m³	1.1	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.0	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.78	1.679	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 03:09	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.0	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
123-91-1	1,4-Dioxane	ND		ug/m³	1.2	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH
78-93-3	2-Butanone	9.3		ug/m³	0.50	1.679	EPA TO-15		02/06/2024 09:00	02/07/2024 03:09	VH
							Certifications:	NELAC-NY	/12058,NJDEP-NY03	7	
591-78-6	* 2-Hexanone	ND		ug/m³	1.4	1.679	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 03:09	VH
107-05-1	3-Chloropropene	ND		ug/m³	2.6	1.679	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 03:09	VH

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE (203) 325-1371 www.YORKLAB.com

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 7 of 23

Client Sample ID: EF-1

Sample Prepared by Method: EPA TO15 PREP

York Sample ID: 24A1531-02

York Project (SDG) No. 24A1531

<u>Client Project ID</u> 230063 - 107-02 Queens Blvd., Queens, NY <u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> January 29, 2024 11:11 am Date Received 01/29/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

CAS N	No. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.69	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
67-64-1	Acetone	23	ug/m³	0.80	1.679	EPA TO-15	02/06/2024 09:00	02/07/2024 03:09	VH
						Certifications: NE	ELAC-NY12058,NJDEP-NY03	7	
107-13-1	Acrylonitrile	ND	ug/m³	0.73	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09 7	VH
71-43-2	Benzene	ND	ug/m³	0.54	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
100-44-7	Benzyl chloride	ND	ug/m³	0.87	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
75-27-4	Bromodichloromethane	ND	ug/m³	1.1	1.679	EPA TO-15	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
75-25-2	Bromoform	ND	ug/m³	1.7	1.679	EPA TO-15	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
74-83-9	Bromomethane	ND	ug/m³	0.65	1.679	EPA TO-15	02/06/2024 09:00	02/07/2024 03:09	VH
75-15-0	Carbon disulfide	ND	ug/m³	0.52	1.679	Certifications: NE EPA TO-15	LAC-NY12058,NJDEP-NY03 02/06/2024 09:00	02/07/2024 03:09	VH
						Certifications: NE	LAC-NY12058,NJDEP-NY03	7	
56-23-5	Carbon tetrachloride	0.53	ug/m³	0.26	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 ELAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
108-90-7	Chlorobenzene	ND	ug/m³	0.77	1.679	EPA TO-15	02/06/2024 09:00	02/07/2024 03:09	VH
100 70 7	Chlorochizene	ND	ug/III	0.77	11075		LAC-NY12058,NJDEP-NY03		***
75-00-3	Chloroethane	ND	ug/m³	0.44	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
67-66-3	Chloroform	21	ug/m³	0.82	1.679	EPA TO-15	02/06/2024 09:00	02/07/2024 03:09	VH
						Certifications: NE	ELAC-NY12058,NJDEP-NY03		
74-87-3	Chloromethane	1.1	TO-LCS ug/m³ -H	0.35	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 ELAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
156-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.17	1.679	EPA TO-15	02/06/2024 09:00	02/07/2024 03:09	VH
130-39-2	cis-1,2-Dichioroethylene	ND	ug/III	0.17	1.077		LAC-NY12058,NJDEP-NY03		VII
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.76	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09 7	VH
110-82-7	Cyclohexane	ND	ug/m³	0.58	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09 7	VH
124-48-1	Dibromochloromethane	ND	ug/m³	1.4	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09	VH
75-71-8	Dichlorodifluoromethane	2.9	ug/m³	0.83	1.679	EPA TO-15	02/06/2024 09:00	02/07/2024 03:09	VH
						Certifications: NE	ELAC-NY12058,NJDEP-NY03	7	
141-78-6	* Ethyl acetate	ND	ug/m³	1.2	1.679	EPA TO-15 Certifications:	02/06/2024 09:00	02/07/2024 03:09	VH
100-41-4	Ethyl Benzene	0.95	ug/m³	0.73	1.679	EPA TO-15	02/06/2024 09:00	02/07/2024 03:09	VH
						Certifications: NE	ELAC-NY12058,NJDEP-NY03	7	
87-68-3	Hexachlorobutadiene	ND	ug/m³	1.8	1.679	EPA TO-15 Certifications: NE	02/06/2024 09:00 LAC-NY12058,NJDEP-NY03	02/07/2024 03:09 7	VH

120 RESEARCH DRIVE www.YORKLAB.com

Isopropanol

67-63-0

STRATFORD, CT 06615

380

(203) 325-1371

TO-IPA, ug/m³

B, E

132-02 89th AVENUE

2.1

RICHMOND HILL, NY 11418

NELAC-NY12058,NJDEP-NY037

VH

FAX (203) 357-0166

1.679 EPA TO-15

Certifications:

ClientServices@ Page 8 of 23

Client Sample ID: York Sample ID: 24A1531-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24A1531230063 - 107-02 Queens Blvd., Queens, NYSoil VaporJanuary 29, 2024 11:11 am01/29/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes: Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
80-62-6	Methyl Methacrylate	ND		ug/m³	0.69	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.61	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
75-09-2	Methylene chloride	ND		ug/m³	1.2	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
142-82-5	n-Heptane	ND		ug/m³	0.69	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
110-54-3	n-Hexane	ND		ug/m³	0.59	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
95-47-6	o-Xylene	1.2		ug/m³	0.73	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
179601-23-1	p- & m- Xylenes	4.0		ug/m³	1.5	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
622-96-8	* p-Ethyltoluene	1.4		ug/m³	0.83	1.679	EPA TO-15 Certifications:	02/06/2024 09:00	02/07/2024 03:09	VH
115-07-1	* Propylene	ND		ug/m³	0.29	1.679	EPA TO-15 Certifications:	02/06/2024 09:00	02/07/2024 03:09	VH
100-42-5	Styrene	ND		ug/m³	0.72	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
127-18-4	Tetrachloroethylene	ND		ug/m³	1.1	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
109-99-9	* Tetrahydrofuran	18		ug/m³	0.99	1.679	EPA TO-15 Certifications:	02/06/2024 09:00	02/07/2024 03:09	VH
108-88-3	Toluene	1.8		ug/m³	0.63	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.67	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.76	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
79-01-6	Trichloroethylene	ND		ug/m³	0.23	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
75-69-4	Trichlorofluoromethane (Freon 11)	1.3		ug/m³	0.94	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
108-05-4	Vinyl acetate	ND		ug/m³	0.59	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
593-60-2	Vinyl bromide	ND		ug/m³	0.73	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH
75-01-4	Vinyl Chloride	ND		ug/m³	0.21	1.679	EPA TO-15 Certifications:	02/06/2024 09:00 NELAC-NY12058,NJDEP-NY037	02/07/2024 03:09	VH

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 9 of 23

Client Sample ID: IF-2

York Sample ID:

24A1531-03

York Project (SDG) No. 24A1531

<u>Client Project ID</u> 230063 - 107-02 Queens Blvd., Queens, NY <u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> January 29, 2024 12:00 pm Date Received 01/29/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method Date/Time Prepared		Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.0	1.488	EPA TO-15 Certifications:	02/06/2024 09:0	0 02/07/2024 04:12	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.81	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.0	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.1	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.81	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.60	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.15	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.1	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
95-63-6	1,2,4-Trimethylbenzene	2.4		ug/m³	0.73	1.488	EPA TO-15	02/06/2024 09:0	0 02/07/2024 04:12	VH
							Certifications:	NELAC-NY12058,NJDEP-N		
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.1	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.89	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.60	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.69	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.0	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.73	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
106-99-0	1,3-Butadiene	ND		ug/m³	0.99	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.89	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.69	1.488	EPA TO-15 Certifications:	02/06/2024 09:0	0 02/07/2024 04:12	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.89	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
123-91-1	1,4-Dioxane	ND		ug/m³	1.1	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH
78-93-3	2-Butanone	15		ug/m³	0.44	1.488	EPA TO-15	02/06/2024 09:0	0 02/07/2024 04:12	VH
							Certifications:	NELAC-NY12058,NJDEP-N	Y037	
591-78-6	* 2-Hexanone	ND		ug/m³	1.2	1.488	EPA TO-15 Certifications:	02/06/2024 09:0	0 02/07/2024 04:12	VH
107-05-1	3-Chloropropene	ND		ug/m³	2.3	1.488	EPA TO-15 Certifications:	02/06/2024 09:0 NELAC-NY12058,NJDEP-N		VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 10 of 23

Client Sample ID: IF-2

York Sample ID:

24A1531-03

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

24A1531

230063 - 107-02 Queens Blvd., Queens, NY

Soil Vapor

January 29, 2024 12:00 pm

01/29/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes:

CAS No	o. Parameter	Result	Flag U	J nits	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND	uį	g/m³	0.61	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 04:12	VH
67-64-1	Acetone	40	ug	g/m³	0.71	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	7	
107-13-1	Acrylonitrile	ND	uį	g/m³	0.65	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
71-43-2	Benzene	0.67	ug	g/m³	0.48	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	7	
100-44-7	Benzyl chloride	ND	uį	g/m³	0.77	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
75-27-4	Bromodichloromethane	ND	uį	g/m³	1.0	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 04:12	VH
75-25-2	Bromoform	ND	ug	g/m³	1.5	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 12058,NJDEP-NY037	02/07/2024 04:12	VH
74-83-9	Bromomethane	ND	uį	g/m³	0.58	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
75-15-0	Carbon disulfide	ND	ug	g/m³	0.46	1.488	EPA TO-15 Certifications:		02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
56-23-5	Carbon tetrachloride	0.56	116	g/m³	0.23	1.488	EPA TO-15	NEE/IC-IV	02/06/2024 09:00	02/07/2024 04:12	VH
		0.50		y	0.23	11.00	Certifications:	NELAC-N	Y12058,NJDEP-NY037		
108-90-7	Chlorobenzene	ND	uį	g/m³	0.69	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
75-00-3	Chloroethane	ND	uş	g/m³	0.39	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
67-66-3	Chloroform	19	uş	g/m³	0.73	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	7	
4-87-3	Chloromethane	0.92	TO-LCS ug	g/m³	0.31	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
			-H				Certifications:	NELAC-N	Y12058,NJDEP-NY037	7	
56-59-2	cis-1,2-Dichloroethylene	ND	ug	g/m³	0.15	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
0061-01-5	cis-1,3-Dichloropropylene	ND	ug	g/m³	0.68	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
10-82-7	Cyclohexane	0.51	ug	g/m³	0.51	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	7	
124-48-1	Dibromochloromethane	ND	ug	g/m³	1.3	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
75-71-8	Dichlorodifluoromethane	4.4	ug	g/m³	0.74	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	7	
141-78-6	* Ethyl acetate	ND	uį	g/m³	1.1	1.488	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 04:12	VH
00-41-4	Ethyl Benzene	1.7	ug	g/m³	0.65	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	Y12058,NJDEP-NY037	7	
37-68-3	Hexachlorobutadiene	ND	uş	g/m³	1.6	1.488	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 712058,NJDEP-NY037	02/07/2024 04:12	VH
7 62 0	Isopropanol	20	B ug	g/m³	1.8	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
67-63-0	• •		- ,								

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 11 of 23

Client Sample ID: IF-2

York Sample ID:

24A1531-03

York Project (SDG) No. 24A1531 <u>Client Project ID</u> 230063 - 107-02 Queens Blvd., Queens, NY <u>Matrix</u> Soil Vapor <u>Collection Date/Time</u> January 29, 2024 12:00 pm Date Received 01/29/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

 1 a D	 1	Method:	EDA	TO 15	DDED	

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
80-62-6	Methyl Methacrylate	ND		ug/m³	0.61	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.54	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
75-09-2	Methylene chloride	ND		ug/m³	1.0	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
142-82-5	n-Heptane	0.73		ug/m³	0.61	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	NY12058,NJDEP-NY03		
110-54-3	n-Hexane	ND		ug/m³	0.52	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
95-47-6	o-Xylene	2.2		ug/m³	0.65	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	NY12058,NJDEP-NY03	7	
179601-23-1	p- & m- Xylenes	7.3		ug/m³	1.3	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	NY12058,NJDEP-NY03	7	
622-96-8	* p-Ethyltoluene	1.7		ug/m³	0.73	1.488	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 04:12	VH
115-07-1	* Propylene	ND		ug/m³	0.26	1.488	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 04:12	VH
100-42-5	Styrene	ND		ug/m³	0.63	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
127-18-4	Tetrachloroethylene	8.0		ug/m³	1.0	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	NY12058,NJDEP-NY03	7	
109-99-9	* Tetrahydrofuran	5.5		ug/m³	0.88	1.488	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 04:12	VH
108-88-3	Toluene	22		ug/m³	0.56	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
							Certifications:	NELAC-N	NY12058,NJDEP-NY03	7	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.59	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.68	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
79-01-6	Trichloroethylene	ND		ug/m³	0.20	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
75-69-4	Trichlorofluoromethane (Freon 11)	5.2		ug/m³	0.84	1.488	EPA TO-15		02/06/2024 09:00	02/07/2024 04:12	VH
	,	0.12		C			Certifications:	NELAC-N	NY12058,NJDEP-NY03	7	
108-05-4	Vinyl acetate	ND		ug/m³	0.52	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
593-60-2	Vinyl bromide	ND		ug/m³	0.65	1.488	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH
75-01-4	Vinyl Chloride	ND		ug/m³	0.19	1.488	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 04:12	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 12 of 23

Client Sample ID: York Sample ID: 24A1531-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24A1531230063 - 107-02 Queens Blvd., Queens, NYSoil VaporJanuary 29, 2024 11:11 am01/29/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	<u>:</u>	sample	3 No	<u>tes:</u>

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.3	1.822	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 05:15	VH
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.99	1.822	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.3	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	4.5		ug/m³	1.4	1.822	EPA TO-15 Certifications:	NEL AC-N	02/06/2024 09:00 Y12058,NJDEP-NY03	02/07/2024 05:15	VH
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.99	1.822	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.74	1.822	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.18	1.822	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.4	1.822	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
95-63-6	1,2,4-Trimethylbenzene	2.4		ug/m³	0.90	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY03	02/07/2024 05:15	VH
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.4	1.822	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.1	1.822	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.74	1.822	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.84	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	1.3	1.822	EPA TO-15 Certifications:	NELAC-NY	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.90	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
106-99-0	1,3-Butadiene	ND		ug/m³	1.2	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.1	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.84	1.822	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 05:15	VH
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.1	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
123-91-1	1,4-Dioxane	ND		ug/m³	1.3	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
78-93-3	2-Butanone	12		ug/m³	0.54	1.822	EPA TO-15		02/06/2024 09:00	02/07/2024 05:15	VH
							Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
591-78-6	* 2-Hexanone	ND		ug/m³	1.5	1.822	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 05:15	VH
107-05-1	3-Chloropropene	ND		ug/m³	2.9	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH

120 RESEARCH DRIVE STRATFORD, CT 06615

www.YORKLAB.com (203) 325-1371 ■

132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Client Sample ID: EF-2

York Sample ID:

24A1531-04

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

24A1531

230063 - 107-02 Queens Blvd., Queens, NY

Soil Vapor

January 29, 2024 11:11 am

01/29/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

Part	CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference		Date/Time Analyzed	Analyst
107-13-1	108-10-1	4-Methyl-2-pentanone	ND		ug/m³	0.75	1.822			2/07/2024 05:15	VH
107-11-11 11-20	67-64-1	Acetone	19		ug/m^3	0.87	1.822	EPA TO-15	02/06/2024 09:00 02	2/07/2024 05:15	VH
Part								Certifications:	NELAC-NY12058,NJDEP-NY037		
1904-7 Reary Ichloride ND Signal Signa	107-13-1	Acrylonitrile	ND		ug/m³	0.79	1.822			2/07/2024 05:15	VH
Property of the property of	71-43-2	Benzene	ND		ug/m³	0.58	1.822			2/07/2024 05:15	VH
Part	100-44-7	Benzyl chloride	ND		ug/m³	0.94	1.822			2/07/2024 05:15	VH
Part	75-27-4	Bromodichloromethane	ND		ug/m³	1.2	1.822			2/07/2024 05:15	VH
	75-25-2	Bromoform	ND		ug/m³	1.9	1.822			2/07/2024 05:15	VH
Carbon tetrachloride	74-83-9	Bromomethane	ND		ug/m³	0.71	1.822			2/07/2024 05:15	VH
1989-07 Chlorobanzene ND ug/m' 0.84 1.82 EPA TO-15 0.006024 0900 0.070204 0515 VIII 0.006024 0900 0.070204 0515	75-15-0	Carbon disulfide	ND		ug/m³	0.57	1.822			2/07/2024 05:15	VH
108-90-7 Chlorobenzene ND ug/m² 0.84 1.822 EPA TO-15 Cocifications Colocold 409-00 Colocold 505-15 PA TO-15 Cocifications Chlorobenzene Cocifications Chlorobenz	56-23-5	Carbon tetrachloride	0.46		ug/m³	0.29	1.822	EPA TO-15	02/06/2024 09:00 02	2/07/2024 05:15	VH
Cathologic Cat								Certifications:	NELAC-NY12058,NJDEP-NY037		
Critications	108-90-7	Chlorobenzene	ND		ug/m³	0.84	1.822			2/07/2024 05:15	VH
Certifications Component Certifications Certifica	75-00-3	Chloroethane	ND		ug/m³	0.48	1.822			2/07/2024 05:15	VH
Table Tabl	67-66-3	Chloroform	21		ug/m³	0.89	1.822	EPA TO-15	02/06/2024 09:00 02	2/07/2024 05:15	VH
Fig. 100								Certifications:	NELAC-NY12058,NJDEP-NY037		
156-59-2 cis-1,2-Dichloroethylene ND ug/m³ 0.18 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 10061-01-5 cis-1,3-Dichloropropylene ND ug/m³ 0.83 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 110-82-7 Cyclohexane ND ug/m³ 0.63 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.6 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.6 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.6 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.41-78-6 Ethyl acetate ND ug/m³ 1.3 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.41-78-6 Ethyl Benzene 1.1 ug/m³ 0.79 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.41-78-6 Ethyl Benzene 1.1 ug/m³ 0.79 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.41-78-6 Ethyl Benzene 1.1 ug/m³ 0.79 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.41-78-6 Ethyl Benzene 1.1 ug/m³ 1.9 1.822 EPA TO-15 0.206/2024 09:00 0.207/2024 05:15 NELAC-NY12058,NJDEP-NY037 1.41-78-6 1.	74-87-3	Chloromethane	1.1		ug/m³	0.38	1.822	EPA TO-15	02/06/2024 09:00 02	2/07/2024 05:15	VH
Certifications: NELAC-NY12058,NJDEP-NY037 NELAC-NY12				-H				Certifications:	NELAC-NY12058,NJDEP-NY037		
Certifications: NELAC-NY12058,NJDEP-NY037 Variables Nelac-NY12058,NJDEP-NY037	156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.18	1.822			2/07/2024 05:15	VH
124-48-1 Dibromochloromethane ND ug/m³ 1.6 1.822 EPA TO-15 02/06/2024 09:00 02/07/2024 05:15 V	10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.83	1.822			2/07/2024 05:15	VH
Certifications: NELAC-NY12058,NJDEP-NY037 NELAC-NY1205	110-82-7	Cyclohexane	ND		ug/m³	0.63	1.822			2/07/2024 05:15	VH
141-78-6 * Ethyl acetate ND ug/m³ 1.3 1.822 EPA TO-15 Certifications: NELAC-NY12058,NJDEP-NY037 Volume ND Ug/m³ NELAC-NY12058,NJDEP-NY037 Volume ND Ug/m³ NELAC-NY12058,NJDEP-NY037 ND NY037 ND	124-48-1	Dibromochloromethane	ND		ug/m³	1.6	1.822			2/07/2024 05:15	VH
141-78-6 * Ethyl acetate ND ug/m³ 1.3 1.822 EPA TO-15 O2/06/2024 09:00 O2/07/2024 05:15 V	75-71-8	Dichlorodifluoromethane	4.4		ug/m³	0.90	1.822	EPA TO-15	02/06/2024 09:00 02	2/07/2024 05:15	VH
1.1 1.2								Certifications:	NELAC-NY12058,NJDEP-NY037		
R7-68-3 Hexachlorobutadiene ND ug/m³ 1.9 1.822 EPA TO-15 NELAC-NY12058,NJDEP-NY037 V V V V V V V V V	141-78-6	* Ethyl acetate	ND		ug/m³	1.3	1.822		02/06/2024 09:00 02	2/07/2024 05:15	VH
87-68-3 Hexachlorobutadiene ND ug/m³ 1.9 1.822 EPA TO-15 02/06/2024 09:00 02/07/2024 05:15 V Certifications: NELAC-NY12058,NJDEP-NY037 C67-63-0 Isopropanol 440 TO-IPA, ug/m³ 2.2 1.822 EPA TO-15 02/06/2024 09:00 02/07/2024 05:15 V Certifications: NELAC-NY12058,NJDEP-NY037 V Certificatio	100-41-4	Ethyl Benzene	1.1		ug/m³	0.79	1.822	EPA TO-15	02/06/2024 09:00 02	2/07/2024 05:15	VH
67-63-0 Isopropanol 440 TO-IPA, ug/m³ 2.2 1.822 EPA TO-15 02/06/2024 09:00 02/07/2024 05:15 V								Certifications:	NELAC-NY12058,NJDEP-NY037		
D.D.	87-68-3	Hexachlorobutadiene	ND		ug/m³	1.9	1.822			2/07/2024 05:15	VH
B, E Certifications: NELAC-NY12058,NJDEP-NY037	67-63-0	Isopropanol	440		ug/m^3	2.2	1.822	EPA TO-15	02/06/2024 09:00 02	2/07/2024 05:15	VH
				B, E				Certifications:	NELAC-NY12058,NJDEP-NY037		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 14 of 23

Client Sample ID: EF-2 York Sample ID: 24A1531-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24A1531230063 - 107-02 Queens Blvd., Queens, NYSoil VaporJanuary 29, 2024 11:11 am01/29/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes: Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
80-62-6	Methyl Methacrylate	ND		ug/m³	0.75	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.66	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
75-09-2	Methylene chloride	ND		ug/m³	1.3	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
142-82-5	n-Heptane	ND		ug/m³	0.75	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
110-54-3	n-Hexane	ND		ug/m³	0.64	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
95-47-6	o-Xylene	1.6		ug/m³	0.79	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY03'	02/07/2024 05:15	VH
179601-23-1	p- & m- Xylenes	4.8		ug/m³	1.6	1.822	EPA TO-15 Certifications:		02/06/2024 09:00 Y12058,NJDEP-NY03	02/07/2024 05:15	VH
622-96-8	* p-Ethyltoluene	1.3		ug/m³	0.90	1.822	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 05:15	VH
115-07-1	* Propylene	ND		ug/m³	0.31	1.822	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 05:15	VH
100-42-5	Styrene	ND		ug/m³	0.78	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
127-18-4	Tetrachloroethylene	ND		ug/m³	1.2	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
109-99-9	* Tetrahydrofuran	20		ug/m³	1.1	1.822	EPA TO-15 Certifications:		02/06/2024 09:00	02/07/2024 05:15	VH
108-88-3	Toluene	1.9		ug/m³	0.69	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY03	02/07/2024 05:15	VH
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.72	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.83	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
79-01-6	Trichloroethylene	ND		ug/m³	0.24	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
75-69-4	Trichlorofluoromethane (Freon 11)	4.8		ug/m³	1.0	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY03'	02/07/2024 05:15 7	VH
108-05-4	Vinyl acetate	ND		ug/m³	0.64	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
593-60-2	Vinyl bromide	ND		ug/m³	0.80	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH
75-01-4	Vinyl Chloride	ND		ug/m³	0.23	1.822	EPA TO-15 Certifications:	NELAC-N	02/06/2024 09:00 Y12058,NJDEP-NY037	02/07/2024 05:15	VH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 15 of 23

Analytical Batch Summary

Batch ID: BB40437	Preparation Method:	EPA TO15 PREP	Prepared By:	VH
YORK Sample ID	Client Sample ID	Preparation Date		
24A1531-01	IF-1	02/06/24		
24A1531-02	EF-1	02/06/24		
24A1531-03	IF-2	02/06/24		
24A1531-04	EF-2	02/06/24		
BB40437-BLK1	Blank	02/06/24		
BB40437-BS1	LCS	02/06/24		

ClientServices@

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch RR40437 - FPA TO15 PRFP	

Blank (BB40437-BLK1)				Prepared &
1,1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
1,1,1-Trichloroethane	ND	0.55	"	
1,1,2,2-Tetrachloroethane	ND	0.69	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.77	"	
113)				
1,1,2-Trichloroethane	ND	0.55	"	
1,1-Dichloroethane	ND	0.40	"	
1,1-Dichloroethylene	ND	0.099	"	
1,2,4-Trichlorobenzene	0.74	0.74	"	
1,2,4-Trimethylbenzene	ND	0.49	"	
1,2-Dibromoethane	ND	0.77	"	
1,2-Dichlorobenzene	ND	0.60	"	
,2-Dichloroethane	ND	0.40	"	
,2-Dichloropropane	ND	0.46	"	
1,2-Dichlorotetrafluoroethane	ND	0.70	"	
,3,5-Trimethylbenzene	ND	0.49	"	
,3-Butadiene	ND	0.66	"	
,3-Dichlorobenzene	ND	0.60	"	
,3-Dichloropropane	ND	0.46	"	
,4-Dichlorobenzene	ND	0.60	"	
,4-Dioxane	ND	0.72	"	
2-Butanone	ND	0.29	"	
-Hexanone	ND	0.82	"	
-Chloropropene	ND	1.6	"	
-Methyl-2-pentanone	ND	0.41	"	
Acetone	ND	0.48	"	
crylonitrile	0.35	0.22	"	
Benzene	ND	0.32	"	
Benzyl chloride	ND	0.52	"	
Bromodichloromethane	ND	0.67	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	0.39	"	
arbon disulfide	ND	0.31	"	
arbon tetrachloride	ND	0.16	"	
Chlorobenzene	ND	0.46	"	
Chloroethane	ND	0.26	"	
Chloroform	ND	0.49	"	
Chloromethane	ND	0.21	"	
is-1,2-Dichloroethylene	ND	0.099	"	
cis-1,3-Dichloropropylene	ND	0.45	"	
Cyclohexane	ND	0.34	"	
Dibromochloromethane	ND	0.85	"	
Dichlorodifluoromethane	ND	0.49	"	
Ethyl acetate	ND	0.72	"	
Ethyl Benzene	ND	0.43	"	
Hexachlorobutadiene	ND	1.1	"	
Isopropanol	0.69	0.49	,,	
Methyl Methacrylate	ND	0.49	"	
Methyl tert-butyl ether (MTBE)	ND ND	0.41	,,	
Methylene chloride	ND	0.50	"	

120 RESEARCH DRIVE STRATFORD, CT 06615

(203) 325-1371

www.YORKLAB.com

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40437 - EPA TO15 PREP											
Blank (BB40437-BLK1)							Pre	pared & Anal	yzed: 02/06/	2024	
n-Heptane	ND	0.41	ug/m³								
n-Hexane	ND	0.35	"								
o-Xylene	ND	0.43	"								
p- & m- Xylenes	ND	0.87	"								
p-Ethyltoluene	ND	0.49	"								
Propylene	ND	0.17	"								
Styrene	ND	0.43	"								
Tetrachloroethylene	ND	0.68	"								
Tetrahydrofuran	ND	0.59	"								
Toluene	ND	0.38	"								
trans-1,2-Dichloroethylene	ND	0.40	"								
trans-1,3-Dichloropropylene	ND	0.45	"								
Trichloroethylene	ND	0.13	"								
Trichlorofluoromethane (Freon 11)	ND	0.56	"								
Vinyl acetate	ND	0.35	"								
Vinyl bromide	ND	0.44	"								
Vinyl Chloride	ND	0.13	"								
LCS (BB40437-BS1)							Pre	pared & Anal	yzed: 02/06/	2024	
1,1,1,2-Tetrachloroethane	10.8		ppbv	10.0		108	70-130				
1,1,1-Trichloroethane	9.81		"	10.0		98.1	70-130				
1,1,2,2-Tetrachloroethane	10.8		"	10.0		108	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.9		"	10.0		109	70-130				
113)											
1,1,2-Trichloroethane	10.4		"	10.0		104	70-130				
1,1-Dichloroethane	11.0		"	10.0		110	70-130				
1,1-Dichloroethylene	11.5		"	10.0		115	70-130				
1,2,4-Trichlorobenzene	9.73		"	10.0		97.3	70-130				
1,2,4-Trimethylbenzene	10.6		"	10.0		106	70-130				
1,2-Dibromoethane	9.95		"	10.0		99.5	70-130				
1,2-Dichlorobenzene	9.62		"	10.0		96.2	70-130				
1,2-Dichloroethane	10.6		"	10.0		106	70-130				
1,2-Dichloropropane	11.1		"	10.0		111	70-130	TI' I D'			
1,2-Dichlorotetrafluoroethane	14.3			10.0		143	70-130	High Bias			
1,3,5-Trimethylbenzene	10.2		"	10.0		102	70-130	II. 1 D.			
1,3-Butadiene	15.9		"	10.0		159	70-130	High Bias			
1,3-Dichlorobenzene	10.1		.,	10.0		101	70-130				
1,3-Dichloropropane	10.9		,,	10.0		109	70-130				
1,4-Dichlorobenzene 1,4-Dioxane	10.1		,,	10.0		101	70-130				
	8.50		,,	10.0		85.0	70-130				
2-Butanone 2-Hexanone	9.55		,,	10.0		95.5	70-130				
3-Chloropropene	9.87		,,	10.0		98.7	70-130				
	10.2		,,	10.0		102	70-130				
4-Methyl-2-pentanone Acetone	10.1		"	10.0		101	70-130				
	10.6		,,	10.0		106	70-130				
Acrylonitrile Benzene	8.75		"	10.0		87.5	70-130				
Benzyl chloride	9.64		,,	10.0		96.4	70-130				
-	11.9		"	10.0		119	70-130				
Bromodichloromethane Bromoform	11.4		"	10.0		114	70-130				
	11.0		"	10.0		110	70-130				
Bromomethane Carbon disulfide	11.1		,,	10.0		111	70-130				
Carbon disumde	9.73		"	10.0		97.3	70-130				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 18 of 23 ClientServices@

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BB40437	- FPA	TO15	PRFP

LCS (BB40437-BS1)					Pre	pared & Analyzed: 02/06/2024
Carbon tetrachloride	11.1	ppbv	10.0	111	70-130	
Chlorobenzene	10.8	"	10.0	108	70-130	
Chloroethane	11.4	"	10.0	114	70-130	
Chloroform	10.4	"	10.0	104	70-130	
Chloromethane	14.2	"	10.0	142	70-130	High Bias
sis-1,2-Dichloroethylene	9.64	"	10.0	96.4	70-130	
is-1,3-Dichloropropylene	10.2	"	10.0	102	70-130	
Cyclohexane	9.97	"	10.0	99.7	70-130	
Dibromochloromethane	10.3	"	10.0	103	70-130	
Dichlorodifluoromethane	12.6	"	10.0	126	70-130	
Ethyl acetate	9.37	"	10.0	93.7	70-130	
Ethyl Benzene	11.5	"	10.0	115	70-130	
Hexachlorobutadiene	9.01	"	10.0	90.1	70-130	
sopropanol	9.07	"	10.0	90.7	70-130	
Methyl Methacrylate	10.5	"	10.0	105	70-130	
Methyl tert-butyl ether (MTBE)	10.2	"	10.0	102	70-130	
Methylene chloride	10.9	"	10.0	109	70-130	
-Heptane	10.3	"	10.0	103	70-130	
-Hexane	10.8	"	10.0	108	70-130	
-Xylene	11.1	"	10.0	111	70-130	
- & m- Xylenes	23.2	"	20.0	116	70-130	
-Ethyltoluene	11.4	"	10.0	114	70-130	
ropylene	12.1	"	10.0	121	70-130	
tyrene	10.5	"	10.0	105	70-130	
etrachloroethylene	8.71	"	10.0	87.1	70-130	
etrahydrofuran	9.56	"	10.0	95.6	70-130	
oluene	10.3	"	10.0	103	70-130	
rans-1,2-Dichloroethylene	10.9	"	10.0	109	70-130	
ans-1,3-Dichloropropylene	9.90	"	10.0	99.0	70-130	
richloroethylene	11.2	"	10.0	112	70-130	
richlorofluoromethane (Freon 11)	11.2	"	10.0	112	70-130	
inyl acetate	8.53	"	10.0	85.3	70-130	
inyl bromide	10.8	"	10.0	108	70-130	
inyl Chloride	16.0	"	10.0	160	70-130	High Bias

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 19 of 23 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-LCS-H The result reported for this compound may be biased high due to its behavior in the analysis batch LCS where it recovered greater

than 130% of the expected value.

TO-IPA The value for isopropanol is estimated. Dilutions are not conducted for this species as not to preclude actionable analytes by

dilution.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is

considered an estimate.

B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab

contaminants.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon

NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect.

This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99%

confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200

series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the

LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile

target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to

either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

STRATFORD, CT 06615

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 21 of 23

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 22 of 23

York Analytical Laboratories, Inc.

120 Research Drive Stratford, CT 06615 132-02 89th Ave Queens, NY 11418

Field Chain-of-Custody Record - AIR

YOR	(Pro	oject	No.	
2	1	1	15	3
20	11	1	10	1

clientservices@yorklab.com

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document.

AMALYTICAL DARGEATORIES INC	ww.yorklab.com	This document serves a	signatu	re binds you to YOR	K's Standard Terms & 0		Tour.	Page of
YOUR Information	Repor	t To:	Invoice To:			YOUR P	Turn-Around Time	
Company to hat a Guy - Gul	Company:	IF	Company: SAME			230	RUSH - Next Day	
Address: 98 1 98 CT	Address:		Address:			1.00		RUSH - Two Day
231 W 21 3N						YOUR	Project Name Gueens Blek	RUSH - Three Day
Phone: 621 9 1 2 2161	Phone.:		Phone.:			107-02	Queens (Stell	RUSH - Four Day
Contact: 0 C C C C	Contact:		Contact:			Reverse	1/4	Standard (5-7 Day)
E-mail: Part 1 at 6	E-mail:		E-mail:	+		YOUR PO#:	-0069	
Please print clearly and legibly. All informati	on must be complete. Samples will	Air Matrix Codes	Samples From		Report / FI	D Type (circle sel	ections)	YORK Reg. Comp.
not be logged in and the turn-around-time cl questions by YORK are resolved.	lock will not begin until any	Al - Indoor Ambient Air	New York	Summary Rep			Standard Excel EDD>	Compared to the following
Darolan C	1 1			QA Report		P DQA/DUE	EQuIS (Standard)	Regulation(s): (please fill in)
Samples Collected by: (print you	1 was about and sign below	AO - Outdoor Amb. Air	New Jersey		10 20010000		NYSDEC EQuIS	
Samples Collected by, (print you	Thanne above and sign below)	AE - Vapor Extraction Well/ Process Gas/Effluent	Connecticut	NY ASP A Pac		P Reduced Deliv.		
		AS - Soil Vapor/Sub-Slab	Pennsylvania Other	NY ASP B Pag	ckage NJDK	QP	NJDEP SRP HazSite	
	/	1.000-10-10-10-10-10-10-10-10-10-10-10-10-		Other:			Reporting Units: ug/m³	ppbv ppmv
Certified Canisters: Batch	Individual		Please enter the fo			3	A COMPANIE CONTRACTOR OF THE PARTY OF THE PA	The state of the s
Sample Identification	Date/Time Sampled	Air Matrix	Canister Vacuum Before Sampling (in Hg)	Canister Vacuum After Sampling (in 1g)	Canister ID	Flow Cont. ID	Analysis I	Requested
IF-)	1/29/24 11:46	AS	-30	27781	191402	- 5	GPA-TO-15	
EF-1	1131		-30	23799	19414	-6		
IE-2	12:00		-35	18306	7269	- 6		
FF2	11:11	1	-30	28850	12185	- 6	V	
				~		/		
							•	
Comments:						Detection Limits I	Required	Sampling Media
<u> </u>					≤ 1 ug/m		EC/V1 Limits	6 Liter Canister
				1	/ Routine S		Other	Tedlar Bag
Samples Relinquished by / Company	Date/Time	Samples Received by / Compa	iny 1	Date/Time	4	Samples Relinquished by		Date/Time
Change Change	1/29	0.11.0	(AB)	120	120173	W// /		
ples Received by / Company	Date/Time	Samples Relinquished by 7 Coo	mpany JTVI	Date/Time	0110	Samples Received by 10	ompany	Date/Time
						/		
Page			Ef			A		DeterTime
Sples Relinquished by / Company	Date/Time	Samples Received by / Compa	ny	Date/Time	=	Samples Received in/LAI	S Dy	Date/Time 01 10 15/0
o						TONE	142 m /f2	9124 1510

APPENDIX 8 EC/IC Inspection and Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Site Management Periodic Review Report Notice
Institutional and Engineering Controls Certification Form

Sit	e No.	Site Details C241196	Box 1	
Sit	e Name 10	7-02 Queens Boulevard		
City	e Address: y/Town: Qu unty: Queen e Acreage:	ns		
Re	porting Perio	od: January 29, 2023 to January 29, 2024		
			YES	NO
1.	Is the inform	mation above correct?	X	
	If NO, inclu	ude handwritten above or on a separate sheet.		
2.		or all of the site property been sold, subdivided, merged, or undergonendment during this Reporting Period?	ne a 🛚 🗷	
3.		been any change of use at the site during this Reporting Period CRR 375-1.11(d))?		×
4.	•	federal, state, and/or local permits (e.g., building, discharge) been iss e property during this Reporting Period?	sued	×
		wered YES to questions 2 thru 4, include documentation or evid mentation has been previously submitted with this certification		
5.	Is the site of	currently undergoing development?		X
			Box 2	
			YES	NO
6.		ent site use consistent with the use(s) listed below? -Residential, Commercial, and Industrial	×	
7.	Are all ICs	in place and functioning as designed?	X 🗆	
	IF TH	HE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date be DO NOT COMPLETE THE REST OF THIS FORM. Otherwise contin		
AC	Corrective M	leasures Work Plan must be submitted along with this form to addr	ess these iss	sues.
 Sig	nature of Ow	wner, Remedial Party or Designated Representative D	ate	

'		Box 2	A
_		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		×
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	×	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C241196 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u>

3238-44 De Boulevard LLC

Institutional Control

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

O&M Plan

The property may be used for: restricted residential; commercial, industrial.

All ECs must be operated and maintained as specified in this SMP;

All ECs must be inspected at a frequency and in a manner defined in the SMP.

The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the NYCDOH;

All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;

The potential for vapor intrusion must be evaluated for any buildings developed on the site.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

3238-44

Vapor Mitigation

The engineering control is a sub-slab depressurization system (SSDS) for vapor mitigation installed at the site. The SSDS will be operated, monitored and maintained per the SMP.

Box 5

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;	
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 	
	YES NO	
	f X	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	\mathbf{X}	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
4	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
-	Signature of Owner, Remedial Party or Designated Representative Date	

DocuSian Envelope	ID: 272F1B72	_R4A5_4930_	A98R_74R92C51	.360F

IC CERTIFICATIONS SITE NO. C241196

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Rudolf Abramov	at 215-015 Northern Blvd, Bayside, NY 11361				
print name	print business address				
am certifying as De Boulevard LL	_C(Owner or Remedial Party)				
for the Site named in the Site Details S	Section of this form.				
Rudolf abramou	2/12/2024				
Signature of Owner, Remedial Party, of Rendering Certification	or Designated Representative Date				

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at 231 West 29th Street, New York, NY 10001 print business address Tarek Z. Khouri print name

am certifying as a Professional Engineer for the $\underline{\underline{De\ Boulevard\ LLC}}$

(Owner or Remedial Party)

6-14-2024 Stamp

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

(Required for PE)

Date