APPENDIX E OER

Remedial Action

Workplan

Remedial Action Work Plan

NYC VCP Project Number 17CVCP044Q OER Project Number 17TMP0097Q

Prepared For:

Chung Lam Hillside 168 Inc 148-28 Hillside Avenue Jamaica, NY 11435

Prepared By: Advanced Cleanup Technologies, Inc. 110 Main Street, Suite 103 Port Washington, NY 11050 (516) 441-5800

February 2017

REMEDIAL ACTION WORK PLAN TABLE OF CONTENTS

FIGURES

Figure 1: Locational Diagram

Figure 2: Sampling Diagram

Figure 3: Exceedances in Shallow Soil Borings

Figure 4: Exceedances in Soil Vapor

Figure 5: Proposed Endpoint Sample Locations

Figure 6: Redevelopment Plans

Figure 7: Truck Route Map

TABLES

Table 1: Volatile Organic Compounds in Soil (µg/kg-dry)

Table 2: Semi-Volatile Organic Compounds in Soil (µg/kg-dry)

Table 3: PCBs and Pesticides in Soil (mg/kg-dry)

Table 4: Metals in Soil (mg/kg-dry)

Table 5: Volatile Organic Compounds in Water (µg/L)

Table 6: Semi-Volatile Organic Compounds in Water (µg/L)

Table 7: Pesticides and PCBs in Water (μ g/L)

Table 8: Metals in Water (μ g/L)

Table 9: Volatile Organic Compounds in Soil Vapor (µg/m³)

APPENDICES

Appendix 1: Citizen Participation Plan

Appendix 2: Sustainability Statement

Appendix 3: Soil/Materials Management Plan

Appendix 4: Construction Health and Safety Plan

Appendix 5: Manufacturer's Specifications of Vapor Barrier

LIST OF ACRONYMS

Acronym	Definition		
AOC	Area of Concern		
AS/SVE	Air Sparging/Soil Vapor Extraction		
BOA	Brownfield Opportunity Area		
CAMP	Community Air Monitoring Plan		
C&D	Construction and Demolition		
CEQR	City Environmental Quality Review		
CFR	Code of Federal Regulations		
CHASP	Construction Health and Safety Plan		
COC	Certificate of Completion		
CQAP	Construction Quality Assurance Plan		
CSOP	Contractors Site Operation Plan		
DCR	Declaration of Covenants and Restrictions		
ECs/ICs	Engineering Controls and Institutional Controls		
ELAP	Environmental Laboratory Accreditation Program		
HASP	Health and Safety Plan		
HAZWOPER	Hazardous Waste Operations Emergency Response		
IRM	Interim Remedial Measure		
MNA	Monitored Natural Attenuation		
NOC	Notice of Completion		
NYS DEC	New York State Department of Environmental Conservation		
NYC DEP	New York City Department of Environmental Protection		
NYC DOHMH	New York State Department of Health and Mental Hygiene		
NYC OER	New York City Office of Environmental Remediation		
NYC VCP	New York City Voluntary Cleanup Program		
NYCRR	New York Codes Rules and Regulations		
NYS DEC	New York State Department of Environmental Conservation		
NYS DEC DER	New York State Department of Environmental Conservation Division of Environmental Remediation		

NYS DOH	New York State Department of Health		
NYS DOT	New York State Department of Transportation		
ORC	Oxygen-Release Compound		
OSHA	United States Occupational Health and Safety Administration		
PCBs	Polychlorinated Biphenyls		
PE	Professional Engineer		
PID	Photo Ionization Detector		
QEP	Qualified Environmental Professional		
QHHEA	Qualitative Human Health Exposure Assessment		
RAOs	Remedial Action Objectives		
RAR	Remedial Action Report		
RAWP	Remedial Action Work Plan or Plan		
RCA	Recycled Concrete Aggregate		
RD	Remedial Design		
RI	Remedial Investigation		
RMZ	Residual Management Zone		
SCOs	Soil Cleanup Objectives		
SCG	Standards, Criteria and Guidance		
SMP	Site Management Plan		
SPDES	State Pollutant Discharge Elimination System		
SSDS	Sub-Slab Depressurization System		
SVOC	Semi-Volatile Organic Compound		
TAL	Target Analyte List		
TCL	Target Compound List		
USGS	United States Geological Survey		
UST	Underground Storage Tank		
VCA	Voluntary Cleanup Agreement		
VOC	Volatile Organic Compound		

CERTIFICATION

I, Andrew Levenbaum, am currently a registered professional engineer licensed by the State of New York. I performed professional engineering services and had primary direct responsibility for designing the remedial program for the site located at 148-28 Hillside Avenue, Jamaica, New York, OER site number 17TMP0097Q. I certify to the following:

- I have reviewed this document and the Stipulation List, to which my signature and seal are affixed.
- Engineering Controls developed for this remedial action were designed by me or a person under my direct supervision and designed to achieve the goals established in this Remedial Action Work Plan for this site.
- The Engineering Controls to be constructed during this remedial action are accurately reflected in the text and drawings of the Remedial Action Work Plan and are of sufficient detail to enable proper construction.
- This Remedial Action Work Plan (RAWP) has a plan for handling, transport and disposal of soil, fill, fluids and other materials removed from the property in accordance with applicable City, State and Federal laws and regulations. Importation of all soil, fill and other material from off-Site will be in accordance with all applicable City, State and Federal laws and requirements. This RAWP has provisions to control nuisances during the remediation and all invasive work, including dust and odor suppression.

Name	
	PE Stamp
PE License Number	
Signature	
Date	

I, Paul P. Stewart, am a qualified Environmental Professional. I will have primary direct responsibility for implementation of the remedial program for the site located at 148-28 Hillside Avenue, Jamaica, New York, OER site number 17TMP0097Q. I certify to the following:

This Remedial Action Work Plan (RAWP) has a plan for handling, transport and disposal of soil, fill, fluids
and other materials removed from the property in accordance with applicable City, State and Federal laws
and regulations. Importation of all soil, fill and other material from off-Site will be in accordance with all
applicable City, State and Federal laws and requirements. This RAWP has provisions to control nuisances
during the remediation and all invasive work, including dust and odor suppression.

OEP Name

QEP Signature

Date

EXECUTIVE SUMMARY

Chung Lam is working with the NYC Office of Environmental Remediation (OER) in the New York City Voluntary Cleanup Program to investigate and remediate a 17,450-square foot site located at 148-28 Hillside Avenue in Queens, New York. A remedial investigation (RI) was performed to compile and evaluate data and information necessary to develop this Remedial Action Work Plan (RAWP). The remedial action described in this document provides for the protection of public health and the environment consistent with the intended property use, complies with applicable environmental standards, criteria and guidance and conforms with applicable laws and regulations.

Site Location and Background

The Site is located at 148-28 Hillside Avenue in the central portion of the borough of Queens in New York City and is identified as Block 9694 and Lot 17 on the New York City Tax Map. The Site is 17,450 square feet in area and has a building footprint of approximately 1,920 square feet for the current building. The Site formerly was operated as an auto repair facility, occupied by Arm Auto Services. Currently the site is vacant with the building and site features present. The redevelopment plans for the property propose a 9-story mixed-use building with 51 parking spaces.

An initial subsurface investigation was performed by ACT in June 2015. That subsurface investigation was supplemented with an additional subsurface investigation performed between November 18 and 19, 2015. This RIR summarizes the nature and extent of contamination and provides sufficient information for establishment of remedial action objectives, evaluation of remedial action alternatives, and selection of a remedy that is protective of human health and the environment consistent with the use of the property pursuant to RCNY§ 43-1407(f).

Summary of Redevelopment Plan

The proposed future redevelopment of the Site consists of a 9-story mixed-use building. There is a cellar, which will accommodate 37 parking spaces, utility rooms, refuse room and two

elevators along the northern boundary of the building. The first floor will have two commercial units, 14 parking spaces at grade and a ramp to access the 37 parking spaces in the cellar. Floors 2 through 9 will consist of 52 one-bedroom, 24 two-bedroom and 4 two-bedroom duplex units. The proposed building will consist of a full build out of the lot, which will be approximately 17,450 square feet in the cellar. The excavation depth at the property will be approximately 13 feet bgs.

The remedial action contemplated under this RAWP may be implemented independently of the proposed redevelopment plan.

Summary of Surrounding Property

The Site is bounded by Hillside Avenue to the north followed by a two-story mixed-use building with apartments above commercial businesses. To the east of the property is a one-story commercial building occupied by a supermarket. To the south, a six-story residential apartment building and a two-story religious building are located. To the west is a two-story commercial building occupied by the National Organization of Industrial Trade Unions. The area in the vicinity of the Site is composed predominantly of residential, commercial and mixed-use buildings.

Summary of Past Site Uses and Areas of Concern

According to Sanborn maps, as of 1888, the Site contained a three-story residential building. By 1925, a one-story filling station with gasoline tanks had also been constructed. By 1942, the three-story building was identified as mixed-use and it was demolished by 1963. By 1967, the gasoline tanks were no longer identified, and by 1992 the building was identified as an auto repair shop. The property remained substantially unchanged through 2006.

According to ACT's Phase I Environmental Site Assessment dated July 14, 2015, five abandoned 550-gallon gasoline underground storage tanks were present in front of the building. One inactive 250-gallon waste oil underground storage tank was observed in the interior of the repair shop. According to the site contact, six underground storage tanks were removed from the property approximately 25 years ago. The GPR survey detected disturbed soil that likely was the former location of removed underground storage tanks.

The AOCs identified for this site include:

- 1. Abandoned and former underground gasoline storage tanks;
- 2. Inactive underground waste oil tank;
- 3. In-ground hydraulic vehicle lifts;
- 4. Exterior storm drains and interior floor drains.

Summary of Work Performed under the Remedial Investigation

- Conducted a Site inspection to identify AOCs and physical obstructions (i.e. structures, buildings, etc.);
- 2. Conducted a geophysical investigation to identify the approximate locations of current USTs and former tank pits;
- 3. Installed ten soil borings across the entire project Site, and collected 18 soil samples for chemical analysis from the soil borings to evaluate soil quality;
- 4. Installed seven soil vapor probes around Site perimeter and collected seven samples for chemical analysis;
- 5. Installed three groundwater monitoring wells at the property and collected three groundwater samples for chemical analysis from the monitoring wells to evaluate groundwater quality.

Summary of Findings of Remedial Investigation

A remedial investigation was performed and the results are documented in a companion document called "Remedial Investigation Report, 148-28 Hillside Avenue, Jamaica, New York", dated October 2016 (RIR). Supplemental remedial investigation was performed of soil vapor and groundwater quality from November to December 2016.

Soil quality data was compared to Unrestricted and Restricted Residential Use Soil Cleanup Objectives (UUSCOs and RRSCOs) contained in NYSDEC 6 NYCRR Part 375. VOC compounds including Acetone (maximum of 110 µg/kg) and Tetrachloroethylene (11,000 µg/kg) were detected above their Unrestricted Use SCOs in two shallow soil samples. Two SVOCs, Benzo(a)anthracene (1,550 µg/kg) and Chrysene (1,560 µg/kg) exceeded Unrestricted Use SCOs in one shallow soil sample. Benzo(a)anthracene also exceeded Restricted Residential Use SCOs. One Pesticide, 4,4'-DDT (max. of 5.06 mg/kg) exceeded its Unrestricted Use Soil Cleanup Objective. Several metals were identified and lead (1,100 mg/Kg) and selenium (7.18 mg/Kg) exceeded Unrestricted Use SCOs. Lead also exceeded Restricted Residential Use SCOs. Overall, with the exception of PCE disposal, the soil chemistry is similar to sites with historic urban fill in New York City.

Soil vapor samples collected during the RI were compared to the compounds listed in Table 3.1 Air Guidance Values derived by the New York State Department of Health (NYSDOH) located in the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion, dated October 2006, updated June 2007 for the soil vapor/indoor air matrices, updated September 2013 for Tetrachloroethylene, and updated August 2015 for Trichloroethylene. Soil vapor sampling detected several petroleum related and chlorinated compounds. Highest concentrations were detected for 2-Butanone at 1,100 μ g/m³. Petroleum related (BTEX) compounds were detected at a maximum concentration of 299 μ g/m³. Chlorinated compound, Tetrachloroetylene was detected in all seven samples and ranged in concentrations from 10 to 2,700 μ g/m³, compared to a NYSDOH screening value of 30 μ g/m³. Trichloroethylene was detected in one soil vapor sample in the east section of the site at 55 μ g/m³, above the NYSDOH screening value of 2 μ g/m³. Concentrations of Tetrachloroethylene and Trichloroethylene are above the NYSDOH guidance matrix and require mitigation.

Groundwater samples collected during the RI were compared to the New York State 6NYCRR Part 703.5 Class GA Groundwater Quality Standards (GQS). Groundwater samples showed no Pesticides or dissolved Metals exceeding their GQS. One VOC, Chloroform was detected in two of the groundwater samples (max. of 14 μ g/L) above its GQS of 7 μ g/L. One SVOC, Bis(2ethylhexyl)phthalate was detected in one groundwater sample (11 μ g/L) above its GQS of 5 μ g/L. Total PCBs were detected in the three groundwater samples (max. 0.135 μ g/L) above its GQS of 0.09 μ g/L. For more detailed results, consult the RIR. Based on an evaluation of the data and information from the RIR and this RAWP, disposal of significant amounts of hazardous waste is not suspected at this site.

Summary of the Remedial Action

The preferred remedy for the site is Alternative 2, Site Specific Track 4 cleanup. The Alternative 2 remedy will remove all soil/fill exceeding Track 4 Site Specific Use SCOs throughout the Site, which will be confirmed with post-excavation sampling. This remedy will include a concrete slab covering the entire site and waterproofing membrane and an active SSDS. Additionally, a high volume air exchange is required by NYC Building Code to address indoor vehicle parking. Use restrictions will be imposed on the site and the Site would continue to be encumbered with an E-designation for hazardous material.

The proposed remedial action achieves protection of public health and the environment for the intended use of the property. The proposed remedial action achieves all of the remedial action objectives established for the project and addresses applicable standards, criterion, and guidance; is effective in both the short-term and long-term and reduces mobility, toxicity and volume of contaminants; is cost effective and implementable; and uses standards methods that are well established in the industry.

The proposed remedial action will consist of:

- Preparation of a Community Protection Statement and performance of all required NYC VCP Citizen Participation activities according to an approved Citizen Participation Plan.
- 2. Performance of a Community Air Monitoring Program for particulates and volatile organic carbon compounds.
- 3. Establishment of Track 4 Site-specific Soil Cleanup Objectives (SCOs).
- 4. Site mobilization involving Site security setup, equipment mobilization, utility mark outs and marking & staking excavation areas.

- 5. Perform additional site characterization sampling of soil. Soil samples are proposed to delineate the shallow soil impacts of Tetrachloroethylene previously identified in SB-9. Five-foot spacing soil borings in four radial directions are proposed to investigate shallow impacts of Tetrachloroethylene. If warranted, additional soil borings will be advanced at ten-foot spacings from the initially identified hotspot. Two-foot sample intervals will be sampled at each soil boring consisting of the 4' to 6' and the 6' to 8' depth.
- 6. Completion of a Waste Characterization Study prior to excavation activities. Waste characterization soil samples will be collected at a frequency dictated by disposal facility(s).
- Excavation and removal of soil/fill exceeding Track 4 Site Specific SCOs. The entire footprint of the Site will be excavated to a depth of approximately 13 feet below grade for development purposes. A small portion of property will be excavated to the depths of 18 feet below grade for elevator pit(s).
- Screening of excavated soil/fill during intrusive work for indications of contamination by visual means, odor, and monitoring with a PID. Appropriate segregation of excavated media on-Site.
- Management of excavated materials including temporarily stockpiling and segregating in accordance with defined material types and to prevent co-mingling of contaminated material and non-contaminated materials.
- 10. Removal of five 550-gallon gasoline UST's from the northwestern portion of the site and one 250-gallon waste oil UST from the interior of the existing building.
- Registration of tanks and reporting of any petroleum spills associated with UST's and appropriate closure of these petroleum spills in compliance with applicable local, State and Federal laws and regulations.
- 12. Transportation and off-Site disposal of all soil/fill material at licensed or permitted facilities in accordance with applicable laws and regulations for handling, transport, and disposal, and this plan. Sampling and analysis of excavated media as required by disposal facilities. Appropriate segregation of excavated media on-Site.
- 13. Collection and analysis of end-point samples to determine the performance of the remedy with respect to attainment of SCOs.

- 14. Import of materials to be used for backfill and cover in compliance with this plan and in accordance with applicable laws and regulations.
- 15. Construction of an engineered composite cover consisting of a minimum of 6 inches of reinforced concrete slab underlain by 6 inches of clean sub-base material in building areas.
- 16. Installation of a vapor barrier system consisting of vapor barrier beneath the building slab and outside of sub-grade foundation sidewalls to mitigate soil vapor migration into the building. The vapor barrier system will consist of a 20-mil Vaporblock Plus vapor barrier manufactured by Raven Industries or equivalent below the slab throughout the full building area and a 1.2 mm nominal thickness Preprufe 300 LT blindside waterproofing manufactured by Grace Construction Products or equivalent outside all sub-grade foundation sidewalls. All welds, seams and penetrations will be properly sealed to prevent preferential pathways for vapor migration. The vapor barrier system is an Engineering Control for the remedial action. The remedial engineer will certify in the RAR that the vapor barrier system was designed and properly installed to mitigate soil vapor migration into the building.
- 17. Installation of an active sub-slab depressurization system (SSDS) consisting of a network of horizontal perforated piping set in the middle of a gas permeable layer immediately beneath the building slab and vapor barrier system. The horizontal piping will consist of fabric wrapped, 4-inch corrugated drain pipe connected to a 4-inch steel riser pipe that penetrates the slab and travels through the building to the roof. The gas permeable layer will consist of a 6-inch thick layer of ³/₄-inch bluestone. The pipe will be finished at the roof line with a 4-inch goose neck pipe to prevent rain infiltration. The active SSDS will be hardwired and will include an appropriate rated blower installed on the roof line and a pressure gauge and alarm located in an accessible area in the basement. The active SSDS is an Engineering Control for the remedial action. The remedial engineer will certify in the RAR that the active SSDS was designed and properly installed to establish a vacuum in the gas permeable layer and a negative (decreasing outward) pressure gradient across the building slab to prevent vapor migration into the building.

- 18. Construction and operation of a cellar parking garage with high volume air exchange in conformance with NYC Building Code.
- Performance of all activities required for the remedial action, including acquisition of required permits and attainment of pretreatment requirements, in compliance with applicable laws and regulations.
- 20. Dewatering if required will be in compliance with city, state, and federal laws and regulations. Extracted groundwater will either be containerized for off-site licensed or permitted disposal or will be treated under a permit from New York City Department of Environmental Protection (NYCDEP) to meet pretreatment requirements prior to discharge to the sewer system.
- 21. Implementation of storm-water pollution prevention measures in compliance with applicable laws and regulations.
- 22. Submission of an approved Site Management Plan (SMP) in the Remedial Action Plan (RAR) for long-term management of residual contamination, including plans for operation, maintenance, monitoring, inspection and certification of Engineering and Institutional Controls and reporting at a specified frequency.
- 23. Submission of a RAR that describes the remedial activities, certifies that the remedial requirements have been achieved, defines the Site boundaries, lists any changes from this RAWP, and describes all Engineering and Institutional Controls to be implemented at the Site.
- 24. The property will continue to be registered with an E-Designation at the NYC Buildings Department. Establishment of Engineering Controls and Institutional Controls in this RAWP and a requirement that management of these controls must be in compliance with an approved SMP. Institutional Controls will include prohibition of the following: (1) vegetable gardening and farming; (2) use of groundwater without treatment rendering it safe for the intended use; (3) disturbance of residual contaminated material unless it is conducted in accordance with the SMP; and (4) higher level of land usage without OER-approval.

COMMUNITY PROTECTION STATEMENT

The NYC Office of Environmental Remediation (OER) provides governmental oversight for the cleanup of contaminated property in NYC. This Remedial Action Work Plan ("cleanup plan") describes the findings of prior environmental studies, shows the location of identified contamination at the site, and describes the plans to clean up the site to protect public health and the environment.

This cleanup plan provides a very high level of protection for neighboring communities and also includes many other elements that address common community concerns, such as community air monitoring, odor, dust and noise controls, hours of operation, good housekeeping and cleanliness, truck management and routing, and opportunities for community participation. The purpose of this Community Protection Statement is to explain these community protection measures in non-technical language to simplify community review.

Project Information:

- Site Address: 148-28 Hillside Avenue, Jamaica, New York
- NYC Voluntary Cleanup Program Project Number: 17CVCP044Q

Project Contacts:

- OER Project Manager: Anna Brooks, 212-788-7423
- Site Project Manager: Mark Gelband, 516-441-5800 ext. 104
- Site Safety Officer: Yisong Yang, 516-441-5800 ext. 108
- Online Document Repository: https://a002-epic.nyc.gov/app/search/advanced

Remedial Investigation and Cleanup Plan: Under the oversight of the NYC OER, a thorough study of this property (called a remedial investigation) has been performed to identify past property usage, to sample and test soils, groundwater and soil vapor, and to identify contaminant sources present on the property. The cleanup plan has been designed to address all contaminant sources that have been identified during the study of this property.

Identification of Sensitive Land Uses: Prior to selecting a cleanup, the neighborhood was evaluated to identify sensitive land uses nearby, such as schools, day care facilities, hospitals and residential areas. The cleanup program was then tailored to address the special conditions of this community.

Qualitative Human Health Exposure Assessment: An important part of the cleanup planning for the Site is a study to find all of the ways that people might come in contact with contaminants at the Site now or in the future. This study is called a Qualitative Human Health Exposure Assessment (QHHEA). A QHHEA was performed for this project. This assessment has considered all known contamination at the Site and evaluated the potential for people to come in contact with this contamination. All identified public exposures will be addressed under this cleanup plan.

Health and Safety Plan: This cleanup plan includes a Construction Health and Safety Plan (CHASP) that is designed to protect community residents and on-Site workers. The elements of this RAWP are in compliance with applicable safety requirements of the United States Occupational Safety and Health Administration (OSHA). This RAWP includes many protective elements including those discussed below.

Site Safety Coordinator: This project has a designated Site safety coordinator to implement the CHASP. The safety coordinator maintains an emergency contact sheet and protocol for management of emergencies. The Site safety coordinator is identified at the beginning of this Community Protection Statement.

Worker Training: Workers participating in cleanup of contaminated material on this project are required to be trained in a 40-hour hazardous waste operators training course and to take annual refresher training. This pertains to workers performing specific tasks including removing contaminated material and installing cleanup systems in contaminated areas.

Community Air Monitoring Plan: Community air monitoring will be performed during this cleanup project to ensure that the community is properly protected from contaminants, dust and odors. Air samples will be tested in accordance with a detailed plan called the Community Air Monitoring Plan or CAMP. Results will be regularly reported to the NYC Office of Environmental Remediation. This cleanup plan also has a plan to address any unforeseen problems that might occur during the cleanup (called a 'Contingency Plan').

Odor, Dust and Noise Control: This cleanup plan includes actions for odor and dust control. These actions are designed to prevent off-Site odor and dust nuisances and includes steps to be taken if nuisances are detected. Generally, dust is managed by application of physical covers and by water sprays. Odors are controlled by limiting the area of open excavations, physical covers, spray foams and by a series of other actions (called operational measures). The project is also required to comply with applicable NYC noise control standards. If you observe problems in these areas, please contact the onsite Project Manager or NYC Office of Environmental Remediation Project Manager listed on the first page of this Community Protection Statement document.

Quality Assurance: This cleanup plan requires that evidence be provided to illustrate that all cleanup work required under the plan has been completed properly. This evidence will be summarized in the final report, called the Remedial Action Report. This report will be submitted to the NYC Office of Environmental Remediation and will be thoroughly reviewed.

Stormwater Management: To limit the potential for soil erosion and discharge, this cleanup plan has provisions for stormwater management. The main elements of the stormwater management include physical barriers such as tarp covers and erosion fencing, and a program for frequent inspection.

Hours of Operation: The hours for operation of cleanup will comply with the NYC Department of Buildings construction code requirements or according to specific variances

issued by that agency. For this cleanup project, the hours of operation will conform to requirements of the NYC Department of Buildings.

Signage: While the cleanup is in progress, a placard will be prominently posted at the main entrance of the property with a laminated project Fact Sheet that states that the project is in the NYC Voluntary Cleanup Program and provides project contact names and numbers, and a link to the document repository where project documents can be viewed.

Complaint Management: The contractor performing this cleanup is required to address all complaints. If you have any complaints, you can call the facility Project Manager or the NYC Office of Environmental Remediation Project Manager listed on the first page of this Community Protection Statement document, or call 311 and mention the Site is in the NYC Voluntary Cleanup Program.

Utility Mark-outs: To promote safety during excavation in this cleanup, the contractor is required to first identify all utilities and must perform all excavation and construction work in compliance with NYC Department of Buildings regulations.

Soil and Liquid Disposal: All soil and liquid material removed from the Site as part of the cleanup will be transported and disposed of in accordance with all applicable City, State and Federal regulations, and required permits will be obtained.

Soil Chemical Testing and Screening: All excavations will be supervised by a trained and properly qualified environmental professional. In addition to extensive sampling and chemical testing of soils on the Site, excavated soil will be screened continuously using handheld instruments, by sight, and by smell to ensure proper material handling and management, and community protection.

Stockpile Management: Soil stockpiles will be kept covered with tarps to prevent dust, odor and erosion. Stockpiles will be frequently inspected. Damaged tarp covers will be

promptly replaced. Stockpiles will be protected with silt fences. Hay bales will be used, as needed, to protect storm water catch basins and other discharge points.

Trucks and Covers: Loaded trucks leaving the Site will be covered in compliance with applicable laws and regulations to prevent dust and odor. Trucks will be properly recorded in logs and records and placarded in compliance with applicable City, State and Federal laws, including those of the New York State Department of Transportation. If loads contain wet material that can leak, truck liners will be used. All transport of materials will be performed by licensed truckers and in compliance with applicable laws and regulations.

Imported Material: All fill materials proposed to be brought onto the Site will comply with rules outlined in this cleanup plan and will be inspected and approved by a qualified worker located on the Site. Waste materials will not be brought onto the Site. Trucks entering the Site with imported clean materials will be covered in compliance with applicable laws and regulations.

Equipment Decontamination: All equipment used for cleanup work will be inspected and washed, if needed, before it leaves the Site. Trucks will be cleaned at a truck inspection station on the property before leaving the Site.

Housekeeping: Locations where trucks enter or leave the Site will be inspected every day and cleaned regularly to ensure that they are free of dirt and other materials from the Site.

Truck Routing: Truck routes have been selected to: (a) limit transport through residential areas and past sensitive nearby properties; (b) maximize use of city-mapped truck routes; (c) limit total distance to major highways; (d) promote safety in entry to highways; (e) promote overall safety in trucking; and (f) minimize off-Site line-ups (queuing) of trucks entering the property. Operators of loaded trucks leaving the Site will be instructed not to stop or idle in the local neighborhood.

Final Report: The results of all cleanup work will be fully documented in a final report (called the Remedial Action Report) that will be available for public review online. A link to the online document repository and the public library with Internet access nearest the Site are listed on the first page of this Community Protection Statement document

Long-Term Site Management: If long-term protection is needed after the cleanup is complete, the property owner will be required to comply with an ongoing Site Management Plan that calls for continued inspection of protective controls, such as Site covers. The Site Management Plan is evaluated and approved by the NYC Office of Environmental Remediation. Requirements that the property owner must comply with are defined either in the property's deed or established through a city environmental designation registered with the Department of Buildings. A certification of continued protectiveness of the cleanup will be required from time to time to show that the approved cleanup is still effective.

REMEDIAL ACTION WORK PLAN

1.0 **Project Background**

Chung Lam is working with the NYC Office of Environmental Remediation (OER) in the New York City Voluntary Cleanup Program and/or in the "E" Designation Program to investigate and remediate a property located at 148-28 Hillside Avenue in the Jamaica section of Queens, New York (the "Site"). A Remedial Investigation (RI) was performed to compile and evaluate data and information necessary to develop this Remedial Action Work Plan (RAWP) in a manner that will render the Site protective of public health and the environment consistent with the contemplated end use. This RAWP establishes remedial action objectives, provides a remedial alternatives analysis that includes consideration of a permanent cleanup, and provides a description of the selected remedial action. The remedial action described in this document provides for the protection of public health and the environment, and complies with applicable environmental standards, criteria and guidance and applicable laws and regulations.

1.1 Site Location and Background

The Site is located at 148-28 Hillside Avenue in the central portion of the borough of Queens in New York City and is identified as Block 9694 and Lot 17 on the New York City Tax Map. Figure 1 shows the Site location. The Site is 17,450 square feet in area and has a building footprint of approximately 1,920 square feet for the current building. The Site formerly was operated as an auto repair facility, occupied by Arm Auto Services. A diagram of site features is shown in Figure 2. Currently the site is vacant with the building and site features present. The redevelopment plans for the property propose a 9-story mixed-use building with 51 parking spaces.

An initial subsurface investigation was performed by ACT in June 2015. That subsurface investigation was supplemented with an additional subsurface investigation performed between November 18 and 19, 2015. This RIR summarizes the nature and extent of contamination and provides sufficient information for establishment of remedial action objectives, evaluation of remedial action alternatives, and selection of a remedy that is protective of human health and the environment consistent with the use of the property pursuant to RCNY§ 43-1407(f).

1.2 Redevelopment Plan

The proposed future redevelopment of the Site consists of a 9-story mixed-use building. There is a cellar, which will accommodate 37 parking spaces, utility rooms, refuse room and two elevators along the northern boundary of the building. The first floor will have two commercial units, 14 parking spaces at grade and a ramp to access the 37 parking spaces in the cellar. Floors 2 through 9 will consist of 52 one-bedroom, 24 two-bedroom and 4 two-bedroom duplex units. The proposed building will consist of a full build out of the lot, which will be approximately 17,450 square feet in the cellar. The excavation depth at the property will be approximately 13 feet bgs.

The remedial action contemplated under this RAWP may be implemented independently of the proposed redevelopment plan.

1.3 Description of Surrounding Property

Figure 1 shows the surrounding land usage. The Site is bounded by Hillside Avenue to the north followed by a two-story mixed-use building with apartments above commercial businesses. To the east of the property is a one-story commercial building occupied by a supermarket. To the south, a six-story residential apartment building and a two-story religious building are located. To the west is a two-story commercial building occupied by the National Organization of Industrial Trade Unions. The area in the vicinity of the Site is composed predominantly of residential, commercial and mixed-use buildings.

1.4 Summary of Past Site Uses and Areas of Concern

According to Sanborn maps, as of 1888, the Site contained a three-story residential building. By 1925, a one-story filling station with gasoline tanks had also been constructed. By 1942, the three-story building was identified as mixed-use and it was demolished by 1963. By 1967, the gasoline tanks were no longer identified, and by 1992 the building was identified as an auto repair shop. The property remained substantially unchanged through 2006.

According to ACT's Phase I Environmental Site Assessment dated July 14, 2015, five abandoned 550-gallon gasoline underground storage tanks were present in front of the building. One inactive 250-gallon waste oil underground storage tank was observed in the interior of the

repair shop. According to the site contact, six underground storage tanks were removed from the property approximately 25 years ago. The GPR survey detected disturbed soil that likely was the former location of removed underground storage tanks.

The AOCs identified for this site include:

- 1. Abandoned and former underground gasoline storage tanks;
- 2. Inactive underground waste oil tank;
- 3. In-ground hydraulic vehicle lifts;
- 4. Exterior storm drains and interior floor drains.

1.5 Summary of Work Performed under the Remedial Investigation

- Conducted a Site inspection to identify AOCs and physical obstructions (i.e. structures, buildings, etc.);
- 2. Conducted a geophysical investigation to identify the approximate locations of current USTs and former tank pits;
- 3. Installed ten soil borings across the entire project Site, and collected 18 soil samples for chemical analysis from the soil borings to evaluate soil quality;
- 4. Installed seven soil vapor probes around Site perimeter and collected seven samples for chemical analysis;
- 5. Installed three groundwater monitoring wells at the property and collected three groundwater samples for chemical analysis from the monitoring wells to evaluate groundwater quality.

1.6 Summary of Findings of Remedial Investigation

A remedial investigation was performed and the results are documented in a companion document called "Remedial Investigation Report, 148-28 Hillside Avenue, Jamaica, New York",

dated October 2016 (RIR). Supplemental remedial investigation was performed of soil vapor and groundwater quality from November to December 2016. The analytical results are provided in Table 5 through 9.

Soil quality data was compared to Unrestricted and Restricted Residential Use Soil Cleanup Objectives (UUSCOs and RRSCOs) contained in NYSDEC 6 NYCRR Part 375. VOC compounds including Acetone (maximum of 110 µg/kg) and Tetrachloroethylene (11,000 µg/kg) were detected above their Unrestricted Use SCOs in two shallow soil samples. Two SVOCs, Benzo(a)anthracene (1,550 µg/kg) and Chrysene (1,560 µg/kg) exceeded Unrestricted Use SCOs in one shallow soil sample. Benzo(a)anthracene also exceeded Restricted Residential Use SCOs. One Pesticide, 4,4'-DDT (max. of 5.06 mg/kg) exceeded its Unrestricted Use Soil Cleanup Objective. Several metals were identified and lead (1,100 mg/Kg) and selenium (7.18 mg/Kg) exceeded Unrestricted Use SCOs. Lead also exceeded Restricted Residential Use SCOs. Overall, with the exception of PCE disposal, the soil chemistry is similar to sites with historic urban fill in New York City.

Soil vapor samples collected during the RI were compared to the compounds listed in Table 3.1 Air Guidance Values derived by the New York State Department of Health (NYSDOH) located in the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion, dated October 2006, updated June 2007 for the soil vapor/indoor air matrices, updated September 2013 for Tetrachloroethylene, and updated August 2015 for Trichloroethylene. Soil vapor sampling detected several petroleum related and chlorinated compounds. Highest concentrations were detected for 2-Butanone at 1,100 μ g/m³. Petroleum related (BTEX) compounds were detected at a maximum concentration of 299 μ g/m³. Chlorinated compound, Tetrachloroetylene was detected in all seven samples and ranged in concentrations from 10 to 2,700 μ g/m³, compared to a NYSDOH screening value of 30 μ g/m³. Trichloroethylene was detected in one soil vapor sample in the east section of the site at 55 μ g/m³, above the NYSDOH screening value of 2 μ g/m³. Concentrations of Tetrachloroethylene and Trichloroethylene are above the NYSDOH guidance matrix and require mitigation.

Groundwater samples collected during the RI were compared to the New York State 6NYCRR Part 703.5 Class GA Groundwater Quality Standards (GQS). Groundwater samples showed no Pesticides or dissolved Metals exceeding their GQS. One VOC, Chloroform was detected in two of the groundwater samples (max. of 14 μ g/L) above its GQS of 7 μ g/L. One SVOC, Bis(2-ethylhexyl)phthalate was detected in one groundwater sample (11 μ g/L) above its GQS of 5 μ g/L. Total PCBs were detected in the three groundwater samples (max. 0.135 μ g/L) above its GQS of 0.09 μ g/L.

For more detailed results, consult the RIR. Based on an evaluation of the data and information from the RIR and this RAWP, disposal of significant amounts of hazardous waste is not suspected at this site.

2.0 Remedial Action Objectives

Based on the results of the RI, the following Remedial Action Objectives (RAOs) have been identified for this Site:

Soil

- Prevent direct contact with contaminated soil.
- Prevent exposure to contaminants volatilizing from contaminated soil.
- Prevent migration of contaminants that would result in groundwater or surface water contamination.

Groundwater

- Remove contaminant sources causing impact to groundwater.
- Prevent direct exposure to contaminated groundwater.
- Prevent exposure to contaminants volatilizing from contaminated groundwater.

Soil Vapor

- Prevent exposure to contaminants in soil vapor.
- Prevent migration of soil vapor into dwelling and other occupied structures.

3.0 Remedial Alternatives Analysis

The goal of the remedy selection process is to select a remedy that is protective of human health and the environment taking into consideration the current, intended and reasonably anticipated future use of the property. The remedy selection process begins by establishing RAOs for media in which chemical constituents were found in exceedance of applicable standards, criteria and guidance values (SCGs). Remedial alternatives are then developed and evaluated based on the following ten criteria:

- Protection of human health and the environment;
- Compliance with SCGs;
- Short-term effectiveness and impacts;
- Long-term effectiveness and permanence;
- Reduction of toxicity, mobility, or volume of contaminated material;
- Implementability;
- Cost effectiveness;
- Community acceptance;
- Land use; and
- Sustainability.

As required, a Track 1 Unrestricted Use scenario is evaluated for the remedial action. The following is a detailed description of the alternatives analyzed to address impacted media at the Site:

Alternative 1:

- Selection of NYSDEC 6NYCRR Part 375 Unrestricted Use (Track 1) Soil Cleanup Objectives (SCOs).
- Removal of all soil/fill exceeding Track 1 Unrestricted Use SCOs throughout the Site and confirmation that Track 1 Unrestricted Use SCOs have been achieved with post-excavation endpoint sampling. Based on the results of the Remedial Investigation, it is expected that this alternative would be achieved by excavation for the redevelopment, across the majority of the site to a depth of 13 feet would be required to achieve Unrestricted Use SCOs based on analytical results from lower soil sample collected

during RI sampling. If soil/fill containing analytes at concentrations above Unrestricted Use SCOs is still present at the base of the excavation after removal of all soil required for construction of the new building's cellar level is complete, additional excavation would be performed to ensure complete removal of soil/ fill that does not meet Track 1 Unrestricted Use SCOs.

• No Engineering or Institutional Controls are required for a Track 1 cleanup. However, as part of development, a vapor barrier, sub-slab depressurization system (SSDS) and sub-grade ventilated parking would be installed to prevent potential exposures from soil vapor in the future.

Alternative 2:

- Establishment of Site Specific (Track 4) SCOs;
- Removal of all soil/fill exceeding Track 4 Site-specific SCOs and confirmation that Track 4 Site-specific SCOs have been achieved with post-excavation end point sampling. Based on the results of the Remedial Investigation, it is expected that SCOs would be achieved by excavating for construction of the new building's cellar level to a depth of approximately 13 feet across the entire Site. If soil/fill containing analytes at concentrations above Track 4 Site-Specific SCOs is still present at the base of the excavation, additional excavation would be performed to meet Track 4 Site-Specific SCOs.
- Placement of a composite cover system over the entire Site to prevent exposure to remaining soil/fill;
- Installation of a vapor barrier system beneath the building slab and along foundation side walls to prevent potential exposures from soil vapor;
- Installation of an active Sub Slab Depressurization System (SSDS);
- Establishment of use restrictions including prohibitions on the use of groundwater from the Site; prohibitions of restricted Site uses, such as farming or vegetable gardening, to prevent future exposure pathways; and prohibition of a higher level of land use without OER approval;
- Establishment of an approved Site Management Plan (SMP) to ensure long-term management of these Engineering and Institutional Controls including the performance of

periodic inspections and certification that the controls are performing as they were intended. The SMP will note that the property owner and property owner's successors and assigns must comply with the approved SMP; and

• The property will continue to be registered with an E-Designation at the NYC Buildings Department.

3.1 Threshold Criteria

Protection of Public Health and the Environment

This criterion is an evaluation of the remedy's ability to protect public health and the environment, and an assessment of how risks posed through each existing or potential pathway of exposure are eliminated, reduced or controlled through removal, treatment, and implementation of Engineering Controls or Institutional Controls. Protection of public health and the environment must be achieved for all approved remedial actions.

Alternative 1 would be protective of human health and the environment by removing all soil/fill exceeding Track 1 Unrestricted Use SCO's and groundwater protection standards, thus eliminating potential for direct contact with contaminated soil/fill once construction is complete and eliminating the risk of contaminants leaching into groundwater.

Alternative 2 would achieve comparable protections of human health and the environment by excavation and removal of most of the historic fill at the Site and by ensuring that remaining soil/fill on-Site meets Track 4 Site-Specific SCO's, as well as by placement of Institutional and Engineering Controls, including a composite cover system. The composite cover system would prevent direct contact with any remaining on-Site soil/fill. Implementing Institutional Controls including a Site Management Plan and continuing the E-designation. Establishment of Track 4 Site-Specific SCO's would minimize the risk of contamination leaching into groundwater. For both Alternatives, potential exposure to contaminated soils or groundwater, during construction would be minimized by implementing a Construction Health and Safety Plan, an approved Soil/Materials Management Plan, and Community Air Monitoring Plan (CAMP). Potential contact with contaminated groundwater would be prevented as its use is prohibited by

city laws and regulations. Potential future migration of off-Site soil vapors into the new building would be prevented by installing a vapor barrier below the building slab and outside foundations walls below grade.

3.2 Balancing Criteria

Compliance with Standards, Criteria and Guidance (SCGs)

This evaluation criterion assesses the ability of the alternative to achieve applicable standards, criteria and guidance.

Alternative 1 would achieve compliance with the remedial goals, chemical-specific SCGs and RAOs for soil through removal of soil to achieve Track 1 Unrestricted Use SCO's and Protection of Groundwater SCO's. Compliance with SCGs for soil vapor would also be achieved by installing a waterproofing/vapor barrier system below the new building's basement slab and continuing the vapor barrier outside of subgrade foundation walls, as part of development. In addition, the cellar of the building will contain a parking garage with high volume air exchange that conforms to the NYC Building Code.

Alternative 2 would achieve compliance with the remedial goals, chemical-specific SCG's and RAOs for soil through removal of soil to meet Track 4 Site-Specific SCO's. Compliance with SCG's for soil vapor would also be achieved by installation and operation of an active SSDS, installing a waterproofing/vapor barrier system below the new building's basement slab and continuing the vapor barrier outside of subgrade foundation walls. A Site Management Plan would ensure that these controls remained protective for the long term. In addition, the cellar of the building will contain a parking garage with high volume air exchange that conforms to the NYC Building Code and will mediate any potential accumulation of soil vapors inside the building.

Health and safety measures contained in the CHASP and Community Air Monitoring Plan (CAMP) will be implemented during Site redevelopment under this RAWP. For both Alternatives, focused attention on means and methods employed during the remedial action would ensure that handling and management of contaminated material would be in compliance with applicable SCGs. These measures will protect on-site workers and the surrounding community from exposure to Site-related contaminants.

Short-Term Effectiveness and Impacts

This evaluation criterion assesses the effects of the alternative during the construction and implementation phase until remedial action objectives are met. Under this criterion, alternatives are evaluated with respect to their short-term effects during the remedial action on public health and the environment during implementation of the remedial action, including protection of the community, protection of onsite workers and environmental impacts.

Both Alternative 1 and 2 have similar short-term effectiveness during their implementation, as each requires excavation of historic fill material. Both alternatives would result in short-term dust generation impacts associated with excavation, handling, load out of materials, and truck traffic. Short-term impacts could potentially be higher for Alternative 1 since excavation of greater amounts of historical fill material would take place. However, focused attention to means and methods during a Track 1 removal action, including community air monitoring and appropriate truck routing, would minimize the overall impact of these activities.

An additional short-term adverse impact and risks to the community associated with both remedial alternatives is increased truck traffic. Truck traffic will be routed on the most direct course using major thoroughfares where possible and flag persons will be used to protect pedestrians at Site entrances and exits.

The potential adverse impact to the community, workers and the environment for both alternatives would be minimized through implementation of control plans including a Construction Health and Safety Plan, a Community Air Monitoring Plan (CAMP) and a Soil/Materials Management Plan (SMMP), during all on-Site soil disturbance activities and would minimize the release of contaminants into the environment. Both alternatives provide short-term effectiveness in protecting the surrounding community by decreasing the risk of contact with on-Site contaminants. Construction workers operating under appropriate management procedures and a Construction Health and Safety Plan (CHASP) would provide

protection from on-Site contaminants by using personal protective equipment that would be worn consistent with the documented risks within the respective work zones.

Long-term effectiveness and permanence

This evaluation criterion addresses the results of a remedial action in terms of its permanence and quantity/nature of waste or residual contamination remaining at the Site after response objectives have been met, such as permanence of the remedial alternative, magnitude of remaining contamination, adequacy of controls including the adequacy and suitability of Engineering Controls/Institutional Controls (ECs/ICs) that may be used to manage contaminant residuals that remain at the Site and assessment of containment systems and ICs that are designed to eliminate exposures to contaminants, and long-term reliability of ECs. Alternative 1 would achieve long-term effectiveness and permanence related to on-Site contamination by permanently removing all impacted soil/fill above Track 1 Unrestricted Use SCO's. Removal of on-Site contaminant sources will also prevent future groundwater contamination.

Alternative 2 would provide long-term effectiveness by removing most on-Site contamination and attaining Track 4 Site-Specific SCOs; installing a composite cover system across the Site; maintaining use restrictions; establishing an SMP to ensure long-term management of ICs and ECs; and maintaining registration as an E-designated property to memorialize these controls for the long term. The SMP would ensure long-term effectiveness of all ECs and ICs by requiring periodic inspection and certification that these controls and restrictions continue to be in place and are functioning as they were intended, assuring that protections designed into the remedy continue to provide the required level of protection.

Reduction of toxicity, mobility, or volume of contaminated material

This evaluation criterion assesses the remedial alternative's use of remedial technologies that permanently and significantly reduce toxicity, mobility, or volume of contaminants as their principal element. The following is the hierarchy of source removal and control measures that are to be used to remediate a Site, ranked from most preferable to least preferable: removal and/or treatment, containment, elimination of exposure and treatment of source at the point of exposure. It is preferred to use treatment or removal to eliminate contaminants at a Site, reduce the total mass of toxic contaminants, cause irreversible reduction in contaminants mobility, or reduce of total volume of contaminated media.

Alternative 1 will permanently eliminate the toxicity, mobility, and volume of contaminants from on-Site soil by removing all soil in excess of Track 1 Unrestricted Use SCO's.

Alternative 2 would remove most of the historic fill at the Site, and all remaining on-Site soil/fill beneath the new building will meet Track 4 Site-Specific SCO's.

Alternative 1 would remove a greater total mass of contaminants from the Site. The removal of soil to 13 feet for the new development in both scenarios would lessen the difference in contaminant mass removal between these two alternatives.

Implementability

This evaluation criterion addresses the technical and administrative feasibility of implementing an alternative and the availability of various services and materials required during its implementation, including technical feasibility of construction and operation, reliability of the selected technology, ease of undertaking remedial action, monitoring considerations, administrative feasibility (e.g. obtaining permits for remedial activities), and availability of services and materials.

The techniques, materials and equipment to implement both Alternatives 1 and 2 are readily available and have been proven to be effective in remediating the contaminants present on the Site. They use standard equipment and technologies that are well established in the industry. The reliability of each remedy is also high. There are no special difficulties associated with any of the activities proposed.

Cost effectiveness

This evaluation criterion addresses the cost of alternatives, including capital costs (such as construction costs, equipment costs, and disposal costs, engineering expenses) and site management costs (costs incurred after remedial construction is complete) necessary to ensure the continued effectiveness of a remedial action.

Since historic fill at the Site was found to extend to a depth of up to 3.5 feet below grade during the RI, and the new building requires excavation of the entire Site to a depth of 13 feet, the costs

associated with both Alternative 1 and Alternative 2 will likely be comparable. Costs associated with Alternative 1 could potentially be higher than Alternative 2 if soil with analytes above Track 1 Unrestricted Use SCOs is encountered below the excavation depth required for development. Additional costs would include installation of additional shoring/underpinning, disposal of additional soil, and import of clean soil for backfill. However, long-term costs for Alternative 2 are likely higher than Alternative 1 based on implementation of a Site Management Plan as part of Alternative 2.

The remedial plan would couple the remedial action with the redevelopment of the Site, lowering total costs. The remedial plan will also consider the selection of the most appropriate disposal facilities to reduce transportation and disposal costs during cleanup and redevelopment of the Site.

Community Acceptance

This evaluation criterion addresses community opinion and support for the remedial action. Observations here will be supplemented by public comment received on the RAWP. This RAWP will be subject to a public review under the NYC VCP and will provide the opportunity for detailed public input on the remedial alternatives and the selected remedy. This public comment will be considered by OER prior to approval of this plan. The Citizen Participation Plan for the project is provided in Appendix 1. Observations here will be supplemented by public comment received on the RAWP. Under both alternatives, the overall goals of the remedial program, to protect public health and the environment and eliminate potential contaminant exposures, have been broadly supported by citizens in NYC communities.

Land use

This evaluation criterion addresses the proposed use of the property. This evaluation has considered reasonably anticipated future uses of the Site and takes into account: current use and historical and/or recent development patterns; applicable zoning laws and maps; NYS Department of State's Brownfield Opportunity Areas (BOA) pursuant to section 970-r of the general municipal law; applicable land use plans; proximity to real property currently used for residential use, and to commercial, industrial, agricultural, and/or recreational areas; environmental justice impacts, Federal or State land use designations; population growth patterns

and projections; accessibility to existing infrastructure; proximity of the site to important cultural resources and natural resources, potential vulnerability of groundwater to contamination that might emanate from the site, proximity to flood plains, geography and geology; and current Institutional Controls applicable to the site.

The current, intended, and reasonably anticipated future land use of the Site and its surroundings are compatible with the selected remedy of soil remediation. The proposed future use of the Site includes a ten story mixed-use building with 89 dwelling units and 48 parking spaces within the cellar and first floor levels. Following remediation, the Site will meet either Track 1 Unrestricted Use or Track 4 Site-Specific SCOs, both of which are protective of public health and the environment for its planned residential use. The proposed use is compliant with the property's zoning and is consistent with recent development patterns. The areas surroundings in zoning districts designated for commercial and residential uses. The development would remediate a vacant contaminated lot and provide a modern residential building. The proposed development would clean up the property and make it safer, create new employment opportunities, living space and associated societal benefits to the community, and other economic benefits from land revitalization.

Temporary short-term project impacts are being mitigated through site management controls and truck traffic controls during remediation activities. Following remediation, the Site will meet either Track 1 Unrestricted Use SCOs or Track 4 Site-Specific SCOs, both of which are protective of public health and the environmental for its planned use.

The Site is not in close proximity to important cultural resources, including federal or state historic or heritage sites or Native American religious sites, natural resources, waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species. The Site is located in an urban area and not in proximity to fish or wildlife and neither alternative would result in any potential exposure pathways of contaminant migration affecting fish or wildlife. The remedial action is also protective of groundwater natural resources. The Site does not lie in a Federal Emergency Management Agency (FEMA)-designated flood plain. Both alternatives are equally protective of natural resources and cultural resources. Improvements in the current environmental condition of the property achieved by both alternatives considered in this plan are consistent with the City's goals for cleanup of contaminated land.

Sustainability of the Remedial Action

This criterion evaluates the overall sustainability of the remedial action alternatives and the degree to which sustainable means are employed to implement the remedial action including those that take into consideration NYC's sustainability goals defined in PlaNYC: A Greener, Greater New York. Sustainability goals may include: maximizing the recycling and reuse of non-virgin materials; reducing the consumption of virgin and non-renewable resources; minimizing energy consumption and greenhouse gas emissions; improving energy efficiency; and promotion of the use of native vegetation and enhancing biodiversity during landscaping associated with Site development.

While Alternative 2 would potentially result in lower energy usage based on reducing the volume of material transported off-Site, both remedial alternatives are comparable with respect to the opportunity to achieve sustainable remedial action. The remedial plan for either alternative would take into consideration the shortest trucking routes during off-Site disposal of historic fill and other soils, which would reduce greenhouse gas emissions and conserve energy used to fuel trucks. The New York City Clean Soil Bank program is available for reuse of any clean native soils under either alternative. A complete list of green remedial activities considered as part of the NYC VCP is included in a Sustainability Statement.

SELECTION OF THE PREFERRED REMEDY

The preferred remedy for the site is Alternative 2, Site Specific Track 4 cleanup. Data generated during the site investigation support the conclusion that Unrestricted Use SCOs may be achieved for soil, however, due to elevated soil vapor contamination, an active SSDS is required. Active systems are not allowed in Unrestricted Use Track 1 cleanups.

The Alternative 2 remedy will remove all soil/fill exceeding Track 4 Site Specific Use SCOs throughout the Site, which will be confirmed with post-excavation sampling. If soil/fill containing analytes at concentrations above Track 4 Site Specific Use SCOs is still present at the base or walls of the excavation after removal of all soil required for construction of the new building's cellar level and slab are complete, additional excavation would be performed to ensure
complete removal of soil/ fill that does not meet Track 4 Site Specific Use SCOs. This remedy will include a concrete slab covering the entire site and waterproofing membrane. Additional soil vapor management would be required and includes an active SSDS beneath the building. Additionally, a high volume air exchange is required by NYC Building Code to address indoor vehicle parking.

Use restrictions will be imposed on the site (including prohibitions on any use higher than Restricted Residential, e.g. the use of groundwater from the Site; prohibitions of restricted Site uses, such as farming or vegetable gardening, to prevent future exposure pathways; and prohibition of a higher level of land use without NYSDEC approval). The Site would continue to be encumbered with an E-designation for hazardous material.

4.0 Remedial Action

4.1 Summary of Preferred Remedial Action

The preferred remedial action alternative is Alternative 2, the Track 4 remedial action. The preferred remedial action achieves protection of public health and the environment for the intended use of the property. The preferred remedial action will achieve all of the remedial action objectives established for the project and addresses applicable SCGs. The preferred remedial action is effective in both the short-term and long-term and reduces mobility, toxicity and volume of contaminants. The preferred remedial action alternative is cost effective and implementable and uses standards methods that are well established in the industry.

The proposed remedial action will consist of:

- Preparation of a Community Protection Statement and performance of all required NYC VCP Citizen Participation activities according to an approved Citizen Participation Plan.
- 2. Performance of a Community Air Monitoring Program for particulates and volatile organic carbon compounds.
- 3. Establishment of Track 4 Site-specific Soil Cleanup Objectives (SCOs).
- 4. Site mobilization involving Site security setup, equipment mobilization, utility mark outs and marking & staking excavation areas.
- 5. Perform additional site characterization sampling of soil. Soil samples are proposed to delineate the shallow soil impacts of Tetrachloroethylene previously identified in SB-9. Five-foot spacing soil borings in four radial directions are proposed to investigate shallow impacts of Tetrachloroethylene. If warranted, additional soil borings will be advanced at ten-foot spacings from the initially identified hotspot. Two-foot sample intervals will be sampled at each soil boring consisting of the 4' to 6' and the 6' to 8' depth.
- Completion of a Waste Characterization Study prior to excavation activities. Waste characterization soil samples will be collected at a frequency dictated by disposal facility(s).

- Excavation and removal of soil/fill exceeding Track 4 Site Specific SCOs. The entire footprint of the Site will be excavated to a depth of approximately 13 feet below grade for development purposes. A small portion of property will be excavated to the depths of 18 feet below grade for elevator pit(s).
- Screening of excavated soil/fill during intrusive work for indications of contamination by visual means, odor, and monitoring with a PID. Appropriate segregation of excavated media on-Site.
- Management of excavated materials including temporarily stockpiling and segregating in accordance with defined material types and to prevent co-mingling of contaminated material and non-contaminated materials.
- Removal of five 550-gallon gasoline UST's from the northwestern portion of the site and one 250-gallon waste oil UST from the interior of the existing building. Registration of tanks and reporting of any petroleum spills associated with UST's and appropriate closure of these petroleum spills in compliance with applicable local, State and Federal laws and regulations.
- 11. Transportation and off-Site disposal of all soil/fill material at licensed or permitted facilities in accordance with applicable laws and regulations for handling, transport, and disposal, and this plan. Sampling and analysis of excavated media as required by disposal facilities. Appropriate segregation of excavated media on-Site.
- 12. Collection and analysis of end-point samples to determine the performance of the remedy with respect to attainment of SCOs.
- 13. Import of materials to be used for backfill and cover in compliance with this plan and in accordance with applicable laws and regulations.
- 14. Construction of an engineered composite cover consisting of a minimum of 6 inches of reinforced concrete slab underlain by 6 inches of clean sub-base material in building areas.
- 15. Installation of a vapor barrier system consisting of vapor barrier beneath the building slab and outside of sub-grade foundation sidewalls to mitigate soil vapor migration into the building. The vapor barrier system will consist of a 20-mil Vaporblock Plus vapor barrier manufactured by Raven Industries or equivalent below the slab throughout the full building area and a 1.2 mm nominal thickness Preprufe 300 LT

blindside waterproofing manufactured by Grace Construction Products or equivalent outside all sub-grade foundation sidewalls. All welds, seams and penetrations will be properly sealed to prevent preferential pathways for vapor migration. The vapor barrier system is an Engineering Control for the remedial action. The remedial engineer will certify in the RAR that the vapor barrier system was designed and properly installed to mitigate soil vapor migration into the building.

- 16. Installation of an active sub-slab depressurization system (SSDS) consisting of a network of horizontal perforated piping set in the middle of a gas permeable layer immediately beneath the building slab and vapor barrier system. The horizontal piping will consist of fabric wrapped, 4-inch corrugated drain pipe connected to a 4-inch steel riser pipe that penetrates the slab and travels through the building to the roof. The gas permeable layer will consist of a 6-inch thick layer of ³/₄-inch bluestone. The pipe will be finished at the roof line with a 4-inch goose neck pipe to prevent rain infiltration. The active SSDS will be hardwired and will include an appropriate rated blower installed on the roof line and a pressure gauge and alarm located in an accessible area in the basement. The active SSDS is an Engineering Control for the remedial action. The remedial engineer will certify in the RAR that the active SSDS was designed and properly installed to establish a vacuum in the gas permeable layer and a negative (decreasing outward) pressure gradient across the building slab to prevent vapor migration into the building.
- 17. Construction and operation of a cellar parking garage with high volume air exchange in conformance with NYC Building Code.
- Performance of all activities required for the remedial action, including acquisition of required permits and attainment of pretreatment requirements, in compliance with applicable laws and regulations.
- 19. Dewatering if required will be in compliance with city, state, and federal laws and regulations. Extracted groundwater will either be containerized for off-site licensed or permitted disposal or will be treated under a permit from New York City Department of Environmental Protection (NYCDEP) to meet pretreatment requirements prior to discharge to the sewer system.

- 20. Implementation of storm-water pollution prevention measures in compliance with applicable laws and regulations.
- 21. Submission of an approved Site Management Plan (SMP) in the Remedial Action Plan (RAR) for long-term management of residual contamination, including plans for operation, maintenance, monitoring, inspection and certification of Engineering and Institutional Controls and reporting at a specified frequency. Submission of a RAR that describes the remedial activities, certifies that the remedial requirements have been achieved, defines the Site boundaries, lists any changes from this RAWP, and describes all Engineering and Institutional Controls to be implemented at the Site.
- 22. The property will continue to be registered with an E-Designation at the NYC Buildings Department. Establishment of Engineering Controls and Institutional Controls in this RAWP and a requirement that management of these controls must be in compliance with an approved SMP. Institutional Controls will include prohibition of the following: (1) vegetable gardening and farming; (2) use of groundwater without treatment rendering it safe for the intended use; (3) disturbance of residual contaminated material unless it is conducted in accordance with the SMP; and (4) higher level of land usage without OER-approval.

4.2 Soil Cleanup Objectives and Soil/ Fill Management

Track 1 SCOs are proposed for this project and SCO's are defined in 6 NYCRR Part 375, Table 6.8(a) Track 1 Unrestricted Use. If Track 1 SCO's are not achieved, the following Track 4 Site-Specific SCO's:

The following Track 4 Site-Specific SCO's will be utilized for this project:

Contaminant	Site-Specific SCO's	
Total SVOCs	100 ppm	
Lead	1,000 ppm	
Mercury	2.0 ppm	

Soil and materials management on-Site and off-Site, including excavation, handling and disposal, will be conducted in accordance with the Soil/Materials Management Plan in Appendix

3. Discrete contaminant sources (such as hotspots) identified during the remedial action will be identified by GPS or surveyed. This information will be provided in the Remedial Action Report.

Soil/Fill Excavation and Removal

The extent of excavation is planned to accommodate a fully built out cellar to approximately 13 feet bgs. The location of planned excavations is shown in the redevelopment plans as Figure 6. The total quantity of soil/fill expected to be excavated and disposed off-Site is 9,500 tons. For each disposal facility to be used in the remedial action, a letter from the developer/QEP to the receiving facility requesting approval for disposal and a letter back to the developer/QEP providing approval for disposal will be submitted to OER prior to any transport and disposal of soil at a facility.

Disposal facilities will be reported to OER when they are identified and prior to the start of remedial action.

End-point Sampling

End-point samples will be analyzed for compounds and elements as described below utilizing the following methodology:

- Volatile organic compounds by EPA Method 8260;
- Semi-volatile organic compounds by EPA Method 8270;
- Target Analyte List metals; and
- Pesticides/PCBs by EPA Method 8081/8082.

New York State ELAP certified labs will be used for all end-point sample analyses. Labs performing end-point sample analyses will be reported in the RAR. The RAR will provide a tabular and map summary of all end-point sample results and will include all data including non-detects and applicable standards and/or guidance values.

Confirmation End-point Sampling

Removal actions for development purposes under this plan will be performed in conjunction with confirmation end-point soil sampling. Five confirmation samples will be collected from the base of the excavation at locations to be determined by OER. To evaluate attainment of Track 4 Sitespecific SCOs, analytes will include those for which SCOs have been developed, including

SVOCs, Lead and Mercury according to analytical methods described above. If Track 1 Unrestricted Use SCOs are pursued, samples will be analyzed for VOCs, SVOCs, pesticides, PCBs and metals according to analytical methods described above.

Hotspot End-point Sampling

End-point samples will be collected from the sidewalls and base of excavation at the hotspot location identified in the Remedial Investigation, according to the procedure listed below. Hotspots include the extent of the PCE impacts initially identified in SB-9 based upon delineation soil borings to define the lateral and vertical Terachloroethylene soil impacts. Endpoint samples will be analyzed for SCO trigger parameters.

For any hotspots identified during this remedial program, including any hotspots identified during the remedial action, hotspot removal actions will be performed to ensure that hotspots are fully removed and end-point samples will be collected at the following frequency:

- 1. For excavations less than 20 feet in total perimeter, at least one bottom sample and one sidewall sample biased in the direction of surface runoff.
- 2. For excavations 20 to 300 feet in perimeter:
 - For surface removals, one sample from the top of each sidewall for every 30 linear feet of sidewall and one sample from the excavation bottom for every 900 square feet of bottom area.
 - For subsurface removals, one sample from each sidewall for every 30 linear feet of sidewall and one sample from the excavation bottom for every 900 square feet of bottom area.
- For sampling of volatile organics, bottom samples should be taken within 24 hours of excavation, and should be taken from the zero to six-inch interval at the excavation floor. Samples taken after 24 hours should be taken at six to twelve inches.
- 4. For contaminated soil removal, post remediation soil samples for laboratory analysis should be taken immediately after contaminated soil removal. If the excavation is enlarged horizontally, additional soil samples will be taken pursuant to bullets 1-3 above.

Post-remediation end-point sample locations and depth will be biased towards the areas and depths of highest contamination identified during previous sampling episodes unless field

indicators such as field instrument measurements or visual contamination identified during the remedial action indicate that other locations and depths may be more heavily contaminated. In all cases, post-remediation samples should be biased toward locations and depths of the highest expected contamination.

If either LNAPL and/or DNAPL are detected, appropriate samples will be collected for characterization and "finger print analysis" and required regulatory reporting (i.e. spills hotline) will be performed.

Quality Assurance/Quality Control

The fundamental QA objective with respect to accuracy, precision and sensitivity of analysis for laboratory analytical data is to achieve the QC acceptance of the analytical protocol for all data generated.

Soil samples will be analyzed for VOCs by EPA Method 8260; SVOCs by EPA Method 8270; TAL Metals by EPA Method 6010 and Pesticides and PCBS by EPA Method 8081/8082. The soil samples will be compared to the NYSDEC standards for Unrestricted Use Soil Cleanup Objectives, Restricted Residential Soil Cleanup Objectives and Commercial Soil Cleanup Objective (UUSCO, RRSCO and CSCO).

Collected samples will be appropriately packaged, placed in coolers and shipped via laboratory courier or delivered directly to the analytical laboratory by field personnel. Samples will be containerized in appropriate laboratory provided glassware and shipped in plastic coolers. Samples will be preserved through the use of ice or "cold-paks" to maintain a temperature of 4°C. The holding times for VOCs, SVOCs, Pesticides and PCBs are 14 days from sample collection and TAL Metals have a holding time of 6 months with the exception of mercury, which is 28 days.

Dedicated disposable sampling materials will be used for the collection of endpoint samples, eliminating the need to prepare field equipment (rinsate) blanks. However, if non-disposable equipment is used, (stainless steel scoop, etc.) field rinsate blanks will be prepared at the rate of 1 for every eight samples collected. Decontamination of non-dedicated sampling equipment will consist of the following:

- Gently tap or scrape to remove adhered soil;
- Rinse with tap water;
- Wash with alconox® detergent solution and scrub;
- Rinse with tap water;
- Rinse with distilled or deionized water.

Field blanks are prepared by pouring distilled or deionized water over decontaminated equipment and collecting the water in laboratory provided containers. Trip blanks will be used whenever groundwater samples are transported to the laboratory for analysis of VOCs. Trip blanks will not be used for samples to be analyzed for metals, SVOCs or pesticides.

Import of Soils

Soil import is not planned on this project.

Reuse of Onsite Soils

Soil reuse is not planned on this project.

4.3 Engineering Controls

Engineering Controls will be employed in the remedial action to address residual contamination remaining at the site. The Site has four primary Engineering Control Systems. These are:

- (1) Composite Cover System
- (2) Soil Vapor Barrier System
- (3) Active Sub-Slab Depressurization System
- (4) Sub-grade ventilated garage

Composite Cover System

Exposure to residual soil/fill will be prevented by an engineered, composite cover system to be built on the Site. This composite cover system will be comprised of a minimum of 6 inches of reinforced concrete slab underlain by 6 inches of clean sub-base material in building areas. The

typical design for each remedial cover type used on this Site and the location of each cover type built at the Site will be provided under separate cover in the Stipulation List.

The composite cover system will be a permanent engineering control. The system will be inspected and its performance certified at specified intervals as required by this RAWP and the Site Management Plan. A Soil and Materials Management Plan will be included in the Site Management Plan and will outline the procedures to be followed in the event that the composite cover system and underlying residual soil/fill is disturbed after the remedial action is complete. Maintenance of this composite cover system will be described in the Site Management Plan in the Remedial Action Report.

Vapor Barrier System

Migration of soil vapor from onsite or offsite sources into the building will be mitigated with a combination of building slab and vapor barrier. The vapor barrier will consist of 20-mil Vaporblock Plus co-extruded barrier consisting of a seven-layer polyethylene and ethylene vinyl alcohol resins manufactured by Raven Industries or an equivalent below the slab throughout the full building area and a 1.2 mm nominal thickness Preprufe 300 LT blindside waterproofing manufactured by Grace Construction Products or equivalent outside all sub-grade foundation sidewalls.

The vapor barrier will extend throughout the area occupied by the footprint of the new building and up the foundation sidewalls and will be installed in accordance with manufacturer specifications.

A plan view showing the location of the proposed vapor barrier system and typical design sections for the vapor barrier on slab and sidewalls will be provided under separate cover in the Stipulation List.. Product specification sheets are provided in Appendix 5. The Remedial Action Report will include as-built drawings and diagrams; manufacturer documentation; and photographs.

The Remedial Action Report will include a PE-certified letter (on company letterhead) from the primary contractor responsible for installation oversight and field inspections and a copy of the manufacturer's certificate of warranty.

The Vapor Barrier System is a permanent engineering control and will be inspected and its performance certified at specified intervals as required by this RAWP and the Site Management Plan. A Soil and Materials Management Plan will be included in the Site Management Plan and will outline the procedures to be followed in the event that the composite cover system and underlying vapor barrier system is disturbed after the remedial action is complete. Maintenance of these systems will be described in the Site Management Plan in the Remedial Action Report.

Sub-Slab Depressurization System

Migration of soil vapor into the building will be mitigated with the construction of an active Sub-Slab Depressurization System (SSDS). The SSDS will consist of a network of horizontal piping set in the middle of a gas permeable layer immediately beneath the building slab and vapor barrier system. The horizontal piping will consist of fabric wrapped, 4-inch corrugated drain pipe connected to a 6-inch steel riser pipe that penetrates the slab and travels through the building to the roof. The gas permeable layer will consist of a 6-inch thick layer of ³/₄-inch bluestone. The pipe will be finished at the roof line with a 4-inch goose neck pipe to prevent rain infiltration. The active SSDS will be hardwired and will include an appropriate rated blower installed on the roof line and a pressure gauge and alarm located in an accessible area in the basement. The active SSDS is an Engineering Control for the remedial action. The remedial engineer will certify in the RAR that the active SSDS was designed and properly installed to establish a vacuum in the gas permeable layer and a negative (decreasing outward) pressure gradient across the building slab to prevent vapor migration into the building. This pressure testing will be performed prior to obtaining Notice of Satisfaction from OER. The system will be inspected and its performance certified at specified intervals as required by this RAWP and the Site Management Plan. Maintenance of this SSDS will be described in the Site Management Plan in the Remedial Action Report. The SSDS design and details will be provided under separate cover with the Stipulation List.

4.4 Institutional Controls

A series of Institutional Controls (IC's) are required under this Remedial Action to assure permanent protection of public health by elimination of exposure to residual materials. These IC's define the program to operate, maintain, inspect and certify the performance of Engineering Controls and Institutional Controls on this property. Institutional Controls would be implemented in accordance with a Site Management Plan included in the final Remedial Action Report (RAR). Institutional Controls would be:

- Continued registration of the E-Designation for the property. This RAWP includes a description of all ECs and ICs and summarizes the requirements of the SMP which will note that the property owner and property owner's successors and assigns must comply with the approved SMP;
- Submittal of a SMP in the RAR for approval by OER that provides procedures for appropriate operation, maintenance, inspection, and certification of ECs and IC's. SMP will require that the property owner and property owner's successors and assigns will submit to OER a periodic written statement that certifies that: (1) controls employed at the Site are unchanged from the previous certification or that any changes to the controls were approved by OER; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. OER retains the right to enter the Site in order to evaluate the continued maintenance of any controls. This certification shall be submitted at a frequency to be determine by OER in the SMP and will comply with RCNY §43-1407(l)(3).
- Vegetable gardens and farming on the Site are prohibited in contact with residual soil materials;
- Use of groundwater underlying the Site is prohibited without treatment rendering it safe for its intended use;
- All future activities on the Site that will disturb residual material must be conducted pursuant to the soil management provisions in an approved SMP;
- The Site will be used for residential and commercial and will not be used for a higher level of use without prior approval by OER.

4.5 Site Management Plan

Site Management is the last phase of remediation and begins with the approval of the Remedial Action Report and issuance of the Notice of Completion (NOC) for the Remedial Action. The Site Management Plan (SMP) describes appropriate methods and procedures to ensure

implementation of all ECs and ICs that are required by this RAWP. The Site Management Plan is submitted as part of the RAR but will be written in a manner that allows its use as an independent document. Site Management continues until terminated in writing by OER. The property owner is responsible to ensure that all Site Management responsibilities defined in the Site Management Plan are implemented.

The SMP will provide a detailed description of the procedures required to manage residual soil/fill left in place following completion of the remedial action in accordance with the Voluntary Cleanup Agreement with OER. This includes a plan for: (1) implementation of EC's and ICs; (2) operation and maintenance of EC's; (3) inspection and certification of IC's and EC's.

Site management activities and EC/IC certification will be scheduled by OER on a periodic basis to be established in the RAR and the SMP and will be subject to review and modification by OER. The Site Management Plan will be based on a calendar year and certification reports will be due for submission to OER by July 30 of the year following the reporting period.

4.6 Qualitative Human Health Exposure Assessment

The objective of the qualitative exposure assessment is to identify potential receptors and pathways for human exposure to the contaminants of concern (COC) that are present at, or migrating from, the Site. The identification of exposure pathways describes the route that the COC takes to travel from the source to the receptor. An identified pathway indicates that the potential for exposure exists; it does not imply that exposures actually occur.

Data and information reported in the Remedial Investigation Report (RIR) are sufficient to complete a Qualitative Human Health Exposure Assessment (QHHEA) for this project. As part of the VCP process, a QHHEA was performed to determine whether the Site poses an existing or future health hazard to the Site's exposed or potentially exposed population. The sampling data from the RI were evaluated to determine whether there is any health risk under current and future conditions by characterizing the exposure setting, identifying exposure pathways, and evaluating contaminant fate and transport. This QHHEA was prepared in accordance with Appendix 3B and Section 3.3 (b) 8 of the NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation.

Known and Potential Contaminant Sources

Based on the results of the RIR, the contaminants of concern are:
Soil: Benzo(a)anthracene and Lead were detected above their respective RRSCOs.
Groundwater: Chloroform, Bis(2-ethylhexyl)phthalate and total PCBs were detected above
NYSDEC TOGS 1.1.1 Standards and Guidance Values.
Soil Vapor: Benzene, Chloroform and Ethylbenzene were detected above USEPA Soil Vapor

Guidelines. Tetrachloroethylene and Trichloroethylene were detected above NYSDOH soil vapor screening levels.

Nature, Extent, Fate and Transport of Contaminants

Soil: SVOCs and Metals were detected in shallow soil above RRSCOs in the southern portion of the Site. The SVOCs identified have the potential to migrate into groundwater or volatilize into soil vapor. Metals potentially could leach into underground aquifers impacting groundwater quality.

Groundwater: VOCs were identified towards the south of the property above NYSDEC TOGS 1.1.1 Standards and Guidance Values. SVOCs were identified in the monitoring well towards the central portion of the southern groundwater monitoring wells. Total PCBs were identified in groundwater monitoring wells throughout the property.

Soil Vapor: Benzene was detected in the two sub-slab samples at the interior western portion of the site and at the exterior of the building near the eastern boundary. Chloroform was detected in the northeastern corner of the Site. Ethylbenzene was detected in the western portion of interior of the building. Tetrachloroethylene was detected above NYSDOH screening levels throughout the Site. Trichloroethylene was detected in one soil vapor sample near the eastern portion of the exterior of the building.

Receptor Populations

On-Site Receptors: The site is currently vacant and consists of the building for the former auto repair facility at the property. Access to the Site is restricted by a steel track-mounted locked rolling chain-link fence with gates for vehicle access and egress. Onsite receptors are limited to trespassers, site representatives, government officials and visitors granted access to the property. During construction, potential on-site receptors include construction workers, site

representatives, government officials and visitors. Under proposed future conditions, potential on-site receptors include adult and child building residents, workers and visitors.

Off-Site Receptors: Potential off-site receptors within a 500-foot radius of the Site include adult and child residents; commercial and construction workers; pedestrians; and trespassers based on the following land uses within 500 feet of the Site:

- 1. Commercial Businesses existing and future
- 2. Residential Buildings existing and future
- 3. Building Construction/ Renovation existing and future
- 4. Pedestrians, Trespassers, Cyclists existing and future
- 5. Schools existing and future

Potential Routes of Exposure

Three potential primary routes exist by which chemicals can enter the body: ingestion, inhalation, and dermal absorption. Exposure can occur based on the following potential media:

- Ingestion of groundwater or fill/ soil;
- Inhalation of vapors or particulates; and
- Dermal absorption of groundwater or fill/ soil.

Potential Exposure Points

Current Conditions: The site is currently capped with asphalt there are no potential exposure pathways from ingestion, inhalation, or dermal absorption of soil/ fill. Groundwater is not exposed at the site. The site is served by the public water supply and groundwater is not used at the site for potable supply and there is no potential for exposure. Because the site is currently vacant, the potential exposure is limited to transient visitation, therefore long-term exposure is not expected. The former uses and the age of the property would likely result in passive ventilation of the indoor atmosphere rendering the air quality permissible under normal conditions.

Construction/ Remediation Conditions: During the remedial action, onsite workers will come into direct contact with surface and subsurface soils as a result of on-Site construction and excavation activities. On-Site construction workers potentially could ingest, inhale or have dermal contact with exposed impacted soil and fill. Similarly, off-Site receptors could be

exposed to dust and vapors from on-Site activities. Due to the depth of groundwater, direct contact with groundwater is not expected. During construction, on-Site and off-Site exposures to contaminated dust from on-Site will be addressed through the Soil/Materials Management Plan, dust controls, and through the implementation of the Community Air-Monitoring Program and a Construction Health and Safety Plan.

Proposed Future Conditions: Under future remediated conditions, all soils in excess of Track 4 SCOs will be removed. The site will be fully capped, preventing potential direct exposure to soil and groundwater remaining in place, and engineering controls (vapor barrier/SSDS) will prevent any potential exposure due to inhalation by preventing soil vapor intrusion. The site is served by the public water supply, and groundwater is not used at the site. There are no plausible off-site pathways for oral, inhalation, or dermal exposure to contaminants derived from the site.

Overall Human Health Exposure Assessment

There are potential complete exposure pathways for the current site condition. There are potential complete exposure pathways that require mitigation during implementation of the remedy. There are no complete exposure pathways under future conditions after the site is developed. This assessment takes into consideration the reasonably anticipated use of the site, which includes a residential structure, site-wide surface cover, and a subsurface vapor barrier system for the building. Additionally, an active SSDS system and continuously ventilated parking garage will mitigate elevated soil vapor condition. Under current conditions, on-Site exposure pathways exist for those with access to the Site and trespassers. During remedial construction, on-Site and off-Site exposures to contaminated dust from historic fill material will be addressed through dust controls, and through the implementation of the Community Air Monitoring Program, the Soil/Materials Management Plan, and a Construction Health and Safety Plan. Potential post-construction use of groundwater is not considered an option because groundwater in this area of New York City is not used as a potable water source. There are no surface waters in close proximity to the Site that could be impacted or threatened.

5.0 Remedial Action Management

5.1 **Project Organization and Oversight**

Principal personnel who will participate in the remedial action include Paul Stewart, President of ACT. The Professional Engineer (PE) and Qualified Environmental Professionals (QEP) for this project are Andrew Levenbaum (PE) and Paul Stewart (QEP).

5.2 Site Security

Site access will be controlled by a wooden construction fence with restricted access through a locked gate.

5.3 Work Hours

The hours for operation of cleanup will comply with the NYC Department of Buildings construction code requirements or according to specific variances issued by that agency. The hours of operation will be conveyed to OER during the pre-construction meeting.

5.4 Construction Health and Safety Plan

The Health and Safety Plan is included in Appendix 4. The Site Safety Coordinator will be Yisong Yang. Remedial work performed under this RAWP will be in full compliance with applicable health and safety laws and regulations, including Site and OSHA worker safety requirements and HAZWOPER requirements. Confined space entry, if any, will comply with OSHA requirements and industry standards and will address potential risks. The parties performing the remedial construction work will ensure that performance of work is in compliance with the HASP and applicable laws and regulations. The HASP pertains to remedial and invasive work performed at the Site until the issuance of the Notice of Completion.

All field personnel involved in remedial activities will participate in training required under 29 CFR 1910.120, such as 40-hour hazardous waste operator training and annual 8-hour refresher training. Site Safety Officer will be responsible for maintaining workers training records. Personnel entering any exclusion zone will be trained in the provisions of the HASP and will comply with all requirements of 29 CFR 1910.120. Site-specific training will be provided to

field personnel. Additional safety training may be added depending on the tasks performed. Emergency telephone numbers will be posted at the site location before any remedial work begins. A safety meeting will be conducted before each shift begins. Topics to be discussed include task hazards and protective measures (physical, chemical, environmental); emergency procedures; PPE levels and other relevant safety topics. Meetings will be documented in a log book or specific form.

An emergency contact sheet with names and phone numbers is included in the CHASP. That document will define the specific project contacts for use in case of emergency.

5.5 Community Air Monitoring Plan

Real-time air monitoring for volatile organic compounds (VOCs) and particulate levels at the perimeter of the exclusion zone or work area will be performed. Continuous monitoring will be performed for all ground intrusive activities and during the handling of contaminated or potentially contaminated media. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pit excavation or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be performed during non-intrusive activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. Periodic monitoring during sample collection, for instance, will consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well bailing/purging, and taking a reading prior to leaving a sample location. Depending upon the proximity of potentially exposed individuals, continuous monitoring may be performed during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence. Exceedences of action levels observed during performance of the Community Air Monitoring Plan (CAMP) will be reported to the OER Project Manager and included in the Daily Report.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) will be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis during invasive work.

Upwind concentrations will be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work will be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment will be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment will be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities will resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities will be shutdown.

All 15-minute readings must be recorded and be available for OER personnel to review. Instantaneous readings, if any, used for decision purposes will also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations will be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring will be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The

equipment will be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed. Work will continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m3 above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m3 above the upwind level, work will be stopped and a re-evaluation of activities initiated. Work will resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m3 of the upwind level and in preventing visible dust migration.

All readings will be recorded and be available for OER personnel to review.

5.6 Agency Approvals

All permits or government approvals required for remedial construction have been or will be obtained prior to the start of remedial construction. Approval of this RAWP by OER does not constitute satisfaction of these requirements and will not be a substitute for any required permit.

5.7 Site Preparation

Pre-Construction Meeting

OER will be invited to attend the pre-construction meeting at the Site with all parties involved in the remedial process prior to the start of remedial construction activities.

Mobilization

Mobilization will be conducted as necessary for each phase of work at the Site. Mobilization includes field personnel orientation, equipment mobilization (including securing all sampling equipment needed for the field investigation), marking/staking sampling locations and utility

mark-outs. Each field team member will attend an orientation meeting to become familiar with the general operation of the Site, health and safety requirements, and field procedures.

Utility Marker Layouts, Easement Layouts

The presence of utilities and easements on the Site will be fully investigated prior to the performance of invasive work such as excavation or drilling under this plan by using, at a minimum, the One-Call System (811). Underground utilities may pose an electrocution, explosion, or other hazard during excavation or drilling activities. All invasive activities will be performed incompliance with applicable laws and regulations including NYC Building Code to assure safety. Utility companies and other responsible authorities will be contacted to locate and mark the locations, and a copy of the Mark-Out Ticket will be retained by the contractor prior to the start of drilling, excavation or other invasive subsurface operations. Overhead utilities may also be present within the anticipated work zones. Electrical hazards associated with drilling in the vicinity of overhead utilities will be prevented by maintaining a safe distance between overhead power lines and drill rig masts.

Proper safety and protective measures pertaining to utilities and easements, and compliance with all laws and regulations will be employed during invasive and other work contemplated under this RAWP. The integrity and safety of on-Site and off-Site structures will be maintained during all invasive, excavation or other remedial activity performed under the RAWP.

Dewatering

Dewatering is not anticipated during remediation and construction.

Equipment and Material Staging

Equipment and materials will be stored and staged in a manner that complies with applicable laws and regulations.

Stabilized Construction Entrance

Steps will be taken to ensure that trucks departing the site will not track soil, fill or debris off-Site. Such actions may include use of cleaned asphalt or concrete pads or use of stone or other aggregate-based egress paths between the truck inspection station and the property exit. Measures will be taken to ensure that adjacent roadways will be kept clean of project related soils, fill and debris.

Truck Inspection Station

An outbound-truck inspection station will be set up close to the Site exit. Before exiting the Site, trucks will be required to stop at the truck inspection station and will be examined for evidence of contaminated soil on the undercarriage, body, and wheels. Soil and debris will be removed. Brooms, shovels and clean water will be utilized for the removal of soil from vehicles and equipment, as necessary.

Extreme Storm Preparedness and Response Contingency Plan

Damage from flooding or storm surge can include dislocation of soil and stockpiled materials, dislocation of site structures and construction materials and equipment, and dislocation of support of excavation structures. Damage from wind during an extreme storm event can create unsafe or unstable structures, damage safety structures and cause downed power lines creating dangerous site conditions and loss of power. In the event of emergency conditions caused by an extreme storm event, the enrollee will undertake the following steps for site preparedness prior to the event and response after the event.

Storm Preparedness

Preparations in advance of an extreme storm event will include the following: containerized hazardous materials and fuels will be removed from the property; loose materials will be secured to prevent dislocation and blowing by wind or water; heavy equipment such as excavators and generators will be removed from excavated areas, trenches and depressions on the property to high ground or removed from the property; an inventory of the property with photographs will be performed to establish conditions for the site and equipment prior to the event; stockpile covers for soil and fill will be secured by adding weights such as sandbags for added security and worn or ripped stockpile covers will be replaced with competent covers; stockpiled hazardous wastes will be removed from the property; stormwater management systems will be inspected and fortified, including, as necessary: clean and reposition silt fences, hay bales; clean storm sewer filters and traps; and secure and protect pumps and hosing.

Storm Response

At the conclusion of an extreme storm event, as soon as it is safe to access the property, a complete inspection of the property will be performed. A site inspection report will be submitted to OER at the completion of site inspection and after the site security is assessed. Site conditions will be compared to the inventory of site conditions and material performed prior to the storm event and significant differences will be noted. Damage from storm conditions that result in acute public safety threats, such as downed power lines or imminent collapse of buildings, structures or equipment will be reported to public safety authorities via appropriate means such as calling 911. Petroleum spills will be reported to NYS DEC within 2 hours of identification and consistent with State regulations. Emergency and spill conditions will also be reported to OER. Public safety structures, such as construction security fences will be repaired promptly to eliminate public safety threats. Debris will be collected and removed. Dewatering will be performed in compliance with existing laws and regulations and consistent with emergency notifications, if any, from proper authorities. Eroded areas of soil including unsafe slopes will be stabilized and fortified. Dislocated materials will be collected and appropriately managed. Support of excavation structure will be inspected and fortified as necessary. Impacted stockpiles will be contained and damaged stockpile covers will be replaced. Stormwater control systems and structures will be inspected and maintained as necessary. If soil or fill materials are discharged off site to adjacent properties, property owners and OER will be notified and corrective measure plan designed to remove and clean dislocated material will be submitted to OER and implemented following approval by OER and granting of site access by the property owner. Impacted offsite areas may require characterization based on site conditions, at the discretion of OER. If onsite petroleum spills are identified, a qualified environmental professional will determine the nature and extent of the spill and report to NYS DEC's spill hotline at DEC 800-457-7362 within statutory defined timelines. If the source of the spill is ongoing and can be identified, it should be stopped if this can be done safely. Potential hazards will be addressed immediately, consistent with guidance issued by NYS DEC.

Storm Response Reporting

A site inspection report will be submitted to OER at the completion of site inspection. An inspection report established by OER is available on OER's website (www.nyc.gov/oer) and will

be used for this purpose. Site conditions will be compared to the inventory of site conditions and material performed prior to the storm event and significant differences will be noted. The site inspection report will be sent to the OER project manager and will include the site name, address, tax block and lot, site primary and alternate contact name and phone number. Damage and soil release assessment will include: whether the project had stockpiles; whether stockpiles were damaged; photographs of damage and notice of plan for repair; report of whether soil from the site was dislocated and whether any of the soil left the site; estimates of the volume of soil that left the site, nature of impact, and photographs; description of erosion damage; description of equipment damage; description of damage to the remedial program or the construction program, such as damage to the support of excavation; presence of onsite or offsite exposure pathways caused by the storm; presence of petroleum or other spills and status of spill reporting to NYS DEC; description of corrective actions; schedule for corrective actions. This report should be completed and submitted to OER project manager with photographs within 24 hours of the time of safe entry to the property after the storm event.

5.8 Traffic Control

Drivers of trucks leaving the Site with soil/fill will be instructed to proceed without stopping in the vicinity of the Site to prevent neighborhood impacts. The planned route on local roads for trucks leaving the site is shown on Figure 7.

5.9 Demobilization

Demobilization will include:

- As necessary, restoration of temporary access areas and areas that may have been disturbed to accommodate support areas (e.g., staging areas, decontamination areas, storage areas, temporary water management areas, and access area);
- Removal of sediment from erosion control measures and truck wash and disposal of materials in accordance with applicable laws and regulations;
- Equipment decontamination, and;
- General refuse disposal.

Equipment will be decontaminated and demobilized at the completion of all field activities. Investigation equipment and large equipment (e.g., soil excavators) will be washed at the truck inspection station as necessary. In addition, all investigation and remediation derived waste will be appropriately disposed.

5.10 Reporting and Record Keeping

Daily reports

Daily reports providing a general summary of activities for each day of active remedial work will be emailed to the OER Project Manager by the end of the following business day. Those reports will include:

- Project number and statement of the activities and an update of progress made and locations of excavation and other remedial work performed;
- Quantities of material imported and exported from the Site;
- Status of on-Site soil/fill stockpiles;
- A summary of all citizen complaints, with relevant details (basis of complaint; actions taken; etc.);
- A summary of CAMP results noting all excursions. CAMP data may be reported;
- Photograph of notable Site conditions and activities.

The frequency of the reporting period may be revised in consultation with OER project manager based on planned project tasks. Daily email reports are not intended to be the primary mode of communication for notification to OER of emergencies (accidents, spills), requests for changes to the RAWP or other sensitive or time critical information. However, such information will be included in the daily reports. Emergency conditions and changes to the RAWP will be communicated directly to the OER project manager by personal communication. Daily reports will be included as an Appendix in the Remedial Action Report.

Record Keeping and Photo Documentation

Job-site record keeping for all remedial work will be performed. These records will be maintained on-Site during the project and will be available for inspection by OER staff. Representative photographs will be taken of the Site prior to any remedial activities and during major remedial activities to illustrate remedial program elements and contaminant source areas.

Photographs will be submitted at the completion of the project in the RAR in digital format (i.e. jpeg files).

5.11 Complaint Management

All complaints from citizens will be promptly reported to OER. Complaints will be addressed and outcomes will also be reported to OER in daily reports. Notices to OER will include the nature of the complaint, the party providing the complaint, and the actions taken to resolve any problems.

5.12 Deviations From The Remedial Action Work Plan

All changes to the RAWP will be reported to, and approved by, the OER Project Manager and will be documented in daily reports and reported in the Remedial Action Report. The process to be followed if there are any deviations from the RAWP will include a request for approval for the change from OER noting the following:

- Reasons for deviating from the approved RAWP;
- Effect of the deviations on overall remedy; and
- Determination with basis that the remedial action with the deviation(s) is protective of public health and the environment.

6.0 Remedial Action Report

A Remedial Action Report (RAR) will be submitted to OER following implementation of the remedial action defined in this RAWP. The RAR will document that the remedial work required under this RAWP has been completed and has been performed in compliance with this plan. The RAR will include:

- Information required by this RAWP;
- Text description with thorough detail of all engineering and institutional controls (if Track 1 remedial action is not achieved)
- As-built drawings for all constructed remedial elements;
- Manifests for all soil or fill disposal;
- Photographic documentation of remedial work performed under this remedy;
- Site Management Plan (if Track 1 remedial action is not achieved);

- Description of any changes in the remedial action from the elements provided in this RAWP and associated design documents;
- Tabular summary of all end point sampling results (including all soil test results from the remedial investigation for soil that will remain on site) and all soil/fill waste characterization results, QA/QC results for end-point sampling, and other sampling and chemical analysis performed as part of the remedial action;
- Test results or other evidence demonstrating that remedial systems are functioning properly;
- Account of the source area locations and characteristics of all soil or fill material removed from the Site including a map showing the location of these excavations and hotspots, tanks or other contaminant source areas;
- Full accounting of the disposal destination of all contaminated material removed from the Site. Documentation associated with disposal of all material will include transportation and disposal records, and letters approving receipt of the material;
- Account of the origin and required chemical quality testing for material imported onto the Site;
- Continue registration of the property with an E-Designation by the NYC Department of Buildings (if Track 1 remedial action is not achieved);
- The RAWP and Remedial Investigation Report will be included as appendices to the RAR;
- Reports and supporting material will be submitted in digital form and final PDF's will include bookmarks for each appendix.

Remedial Action Report Certification

I, Andrew Levenbaum, am currently a registered professional engineer licensed by the State of New York. I performed professional engineering services and had primary direct responsibility for implementation of the remedial program for the site located at 148-28 Hillside Avenue, Jamaica, New York, OER site number 17TMP0097Q. I certify to the following:

- I have reviewed this document, to which my signature and seal are affixed.
- Engineering Controls implemented during this remedial action were designed by me or a person under my direct supervision and achieve the goals established in the Remedial Action Work Plan for this site.
- The Engineering Controls constructed during this remedial action were professionally observed by me or by a person under my direct supervision and (1) are consistent with the Engineering Control design established in the Remedial Action Work Plan and (2) are accurately reflected in the text and drawings for as-built design reported in this Remedial Action Report.
- The OER-approved Remedial Action Work Plan dated [date] and Stipulations in a letter dated [date] were implemented and that all requirements in those documents have been substantively complied with. I certify that contaminated soil, fill, liquids or other material from the property were taken to facilities licensed to accept this material in full compliance with applicable laws and regulations.

Name	
	PE Stamp
PE License Number	
Signature	
Date	

I, Paul Stewart, am a Qualified Environmental Professional. I had primary direct responsibility for implementation of the remedial program for the site located at 148-28 Hillside Avenue, Jamaica, New York, OER site number 17TMP0097Q. I certify to the following:

• The OER-approved Remedial Action Work Plan dated August 15, 20XX and Stipulations in a letter dated September 10, 20XX were implemented and that all requirements in those documents have been substantively complied with. I certify that contaminated soil, fill, liquids or other material from the property were taken to facilities licensed to accept this material in full compliance with applicable laws and regulations.

QEP Name

QEP Signature

Date

7.0 Schedule

The table below presents a schedule for the proposed remedial action and reporting. If the schedule for remediation and development activities changes, it will be updated and submitted to OER. Currently, a 10 month remediation period is anticipated.

Schedule Milestone	Weeks from Remedial	Duration (weeks)
	Action Start	
OER Approval of RAWP	0	4 weeks
Fact Sheet 2 announcing start of remedy	0	1 week
Mobilization	0	4 weeks
Remedial Excavation	4 weeks	25 weeks
Demobilization	29 weeks	11 weeks
Submit Remedial Action Report	40 weeks	4 weeks

ENVIRONMENTAL CONSULTAI	VTB
110 Main Street, Suite 103 Tel: 516-441-5800	, Port Washington, NY 11050 Fax: 516-441-5511
Project No.: 8346-JANY	Figure No.: 1
Date: 06/12/2015	Scale: 1 inch = 2000 feet

				Table 1					
		Vola	tile Organic E 148 J:	Compounds EPA Method 8 -28 Hillside A amaica, NY 1	s in Soil (ug/k 3260 Avenue 1435	g-dry)			
			ACT P	roject No.: 8	346-JANY				
Sample ID (Depth) Sample Date	UUSCO ¹	RRSCO ²	CSCO ³	SB-1 (0-2')	SB-1 (13'-15')	SB-2B (13'-15')	SB-3 (0-3')	SB-3 (13'-15')	SB-4 (13'-15')
1.1.1.2-Tetrachloroethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,1,1-Trichloroethane	680	100,000	500,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,1,2,2-Tetrachloroethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,1,2-Trichloroethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,1-Dichloroethane	270	26,000	240,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,1-Dichlorobenzene	330 NS	100,000 NS	500,000 NS	<2.0	<2.1	<2.5	<3.0	<2.5	<2.2
1,2,4-Trimethylbenzene	4,700	5,200	19,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,2-Dibromo-3-chloropropane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,2-Dibromoethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,2-Dichlorobenzene	1,100	100,000	500,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,2-Dichloroethane	20	3,100	30,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,2-Dichloropropane	NS 4 700	5 200	NS 19.000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1.3-Dichlorobenzene	2,400	49.000	280.000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,4-Dichlorobenzene	1,800	13,000	130,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,4-Dioxane	980	1,300	13,000	<53	<41	<50	<61	<50	<44
Cyclohexane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
2-Butanone	120	100,000	500,000	<2.6	3.5	<2.5	<3.0	<2.5	<2.2
2-Hexanone	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
4-Metnyl-2-pentanone	INS 50	INS 100.000	INS 500.000	<2.6 11	<2.1	<2.5	<3.0	<2.5	<2.2
Acrolein	NS	NS	NS	<5.3	<4.1	<5.0	<6.1	<5.0	<4.4
Acrylonitrile	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Benzene	60	4,800	44,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Bromodichloromethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Bromoform	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Bromomethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Carbon tetrachloride	760	2 400	22 000	<2.0	<2.1	<2.5	<3.0	<2.5	<2.2
Chlorobenzene	1.100	100.000	500.000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Chloroethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Chloroform	370	49,000	350,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Chloromethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
cis-1,2-Dichloroethene	250	100,000	500,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
cis-1,3-Dichloropropene	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Dibromomethane	NS	NS	NS	<2.0	<2.1	<2.5	<3.0	<2.5	<2.2
Dichlorodifluoromethane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Ethylbenzene	1,000	41,000	390,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Methylcyclohexane	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Hexachlorobutadine	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Isopropylbenzene	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Methyl tert butyl ether	030	100.000	INS 500.000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Methylene chloride	50	100,000	500,000	<5.3	<4.1	<5.0	<6.1	<5.0	<4.4
n-Butylbenzene	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
1,2,3-Trichlorobenzene	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
n-Propylbenzene	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
o-Xylene	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
p- & m- Xylenes	NS	NS	NS	<5.3	<4.1	<5.0	<6.1	<5.0	<4.4
p-isopropyitoluene	INS NS	INS NS	INS NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Styrene	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
tert-Butyl alcohol (TBA)	NS	NS	NS	<5.3	<2.1	<2.5	<6.1	<2.5	<2.2
tert-Butylbenzene	NS	NS	NS	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Tetrachloroethene	1,300	19,000	150,000	5.8	<2.1	<2.5	<3.0	<2.5	<2.2
Toluene	700	100,000	500,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
trans-1,2-Dichloroethene	100,000	100,000	500,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
trans-1,3-Dichloropropene	NS 470	NS 21.000	NS 200.000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Trichlorofluoromethane	470 NS	21,000 NS	200,000 NS	<2.0	<2.1	<2.5	<3.0	<2.5	<2.2
Vinyl chloride	20	900	13,000	<2.6	<2.1	<2.5	<3.0	<2.5	<2.2
Xvlenes (Total)	260	100.000	500.000	<7.9	<6.2	<7.6	<9.1	<7.5	<6.6

			Ta	able 1 (Contin	nued)					
	Volatile Organic Compounds in Soil (ug/kg-dry) EPA Method 8260 148-28 Hillside Avenue Jamaica, NY 11435									
			ACT P	roject No.: 8	346-JANY					
Sample ID (Depth)	UUSCO ¹	RRSCO ²	CSCO ³	SB-5 (0-2')	SB-5 (13-'15')	SB-6 (0-2')	SB-6 (13'15')	SB-7A (0-2')	SB-7B (10-12	
1 1 1 2-Tetrachloroethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,1,1-Trichloroethane	680	100,000	500,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,1,2,2-Tetrachloroethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,1,2-Trichloro-1,2,2-trifluoroethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,1,2-Trichloroethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,1-Dichloroethane	270	26,000	240,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,1-Dichloroethene	330 NS	100,000 NS	500,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1 2 4-Trimethylbenzene	4 700	5 200	19 000	<2.0	<2.8	<2.0	<2.5	<2.7	<2.0	
1.2-Dibromo-3-chloropropane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,2-Dibromoethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,2-Dichlorobenzene	1,100	100,000	500,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,2-Dichloroethane	20	3,100	30,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,2-Dichloropropane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,3,5-Trimethylbenzene	4,700	5,200	19,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,3-Dichlorobenzene	2,400	49,000	280,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,4-Dichlorobenzene	980	1 300	130,000	<2.0	<2.8	<2.0	<2.5	<2.7	<2.0	
Cyclohexane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
2-Butanone	120	100,000	500,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
2-Hexanone	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
4-Methyl-2-pentanone	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Acetone	50	100,000	500,000	7.3	<5.6	7.4	<4.9	12	12	
Acrolein	NS	NS	NS	<3.9	<5.6	<5.3	<4.9	<5.3	<5.2	
Acrylonitrile	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Benzene Bromodichloromethane	60 NS	4,800 NS	44,000 NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Bromoform	NS	NS	NS	<2.0	<2.8	<2.0	<2.5	<2.7	<2.0	
Bromomethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Carbon disulfide	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Carbon tetrachloride	760	2,400	22,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Chlorobenzene	1,100	100,000	500,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Chloroethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Chloroform	370	49,000	350,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
	250	100.000	500.000	<2.0	<2.8	<2.0	<2.5	<2.7	<2.0	
cis-1,2-Dichloropropene	NS	NS	NS	<2.0	<2.8	<2.0	<2.5	<2.7	<2.0	
Dibromochloromethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Dibromomethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Dichlorodifluoromethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Ethylbenzene	1,000	41,000	390,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Methylcyclohexane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Hexachlorobutadine	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Isopropyidenzene	NS NC	NS	NS NC	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Methyl tert-butyl ether	930	100 000	500.000	<2.0	<2.8	<2.0	<2.5	<2.7	<2.0	
Methylene chloride	50	100,000	500,000	<3.9	<5.6	<5.3	<4.9	<5.3	<5.2	
n-Butylbenzene	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
1,2,3-Trichlorobenzene	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
n-Propylbenzene	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
o-Xylene	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
p- & m- Xylenes	NS	NS	NS	<3.9	<5.6	<5.3	<4.9	<5.3	<5.2	
p-Isopropyltoluene	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
sec-Butyibenzene	INS NC	INS NB	INS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
tert-Butyl alcohol (TBA)	NS	NS	NS	<3.9	<2.8	<5.3	<2.5	<5.3	<5.2	
tert-Butylbenzene	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Tetrachloroethene	1,300	19,000	150,000	33	<2.8	<2.6	<2.5	<2.7	<2.6	
Toluene	700	100,000	500,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
trans-1,2-Dichloroethene	100,000	100,000	500,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
trans-1,3-Dichloropropene	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Trichloroethene	470	21,000	200,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
Trichlorofluoromethane	NS	NS	NS	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	
vinyi chloride Vylenes (Total)	20	900	13,000	<2.0	<2.8	<2.6	<2.5	<2.7	<2.6	

			Та	ible 1 (Contii	nued)									
		Vola	tile Organic E 148	Compounds PA Method 8 -28 Hillside A	s in Soil (ug/k 3260 Avenue	g-dry)								
			J	amaica, NY 1	1435									
			ACTP	roject No.: 8	346-JAN Y									
Sample ID (Depth) Sample Date	UUSCO 1	RRSCO ²	CSCO ³	SB-8A (0-2') 11/18/15	SB-8B (10-12') 11/18/15	SB-9 (0-2') 11/19/15	SB-9 (10-12') 11/19/15	SB-10 (0-2') 11/19/15	SB-10 (10-12') 11/19/15					
1,1,1,2-Tetrachloroethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1,1,1-Trichloroethane	680	100,000	500,000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1,1,2,2-Tetrachioroethane	NS NS	NS NS	NS NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1,1,2-Trichloroethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1,1-Dichloroethane	270	26,000	240,000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1,1-Dichloroethene	330	100,000	500,000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1,2,4-Trichlorobenzene	4 700	5 200	19 000	<3.4	<2.4	<3.8	<3.1	<3.2 87	<2.7					
1,2-Dibromo-3-chloropropane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1,2-Dibromoethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1,2-Dichlorobenzene	1,100	100,000	500,000	<3.4	<2.4	36	<3.1	<3.2	<2.7					
1,2-Dichloroethane	20	3,100	30,000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
1 3 5-Trimethylbenzene	4 700	5 200	19 000	<3.4	<2.4	<3.8	<3.1	14	<2.7					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
J-Dichlorobenzene 1,800 13,000 130,000 <3.4 <2.4 <3.8 <3.1 <3.2 <2.7 L4-Dicklorobenzene 980 1.300 130,000 <59														
ADioxane 980 1,300 13,000 <69 <49 <76 <61 <63 <53 Lyclohexane NS NS NS <3.4														
y-LDioxane ys0 1,300 15,000 <09 <49 <76 <61 <63 <53 yclohexane NS NS NS <3.4														
VLOTERATIC N3 N3 S3.4 C.4 S3.6 S3.1 S3.2 S2.7 Butanone 120 100,000 500,000 <3.4 <2.4 <3.8 <3.1 25 9.2 Hexanone NS NS NS <3.4 <2.4 <3.8 <3.1 <3.2 <2.7														
4-Methyl-2-pentanone	-butanone NS NS NS <3.4 <2.4 <3.8 <3.1 <23 3.2 -Hexanone NS NS NS <3.4 <2.4 <3.8 <3.1 <3.2 <2.7 -Methyl-2-pentanone NS NS NS <3.4 <2.4 <3.8 <3.1 <3.2 <2.7													
Acetone	Non-monome NS NS NS <													
ccetone 50 100,000 500,000 8.3 11 21 8.9 110 13 kcrolein NS NS NS <6.9														
Benzene	60	4 800	44.000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Bromodichloromethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Bromoform	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Bromomethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Carbon disulfide	NS 760	NS 2 400	NS 22.000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Chlorobenzene	1,100	2,400	500.000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Chloroethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Chloroform	370	49,000	350,000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Chloromethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
cis-1,2-Dichloropropene	250 NS	100,000 NS	500,000 NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Dibromochloromethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Dibromomethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Dichlorodifluoromethane	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Ethylbenzene	1,000	41,000	390,000	<3.4	<2.4	<3.8	<3.1	5.4	<2.7					
Hexachlorobutadine	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Isopropylbenzene	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	5.7	<2.7					
Methyl acetate	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Methyl tert-butyl ether	930	100,000	500,000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Methylene chloride	50 NS	100,000 NS	500,000 NS	<6.9	<4.9	<7.6	<6.1	< 6.3	<5.3					
1,2,3-Trichlorobenzene	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
n-Propylbenzene	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	9.1	<2.7					
o-Xylene	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	15	<2.7					
p- & m- Xylenes	NS	NS	NS	<6.9	<4.9	<7.6	<6.1	11	<5.3					
p-isopropyitoluene sec-Butylbenzene	NS NS	NS NS	NS NS	<3.4 <3.4	<2.4	<3.8	<3.1	20	<2.7					
Styrene	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
tert-Butyl alcohol (TBA)	NS	NS	NS	<6.9	<4.9	<3.8	<3.1	<6.3	<2.7					
tert-Butylbenzene	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	15	<2.7					
Teluene	1,300	19,000	150,000	<3.4	<2.4	11,000	<3.1	<3.2	<2.7					
trans-1,2-Dichloroethene	100,000	100,000	500,000	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
trans-1,3-Dichloropropene	NS	NS	NS	<3.4	<2.4	<3.8	<3.1	<3.2	<2.7					
Trichloroethene	470	21,000	200,000	<3.4	<2.4	4.0	<3.1	<3.2	<2.7					
Trichlorofluoromethane	richlorofluoromethane NS NS NS <3.4 <2.4 <3.8 <3.1 <3.2 <2.7													
Xylenes (Total)	20	100,000	500,000	<3.4 <10	<2.4 <7.3	<3.8 <11	<3.1 <9.2	<3.2 27	<2.7 <8.0					
¹ Unrestricted Use Soil Cleanup O	bjectives, Tal	ole 375-6.8(a)	6 NYCRR 375	5, NYSDEC 200	5									
* Restricted Residential Soil Clean	up Objective	s, Table 375-6	.8(b), 6 NYCR	R 375, NYSDEC	2006									
Bolded values signify detection a	bove method	detection lim	it it	SUEC 2006										
Highlighted values signify exceed	ance of Comr	nercial Soil Cl	eanup Values											
NS = No Standard														

				Table	2				
		Sen	ni Volatile C	organic Compo EPA Methoo 148-28 Hillside	ounds in Soil (u d 8270 e Avenue	ıg/kg-dry)			
			AC	Jamaica, NY T Project No.:	′ 11435 8346-JANY				
Sample ID (Depth) Sample Date	UUSCO ¹	RRSCO ²	CSCO ³	SB-1 (0-2') 11/18/15	SB-1 (13'-15') 6/24/15	SB-2B (13'-15') 6/25/15	SB-3 (0-3') 11/18/15	SB-3 (13'-15') 6/24/15	SB-4 (13'-15') 6/25/15
1.1'-Biphenyl	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
1,2,4,5-Tetrachlorobenzene	NS	NS	NS	<96.4	<42.6	<43.0	<94.3	<42.7	<43.1
1,2,4-Trichlorobenzene	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
1,2-Dichlorobenzene	100,000	100,000	500,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
1,2-Diphenylhydrazine (as Azobenzene)	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
1,3-Dichlorobenzene	17,000	49,000	280,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
1,4-Dichlorobenzene	980	13,000	130,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2,3,4,6-Tetrachiorophenol	NS NS	NS NS	NS	<96.4	<42.6	<43.0	<94.3	<42.7	<43.1
2,4,5-Trichlorophenol	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2,4-Dichlorophenol	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2,4-Dimethylphenol	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2,4-Dinitrophenol	NS	NS	NS	<96.4	<42.6	<43.0	<94.3	<42.7	<43.1
2,4-Dinitrotoluene	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2,6-Dinitrotoluene	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2-Chloronaphthalene	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2-Chiorophenol	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2-Methylnaphtnaiene	NS 220	NS 100.000	NS 500.000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
2-Nitroaniline	330 NS	NS	NS	<96.4	<42.6	<43.0	<94.3	<47 7	<43.1
2-Nitrophenol	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
3- & 4-Methylphenols	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
3,3'-Dichlorobenzidine	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
3-Nitroaniline	NS	NS	NS	<96.4	<42.6	<43.0	<94.3	<42.7	<43.1
4,6-Dinitro-2-methylphenol	NS	NS	NS	<96.4	<42.6	<43.0	<94.3	<42.7	<43.1
4-Bromophenyl phenyl ether	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
4-Chloro-3-methylphenol	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
4-Chloroaniline	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
4-Chlorophenyl phenyl ether	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
4-Nitrophenol	NS	NS	NS	<96.4	<42.0	<43.0	<94.5	<42.7	<43.1
Acenaphthene	20.000	100.000	500.000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Acenaphthylene	100,000	100,000	500,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Acetophenone	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Aniline	48,000	10,000	500,000	<193	<85.3	<86.0	<189	<85.5	<86.3
Anthracene	100,000	100,000	500,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Atrazine	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Benzaldehyde	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Benzidine	NS	NS	NS	<193	<85.3	<86.0	<189	<85.5	<86.3
Benzo(a)anthracene	1,000	1,000	5,600	<48.3	<21.4	<21.5	158	<21.4	<21.6
Benzo(b)fluoranthene	1,000	1,000	5,600	<48.3	<21.4	<21.5	97.2	<21.4	<21.0
Benzo(g.h.i)pervlene	100.000	100.000	500.000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Benzo(k)fluoranthene	NS	NS	NS	<48.3	<21.4	<21.5	108	<21.4	<21.6
Benzoic acid	800	3,900	56,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Benzyl alcohol	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Benzyl butyl phthalate	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Bis(2-chloroethoxy)methane	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Bis(2-chloroethyl)ether	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Bis(2-chloroisopropyl)ether	NS	NS	NS	<48.3	<21.4	<21.5 <21 E	<4/.3	<21.4	<21.6
Caprolactam	NG	NG NG	NS	<96.4	<42.6	<43.0	20/1 3	<47 7	<42.0
Carbazole	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Chrysene	1,000	3,900	56,000	<48.3	<21.4	<21.5	184	<21.4	<21.6
Dibenzo(a,h)anthracene	330	330	560	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Dibenzofuran	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Diethyl phthalate	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Dimethyl phthalate	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Di-n-butyl phthalate	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
UI-n-octyl phthalate	NS 100.000	NS 100.000	NS 500.000	<48.3	<21.4	<21.5 <21 E	<4/.3	<21.4	<21.6
Fluorene	30,000	100,000	500,000	<48.3	<21.4	<21.5	<47 3	<21.4	<21.0
Hexachlorobenzene	33	12	60	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Hexachlorobutadiene	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Hexachlorocyclopentadiene	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Hexachloroethane	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Indeno(1,2,3-cd)pyrene	500	500	5,600	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Isophorone	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Naphthalene	12,000	100,000	500,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Nitrobenzene	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
IN-INITrosodiumethylamine	NS	NS	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
N-Nitrosodiphenylamine	NG	NG NG	NS	<48.3	<21.4	<21.5	<47.3	<21.4	<21.0
Pentachlorophenol	800	6,700	6,700	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Phenanthrene	100,000	100,000	500,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Phenol	330	100,000	500,000	<48.3	<21.4	<21.5	<47.3	<21.4	<21.6
Pyrene	100.000	100.000	500.000	60.1	<21.4	<21.5	231	<21.4	<21.6

				Table 2 (Con	tinued)				
		Ser	ni Volatile C	rganic Compo EPA Methor 148-28 Hillside	ounds in Soil (u d 8270 e Avenue (11435	g/kg-dry)			
			AC	T Project No.:	8346-JANY				
Sample ID (Depth)		2	3	SB-5 (0-2')	SB-5 (13-'15')	SB-6 (0-2')	SB-6 (13'15')	SB-7A (0-2')	SB-7B (10-12')
Sample Date	UUSCO ·	RRSC0 ⁻	CSCO -	11/18/15	6/24/15	11/18/15	6/24/15	11/18/15	11/18/15
1,1'-Biphenyl	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
1,2,4,5-Tetrachlorobenzene	NS	NS	NS	<93.6	<43.6	<93.9	<44.3	<91.3	<88.6
1,2,4-Trichlorobenzene	NS 100.000	NS 100.000	NS 500.000	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
1,2-Dichlorobenzene 1,2-Dinhenvlhydrazine (as Azobenzene)	NS	NS	500,000 NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
1.3-Dichlorobenzene	17.000	49.000	280.000	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
1,4-Dichlorobenzene	980	13,000	130,000	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2,3,4,6-Tetrachlorophenol	NS	NS	NS	<93.6	<43.6	<93.9	<44.3	<91.3	<88.6
2,4,5-Trichlorophenol	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2,4,6-Trichlorophenol	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2,4-Dichlorophenol	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2,4-Dimethylphenol	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2,4-Dinitrophenoi	NS NS	NS NS	NS NS	<93.6	<43.0	<93.9	<44.3	<91.3	<88.0
2.6-Dinitrotoluene	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2-Chloronaphthalene	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2-Chlorophenol	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2-Methylnaphthalene	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	73.0	<44.4
2-Methylphenol	330	100,000	500,000	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
2-Nitroaniline	NS	NS	NS	<93.6	<43.6	<93.9	<44.3	<91.3	<88.6
2-Nitrophenol	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
3- & 4-Methylphenols	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
3,3'-Dichlorobenzidine	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
3-Nitroaniline	NS	NS	NS	<93.6	<43.6	<93.9	<44.3	<91.3	<88.6
4,6-Dinitro-2-methylphenol	NS NS	NS	NS NS	<93.6	<43.0	<93.9	<44.3	<91.3	<88.0
4-Chloro-3-methylphenol	NS	NS	NS	<40.9	<21.9	<47.1	<22.2	<45.7	<44.4
4-Chloroaniline	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
4-Chlorophenyl phenyl ether	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
4-Nitroaniline	NS	NS	NS	<93.6	<43.6	<93.9	<44.3	<91.3	<88.6
4-Nitrophenol	NS	NS	NS	<93.6	<43.6	<93.9	<44.3	<91.3	<88.6
Acenaphthene	20,000	100,000	500,000	<46.9	<21.9	<47.1	<22.2	296	<44.4
Acenaphthylene	100,000	100,000	500,000	<46.9	<21.9	<47.1	<22.2	68.6	<44.4
Acetophenone	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Aniline	48,000	10,000	500,000	<187	<87.4	<188	<88.8	<183	<178
Anthracene	100,000	100,000	500,000	<46.9	<21.9	<47.1	<22.2	839	<44.4
Renzaldehyde	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Benzidengde	NS	NS	NS	<187	<87.4	<188	<88.8	<183	<178
Benzo(a)anthracene	1.000	1.000	5.600	176	<21.9	65.3	<22.2	1.550	<44.4
Benzo(a)pyrene	1,000	1,000	1,000	148	<21.9	<47.1	<22.2	481	<44.4
Benzo(b)fluoranthene	1,000	1,000	5,600	157	<21.9	<47.1	<22.2	589	<44.4
Benzo(g,h,i)perylene	100,000	100,000	500,000	73.3	<21.9	<47.1	<22.2	244	<44.4
Benzo(k)fluoranthene	NS	NS	NS	162	<21.9	<47.1	<22.2	582	<44.4
Benzoic acid	800	3,900	56,000	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Benzyl alcohol	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Benzyi butyi phthalate	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Bis(2-chloroethyl)ether	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Bis(2-chloroisopropyl)ether	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Bis(2-ethylhexyl)phthalate	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Caprolactam	NS	NS	NS	<93.6	<43.6	<93.9	<44.3	<91.3	<88.6
Carbazole	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	441	<44.4
Chrysene	1,000	3,900	56,000	200	<21.9	84.8	<22.2	1,560	<44.4
Dibenzo(a,h)anthracene	330	330	560	<46.9	<21.9	<47.1	<22.2	211	<44.4
Dibenzofuran	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	193	<44.4
Diethyl phthalate	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Dimetnyi phthalate	NS NS	NS	NS NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Di-n-octyl obthalate	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Fluoranthene	100.000	100.000	500.000	276	<21.9	119	<22.2	2.640	<44.4
Fluorene	30.000	100.000	500.000	<46.9	<21.9	<47.1	<22.2	328	<44.4
Hexachlorobenzene	33	12	60	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Hexachlorobutadiene	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Hexachlorocyclopentadiene	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Hexachloroethane	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Indeno(1,2,3-cd)pyrene	500	500	5,600	68.1	<21.9	<47.1	<22.2	306	<44.4
Isophorone	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Naprithalene	12,000	100,000	500,000	<46.9	<21.9	<47.1	<22.2	119	<44.4
Nuodenzene	NS	NS	NS	<46.9	<21.9	<4/.1	<22.2	<45./	<44.4
N-nitroso-di-n-propulamine	NG	NG PIA	NS NS	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4 < <u>4</u> 1 1
N-Nitrosodiphenylamine	NS	NS	NS	<46.9	<21.9	<47.1	<22.2	<45 7	<44.4
Pentachlorophenol	800	6,700	6,700	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Phenanthrene	100,000	100,000	500,000	<46.9	<21.9	<47.1	<22.2	2,200	<44.4
Phenol	330	100,000	500,000	<46.9	<21.9	<47.1	<22.2	<45.7	<44.4
Pyrene	100.000	100,000	500,000	257	<21.9	203	<22.2	2,940	<44.4

				Table 2 (Con	tinued)				
		Ser	ni Volatile C	rganic Compo EPA Methor 148-28 Hillside	ounds in Soil (u d 8270 e Avenue	g/kg-dry)			
			AC	Jamaica, N	(11435 8346-JANY				
Sample ID (Depth)	UUSCO 1	RRSCO ²	CSCO ³	SB-8A (0-2')	SB-8B (10-12')	SB-9 (0-2')	SB-9 (10-12')	SB-10 (0-2')	SB-10 (10-12')
Sample Date	NC	NO	NR	11/18/15	11/18/15	11/19/15	11/19/15	11/19/15	11/19/15
1.2.4.5-Tetrachlorobenzene	NS	NS	NS	<96.3	<85.8	<89.6	<85.3	<87.5	<86.1
1,2,4-Trichlorobenzene	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
1,2-Dichlorobenzene	100,000	100,000	500,000	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
1,2-Diphenylhydrazine (as Azobenzene)	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
1,3-Dichlorobenzene	17,000	49,000	280,000	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
1,4-Dichlorobenzene	980	13,000	130,000	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
2,3,4,6-1 etrachlorophenol	NS	NS	NS	<96.3	<85.8	<89.6	<85.3	<87.5	<86.1
2,4,5-Trichlorophenol	NS	NS NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
2,4-Dichlorophenol	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
2,4-Dimethylphenol	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
2,4-Dinitrophenol	NS	NS	NS	<96.3	<85.8	<89.6	<85.3	<87.5	<86.1
2,4-Dinitrotoluene	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
2,6-Dinitrotoluene	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
2-Chlorophonol	INS NC	INS NC	INS NR	<46.5	<43.0	<44.9	<42.7	<43.8	<43.1
2-Methylnaphthalene	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	168	<43.1
2-Methylphenol	330	100,000	500,000	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
2-Nitroaniline	NS	NS	NS	<96.3	<85.8	<89.6	<85.3	<87.5	<86.1
2-Nitrophenol	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
3- & 4-Methylphenols	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
3,3'-Dichlorobenzidine	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<438	<43.1
5-NITroaniline	NS	NS	NS	<96.3	<85.8	<89.6	<85.3	<87.5	<86.1
4.8-primaro-2-meanyiphenoi 4-Bromonhenyi phenyi ether	NS	NS NS	NS	<96.5	<03.0	<89.0	<03.3	<67.5	<00.1
4-Chloro-3-methylphenol	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
4-Chloroaniline	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
4-Chlorophenyl phenyl ether	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
4-Nitroaniline	NS	NS	NS	<96.3	<85.8	<89.6	<85.3	<87.5	<86.1
4-Nitrophenol	NS	NS	NS	<96.3	<85.8	<89.6	<85.3	<87.5	<86.1
Acenaphthene	20,000	100,000	500,000	<48.3	<43.0	<44.9	<42.7	50.3	<43.1
Acetophenone	100,000 NS	100,000 NS	500,000 NS	<48.5	<43.0	<44.9	<42.7	<43.8	<43.1
Aniline	48.000	10.000	500.000	<193	<172	<180	<171	<175	<172
Anthracene	100,000	100,000	500,000	<48.3	<43.0	<44.9	<42.7	123	<43.1
Atrazine	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Benzaldehyde	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Benzidine	NS	NS	NS	<193	<172	<180	<171	<175	<172
Benzo(a)anthracene	1,000	1,000	5,600	62.3	<43.0	77.4	<42.7	<438	<43.1
Benzo(a)pyrene Ronzo(b)fluoranthono	1,000	1,000	1,000	<46.5	<43.0	67.4	<42.7	<438	<43.1
Benzo(g,h,i)pervlene	100 000	100.000	500.000	<48.3	<43.0	<44.9	<42.7	<438	<43.1
Benzo(k)fluoranthene	NS	NS	NS	61.6	<43.0	70.2	<42.7	<438	<43.1
Benzoic acid	800	3,900	56,000	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Benzyl alcohol	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Benzyl butyl phthalate	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<438	<43.1
Bis(2-chloroethoxy)methane	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Bis(2-chloroisopropyl)ether	NS NS	NS NS	NS NS	<48.5	<43.0	<44.9	<42.7	<43.8	<43.1
Bis(2-ethylbexyl)phthalate	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Caprolactam	NS	NS	NS	<96.3	<85.8	<89.6	<85.3	<87.5	<86.1
Carbazole	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Chrysene	1,000	3,900	56,000	80.8	<43.0	120	<42.7	<438	<43.1
Dibenzo(a,h)anthracene	330	330	560	<48.3	<43.0	<44.9	<42.7	<438	<43.1
Diverizoruran Diethyl obthalate	NS NS	NS	NS	<48.3 <48.3	<43.U <43.0	<44.9 <44.9	<42./ <47.7	<43.8 <43.8	<43.1 <d 1<="" 3="" td=""></d>
Dimethyl phthalate	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Di-n-butyl phthalate	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Di-n-octyl phthalate	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<438	<43.1
Fluoranthene	100,000	100,000	500,000	132	<43.0	191	<42.7	189	<43.1
Fluorene	30,000	100,000	500,000	<48.3	<43.0	<44.9	<42.7	95.8	<43.1
Hexachlorobenzene	33	12	60 NG	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Hexachlorocyclopentadiene	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Hexachloroethane	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Indeno(1,2,3-cd)pyrene	500	500	5,600	<48.3	<43.0	<44.9	<42.7	<438	<43.1
Isophorone	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Naphthalene	12,000	100,000	500,000	<48.3	<43.0	<44.9	<42.7	130	<43.1
Nitrobenzene	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
N-Nitrosodiumethylamine	NS	NS	NS	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
N-microso-ai-n-propylamine	NS NS	NS NS	NS NS	<48.3 <48 R	<43.U <43.0	<44.9 <44 9	<42.7 <42.7	<43.8 <43.8	<43.1
Pentachlorophenol	800	6,700	6,700	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Phenanthrene	100,000	100,000	500,000	80.8	<43.0	56.6	<42.7	178	<43.1
Phenol	330	100,000	500,000	<48.3	<43.0	<44.9	<42.7	<43.8	<43.1
Pyrene	100,000	100,000	500,000	110	<43.0	199	<42.7	<438	<43.1
¹ Unrestricted Use Soil Cleanup ² Restricted Residential Soil Clea ³ Commercial Soil Cleanup Obj Bolded values signify detection Highlighted values signify excer NS = No Standard	Objectives, eanup Objec ectives, Tabl above meth edance of Co	Table 375-6 tives, Table le 375-6.8(b) lod detection ommercial S	6.8(a), 6 NYC 375-6.8(b), 6 , 6 NYCRR (limit oil Cleanup)	RR 375, NYSE NYCRR 375, I 375, NYSDEC 2 Values	DEC 2006 NYSDEC 2006 2006				

				Tabl	e 3				
			PC	Bs and Pest EPA Method 148-28 Hillsi Jamaica, N T Project No	ticides in Soil 8081/8082 de Avenue NY 11435 D.: 8346-JANY				
Sample ID (Depth)				SB-1 (0-2')	SB-3 (0-3')	SB-5 (0-2')	SB-6 (0-2')	SB-7A (0-2')	SB-7B (10-12
Sample Date	UUSCO ¹	RRSCO ²	CSCO 3	11/18/15	11/18/15	11/18/15	11/18/15	11/18/15	11/18/15
Aldrin	5	19	680	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
alpha-BHC	20	97	3,400	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
beta-BHC	36	72	3,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
delta-BHC	40	100,000	500,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
gamma-BHC	100	280	9,200	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
gamma-Chlordane	NS	NS	NS	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
alpha-Chlordane	NS	NS	NS	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Chlordane, total	NS	NS	NS	<114	<112	<111	<111	<108	<105
4,4'-DDD	3.3	2,600	92,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
4,4'-DDE	3.3	1,800	62,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
4,4'-DDT	3.3	1,700	47,000	3.82	<2.80	<2.78	5.06	<2.71	<2.63
Dieldrin	5	39	1,400	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Endosulfan I	2,400	4,800	200,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Endosulfan II	2,400	4,800	200,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Endosulfan sulfate	2,400	4,800	200,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Endrin	14	2,200	89,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Endrin aldehyde	NS	NS	NS	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Endrin ketone	NS	NS	NS	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Heptachlor	42	420	15,000	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Heptachlor epoxide	NS	NS	NS	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Methoxychlor	NS	NS	NS	<2.86	<2.80	<2.78	<2.79	<2.71	<2.63
Toxaphene	NS	NS	NS	<286	<280	<278	<279	<271	<263
Aroclor 1016	100	1,000	1,000	< 0.0289	< 0.0283	< 0.0280	< 0.0281	< 0.0273	< 0.0266
Aroclor 1221	100	1,000	1,000	< 0.0289	< 0.0283	< 0.0280	< 0.0281	< 0.0273	< 0.0266
Aroclor 1232	100	1,000	1,000	< 0.0289	< 0.0283	< 0.0280	< 0.0281	< 0.0273	< 0.0266
Aroclor 1242	100	1,000	1,000	< 0.0289	< 0.0283	< 0.0280	< 0.0281	< 0.0273	< 0.0266
Aroclor 1248	100	1,000	1,000	< 0.0289	< 0.0283	< 0.0280	<0.0281	< 0.0273	< 0.0266
Aroclor 1254	100	1,000	1,000	< 0.0289	< 0.0283	< 0.0280	< 0.0281	< 0.0273	< 0.0266
Aroclor 1260	100	1,000	1,000	< 0.0289	< 0.0283	< 0.0280	< 0.0281	< 0.0273	< 0.0266

Table 3 (Continued)

PCBs and Pesticides in Soil EPA Method 8081/8082 148-28 Hillside Avenue Jamaica, NY 11435

ACT Project No.: 8346-JANY

Sample ID (Depth)		PPSCO ²	CSCO 3	SB-8A (0-2')	SB-8B (10-12')	SB-9 (0-2')	SB-9 (10-12')	SB-10 (0-2')	SB-10 (10-12
Sample Date	00300	RR3CO	0300	11/18/15	11/18/15	11/19/15	11/19/15	11/19/15	11/19/15
Aldrin	5	19	680	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
alpha-BHC	20	97	3,400	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
beta-BHC	36	72	3,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
delta-BHC	40	100,000	500,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
gamma-BHC	100	280	9,200	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
gamma-Chlordane	NS	NS	NS	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
alpha-Chlordane	NS	NS	NS	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Chlordane, total	NS	NS	NS	<114	<102	<106	<101	<104	<102
4,4'-DDD	3.3	2,600	92,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
4,4'-DDE	3.3	1,800	62,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
4,4'-DDT	3.3	1,700	47,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Dieldrin	5	39	1,400	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Endosulfan I	2,400	4,800	200,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Endosulfan II	2,400	4,800	200,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Endosulfan sulfate	2,400	4,800	200,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Endrin	14	2,200	89,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Endrin aldehyde	NS	NS	NS	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Endrin ketone	NS	NS	NS	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Heptachlor	42	420	15,000	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Heptachlor epoxide	NS	NS	NS	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Methoxychlor	NS	NS	NS	<2.86	<2.55	<2.66	<2.53	<2.60	<2.55
Toxaphene	NS	NS	NS	<286	<255	<266	<253	<260	<255
Aroclor 1016	100	1,000	1,000	< 0.0289	<0.0257	< 0.0269	<0.0256	< 0.0262	< 0.0258
Aroclor 1221	100	1,000	1,000	< 0.0289	<0.0257	< 0.0269	<0.0256	< 0.0262	< 0.0258
Aroclor 1232	100	1,000	1,000	< 0.0289	<0.0257	< 0.0269	< 0.0256	< 0.0262	< 0.0258
Aroclor 1242	100	1,000	1,000	< 0.0289	<0.0257	< 0.0269	<0.0256	< 0.0262	<0.0258
Aroclor 1248	100	1,000	1,000	< 0.0289	<0.0257	< 0.0269	<0.0256	< 0.0262	< 0.0258
Aroclor 1254	100	1,000	1,000	< 0.0289	<0.0257	< 0.0269	<0.0256	< 0.0262	< 0.0258
Aroclor 1260	100	1,000	1,000	< 0.0289	<0.0257	< 0.0269	< 0.0256	< 0.0262	<0.0258
Pesticides reported in	mg/kg (dry) and PCBs	reported ir	n mg/kg (dry).					
1 Unrestricted Use Soi	il Cleanup C	bjectives,	Table 375-6	i.8(a), 6 NYC	RR 375, NYSE	DEC 2006			
² Restricted Residentia	al Soil Clear	nup Objecti	ves, Table	375-6.8(b), 6	NYCRR 375,	NYSDEC 200	06		
³ Commercial Soil Cle	Commercial Soil Cleanup Objectives, Table 375-6.8(b), 6 NYCRR 375, NYSDEC 2006								
Bolded values signify	detection al	oove metho	d detection	ı limit					
Highlighted values sig	nify exceed	ance of reg	ulatory sta	ndard					
NS = No Standard									

Table 4

Metals in Soil (mg/kg-dry) EPA Method 6010 148-28 Hillside Avenue Jamaica, NY 11435

ACT Project No.: 8346-JANY

Sample ID (Depth)			0000 ³	SB-1 (0-2')	SB-1 (13'-15')	SB-2B (13'-15')	SB-3 (0-3')	SB-3 (13'-15')	SB-4 (13'-15')
Sample Date	UUSCO '	RRSCO ²	CSCO ,	11/18/15	6/24/15	6/25/15	11/18/15	6/24/15	6/25/15
Arsenic	13	16	16	6.57	<1.02	<1.03	6.2	<1.02	<1.03
Barium	350	400	400	80.6	12.4	31.8	54.4	17.9	31.1
Cadmium	2.5	4.3	9.3	0.461	0.309	< 0.309	0.522	0.336	0.671
Chromium	30	180	1,500	18.9	8.22	10.3	14.6	9.43	13.6
Lead	63	400	1,000	89.7	6.31	14.8	158	5.50	8.04
Selenium	3.9	180	1,500	2.15	3.67	3.28	1.88	2.14	7.18
Silver	2	180	1,500	<0.578	<0.511	<0.515	<0.565	< 0.512	<0.517
Mercury	0.18	0.81	2.8	0.0749	< 0.0307	< 0.0309	0.095	< 0.0307	<0.0310

٦

				Table 4	(Continued)						
Metals in Soil (mg/kg-dry) EPA Method 6010 148-28 Hillside Avenue Jamaica, NY 11435 ACT Project No.: 8346-JANY											
Sample ID (Depth)				SB-5 (0-2')	SB-5 (13-'15')	SB-6 (0-2')	SB-6 (13'15')	SB-7A (0-2')	SB-7B (10-12')		
Sample Date	UUSCO '	RRSCO ²	CSCO ³	11/18/15	6/24/15	11/18/15	6/24/15	11/18/15	11/18/15		
Arsenic	13	16	16	4.78	<1.05	7.21	<1.06	5.15	1.45		
Barium	350	400	400	61.7	17.7	111	44.3	102	24.3		
Cadmium	2.5	4.3	9.3	< 0.337	<0.314	0.648	0.786	<0.328	< 0.319		
Chromium	30	180	1,500	19.5	8.87	23.1	31.2	17.6	16.3		
Lead	63	400	1,000	30.7	6.11	346	11.7	261	4.79		
Selenium	3.9	180	1,500	2.7	3.83	2.69	7.01	2.07	2.53		
Silver	ver 2 180 1,500 <0.561 <0.523 <0.563 <0.532 <0.547 <0.531										
Mercury	0.18	0.81	2.8	0.0952	< 0.0314	0.217	<0.0319	0.206	< 0.0351		

				Table 4	(Continued)							
				Metals in S EPA M 148-28 Hi Jamaic	Soil (mg/kg-dr ethod 6010 illside Avenue a, NY 11435	y)						
	ACT Project No.: 8346-JANY											
Sample ID (Depth) Sample Date	mple ID (Depth) mple Date UUSCO ¹ RRSCO ² SB-8A (0-2') L11/18/15 SB-8B (10-12') 11/18/15 SB-9 (0-2') 11/18/15 SB-9 (10-12') 11/19/15 SB-10 (0-2') 11/19/15 SB-10 (10-12') 11/19/15											
Arsenic	nple Date 11/18/15 11/18/15 11/18/15 11/18/15 11/18/15 enic 13 16 16 7.29 <1.03											
Barium	350	400	400	114	53	76.6	22.4	61	48.9			
Cadmium	2.5	4.3	9.3	< 0.346	<0.309	0.911	<0.307	<0.315	<0.310			
Chromium	30	180	1,500	10.9	20.4	12	15.8	6.98	16.2			
Lead	63	400	1,000	89.2	3.99	90.8	5.74	1100	5.94			
Selenium	3.9	180	1,500	2.56	2.47	1.77	4.07	<1.05	4.18			
Silver	2	180	1,500	<0.577	<0.514	<0.537	<0.511	<0.524	<0.516			
Mercury	0.18	0.18	2.8	<0.0381	<0.0340	<0.0355	<0.0337	<0.0346	<0.0341			
¹ Unrestricted Us	e Soil Clean	up Objective	s, Table 375	5-6.8(a), 6 NY	CRR 375, NYS	SDEC 2006						
² Restricted Resi	dential Soil (Cleanup Obje	ectives, Tabl	e 375-6.8(b),	6 NYCRR 375	, NYSDEC 200	06					
3 Commercial So	il Cleanup O	bjectives, Ta	ble 375-6.8	(b), 6 NYCRR	375, NYSDEC	C 2006						
Bolded values sig	gnify detection	on above me	thod detecti	on limit								
Highlighted value	es signify exc	ceedance of	regulatory s	tandard								
NS = No Standar	rd											

		Table 5						
Volati	e Organic C EPA	ompounds Method 826	in Water (ug 60	g/L)				
	148-28 Jama	Hillside Ave lica. NY 114	enue 35					
	ACT Proje	ect No.: 834	6-JANY					
Sample ID		NYSDEC	TW-1		TW-2		TW-3	
Sampling Date		Standards and	12/2/16		12/2/16		12/2/16	
Compound	CAS Number	Guidance Values - GA	Result	Q	Result	Q	Result	Q
Volatile Organics, NJDEP/TCL/Part 375 List		ug/L	ug/L		ug/L		ug/L	Ê
Dilution Factor			1		1		1	
1,1,1,2-Tetrachloroethane	630-20-6	5	0.20	U	0.20	U	0.20	U
1,1,2,2-Tetrachloroethane	79-34-5	5	0.20	U	0.20	U	0.20	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1	5	0.20	υ	0.20	υ	0.20	υ
1,1,2-Trichloroethane	79-00-5	1	0.20	U	0.20	U	0.20	U
1,1-Dichloroethane 1,1-Dichloroethylene	75-34-3	5	0.20		0.20		0.20	
1,2,3-Trichlorobenzene	87-61-6	5	0.20	U	0.20	Ŭ	0.20	Ŭ
1,2,3-Trichloropropane	96-18-4	0.04	0.20	U	0.20	U	0.20	U
1,2,4-Trichlorobenzene	120-82-1	5	0.20	U	0.20	U 	0.20	U
1,2,4-11 Imetnyidenzene	95-63-6 96-12-8	0.04	0.23	IJ	0.20	U	0.20	U
1,2-Dibromoethane	106-93-4	5	0.20	U	0.20	Ŭ	0.20	Ŭ
1,2-Dichlorobenzene	95-50-1	3	0.20	U	0.20	U	0.20	υ
1,2-Dichloroethane	107-06-2	0.6	0.20	U	0.20	U	0.20	U
1,2-Dichloropropane	78-87-5	1	0.20	U	0.20	U	0.20	U
1.3-Dichlorobenzene	541-73-1	3	0.20	U	0.20	U	0.20	U
1,4-Dichlorobenzene	106-46-7	3	0.20	U	0.20	Ŭ	0.20	Ŭ
1,4-Dioxane	123-91-1	~	40	υ	40	υ	40	U
2-Butanone	78-93-3	50	0.20	U	0.20	U	0.20	U
2-Hexanone	591-78-6	50 ~	0.20	U	0.20	U	0.20	U
Acetone	67-64-1	50	1.3	1	1.2	ı	3.9	0
Acrolein	107-02-8	~	0.20	U	0.20	U	0.20	υ
Acrylonitrile	107-13-1	~	0.20	U	0.20	U	0.20	υ
Benzene	71-43-2	1	0.20	U	0.20	U	0.20	U
Bromochloromethane	74-97-5	5	0.20	U	0.20	U	0.20	U
Bromoform	75-25-2	50	0.20	U	0.20	υ	0.20	υ
Bromomethane	74-83-9	5	0.20	U	0.20	U	0.20	U
Carbon disulfide	75-15-0	~	0.20	U	0.20	U	0.20	U
Carbon tetrachloride	56-23-5	5	0.20	U	0.20	U	0.20	U
Chloroethane	75-00-3	5	0.20		0.20		0.20	0
Chloroform	67-66-3	7	6.7	Ũ	14	Ŭ	12	Ŭ
Chloromethane	74-87-3	5	0.20	υ	0.20	υ	0.20	υ
cis-1,2-Dichloroethylene	156-59-2	5	0.20	U	0.20	U	0.20	U
cis-1,3-Dichloropropylene	10061-01-5	0.4	0.20	U	0.20	U	0.20	U
Dibromochloromethane	124-48-1	50	0.20	U	0.20	U	0.20	U
Dibromomethane	74-95-3	~	0.20	U	0.20	U	0.20	U
Dichlorodifluoromethane	75-71-8	5	0.20	U	0.20	U	0.20	U
Ethyl Benzene	100-41-4	5	0.20	U	0.20	U	0.20	U
Isopropylbenzene	07-08-3 98-82-8	0.5	0.20	U	0.20	U	0.20	U
Methyl acetate	79-20-9	~	0.20	Ű	0.20	Ű	0.20	U
Methyl tert-butyl ether (MTBE)	1634-04-4	10	0.20	U	0.20	U	0.20	U
Methylcyclohexane	108-87-2	~	0.20	U	0.20	U 	0.20	U
Methylene chloride n-Butylbenzene	75-09-2	5	1.0	U	1.0	0	1.0	U
n-Propylbenzene	103-65-1	5	0.20	υ	0.20	U	0.20	U
o-Xylene	95-47-6	5	0.20	U	0.20	U	0.20	U
p- & m- Xylenes	179601-23-1	5	0.50	U	0.50	U	0.50	U
p-Isopropyitoluene	99-87-6	5	0.20	U	0.20	U	0.20	U
sec-outypenzene Styrene	135-98-8	5	0.20	U	0.20	Ű	0.20	U
tert-Butyl alcohol (TBA)	75-65-0	~	2.7	Ŭ	1.3	ĭ	1.3	Ĵ
tert-Butylbenzene	98-06-6	5	0.20	U	0.20	υ	0.20	U
Tetrachloroethylene	127-18-4	5	0.20	U	0.20	U	0.20	U
roluene	108-88-3	5	0.20	U	0.20	U	0.20	U
trans-1,3-Dichloropropylene	10061-02-6	0.4	0.20	U	0.20	υ	0.20	U
Trichloroethylene	79-01-6	5	0.20	Ū	0.20	Ū	0.20	U
Trichlorofluoromethane	75-69-4	5	0.20	U	0.20	U	0.20	U
Vinyl Chloride	75-01-4	2	0.20	U	0.20	U 	0.20	U
Ayienes, Total Highlighted values signify detection abov	1330-20-/	5	U.6U	U	U.6U	U	U.60	U

Highinghted values signity detection above guidance value Bold values signify detection above method detection limit Q is the Qualifier Column with definitions as follows: I=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated U=analyte not detected at or above the level indicated ~=this indicates that no regulatory limit has been established for this analyte

		Table 6						
Semi-Volatile Organic Compounds in Water (ug/L) EPA Method 8260								
148-28 Hillside Avenue Jamaica, NY 11435								
ACT Project No.: 8346-JANY								
Sample ID		NYSDEC	TW-1		TW-2		TW-3	
Sampling Date		Standards and	12/2/16		12/2/16		12/2/16	
Compound	CAS Number	Guidance Values - GA	Result	Q	Result	Q	Result	Q
Semi-Volatiles, NJDEP/TCL/Part 375 List		ug/L	ug/L		ug/L		ug/L	T
Dilution Factor	92-52-4	~	1 2 63		1 2 63		2 63	
1,2,4,5-Tetrachlorobenzene	95-94-3	~	2.63	U	2.63	Ŭ	2.63	U
1,2,4-Trichlorobenzene	120-82-1	5	2.63	U	2.63	U	2.63	U
I,2-Diphenylhydrazine (as Azobenzene)	122-66-7	~	2.63	U	2.63	U	2.63	U
1,3-Dichlorobenzene	541-73-1	3	2.63	U	2.63	U	2.63	U
1,4-Dichlorobenzene	106-46-7	3~	2.63	U	2.63	U	2.63	U
2,4,5-Trichlorophenol	95-95-4	1	2.63	U	2.63	U	2.63	U
2,4,6-Trichlorophenol	88-06-2	1	2.63	U	2.63	U	2.63	U
2,4-Dichlorophenol	120-83-2	5	2.63	U	2.63	U	2.63	U
2,4-Dinitrophenol	51-28-5	10	2.63	U	2.63	U	2.63	U
2,4-Dinitrotoluene	121-14-2	5	2.63	U	2.63	U	2.63	U
2,6-Dinitrotoluene	606-20-2	5	2.63	U	2.63	U	2.63	U
2-Chlorophenol	91-58-7 95-57-8	10	2.63	υ	2.63	U	2.63	U
2-Methylnaphthalene	91-57-6	~	2.63	Ū	2.63	U	2.63	Ū
2-Methylphenol	95-48-7	1	2.63	U	2.63	U	2.63	U
2-Nitroaniline 2-Nitrophenol	88-74-4 88-75-5	5	2.63	U	2.63	U	2.63	U
3- & 4-Methylphenols	65794-96-9	~	2.63	U	2.63	U	2.63	U
3,3'-Dichlorobenzidine	91-94-1	5	2.63	U	2.63	U	2.63	U
3-Nitroaniline 1.6-Dinitro-2-methylohenol	99-09-2 534-52-1	5~~	2.63	U	2.63	U	2.63	U
1-Bromophenyl phenyl ether	101-55-3	~	2.63	U	2.63	U	2.63	U
1-Chloro-3-methylphenol	59-50-7	1	2.63	U	2.63	υ	2.63	U
1-Chloroaniline	106-47-8	5	2.63	U	2.63	U	2.63	U
4-Chlorophenyl phenyl ether 1-Nitroaniline	100-01-6	5	2.63	υ	2.63	U	2.63	υ
1-Nitrophenol	100-02-7	1	2.63	U	2.63	U	2.63	U
Acenaphthene	83-32-9	20	0.0526	U	0.0526	U	0.0526	U
Acenaphtnylene Acetophenone	208-96-8	~	2.63	U	2.63	U U	2.63	U
Aniline	62-53-3	5	2.63	Ū	2.63	Ū	2.63	U
Anthracene	120-12-7	50	0.0526	U	0.0526	U	0.0526	U
Atrazine Benzaldebyde	1912-24-9	~	2.62	U	2.62	0	2.62	U
Benzidine	92-87-5	~	10.5	U	10.5	U	10.5	U
Benzo(a)anthracene	56-55-3	0.002	0.0526	U	0.0526	U	0.0526	U
Benzo(a)pyrene	50-32-8	0.002	0.0526	U	0.0526	U	0.0526	U
Benzo(g,h,i)perylene	191-24-2	~	0.0526	U	0.0526	U	0.0526	U
Benzo(k)fluoranthene	207-08-9	0.002	0.0526	U	0.0526	υ	0.0526	U
Benzoic acid	65-85-0	~ ~	26.3	U	26.3	U	26.3	U
Senzyl alconol Senzyl butyl phthalate	85-68-7	50	2.63	U	2.63	U	2.63	U
Bis(2-chloroethoxy)methane	111-91-1	5	2.63	U	2.63	U	2.63	U
Bis(2-chloroethyl)ether	111-44-4	1	2.63	U	2.63	U	2.63	U
bisiz-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	108-60-1 117-81-7	5	2.63	U	2.63 11.0	U	2.63	U
Caprolactam	105-60-2	~	2.63	Ú	2.63	υ	2.63	U
Carbazole	86-74-8	~	2.63	U	2.63	U	2.63	U
_nrysene Dihenzo(a h)anthracene	218-01-9	0.002	0.0526	U	0.0526	U	0.0526	U
Dibenzofuran	132-64-9	~	2.63	U	2.63	U	2.63	U
Diethyl phthalate	84-66-2	50	2.63	U	2.63	U	2.63	U
Dimethyl phthalate	131-11-3	50 50	2.63	U	2.63	U	2.63	U
Di-n-octyl phthalate	04-74-2 117-84-0	50	2.63	U	2.63	U	2.63	U
luoranthene	206-44-0	50	0.0526	Ú	0.0526	Ú	0.0526	U
luorene	86-73-7	50	0.0526	U	0.0526	U	0.0526	U
nexaciiloropenzene Hexachlorobutadiene	118-74-1 87-68-3	0.04	0.526	U	0.526	U	0.526	U
Hexachlorocyclopentadiene	77-47-4	5	2.63	U	2.63	U	2.63	U
Hexachloroethane	67-72-1	5	0.526	U	0.526	U	0.526	υ
ndeno(1,2,3-cd)pyrene	193-39-5	0.002	0.0526	U	0.0526	U	0.0526	U
Vaphthalene	78-59-1 91-20-3	50 10	2.63	U	2.63 0.0526	U U	2.63	U
Vitrobenzene	98-95-3	0.4	0.263	Ű	0.263	Ű	0.263	Ű
N-Nitrosodimethylamine	62-75-9	~	0.526	U	0.526	U	0.526	U
N-nitroso-di-n-propylamine	621-64-7	~ 50	2.63	U	2.63	U	2.63	U
Pentachlorophenol	87-86-5	1	0.263	U	0.263	U	0.263	U
Phenanthrene	85-01-8	50	0.0526	Ú	0.0526	Ú	0.0526	U
Phenol	108-95-2	1	2.63	U	2.63	U	2.63	U
yrene Highlighted values signify detectio	129-00-0	50	0.0526	U	0.0526	U	0.0526	U

Highlighted values signify detection above guidance value Bold values signify detection above method detection limit Q is the Qualifier Column with definitions as follows: U=analyte not detected at or above the level indicated r=this indicates that no regulatory limit has been established for this analyte

Table 7								
Pesticides and PCBs in Water (ug/L) EPA Method 8081/8082 148-28 Hillside Avenue Jamaica, NY 11435								
ACT Project No.: 8346-JANY								
Sample ID	NYSDEC TOGS	TW-1		TW-2		TW-3		
Sampling Date		Standards and	12/2/16		12/2/16		12/2/16	
Compound	CAS Number	Guidance Values - GA	Result Q		Result	Q	Result	Q
Pesticides, NJDEP/TCL/Part 375 L	ist	ug/L	ug/L		ug/L		ug/L	
Dilution Factor		1 1	1		1		1	
4,4'-DDD	72-54-8	0.3	0.00400	U	0.00400	U	0.00400	U
4,4'-DDE	72-55-9	0.2	0.00400	U	0.00400	U	0.00400	U
4,4'-DDT	50-29-3	0.2	0.00400	U	0.00400	U	0.00400	U
Aldrin	309-00-2	~	0.00400	U	0.00400	U	0.00400	U
alpha-BHC	319-84-6	0.01	0.00400	U	0.00400	U	0.00400	U
alpha-Chlordane	5103-71-9	~	0.00400	U	0.00400	U	0.00400	U
beta-BHC	319-85-7	0.04	0.00400	U	0.00400	U	0.00400	U
Chlordane, total	57-74-9	0.05	0.0200	U	0.0200	U	0.0200	U
delta-BHC	319-86-8	0.04	0.00400	U	0.00400	U	0.00400	U
Dieldrin	60-57-1	0.004	0.00200	U	0.00200	U	0.00200	U
Endosulfan I	959-98-8	~	0.00400	U	0.00400	U	0.00400	U
Endosulfan II	33213-65-9	~	0.00400	U	0.00400	U	0.00400	U
Endosulfan sulfate	1031-07-8	~	0.00400	U	0.00400	U	0.00400	U
Endrin	frin 72-20-8 ~ 0.00400 U 0.00400 U 0.00400							U
Endrin aldehyde	7421-93-4	5	0.0100	U	0.0100	U	0.0100	U
Endrin ketone	53494-70-5	5	0.0100	U	0.0100	U	0.0100	U
gamma-BHC (Lindane)	58-89-9	0.05	0.00400	U	0.00400	U	0.00400	U
gamma-Chlordane	5566-34-7	~	0.0100	U	0.0100	U	0.0100	U
Heptachlor	76-44-8	0.04	0.00400	U	0.00400	U	0.00400	U
Heptachlor epoxide	1024-57-3	0.03	0.00400	U	0.00400	U	0.00400	U
Methoxychlor	72-43-5	35	0.00400	U	0.00400	U	0.00400	U
Toxaphene	8001-35-2	0.06	0.100	U	0.100	U	0.100	U
Polychlorinated Biphenyls (PCB)		ug/L	ug/L		ug/L		ug/L	
Dilution Factor			1		1		1	
Aroclor 1016	12674-11-2	~	0.135		0.133		0.102	
Aroclor 1221	11104-28-2	~	0.0500	U	0.0500	U	0.0500	U
Aroclor 1232	11141-16-5	~	0.0500	U	0.0500	U	0.0500	U
Aroclor 1242	53469-21-9	~	0.0500	U	0.0500	U	0.0500	U
Aroclor 1248	12672-29-6	~	0.0500	U	0.0500	U	0.0500	U
Aroclor 1254	11097-69-1	~	0.0500	U	0.0500	U	0.0500	U
Aroclor 1260	11096-82-5	~	0.0500	U	0.0500	U	0.0500	U
Total PCBs 1336-36-3 0.09 0.135 0.133 0.102								
Highlighted values signify de	etection above	e guidance val	lue					
Bold values signify detection above method detection limit								
Q is the Qualifier Column w	ith definition	s as follows:						
U=analyte not detected at o	r above the le	evel indicated						
~=this indicates that no regulatory limit has been established for this analyte								

Table 8

Metals in Water (ug/L) EPA Method 8081/8082 148-28 Hillside Avenue Jamaica, NY 11435

ACT Project No.: 8346-JANY

Sample ID	NYSDEC	TW-1		TW-2		TW-3		
Sampling Date	TOGS Standards and	12/2/16		12/2/16		12/2/16		
Compound	Guidance Values - GA	Result	Q	Result	Q	Result	Q	
Metals, Total	ug/L	ug/L		ug/L		ug/L		
Dilution Factor		1		1		1		
Arsenic	25	4	U	4	U	4	U	
Barium	1,000	591		176		294		
Cadmium	5	3	U	3	U	3	U	
Chromium	50	165		63		113		
Lead	25	21		12		16		
Selenium	10	11	U	11	U	11	U	
Silver	50	6	U	6	U	6	U	
Mercury by 7473, Dissolved	ug/L	ug/L		ug/L		ug/L		
Dilution Factor		1		1		1		
Mercury	0.7	0.20	U	0.20	U	0.20	U	
Metals, Dissolved	ug/L	ug/L		ug/L		ug/L		
Dilution Factor		1		1		1		
Arsenic	25	5		4	U	4	U	
Barium	1,000	108		19		53		
Cadmium	5	3	U	3	U	3	U	
Chromium	50	6	U	6	U	6	U	
Lead	25	3	U	3	U	3	U	
Selenium	10	11	U	11	U	11	U	
Silver	50	6	U	6	U	6	U	
Mercury by 7473, Dissolved	ug/L	ug/L		ug/L		ug/L		
Dilution Factor		1		1		1		
Mercury	0.7	0.20	U	0.20	U	0.20	U	
Highlighted values signify detection above guidance value								
Bold values signify detection above method detection limit								
Q is the Qualifier Column with definitions as follows:								
U=analyte not detected at or above the level indicated								
~=this indicates that no regulatory limit has been established for this analyte								

Table 9									
Volatile Organic Compounds in Soil Vapor (ug/m3) EPA Method TO-15 148-28 Hillside Avenue Jamaica, NY 11435									
ACT Project No.: 8346-JANY									
Sample ID	NYSDOH		SS-1	SS-2	SS-3	SV-4	SV-5	SV-6	SV-7
Sampling Date	Soil Vapor Screening Level	Vapor Guideline ²	6/25/15	6/25/15	6/25/15	6/25/15	6/25/15	6/25/15	11/21/16
1,1,1,2-Tetrachloroethane	NA	-	<8.2	<8.4	<6.9	<8.4	<7.1	<8.9	<15
1,1,1-Trichloroethane	100 -	22,000	<13	<13	24	<13	<11	<14	<12
1,1,2-Trichloro-1,2,2-trifluoroethane	NA	300000	<18	<19	<14	<17	<14	<20	<17
1,1,2-Trichloroethane	NA	1.5	<13	<13	<11	<13	<11	<14	<12
1,1-Dichloroethane	NA	5000	<9.7	<10	<8.2	<10	<8.3	<10	<8.9
1,1-Dichloroethylene	100 - NA	2,000	<9.5	<9.7	<8.0	<9.7	<8.2	<10	<8.8
1,2,4-Trimethylbenzene	NA	60	50	41	45	50	31	30	<10
1,2-Dibromoethane	NA	0.11	<18	<19	<15	<19	<16	<20	<17
1,2-Dichlorobenzene	NA	2,000	<14	<15	<12	<15	<12	<16	<13
1,2-Dichloroethane	NA	0.94	<9.7	<10	<8.2	<10	<8.3	<10	<8.9 <10
1,2-Dichlorotetrafluoroethane	NA	NA	<17	<17	<14	<17	<14	<18	<15
1,3,5-Trimethylbenzene	NA	60	15	12	14	13	<10	<13	<11
1,3-Butadiene	NA	0.09	<10	<11	<8.7	<11	<8.9	<11	<15
1,3-Dichlorobenzene	NA	1,100	<14	<15	<12	<15	<12	<16	<13
1,4-Dichlorobenzene	NA	8,000	<14	<11	<12	<11	<12	<12	<10
1,4-Dioxane	NA	NA	<8.6	<8.9	<7.3	<8.9	<7.4	<9.3	<16
2-Butanone	NA	10,000	1,000	1,100	820	62	130	100	<6.5
2-Hexanone	NA	NA	190	140	110	<20	<17	<21	<18
4-Methyl-2-pentanone	NA	NA	<9.8	<10	<8.3	<10	<8.4	<11	<9.1
Acetone	NA	3,500	390	400	290	430	380	310	21
Acrylonitrile	NA	-	<5.2	<5.3	<4.4	<5.3	<4.5	<5.6	<4.8
Benzene Ronzul Chlorido	NA	3.1	14 <12	17 <12	7.7	<7.9	<6.6	12	<7.1
Bromodichloromethane	NA	1.4	<12	<15	<10	<15	<13	<15	<11
Bromoform	NA	22	<25	<25	<21	<25	<21	<27	<23
Bromomethane	NA	NA	<9.3	<9.5	<7.8	<9.5	<8.0	<10	<8.6
Carbon disulfide	NA 5 ¹	7,000	7.5	23 (3.9	< 6.3	<7.7	19	<8.0	<6.9
Chlorobenzene	NA	600	<11	<11	<9.3	<11	<9.5	<12	<10
Chloroethane	NA	100,000	<6.3	<6.5	<5.3	<6.5	<5.4	<6.8	<5.8
Chloroform	NA	1.1	<12	<12	12	<12	31	<13	<11
Chloromethane	NA 100 ²	24	<5.0	<5.1	<4.2	<5.1	<4.2	<5.3	<4.6
cis-1,3-Dichloropropylene	NA	-	<11	<11	<9.1	<11	< 9.3	<12	<10
Cyclohexane	NA	NA	10	52	<6.9	<8.5	210	<8.9	<7.6
Dibromochloromethane	NA	NA	<19	<20	<16	<20	<17	<21	<19
Dichlorodifluoromethane	NA	2,000	<12	<12	<10	<12	<10	<13	<11
Ethylbenzene	NA	22	27	23	21	13	19	13	<9.6
Hexachlorobutadiene	NA	-	<26	<26	<22	<26	<22	<28	<24
Isopropanol	NA	NA	17	<12	19	<12	16	<13	<11
Methyl Methacrylate Methyl tert-butyl ether	NA NA	7,000	<9.8	<10	<8.3 73	<10	<8.4	<11	<9.1
Methylene chloride	NA	52	<17	<17	<14	<17	<14	<18	<15
n-Heptane	NA	NA	27	76	18	<10	370	11	<9.1
n-Hexane	NA	2,000	24	120	14	<8.7	450	12	<7.8
Xylenes (o) Xylenes (m²n)	NA	70000	48	41	39	21	26	21	<9.6
p-Ethyltoluene	NA	-	41	33	35	27	24	23	<11
Propylene	NA	NA	<4.1	<4.2	<3.5	<4.2	<3.5	<4.4	<3.8
Styrene	NA 88.3	10,000	<10	<10	<8.6	<10	<8.8	<11	<9.4
Tetrachloroethylene	30 -	810 NA	50 110	180 96	2,700 120	1,900	300	72	10
Toluene	NA	4000	100	110	76	<7.3 39	120	44	<13
trans-1,2-Dichloroethylene	NA	-	<9.5	<9.7	<8.0	<9.7	<8.2	<10	<8.8
trans-1,3-Dichloropropylene	NA	-	<11	<11	<9.1	<11	<9.3	<12	<10
Trichloroethylene	21	22	<3.2	<3.3	55	<3.3	<2.8	<3.5	<3.0
Vinvl acetate	NA	2000	<8.5	<14	<7.1	<8.7	<7.2	<9.1	<7.8
Vinyl bromide	NA	-	<10	<11	<8.8	<11	<9.0	<11	<9.7
Vinyl chloride	5 ¹	2.8	<1.5	<1.6	<1.3	<1.6	<1.3	<1.7	<5.7
Matrix 1, NYSDOH "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (October 2006)									
Matrix 2, NYSDOH "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (October 2006)									
Bolded values signify detection about	ve method det	ection limit	2002)						
Highlighted values signify detection	above NYSDC)H screening le	vel or USEPA	guidance value	e				
NA = Not Available									

APPENDIX 1

CITIZEN PARTICIPATION PLAN

The NYC Office of Environmental Remediation and Chung Lam have established this Citizen Participation Plan because the opportunity for citizen participation is an important component of the NYC Voluntary Cleanup Program. This Citizen Participation Plan describes how information about the project will be disseminated to the Community during the remedial process. As part of its obligations under the NYC VCP, Chung Lam will maintain a repository for project documents and provide public notice at specified times throughout the remedial program. This Plan also takes into account potential environmental justice concerns in the community that surrounds the project Site. Under this Citizen Participation Plan, project documents and work plans are made available to the public in a timely manner. Public comment on work plans is strongly encouraged during public comment periods. Work plans are not approved by the NYC Office of Environmental Remediation (OER) until public comment periods have expired and all comments are formally reviewed. An explanation of cleanup plans in the form of a public meeting or informational session is available upon request to OER's project manager assigned to this Site, Anna Brooks, who can be contacted about these issues or any others questions, comments or concerns that arise during the remedial process at (212) 788-8841.

Project Contact List: OER has established a Site Contact List for this project to provide public notices in the form of fact sheets to interested members of the Community. Communications will include updates on important information relating to the progress of the cleanup program at the Site as well as to request public comments on the cleanup plan. The Project Contact List includes owners and occupants of adjacent buildings and homes, principal administrators of nearby schools, hospitals and day care centers, the public water supplier that serves the area, established document repositories, the representative Community Board, City Council members, other elected representatives and any local Brownfield Opportunity Area (BOA) grantee organizations. Any member of the public or organization will be added to the Site Contact List on request. A copy of the Site Contact List is maintained by OER's project manager. If you would like to be added to the Project Contact List, contact NYC OER at (212) 788-8841 or by email at brownfields@cityhall.nyc.gov.

Repositories: A document repository is maintained online. Internet access to view OER's document repositories is available at public libraries. This document repository is intended to house, for community review, all principal documents generated during the cleanup program including Remedial Investigation plans and reports, Remedial Action work plans and reports, and all public notices and fact sheets produced during the lifetime of the remedial project. The library nearest the Site is:

Queens Library (Central) 89-11 Merrick Boulevard, Jamaica, NY 11432 (718) 990-0700

Hours of Operations

Monday:	9:00 am to 9:00 pm	Friday:	9:00 am to 7:00 pm
Tuesday:	9:00 am to 9:00 pm	Saturday:	10:00 am to 5:00 pm
Wednesday:	9:00 am to 9:00 pm	Sunday:	12:00 pm to 5:00 pm
Thursday:	9:00 am to 9:00 pm		

Digital Documentation: NYC OER requires the use of digital documents in our repository as a means of minimizing paper use while also increasing convenience in access and ease of use.

Issues of Public Concern: Chung Lam is required to identify whether there are specific issues of concern to stakeholders proximate to the project site. Such issues include but are not limited to interests of Environmental Justice communities..

Public Notice and Public Comment: Public notice to all members of the Project Contact List is required at three major steps during the performance of the cleanup program (listed below) and at other points that may be required by OER. Notices will include Fact Sheets with descriptive project summaries, updates on recent and upcoming project activities, repository information, and important phone and email contact information. All notices will be reviewed

and approved by OER prior to distribution and mailed by the Enrollee. Public comment is solicited in public notices for all work plans developed under the NYC Voluntary Cleanup Program. Final review of all work plans by OER will consider all public comments. Approval will not be granted until the public comment period has been completed.

Citizen Participation Milestones: Public notice and public comment activities occur at several steps during a typical NYC VCP project. These steps include:

- Public Notice of the availability of the Remedial Investigation Report and Remedial Action Work Plan and a 30-day public comment period on the Remedial Action Work Plan: Public notice in the form of a Fact Sheet is sent to all parties listed on the Site Contact List announcing the availability of the Remedial Investigation Report and Remedial Action Work Plan and the initiation of a 30-day public comment period on the Remedial Action Work Plan. The Fact Sheet summarizes the findings of the RIR and provides details of the RAWP. The public comment period will be extended an additional 15 days upon public request. A public meeting or informational session will be conducted by OER upon request.
- **Public Notice announcing the approval of the RAWP and the start of remediation:** Public notice in the form of a Fact Sheet is sent to all parties listed on the Site Contact List announcing the approval of the RAWP and the start of remediation.
- Public Notice announcing the completion of remediation, designation of
 Institutional and Engineering Controls and issuance of the Notice of Completion:
 Public notice in the form of a Fact Sheet is sent to all parties listed on the Site Contact
 List announcing the completion of remediation, providing a list of all Institutional and
 Engineering Controls implemented for to the Site and announcing the issuance of the
 Notice of Completion.

APPENDIX 2

SUSTAINABILITY STATEMENT

This Sustainability Statement documents sustainable activities and green remediation efforts planned under this remedial action.

Reuse of Clean, Recyclable Materials and Reduced Consumption of Non-

Renewable Resources: Reuse of clean, locally-derived recyclable materials reduces consumption of non-renewable virgin resources and can provide energy savings and greenhouse gas reduction.

An estimate of the quantity (in tons) of clean, non-virgin materials (reported by type of material) reused under this plan will be quantified and reported in the RAR.

Reduced Energy Consumption and Promotion of Greater Energy Efficiency:

Reduced energy consumption lowers greenhouse gas emissions, improves local air quality, lessens in-city power generation requirements, can lower traffic congestion, and provides substantial cost savings.

Best efforts will be made to quantify energy efficiencies achieved during the remediation and will be reported in the Remedial Action Report (RAR). Where energy savings cannot be easily quantified, a gross indicator of the amount of energy saved or the means by which energy savings was achieved will be reported.

Conversion to Clean Fuels: Use of clean fuel improves NYC's air quality by reducing harmful emissions.

Natural gas will be utilized for fuel in the new building.

An estimate of the volume of clean fuels used during remedial activities will be quantified and reported in the RAR.

Recontamination Control: Recontamination after cleanup and redevelopment is completed undermines the value of work performed, may result in a property that is less protective of public health or the environment, and may necessitate additional cleanup work later or impede future redevelopment. Recontamination can arise from future releases that occur within the property or by influx of contamination from off-Site.

An estimate of the area of the Site that utilizes recontamination controls under this plan will be reported in the RAR in square feet.

Stormwater Retention: Stormwater retention improves water quality by lowering the rate of combined stormwater and sewer discharges to NYC's sewage treatment plants during periods of precipitation, and reduces the volume of untreated influent to local surface waters. An estimate of the enhanced stormwater retention capability of the redevelopment project will be included in the RAR.

Linkage with Green Building: Green buildings provide a multitude of benefits to the city across a broad range of areas, such as reduction of energy consumption, conservation of resources, and reduction in toxic materials use.

The number of Green Buildings that are associated with this brownfield redevelopment property will be reported in the RAR. The total square footage of green building space created as a function of this brownfield redevelopment will be quantified for residential, commercial and industrial/manufacturing uses.

Paperless Voluntary Cleanup Program: Chung Lam is participating in OER's Paperless Voluntary Cleanup Program. Under this program, submission of electronic documents will replace submission of hard copies for the review of project documents, communications and milestone reports.

Low-Energy Project Management Program: Chung Lam is participating in OER's low-energy project management program. Under this program, whenever possible, meetings are

held using remote communication technologies, such as videoconferencing and teleconferencing to reduce energy consumption and traffic congestion associated with personal transportation.

Trees and Plantings: Trees and other plantings provide habitat and add to NYC's environmental quality in a wide variety of ways. Native plant species and native habitat provide optimal support to local fauna, promote local biodiversity, and require less maintenance. An estimate of the land area that will be vegetated, including the number of trees planted or preserved, will be reported in square feet in the RAR.

APPENDIX 3

SOIL/MATERIALS MANAGEMENT PLAN

1.1 Soil Screening Methods

Visual, olfactory and PID soil screening and assessment will be performed under the supervision of a Qualified Environmental Professional and will be reported in the final remedial report. Soil screening will be performed during invasive work performed during the remedy and development phases prior to issuance of final signoff by OER.

1.2 Stockpile Methods

Excavated soil from suspected areas of contamination (e.g., hot spots, USTs, drains, etc.) will be stockpiled separately and will be segregated from clean soil and construction materials. Stockpiles will be used only when necessary and will be removed as soon as practicable. While stockpiles are in place, they will be inspected daily, and before and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by OER. Excavated soils will be stockpiled on, at minimum, double layers of 8-mil minimum sheeting, will be kept covered at all times with appropriately anchored plastic tarps, and will be routinely inspected. Broken or ripped tarps will be promptly replaced. All stockpile activities will be compliant with applicable laws and regulations. Soil stockpile areas will be appropriately graded to control run-off in accordance with applicable laws and regulations. Stockpiles of excavated soils and other materials shall be located at least of 50 feet from the property boundaries, where possible. Hay bales or equivalent will surround soil stockpiles except for areas where access by equipment is required. Silt fencing and hay bales will be used as needed near catch basins, surface waters and other discharge points.

1.3 Characterization of Excavated Materials

Soil/fill or other excavated media that is transported off-Site for disposal will be sampled in a manner required by the receiving facility, and in compliance with applicable laws and regulations. Soils proposed for reuse on-Site will be managed as defined in this plan.

1.4 Materials Excavation, Load-Out, and Departure

The PE/QEP overseeing the remedial action will:

- oversee remedial work and the excavation and load-out of excavated material;
- ensure that there is a party responsible for the safe execution of invasive and other work performed under this work plan;
- ensure that Site development activities and development-related grading cuts will not interfere with, or otherwise impair or compromise the remedial activities proposed in this RAWP;
- ensure that the presence of utilities and easements on the Site has been investigated and that any identified risks from work proposed under this plan are properly addressed by appropriate parties;
- ensure that all loaded outbound trucks are inspected and cleaned if necessary before leaving the Site;
- ensure that all egress points for truck and equipment transport from the Site will be kept clean of Site-derived materials during Site remediation.

Locations where vehicles exit the Site shall be inspected daily for evidence of soil tracking off premises. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to Site-derived materials.

Open and uncontrolled mechanical processing of historical fill and contaminated soil on-Site will not be performed without prior OER approval.

1.5 Off-Site Materials Transport

Loaded vehicles leaving the Site will comply with all applicable materials transportation requirements (including appropriate covering, manifests, and placards) in accordance with applicable laws and regulations, including use of licensed haulers in accordance with 6 NYCRR Part 364. If loads contain wet material capable of causing leakage from trucks, truck liners will be used. Queuing of trucks will be performed on-Site, when possible in order to minimize off Site disturbance. Off-Site queuing will be minimized.

Outbound truck transport routes are described in the remedial report. This routing takes into account the following factors: (a) limiting transport through residential areas and past sensitive sites; (b) use of mapped truck routes; (c) minimizing off-Site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport. To the extent possible, all trucks loaded with Site materials will travel from the Site using these truck routes. Trucks will not stop or idle in the neighborhood after leaving the project Site.

1.6 Materials Disposal Off-Site

The following documentation will be established and reported by the PE/QEP for each disposal destination used in this project to document that the disposal of regulated material exported from the Site conforms with applicable laws and regulations: (1) a letter from the PE/QEP or Enrollee to each disposal facility describing the material to be disposed and requesting written acceptance of the material. This letter will state that material to be disposed is regulated material generated at an environmental remediation Site in New York City under a governmental remediation program. The letter will provide the project identity and the name and phone number of the PE/QEP or Enrollee. The letter will include as an attachment a summary of all chemical data for the material being transported; and (2) a letter from each disposal facility stating it is in receipt of the correspondence (1, above) and is approved to accept the material. These documents will be included in the final remedial report.

The Remedial Action Report will include an itemized account of the destination of all material removed from the Site during this remedial action. Documentation associated with disposal of all material will include records and approvals for receipt of the material. This information will be presented in the final remedial report.

All impacted soil/fill or other waste excavated and removed from the Site will be managed as regulated material and will be disposed in accordance with applicable laws and regulations. Historic fill and contaminated soils taken off-Site will be handled as solid waste and will not be disposed at a Part 360-16 Registration Facility (also known as a Soil Recycling Facility). Waste characterization will be performed for off-Site disposal in a manner required by the receiving facility and in conformance with its applicable permits. Waste characterization sampling and analytical methods, sampling frequency, analytical results and QA/QC will be

reported in the final remedial report. A manifest system for off-Site transportation of exported materials will be employed. Manifest information will be reported in the final remedial report. Hazardous wastes derived from on-Site will be stored, transported, and disposed of in compliance with applicable laws and regulations.

If disposal of soil/fill from this Site is proposed for unregulated disposal (i.e., clean soil removed for development purposes), including transport to a Part 360-16 Registration Facility, a formal request will be made for approval by OER with an associated plan compliant with 6NYCRR Part 360-16. This request and plan will include the location, volume and a description of the material to be recycled, including verification that the material is not impacted by site uses and that the material complies with receipt requirements for recycling under 6NYCRR Part 360. This material will be appropriately handled on-Site to prevent mixing with impacted material.

1.7 Materials Reuse On-Site

Soil and fill that is derived from the property that meets the Soil Cleanup Objectives (SCOs) established in this plan may be reused on-Site. The SCOs for on-Site reuse are listed in Section 4.2 of this cleanup plan. 'Reuse on-Site' means material that is excavated during the remedy or development, does not leave the property, and is relocated within the same property and on land with comparable levels of contaminants in soil/fill material, compliant with applicable laws and regulations, and addressed pursuant to the NYC VCP agreement subject to Engineering and Institutional Controls. The PE/QEP will ensure that reused materials are segregated from other materials to be exported from the Site and that procedures defined for material reuse in this remedial plan are followed. The expected location for placement of reused material is shown in Section 4.2.

Organic matter (wood, roots, stumps, etc.) or other waste derived from clearing and grubbing of the Site will not be buried on-Site. Soil or fill excavated from the site for grading or other purposes will not be reused within a cover soil layer or within landscaping berms.

1.8 Demarcation

After completion of hotspot removal and any other invasive remedial activities, and prior to backfilling, the top of the residual soil/fill will be defined by one of three methods: (1) placement of a demarcation layer. The demarcation layer will consist of geosynthetic fencing or equivalent

material to be placed on the surface of residual soil/fill to provide an observable reference layer. A description or map of the approximate depth of the demarcation layer will be provided in the SMP; or (2) a land survey of the top elevation of residual soil/fill before the placement of cover soils, pavement and associated sub-soils, or other materials or structures or, (3) all materials beneath the approved cover will be considered impacted and subject to site management after the remedy is complete. Demarcation may be established by one or any combination of these three methods. As appropriate, a map showing the method of demarcation for the Site and all associated documentation will be presented in the RAR.

This demarcation will constitute the top of the site management horizon. Materials within this horizon require adherence to special conditions during future invasive activities as defined in the Site Management Plan.

1.9 Import of Backfill Soil From Off-Site Sources

This Section presents the requirements for imported fill materials to be used below the cover layer and within the clean soil cover layer. All imported soils will meet OER-approved backfill and cover soil quality objectives for this Site. Imported soils will not exceed groundwater protection standards established in Part 375. Imported soils for Track 1 remedial action projects will not exceed Track 1 SCO's.

A process will be established to evaluate sources of backfill and cover soil to be imported to the Site, and will include an examination of source location, current and historical use(s), and any applicable documentation. Material from industrial sites, spill sites, environmental remediation sites or other potentially contaminated sites will not be imported to the Site.

The following potential sources may be used pending attainment of backfill and cover soil quality objectives:

- Clean soil from construction projects at non-industrial sites in compliance with applicable laws and regulations;
- Clean soil from roadway or other transportation-related projects in compliance with applicable laws and regulations;
- Clean recycled concrete aggregate (RCA) from facilities permitted or registered by the regulations of NYS DEC.

- All materials received for import to the Site will be approved by a PE/QEP and will be in compliance with provisions in this remedial plan. The final remedial report will report the source of the fill, evidence that an inspection was performed on the source, chemical sampling results, frequency of testing, and a Site map indicating the locations where backfill or soil cover was placed.
- All material will be subject to source screening and chemical testing.
- Inspection of imported fill material will include visual, olfactory and PID screening for evidence of contamination. Materials imported to the Site will be subject to inspection, as follows:
- Trucks with imported fill material will be in compliance with applicable laws and regulations and will enter the Site at designated locations;
- The PE/QEP is responsible to ensure that every truck load of imported material is inspected for evidence of contamination; and
- Fill material will be free of solid waste including pavement materials, debris, stumps, roots, and other organic matter, as well as ashes, oil, perishables or foreign matter.

Composite samples of imported material will be taken at a minimum frequency of one sample for every 500 cubic yards of material. Once it is determined that the fill material meets imported backfill or cover soil chemical requirements and is non-hazardous, and lacks petroleum contamination, the material will be loaded onto trucks for delivery to the Site. Recycled concrete aggregate (RCA) will be imported from facilities permitted or registered by NYSDEC. Facilities will be identified in the final remedial report. A PE/QEP is responsible to ensure that the facility is compliant with 6NYCRR Part 360 registration and permitting requirements for the period of acquisition of RCA. RCA imported from compliant facilities will not require additional testing, unless required by NYSDEC under its terms for operation of the facility. RCA imported to the Site must be derived from recognizable and uncontaminated concrete. RCA material is not acceptable for, and will not be used as cover material.

1.10 Fluids Management

All liquids to be removed from the Site, including dewatering fluids, will be handled, transported and disposed in accordance with applicable laws and regulations. Liquids discharged into the New York City sewer system will receive prior approval by New York City Department of Environmental Protection (NYC DEP). The NYC DEP regulates discharges to the New York City sewers under Title 15, Rules of the City of New York Chapter 19. Discharge to the New York City sewer system will require an authorization and sampling data demonstrating that the groundwater meets the City's discharge criteria. The dewatering fluid will be pretreated as necessary to meet the NYC DEP discharge criteria. If discharge to the City sewer system is not appropriate, the dewatering fluids will be managed by transportation and disposal at an off-Site treatment facility.

Discharge of water generated during remedial construction to surface waters (i.e. a stream or river) is prohibited without a SPDES permit issued by New York State Department of Environmental Conservation.

1.11 Stormwater Pollution Prevention

Applicable laws and regulations pertaining to stormwater pollution prevention will be addressed during the remedial program. Erosion and sediment control measures identified in this remedial plan (silt fences and barriers, and hay bale checks) will be installed around the entire perimeter of the remedial construction area and inspected once a week and after every storm event to ensure that they are operating appropriately. Discharge locations will be inspected to determine whether erosion control measures are effective in preventing significant impacts to receptors. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by OER. All necessary repairs shall be made immediately. Accumulated sediments will be removed as required to keep the barrier and hay bale check functional. Undercutting or erosion of the silt fence toe anchor will be repaired immediately with appropriate backfill materials. Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

1.12 Contingency Plan for Unknown Contamination Sources

This contingency plan is developed for the remedial construction to address the discovery of unknown structures or contaminated media during excavation. Identification of unknown contamination source areas during invasive Site work will be promptly communicated to OER's Project Manager. Petroleum spills will be reported to the NYS DEC Spill Hotline. These findings

will be included in the daily report. If previously unidentified contaminant sources are found during on-Site remedial excavation or development-related excavation, sampling will be performed on contaminated source material and surrounding soils and reported to OER. Chemical analytical testing will be performed for TAL metals, TCL volatiles and semi-volatiles, TCL pesticides and PCBs, as appropriate.

1.13 Odor, Dust, and Nuisance Control

Odor Control

All necessary means will be employed to prevent on- and off-Site odor nuisances. At a minimum, procedures will include: (a) limiting the area of open excavations; (b) shrouding open excavations with tarps and other covers; and (c) use of foams to cover exposed odorous soils. If odors develop and cannot otherwise be controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-Site disposal; and (e) use of chemical odorants in spray or misting systems.

This odor control plan is capable of controlling emissions of nuisance odors. If nuisance odors are identified, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. OER will be notified of all odor complaint events. Implementation of all odor controls, including halt of work, will be the responsibility of the PE/QEP's certifying this remedial plan.

Dust Control

Dust management during invasive on-Site work will include, at a minimum:

- Use of a dedicated water spray methodology for roads, excavation areas and stockpiles.
- Use of properly anchored tarps to cover stockpiles.
- Exercise extra care during dry and high-wind periods.
- Use of gravel or recycled concrete aggregate on egress and other roadways to provide a clean and dust-free road surface.

This dust control plan is capable of controlling emissions of dust. If nuisance dust emissions are identified, work will be halted and the source of dusts will be identified and corrected. Work will not resume until all nuisance dust emissions have been abated. OER will be notified of all

dust complaint events. Implementation of all dust controls, including halt of work, will be the responsibility of the PE/QEP's responsible for certifying this remedial plan.

Other Nuisances

Noise control will be exercised during the remedial program. All remedial work will conform, at a minimum, to NYC noise control standards.

Rodent control will be provided during Site clearing and grubbing and during the remedial program, as necessary, to prevent nuisances.
APPENDIX 4

CONSTRUCTION HEALTH AND SAFETY PLAN

CONSTRUCTION HEALTH AND SAFETY PLAN

148-28 Hillside Avenue Jamaica, NY 11435 Block 9694, Lots 17

ACT Project No. 8346-JANY

December 22nd, 2016

Prepared for:

Chung Lam Hillside 168 Inc 148-28 Hillside Avenue Jamaica, New York 11435

Prepared by:

Advanced Cleanup Technologies, Inc. 110 Main Street, Suite 103 Port Washington, NY 11050

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Purpose	1
	1.2	Site Description	1
	1.3	Environmental Concerns	2
2.0	SITE	E PERSONNEL	2
3.0	PRO	TECTIVE EQUIPMENT	4
4.0	HAZ	LARD EVALUATION	5
	4.1	Chemical Exposure	5
	4.2	Temperature Hazards	6
		4.2.1 Heat Exposure Hazards	6
		4.2.2 Cold Exposure Hazards	7
	4.3	Fire Prevention	8
	4.4	Operation of Heavy Equipment	8
5.0	MAN	NAGEMENT AND PLANNING	9
	5.1	General Site Control	9
	5.2	Health and Safety Communication	9
	5.3	Air Monitoring	10
		5.3.1 Community Air Monitoring	10
		5.3.2 Activity-Specific Air Monitoring	11
	5.4	Dust Control	12
	5.5	Spill Control and Prevention	12
	5.6	Decontamination Procedures	13
	5.7	Soil Disposal	13
6.0	EMI	ERGENCY MEDICAL CARE AND PROCEDURES	14

EMERGENCY MEDICAL CARE AND PROCEDURES 6.0

TABLE OF CONTENTS (Continued)

TABLES

|--|

TITLE

1

NIOSH Exposure Limits

FIGURES

<u>NUMBER</u>	TITLE
1	Hospital Route

APPENDICES

TITLE	SECTION
Chemical Safety Cards	Α
Respirator Fit Test Procedures	В

1.0 INTRODUCTION

The construction of a 10-story mixed-use residential and commercial building with a cellar is being proposed at the property located at 148-28 Hillside Avenue, Jamaica, New York ("the Site"). This Construction Health and Safety Plan (CHASP) has been prepared to identify site-specific health and safety procedures to be followed by on-site contractors during remedial activities at the site. All activities performed under this CHASP are targeted to comply with Occupational Safety and Health Administration (OSHA) Regulations 29 CFR Part 1910, *et seq*.

1.1 Purpose

The purpose of this CHASP is to provide the contractors' field personnel, and other visitors with an understanding of the potential chemical and physical hazards that exist or may arise while portions of this project are being performed. The primary objective is to ensure the well being of all field personnel and the community surrounding this site. A copy of this CHASP will be available to anyone that requests it. Visiting personnel (e.g. government officials, administrators, bank inspectors, assessors, etc.) that will have limited exposure to the site native soil/fill material during construction activities will be instructed on how to reduce the probability of exposure to site contaminants, but will not be required to read the CHASP.

All on-site personnel shall familiarize themselves with the contents of this CHASP and the remedial activities planned for the site. Personnel choosing not to comply with this CHASP will be removed from the worksite.

1.2 Site Description

The Site is located at 148-28 Hillside Avenue, Jamaica, NY in the central section of Queens County, New York and is identified as Block 9694 and Lots 17 on the New York City Tax Map. Figure 1 shows the Site location. The Site is 17,450-square feet and is located along the southern side of Hillside Avenue between 148th Street to the west and 150th Street to the east. To the north of the property is Hillside Avenue followed by a two-story mixed-use building with apartments above commercial businesses. To the east of the property is a one-story commercial building

occupied by a supermarket. To the south, a six-story residential apartment building and a twostory religious building are located. The the west, is a two-story commercial building occupied by the National Organization of Industrial Trade Unions. A map of the site boundary is shown in Figure 1. Currently, the Site is a vacant commercial building.

1.3 Environmental Concerns

Advanced Cleanup Technologies completed a Phase I Environmental Site Assessment on July 14, 2015. The Phase I identifies the property as of 1888 contained a three-story residential building. By 1925, a one-story filling station with gasoline tanks had also been constructed. By 1942, the three-story building was identified as mixed-use and it was demolished by 1963. By 1967, the gasoline tanks were no longer identified, and by 1992 the building was identified as an auto repair shop. The property remained substantially unchanged through 2006.

According to ACT's Phase I Environmental Site Assessment dated July 14, 2015, five abandoned 550-gallon gasoline underground storage tanks were present in front of the building. One inactive 250-gallon waste oil underground storage tank was observed in the interior of the repair shop. According to the site contact, six underground storage tanks were removed from the property approximately 25 years ago. The GPR survey detected disturbed soil that likely was the former location of removed underground storage tanks.

In a Remedial Investigation Report prepared by Advanced Cleanup Technologies in October 2016, soil quality data was compared to Unrestricted and Restricted Residential Use Soil Cleanup Objectives (UUSCOs and RRSCOs) contained in NYSDEC 6 NYCRR Part 375. VOC compounds including acetone (maximum of 110 μ g/kg) and tetrachloroethene (11,000 μ g/kg) were detected above their Unrestricted Use SCOs in two shallow soil samples. Two SVOCs, Benzo(a)anthracene (1,550 μ g/kg) and Chrysene (1,560 μ g/kg) exceeded Unrestricted Use SCOs in one shallow soil sample. Benzo(a)anthracene also exceeded Restricted Residential Use SCOs. One Pesticide, 4,4'-DDT (max. of 5.06 μ g/kg) exceeded its Unrestricted Use Soil Cleanup Objective. Several metals were identified and lead (1,100 mg/Kg) and selenium (7.18 mg/Kg) exceeded Unrestricted Use SCOs. Lead also exceeded Restricted Residential Use SCOs. Overall,

with the exception of PCE disposal, the soil chemistry is similar to sites with historic urban fill in New York City.

Soil vapor samples collected during the RI were compared to the compounds listed in Table 3.1 Air Guidance Values derived by the New York State Department of Health (NYSDOH) located in the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion, dated October 2006, updated June 2007 for the soil vapor/indoor air matrices, updated September 2013 for tetrachloroethylene (PCE), and updated August 2015 for trichloroethylene (TCE). Soil vapor sampling detected several petroleum related and chlorinated compounds. Highest concentrations were detected for 2-Butanone at 1,100 ug/m³. Petroleum related (BTEX) compounds were detected at a maximum concentration of 299 ug/m³. Chlorinated compound Tetrachloroethylene PCE was detected in all six samples and ranged in concentrations from 50 to 2,700 ug/m³, compared to a NYSDOH screening value of 30 ug/m³. Trichloroethylene was detected in one soil vapor sample in the east section of the site at 55 ug/m³, above the NYSDOH screening value of 2 ug/m³. Concentrations of PCE and TCE are above the NYSDOH guidance matrix and require mitigation.

2.0 SITE PERSONNEL

All on-site personnel shall have training in accordance with the regulations codified at 29 CFR 1910.20. The Site Supervisor will maintain proof that the qualifications of the on-site personnel comply with these regulations, prior to them being allowed to be included in the on-Site workforce.

All on-site personnel shall familiarize themselves with the contents of the CHASP, the scope of the Remedial Action Work Plan (RAWP) for the Site and attend a daily site specific health and safety briefing prior to the commencement of work activities. Personnel choosing not to comply with this CHASP will be removed from the worksite.

ACT's Site Supervisor will have oversight responsibility over the project to ensure that this CHASP is properly implemented and that ACT and its subcontractors adhere to all OSHA regulations and other established industry health and safety practices.

Each contractor will designate an on-site individual responsible for health and safety issues relating to excavation and construction activities. Each contractor will communicate to the Site Supervisor the name of this individual and what specific actions are to be taken by each contractor during that work day that will be required to comply with the CHASP.

The Site Supervisor will coordinate the activities of all other contractors on-site so as not to jeopardize the health and safety of any personnel on-site. In addition, the Site Supervisor will continually monitor and inspect personnel and equipment for compliance with established safe work practices.

A list of the pertinent personnel authorized to supervise site health and safety operations is presented below:

Title	Name	Telephone Number
Site Supervisor ACT	Tim Young	516-640-2947 (Mobile)
Project Manager ACT	Mark Gelband	516-441-5800, Ext. 104 718-577-7639 (Mobile)
Health and Safety Officer ACT	Yisong Yang	516-441-5800, Ext. 108 718-508-2970 (Mobile)

3.0 PROTECTIVE EQUIPMENT

Personal Protective Equipment (PPE) is divided into the following four categories based on the degree of protection afforded:

Level A: This PPE level will be selected when the greatest level of skin, respiratory, and

eye protection is required. It includes positive pressure, full face-piece selfcontained breathing apparatus (SCBA), or NIOSH-approved positive pressure supplied air respirator with escape SCBA and a totally-encapsulating chemicalprotective suit.

- Level B: This PPE level will be selected when the highest level of respiratory protection is necessary but a lesser level of skin protection is needed. It includes positive pressure, full face-piece SCBA, or NIOSH-approved positive pressure supplied air respirator with escape SCBA and hooded chemical-resistant clothing such as overalls and long-sleeved jacket, coveralls, one or two-piece chemicalsplash suit or disposable chemical-resistant overalls.
- Level C: This PPE level will be selected when the concentration(s) and type(s) of airborne substance(s) present in the work area is known and the criteria for using air purifying respirators are met. It includes full-face or half-mask, NIOSH-approved air purifying respirators and hooded chemical-resistant clothing such as overalls and long-sleeved jacket, coveralls, one or two-piece chemical-splash suit or disposable chemical-resistant overalls.
- Level D: This PPE level will be selected for nuisance contamination only. It includes coveralls, gloves, chemical-resistant steel toe and shank boots, safety glasses or chemical splash goggles, hard hat, escape mask and face shield.

PPE shall be selected in accordance with the site air monitoring program (Section 5.3), OSHA 29 CFR 1910.120(c), (g), and 1910.132. Protective equipment shall be NIOSH-approved and respiratory protection shall conform to OSHA 29 CFR Part 1910.133 and 1910.134 specifications; head protection shall conform to 1910.135; eye and face protection shall conform to 1910.133; and foot protection shall conform to 1910.136. The only true difference among the levels of protection from D thru B is the addition of the type of respiratory protection.

Before site personnel are required to use any respirator with a negative or positive pressure tight-fitting face-piece, the personnel will be fit tested with the same make, model, style, and size of respirator that will be used. The fit test shall be administered using only an OSHA-accepted fit test

protocol. The OSHA-accepted fit test protocols and procedures provided for in 29 CFR 1910.120 are contained in Appendix B of this CHASP.

All Site workers will be required to participate in a comprehensive PPE program. The PPE program will consist of daily "Tailgate" Health and Safety meetings, proper inspection, donning, use, maintenance, storage and decontamination of protective clothing and equipment, use of protective equipment in temperature extremes and monitoring of co-workers and the work environment.

The Site Supervisor will determine the level of protection required for all field activities and whether the level of protection should be upgraded. It is anticipated that all on-site activities will be conducted in Level D PPE, unless otherwise upgraded by the Site Supervisor. Changes in the level of protection will be recorded in the dedicated site logbook along with the rationale for the changes.

4.0 HAZARD EVALUATION

4.1 Chemical Exposure

A list of chemicals including VOCs, SVOCs, metals and pesticides that are present in subsurface soil at the Site is provided in Table 1. These types of contaminants at the detected concentrations represent a low to moderate potential for exposure. The standards listed in the table represent Immediate Danger to Life and Health (IDLH), Time-Weighted Average (TWA) and Short-Term Exposure Limit (STEL).

The primary routes of exposure for these chemicals are inhalation, ingestion and absorption through the skin and mucous membranes. The health risks associated with the exposure to these substances during construction activities will be minimized through a combination of education, personal protection equipment (PPE) and dust control measures.

4.2 Temperature Hazards

4.2.1 Heat Exposure Hazards

Heat stress may occur even in moderate temperature areas and may present any or all of the following:

<u>Heat Rash</u>

Heat rash results from continuous exposure to heat, humid air, and chafing clothes. Heat rash is uncomfortable and decreases the ability to tolerate heat.

Heat Cramps

Cramps result from the inadequate replacement of body electrolytes lost through perspiration. Signs include severe spasms and pain in the extremities and abdomen.

Heat Exhaustion

Exhaustion results from increased stress on the vital organs of the body in the effort to meet the body's cooling demands. Signs include shallow breathing; pale, cool, moist skin; profuse sweating; and dizziness.

<u>Heat Stroke</u>

Heat stroke results from an overworked cooling system. Heat stroke is the most serious form of heat stress. Body surfaces must be cooled and medical help must be obtained immediately to prevent severe injury and/or death. Signs include red, hot, dry skin, absence of perspiration, nausea, dizziness and confusion, strong, rapid pulse, coma, and death.

The following procedures should be followed to prevent or control heat stroke:

- A. Replace body fluids (water and electrolytes) lost through perspiration. Solutions may include a 0.1% salt and water solution or commercial mixes such as "Gatorade". Employees must be encouraged to drink more than the amount required in order to satisfy thirst.
- B. Use cooling devices to aid the natural body ventilation. Cooling occurs through evaporation of perspiration and limited body contact with heat-absorbing protective clothing. Utilize fans and air conditioners to assist in evaporation. Long, cotton underwear is suggested to absorb perspiration and limit any contact with heatabsorbing protective clothing (i.e., coated Tyvek suits).

- C. Provide shelter against heat and direct sunlight to protect personnel. Take breaks in shaded areas.
- D. Rotate workers utilizing protective clothing during hot weather.
- E. Establish a work regime that will provide adequate rest periods, with personnel working in shifts.

4.2.2 Cold Exposure Hazards

Work schedules will be adjusted to provide sufficient rest periods in a heated area for warming up during operations conducted in cold weather. Also, thermal protective clothing such as wind and/or moisture resistant outerwear is recommended to be worn.

If work is performed continuously in the cold at or below -7 °C (20 °F), including wind chill factor, heated warming shelters (company vehicles, rest rooms, etc.) shall be made available nearby and the worker should be encouraged to use these shelters at regular intervals, the frequency depending on the severity of the environmental exposure. The onset of heavy shivering, frostnip, the feeling of excessive fatigue, drowsiness, irritability, or euphoria, are indications for immediate return to the shelter. When entering the heated shelter, the outer layer of clothing shall be removed and the remainder of the clothing loosened to permit sweat evaporation.

A change of dry work clothing shall be provided as necessary to prevent workers from returning to their work with wet clothing. Dehydration, or the loss of body fluids, occurs in the cold environment and may increase the susceptibility of the worker to cold injury due to a significant change in blood flow to the extremities. Warm sweet drinks and soups should be provided at the work site to provide caloric intake and fluid volume. The intake of coffee should be limited because of a diuretic and circulatory effect (adapted from TLV's and Biological Exposure Indices 1988-1989, ACGIH).

4.3 Fire Prevention

One portable fire extinguisher with a rating (ratio) of 20 pound A/B/C will be conspicuously and centrally located at the site. Portable extinguishers will be properly tagged with inspection dates and maintained in accordance with standard maintenance procedures for portable fire extinguishers.

The following fire prevention guidelines are to be followed:

- Only approved safety cans will be used to transport and store flammable liquids.
- All gasoline and diesel-driven engines requiring refueling must be shut down and allowed to cool prior to filling.
- Smoking is not allowed during any operations within the work area in which petroleum products or solvents in free-floating, dissolved, or vapor forms, or other flammable liquids may be present.
- No open flame or spark is allowed in any area containing petroleum products or other flammable liquids.

4.4 Operation of Heavy Equipment

When operating or working around heavy equipment, the Site Supervisor will ensure that site personnel conform to this CHASP to include the wearing of proper clothing such as hard hats and safety glasses. Any specific health and safety issues relating to the equipment to be used on-site that work day, will be covered in the daily health and safety briefing.

5.0 MANAGEMENT AND PLANNING

5.1 General Site Control

The Site Supervisor will establish a command post within the Site. A perimeter site fence, as required by the New York City Department of Buildings, will be erected to define the limits of the Site. All work must be performed within the site fence. Flagmen and traffic control will be provided as required at all times.

The Site will be left hazard-free at the end of each work day. In addition, all fence gates will be operable and locked in a closed position, all site fencing will be properly standing or braced and site lighting will be operational. The property owner will provide site security during off-work hours.

During site excavation, worker exposure to potential hazardous substances will be minimized through Health and Safety Communication (Section 5.2), Decontamination Procedures (Section 5.3) and Dust Control Methods (Section 5.3).

5.2 Health and Safety Communication

The relatively small size of the work area makes normal verbal communication the primary mode of communication for the project. In the event that verbal communication is impossible the following hand signals will be used.

Gripping a partners wrist = "Leave area immediately" Hands on top of head = "I need assistance" Thumbs up = "OK; I'm alright; I understand" Thumbs down = "No; Negative"

Daily Health and Safety Meetings will address a list of tasks to be performed that day, the equipment and machinery involved, and any hazards identified with this type of activity. Workers will be given the opportunity to list out additional perceived hazards, and discuss safe work practices while in these operations. The daily safety meeting will also be an opportunity to review the work performed the previous day, any hazards encountered, mitigating actions taken, and suggestions for future improvement.

5.3 Air Monitoring

This section of the CHASP discusses air monitoring that will be performed to address community and site personnel concerns of possible exposures due to airborne migration of suspected contaminants that may be encountered during on-site field activities.

Periodic air monitoring will be performed for VOCs at the perimeter of the work area once every two hours during field activities. Continuous air monitoring will be performed for VOCs during all ground intrusive activities such as soil excavation, loading and offsite transport. All ambient air readings will be recorded and provided as an appendix in the P.E.-certified Remedial

Closure Report.

5.3.1 Community Air Monitoring

Periodic air monitoring for VOCs at the perimeter of the work area will be accomplished as follows:

- VOCs will be monitored at the upwind perimeter of the work area at the start of each work day and periodically thereafter to establish background conditions. The monitoring will be performed utilizing a Photovac 2020 portable Photoionization Detector (PID) or equivalent equipped with a 10.6 eV lamp capable of detecting the types of contaminants known or suspected to be present.
- VOCs will be monitored at the downwind perimeter of the work area daily at 2 hour intervals. If ambient air concentrations of total organic vapors at the downwind perimeter of the work area exceeds 5 parts per million (ppm) above background, work activities will be halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities will resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level 200 feet downwind of the work area or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15 minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities will be shutdown.

5.3.2 Activity-Specific Air Monitoring

Continuous air monitoring will be conducted inside the work area for VOC levels during all ground-intrusive activities, such as soil excavation, loading and offsite transport in accordance

with 29 CFR 1910.120(h). Continuous air monitoring will also be performed utilizing a Photovac 2020 PID or equivalent. Continuous air monitoring will be performed in the following manner:

Volatile organic compounds will be monitored inside the work area of construction and health and safety personnel on a continuous basis. The PID will be programmed to calculate 15-minute running average concentrations. If ambient air concentrations of total organic vapors inside the work area exceed 5 ppm above background, work activities will be halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities will resume with continued monitoring.
If total organic vapor levels inside the work area persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level inside the work area or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15 minute average.

5.4 Dust Control

Each contractor shall control any dust generated on-site that may be produced during work activities. Dust control measures will be employed to ensure that there is no off-site migration of dust into the community by use of a stream of water applied through a fine spray nozzle. The NYC hydrant used for a water source will be fitted with a RPZ control device to prevent inadvertent contamination of the public water supply. In addition, a solid barrier fence will be installed around the perimeter of the property to control any fugitive migration of dust.

5.5 Spill Control and Prevention

Spills associated with site activities may be attributed to project specific heavy equipment and include gasoline, diesel and hydraulic oil. In the event of a leak or a release, site personnel will inform their supervisor immediately, locate the source of spillage and stop the flow if it can

be done safely. A spill containment kit including absorbent pads, booms and/or granulated speedy dry absorbent material will be available to site personnel to facilitate the immediate recovery of the spilled material.

Daily inspections of site equipment components including hydraulic lines, fuel tanks, etc. will be performed by their respective operators as a preventative measure for equipment leaks and to ensure equipment soundness. In the event of a spill, site personnel will immediately notify the NYSDEC (1-800-457-7362), and a spill number will be generated.

5.6 Decontamination Procedures

Contaminants will be removed from personnel and equipment through a decontamination regiment. Workers will be required to remove any contaminated PPE before leaving the Site. Work boots, safety glasses, hard hats and work gloves will be washed in a two percent Alconox Solution, followed by three consecutive clean water rinses. All wash and rinse water will be containerized into a DOT drum. Gross contaminants will be brushed from worker's clothing before leaving the Site. A station for hand washing will also be set up.

Decontamination of heavy equipment will also be required before leaving the Site. Excavator buckets and vehicle wheels or tracks will be brushed clean with a broom, before being moved off-site. Reusable hand tools will be washed in a two percent Alconox solution, followed by a series of clean water rinses. All wash and rinse water will be containerized in appropriate steel drums for proper disposal.

5.7 Soil Disposal

Any contaminated soil (organic or inorganic constituents) encountered during the remedial activities will be segregated, stockpiled on-site onto polyethylene sheeting, and covered with polyethylene sheeting to prevent exposure to workers and the community until proper transportation and disposal in accordance with all NYSDEC Regulations is arranged.

6.0 EMERGENCY MEDICAL CARE AND PROCEDURES

If a personnel accident occurs on-site requiring emergency care, immediate care will be administered appropriate to the injury in accordance with established Red Cross procedures and

practices. In the event of serious injury to on-site personnel, the Emergency Medical Service of the City of New York (EMS) will be summoned to remove the injured individual to the nearest medical facility for treatment as follows.

Ambulance:	911
Emergency Medical:	911
Fire Department:	911
Jamaica Hospital Medical Center:	(718) 206-6066
Police Department:	911
Poison Control Center:	(516) 542-2323

The nearest emergency medical facility is 8900 Van Wyck Expressway, Jamaica, NY 11418, which is located 1.0 miles from the Site. A map of the route to this hospital is attached. The directions to this medical facility from the Site are as follows:

- Head northeast on Hillside Avenue toward 150th Street;
- Turn Right on 150th Street;
- Turn Right on Jamaica Avenue;
- Turn Left on Van Wyck Expressway Service Road;
- Turn Right on 89th Avenue;
- Turn Left onto 135th Street;
- Jamaica Hospital Medical Center is located on the Left.

OSHA approved First Aid Kits will be maintained on-Site along with a First Aid blanket for treating shock, and will be readily accessible to all workers if an emergency occurs. The emergency signal for evacuation of personnel from the Site will be three (3) long blasts of a vehicle horn with the off-site rallying point designated as the corner of 150th Street and Hillside Avenue. If in the event of a fire, explosion or other life-threatening incident on-site, the emergency signal above will be sounded and all personnel will evacuate the Site. The appropriate New York City emergency personnel (fire, police, etc.) will be immediately notified.

All injuries, no matter how slight, will be reported to the site safety supervisor immediately. The Site Supervisor will complete an accident report for all incidents. Some injuries, such as severe lacerations or burns, may require immediate treatment. Unless required due to immediate danger, seriously injured persons should not be moved without direction from attending medical personnel. The Site Supervisor will record occupational injuries and illnesses within 48 hours of occurrence, as required by statute.

Table 1

NIOSH Exposure Limits

		<u> </u>	
Chemical	IDLH	TWA	STEL
Benzene	1625	1.63	8.13
Toluene	1900	375	560
Ethylbenzene	3530	435	545
Xylenes	3970	435	655
Naphthalene	1250	50	75
Acenaphthene	N.L.	N.L.	N.L.
Anthracene	N.L.	N.L.	N.L.
Pyrene	N.L.	N.L.	N.L.
Chrysene	N.L.	N.L.	N.L.
Benzo(b)Fluoranthene	N.L.	N.L.	N.L.
Benzo(a)Pyrene	N.L.	N.L.	N.L.
Benzo(ghi)Perylene	N.L.	N.L.	N.L.
Polychlorinated	5.0	0.5	N.L.
Aldrin	25	0.25	N.L.
Endrin	2	0.1	N.L.
Chlordane	100	0.5	N.L.
Toxaphene	200	0.5	N.L.
DDT	500	1	N.L.
Silver	10	0.01	N.L.
Barium	1100	0.5	N.L.
Cadmium	9	0.05	N.L.
Selenium	1	0.2	N.L.
Lead	100	0.05	N.L.
Mercury	10	0.05	N.L.
Arsenic	5	0.01	N.L.
Chromium	250	0.5	N.L.

TABLE 1 NIOSH Exposure Limits (ma/m³)¹

¹ All values taken from NIOSH International Chemical Safety Cards (<u>Http://www.cdc.gov/niosh/ipcsneng/nengname.html)</u> N.L.... None Listed

FIGURE 1

HOSPITAL ROUTE

Souce: Google Maps

Hospital Route	-
Advanced Cleanup Technologies, Inc.	
110 Main Street, Suite 103, Port Washington, New York 11050 Tel: 516-441-5800 Fax: 516-441-5511	
Project No.: 8346-JANY Figure No.: 1	-
Date: 12/27/2016 Scale: Not To Scale	_

Appendix A

Chemical Safety Cards

International Chemical Safety Cards

BENZENI	E		ICSC: 0015
			National Institute to Decupational Safaty and Health
	C	vclohexatriene	
		Benzol	
	Mol	C6H6 ecular mass: 78 1	
ICSC # 0015 CAS # 71-43- RTECS # <u>CY14</u> UN # 1114 EC # 601-0 June 05, 2003 V	-2 000000 020-00-8 Yalidated		
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Highly flammable.	NO open flames, NO sparks, and NO smoking	Powder, AFFF, foam, carbon dioxide.
EXPLOSION	Vapour/air mixtures are explosive. Risk of fire and explosion: see Chemical Dangers.	Closed system, ventilation, explosion-proof electrical equipment and lighting. Do NOT use compressed air for filling, discharging, or bandling, Use non-sparking handtools. Prevent build-up of electrostatic charges (e.g., by grounding).	In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE		AVOID ALL CONTACT!	
-INHALATION	Dizzness. Drowsiness. Headache. Nausea. Shortness of breath. Convulsions. Unconsciousness.	Ventilation, local exhaust, or breathing protection.	Fresh air, rest. Refer for medical attention.
•SKIN	MAY BE ABSORBED! Dry skin. Redness. Pain. (Further see Inhalation).	Protective gloves. Protective [clothing.	Remove contaminated clothes. Rinse skin with plenty of water or shower. Refer for medical attention.
•EYES	Redness. Pain.	Face shield, or eye protection in lcombination with breathing protection.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
-INGESTION	Abdominal pain. Sore throat. Vomiting. (Further see Inhalation).	Do not eat, drink, or smoke during work.	Rinse mouth. Do NOT induce vomiting. Refer for medical attention.
SPILLAGI	DISPOSAL	STORAGE IPAC	KAGING & LABELLING

ICSC:NENG0015 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0015.html

Remove.all ignition sources. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert labsorbent and remove to safe place. Do INOT wash away into sewer. Do NOT let this chemical enter the environment. Personal protection: complete protective clothing including	Fireproof. Separated from food and feedstuffs oxidants halogens	d from food and balogens Do not transport with food and freedstuffs. Note: E F symbol R: 45-46-11-36/38-48/23/24/25-65 S: 53-45 UN Hazard Class: 3 UN Packing Group: Il FORMATION ON BACK	
self-contained breathing apparatus.	E IMPORTANT INFORMATION ON	BACK	
ICSC: 0015	reared in the context of cooperation between the Intern commission of the European Communities (C) IPCS CE4 en made except to add the OSHA PELS, NIOSH REL	national Programme on Chemacal Safety & the C 1994. No modifications to the International version have s and NIOSH IDLH values	

International Chemical Safety Cards

ICSC: 0015

BENZENE		
I M P	PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID, WITH CHARACTERISTIC ODOUR. PHYSICAL DANGERS: The vapour is heavier than air and may travel along the ground distant imition possible. As a	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation through the skin and by ingestion INHALATION RISK: A harmful contamination of the air can be reached very quickly on evaporation of this
о	result of flow, agitation, etc., electrostatic charges can be generated.	substance at 20°C.
R	CHEMICAL DANGERS:	EFFECTS OF SHORI-TERM EAT OSOTEL The substance is irritating to the eyes the skin and the substance is irritating to the liquid may
Т	Reacts violently with oxidants, nitric acid, sulfiric acid and halogens causing fire and	the respiratory tract swantowing in the risk of cause aspiration into the lungs with the risk of chemical production into the substance may cause
A	CONTRACTIONAL EXPOSITE LIMITS	effects on the central nervous system, resulting in lowering of consciousness Exposure far above
N	TLV: 0.5 ppm as TWA 2.5 ppm as STEL (skin) A1 BEI (ACGIH 2004).	the occupational exposure limit value may result in unconscious ness death
Т	MAK: H Carcinogen category: 1 Germ cell mutagen	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
D	(DFG 2004). OSHA PEL: 1910.1028 TWA 1 ppm ST 5 ppm	The liquid defats the skin. The substance may have effects on the bone marrow immune system
A	See Appendix F NIOSH REL: Ca TWA 0.1 ppm ST 1 ppm See	substance is carcinogenic to humans.
Т	Appendix A NIOSH IDLH: Ca 500 ppm See: 71432	
A		
PHYSICAL PROPERTIES	Boiling point: 80°C Melting point: 6°C Relative density (water = 1): 0.88 Solubility in water, g/100 ml at 25°C: 0.18 Vapour pressure, kPa at 20°C: 10 Relative vapour density (air = 1): 2.7	Relative dens i ty of the vapour/air-mixture at 20°C (air = 1): 1.2 Flash point: -11°C c.c. Auto-ignition temperature: 498°C Explosive lintitus, vol% in air: 1.2-8.0 Octanol/water partition coefficient as log Pow:

11/5/2008 11:39 A

ICSC:NENG0015 International Chemical Sufety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0015.html

***	2.13	
ENVIRONMEN DATA	TAL The substance is very toxic to aquatic organisms.	ALL
	NOTES	
Use of alcoholic b	everages enhances the harmful effect. Depending on the degree of exposure, adour warning when the exposure limit value is exceeded is insufficient.	, periodic medical examination
,	Transport Emergency Card:	TEC (R)-30S1114 / 30GF1-II NFPA Code: H2; F3: R0
	ADDITIONAL INFORMATION	
4		N A
ICSC: 0015		BENZENE
	(C) IPCS, CEC, 1994	
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of P responsible for the use which might be made of this information. This carr of the IPCS Peer Review Committee and may not reflect in all cases all the included in national legislation on the subject. The user should verify com relevant legislation in the country of use. The only modifications made to inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDLH values.	NIOSH, the CEC or the IPCS is d contains the collective views he detailed requirements upliance of the cards with the produce the U.S. version is

11/5/2008 11:39 AM

TOT TENE

International Chemical Safety Cards

ICSC: (078
---------	-----

IOLUER.			
			National Institute for Occupational Safety and Health
ICSC # 0078 CAS # 108-8 RTECS # <u>X852</u> UN # 1294 EC # 601-0 October 10, 200	P F C Moi 8-3 50000 021-00-3 02 Validated	Methylbenzene Toluol Phenylmethane 6H5CH3 / C7H8 lecular mass: 92.1	
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Highly flammable.	NO open flames, NO sparks, and NO smoking,	Powder, AFFF, foam, carbon dioxide.
EXPLOSION	Vapour/air mixtures are nexplosive.	Closed system, ventilation, explosion-proof electrical equipment and lighting. Prevent build-up of electrostatic charges (e.g., by grounding). Do NOT use compressed air for filling, discharging, or handling. Use non-sparking handtools.	In case of fire: keep druns, etc., cool by spraying with water.
EXPOSURE		STRICT HYGIENE! AVOID EXPOSURE OF (PREGNANT) WOMEN!	
•INHALATION	Cough. Sore throat. Dizziness. Drowsiness. Headache. Nausea. Unconsciousness.	Ventilation, local exhaust, or breathing protection.	Fresh air. rest. Refer for medical attention.
•SKIN	Dry skin. Redness.	Protective gloves.	Remove contaminated clothes. Rinse and then wash skin with water and soap. Refer for medical attention.
•EYES	Redness. Pain.	Safety goggles.	First rinse with plenty of water for several minutes (remove icontact lenses if easily possible), then take to a doctor.
•INGESTION	Burning sensation. Abdominal ipain. (Further see Inhalation).	De not eat, drink, or smoke during work.	Rinse mouth. Do NOT induce vomiting. Refer for medical attention.

11/5/2008 11:40 AN

l of 3

ICSC:NENG0078 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0078.html

SPILLAGE DISPOSAL	STORAGE	PACKAGING & LABELLING
Evacuate danger area in large spill! Consult an expert in large spill! Remove all ignition sources. Ventilation. Collect ieaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT wash away into sewer. Do NOT let this chemical enter the environment. Personal protection: self-contained breathing apparatus	Fireproof. Separated from strong oxidants.	F symbol Xn symbol IR: 11-38-48/20-63-65-67 IS: 2-36/37-46-62 UN Hazard Class: 3 UN Packing Group: II
SEE	IMPORTANT INFORMATION ON	BACK
ICSC: 0078	pared in the context of cooperation between the Inter- mission of the European Communities (C) IPCS CE in made except to add the OSHA PELS, NIOSH REF.	national Programme on Chemical Safety & the C 1994 No modifications to the international version have is and NIOSH IDLH values

International Chemical Safety Cards

TOLUENE

ICSC: 0078

1	I	PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID, WITH CHARACTERISTIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed imo the body by inhalation. through the skin and by ingestion.
1	M	PHYSICAL DANGERS:	INHALATION RISK:
	P	mixtures are formed easily. As a result of flow,	reached rather quickly on evaporation of this substance at 20°C.
1	0	generated.	EFFECTS OF SHORT-TERM EXPOSURE:
ļ	R	CHEMICAL DANGERS: Reacts violently with strong oxidants causing fire	The substance is irritating to the eyes and the respiratory mact The substance may cause effects
	Д.	and explosion hazard.	on the central nervous system If this liquid is swallowed, aspiration into the lungs may result
1	A	OCCUPATIONAL EXPOSURE LIMITS: TLV: 50 ppm as TWA (skin) A4 BEI issued	in chemical pneumonitis. Exposure at high levels may result in cardiac dysrhythmia and
:	N	(ACGIH 2004). MAK:	unconsciousness.
	T	Pregnancy risk group: C (DFG 2004). EU OEL: 192 mg/m ³ 50 ppm as TWA 384 mg/m ³	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: The liquid defats the skin. The substance may
l	D	100 ppm as STEL (skin) (EU 2006). OSHA PEL <u>t</u> : TWA 200 ppm C 300 ppm 500	have effects on the central nervous system Exposure to the substance may enhance hearing
	A	ppm (10-minute maximum peak) NIOSH REL: TWA 100 ppm (375 mg/m ³) ST	damage caused by exposure to noise. Animal tests show that this substance possibly causes
	Т	150 ppm (560 mg/m ³) NIOSH IDLH: 500 ppm See: <u>108883</u>	toxicity to numan reproduction of development.
1	A		
-	PHYSICAL PROPERTIES	Boiling point: 111°C Melting point: -95°C Relative density (water = 1): 0.87 Solubility in water: none	Relative density of the vapour/air-mixture at 20°C (air = 1): 1.01 Flash point: 4°C c.c. Auto-ignition temperature: 480°C

11/5/2008 11:40 AM

ICSC:NENG0078 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0078.	hmi
---	-----

	Vapour pressure, kPa at 25°C: 3.8 Relative vapour density (air = 1): 3.1	Explosive limits, vol% in air: 1.1-7.1 Octanol/water partition coefficient as log Pow: 2.69
ENVIRONMENT DATA	The substance is toxic to aquatic organisms.	
1	NOTES	
Depending on the a harmful effect. Can classification, Em- lLimits.	degree of exposure, periodic medical examination rd has been partly updated in October 2004: see se ergency Response. Card has been partly updated in	is suggested. Use of alcoholic beverages emances up ctions Occupational Exposure Limits, EU October 2006: see section Occupational Exposure Transport Emergency Card: TEC (R)-30S1294 NFPA Code: H 2: F 3; R 0;
[ADDITIONAL INFOR	MATION
i		
1CSC: 0078	(C)1265 CEC 10	TOLUENE
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any per- responsible for the use which might be made of it of the IPCS Peer Review Committee and may not lincluded in national legislation on the subject. The relevant legislation in the country of use. The onlinclusion of the OSHA PELS, NIOSH RELS and I	son acting on behalf of NIOSH, the CEC or the IPCS is his information. This card contains the collective views reflect in all cases all the detailed requirements he user should verify compliance of the cards with the y modifications made to produce the U.S. version is NIOSH IDLH values.

11/5/2008 11:40 AF

3 of 3

International Chemical Safety Cards

ICSC: 0268

ETHYLB	ENZENE				ICSC: 0268
		1. and 1.		V	A National Institute for Docupational Safety and Health
ICSC # 0268 CAS # 100-4 RTECS # <u>DA07</u> UN # 1175 EC # 601-0 November 23, 2	1-4 (00000) 023-00-4 007 Validated] Cg Mole	Ethylbenzol Phenylethane EB H ₁₀ /C ₆ H ₅ C ₂ H ₅ cular mass: 106.2	<u></u>	
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Highly flammable.		NO open flames, NO sparks	s, and	Dry powder. Foam. Carbon dioxide.
EXPLOSION	Vapour/air mixtures a explosive.	UC	Closed system, ventilation, explosion-proof electrical equipment and lighting. Do luse compressed air for fillin discharging or handling.	NOT ng,	In case of fire: keep drums. etc., cool by spraying with water.
EXPOSURE	1		PREVENT GENERATION MISTS!	OF	
•INHALATION	Cough. Sore throat. D Drowsiness. Headac)izziness. ne.	Ventilation, local exhaust, o)T	Fresh air, rest. Refer for medica
-SKIN	Redness.		Protective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap.
-EYES	Redness. Pain. crima lat update Nov 07 - on high levels.	tion: deleted ily at very	'Safery goggles		First rinse with plenty of water for several minutes (remove contact lenses if easily possible then take to a doctor.
INGESTION	Burning sensation in and chest. (Further se Infraiatron).	the throat z	Do not eat, drink, or smoke work.	during	Rinse mouth. Do NOT induce vomiting. Refer for medical attention.
SPILLAGI	E DISPOSAL	1	STORAGE	PAC	KAGING & LABELLIN
Personal protection organic gases and the airborne concer- substance. Ventilat	1: filter respirator for vapours adapted to intration of the ion. Collect leaking	Fireproof. S oxidants. Pr from fire ex without dra	Sportered Separated from strong ovision to contain effluent tinguishing. Store in an area in or sewer access.	F syn Xn sy R: 11	nbol /mbol -20

11/5/2008 11:40 AM

1 of 3

ICSC:NENG0268 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0268.html

liquid in covered containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT wash away into sewer Do NOT let this chemical enter the environment.	IS: 2-16-24/25-29 UN Hazard Class: 3 UN Packing Group: II Signal: Danger Flame-Excl mark-Health haz Highly flammable liquid and vapour May be harmful if swallowed Harmful if inhaled vapour Causes mild skin irritation Causes eye irritation Suspected of causing cancer May cause respiratory irritation May cause drowsiness or dizziness May be harmful if swallowed and enters airways Toxic to aquatic life
SEE IMPORTANT INFO	RMATION ON BACK

ICSC: 0268

Prepared in the contact of cooperation between the laternational Programmer on Chemical Safety of the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH LDLFH values.

International Chemical Safety Cards

ETHYLBENZENE

ICSC: 0268

	h was - A		- TVAT
	I M	PHYSICAL STATE: APPEARANCE: COLOURLESS LIQUID , WITH AROMATIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation of its vapour, and by ingestion.
	P O	PHYSICAL DANGERS: The vapour mixes well with air, explosive mixtures are easily formed.	INHALATION RISK: A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C.
	R T	CHEMICAL DANGERS: Reacts with strong oxidants. Attacks plastic and rubber.	EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes the skin and the respiratory tract Swallowing the liquid may
1	A	OCCUPATIONAL EXPOSURE LIMITS: TLV: 100 ppm as TWA 125 ppm as STEL A3 (confirmed animal carcinogen with unknown	cause aspiration into the lungs with the tisk of chemical pneumonitis. The substance may cause effects on the central nervous system Exposure
)	т	relevance to humans); BEI issued (ACGIH 2007). EU OEL: 442 mg/m³ 100 ppm as TWA 684	above the OEL COULD CAUSE REMAINS
	D	mg/m ⁵ 200 ppm as STEL (skin) (EU 2006). OSHA PEL <u>1</u> : TWA 100 ppm (435 mg/m ³) NIOSH REL: TWA 100 ppm (435 mg/m ³) ST	EFFECTS OF LOO SURE: REPEATED EXPOSSIBLY carcinogenic to This substance is possibly carcinogenic to the substance may have effects on the
	A T	125 ppm (545 mg/m ³) NIOSH IDLH: 800 ppm 10%LEL See: <u>100414</u>	kidneys and liver, resulting in impaired functions Repeated contact with skin may cause dryness and cracking.
1 1 1	A		at the second seco
PHY	YSICAL PERTIES	Boiling point: 136°C Melting point: -95°C Relative density (water = 1): 0.9	Relative density of the vapour and the vapour and the second seco

11/5/2008 11:40

ICSC:NENG0268 International Chemical Safety Cards (WHO/IPCS/IL.,

http://www.cdc.gov/niosh/ipcsneng/neng0268.html

		*
	Solubility in water, g/100 ml at 20°C: 0.015 Vapour pressure, kPa at 20°C: 0.9 Relative vapour density (air = 1): 3.7	Auto-ignition temperature: 432°C Explosive limits, vol% in air: 1.0-6.7 Octanol/water partition coefficient as log Pow: 3.1 Viscosity, mm ² /s at 25 °C: 0.6
ENVIRONMENI DATA	TAL The substance is toxic to aquatic organisms. It in the substance is toxic to aquatic organisms. It is to according to the substance of the	is strongly advised that this substance
	NOTES	
The odour warning	g when the exposure limit value is exceeded is insuff	icient.
	Transport	Emergency Card: TEC (R)-305 1135 or 30GF1- 1+11 NFPA Code: H2; F3; R0
1	ADDITIONAL INFORM	IATION
<u>;</u>	1	
ICSC: 0268	(C) IPCS, CEC, 1994	ETHYLBENZENE
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any perse responsible for the use which might be made of this of the IPCS Peer Review Committee and may not re- included in national legislation on the subject. The relevant legislation in the country of use. The only inclusion of the OSHA PELS, NIOSH RELS and NI	on acting on behalf of NIOSH, the CEC or the IPCS is s information. This card contains the collective views effect in all cases all the detailed requirements user should verify compliance of the cards with the modifications made to produce the U.S. version is IOSH IDLH values.

11/5/2008 11:40 AM

International Chemical Safety Cards

ICSC: 0086

ICSC # 0086 CAS # 106-4 RTECS # <u>ZE26</u> UN # 1307 EC # 601-1	UNEP 1, C M 2-3 25000 022-00-9 2 Wuldeted	para-Xylene 4-Dimethylbenzene p-Xylol 6H4(CH3)2 / C8H10 olecular mass: 106.2	
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Flammable.	NO open flames, NO sparks, and	Paywder, water spray, loant.
EXPLOSION	Above 27°C explosive vapour/ mixtures may be formed.	air Above 27°C use a closed system, iventilation, and explosion-proof electrical equipment. Prevent build-up of electrostatic charges (e.g., by grounding).	In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE		STRICT HYGIENE! AVOID EXPOSURE OF (PREGNANT) WOMEN!	- For medica
-INHALATION	Dizziness. Drowsiness. Headache. Nausea.	Ventilation. local exhaust, or breathing protection.	rest air, rest Refer for measure
•SKIN	Dry skin. Redness.	Protective gloves.	itse and then wash skin with
•EYES	Redness. Pain.	Safety spectacles.	The second secon
•INGESTION	Burning sensation. Abdominal pain. (Further see Inhalation).	Do not eat, drink, or smoke durin work.	g inse mouth. Do NOT induce
	TNEPOSAT	STORAGE PA	C & AGING & LABELLIN

11/5/2008 11:41

l af 3

ICSC:NENG0086 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0086.html

upossible Absorb remaining liquid in	IR+ 1/1-20/21-38	
possible. Absorbert and remove to	IC 10-20/21-50	
usafa plage. Do NOT let this chemical	(IN Flowed Class: 2	
sale place, bo NOT let uns chemical	UN Packing Group: III	
conte, des environment, (conta persona)	(OV Facking Oroup. In	
protection: unter respirator for organic		
gases and vapours.)		
SEE IMPORTANT INFORMATION ON BACK		

ICSC: 0086

Prepared in the context of cooperator: between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

p-XYLENE

ICSC: 0086

I M	PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID, WITH CHARACTERISTIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
P O	PHYSICAL DANGERS: As a result of flow, agitation, etc., electrostatic charges can be generated.	INHALATION RISK: A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C.
R	CHEMICAL DANGERS: Reacts with strong acids strong oxidants	EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eves and the skin
A	OCCUPATIONAL EXPOSURE LIMITS: TLV: 100 ppm as TWA 150 ppm as STEL A4 (ACGIH 2001). BEI (ACGIH 2001).	The substance may cause effects on the central nervous system If this liquid is swallowed, aspiration into the lungs may result in chemical
N	EU OEL: 50 ppm as TWA 100 ppm as STEL (skin) (EU 2000).	pneumonitis.
Т	OSHA PEL <u>†</u> : TWA 100 ppm (435 mg/m ³) NIOSH REL: TWA 100 ppm (435 mg/m ³) ST	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: The liquid defits the skin. The substance may
D	: 150 ppm (655 mg/m ³) NIOSH IDLH: 900 ppm See: <u>95476</u>	have effects on the central nervous system. Animal tests show that this substance possibly
А		development.
Т		
Α		
PHYSICAL PROPERTIES	Boiling point: 138°C Melting point: 13°C Relative density (water = 1): 0.86 Solubility in water: none Vapour pressure, kPa at 20°C: 0.9	Relative vapour density (air = 1): 3.7 Relative density of the vapour/air-mixture at 20° C (air = 1): 1.02 Flash point: 27°C c.c. Auto-ignition temperature: 528°C Explosive limits, vol% in air: 1.1-7.0 Octanol/water partition coefficient as log Pow: 3.15
ENVIRONMENTAL DATA	The substance is toxic to aquatic organisms.	· ·
	NOTES	

11/5/2008 11:41 AM

http://www.cdc.gov/niosh/ipcsneng/neng0086.html

ICSC:NENG0086 International Chemical Safety Cards (WHO/IPCS/IL...

	mendations on this Card also
apply to technical	sylene. See ICSC 0084 o-Xylene and 0085 m-Xylene. Transport Emergency Card: TEC (R)-30S1307-III NFPA Code: H 2; F 3; R 0; NFPA Code: H 2; F 3; R 0;
	Card has been partially updated in January 2008: see Occupational Exposite end
·	ADDITIONAL INFORMATION
ICSC: 0086	p-XYLENE
	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is irresponsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs. NIOSH RELs and NIOSH DLH values .

11/5/2008 11:41
http://www.cdc.gov/niosh/ipcsneng/neng0667.html

National Institute **for** Occupational Salety and Health

FIRST AID/

FIRE FIGHTING

Powder. water spray, foam,

carbon dioxide.

ICSC: 0667

International Chemical Safety Cards

NAPHTHALENE UNEP Naphthene C10H8 Molecular mass: 128.18 ICSC # 0667 CAS# 91-20-3 IRTECS # 0J0525000 1334 (solid); 2304 (molten) UN# 601-052-00-2 EC # April 21, 2005 Validated **TYPES OF ACUTE HAZARDS/** T. PREVENTION HAZARD/ **SYMPTOMS** i. **EXPOSURE** Combustible. NO open flames. FIRE Above 80°C explosive vapour/air Prevent deposition of dust; closed

EXPLOSION	dispersed particles f explosive mixtures i	ned. Finely form n air.	electrical equipment and h	of ghring.	
EXPOSURE	URE Headache. Weakness. Nausea. YON Vomiting. Sweating. Confusion. Jaundice. Dark urine.		PREVENT DISPERSION OF IDUST! Ventilation (not if powder), local exhaust, or breathing protection.		
•INHALATION					Fresh air, rest. Refer for medical attention.
-SKIN	MAY BE ABSORBI	ED! (Further	Protective gloves.		Rinse skin with plenty of water or shower.
•EYES			Safety spectacles.		First rinse with plenty of water for several minutes (remove icontact lenses if easily possible), then take to a doctor.
INGESTION	Abdominal pain. Die Convuisions. Uncons (Further see Inhalation	arrhoea. sciousness. on).	Do not eat, drink, or smoke work Wash hands before o	e during enting.	Rest. Refer for medical attention.
SPILLAG	E DISPOSAL		STORAGE	PAC	KAGING & LABELLING
Personal protection organic gases and vithis chemical enter Sweep spilled sub- containers; if appro- to prevent dusting, remainder, then rer	n: filter respirator for vapours, Do NOT let the environment. stance into covered opriate, moisten first Carefully collect move to safe place.	Separated fi and feedsni carain or sev	rom strong oxidants, food ffs Store in an area without wer access.	Do no feeds Marin Xn sy N syr R: 22 S: 2-:	ol transport with food and tuffs. me pollutant. mbol h40-50/53 36/37-46-60-61

11/5/2008 11:42 AM

I of 3

ICSC:NENG0667 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0667.html

	UN Hazard Class: 4.1 UN Packing Group: III	-1
	SEE IMPORTANT INFORMATION ON BACK	-1
ICSC: 0667	Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.	

International Chemical Safety Cards

NAPHTHALENE

ICSC: 0667

IT MARKEN					
I M	PHYSICAL STATE; APPEARANCE: WHITE SOLID IN VARIOUS FORMS, WITH CHARACTERISTIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation, through the skin and by ingestion.			
P	PHYSICAL DANGERS: Dust explosion possible if in powder or granular	INHALATION RISK: A harmful contamination of the air will be			
0	form, mixed with air.	substance at 20°C. See Notes.			
R	CHEMICAL DANGERS: On combustion, forms irritating and toxic gases.	EFFECTS OF SHORT-TERM EXPOSURE:			
Т	Reacts with strong oxidants	The substance may cause energy of the memolysis) resulting in lesi ons of blood cells (haemolysis)			
A	OCCUPATIONAL EXPOSURE LIMITS: TLV: 10 ppm as TWA 15 ppm as STEL (skin)	See Notes. The effects may be delayed and by ingestion may result in death. Medical			
N	A4 (not classifiable as a human carcinogen); (ACGIH 2005).	observation is indicated.			
Т	MAK: skin absorption (H); Carcinogen category: 2; Germ cell mutagen	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: The substance riley have effects on the blood,			
D	(DFG 2004). (OSHA PEL <u>t</u> : TWA 10 ppm (50 mg/m ³)	resulting in chronic haemolytic ana emia. The substance may have effects on the eyes, resulting in the development of calaract. This substance is possibly carcinogenic to humans.			
A	NIOSH REL: TWA 10 ppm (50 mg/m ³) ST 15				
Т	NIOSH IDLH: 250 ppm See: 91203				
A					
PHYSICAL PROPERTIES	Boiling point: 218°C Sublimation slowly at room temperature Melting point: 80°C Density: 1.16 g/cm ³ Solubility in water, g/100 ml at 25°C: none	Vapour pressure, Pa at 25°C: 11 Relative vapour density (air = 1): 4.42 Flash point: 80°C c.c. Auto-ignition terroperature: 540°C Explosive limits, vol% in air: 0.9-5.9 Octanol/water pertition coefficient as log Pow: 3.3			
ENVIRONMENTAL DATA	The substance is very toxic to aquatic organisms. effects in the aquatic environment.	The substance may cause long-terror			
	NOTES				
C	IN OILS	and calls			
Some morviouals may	Transport Emergency Card: TEC (R)-41S13	34 (solid); 41GF 1-II+III (solid); 4 1 S2304 (molter NFPA Code: H2; F2; R4			

11/5/2008 11:42 A

ICSC:NENG0667 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0667.html

	ADDITIONAL INFORMATION
ICSC: 0667	NAPETHALENE
	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements uncluded in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is linclusion of the OSHA PELS, NIOSH RELs and NIOSH IDLH values.

11/5/2008 11:42 AM

ICSC:NENG1674 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosiv/ipesneng/neng1674.html

International Chemical Safety Cards

HTHENE				ICSC: 1674
	A. S. C.	/		Prational Institute for Occupational Safety and Health
	1.2-Dil 1,8-E Mole	nydroacenaphthylene thylenenaphthalene C ₁₂ H ₁₀ ecular mass: 154.2		
-9 000000 06 Validated				
ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION		FIRST AID/ FIRE FIGHTING
Combustible.		NO open flames.		Water spray. Dry powder. Foam. Carbon dioxide.
SION explosive mixtures in air.		Prevent deposition of dust; closed system, dust explosion-proof electrical equipment and lighting.		
See NOTES.		IPREVENT DISPERSION	OF	
		iLocal exhaust or breathing protection.		Fresh air, rest.
		Prorective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap.
		Safety goggies		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
1		Do not eat, drink, or smok	e during	Rinse mouth.
E DISPOSAL		STORAGE	PAC	KAGING & LABELLING
n: P2 filter respirator es. Do NOT let this environment. Sweep nto covered opriate, moisten first Carefully collect	Separated f Provision to extinguishir drain or sev	from strong oxidants o contain effluent from fire ng. Store in an area without wer access.	UN H UN Pa Signa Envir	azard Class: 9 a cking Group: III 1: Warning coxic to aquatic life with long
	HTHENE Diversion of the second state of the s	HTHENE WINEP 1.2-Dil 1.8-E Mol -9 000000 06 Validated ACUTE HAZARDS/ SYMPTOMS Combustible. IFinely dispersed particles form explosive mixtures in air. See NOTES. See NOTES. See NOTES. See NOTES. See NOTES. See NOTES. See NOTES. Separated for the second se	HTHENE WWWE HTHENE HTHENE HTHENE HTHENE HTHENE HTHENE HTHENE HIP DESCRIPTION HIP D	HTHENE HTHENE Construction HTHENE HTHENE

11/5/2008 11:03 AP

ICSC:NENG1674 International Chemical Safety Cards (WHO/IPCS/IL..

http://www.cdc.gov/niosh/ipcsneng/neng1674.html

ICSC: 1674

Prepared in the context of cooperation between the International Programme on Chernical Safety & the Commission of the European Communities (C) IPCS CEC 1994 No modifications to the International varian have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values

International Chemical Safety Cards

ACENAPHTHENE

ICSC: 1674

ĭ	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:
м	WHITE TO BEIGE CRYSTALS	The substance can be absorbed into the body by inhalation of its aerosol, through the skin and by
47#	PHYSICAL DANGERS:	ingestion.
Р	Dust explosion possible if in powder or granular	
0	form, mixed with air.	INHALATION RISK:
0	CHEMICAL DANGERS:	be reached quickly when dispersed
R	On combustion, forms toxic gases including	
	carbon monoxide. Reacts with strong oxidants	EFFECTS OF SHORT-TERM EXPOSURE:
Т	OCCURATIONAL EXPOSURE LIMITS.	
A	TLV not established.	EFFECTS OF LONG-TERM OR
73	MAK not established.	REPEATED EXPOSURE:
N		See Notes.
77		
I		
D	1	
A		
Т		
A		
	Boiling point 279°C	Vapour pressure. Pa at 25°C: 0.3
WEILICE AT	Melting point 95°C	Relative vapour density $(ar = 1)$: 5.3 Elash point: 135°C a.c.
PROPERTIES	Exercite Exe	Auto-ignition temperature: >450 °C
The second starts a second	Solubility in water, g/100 ml at 25°C: 0.0004	Octanol/water partition coefficient as log Pow:
		3.9 - 4.5
ENVIRONMENTAL	The substance is very toxic to aquatic organisms.	The substance may cause long-term
DATA	effects in the aquatic environment. It is strongly as	dvised that this substance does not
	lenger the edvironment.	
· · · · · · · · · · · · · · · · · · ·	NOTES	
Accomptitions occurs a	s g pure substance and also as a component of poly	veromatic hydrocarbon (PAH) mixtures, Human
population studies nave	stance on human health, therefore utmost care must	t be taken.
THE PARTY AND ADDRESS OF ADDRESS		Transport Emergency Card: TEC (R)-90GM7-III
	ADDITIONAL INFORMA	TION

ICSC:NENG1674 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng1674.html

ICSC: 1674	ACENAPHTHENE
	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the commy of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

11/5/2008 11:03 AM

ANTHRA	CENE		ICSC: 0825
			Notional Institute for Decunational Safety and Health
-		Anthracin	
	1	Paranaphthalene	
	C ₁	4H10 / (C6H4CH)2	
ICSC # 0825 CAS # 120-1 RTECS # <u>CA93</u> March 24, 1999	2-7 1 <u>50000</u> Validated	lecular mass: 178.2	
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Combustible.	INO open flames.	Powder, water spray, foam, carbon dioxide.
EXPLOSION	Finely dispersed particles form explosive mixtures in air.	Prevent deposition of dust, closed system, dust explosion-proof ielectrical equipment and lighting.	in case of fire: keep drums, etc., icool by spraying with water.
EXPOSURE	· · · · · · · · · · · · · · · · · · ·	PREVENT DISPERSION OF DUST!	
•INHALATION	Cough. Sore throat.	Ventilation (not if powder), local texhaust. or breathing protection.	Fresh air, rest. Refer for medical attention.
•SKIN	Redness.	Protective gloves.	Remove contaminated clothes. Rinse and then wash skin with water and soap.
•EYES	Redness. Pain.	Salety spectacles, face shield, or eye protection in combination with breathing protection if powder.	Firstrinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
-INGESTION	Abdominai pain.	Do not eat, drink, or smoke during work.	Rinse mouth, Rest. Refer for imedical attention.
SPILLAGI	DISPOSAL	STORAGE PAG	CKAGING & LABELLING
Sweep spilled sub containers. Careful then remove to safe this chemical enter (Extra personal pro respirator for harm	stance into Scparated ly collect remainder, closed. place Do NOT let the environment otection: P2 filter ful particles).	fram strong oxidants. Well	
<u>. </u>	SEE IMPORT.	ANT INFORMATION ON BACK	
ICSC: 0825	Prepared in the cor Commission of the been made except	uext of cooperation between the International Pre Escopean Communities (C) IPCS CEC 1994. No to still the OSHA PELs, NIOSH RELs and NIO	prarume on Cremscal Safety & the modifications to the International version have SH IDLH values

8

11/5/2008 11:05 AM

ICSC: 0825

ANTHRAC	ENE	
I	PHYSICAL STATE; APPEARANCE: WHITE CRYSTALS OR FLAKES.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation
M P O R T A N T D	 PHYSICAL DANGERS: Dust explosion possible if in powder or granular form, mixed with air. CHEMICAL DANGERS: The substance decomposes on heating, under influence of strong oxidams producing acrid, toxic fume, causing fire and explosion hazard. OCCUPATIONAL EXPOSURE LIMITS: TLV not established. 	INHALATION RISK: Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however, be reached quickly: EFFECTS OF SHORT-TERM EXPOSURE: The substance slightly irritates the skin and the respiratory tract. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: Repeated or prolouged contact with skin may cause dermatitis under the influence of UV light.
1		
PHYSICAL PROPERTIES	Boiling point: 342°C Melting point: 218°C Density: 1.25-1.28 g/cm ³ Solubility in water, g/100 ml at 20 °C: 0.00013 Vapour pressure, Pa at 25°C: 0.08	Relative vapour density (air = 1): 6.15 Flash point: 121°C Auto-ignition temperature: 538°C Explosive limits, vol% in air: 0.6-? Octanol/water partition coefficient as log Pow: 4.5 (calculated)
ENVIRONMENTAL DATA	The substance is very toxic to aquatic organisms. effects in the aquatic environment.	The substance may cause long-term
	NOTES	
Green oil, Tetra-olive	N2G are trade names.	NFPA Code: H0; F1; R;
	ADDITIONAL INFORM	ATION
** * * *** ** ** ** **		
ICSC: 0825	(C) IPCS, CEC, 1994	ANTHRACENE
IMPORTANT LEGAL NOTICE: in	either NIOSH, the CEC or the IPCS nor any person sponsible for the use which might be made of this i the IPCS Peer Review Committee and may not ref cluded in national legislation on the subject. The u	acting on behalf of NIOSH, the CEC or the IPCS i information. This card contains the collective view lect in all cases all the detailed requirements ser should verify compliance of the cards with the

11/5/2008 11:05 AM

ICSC:NENG0825 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0825.html

in ii

relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

11/5/2008 11:05 AM

PYRENE					ICSC: 1474
	G UNEP	Annald .			National Institute for Occupational Suffety and Health
ICSC # 1474 CAS # 129-00-0 RTECS # <u>UR2450</u>	000	Benzo	(d.e,f) phenanthrene beta-Pyrene C16H10 cular mass: 202.26		
November 27, 200	3 Validated		···		
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTIO	ON	FIRST AID/ FIRE FIGHTING
Gi FIRE (ou	ves off irritating or r gases) in a fire.	toxic fumes	NO open flames, NO sp NO smoking.	oarles, and	Water spray, carbon dioxide, dry powder, alcohol-resistant foam, foam.
EXPLOSION			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
EXPOSURE					
-INHALATION			Avoid inhalation of dus	t	Fresh air, resL
•SKIN	dness.		Protective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap.
•EYES	dness.	•	Safety spectacles.		if irst rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	<u> </u>	- /*	Do not eat, drink, or sm work.	oke during	IDO NOT induce vomiting. Give plenty of water to drink. Refer for predical attention.
SPILLAGE D	ISPOSAL		STORAGE	PAC	KAGING & LABELLING
Sweep spilled substan containers: if appropri to prevent dusting. Car remainder Do NOT let enter the environment. protection: P2 filter re harmful particles.)	ce into ate, moisten first refully collect t this chemical (Extra personal spirator for	Separated fr a well-venti	om strong oxidams. Keep lated room.	o in Do no feeds	it. transport with food and hatffs.
	SEE	IMPORTA	T INFORMATION O	N BACK	
ICSC: 1474	Prej Con bees	mand in the contex massion of the Eu- n made except to	nt of cooperation between the inte ropean Communities (C) IPCS C add the OSHA PELs, NIOSH RI	emational Prog EC 1994 Not ELs and NIOS	prarmme on Chemical Safety & the modifications to the International version have H IDLH values.

11/5/2008 11:06 AM

l of 3

PYRENE

ICSC: 1474

	and the second sec	·
I	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:
M	FORMS	The substance can be absorbed into the body by inhalation through the skin and by ingestion
Р	PHYSICAL DANGERS:	INHALATION RISK: Evaporation at 20°C is negligible: a harmful
0	CHEMICAL DANGERS:	concentration of airborne particles can, however, be reached quickly when dispersed.
R	The substance decomposes on heating producing irritating fumes	EFFECTS OF SHORT-TERM EXPOSURE:
Т	OCCUPATIONAL EXPOSURE LIMITS:	Exposure to sun may provoke an urtitating effect of pyrene on skin and lead to chronic skin
A	TLV not established. MAK not established.	DISCOLORADOR.
N		REPEATED EXPOSURE:
T		
D		
A		
т		
<u>A</u>	7 	
PHYSICAL PROPERTIES	Boiling point: 404°C Melting point: 151°C Density: 1.27 g/cm ³	Solubility in water: 0.135 mg/l at 25°C Vapour pressure. Pa at °C: 0.08 Octanol/water partition coefficient as log Pow: 4.88
ENVIRONMENTAL DATA	Bioaccumulation of this chemical may occur in cr molluscs. It is strongly advised that this substance	ustacea, in fish, in milk, in algae and in does not enter the environment.
	NOTES	
Pyrene is one of many p lar pitch volatiles. How exposure to the substan	polycyclic aromatic hydrocarbons - standards are t wever, pyrene may be encountered as a laboratory ice bave not been investigated adequately. See ICS	usually established for them as mixtures, c.g., coal chemical in its pure form. Health effects of C 1415 Coal-tar pitch.
<u></u>	ADDITIONAL INFORMA	TION
		and the second se
ICSC: 1474	(C) IPCS, CEC, 1994	PYRENE
IMPORTANT LEGAL NOTICE:	ither NIOSH, the CEC or the IPCS nor any person ponsible for the use which might be made of this in the IPCS Peer Review Committee and may not rell sluded in national legislation on the subject. The us	acting on behalf of NIOSH, the CEC or the IPCS is nformation. This card contains the collective views ect in all cases all the detailed requirements er should verify compliance of the cards with the

11/5/2008 11:06 AM

ICSC:NENG1474 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng1474.html

irelevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDLH values.

11/5/2008 11:06 AM

CHRYSE	NE				ICSC: 1672
		and a second			Restinues Institute for Decayational Softward Health
1000 # 1471		Ber 1,2-E 1.2,5-6 Mole	zoaphenanthrene Benzophenanthrene Dibenzonaphthalene C ₁₈ H ₁₂ ecular mass: 228.3		
ICSC # 1672 CAS # 218-01 RTECS # <u>GC070</u> UN # 3077 EC # 601-0 October 12, 200	-9 00000 48-00-0 6 Validated				
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Combustible.		NO open flames.		Water spray. Dry powder. Foam. Carbon dioxide.
EXPLOSION	Finely dispersed part explosive mixtures in	ticles form 1 air.	Prevent deposition of dust; system, dust explosion-pro- relectrical equipment and list	closed of ghting.	
EXPOSURE	See EFFECTS OF L	ONG-TERM POSURE.	AVOID ALL CONTACT!		
-INHALATION			Local exhaust or breathing protection.		Fresh air, rest.
•SKIN			Protective gloves. Protecti Iclothing.	ve	Remove contaminated clothes. Rinse and then wash skin with water and soap.
-EYES			Safety goggles		First rinse with plemy of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION			Do not eat, drink. or smoke work	during	Rinse mouth.
SPILLAGE	DISPOSAL	1	STORAGE	PAC	KAGING & LABELLING
Personal protection for toxic particles. I chemical enter the e ispilled substance in containers; if appro- to prevent dusting. O iremainder, then rem	: P3 filter respirator Do NOT let this invironment. Sweep to sealable priate, moisten first Carefully collect iove to safe place.	Separated i Provision ta extinguishin drain or sev	rom strong oxidants, o contain effluent from fire ng. Store in an area without wer access.	T syn N syn R: 45 S: 53 UN E UN P	nbol nbol 68-50/53 45-60-61 Hazard Class: 9 'acking Group: III

11/5/2008 11:38 AM

ICSC:NENG1672 International Chemical Safety Cards (WHO/IPCS/IL ...

CHRYSENE

http://www.cdc.gov/niosh/ipcsneng/ueng16/2.html

ICSC: 1672	Prepared in the context of coope Commission of the European Co	ration between the International Programma on Criterinal carety is a series international version have mmmutes (C) PCS CEC 1994. No modifications to the International version have between the UCOM DRE and Arcticle 11 mLH years.
	SEE IMPORTANT INF	ORMATION ON BACK
	1	effects
		Toxic to aquatic life with long lasting
		Suspected of causing cancer
		Signal: Warning

International Chemical Safety Cards

ICSC: 1672

1		
1	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:
М	COLOURLESS TO BEIGE CRYSTALS OR POWDER	The substance can be absorbed international by inhalation of its aerosol. through the skin and by inertian
P	PHYSICAL DANGERS:	information .
-	Dust explosion possible if in powder or granular	INHALATION RISK:
0	form, mixed with Bir.	A harmful concentration of under pro-
R	CHEMICAL DANGERS: The substance decomposes on burning producing	EFFECTS OF SHORT-TERM EXPOSURE:
Т	toxic fumes Reacts violently with strong oxidants.	TC-TERM OR
A	OCCUPATIONAL EXPOSURE LIMITS:	EFFECTS OF LONGURE: REPEATED EXPOSURE:
N	TLV: A3 (confirmed animal carcinogen with unknown relevance to humans); (ACGIH 2006).	This substance is possibly calonic gold to humans.
Т	MAK: skin absorption (H); Carcinogen category: 2 (DFG 2007).	
D		
A		
Т		
A		
	Boiling point 448°C	Solubility in water:
	Melting point: 254 - 256°C	very poor
PHYSICAL	I monime house of the set of the	
PHYSICAL PROPERTIES	Density: 1.3	Octanol/water prai
PHYSICAL PROPERTIES	Density: 1.3 g/cm ³	S.9
PHYSICAL PROPERTIES	Density: 1.3 g/cm ³ The substance is very toxic to aquatic organisms. loccur in seafood. It is strongly advised that this su epvironment.	S.9 Bioaccumulation of this chemical may abstance does not erriter the
PHYSICAL PROPERTIES	Density: 1.3 g/cm ³ The substance is very toxic to aquatic organisms. occur in seafood. It is strongly advised that this su tepvironment. NOTES	S.9 Bioaccumulation of this chemical may abstance does not erriter the
PHYSICAL PROPERTIES	Density: 1.3 g/cm ³ The substance is very toxic to aquatic organisms. occur in seafood. It is strongly advised that this su iepvironment. NOTES	Bioaccumulation of this chemical may bistance does not erriter the prested Do NOF the loce working clothes home.
PHYSICAL PROPERTIES NVIRONMENTAL DATA epending on the deg	Density: 1.3 g/cm ³ The substance is very toxic to aquatic organisms. occur in seafood. It is strongly advised that this su iepvironment. NOTES ee of exposure, periodic medical examination is su ally occur as a pure substance but as a component of	gested. Do NOT to See working clothes home.

11/5/2008 11:38

ICSC:NENG1672 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng1672.html

	Transport Emergency Card: TEC (R)-90GM7-III Card has been partially updated in January 2008: see Occupational Exposure Limits.
	ADDITIONAL INFORMATION
1	
ICSC: 1672	CHRYSENE
	(C) TPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is included in CSHA PELS, NIOSH RELS and NIOSH IDLH values.

11/5/2008 11:38 AM

BENZO(b)	FLUORA	NTHE	NE		ICSC: 0720
		diana di		M	National institute for Occupational Safety and Health
1050 # 0720		Benz(e 2,3-E Ben 3,4-I Mole	e)acephenanthrylend enzofluoroanthene zo(e)fluoranthene Benzofluoranthene C ₂₀ H ₁₂ ecular mass: 252.3	2	
CAS # 205-99 RTECS # <u>CU140</u> EC # 601-03 March 25, 1999 V	-2 0000 34-00-4 Validated				
TYPES OF HAZARD/	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTI	ON	FIRST AID/ FIRE FIGHTING
FIRE				 	in case of fire in the surrounding.
EXPLOSION		····=···	· · · · · · · · · · · · · · · · · · ·		
EXPOSURE	· · · · · · · · · · · · · · · · · · ·		AVOID ALL CONTA	CT!	
INHALATION			Local exhaust or breat	hing	Freshair, rest.
SKIN		<u> </u>	Protective gloves. Pro	tective	Femore contaminated ciolics. Femore and then wash skin with water and soap.
•EYES			Safety spectacles or exprotection in combination of the second se	ye tion with	irst rinse with plenty of water several minnes (remove contact lenses if easily possible then take to a doctor.
INGESTION		**	Do not eat, drink, or su work.	moke during	The mount Refer for an
SPILLAGE	DISPOSAL		STORAGE	PAC	AGING & LADIALLA
Sweep spilled substa containers. if approp to prevent dusting. C remainder, then rema Do NOT let this cher environment	ance into covered iriate, moisten first arefully collect ove to safe place, mical enter the	Provision to extinguishing	o contain effluent from f. 1g. Well closed.	T Syn N Syra R: 45 S: 53	1.5-60-61
environment.	SEI	IMPORTA	NT INFORMATION	ON BACK	

11/5/2008 11:3

ICSC:NENG0720 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0720.html

ICSC: 0720

Prepared in the context of conversion between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values

International Chemical Safety Cards

BENZO(b)FLUORANTHENE

ICSC: 0720

~ ~ ~		
I	PHYSICAL STATE; APPEARANCE: COLOURLESS CRYSTALS	ROUTES OF EXPOSURE: The substance can be absorbed into the body by
M	WITHOUGH IN A MONTHER	inhalation of its aerosol and through the skin.
, Р	PHYSICAL DANGERS:	INHALATION RISK: Evaporation at 20°C is negligible; a harmful
0	CHEMICAL DANGERS: Upon hearing, toxic furnes are formed.	concentration of airborne particles can, however, be reached quickly.
R	OCCUPATIONAL EXPOSURE LIMITS:	EFFECTS OF SHORT-TERM EXPOSURE:
T T	TLV: A2 (suspected human carcinogen); (ACGIH 2004).	
` A	MAK: Carcinogen category: 2;	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
N Í	(DFG 2004).	This substance is possibly carcinogenic to humans. May cause genetic damage in humans.
T		
D		
A.		
T		
A		
)	Boiling point: 481°C	Octanol/water partition coefficient as log Pow:
PHYSICAL	Melting point: 168°C	6.12
PROPERTIES	Solubility in water: none	
IENVIRONMENTAL DATA	This substance may be hazardous to the environity of the antity and water quality.	nment; special attention should be given
!	NOTES	
Benzo(b)fluoranthene usually resulting from precommends environe protatile, as benzene so therefore utmost care	is present as a component of polycyclic aromatic the incomplete combustion or pyrolysis of organ nent containing benzo(b)fluoranthene should be e oluble 0.2 mg/m ² . Insufficient data are available must be taken.	c hydrocarbons (PAH) content in the environment nic matters, especially fossil fuels and tobacco.ACGIH waluated in terms of the TLV-TWA for coal tar pitch on the effect of this substance on human health,
	ADDITIONAL INFORM	MATION
ICSC: 0720	(C) IPCS, CEC, 1994	BENZO(b)FLUORANTHENE

11/5/2008 11:37 AM

ICSC:NENG0720 International Chemical Safety Cards (WHO/IPCS/IL ...

http://www.cdc.gov/piosh/ipcsneng/nengu/20.num

IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective view of the IPCS Peer Review Coromittee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.	5
LEGAL NOTICE:	included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.	

3 of 3

11/5/2008 11:3"

ICSC: 0104 BENZO(a)PYRENE Fliational institute for Occupational Safety and Health TINEP Benz(a)pyrene 3,4-Benzopyrene Benzo(d,e,f)chrysene C20H12 Molecular mass: 252.3 ICSC # 0104 CAS# 50-32-8 RTECS # DJ3675000 EC # 601-032-00-3 October 17, 2005 Validated TYPES OF FIRST AID/ ACUTE HAZARDS/ PREVENTION HAZARD/ FIRE FIGHTING SYMPTOMS EXPOSURE Water spray, foam, powder, Combustible. INO open flames. FIRE carbon dioxide. **EXPLOSION** See EFFECTS OF LONG-TERM |AVOID ALL CONTACT! AVOID EXPOSURE OF EXPOSURE OR REPEATED EXPOSURE. (PREGNANT) WOMEN! Local exhaust or breathing Fresh air, rest. **•INHALATION** protection. Remove contaminated clothes. MAY BE ABSORBED! Protective gloves. Protective Rinse and then wash skin with clothing. -SKIN water and soap. First rinse with plenty of water Safety goggles or eye protection in combination with breathing for several minutes (remove •EYES contact lenses if easily possible). protection tnen take to a doctor. Do not eat, drink, or smoke during linduce vomiting (ONLY IN CONSCIOUS PERSONSI). Refer **•INGESTION** work for medical attention. PACKAGING & LABELLING SPILLAGE DISPOSAL STORAGE Separated from strong oxidants. Evacuate danger area! Personal protection: complete protective clothing T symbol N symbol including self-contained breathing R: 45-46-60-61-43-50/53 apparatus. Do NOT let this chemical S: 53-45-60-61 enter the environment. Sweep spilled substance into sealable containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder,

11/5/2008 11:37 AM

ICSC:NENG0104 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0104.html

 then remove to safe place.

 SEE IMPORTANT INFORMATION ON BACK

 ICSC: 0104

 Prepared to the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Commission of DPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values

International Chemical Safety Cards

BENZO(a)PYRENE

ICSC: 0104

1 PHYSICAL STATE; APPEARANCE: PALE-YELLOW CRYSTALS ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion. P INHALATION RISK: Evaporation at 20°C is negligible; a harmful Evaporation at 20°C is negligible; a harmful
P INHALATION RISK: O CHEMICAL DANGERS: Evaporation at 20°C is negligible; a harmful Evaporation at 20°C is negligible; a harmful
O CHEMICAL DANGERS: INHALATION RISK: Evaporation at 20°C is negligible; a harmful Evaporation at 20°C is negligible; a harmful
CHEMICAL DAIVGERS:
Reacts with strong oxidants causing fire and concentration of all come particle and be reached quickly when dispersed.
T OCCUPATIONAL EXPOSURE LIMITS: EFFECTS OF SHORT-TERM EXPOSURE TLV: Exposure by all routes should be carefully
A controlled to levels as low as possible A2 (suspected human carcinogen); (ACGIH 2005). EFFECTS OF LONG-TERM OR
N MAK: REPEATED EXPOSURE: Carcinogen category: 2; Germ cell muragen This substance is carcinogenic to humans. Ma
T group: 2; cause heritable genetic damage to human gen (DFG 2005). cells. Animal tests show that this substance possibly causes toxicity to human reproduction
D or development.
A
Т
A
PHYSICAL Boiling point: 496°C Solubility in water: none (<0.1 g/100 ml)
ENVIRONMENTAL DATA The substance is very toxic to aquatic organisms. Bioaccumulation of this chemical may occur in fish, in plants and in molluses. The substance may cause i ong-term effects in the aquatic environment.
NOTES
Augusto and a second seco
Do NOT take working clothes home. Benzo(a)pyrene is present as a component of polycy lic aromatic hydrocal tools (PAHs) in the environment, usually resulting from the incomplete combustion or pyrolysis of organic matters, especia foss: 1 fuels and tobacco.
ADDITIONAL INFORMATION

ICSC:NENG0104 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0104.html

ICSC: 0104	BENZO(a)PYRENE
	(C) IPC3, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDLH values.

11/5/2008 11:37 AM

BENZO(ghi)PERYL	ENE			ICSC: 0739	
				National Institute for Decupational Safety and Health	
	1,1 1,	12-Benzoperylene 12-Benzperylene C ₂₂ H ₁₂	<u></u>		
ICSC # 0739	M0.	ecular mass: 270.3			
CAS # 191-24-2 RTECS # <u>D16200500</u> October 18, 1999 Validated					
TYPES OF HAZARD/ EXPOSURE	ZARDS/ DMS	PREVENI	TION	FIRST AID/ FIRE FIGHTING	
FIRE Combustible under store	specific	NO open flames.		In case of fire in the surroundings: all extinguishing agents allowed.	
EXPLOSION					
EXPOSURE		IPREVENT DISPERS	SION OF		
-INHALATION		Local exhaust or brea	athing	Fresh air, rest	
•SKIN		Protective gloves, Pr clothing.	rotective	Remove contaminated clothes. Rinsc and then wash skin with water and soap.	
•EYES		Safety spectacles, or protection in combin breathing protection	eye ation with if powder.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.	
•INGESTION	INGESTION		smoke during	Rinse mouth. Refer for medical intention.	
SPILLAGE DISPOSAL		STORAGE	PAC	CKAGING & LABELLING	
Sweep spilled substance into covered containers. Carefully collect remainder, then remove to safe place. Do NOT let this chemical enter the environment.	Well close	d.			
SE	E IMPORTA	NT INFORMATION	ON BACK		
ICSC: 0739	epared in the cont mmssion of the H in made except to	end of cooperation between the European Communities (C) IPC and the OSHA PELS, NIOSH	International Pro S CEC 1994, No I RELs and NICS	gramme on Chernical Safety & the recolifications to the Interninemal version bave \$11 IDLH values	

International Chemical Safety Cards

11/5/2008 11:06 AN

ICSC:NENG0739 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0739.html

BENZO(ghi)PERYLENE

ICSC: 0739

1	PHYSICAL STATE; APPEARANCE: PALE YELLOW-GREEN CRYSTALS.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by
М	DIVERGAL DANCEDS.	inhalation of its aerosol and through the skin.
P	:	INHALATION RISK: Evenoration at 20°C is negligible; a harmful
0	CHEMICAL DANGERS: Upon heating, toxic fumes are formed.	concentration of airborne particles can, however, be reached quickly.
R	OCCUPATIONAL EXPOSURE LIMITS:	EFFECTS OF SHORT-TERM EXPOSURE:
Т	TLV not established.	
A		EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
N		
Т		
D		
А		
Т		
A	ł.	
PHYSICAL PROPERTIES	Boiling point: 550°C Melting point: 278°C Density: 1.3 g/cm ³	Solubility in water: none Octanol/water partition coefficient as log Pow: 6.58
ENVIRONMENT DATA	AL This substance may be hazardous to the enviro to air and water.	nment: special attention should be given
	NOTES	· · · · · _ · _
Benzo(ghi)perylen usually resulting fr are insufficiently a	e is present as a component of polycyclic aromatic i om the incomplete combustion or pyrolysis of organ vailable on the effect of this substance on human he	hydrocarbons (PAH) content in the environment ic matters, especially fossil fuels and tobacco. Data alth. therefore unnost care must be taken.
	ADDITIONAL INFORM	MATION
ICSC: 0739	(C) IPCS, CEC, 199	BENZO(gbi)PERYLENE
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any per- responsible for the use which might be made of th of the IPCS Peer Review Committee and may not included in national legislation on the subject. The relevant legislation in the country of use. The only inclusion of the OSHA PELs, NIOSH RELs and N	son acting on behalf of NIOSH, the CEC or the IPCS is is information. This card contains the collective views reflect in all cases all the detailed requirements a user should verify compliance of the cards with the prodifications made to produce the U.S. version is NIOSH IDLH values.

11/5/2008 11:06 AM

ICSC:NENG0939 International Chemical Safety Cards (WHO/IPCS/IL ...

International Chemical Safety Cards

POLYCHL	ORINATED B	IPHENY	L (AROCLOR 1	254)	ICSC: 0939
					National Instituto far Decupational Sofery and Health
1		Chloro Chloro	biphenyl (54% chlorine) diphenyl (54% chlorine) PCB	2	
1000 11 0000		Molec	ular mass: 327 (average)		
CAS# 11097-69 RTECS# <u>TO13600</u> UN# 2315 EC# 602-039	9-1 000 9-00-4				
October 20, 1999	Validated				· · · · · · · · · · · · · · · · · · ·
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Not combustible. Gives a toxic fumes (or gases) in	fi mrnaung or a fire.			iln case of fire in the surroundings: powder. carbon dioxide.
EXPLOSION					
EXPOSURE			PREVENT GENERATION OF STRICT HYGIENEI	MISTSI	
-INHALATION	1		Ventilation.		Fresh air. rest. Refer for medical attention.
•SKIN	MAY BE ABSORBED! 1 Redness.	Dry skin.	Protective gloves. Protective clo	ល់បារឆ្ន	Remove communated clothes. Rinse and then wash skin with water and soap, Refer tfor medical attention.
·EYES		ay hank Did har vjana danga	Salety goggles, face smeld.		First rinse with plenty of water for several minutes (remove connect lenses if easily possible). then take to a doctor.
INGESTION	Headache, Numbness.		Do not cal, drink, or smoke duri	ng work.	Rest. Refer for medical attention.
SPILLAG	E DISPOSAL		STORAGE		ACKAGING & LABELLING
Consuit an expert! Coll sealable containers. Al sand or inert absorbent Do NOT let this chemin Personal protection. co mcluding self-cordaine	ect leaking liquid in osorb remaining liquid in and remove to saic place. call enter the environment, multice protective clothing d breathing apparatus.	Separated from Keep in a well	t food and feedstuffs Cool. Dry ventilated room.	Unbrei into el with fr Severn Marine Note: Xn syn iR: 33- S. 2-3 IUN Ha UN Pa	akable packaging: put breakable packaging osed unbreakable container. Do not transport sod and feedstuffs. e pollutant. C mbol bol 50/53 5-6/61 acking Group: 11
		SEE IMPORT	ANT INFORMATION ON BAC	CK	
1CSC: 0939	Pre Con and	mention (C) IPCS CE NIOSH IDLH values	cooperators how each the International Progra C (964) No prodifications to the International	version brive l	ic al Safety & the Commenter of the European bosts made arcent to add the OSHA PELS, NIOSH RELS

International Chemical Safety Cards

POLYCHLORINATED BIPHENYL (AROCLOR 1254)

ICSC: 0939

1	1	PHYSICAL STATE: APPEARANCE: LIGHT YELLOW VISCOUS LIQUID.	ROUTES OF EXPO SURE: The substance can be absorbed into the body by inhalation of its]
i	M	•	acrosol. through the skin and by ingestion	i
ŧ				1

11/5/2008 10:34 AM

http://www.cdc.gov/niosh/ipcsneng/neng0939.html

ICSC:NENG0939 International Chemical Safety Cards (WHO/IPCS/IL...

Γ^i	PHYSICAL DANGERS:	INHALATION RISK: A harmful contamination of the air will be reached rather slowly
0		on evaporation of this subsuance at 20°C
_	CREMICAL DANGERS:	TRACTOR OF THE PERCENCE.
R	The substance decomposes in a fire producing mulating and	EFFECTS OF SHORT-TERM EXPOSORE:
	LONIC PASES	
1	OCCUPATIONAL EXPOSURE LIMITS:	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
	TLV: 0.5 me/m² as TWA (slan) A3 (ACOIH 2004).	Repeated or prolonged contact with skin may cause dermatius.
15	MAK: 0.05 ppm 0 70 mg/m² 14	The substance may have effects on the liver Animal tests show
N	Peak Immation category: II(8) Carcinogen category: 3B	that this substance possibly causes toxic effects upon human
	Pregnancy risk group: E	reproduction.
Т	(DFG 2004).	
	OSHA PEL: TWA 0.5 mg/m ² skin	
	NIOSH REL* Ca TWA 0.001 mg/m1 See Appendix A *Note	
U	The REL also applies to other PCBs.	
	NIOSH IDLH: Ca 5 mg/m ² Sec: <u>JDLH INDEX</u>	I
25.		
т		
	1	
A	1	
PHYSICAL PROPERTIE	Relative density (water = 1) 1.5 Solubility in water: nome	Vapour pressure, Pa at 25°C: 0.01 Octanol/water partition coefficient as log Pow: 6.30 (estimated)
ENVIRONMEN	TAT. In the food chain important to humans, bioaccumulation takes p	lace, specifically in aquatic organisms. It is strongly
DATA	advised not to let the chemical enter into the environment.	
	NOTES	
Changes into a res	nous state (pour point) at 10°C. Distillation range, 365°-390°C.	
		Transport Emergency Card. TEC (R)-90GM2-II-L
	ADDITIONAL INFORM	NOTA
		LYCHI ODINATED DIDUENVI (ADOCT OD 1254)
ICSC: 0939	(C) IPCS, CÉC, 1494	LICHLORINKIED BIT RENTL (AROCLOR 12.9)
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on ben- imget be made of this information. This eard contains the collective all cases all the detailed requirements included in national legislati- with the relevant legislation in the country of use. The only modifie	alf of NIOSH, the CEC or the IPCS is responsible for the use which e views of the IPCS Peer Review Committee and may not reflect in ion on the subject. The user should verify compliance of the cards adious made to produce the U.S. version is inclusion of the OSHA

11/5/2008 10:34 AM

ALDRIN			ICSC: 0/74
			Deconstituent for Deconstituent Safety and Health
1,2,3,4,10, 1,45,8 ICSC # 0774	10-Hexachloro-1,4,4a,5,8,8a- Dimethanonaphthalene, 1,2, (1alpha,4alph Mole	hexahydro-exo-1,4-endo-5,8- 3,4,10,10-hexachloro-1,4,4a,4 1a,4aß,5alpha,8alpha,8aß) HHDN C ₁₂ HgCl ₆ ccular mass: 364.9	-dimethanonaphthalene 5,8,8a-hexahydro-,
CAS# 309-0	0-2		
UN # 2761	<u>10000</u>		(mi)
EC # 602-0 March 26, 1998	048-00-3 Validated		
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Not combustible. Liquid formulations containing organic solvents may be flammable. Gives off irritating or toxic fumes (or gases) in a fire.		In case of fire in the surroundings: all extinguishing agents allowed.
EXPLOSION			
EXPOSURE		PREVENT DISPERSION OF DUST: STRICT HYGIENE! A VOID EXPOSURE OF ADOLESCENTS AND CHILDREN!	
·INHALATION	(See Ingestion).	Ventilation (not if powder).	Fresh air, rest. Refer for medical
•SKON	MAY BE ABSORBED! See Ingestion	Protective gloves. Protective clothing.	Remove contaminated clothes. Rinse and then wash skin with twater and soap. Refer for imedical attention.
-EYES	r - regime at r - May re - AN	Safety goggles, or face shield.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	Convulsions. Dizziness. Headache. Nausca. Vomiting. Muscle twitching.	Do not eat, drink, or smoke during, work. Wash hands before eating,	Give a slurry of activated charcoal in water to drink. Do NOT induce vomiting. Rest. Refer for medical attention.

11/5/2008 10:57 AM

ICSC:NENG0774 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0774.html

SPILLAGE DISPOSAL	STORAGE	PACKAGING & LABELLING	
Do NOT wash away into sewer. Sweep spilled substance into sealable containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder, then remove to safe place. (Exra personal protection: chemical protection suit including self-contained oreathing apparatus).	Provision to contain effluent from fire extinguishing. Separated from food and feedstuffs and incompatible materials: See Chemical Dangers. Well closed. Keep in a well-ventilated room. Store in an area without drain or sewer access.	Do not transport with food and feedstuffs. Severe marine pollutant. T symbol R: 24/25-40-48/24/25-50/53 S: 1/2-22-36/37-45-60-61 UN Hazard Class: 6.1 UN Packing Group: 11	
SI	E IMPORTANT INFORMATION ON E	IACK	
Prepared in the context of coopertuon between the International Programme on Chemical Safety & the ICSC: 0774 Commission of the Europenty Communities (C) IPCS CEC 1994. No modifications to the International versa been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.			

International Chemical Safety Cards

ALDRIN

ICSC: 0774

	· · · · · · · · · · · · · · · · · · ·	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
I	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:
	COLOURLESS CRYSTALS	The substance can be absorbed into the body
M	1	through the skin and by ingestion.
	PHYSICAL DANGERS:	
P		INHALATION RISK:
		Evaporation at 20°C is negligible; a harmful
0	CHEMICAL DANGERS:	concentration of airborne particles can, however,
-	The substance decomposes on heating producing	be reached quickly on spraying.
C	toxic and corrosive fimes including hydrogen	A Y &
	chloride Reacts with acids and oxidants. Attacks	EFFECTS OF SHORT-TERM EXPOSURE:
T	many merals in presence of water.	The substance may cause effects on the central
1	LINELY MURAND IN PLANALES OF COMPLEX	nervous system, resulting in convulsions. The
	OCCUPATIONAL EXPOSURE LIMITS:	effects may be delayed. Medical observation is
A	TT V: 0.75 mm/m² (as TWA) A3 (skin) (ACGIH	indicated.
	1007)	
N	MAK: (Inhalable fraction) 0.75 mp/m² skin	EFFECTS OF LONG-TERM OR
	abcorntion (H):	REPEATED EXPOSURE:
Т	Beak limitation rategory II(8)	The substance accumulates in the human body.
	(T)EG 2006)	Cumulative effects are possible: see Acute
		Hazarde/Symptoms
D	OSHA PEL: TWA UPD mg/m skin	1 TOTAL CONTRACTORS
	NIOSH REL: Ca TWA 0.25 mg/m ² skin <u>See</u>	
A	Appendix A	
	NIOSH IDLH: Ca 25 mg/m ³ See: <u>309002</u>	
Т		
A		
	· · · · · · · · · · · · · · · · · · ·	
	Boiling point at 0.27kPa: 145°C	Solubility in water: none
PHYSICAL	Melting point: 104-105°C	Vapour pressure, Pa at 20°C: 0.009
PROPERTIES	Density: 1.6	Octanol/water partition coefficient as log Pow:
	B,cm,	7.4
	The substance is very toxic to aquatic organisms.	This substance may be hazardous to
ENVIRONMENTAL.	the environment; special attention should be given	to birds, honey bees. In the food
DATA	chain important to humans, bioaccumulation takes	place, specifically in aquatic
WAIG	iorganisms. It is strongly advised not to let the che	mical enter into the environment because it persists

11/5/2008 10:57 AM

ICSC:NENG0774 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0774.html

	in the environment. The substance may cause long-term effects in the aquatic environment. Avoid trelease to the environment in circumstances different to normal use.
	NOTES
Other melting poin indicated, If the su used in commercial The recommendat Altox, Drinox, Oc	us: 49-60°C (technical grade). Depending on the degree of exposure, periodic medical examination is bstance is formulated with solvent(s) also consult the card(s) (ICSC) of the solvent(s). Carrier solvents d formulations may change physical and toxicological properties. Do NOT take working clothes home. ons on this Card also apply to ICSC 0787 (dieldrin). Aldrec, Aldrex, Aldrite, Aldron, Aldrosol. Algran, talene, Seedrin, and Toxadrin are trade names. Transport Emergency Card: TEC (R)-61G41b. NFPA Code: H2; F0; R0; Card has been partially updated in August 2007: see Storage, Occupational Exposure Limits.
1	ADDITIONAL INFORMATION
ICSC: 0774	ALDRIN
	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views iof the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDLH values.

11/5/2008 10:57 AM

ENDRIN					ICSC: 1023
				V	National Institute far Occupational Safety and Health
		2.4	C12H8Cl6O		
ICSC # 1023 CAS # 72-20 RTECS # <u>10157</u> UN # 2761 IEC # 602-1 March 10, 2000	-8 75000 051-00-X Validated	MOLE	Cular mass: 580.9		
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION	_	FIRST AID/ FIRE FIGHTING
FIRE	Not combustible. Liqu formulations containin solvents may be flamu Gives off irritating or (or gases) in a fire.	uid 1g organic nable. toxic fumes			In case of fire in the surroundings: all extinguishing agents allowed.
EXPLOSION			· · · · · · · · · · · · · · · · · · ·		
EXPOSURE	RE		PREVENT DISPERSION O)F !	IN ALL CASES CONSULT A DOCTOR!
•INHALATION	N (See Ingestion).		Local exhaust or breathing protection.		Fresh air, rest. Refer for medical attention.
•SKIN	MAY BE ABSORBE	D!	Protective gloves. Protective clothing.	re	Remove contaminated clothes. Rinse and then wash skin with water and soap. Refer for medical attention.
•EYES	1		Face shield or eye protection combination with breathing protection if powder.	on in	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	Dizziness. Weakness. Nausea. Vomiting. Co	Headache.	Do not eat, drink, or smoke work. Wash hands before e	during ating.	Give a slurry of activated charcoal in water to drink. Rest. Refer for medical attention.
SPILLAGE DISPOSAL		STORAGE	PAC	CKAGING & LABELLING	
Do NOT wash away into sewer. Sweep ispilled substance into sealable containers; if appropriate, moisten first to prevent dusting. Carefully collect remainder, then remove to safe place. Do NOT let this chemical emer the tenvironment. (Extra personal protection:		Provision to extinguishin feedstuffs V well-ventils	o contain effluent from fire ug. Separated from food and Vell closed. Keep in a ated room.	Do nu feeds Seve marin T+ sy N syn R: 24	ot transport with food and nuffs. re ne pollutant. ymbol mbol 4-28-50/53

11/5/2008 10:58 AM

ICSC:NENG1023 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng1023.html

nchemical protection suit including self-contained breathing apparatus).	S: 1/2-22-36/37-45-60-61 UN Hazard Class: 6.1 UN Packing Group: I
S	EE IMPORTANT INFORMATION ON BACK
ICSC: 1023	Prepared in the context of cooperatum between the International Programme on Chemical Safety & the Commission of the European Communicates (C) IPCS CEC 1994. No modifications to the International Version have been made except to add the OSHA PELs, NIOSH RELS and NIOSH 1DLH values

International Chemical Safety Cards

ENDRIN

ICSC: 1023

I M	PHYSICAL STATE; APPEARANCE: WHITE CRYSTALS	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation, through the skin and by ingestion.			
	PHYSICAL DANGERS:				
Р		INHALATION RISK: Evaporation at 20°C is negligible; a harmful			
0 R	CHEMICAL DANGERS: The substance decomposes on heating above 245°C, producing hydrogen chloride phosgene	be reached quickly on spraying or when dispersed, especially if powdered.			
T	OCCUPATIONAL EXPOSURE LIMITS: TLV: 0,1 mg/m ³ (skin) (ACGIH 2000).	EFFECTS OF SHORT-TERM EXPOSURE: The substance may cause effects on the central			
A	OSHA PEL: TWA 0.1 mg/m ³ skin	nervous system, resulting in convusions and death. The effects may be delayed. Medical			
N	NIOSH IDLH: 2 mg/m ³ See: <u>72208</u>	observation is indicated.			
Т		REPEATED EXPOSURE:			
D					
A					
T					
A					
PHYSICAL PROPERTIES	Decomposes below boiling point at 245°C Melting point: 200°C Density: 1.7 g/cm ³	Solubility in water, g/100 ml at 25°C: none Vapour pressure, Pa at 25°C: negligible Octanol/water partition coefficient as log Pow: 5.34			
ENVIRONMENTAL DATA	The substance is very toxic to aquatic organisms. This substance may be hazardous to the environment; special attention should be given to honey bees birds mammals it is strongly advised not to let the chemical enter into the environment because it persists in the environment. In the food chain important to humans, bioaccumulation takes place, specifically in fish seafood Avoid release to the environment in circumstances di fferent to normal use.				
	NOTES				
If the substance is form commercial formulatio	nulated with solvent(s) also consult the card(s) (IC ns may change physical and toxicological property	CSC) of the solvent(s). Carrier solvents used in ties. Do NOT take working clothes home. Transport Emergency Card: TEC (R)-61G4			

11/5/2008 10:58 AM

ICSC:NENG1023 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng1023.html

	NFPA Code: H3; F0; R; 0
1	ADDITIONAL INFORMATION
ICSC: 1023	ENDRIN
1	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDLH values.

11/5/2008 10:58 AM

CHLORD	ANE (TECI	INICA	L PRODUCT)	ICSC: 0740
	O O UNEP	a		V	National Institute for Occupational Safety and Health
1,2	1,2,4,5,6,7,8,8-Octa 2,4,5,6,7,8,8-Octacl	achloro-2,3 aloro-2.3,3	3.3a,4,7,7a-hexahydro-4 a,4,7,7a-hexahydro-4,7 C10H6Cls	-meth	thanoindene ano-1H-indene
ICSC # 0740 CAS # 57-74 UN # 2996 EC # 602-1 March 26, 1998	-9 047-00-8 Validated	Mole	cular mass: 409.8	k	
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Liquio formulations c organic solvents may iflammable. Gives off toxic fumes (or gases)	ontaining be irritating or) in a fire.	NO open flames.		Alcohol-resistant foam, powder, carbon dioxide.
EXPLOSION					a 1. 1. 1. 1. 1. 1.
EXPOSURE			PREVENT GENERATION MISTS! STRICT HYGIEN: A VOID EXPOSURE OF ADOLESCENTS AND CHILDREN!	OF El	IN ALL CASES CONSULT A DOCTOR!
-INHALATION	(See Ingestion).		Breathing protection.		Fresh air, rest. Refer for medical intention.
•SKIN	MAY BE ABSORBE	D!	Protective gloves. Protectiv clothing.	/e	Remove contaminated clothes. Rinse and then wash skin with water and soap.
-EYES	Renness. Pain.		Safety goggles face shield o protection in combination w breathing protection.	or eye vith	First rinse with plenty of water for several minutes (remove icontact lenses if easily possible), ithen take to a doctor.
INGESTION	Confusion. Convulsion	ns. Nausea.	Do not eat, drink, or smoke work. Wash hands before e	during.	Rest, Refer for medical attention.
SPILLAG	E DISPOSAL		STORAGE	PAC	KAGING & LABELLING
Collect leaking and sealable container: Absorb remaining absorbent and rem NOT wash away is protection: chemic	d spilled liquid in s as far as possible. liquid in sand or inert ove to safe place. Do mo sewer. Personal al protection suit	Provision to extinguishin feedstuffs bi materiais Se closed. Kee	contain effluent from fire g. Separated from food and ases and incompatible the Chemical Dangers. Well p in a well-ventilated room.	Dono feeds Sever marin Xn sy N syn	nt transport w ith food und nuffs. ee pollutant. mbol mbol

11/5/2008 10:59 AM

l of 3

ICSC:NENG0740 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0740.html

including self-contained br apparatus.	eathing	IR: 21/22-40-50'53 S: 2-36/37-60-61 UN Hazard Class: 6.1 UN Packing Group: III
ICSC: 0740	SEE IMPORTANT INF Prepared in the context of cooper Commission of the European Cor been made except to and the OS	DRMATION ON BACK aton between the International Programme on Chenneal Safety & the immunes (C) IPCS CEC 1994. No modifications to the International version have the PELS, NIOSH REL, and NIOSH IDLH values.

International Chemical Safety Cards

CHLORDANE (TECHNICAL PRODUCT)

ICSC: 0740

I	PHYSICAL STATE; APPEARANCE: TECHNICAL: LIGHT YELLOW TO AMBER VISCOUS LIQUED	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation, through the skin and by ingestion.			
M	ļ				
P	PHYSICAL DANGERS:	INHALATION RISK: Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however,			
0	CHEMICAL DANGERS:	be reached quickly on spraying.			
R	contact with bases producing toxic fumes	EFFECTS OF SHORT-TERM EXPOSURE: Exposure at high levels may result in			
Т	iron, zinc, plastic, rubber and coatings.	disorientation, tremors, convulsions, respiratory failure and death. Medical observation is			
A	OCCUPATIONAL EXPOSURE LIMITS: TLV: 0.5 mg/m ³ as TWA (skin) A3 (confirmed	indicated.			
N	animal carcinogen with unknown relevance to	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:			
т	MAK: (Inhalable fraction) 0.5 mg/m ² Peak limitation category: 11(8);	The substance may have effects on the liver immune system , resulting in tissue lesions and			
D	skin absorption (H); Carcinogen category: 3B; (DFG 2004).	liver impairment. This substance is possibly carcinogenic to humans.			
A	OSHA PEL: TWA 0.5 mg/m ³ skin NIOSH REL: Ca TWA 0.5 mg/m ³ skin <u>See</u>				
Т	Appendix A				
А					
PHYSICAL PROPERTIES	Boiling point at 0.27kPa: 175°C Relative density (water = 1): 1.59-1.63 Solubility in water: none	Vapour pressure, Pa at 25°C: 0.0013 Octanol/water partition coefficient as log Pow: 2.78			
ENVIRONMENTAL DATA	The substance is very toxic to aquatic organisms. This substance may be hazardous to NTAL the environment; special attention should be given to soil organisms, honey bees. It is is strongly advised that this substance does not enter the environment. The substance may cause long-term effects in the aquatic environment.				
	NOTES				
If the substance is form	nulated with solvents also consult the ICSCs of the	se materials. Carrier solvents used in commercial			

formulations may change physical and toxicological properties. Belt, Chlor Kil, Chlortox, Corodan, Gold Crest, Intox,

- - - -

ICSC:NENG0740 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0/40.nunu

Kypchlor, Niran, Octachlor, Sydane, Synklor, Termi-Ded, Topiclor, and Toxichior are trade names. Also consult ICSC 10743 Heptachlor.

	Transport Emergency Call
	ADDITIONAL INFORMATION
ICSC: 0740	CHLORDANE (TECHNICAL PRODUCT)
	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the included in national net country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDLH values.

11/5/2008 10:59 /

NIOSH Document: Pocket Guide to Chemical Hazards: Chlorinated c...

http://www.cdc.gov/niosh/npg/npgd0113.html

P HEALTHIEF FEATLE *	I NOEH Taman L. Sha Index I. Do	nat Satety and Health	as 1 MOSR Products 1 Contact De	
Search NICSH NICSH H			September 200	
NOSH Pock	et Guide to Che	mical Hazaro	is	
FG nome Introduction Syna	nyms & Trade Names Chemical Names	CAS Numbers RTCS Number	rs Appendices Search	
Chlorinated cam	phene	unus tradina sa dibar s	CAS 8001-35-2	
C10H1DCl8	na sense and a set of the second s	angangan papar anggi a-u-Plana Mililania ang ura a Mila k	RTECS XW5250000	
Synonyms & Trade Nar Chlorocamphene, Octachloro	nes camphene, Polychlorocamphene, Tox	aphane	DOT ID & Guide 2761 151	
FYDOSIUM	NIDSH REL: Ca [skin] See Appe	andix A	lahanna agin malilika of terrar agin anyarihan arangan a gala di sana	
Limits	OSHA PELT: TWA 0.5 mg/m ³ (s	iun]		
DLH Ca (200 mg/m ³) See:	Conversion			
Physical Description	, piney, chlorine- and camphor-like odd	ar. [insecticide]		
	BP: Decomposes	MLT: 149-194*F	Sol: 0.0003%	
NWV 413.8		and a second sec		
/P(77°F): 0.4 nunfig	P:?		Sp.Gr. 1.65	
VIW 413.8 /P(77°F): 0.4 mmHg =LP: NA Voncombustible Solid, but me ncompatibilities & Reau	IP: ? UEL: NA iy be dissolved in flammable kquids. ctivities	LEL: NA	Sp.Gr. 1.65	
VIW 413.8 /P(77*F): 0.4 mmHg FI.P: NA Noncombustible Solid, but ma incompatibilities & Reau Strong oxidizers [Note: Slight Measurement Methods NOSH 5039 See: <u>NMAM</u> or <u>OSHA Method</u> s	IP: ? UEL: NA y be dissolved in flammable liquids. ctivities y conceive to metals under moist conc ls	LEL: NA	Sp.Gr. 1.65	
VIW 413.8 /P(77*F): 0.4 mmHg =I.P: NA Noncombustible Solid, but ma incompatibilities & Reau Strong oxidizers [Note: Slight Measurement Methods NOSH 5039 See: <u>NMAM or OSHA Method</u> Sec: <u>NMAM or OSHA Method</u> Sec: <u>NMAM or OSHA Method</u> Sith: Prevent syn contact Eyes: Prevent syn contact Anabe skin: When contaminal Remove: When wet or contam Change: Daily Provide: Eyewash, Quick drained	IP: ? UEL: NA y be dissolved in flammable liquids. ctivities y conceive to metals under moist conc ta Sanitation (See protection codes) ed/Daily ninated nich	LEL: NA filions.] First Aid (See procedure Eye: Inigate immediately Skin: Soap wash promptly Breathing: Respiratory sup Swallow: Medical attention	Sp.Gr. 1.65 Sp.Gr. 1.65 S) port Immediately	
VIW 413.8 /P(77*F): 0.4 mmHg ELP: NA Incompatibilities & Real Strong oxidizers [Note: Slight Measurement Mathods NOSH 5039 Personal Protection & S Skin: Prevent skin contact Zyes: Prevent eye contact Wash skin: When contaminal Remove: When wet or contant Change: Daily Provide: Eyewash, Quick drain Respirator Recommend AC concentrations above th APF = 10,000) Any self-contor messure mode APF = 10,000) Any supplied- n combination with an auxilia Escape: APF = 50) Any sin-purifying, V100, R100, or P100 fitter. Q presthing epparatus mportant additional informatik	IP: ? UEL: NA y be dissolved in flammable liquids. ctivities y conceive to metals under moist conc la Sanitation (See protection codes) ed/Daily minated inch dations N/OSH le N/OSH REL, or where there is no aimed breathing apparatus that has a fi air respirator that has a full facepiece ry self-contained positive-pressure brea- full-facepiece respirator (gas mask) with tick here for information on selection of an about respirator selection	LEL: NA Jilions.] First Aid (See procedure Eye: Inigate immediately Skin: Soap wash promptly Breathing: Respiratory sup Swallow: Medical attention REL, at any datectable com uil facepiece and is operated in and is operated in a pressure- bathing apparatus th a chin-style, front- or back-r fN, R, or P filters./Any appropri	Sp.Gr. 1.65 s) port intronedialely icentration n a pressure- demand or other positive- demand or other positive- ressure mounted organic vapor canister having a nate escape-type, self-contained	
VIW 413.8 /P(77*F): 0.4 mmHg I.P. NA Noncombustible Solid, but ma incompatibilities & Rear Strong oxidizers [Note: Slighth Measurement Methods NOSH 5039 See: <u>NMAM</u> or <u>OSHA Methoc</u> Sin: Prevent skin contact Eyes: Prevent skin contact Eyes: Prevent skin contact Eyes: Prevent skin contact Respirator Recommend A concentrations above th (APF = 10,000) Any self-conta ressure mode APF = 10,000) Any supplied- n combination with an auxilia Escape: APF = 50) Any sir-purifying, V100, R100, or P100 filter. <u>Concentrations</u> Exposure Routes inhala	IP: ? UEL: NA by be dissolved in flammable liquids. ctivities y conceive to metals under moist conc is Sanitation (See protection codes) ed/Dally mated inch dations NIOSH le NIOSH REL, or where there is no paned breathing apparatus that has a full facepiece respirator (gas mask) with inck here for information on selection of an about respirator selection tion, skin absorption, ingestion, skin an	LEL: NA dilions.] First Aid (See procedure Eye: Intgate immediately Skin: Soap wash promptily Breathing: Respiratory sup Swallow: Medical attention REL, at any detectable con uil facepiece and is operated i and is operated in a pressure- sathing apparatus th a chin-style, front- or back-r fN, R, or P filters./Any approp	Sp.Gr. 1.65 s) port immediately icentration n a pressure- demand or other positive- demand or other positive- pressure models and the second s	

11/5/2008 11:01 AM

	UNEP			1	Automatility for Decupation of Soliton and Health
	1, 2,],]'-(Dichloro 1,1-Trichloro- 2-bis(p-Chlor 2,2,2-Trichlor Mo	diphenyltrichloroethane -2.2-bis(p-chlorophenyl)etha ophenyl)-1.1,1-trichloroethar methylidene)bis(4-chloroben p,p'-DDT C14H9Cl5 lecular mass: 354.5	ne ne zenc)	
ICSC # 0034 CAS # 50-29-3 RTECS # <u>KJ332501</u> UN # 2761 EC # 602-045- April 20, 2004 Vali	00 -00-7 dared				
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZA SYMPTON	RDS! IS	PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Combustible. Liquid formulations containing organic solvents may be flammable. Gives off irritaling or taxic fumes (or gases) in a fire.		NO open flames		Powder water spray, loam carbon dioxide.
EXPLOSION					
EXPOSURE			PREVENT DISPERSION OF DU STRICT HYGIENE! AVOID BAI IOF (PREGNANT) WOMEN!	ST! OSURE	
-INHALATION	Cough		Local exhaust or breathing protect	ion,	Fresh air, rest.
-SKIN			Protective gloves,		Remove contaminated clothes. Russe and then wash skin with water and soap.
•EYES	Redness		Safety goggles, or eye protection combination with breathing protection powder.	in :tion if	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
INGESTION	Tremers Diarrhoca, Dizziness, Headache, Vorming, Numbress, Paresthesiaa, Hyperexcitability, Convulsions,		Do not cat, drink, or smoke during Wash hands before cating.	; work.	Rinse month, Gree a slurry of activated chargoni in water to drink. Rest. Refer for uncelleal attention.
SPILLAG	E DISPOSAL		STORAGE	Y	PACKAGING & LABELLING
SPILLAGE DISPOSAL Do NOT let this chemical erair the environment. Sweep spilled substance into sealable non-metallic containers; if appropriate, moisten first to prevent iterating carefully collect remainder, then remove to safe place. Personal protection P3 filter raspirator for toxic particles.		Provision to co extinguishing. 5 its salts, food a Dangers	ntain effluent from fire enarated from iron, sluminum and nd feedsuuffs See Chematal	Do no Severe T sym R. 25- IS: 1/2 UN He UN Pe	t transport with food and feedstuffs. = marine pollutant. bol 40-48/25-5(V53 -22-36/37-45-60-61 azard Class: 6.1 teking Group: III
·		SEE IMPORT	ANT INFORMATION ON BAC	ĸ	
<u></u>		- A subscription of the A	and the second s	me on Charm	and Salesy & the Communey of ine Eastateau

International Chemical Safety Cards

DDT

ICSC: 0034
NIOSH Document: Pocket Guide to Chemical Hazards: Chlorinated c ...

http://www.cdc.gov/niosh/npg/npgd0113.html

See sist: INTRODUCTION See ICSC CARD: 0843 ____ and its springering was in set of the

NIOSH Home | NIOSH Search | Site Index | Topic List | Contact Us

11/5/2008 11:01 AJ

http://www.cdc.gov/niosh/ipcsneng/neng0034.html

ICSC:NENG0034 International Chemical Safety Cards (WHO/IPCS/IL...

1	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:
м	COLOURLESS CRYSTALS WHITE POWDER, TECHNICAL	The substance can be about the
ni.	PRODUCT IS WAXT SOLD.	INTERT ATTON DISK-
P	BUNSICAL DANCERS	Extraoration at 20°C is negligible; a harmful concentration of
,		airhome particles can, however, be reached quickly especially
0		if powdered.
0	CHEMICAL DANGERS:	
R	On combustion, forms mais and corrosive	EFFECTS OF SHORT-TERM EXPOSURE:
	finnesineludinghydrogen chloride. Reacts with alumnuum and	May cause mechanical irritation. The substance may outsid
т	iron.	effects on the central pervous system, resulting in conversit in
-	7 -	and respiratory depression Exposure an ingriterion and
A	OCCUPATIONAL EXPOSURE LIMITS:	death, Medical observation is moreable
	TLV 1 mg/m² as TWA A3 (ACGIH 2004).	OR REPEATED EXPOSURE:
Ň	MAK: 1 mg/m ³ H	EFFECTS OF LONG-TERM On the pentral nervous system
	Peak limitation category: II(8)	The substance may have enects of by careinogenic to humans
т	(DFG 2003).	and liver. This substance is possibly causes toxicity to
	OSHA PEL. TWA 1 mg/m ² slon	human reproduction or development
	NIOSH REL: Ca TWA 0.5 mg/m ³ Sec Appendix A	animi reproductivi or werei-r
D	NIOSH IDLH: Ca 500 mg/m3 See: 50293	
A		
_		
Т		ì
Α		
	Boiling point: 260°C	Solubility in water: poor
PHYSICAL	Boiling point: 260°C Melting point: 109°C	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36
PHYSICAL PROPERTIES	Bolling point: 260°C Melting point: 109°C Density: 1.6	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36
PHYSICAL PROPERTIES	Boiling point: 260°C Melting point: 109°C Density: 1.6 g/cm ²	Solubility in water: poor Octanol/water parulion coefficient as log Pow: 6.36
PHYSICAL PROPERTIES	Boiling point: 200°C Melting point: 109°C Density: 1.6 g/cm ² The substance is very toxic in aquatic organisms. This substance	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36
PHYSICAL PROPERTIES	Boiling point 260°C Melting point 260°C Density: 1.6 g/cm ² The substance is very toxic to aquaic organisms This substance Attention should be given to birds. Biogeournalation of this chemi	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment; special cal may occur along the food chain, for example in
PHYSICAL PROPERTIES ENVIRONMENTAL DATA	Boiling point 260°C Melting point 109°C Density: 1.6 g/cm ² The substance is very toxic to aquanc organisms. This substance latermon should be given to birds. Bioaccurradation of this chermi milk and aquatic organisms. This substance does emer the enviro	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment; special cal may occur along the food chain, for example in more tunder normal use. Great care, however, should
PHYSICAL PROPERTIES ENVIRONMENTAL DATA	Boiling point: 109°C Melting point: 109°C Density: J.6 g/cm ³ The substance is very toxic to aquanc organisms. This substance attention should be given to birds. Bioaccurradiation of this chemi milk and aquatic organisms. This substance does emer the environ ibe given to avoid any additional release, e.g. through inappropria	Solubility in water: poor Octanol/water parulion coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in manent under normal use. Great care, however, should at disposal.
PHYSICAL PROPERTIES ENVIRONMENTAL DATA	Boiling point 260°C Melting point 109°C Density: J.6 g/cm ³ The substance is very toxic to aquanc organisms. This substance latermon should be given to birds. Bioaccurradation of this chermin milk and aquatic organisms. This substance does emer the enviro be given to avoid any additional release, e.g. through inappropri- be given to avoid any additional release, e.g. through inappropri- be given to avoid any additional release.	Solubility in water: poor Octanol/water parulion coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in mment under normal use. Great care, however, should at disposal.
PHYSICAL PROPERTIES ENVIRONMENTAL DATA	Bolling point 260°C Melting point 109°C Density: 1.6 g/cm ² The substance is very toxic to aquanc organisms. This substance laternon should be given to birds. Bioaccuradation of this chemi milk and aquatic organisms. This substance does emer the enviro be given to avoid any additional release, c.g. through inappropria NOTES	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in moment under normal use. Great care, however, should at disposal.
PHYSICAL PROPERTIES ENVIRONMENTAL DATA	Bolling point 260°C Melting point 109°C Density: 1.6 g/cm ² The substance is very toxic to aquanc organisms This substance laternon should be given to birds. Binaccumadation of this chemi milk and aquatic organisms This substance does emer the enviro be given to avoid any additional release, e.g. through inappropria NOTES ee of exposure, periodic medical examination is indicated. Carrier a	Solubility in water; poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment; special cal may occur along the food chain, for example in manent under normal use. Great care, however, should at disposal.
PHYSICAL PROPERTIES ENVIRONMENTAL DATA	Bolling point: 109°C Melting point: 109°C Density: J.6 g/cm ³ The substance is very toxic to aquanc organisms. This substance attention should be given to birds. Bioaccumalation of this chemi- imilk and aquatic organisms. This substance does emer the enviro ibe given to avoid any additional release, e.g. through inappropri- to of exposure, periodic modical examination is indicated. Carrier is s. Do NOT take working clothes home. Consult rational legislation	Solubility in water: poor Octanol/water paruliton coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in manent under normal use. Great care, however, should at disposal. Solvents used in commercial formulations may change physical and Agritan, Azotox, Anofex, boodex, Gesapon, Gesarex, Gesarol,
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the deg policological properti Suesapon, Clofenotam	Bolling point 260°C Melting point 109°C Density: J.6 g/cm ³ The substance is very toxic to aquanc organisms. This substance lateration should be given to birds. Honecurradation of this chemi- milk and aquatic organisms. This substance does emer the environ- tic given to avoid any additional release, e.g. through inappropri- tic substance is not any additional release, e.g. through inappropri- tic substance is of exposure, periodic medical examination is indicated. Carrier a s. Do NOT take working clothes home. Consult national legislation e, Zeidane, Dicophane, Neocid are trade narms.	Solubility in water: poor Octanol/water paruliton coefficient as log Pow: 6.36 may be hazardous to the environment special cal may occur along the food chain, for example in mment under normal use. Great care, however, should at disposal. Solvenis used in commercial formulations may change physical and Agritan, Azmox, Anofex, boodex, Gesapon, Gesarex, Gesarol,
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the degr pojecilogical properti Suesapon, Clofenolan	Bolling point 260°C Melting point 109°C Density: J.6 g/cm ³ The substance is very toxic to aquanc organisms. This substance latermon should be given to birds. Bioaccurradation of this cherminik and aquatic organisms. This substance does emer the enviro be given to avoid any additional release, e.g. through inappropri- given to avoid any additional release, e.g. through inappropri- tion of the substance is indicated. Carrier is s. Do NOT take working clothes home. Consult rational legislation e, Zeidane, Dicophane, Neocid are trade narres.	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in mment under normal use. Great care, however, should at disposal. Solvents used in commercial formulations may change physical and Agritan, Azotox, Anofex, bodex, Gesapon, Gesarex, Gesarol, Transport Emergency Card: TEC (R)-61GT7-JE
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the degr oxicological properti fuesapon, Clofenotam	Bolling point 260°C Melting point 109°C Density: 1.6 g/cm ³ The substance is very toxic to aquanc organisms. This substance laternion should be given to birds. Bioaccumulation of this chemi- milk and aquatic organisms. This substance does emer the environ- ibe given to avoid any additional release, e.g. through inappropria NOTES to of exposure, periodic medical examination is indicated. Carrier is ss. Do NOT take working clothes home. Consult national legislation c, Zeidane, Dicophane, Neocid are trade names.	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in moment under normal use. Great care, however, should at disposal. Solvents used in commercial formulations may change physical and Agritan, Azotox, Anofex, bodex, Gesapon, Gesarex, Gesarol, Transport Emergency Card: TEC (R)-61GT7-IL
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the deg oxicological properti juesapon, Clofenolar	Bolling point 260°C Melting point 109°C Density: J. 6 g/cm ³ The substance is very toxic to aquate organisms. This substance lateration should be given to birds. Bioaccurralisticon of this chemi milk and aquatic organisms. This substance does emer the environ- ibe given to avoid any additional release, e.g. through inappropria N O T E S ee of exposure, periodic medical examination is indicated. Carrier is 35. Do NOT take working clothes home. Consult national legislation c, Zeidane, Dicophane, Neocid are trade names. ADDITIONAL INFORMA	Solubility in water: poor Octanol/water paruliton coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in manent under normal use. Great care, however, should at disposal. Solvents used in commercial formulations may change physical and Agritan, Azotox, Anofex, boodex, Gesapon, Gesarex, Gesarol, Transport Emergency Card: TEC (R)-61GT7-III TON
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the degr oxicological properti- tuesapon, Clofenotan	Bolling point: 109°C Melting point: 109°C Density: J. 6 g/cm ³ The substance is very toxic to aquanc organisms. This substance lateration should be given to birds. Bioaccurradiation of this chemi milk and aquatic organisms. This substance does emer the environ the given to avoid any additional release, e.g. through inappropri- tive given to avoid any additional release, e.g. through inappropri- N O T ES ee of exposure, periodic modical examination is indicated. Carrier is S. Do NOT take working clothes home. Consult national legislation e, Zeidane, Dicophane, Neocid are trade names. ADDITIONAL INFORMAT	Solubility in water: poor Octanol/water paruliton coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in mentiunder normal use. Great care, however, should at disposal. Solvents used in commercial for multations may change physical and Agritan, Azotox, Anofex, boodex, Gesapon, Gesaret, Gesarol, Transport Envergency Card: TEC (R)-61GT7-III TION
PHYSICAL PROPERTIES ENVIRONMENTAL Depending on the deg oxicological properti Suesapon, Clofenotan	Bolling point 260°C Melting point 109°C Density: J.6 g/cm ³ The substance is very toxic to aquance organisms. This substance lateration should be given to birds. Hoaccurradation of this chemi- milk and aquatic organisms. This substance does emer the enviro ibe given to avoid env additional release, e.g. through inappropri- tion of the substance is indicated. Carrier a s. Do NOT take working clothes home. Consult national legislation e, Zeidane, Dicophane, Neocid are trade names. ADDITIONAL INFORMA	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment special cal may occur along the food chain, for example in mment under normal use. Great care, however, should at disposal. solvents used in commercial for mulations may change physical and at disposal. Solvents used in commercial for mulations may change physical and Agritan, Azotox, Anofex, bodex, Gesapon, Gesarex, Gesarol, Transport Entrargency Card: TEC (R)-61GT7-III TFON
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the degr posicological properti Stassapon, Clofenolan Stassapon, Clofenolan	Bolling point: 109°C Melting point: 109°C Density: J.6 g/cm ³ The substance is very toxic to aquanc organisms. This substance latermon should be given to birds. Bioaccurradation of this cherm milk and aquatic organisms. This substance does enser the enviro be given to avoid any additional release, e.g. through inappropri be given to avoid env additional release, e.g. through inappropri be given to avoid env additional release, e.g. through inappropri be given to avoid env additional release, e.g. through inappropri be given to avoid env additional release, e.g. through inappropri be given to avoid env additional release, e.g. through inappropri be given to avoid env additional release, e.g. through inappropri be given to avoid env additional release. ADT take working clothes home. Consult rational legislation e, Zeidane, Dicophane, Neocid are trade names. ADDITIONAL INFORMATIONAL INF	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in menti under normal use. Great care, however, should at disposal. Solvenis used in commercial formulations may change physical and at disposal. Solvenis used in commercial formulations may change physical and . Agritan, Azotox, Anofex, bodex, Gesapon, Gesarez, Gesarol, Transport Emergency Card: TEC (R)-61GT7-III TION
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the deg oxicological properti Suesapon, Clofenolan ICSC: 0034	Bolling point: 109°C Melting point: 109°C Density: J. 6 g/cm ² The substance is very toxic to aquanc organisms. This substance lateration should be given to birds. Bioaccumalation of this chemi- imilk and aquatic organisms. This substance does emer the enviror in the adaption organisms. This substance does emer the enviror in the adaption organisms. This substance does emer the enviror in the adaption organisms. This substance does emer the environ- itie given to avoid any additional release, e.g. through inappropria N O T E S ev of exposure, periodic medical examination is indicated. Carrier is s. Do NOT take working clothes home. Consult national legislation e, Zeidane, Dicophane, Neocid are trade names. ADDITIONAL INFORMA (C) IPCS, CEC, 1994	Solubility in water; poor Octanol/water paruliton coefficient as log Pow: 6.36 may be hazardous to the environment; special cal may occur along the food chain, for example in ment under normal use. Great care, however, should at disposal. Solvents used in commercial formulations may change physical and Agritan, Azutox, Anofex, boodex, Gesapon, Gesarex, Gesarol, Transport Emergency Card: TEC (R)-61GT7-III TION
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the degr oxicological properti Suesapon, Clofenotan ICSC: 0034	Bolling point 200°C Melting point 109°C Density: J. 6 g/cm ³ The substance is very toxic to aquanc organisms. This substance lateration should be given to birds. Bioaccumalation of this chemi- imilk and aquatic organisms. This substance does emer the enviro ibe given to avoid any additional release, e.g. through inappropri- to a substance of exposure, periodic medical examination is indicated. Carrier is s. Do NOT take working clothes home. Consult national legislation c. Zeidane, Dicophane, Neocid are trade names. ADDITIONAL INFORMAL (C) FPCS, CEC, 1994	Solubility in water: poor Octanol/water paruliton coefficient as log Pow: 6.36 may be hazardous to the environment special cal may occur along the food chain, for example in ment under normal use. Great care, however, should at disposal. Solvents used in commercial formulations may change physical and Agritan, Azotox, Anofex, bodex, Gesapon, Gesarex, Gesarol, Transport Emergency Card: TEC (R)-61GT7-IL TION
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the deg oxicological properti Suesapon, Clofenotan ICSC: 0034	Bolling point 200°C Melting point 109°C Density: J.6 g/cm ³ The substance is very toxic to aquanc organisms. This substance lateration should be given to birds. Broaccurradiation of this chemi- milk and aquatic organisms. This substance does emer the environ- tibe given to avoid any additional release, e.g. through inappropri- tibe given to avoid any additional release, e.g. through inappropri- n O T E S ee of exposure, periodic modical examination is indicated. Carrier is S. Do NOT take working clothes home. Consult national legislation e, Zeidane, Dicophane, Neocid are trade names. ADDITIONAL INFORMAT (C) PCS, CEC, 1994 leither NIOSH, the CEC or the IPCS nor any person acting on behalf	Solubility in water: poor Octanol/water paruliton coefficient as log Pow: 6.36 may be hazardous to the environment special cal may occur along the food chain, for example in mment under normal use. Great care, however, should at disposal. Solvenis used in commercial for mulations may change physical and Agritan, Azotox, Anofex, bodex, Gesapon, Gesarex, Gesarol, Transport Erriergency Card: TEC (R)-61GT7-HI TION DDT TooMOSH, the CEC or the IPCS is responsible for the use which news of the IPCS per Review Committee and may not reflect in
PHYSICAL PROPERTIES ENVIRONMENTAL Data Depending on the deg Decide property Succelogical property Succelogical property Succelogical property Succelogical property Succelogical property Succelogical property Succelogical property Succelogical property Succelogical Succelogical	Bolling point 260°C Melting point 109°C Density: 1.6 g/cm ³ The substance is very toxic to aquance organisms. This substance laternion should be given to birds. Hoaccurradiation of this chemi- milk and aquatic organisms. This substance does erner the enviro ibe given to avoid env additional release, e.g. through inappropri- tion of the substance of the substance of the substance of exposure, periodice medical examination is indicated. Carrier is s. Do NOT take working clothes home. Consult national legislation e, Zeidane, Dicophane, Neocid are trade narres. ADDITIONAL INFORMA (C) PCS. CEC, 1994 leither NIOSH, the CEC or the IPCS nor any person acting on behal- light be made of this information. This card contains the collective v	Solubility in water: poor Octanol/water partition coefficient as log Pow: 6.36 may be hazardous to the environment: special cal may occur along the food chain, for example in imment under normal use. Great care, however, should at disposal. Solvents used in commercial formulations may change physical and at disposal. Transport Envergency Card: TEC (R)-61GT7-IL Tronsport Envergency Card: TEC (R)-61GT7-IL Trons DDT forNIOSH, the CEC or the IPCS is responsible for the use which news of the IPCS per Review Committee and may not reflect in non the subject. The user shoul diverify compliance of the cards
PHYSICAL PROPERTIES ENVIRONMENTAL DATA Depending on the deg oxicological properti Suesapon, Clofenolan ICSC: 0034	Bolling point 260°C Melting point 109°C Density: J.6 g/cm ² The substance is very toxic to aquanc organisms. This substance lateration should be given to birds. Bioaccumalation of this chemi- imilk and aquatic organisms. This substance does enter the enviro- ibe given to avoid any additional release, e.g. through inappropri- ibe given to avoid any additional release, e.g. through inappropri- tibe given to avoid any additional release, e.g. through inappropri- tibe given to avoid any additional release, e.g. through inappropri- tibe given to avoid any additional release, e.g. through inappropri- tibe given to avoid any additional release, e.g. through inappropri- tibe given to avoid any additional release, e.g. through inappropri- s. Do NOT take working clothes home. Consult reational legislation e, Zeidane, Dicophane, Neocid are trade narres. ADDITIONAL INFORMAL (C) IPCS, CEC, 1994 leither NIOSH, the CEC or the IPCS nor any person acting on behal- ight be made of this information. This card contains the collective vi- II cases all the detailed requirements included in national legislation of the relevent legislation in the courservo of the che only molificat	Solubility in water; poor Octanol/water parulion coefficient as log Pow: 6.36 may be hazardous to the environment; special cal may occur along the food chain, for example in ment under normal use. Great care, however, should at disposal. Solvents used in commercial formulations may change physical and . Agritan, Azotox, Anofex, boodex, Gesapon, Gesarex, Gesarol, . Agritan, Azotox, Anofex, boodex, Gesapon, Gesarex, Gesarol, . Transport Emergency Card: TEC (R)-61GT7-JIL TON DDT forNIOSH, the CEC or the IPCS is responsible for the use which news of the IPCS Peer Review Committee and may not reflect in non the subject. The user shoul cl verify compliance of the cards ions made to produce the U.S., version is inclusion of the OSEA

11/5/2008 10:30 AI

SILVER				ICSC: 0810
			R	National Institute for Occupational Safety and Health
		Argentium C.I. 77820 Ag		
CAS # 0810 CAS # 7440-2 RTECS # <u>VW35</u> September 10, 19	2-4 00000 997 Validated			
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTIO	DN	FIRST AID/ FIRE FIGHTING
FIRE	Not combustible, except as powder.			
EXPLOSION		i .		
EXPOSURE		PREVENT DISPERSIC	ON OF	
•INHALATION		Local exhaust or breath protection.	ing	Fresh air, rest.
·SKIN		Protective gloves.		Rinse skin with plenty of water or shower.
•EYES		Safety spectacles, or ey protection in combinati breathing protection if p	e on with powder.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION		Do not eat, drink, or sn work.	oke durin	g
SPILLAGE	DISPOSAL	STORAGE	PA	CKAGING & LABELLING
Sweep spilled subst containers: if approp to prevent dusting. Or remainder, then rem IDo NOT let this che environment.	ance into Separate briate, moisten first hydroge: arefully collect acids. ove to safe place, mical enter the	d from ammonia. strong peroxide solutions, strong		
	SEE IMPOR	TANT INFORMATION O	N BACK	
ICSC: 0810	Prepared m the c Commission of it been made excep	ioniest of cooperation between the In- ne European Communities (C) IPCS (pt to add the OSHA PELS, NIOSH R	ternational Pr CEC 1994, No ELs and NIC	ogramme on Chemical Safety & the o modifications to the International version have SSF IDLH values

International Chemical Safety Cards

ICSC:NENG0810 International Chemical Safety Cards (WHO/IPCS/IL ...

http://www.cdc.gov/niosh/ipcsneng/neng0&10.html

ILVER		
I M	PHYSICAL STATE; APPEARANCE: WHITE METAL, TURNS DARK ON EXPOSURE TO OZONE, HYDROGEN	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation and by ingestion.
	SULFIDE OR SULFUR.	
P	PHYSICAL DANGERS:	INHALATION RISK: Evaporation at 20°C is negligible; a harmful
0	ŧ	be reached quickly when dispersed.
R	CHEMICAL DANGERS: Shock-sensitive compounds are formed with	EFFECTS OF SHORT-TERM EXPOSURE:
Т	acetylene. Reacts with acids causing fire hazard. Contact with strong hydrogen peroxide solution	Inhalation of high amounts of high mounts vapours may cause lung damage with pulmonar orderra
A	Contact with ammonia may cause formation of	Jedema.
N	compounds that are explosive when dry.	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
Т	CCCUPATIONAL EXPOSURE LIMITS: TLV (metal); 0.1 mg/m ³ (ACGIH 1997). EU OEL: 0.1 mg/m ³ as TWA (EU 2000).	The substance may cause a go, vite discoloration of the eyes, nose, throat and skin (argyria/argyrosis).
D	OSHA PEL: TWA 0.01 mg/m ³	
D	NIOSH REL: TWA 0.01 mg/m3	
A	NIOSH IDLH: 10 mg/m ³ (as Ag) See: <u>IDLH</u> NDEX	
Т		
A		
PHYSICAL PROPERTIES	Boiling point: 2212°C Melting point: 962°C	Relative density (water = 1): 10.5 Solubility in water: none
NVIRONMENTAL DATA	This substance may be hazardous to the environm to aquatic organisms.	ent; special attention should be given
<u></u>	NOTES	
	Card has been partially updated	in March 2008: see Occupational Exposure Li
	ADDITIONAL INFORMA	ATION
	<u></u>	SIL
CSC: 0810	(C) IPCS, CEC, 1994	
IMPORTANT LEGAL NOTICE:	ther NIOSH, the CEC or the IPCS nor any person sponsible for the use which might be made of this i the IPCS Peer Review Committee and may not ref cluded in national legislation on the subject. The us evant legislation in the country of use. The only m	acting on behalf of NIOSH, the CEC or the II information. This card contains the collective lect in all cases all the detailed requirements ser should verify compliance of the cards with odifications made to produce the U.S. version

11/5/2008 11:42 A

Havional Institute for Elecupational Safety and Health
FIRST AID/ FIRE FIGHTING
nd Special powder, dry sand, NO hydrous agents. NO water.
ised
Fresh air, rest. Refer for medical attention.
Remove contaminated clothes. Rinse skin with plenty of water of shower. Refer for medical attention.
First rinse with plenty of water for several minutes (remove contact lenses if easily possible), [then take to a doctor.
ring Rinse mouth. Refer for medical attention.
ACKAGING & LABELLING
IN Hazard Class: 4.3 IN Packing Group: II

11/5/2008 11:43 AM

ICSC:NENG1052 International Chemical Safety Cards (WHO/IPCS/IL...

a.,

http://www.cdc.gov/niosh/ipcsneng/neng1052.html

ICSC: 1052

ĩ

Prepared in the context of pooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International vertion have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

BARIUM

ICSC: 1052

YSICAL STATE; APPEARANCE: LOWISH TO WHITE LUSTROUS SOLID /ARIOUS FORMS. YSICAL DANGERS: t explosion possible if in powder or granular a, mixed with air. EMICAL DANGERS: substance may spontaneously ignite on act with air (if in powder form). The stance is a strong reducing agent and reacts ently with oxidants and acids. Reacts ently with halogenated solvents. Reacts with ar, forming flammable/explosive gas trogen - see ICSC0001), causing fire and	ROUTES OF EXPOSURE: The substance can be absorbed into the body by ingestion. INHALATION RISK: EFFECTS OF SHORT-TERM EXPOSURE: The substance irritates the eyes, the skin and the respiratory tract. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
 VARIOUS FORMS. VSICAL DANGERS: t explosion possible if in powder or granular a, mixed with air. EMICAL DANGERS: subsuance may spontaneously ignite on act with air (if in powder form). The stance is a strong reducing agent and reacts ently with oxidants and acids. Reacts ently with halogenated solvents. Reacts with ar, forming flammable/explosive gas lrogen - see ICSC0001), causing fire and 	ingestion. INHALATION RISK: EFFECTS OF SHORT-TERM EXPOSURE: The substance irritates the eyes, the skin and the respiratory tract. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
VSICAL DANGERS: t explosion possible if in powder or granular a, mixed with air. EMICAL DANGERS: substance may spontaneously ignite on eact with air (if in powder form). The stance is a strong reducing agent and reacts ently with oxidants and acids. Reacts ently with halogenated solvents. Reacts with ar, forming flammable/explosive gas trogen - see ICSC0001), causing fire and	INHALATION RISK: EFFECTS OF SHORT-TERM EXPOSURE: The substance irritates the eyes, the skin and the respiratory tract. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
a, mixed with air. EMICAL DANGERS: substance may spontaneously ignite on act with air (if in powder form). The stance is a strong reducing agent and reacts ently with oxidants and acids. Reacts ently with halogenated solvents. Reacts with ar, forming flammable/explosive gas lrogen - see ICSC0001), causing fire and	EFFECTS OF SHORT-TERM EXPOSURE: The substance irritates the eyes, the skin and the respiratory tract. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
EMICAL DANGERS: substance may spontaneously ignite on act with air (if in powder form). The stance is a strong reducing agent and reacts ently with oxidants and acids. Reacts ently with halogenated solvents. Reacts with ar, forming flammable/explosive gas lrogen - see ICSC0001), causing fire and	The substance irritates the eyes, the skin and the respiratory tract. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
substance hay spontaneously reinte on tact with air (if in powder form). The stance is a strong reducing agent and reacts ently with oxidants and acids. Reacts ently with halogenated solvents. Reacts with r, forming flammable/explosive gas lrogen - see ICSC0001), causing fire and	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
ently with oxidants and acids. Reacts ently with halogenated solvents. Reacts ently with halogenated solvents. Reacts with er, forming flammable/explosive gas lrogen - see ICSC0001), causing fire and	REPEATED EXPOSURE:
r, forming flammable/explosive gas lrogen - see ICSC0001), causing fire and	
TORON - 200 IOCOOVOL), ORTHUR THE THE	
osion hazard.	
CUPATIONAL EXPOSURE LIMITS:	
. 0.5 mg/m (as 1 WA) (ACOM 1777).	
ing point: 1640°C ting point: 725°C sity: 3.6 n ³	Solubility in wrater: reaction
NOTES	
ringuishing agents such as water, bicarbonate, uzard) with plenty of water.	powder, foam, and carbon dioxide. Rinse Transport Emergency Card: TEC (R)-43G1
ADDITIONAL INFORMA	TION
	BARIUN
(C) IPCS, CEC, 1994	
	CUPATIONAL EXPOSURE LIMITS: ': 0.5 mg/m' (as TWA) (ACGIH 1999). ing point: 1640°C ting point: 725°C sity: 3.6 ? N O T E S tinguishing agents such as water, bicarbonate zard) with plenty of water. ADDITIONAL INFORMA (C) IPCS, CEC, 1994 NIOSH, the CEC or the IPCS nor any person ble for the use which might be made of this in

11/5/2008 11:43 AF

ICSC:NENG1052 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng1052.html

NOTICE: iof the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDLH values.

CADMIU	M				1CSC: 0020
) (O) UNEP		1	N	National Institute for Occupational Safety and Health
L E			Cd		
ICSC # 0020 ICAS # 7440- IRTECS # <u>EU98</u> UN # 2570 IEC # 048-(IApril 22, 2005 ³	43-9 00000 002-00-0 Validated	At	omic mass: 112.4		
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION	ī.	FIRST AID/ FIRE FIGHTING
FIRE	Flammable in powden spontaneously combu- pyrophoric form. Giv hirritating or toxic fum gazes) in a fire.	form and stible in es off es (or	NO open flames, NO sparl NO smoking. NO contact w heat or acid(s).	cs, and vith	Dry sand. Special powder. No other agents.
EXPLOSION	IF incly dispersed part aexplosive mixtures in	icles form air.	Prevent deposition of dust system, dust explosion-pro- electrical equipment and li	; closec: of ighting.	CARES CONSULT A
EXPOSURE			PREVENT DISPERSION	OF TACT:	IN ALL CASES CONDENS
INHALATION	Cough. Sore throat.	<u> </u>	Local exhaust or breathing protection.	(Fresh air, rest. Refer for inserter
•SKIN	-		Protective gloves.		Rinss and then wash skin with rater and soap.
-EYES	Redness. Pain.		Safety goggles or eye prot in combination with break protection.	ection ning	in the runse with plents of the runove several minutes (remove second act lenses if easily possible), the run take to a doctor.
•INGESTION	Abdominal pain. Dia Headache, Nausea, V	rrhoea.	Do not eat, drink, or smok	e during	Rest. Refer for mental anomalia
SPILLAG	E DISPOSAL		STORAGE	PAC	KAGING & LABELLING
Evacuate danger au protection: chemic including self-cont apparatus. Remove Sweep spilled sub containers. Carefu then remove to safe	real Personal al protection suit ained breathing e all ignition sources. stance into Ily collect remainder, e place.	Fireproof. Separated oxidents a	Dry. Keep under inert gas. from igntion sources, cids, food and feedstuffs	Airti breat unbre with Note T-sy N syn	gtst. Unoreactor packaging into closed series able container. Do not transport feaced and feedstuffs. : EF. yrrshoi mbool

11/5/2008 11:43

ICSC:NENG0020 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0020.html

		1R: 45-26-48/23/25-62-63-68-50/53 :S: 53-45-60-61 UN Hazard Class: 6.1
	SEE IMPORTANT INF	ORMATION ON BACK
ICSC: 0020	Prepared in the context of coop Commission of the European Co been made except to add the O	eration between the International Programme on Chemical Safety & the ommunices (C) IPCS CEC 1994 No modifications in the International version have SHA PELS, NIOSH RELS and NIOSH IDLH values

International Chemical Safety Cards

CADMIUM

ICSC: 0020

PHYSICAL STATE: APPEARANCE: ROUTES OF EXPOSURE: SOFT BLUE-WHITE METAL LUMPS OR GREY POWDER, MALLEABLE TURNS The substance can be absorbed into the body by inhaliation of its aerosol and by ingestion. I TARNISHES ON EXPOSURE TO 80°C AND TARNISHES ON EXPOSURE TO MOIST AR. NHALATION RISK: A barraful concentration of airborne particles can be reached quickly when dispersed, especially if powdered. M PHYSICAL DANGERS: Dust explosion possible if in powder or granular powdered. NHALATION RISK: A barraful concentration of airborne particles can be reached quickly when dispersed, especially if powdered. O CHEMICAL DANGERS: Reacts with acids forming flammable/explosive gas (hydrogen azide, zinc, solenium or tolduris, hydrogen azide, zinc, solenium or tellurium, causing fire and explosion bazard. Inhaliation of firmes may cause metal fitme diation of fumes may cause metal fitme fitter. The effects may be delayed. Medical observation is indicated. A OCCUPATIONAL EXPOSURE LIMITS: TLV: (Total aust) 0.01 mg/m² EFFECTS OF LONG-TERM OR REFEATED EXPOSURE: Lungs may be affectad by repeated or proionged exposure to dust particles. The substance may have effects on theiders, resulting in kidopy inpairment This substance is carcinogenic to humans. D OCCUPATIONAL EXPOSURE LOMITS: TLV: (Total aust) 0.010 mg/m² Expected furman carcinogenic to dust particles. The substance may have effects on theiders, resulting in kidopy impairment This substance is carcinogenic to humans. D OSHA PEL+: 1910.1027 TWA 0.005 mg/m³ (NOSH REL*: Ca See Appendix A *Note: The REL applies to all Cadmium co		·	
Image: Solution of the second seco		PHYSICAL STATE; APPEARANCE: SOFT BLUE-WHITE METAL LUMPS OR GREY POWDER. MALLEABLE. TURNS	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation of its aerosol and by ingestion.
M PHYSICAL DANGERS: be reached quickly when dispersed, especially if P Dust explosion possible if in powder or granular powdered. P form, mixed with air. powdered. O CHEMICAL DANGERS: The fume is irritating to the respiratory that R gs (hydrogen - see ICSC0001). Dust reacts with acids forming flammable/explosive Inhalation of fume may cause metal fume or dimers may cause may be delayed. Medical observation is indicated. A OCCUPATIONAL EXPOSURE LIMITS: EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: T (Deginagon; 3 TWA A2 (suspected human carrinogen;); BEI issued (ACGIH 2005). Lungs may be affected by repeated or prolonged exposure to dimers. D (DFG 2	I	TARNISHES ON EXPOSURE TO MOIST AIR.	INHALATION RISK: A barmful concentration of airborne particles can
P form, mixed with air. EFFECTS OF SHORT-TERM EXPOSURE: O CHEMICAL DANGERS: The fime is irritating to the respiratory tract R gas (hydrogen - see ICSC0001). Dust reacts with of fume may cause lung oedema (see gas (hydrogen azide, zinc, selenium or or funces may cause metal fime foot may be adiabation of fumes may cause metal fime foot times may cause metal fime foot may be adiabation of funces may cause metal fime foot may be adiabation of funces may cause metal fime foot may be adiabation of funces may cause metal fime foot may be adiabation of funces may cause metal fime foot may be adiabation of funces may cause metal fime foot may be adiabation of funces may cause metal fime foot may be adiabation of funces may cause metal fime foot may be adiabated by repeated or funces may cause metal fime foot may be adiabated by repeated or prolonged user the foot may be adiabated by repeated or prolonged exposure to dust particles. The substance may be adiabated by repeated or prolonged exposure to funce may be affected by repeated or prolonged exposure to dust particles. The substance is carcinogenic to humans. D (OCCUPATIONAL EXPOSURE LIMITS: Carcinogen category: 1; Germ cell mutagen group: 3A; (DFG 2004). Effects on the kidneys , resulting in kidney impairment This substance is carcinogenic to humans. D (OFG 2004). OSHA PEL*: 1910.1027 TWA 0.005 mg/m³ NIOSH REL*: 28 ex papendix A *Note: The REL applies to all Cadmium compounds (as Cd). A NOSH REL*: Ca See Appendix A *Note: The REL applies to all Cadmium compounds (as Cd). Solubility in water: nome Auto-igninon temperature: (cadmium metal dust 250°C PHYSICAL </td <td>м</td> <td>PHYSICAL DANGERS: Dust explosion possible if in powder or granular</td> <td>be reached quickly when dispersed, especially if powdered.</td>	м	PHYSICAL DANGERS: Dust explosion possible if in powder or granular	be reached quickly when dispersed, especially if powdered.
O CHEMICAL DANGERS: Reacts with acids forming flammable/explosive as (hydrogen - see ICSC0001). Dust reacts with toxidans. hydrogen zaide, zinc, selenium or tellurium, causing fire and explosion hazard. Inhalation of fume may cause metal firme four firme may cause metal firme four firmes may be affected by repeated or protonged exposure to dust particles. The substance may have effects on the kidneys , resuluing in kidney from firmes may be affected by repeated or protonged four firmes may be affected by repeated or protonged four firmes may be affected by repeated or protonged exposure to dust four firmes may be affe	Р	form, mixed with air.	EFFECTS OF SHORT-TERM EXPOSURE:
R gas (hydrogen - see ICSC0001). Dust reacts with oxidans, hydrogen azide, zinc. selenium or tellurium, causing fire and explosion hazard. Notes). Inhalation of funces may cause metal firme fever. The effects may be delayed. Medical observation is indicated. A OCCUPATIONAL EXPOSURE LIMITS: TLV: (Total aust) 0.01 mg/m ² EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: Lungs may be affected by repeated or protonged exposure to dust particles. The substance may have effects on the kidneys , resulting in kidney impairment This substance is carcinogenic to humans. T (Respirable fraction) Lungs may be affected by repeated or protonged exposure to dust particles. The substance may have effects on the kidneys , resulting in kidney impairment This substance is carcinogenic to humans. D (DFG 2004). OSHA PEL*: 1910.1027 TWA 0.005 mg/m ³ A OSHA PEL*: 1910.1027 TWA 0.005 mg/m ³ Y NIOSH REL*: Ca See Appendix A *Note: The REL applies to all Cadmium compounds (as Cd). A NIOSH REL*: Ca See Appendix A *Note: The REL applies to all Cadmium compounds (as Cd). A NIOSH IDLH: Ca 9 mg/m ² (as Cd) See: DLH NDEX PROPERTIES Boiling point: 765°C PHYSICAL Boiling point: 321°C PATA DATA	0	CHEMICAL DANGERS: Reacts with acids forming flammable/explosive	The fume is irritating to the respiratory tract Inhalation of fume may cause lung ocdema (see
T tellurium, causing fire and explosion hazard. observation is indicated. A OCCUPATIONAL EXPOSURE LIMITS: TLV: (Total aust) 0.01 mg/m' EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: Lungs may be affected by repeated or prolonged exposure to dust particles. The substance may have effects on the kidneys, resulting in kidney impairment This substance is carcinogenic to humans. T carcinogen category: 1; Germ cell mutagen group: 3A; (DFG 2004). impairment This substance is carcinogenic to humans. D OSHA PEL*: 1910.1027 TWA 0.005 mg/m ³ *Note: The PEL applies to all Cadmium compounds (as Cd). *Note: The NIOSH REL*: Ca See Appendix A *Note: The NIOSH REL*: Ca See Appendix A *Note: The A A 'REL applies to all Cadmium compounds (as Cd). NIOSH REL*: Ca See Appendix A *Note: The A Solubility in water: none Auto-igninon temperature: (cadmium metal dust) 250°C PHYSICAL PROPERTIES Boiling point: 765°C g/cm ³ Solubility in water: none Auto-igninon temperature: (cadmium metal dust) 250°C	R	gas (hydrogen - see ICSC0001). Dust reacts with oxidants, hydrogen azide, zinc, selenium or	Notes). Inhalation of fumes may cause metal fume fever. The effects may be delayed. Medical
A OCCUPATIONAL EXPOSURE LIMITS: TLV: (Total aust) 0.01 mg/m* EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: Lungs may be affected by repeated or prolonged exposure to dust particles. The substance may have effects on the kidneys, resulting in kidney impairment This substance is carcinogenic to humans. T group: 3A; (DFG 2004). Umgs may be affected by repeated or prolonged exposure to dust particles. The substance may have effects on the kidneys, resulting in kidney impairment This substance is carcinogenic to humans. D group: 3A; (DFG 2004). OSHA PEL*: 1910.1027 TWA 0.005 mg/m ³ "Note: The PEL applies to all Cadmium compounds (as Cd). T MOSH REL*: Ca See Appendix A *Note: The REL applies to all Cadmium compounds (as Cd). A REL applies to all Cadmium compounds (as Cd). NIOSH IDLH: Ca 9 mg/m ⁵ (as Cd) See: IDLH NDEX PROPERTIES Boiling point: 765°C g/cm ³ PROPERTIES Boiling point: 321°C g/cm ³ PROPERTIES Pensity: 8.6 g/cm ³ ENVIRONMENTAL DATA NOTES	T	tellurium, causing fire and explosion hazard.	observation is indicated.
N (Respirable fraction) Lungs may be affected by repeated or protonged exposure to dust particles. The substance may have effects on the kidneys , resulting in kidney impairment This substance is carcinogenic to have effects on the kidneys , resulting in kidney impairment This substance is carcinogenic to humans. D group: 3A; (DFG 2004). have effects on the kidneys , resulting in kidney impairment This substance is carcinogenic to humans. A OSHA PEL*: 1910.1027 TWA 0.005 mg/m³ humans. T compounds (as Cd). humans T NIOSH REL*: Ca See Appendix A *Note: The REL applies to all Cadmium compounds (as Cd). humans: A NIOSH IDLH: Ca 9 mg/m³ (as Cd) See: IDLH NDEX Solubility in water: none Auto-igninon temperature: (cadmium metal dust) 250°C PROPERTIES Density: 8.6 g/cm³ SOLUBILY in water: none Auto-igninon temperature: (cadmium metal dust) 250°C	٨	OCCUPATIONAL EXPOSURE LIMITS: TLV: (Total aust) 0.01 mg/m ³	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
T carcinogen; BEI issued (ACGH 2005). have encoded on the Roneys, resulting in Rodiely MAK: skin absorption (H); impairment This substance is carcinogenic to Carcinogen category: 1; Germ cell mutagen humans. D (DFG 2004). A OSHA PEL*: 1910.1027 TWA 0.005 mg/m ³ *Note: The PEL applies to all Cadmium compounds (as Cd). T NIOSH REL*: Ca See Appendix A *Note: The R REL applies to all Cadmium compounds (as Cd). NIOSH IDLH: Ca 9 mg/m ³ (as Cd) See: IDLH NIOSH IDLH: Ca 9 mg/m ³ (as Cd) See: IDLH NIOEX Boiling point: 765°C Melting point: 321°C PROPERTIES Properties Boiling point: 321°C Density: 8.6 g/cm ³ ENVIRONMENTAL DATA	N	(Respirable fraction) 0.002 mg/m ³ as TWA A2 (suspected human	Lungs may be affected by repeated or prolonged exposure to dust particles. The substance may
D group: 3A; (DFG 2004). A OSHA PEL*: 1910.1027 TWA 0.005 mg/m ³ *Note: The PEL applies to all Cadmium compounds (as Cd). NIOSH REL*: Ca See Appendix A *Note: The A REL applies to all Cadmium compounds (as Cd). NIOSH IDLH: Ca 9 mg/m ² (as Cd) Set: IDLH NIOSH IDLH: Ca 9 mg/m ² (as Cd) Set: IDLH NIDEX Boiling point: 765°C PROPERTIES PROPERTIES Density: 8.6 g/cm ³ ENVIRONMENTAL DATA	T	MAK: skin absorption (H); Carcinogen category: 1; Germ cell mutagen	impairment This substance is carcinogenic to humans.
A OSHA PEL*: 1910.1027 TWA 0.005 mg/m ³ *Note: The PEL applies to all Cadmium compounds (as Cd). NIOSH REL*: Ca See Appendix A *Note: The A REL applies to all Cadmium compounds (as Cd). NIOSH IDLH: Ca 9 mg/m ³ (as Cd) See: IDLH NDEX Boiling point 765°C Solubility in water: none Melting point: 321°C PROPERTIES Density: 8.6 g/cm ³ ENVIRONMENTAL DATA	D	group: 3A; (DFG 2004).	
T compounds (as Cd). NIOSH REL*: Ca See Appendix A *Note: The REL applies to all Cadmium compounds (as Cd). NIOSH IDLH: Ca 9 mg/m ⁵ (as Cd) See: IDLH INDEX Boiling point: 765°C Solubility in water: none Melting point: 321°C PROPERTIES Density: 8.6 g/cm ³ ENVIRONMENTAL DATA NOTES	A	OSHA PEL*: 1910.1027 TWA 0.005 mg/m ³ *Note: The PEL applies to all Cadmium	
A REL applies to all Cadmum compounds (as Cd). NIOSH IDLH: Ca 9 mg/m ² (as Cd) See: IDLH NIDEX Boiling point: 765°C Solubility in water: none Melting point: 321°C Auto-igninon temperature: (cadmium metal dust) PROPERTIES Density: 8.6 250°C g/cm ² ENVIRONMENTAL DATA	T	compounds (as Cd). NIOSH REL*: Ca See Appendix A *Note: The	
PHYSICAL Boiling point 765°C Solubility in water: none PROPERTIES Melting point: 321°C Auto-ignition temperature: (cadmium metal dust) PROPERTIES Density: 8.6 250°C g/cm³ 250°C	A	NIOSH IDLH: Ca 9 mg/m ² (as Cd) See: <u>IDLH</u> <u>NDEX</u>	
PHYSICAL PROPERTIES Melting point: 321°C Density: 8.6 g/cm ³ Auto-igninon temperature: (cadmium metal dust) ENVIRONMENTAL DATA Dominion temperature: (cadmium metal dust)		Boiling point 765°C	Solubility in water: none
ENVIRONMENTAL DATA	PHYSICAL PROPERTIES	Melting point: 321°C Density: 8.6 g/cm ³	Auto-ignition temperature: (cadmium metal dust) 250°C
NOTES	ENVIRONMENTAL		
		NOTES	

ICSC:NENG0020 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0020.html

Reacts violently with fire extinguishing agents such as water, foam.carbon dioxideand halons. Depending on the degree of exposure, periodic medical examination is indicated. The symptoms of lung oedema often do not become manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation are therefore essential. Do NOT take working clothes home. Cadmium also exists in a pyrophoric form (EC No. 048-011-00-X), which bears the additional EU labelling symbol F. R phrase 17, and S phrases 7/8 and 43. UN numbers and packing group will vary according to the physical form of the substance.

j 	ADDITIONAL INFORMATION	
ICSC: 0020	<u>+</u>	CADMIUM
	(C) IPCS, CEC, 1994	
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf responsible for the use which might be made of this information. This of the IPCS Peer Review Committee and may not reflect in all cases al included in national legislation on the subject. The user should verify d irelevant legislation in the country of use. The only modifications made inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDI H values.	of NIOSH, the CEC or the IPCS is card contains the collective views 11 the detailed requirements compliance of the cards with the to produce the U.S. version is

11/5/2008 11:43 AN

SELENIU	M			ICSC: 0072
	G UNEP	1		National Institute for Decupational Sweet and Health
			Se (powder)	
ICSC # 0072 (CAS # 7782- IRTECS # <u>VS77</u> (EC # 034-(¡April 26, 1993 7	49-2 00000 001-00-2 Validated		(former)	
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Combustible. Gives a for toxic filmes (or gas	ff irritating es) in a fire.	NO open flames. NO contactorioxidants.	t with Powder, AFFF, foam, carbon dioxide. NO water
EXPLOSION	Risk of fire and explo contact with oxidants.	sion on		
EXPOSURE			PREVENT DISPERSION C DUST! STRICT HYGIENE	l
INHALATION	Irritation of nose. Cou Dizziness. Headache. Ibreathing, Nausea. So Vomiting, Weakness. imay be delayed (see 1	gh. Laboured re throat. Symptoms Notes).	Ventilation, local exhaust, o breathing protection.	r Fresh air, rest. Refer for medical attention.
-SKIN	Redness. Skin burns. Discolouration.	Pain.	Protective gloves. Protectiv clothing.	e Rinse skin with plenty of water or shower. Refer for medical attention. Remove and isolate contaminated clothes.
•EYES	Redness. Pain. Blurre	d vision.	Safety spectacles or eye protection in combination w breathing protection.	First rinse with plenty of water for: several minutes (remove contact lenses if easily possible). then take to a doctor.
•INGESTION	Metalli c taste. Diarth Fever. (Further see In	oca. Chills. balation).	iDo not eat, drink, or smoke work.	during Rinse mouth. Induce vomiting (ONLY IN CONSCIOUS PERSONS!), Refer for medical attention.
SPILLAG	E DISPOSAL		STORAGE	PACKAGING & LABELLING
Do NOT wash aw, spilled substance i appropriate, moist dusting, Carefully then remove to safe protection: P3 filte particles.	ay into sewer. Sweep nio containers; if en first to prevent collect remainder, è place. Personal er respirator for toxic	Fireproof. S oxidants, str feedstuffs D	Separated from strong rong acids, food and ry.	Airtight. Do not transport with food and feedstuffs. T symbol R: 23/25-33-53 S: 1/2-20/21-28-45-61

http://www.cdc.gov/niosh/ipcsneng/neng0072.html

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0072

Prepared in the context of cooperation between the International Programme on Chermeal Safety & the Commission of the European Communical (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH (DLH values

International Chemical Safety Cards

SELENIUM

ICSC: 0072

	PHYSICAL STATE; APPEARANCE: ODOURLESS SOLID IN VARIOUS FORMS. DARK RED-BROWN TO BLUISH-BLACK	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
I	TRANSPARENT CRYSTALS OR METALLIC • GREY TO BLACK CRYSTALS.	INHALATION RISK: Evaporation at 20°C is negligible; a harmful
M	PHYSICAL DANGERS:	concentration of airborne particles can, however, be reached quickly when dispersed.
р		FEFERCTS OF SHORT-TERM EXPOSURE:
0	CHEMICAL DANGERS:	The substance is irritating to the eyes and the
R	violently with oxidents strong acids Reacts	lung oedema (see Notes). Inhalation of fume may
Т	gas (hydrogen - see ICSC0001) and selenious	and bronchitis. The effects may be delayed.
A	heating with phosphorous and metals such as	EFFECTS OF LONG-TERM OR REPEATED F XPOSURE:
N	COMPATIONAL EXPOSIBELIMITS	Repeated or prolonged contact with skin may
Т	TLV: 0.2 mg/m ² as TWA (ACGIH 2004). MAK: (Inhalable fraction) 0.05 mg/m ³	on the respiratory tract, gastrointestinal tract, and skin, resulting in nausea, vomiting, cough,
D	Category: 3B; Pregnancy risk group: C; (DFG 2004).	garlic breath and bad teeth.
A	OSHA PEL*: TWA 0.2 mg/m ³ *Note: The PEL also applies to other selenium compounds (as	
т	Se) except Selenium hexafluoride. NIOSH REL*: TWA 0.2 mg/m ³ *Note: The REL	
A	also applies to other selenium compounds (as Se) except Selenium hexafluoride. NIOSH IDLH: 1 mg/m ³ (as Se) See: 7782492	
PHYSICAL	Boiling point: 685°C Melting point: 170-217°C	Solubility in water: none
PROFERIES	Relative density (water \approx 1): 4.8	Vapour pressure, Pa at 20°C: 0.1
VIRONMENTAL DATA		
	NOTES	
o NOT take working	g clothes home.	

11/5/2008 11:43 AM

ł.

-

ICSC:NENG0072 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0072.html

ICSC: 0072	SELENIUM
	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELS, NIOSH RELS and NIOSH IDLH values.

LEAD					ICSC: 0052
			/		National Institute for Decupational Safety and Health
ICSC # 0052 CAS # 7439- RTECS # <u>0F75</u> August 10, 200	92-1 25000 2 Validated		Lead metal Plumbum Pb (powder)		
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ DMS	PREVENTION		FIRST AD/ FIRE FIGHTING
FIRE	Not combustible. Gi irritating or toxic fun gases) in a fire.	ves off nes (or	// <u></u>		In case of fire in the surroundings: use appropriate extinguishing media.
EXPLOSION	Finely dispersed particles form explosive mixtures in air.		Prevent deposition of dust; closed system, dust explosion-proof electrical equipment and lighting.		
EXPOSURE	See EFFECTS OF LONG-TERM OR REPEATED EXPOSURE.		PREVENT DISPERSION (DUST: AVOID EXPOSUR (PREGNANT) WOMEN!	OF E OF	
•INHALATION			Local exhaust or breathing protection.		Fresh air, rest.
-SKIN		<u>-</u>	Protective gloves.		Remove contarninated clothes. Rinse and then wash skin with water and soap.
•EYES			Safety spectacles.		First rinse with pleny of water for several minutes (remove contact lenses if easily possible). then take to a cloctor.
-INGESTION	Abdominal pain. Nat Vomiting.	1563.	Do not eat, drink, or smoke work. Wash hands before e	during ating.	Rinse mouth. Give plenty of water to drink. Refer for medical attention.
SPILLAGE	DISPOSAL		STORAGE	PAC	KAGING & LABELLING
Sweep spilled subs containers; if appro- to prevent dusting, remainder, then ren Do NOT let this ch- environment. Perso filter respirator for	tance into priate, moisten first Carefully collect nove to safe place, emical enter the nal protection: P3 toxic particles.	Separated fro incompatible Dangers.	om food and feedstuffs materials See Chemical		

http://www.cdc.gov/niosh/ipcsneng/neng0052.html

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0052

Prepared in the context of cooperation between the International Programme on Chermical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No machilications in the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

LEAD

ICSC: 0052

	PHYSICAL STATE: APPEARANCE: BLUISH-WHITE OR SILVERY-GREY SOLID IN VARIOUS FORMS. TURNS TARNISHED ON FXPOSIBLE TO AIR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation and by ingestion.		
1	i NEWYOAL DANGERS.	INHALATION RISK:		
М	Dust explosion possible if in powder or granular	be reached quickly when dispersed, especially if		
Р				
0	CHEMICAL DANGERS: On heating, toxic fumes are formed. Reacts with	EFFECTS OF SHORT-TERM EXPOSURE:		
R	acid, boiling concentrated hydrochloric acid and sulfaric acid. Attacked by pure water and by	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:		
Т	weak organic acids in the presence of oxygen.	The substance may have effects on the blood bone marrow central nervous system peripheral		
A	OCCUPATIONAL EXPOSURE LIMITS: TLV: 0.05 mg/m ³ as TWA A3 (confirmed animal	nervous system kidneys, resulting in anaemia, encephalopathy (e.g., convulsions), peripheral		
N	carcinogen with unknown relevance to humans); BEI issued (ACGIH 2004).	nerve disease, abdominal cramps and kidney impairment. Causes toxicity to human		
Т	MAK: Carcinogen category: 2; Germ cell mutagen	reproduction or development. This substance is probably carcinogenic to humans. fast track change Oct 06 - IARC 2A.		
D	group: 3A; (DFG 2006). EU OEL: as TWA 0.15 mg/m ³ (EU 2002).	change Oct 06 - IARC ZA.		
А	OSHA PEL*: 1910.1025 TWA 0.050 mg/m ³ See Appendix C *Note: The PEL also applies to			
т	other lead compounds (as Pb) - <u>see Appendix C</u> . NIOSH REL*: TWA 0.050 mg/m ³ <u>See Appendix</u>			
A	<u>C</u> "Note: The REL also applies to other lead compounds (as Pb) - <u>see Appendix C</u> .			
	NIOSH IDLH: 100 mg/m ³ (as Pb) See: 7439921			
PHYSICAL PROPERTIES	Boiling point: 1740°C Melting point: 327.5°C	Density: 11.34 g/cm ³ Solubility in water: none		
NVIRONMENTAL	Bioaccumulation of this chemical may occur in pla advised that this substance does not enter the envir	ants and in manamals. It is strongly ronment.		
AF73, 4.7%		and a set a		

Depending on the degree of exposure, periodic medical examination is suggested. Do NOT take working clothes home. Card has been partly updated in April 2005. See section Occupational Exposure Limits. Card has been partly updated in October 2006: see section Occupational Exposure Limits, Effects Long Tem Exposure.

ICSC:NENG0052 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0052.html

	ADDITIONAL INFORMATION
ICSC: 0052	LEAD
	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values .

MERCUR	Y				ICSC: 0056
		**. 		A	National Institute for Accumational Safety and Health
			Quicksilver Liquid silver Ha		
ICSC # 0056 CAS # 7439-9 RTECS # <u>0V45</u> UN # 2809 EC # 080-6 April 22, 2004 N	97-6 <u>50000</u> 001-00-0 Validated				
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO	ARDS/ MS	PREVENTIC	N	FIRST AID/ FIRE FIGHTING
FIRE	Not combustible. Giv inritating or toxic fun gases) in a fire.	ves off ces (or	!		In case of fire in the surroundings: use appropriate extinguishing media.
EXPLOSION	Risk of fire and expl	osion.			In case of fire: keep drums, etc., loool by spraying with water.
EXPOSURE			STRICT HYGIENE! AV EXPOSURE OF (PREG WOMEN! AVOID EXP IOF ADOLESCENTS A ICHILDREN!	VOID INANT) POSURE ND	IN ALL CASES CONSULT A
•INHALATION	Abdominal pain. Cough. Diarrhoea, Shorness of breath. Vomiting, Fever or elevated body temperature.		Local exhaust or breathin protection.	ng	Fresh air, rest . Artificial respiration if indicated . Refer for medical attention .
•SKIN	MAY BE ABSORBED! Redness.		Protective gloves. Prote Iclothing.	cuve	Remove contaminated clothes. IRinse and then wash skin with water and soap. Refer for imedical attention.
-EYES	1		Face shield, or eye prot combination with breat protection.	ection in hing	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION			IDo not eat, drink, or sm iwork. Wash hands befor	oke during re cating.	Refer for medical attention.
SPILLAG	DISPOSAL	1	STORAGE	PAC	CKAGING & LABELLING
Evacuate danger ar spill! Consult an ex Collect leaking and	ea in case of a large pert! Ventilation. I spilled liquid in	Provision to extinguishin feedstuffs W	contain effluent from fin g. Separated from food a /ell closed.	e Spec nd food T syn	ial material. Do not transport with and feedstuffs. mbol

11/5/2008 11:44 AM

ICSC:NENG0056 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0056.html

iscalable non-metallic containers as far as possible. Do NOT wash away into isewer. Do NOT let this chemical enter the environment. Chemical protection isuit including self-contained breathing apparatus.	N symbol R: 23-33-50/53 S: 1/2-7-45-60-61 UN Hazard Class: 8 IUN Packing Group: III
SEE IMPORTANT INF	ORMATION ON BACK

ICSC: 0056

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communices (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

MERCURY

ICSC: 0056

1	PHYSICAL STATE; APPEARANCE: ODOURLESS HEAVY AND MOBILE	ROUTES OF EXPOSURE:
M	SILVERY LIQUID METAL.	inbalation of its vapour and through the skin, also as a vapour!
P	PHYSICAL DANGERS:	
-	i	INHALATION RISK:
0		A harmful contamination of the air can be
1	CHEMICAL DANGERS:	reached very quickly on evaporation of this
R	Upon heating, toxic fumes are formed. Reacts	substance at 20°C.
	violently with ammonia and halogens causing fire	THE THE PROPERTY OF THE PROPER
Т	and explosion hazard. Attacks aluminium and	EFFECTS OF SHORT-TERM EXPOSITION
	many other metals forming amalgams.	The substance is irritating to the skin. International
A		of the vapours may cause pneumonitus. The
	OCCUPATIONAL EXPOSURE LIMITS:	substance may cause enecis on the contain
N	TLV: 0.025 mg/m ³ as TWA (skin) A4 BEI issued	nervous systematodkioneys. The ended
	(ACGIH 2004).	delayed. Medical observation is marchan
T	MAK: 0.1 mg/m ² Sh	ONC TEPMOR
-	Peak limitation category: II(8) Carcinogen	EFFECTS OF LONG-TERMON
	category: 3B	REPEATED E XPOSURE.
D	(DFG 2003).	The substance may have checks on an initability,
	OSHA PELt: C 0.1 mg/m ³	nervous system Kitcheys, realiting and memory
٨	NIOSH REL: Hg Vapor: TWA 0.05 mg/m3 skin	emotional instal Fifty, densit, the Danger of
11	Other: C 0.1 mg/m ³ skin	disturbances, speccol unital tests show that this
т	NIOSH IDI H: 10 mg/m ³ (as Hg) See: 7439076	cumulative effects upon
*	ACOTTOLE TO HEAT (ASTER DOC. 1457770	SUBSIDICE POSSI EXT OTHER
٨		numan reproduce
FR.	· · · · · · · · · · · · · · · · · · ·	
	Boiling point: 357°C	Vapour pressure - Pa at 20°C: 0.26
DEVELOAL	Melting point: -39°C	Relative vapour density (air = 1): 0.95
PRISCAL	Relative density (water = 1): 13.5	Relative density of the vapour/air-fifixitie ar
PROPERTIES	Solubility in water:	$20^{\circ}C$ (air = 1): 1.009
	BORE	
	The substance is very toyic to aquatic organisms	In the food chain important to humans,
ENVIRONMENTAL	bigaccumulation takes place specifically in fish	
DATA	broad and a start and a	Electron and a second se
	NOREO	
	NUTES	and a second

ICSC:NENG0056 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0056.html

Depending on the degree of exposure, periodic medical examination is indicated. No odour warning if toxic concentrations lare present. Do NOT take working clothes home.

IMPORTANT LEGAL NOTICE: INCSC: 0056 IMPORTANT LEGAL NOTICE: IMPORTANT

ARSENIC			ICSC: 0015
			Accusational Institute for Occusational Sariety and Health
		Grey arsenic	
		As	
ICSC # 0013 CAS # 7440- RTECS # <u>CG05</u> UN # 1558 EC # 033-(Ontober 18, 199	At 38-2 <u>25000</u> 001-00-X 99 Validated	omic mass: 74.9	
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Combustible. Gives off irritating or toxic fumes (or gases) in a fire.	NO open flames. NO contact with strong oxidizers. NO contact with thot surfaces.	Pons der, water spray, foam, carbGD dioxide.
EXPLOSION	Risk of fire and explosion is slight when exposed to hot surfaces or flames in the form of fine powder or dust.	Prevent deposition of dust; closed system, dust explosion-proof electrical equipment and lighting.	
EXPOSURE		PREVENT DISPERSION OF DUST! AVOID ALL CONTACT! AVOID EXPOSURE OF (PREGNANT) WOMEN!	IN ALL CASES CONSULT A
INHALATION	Cough. Sore throat. Shortness of breath. Weakness. See Ingestion.	Closed system and ventilation.	Fresh air, rest. Artificial respondent for may be needed. Refer
SKIN	Redness.	Protective gloves. Protective clothing.	R 1125t skin with plenty of water or
•EYES	Redness.	Face shield or eye protection in combination with breathing protection if powder.	First rinse with plenty of water (i)r several minutes (remove Contract lenses if easily possible), (horit take to a doctor.
INGESTION	Abdominal pain. Diarrhoea. Nausca. Vomiting. Burning sensation in the throat and chest. Shock or collapse.	Do not eat, drink, or smoke during work. Wash hands before eating.	CITEST mouth. Induce vomiting CONSLY IN CONSCIOUS PERSONS!). Refer for medical ane attention.

11/5/2008 11:44.

ICSC:NENG0013 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0013.html

Evacuate danger area! Sweep spilled substance into sealable containers. (Carefully collect remainder, then aremove to safe place. Chemical protection suit including self-contained breathing apparatus. Do NOT let this inchemical enter the environment.	Separated from strong oxidants, acids, halogens, food and feedstuffs. Well closed.	Do not transport with food and feedstuffs. Marine pollutant. T symbol N symbol tR: 23/25-50/53 S: 1/2-20/21-28-45-60-61 UN Hazard Class: 6.1 fUN Packing Group: II
SE	E IMPORTANT INFORMATION ON	BACK
Pr	epared in the context of cooperation between the Intern	ational Programme on Chenneal Safety & the

ICSC: 0013

Propagation in the context of coder autoin desvected the international requiring on Continuous of the European Communics (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH TDLH values

International Chemical Safety Cards

ARSENIC

ICSC: 0013

		· · · · · · · · · · · · · · · · · · ·
	PHYSICAL STATE; APPEARANCE: ODOURLESS. BRITTLE, GREY, METALLIC- LOOKING CRYSTALS.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation of its aerosol and by ingestion.
1		
	PHYSICAL DANGERS:	INHALATION RISK:
M		Evaporation at 20°C is negligible; a harmful concentration of airborne particles can, however,
Р	CHEMICAL DANGERS:	be reached quickly, when dispersed.
о	violently with strong oxidants and halogens,	EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eves the skin and
R	acids to produce	the respiratory tract. The substance may cause effects on the gastrointestinal tract
Т	OCCUPATIONAL EXPOSURE LIMITS: OSHA PEL: 1910.1018 TWA 0.010 mg/m ³	cardiovascular system central nervous system kidneys, resulting in severe gastroenteritis, loss
A	NIOSH REL: Ca C 0.002 mg/m ³ 15-minute See	of fluid, and electrolytes, cardiac disorders shock convulsions and kidney impairment Exposure shove the OEL may result in death. The
N	NIOSH IDLH: Ca 5 mg/m ³ (as As) See: <u>7440382</u> TLV: 0.01 mg/m ³ as TWA A1 (confirmed human	effects may be delayed. Medical observation is indicated
Т	 carcinogen); BEI issued (ACGIH 2004). MAK: Carcinogen category: 1; Germ cell mutagen 	EFFECTS OF LONG-TERM OR
D	group: 3A: (DFG 2004).	Repeated or prolonged contact with skin may cause dermatitis. The substance may have effects
A		on the mucous membranes, skin, peripheral nervous system liver bone marrow, resulting in
Т		pigmentation disorders, hyperkeratosis, perforation of nasal septim, neuropathy, liver
A		impairment anaemia This substance is carcinogenic to humans. Animal tests show that this substance possibly causes toxicity to human reproduction or development.
PHYSICAL PROPERTIES	Sublimation point: 613°C Density: 5.7 g/cm ³	Solubility in water: none

ICSC:NENG0013 International Chemical Safety Cards (WHO/IPCS/IL...

http://www.cdc.gov/niosh/ipcsneng/neng0013.html

ENVIRONMEN DATA	TAL The substance is toxic to aquatic organisms. It is strongly advised that this substance does not enter the environment.
	NOTES
The substance is a medical examinat ie.g., Arsenic pent	combustible but no flash point is available in literature. Depending on the degree of exposure, periodic ion is suggested. Do NOT take working clothes home. Refer also to cards for specific arsenic compounds, oxide (ICSC 0377), Arsenic trichloride (ICSC 0221), Arsenic trioxide (ICSC 0378), Arsine (ICSC 0222). Transport Emergency Card: TEC (R)-61GT5-II
	ADDITIONAL INFORMATION
ICSC: 0013	ARSENIC
,	(C) IPCS, CEC, 1994
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

CHROMI	UM				ICSC: 0029
		d data ta		N	National Institute for Decupational Safety and Health
-72-			Chrome	a ann an Anna a	
		А	Cr tomic mass: 52.0 (powder)		
ICSC # 0029 CAS # 7440- RTECS # <u>GB42</u> October 27, 200	47-3 200000 04 Validated				
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ	ARDS/ MS	PREVENTI	ON	FIRST AID/ FIRE FIGHTING
FIRE	Combustible under speconditions.	eciñc	No open flames if in po form.	owder	In case of fire in the surroundings: use appropriate extinguishing media.
EXPLOSION			Prevent deposition of c system, dust explosion electrical equipment at	iust: closed -proof nd lighting.	
EXPOSURE			PREVENT DISPERSION	ON OF	
•INHALATION	Cough.		Local exhaust or breat	hing	Fresh air, rest.
SKIN		<u></u>	Protective gloves .		Remove contaminated clothes. Rinse skin with plenty of water or ishower.
•EYES	iRedness.		Safety goggles.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	TION De not eat, drink, or smoke during		noke during	Rinse mouth.	
SPILLAGI	E DISPOSAL		STORAGE	PAC	CKAGING & LABELLING
Sweep spilled sub containers; if appro to prevent dusting. P2 filter respirator	stance into opriate, moisten first Personal protection: for harmful particles.				
	SEE	IMPORT	ANT INFORMATION O	ON BACK	
ICSC: 0029	Prep Com been	ared in the con mission of the made except t	text of cooperation between the lu European Communities (C) IPCS to add the OSHA PELS, NIOSH I	nternational Pro CEC 1994. No RELs and N101	gramme on Chemical Safety & the modifications in the International version have SH 1DLH values.

11/5/2008 11:45 AM

http://www.cdc.gov/piosh/ipcsneng/neugov27.neu

ICSC:NENG0029 International Chemical Safety Cards (WHO/IPCS/IL..

International Chemical Safety Cards

1CSC: 0029

ROMIUN	A STATE OF EXPOSURE:
ROMIUN 1 M P O R T A N T D A T A	Image: Physical state; appearance; grey powder ROUTES OF EXPOSURE; PHYSICAL DANGERS: Image: Physical base of the powder or granular form, mixed with air. Image: Physical base of the powder or granular form, mixed with air. CHEMICAL DANGERS: Image: Physical base of the powder or granular form, mixed with air. Image: Physical base of the powder or granular form, mixed with air. CHEMICAL DANGERS: Image: Physical base of the powder or granular form, mixed with many organic and inorganic substances, causing fire and explosion hazard. EFFECTS OF SHORT-TERM EXPOSURE: OCCUPATIONAL EXPOSURE LIMITS: EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: OSHA PEL*: TWA 1 mg/m ³ See Appendix C NIOSH REL: TWA 0.5 mg/m ³ See Appendix C NIOSH REL: TWA 0.5 mg/m ³ (as Cr) See: 7440473 Estability in W3845 ²⁷
PHYSICAL PROPERTIES	Boiling point: 2642°C none Melting point: 1900°C none Density: 7.15 [g/cm ³
NVIRONMENT	
DATA	NOTES
and the second s	in air. See ICSC 1 531 Chromium(III)oxide in air. See ICSC 1 531
be surface of the c	ADDEPTONAL INFORMATION
	CHROMIT
ICSC: 0029	(C) IPCS, CEC, 1994 Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of five NIOSH, the CEC or the IPC responsible for the use which might be made of this information. This card contains the collective ver- ing of the IPCS Peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS Peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS Peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and may not reflect in all cases all three detailed requirements of the IPCS peer Review Committee and the IPCS peer Review
NOTICE:	included in nanonal registration of use. The only modifications made of the relevant legislation in the country of use. The only modifications made of the oshA pELs, NIOSH RELs and NIOSH IDLH values.

11/5/2008 11

Appendix B

Respirator Fit Test Procedures

Appendix A to Sec. 1910.120--Personal Protective Equipment Test Methods

This appendix sets forth the non-mandatory examples of tests which may be used to evaluate compliance with Sec. 1910.120 (g)(4)(ii) and (iii). Other tests and other challenge agents may be used to evaluate compliance.

A. Totally-encapsulating chemical protective suit pressure test

1.0--Scope

1.1 This practice measures the ability of a gas tight totallyencapsulating chemical protective suit material, scams, and closures to maintain a fixed positive pressure. The results of this practice allow the gas tight integrity of a totally-encapsulating chemical protective

suit to be evaluated. 1.2 Resistance of the suit materials to permeation, penetration, and degradation by specific hazardous substances is not determined by this test method.

2.0--Definition of terms

2.1 Totally-encapsulated chemical protective suit (TECP suit) means a full body garment which is constructed of protective clothing materials; covers the wearer's torso, head, arms, legs and respirator; may cover the wearer's hands and feet with tightly attached gloves and boots; completely encloses the wearer and respirator by itself or in

combination with the wearer's gloves and boots. 2.2 Protective clothing material means any material or combination of materials used in an item of clothing for the purpose of isolating parts of the body from direct contact with a potentially hazardous liquid or gaseous chemicals.

2.3 Gas tight means, for the purpose of this test method, the limited flow of a gas under pressure from the inside of a TECP suit to atmosphere at a prescribed pressure and time interval.

3.0--Summary of test method

3.1 The TECP suit is visually inspected and modified for the test. The test apparatus is attached to the suit to permit inflation to

[[Page 392]]

the pre-test suit expansion pressure for removal of suit wrinkles and creases. The pressure is lowered to the test pressure and monitored for three minutes. If the pressure drop is excessive, the TECP suit fails the test and is removed from service. The test is repeated after leak location and repair.

4.0--Required Supplies

4.1 Source of compressed air.

4.2 Test apparatus for suit testing, including a pressure measurement device with a sensitivity of at least \1/4\ inch water gauge.

4.3 Vent valve closure plugs or sealing tape.4.4 Scapy water solution and soft brush.

4.5 Stop watch or appropriate timing device.

5.0--Safety Precautions 5.1 Care shall be taken to provide the correct pressure safety devices required for the source of compressed air used.

6.0--Test Procedure

6.1 Prior to each test, the tester shall perform a visual inspection of the suit. Check the suit for seam integrity by visually examining the 8.1.4 Records shall be kept for each pressure test even if repairs are being made at the test location.

Caution

Visually inspect all parts of the suit to be sure they are positioned correctly and secured tightly before putting the suit back into service. Special care should be taken to examine each exhaust valve to make sure it is not blocked.

Care should also be exercised to assure that the inside and outside of the suit is completely dry before it is put into storage.

B. Totally-encapsulating chemical protective suit qualitative leak test

1.0--Scope

1.1 This practice semi-qualitatively tests gas tight totallyencapsulating chemical protective suit integrity by detecting inward leakage of ammonia vapor. Since no modifications are made to the suit to carry out

[[Page 393]]

this test, the results from this practice provide a realistic test for the integrity of the entire suit.

1.2 Resistance of the suit materials to permeation, penetration, and degradation is not determined by this test method. ASTM test methods are available to test suit materials for these characteristics and the tests are usually conducted by the manufacturers of the suits.

2.0--Definition of terms

2.1 Totally-encapsulated chemical protective suit (TECP suit) means a full body garment which is constructed of protective clothing materials; covers the wearer's torso, head, arms, legs and respirator; may cover the wearer's hands and feet with tightly attached gloves and boots; completely encloses the wearer and respirator by itself or in combination with the wearer's gloves, and boots.

2.2 Protective clothing material means any material or combination of materials used in an item of clothing for the purpose of isolating parts of the body from direct contact with a potentially hazardous liquid or gaseous chemicals.

2.3 Gas tight means, for the purpose of this test method, the limited flow of a gas under pressure from the inside of a TECP suit to atmosphere at a prescribed pressure and time interval.

2.4 Intrusion Coefficient means a number expressing the level of protection provided by a gas tight totally-encapsulating chemical protective suit. The intrusion coefficient is calculated by dividing the test room challenge agent concentration by the concentration of challenge agent found inside the suit. The accuracy of the intrusion coefficient is dependent on the challenge agent monitoring methods. The larger the intrusion coefficient the greater the protection provided by the TECP suit.

3.0--Summary of recommended practice

3.1 The volume of concentrated aqueous ammonia solution (ammonia hydroxide NH<INF>4</INF> OH) required to generate the test atmosphere is determined using the directions outlined in 6.1. The suit is donned by a person wearing the appropriate respiratory equipment (either a positive pressure self-contained breathing apparatus or a positive pressure supplied air respirator) and worn inside the enclosed test room. The exhaust of the ammonia test atmosphere after the test(s) are completed. 5.5 Individuals shall be medically screened for the use of

respiratory protection and checked for allergies to ammonia before participating in this test procedure.

6.0--Test procedure

6.1.1 Measure the test area to the nearest foot and calculate its volume in cubic feet. Multiply the test area volume by 0.2 milliliters of concentrated aqueous ammonia solution per cubic foot of test area volume to determine the approximate volume of concentrated aqueous ammonia required to generate 1000 ppm in the test area. 6.1.2 Measure this volume from the supply of concentrated aqueous

6.1.2 Measure this volume from the supply of concentrated aqueous ammonia and place it into a closed plastic container.

6.1.3 Place the container, several high range ammonia detector tubes, and the pump in the clean test pan and locate it near the test area entry door so that the suited individual has easy access to these supplies.

6.2.1 In a non-contaminated atmosphere, open a pre-sealed ammonia indicator strip and fasten one end of the strip to the inside of the suit face shield lens where it can be seen by the wearer. Moisten the indicator strip with distilled water. Care shall be taken not to contaminate the detector part of the indicator paper by touching it. A small piece of masking tape or equivalent should be used to attach the indicator strip to the interior of the suit face shield.

6.2.2 If problems are encountered with this method of attachment, the indicator strip can be attached to the outside of the respirator face piece lens being used during the test.

6.3 Don the respiratory protective device normally used with the suit, and then don the TECP suit to be tested. Check to be sure all openings which are intended to be sealed (zippers, gloves, etc.) are completely sealed. DO NOT, however, plug off any venting valves.

6.4 Step into the enclosed test room such as a closet, bathroom, or test booth, equipped with an exhaust fan. No air should be exhausted from the chamber during the test because this will dilute the ammonia challenge concentrations.

6.5 Open the container with the pre-measured volume of concentrated aqueous ammonia within the enclosed test room, and pour the liquid into the empty plastic test pan. Wait two minutes to allow for adequate volatilization of the concentrated aqueous ammonia. A small mixing fan can be used near the evaporation pan to increase the evaporation rate of the ammonia solution.

6.6 After two minutes a determination of the ammonia concentration within the chamber should be made using the high range colorimetric detector tube. A concentration of 1000 ppm ammonia or greater shall be generated before the exercises are started.

6.7 To test the integrity of the suit the following four minute exercise protocol should be followed:6.7.1 Raising the arms above the head with at least 15 raising

6.7.1 Raising the arms above the head with at least 15 raising motions completed in one minute.

6.7.2 Walking in place for one minute with at least 15 raising motions of each leg in a one-minute period.

6.7.3 Touching the toes with a least 10 complete motions of the arms from above the head to touching of the toes in a one-minute period. 6.7.4 Knee bends with at least 10 complete standing and squatting motions in a one-minute period.

6.8 If at any time during the test the colorimetric indicating paper should change colors, the test should be stopped and section 6.10 and 6.12 initiated (See] 4.2). Visually inspect all parts of the suit to be sure they are positioned correctly and secured tightly before putting the suit back into service. Special care should be taken to examine each exhaust valve to make sure it is not blocked. Care should also be exercised to assure that the inside and outside of the suit is completely dry before it is put into storage.

APPENDIX 5

MANUFACTURER'S SPECIFICATION OF VAPOR BARRIER

VAPORBLOCK[®] PLUS[™] vbp20

Under-Slab Vapor / Gas Barrier

Product Description

VaporBlock[®] Plus[™] 20 is a seven-layer co-extruded barrier made from state-of-the-art polyethylene and EVOH resins to provide unmatched impact strength as well as superior resistance to gas and moisture transmission. VaporBlock[®] Plus[™] 20 is a highly resilient underslab / vertical wall barrier designed to restrict naturally occurring gases such as radon and/or methane from migrating through the ground and concrete slab. VaporBlock[®] Plus[™] 20 is more than 100 times less permeable than typical high-performance polyethylene vapor retarders against Methane, Radon and other harmful VOCs.

VaporBlock[®] Plus[™] 20 is one of the most effective underslab gas barriers in the building industry today far exceeding ASTM E-1745 (Plastic Water Vapor Retarders Used in Contact with Soil or Granular Fill Under Concrete Slabs) Class A, B and C requirements. Available in a 20 (Class A) mil thicknesses designed to meet the most stringent requirements. VaporBlock[®] Plus[™] 20 is produced within the strict guidelines of our ISO 9001:2008 Certified Management System.

Product Use

VaporBlock[®] Plus[™] 20 resists gas and moisture migration into the building envelop when properly installed to provide protection from toxic/harmful chemicals. It can be installed as part of a passive or active control system extending across the entire building including floors, walls and crawl spaces. When installed as a passive system it is recommended to also include a ventilated system with sump(s) that could be converted to an active control system with properly designed ventilation fans.

VaporBlock[®] Plus[™] 20 works to protect your flooring and other moisture-sensitive furnishings in the building's interior from moisture and water vapor migration, greatly reducing condensation, mold and degradation.

Size & Packaging

VaporBlock[®] Plus[™] 20 is available in 10' x 150' rolls to maximize coverage. All rolls are folded on heavy-duty cores for ease in handling and installation. Other custom sizes with factory welded seams are available based on minimum volume requirements. Installation instructions and ASTM E-1745 classifications accompany each roll.

© 2012 RAVEN INDUSTRIES INC. All rights reserved.

Under-Slab Vapor/Gas Retarder

Product	Part #
VaporBlock Plus 20	VBP 20

APPLICATIONS

Radon Barrier Methane Barrier VOC Barrier Under-Slab Vapor Retarder Foundation Wall Vapor Retarder

VAPORBLOCK[®] PLUS[™] vbp20

ISO 9001:2008

Under-Slab Vapor / Gas Barrier

		VAPORBLOCK PLUS 20	
PROPERTIES	TEST METHOD	IMPERIAL	METRIC
Appearance		White/Gold	
THICKNESS, NOMINAL		20 mil	0.51 mm
WEIGHT		102 lbs/MSF	498 g/m²
CLASSIFICATION	ASTM E 1745	CLASS A, B & C	
Tensile Strength lbf/in (N/cm) average md & td (new material)	ASTM E 154 Section 9 (D-882)	58 lbf	102 N
IMPACT RESISTANCE	ASTM D 1709	2600 g	
MAXIMUM USE TEMPERATURE		180° F	82° C
MINIMUM USE TEMPERATURE		-70° F	-57° C
Permeance (new material)	ASTM E 154 Section 7 ASTM E 96 Procedure B	0.0098 Perms grains/(ft²·hr·in·Hg)	0.0064 Perms g/(24hr⋅m²⋅mm Hg)
(AFTER CONDITIONING) Perms (same measurement as above permeance)	ASTM E 154 Section 8, E96 Section 11, E96 Section 12, E96 Section 13, E96	0.0079 0.0079 0.0097 0.0113	0.0052 0.0052 0.0064 0.0074
WVTR	ASTM E 96 Procedure B	0.0040 grains/hr-ft ²	0.0028 gm/hr-m²
RADON DIFFUSION COEFFIECIENT	K124/02/95	< 1.1 x 10 ⁻¹³ m²/s	
Methane Permeance	ASTM D 1434	< 1.7 x 10 ⁻¹⁰ m²/d• atm 0.32 GTR (Gas Transmission Rate) ml/m²•D•ATM	

VaporBlock[®] Plus[™] Placement

All instructions on architectural or structural drawings should be reviewed and followed.

Detailed installation instructions accompany each roll of VaporBlock® Plus™ and can also be located on our website. ASTM E-1643 also provides general installation information for vapor retarders.

VaporBlock[®] Plus[™] is a seven-layer co-extruded barrier made using high quality virgin-grade polyethylene and EVOH resins to provide unmatched impact strength as well as superior resistance to gas and moisture transmission.

Note: To the best of our knowledge, unless otherwise stated, these are typical property values and are intended as guides only, not as specification limits. Chemical resistance, odor transmission, longevity as well as other performance criteria is not implied or given and actual testing must be performed for applicability in specific applications and/or conditions. RAVEN INDUSTRIES MAKES NO WARRANTIES AS TO THE FITNESS FOR A SPECIFIC USE OR MERCHANTABILITY OF PRODUCTS REFERRED TO, no guarantee of satisfactory results from reliance upon contained information or recommendations and disclaims all liability for resulting loss or damage. Limited Warranty available at www.RavenEFD.com

Engineered Films Division P.O. Box 5107 Sioux Falls, SD 57117-5107 Ph: (605) 335-0174 • Fx: (605) 331-0333 Toll Free: 800-635-3456 Email: efdsales@ravenind.com www.ravenefd.com 1/11 EFD 1125

Scan QR Code to download current technical data sheets via the Raven website.

Grace Below Grade Waterproofing

PREPRUFE[®] 300R & 160R

Pre-applied waterproofing membranes that bond integrally to poured concrete for use below slabs or behind basement walls on confined sites

Description

Preprufe[®] 300R & 160R membranes are unique composite sheets comprising a thick HDPE film, an aggressive pressure sensitive adhesive and a weather resistant protective coating.

Unlike conventional non-adhering membranes, which are vulnerable to water ingress tracking between the unbonded membrane and structure, the unique Preprufe bond to concrete prevents ingress or migration of water around the structure.

The Preprufe R System includes:

- Preprufe 300R—heavy-duty grade for use below slabs and on rafts (i.e. mud slabs). Designed to accept the placing of heavy reinforcement using conventional concrete spacers.
- Preprufe 160R—thinner grade for blindside, zero property line applications against soil retention systems.
- **Preprufe Tape LT**—for covering cut edges, roll ends, penetrations and detailing (temperatures between 25°F (-4°C) and 86°F (+30°C)).
- **Preprufe Tape HC**—as above for use in Hot Climates (minimum 50°F (10°C)).
- Bituthene* Liquid Membrane—for sealing around penetrations, etc.
- Adcor[™] ES—waterstop for joints in concrete walls and floors
- Preprufe Tieback Covers—preformed cover for soil
 retention wall tieback heads
- Preprufe Preformed Corners—preformed inside
 and outside corners

Preprufe 300R & 160R membranes are applied either horizontally to smooth prepared concrete, carton forms or well rolled and compacted earth or crushed stone substrate; or vertically to permanent formwork or adjoining structures. Concrete is then cast directly against the adhesive side of the membranes. The specially developed Preprufe adhesive layers work together to form a continuous and integral seal to the structure.

Preprufe can be returned up the inside face of slab formwork but is not recommended for conventional twin-sided formwork on walls, etc. Use Bituthene selfadhesive membrane or Procor[®] fluid applied membrane to walls after removal of formwork for a fully bonded system to all structural surfaces.

Advantages

- Forms a unique continuous adhesive bond to concrete poured against it—prevents water migration and makes it unaffected by ground settlement beneath slabs
- · Fully-adhered watertight laps and detailing
- Provides a barrier to water, moisture and gas physically isolates the structure from the surrounding ground
- **BBA Certified** for basement Grades 2, 3, & 4 to BS 8102:1990
- Zero permeance to moisture
- · Solar reflective-reduced temperature gain
- Simple and quick to install—requiring no priming or fillets
- Can be applied to permanent formwork—allows maximum use of confined sites
- Self protecting—can be trafficked immediately after application and ready for immediate placing of reinforcement
- Unaffected by wet conditions—cannot activate
 prematurely
- Inherently waterproof, non-reactive system:
- · not reliant on confining pressures or hydration
- unaffected by freeze/thaw, wet/dry cycling
 Chemical resistant—effective in most types of soils
- and waters, protects structure from salt or sulphate attack

Drawings are for illustration purposes only. Please refer to graceconstruction.com for specific application details

Installation

The most current application instructions, detail drawings and technical letters can be viewed at graceconstruction.com. For other technical information contact your local Grace representative.

Preprufe 300R & 160R membranes are supplied in rolls 4 ft (1.2 m) wide, with a selvedge on one side to provide self-adhered laps for continuity between rolls. The rolls of Preprufe Membrane and Preprufe Tape are interwound with a disposable plastic release liner which must be removed before placing reinforcement and concrete.

Substrate Preparation

All surfaces-It is essential to create a sound and solid substrate to eliminate movement during the concrete pour. Substrates must be regular and smooth with no gaps or voids greater than 0.5 in. (12 mm). Grout around all penetrations such as utility conduits, etc. for stability (see Figure 1).

Horizontal-The substrate must be free of loose aggregate and sharp protrusions. Avoid curved or rounded substrates. When installing over earth or crushed stone, ensure substrate is well compacted to avoid displacement of substrate due to traffic or concrete pour. The surface does not need to be dry, but standing water must be removed.

Vertical—Use concrete, plywood, insulation or other approved facing to sheet piling to provide support to the membrane. Board systems such as timber lagging must be close butted to provide support and not more than 0.5 in. (12 mm) out of alignment.

Membrane Installation

Preprufe can be applied at temperatures of 25°F (-4°C) or above. When installing Preprufe in cold or marginal weather conditions 55°F (<13°C) the use of Preprufe Tape LT is recommended at all laps and detailing. Preprufe Tape LT should be applied to clean, dry surfaces and the release liner must be removed immediately after application. Alternatively, Preprufe Low Temperature (LT) is available for low temperature condition applications. Refer to Preprufe LT data sheet for more information.

Horizontal substrates—Place the membrane HDPE film side to the substrate with the clear plastic release liner facing towards the concrete pour. End laps should be staggered to avoid a build up of layers. Leave plastic release liner in position until overlap procedure is completed (see Figure 2).

Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap. Peel back the plastic release liner from between the overlaps as the two layers are bonded together. Ensure a continuous bond is achieved without creases and roll firmly with a heavy roller. Completely remove the plastic liner to expose the protective coating. Any initial tack will quickly disappear

Refer to Grace Tech Letter 15 for information on suitable rebar chairs for Preprufe.

Vertical substrates—Mechanically fasten the membrane vertically using fasteners appropriate to the substrate with the the clear plastic release liner facing towards the concrete pour. The membrane may be installed in any convenient length. Fastening can be made through the selvedge using a small and low profile head fastener so that the membrane lays flat and allows firmly rolled overlaps. Immediately remove the plastic release liner.

Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to

overlap. Roll firmly to ensure a watertight seal. Roll ends and cut edges-Overlap all roll ends and cut edges by a minimum 3 in. (75 mm) and ensure the area is clean and free from contamination, wiping with a damp cloth if necessary. Allow to dry and apply Preprufe Tape LT (or HC in hot climates) centered over the lap edges and roll firmly (see Figure 3). Immediately remove printed plastic release liner from the tape. Details

Refer to Preprufe Field Application Manual, Section V Application Instructions or visit graceconstruction.com. This manual gives comprehensive guidance and standard details.

Membrane Repair

Inspect the membrane before installation of reinforcement steel, formwork and final placement of concrete. The membrane can be easily cleaned by power washing if required. Repair damage by wiping the area with a damp cloth to ensure the area is clean and free from dust, and allow to dry. Repair small punctures (0.5 in. (12 mm) or less) and slices by applying Preprufe Tape centered over the damaged area and roll firmly. Remove the release liner from the tape. Repair holes and large punctures by applying a patch of Preprufe membrane, which extends 6 in. (150 mm) beyond the damaged area. Seal all edges of the patch with Preprufe Tape, remove the release liner from the tape and roll firmly Any areas of damaged adhesive should be covered with Preprufe Tape. Remove printed plastic release liner from tape. Where exposed selvedge has lost adhesion or laps have not been sealed, ensure the area is clean and dry and cover with fresh Preprufe Tape, rolling firmly. Alternatively, use a hot air gun or similar to activate adhesive and firmly roll lap to achieve continuity. Pouring of Concrete

Ensure the plastic release liner is removed from all areas of Preprufe membrane and tape.

It is recommended that concrete be poured within 56 days (42 days in hot climates) of application of the membrane. Following proper ACI guidelines, concrete must be placed carefully and consolidated properly to avoid damage to the membrane. Never use a sharp object to consolidate the concrete.

Removal of Formwork

Preprufe membranes can be applied to removable formwork, such as slab perimeters, elevator and lift pits, etc. Once the concrete is poured the formwork must remain in place until the concrete has gained sufficient compressive strength to develop the surface bond Preprufe membranes are not recommended for conven-tional twin-sided wall forming systems.

A minimum concrete compressive strength of 1500 psi (10 N/mm²) is recommended prior to stripping form work supporting Preprufe membranes. Premature stripping may result in displacement of the membrane and/or spalling of the concrete.

Refer to Grace Tech Letter 17 for information on removal of formwork for Preprufe.

Detail Drawings

Details shown are typical illustrations and not working details. For a list of the most current details, visit us at graceconstruction.com. For technical assistance with detailing and problem solving please call toll free at 866-333-3SBM (3726).

Wall base detail against permanent shutter

Bituthene wall base detail (Option 1)

Procor wall base detail (Option 1)

Procor wall base detail (Option 2)

0

8

(5)

6

5

8

Bituthene wall base detail (Option 2)

- Preprufe 300R
 Preprufe 160R
 Preprufe Tape
- 4 Bituthene
- 5 Procor
 - 6 Bituthene Liquid Membrane
- 7 Protection
- Hydroduct[®] 8 9

20

Adcor ES Preprufe CJ Tape 10

X

1

b

¢,

20

Supply

Dimensions (Nominal)	Preprufe 300R Membrane	Preprufe 160R Membrane	Preprufe Tape (LT or HC*)		
Thickness	0.046 in. (1.2 mm)	0.032 in. (0.8 mm)			
Roll size	4 ft x 98 ft (1.2 m x 30 m)	4 ft x 115 ft (1.2 m x 35 m)	4 in. x 49 ft (100 mm x 15 m)		
Roll area	392 ft ² (36 m ²)	460 ft ² (42 m ²)			
Roll weight	108 lbs (50 kg)	92 lbs (42 kg)	4.3 lbs (2 kg)		
Minimum side/end laps	3 in. (75 mm)	3 in. (75 mm)	3 in. (75 mm)		
* LT denotes Low Temperature (between 25°F (-4°C) and 86°F (+30°C))					
HC denotes Hot Climate (50°F (>+10°C))					
Ancillary Products					
Bituthene Liquid Membrane—1.5 US gal (5.7 liter) or 4 US gal (15.1 liter)					

Physical Properties

Property	Typical Value 300R	Typical Value 160R	Test Method
Color	white	white	
Thickness	0.046 in. (1.2 mm)	0.032 in. (0.8 mm)	ASTM D3767
Lateral Water Migration	Pass at 231 ft (71 m) of	Pass at 231 ft (71 m) of	ASTM D5385, modified ¹
Resistance	hydrostatic head pressure	hydrostatic head pressure	
Low temperature flexibility	Unaffected at -20°F (-29°C)	Unaffected at -20°F (-29°C)	ASTM D1970
Resistance to hydrostatic	231 ft (71 m)	231 ft (71 m)	ASTM D5385,
head			modified ²
Elongation	500%	500%	ASTM D412, modified ³
Tensile strength, film	4000 psi (27.6 MPa)	4000 psi (27.6 MPa)	ASTM D412
Crack cycling at -9.4°F	Unaffected, Pass	Unaffected, Pass	ASTM C836
(-23°C), 100 cycles			
Puncture resistance	221 lbs (990 N)	100 lbs (445 N)	ASTM E154
Peel adhesion to concrete	5 lbs/in. (880 N/m)	5 lbs/in. (880 N/m)	ASTM D903, modified ⁴
Lap peel adhesion	5 lbs/in. (880 N/m)	5 lbs/in. (880 N/m)	ASTM D1876, modified ⁵
Permeance to water	0.01 perms	0.01 perms	ASTM E96, method B
vapor transmission	(0.6 ng/(Pa x s x m ²))	(0.6 ng/(Pa x s x m ²))	
Water absorption	0.5%	0.5%	ASTM D570

Footnotes:

Footnotes:
1. Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the membrane.
2. Hydrostatic head tests of Preprufe Membranes are performed by casting concrete against the membrane with a lap. Before the concrete cures, a 0.125 in. (3 mm) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane sure is cure at rate of 2 in. (50 mm) per minute.
3. Elongation of membrane is run at rate of 2 in. (50 mm) per minute.
4. Concrete is cast against the protective coating surface of the membrane and allowed to properly dry (7 days minimum). Peel adhesion of membrane to concrete is coast against the lap is formed (per Grace published recommendations) and run at a rate of 2 in. (50 mm) per minute.
5. The test is conducted 15 minutes after the lap is formed (per Grace published recommendations) and run at a rate of 2 in. (50 mm) per minute.

Specification Clauses

Preprufe 300R or 160R shall be applied with its adhesive face presented to receive fresh concrete to which it will integrally bond. Only Grace Construction Products approved membranes shall be bonded to Preprufe 300R/160R. All Preprufe 300R/160R system materials shall be supplied by Grace Construction Products, and applied strictly in accordance with their instructions. Specimen performance and formatted clauses are also available.

NOTE: Use Preprufe Tape to tie-in Procor with Preprufe. Health and Safety

Refer to relevant Material Safety data sheet. Complete rolls should be handled by a minimum of two persons.

www.graceconstruction.com

For technical assistance call toll free at 866-333-3SBM (3726)

Adcor is a trademark and Preprufe, Bituthene and Hydroduct are registered trademarks of W. R. Grace & Co.-Conn. Procor is a U.S. registered trademark of W. R. Grace & Co.-Conn., and is used in Canada under license from PROCOR LIMITED. We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infinge any patent or copyright. W. R. Grace & Co.-Conn., 62 Whittemore Avenue, Cambridge, MA 02140. In Canada, Grace Canada, Inc., 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.

 This product may be covered by patents or patents pending.

 PF-111H
 Printed in U.S.A.
 07/12

Copyright 2012. W. R. Grace & Co.-Conn. FA/PDF

Grace Waterproofing Products

PREPRUFE[®]

Structural Waterproofing Solutions

A New World-class Music Center Employs An Innovative Waterproofing Solution

The Green Music Center under construction at Sonoma State University Rohnert Park, California

When you think of a world-class music center, excellent acoustics and soundproofing may come to mind. With its smart design, the 1,400-seat Green Music Center at Sonoma State University more than meets those requirements. But perhaps surprisingly, one of the most innovative aspects of the concert hall isn't its soundproofing, but its waterproofing system.

"We specify Preprufe[®] and Bituthene[®] on pretty much all of our projects. It's an easy choice as far as we're concerned, because we've had so much success using Grace waterproofing."

Bill Bussey A.C. Martin Partners That's because while the concert hall entrance sits at ground level, the hall slopes downward, below grade, toward the stage. In addition, several feet of space required for the building's air supply below the floor extend the depth even farther. With a high water table just a few feet below the surface, some clever design and construction was needed – to create both a temporary underground dewatering system during construction, and a long-term waterproofing solution to keep the concert hall dry for years to come.

"We knew that the water table would create a real challenge, so temporary wells were created around the perimeter foundation that collect water for pumping during construction," explained Bill Bussey of A.C. Martin Partners, the architects for the concert hall. During construction, with the high water table, water pumps were moving thousands of gallons of water per day and operating constantly. With energy and noise concerns, it became apparent that a more efficient long-term solution was needed. As a result, a sub-surface diversion system for the groundwater was created around the perimeter of the entire building.

In addition to the dewatering system, waterproofing was essential to the success of the project. With the guidance of their specialized waterproofing consultants, A.C. Martin Partners specified Grace waterproofing products based on the architectural firm's long-term track record using them in these types of applications. Grace's Preprufe® 300R was utilized in the sump pit, where despite muddy conditions, the pre-applied waterproofing membrane's aggressive pressure-sensitive adhesive formed a tight adhesive bond to the concrete to prevent ingress or migration of water around the structure. To waterproof the exterior basement walls, Bituthene® System 4000 was applied. A pre-formed waterproofing membrane, Bituthene® System 4000 incorporates a super tacky self-adhesive membrane with a latex surface primer to provide a long-term waterproofing solution.

"With the high water table presenting a challenge, a smart solution was proposed that supported our building design and enabled the project to move forward successfully."

Bryce Tanner, Arup

"We're pleased with the overall solution," said Bill Bussey. "The basement is dry with no complaints." To isolate the concert hall from any noise created by the water pumps, the facility is completely sound insulated to

Surrounded by scenic views, the world-class music center rising in Sonoma County.

Managing the site's high water table required some clever design and construction.

ensure the finest acoustics. And now, the entire hall is waterproofed just as effectively.

For all participants in this project, realizing a successful outcome to this unusual waterproofing challenge was music to their ears.

PROJECT CREDITS:

Owner: Sonoma State University, Rohnert Park, CA Executive Architect: A.C. Martin Partners, Los Angeles, CA Concert Hall Architect: BAR Architects, San Francisco, CA Design Architect: William Rawn Associates, Boston, MA Engineering: Arup, San Francisco, CA Construction Manager: Rudolph and Sletten, Inc., Redwood City, CA Waterproofing Installation: Lawson Roofing Company, San Francisco CA Waterproofing: Grace Construction Products

www.graceconstruction.com

North America Customer Service: 1-866-333-3SBM (3726)

Preprufe and Bituthene are registered trademarks of W. R. Grace & Co.-Conn.

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infringe any patent or copyright. W. R. Grace & Co.-Conn., 62 Whittemore Avenue, Cambridge, MA 02140. In Canada, Grace Canada, Inc. 294 Clements Road, West, Ajax, Ontario, Canada LIS 3C6.

 This product may be covered by patents or patents pending.

 PF-170
 Printed in U.S.A.
 10/08

Copyright 2008. W. R. Grace & Co.-Conn. ESD/LVI/1M

Section 071324 Pre-Applied Sheet Membrane Waterproofing

PART 1 — GENERAL

1.01 SUMMARY

- A. The Work of this Section includes, but is not limited to, pre-applied sheet membrane waterproofing that forms an integral bond to poured concrete for the following applications:
 - 1. Vertical Applications: Membrane applied against soil retention system prior to placement of concrete foundation walls;
 - 2. Horizontal Applications: Membrane applied on prepared subbase prior to placement of concrete slabs.
- B. Related sections include, but are not limited to, the following:
 - 1. Section 031000 Concrete Forming
 - 2. Section 312000 Earth Moving
 - 3. Section 031500 Concrete Accessories
 - 4. Section 031500 Hydrophilic Waterstop
 - 5. Section 316200 Driven Piles
 - 6. Section 316400 Caissons
 - 1. Section 032000 Concrete Reinforcing
 - 2. Section 033000 Cast-In-Place Concrete

NOTE TO SPECIFIER: For vertical applications, coordinate with concrete formwork section to require one-sided wall forming system to minimize punctures to the sheet membrane waterproofing during formwork installation.

1.02 SUBMITTALS

A. Submit manufacturer's product data, installation instructions and membrane samples for approval.

1.03 REFERENCE STANDARDS

A. The following standards and publications are applicable to the extent referenced in the text.

- B. American Society for Testing and Materials (ASTM):
 - C 836 Standard Specification for High Solids, Cold Liquid-Applied Elastomeric Waterproofing Membrane for Use with Separate Wearing Course
 - D 412 Standard Test Methods for Rubber Properties in Tension
 - D 570 Standard Test Method for Water Absorption of Plastics
 - D 903 Standard Test Method for Peel or Stripping Strength of Adhesive Bonds
 - D 1876 Standard Test Method for Peel Release of Adhesives (T-Peel)
 - D 1970 Standard Specification for Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection

- D 3767 Standard Practice for Rubber Measurements of Dimensions
- D 5385 Standard Test Method for Hydrostatic Pressure Resistance of Waterproofing Membranes
- E 96 Standard Test Methods for Water Vapor Transmission of Materials
- E 154 Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover

1.04 QUALITY ASSURANCE

- A. Manufacturer: Sheet membrane waterproofing system shall be manufactured and marketed by a firm with a minimum of 20 years experience in the production and sales of sheet membrane waterproofing. Manufacturers proposed for use but not named in these specifications shall submit evidence of ability to meet all requirements specified, and include a list of projects of similar design and complexity completed within the past 5 years.
- B. Installer: A firm which has at least 3 years experience in work of the type required by this section.
- C. Materials: For each type of material required for the work of this section, provide primary materials which are the products of one manufacturer.
- D. Pre-Installation Conference: A pre-installation conference shall be held prior to commencement of field operations to establish procedures to maintain optimum working conditions and to coordinate this work with related and adjacent work. Agenda for meeting shall include review of special details and flashing.
- E. Schedule Coordination: Schedule work such that membrane will not be left exposed to weather for longer than that recommended by the manufacturer.

1.05 DELIVERY, STORAGE AND HANDLING

A. Deliver materials in labeled packages. Store and handle in strict compliance with manufacturer's instructions. Protect from damage from weather, excessive temperature and construction operations. Remove and dispose of damaged material in accordance with applicable regulations.

1.06 PROJECT CONDITIONS

A. Perform work only when existing and forecasted weather conditions are within the limits established by the manufacturer of the materials used. Proceed with installation only when the substrate construction and preparation work is complete and in condition to receive sheet membrane waterproofing.

1.07 WARRANTY

A. Sheet Membrane Waterproofing: Provide written five year material warranty issued by the membrane manufacturer upon completion of work.

PART 2 — PRODUCTS

2.01 MATERIALS

A. Pre-applied Integrally Bonded Sheet Waterproofing Membrane: Preprufe[®] 300R Membrane [or Preprufe 300LT Membrane for application temperatures between 25°F (-4°C) and 60°F (+16°C)] by Grace Construction Products, a 1.2mm (0.046 in) nominal thickness composite sheet membrane comprising 0.8 mm (0.030 in.) of high density polyethylene film, and layers of specially formulated synthetic adhesive layers. The membrane shall form an integral and permanent bond to poured concrete to prevent water migration at the interface of the membrane and structural concrete. Provide membrane with the following physical properties:

NOTE TO SPECIFIER: Preprufe 300R and Preprufe 300LT can both be installed at temperatures 25°F (-4°C) and above. For temperatures 25°F (-4°C) to 55°F (13°C) Grace Technical Bulleting #16 states the use of Preprufe LT Tape is recommended at all sidelaps when using Preprufe 300R. Alternatively, contractors may elect the use of Preprufe 300LT which does not require the use of Preprufe LT Tape at sidelaps in temperature ranges 25°F (-4°C) to 55°F (13°C). For this reason, Grace suggests that both products be incorporated into the specification.

Property	Test Method	Typical Value
Color		White
Thickness	ASTM D 3767 Method A	1.2 mm (0.046 in.) nominal
Lateral Water Migration	ASTM D 5385 Modified ¹	Pass at 71 m (231 ft) of
Resistance		hydrostatic head pressure
Low Temperature Flexibility	ASTM D 1970	Unaffected at -29°C (-20°F)
Elongation	ASTM D 412 Modified ²	500%
Crack Cycling at -23°C (-9.4°F),	ASTM C 836	Unaffected, Pass
100 Cycles		
Tensile Strength, film	ASTM D 412	27.6 MPa (4,000 lbs/in. ²)
Peel Adhesion to Concrete	ASTM D 903 Modified ³	880 N/m (5.0 lbs/in.)
Lap Adhesion	ASTM D 1876 Modified ⁴	880 N/m (5.0 lbs/in.)
Resistance to Hydrostatic Head	ASTM D 5385 Modified ⁵	71 m (231 ft)
Puncture Resistance	ASTM E 154	990 N (221 lbs)
Permeance	ASTM E 96 Method B	$0.6 \text{ ng/Pa} \times \text{s} \times \text{m}^2 (0.01 \text{ perms})$
Water Absorption	ASTM D 570	0.5%

PHYSICAL PROPERTIES FOR PREPRUFE 300R (or 300LT) MEMBRANE:

Footnotes:

 Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the blind side waterproofing membrane. A hydrostatic head pressure of 71 m (231 ft) of water is the limit of the apparatus.

2. Elongation of membrane is run at a rate of 50 mm (2 in.) per minute.

3. Concrete is cast against the protective coating surface of the membrane and allowed to cure (7 days minimum). Peel adhesion of membrane to concrete is measured at a rate of 50 mm (2 in.) per minute at room temperature.

4. The test is conducted 15 minutes after the lap is formed as per manufacturer's instructions and run at a rate of 50 mm (2 in.) per minute.

5. Hydrostatic head tests are performed by casting concrete against the membrane with a lap. Before the concrete sets a 3 mm (0.125 in.) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane surface up to a head of 71 m (231 ft) of water which is the limit of the apparatus.

GRACE CONSTRUCTION PRODUCTS www.na.graceconstruction.com, 866-333-3726

B. Pre-applied Integrally Bonded Sheet Waterproofing Membrane: Preprufe[®] 160R Membrane [or Preprufe 160LT Membrane for application temperatures between 25°F (-4°C) and 60°F (+16°C)] by Grace Construction Products, a 1.0mm (0.032 in) nominal thickness composite sheet membrane comprising 0.4 mm (0.016 in.) of high density polyethylene film, and layers of specially formulated synthetic adhesive layers. The membrane shall form an integral and permanent bond to poured concrete to prevent water migration at the interface of the membrane and structural concrete. Provide membrane with the following physical properties:

NOTE TO SPECIFIER: Preprufe 160R and Preprufe 160LT can both be installed at temperatures 25°F (-4°C) and above. For temperatures 25°F (-4°C) to 55°F (13°C) Grace Technical Bulleting #16 states the use of Preprufe LT Tape is recommended at all sidelaps when using Preprufe 160R. Alternatively, contractors may elect the use of Preprufe 160LT which does not require the use of Preprufe LT Tape at sidelaps in temperature ranges 25°F (-4°C) to 55°F (13°C). For this reason, Grace suggests that both products be incorporated into the specification.

Property	Test Method	Typical Value
Color		White
Thickness	ASTM D 3767 Method A	1.0 mm (0.032 in.) nominal
Lateral Water Migration	ASTM D5385, Modified ¹	Pass at 71 m (231 ft) of
Resistance		hydrostatic head pressure
Low Temperature Flexibility	ASTM D 1970	Unaffected at -29°C (-20°F)
Elongation	ASTM D 412 Modified ²	500%
Crack Cycling at -23°C (-9.4°F),	ASTM C 836	Unaffected, Pass
100 Cycles		
Tensile Strength, film	ASTM D 412	27.6 MPa (4,000 lbs/in. ²)
Peel Adhesion to Concrete	ASTM D 903 Modified ³	880 N/m (5.0 lbs/in.)
Lap Adhesion	ASTM D 1876 Modified ⁴	880 N/m (5.0 lbs/in.)
Resistance to Hydrostatic Head	ASTM D 5385 Modified ⁵	Pass at 71 m (231 ft)
Puncture Resistance	ASTM E 154	445 N (100 lbs)
Permeance	ASTM E 96 Method B	$0.6 \text{ ng/Pa} \times s \times m^2 (0.01 \text{ perms})$
Water Absorption	ASTM D 570	0.5%

PHYSICAL PROPERTIES FOR PREPRUFE 160R (or 160LT) MEMBRANE:

Footnotes:

2. Elongation of membrane is run at a rate of 50 mm (2 in.) per minute.

3. Concrete is cast against the protective coating surface of the membrane and allowed to cure (7 days minimum). Peel adhesion of membrane to concrete is measured at a rate of 50 mm (2 in.) per minute at room temperature.

4. The test is conducted 15 minutes after the lap is formed as per manufacturer's instructions and run at a rate of 50 mm (2 in.) per minute.

5. Hydrostatic head tests are performed by casting concrete against the membrane with a lap. Before the concrete sets a 3 mm (0.125 in.) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane surface up to a head of 71 m (231 ft) of water which is the limit of the apparatus.

^{1.} Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the blind side waterproofing membrane. A hydrostatic head pressure of 71 m (231 ft) of water is the limit of the apparatus.

C. Waterstop: AdcorTM ES hydrophilic non-bentonite waterstop by Grace Construction Products for non-moving concrete construction joints.

PHYSICAL PROPERTIES FOR GRACE ADCORTM ES HYDROPHYLIC WATERSTOP:

Typical Value
Green
1.0 in. x ¹ / ₂ in. x 16 ft. rolls
(25.4 mm x 12.7 mm x 4.9 m)
70 m (231 ft)
No Effect
Excellent

- D. Preformed Soil Retention Wall Tieback Cover: Preprufe Tieback Cover by Grace Construction Products as a prefabricated detail for soil retention wall tiebacks.
- E. Preformed Inside and Outside Corners: Preprufe Preformed Corners by Grace Construction Products as prefabricated inside and outside corners.
- F. Tape for covering cut edges, roll ends, penetrations and detailing: Preprufe Tape LT (for temperatures between 25°F (-4°C) and 86°F (+30°C)) and Preprufe Tape HC (for use in Hot Climates, minimum 50°F (10°C))
- G. Miscellaneous Materials: accessories specified or acceptable to manufacturer of pre-applied waterproofing membrane.

PART 3 — EXECUTION

3.01 EXECUTION

A. The installer shall examine conditions of substrates and other conditions under which this work is to be performed and notify the Contractor, in writing, of circumstances detrimental to the proper completion of the work. Do not proceed with work until unsatisfactory conditions are corrected.

3.02 SUBSTRATE PREPARATION

- A. It is essential to create a sound and solid substrate to eliminate movement during the concrete pour. Substrates must be regular and smooth with no gaps or voids greater than 0.5 in. (12 mm). Grout around all penetrations such as utility conduits, etc. for stability.
 - 1. Horizontal Surfaces The substrate must be free of loose aggregate and sharp protrusions. Avoid curved or rounded substrates. When installing over earth or crushed stone, ensure substrate is well compacted to avoid displacement of substrate due to traffic or concrete pour. The surface does not need to be dry, but standing water must be removed.
 - 2. Vertical Surfaces Use concrete, plywood, insulation or other approved facing to sheet piling to provide support to the membrane. Board systems such as timber lagging must be close butted to provide support and not more than 0.5 in. (12 mm) out of alignment.

3.03 INSTALLATION, HORIZONTAL APPLICATIONS

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
 - 1. Place the membrane HDPE film side to the substrate with the clear plastic release liner facing towards the concrete pour. End laps should be staggered to avoid a build-up of layers.
 - 2. Leave the plastic release liner in position until overlap procedure is completed.
 - 3. Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap.
 - 4. Peel back the plastic release liner from between the overlaps as the two layers are bonded together. Ensure a continuous bond is achieved without creases and roll firmly with a heavy roller.
 - 5. Completely remove the plastic liner to expose the protective coating. Any initial tack will quickly disappear.

3.04 INSTALLATION, VERTICAL APPLICATIONS

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
 - 1. Mechanically fasten the membrane vertically using fasteners appropriate to the substrate with the clear plastic release liner facing towards the concrete pour. The membrane may be installed in any convenient length.
 - 2. Fastening through the selvedge using a small and low profile head fastener so that the membrane lays flat and allows firmly rolled overlaps.
 - 3. Immediately remove the plastic release liner.
 - 4. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap.
 - 5. Roll firmly to ensure a watertight seal.
 - 6. Overlap all roll ends and cut edges by a minimum 3 in. (75 mm) and ensure the area is clean and free from contamination, wiping with a damp cloth if necessary.
 - 7. Allow to dry and apply Preprufe Tape LT (or HC in hot climates) centered over the lap edges and roll firmly.
 - 8. Immediately remove printed plastic release liner from the tape.

3.05 WATERSTOP INSTALLATION

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
 - Secure Adcor ES using masonry nails 1¹/₂ in. 2 in. (40 mm 50 mm) long with a washer ³/₄ in. (20 mm) in diameter. Hilti EM6-20-12 FP8 shot fired fixings with ¹/₄ in. (6 mm) nuts and ³/₄ in. (20 mm) diameter washers may also be used. Fixings should be spaced at a maximum of 12 in. (300 mm) centers with a minimum spacing that ensures proper contact to substrate.
 - 2. On irregular concrete faces, or on vertical surfaces, apply a ½ in. (12 mm) bead of Adcor ES Adhesive as bedding for Adcor ES.

GRACE CONSTRUCTION PRODUCTS www.na.graceconstruction.com, 866-333-3726

3. Adcor ES joints should overlap a minimum of 4 in. (100 mm), ensuring full contact between jointed pieces.

3.06 PROTECTION

A. Protect membrane in accordance with manufacturer's recommendations until placement of concrete. Inspect for damage just prior to placement of concrete and make repairs in accordance with manufacturer's recommendations.

END OF SECTION

 W.R. Grace & Co.-Conn.
 62 Whittemore Avenue

 Preprufe and Hydroduct are registered trademarks of W.R. Grace & Co.-Conn.

Cambridge, MA 02140

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendations or suggestion is intended for any use which would infinge any patent or copyright. W. R. Grace & Co.-Conn., 62 Whitemore Avenue, Cambridge, MA 02140. In Canada, W. R. Grace & Co. Canada, Ltd. 294 Clements Road, West, Ajax, Ontario, Canada LIS 3C6.

This product may be covered by patents or patents pending. Document Code: GSWP-001B Copyright 2012. W.R. Grace & Co.-Conn. Updated: 7/2012

March 7, 2018

New York City Office of Environmental Remediation City Voluntary Cleanup Program c/o Shaminder Chawla 100 Gold Street, 2nd Floor New York, NY 10038

Re: VCP # 17CVCP044Q [E-Designation # 17EH-N076Q 148-28 Hillside Avenue, Jamaica, NY 11435 Remedial Action Work Plan (RAWP) Stipulation List

Dear Mr. Chawla:

Advanced Cleanup Technologies, Inc. hereby submits a Remedial Action Plan (RAWP) Stipulation List for the Site to the New York City Office of Environmental Remediation (OER) on behalf of Chung Lam. This letter serves as an addendum to the RAWP to stipulate additional content, requirements, and procedures that will be followed during the site remediation. The contents of this list are added to the RAWP and will supersede the content in the RAWP where there is a conflict in purpose or intent. The additional requirements/procedures include the following Stipulation List below:

- 1. The criterion attached in **Appendix 1** will be utilized if additional petroleum containing tank or vessel is identified during the remedial action or subsequent redevelopment excavation activities. All petroleum spills will be reported to the NYSDEC hotline as required by applicable laws and regulations. This contingency plan is designed for heating oil tanks and other small or moderately sized storage vessels. If larger tanks, such as gasoline storage tanks are identified, OER will be notified before this criterion is utilized.
- 2. A pre-construction meeting is required prior to start of remedial excavation work at the site. A pre-construction meeting will be held at the site and will be attended by OER, the developer or developer representative, the consultant, excavation/general contractor, and if applicable, the soil broker.

110 Main Street, Suite 103, Port Washington, New York 11050 • Tel: (516) 441-5800 • Fax: (516) 441-5511 Website Address: actenvirons.com

- 3. A Historic Fill Transfer and Disposal Notification Form to each disposal facility and a pre-approval letter from all disposal facilities will be provided to OER prior to any soil/fill material removal from the site. The Historic Fill Transfer and Disposal Notification Form template is attached in **Appendix 2**. Documentation specified in the RAWP Appendix 3 Section 1.6 "Materials Disposal Off-Site" will be provided to OER. If a different disposal facility for the soil/fill material is selected, OER will be notified immediately.
- 4. Signage for the project will include a sturdy placard mounted in a publically accessible right of way to building and other permits signage will consist of the NYC VCP Information Sheet (attached **Appendix 3**) announcing the remedial action. The Information sheet will be laminated and permanently affixed to the placard.
- 5. If the site contains hazardous waste that will be excavated and disposed of offsite, OER will work with the development team to seek an exemption for the property from the state Hazardous Waste Program Fee (\$130/ton) and Special Assessment on Hazardous Waste (up to \$27/ton). To qualify for an exemption, the site must be enrolled in the city Voluntary Cleanup Program; hazardous waste must result from remedial action set forth in a cleanup plan approved by OER; and OER must oversee the cleanup. It is the applicant's responsibility to notify the OER Project Manager, copying the supervising Project Manager and OER Deputy Director Shaminder Chawla, before hazardous waste is shipped from the site. Unless the Department of Environmental Conservation is notified before waste is shipped from the site, the project may not receive an exemption from the fee. This exemption does not cover, and the project remains responsible for, a Hazardous Waste Annual Report to be filed with DEC and Quarterly Returns for Special Assessments on Hazardous Waste to be filed with the state Department of Taxation and Finance. **Appendix 4** includes additional information about the exemption from the Hazardous Waste.
- 6. Collection and analysis of 8 end-point samples from the bottom of the excavation to evaluate the performance of the remedy with respect to attainment of Track 4 SCOs. A map indicating end-point sampling locations is attached in **Appendix 5**. Samples will be analyzed for contaminants of concern [VOCs, SVOCs, TAL Metals, PCBs, and Pesticides]. One end-point sample (EP-3) will be collected to verify removal of a PCE hotspot. The hotspot end-point sample will be analyzed for VOCs.
- 7. OER requires parties seeking City Brownfield Incentive Grants to carry insurance. For a cleanup grant, both the excavator and the trucking firm(s) that handle removal of soil must carry or be covered under a commercial general liability (CGL) policy that provides \$1 million per claim in coverage. OER recommends that excavators and truckers also carry contractors pollution liability (CPL) coverage, also providing \$1 million per claim in coverage. The CGL policy, and the CPL policy if obtained, must name the City of New York, the NYC Economic Development Corporation, and Brownfield Redevelopment Solutions as additional insureds, and be in force during the period when the party excavates and disposes of soil. For an investigation grant, an environmental consultant must be a qualified vendor in the BIG program and carry \$1 million of

- 8. professional liability (PL) coverage. A fact sheet regarding insurance is attached as Appendix 6.
- 9. Monthly reports are required on the project's status and schedule to the OER project manager after RAWP/RAP is approved/NTP issued until Remedial Action Report/Remedial Closure Report is received. This is your (Environmental Consultant's) responsibility to provide this report. If you (environmental consultant) are no longer retained for continuation of project, you are required to notify OER about this. After excavation work is completed, monthly reports are still required and will be provided by the consultant or owner/developer for the duration of the construction period. Monthly report template is attached in **Appendix 8**.
- 10. Daily reports will be provided during active excavation work. If no work is performed for extended time period, daily report frequency will be reduced to weekly basis. Daily report template is attached in **Appendix 7.**
- 11. Trucking log sheets will be utilized as trucks are transported from sites, and completed logs should be attached to the Remedial Action Report (RAR) as an appendix. The goal of this log is to clearly document the destination of material leaving the site, the parties responsible for its transfer, and other pertinent details. The trucking log template is provided in **Appendix 9**.
- 12. A 20-mil Vaporblock Plus vapor barrier manufactured by Raven Industries will be installed beneath the structure's slab and a 1.2 mm nominal thickness Preprufe® Model numbers 300R and 160R blindside waterproofing system manufactured by Grace Construction Products will be installed along foundation sidewalls. **Appendix 10** provides manufactures specifications and PE/RA certified building plans with the extent of the vapor barrier installation details (penetrations, joints, etc.) with respect to the proposed foundation, footings, etc.
- 13. An engineered composite site cover will be placed over the entire footprint of the Site. The composite cover system will be comprised of concrete foundation/slabs. Drawings of the composite site cover are provided as **Appendix 11**.
- 14. Drawings of the active SSDS to be installed beneath the proposed building are provided as **Appendix 12**.
- 15. Truck route is included in Appendix 13.
- 16. Dewatering will be performed in full compliance with applicable laws, rules and regulations. Dewatering permit will be obtained from NYCDEP prior to construction activities.
- 17. The signed RIR certification page and stamped/signed RAWP certification page is included in **Appendix 14**.
- 18. Development plans are attached in Appendix 15.

19. If there is active SSDS, a post construction meeting is required with consultant, developer and building superintendent.

Sincerely,

Paul P. Stewart, QEP

Cc: Anna Brooks, NYCOER

Appendix 1

Generic Procedures for Management of Underground Storage Tanks Identified under the NYC VCP

Prior to Tank removal, the following procedures should be followed:

- Remove all fluid to its lowest draw-off point.
- Drain and flush piping into the tank.
- Vacuum out the "tank bottom" consisting of water product and sludge.
- Dig down to the top of the tank and expose the upper half.
- Remove the fill tube and disconnect the fill, gauge, product, vent lines and pumps. Cap and plug open ends of lines.
- Temporarily plug all tank openings, complete the excavation, remove the tank and place it in a secure location.
- Render the tank safe and check the tank atmosphere to ensure that petroleum vapors have been satisfactorily purged from the tank.
- Clean tank or remove to storage yard for cleaning.
- If the tank is to be moved, it must be transported by licensed waste transporter. Plug and cap all holes prior to transport leaving a 1/8 inch vent hole located at the top of the tank during transport.
- After cleaning, the tank must be made acceptable for disposal at a scrap yard, cleaning the tanks interior with a high pressure rinse and cutting the tank in several pieces.

During the tank and pipe line removal, the following field observations should be made and recorded:

- A description and photographic documentation of the tank and pipe line condition (pitting, holes, staining, leak points, evidence of repairs, etc.).
- Examination of the excavation floor and sidewalls for physical evidence of contamination (odor, staining, sheen, etc.).
- Periodic field screening (through bucket return) of the floor and sidewalls of the excavation, with a calibrated photoionization detector (PID).

Impacted Soil Excavation Methods

The excavation of the impacted soil will be performed following the removal of the existing tanks. Soil excavation will be performed in accordance with the procedures described under Section 5.5 of Draft DER-10 as follows:

- A description and photographic documentation of the excavation.
- Examination of the excavation floor and sidewalls for physical evidence of contamination (odor, staining, sheen, etc.).
- Periodic field screening (through bucket return) of the floor and sidewalls of the excavation, with calibrated photoionization detector (PID).

Final excavation depth, length, and width will be determined in the field, and will depend on the horizontal and vertical extent of contaminated soils as indentified through physical examination (PID response, odor, staining, etc.). Collection of verification samples will be performed to evaluate the success of the removal action as specified in this document.

The following procedure will be used for the excavation of impacted soil (as necessary and appropriate):

• Wear appropriate health and safety equipment as outlined in the Health and Safety Plan.

- Prior to excavation, ensure that the area is clear of utility lines or other obstructions. Lay plastic sheeting on the ground next to the area to be excavated.
- Using a rubber-tired backhoe or track mounted excavator, remove overburden soils and stockpile, or dispose of, separate from the impacted soil.
- If additional UST's are discovered, the NYSDEC will be notified and the best course of action to remove the structure should be determined in the field. This may involve the continued trenching around the perimeter to minimize its disturbance.
- If physically contaminated soil is present (e.g., staining, odors, sheen, PID response, etc.) an attempt will be made to remove it, to the extent not limited by the site boundaries or the bedrock surface. If possible, physically impacted soil will be removed using the backhoe or excavator, segregated from clean soils and overburden, and staged on separated dedicated plastic sheeting or live loaded into trucks from the disposal facility. Removal of the impacted soils will continue until visibly clean material is encountered and monitoring instruments indicate that no contaminants are present.
- Excavated soils which are temporarily stockpiled on-site will be covered with tarp material while disposal options are determined. Tarp will be checked on a daily basis and replaced, repaired or adjusted as needed to provide full coverage. The sheeting will be shaped and secured in such a manner as to drain runoff and direct it toward the interior of the property.

Once the site representative and regulatory personnel are satisfied with the removal effort, verification of confirmatory samples will be collected from the excavation in accordance with DER-10.

Appendix 2 Historic Fill Transfer and Disposal Notification Form

Historic Fill & Soil Disposal Notification Form New York City Office of Environmental Remediation

Date: March 7, 2018

To operators and representatives of disposal facilities and government regulators:

The New York City Office of Environmental Remediation (OER) operates several environmental remediation regulatory programs in New York City that manage light to moderately contaminated properties that are planned for redevelopment. These projects commonly involve the removal of historical fill and soil from properties for development and other purposes. As with any environmental regulatory program, lawful transport and disposal of historic fill and soil is mandatory. It is also our highest priority.

Disposal facilities, recycling facilities and clean fill facilities (collectively, "receiving facilities") for historic fill and soil may be located in New York or neighboring states. Our research has indicated that a wide range of facility types and a complex set of regulatory requirements and obligations for a receiving facility operation exist within each jurisdiction. Receiving facilities are required to comply with applicable laws and regulations and may operate under state and local authority via permits, licenses, registrations, agreements and other legal instruments that dictate requirements for the material they can receive. Operating requirements may include adherence to applicable chemical standards, guidance levels, criteria, policy or other bases to determine the suitability for receipt of historical fill or soil at a receiving facility. Such requirements may also specify sample frequency, location, sampling method, chemical analytes, or analytical methods. Receiving facility soil/fill sampling requirements often differ from standard remedial investigation protocol performed in the original environmental study of the property.

Given the variability of data requirements for receiving facilities, the wide range of receiving facility types, and the complexity of regulatory requirements and obligations, OER is seeking to assist government regulators and facility operators and their technical representatives to achieve compliance with regulatory requirements for disposal of historic fill and soil at receiving facilities for projects we administer. Further, we seek to ensure that all of the data and information that is developed in OER's regulatory programs (for instance, site environmental history and soil chemistry) is available to government regulators and to facility managers when making decisions on suitability for disposal to a receiving facility.

This document provides formal notification from OER of the availability of environmental information regarding the physical and chemical content of historical fill and soil that is proposed for transfer to a disposal, recycling or clean fill facility from a property located at:

148-28 Hillside Avenue, Queens, New York OER Site 17CVCP044Q

The above referenced property has undergone regulated environmental investigation and is the subject of remedial action work plan under the authority of OER. All environmental data and information generated during this regulatory process is available online in OER's Document Repository listed below. Be advised that many properties are also regulated under state environmental law, and additional data may be available from state agencies. OER reserves the right to share this information with applicable state regulators.

http://www.nyc.gov/html/oer/html/document-repository/document-repository.shtml

Note: when logged on to above URL, select the borough for the site (listed in the address above) and scroll through the list and select the address for the site (listed above). All documents are available in PDF format.

According to New York State DER-10 Technical Guidance for Site Investigation and Remediation, historical fill is nonindigenous fill material deposited on a property to raise its topographic elevation. The origin of historical fill is unknown but it is commonly known to contain ash from wood and coal combustion, slag, clinker, construction debris, dredge spoils, incinerator residue, and demolition debris. Historic fill is a regulated solid waste in the State of New York. Prior to making a determination regarding the suitability of historic fill and/or soil from this property for disposal at this receiving facility, we strongly recommend that you review all of the data and information available for this property in our **Document Repository** listed above. The repository includes:

- A Phase 1 history of use of the property;
- A Remedial Investigation Report for the property which includes:
 - Boring logs that describe physical observations of the historical fill material made by a trained environmental professional;
 - Chemical data for grab samples of historical fill collected during the remedial investigation;
- A Remedial Action Work Plan for the property.

If you have any questions, please contact Horace Zhang at (212) 788-8484 or Hzhang@dep.nyc.gov for more information.

Appendix 3 NYC VCP Signage

NYC Voluntary Cleanup Program

148-28 Hillside Avenue, Queens, New York Site No: 17CVCP044Q

This property is enrolled in the New York City Voluntary Cleanup Program for environmental remediation. This is a voluntary program administered by the NYC Office of Environmental Remediation.

For more information, log on to: <u>www.nyc.gov/oer</u>

If you have questions or would like more information, please contact:

Shaminder Chawla at (212) 442-3007 or email us at <u>brownfields@cityhall.nyc.gov</u>

Appendix 4 Hazardous Waste Exemptions Fact Sheet

Exemptions from the state Hazardous Waste Program Fee & Special Assessment

If your site is enrolled in the city Voluntary Cleanup Program (VCP) and contains hazardous waste that will be excavated and disposed of offsite, OER can work with your development team to exempt your property from the \$130/ton state Hazardous Waste Program Fee and the Special Assessment on Hazardous Waste.

Exemption from the Hazardous Waste Program Fee

To qualify for an exemption from the Hazardous Waste Program Fee:

- 1. A site must be enrolled in the city Voluntary Cleanup Program;
- 2. Hazardous waste must result from remedial action set forth in a cleanup plan approved by OER; and
- 3. OER must oversee the cleanup.

Process for obtaining a Hazardous Waste Program Fee exemption:

For each VCP site, OER will submit three certifications to the New York State Department of Environmental Conservation (DEC):

1. OER will prepare a <u>Notice of Potential Generation of Hazardous</u> <u>Waste</u> after a soil test shows a site contains hazardous waste. To prepare this Notice, you must provide your OER project manager with:

- the site's EPA generator ID number;
- the date of the soil test confirming hazardous waste;
- the quantity of hazardous waste, in tons, anticipated to be shipped; and
- the anticipated dates for the start and completion of remediation.

For further information, please contact:

Michelle Sarro Assistant General Counsel (212) 341-2015 <u>MSarro@dep.nyc.gov</u>

DEC must receive this form **before** hazardous waste is shipped from your site. Otherwise, your claim for an exemption may be denied.

2. After hazardous waste has been removed from the site, you must notify your OER project manager that removal is complete. OER will then distribute a <u>Certification of Hazardous Waste Generation</u> to your project team which, when filled out, documents how the hazardous waste was managed. Once completed, it must be signed by the generator (or site owner) and the site's Qualified Environmental Professional and returned to your OER project manager with a copy to Michelle Sarro, <u>msarro@dep.nyc.gov</u>.

Upon receipt of the Certification of Hazardous Waste Generation, OER will issue a **\$10/ton fee** for services to obtain the exemption from the state Hazardous Waste Program Fee.

3. OER will then issue a <u>Certification of Remedial Action that Generated Hazardous Waste</u> to DEC representing OER's approval of how a site managed its hazardous waste.

DEC will make its determination after receiving the last two certifications. OER will then notify the project of the exemption.

Exemption from the Special Assessment on Hazardous Waste

VCP sites are also eligible for an exemption from the Special Assessment on Hazardous Waste, which can cost projects up to \$27/ton.

It is advised that you assert your interest in obtaining the Special Assessment exemption when you file a <u>TP-550 Quarterly Return for Special Assessments on Hazardous Waste Generated in New York State</u> form with the state Department of Taxation and Finance within 20 days of the end of the calendar quarter in which the waste was generated. In line item 3 on the form, indicate the number of tons of hazardous waste that were generated in New York State under an order of, or agreement or contract with, DEC. For access to the TP-550 form and further instructions see http://www.tax.ny.gov/bus/haz/hzrdwste.htm.

Ongoing Obligations

Regardless of the exemptions from the Hazardous Waste Program Fee and Special Assessment on Hazardous Waste, parties must:

- File a <u>Hazardous Waste Annual Report</u> with DEC by March 1 of each year if your site generated 15 tons or more of hazardous waste in the prior calendar year. For details, see http://www.dec.ny.gov/chemical/8770.html. To set forth the basis for an exemption from the Hazardous Waste Program Fee, put an X in the Exempt Remedial box in Box H of Section 1 of the Waste Generation and Management (GM) form and in the Comments Box (at the bottom of the form) include "New York City Voluntary Cleanup Program, VCP Site Number_____)"; and
- File a <u>TP-550 Quarterly Return for Special Assessments on Hazardous Waste Generated in New York</u> <u>State</u> form with the state Department of Taxation and Finance within 20 days of the end of the calendar quarter in which the waste was generated. For access to the TP-550 form and further instructions see <u>http://www.tax.ny.gov/bus/haz/hzrdwste.htm.</u>

Appendix 5 End-Point Sampling Map

Appendix 6 BIG Program Insurance Fact Sheet

FACT SHEET – BIG PROGRAM INSURANCE REQUIREMENTS

Investigation Grants – for a developer or site owner to be eligible for a BIG investigation grant, its environmental consultant(s) must be:

- a Qualified Vendor in the BIG Program; and
- maintain Professional Liability (PL) insurance of \$1M per claim and annual aggregate.

Cleanup Grants - for a developer or site owner to be eligible for a BIG cleanup grant:

- Its general contractor or excavation/foundation contractor hired to perform remedial work must maintain <u>Commercial General Liability (CGL)</u> insurance of at least \$1M per occurrence and \$2M in the general aggregate. It is recommended that the general contractor or excavation/foundation contractor also maintain a Contractors Pollution Liability policy (CPL) of at least \$1M per occurrence.
- Its subcontractors who are hired by the general contractor etc. to perform remedial work at a site, including soil brokers and truckers, must also maintain a CGL policy in the amount and with the terms set forth above. It is recommended that subcontractors also maintain a CPL policy in the amount and with the terms set forth above.

The CGL policy, and the CPL policy if in force, must list the city, EDC and BRS as additional insureds, include completed operations coverage and be primary and non-contributory to any other insurance the additional insureds may have.

- Its environmental consultant(s) hired to oversee the cleanup must be:
 - a. a BIG Qualifed Vendor; and
 - b. maintain Professional Liability (PL) insurance of \$1M per claim and annual aggregate.

If, in the alternative, the developer hires its environmental consultant to perform the cleanup, the environmental consultant must maintain CGL insurance in the amount and with the terms set forth above. It is recommended that the environmental consultant also maintain CPL coverage in the amount and with the terms set forth in the first two bulleted items listed above.

A schematic presenting the contractual relationships described above appears on page 2. Parties who must be named as Additional Insureds on Cleanup Grant insurance policies (CGL and CPL) are presented on page 3.

v. 8-01-2013

Example of Contractual Relationships for Cleanup Work

The Office of Environmental Remediation's Voluntary Cleanup Plan program requires applicants to identify the parties who are engaged in active remediation of their sites including: the General Contractor hired to remediate and/or the excavation contractor hired to excavate soil from the site and the trucking firm(s) that remove soil from the site for disposal at approved facilit(ies).

The chart above shows contractual relationships that typically exist for projects that are enrolled in the Voluntary Cleanup Program.

BIG Program Additional Insureds

The full names and addresses of the additional insureds required under the Required CGL Policy and recommended CPL Policy are as follows:

<u>"City and its officials and employees"</u> New York City Mayor's Office of Environmental Remediation 253 Broadway, 14th Floor New York, NY 10007

<u>"NYC EDC and its officials and employees"</u> New York City Economic Development Corporation 110 William Street New York, NY 10038

<u>"BIG Grant Administrator and its officials and employees"</u> Brownfield Redevelopment Solutions, Inc. 739 Stokes Road, Units A & B Medford, NJ 08055

Appendix 7 Daily Report Template

Generic Template for Daily Status Report

Instructions

The Daily Status Report submitted to OER should adhere to the following conventions:

- Remove this cover sheet prior to editing.
- Remove all the red text and replace with site-specific information.
- Submit the final version as a Word or PDF file.

Daily Status Reports

Daily status reports providing a general summary of activities for each day of *active remedial work* will be emailed to the OER Project Manager by the end of the following day. Those reports will include:

- Project number and statement of the activities and an update of progress made and locations of work performed;
- Quantities of material imported and exported from the Site;
- Status of on-Site soil/fill stockpiles;
- A summary of all citizen complaints, with relevant details (basis of complaint; actions taken; etc.);
- A summary of CAMP excursions, if any;
- Photograph of notable Site conditions and activities.

The frequency of the reporting period may be revised in consultation with OER project manager based on planned project tasks. Daily email reports are not intended to be the primary mode of communication for notification to OER of emergencies (accidents, spills), requests for changes to the RAWP or other sensitive or time critical information. However, such information will be included in the daily reports. Emergency conditions and changes to the RAWP will be communicated directly to the OER project manager by personal communication. Daily reports will be included as an Appendix in the Remedial Action Report.

DAILY STATUS REPORT	WEATHER	Snow	Rain	Overcast		Partly Cloudy	X	Bright Sun	
Prepared By: Enter Your Name Here	TEMP.	< 32	32-50	50-70	x	70-85		>85	

VCP Project No.:	16CVCP000M	E-Number Project No.:	16EHAN000M	Date:	01/01/2016
Project Name:	Name or Addres	S			

Person(s) Name and Company Name Person(s) Name and Company Name General Contractor: Person(s) Name and Company Name Work Activities Performed (Since Last Report): Person(s) Name and Company Name Work Activities Performed (Since Last Report): Provide details about the work activities performed. Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected (Since Last Report): No air monitoring performed or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Problems Encountered: No use = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Consultant:	Safety Officer:
General Contractor: Person(s) Name and Company Name Work Activities Performed (Since Last Report): Person(s) Name and Company Name Work Activities Performed (Since Last Report): Provide details about the work activities performed. Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week. Planned Activities about the work activities planned for the next day/ week.	Person(s) Name and Company Name	Person(s) Name and Company Name
General Contractor: Site Manager/ Supervisor: Person(s) Name and Company Name Site Manager/ Supervisor: Work Activities Performed (Since Last Report): Provide details about the work activities performed. Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week. Planned Activities for the Next Day/ Week:		
Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Problems Encountered: No problems encountered is about the work activities planned for the next day/ week.	General Contractor:	Site Manager/ Supervisor:
Work Activities Performed (Since Last Report): Provide details about the work activities performed. Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Person(s) Name and Company Name	Person(s) Name and Company Name
Work Activities Performed (Since Last Report): Provide details about the work activities performed. Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		r oreen(e) rearrie and company rearrie
Work Activities Performed (Since Last Report): Provide details about the work activities performed. Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Provide details about the work activities performed. Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Work Activities Performed (Since Last Report):	
Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Provide details about the work activities performed	•
Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Working In Grid #: A1, B1, C1 Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Samples Collected (Since Last Report): No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Working In Grid #: A1, B1, C1	
No samples collected or provide details Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Samples Collected (Since Last Report):	
Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	No samples collected or provide details	
Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Air Monitoring (Since Last Report): No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
No air monitoring performed or provide details Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Air Monitoring (Since Last Report):	
Prestart Conditions – PID = 0.0 ppm, Dust = 0.000 High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	No air monitoring performed or provide details	
High Conditions – PID = 0.0 ppm, Dust = 0.000 Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Prestart Conditions – PID = 0.0 ppm, Dust = 0.000	
Problems Encountered: No problems encountered or provide details Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	High Conditions – PID = 0.0 ppm, Dust = 0.000	
Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	Problems Encountered:	
Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	No problems encountered or provide details	
Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.	No problems encountered of provide details	
Planned Activities for the Next Day/ Week: Provide details about the work activities planned for the next day/ week.		
Provide details about the work activities planned for the next day/ week.	Planned Activities for the Next Day/ Week:	
	Provide details about the work activities planned for	or the next day/ week.

											E	Exam	nple:
Facility # Name/ Location Type of Wast Solid <u>Or</u> Liqu	on te id	Facility # Name Location Type of Waste Solid <u>Or</u> Liquid		Facility # Name Location Type of Waste Solid <u>Or</u> Liquid		Facility # Name Location Type of Waste Solid <u>Or</u> Liquid		Facility # Name Location Type of Waste Solid <u>Or</u> Liquid		###### ABC Facilit New York, M petroleum so Solid		# # # # Facility ork, NY Im soils Iid	
(Trucks, Cu.Yo <u>Or</u> Gallons)	ds.	Trucks	Cu. Yds. <u>Or</u> Gallons	Truc	ks	Cu. Yds. <u>Or</u> Gallons	Trucks	Cu. Yds. <u>Or</u> Gallons	Trucks	Cu. Yds. <u>Or</u> Gallons	Truc	ks	Cu. Yds.
Today											5		120
Total											25 600		600
NYC Clean Soil Bank Receiving Facility:													
Tracking No.:		16CCSB	000	Name Address (Approved by OER)									
Toda	ay	Trucks 5		S	Сι	ı. Yds. <mark>25</mark>	Total			Truck 120	Trucks 120		u. Yds. <mark>600</mark>

Site Grid Map Insert the site grid map here

Photo Log

Photo 1 – provide a caption	Insert Photo Here – Photo of the entire site
Photo 2 – provide a caption	Insert Photo Here – Photo of the work activities performed
Photo 3 – provide a caption	Insert Photo Here – Photo of the work activities performed

Appendix 8 Weekly / Monthly Report Template

WEEKLY / MONTHLY STATUS REPORT

Prepared By:	Enter Your Name H	lere			
VCP Project No.:	16CVCP000M	E-Number Project No.:	16EHAN000M	Date:	01/01/2016
Project Name:	Name or Address				
Project Update Provide details	s (Since Last Rep about the work ac	ort): ctivities performed.			
Problems Enco No problems e	ountered: ncountered or prov	vide details			
Planned Activit Provide details	ties for the Next the about the future v	ree months: vork activities.			

Photo Log

Photo 1 – provide a caption	Insert Photo Here – Photo of the entire site
Photo 2 – provide a caption	Insert Photo Here – Photo of the work activities performed
Photo 3 – provide a caption	Insert Photo Here – Photo of the work activities performed

Appendix 9 Soil Disposal and Trucking Log Sheet
Shipment Date	8/25/2013				
Manifest Number	66357				
Transporter Name/Truck Name	ABC Trucking/201				
License Plate	NJ-AP458				
On-Site Location (approx. depth)	WC-1(0-8')				
Off-Site Disposal Facility	Jones Landfill				
Material Type (Contaminated soil, native soil, C&D, etc.)	Contaminated Soil				
Tonnage	32.90				

Soil Disposal and Trucking Log Sheet

Appendix 10 Vapor Barrier Specifications and Plans

VAPORBLOCK[®] PLUS[™] vbp20

Under-Slab Vapor / Gas Barrier

Product Description

VaporBlock[®] Plus[™] 20 is a seven-layer co-extruded barrier made from state-of-the-art polyethylene and EVOH resins to provide unmatched impact strength as well as superior resistance to gas and moisture transmission. VaporBlock[®] Plus[™] 20 is a highly resilient underslab / vertical wall barrier designed to restrict naturally occurring gases such as radon and/or methane from migrating through the ground and concrete slab. VaporBlock[®] Plus[™] 20 is more than 100 times less permeable than typical high-performance polyethylene vapor retarders against Methane, Radon and other harmful VOCs.

VaporBlock[®] Plus[™] 20 is one of the most effective underslab gas barriers in the building industry today far exceeding ASTM E-1745 (Plastic Water Vapor Retarders Used in Contact with Soil or Granular Fill Under Concrete Slabs) Class A, B and C requirements. Available in a 20 (Class A) mil thicknesses designed to meet the most stringent requirements. VaporBlock[®] Plus[™] 20 is produced within the strict guidelines of our ISO 9001:2008 Certified Management System.

Product Use

VaporBlock[®] Plus[™] 20 resists gas and moisture migration into the building envelop when properly installed to provide protection from toxic/harmful chemicals. It can be installed as part of a passive or active control system extending across the entire building including floors, walls and crawl spaces. When installed as a passive system it is recommended to also include a ventilated system with sump(s) that could be converted to an active control system with properly designed ventilation fans.

VaporBlock[®] Plus[™] 20 works to protect your flooring and other moisture-sensitive furnishings in the building's interior from moisture and water vapor migration, greatly reducing condensation, mold and degradation.

Size & Packaging

VaporBlock[®] Plus[™] 20 is available in 10' x 150' rolls to maximize coverage. All rolls are folded on heavy-duty cores for ease in handling and installation. Other custom sizes with factory welded seams are available based on minimum volume requirements. Installation instructions and ASTM E-1745 classifications accompany each roll.

© 2012 RAVEN INDUSTRIES INC. All rights reserved.

Under-Slab Vapor/Gas Retarder

Product	Part #
VaporBlock Plus 20	VBP 20

APPLICATIONS

Radon Barrier Methane Barrier VOC Barrier Under-Slab Vapor Retarder Foundation Wall Vapor Retarder

VAPORBLOCK[®] PLUS[™] vbp20

ISO 9001:2008

Under-Slab Vapor / Gas Barrier

		VAPORBLOCK PLUS 20	
PROPERTIES	TEST METHOD	IMPERIAL	METRIC
Appearance		White/Gold	
THICKNESS, NOMINAL		20 mil	0.51 mm
WEIGHT		102 lbs/MSF	498 g/m²
CLASSIFICATION	ASTM E 1745	CLASS A, B & C	
Tensile Strength lbf/in (N/cm) average md & td (new material)	ASTM E 154 Section 9 (D-882)	58 lbf	102 N
IMPACT RESISTANCE	ASTM D 1709	2600 g	
MAXIMUM USE TEMPERATURE		180° F	82° C
MINIMUM USE TEMPERATURE		-70° F	-57° C
Permeance (new material)	ASTM E 154 Section 7 ASTM E 96 Procedure B	0.0098 Perms grains/(ft²·hr·in·Hg)	0.0064 Perms g/(24hr⋅m²⋅mm Hg)
(AFTER CONDITIONING) PERMS (same measurement as above permeance)	ASTM E 154 Section 8, E96 Section 11, E96 Section 12, E96 Section 13, E96	0.0079 0.0079 0.0097 0.0113	0.0052 0.0052 0.0064 0.0074
WVTR	ASTM E 96 Procedure B	0.0040 grains/hr-ft ²	0.0028 gm/hr-m²
RADON DIFFUSION COEFFIECIENT	K124/02/95	< 1.1 x	10 ⁻¹³ m²/s
Methane Permeance	ASTM D 1434	< 1.7 x 10 ⁻ 0.32 GTR (Gas T ml/m²•	¹º m²/d∙ atm ransmission Rate) D∙ATM

VaporBlock[®] Plus[™] Placement

All instructions on architectural or structural drawings should be reviewed and followed.

Detailed installation instructions accompany each roll of VaporBlock® Plus™ and can also be located on our website. ASTM E-1643 also provides general installation information for vapor retarders.

VaporBlock[®] Plus[™] is a seven-layer co-extruded barrier made using high quality virgin-grade polyethylene and EVOH resins to provide unmatched impact strength as well as superior resistance to gas and moisture transmission.

Note: To the best of our knowledge, unless otherwise stated, these are typical property values and are intended as guides only, not as specification limits. Chemical resistance, odor transmission, longevity as well as other performance criteria is not implied or given and actual testing must be performed for applicability in specific applications and/or conditions. RAVEN INDUSTRIES MAKES NO WARRANTIES AS TO THE FITNESS FOR A SPECIFIC USE OR MERCHANTABILITY OF PRODUCTS REFERRED TO, no guarantee of satisfactory results from reliance upon contained information or recommendations and disclaims all liability for resulting loss or damage. Limited Warranty available at www.RavenEFD.com

Engineered Films Division P.O. Box 5107 Sioux Falls, SD 57117-5107 Ph: (605) 335-0174 • Fx: (605) 331-0333 Toll Free: 800-635-3456 Email: efdsales@ravenind.com www.ravenefd.com 1/11 EFD 1125

Scan QR Code to download current technical data sheets via the Raven website.

Grace Below Grade Waterproofing

PREPRUFE[®] 300R & 160R

Pre-applied waterproofing membranes that bond integrally to poured concrete for use below slabs or behind basement walls on confined sites

Description

Preprufe[®] 300R & 160R membranes are unique composite sheets comprising a thick HDPE film, an aggressive pressure sensitive adhesive and a weather resistant protective coating.

Unlike conventional non-adhering membranes, which are vulnerable to water ingress tracking between the unbonded membrane and structure, the unique Preprufe bond to concrete prevents ingress or migration of water around the structure.

The Preprufe R System includes:

- Preprufe 300R—heavy-duty grade for use below slabs and on rafts (i.e. mud slabs). Designed to accept the placing of heavy reinforcement using conventional concrete spacers.
- Preprufe 160R—thinner grade for blindside, zero property line applications against soil retention systems.
- **Preprufe Tape LT**—for covering cut edges, roll ends, penetrations and detailing (temperatures between 25°F (-4°C) and 86°F (+30°C)).
- **Preprufe Tape HC**—as above for use in Hot Climates (minimum 50°F (10°C)).
- Bituthene* Liquid Membrane—for sealing around penetrations, etc.
- Adcor[™] ES—waterstop for joints in concrete walls and floors
- Preprufe Tieback Covers—preformed cover for soil
 retention wall tieback heads
- Preprufe Preformed Corners—preformed inside
 and outside corners

Preprufe 300R & 160R membranes are applied either horizontally to smooth prepared concrete, carton forms or well rolled and compacted earth or crushed stone substrate; or vertically to permanent formwork or adjoining structures. Concrete is then cast directly against the adhesive side of the membranes. The specially developed Preprufe adhesive layers work together to form a continuous and integral seal to the structure.

Preprufe can be returned up the inside face of slab formwork but is not recommended for conventional twin-sided formwork on walls, etc. Use Bituthene selfadhesive membrane or Procor[®] fluid applied membrane to walls after removal of formwork for a fully bonded system to all structural surfaces.

Advantages

- Forms a unique continuous adhesive bond to concrete poured against it—prevents water migration and makes it unaffected by ground settlement beneath slabs
- · Fully-adhered watertight laps and detailing
- Provides a barrier to water, moisture and gas physically isolates the structure from the surrounding ground
- **BBA Certified** for basement Grades 2, 3, & 4 to BS 8102:1990
- Zero permeance to moisture
- · Solar reflective-reduced temperature gain
- Simple and quick to install—requiring no priming or fillets
- Can be applied to permanent formwork—allows maximum use of confined sites
- Self protecting—can be trafficked immediately after application and ready for immediate placing of reinforcement
- Unaffected by wet conditions—cannot activate
 prematurely
- Inherently waterproof, non-reactive system:
- · not reliant on confining pressures or hydration
- unaffected by freeze/thaw, wet/dry cycling
 Chemical resistant—effective in most types of soils
- and waters, protects structure from salt or sulphate attack

Drawings are for illustration purposes only. Please refer to graceconstruction.com for specific application details

Installation

The most current application instructions, detail drawings and technical letters can be viewed at graceconstruction.com. For other technical information contact your local Grace representative.

Preprufe 300R & 160R membranes are supplied in rolls 4 ft (1.2 m) wide, with a selvedge on one side to provide self-adhered laps for continuity between rolls. The rolls of Preprufe Membrane and Preprufe Tape are interwound with a disposable plastic release liner which must be removed before placing reinforcement and concrete.

Substrate Preparation

All surfaces-It is essential to create a sound and solid substrate to eliminate movement during the concrete pour. Substrates must be regular and smooth with no gaps or voids greater than 0.5 in. (12 mm). Grout around all penetrations such as utility conduits, etc. for stability (see Figure 1).

Horizontal-The substrate must be free of loose aggregate and sharp protrusions. Avoid curved or rounded substrates. When installing over earth or crushed stone, ensure substrate is well compacted to avoid displacement of substrate due to traffic or concrete pour. The surface does not need to be dry, but standing water must be removed.

Vertical—Use concrete, plywood, insulation or other approved facing to sheet piling to provide support to the membrane. Board systems such as timber lagging must be close butted to provide support and not more than 0.5 in. (12 mm) out of alignment.

Membrane Installation

Preprufe can be applied at temperatures of 25°F (-4°C) or above. When installing Preprufe in cold or marginal weather conditions 55°F (<13°C) the use of Preprufe Tape LT is recommended at all laps and detailing. Preprufe Tape LT should be applied to clean, dry surfaces and the release liner must be removed immediately after application. Alternatively, Preprufe Low Temperature (LT) is available for low temperature condition applications. Refer to Preprufe LT data sheet for more information.

Horizontal substrates—Place the membrane HDPE film side to the substrate with the clear plastic release liner facing towards the concrete pour. End laps should be staggered to avoid a build up of layers. Leave plastic release liner in position until overlap procedure is completed (see Figure 2).

Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap. Peel back the plastic release liner from between the overlaps as the two layers are bonded together. Ensure a continuous bond is achieved without creases and roll firmly with a heavy roller. Completely remove the plastic liner to expose the protective coating. Any initial tack will quickly disappear

Refer to Grace Tech Letter 15 for information on suitable rebar chairs for Preprufe.

Vertical substrates—Mechanically fasten the membrane vertically using fasteners appropriate to the substrate with the the clear plastic release liner facing towards the concrete pour. The membrane may be installed in any convenient length. Fastening can be made through the selvedge using a small and low profile head fastener so that the membrane lays flat and allows firmly rolled overlaps. Immediately remove the plastic release liner.

Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to

overlap. Roll firmly to ensure a watertight seal. Roll ends and cut edges-Overlap all roll ends and cut edges by a minimum 3 in. (75 mm) and ensure the area is clean and free from contamination, wiping with a damp cloth if necessary. Allow to dry and apply Preprufe Tape LT (or HC in hot climates) centered over the lap edges and roll firmly (see Figure 3). Immediately remove printed plastic release liner from the tape. Details

Refer to Preprufe Field Application Manual, Section V Application Instructions or visit graceconstruction.com. This manual gives comprehensive guidance and standard details.

Membrane Repair

Inspect the membrane before installation of reinforcement steel, formwork and final placement of concrete. The membrane can be easily cleaned by power washing if required. Repair damage by wiping the area with a damp cloth to ensure the area is clean and free from dust, and allow to dry. Repair small punctures (0.5 in. (12 mm) or less) and slices by applying Preprufe Tape centered over the damaged area and roll firmly. Remove the release liner from the tape. Repair holes and large punctures by applying a patch of Preprufe membrane, which extends 6 in. (150 mm) beyond the damaged area. Seal all edges of the patch with Preprufe Tape, remove the release liner from the tape and roll firmly Any areas of damaged adhesive should be covered with Preprufe Tape. Remove printed plastic release liner from tape. Where exposed selvedge has lost adhesion or laps have not been sealed, ensure the area is clean and dry and cover with fresh Preprufe Tape, rolling firmly. Alternatively, use a hot air gun or similar to activate adhesive and firmly roll lap to achieve continuity. Pouring of Concrete

Ensure the plastic release liner is removed from all areas of Preprufe membrane and tape.

It is recommended that concrete be poured within 56 days (42 days in hot climates) of application of the membrane. Following proper ACI guidelines, concrete must be placed carefully and consolidated properly to avoid damage to the membrane. Never use a sharp object to consolidate the concrete.

Removal of Formwork

Preprufe membranes can be applied to removable formwork, such as slab perimeters, elevator and lift pits, etc. Once the concrete is poured the formwork must remain in place until the concrete has gained sufficient compressive strength to develop the surface bond Preprufe membranes are not recommended for conven-tional twin-sided wall forming systems.

A minimum concrete compressive strength of 1500 psi (10 N/mm²) is recommended prior to stripping form work supporting Preprufe membranes. Premature stripping may result in displacement of the membrane and/or spalling of the concrete.

Refer to Grace Tech Letter 17 for information on removal of formwork for Preprufe.

Detail Drawings

Details shown are typical illustrations and not working details. For a list of the most current details, visit us at graceconstruction.com. For technical assistance with detailing and problem solving please call toll free at 866-333-3SBM (3726).

Wall base detail against permanent shutter

Bituthene wall base detail (Option 1)

Procor wall base detail (Option 1)

Procor wall base detail (Option 2)

0

8

(5)

6

5

8

Bituthene wall base detail (Option 2)

- Preprufe 300R
 Preprufe 160R
 Preprufe Tape
- 4 Bituthene
- 5 Procor
 - 6 Bituthene Liquid Membrane
- 7 Protection
- Hydroduct[®] 8 9

20

Adcor ES Preprufe CJ Tape 10

X

1

b

¢,

20

Supply

Dimensions (Nominal)	Preprufe 300R Membrane	Preprufe 160R Membrane	Preprufe Tape (LT or HC*)
Thickness	0.046 in. (1.2 mm)	0.032 in. (0.8 mm)	
Roll size	4 ft x 98 ft (1.2 m x 30 m)	4 ft x 115 ft (1.2 m x 35 m)	4 in. x 49 ft (100 mm x 15 m)
Roll area	392 ft ² (36 m ²)	460 ft ² (42 m ²)	
Roll weight	108 lbs (50 kg)	92 lbs (42 kg)	4.3 lbs (2 kg)
Minimum side/end laps	3 in. (75 mm)	3 in. (75 mm)	3 in. (75 mm)
* LT denotes Low Temperature (between 25°F (-4°C) and 86°F (+30°C))			
HC denotes Hot Climate (50°F (>+10°C))			
Ancillary Products			
Bituthene Liquid Membrane—1.5 US gal (5.7 liter) or 4 US gal (15.1 liter)			

Physical Properties

Property	Typical Value 300R	Typical Value 160R	Test Method
Color	white	white	
Thickness	0.046 in. (1.2 mm)	0.032 in. (0.8 mm)	ASTM D3767
Lateral Water Migration	Pass at 231 ft (71 m) of	Pass at 231 ft (71 m) of	ASTM D5385, modified ¹
Resistance	hydrostatic head pressure	hydrostatic head pressure	
Low temperature flexibility	Unaffected at -20°F (-29°C)	Unaffected at -20°F (-29°C)	ASTM D1970
Resistance to hydrostatic	231 ft (71 m)	231 ft (71 m)	ASTM D5385,
head			modified ²
Elongation	500%	500%	ASTM D412, modified ³
Tensile strength, film	4000 psi (27.6 MPa)	4000 psi (27.6 MPa)	ASTM D412
Crack cycling at -9.4°F	Unaffected, Pass	Unaffected, Pass	ASTM C836
(-23°C), 100 cycles			
Puncture resistance	221 lbs (990 N)	100 lbs (445 N)	ASTM E154
Peel adhesion to concrete	5 lbs/in. (880 N/m)	5 lbs/in. (880 N/m)	ASTM D903, modified ⁴
Lap peel adhesion	5 lbs/in. (880 N/m)	5 lbs/in. (880 N/m)	ASTM D1876, modified ⁵
Permeance to water	0.01 perms	0.01 perms	ASTM E96, method B
vapor transmission	(0.6 ng/(Pa x s x m ²))	(0.6 ng/(Pa x s x m ²))	
Water absorption	0.5%	0.5%	ASTM D570

Footnotes:

Footnotes:
1. Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the membrane.
2. Hydrostatic head tests of Preprufe Membranes are performed by casting concrete against the membrane with a lap. Before the concrete cures, a 0.125 in. (3 mm) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane sure is cure at rate of 2 in. (50 mm) per minute.
3. Elongation of membrane is run at rate of 2 in. (50 mm) per minute.
4. Concrete is cast against the protective coating surface of the membrane and allowed to properly dry (7 days minimum). Peel adhesion of membrane to concrete is coast against the lap is formed (per Grace published recommendations) and run at a rate of 2 in. (50 mm) per minute.
5. The test is conducted 15 minutes after the lap is formed (per Grace published recommendations) and run at a rate of 2 in. (50 mm) per minute.

Specification Clauses

Preprufe 300R or 160R shall be applied with its adhesive face presented to receive fresh concrete to which it will integrally bond. Only Grace Construction Products approved membranes shall be bonded to Preprufe 300R/160R. All Preprufe 300R/160R system materials shall be supplied by Grace Construction Products, and applied strictly in accordance with their instructions. Specimen performance and formatted clauses are also available.

NOTE: Use Preprufe Tape to tie-in Procor with Preprufe. Health and Safety

Refer to relevant Material Safety data sheet. Complete rolls should be handled by a minimum of two persons.

www.graceconstruction.com

For technical assistance call toll free at 866-333-3SBM (3726)

Adcor is a trademark and Preprufe, Bituthene and Hydroduct are registered trademarks of W. R. Grace & Co.-Conn. Procor is a U.S. registered trademark of W. R. Grace & Co.-Conn., and is used in Canada under license from PROCOR LIMITED. We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infinge any patent or copyright. W. R. Grace & Co.-Conn., 62 Whittemore Avenue, Cambridge, MA 02140. In Canada, Grace Canada, Inc., 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.

 This product may be covered by patents or patents pending.

 PF-111H
 Printed in U.S.A.
 07/12

Copyright 2012. W. R. Grace & Co.-Conn. FA/PDF

Grace Waterproofing Products

PREPRUFE[®]

Structural Waterproofing Solutions

A New World-class Music Center Employs An Innovative Waterproofing Solution

The Green Music Center under construction at Sonoma State University Rohnert Park, California

When you think of a world-class music center, excellent acoustics and soundproofing may come to mind. With its smart design, the 1,400-seat Green Music Center at Sonoma State University more than meets those requirements. But perhaps surprisingly, one of the most innovative aspects of the concert hall isn't its soundproofing, but its waterproofing system.

"We specify Preprufe[®] and Bituthene[®] on pretty much all of our projects. It's an easy choice as far as we're concerned, because we've had so much success using Grace waterproofing."

Bill Bussey A.C. Martin Partners That's because while the concert hall entrance sits at ground level, the hall slopes downward, below grade, toward the stage. In addition, several feet of space required for the building's air supply below the floor extend the depth even farther. With a high water table just a few feet below the surface, some clever design and construction was needed – to create both a temporary underground dewatering system during construction, and a long-term waterproofing solution to keep the concert hall dry for years to come.

"We knew that the water table would create a real challenge, so temporary wells were created around the perimeter foundation that collect water for pumping during construction," explained Bill Bussey of A.C. Martin Partners, the architects for the concert hall. During construction, with the high water table, water pumps were moving thousands of gallons of water per day and operating constantly. With energy and noise concerns, it became apparent that a more efficient long-term solution was needed. As a result, a sub-surface diversion system for the groundwater was created around the perimeter of the entire building.

In addition to the dewatering system, waterproofing was essential to the success of the project. With the guidance of their specialized waterproofing consultants, A.C. Martin Partners specified Grace waterproofing products based on the architectural firm's long-term track record using them in these types of applications. Grace's Preprufe® 300R was utilized in the sump pit, where despite muddy conditions, the pre-applied waterproofing membrane's aggressive pressure-sensitive adhesive formed a tight adhesive bond to the concrete to prevent ingress or migration of water around the structure. To waterproof the exterior basement walls, Bituthene® System 4000 was applied. A pre-formed waterproofing membrane, Bituthene® System 4000 incorporates a super tacky self-adhesive membrane with a latex surface primer to provide a long-term waterproofing solution.

"With the high water table presenting a challenge, a smart solution was proposed that supported our building design and enabled the project to move forward successfully."

Bryce Tanner, Arup

"We're pleased with the overall solution," said Bill Bussey. "The basement is dry with no complaints." To isolate the concert hall from any noise created by the water pumps, the facility is completely sound insulated to

Surrounded by scenic views, the world-class music center rising in Sonoma County.

Managing the site's high water table required some clever design and construction.

ensure the finest acoustics. And now, the entire hall is waterproofed just as effectively.

For all participants in this project, realizing a successful outcome to this unusual waterproofing challenge was music to their ears.

PROJECT CREDITS:

Owner: Sonoma State University, Rohnert Park, CA Executive Architect: A.C. Martin Partners, Los Angeles, CA Concert Hall Architect: BAR Architects, San Francisco, CA Design Architect: William Rawn Associates, Boston, MA Engineering: Arup, San Francisco, CA Construction Manager: Rudolph and Sletten, Inc., Redwood City, CA Waterproofing Installation: Lawson Roofing Company, San Francisco CA Waterproofing: Grace Construction Products

www.graceconstruction.com

North America Customer Service: 1-866-333-3SBM (3726)

Preprufe and Bituthene are registered trademarks of W. R. Grace & Co.-Conn.

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infringe any patent or copyright. W. R. Grace & Co.-Conn., 62 Whittemore Avenue, Cambridge, MA 02140. In Canada, Grace Canada, Inc. 294 Clements Road, West, Ajax, Ontario, Canada LIS 3C6.

 This product may be covered by patents or patents pending.

 PF-170
 Printed in U.S.A.
 10/08

Copyright 2008. W. R. Grace & Co.-Conn. ESD/LVI/1M

Section 071324 Pre-Applied Sheet Membrane Waterproofing

PART 1 — GENERAL

1.01 SUMMARY

- A. The Work of this Section includes, but is not limited to, pre-applied sheet membrane waterproofing that forms an integral bond to poured concrete for the following applications:
 - 1. Vertical Applications: Membrane applied against soil retention system prior to placement of concrete foundation walls;
 - 2. Horizontal Applications: Membrane applied on prepared subbase prior to placement of concrete slabs.
- B. Related sections include, but are not limited to, the following:
 - 1. Section 031000 Concrete Forming
 - 2. Section 312000 Earth Moving
 - 3. Section 031500 Concrete Accessories
 - 4. Section 031500 Hydrophilic Waterstop
 - 5. Section 316200 Driven Piles
 - 6. Section 316400 Caissons
 - 1. Section 032000 Concrete Reinforcing
 - 2. Section 033000 Cast-In-Place Concrete

NOTE TO SPECIFIER: For vertical applications, coordinate with concrete formwork section to require one-sided wall forming system to minimize punctures to the sheet membrane waterproofing during formwork installation.

1.02 SUBMITTALS

A. Submit manufacturer's product data, installation instructions and membrane samples for approval.

1.03 REFERENCE STANDARDS

A. The following standards and publications are applicable to the extent referenced in the text.

- B. American Society for Testing and Materials (ASTM):
 - C 836 Standard Specification for High Solids, Cold Liquid-Applied Elastomeric Waterproofing Membrane for Use with Separate Wearing Course
 - D 412 Standard Test Methods for Rubber Properties in Tension
 - D 570 Standard Test Method for Water Absorption of Plastics
 - D 903 Standard Test Method for Peel or Stripping Strength of Adhesive Bonds
 - D 1876 Standard Test Method for Peel Release of Adhesives (T-Peel)
 - D 1970 Standard Specification for Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection

- D 3767 Standard Practice for Rubber Measurements of Dimensions
- D 5385 Standard Test Method for Hydrostatic Pressure Resistance of Waterproofing Membranes
- E 96 Standard Test Methods for Water Vapor Transmission of Materials
- E 154 Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover

1.04 QUALITY ASSURANCE

- A. Manufacturer: Sheet membrane waterproofing system shall be manufactured and marketed by a firm with a minimum of 20 years experience in the production and sales of sheet membrane waterproofing. Manufacturers proposed for use but not named in these specifications shall submit evidence of ability to meet all requirements specified, and include a list of projects of similar design and complexity completed within the past 5 years.
- B. Installer: A firm which has at least 3 years experience in work of the type required by this section.
- C. Materials: For each type of material required for the work of this section, provide primary materials which are the products of one manufacturer.
- D. Pre-Installation Conference: A pre-installation conference shall be held prior to commencement of field operations to establish procedures to maintain optimum working conditions and to coordinate this work with related and adjacent work. Agenda for meeting shall include review of special details and flashing.
- E. Schedule Coordination: Schedule work such that membrane will not be left exposed to weather for longer than that recommended by the manufacturer.

1.05 DELIVERY, STORAGE AND HANDLING

A. Deliver materials in labeled packages. Store and handle in strict compliance with manufacturer's instructions. Protect from damage from weather, excessive temperature and construction operations. Remove and dispose of damaged material in accordance with applicable regulations.

1.06 PROJECT CONDITIONS

A. Perform work only when existing and forecasted weather conditions are within the limits established by the manufacturer of the materials used. Proceed with installation only when the substrate construction and preparation work is complete and in condition to receive sheet membrane waterproofing.

1.07 WARRANTY

A. Sheet Membrane Waterproofing: Provide written five year material warranty issued by the membrane manufacturer upon completion of work.

PART 2 — PRODUCTS

2.01 MATERIALS

A. Pre-applied Integrally Bonded Sheet Waterproofing Membrane: Preprufe[®] 300R Membrane [or Preprufe 300LT Membrane for application temperatures between 25°F (-4°C) and 60°F (+16°C)] by Grace Construction Products, a 1.2mm (0.046 in) nominal thickness composite sheet membrane comprising 0.8 mm (0.030 in.) of high density polyethylene film, and layers of specially formulated synthetic adhesive layers. The membrane shall form an integral and permanent bond to poured concrete to prevent water migration at the interface of the membrane and structural concrete. Provide membrane with the following physical properties:

NOTE TO SPECIFIER: Preprufe 300R and Preprufe 300LT can both be installed at temperatures 25°F (-4°C) and above. For temperatures 25°F (-4°C) to 55°F (13°C) Grace Technical Bulleting #16 states the use of Preprufe LT Tape is recommended at all sidelaps when using Preprufe 300R. Alternatively, contractors may elect the use of Preprufe 300LT which does not require the use of Preprufe LT Tape at sidelaps in temperature ranges 25°F (-4°C) to 55°F (13°C). For this reason, Grace suggests that both products be incorporated into the specification.

Property	Test Method	Typical Value
Color		White
Thickness	ASTM D 3767 Method A	1.2 mm (0.046 in.) nominal
Lateral Water Migration	ASTM D 5385 Modified ¹	Pass at 71 m (231 ft) of
Resistance		hydrostatic head pressure
Low Temperature Flexibility	ASTM D 1970	Unaffected at -29°C (-20°F)
Elongation	ASTM D 412 Modified ²	500%
Crack Cycling at -23°C (-9.4°F),	ASTM C 836	Unaffected, Pass
100 Cycles		
Tensile Strength, film	ASTM D 412	27.6 MPa (4,000 lbs/in. ²)
Peel Adhesion to Concrete	ASTM D 903 Modified ³	880 N/m (5.0 lbs/in.)
Lap Adhesion	ASTM D 1876 Modified ⁴	880 N/m (5.0 lbs/in.)
Resistance to Hydrostatic Head	ASTM D 5385 Modified ⁵	71 m (231 ft)
Puncture Resistance	ASTM E 154	990 N (221 lbs)
Permeance	ASTM E 96 Method B	$0.6 \text{ ng/Pa} \times \text{s} \times \text{m}^2 (0.01 \text{ perms})$
Water Absorption	ASTM D 570	0.5%

PHYSICAL PROPERTIES FOR PREPRUFE 300R (or 300LT) MEMBRANE:

Footnotes:

 Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the blind side waterproofing membrane. A hydrostatic head pressure of 71 m (231 ft) of water is the limit of the apparatus.

2. Elongation of membrane is run at a rate of 50 mm (2 in.) per minute.

3. Concrete is cast against the protective coating surface of the membrane and allowed to cure (7 days minimum). Peel adhesion of membrane to concrete is measured at a rate of 50 mm (2 in.) per minute at room temperature.

4. The test is conducted 15 minutes after the lap is formed as per manufacturer's instructions and run at a rate of 50 mm (2 in.) per minute.

5. Hydrostatic head tests are performed by casting concrete against the membrane with a lap. Before the concrete sets a 3 mm (0.125 in.) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane surface up to a head of 71 m (231 ft) of water which is the limit of the apparatus.

GRACE CONSTRUCTION PRODUCTS www.na.graceconstruction.com, 866-333-3726

B. Pre-applied Integrally Bonded Sheet Waterproofing Membrane: Preprufe[®] 160R Membrane [or Preprufe 160LT Membrane for application temperatures between 25°F (-4°C) and 60°F (+16°C)] by Grace Construction Products, a 1.0mm (0.032 in) nominal thickness composite sheet membrane comprising 0.4 mm (0.016 in.) of high density polyethylene film, and layers of specially formulated synthetic adhesive layers. The membrane shall form an integral and permanent bond to poured concrete to prevent water migration at the interface of the membrane and structural concrete. Provide membrane with the following physical properties:

NOTE TO SPECIFIER: Preprufe 160R and Preprufe 160LT can both be installed at temperatures 25°F (-4°C) and above. For temperatures 25°F (-4°C) to 55°F (13°C) Grace Technical Bulleting #16 states the use of Preprufe LT Tape is recommended at all sidelaps when using Preprufe 160R. Alternatively, contractors may elect the use of Preprufe 160LT which does not require the use of Preprufe LT Tape at sidelaps in temperature ranges 25°F (-4°C) to 55°F (13°C). For this reason, Grace suggests that both products be incorporated into the specification.

Property	Test Method	Typical Value
Color		White
Thickness	ASTM D 3767 Method A	1.0 mm (0.032 in.) nominal
Lateral Water Migration	ASTM D5385, Modified ¹	Pass at 71 m (231 ft) of
Resistance		hydrostatic head pressure
Low Temperature Flexibility	ASTM D 1970	Unaffected at -29°C (-20°F)
Elongation	ASTM D 412 Modified ²	500%
Crack Cycling at -23°C (-9.4°F),	ASTM C 836	Unaffected, Pass
100 Cycles		
Tensile Strength, film	ASTM D 412	27.6 MPa (4,000 lbs/in. ²)
Peel Adhesion to Concrete	ASTM D 903 Modified ³	880 N/m (5.0 lbs/in.)
Lap Adhesion	ASTM D 1876 Modified ⁴	880 N/m (5.0 lbs/in.)
Resistance to Hydrostatic Head	ASTM D 5385 Modified ⁵	Pass at 71 m (231 ft)
Puncture Resistance	ASTM E 154	445 N (100 lbs)
Permeance	ASTM E 96 Method B	$0.6 \text{ ng/Pa} \times s \times m^2 (0.01 \text{ perms})$
Water Absorption	ASTM D 570	0.5%

PHYSICAL PROPERTIES FOR PREPRUFE 160R (or 160LT) MEMBRANE:

Footnotes:

2. Elongation of membrane is run at a rate of 50 mm (2 in.) per minute.

3. Concrete is cast against the protective coating surface of the membrane and allowed to cure (7 days minimum). Peel adhesion of membrane to concrete is measured at a rate of 50 mm (2 in.) per minute at room temperature.

4. The test is conducted 15 minutes after the lap is formed as per manufacturer's instructions and run at a rate of 50 mm (2 in.) per minute.

5. Hydrostatic head tests are performed by casting concrete against the membrane with a lap. Before the concrete sets a 3 mm (0.125 in.) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane surface up to a head of 71 m (231 ft) of water which is the limit of the apparatus.

^{1.} Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the blind side waterproofing membrane. A hydrostatic head pressure of 71 m (231 ft) of water is the limit of the apparatus.

C. Waterstop: AdcorTM ES hydrophilic non-bentonite waterstop by Grace Construction Products for non-moving concrete construction joints.

PHYSICAL PROPERTIES FOR GRACE ADCORTM ES HYDROPHYLIC WATERSTOP:

Typical Value
Green
1.0 in. x ¹ / ₂ in. x 16 ft. rolls
(25.4 mm x 12.7 mm x 4.9 m)
70 m (231 ft)
No Effect
Excellent

- D. Preformed Soil Retention Wall Tieback Cover: Preprufe Tieback Cover by Grace Construction Products as a prefabricated detail for soil retention wall tiebacks.
- E. Preformed Inside and Outside Corners: Preprufe Preformed Corners by Grace Construction Products as prefabricated inside and outside corners.
- F. Tape for covering cut edges, roll ends, penetrations and detailing: Preprufe Tape LT (for temperatures between 25°F (-4°C) and 86°F (+30°C)) and Preprufe Tape HC (for use in Hot Climates, minimum 50°F (10°C))
- G. Miscellaneous Materials: accessories specified or acceptable to manufacturer of pre-applied waterproofing membrane.

PART 3 — EXECUTION

3.01 EXECUTION

A. The installer shall examine conditions of substrates and other conditions under which this work is to be performed and notify the Contractor, in writing, of circumstances detrimental to the proper completion of the work. Do not proceed with work until unsatisfactory conditions are corrected.

3.02 SUBSTRATE PREPARATION

- A. It is essential to create a sound and solid substrate to eliminate movement during the concrete pour. Substrates must be regular and smooth with no gaps or voids greater than 0.5 in. (12 mm). Grout around all penetrations such as utility conduits, etc. for stability.
 - 1. Horizontal Surfaces The substrate must be free of loose aggregate and sharp protrusions. Avoid curved or rounded substrates. When installing over earth or crushed stone, ensure substrate is well compacted to avoid displacement of substrate due to traffic or concrete pour. The surface does not need to be dry, but standing water must be removed.
 - 2. Vertical Surfaces Use concrete, plywood, insulation or other approved facing to sheet piling to provide support to the membrane. Board systems such as timber lagging must be close butted to provide support and not more than 0.5 in. (12 mm) out of alignment.

3.03 INSTALLATION, HORIZONTAL APPLICATIONS

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
 - 1. Place the membrane HDPE film side to the substrate with the clear plastic release liner facing towards the concrete pour. End laps should be staggered to avoid a build-up of layers.
 - 2. Leave the plastic release liner in position until overlap procedure is completed.
 - 3. Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap.
 - 4. Peel back the plastic release liner from between the overlaps as the two layers are bonded together. Ensure a continuous bond is achieved without creases and roll firmly with a heavy roller.
 - 5. Completely remove the plastic liner to expose the protective coating. Any initial tack will quickly disappear.

3.04 INSTALLATION, VERTICAL APPLICATIONS

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
 - 1. Mechanically fasten the membrane vertically using fasteners appropriate to the substrate with the clear plastic release liner facing towards the concrete pour. The membrane may be installed in any convenient length.
 - 2. Fastening through the selvedge using a small and low profile head fastener so that the membrane lays flat and allows firmly rolled overlaps.
 - 3. Immediately remove the plastic release liner.
 - 4. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap.
 - 5. Roll firmly to ensure a watertight seal.
 - 6. Overlap all roll ends and cut edges by a minimum 3 in. (75 mm) and ensure the area is clean and free from contamination, wiping with a damp cloth if necessary.
 - 7. Allow to dry and apply Preprufe Tape LT (or HC in hot climates) centered over the lap edges and roll firmly.
 - 8. Immediately remove printed plastic release liner from the tape.

3.05 WATERSTOP INSTALLATION

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
 - Secure Adcor ES using masonry nails 1¹/₂ in. 2 in. (40 mm 50 mm) long with a washer ³/₄ in. (20 mm) in diameter. Hilti EM6-20-12 FP8 shot fired fixings with ¹/₄ in. (6 mm) nuts and ³/₄ in. (20 mm) diameter washers may also be used. Fixings should be spaced at a maximum of 12 in. (300 mm) centers with a minimum spacing that ensures proper contact to substrate.
 - 2. On irregular concrete faces, or on vertical surfaces, apply a ½ in. (12 mm) bead of Adcor ES Adhesive as bedding for Adcor ES.

GRACE CONSTRUCTION PRODUCTS www.na.graceconstruction.com, 866-333-3726

3. Adcor ES joints should overlap a minimum of 4 in. (100 mm), ensuring full contact between jointed pieces.

3.06 PROTECTION

A. Protect membrane in accordance with manufacturer's recommendations until placement of concrete. Inspect for damage just prior to placement of concrete and make repairs in accordance with manufacturer's recommendations.

END OF SECTION

 W.R. Grace & Co.-Conn.
 62 Whittemore Avenue

 Preprufe and Hydroduct are registered trademarks of W.R. Grace & Co.-Conn.

Cambridge, MA 02140

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendations or suggestion is intended for any use which would infinge any patent or copyright. W. R. Grace & Co.-Conn., 62 Whitemore Avenue, Cambridge, MA 02140. In Canada, W. R. Grace & Co. Canada, Ltd. 294 Clements Road, West, Ajax, Ontario, Canada LIS 3C6.

This product may be covered by patents or patents pending. Document Code: GSWP-001B Copyright 2012. W.R. Grace & Co.-Conn. Updated: 7/2012

Appendix 11 Composite Cover Diagram

Appendix 12 Sub-Slab Depressurization System Specifications and Plans

Appendix 13 Truck Route Map

Appendix 14 RIR and RAWP Certification Pages

CERTIFICATION

I, Paul Stewart, am a Qualified Environmental Professional, as defined in RCNY § 43-1402(ar). I have primary direct responsibility for implementation of the Remedial Investigation for the Site located at 148-28 Hillside Avenue Jamaica, New York. I am responsible for the content of this Remedial Investigation Report (RIR), have reviewed its contents and certify that this RIR is accurate to the best of my knowledge and contains all available environmental information and data regarding the property.

		1 M AT
Paul P. Stewart	10/28/2016	

Date

Qualified Environmental Professional

Signature

1-----

CERTIFICATION

I, Andrew Levenbaum, am currently a registered professional engineer licensed by the State of New York. I performed professional engineering services and had primary direct responsibility for designing the remedial program for the site located at 148-28 Hillside Avenue, Jamaica, New York, OER site number 17TMP0097Q. I certify to the following:

- I have reviewed this document and the Stipulation List, to which my signature and seal are affixed.
 Engineering Controls developed for this remedial action were designed by me or a person under my direct
- supervision and designed to achieve the goals established in this Remedial Action Work Plan for this site. • The Engineering Controls to be constructed during this remedial action are accurately reflected in the text
- and drawings of the Remedial Action Work Plan and are of sufficient detail to enable proper construction.
- This Remedial Action Work Plan (RAWP) has a plan for handling, transport and disposal of soil, fill, fluids
 and other materials removed from the property in accordance with applicable City, State and Federal laws
 and regulations. Importation of all soil, fill and other material from off-Site will be in accordance with all
 applicable City, State and Federal laws and requirements. This RAWP has provisions to control nuisances
 during the remediation and all invasive work, including dust and odor suppression.

LEVENBA PE Licen

I, Paul P. Stewart, am a qualified Environmental Professional. I will have primary direct responsibility for implementation of the remedial program for the site located at 148-28 Hillside Avenue, Jamaica, New York, OER site number 17TMP0097Q. I certify to the following:

This Remedial Action Work Plan (RAWP) has a plan for handling, transport and disposal of soil, fill, fluids and other materials removed from the property in accordance with applicable City, State and Federal laws and regulations. Importation of all soil, fill and other material from off-Site will be in accordance with all applicable City, State and Federal laws and requirements. This RAWP has provisions to control nuisances during the remediation and all invasive work, including dust and odor suppression.

18/2017
Appendix 15 Redevelopment Plans

March 29, 2021

Shaminder Chawla Deputy Director Office of Environmental Remediation 100 Gold Street, 2nd Floor New York New York 10038

> RE: 148-28 Hillside Avenue, Jamaica, NY 11435 NYCOER Project No. 17TMP0097Q NYSDEC Order on Consent (Site No. 241199)

Dear Shaminder:

On April 24, 2020, The New York State Department of Environmental Conservation (NYSDEC) and 168 Hillside Inc. (the "Volunteer") executed an Order on Consent directing the Volunteer to perform a Site Characterization to address the hotspot of Tetrachloroethene (PCE) in shallow soil discovered during a Remedial Investigation (RI) under New York City Voluntary Cleanup Program (VCP). The NYSDEC Order on Consent was apparently issued due to the delayed implementation of an approved Remedial Action Work Plan (RAWP) by the New York City Office of Environmental Remediation (NYCOER).

Since issuance of a Notice to Proceed on May 1, 2018, the Volunteer, has sought approval from the New York City Department of Housing Preservation and Development (NYCHPD) for the development of a nine-story mixed-use building with affordable housing units, which has recently been approved. The COVID-19 pandemic caused additional delays in the commencement of remedial activities until only recently when NYCOER was contacted to schedule a pre-construction meeting pursuant to the approved Stipulation List.

Due to the comprehensive investigations already performed at the Site, the Volunteer seeks to continue remedial activities under the NYCOER's Voluntary Cleanup Program. The following information summarizes the NYCOER-approved remedial investigations and remedial activities intended to address urban fill and the PCE hotspot beneath the Site.

In October of 2016, ACT issued a Remedial Investigation Report ("RIR"), which indicated that the Site was formerly occupied by a filling station and auto repair shop. The Remedial Investigation included a site inspection, geophysical investigation, and the installation, screening, and sampling of 10 soil borings, 3 groundwater monitoring wells, and 7 soil vapor probes throughout the Site. A Sampling Diagram is attached as Figure 1.

200 Broadhollow Road, Suite 207, Melville, NY 11747 • Tel: (516) 441-5800 • Fax: (516) 441-5511 Website Address: actenvirons.com

The results of the Remedial Investigation indicated the following:

Soil:

- PCE was detected above its Unrestricted Use Soil Cleanup Objectives (UUSCOs) in one shallow soil sample (SB-9, 11 mg/Kg @ 0-2 ft) beneath the eastern portion of the former building. A soil sample collected from SB-9 at the 10-12 foot depth did not contain PCE above its laboratory method detection limit. No other VOCs except Acetone were detected in soil above their UUSCOs during the Remedial Investigation;
- Shallow soil also contained two SVOCs (Benzo(a)anthracene, 1.55 mg/kg and Chrysene, 1.56 mg/kg), one pesticide (4,4'-DDT, 5.06 mg/kg), and four metals (Lead, max. 1,100 mg/Kg, Selenium, max. 7.18 mg/Kg, Chromium, max. 31.2 mg/Kg, and Mercury, max. 0.217 mg/Kg) above SCOs;
- With the exception of PCE, shallow soil chemistry beneath the Site is consistent with historical urban fill material in New York City.

Groundwater:

- One VOC, Chloroform was detected in two groundwater samples (max. 14 μg/L) above its GQS of 7 μg/L;
- One SVOC, Bis(2-ethylhexyl)phthalate was detected in one groundwater sample (11 μg/L) above its GQS of 5 μg/L. PCBs were detected in the three groundwater samples (max. 0.135 μg/L) above its GQS of 0.09 μg/L

Soil Vapor:

• PCE was detected in all six soil vapor samples with a maximum concentration of 2,700 μ g/m³ in SS-3 beneath the eastern portion of the Site. Trichloroethylene was also detected in SS-3 @ 55 μ g/m³.

A RAWP and Stipulation List approved by the NYCOER indicate that the following remedial activities will be protective of public health and the environment:

- Delineation of PCE contaminated shallow soil previously identified in SB-9;
- Excavation and removal of soil/fill exceeding Track 4 Site Specific SCOs. The entire footprint of the Site will be excavated to a depth of approximately 13 feet below grade for development purposes. A small portion of property will be excavated to the depths of 18 feet below grade for elevator pit(s);

- Collection of 8 endpoint soil samples, including 1 endpoint sample in the vicinity of the PCE hotspot;
- Installation of a vapor barrier system beneath the building slab and outside of sub-grade foundation sidewalls to mitigate soil vapor migration into the building;
- Installation of an active sub-slab depressurization system (SSDS) beneath the building slab and vapor barrier system;
- Construction and operation of a cellar parking garage with high volume air exchange in conformance with NYC Building Code.

In 2017, ACT conducted a PCE Delineation Investigation at the Site, which included the installation, screening and sampling of 4 soil borings spaced 5 feet from soil boring SB-9. Two soil samples (4-6ft and 6-8ft) were collected from each soil boring. Only soil boring SB-4 contained PCE (0.0093 mg/Kg @ 4-6ft) well below its UUSCO of 1.3 mg/Kg. None of the remaining seven soil samples contained PCE above its laboratory method detection limit. A diagram of chlorinated volatile organic compounds (CVOCs) detected in subsurface soil during the Remedial Investigation and Delineation Investigation is included in Figure 2.

In summary, the extent of PCE soil contamination has been delineated to a depth of 0-2 ft below a small area in the eastern portion of the Site. The remedial activities specified in the NYOER-approved RAWP will remove soil up to 13 feet in depth beneath the entire site and mitigate residual soil vapor intrusion with a vapor barrier system, active sub-slab depressurization system and a parking garage ventilation system.

In light of the above, ACT concludes the above-mentioned remedial activities will sufficiently address the PCE hotspot and urban fill material in shallow soil beneath the Site. In an effort to minimize the economic burden and time for development of this affordable housing project, ACT requests to continue remedial activities under the NYCOER's Voluntary Cleanup Program.

Please let us know if NYSDEC and NYCOER finds this request acceptable.

Very truly yours,

Paul P. Stewart, MS, QEP President

Page 1 of ____

FIELD SOIL BORING LOG

960 S. Broadway Hicksville NY	LOC Drilling	JOB No.: CATION: Method:	148 Server Direct Pust	+G- 28 f	BORING NUMBER: HILS De Ave DATE: Ny/ WEATHER:	SB-1 2-24117
Depth (ft. bgs)	Depth (ft)	Recovery (ft)	PID (ppm)	USCS Symbol	Description	Environmenta Description
1			0.0		0-4' bill material	
2	0-4	25"			2-4 Brick Bitundieus cool	
3					trace sand philited	
4			6.0		to 11 the partially	
5		1	0.0		4.5 - 97.5' to course sub graded of to course sub	and gravels
6	4-8	50			It bra sond silt bying	m
8			0.0		75-8.0 G-med growed + Cn Soud "Beach Soud"	
9						
10	8-12					
11	-					
12		-		¢.		*.

Page 1 of ____

FIELD SOIL BORING LOG

Advanced	Cleanup Tec	hnologies, hc.	A		Tang - Poller tV- Inner	
lway NY		JOB No.:	- 83	346 - 3	BORING NUMBER:	SB-2
Broac	LOC	ATION:	148	- 28	Hillside Are Jangues DATE:	4/18/17
60 S. Hicl	Drilling	Mathad			WEATHER: Song	¥ 50'5
Ĺ	Drining	Method:	Direct Pu	sh driling		
Depth (ft. bgs)	Depth (ft)	Recovery (ft)	PID (ppm)	USCS Symbol	Description	Environmental Description
		*	80000		concrete - 3"	* UNABLE TO
1		r	1606 0	eb	0-1 => (on cek fragments)	PIO HITS #
	4	zk	Opp	ь	light bran to brand, and grained	6
2	0-4	1	0		sinds matrix - coal life trayments)
					1-3 > Fill- put to hyperred coase sands - bruck large hult	NO
3					rock like payments	odors
					3-4' light brown to brown, medium grained	2
4					- shace, sing compart punct	
			0.0		~ 6" retriel (concate / asphilt mix)	
					6-7.5- oranje/rustic brave medium	
		4?ft			to coarse grande sancs (towas 1)	NATIVES (1)
	4-8			~	large gravel chunks throughout	
7					(NON - SILSY)	
					7.5-8.0 - light tan Fire grained	
8			¥		sunds, silly	м
9					SAMPLES 4-6 1110	
10	8-12				(C'))))))	
					6-8 1140	
11						
				5		
12						

.

Participation of

Page 1 of _____

FIELD SOIL BORING LOG

	Cleanup Ter	chnologies, Inc.	A	~	Tenp - Driller TY - Joyger	. 2
oadwa ille N	1	JOB No.:	8	346- :	SANY BORING NUMBER	: <u>58-5</u>
S. Bro	LOC	CATION:	19	8-28	<u>HI//s, de Are NY</u> DATE	<u> </u>
960 S Hi	Drilling	Method:	Direct Pu	ish driling	technology- Pertuble	, y , 03
Depth (ft. bgs)	Depth (ft)	Recovery (ft)	PID (ppm)	USCS Symbol	Description	Environmental Description
			0	ph	concrete -	
1				ľ	0-1- Concete purder mostly	
		, CT			hand rock (concrete) fayments	
2		2.81			light brown, medium sends methop	No
	0-4				1-3.5" - light brown to brown, medium	00000
					+ Grained Sunds	
3					abundant appliciting / road like	slagen
			1		Regrests of large get lags	, ray
4					1.3-4.0 - Tight to very boun, medungrane	(
all an an			0.0		succession ageing	¢.,
5					END" regult (Concre Mostly)	No
		ift			4-5- light brown to crange brown,	00025
6	10	'h?			medime (some course) sands	
	4-0				menue sizee graves projection	(1)
		İ			Course to very course sunds, asudent	(Natures .)
		ŀ			gete begants + rounded perbles	
		ł			7.5-8.0 - light tan Fire sunds, Silty	
8			•		conpact	
		Ļ				
9					SAMPLE 4-6 1215	
10		F				
10	8-12	ŀ			1. 1. 1. 10-8	
		-			SANYE 1220	
11				·		
		L		a strange		
12						

Page 1 of ____

FIELD SOIL BORING LOG

50 S. Broadwa Hicksville N	LOC	JOB No. CATION: 1	482	16-31 8 Hull	BORING NUMBER SIDE AVC DATE WEATHER:	R: 3B-21 E: 2-24.17
Depth (ft. bgs)	Drilling Depth (ft)	Recovery (ft)	PID (ppm)	uscs Symbol	Description	Environmenta
1		.1	0.0		6-2' fillndered concrete, asphalt, small grovel	
2	0-4	24"			2-4' It bon Sond party Screed f-c graved w/ sub	
3					race silt coal bits	inflect
4			00		loose camp	
5					It bra Sond w/ trace	6-8
6	4-8	Z			poorly sorred 100slidenp	
7						
8			00			
9						
10	8-12					
			1.1.1.1			

X

Technical Report

prepared for:

Advanced Cleanup Technologies, Inc. 110 Main Street Port Washington NY, 11050 Attention: Mark Gelband

> Report Date: 04/26/2017 Client Project ID: 8346-JANY York Project (SDG) No.: 17D0698

CT Cert. No. PH-0723 New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Page 1 of 22

Report Date: 04/26/2017 Client Project ID: 8346-JANY York Project (SDG) No.: 17D0698

Advanced Cleanup Technologies, Inc. 110 Main Street Port Washington NY, 11050 Attention: Mark Gelband

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on April 19, 2017 and listed below. The project was identified as your project: **8346-JANY**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
17D0698-01	SB-2 (4-6')	Soil	04/18/2017	04/19/2017
17D0698-02	SB-2 (6-8')	Soil	04/18/2017	04/19/2017
17D0698-03	SB-3 (4-6')	Soil	04/18/2017	04/19/2017
17D0698-04	SB-3 (6-8')	Soil	04/18/2017	04/19/2017

General Notes for York Project (SDG) No.: 17D0698

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 9. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia Laboratory Director Date: 04/26/2017

	Sample Inform	nation		
Client Sample ID: SB-2 (4-6')			York Sample ID:	17D0698-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 11:10 am	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

Sample Prepared by Method: EPA 5035A Date/Time Date/Time Reported to LOD/MDL Dilution CAS No. Parameter Result Flag Units 1.00 **Reference Method** Prepared Analyzed Analyst 630-20-6 1,1,1,2-Tetrachloroethane ND ug/kg dry 3.1 6.1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 ВK Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 71-55-6 1,1,1-Trichloroethane ND ug/kg dry 3.1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK 6.1 1 CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 79-34-5 1,1,2,2-Tetrachloroethane ND ug/kg dry 3.1 6.1 1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane ND ug/kg dry 3.1 6.1 1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK CTDOH,NELAC-NY10854,NJDEP (Freon 113) Certifications: 79-00-5 1,1,2-Trichloroethane ND ug/kg dry 3.1 6.1 1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 75-34-3 1,1-Dichloroethane ND ug/kg dry 3.1 61 1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 04/24/2017 07:33 04/24/2017 14:10 75-35-4 1,1-Dichloroethylene ND ug/kg dry 3.1 61 1 EPA 8260C BK Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 04/24/2017 07:33 04/24/2017 14:10 87-61-6 1,2,3-Trichlorobenzene ND ug/kg dry 3.1 6.1 1 EPA 8260C BK NELAC-NY10854,NJDEP,PADEP Certifications: 04/24/2017 07:33 04/24/2017 14:10 EPA 8260C 96-18-4 1,2,3-Trichloropropane ND ug/kg dry 3.1 6.1 1 BK Certifications: NELAC-NY10854,NJDEP 04/24/2017 07:33 04/24/2017 14:10 EPA 8260C BK 120-82-1 ug/kg dry 3.1 1 1,2,4-Trichlorobenzene ND 6.1 Certifications: NELAC-NY10854,NJDEP,PADEP 04/24/2017 07:33 04/24/2017 14:10 95-63-6 ug/kg dry 3.1 1 EPA 8260C BK 1,2,4-Trimethylbenzene ND 6.1 Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 96-12-8 ug/kg dry 3.1 1 BK 1,2-Dibromo-3-chloropropane ND 6.1 Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 106-93-4 ug/kg dry 3.1 6.1 1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK 1 2-Dibromoethane ND Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 04/24/2017 07:33 04/24/2017 14:10 95-50-1 ug/kg dry 3.1 6.1 1 EPA 8260C BK 1,2-Dichlorobenzene ND Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 04/24/2017 07:33 04/24/2017 14:10 107-06-2 ug/kg dry 3.1 6.1 1 EPA 8260C BK ND 1,2-Dichloroethane Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 04/24/2017 07:33 04/24/2017 14:10 78-87-5 ND ug/kg dry 3.1 6.1 1 EPA 8260C BK 1,2-Dichloropropane Certifications: CTDOH NELAC-NY10854 NJDEP PADEP 108-67-8 ug/kg dry 3.1 6.1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK 1,3,5-Trimethylbenzene ND 1 Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 541-73-1 1,3-Dichlorobenzene ND ug/kg dry 3.1 6.1 1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 106-46-7 1,4-Dichlorobenzene ND ug/kg dry 3.1 6.1 1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 123-91-1 1,4-Dioxane ND ug/kg dry 61 120 1 EPA 8260C 04/24/2017 07:33 04/24/2017 14:10 BK NELAC-NY10854,NJDEP,PADEP Certifications:

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientService

Page 4 of 22

Client Sample ID:	SB-2 (4-6')		York Sample ID:	17D0698-01
York Project (SDG) No	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 11:10 am	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
78-93-3	2-Butanone	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
591-78-6	2-Hexanone	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	CDOU N	04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: CI	DOH,NI	LAC-NY 10854,NJDI	P,PADEP	
108-10-1	* 4-Methyl-2-pentanone	ND		ug/kg ary	3.1	6.1	1	EPA 8260C Certifications: CT	TDOH	04/24/2017 07:33	04/24/2017 14:10	BK
67-64-1	Acetone	21	SCAL-	ug/kg drv	6.1	12	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
			E					Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
107-02-8	Acrolein	ND		ug/kg dry	6.1	12	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
107-13-1	Acrylonitrile	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: C1	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
71-43-2	Benzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
74.07.5					2.1	6.1		Certifications: C1	DOH,NI	2LAC-NY 10854,NJD	04/24/2017 14-10	DV
/4-9/-5	Bromochloromethane	ND		ug/kg ary	3.1	0.1	1	EPA 8260C Certifications: NE	ELAC-NY	04/24/2017 07:55 (10854.NJDEP.PADE	04/24/2017 14:10	вк
75-27-4	Bromodichloromethane	ND		ug/kg drv	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
/5 2/ 1	Diomodicinoroniculaite	ND						Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	Dit
75-25-2	Bromoform	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
74-83-9	Bromomethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
75-15-0	Carbon disulfide	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: C1	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
56-23-5	Carbon tetrachloride	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
108 00 7	Chlenchemenne	ND		ug/kg dru	2.1	6.1	1	EBA 8260C	DOII,N	04/24/2017 07-22	04/24/2017 14:10	DV
108-90-7	Chlorobenzene	ND		ug/kg ary	3.1	0.1	1	Certifications: CT	DOH,NI	ELAC-NY10854,NJDI	EP,PADEP	BK
75-00-3	Chloroethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	, i i	04/24/2017 07:33	04/24/2017 14:10	BK
	emoroemane	ПD		~~~ ~ ~ ,				Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
67-66-3	Chloroform	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
74-87-3	Chloromethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: CT	TDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: CT	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
110 82 7	Coulaberran	ND		ug/kg dru	2.1	6.1	1	EPA 8260C	DOII,N	04/24/2017 07:33	04/24/2017 14:10	DV
110-02-7	Cyclonexane	ND		ug/kg ufy	3.1	0.1	1	Certifications: NE	ELAC-NY	(10854,NJDEP,PADE	04/24/2017 14:10	DK
124-48-1	Dibromochloromethane	ND		ug/kg drv	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
	Distantoeniorometinaie						-	Certifications: NE	ELAC-NY	(10854,NJDEP,PADE	2	

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 5 of 22

Client Sample ID: SB-2 (4-0	5')		York Sample ID:	17D0698-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 11:10 am	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
74-95-3	Dibromomethane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	ВК
75 71 9				ualka day	2.1	6.1		Certifications: N	NELAC-N	Y10854,NJDEP,PADE	04/24/2017 14-10	DV
/5-/1-8	Dichlorodifluoromethane	ND		ug/kg uiy	5.1	0.1	1	Certifications: N	NELAC-N	04/24/2017 07.55 Y10854,NJDEP,PADE	04/24/2017 14.10	BK
100-41-4	Ethyl Benzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications: N	JELAC-N	04/24/2017 07:33 Y10854 NIDEP PADE	04/24/2017 14:10	BK
98-82-8	Isopropylbenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
79-20-9	Methyl acetate	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
1624 04 4					2.1	6.1		Certifications: N	NELAC-N	Y10854,NJDEP,PADE	04/24/2017 14-10	DV
1634-04-4	Methyl tert-butyl ether (MIBE)	ND		ug/kg dry	3.1	0.1	I	Certifications: (CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	BK
108-87-2	Methylcyclohexane	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: N	NELAC-N	Y10854,NJDEP,PADE	2	
75-09-2	Methylene chloride	ND		ug/kg dry	6.1	12	1	EPA 8260C	TDOUN	04/24/2017 07:33	04/24/2017 14:10	BK
104-51-8	n-Butylbenzene	ND		ug/kg dry	31	61	1	EPA 8260C	, noon, N	04/24/2017 07:33	04/24/2017 14:10	вк
101 51 0	n-Butyloenzene	ND		ug ng ur j	5.1	0.1	•	Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	bit
103-65-1	n-Propylbenzene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
95-47-6	o-Xylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications: C	TDOH.N	04/24/2017 07:33 ELAC-NY10854.PADI	04/24/2017 14:10 EP	BK
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	6.1	12	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	ВК
	r ··· j····							Certifications: C	CTDOH,N	ELAC-NY10854,PADI	ΞP	
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
125.09.9	75 - II				2.1	6.1		Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	DV
133-98-8	sec-Butylbenzene	ND		ug/kg dry	3.1	0.1	1	Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	BK
100-42-5	Styrene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	3.1	12	1	EPA 8260C	JELAC N	04/24/2017 07:33	04/24/2017 14:10	BK
98-06-6	tert-Butylbenzene	ND		ug/kg dry	31	61	1	EPA 8260C	NELAC-IN	04/24/2017 07:33	04/24/2017 14:10	вк
	tert Butyloenzene	nb		-88,			-	Certifications: O	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
127-18-4	Tetrachloroethylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
108-88-3	Toluene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C Certifications: C	TDOH.N	04/24/2017 07:33 ELAC-NY10854.NJDI	04/24/2017 14:10 EP.PADEP	BK
156-60-5	trans-1.2-Dichloroethylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	- , .	04/24/2017 07:33	04/24/2017 14:10	ВК
	, <u>,</u>							Certifications: C	CTDOH,N	ELAC-NY10854,NJDF	EP,PADEP	
120 RE	SEARCH DRIVE	STRATFORD, (CT 06615			1	32-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	

www.YORKLAB.com

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 6 of 22

				Sample	Inform	ation						
<u>Client Sa</u>	mple ID: SB-2 (4-6')									York Sample	<u>e ID:</u> 17	D0698-01
York Proj	ect (SDG) No.	Client	Project II	<u>)</u>			M	latrix	Colle	ction Date/Time	Date	Received
1	7D0698	834	6-JANY				5	Soil	April 1	8, 2017 11:10 ai	m C	4/19/2017
Volatile (Organics. NJDEP/TCL/Part 375	List			Log-in	Notes:		Sam	ole Note	es:		
Sample Prepar	ed by Method: EPA 5035A											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDE	EP,PADEP	
79-01-6	Trichloroethylene	ND		ug/kg dry	3.1	6.1	1	EPA 8260C	CTDOUN	04/24/2017 07:33	04/24/2017 14:10	BK
75-69-4	Trichlorofluoromethane	ND		uø/kø dry	3.1	61	1	EPA 8260C	CIDOH,N	04/24/2017 07:33	04/24/2017 14·10	BK
75-69-4	memoronuoromethane	ND		uging urj	5.1	0.1	•	Certifications:	CTDOH,N	ELAC-NY10854,NJDE	EP,PADEP	DR
75-01-4	Vinyl Chloride	ND		ug/kg dry	3.1	6.1	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:10	ВК
								Certifications:	CTDOH,N	ELAC-NY10854,NJDE	EP,PADEP	
1330-20-7	Xylenes, Total	ND		ug/kg dry	9.2	18	1	EPA 8260C	CTDOUN	04/24/2017 07:33	04/24/2017 14:10	BK
	Supposts Deservoyies	Decult		1 000	ntanaa Dan			Certifications:	CIDOH,N	ELAC-NY 10854,NJDE	5P	
17060-07-0	Surrogate L 2 Dighlorogthang d4	107 %		Acce	77 125	ige						
2037-26-5	Surrogate: Toluene-d8	07.2%			85-120							
460-00-4	Surrogate: n-Bromofluorobenzene	102 %			76-130							
	Surrogate. p Bromojnorobenzene	102 /0			70 150							
<u>Total Soli</u>	ids				<u>Log-in</u>	Notes:		Sam	ple Note	es:		
Sample Prepar	red by Method: % Solids Prep											
CAS N	o. Parameter	Result	Flag	Units		Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	81.6		%		0.100	1	SM 2540G		04/25/2017 12:18	04/25/2017 14:02	TAJ
								Certifications:	CTDOH			
				Sample	Inform	ation						
<u>Client Sa</u>	<u>mple ID:</u> SB-2 (6-8')			pit						York Sample	<u>e ID:</u> 17	D0698-02
Vork Proi	ect (SDG) No	Client	Project II)			м	latrix	Colle	ction Date/Time	Date	Received
<u>1018110</u>	7D0698	834	6-JANY	-			<u>101</u>	Soil	April 1	8. 2017 11:20 a	m (4/19/2017

<u>Volatile (</u>	Organics, NJDEP/TCL/Part 3		<u>Log-in</u>	Notes	<u>::</u>	Samp	ample Notes:				
Sample Prepar	ed by Method: EPA 5035A										
CAS N	o. Parameter	Result F	lag Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,NE	04/24/2017 07:33 ELAC-NY10854,NJD	04/24/2017 14:42 EP,PADEP	BK
71-55-6	1,1,1-Trichloroethane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications: 0	CTDOH,NE	04/24/2017 07:33 ELAC-NY10854,NJD	04/24/2017 14:42 EP,PADEP	BK
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/kg dry	2.8	5.7	1	EPA 8260C Certifications: C	CTDOH,NE	04/24/2017 07:33 ELAC-NY10854,NJD	04/24/2017 14:42 EP,PADEP	ВК
120 RE	SEARCH DRIVE	STRATFORD, CT 0	6615			132-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	
www.Y	ORKLAB.com	(203) 325-1371				FAX (203) 3	357-0166		ClientServices	Page 7	of 22

Client Sample ID:	SB-2 (6-8')		York Sample ID:	17D0698-02
York Project (SDG) No	<u>.</u> <u>Client Project ID</u>	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 11:20 am	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP	BK
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP,PADE	04/24/2017 14:42 P	BK
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP	04/24/2017 14:42	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP,PADE	04/24/2017 14:42 P	BK
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
123-91-1	1,4-Dioxane	ND		ug/kg dry	57	110	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP,PADE	04/24/2017 14:42 P	BK
78-93-3	2-Butanone	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
591-78-6	2-Hexanone	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK
108-10-1	* 4-Methyl-2-pentanone	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH	04/24/2017 07:33	04/24/2017 14:42	BK
67-64-1	Acetone	32	SCAL E	- ug/kg dry	5.7	11	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 14:42 EP,PADEP	BK

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices
 Page 8 of 22

Client Sample ID:	SB-2 (6-8')		York Sample ID:	17D0698-02
York Project (SDG) No	<u>.</u> <u>Client Project ID</u>	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 11:20 am	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	ethod	Date/Time Prepared	Date/Time Analyzed	Analys
107-02-8	Acrolein	ND		ug/kg dry	5.7	11	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: C1	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
107-13-1	Acrylonitrile	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications: C1	FDOH NI	04/24/2017 07:33 ELAC-NY10854 NJDI	04/24/2017 14:42 EP PADEP	BK
71-43-2	Benzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
	Demone	112		000				Certifications: C1	IDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: NI	ELAC-N	/10854,NJDEP,PADE	р	
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	FDOH NI	04/24/2017 07:33 ELAC-NV10854 NIDI	04/24/2017 14:42	BK
75-25-2	Bromoform	ND		ug/kg dry	2.8	57	1	EPA 8260C	10011,11	04/24/2017 07:33	04/24/2017 14:42	BK
	Biomotorm	ND		-88 ,				Certifications: C1	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: CT	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
75-15-0	Carbon disulfide	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	FDOH NI	04/24/2017 07:33	04/24/2017 14:42	BK
56-23-5	Carbon tetrachloride	ND		uø/kø dry	2.8	57	1	EPA 8260C	i DOII,N	04/24/2017 07·33	04/24/2017 14:42	BK
00 20 0	Carbon curaemonde	ND		ug ng ur j	2.0	5.7		Certifications: C1	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	bit
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: C1	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
67 66 3	Chloroform	ND		ug/kg dry	2.8	57	1	EPA 8260C	i DOR,NI	04/24/2017 07:33	04/24/2017 14-42	BV
07-00-5	Chiofololin	ND		ug kg ur y	2.0	5.7	1	Certifications: CT	IDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	DK
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: C1	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	Bould	04/24/2017 07:33	04/24/2017 14:42	BK
10061 01 5	· 120.11			ualka dar	20	57		EDA \$260C	I DOH,NI	LAC-NY 10854,NJD	04/24/2017 14-42	DV
10001-01-5	cis-1,3-Dichloropropylene	ND		ug/kg uiy	2.8	5.7	I	Certifications: C1	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	DK
110-82-7	Cyclohexane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: NI	ELAC-N	/10854,NJDEP,PADE	Р	
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: NI	ELAC-N	(10854,NJDEP,PADE	P	DV
74-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications: NI	ELAC-N	04/24/2017 07:33 (10854,NJDEP,PADE	04/24/2017 14:42 P	BK
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: NI	ELAC-N	/10854,NJDEP,PADE	р	
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications: C1	FDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	ELAC M	04/24/2017 07:33	04/24/2017 14:42	BK
								Contineations. INI	LLINC=IN			

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 9 of 22

Client Sample ID: SB-2 (6-8')			York Sample ID:	17D0698-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 11:20 am	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
70.20.0				a 1	2.0	6.7		Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	DV
79-20-9	Methyl acetate	3.6	SCAL- E, J	ug/kg dry	2.8	5.7	I	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP,PADEP	04/24/2017 14:42	ВК
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854.NJDEP.PADEP	04/24/2017 14:42	BK
75-09-2	Methylene chloride	ND		ug/kg dry	5.7	11	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
102.65.1	D 11				2.0	57		Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	DV
103-03-1	n-Propyibenzene	ND		ug/kg ury	2.0	5.7	1	Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	BK
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications:	CTDOH,N	ELAC-NY10854,PADE	Р	
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.7	11	1	EPA 8260C	CTDOU N	04/24/2017 07:33	04/24/2017 14:42	BK
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	C I DOIL, N	04/24/2017 07:33	04/24/2017 14:42	BK
	p isopropynomene	112		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
100.40.5	<u>.</u>							Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	DV
100-42-5	Styrene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDE	04/24/2017 14:42 P,PADEP	BK
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.8	11	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	ВК
								Certifications:	NELAC-N	Y10854,NJDEP,PADEP		
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	CTDOUN	04/24/2017 07:33	04/24/2017 14:42	BK
127-18-4	Tetrachloroethylene	ND		ug/kg drv	2.8	57	1	EPA 8260C	C I DOH,N	04/24/2017 07:33	04/24/2017 14·42	вк
127 10 1	renaenioroemytene	ND					-	Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	bit
108-88-3	Toluene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDE	04/24/2017 14:42 P,PADEP	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	BK
75 69 4	Tricklorofluoromothono	ND		ua/ka dru	28	57	1	EPA 8260C	CIDOH,N	04/24/2017 07:33	04/24/2017 14-42	BK
, 5-09-4	memoronuorometnane	ND		ag/ng uiy	2.0	5.1	1	Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	DK
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.7	1	EPA 8260C		04/24/2017 07:33	04/24/2017 14:42	ВК
								Certifications:	CTDOH,N	ELAC-NY10854,NJDE	P,PADEP	
120 RE	SEARCH DRIVE	STRATFORD. (CT 06615			1	32-02 89th			RICHMOND HIL	I NY 11418	

www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 10 of 22

			2	Sample	Inform	ation						
Client Sa	<u>mple ID:</u> SB-2 (6-8')									York Sample	e ID: 17	D0698-02
York Proje	ect (SDG) No.	Client P	roject ID	<u>!</u>			M	atrix	Colle	ection Date/Time	Date	Received
1	7D0698	8346-	JANY				5	Soil	April 1	8, 2017 11:20 a	m (04/19/2017
Volatile C	Drganics, NJDEP/TCL/Part 37	<u>5 List</u>			<u>Log-in</u>	1 Notes:		<u>Sam</u>	ple Note	es:		
Sample Prepar	ed by Method: EPA 5035A				Reported to					Date/Time	Date/Time	
CAS N	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.5	17	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDF	04/24/2017 14:42 EP	BK
	Surrogate Recoveries	Result		Acce	ptance Ran	ige						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			77-125							
2037-26-5	Surrogate: Toluene-d8	97.4 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	96.0 %			76-130							
<u>Total Soli</u>	ids				<u>Log-in</u>	1 Notes:		<u>Sam</u>	ple Note	es:		
Sample Prepar	red by Method: % Solids Prep											
CAS N	o. Parameter	Result	Flag	Units		Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	89.1		%		0.100	1	SM 2540G Certifications:	CTDOH	04/25/2017 12:18	04/25/2017 14:02	TAJ
<u>Client Sa</u> <u>York Proje</u> 1	mple ID: SB-3 (4-6') ect (SDG) No. 7D0698	Client P 8346-	Project ID		Inform	lation	M	<u>atrix</u> Soil	<u>Colle</u> April 1	<u>York Sample</u> ection Date/Time 8, 2017, 12:15 p	<u>e ID:</u> 17 <u>Date</u> m (D0698-03
Volatile C Sample Prepar	Drganics, NJDEP/TCL/Part 37 ed by Method: EPA 5035A	5 List			<u>Log-in</u>	<u>n Notes:</u>		<u>Sam</u>	ple Note	e <u>s:</u>		
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	L00	Dilution	Reference	Method	Date/Time Prenared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	CTDOH N	04/24/2017 07:33	04/24/2017 15:14	BK
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33	04/24/2017 15:14 EP.PADEP	BK
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDF	04/24/2017 15:14 EP,PADEP	ВК
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:14 EP	BK
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDF	04/24/2017 15:14 EP,PADEP	BK
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDF	04/24/2017 15:14 EP,PADEP	BK
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:14 EP,PADEP	ВК
120 RE	ESEARCH DRIVE	STRATFORD, C	T 06615			13	32-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	
www.Y	ORKLAB.com	(203) 325-1371				FA	AX (203) 3	57-0166		ClientServices		

Page 11 of 22

Client Sample ID: SB-3 ((4-6')		York Sample ID:	17D0698-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 12:15 pm	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

www.YORKLAB.com

(203) 325-1371

CAS No	o. Parameter	Result	Flag U	nits	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
87-61-6	1,2,3-Trichlorobenzene	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
or 10 4					2.8			Certifications:	NELAC-N	(10854,NJDEP,PADEP	04/04/00151514	DV
96-18-4	1,2,3-Trichloropropane	ND	u	g/kg ary	2.8	5.6	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 710854,NJDEP	04/24/2017 15:14	ВК
120-82-1	1,2,4-Trichlorobenzene	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	NELAC-N	/10854,NJDEP,PADEP	•	
95-63-6	1,2,4-Trimethylbenzene	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C Certifications	CTDOH NI	04/24/2017 07:33 ELAC-NY10854 NJDE	04/24/2017 15:14 PPADEP	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
	,							Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	
106-93-4	1,2-Dibromoethane	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C	OTROUN	04/24/2017 07:33	04/24/2017 15:14	BK
95-50-1	1.2-Dichlorobenzene	ND	11	o/ko drv	2.8	5.6	1	EPA 8260C	CIDOH,NI	04/24/2017 07:33	04/24/2017 15·14	BK
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,2-Diemorobenzene	ND	ų	6/116 til 9	2.0	5.0		Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	bit
107-06-2	1,2-Dichloroethane	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
50 05 5					•			Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	DV
/8-8/-5	1,2-Dichloropropane	ND	u	g/kg dry	2.8	5.6	I	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDE	04/24/2017 15:14 P,PADEP	BK
108-67-8	1,3,5-Trimethylbenzene	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	
541-73-1	1,3-Dichlorobenzene	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH NI	04/24/2017 07:33	04/24/2017 15:14 PPADEP	BK
106-46-7	1.4-Dichlorobenzene	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C	erbon, a	04/24/2017 07:33	04/24/2017 15:14	BK
	,							Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	
123-91-1	1,4-Dioxane	ND	u	g/kg dry	56	110	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
78 03 3	2 Putanana	ND		a/ka dry	2.8	5.6	1	EPA 8260C	NELAC-N	04/24/2017 07:33	04/24/2017 15:14	BK
78-95-5	2-Butanone	ND	ų	g/kg uly	2.0	5.0	1	Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	DK
591-78-6	2-Hexanone	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	
108-10-1	* 4-Methyl-2-pentanone	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH	04/24/2017 07:33	04/24/2017 15:14	BK
67-64-1	Acetone	54	SCAL- ug	/kg dry	5.6	11	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
			Е					Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	
107-02-8	Acrolein	ND	u	g/kg dry	5.6	11	1	EPA 8260C Certifications	CTDOH NI	04/24/2017 07:33 ELAC-NY 10854 NJDE	04/24/2017 15:14 PPADEP	BK
107-13-1	Acrylonitrile	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
	,							Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	
71-43-2	Benzene	ND	u	g/kg dry	2.8	5.6	1	EPA 8260C	OTROUN	04/24/2017 07:33	04/24/2017 15:14	BK
74-97-5	Promochloromethane	ND		a/ka dry	2.8	5.6	1	EPA 8260C	CIDOH,NI	04/24/2017 07:33	04/24/2017 15:14	BK
	Bromoemonomemane	ND	ų	5 x 5 u y	2.0	5.0	1	Certifications:	NELAC-N	10854,NJDEP,PADEP)	Dix
120 PE		STRATEORD	CT 06615		_	1	32 02 80th				L NV 11/10	

FAX (203) 357-0166

ClientServices

Page 12 of 22

Client Sample ID: SB-3 ((4-6')		York Sample ID:	17D0698-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 12:15 pm	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analys
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	ВК
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	CTDOH N	04/24/2017 07:33 ELAC-NY 10854 NIDI	04/24/2017 15:14 EP PADEP	BK
74-83-9	Bromomethane	ND		ug/kg dry	2.8	56	1	EPA 8260C	012011,11	04/24/2017 07:33	04/24/2017 15:14	BK
1100 /	Diomoniculate	ND		-88 ,			-	Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	Dit
75-15-0	Carbon disulfide	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	CTDOH N	04/24/2017 07:33 EL AC-NY 10854 NIDI	04/24/2017 15:14	BK
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	e i boli, N	04/24/2017 07:33	04/24/2017 15:14	BK
15-00-5	Chloroethane	ND		ug kg ur y	2.0	5.0		Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	ы
67-66-3	Chloroform	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	CTDOUN	04/24/2017 07:33	04/24/2017 15:14	BK
100(1.01.5		ND		ug/kg day	20	5.6		EDA 8260C	CIDOH,N	04/24/2017 07/22	04/24/2017 15-14	DV
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg ury	2.8	5.0	I	Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	BK
110-82-7	Cyclohexane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
	-,							Certifications:	NELAC-N	Y10854,NJDEP,PADE	Р	
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	Р	
74-95-3	Dibromomethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	P	BW
/5-/1-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854 NJDEP PADE	04/24/2017 15:14 P	BK
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	56	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	ВК
	Early Delizene	ЦD		-88 ,			-	Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	Р	
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
79-20-9	Methyl acetate	13	SCAL F	 ug/kg dry 	2.8	5.6	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854 NJDEP PADE	04/24/2017 15:14 P	BK
1634-04-4	Methyl tert-butyl ether (MTRE)	ND	L	ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
	menyi ter-outyi enter (MTDE)	11D		45 AS UI Y	2.0	2.5		Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	Dix
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	Р	

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 13 of 22

Client Sample ID: SB-3 (4-6	5')		York Sample ID:	17D0698-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 12:15 pm	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-09-2	Methylene chloride	ND		ug/kg dry	5.6	11	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CIDOH,N	ELAC-NY 10854,PAD	EP	
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.6	11	1	EPA 8260C	CTDOUN	04/24/2017 07:33	04/24/2017 15:14	BK
00.05.0					• •			Certifications:	CIDOH,N	ELAC-NY 10854,PAD	EP	DV
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.8	5.6	I	EPA 8260C	CTDOH N	04/24/2017 07:33	04/24/2017 15:14	BK
135 08 8	saa Dutzilhangana	ND		ua/ka dru	28	5.6	1	EDA 8260C	CTD011,14	04/24/2017 07:33	04/24/2017 15:14	BK
155-98-8	sec-Butyloenzene	ND		ug/kg uiy	2.0	5.0	1	Certifications:	CTDOH.N	ELAC-NY10854.NJDI	EP.PADEP	DK
100-42-5	Styrene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	,	04/24/2017 07:33	04/24/2017 15:14	вк
	Stylene	n _D		-88)			-	Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.8	11	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	ВК
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	Р	
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	ВК
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
108-88-3	Toluene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	CTDOUN	04/24/2017 07:33	04/24/2017 15:14	BK
70.01.6					2.8	5.6	1	EDA 8260C	CIDOR,N	04/24/2017 07:22	04/24/2017 15-14	DV
/9-01-0	Irichloroethylene	ND		ug/kg dry	2.8	3.0	1	Certifications:	CTDOH N	04/24/2017 07.33 ELAC-NY10854 NJDI	EP PADEP	BK
75-69-4	Trichlorofluoromathana	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	erbon,	04/24/2017 07:33	04/24/2017 15:14	BK
15-07-4	memoronuoromemane	ND		ug kg ury	2.0	5.0	1	Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	DR
75-01-4	Vinyl Chloride	ND		ug/kg drv	2.8	5.6	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	ВК
	Vinyr Cinoride	T(D)		-88)				Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.4	17	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:14	ВК
	• *							Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP	
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			77-125							
2037-26-5	Surrogate: Toluene-d8	96.5 %			85-120							

76-130

120 RESEARCH DRIVE www.YORKLAB.com

 $Surrogate: p\hbox{-}Bromofluorobenzene$

460-00-4

STRATFORD, CT 06615 (203) 325-1371

99.1 %

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 14 of 22

Client Sample ID: SB-3 (4-6')			York Sample ID:	17D0698-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 12:15 pm	04/19/2017

Total Solids					Log-in Notes:		Sam	ple Notes	<u>:</u>		
Sample Prepared by Method	1: % Solids Prep										
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids * % Soli	ids	91.3		%	0.100	1	SM 2540G Certifications:	CTDOH	04/25/2017 12:18	04/25/2017 14:02	TAJ
				Sample	Information						
Client Sample ID:	SB-3 (6-8')								York Sample	<u>e ID:</u> 17	D0698-04
York Project (SDG)	No.	Client	Project II	D		M	atrix	Collect	tion Date/Time	Date	e Received
17D0698		8346	5-JANY			S	Soil	April 18,	2017 12:20 p	m (04/19/2017

Volatile Organics, NJDEP/TCL/Part 375 List

Sample Prepared by Method: EPA 5035A

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag Uni	Repo ts LOI	orted to D/MDL LOQ) Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDF	04/24/2017 15:45 EP,PADEP	BK
71-55-6	1,1,1-Trichloroethane	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDF	04/24/2017 15:45 EP,PADEP	ВК
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	ВК
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP	ВК
79-00-5	1,1,2-Trichloroethane	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDH	04/24/2017 15:45 EP,PADEP	ВК
75-34-3	1,1-Dichloroethane	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	ВК
75-35-4	1,1-Dichloroethylene	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	ВК
87-61-6	1,2,3-Trichlorobenzene	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP,PADE	04/24/2017 15:45	ВК
96-18-4	1,2,3-Trichloropropane	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP	04/24/2017 15:45	ВК
120-82-1	1,2,4-Trichlorobenzene	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP,PADE	04/24/2017 15:45	ВК
95-63-6	1,2,4-Trimethylbenzene	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	ВК
96-12-8	1,2-Dibromo-3-chloropropane	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	ВК
106-93-4	1,2-Dibromoethane	ND	ug/k	g dry 2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NI	04/24/2017 07:33 ELAC-NY10854,NJDF	04/24/2017 15:45 EP,PADEP	BK
120 RE	SEARCH DRIVE	STRATFORD, CT (06615			132-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	
www.Y	ORKLAB.com	(203) 325-1371				FAX (203) 3	357-0166		ClientServices	Page 15	of 22

Client Sample ID: SB-3 (6-8')			York Sample ID:	17D0698-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 12:20 pm	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
107-06-2	1.2-Dichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	CTDOH,N	04/24/2017 07:33	04/24/2017 15:45	BK
	,							Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH.N	04/24/2017 07:33 ELAC-NY10854.NJDI	04/24/2017 15:45 EP.PADEP	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	,	04/24/2017 07:33	04/24/2017 15:45	ВК
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
123-91-1	1,4-Dioxane	ND		ug/kg dry	52	100	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP,PADE	04/24/2017 15:45 P	BK
78-93-3	2-Butanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
591-78-6	2-Hexanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	BK
108-10-1	* 4-Methyl-2-pentanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH			
67-64-1	Acetone	46	SCAL- ι E	ıg/kg dry	5.2	10	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	BK
107-02-8	Acrolein	ND		ug/kg dry	5.2	10	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
105.10.1								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	DV
107-13-1	Acrylonitrile	ND		ug/kg ary	2.6	5.2	I	Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	EP,PADEP	ВК
71-43-2	Benzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
					2.6	<i>c</i> a		Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	DV
/4-9/-5	Bromochloromethane	ND		ug/kg ary	2.0	3.2	1	EPA 8260C Certifications:	NELAC-N	04/24/2017 07:33 Y10854,NJDEP,PADE	04/24/2017 15:45 P	ВК
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
					2.6	<i>c</i> a		Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	DV
75-25-2	Bromotorm	ND		ug/kg ary	2.6	5.2	I	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	ВК
74-83-9	Bromomethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
	a. 1. 1. 141							Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	DV
/5-15-0	Carbon disulfide	ND		ug/kg ary	2.6	5.2	I	Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	EP,PADEP	ВК
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
108-90-7	Chlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	04/24/2017 07:33 ELAC-NY10854,NJDI	04/24/2017 15:45 EP,PADEP	BK
120 PE			CT 06615		_	1	32 02 80th					

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 16 of 22

Client Sample ID: SB-	3 (6-8')		York Sample ID:	17D0698-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 12:20 pm	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

75-00-3 Chloroethane ND ug/kg dry 2.6 5.2 1 EPA Certi 67-66-3 Chloroform ND ug/kg dry 2.6 5.2 1 EPA Certi 74-87-3 Chloromethane ND ug/kg dry 2.6 5.2 1 EPA Certi 74-87-3 Chloromethane ND ug/kg dry 2.6 5.2 1 EPA Certi 156-59-2 cis-1,2-Dichloroethylene ND ug/kg dry 2.6 5.2 1 EPA Certi 10061-01-5 cis-1,3-Dichloropropylene ND ug/kg dry 2.6 5.2 1 EPA Certi 110-82-7 Cyclohexane ND ug/kg dry 2.6 5.2 1 EPA Certi 124-48-1 Dibromochloromethane ND ug/kg dry 2.6 5.2 1 EPA Certi 74-95-3 Dibromomethane ND ug/kg dry 2.6 5.2 1 EPA Certi 100-41-4 Ethyl Benzene ND ug/kg dry 2.6 5.2 1 EPA Certi 98-82-8 Isopropylbenzene <th>8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK s8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK s8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK s8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK BK s8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK BK</th>	8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK s8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK s8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK s8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK BK s8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK BK
67-66-3 Chloroform ND ug/kg dry 2.6 5.2 1 EPA 74-87-3 Chloromethane ND ug/kg dry 2.6 5.2 1 EPA 156-59-2 cis-1,2-Dichloroethylene ND ug/kg dry 2.6 5.2 1 EPA 10061-01-5 cis-1,3-Dichloroptylene ND ug/kg dry 2.6 5.2 1 EPA 110-82-7 Cyclohexane ND ug/kg dry 2.6 5.2 1 EPA 124-48-1 Dibromochloromethane ND ug/kg dry 2.6 5.2 1 EPA 74-95-3 Dibromochloromethane ND ug/kg dry 2.6 5.2 1 EPA 75-71-8 Dichlorodifluoromethane ND ug/kg dry 2.6 5.2 1 EPA 76-73 Dichlorodifluoromethane ND ug/kg dry 2.6 5.2 1 EPA 76-71-8 Dichlorodifluoromethane ND ug/kg dry 2.6 5.2 1 EPA 76-73 Hexachlorobutadiene ND <	ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP .8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 8260C 04/24/2017 07:33 04/24/2017 15:45 BK
The second sec	Infractions: CTDOH,NELAC-NY10854,NJDEP,PADEP 8260C 04/24/2017 07:33 04/24/2017 15:45 BK iffications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK BK 8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK BK 8260C 04/24/2017 07:33 04/24/2017 15:45 BK 8260C 04/24/2017 07:33 04/24/2017 15:45 BK
74-87-3ChloromethaneNDug/kg dry2.65.21EPA Certi156-59-2cis-1,2-DichloroethyleneNDug/kg dry2.65.21EPA Certi10061-01-5cis-1,3-DichloropropyleneNDug/kg dry2.65.21EPA Certi110-82-7CyclohexaneNDug/kg dry2.65.21EPA Certi124-48-1DibromochloromethaneNDug/kg dry2.65.21EPA Certi74-95-3DibromochloromethaneNDug/kg dry2.65.21EPA Certi75-71-8DichlorobitfluoromethaneNDug/kg dry2.65.21EPA Certi100-41-4Ethyl BenzeneNDug/kg dry2.65.21EPA Certi98-82-8IsopropylbenzeneNDug/kg dry2.65.21EPA Certi79-20-9Methyl acetate4.2SCAL- ug/kg dry2.65.21EPA Certi	8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK s260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP BK scatch 04/24/2017 07:33 04/24/2017 15:45 BK scatch 04/24/2017 07:33 04/24/2017 15:45 BK
156-59-2 cis-1,2-Dichloroethylene ND ug/kg dry 2.6 5.2 1 EPA 10061-01-5 cis-1,3-Dichloropropylene ND ug/kg dry 2.6 5.2 1 EPA 110-82-7 Cyclohexane ND ug/kg dry 2.6 5.2 1 EPA 124-48-1 Dibromochloromethane ND ug/kg dry 2.6 5.2 1 EPA 74-95-3 Dibromomethane ND ug/kg dry 2.6 5.2 1 EPA 75-71-8 Dichlorodifluoromethane ND ug/kg dry 2.6 5.2 1 EPA 100-41-4 Ethyl Benzene ND ug/kg dry 2.6 5.2 1 EPA 87-68-3 Hexachlorobutadiene ND ug/kg dry 2.6 5.2 1 EPA 98-82-8 Isopropylbenzene ND ug/kg dry 2.6 5.2 1 EPA 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA	8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 8260C 04/24/2017 07:33 04/24/2017 15:45 BK 62.01 CTDOH,VELAC-NY10854,NJDEP,PADEP 8260C 04/24/2017 07:33 04/24/2017 15:45 BK
10061-01-5cis-1,3-DichloropropyleneNDug/kg dry2.65.21EPA Certi110-82-7CyclohexaneNDug/kg dry2.65.21EPA Certi124-48-1DibromochloromethaneNDug/kg dry2.65.21EPA Certi74-95-3DibromomethaneNDug/kg dry2.65.21EPA Certi75-71-8DichlorodifluoromethaneNDug/kg dry2.65.21EPA Certi100-41-4Ethyl BenzeneNDug/kg dry2.65.21EPA Certi87-68-3HexachlorobutadieneNDug/kg dry2.65.21EPA Certi98-82-8IsopropylbenzeneNDug/kg dry2.65.21EPA Certi79-20-9Methyl acetate4.2SCAL-ug/kg dry2.65.21EPA Certi	ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP .8260C 04/24/2017 07:33 04/24/2017 15:45 BK
10061-01-5cis-1,3-DichloropropyleneNDug/kg dry2.65.21EPA Certi110-82-7CyclohexaneNDug/kg dry2.65.21EPA Certi124-48-1DibromochloromethaneNDug/kg dry2.65.21EPA Certi74-95-3DibromomethaneNDug/kg dry2.65.21EPA Certi75-71-8DichlorodifluoromethaneNDug/kg dry2.65.21EPA Certi100-41-4Ethyl BenzeneNDug/kg dry2.65.21EPA Certi87-68-3HexachlorobutadieneNDug/kg dry2.65.21EPA Certi98-82-8IsopropylbenzeneNDug/kg dry2.65.21EPA Certi79-20-9Methyl acetate4.2SCAL-ug/kg dry2.65.21EPA Certi	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK
110-82-7CyclohexaneNDug/kg dry2.65.21E124-48-1DibromochloromethaneNDug/kg dry2.65.21EPA Certi74-95-3DibromomethaneNDug/kg dry2.65.21EPA Certi75-71-8DichlorodifluoromethaneNDug/kg dry2.65.21EPA Certi100-41-4Ethyl BenzeneNDug/kg dry2.65.21EPA Certi87-68-3HexachlorobutadieneNDug/kg dry2.65.21EPA Certi98-82-8IsopropylbenzeneNDug/kg dry2.65.21EPA Certi79-20-9Methyl acetate4.2SCAL-ug/kg dry2.65.21EPA Certi	Incations: CTDOH.NELAC-NY10854.NJDEP.PADEP
124-48-1DibromochloromethaneNDug/kg dry2.65.21EPA Certi74-95-3DibromomethaneNDug/kg dry2.65.21EPA Certi75-71-8DichlorodifluoromethaneNDug/kg dry2.65.21EPA Certi100-41-4Ethyl BenzeneNDug/kg dry2.65.21EPA Certi87-68-3HexachlorobutadieneNDug/kg dry2.65.21EPA Certi98-82-8IsopropylbenzeneNDug/kg dry2.65.21EPA Certi79-20-9Methyl acetate4.2SCAL-ug/kg dry2.65.21EPA Certi	8260C 04/24/2017 07:33 04/24/2017 15:45 BK
124-48-1DibromochloromethaneNDug/kg dry2.65.21EPA Certi74-95-3DibromomethaneNDug/kg dry2.65.21EPA Certi75-71-8DichlorodifluoromethaneNDug/kg dry2.65.21EPA Certi100-41-4Ethyl BenzeneNDug/kg dry2.65.21EPA Certi87-68-3HexachlorobutadieneNDug/kg dry2.65.21EPA Certi98-82-8IsopropylbenzeneNDug/kg dry2.65.21EPA Certi79-20-9Methyl acetate4.2SCAL-ug/kg dry2.65.21EPA Certi	ifications: NELAC-NY10854,NJDEP,PADEP
74-95-3 Dibrommethane ND ug/kg dry 2.6 5.2 1 EPA Certi 75-71-8 Dichlorodifluoromethane ND ug/kg dry 2.6 5.2 1 EPA Certi 100-41-4 Ethyl Benzene ND ug/kg dry 2.6 5.2 1 EPA Certi 87-68-3 Hexachlorobutadiene ND ug/kg dry 2.6 5.2 1 EPA Certi 98-82-8 Isopropylbenzene ND ug/kg dry 2.6 5.2 1 EPA Certi 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA Certi	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: NELAC-NY10854 NIDEP PADEP
75-71-8 Dichlorodifluoromethane ND ug/kg dry 2.6 5.2 1 EPA Certi 100-41-4 Ethyl Benzene ND ug/kg dry 2.6 5.2 1 EPA Certi 87-68-3 Hexachlorobutadiene ND ug/kg dry 2.6 5.2 1 EPA Certi 98-82-8 Isopropylbenzene ND ug/kg dry 2.6 5.2 1 EPA Certi 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA Certi	8260C 04/24/2017 07:33 04/24/2017 15:45 BK
75-71-8 Dichlorodifluoromethane ND ug/kg dry 2.6 5.2 1 EPA Certi 100-41-4 Ethyl Benzene ND ug/kg dry 2.6 5.2 1 EPA Certi 87-68-3 Hexachlorobutadiene ND ug/kg dry 2.6 5.2 1 EPA Certi 98-82-8 Isopropylbenzene ND ug/kg dry 2.6 5.2 1 EPA Certi 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA Certi	ifications: NELAC-NY10854,NJDEP,PADEP
100-41-4 Ethyl Benzene ND ug/kg dry 2.6 5.2 1 EPA Certi 87-68-3 Hexachlorobutadiene ND ug/kg dry 2.6 5.2 1 EPA Certi 98-82-8 Isopropylbenzene ND ug/kg dry 2.6 5.2 1 EPA Certi 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA Certi	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: NELAC-NY10854 NIDEP PADEP
87-68-3 Hexachlorobutadiene ND ug/kg dry 2.6 5.2 1 EPA 98-82-8 Isopropylbenzene ND ug/kg dry 2.6 5.2 1 EPA 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA F L Certi Certi Certi Certi Certi	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK
87-68-3 Hexachlorobutadiene ND ug/kg dry 2.6 5.2 1 EPA 98-82-8 Isopropylbenzene ND ug/kg dry 2.6 5.2 1 EPA 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA F L Certi Certi Certi Certi Certi	ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP
98-82-8 Isopropylbenzene ND ug/kg dry 2.6 5.2 1 EPA 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA Certi E I Certi Certi Certi Certi	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: NELAC-NY10854 NIDEP PADEP
Certi Certi 79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA F L Certi Certi Certi	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK
79-20-9 Methyl acetate 4.2 SCAL- ug/kg dry 2.6 5.2 1 EPA F I	ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP
1.5	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: NELAC-NY10854,NJDEP,PADEP
1634-04-4 Methyl tert-butyl ether (MTBE) ND ug/kg dry 2.6 5.2 1 EPA	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK
Certi	ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP
108-87-2 Methylcyclohexane ND ug/kg dry 2.6 5.2 I EPA Certi	8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: NELAC-NY10854,NJDEP,PADEP
75-09-2 Methylene chloride ND ug/kg dry 5.2 10 1 EPA	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK
	ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP
104-51-8 n-Butylbenzene ND ug/kg ary 2.6 5.2 1 EPA Certi	8260C 04/24/2017/07:33 04/24/2017/15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP
103-65-1 n-Propylbenzene ND ug/kg dry 2.6 5.2 1 EPA	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK
Certi	ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP
95-47-6 o-Xylene ND ug/kg dry 2.6 5.2 I EPA Certi	.8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,PADEP
179601-23-1 p- & m- Xylenes ND ug/kg dry 5.2 10 1 EPA	8260C 04/24/2017 07:33 04/24/2017 15:45 BK
Certi	ifications: CTDOH,NELAC-NY10854,PADEP
99-87-6 p-Isopropyltoluene ND ug/kg dry 2.6 5.2 1 EPA Certi	8260C 04/24/2017 07:33 04/24/2017 15:45 BK ifications: CTDOH,NELAC-NY10854,NJDEP,PADEP

www.YORKLAB.com

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices Page 17 of 22

Client Sample ID: SB-3 (6-	8')		York Sample ID:	17D0698-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17D0698	8346-JANY	Soil	April 18, 2017 12:20 pm	04/19/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

Sample Prepare	d by Method: EPA 5035A											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	ВК
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
100-42-5	Styrene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.6	10	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	Р	
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
108-88-3	Toluene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY 10854, NJDI	EP,PADEP	
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY 10854, NJDI	EP,PADEP	
79-01-6	Trichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY 10854, NJDI	EP,PADEP	
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY 10854, NJDI	EP,PADEP	
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY 10854, NJDI	EP,PADEP	
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.7	15	1	EPA 8260C		04/24/2017 07:33	04/24/2017 15:45	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP	
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %			77-125							
2037-26-5	Surrogate: Toluene-d8	96.9 %			85-120							
460-00-4	Surrogate: p-Bromofluorobenzene	98.5 %			76-130							

<u>Total Solids</u>					Log-in Notes:	Sample Notes:			
Sample Prepared by Method: % S	olids Prep								
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ Dilu	ition Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst

							-		
solids	* % Solids	90.9	%	0.100 1	SM 2540G		04/25/2017 12:18	04/25/2017 14:02	TAJ
					Certifications:	CTDOH			

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices Page 18 of 22

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
17D0698-01	SB-2 (4-6')	40mL Vial with Stir Bar-Cool 4° C
17D0698-02	SB-2 (6-8')	40mL Vial with Stir Bar-Cool 4° C
17D0698-03	SB-3 (4-6')	40mL Vial with Stir Bar-Cool 4° C
17D0698-04	SB-3 (6-8')	40mL Vial with Stir Bar-Cool 4° C

ClientServices

Page 19 of 22

Notes and Definitions

- SCAL-E The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%).
- J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
- CCV-E The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
- B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
- * Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
- ND NOT DETECTED the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
- RL REPORTING LIMIT the minimum reportable value based upon the lowest point in the analyte calibration curve.
- LOQ LIMIT OF QUANTITATION the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
- LOD LIMIT OF DETECTION a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
- MDL METHOD DETECTION LIMIT a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
- Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
- NR Not reported
- RPD Relative Percent Difference
- Wet The data has been reported on an as-received (wet weight) basis
- Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE	STRATFORD, CT 06615	132-02 89th AVENUE
www.YORKLAB.com	(203) 325-1371	FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientService

Page 20 of 22

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

ClientServices

Page 21 of 22

Pageof	Report Type Summary Report Summary W, QA Summary Summary W, QA Summary CT RCP Package CTT RCP Package CTT RCP DQA/DUE Pkg NY ASP A Package NY ASP A Package NY ASP B Package NY ASP B Package NY ASP B Package NY SIDE CEQUIS Simple Excel NYSDEC EQUIS Simple Excel NYDEP SRP HazSite EDD GIS/KEY (std) Other Vork Regulatory Comparison Excel Spreadsheet Container Ic Ic	Temperature Temperature on Receipt $\frac{1}{7}$ /84/5 0.2° C ate/Time
ain-of-Custody Record Terms & Conditions are listed on the back side of this document. Terms are not been been with the analyses requested and your Vork Projection to Vork of Toron & Conditions	Invoice To: YOUR Project ID Turn-Around Time ACT 8346-5Avy RUSH-rane bay RUSH-rane bay ACT 8346-5Avy RUSH-rane bay RUSH-rane bay ACT 8346-5Avy RUSH-rane bay RUSH-rane bay Mara Friedraw RUSH-rane bay RUSH-rane bay E.E. ext-fieldraw RUSH-rane bay RUSH-rane bay E.E. ext-fieldraw RUSH-rane bay RUSH-rane bay E.E. ext-fieldraw Samples from: CT_NY_NI Standard(S-T) Days E.E. state science RUSH-rane bay RUSH-rane bay E.E. state science RUSH-rane bay RUSH-rane bay E.E. state science RUSH-rane bay RUSH-rane bay E.E. Samples from: CT_NY_NI Standard(S-T) Days RUSH-rane bay E.E. Samples from: CT_NY NI Standard(S-T) Days RUSH-rane bay E.E. Samples from: CT_NY NI Standard(S-T) Days RUSH-rane bay E.E. Samples from: CT-RIS RUSH-rane bay RUSH-rane bay RUSH rane bay RUSH-rane bay RUSH-rane bay RUSH-rane bay RUSH rane bay RUSH-rane bay RUSH-rane bay RUSH-rane bay RUSH rane bay RUSH-rane bay	4°C Frozen HCl MeOH HNO H_SO_ NaOH M M M M Other Other H_SO_ NaOH Samples Relinquished By Date/Time Samples Received By M M M Samples Relinquished By Date/Time Samples Received by M M M
ield Ch NOTE: York's Std unnent serves as your v	O: stgna O: Company Address: Address: And Phone No Prone No Phone No Prove Arth E-Mail Address Prove No Phone No Prove Arter Poly Phone No Prove Poly Phone No Prove Arter Poly Phone No Prove Poly Phone No Prove Poly Phone No Prove Poly Phone No Prove Poly Phone No Poly Phone Pho	Preservation Check those Applicable Special Instructions Field Filtered
ICAL LABORATORIES EBEARCH DR. EBEARCH DR. . 125-1371 3) 357-0166 3) 357-0166	Company: Report 1 Address: Address: Phone No. Phone No. Address: Mark Gelb Attention: Mark Ge	
PORK ANALYT 120 R 120 R FRATED FAX	YOUR Information YOUR Information Company: Advanted (terrup Teur Address: Ily Main 34 Prome No. 516 + 441-5300 Contact Person: Am Yeurg E-Mathods: E act-eachth Print Clearly and Legibly. Samples will NOT be logg clock will not begin until a Samples Collected/Authorized Mame (printed SB - 3 (4-6') 5B - 3 (6-8') 5B - 3 (6-8') 5B - 3 (6-8')	Streamwood Dage 22 of 22

Technical Report

prepared for:

Advanced Cleanup Technologies, Inc. 110 Main Street Port Washington NY, 11050 Attention: Paul Stewart

> Report Date: 03/06/2017 Client Project ID: 8346 York Project (SDG) No.: 17B0945

CT Cert. No. PH-0723 New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Page 1 of 22

Report Date: 03/06/2017 Client Project ID: 8346 York Project (SDG) No.: 17B0945

Advanced Cleanup Technologies, Inc. 110 Main Street Port Washington NY, 11050 Attention: Paul Stewart

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on February 28, 2017 and listed below. The project was identified as your project: **8346**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	Matrix	Date Collected	Date Received
17B0945-04	SB-4 (4-6')	Soil	02/24/2017	02/28/2017
17B0945-05	SB-4 (6-8')	Soil	02/24/2017	02/28/2017
17B0945-06	SB-1 (4-6')	Soil	02/24/2017	02/28/2017
17B0945-07	SB-1 (6-8')	Soil	02/24/2017	02/28/2017

General Notes for York Project (SDG) No.: 17B0945

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 9. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia Laboratory Director Date: 03/06/2017

	Sample Inform	nation		
Client Sample ID: SB-4 (4-6')			York Sample ID:	17B0945-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 1:10 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

Sample Prepared by Method: EPA 5035A Date/Time Reported to LOD/MDL Date/Time Dilution CAS No. Parameter Result Flag Units 1.00 **Reference Method** Prepared Analyzed Analyst 630-20-6 1,1,1,2-Tetrachloroethane ND ug/kg dry 2.7 5.4 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 ВK Certifications: CTDOH,NELAC-NY10854,NJDEP 71-55-6 1,1,1-Trichloroethane ND ug/kg dry 2.7 5.4 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK 1 CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 79-34-5 1,1,2,2-Tetrachloroethane ND ug/kg dry 2.7 5.4 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane ND ug/kg dry 2.7 5.4 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK CTDOH,NELAC-NY10854,NJDEP Certifications: (Freon 113) 79-00-5 1,1,2-Trichloroethane ND ug/kg dry 2.7 54 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 75-34-3 1,1-Dichloroethane ND ug/kg dry 2.7 54 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 03/03/2017 08:40 03/03/2017 16:41 75-35-4 1,1-Dichloroethylene ND ug/kg dry 2.7 54 1 EPA 8260C BK Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 03/03/2017 08:40 03/03/2017 16:41 87-61-6 1,2,3-Trichlorobenzene ND ug/kg dry 2.7 5.4 1 EPA 8260C BK NELAC-NY10854,NJDEP Certifications: 03/03/2017 08:40 03/03/2017 16:41 96-18-4 1,2,3-Trichloropropane ND ug/kg dry 2.7 5.4 1 EPA 8260C BK NELAC-NY10854,NJDEP Certifications: 03/03/2017 08:40 03/03/2017 16:41 EPA 8260C BK 120-82-1 ug/kg dry 2.7 1 1,2,4-Trichlorobenzene ND 5.4 Certifications: NELAC-NY10854,NJDEP EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 95-63-6 ug/kg dry 2.7 5.4 1 BK 1.2.4-Trimethylbenzene 4.1 J CTDOH,NELAC-NY10854,NJDEP Certifications: 1,2-Dibromo-3-chloropropane 96-12-8 ND ug/kg dry 2.7 5.4 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK CTDOH,NELAC-NY10854,NJDEP Certifications: 106-93-4 1,2-Dibromoethane ND ug/kg dry 2.7 5.4 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK Certifications: CTDOH,NELAC-NY10854,NJDEP EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 95-50-1 1,2-Dichlorobenzene ND ug/kg dry 2.7 5.4 1 BK Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 03/03/2017 08:40 03/03/2017 16:41 107-06-2 1.2-Dichloroethane ND ug/kg dry 2.7 5.4 1 EPA 8260C BK Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 78-87-5 ug/kg dry 2.7 1 BK 1,2-Dichloropropane ND 5.4 Certifications: CTDOH,NELAC-NY10854,NJDEP 108-67-8 ug/kg dry 2.7 5.4 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK 1.3.5-Trimethylbenzene ND Certifications: CTDOH,NELAC-NY10854,NJDEP 03/03/2017 08:40 541-73-1 1 EPA 8260C 03/03/2017 16:41 ΒK 1.3-Dichlorobenzene ND ug/kg dry 2.7 5.4 Certifications: CTDOH.NELAC-NY10854.NJDEP.PADEP 106-46-7 ug/kg dry 2.7 5.4 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 ΒK 1.4-Dichlorobenzene ND Certifications: CTDOH.NELAC-NY10854.NJDEP.PADEP 123-91-1 ug/kg dry 54 110 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 ВK 1.4-Dioxane ND Certifications: NELAC-NY10854.NJDEP 78-93-3 ug/kg dry 2.7 5.4 1 EPA 8260C 03/03/2017 08:40 03/03/2017 16:41 BK 2-Butanone ND Certifications: CTDOH.NELAC-NY10854.NJDEP 120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientService

Page 4 of 22

Client Sample ID: SB-4 (4	4-6')		York Sample ID:	17B0945-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 1:10 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
108 10 1	4 Mathad 2 mantanana	ND		ua/ka dru	27	5.4	1	Certifications: C	TDOH,N	ELAC-NY10854,NJD	EP	DV
108-10-1	4-Meinyi-2-pentanone	ND		ug/kg ui y	2.1	5.4	1	Certifications: C	TDOH,N	ELAC-NY10854,NJD	2017 10:41	DK
67-64-1	Acetone	8.3	SCAL- E, J	ug/kg dry	5.4	11	1	EPA 8260C Certifications: C	TDOH,N	03/03/2017 08:40 ELAC-NY10854,NJD	03/03/2017 16:41 EP	BK
107-02-8	Acrolein	ND		ug/kg dry	5.4	11	1	EPA 8260C Certifications: C	TDOH,N	03/03/2017 08:40 ELAC-NY10854,NJD	03/03/2017 16:41 EP	BK
107-13-1	Acrylonitrile	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications: C	TDOH,N	03/03/2017 08:40 ELAC-NY10854,NJDI	03/03/2017 16:41	BK
71-43-2	Benzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications: C	TDOH N	03/03/2017 08:40	03/03/2017 16:41	BK
74-97-5	Bromochloromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	ELAC-N	03/03/2017 08:40	03/03/2017 16:41	BK
75-25-2	Promoform	ND		uo/ko drv	5.4	11	1	Certifications: C	TDOH,N	ELAC-NY10854,NJD 03/03/2017 08:40	EP,PADEP 03/03/2017 16:41	BK
15-25-2	ыопотопп	ND		ug kg ur y	5.4		1	Certifications: C	TDOH,N	ELAC-NY10854,NJD	EP,PADEP	DK
74-83-9	Bromomethane	ND		ug/kg dry	5.4	11	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
75-15-0	Carbon disulfide	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	TDOIL	03/03/2017 08:40	03/03/2017 16:41	BK
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.7	54	1	Certifications: C EPA 8260C	TDOH,N	ELAC-NY10854,NJD 03/03/2017 08:40	03/03/2017 16:41	вк
	Curbon terracinonae	n.b						Certifications: C	TDOH,N	ELAC-NY10854,NJD	EP,PADEP	
108-90-7	Chlorobenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications: C	TDOH,N	03/03/2017 08:40 ELAC-NY10854,NJD	03/03/2017 16:41 EP,PADEP	BK
75-00-3	Chloroethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications: C	TDOH.N	03/03/2017 08:40 ELAC-NY10854.NJDI	03/03/2017 16:41	BK
67-66-3	Chloroform	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
74-87-3	Chloromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	TDOH,N	03/03/2017 08:40	03/03/2017 16:41	ВК
	emoromentale	n.b						Certifications: C	TDOH,N	ELAC-NY10854,NJD	EP,PADEP	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications: C	TDOH,N	03/03/2017 08:40 ELAC-NY10854,NJD	03/03/2017 16:41 EP	BK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications: C	TDOH N	03/03/2017 08:40	03/03/2017 16:41	BK
110-82-7	Cyclohexane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	ВК
								Certifications: N	ELAC-N	Y10854,NJDEP		
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications: N	ELAC-N	03/03/2017 08:40 Y10854,NJDEP,PADE	03/03/2017 16:41 P	BK
74-95-3	Dibromomethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications: N	ELAC-N	03/03/2017 08:40 Y10854,NJDEP	03/03/2017 16:41	BK
	ESEARCH DRIVE	STRATFORD. (CT 06615			1	32-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	

www.YORKLAB.com

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 5 of 22

Client Sample ID: SB-4 (4-6')			York Sample ID:	17B0945-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 1:10 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS No). Parameter	Result	Flag	Units	Reported to LOD/MDL	L00	Dilution	Reference	e Method	Date/Time Prenared	Date/Time Analvzed	Analyst
75-71-8	Dichlorodifluoromethane	ND	1 145	ug/kg dry	27	54	1	EPA 8260C	e methou	03/03/2017 08:40	03/03/2017 16:41	BK
10 11 0	Diemoroumuoromeniane	ND		ug ng ur j	2.7	5.1		Certifications:	NELAC-N	Y10854,NJDEP		Dit
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	NELAC-N	Y10854,NJDEP		
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications	CTDOH N	03/03/2017 08:40 ELAC-NY10854 NJDI	03/03/2017 16:41	BK
79-20-9	Methyl acetate	ND		ug/kg drv	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	ВК
// 20/	Welly acetate	ND						Certifications:	NELAC-N	Y10854,NJDEP		bit
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP	
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	NELAC-N	Y10854,NJDEP		
75-09-2	Methylene chloride	ND		ug/kg dry	5.4	11	1	EPA 8260C	CTDOUN	03/03/2017 08:40	03/03/2017 16:41	BK
104 51 0	р II				2.7	<i>с</i> ,		Certifications:	CIDOH,N	02/02/2017 08-40	02/02/2017 1(-4)	DV
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications:	CTDOH.N	03/03/2017 08:40 ELAC-NY10854.NJDI	03/03/2017 16:41 EP	BK
103-65-1	n-Pronylbenzene	ND		ug/kg dry	2.7	54	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	ВК
105 05 1	n-i topytoenzene	ND		ug ng ur j	2.7	5.1		Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP	bit
95-47-6	o-Xylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	CTDOH,N	ELAC-NY10854		
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.4	11	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	CTDOH,N	ELAC-NY10854		
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	3P	
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	CTDOH N	03/03/2017 08:40 ELAC-NY10854 NIDI	03/03/2017 16:41	BK
100-42-5	Sturana	ND		uø/kø dry	27	5.4	1	EPA 8260C	erbon,	03/03/2017 08:40	03/03/2017 16:41	BK
100-42-5	Styrene	ND		ug/kg uly	2.7	5.4		Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP	bit
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	NELAC-N	Y10854,NJDEP		
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	ΞP	
127-18-4	Tetrachloroethylene	9.3		ug/kg dry	2.7	5.4	1	EPA 8260C	CTDOUN	03/03/2017 08:40	03/03/2017 16:41	BK
100 00 2	T I	ND		ualka dar	2.7	5.4	,	EDA 8260C	CTDOH,N	02/02/2017 08:40	02/02/2017 16:41	DV
108-88-3	Toluene	ND		ug/kg uiy	2.7	3.4	1	Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	BK
156-60-5	trans-1 2-Dichloroethylene	ND		ug/kg drv	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
		1.12		0 0 1				Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP	-
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C		03/03/2017 08:40	03/03/2017 16:41	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 6 of 22

Client Samp	l <u>e ID:</u> SB-4 (4-6')									N LG L	ID 47	
York Project	(PDC) N									York Sample	<u>e ID:</u> 17	B0945-04
	(SDG) NO.	Client	Project II	<u>)</u>			M	atrix	Colle	ction Date/Time	Date	e Received
17B	0945	8	3346				Soil		February 24, 2017 1:10 p		pm (02/28/2017
Volatile Org	anics, NJDEP/TCL/Part 375	List			<u>Log-in</u>	Notes:		San	ple Note	<u>es:</u>		
Sample Prepared by	y Method: EPA 5035A											
CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-01-6 T	richloroethylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications:	CTDOH,N	03/03/2017 08:40 ELAC-NY10854,NJD	03/03/2017 16:41 EP,PADEP	BK
75-69-4 T	richlorofluoromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications:	CTDOH,N	03/03/2017 08:40 ELAC-NY10854,NJD	03/03/2017 16:41 EP,PADEP	ВК
75-01-4 V	/inyl Chloride	ND		ug/kg dry	2.7	5.4	1	EPA 8260C Certifications:	CTDOH,N	03/03/2017 08:40 ELAC-NY10854,NJD	03/03/2017 16:41 EP,PADEP	BK
1330-20-7 X	Xylenes, Total	ND		ug/kg dry	8.1	16	1	EPA 8260C Certifications:	CTDOH,N	03/03/2017 08:40 ELAC-NY10854,NJD	03/03/2017 16:41 EP,PADEP	BK
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0 S	urrogate: 1,2-Dichloroethane-d4	111 %			77-125							
2037-26-5 S	urrogate: Toluene-d8	97.2 %			85-120							
460-00-4 S	urrogate: p-Bromofluorobenzene	110 %			76-130							
<u>Total Solids</u>					<u>Log-in</u>	Notes:		Sam	ple Note	<u>es:</u>		
Sample Prepared by	y Method: % Solids Prep											
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids *	% Solids	93.0		%	0.100	0.100	1	SM 2540G Certifications:	СТДОН	03/02/2017 16:16	03/02/2017 18:24	TAJ
				Sample	Inform	ation						
Client Sampl	<u>le ID:</u> SB-4 (6-8')									York Sample	<u>e ID:</u> 17	B0945-05
York Project	(SDG) No.	Client	Project II)			M	atrix	Colle	ction Date/Time	Date	e Received
17B	0945	8	3346				5	Soil	February	24, 2017 1:15	pm (02/28/2017

Sample Prepa	red by Method: EPA 5035A											
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:15 EP	BK
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:15 EP,PADEP	ВК
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:15 EP,PADEP	ВК
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:15 EP	BK
120 R	ESEARCH DRIVE	STRATFORD, CT	06615			1	132-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	
www.Y	/ORKLAB.com	(203) 325-1371				F	FAX (203) 3	357-0166		ClientServices	Page 7	of 22

Client Sample ID: SB-4 (6-8')			York Sample ID:	17B0945-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 1:15 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	CTDOUN	03/02/2017 08:29	03/02/2017 17:15	ВК
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP,PADEP	ВК
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP,PADEP	BK
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-NY	03/02/2017 08:29 (10854,NJDEP	03/02/2017 17:15	BK
96-18-4	1,2,3-Trichloropropane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-NY	03/02/2017 08:29 (10854,NJDEP	03/02/2017 17:15	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-NY	03/02/2017 08:29 (10854,NJDEP	03/02/2017 17:15	BK
95-63-6	1,2,4-Trimethylbenzene	3.5	J	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDF	03/02/2017 17:15 EP	BK
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDF	03/02/2017 17:15 EP	BK
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP,PADEP	BK
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP,PADEP	BK
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP	BK
108-67-8	1,3,5-Trimethylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDF	03/02/2017 17:15 EP,PADEP	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDF	03/02/2017 17:15 EP,PADEP	BK
123-91-1	1,4-Dioxane	ND		ug/kg dry	51	100	1	EPA 8260C Certifications:	NELAC-NY	03/02/2017 08:29 /10854,NJDEP	03/02/2017 17:15	BK
78-93-3	2-Butanone	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15	BK
591-78-6	2-Hexanone	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP	BK
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15	BK
67-64-1	Acetone	5.5	ICV-E, J	ug/kg dry	5.1	10	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15	BK
107-02-8	Acrolein	ND		ug/kg dry	5.1	10	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15	BK
107-13-1	Acrylonitrile	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NI	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP	BK
120 RI	ESEARCH DRIVE	STRATFORD, C	T 06615			1	32-02 89th	AVENUE	,	RICHMOND HI	LL, NY 11418	
www.Y	ORKLAB.com	(203) 325-1371				F	AX (203) 3	57-0166		ClientServices	Page 8 (of 22

Client Sample ID: SB-4	(6-8')		York Sample ID:	17B0945-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 1:15 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
71-43-2	Benzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
74-97-5	Bromochloromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 17:15	BK
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
75-25-2	Bromoform	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	CTDOU N	03/02/2017 08:29	03/02/2017 17:15	BK
74-83-9	Bromomethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	CTD011,N	03/02/2017 08:29	03/02/2017 17:15	BK
	Biomomethale	n.b						Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
75-15-0	Carbon disulfide	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
56 22 5	Carl an Astro-Islanida	ND		ualka day	26	5.1	1	Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	DV
50-25-5	Carbon tetrachioride	ND		ug/kg ary	2.0	5.1	1	Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	DK
108-90-7	Chlorobenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
75-00-3	Chloroethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH N	03/02/2017 08:29 ELAC-NY10854 NJDI	03/02/2017 17:15 EP PADEP	BK
67-66-3	Chloroform	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	e i boli,i i	03/02/2017 08:29	03/02/2017 17:15	BK
				000				Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
74-87-3	Chloromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
156 50 2	is 1.2 Disklass the last	ND		ua/ka day	26	5.1	1	Certifications:	CTDOH,N	03/02/2017 08:20	EP,PADEP	DV
150-59-2	cis-1,2-Dichloroethylene	ND		ug/kg uiy	2.0	5.1		Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	DK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	ВК
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
110-82-7	Cyclohexane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854.NJDEP	03/02/2017 17:15	BK
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
								Certifications:	NELAC-N	Y10854,NJDEP,PADE	Р	
74-95-3	Dibromomethane	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	NEL 16 N	03/02/2017 08:29	03/02/2017 17:15	BK
75-71-8	Dichlorodifluoromethane	ND		uø/kø dry	2.6	51	1	EPA 8260C	NELAC-N	03/02/2017 08:29	03/02/2017 17:15	BK
/5-/1-0	Demotodinuotometiane	ND		ug ng ui y	2.0	5.1	1	Certifications:	NELAC-N	Y10854,NJDEP	00/02/2017 17:10	ыс
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 17:15	BK
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	ВК
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
79-20-9	Methyl acetate	ND		ug/kg dry	2.6	5.1	1	EPA 8260C	NEL AC M	03/02/2017 08:29	03/02/2017 17:15	BK
								Certifications:	NELAC-N	1 10634,NJDEP		
		070/	-							DIGUNA DI		
120 RE	ESEARCH DRIVE	STRATFORD, C	1 06615			1	32-02 89th	AVENUE		RICHMOND HI	ll, NY 11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices

Page 9 of 22

<u>Client Sample ID:</u> SB-4 (6-8')		York Sample ID:	17B0945-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 1:15 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/kg dry	2.6	5.1	1	EPA 8260C	orboulu	03/02/2017 08:29	03/02/2017 17:15	BK
108-87-2	Methylcyclohexane	ND	ug/kg dry	2.6	5.1	1	EPA 8260C	CIDOH,NE	03/02/2017 08:29	03/02/2017 17:15	ВК
75-09-2	Methylene chloride	ND	ug/kg dry	5.1	10	1	Certifications: EPA 8260C	NELAC-NY	(10854,NJDEP 03/02/2017 08:29	03/02/2017 17:15	ВК
				2.6	<i>.</i> .		Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	P,PADEP	DV
104-51-8	n-Butylbenzene	ND	ug/kg dry	2.6	5.1	I	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 P	ВК
103-65-1	n-Propylbenzene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 P	ВК
95-47-6	o-Xylene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH NE	03/02/2017 08:29	03/02/2017 17:15	ВК
179601-23-1	n- & m- Xylenes	ND	ug/kg drv	5.1	10	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	ВК
	p com rejienco						Certifications:	CTDOH,NH	ELAC-NY10854		
99-87-6	p-Isopropyltoluene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15	BK
135-98-8	sec-Butvlbenzene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
			000				Certifications:	CTDOH,NH	ELAC-NY10854,NJDE	P	
100-42-5	Styrene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 P	ВК
75-65-0	tert-Butyl alcohol (TBA)	ND	ug/kg dry	2.6	5.1	1	EPA 8260C	,	03/02/2017 08:29	03/02/2017 17:15	BK
							Certifications:	NELAC-NY	710854,NJDEP		
98-06-6	tert-Butylbenzene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 P	BK
127-18-4	Tetrachloroethylene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 P,PADEP	ВК
108-88-3	Toluene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	BK
							Certifications:	CTDOH,NE	ELAC-NY 10854,NJDE	P,PADEP	DV
156-60-5	trans-1,2-Dichloroethylene	ND	ug/kg dry	2.6	5.1	I	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15	ВК
10061-02-6	trans-1,3-Dichloropropylene	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH.NE	03/02/2017 08:29 ELAC-NY10854.NJDE	03/02/2017 17:15 P.PADEP	ВК
79-01-6	Trichloroethylene	ND	ug/kg drv	2.6	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:15	ВК
			000				Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	P,PADEP	
75-69-4	Trichlorofluoromethane	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 EP,PADEP	ВК
75-01-4	Vinyl Chloride	ND	ug/kg dry	2.6	5.1	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:15 P.PADEP	ВК
1330-20-7	Xylenes, Total	ND	ug/kg dry	7.7	15	1	EPA 8260C	CTDOWN	03/02/2017 08:29	03/02/2017 17:15	BK
	Surrogate Recoveries	Result	Acce	ptance Ran	ge		continuations.	enson,m			
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %		77-125							
2037-26-5	Surrogate: Toluene-d8	111 %		85-120							
120 RE	SEARCH DRIVE	STRATFORD, CT 06615				132-02 89th	AVENUE		RICHMOND HI	L, NY 11418	
www.Y	ORKLAB.com	(203) 325-1371				FAX (203) 3	57-0166		ClientServices	Sucodulado a com	
										Page 10	of 22

Sample Information Client Sample ID: SB-4 (6-8') York Sample ID: 17B0945-05 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17B0945 8346 Soil February 24, 2017 1:15 pm 02/28/2017 Log-in Notes: Volatile Organics, NJDEP/TCL/Part 375 List Sample Notes: Sample Prepared by Method: EPA 5035A Date/Time Analyzed Reported to LOD/MDL LOQ Date/Time Dilution **Reference Method** CAS No. Parameter Result Flag Units Prepared Analyst 460-00-4 93.5 % 76-130 Surrogate: p-Bromofluorobenzene Log-in Notes: Sample Notes: **Total Solids** Sample Prepared by Method: % Solids Prep Reported to LOQ Date/Time Date/Time LOD/MDL Dilution CAS No. Parameter Result Flag Units **Reference Method** Prepared Analyzed Analyst solids * % Solids % SM 2540G 03/02/2017 16:16 03/02/2017 18:24 0.100 0.100 TAJ 93.3 1 Certifications: CTDOH **Sample Information** SB-1 (4-6') Client Sample ID: York Sample ID: 17B0945-06 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received

Soil

February 24, 2017 2:30 pm

02/28/2017

8346

17B0945

Volatile	Organics, NJDEP/TCL/Part 375		<u>Log-in</u>	<u>::</u>	Sample Notes:						
Sample Prepa	ared by Method: EPA 5035A										
CAS	No. Parameter	Result Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:49 EP	BK
71-55-6	1,1,1-Trichloroethane	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:49 EP,PADEP	ВК
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:49 EP,PADEP	ВК
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDH	03/02/2017 17:49 EP	ВК
79-00-5	1,1,2-Trichloroethane	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDH	03/02/2017 17:49 EP,PADEP	ВК
75-34-3	1,1-Dichloroethane	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDH	03/02/2017 17:49 EP,PADEP	ВК
75-35-4	1,1-Dichloroethylene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,NE	03/02/2017 08:29 ELAC-NY10854,NJDH	03/02/2017 17:49 EP,PADEP	ВК
87-61-6	1,2,3-Trichlorobenzene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/02/2017 08:29 (10854,NJDEP	03/02/2017 17:49	ВК
96-18-4	1,2,3-Trichloropropane	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/02/2017 08:29 (10854,NJDEP	03/02/2017 17:49	ВК
120-82-1	1,2,4-Trichlorobenzene	ND	ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-NY	03/02/2017 08:29 (10854,NJDEP	03/02/2017 17:49	ВК
120 R	ESEARCH DRIVE	STRATFORD, CT 0661	5			132-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	
www.`	YORKLAB.com	(203) 325-1371			I	FAX (203) 3	857-0166		ClientServices	Page 11	of 22

Client Sample ID: SB-1	(4-6')		York Sample ID:	17B0945-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 2:30 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analys
95-63-6	1,2,4-Trimethylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
06 12 8	1.2 Dilama 2 allamana	ND		ua/ka day	2.6	5.2	1	Certifications: C	CTDOH,N	ELAC-NY10854,NJDF	EP	DV
90-12-8	1,2-Dioromo-3-chioropropane	ND		ug/kg ury	2.0	5.2	1	Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP	DK
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP	
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications: C	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:49 EP,PADEP	BK
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	TDOUN	03/02/2017 08:29	03/02/2017 17:49	BK
108-67-8	1 3 5-Trimethylbenzene	ND		ug/kg drv	2.6	5.2	1	EPA 8260C	, noon, N	03/02/2017 08:29	03/02/2017 17:49	BK
	1,5,5 111110113156112610	112						Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP	
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
106 46 7		ND			26	50	,	Certifications: C	CTDOH,N	ELAC-NY10854,NJDF	EP,PADEP	DV
100-40-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.0	3.2	1	Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	BK
123-91-1	1,4-Dioxane	ND		ug/kg dry	52	100	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: N	NELAC-N	Y10854,NJDEP		
78-93-3	2-Butanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications: 0	TDOH N	03/02/2017 08:29 ELAC-NY10854 NJDF	03/02/2017 17:49 EP	BK
591-78-6	2-Hexanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: O	CTDOH,N	ELAC-NY10854,NJDF	EP	
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
67 64 1	Aastana	ND		ug/kg dry	5.2	10	1	EPA 8260C	TDOH,N	03/02/2017 08:29	03/02/2017 17:49	BV
07-04-1	Acetone	ND		ug kg ur y	5.2	10		Certifications: 0	CTDOH,N	ELAC-NY10854,NJDI	EP	DK
107-02-8	Acrolein	ND		ug/kg dry	5.2	10	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
107.10.1								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP	DV
107-13-1	Acrylonitrile	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications: (CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:49 EP	BK
71-43-2	Benzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
74-97-5	Bromochloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	JELAC N	03/02/2017 08:29	03/02/2017 17:49	BK
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.6	52	1	EPA 8260C	ELAC-N	03/02/2017 08:29	03/02/2017 17:49	ВК
	Bromodiemoromentalie	n.b		-88,				Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
75-25-2	Bromoform	ND		ug/kg dry	2.6	5.2	1	EPA 8260C		03/02/2017 08:29	03/02/2017 17:49	BK
74.02.0					2.6	50		Certifications: C	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	DI
/4-83-9	Bromomethane	ND		ug/kg dry	2.0	5.2	1	EPA 8260C Certifications: C	CTDOH,N	05/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 17:49 EP,PADEP	BK
120 PE			CT 06615		_	1	32 02 80#					

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

Page 12 of 22

ClientServices

Client Sample ID: SB-1 (4-6')			York Sample ID:	17B0945-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 2:30 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analys
75-15-0	Carbon disulfide	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
56-23-5	Carbon tatrachlorida	ND		uo/ko drv	2.6	5.2	1	Certifications: CT	DOH,NELAC-NY10854,NJI 03/02/2017 08·29	03/02/2017 17:49	BK
50-25-5	Carbon tetracinoride	ND		ug/kg uly	2.0	5.2		Certifications: CT	DOH,NELAC-NY10854,NJI	DEP,PADEP	DK
108-90-7	Chlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
75-00-3	Chloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: CT	DOH,NELAC-NY10854,NJI	DEP,PADEP	
67-66-3	Chloroform	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications: CT	03/02/2017 08:29 DOH NELAC-NY10854 NJI	03/02/2017 17:49 DEP PADEP	BK
74-87-3	Chloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: CT	DOH,NELAC-NY10854,NJI	DEP,PADEP	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications: CT	03/02/2017 08:29 DOH,NELAC-NY10854,NJI	03/02/2017 17:49 DEP	BK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
110 82 7	Curlaharan	ND		ua/ka deu	2.6	5.2	1	Certifications: CT	DOH,NELAC-NY10854,NJI	03/02/2017 17:49	DV
110-82-7	Cyclonexane	ND		ug/kg uiy	2.0	3.2	I	Certifications: NE	LAC-NY10854,NJDEP	03/02/2017 17:49	DK
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
74-95-3	Dibromomethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
		112		000				Certifications: NE	LAC-NY10854,NJDEP		
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications: NE	03/02/2017 08:29	03/02/2017 17:49	BK
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: CT	DOH,NELAC-NY10854,NJI	DEP,PADEP	
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications: NE	03/02/2017 08:29 LAC-NY10854,NJDEP	03/02/2017 17:49	BK
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
70, 20, 0					2.6	5.2		Certifications: CT	DOH,NELAC-NY10854,NJI	DEP	DV
/9-20-9	Metnyl acetate	ND		ug/kg ury	2.0	3.2	1	Certifications: NE	LAC-NY10854,NJDEP	05/02/2017 17:49	BK
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.6	5.2	1	Certifications: CT EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	ВК
	methyleyelonexaile	нь						Certifications: NE	LAC-NY10854,NJDEP		
75-09-2	Methylene chloride	ND		ug/kg dry	5.2	10	1	EPA 8260C Certifications: CT	03/02/2017 08:29	03/02/2017 17:49	BK
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	03/02/2017 08:29	03/02/2017 17:49	BK
								Certifications: CT	DOH,NELAC-NY10854,NJI	DEP	
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications: CT	03/02/2017 08:29 DOH,NELAC-NY10854 NJI	03/02/2017 17:49 DEP	BK
									. ,		
			OT 00045				22.02.00#				

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices Page 13 of 22

Client Sample ID: SB-1 (4-6')			York Sample ID:	17B0945-06
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 2:30 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

460-00-4

Surrogate: p-Bromofluorobenzene

93.0 %

Sample Prepar	ed by Method: EPA 5035A											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-47-6	o-Xylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854	03/02/2017 17:49	BK
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.2	10	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854	03/02/2017 17:49	BK
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDF	03/02/2017 17:49 EP	BK
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDF	03/02/2017 17:49 EP	BK
100-42-5	Styrene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDF	03/02/2017 17:49 EP	BK
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 17:49	ВК
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49	ВК
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49 EP,PADEP	ВК
108-88-3	Toluene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49 EP,PADEP	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49 EP,PADEP	BK
79-01-6	Trichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49 EP,PADEP	BK
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49 EP,PADEP	BK
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.6	5.2	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49 EP,PADEP	BK
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.9	16	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDE	03/02/2017 17:49 EP,PADEP	BK
	Surrogate Recoveries	Result		Acce	ptance Ran	ge						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	97.7 %			77-125							
2037-26-5	Surrogate: Toluene-d8	107 %			85-120							

Total Solids						<u>Log-in</u>	Notes:		Sample Not	es:		
Sample Prepared by	Method: % Soli	ds Prep										
CAS No.		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids * 0	% Solids		95.9		%	0.100	0.100	1	SM 2540G Certifications: CTDOH	03/02/2017 16:16	03/02/2017 18:24	TAJ
120 RESEA	RCH DRIVE		STRATFORD, (CT 06615			13	32-02 89th	AVENUE	RICHMOND HI	LL, NY 11418	
www.YORK	LAB.com		(203) 325-1371				F/	AX (203) 3	57-0166	ClientServices	Page 14	of 22

76-130

Client Sample ID: SB-1 (6-8')			York Sample ID:	17B0945-07
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 2:35 pm	02/28/2017

Volatile O	organics, NJDEP/TCL/Part 37	<u>5 List</u>		Log-in	Notes	<u>:</u>	San	iple Note	es:		
Sample Prepare	ed by Method: EPA 5035A			Reported to					Date/Time	Date/Time	
CAS N	o. Parameter	Result Flag	Units	LOD/MDL	LOQ	Dilution	Reference	e Method	Prepared	Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	ВК
71-55-6	1,1,1-Trichloroethane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	ВК
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	BK
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
79-00-5	1,1,2-Trichloroethane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	ВК
75-34-3	1,1-Dichloroethane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	BK
75-35-4	1,1-Dichloroethylene	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	BK
87-61-6	1,2,3-Trichlorobenzene	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 18:23	BK
96-18-4	1,2,3-Trichloropropane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 18:23	BK
120-82-1	1,2,4-Trichlorobenzene	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 18:23	BK
95-63-6	1,2,4-Trimethylbenzene	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH.N	03/02/2017 08:29 ELAC-NY10854.NJDI	03/02/2017 18:23 EP	BK
106-93-4	1,2-Dibromoethane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH N	03/02/2017 08:29 ELAC-NY10854 NJDI	03/02/2017 18:23	BK
95-50-1	1,2-Dichlorobenzene	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH N	03/02/2017 08:29 ELAC-NY10854 NJDI	03/02/2017 18:23	BK
107-06-2	1,2-Dichloroethane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C	CTDOH N	03/02/2017 08:29 ELAC-NY 10854 N IDI	03/02/2017 18:23	BK
78-87-5	1,2-Dichloropropane	ND	ug/kg dry	2.5	5.1	1	EPA 8260C	CTDOH N	03/02/2017 08:29	03/02/2017 18:23	ВК
108-67-8	1,3,5-Trimethylbenzene	ND	ug/kg dry	2.5	5.1	1	EPA 8260C	CTDOH N	03/02/2017 08:29	03/02/2017 18:23	ВК
541-73-1	1,3-Dichlorobenzene	ND	ug/kg dry	2.5	5.1	1	EPA 8260C	CTDOH N	03/02/2017 08:29	03/02/2017 18:23	ВК
106-46-7	1,4-Dichlorobenzene	ND	ug/kg dry	2.5	5.1	1	EPA 8260C	CTDOILN	03/02/2017 08:29	03/02/2017 18:23	BK
123-91-1	1,4-Dioxane	ND	ug/kg dry	51	100	1	EPA 8260C	VIELAC N	03/02/2017 08:29	03/02/2017 18:23	BK
78-93-3	2-Butanone	ND	ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
120 PE				_		132-02 80++				LL NV 11418	
www.Y	ORKLAB.com	(203) 325-1371			F	FAX (203) 3	357-0166		ClientServices		

Client Sample ID: SB-1 (6-8')			York Sample ID:	17B0945-07
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 2:35 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/kg dry	2.5	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 18:23	BK
100 10 1					2.5	5.1		Certifications: 0	CTDOH,N	ELAC-NY10854,NJD	EP	DV
108-10-1	4-Metnyl-2-pentanone	ND		ug/kg uiy	2.3	5.1	I	Certifications: 0	CTDOH,N	03/02/2017 08.29 ELAC-NY10854,NJD	EP	BK
67-64-1	Acetone	ND		ug/kg dry	5.1	10	1	EPA 8260C		03/02/2017 08:29	03/02/2017 18:23	BK
105.02.0					<i>с</i> 1	10		Certifications: 0	CTDOH,N	ELAC-NY10854,NJD	EP	DV
107-02-8	Acrolein	ND		ug/kg dry	5.1	10	I	EPA 8260C Certifications: 0	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJD	03/02/2017 18:23 EP	BK
107-13-1	Acrylonitrile	ND		ug/kg dry	2.5	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 18:23	ВК
	_							Certifications: 0	CTDOH,N	ELAC-NY10854,NJD	EP	DV
/1-43-2	Benzene	ND		ug/kg dry	2.5	5.1	I	EPA 8260C Certifications: 0	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJD	03/02/2017 18:23 EP,PADEP	ВК
74-97-5	Bromochloromethane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 18:23	BK
								Certifications: 1	NELAC-N	Y10854,NJDEP		
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications: 0	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJD	03/02/2017 18:23 EP,PADEP	BK
75-25-2	Bromoform	ND		ug/kg dry	2.5	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 18:23	BK
								Certifications: 0	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
74-83-9	Bromomethane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications: 0	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJD	03/02/2017 18:23 EP,PADEP	BK
75-15-0	Carbon disulfide	ND		ug/kg dry	2.5	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 18:23	BK
								Certifications: 0	CTDOH,N	ELAC-NY10854,NJD	EP	
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications: 0	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJD	03/02/2017 18:23 EP,PADEP	BK
108-90-7	Chlorobenzene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C	,	03/02/2017 08:29	03/02/2017 18:23	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
75-00-3	Chloroethane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH N	03/02/2017 08:29 ELAC-NY10854 NJDI	03/02/2017 18:23 EP PADEP	BK
67-66-3	Chloroform	ND		ug/kg dry	2.5	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 18:23	BK
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
74-87-3	Chloromethane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH N	03/02/2017 08:29 FLAC-NY10854 NID	03/02/2017 18:23	BK
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C	010011,11	03/02/2017 08:29	03/02/2017 18:23	BK
	· ·							Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C	TDOH N	03/02/2017 08:29 EL AC-NV10854 NID	03/02/2017 18:23	BK
110-82-7	Cyclohexane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C	e i boli, N	03/02/2017 08:29	03/02/2017 18:23	BK
	2,			000				Certifications: 1	NELAC-N	Y10854,NJDEP		
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C		03/02/2017 08:29	03/02/2017 18:23	BK
74-95-3	Dibromomethane	ND		ug/kg drv	2.5	5.1	1	EPA 8260C	NELAC-N	03/02/2017 08·29	03/02/2017 18:23	ВК
	Diotomoniculate	1912					·	Certifications: 1	NELAC-N	Y10854,NJDEP		Dix
120 RI	ESEARCH DRIVE	STRATFORD, C	T 06615			1	32-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices Page 16 of 22

Client Sample ID: SB-1 (6-8')			York Sample ID:	17B0945-07
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
17B0945	8346	Soil	February 24, 2017 2:35 pm	02/28/2017

Log-in Notes:

Sample Notes:

Volatile Organics, NJDEP/TCL/Part 375 List

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference N	lethod	Date/Time Prepared	Date/Time Analyzed	Analys
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854.NJDEP	03/02/2017 18:23	BK
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications: 0	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	BK
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 18:23	BK
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23	BK
79-20-9	Methyl acetate	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 18:23	BK
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 18:23	BK
75-09-2	Methylene chloride	ND		ug/kg dry	5.1	10	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	BK
104-51-8	n-Butylbenzene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
103-65-1	n-Propylbenzene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
95-47-6	o-Xylene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854	03/02/2017 18:23	BK
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.1	10	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854	03/02/2017 18:23	BK
99-87-6	p-Isopropyltoluene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
135-98-8	sec-Butylbenzene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
100-42-5	Styrene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	NELAC-N	03/02/2017 08:29 Y10854,NJDEP	03/02/2017 18:23	BK
98-06-6	tert-Butylbenzene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	BK
108-88-3	Toluene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.1	1	EPA 8260C Certifications:	CTDOH,N	03/02/2017 08:29 ELAC-NY10854,NJDI	03/02/2017 18:23 EP,PADEP	BK
120 RE		STRATEORD	CT 06615		-	1	32-02 89th				U NY 11418	

www.YORKLAB.com

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 17 of 22

Sample Information Client Sample ID: SB-1 (6-8') York Sample ID: 17B0945-07 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 17B0945 8346 Soil February 24, 2017 2:35 pm 02/28/2017 Log-in Notes: Volatile Organics, NJDEP/TCL/Part 375 List Sample Notes: Sample Prepared by Method: EPA 5035A Reported to LOD/MDL Date/Time Date/Time Dilution LOO CAS No. Parameter Result Flag Units **Reference Method** Prepared Analyzed Analyst 79-01-6 Trichloroethylene ND ug/kg dry 2.5 5.1 EPA 8260C 03/02/2017 08:29 03/02/2017 18:23 BK 1 Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 75-69-4 Trichlorofluoromethane ND ug/kg dry 2.5 5.1 1 EPA 8260C 03/02/2017 08:29 03/02/2017 18:23 BK Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP 75-01-4 Vinyl Chloride ND ug/kg dry 2.5 5.1 1 EPA 8260C 03/02/2017 08:29 03/02/2017 18:23 BK CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications: 1330-20-7 Xylenes, Total ND ug/kg dry 7.6 15 1 EPA 8260C 03/02/2017 08:29 03/02/2017 18:23 BK Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP **Surrogate Recoveries** Result Acceptance Range 17060-07-0 77-125 Surrogate: 1,2-Dichloroethane-d4 105 % 2037-26-5 85-120 Surrogate: Toluene-d8 104~%460-00-4 Surrogate: p-Bromofluorobenzene 94.8 % 76-130

Total Solids					<u>Log-in</u>	Notes:		Sample Not	es:		
Sample Prepared by Met	thod: % Solids Prep										
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids * % S	Solids	96.6		%	0.100	0.100	1	SM 2540G Certifications: CTDOH	03/02/2017 16:16	03/02/2017 18:24	TAJ

120 RESEARCH DRIVE
www.YORKLAB.com

ClientService

Page 18 of 22

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
17B0945-04	SB-4 (4-6')	40mL Vial with Stir Bar-Cool 4° C
17B0945-05	SB-4 (6-8')	40mL Vial with Stir Bar-Cool 4° C
17B0945-06	SB-1 (4-6')	40mL Vial with Stir Bar-Cool 4° C
17B0945-07	SB-1 (6-8')	40mL Vial with Stir Bar-Cool 4° C

ClientServices

Notes and Definitions

- SCAL-E The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%).
- QR-04 The RPD exceeded control limits for the LCS/LCSD QC.
- QL-02 This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
- J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
- ICV-E The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value).
- B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
- * Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
- ND NOT DETECTED the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
- RL REPORTING LIMIT the minimum reportable value based upon the lowest point in the analyte calibration curve.
- LOQ LIMIT OF QUANTITATION the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
- LOD LIMIT OF DETECTION a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
- MDL METHOD DETECTION LIMIT a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
- Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
- NR Not reported
- RPD Relative Percent Difference
- Wet The data has been reported on an as-received (wet weight) basis
- Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

120 RESEARCH DRIVE	STRATFORD, CT 06615	132-02 89th AVENUE	RICHMOND HILL, NY 11418
www.YORKLAB.com	(203) 325-1371	FAX (203) 357-0166	ClientServices Page 20 of 22

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

ClientServices

YORK ANA 121 220 270 270 270 270 270 270 270 270 270	иттал. Laваяланыя I Researan Dr. Farb, ст обеі 5 33 325-1371 2031 357-0166 This do	Field Ch NOTE: York's Std Note: York's Std State	ain-of-Cu. .Terms & Conditions are liste vritter authorization to York to turne binds you to York's SAC.	Stody Recor ad on the back side of this document. o proceed with the analyses requested a Terms & Conditions	d York Projec	Page of t No. /7 B 0945
YOUR Information company: Act Address: 110 provint Streed But Print Procent Person: Mark Cellon Connact Person: Mark Cellon Frint Clearly and Legibly Samples will NOT be lo clock will not begin until Address: Collected/Authoriz Address: Collected/Authoriz Address: Collected/Authoriz Sch - C (C - 2) Sch - C (C - 2)	Address: Address: Address: Address: Phone No. Attention: Phone No. Attention: Attention: Attention: Attenticon: <t< th=""><th>To: Company Address: Ad</th><th>Invoice To: PLT PLT PLT PLT PLT PLT PLT PLT</th><th>YOUR Project ID YOUR Project ID Samples from: CT NY Purchase Order No. Samples from: CT NY Nits Purchase Order No. Samples from: CT NY No. NY Samples from: CT NY Samples from: CT NY Samples from: CT NY Nits Samples from: CT Nits Samples from: CT Nits Samples from: CT Nits Samples from: CT No. NY Samples from: CT NY Nits Samples from: CT No. NY Samples from: CT NY No. NY Samples from: CT NY Samples from: CT NY No. NY Samples from: CT NY NY NY NY NY Samples from: CT NY NY NY NY NY NY Same Samples from: NY <th>Turn-Around Time RUSH - Same Day RUSH - Next Day RUSH - Two Day RUSH - Two Day RUSH - Four Day RUSH - Four Day RUSH - Four Day Standard(5-7 Days) O TCL Ogenis Full Lists Misc. O Pri. Poll Full Standard(5-7 Days) Comsking Pri. Poll Full Standard(5-7 Days) Comsking Pri. Poll Pri. Poll Pr</th><th>Report Type Summary Report Type Summary Report</th></th></t<>	To: Company Address: Ad	Invoice To: PLT PLT PLT PLT PLT PLT PLT PLT	YOUR Project ID YOUR Project ID Samples from: CT NY Purchase Order No. Samples from: CT NY Nits Purchase Order No. Samples from: CT NY No. NY Samples from: CT NY Samples from: CT NY Samples from: CT NY Nits Samples from: CT Nits Samples from: CT Nits Samples from: CT Nits Samples from: CT No. NY Samples from: CT NY Nits Samples from: CT No. NY Samples from: CT NY No. NY Samples from: CT NY Samples from: CT NY No. NY Samples from: CT NY NY NY NY NY Samples from: CT NY NY NY NY NY NY Same Samples from: NY <th>Turn-Around Time RUSH - Same Day RUSH - Next Day RUSH - Two Day RUSH - Two Day RUSH - Four Day RUSH - Four Day RUSH - Four Day Standard(5-7 Days) O TCL Ogenis Full Lists Misc. O Pri. Poll Full Standard(5-7 Days) Comsking Pri. Poll Full Standard(5-7 Days) Comsking Pri. Poll Pri. Poll Pr</th> <th>Report Type Summary Report Type Summary Report</th>	Turn-Around Time RUSH - Same Day RUSH - Next Day RUSH - Two Day RUSH - Two Day RUSH - Four Day RUSH - Four Day RUSH - Four Day Standard(5-7 Days) O TCL Ogenis Full Lists Misc. O Pri. Poll Full Standard(5-7 Days) Comsking Pri. Poll Full Standard(5-7 Days) Comsking Pri. Poll Pri. Poll Pr	Report Type Summary Report Type Summary Report
ANALYZEV TAT	PLES SR-1	Preservation Check those Applicable Special Instructions Field Filter	4°C Frozen 1 ZnAc Samples Reinquished E	HCI MeoH HNO, Ascorbic Acid Other By 2-28-117 920 Date/Time Sample	H, NaOH I ADA S A ADA S A A A A A A A A A A A A A A A A A A	Temperatur 17930 on Receipt te/Time