REMEDIAL INVESTIGATION REPORT

for

37-11 30th STREET LONG ISLAND CITY, NEW YORK BCP Site No. C241211

Prepared For:

37-11 30th Street Holdings LLC c/o Slate Property Group 38 East 29th Street New York, New York

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

ichail O bruke

Michael D. Burke, PG, CHMM Principal/Vice President

July 18, 2019

LANGAN

Langan Project No. 170512301

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com

New Jersey • New York • Connecticut • Pennsylvania • Washington, DC • Virginia • West Virginia • Ohio • Florida • Texas • Arizona • California Abu Dhabi • Athens • Doha • Dubai • Istanbul • London • Panama

TABLE OF CONTENTS

1.0		INTRO	NTRODUCTION1		
2.0		SITE P	PHYSICAL CHARACTERISTICS	2	
	2.1		Site Description	2	
	2.2		Surrounding Property Land Use	2	
	2.3		Site Physical Conditions	5	
		2.3.1	Topography	5	
		2.3.2	Regional Geology		
		2.3.3 2.3.4	Regional Hydrogeology Wetlands		
3.0		-	BACKGROUND		
3.0	3.1	SILEE	Historical Site Usage		
	3.1		Proposed Redevelopment Plan		
	3.3		Summary of Previous Environmental Investigations		
	3.3 3.4		Summary of Potential Areas of Concern		
4.0	3.4	DEME	DIAL INVESTIGATION		
4.0	4.1		Geophysical Survey and Utility Location	-	
	4.2		Soil Investigation		
	т.с	4.2.1	Soil Boring Investigation Methodology		
		4.2.3	Soil Sampling Methodology		
		4.2.3	Hazardous Chromium Soil Delineation		
		4.2.4	Hazardous Chromium Delineation Sampling Methodology		
	4.3		Groundwater Investigation		
		4.3.1	Monitoring Well Installation and Development Methodology		
		4.3.2	Groundwater Sampling		
	4.4		Soil Vapor Investigation		
		4.4.1 4.4.2	Soil Vapor Point Installation Soil Vapor Sampling and Analysis		
		4.4.Z 4.4.3	Indoor and Ambient Air Sampling and Analysis		
	4.5		Quality Control Sampling		
		4.5.1	Soil QA/QC Samples		
		4.5.2	Groundwater QA/QC Samples		
		4.5.3	Soil Vapor QA/QC Samples	20	
	4.6		Data Validation	21	
		4.6.1	Data Usability Summary Report Preparation	21	
	4.7		Field Equipment Decontamination		
	4.8		Investigation-Derived Waste Management	23	
5.0		FIELD	OBSERVATIONS AND ANALYTICAL RESULTS	24	
	5.1		Geophysical Investigation Findings	24	
	5.2		Geology and Hydrogeology	24	

		5.2.1	Historic Fill	24
		5.2.2	Native Soil Layers	24
		5.2.3	Bedrock	
		5.2.4	Hydrogeology	
		5.2.5	Surface Water and Drainage	
	5.3		Soil Findings	
		5.3.1	Soil Boring Field Observations	
		5.3.2	Analytical Results	
	5.4		Groundwater Findings	
		5.4.1	Field Observations	30
		5.4.2	Analytical Data	
	5.5		Soil Vapor Findings	33
		5.5.1	Soil Vapor Analytical Data	
		5.5.2	Sub-Slab Vapor and Indoor Air Analytical Data	33
	5.6		Quality Control Results	33
	5.7		Data Usability	33
	5.8		Evaluation of Areas of Concern	35
		5.8.1	AOC 1: Historic Fill	35
		5.8.2	AOC 2: Historical Site Use	336
		5.8.3	AOC 3: Historical and Suspect Petroleum Storage on Site	
		5.8.4	AOC 4: PCE and TCE Impacted Soil Vapor	
		5.8.5	AOC 5: Historical Use of Adjoining Properties	
6.0		QUAL	ITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT	
	6.1		Current Conditions	
	6.2		Proposed Conditions	41
	6.3		Summary of Environental Conditions	41
	6.4		Conceptual Site Model	42
		6.4.1	Potential Sources of Contamination	43
		6.4.2	Exposure Media	
		6.4.3	Receptor Populations	
	6.5		Potential Exposure Pathways – On-Site	33
		6.5.1	Current Conditions	
		6.5.2	Construction/Remediation Conditions	
		6.5.3	Proposed Future Conditions	
	6.6		Potential Exposure Pathways – Off-Site	
	6.7		Evaluation of Human Health Exposure	45
		6.7.1	Current Conditions	
		6.7.2	Construction/Remediation Activities	
		6.7.3	Proposed Future Conditions	
-		6.7.4	Human Health Exposure Assessment Conclusions	
7.0		NAIU	RE AND EXTENT OF CONTAMINATION	48

	7.1	Soil Contamination	48
	7.2	Groundwater Contamination	48
	7.3	Soil Vapor Contamination	48
8.0		CONCLUSIONS	50
9.0		REFERENCES	52

TABLES

- Table 1Sample Summary
- Table 2Monitoring Well Construction Summary
- Table 3Groundwater Elevation Data
- Table 4ASoil Sample Analytical Results VOCs and SVOCs
- Table 4B Soil Sample Analytical Results –Pesticides, Herbicides, PCBs, and Inorganics
- Table 4CSoil Sample Analytical Results- Hazardous Chromium
- Table 5AGroundwater Sample Analytical Results
- Table 5B
 Groundwater Sample Analytical Results Emerging Contaminants
- Table 6ASoil Vapor Sample Analytical Results
- Table 6BSub-Slab Soil Vapor and Indoor Air Sample Analytical Results

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Adjacent Property and Surrounding Land Use Map
- Figure 4 Potential Areas of Concern and Sample Location Map
- Figure 5 Groundwater Contour Map
- Figure 6 Subsurface Profiles
- Figure 7 Soil Analytical Results Map
- Figure 8 Groundwater Analytical Results Map
- Figure 9 Soil Vapor Analytical Results Map
- Figure 10 Chromium Delineation Analytical Results Map
- Figure 11 Areas of Concern Map

APPENDICES

- Appendix A Previous Environmental Reports
- Appendix B Geophysical Survey Reports
- Appendix C Soil Boring Logs
- Appendix D Well Construction Logs
- Appendix E Groundwater Sampling Logs
- Appendix F Soil Vapor Construction and Sampling Logs
- Appendix G Data Usability Summary Reports
- Appendix H Laboratory Analytical Reports

LIST OF ACRONYMS

Acronym	Definition			
AAI	All Appropriate Inquiries			
AGV	Air Guidance Values			
AOC	Area of Concern			
AST	Aboveground Storage Tank			
ASTM	ASTM International			
BCA	Brownfield Cleanup Agreement			
ВСР	Brownfield Cleanup Program			
bgs	Below Grade Surface			
BTEX	Benzene, Toluene, Ethylbenzene, and Xylenes			
CAMP	Community Air Monitoring Program			
COC	Contaminants of Concern			
CSM	Conceptual Site Model			
CVOC	Chlorinated Volatile Organic Compound			
DER	Division of Environmental Remediation			
DOT	Department of Transportation			
DUSR	Data Usability Summary Report			
E-Designation	Environmental Designation			
el	Elevation			
ELAP	Environmental Laboratory Approval Program			
USEPA	Environmental Protection Agency			
EPH	Extractable Petroleum Hydrocarbons			
ESA	Environmental Site Assessment			
eV	Electron Volt			
FEMA	Federal Emergency Management Agency			
FIRM	Flood Insurance Rate Map			
FWRIA	Fish and Wildlife Resources Impact Analysis			
GPR	Ground Penetrating Radar			
GQS	Groundwater Quality Standards			
HASP	Health and Safety Plan			
ICP-AES	Inductively Coupled Plasma Atomic Emission Spectrometry			
IDW	Investigation-Derived Waste			
L/min	Liters per Minute			
LNAPL	Light Non-Aqueous Phase Liquid			
LTANK	Leaking Tanks			
µg/m³	Micrograms per Cubic Meter			
µg/L	Micrograms per Liter			
mg/kg	Milligrams per Kilogram			
MS/MSD	Matrix Spike/Matrix Spike Duplicate			

Acronym	Definition		
NAPL	Non-Aqueous Phase Liquid		
NAVD88	North American Vertical Datum of 1988		
NTU	Nephelometric Turbidity Units		
NYCRR	New York City Rules and Regulations		
NYSDOH	New York State Department of Health		
NYSDEC	New York State Department of Environmental Conservation		
PAH	Polycyclic Aromatic Hydrocarbons		
PBS	Petroleum Bulk Storage		
PCB	Polychlorinated Biphenyls		
PCE	Tetrachloroethene		
PG	Restricted Protection of Groundwater		
PFAS	Per- and Polyfluoroalkyl Substances		
PFC	Perfluorinated Chemicals		
PFOA	Perfluorooctanoic acid		
PFOS	Perfluorooctanesulfonic acid		
PID	Photoionization Detector		
PPE	Personal Protective Equipment		
ppm	Parts per million		
ppt	Parts per trillion		
PVC	Polyvinyl Chloride		
QA/QC	Quality Assurance/Quality Control		
RAWP	Remedial Action Work Plan		
RCRA	Resource Conservation and Recovery Act (RCRA)		
REC Recognized Environmental Concerns			
RI Remedial Investigation			
RIR Remedial Investigation Report			
RIWP	Remedial Investigation Work Plan		
RURR	Restricted Use – Restricted-Residential		
RU	Restricted Use – Residential		
SCO	Soil Cleanup Objective		
SGVs	Ambient Water Quality Standards and Guidance Values for		
	Class GA water		
SVOC	Semivolatile Organic Compound		
TAL	Target Analyte List		
TCE	Trichloroethene		
TCL	Target Compound List		
TCLP	Toxicity Characteristic Leaching Procedure		
TOGS	Technical and Operational Guidance Series		
USEPA	United Stated Environmental Protection Agency		
USGS	United States Geological Survey		

Acronym	Definition
UST	Underground Storage Tank
UU	Unrestricted Use
VOC	Volatile Organic Compound

CERTIFICATION

I, Michael D. Burke, certify that I am currently a Qualified Environmental Professional as defined in 6 New York Codes, Rules, and Regulations Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

al D. Brake

Michael D. Burke, PG, CHMM

1.0 INTRODUCTION

This Remedial Investigation Report (RIR) was prepared on behalf of 37-11 30th Street Holdings LLC (the Applicant) for the proposed development located at 37-11 30th Street (Block 372, part of Lot 8) and 30-14 37th Avenue (Block 372, Lot 21) in the Long Island City neighborhood of Queens, New York (the site). The Volunteer will remediate the site in conjunction with new development under the New York State Brownfield Cleanup Program (BCP), pursuant to a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC), executed on July 9, 2018, for Site No. C241211.

This RIR presents environmental data and findings from the Remedial Investigation (RI) conducted from September 26, 2018 to October 5, 2018 and October 15 to 17, 2018. The RI was completed by Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, DPC (Langan) and was conducted in accordance with Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-1, 3.8, 6.8, NYSDEC Division of Environmental Remediation (DER) Program Policy: Technical Guidance for Site Investigation and Remediation (DER-10), and applicable New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, with updates. The objectives of this RI include:

- Define the nature and extent of contamination in all media at or emanating from the site
- Generate sufficient data to evaluate remedial action alternatives
- Generate sufficient data to evaluate the actual and potential threats to human health and the environment

The remainder of this report is organized as follows:

- Section 2.0 describes the site setting and physical characteristics
- Section 3.0 describes the site background including results of previous investigations and identified areas of concern (AOC)
- Section 4.0 presents the investigation field procedures
- Section 5.0 describes the field observations and analytical results
- Section 6.0 presents an assessment of the exposure risks of site contaminants to human, fish, and wildlife receptors
- Section 7.0 presents the nature and extent of contamination in all site media as determined through the field investigation and analysis of environmental samples
- Section 8.0 summarizes the results of the investigation and presents conclusions based on field observations and analytical results

2.0 SITE PHYSICAL CHARACTERISTICS

2.1 Site Description

The site is located at 37-11 30th Street and 30-14 37th Avenue in the Long Island City neighborhood of Queens, New York and is identified as Block 372, Lot 21 and a part of Lot 8, on the Queens Borough Tax Map. A site location map is provided as Figure 1. The site encompasses an area of about 26,978 square-feet (0.61 acres) and is occupied by a three-story warehouse building with multiple partial cellar levels in the southern part of Lot 8 (37-11 30th Street), a stockyard/storage area in the northern part of Lot 8, and a vacant lot on Lot 21 (30-14 37th Avenue). A lighting, audio, and production rental and warehousing company most recently occupied the buildings in Lot 8, and a two story residential building demolished prior to execution of the BCA and implementation of the Remedial Investigation Work Plan (RIWP) formerly occupied the eastern part of Lot 21. The site is bound by 37th Avenue to the north, 31st Street to the east, 38th Avenue to the south, and 30th Street to the west. The elevated N and Q subway tracks run north-south above 31st Street and are located about 100 feet east of the site. A site plan is provided in Figure 2.

2.2 Surrounding Property Land Use

The site is located in a mixed-use area with commercial, residential, and institutional uses. The following is a summary of surrounding property usage:

Adjoining and Adjacent Properties Surround			Surrounding	
Direction	Block No.	Lot No.	Description	Properties
North	599	1	37 th Avenue followed by Supreme Glass and Windows (30-01 37 th Avenue)	31 st Street (N and Q subway lines beneath) followed by multi-story and multi-family residential, commercial, and industrial buildings
		23	30 th Street followed by a two - story industrial building (29-16 37 th Avenue)	
	371	27	30 th Street followed by a three- story industrial building (37-12 30 th Street)	
West		29	30 th Street followed by a two- story industrial building (37-14 30 th Street)	Old Ridge Road followed by multi- story and multi-
vvest		31	30 th Street followed by a two- story industrial building (37-20 30 th Street)	family residential buildings and industrial buildings
		32	30 th Street followed by a two- story commercial office building (37-22 30 th Street)	
		33	30 th Street followed by a one- story industrial building (37-24 30 th Street)	
		34	30 th Street followed by a two- story industrial building (37-28 30 th Street)	
		7	Two-story public institution building (37-31 30 th Street)	Multi-story residential, mixed-
South	372	8	One-story industrial/ warehouse building (37-11 30 th Street)	use commercial and industrial buildings

Direction	Adjoining and Adjacent Properties			Surrounding
Direction	Block No.	Lot No.	Description	Properties
East	372	22	Two-story residential- commercial mixed-use building (30-16 37 th Avenue)	31 st Street (N and Q subway lines beneath) followed by multi-story mixed-use residential- commercial and commercial office buildings
East	372	8	One-story industrial/ warehouse building (37-11 30 th Street)	31 st Street (N and Q subway lines beneath) followed by multi-story mixed-use residential- commercial and commercial office buildings

Public infrastructure (storm drains, sewers, and underground utility lines) exists within the streets surrounding the site.

Land use within a half-mile radius is urban and includes residential, commercial, institutional, and light industrial buildings and public parks. The nearest ecological receptor is Dutch Kills Green, located about 2,150 feet southwest of the site. Adjacent properties and land uses are shown on Figure 3. Sensitive receptors, as defined in DER-10, located within a half mile of the site include those listed below:

Number	Name (Approximate distance from site)	Address
1	Dutch Kills Playground (about 0.12 miles northwest of the site)	36 th Avenue and Crescent Street Queens, NY 11106
2	The Oliver Wendell Holmes Intermediate School 204 (about 0.12 miles north of the site)	36-41 28 th Street Queens, NY 11106
3	Queensbridge Early Childhood Development Center (about 0.15 miles west of the site)	38-11 37 th Street Queens, NY 11101
4	PS 112 Dutch Kills (about 0.17 miles northwest of the site)	25-05 37 th Avenue Queens, NY 11101

Number	Name (Approximate distance from site)	Address
5	Growing up Green Charter School (about 0.23 miles southwest of the site)	39-37 28 th Street Queens, NY 11101
6	Baccalaureate School for Global Education (about 0.24 miles northeast of the site)	34-12 36 th Avenue Queens, NY 11106
7	A.R.R.O.W. Field House (about 0.27 miles northeast of the site)	35-30 35 th Street Queens, NY 11106
8	Newcomers High School (about 0.29 miles southeast of the site)	28-01 41 st Avenue Queens, NY 11101
9	PS 166 Henry Gradstein (about 0.32 miles northeast of the site)	33-09 35 th Avenue Queens, NY 11106
10	All Children's Child Care (about 0.34 miles northeast of the site)	35-01 24 th Street Queens, NY 11106
11	Academy for New Americans (about 0.36 miles southeast of the site)	30-14 30 th Street Queens, NY 11102
12	Andrew Landi Early Childhood Development Center (about 0.41 miles northeast of the site)	21-20 35 th Avenue Queens, NY 11106
13	Sixteen Oaks Grove (about 0.41 miles northwest of the site)	13-19 37 th Avenue Queens, NY 11101
14	PS 111 Jacob Blackwell (about 0.45 miles northeast of the site)	37-15 13 th Street Queens, NY 11101
15	Jackson Developmental Center and Children's Services (about 0.47 miles northeast of the site)	36-02 14 th Street Queens, NY 11106
16	Playground 35 XXXV (approximately 0.48 miles northeast of the site)	35-01 Steinway Street Queens, NY 11101

2.3 Site Physical Conditions

2.3.1 Topography

According to the architectural drawing entitled "Z-001.00" prepared by Aufgang Architects, surface sidewalk elevations (el) range from about el 41.55 feet¹ (at the southwest corner) to el

¹ Elevations in this RIR refer to North American Vertical Datum of 1988 (NAVD88), which is about 1.1 feet above mean sea level at Sandy Hook, NJ.

44.5 feet (on the north side). The topography of the site is generally level, with the surrounding land sloping toward the south/southwest.

2.3.2 Regional Geology

Soil and bedrock stratigraphy throughout Brooklyn typically consist of a layer of historic fill that overlies glacial till, decomposed unconsolidated bedrock, and bedrock. The glacial till deposits, also known as ground moraine, are a widespread dense layer of till material that typically consists of clay, silt, sand, gravel and boulders. According to the United States Geological Survey (USGS) Bedrock and Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties, New York, dated 1994, bedrock beneath the site is the Hartland formation. The Hartland formation typically consists of gray sillimanite-garnet-microcline gneiss and fine-grained biotite-muscovite-quartz schist interlayered with quartz-plagioclase-muscovite pegmatite, hornblende amphibolite, and coarse granoblastic-textured amphibolite gneiss. Bedrock was not encountered during the RI. According to a geotechnical investigation completed by Langan in the vicinity of the site, the minimum depth of bedrock is expected to be 100 feet below grade surface (bgs).

2.3.3 Regional Hydrogeology

Groundwater flow is typically topographically influenced, as shallow groundwater tends to originate in areas of topographic highs and flows toward areas of topographic lows, such as rivers, stream valleys, ponds, and wetlands. A broader, interconnected hydrogeologic network often governs groundwater flow at depth or in the bedrock aquifer. Groundwater depth and flow direction are also subject to hydrogeologic and anthropogenic variables such as precipitation, evaporation, extent of vegetation cover, coverage by impervious surfaces, and subsurface structures. Other factors influencing groundwater include depth to bedrock, the presence of anthropogenic fill, and variability in local geology and groundwater sources or sinks.

2.3.4 Wetlands

Wetlands on or near the site were evaluated by reviewing the National Wetlands Inventory and NYSDEC regulated wetlands map. There are no wetlands on or adjacent to the site.

3.0 SITE BACKGROUND

This section describes historical site use, the proposed redevelopment, and provides a summary of the findings from previous environmental investigations. Potential Areas of Concern (AOCs) were developed based on a review of the previous reports and are summarized in Section 3.4.

3.1 Historical Site Usage

Historical Sanborn Fire Insurance Maps indicate that the site was an undeveloped vacant lot until at least 1898. The 1915 map indicates the northern portion of the site was occupied by "McLaughlins Garage" and a residential development, while the southern portion of the site remained vacant. By 1920, the existing on-site warehouse was constructed and beginning in 1930 was occupied by a plastics manufacturer. The Marblette Corp. Mfg. of Plastic Materials occupied the site from at least 1930 to about 1980. During this time period, plastic was typically made using a mixture of synthetic chemicals, chlorinated solvents, metals and petroleum products. Following 1980, the site was occupied by a warehousing and distribution center for lighting and staging equipment.

Historic documents indicate two underground storage tanks (UST), including a 2,000-gallon and 550-gallon UST, and a 5,000-gallon aboveground storage tank (AST) were closed-in-place on July 7, 2000. The documents were prepared by U.S.A. Tank Maintenance, Inc. and were provided to the NYC Fire Department for documentation purposes. The tanks were not registered on the NYSDEC Petroleum Bulk Storage (PBS) database. Historical records documented the 5,000-gallon AST was installed in 1947, the 2,000-gallon UST was installed in 1933, and the 550-gallon UST was installed in 1941. According to historic Sanborn Fire Insurance Maps, a 10,000-gallon tank was also depicted at the site from 1947 to 1950; however, the tank was not listed in any regulatory records. The property was listed in the Leaking Tanks (LTANK) database due to a tank test failure on April 21, 1998. According to records provided by the NYSDEC, three soil borings were advanced in the vicinity of the tank in February 2000 as part of an investigation for a proposed building expansion.

3.2 Proposed Redevelopment Plan

Current plans call for the development to include abatement and demolition of the existing threestory warehouse buildings within the southern part of the site (Tax Block 372, Lot 8). A new seven-story, mixed-use residential, commercial, and light manufacturing building will be constructed with a footprint of about 26,978 square feet. The new development will include one full cellar level with about 17,250 square feet of parking, about 3,000 square feet of tenant amenity space (i.e. recreation room, bicycle storage, lounge area), and remaining areas of the cellar occupied by utility rooms, a trash compactor room, corridors, stairs, elevators, and a detention tank. The first floor of the new development will include about 11,000 square feet of commercial/retail areas, about 10,750 square feet of light manufacturing areas, and the remaining portions will include a residential lobby, mail room, corridors, a loading dock, and ADA-accessible apartment. The second through seventh floors of the new development will be occupied by 198 residential units, thirty percent of which will be designated for affordable housing.

3.3 Summary of Previous Environmental Investigations

The following previous environmental reports and investigations were reviewed as part of this RIR and are summarized below. The reports are included in Appendix A.

- Phase I Environmental Site Assessment (ESA), prepared by Hillman Consulting LLC, Dated April 8, 2014
- Focused Subsurface Site Investigation, prepared by Merritt Environmental Consulting Corp., Dated July 7, 2014
- Limited Subsurface Investigation, prepared by Hydro Tech Environmental Corp., dated December 2017

Phase I Environmental Site Assessment, prepared by Hillman Consulting LLC, Dated April 8, 2014

The Phase I ESA was completed in general accordance with ASTM International (ASTM) Standard E1527-13 and the United States Environmental Protection (USEPA) All Appropriate Inquiries (AAI) Rule. The following recognized environmental conditions (REC) were identified:

- <u>REC 1 Historical On-Site Operations</u>: The site historically operated as a plastics manufacturer (The Marblette Corp. Mfg. of Plastic Materials) from at least 1930 to about 1980. During this time period, plastic was typically made using a mixture of synthetic chemicals, solvents, and petroleum products. Leaks or spills of petroleum products, solvents, and/or other hazardous materials associated with plastics manufacturing during the 50 years of operation may have adversely affected soil, groundwater and/or soil vapor at the site.
- <u>REC 2 Historic Petroleum Storage and Use</u>: Documents indicate two USTs (2,000-gallon and 550-gallon USTs) and a 5,000-gallon AST were closed-in-place on July 7, 2000. Historical records documented the 5,000-gallon AST was installed in 1947, the 2,000-gallon UST was installed in 1933, and the 550-gallon UST was installed in 1941. According to historic Sanborn Fire Insurance Maps, a 10,000-gallon tank was also depicted within the site from 1947 to 1950; however the tank was not listed on any regulatory records. The property was listed in the Leaking Tanks (LTANK) database due to a tank test failure on April 21, 1998. According to records provided by NYSDEC, three soil borings were advanced in the vicinity of the tank in February 2000 as part of an investigation for a proposed building expansion. No evidence of impacts to the subsurface was noted during the investigation, and NYSDEC closed the LTANKS case on September 15, 2004;

however, undocumented spills or releases of petroleum products associated with the tanks or piping may have adversely affected soil, groundwater, or soil vapor beneath the site.

<u>REC 3 - Historical Use of Surrounding Properties</u>: Historical uses of adjoining and surrounding properties included auto repair facilities (1936, 1947-1950, 1999-2010), gasoline filling stations (1947-1950, 1970-1996, 2001-2006) dry cleaners (2004-2009), and various manufacturing facilities (1970-1996, 2001-2006). Records identified multiple lots in the surrounding area assigned with an Environmental Designation (E-Designation) for Hazardous Materials. The Hazardous Materials E-Designation requires appropriate subsurface investigation and remediation, if necessary, of each property assigned prior to redevelopment. Undocumented spills or releases of petroleum products or hazardous substances associated with historical uses of nearby properties including petroleum bulk storage may have adversely affected groundwater or soil vapor beneath the site.

Focused Subsurface Site Investigation, prepared by Merritt Environmental Consulting Corp., Dated July 7, 2014

Merritt Environmental Consulting Corp. (Merritt) completed a Limited Subsurface Site Investigation in June 2014 to determine if soil and groundwater conditions were impacted as a result of the historical use as a plastics manufacturing and historical petroleum bulk storage on site. The investigation included a geophysical survey, advancement of six soil borings, installation of four temporary groundwater monitoring wells, and collection of soil and groundwater samples. Field observations and laboratory analytical results are summarized below:

- <u>Geophysical Survey</u>: The geophysical survey identified two subsurface anomalies in locations consistent with the reported closed-in-place 2,000-gallon, and 550-gallon USTs. The 2,000-gallon UST was identified in the sidewalk along 31st Street, which adjoins Lot 8 to the east. The 550-gallon UST was identified in the sidewalk along 30th Street, which adjoins Lot 8 to the west. Abandoned vent and fill lines were observed in the vicinity of the closed-in-place 5,000-gallon AST located in the east-central portion of Lot 8.
- <u>Soil</u>: Four soil borings were advanced up to 32 feet bgs using a track-mounted GeoProbe© rig in the vicinity of an oil/water separator and closed-in-place 2,000-gallon UST (B-3), along the western portion of the site (B-4), and in the northwest exterior stockyard/storage area (B-5 and B-6). Two soil borings (B-1 and B-2) were advanced to six feet bgs in the vicinity of the closed-in-place 5,000-gallon heating oil AST. No evidence of petroleum impacts (e.g., staining, odors or photoionization detector [PID] readings above background) was observed during the soil boring investigation. Soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs). With the exception of methylene chloride

(concentration of 0.004 milligrams per kilogram [mg/kg]), no VOCs were detected in soil samples. In addition, no SVOCs or PCBs were detected in soil samples.

<u>Groundwater</u>: One VOC, chloroform (maximum concentration of 20 micrograms per liter [μg/L]), was detected in monitoring well B-3GW at a concentration above NYCRR Part 703.5 Groundwater Quality Standards (GQS). Chlorinated VOCs (CVOCs) including tetrachloroethene (PCE) (concentration of 3.5 μg/L in monitoring well B-3GW) and 1,1,1-trichloroethane (concentration of 2.2 μg/L in monitoring well B-4GW) were detected in two monitoring wells along the eastern and western perimeters of the site, but at concentrations below the NYSDEC GQS.

Limited Subsurface Investigation, prepared by Hydro Tech Environmental Corp., dated December 2017

Hydro Tech Environmental Corp. (Hydro Tech) performed a Limited Subsurface Investigation at the site in December 2017 to determine, to the extent practical, the nature and extent of contamination in soil, groundwater, and soil vapor. The investigation included advancement of nine soil borings, installation of five groundwater monitoring wells, installation of six sub-slab soil vapor sampling points, installation of three soil vapor sampling points, and collection of soil, groundwater, soil vapor, sub-slab vapor, indoor air, and outdoor ambient air samples. Langan was provided with copies of the site sampling location plan, and analytical result summary tables for soil, groundwater, and soil vapor samples collected during the limited investigation. Laboratory analytical results are summarized below:

- <u>Soil</u>: Metals including copper, mercury and lead were detected at concentrations above Title 6 NYCRR Part 375 Restricted Use Restricted-Residential (RURR) Soil Cleanup Objectives (SCO). Metals including barium, hexavalent chromium, copper, lead and zinc were detected at concentrations above Part 375 Unrestricted Use (UU) and/or RURR SCOs. One VOC, acetone, was detected at a concentration above the Part 375 UU SCOs.
- <u>Groundwater</u>: Dissolved metals including magnesium, manganese, and sodium were detected at concentrations above the NYSDEC GQS. PCE was detected at concentrations ranging between 0.3 and 1.5 µg/L in three monitoring wells located in the west-central portion of the site. Detected concentrations of PCE in groundwater samples were below the NYSDEC GQS.
- <u>Indoor Air, Sub-Slab Vapor, and Soil Vapor</u>: Indoor air analytical results were compared to the Air Guidance Values (AGV) specified in the NYSDOH guidance document. PCE was detected at concentrations of 66 to 68 micrograms per cubic meter (μg/m³) in indoor air sample, which are two-times greater than the NYSDOH AGV of 30 μg/m³. PCE concentrations detected in sub-slab vapor samples ranged from 7 μg/m³ to 12,000 μg/m³. Trichloroethene (TCE) concentrations detected in sub-slab vapor samples ranged from 7.70 μg/m³ to 16 μg/m³.

In addition, NYSDOH provides decision matrices for eight chlorinated VOCs ([CVOC] carbon tetrachloride, 1,1-dichloroethene, cis-1,2-dichloroethene, TCE, methylene chloride, PCE, 1,1,1-trichloroethane, and vinyl chloride). The decision matrices recommend a range of activities (e.g., monitor, mitigate) based on the sub-slab and indoor air sample results collected. Two of the eight VOCs that can be evaluated using the NYSDOH decision matrices were detected in sub-slab soil vapor samples (PCE and TCE). Based on the concentrations detected, the NYSDOH decision matrices recommend mitigation for PCE and monitoring for TCE.

3.4 Summary of Potential Areas of Concern

Based on site observations, the site development history, and the findings of the previous environmental reports, potential AOCs were identified and investigated during this RI and are described in detail below. A Potential AOC map is provided on Figure 4

Potential AOC 1: Historic Fill

Material from unknown sources may have been used as backfill during various phases of the site development history. According to boring logs from the 2014 Focused Subsurface Investigation performed by Merritt, the fill layer extends up to 5 feet bgs across the site and consists of sand with crushed brick, concrete and construction debris. Soil samples collected during the 2017 Limited Subsurface Investigation performed by Hydro Tech identified metals, including copper, lead, and mercury, in shallow fill exceeding the RURR SCOs.

Potential AOC 2: Historical Site Use

The site historically operated as a plastics manufacturer (The Marblette Corp. Mfg. of Plastic Materials) from at least 1930 to about 1980. During this time period, plastic was typically made using a mixture of synthetic chemicals, solvents, metals and petroleum products. Releases of petroleum products, solvents, and/or other hazardous materials associated with plastics manufacturing during the 50 years of on-site operations may have adversely affected soil, groundwater and/or soil vapor.

Potential AOC 3: Historical and Suspect Petroleum Storage on Site

Historical records indicate one 550-gallon UST located in the sidewalk adjoining the site along 30th Street was installed in 1941 and closed-in-place on July 7, 2000. According to Sanborn Fire Insurance Maps, a 10,000-gallon tank was also depicted at the site from 1947 to 1950 in the east-central part of the site; however, the tank was not listed on any regulatory records. Undocumented releases of petroleum products associated with the closed-in-place UST or suspect 10,000-gallon UST or associated piping may have adversely affected soil, groundwater, or soil vapor.

Potential AOC 4: PCE and TCE Impacted Soil Vapor

During the 2017 Limited Subsurface Investigation by Hydro Tech, chlorinated solvents, including PCE and TCE, were detected in soil vapor and sub-slab vapor samples throughout the site. PCE was detected at a concentrations of 66 to 68 μ g/m³ in indoor air, which is more than two-times greater than the NYSDOH AGV of 30 μ g/m³. PCE concentrations detected in sub-slab vapor samples ranged from 7 to 12,000 μ g/m³. TCE concentrations were detected in three soil vapor samples collected throughout the western part of Lot 8 (within the proposed BCP site boundary) and range from 7.70 to 16 μ g/m³. Based on a comparison of PCE and TCE concentrations detected in sub-slab vapor in 2017 to NYSDOH decision matrices, mitigation was recommended for PCE and monitoring for TCE.

Potential AOC 5: Historical Use of Adjoining Properties

Historical uses of adjoining and surrounding properties included auto repair facilities (1936, 1947-1950, 1999-2010), gasoline filling stations (1947-1950, 1970-1996, 2001-2006) dry cleaners (2004-2009), plastics manufacturing (1930-1980), and various manufacturing facilities (1970-1996, 2001-2006). In addition, 37-29 31st Street (about 230 feet southeast and upgradient of the site) was formerly an auto repair and gasoline filling station (1936, 1970-1996) and was identified by NYSDEC as a Significant Threat Site based on documented concentrations of chlorinated solvents in soil vapor. Undocumented spills or releases of petroleum products or hazardous substances associated with historical uses of nearby properties may have adversely affected groundwater or soil vapor beneath the site.

4.0 REMEDIAL INVESTIGATION

The RI was completed from September 26, 2018 to October 17, 2018 to investigate potential AOCs and to determine, to the extent practical, the nature and extent of contamination in soil, groundwater, and soil vapor. The scope of the RI included the field tasks listed below to supplement the data and findings of previous investigations. A summary of samples collected and rationale for each investigation point in relation to the potential AOCs is provided in Table 1. Sample locations are presented on Figure 5.

The RI consisted of the following:

- A geophysical survey to identify potential USTs, underground structures, and utilities
- Advancement of 11 soil borings to depths of about 30 to 40 feet bgs and advancement of two deep soil borings to depths of about 70 to 72 feet bgs, from which 45 soil samples (including 3 quality assurance/quality control [QA/QC] duplicate samples) were collected
- Advancement of 10 shallow soil borings up to 6 feet bgs and collection of 35 soil samples (including two QA/QC duplicate samples) to delineate hazardous levels of chromium.
- Installation of 11 groundwater monitoring wells (9 at select shallow boring locations and 2 at deep borings coupled with select shallow monitoring wells) and collection of 18 groundwater samples (including 3 QA/QC duplicate samples)
- Survey and gauging of monitoring wells to evaluate groundwater elevation, flow direction, and depth to product, if any
- Installation of 3 temporary soil vapor probes and 3 temporary sub-slab vapor points and collection of 7 soil vapor samples (including 1 duplicate sample), 3 co-located indoor air samples, and 1 ambient air sample

The RI was conducted in accordance with NYCRR DER-10 Technical Guidance for Site Investigation and Remediation (May 2010), the NYSDEC Draft Brownfield Cleanup Program Guide (May 2004), and NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006) and the NYSDEC-approved RIWP (September 2018).

4.1 Geophysical Survey and Utility Location

On September 26, 2018, NOVA Geophysical Services Inc. (NOVA) of Douglaston, New York completed a geophysical survey under the supervision of a Langan field engineer. NOVA used ground-penetrating radar (GPR) to identify potential USTs and locate buried utilities near each boring location. Borings were relocated as necessary to avoid subsurface utilities and anomalies (other subsurface impediments). A copy of the geophysical survey report presenting these findings is included in Appendix B.

4.2 Soil Investigation

4.2.1 Soil Boring Investigation Methodology

Thirteen soil borings (SB01 through SB13) were completed during the RI by AARCO Environmental Services Corp. (AARCO) of Lindenhurst, New York. Boring locations were selected to evaluate potential AOCs listed in Section 3.4 and to supplement the previous environmental investigations. Nine soil borings (SB01 through SB06, SB10, SB11 and SB13) were advanced with Sonic drilling methodologies using a Geoprobe® 8140LC Sonic drill rig, two soil borings (SB07 and SB12) were advanced with direct push methodologies using a Geoprobe® 6610DT drill rig, and two soil borings (SB08 and SB09) were advanced with direct push methodologies using a Geoprobe® 7822DT drill rig. A map showing the boring locations is presented on Figure 4. The following table indicates which borings are associated with each potential AOC.

Potential AOC	Associated Soil Borings	
AOC 1 – Historic Fill with Elevated Metals Concentrations	SB01 through SB13	
AOC 2 – Historical Site Use	SB01 through SB07, SB09, SB11 through SB13	
AOC 3 – Historical and Suspect Petroleum Storage	SB03 and SB04	
AOC 4 – PCE and TCE Impacts to Soil Vapor	SB01, SB02, SB04 through SB07 and SB13	
AOC 5 – Historical Use of Adjoining Properties	SB02, SB04, SB05 through SB07, SB09, through SB12	

The soil borings were advanced to about 30 to 40 feet bgs, with the exception of two deep environmental borings SB05 and SB13, as summarized below:

- Boring SB06 was advanced to 30 feet bgs
- Borings SB07 and SB12 were advanced to 32 feet bgs
- Borings SB02, SB04, SB10, and SB11 were advanced to 35 feet bgs
- Borings SB08 and SB09 were advanced to 36 feet bgs
- Borings SB01 and SB03 were advanced to 40 feet bgs
- Borings SB05 and SB13 were advanced to 70 and 72 feet bgs, respectively

Discrete soil samples were collected from the surface to the final depth of each boring and were visually classified for soil type, grain size, texture, and moisture content. Samples were collected

in 5-foot long plastic bag liners from the sonic drill core barrel, and 4-foot long acetate liners from the direct push Geoprobe® 7822DT and Geoprobe® 6610DT.

The soil was screened for visual, olfactory, and instrumental evidence of environmental impacts and was visually classified for soil type, grain size, texture, and moisture content. Instrument screening for the presence of VOCs was performed with a PID equipped with a 10.6-electron volt (eV) lamp. A Langan engineer documented the work, logged the soil type, screened the soil samples for environmental impacts, and collected environmental samples for laboratory analyses. Soil boring logs are presented in Appendix C. Following sample collection, nine borings (SB01 through SB07, SB10, and SB13) were converted to groundwater monitoring wells. Additional permanent monitoring wells were installed at boring locations SB05 and SB13, adjacent to the original boring location, in order to create a coupled monitoring well set. The coupled monitoring wells were labeled MW05A and MW05B at location SB05, and MW13A and MW13B at location SB13. Soil cuttings were backfilled into the original boring locations that were not converted into permanent monitoring wells and/or containerized into UN/Department of Transportation (DOT)-approved 55-gallon steel drums.

4.2.3 Soil Sampling Methodology

During implementation of the RI, 45 grab soil samples, including three field duplicates, were collected for laboratory analysis. A minimum of three grab soil samples were collected for laboratory analysis from each boring location to investigate potential AOCs and to provide vertical and horizontal delineation of identified impacts. For AOC 1, samples were collected within the historic fill material. For AOCs 2, 4 and 5, samples were collected from native material and the interval of the groundwater interface. For AOC 3, representative samples were collected since visual, olfactory, or instrumental evidence of a chemical or petroleum release was not apparent.

Samples submitted for VOC analysis were collected directly from the plastic bag or acetate liner via laboratory-supplied Terra Core soil samplers. The remaining sample volume was homogenized and placed in appropriate laboratory-supplied containers for all additional analyses. The sample containers were labeled, placed in a laboratory-supplied cooler and packed on ice (to maintain a temperature of 4±2°C). The sample coolers were picked up and delivered via courier under standard chain-of-custody protocol to Alpha Analytical Laboratories, Inc. (Alpha) in Westborough, Massachusetts, a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory (ELAP ID No. 11148).

Soil samples from all of the borings were analyzed for Part 375/Target Compound List (TCL) VOCs and SVOCs, PCBs, pesticides, herbicides, and Part 375/Target Analyte List (TAL) metals including hexavalent and trivalent chromium, and total cyanide. Only soil samples collected from the fill material were analyzed for pesticides and herbicides. A sample summary is provided as Table 1.

4.2.3 Hazardous Chromium Soil Delineation

Hexavalent and Trivalent Chromium were identified in shallow soil collected from soil boring SB04 at potentially hazardous concentrations. Subsequent TCLP analysis identified chromium above the USEPA Resource Conservation and Recovery Act (RCRA) Characteristics of Hazardous Waste in two samples (SB04_1-2 and SB04_2-3). To further define the extent of chromium impacts at this location, 10 shallow delineation borings were advanced on November 20, 2018. During the hazardous chromium delineation, one boring was advanced adjacent to the original SB04 boring location (SB04A) to 6 feet bgs. Nine additional soil borings were advanced in three radial directions (SB04.1 to SB04.9) around the boring location SB04A, and grab soil samples were collected from 1 to 3 feet bgs, 3 to 5 bgs, and 5 to 6 bgs to delineate the extent of chromium impacted soil.

4.2.4 Hazardous Chromium Delineation Sampling Methodology

Samples from hazardous chromium delineation boring SB04A and each respective step-out boring (SB04.1 to SB04.9) were collected to delineate shallow chromium impacts from 1 to 6 feet bgs. A total of 35 discrete (grab) samples were collected (including two QA/QC duplicate samples). Soil samples were collected in the field from the delineation soil borings; however, not all samples were analyzed initially. The samples collected closest to the known hazardous material (SB04) were analyzed first. When sample analysis indicated hazardous concentrations, the next closest samples were analyzed. When sample analysis indicated non-hazardous concentrations, no additional samples were analyzed. In total, 14 discrete samples were submitted for analysis of total and TCLP chromium.

4.3 Groundwater Investigation

A Langan field engineer documented conversion of 11 soil borings into permanent groundwater monitoring wells by AARCO. One groundwater sample was collected from each monitoring well to characterize groundwater conditions and to investigate potential groundwater impacts associated with the AOCs. Three duplicate groundwater samples were also collected. Groundwater monitoring wells were installed to investigate potential impacts to groundwater associated with the identified AOCs and to characterize groundwater conditions.

Nine of the borings (SB01, SB02, SB03, SB04, SB05, SB06, SB07, SB10 and SB13) were converted into groundwater monitoring wells: MW01, MW02, MW03, MW04, MW05A, MW06, MW07, MW10, and MW13A, respectively. Additional permanent monitoring wells were installed at boring locations SB05 and SB13, adjacent to the original boring location, to create coupled monitoring well sets. The coupled monitoring wells were labeled MW05A and MW05B at location SB05, and MW13A and MW13B at location SB13. Monitoring wells with labels ending in 'A' denote the deeper of the two coupled monitoring wells and wells with labels ending in 'B' denote the shallower of the two coupled monitoring wells. AOCs 2 and 4 were investigated with

the installation of monitoring wells MW01 through MW04, MW05A/5B, MW06, MW07, MW10, and MW13A/B. AOC 3 was investigated with the installation of monitoring wells MW03 and MW04. AOC 5 was investigated with the installation of monitoring wells MW02, MW04, MW05A/B, MW06, MW07, and MW10.

4.3.1 Monitoring Well Installation and Development Methodology

Following completion of soil borings, the monitoring wells (with the exception of MW05A and MW13A) were constructed using 2-inch diameter polyvinyl chloride (PVC) riser pipes attached to 10 to 12-foot-long 0.01-inch slotted screens. Monitoring wells were constructed so that the well screen straddled the observed groundwater table. The well annulus around the screen of each well was backfilled with No. 1 sand up to about the top of the screen. A minimum of about 1- to 2-foot thick hydrated bentonite seal was installed above the sand pack, and the borehole annulus was backfilled with soil cuttings to the surface. The monitoring wells were finished with flushmount metal manhole covers encased in concrete.

Monitoring wells MW05A and MW13A were constructed using 2-inch diameter PVC riser pipes attached to 5-foot-long 0.01-inch slotted screens, with the slotted screen in MW05A placed between 60 and 65 feet bgs and the slotted screen in MW13A placed between 65 and 70 feet bgs. The annulus of the borehole was backfilled to about 2 feet above the screen with No. 1 sand and a 2-foot hydrated bentonite seal above the pack. The remainder of the annulus was backfilled with soil cuttings and a hydrated bentonite seal at the surface. To minimize the potential for drag-down of observed contamination to beneath the impermeable layer, all wells were installed as a double-cased well using a Sonic drill rig. An outer casing was advanced to the targeted well depth, and the inner casing was advanced through the outer casing to the targeted depth. The annular space between the outer casing and borehole wall was filled with No. 1 sand and sealed with 2 feet of bentonite approximately 2 feet above the well screen. The remainder of the annular space was backfilled with drill cuttings to the surface.

Following installation, each well was surged and developed with a submersible pump until the water became clear (having turbidity less than 50 Nephelometric Turbidity Units [NTU]). Purged groundwater was stored in labeled 55-gallon drums and staged on-site for future disposal.

Monitoring well locations are provided on Figure 4, construction details are included in Table 2, and construction logs are found in Appendix D.

The top of casing elevations of monitoring wells MW01, MW02, MW03, MW04, MW05A/B, MW06, MW07, MW10, and MW13A/B were surveyed by Langan on October 17, 2018. A Langan field engineer completed synoptic groundwater gauging on October 15, 16 and 17, 2018 using a Solinst 122 oil/water interface probe. Groundwater elevations ranged from el 16.25 to el 18.02 and are presented in Table 3. A groundwater contour map based on the synoptic groundwater levels of the wells is presented as Figure 4.

4.3.2 Groundwater Sampling

Groundwater samples were collected one week following well development on October 15, 16, and 17, 2018. Samples were collected in accordance with the procedures in the USEPA's low-flow groundwater sampling procedure ("Low Stress [low flow] Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", EQASOP-GW 001, January 19, 2010) to allow for collection of a representative sample. Monitoring wells were gauged for static water levels and purged, and physical and chemical parameters (e.g., temperature, dissolved oxygen, oxygen reduction potential, and turbidity) were allowed to stabilize to ranges specified in the USEPA guidance before they were sampled.

Wells MW01, MW02, MW03, MW04, MW05B, MW06, MW10, and MW13B were sampled using a submersible Monsoon Pump with dedicated Teflon-lined polyethylene tubing. Wells MW05A, MW-07, and MW13A were sampled using a Waterra submersible pump and dedicated high density polyethylene tubing. Due to poor well volume recovery during sampling, monitoring wells MW05B, MW06, and MW07 were fully evacuated of groundwater and allowed to recharge prior to the collection of groundwater samples. Purge water was containerized into labeled 55-gallon drums for off-site disposal. Groundwater sampling logs are included in Appendix E.

Eighteen groundwater samples — including one sample from each well, additional samples from MW01, MW05A, and MW07 for emerging contaminants, and three duplicate samples —were collected into laboratory-supplied glassware, packed with ice to maintain a temperature of 4°C, and transported via courier service to Alpha Analytical Laboratories under chain-of-custody protocol. In addition, nine QA/QC samples (including three duplicates, four matrix spike/ matrix spike duplicate [MS/MSD] samples, and two field blanks) were collected. Groundwater samples were analyzed for Part 375/TCL VOCs, SVOCs, and PCBs, Part 375/TAL total and dissolved metals, pesticides, and herbicides. Three samples were analyzed for emerging contaminants (including 1,4-dioxane, and per- and polyfluoroalkyl substances [PFAS]).

In addition, groundwater testing was performed during the RI to support the identification and evaluation of remedial alternatives. The results of the additional analyses were used to inform the remedial alternatives analysis section of the RAWP.

4.4 Soil Vapor Investigation

NYSDEC DER-10 requires an assessment of soil vapor for contaminated sites to evaluate the health risk associated with potential exposure to VOCs through vapor intrusion into occupied spaces. Three soil vapor points (SV01 through SV03) were installed in an attempt to identify impacts associated with historic site use in the northern portion of the property. Three sub-slab soil vapor points (SSV01 through SSV03) were collected to investigate potential soil vapor intrusion within the on-site buildings in the southwest area of the site in Lot 8. Three indoor air samples (IA01 through IA03) were co-located with the sub-slab samples. One duplicate soil vapor

and one ambient air sample were collected for QA/QC purposes. Soil vapor, sub-slab vapor, indoor air, and ambient air sample locations are presented on Figure 4.

4.4.1 Soil Vapor Point Installation

Soil vapor points SV01 through SV03 were installed by AARCO using a Geoprobe[®] 7822DT drill rig and advanced to depths of about 5 feet bgs. Sub-slab vapor points SSV01 through SSV03 were installed just below the concrete slab within the existing on-site buildings using a Bosch hammer drill with a 7/8th-inch drill bit. A polyethylene vapor implant (2 inches in diameter, and approximately 1-7/8th inches in length) was threaded to Teflon-lined, polyethylene tubing (1/4-inch diameter) and lowered to the bottom of the hole in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York. A sand filter pack was installed around the screen implant by pouring No. 1 sand into the annulus. The remainder of the annulus was filled to grade surface with a hydrated bentonite seal. Soil vapor construction/sampling logs are provided in Appendix F.

4.4.2 Soil Vapor Sampling and Analysis

As a QA/QC measure, an inert tracer gas (helium) was introduced into an above-grade sampling chamber to ensure that the soil vapor and sub-slab vapor sampling points were properly sealed above the target sampling depth, thereby preventing subsurface infiltration of ambient air. Direct readings of less than 10 percent helium in the sampling tube were considered sufficient to verify a tight seal at each sample point.

Each soil vapor point was purged using a MultiRAE meter at a rate less than 0.2 liters per minute (L/min) to evacuate a minimum of three sample tubing volumes prior to sample collection. The purged soil vapor was also monitored for VOCs and the values were recorded. After purging was completed, the soil vapor samples were collected into laboratory-supplied, batch-certified Summa[®] canisters. Soil vapor and sub-slab vapor samples were collected into 2.7-liter Summa[®] canisters that were calibrated for a sampling rate of about 0.0045 L/min for 8 hours of sampling. Soil vapor construction/sampling logs are provided in Appendix F.

Summa[®] canisters were labeled and transported via courier to Alpha in Westborough, Massachusetts, a NYSDOH ELAP-certified laboratory (ELAP ID #57869), under standard chainof-custody protocol. Soil vapor and sub-slab vapor air samples were analyzed for VOCs by USEPA Method TO-15.

4.4.3 Indoor and Ambient Air Sampling and Analysis

Concurrently with sub-slab and soil vapor sampling, three co-located indoor air samples (IA01_100818, IA02_100818, and IA03_100818) and one ambient air sample (AA01_100818) were collected at about 4 to 5 feet above ground (i.e., at breathing height) to evaluate the

potential for soil vapor intrusion to impact indoor air quality and external influences on soil vapor quality.

Ambient and indoor air sampling was conducted in general accordance with the NYSDOH October 2006 Final Guidance for Evaluating Soil Vapor Intrusion in New York. Prior to sample collection, the areas were screened using a MultiRAE meter to identify potential sources of organic vapors that may interfere with sampling. The co-located indoor air samples were collected into laboratory-supplied, batch-certified, 2.7-liter Summa[®] canisters calibrated for a rate of 0.0045 L/min over an 8-hour sampling period. The samples were collected at heights between about 4 and 5 feet above surface grade to represent the breathing zone.

Summa[®] canisters were labeled and transported via courier to Alpha in Westborough, Massachusetts, a NYSDOH ELAP-certified laboratory (ELAP ID #57869), under standard chainof-custody protocol. Indoor air and ambient air samples were analyzed for VOCs by USEPA Method TO-15 and TO-15 SIM.

4.5 Quality Control Sampling

Field blanks, trip blanks, field duplicate samples, and MS/MSD samples were collected and submitted for laboratory analysis for QA/QC purposes. QA/QC samples are detailed in Table 1 and are summarized below:

4.5.1 Soil QA/QC Samples

- Three field duplicate samples
- Three MS/MSD samples
- Three field rinsate blanks
- Seven trip blanks

4.5.2 Groundwater QA/QC Samples

- Two field duplicate samples
- Two MS/MSD samples
- Two field rinsate blanks
- Three trip blanks

4.5.3 Soil Vapor QA/QC Samples

- One field duplicate sample
- One ambient air sample

Field rinsate blanks were collected to determine the effectiveness of the decontamination procedures for the groundwater sampling equipment and the cleanliness of unused neoprene gloves and acetate liners used to collect soil samples. Field rinsate blank samples consisted of deionized, distilled water provided by the laboratory that has passed through the sampling apparatus. Field rinsate blank samples were analyzed for the same list of analytes as the corresponding sampling event and sample matrix.

MS/MSD samples were collected to assess the effect of the sample matrix on the recovery of target compounds or target analytes. MS/MSD samples were collected from the same material as the primary sample by splitting the volume of the homogenized sample collected in the field into three sample containers.

The field duplicates were collected to assess the precision of the analytical methods relative to the sample matrix. The duplicates were collected from the same material as the primary sample by splitting the volume of homogenized sample collected in the field into two sample containers.

The trip blank samples were collected to assess the potential for contamination of the sample containers and samples during the trip from the laboratory, to the field, and back to the laboratory for analysis. Trip blanks contain about 40 milliliters of acidic water (doped with hydrochloric acid) that is sealed by the laboratory when the empty sample containers are shipped to the field, and unsealed and analyzed by the laboratory when the sample shipment is received from the field. The trip blank samples were analyzed for VOCs.

4.6 Data Validation

Analytical data was submitted to a Langan validator for review in accordance with USEPA and NYSDEC validation protocols. Data usability summary reports (DUSR) and the data validator's credentials are provided in Appendix G.

4.6.1 Data Usability Summary Report Preparation

A DUSR was prepared for each delivery group following data validation. The DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain-of-custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. For each of the organic analytical methods, the following was assessed:

- Holding times
- Instrument tuning
- Instrument calibrations
- Blank results
- System monitoring compounds or surrogate recovery compounds (as applicable)

- Internal standard recovery results
- MS/MSD results
- Target compound identification
- Chromatogram quality
- Compound quantization and reported detection limits
- System performance
- Results verification

For each of the inorganic compounds, the following was assessed:

- Holding times
- Calibrations
- Blank results
- Interference check sample
- Laboratory check samples
- Duplicates
- Matrix Spike
- Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) QC
- ICP serial dilutions
- Results verification and reported detection limits

Based on the results of data validation, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

• **NJ** – The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

After data validation was complete, validated data was used to prepare the tables and figures included in this report.

4.7 Field Equipment Decontamination

A monsoon or Wattera pump with dedicated tubing was used to sample each groundwater monitoring well. The groundwater sampling equipment, including interface probe and water quality meter, and submersible pump were cleaned with Alconox and rinsed with deionized water between sampling locations during groundwater sample collection. Decontamination occurred at the sampling locations and all liquids were temporarily contained in 5 gallon buckets. Decontamination wastewater was placed in 55-gallon DOT-approved drums for future off-site disposal at a permitted facility.

4.8 Investigation-Derived Waste Management

Soil cuttings and groundwater investigation-derived wastes (IDW) were containerized in 55gallon, DOT-approved drums. Decontamination and well development/purging fluids were placed in DOT-approved fluid drums with closed tops. All drums were properly labeled, sealed, and waste characterized as necessary. The drums were staged in a secured area onsite pending transport by a licensed waste hauler for disposal at an approved facility.

5.0 FIELD OBSERVATIONS AND ANALYTICAL RESULTS

5.1 Geophysical Investigation Findings

Geophysical anomalies consistent with utilities (i.e., gas, electric, sewer line, and water line) were identified throughout the site. A geophysical anomaly potentially indicative of a UST was identified in the northeast corner of the one-story warehouse building within Lot 8. An associated fill port was identified within the sidewalk adjacent to the anomaly. Two partial basements and anomalies indicative of potential drywells were also identified during the geophysical survey. A copy of the October 2018 Geophysical Engineering Survey Report is included in Appendix B.

5.2 Geology and Hydrogeology

Provided below is a description of the geological and hydrogeological observations made during the RI. A groundwater contour map is provided as Figure 5, and cross-sectional diagrams showing inferred soil profiles are shown on Figure 6. Boring logs are provided in Appendix C.

5.2.1 Historic Fill

The concrete-paved surfaces are underlain by a historic fill layer that extends from surface grade to between about 2 to 8.5 feet bgs. The fill layer was most shallow in the southern portion of the site (SB05 and SB06) and deepest in the northern portion of the site (SB01, SB10 and SB13). The historic fill predominantly consists of brown, medium-grained sand with varying amounts of gravel, silt, brick, coal, metal, clay, slag, glass, ceramics and concrete.

5.2.2 Native Soil Layers

Fill material is underlain by a native brown, fine- to coarse-grained sand layer observed to depths of about 32 to 69 feet bgs (about el 8 and el -25, respectively), with occasional layers of silt ranging in thickness from about 4 inches to 3 feet. In one deep boring advanced to 70 feet bgs (SB05), the sand layer is underlain by an olive clay layer, which was observed to depths of about 59 to 70 feet bgs (about el -16.7 to -27.7, respectively). In a second deep boring advanced in the northern portion of the site (SB13), weathered rock fragments, potentially indicative of weathered bedrock or glacial till were observed between 69 and 72 feet bgs (about el -25 to el -28).

5.2.3 Bedrock

The USGS "Bedrock and Engineering Geologic Maps of Bronx County and Parts of New York and Queens Counties, New York" indicates that the bedrock underlying the site is part of the Hartland Formation. Competent bedrock was not encountered during this RI.

5.2.4 Hydrogeology

Synoptic groundwater level measurements were collected on October 15, 16, and 17, 2018. Depth to groundwater was measured between about 22.76 to 27.77 feet bgs, with corresponding groundwater elevations ranging from about el 16.25 to el 18.02 NAVD88. The groundwater elevation is highest in the northern region of the site and appears to flow south toward the Sunnyside Yards and Newtown Creek. The relative progression of the contours demonstrates a horizontal flow pattern across the site, with a downward vertical gradient toward the south. Groundwater elevations are summarized in Table 3, and a groundwater contour map is presented as Figure 5

5.2.5 Surface Water and Drainage

The northeast portion of the site (Block 372, Lot 21) is vacant and the existing cover includes vegetation which is subject to rainwater infiltration during storm events. Portions of discontinuous concrete were observed in the northern stockyard area of Lot 8 which is also subject to rainwater infiltration during storm events. The remainder of the BCP site is primarily improved with buildings and paved surfaces that are impervious to rainwater. Runoff from the surrounding area typically drains through catch basins into city sewers.

According to the Federal Emergency Management Agency (FEMA) Preliminary Flood Insurance Rate Map (FIRM) dated December 5, 2013 (Map Number 3604970093G), the site is located in Zone X, which is an area designated for 0.2 percent annual chance flood; 1 percent annual chance flood with average depths of less than one foot or with drainage areas less than one square mile; and areas protected by levees from one percent annual chance flood.

5.3 Soil Findings

5.3.1 Soil Boring Field Observations

Petroleum-like impacts, evidenced by odors, staining, and/or sheen were not encountered during this RI. PID readings above background were apparent in 2 of the 13 borings at depths ranging from 2.5 to 26.5 feet bgs, as summarized in the following table.

Soil Boring ID	Maximum PID Reading	Staining/Odors Observed	
SB03	22.0 parts per million (ppm) VOCs at 26 feet bgs	None	
SB04	5.0 ppm VOCs at 2.5 feet bgs	None	

5.3.2 Analytical Results

Forty-five grab soil samples, including three field duplicates, were collected and analyzed for Part 375/TCL VOCs, SVOCs, PCBs, total cyanide, hexavalent and trivalent chromium, and Part

375/TAL metals. In addition, 24 soil samples, including two duplicate samples, were collected from shallow fill material and analyzed for Part 375/TCL pesticides and herbicides. A summary of laboratory detections for soil samples collected during the RI is provided in Table 4A (VOCs and SVOCs), Table 4B (PCBs, pesticides and inorganics) with comparisons to NYSDEC Part 375 UU SCOs, RURR SCOs, and Restricted Protection of Groundwater (PG) SCOs and Table 4C (total and TCLP chromium). Full laboratory reports for the RI are included in Appendix H. Soil sample results that exceed SCOs for samples collected during the RI are shown on Figure 7.

The following contaminants were detected at concentrations exceeding NYSDEC Part 375 UU (normal text), RURR (bolded and underlined text) and/or Restricted Protection of Groundwater (PG) SCOs (red and bolded text):

VOCs

One VOC was detected at a concentration exceeding the UU, and PG SCOs in one soil sample from soil boring SB12 collected at a depth from 0 to 2 feet bgs. The following table provides a summary of VOC that were detected above UU and/or PG SCOs:

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU, RURR, and PG SCOs	Frequency of Detection above SCO
Acetone	0.17 mg/kg in SB12_0-2		UU: 0.05 mg/kg RURR: 100 mg/kg PG: 0.05 mg/kg	1 of 45

SVOCs

Seven polycyclic aromatic hydrocarbons (PAH) were detected at concentrations exceeding the UU, RURR, and/or PG SCOs in four samples from soil borings SB02, SB05, SB09, and SB11 collected at depths ranging from 0 to 2 feet bgs. PAH impacted material is confined within the historic fill. The following table provides a summary of PAHs that were detected above UU, RURR, and/or PG SCOs:

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU, RURR, and PG SCOs	Frequency of Detection above SCO
Benzo(a)anthracene	1.4 mg/kg in SB11_0-1	<u>6.1 mg/kg</u> in SB09_0.5-1.5	UU: 1 mg/kg RURR: 1 mg/kg PG: 1 mg/kg	3 of 45
Benzo(a)pyrene	<u>1.3 mg/kg</u> in SB11_0-1	4.5 mg/kg in SB09_0.5-1.5	UU: 1 mg/kg RURR: 1 mg/kg PG: 22 mg/kg	3 of 45
Benzo(b)fluoranthene	<u>1.1 mg/kg</u> in SB02_0.5-1.5	<u>6.2 mg/kg</u> in SB09_0.5-1.5	UU: 1 mg/kg RURR: 1 mg/kg PG: 1.7 mg/kg	4 of 45
Benzo(k)fluoranthene	0.97 mg/kg in SB05_0-2	1.7 mg/kg in SB09_0.5-1.5	UU: 0.8 mg/kg RURR: 3.9 mg/kg PG: 1.7 mg/kg	2 of 45
Chrysene	1.6 mg/kg in SB11_0-1	5.2 mg/kg in SB09_0.5-1.5	UU: 1 mg/kg RURR: 3.9 mg/kg PG: 1 mg/kg	3 of 45
Dibenzo(a,h)anthracene	<u>0.65 mg/kg</u> in SB09_0.5-1.5		UU: 0.33 mg/kg RURR: 0.33 mg/kg PG: 1,000 mg/kg	1 of 45
Indeno(1,2,3-cd)pyrene	<u>0.91 mg/kg</u> in SB11_0-1	<u>3.2 mg/kg</u> in SB09_0.5-1.5	UU: 0.5 mg/kg RURR: 0.5 mg/kg PG: 8.2 mg/kg	3 of 45

1. Concentrations in boldface and underlined exceed RURR SCOs.

2. Concentrations in boldface and red exceed PG SCOs

3. Concentrations in boldface, underline and red exceed both RURR and PG SCOs

Pesticides

One pesticide (4,4'-DDT) was detected at concentrations exceeding the UU SCO in one sample collected from shallow fill at a depth from 0.5 to 1.5 feet bgs, from boring SB02. No pesticides

were detected above RURR or PG SCOs. The following table provides a summary of the pesticide that was detected above the UU SCO:

Parameter	Minimum Detected Concentration above SCO	ctedDetectedUU, RURR, and PGtrationConcentrationSCOs		Frequency of Detection above SCO
4,4'-DDT		3 mg/kg 2_0.5-1.5	UU: 0.0033 mg/kg RURR: 7.9 mg/kg PG: 136 mg/kg	1 of 45

Herbicides

No herbicides were detected at concentrations exceeding the UU, RRU and/or PG SCOs.

PCBs

No PCBs were detected at concentrations exceeding the UU, RRU and/or PG SCOs.

Inorganics

Six metals were detected at concentrations exceeding the UU, RURR, and/or PG SCOs in samples collected at depths ranging from 0 to 7.5 feet bgs from soil borings SB01, SB02, SB05, SB06, SB09, and SB11, SB12, and SB13. Metal-impacted soil is confined within the historic fill material. The following table provides a summary of metals that were detected above UU, RURR, and/or PG SCOs:

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU, RURR, and PG SCOs	Frequency of Detection above SCO
Hexavalent Chromium	in SB04_0-1 alent Chromium <u>1,800 mg/kg</u>		UU: 1 mg/kg RURR: 110 mg/kg PG: 19 mg/kg	1 of 45
Trivalent Chromium (Chromium III)			UU: 30 mg/kg RURR: 180 mg/kg PG: ~ mg/kg	1 of 45
Copper	71.5 mg/kg in SB04_0-1	265 mg/kg in SB06_1-2	UU: 50 mg/kg RURR: 270 mg/kg PG: 1,720 mg/kg	3 of 45
Lead	Lead 73.8 mg/kg 8,750 mg/ in SB12_0-2 in SB06_0		UU: 63 mg/kg RURR: 400 mg/kg PG: 450 mg/kg	7 of 45
Mercury	0.182 mg/kg in SB01_0.5-1.5	29.9 mg/kg in SB02_0.5-1.5	UU: 0.18 mg/kg RURR: 0.81 mg/kg PG: 0.73 mg/kg	6 of 45
Nickel	38.5 mg/kg in SB04_0-1		UU: 30 mg/kg RURR: 310 mg/kg PG: 130 mg/kg	1 of 45
Zinc	119 mg/kg in SB12_0-2	950 mg/kg in SB06_1-2	UU: 109 mg/kg RURR: 10,000 mg/kg PG: 2,480 mg/kg	6 of 45

1. Concentrations in boldface and underline face exceed RURR SCOs.

2. Concentrations in boldface and red exceed PG SCOs

3. Concentrations in boldface, underline and red exceed both RURR and PG SCOs

4. Concentrations not in bold or red exceed UU SCOs

Hazardous Chromium

Hexavalent and Trivalent Chromium were identified in shallow soil collected from soil boring SB04 at potentially hazardous concentrations. Subsequent TCLP analysis identified chromium above the USEPA RCRA Characteristic Hazardous Waste limit in two samples (SB04_1-2 and SB04_2-3). To further define the extent of chromium impacts at this location, a supplemental delineation investigation was performed by Langan on November 20, 2018. During the hazardous chromium delineation, 31 additional grab soil samples were collected (14 were analyzed) from 1 to 3 feet bgs, 3 to 5 bgs, and 5 to 6 bgs to delineate the extent of hazardous chromium.

Of the 14 samples analyzed, 9 exceeded the USEPA RCRA Characteristic Hazardous Waste criteria. The vertical extent of the hazardous chromium centered on RI boring SB04 extends from

the surface to 8 feet bgs (vertically delineated by sample SB04_8-9), and is horizontally delineated by step-off samples SB04.7_1-3, SB04.5_1-3, and SB04.2_1-3. This area covers a roughly 18-foot by 15-foot region in the northeast part of the 3-story vacant warehouse building.

5.4 Groundwater Findings

5.4.1 Field Observations

Monitoring wells were gauged for non-aqueous phase liquid (NAPL) with an oil-water interface probe. NAPL was not encountered in monitoring wells. PID headspace readings ranged from 0.0 ppm to 4.9 ppm (highest reading in monitoring well MW05) during groundwater sampling. Depth to groundwater was measured between about 22.76 to 27.77 feet bgs, with corresponding groundwater elevations ranging from about el 16.25 to el 18.02. Groundwater generally flows to the south.

5.4.2 Analytical Data

Twelve groundwater samples, including one QA/QC duplicate, were collected and analyzed for Part 375/TCL VOCs, SVOCs, pesticides, herbicides, PCBs, hexavalent and trivalent chromium, total cyanide and Part 375/TAL total and dissolved metals. A summary of the groundwater sample laboratory detections compared to NYSDEC Title 6 NYCRR Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA water (collectively known as NYSDEC SGVs) is presented in Table 5. Groundwater sample locations and results that exceed the NYSDEC SGVs are presented in Figure 8.

The NYSDEC requested that groundwater samples for emerging contaminants, including PFAS and 1,4-dioxane, be collected in response to the Department-wide initiative to understand the presence of these constituents in the environment aross New York State. Three groundwater samples, plus two QA/QC duplicates, were collected and analyzed for PFAS and 1,4-dioxane compounds from monitoring wells MW01, ME05A, and MW07. A summary of the groundwater sample laboratory detections is presented in Table 5.

The following contaminants were detected at concentrations exceeding the NYSDEC SGVs:

VOCs

Groundwater samples collected from MW04, MW06, MW07, MW10 and MW13A contained concentrations of one VOC above NYSDEC SGVs, as shown in the following table:

Parameter	Minimum Detected Concentration above SGVs	Maximum Detected Concentration above SGVs	SGVs	Frequency of Detection above SGVs
Chloroform	9.9 μg/L in MW10_101518	36 µg/L in MW04_101718	7 µg/L	6 of 12

SVOCs

Groundwater samples collected from the MW01, MW05B, MW06, MW07, and MW13A contained concentrations of up to six PAHs above the NYSDEC SGVs, as shown in the following table:

Parameter	Minimum Detected Concentration above SGVs	Maximum Detected Concentration above SGVs	SGVs	Frequency of Detection above SGVs
Benzo(a)anthracene	0.03 μg/L in MW05B_101718 and MW13A_101718	0.06 µg/L in MW01_101718	0.002 µg/L	3 of 12
Benzo(a)pyrene	0.02 µ MW01_101718, MV MW13A_	V05B_101718, and	0.002 µg/L	3 of 12
Benzo(b)fluoranthene	0.01 μg/L in MW06_101618 and GWDUP01_101718	0.04 µg/L in MW01_101718, MW05B_101718, and MW13A_101718	0.002 µg/L	5 of 12
Benzo(k)fluoranthene	MW01_101718, MV	0.02 µg/L in MW01_101718, MW05B_101718, and MW13A_101718		3 of 12
Chrysene	0.03 µg/L in MW05B_101718 and MW13A_101718	0.06 μg/L in MW01_101718	0.002 µg/L	3 of 12
Indeno(1,2,3- cd)pyrene	. –	0.02 μg/L in MW01_101718, MW05B_101718, and MW13A_101718		3 of 12

Pesticides

Pesticides were not detected above the NYSDEC SGVs in any groundwater samples.

Herbicides

Herbicides were not detected above the NYSDEC SGVs in any groundwater samples.

PCBs

PCBs were not detected above the NYSDEC SGVs in any groundwater samples.

Total Metals

Groundwater samples collected from monitoring wells MW01, MW02, MW04, MW05A, MW05B, MW06, MW07, MW10, MW13A and MW13B contained concentrations of one or more of nine total metals that exceeded the NYSDEC SGVs in groundwater samples as shown in the following table:

Parameter	Minimum Detected Concentration above NYSDEC SGVs	Maximum Detected Concentration above NYSDEC SGVs	NYSDEC SGVs	Frequency of Detection above NYSDEC SGVs
Antimony	3.52 µg/L in N	1W07_101718	3 µg/L	1 of 12
Hexavalent Chromium	654 µg/L in M	W04_101718	50 µg/L	1 of 12
Total Chromium	65.25 μg/L in MW05A_101718	1,146 µg/L in MW04_101718	50 µg/L	2 of 12
Iron	732 μg/L in MW013B_101518	37,400 μg/L in MW05A_101718	300 µg/L	8 of 12
Lead	36.97 µg/L in N	/W06_101618	25 µg/L	1 of 12
Magnesium	43,600 μg/L in MW01_101718	81,500 μg/L in MW05A_101718	35,000 µg/L	3 of 12
Manganese	312.5 µg/L in MW05B_101718	1,554 μg/L in MW05A_101718	300 µg/L	4 of 12
Sodium	34,900 μg/L in MW05B_101718	322,000 µg/L in MW01_101718	20,000 µg/L	10 of 12
Thallium	0.52 µg/L in MV	V05A_101718	0.5 µg/L	1 of 12

Dissolved Metals

Groundwater samples collected from monitoring wells MW01, MW02, MW04, MW05A, MW05B, MW06, MW07, MW10, MW13A and MW13B contained concentrations of one or more of five dissolved metals that exceeded the NYSDEC SGVs as shown in the following table:

Parameter	Minimum Detected Concentration above NYSDEC SGVs	Maximum Detected Concentration above NYSDEC SGVs	NYSDEC SGVs	Frequency of Detection above NYSDEC SGVs
Antimony	4.09 µg/L in N	/W07_101718	3 µg/L	1 of 12
Chromium	62.24 µg/L in MW13A_101718	698.6 µg/L in MW04_101718	50 µg/L	2 of 12
Magnesium	36,600 μg/L in MW13B_101518	51,900 μg/L in MW02_101518	35,000 µg/L	4 of 12
Manganese	322.6 µg/L in MW10_101518	817.4µg/L in MW02_101518	300 µg/L	4 of 12
Sodium	35,000 μg/L in MW05B_101718	337,000 μg/L in MW01_101718	20,000 µg/L	10 of 12

Perfluorinated Chemicals (PFCs - 21-Compound List)

Groundwater samples collected from monitoring wells MW01, MW05A, and MW07 were sampled for emerging contaminates per- and polyfluoroalkyl substances and 1,4-dioxane per

NYSDEC's initiative to understand the presence of these constituents in the environment across New York State. There are no NYSDEC TOGS SGVs for these compounds.

Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS) were not detected in any of the groundwater samples above the USEPA health advisory of 70 parts per trillion (ppt). Analytical results are shown in Table 5B.

5.5 Soil Vapor Findings

Four sub-slab vapor samples (including one duplicate), three soil vapor samples, three co-located indoor air samples, and one outdoor ambient air sample were collected and submitted for laboratory analysis for USEPA TO-15 VOCs. In addition, the indoor and ambient air samples were analyzed for USEPA TO-15 SIM analysis. No standard currently exists for soil vapor samples in New York State. Sub-slab soil vapor and indoor air detections of PCE and TCE were compared to the NYSDOH Soil Vapor Decision Matrices. Soil vapor sample results are summarized in Table 6A and sub-slab soil vapor sample results are summarized in Table 6B. The soil vapor sample results are shown on Figure 9, and the laboratory analytical reports can be found in Appendix H.

5.5.1 Soil Vapor Analytical Data

Total VOCs in soil vapor samples ranged from 832 micrograms per cubic meter (µg/m³) in SV01 to 1,100 µg/m³ in SV02. Total VOCs in the outdoor ambient air sample AA01 were detected at 45.8 µg/m³. VOCs detected in soil vapor samples include:

- 1,2,4-2-Hexanone Acetone
 - trimethylbenzene

o-Xylenes

- Carbon Disulfide
- p,m-xylene

n-Hexane

Tetrachloroethene

- Ethylbenzene Isopropanol
- 2-Butanone • n-Heptane
 - Tert-Butyl Alcohol Toluene

PCE concentrations detected in soil vapor ranged from about 7.39 µg/m³ in SV03 to 26.9 µg/m³ in SV02. PCE was detected in the ambient air sample at a concentration of 1.3 µg/m³. PCE's daughter product, TCE, was not detected in soil vapor samples collected. Cis-1,2-dichloroethene and vinyl chloride were not detected in soil vapor samples. Petroleum-related compounds including benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected at concentrations detected in soil vapor ranged from about 35.33 µg/m³ in SV01 to 42.77 µg/m³ in SV02; BTEX compounds were detected in the ambient air sample at a of 7.86 μ g/m³.

5.5.2 Sub-Slab Vapor and Indoor Air Analytical Data

The sub-slab soil vapor samples (SSV01, SSV02, and SSV03) were collected within the existing buildings in Lot 8 in order to evaluate potential soil vapor intrusion. Co-located indoor air samples (IA01, IA02, and IA03) were collected concurrently with the sub-slab vapor samples to assess indoor air quality. The sub-slab soil vapor and co-located indoor air sample results were compared to the NYSDOH Soil Vapor Decision Matrices.

The NYSDOH decision matrices present recommended actions based on the concentrations of 1,1-dichloroethene, 1,1,1-trichloroethane, cis-1,2-dichloroethene, carbon tetrachloride, methylene chloride, TCE, PCE, and vinyl chloride in sub-slab soil vapor and indoor air. The decision matrices recommend a range of activities (e.g., monitor, mitigate) based on the sub-slab/ soil vapor and indoor air sample results. Based on the results of the 2018 RI, three of the eight VOCs that can be evaluated using the NYSDOH decision matrices were detected in sub-slab vapor samples and include PCE, TCE, and carbon tetrachloride.

PCE was detected in the sub-slab soil vapor sample SSV01 at a concentration of 64.6 μ g/m³ and in the co-located indoor air sample (IA01) at a concentration of 1.44 μ g/m³; in the sub-slab soil vapor sample SSV02 at a concentration of 8,270 μ g/m³ and in the co-located indoor air sample (IA02) at a concentration of 6.66 μ g/m³; and in the sub-slab soil vapor sample SSV03 at a concentration of 3,420 μ g/m³ (2,860 μ g/m³ in the duplicate sample) and in the co-located indoor air sample (IA03) at a concentration of 1.47 μ g/m³. Based on the detected concentrations of PCE, the NYSDOH decision matrix (Matrix B) recommendation is to "Mitigate".

TCE was detected in the sub-slab soil vapor sample SSV03 and duplicate sample at a concentration of 21.8 and 22.3 μ g/m³, respectively, and in the co-located indoor air sample (IA03) at a concentration of 0.156 μ g/m³. Based on the detected concentrations of TCE the NYSDOH decision matrix (Matrix A) recommendation is "No Further Action".

Carbon tetrachloride was detected in the sub-slab soil vapor sample duplicate of SSV03 at a concentration of 11.3 μ g/m³, and in the co-located indoor air sample (IA03) at a concentration of 0.472 μ g/m³. Based on the detected concentrations of carbon tetrachloride the NYSDOH decision matrix (Matrix A) recommendation is "Monitor".

5.6 Quality Control Results

Duplicates, MS/MSDs, field rinsate blanks, and trip blanks were collected during the RI and are detailed in Table 1. The duplicates, field blanks, and MS/MSD sample pairs for soil and groundwater were collected at a frequency of 1 per 20 primary samples. Quality control sample results were evaluated during data validation, and the laboratory analytical reports are provided in Appendix H.

5.7 Data Usability

Category B laboratory reports for soil, groundwater, soil vapor, and air samples were provided by Alpha and were forwarded to Langan's data validator. DUSRs are provided in Appendix G. The results of the data validation review are summarized below.

The data were determined to be acceptable. Completeness, defined as the percentage of analytical results that are judged to be valid, is 100 percent. No major deficiencies were identified. All data is considered useable as qualified.

5.8 Evaluation of Areas of Concern

This section discusses the results of the RI with respect to the AOCs described in detail in Section 3.4. AOC locations are shown on Figure 4.

5.8.1 AOC 1: Historic Fill

Historic fill material located throughout the site contains VOCs, PAHs, metals, and pesticides at concentrations above the Part 375 UU, RRU, and/or PG SCOs. The historic fill layer, which extends to depths ranging from about 2 to 8.5 feet bgs, was most shallow in the southern part of the site (SB05 and SB06) and deepest in the northern part of the site (SB01, SB10 and SB13). The historic fill predominantly consists of brown, medium-grained sand with varying amounts of gravel, silt, brick, coal, metal, clay, slag, glass, ceramics and concrete. The historic fill layer was encountered across the site. A summary of the analytical results from historic fill for AOC 1 are summarized as follows:

AOC 1 - Soil

- Acetone was detected above the Part 375 UU and RURR SCOs in historic fill in SB12. Acetone is a common laboratory contaminant (although not detected in the batch blank) and is likely not representative of soil conditions.
- Seven PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were detected above the Part 375 UU, RURR and/or PG SCOs in samples collected from the historic fill layer in soil borings SB02, SB05, SB09, and SB11.
- Metals, including chromium, copper, lead, mercury, nickel, and zinc were detected above the UU, RURR and/or PG SCOs in historic fill samples collected throughout the site.
- Chromium was detected above the RCRA Maximum Concentration of Contaminants for the Toxicity Characteristic. The area was horizontally and vertically delineated to about 8 feet bgs in an approximate 18-foot by 15-foot area centered on SB04/SB04A.
- One pesticide, 4,4'-DDT, was detected above UU SCOs in historic fill in soil boring SB02.
- Total PCBs and herbicides were not detected above UU SCOs in soil samples collected from historic fill.

AOC 1 - Groundwater

- Six PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene) were detected above the SGVs in groundwater samples.
- Metals (including antimony, chromium, iron, lead, magnesium, sodium and thallium) were
 detected at concentrations above the NYSDEC SGVs in groundwater samples. Dissolved
 iron, lead and thallium were not detected in groundwater samples; therefore, the
 detections in unfiltered samples are likely the result of suspended solids in groundwater
 derived from historic fill. Antimony, magnesium, manganese, and sodium were detected
 in dissolved groundwater samples above SGVs and are characteristic of naturallyoccurring groundwater conditions. Dissolved chromium was detected at concentrations
 greater than the SGV. Dissolved chromium is not typically found in historic fill and is most
 likely attributed to historic site use.

AOC 1 – Soil Vapor

Historic fill does not appear to have impacted soil vapor.

AOC 1 - Conclusions

Historic fill, which is ubiquitous across the site footprint, was encountered to depths ranging from 2 to 8.5 feet bgs. VOCs, SVOCs, metals, and pesticides were detected at concentrations above the Part 375 UU, PG and/or RURR SCOs in samples of historic fill, with the deepest exceedance identified at 7.5 feet bgs. Concentrations of PAHs and metals are likely associated with the general quality of the fill placed at the site or historical industrial uses of the site. The origin of chromium in historic fill material is associated with historical plastic manufacturing.

Similar compounds detected in soil were also identified in groundwater at concentrations above NYSDEC SGVs. SVOC and metals concentrations detected in groundwater are likely related to entrained sediments that may be related to on-site historic fill. Magnesium, manganese, and sodium are regionally present in groundwater throughout New York City. The analytical data indicate that the contaminants associated with historic fill have not impacted soil vapor.

5.8.2 AOC 2: Historical Site Use

Releases of petroleum products, solvents, and/or other hazardous materials associated with plastics manufacturing during the 50 years of on-site operations may have adversely affected soil, groundwater and/or soil vapor. PCE and TCE impacted soil vapor is discussed in AOC 4. A summary of the findings for AOC 2 is provided below:

• Petroleum-related VOCs were not detected at concentrations exceeding UU SCOs. Petroleum impacts, including PID readings above background, odors, or staining, were not encountered during the RI.

- PAHs and metals, with the exception of chromium, were detected at concentrations exceeding the UU, RURR and/or PG SCOs; but at concentrations generally more representative of historic fill material than at concentrations representative of a release associated with historical operations.
- Chromium was detected above the RCRA Maximum Concentration of Contaminants for the Toxicity Characteristic. The area was horizontally and vertically delineated to a depth of 8 feet bgs in an approximate 18-foot by 15-foot area centered on SB04/ SB04A.
- Total and dissolved chromium were detected at a concentration (maximum of 698.6 µg/L dissolved chromium) exceeding the NYSDEC SGV in groundwater samples collected from MW-4. Total lead was detected at a concentration (maximum of 36.97 µg/L total lead) exceeding its NYSDEC SGVs in groundwater samples collected from MW-4, however was not detected in the dissolved metals analysis.
- One VOC, chloroform, was identified in six monitoring wells at concentrations above the NYSDEC SGVs. Six PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene) were detected above the SGVs in groundwater samples. Concentrations of dissolved metals including antimony, chromium, magnesium, manganese, and sodium above the NYSDEC SGVs were identified. The source of chloroform in groundwater is likely from the interaction of chlorinated potable water with organic material in soil and is not associated with historical use of the site.
- Emerging contaminants (including PFOA and PFOS) were not detected in groundwater samples above the USEPA health advisory.

AOC 2 Conclusions

Concentrations of several PAHs and metals are likely associated with the general quality of the historic fill material. Chromium-impacted soil and groundwater may be associated with chrome plating related to the historical use of the site as a plastics manufacturer. Chloroform detected above NYSDEC SGVs is typically associated with the breakdown of chlorinated drinking water. Chloroform and PCE were detected in soil samples collected from the former plastics manufacturing warehouses on site and the former stock yard, but at concentrations below the UU and/ or PG SCOs. A source of VOCs associated with historical use of the site was not identified in soil or groundwater. The source of PCE in soil vapor is either an unidentified site source associated with historical site us as a plastics manufacturer or an off-site source.

5.8.3 AOC 3: Historical and Suspect Petroleum Storage on Site

Historical records indicate one 550-gallon UST located in the sidewalk adjoining the site along 30th Street was installed in 1941 and closed-in-place on July 7, 2000. According to Sanborn Fire Insurance Maps, a 10,000-gallon tank was also depicted at the site from 1947 to 1950 in the east-

central part of the site; however, the tank was not listed on any regulatory records. A summary of the analytical results and observations associated with AOC 3 are summarized as follows:

AOC 3 – Geophysical Survey

A geophysical anomaly potentially indicative of a UST was identified in the northeast corner of the one-story warehouse building within Lot 8. An associated fill port was identified on the sidewalk adjacent to the anomaly.

AOC 3 - Soil

No petroleum-related VOCs were detected at concentrations exceeding UU SCOs. No petroleum impacts, as evidenced by elevated PID readings, odors, or staining, were apparent during the RI. PID readings above background were measured in 2 of the 13 borings at depths ranging from 2.5 to 26.5 feet bgs (5.0 ppm VOCs and 22.0 ppm VOCs, respectively).

AOC 3 - Groundwater

No petroleum-related VOCs or SVOCs were detected at concentrations exceeding NYSDEC SGVs. Free product was not detected in monitoring wells during the RI, and petroleum-like odors were not observed in purged groundwater or during collection of headspace readings. PID headspace readings of the monitoring wells ranged from 0.0 ppm to 4.9 ppm (highest reading in monitoring well MW05) during gauging activities.

AOC 3 - Soil Vapor

BTEX concentrations detected in sub-slab soil vapor ranged from 8.06 μ g/m³ in SSV03 to 21 μ g/m³ in SSV01 compared to co-located indoor air concentrations of 8.27 μ g/m³ (IA03) to 10.44 μ g/m³ (IA01), respectively.

AOC 3 Conclusions

Petroleum-related contamination was not observed in soil, groundwater or soil vapor samples at the site. At least one of the former petroleum storage tanks remain on site and must be decommissioned and registered in accordance with NYSDEC PBS regulations. Evidence of a petroleum release associated with AOC 3 was not identified.

5.9.4 AOC 4: PCE and TCE Impacted Soil Vapor

During the 2017 Limited Subsurface Investigation by Hydro Tech, PCE and TCE were detected in soil vapor and sub-slab vapor samples throughout the site. A summary of the findings for AOC 4 is provided below:

• PCE concentrations detected in soil vapor ranged from about 7.39 μ g/m³ in SV03 to 26.9 μ g/m³ in SV02. PCE was detected in the ambient air sample at a concentration of 1.3 μ g/m³.

PCE was detected in the sub-slab soil vapor samples at concentrations ranging from 64.6 μg/m³ in SSV01 to 8,270 μg/m³ in SSV02. PCE's daughter product, TCE, was detected in sub-slab soil vapor at concentrations ranging from 21.8 μg/m³ in SSV03 to 22.3 μg/m³ in the duplicate sample of SSV03. Carbon tetrachloride was also detected in the sub-slab soil vapor sample duplicate of SSV03 at a concentration of 11.3 μg/m³.

AOC 4 Conclusions

A source of PCE was not identified. The elevated PCE concentrations in sub-slab soil vapor are either attributed to an off-site source (e.g., auto repair facilities and dry cleaners) or an unidentified site source associated with historical site use. Based on a comparison of PCE concentrations detected in indoor air and sub-slab vapor to NYSDOH decision matrices, mitigation is recommended.

5.8.5 AOC 5: Historical Use of Adjoining Properties

Auto repair facilities, gasoline filling stations, dry cleaners, machine and plastics manufacturing facilities occupied the adjoining properties between 1930 and 2010. COCs associated with AOC 5 include petroleum compounds and chlorinated solvents. A summary of the findings for AOC 5 is provided below:

- PCE was detected in each of the three the soil vapor samples collected in the northwest and northeast regions of the site. PCE concentrations detected in soil vapor ranged from about 7.39 μg/m³ in SV03 to 26.9 μg/m³ in SV02. PCE was detected in the ambient air sample at a concentration of 1.3 μg/m³.
- PCE was detected in the sub-slab soil vapor samples at concentrations ranging from 64.6 µg/m3 in SSV01 to 8,270 µg/m³ in SSV02 PCE's daughter product, TCE, was detected in sub-slab soil vapor at concentrations ranging from 21.8 µg/m³ in SSV03 to 22.3 µg/m³ in the duplicate sample of SSV03. Carbon tetrachloride was also detected in the sub-slab soil vapor sample duplicate of SSV03 at a concentration of 11.3 µg/m³.
- PCE was detected in soil vapor samples collected from the northern part of the site during the September to October 2018 RI. PCE and TCE were detected in sub-slab soil vapor samples collected throughout the southern part of the site.

AOC 5 Conclusions

A source of PCE in soil vapor was not identified. In addition, TCE was not detected in the three soil vapor samples (SV01, SV02, and SV03) collected in the northern portion of the site. Potential off-site sources include historical use of up- and cross-gradient properties, including machine manufacturing (Block 371, Lots 31 and 32), dry cleaning (Block 371, Lot 33), and auto repair (Block

372, Lot 23). Because AOCs 4 and 5 overlap and are essentially identical, references to AOC 5 will be eliminated and will be referred to as AOC 4 when evaluating the site remedy.

6.0 QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for both current and future site and off-site conditions, in accordance with the May 2010 NYSDEC Final DER-10 Technical Guidance for Site Investigation and Remediation. The assessment includes an evaluation of potential sources and migration pathways of site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, there was no need to prepare an FWRIA for the site.

6.1 Current Conditions

The 26,978-square-foot (0.61 acres) site is developed with a three-story warehouse building with multiple partial cellar levels in the southern portion of Lot 8 (37-11 30th Street), a stockyard/storage area in the northern portion of Lot 8 and a vacant land on Lot 21 (30-14 37th Avenue). The warehouse building on Lot 8 is vacant and was most recently occupied by a lighting, audio, and production rental and warehousing company. Lot 21 is vacant and was most recently developed a two-story single-family residence. The site is situated on the northwest corner of the block bound by 37th Avenue to the north, 31st Street to the east, 38th Avenue to the south, and 30th Street to the west. The elevated N and Q subway tracks run north-south above 31st Street, which are about 100 feet east of the proposed BCP property. Land use within a half mile of the site is urbanized and characterized by manufacturing and mixed-use buildings, residences, schools, and major transportation and infrastructure including underground utility lines, storm drains, and sewers.

6.2 **Proposed Conditions**

A new seven-story, mixed-use residential, commercial, and light manufacturing building will be constructed with a footprint of about 26,978 square feet. The new development will include one full cellar level and about 12,500 square feet of commercial/ retail areas, about 10,000 square feet of light manufacturing areas, about 2,500 square feet of parking, and about 1,800 square feet of residential amenity space on the first floor. The second through seventh floors of the new development will be occupied by 198 residential units, thirty percent of which will be designated for affordable housing.

6.3 Summary of Environmental Conditions

AOCs include historic fill, historical site use, historical and suspect petroleum storage on site, and PCE and TCE impacted soil vapor. Petroleum-related contamination was not identified in soil, groundwater or soil vapor samples; however, geophysical anomalies indicative of at least one

UST were identified. COCs associated with the AOCs include VOCs, SVOCs, pesticides, and metals.

VOCs (acetone only), SVOCs, metals and pesticides were detected at concentrations above the Part 375 UU, RURR and/or PG SCOs in samples collected from historic fill. Chromium associated with historical site use as a plastic manufacturing facility was detected above the RCRA Maximum Concentration of Contaminants for the Toxicity Characteristic within historic fill material. Langan performed a supplemental hazardous chromium delineation on November 20, 2018 and the area was horizontally and vertically delineated to a depth of 8 feet bgs centered on SB04/ SB04A. Concentrations of several PAHs and metals, with the exception of chromium, were detected at concentrations that are typical of fill material in New York City.

Chloroform was identified in six monitoring wells at concentrations above the NYSDEC SGVs. Chloroform is a water disinfection byproduct typically associated with chlorinated drinking water. PCE was detected, but at a concentrations below the NYSDEC SGVs. The source of SVOCs and metals (with the exception of chloroform) detected in groundwater are is historic fill. Chromium in groundwater is associated with historical site use as a plastics manufacturing facility. Emerging contaminants (including PFOA and PFOS) were not detected in groundwater samples above the USEPA health advisory.

PCE was detected in three soil vapor samples collected in the northern part of the site. Elevated concentrations of PCE were detected in sub-slab soil vapor samples collected in the central and southern part of the site. A site source of PCE was not identified; the source of PCE in soil vapor is either an unidentified site source or an off-site source. TCE was not detected in the three soil vapor samples (SV01, SV02, and SV03) collected in the northern portion of the site. Based on a comparison of carbon tetrachloride, PCE and TCE concentrations detected in indoor air and sub-slab vapor to NYSDOH decision matrices, no further action is recommended for TCE, monitoring is recommended for carbon tetrachloride, and mitigation is recommended for PCE.

6.4 Conceptual Site Model

A conceptual site model (CSM) was developed based on the findings of the RI and previous investigations to produce a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways.

6.4.1 Potential Sources of Contamination

Potential sources of contamination have been identified and include historic fill, historic site usage, and possible off-site sources.

Chromium detected in soil and groundwater is potentially related to chrome plating associated with the former use of the site as a plastic manufacturer.

Historic fill material encountered beneath surface cover to depths ranging from about 2 to 8.5 feet bgs originated from unidentified source areas and was placed as backfill at an unknown time, prior to the development of the current on-site buildings. SVOCs and metals detected at concentrations above the Part 375 UU, PG and RURR SCOs, with the exception of chromium, is related to the nature of the historic fill.

CVOCs were detected in soil vapor; however, the site investigation found no on-site sources of chlorinated VOCs in soil or groundwater. CVOC concentrations in sub-slab/soil vapor originate from an unidentified site source or an off-site source.

6.4.2 Exposure Media

Impacted media include soil, groundwater, and soil vapor. Analytical data suggests that historic fill contains SVOCs, metals and pesticides up to about 7.5 feet bgs in exceedance of UU SCOs. Historic fill-related metals, including hazardous chromium (central-east portion of the site only) were detected across the site. PAHs were identified in historic fill material in the northeast corner of the site. Groundwater was observed at depths ranging from 22.76 to 27.77 feet bgs, and impacts include VOCs, SVOCs, and metals. Soil vapor is impacted with CVOCs including PCE and TCE (limited to sub-slab soil vapor samples).

6.4.3 Receptor Populations

The site is currently vacant and secured with locked roll-up gates and/or construction fencing, with receptors restricted to authorized personnel. Under future conditions, human receptors may include construction and remediation workers, authorized guests visiting the site, and the public adjacent to the site, as well as potential future building occupants.

6.5 Potential Exposure Pathways – On-Site

6.5.1 Current Conditions

Human exposure to contaminated soil is limited as impermeable building structures and a concrete slab is present throughout the existing building on Lot 8, and the majority of the open stockyard in the northern portion of Lot 8. In places where no building slab exists or may be compromised (i.e. within Lot 21), human exposure is limited to site owners and authorized visitors. Access to the site is restricted by wooden construction fences and/or locked gates;

therefore, human exposure to contaminated soil is limited. The potential pathway is through dermal absorption, inhalation and ingestion.

Groundwater in this area of New York City is not used as a potable water source. There is a potential exposure pathway during groundwater sampling associated with site investigation. The potential pathway is through dermal absorption, inhalation and ingestion.

Soil vapor is impacted by VOCs and CVOCs. There is a potential exposure pathway during subslab soil vapor sampling associated with investigation and intrusion through potential cracks in the building's slabs. The potential pathway is through inhalation. The sub-slab soil vapor analytical results for the existing on-site building in Lot 8 suggest that this pathway may exist, as the detected PCE concentrations categorized by the NYSDOH Guidance Matrix 2 recommend mitigation. The building is currently vacant and is only accessible to the owners and authorized visitors.

6.5.2 Construction/Remediation Conditions

Construction and remediation may result in potential exposures to site contaminants in the absence of a Health and Safety Plan (HASP) and a Community Air Monitoring Plan (CAMP). Construction and remedial activities will likely include demolition, excavation and off-site disposal of impacted soil, and construction of foundation components. In the absence of a HASP and CAMP, this scenario presents the potential for exposure of soil contaminants to construction and remediation workers via dermal absorption, ingestion, and inhalation of vapors and particulate matter. This exposure pathway will be marginalized through the implementation of the HASP, CAMP, and vapor and dust suppression techniques.

6.5.3 Proposed Future Conditions

Currently, the contemplated project includes a mixed-use residential, commercial, and light manufacturing development with one full cellar level. New development will incorporate a cover system across the site and vapor mitigation measures. These measures will prevent human exposure to impacted soil and groundwater and potential soil vapor intrusion.

There is no pathway for ingesting groundwater COCs, since the site and surrounding areas obtain their drinking water supply from surface water reservoirs located upstate and not from groundwater. Future conditions will likely have a deed restriction on site and groundwater use to prevent exposure to residual contamination.

As necessary, institutional controls will require maintenance of engineering controls and will serve to further mitigate exposure under future conditions.

6.6 **Potential Exposure Pathways – Off-Site**

Soil vapor may migrate off-site vertically through the subsurface and dissipate and dilute with ambient air in instances where the vacant Lot 21 surface is compromised or during site construction/remediation.

The potential off-site migration of site soil contaminants is not expected to result in a complete exposure pathway for current, construction and remediation, or future conditions for the following reasons:

- The site is located in an urban area and predominantly covered with continuous relatively impervious surface covering (i.e. building foundations and concrete paving)
- During site redevelopment remediation and construction, the following protective measures will be implemented:
 - A site-specific HASP including a CAMP will be implemented to protect on-site personnel and to monitor the perimeter of the site to mitigate off-site migration of particulates and VOCs during construction.
 - Air monitoring will be conducted for particulates (i.e., dust) and VOCs during intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit potential for off-site migration of soil and vapors.
 - Vehicle tires and undercarriages will be washed as necessary prior to leaving the site to prevent tracking material off-site.
 - A soil erosion/sediment control plan will be implemented during construction to control off-site migration of soil.

6.7 Evaluation of Human Health Exposure

Based upon the CSM and the review of environmental data, partial on-site exposure pathways appear to be present under current conditions, and in the absence of institutional and engineering controls, complete on-site exposure pathways could potentially exist in construction/remediation and future conditions.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population.

6.7.1 Current Conditions

Contaminant sources include historic fill with elevated levels of SVOCs, metals, and pesticides; PAH and metals impacted soil and groundwater; and CVOC-impacted soil vapor.

Contaminant release and transport mechanisms include contaminated soil transported as dust (dermal, ingestion, inhalation), and existing soil vapor contaminants (inhalation). Under current conditions, the likelihood of human exposure is limited, as 1) Site access is restricted to employees, ownership and authorized visitors; and 2) impermeable concrete surfaces and building foundations cover the majority of the site.

6.7.2 Construction/Remediation Activities

During development and remediation, the contaminant sources are the same as for current conditions. Points of exposure include disturbed and exposed soil during excavation, dust and organic vapors generated during excavation, and contaminated groundwater that will be encountered during excavation and/or dewatering operations. Routes of exposure include ingestion and dermal absorption of contaminated soil and groundwater, inhalation of organic vapors arising from contaminated soil and groundwater, and inhalation of dust arising from contaminated soil. The receptor population includes construction and remediation workers and, to a lesser extent, the public adjacent to the site.

The potential for completed exposure pathways is present since all five elements exist; however, the risk will be minimized by the implementation of appropriate health and safety measures, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, cleaning truck undercarriages before they leave the site to prevent off-site soil tracking, maintaining site security, and wearing the appropriate personal protective equipment (PPE).

6.7.3 Proposed Future Conditions

For the proposed future conditions, residual contaminants may remain on-site, depending on the selected remedy, and would, to a lesser extent, include those listed under current conditions. If institutional and/or engineering controls are not implemented, points of exposure include potential cracks in the foundation or lower-level slab of the proposed development, and exposure during any future soil-disturbing activities. Routes of exposure would be limited to inhalation of vapors entering the buildings. The receptor population includes potential building tenants and/or employees, visitors and maintenance workers. The possible routes of exposure can be avoided or mitigated by the installation of engineering controls, such as soil vapor mitigation measures and/or a site capping system, and the implementation of institutional controls, such as a Site Management Plan (SMP).

6.7.4 Human Health Exposure Assessment Conclusions

1. Under current conditions, there is a marginal risk for exposure. The primary exposure pathways are dermal contact, ingestion and inhalation of soil, soil vapor, or groundwater

by authorized site visitors in instances where the integrity of the impermeable site cover is compromised. The exposure risks can be avoided or minimized by following the appropriate HASP and vapor and dust suppression measures, and by implementing a CAMP during intrusive activities.

- 2. In the absence of institutional and engineering controls, there is a moderate risk of exposure during the construction and remediation activities. The primary exposure pathways are:
 - a. Dermal contact, ingestion and inhalation of contaminated soil, groundwater or soil vapor by construction workers.
 - b. Dermal contact, ingestion and inhalation of soil (dust) and inhalation of soil vapor by the community in the vicinity of the site.

These can be avoided or minimized by performing community air monitoring and by following the appropriate health and safety, vapor and dust suppression, and site security measures outlined in a site-specific HASP.

- 3. The existence of a complete exposure pathway for site contaminants to human receptors under future conditions is unlikely, as contaminant sources will likely be removed during site development, and if any residual soil remains, the impermeable foundation cover would serve as a cap. Regional groundwater is not used as a potable water source in New York City, so exposure to regional groundwater contaminants is unlikely. The potential pathway for soil vapor intrusion into the buildings would be addressed through the use of soil vapor mitigation measures (e.g., vapor barrier, sub-membrane depressurization system, or ventilated parking garage), thereby minimizing the risk of exposure to contaminated sub-slab soil vapor.
- 4. It is unlikely that a complete exposure pathway exists for the migration of site contaminants to off-site human receptors for current, construction phase, or future conditions. Monitoring and control measures would be used during investigation and construction to prevent completion of this pathway. Under future conditions, the site will be remediated and, if necessary, engineering controls may be implemented (e.g. site-wide cap and a waterproofing/ vapor barrier) to prevent completion of this pathway.

7.0 NATURE AND EXTENT OF CONTAMINATION

This section evaluates the nature and extent of soil, groundwater and soil vapor contamination. The nature and extent of the contamination is derived from a combination of field observations and analytical data that were discussed in Section 5.0, and incorporates field observations and analytical data from the September to October 2018 RI.

7.1 Soil Contamination

Contaminants related to historic fill material include SVOCs, pesticides, and metals. Historic fill is present across the site to depths ranging from about 2 to 8.5 feet bgs. Four soil samples collected from the historic fill contained concentrations of SVOCs (including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) above the UU, RURR, and/or PG SCOs. Nine soil samples, predominantly in the historic fill layer up to 7.5 feet bgs, contained concentrations of metals (including copper, chromium, lead, mercury, nickel, and zinc) above the UU, RURR, and/or PG SCOs. One pesticide, 4,4'-DDT, was detected in one fill sample in the northern portion of Lot 21 above the UU SCO.

Hexavalent and trivalent chromium were identified in soil from SB04 at potentially hazardous concentrations. Subsequent TCLP analysis identified chromium above the USEPA RCRA characteristics hazardous waste limit in two samples (SB04_1-2 and SB04_2-3). The extent of hazardous chromium was delineated and determined to extend to a depth of 8 feet bgs over a roughly 18-foot by 15-foot area in the northeast part of the 3-story vacant warehouse building. The source of chromium-impacted soil is historical site use as a plastics manufacturer.

7.2 Groundwater Contamination

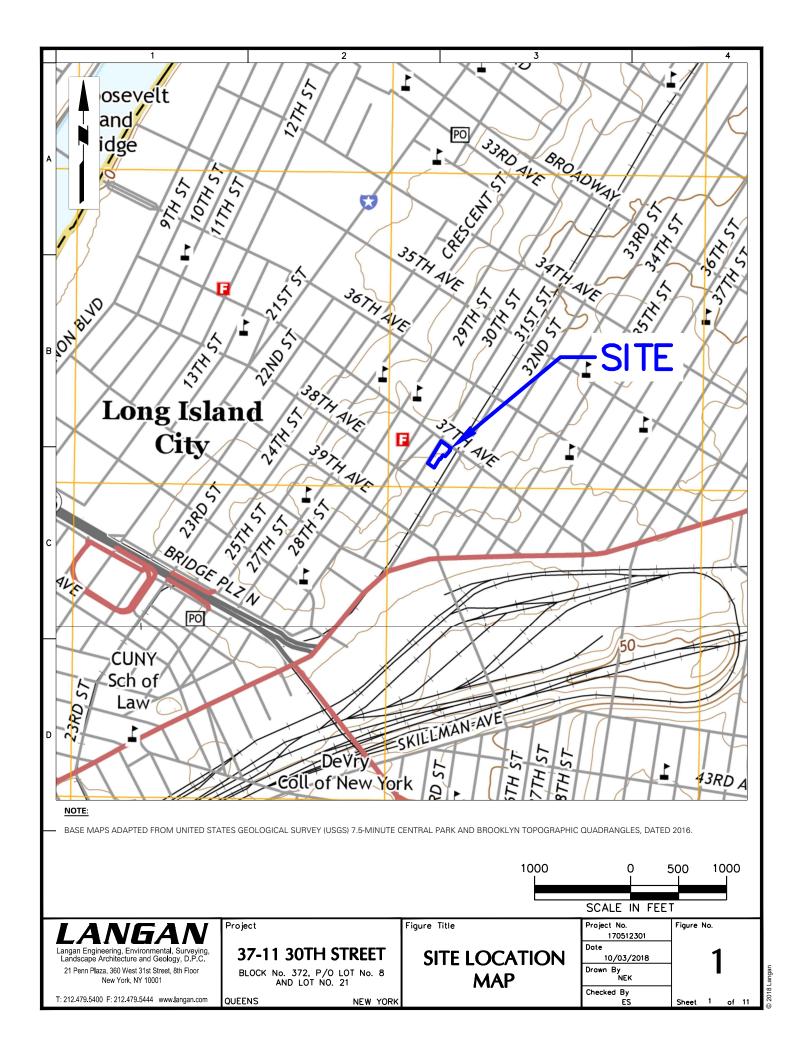
Evaluation of the groundwater analytical results identified VOCs, SVOCs, chromium, and naturally occurring metals above applicable regulatory standards. Total and hexavalent chromium were detected at concentrations above SGVs and are related to historical site use as a plastics manufacturer. The source of SVOC and other metals concentrations detected in groundwater is historic fill material, and not indicative of a release associated with historical site use. Antimony, magnesium, manganese, and sodium are also regionally present in groundwater throughout New York City. Chloroform, which is a disinfection byproduct associated with chlorinated drinking water, was also detected at concentrations above the NYSDEC SGVs in six groundwater samples. PCE was detected at a concentrations below the NYSDEC SGVs. A site source of PCE was not identified.

7.3 Soil Vapor Contamination

Total VOCs in soil vapor samples ranged from 832 μ g/m³ in SV01 to 1,100 μ g/m³ in SV02. Total VOCs in the outdoor ambient air sample AA01 were detected at 45.8 μ g/m³. PCE was detected

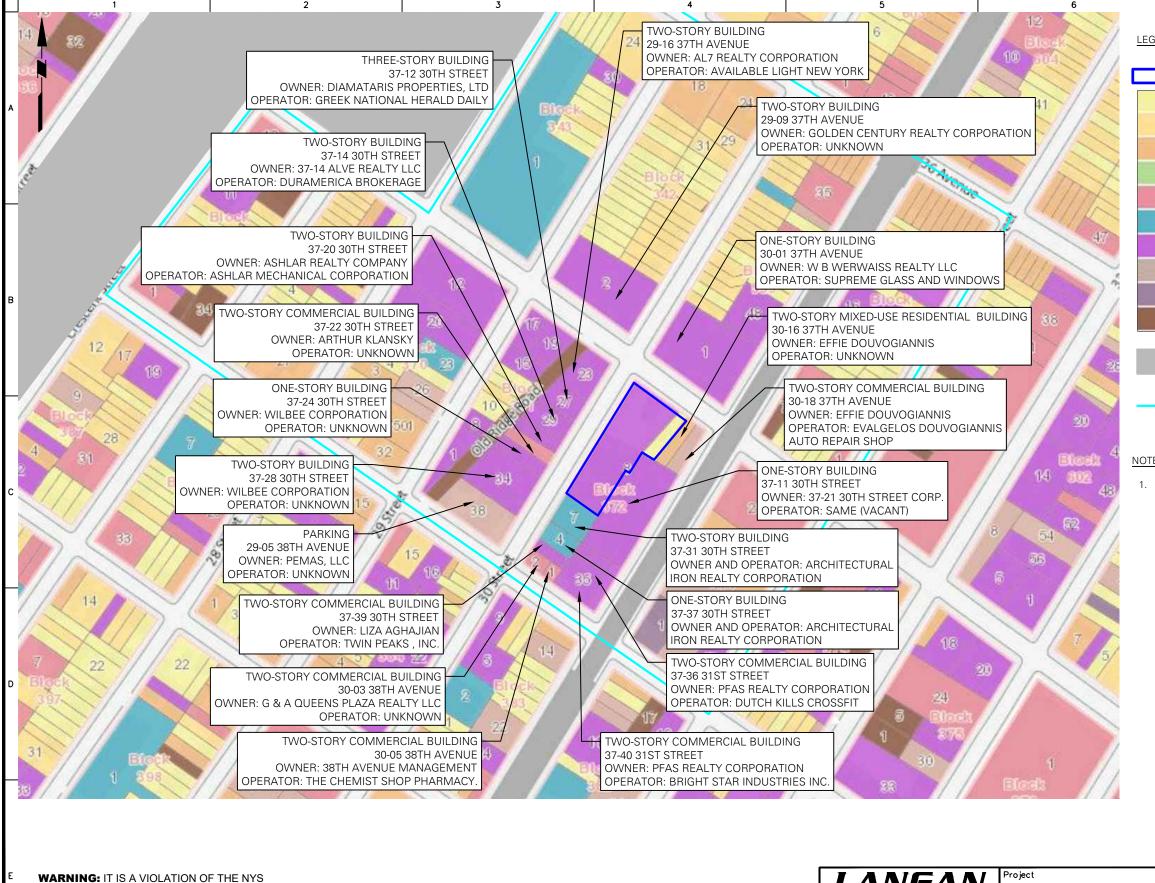
at concentrations ranging from 7.39 μ g/m³ in SV03 to 26.9 μ g/m³ in SV02 (PCE concentration in ambient air was 1.3 μ g/m³). PCE was detected in the sub-slab soil vapor samples at concentrations ranging from 64.6 μ g/m³ in SSV01 to 8,270 μ g/m³ in SSV02. A comparison of the sub-slab soil vapor and indoor air analytical data to the NYSDOH Decision Matrix (Matrix B) indicates that mitigation is recommended for PCE.

8.0 CONCLUSIONS


- 1. <u>Stratigraphy</u>: The site stratigraphy consists of a historic fill layer beneath concrete-paved surfaces that is predominately brown, medium-grained sand with varying amounts of gravel, silt, brick, coal, metal, clay, slag, glass, ceramics and concrete to depths ranging from 2 to 8.5 feet bgs. Fill material was underlain by a native brown fine- to coarse-grained sand layer observed to depths of about 32 to 69 feet bgs (about el 8 and el -25, respectively), with occasional layers of silt. In one deep boring advanced to 70 feet bgs (SB05), the sand layer is underlain by an olive clay layer, which was observed to depths of about 59 to 70 feet bgs (about el -16.7 to -27.7, respectively). In a second deep boring advanced in the northern portion of the site (SB13), weathered rock fragments, potentially indicative of weathered bedrock or glacial till were observed between 69 and 72 feet bgs (about el -25 to el -28). Continental glaciation at the end of the Pleistocene and beginning of the Holocene epochs likely caused this distinctive stratigraphy identified beneath the fill layer. Melting of the Wisconsin Glacier contributed glacial outwash deposits to the region. Bedrock was not encountered in any of the soil borings.
- <u>Hydrogeology</u>: Depth to groundwater was measured between about 22.76 to 27.77 feet bgs, with corresponding groundwater elevations ranging from about el 16.25 to el 18.02. The groundwater elevation is highest in the northern region of the site and appears to flow south toward Sunnyside Yards and Newtown Creek. The relative progression of the contours demonstrates a horizontal flow pattern across the site, with a downward vertical gradient toward the south.
- Historic Fill: Fill material was identified below surface cover to depths ranging from 2 to 8.5 feet bgs. Contaminants related to historic fill material include SVOCs, metals, and pesticides which were detected at concentrations above UU, RURR and/or PG SCOs within this layer. SVOCs and dissolved metals potentially attributed to historic fill were also identified in groundwater at concentrations above the SGVs.
- 4. <u>Hazardous Chromium in Historic Fill:</u> Chromium was detected above the RCRA Maximum Concentration of Contaminants for the Toxicity Characteristic in an 18-foot by 15-foot area of shallow fill (up to 8 feet) centered on boring SB04. In addition, groundwater beneath this location contained hexavalent and total chromium at concentrations above SGVs. Hazardous chromium and chromium impacts to groundwater may be associated with chrome plating related to the historical use of the site as a plastics manufacturer.
- <u>CVOC-Impacted Soil Vapor</u>: PCE was detected in soil vapor and sub-slab vapor samples collected across the site. Based on a comparison of PCE concentrations in sub-slab vapor and indoor air to the NYSDOH Decision Matrices, vapor mitigation is recommended for the future development. A site source of PCE was not identified.

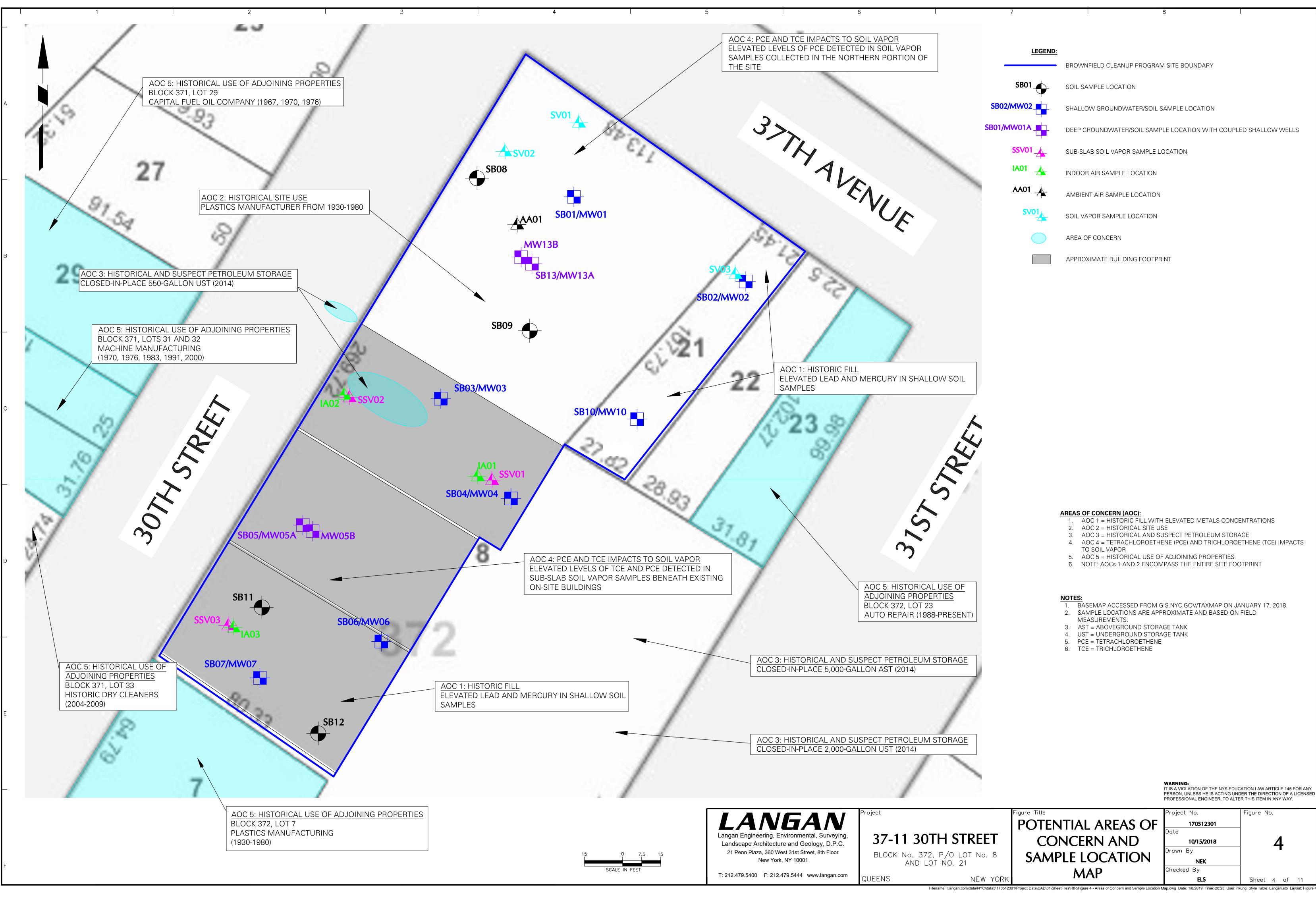
6. Sufficient analytical data were gathered during the RI, together with previous studies, to establish soil cleanup levels and to develop a remedy for the Site. The final remedy will be detailed in the forthcoming Remedial Action Work Plan (RAWP) to be prepared in accordance with NYS BCP guidelines. The remedy will need to address historic fill impacted with metals, SVOCs, and pesticides and CVOC-impacted soil vapor.

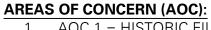
9.0 REFERENCES


- 1. Phase I ESA, prepared by Hillman Consulting LLC, dated April 8, 2014
- 2. Focused Subsurface Site Investigation, prepared by Merritt Environmental Consulting Corp., dated July 7, 2014
- 3. Limited Subsurface Investigation, prepared by Hydro Tech Environmental Corp., dated December 2017
- 4. BCP Citizen Participation Plan for 37-11 West 30th Street, prepared by NYSDEC, dated October 2018
- 5. New York State Department of Health, Final Guidance for the Evaluation of Soil Vapor Intrusion in the State of New York, dated October 2006, revised May 2017
- 6. New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft Brownfield Cleanup Program Guide, dated May 2004
- 7. New York State Department of Environmental Conservation, DER-10 Technical Guidance for Site Investigation and Remediation, issued May 3, 2010; effective June 18, 2010
- New York State Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) dated June 1998
- United States Environmental Protection Agency, Low Flow Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, January 19, 2010
- 10. New York State Department of Environmental Conservation, Part 375 of Title 6 of the New York Compilation of Codes, Rules, and Regulations, Effective December 14, 2006
- Baskerville, Charles A. United States Geological Survey. "Bedrock and Engineering Geologic Maps of Bronx County and Parts of New York and Queens Counties, New York." 1992
- Federal Emergency Management Agency Flood Insurance Rate Map, (Map Number 3604970093, Panel 93, Suffix G), effective November 16, 1983 and revised December 5, 2013

FIGURES

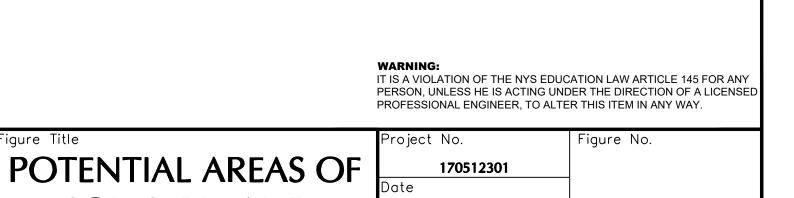
	Figure Title	Project No. 170512301	Figure No.				
T		Date 10/19/2018		2)		
8	SITE PLAN	Drawn By NEK		2	•		1010 an an
YORK		Checked By ELS	Sheet	2	of	11	01010


WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.


Filename: \\langan.com\data\NYC\data3\170512301\Project Data\CAD\01\SheetFiles\RIR\Figure 3 - Adjacent Property and Surrounding Land Use Map.dwg Date: 1/8/2019 Time: 18:11 User: nkung Style Table: Langan.stb Layout: Figure 3

I	7 8
GEND:	
	BROWNFIELD CLEANUP PROGRAM APPROXIMATE SITE BOUNDARY
	1 & 2 FAMILY RESIDENTIAL
2	OPEN SPACE & OUTDOOR RECREATION
	COMMERCIAL
2	INSTITUTIONS
1	INDUSTRIAL
- 2	PARKING
÷,	TRANSPORTATION/UTILITIES
	VACANT LOTS
	CENSUS TRACT 33 BOUNDARY ENZONE TYPE B
	CENSUS TRACT 51 BOUNDARY ENZONE TYPE AB
<u>res:</u> BASE 2018.	MAP ACCESSED FROM http://oasisnyc.net/map.aspx ON JANUARY 17,

	Figure Title	Project No. 170512301	Figure I	NO.			
T	ADJACENT PROPERTY	Date 10/03/2018		า			
8	AND SURROUNDING	Drawn By NEK		3			andan
YORK	LAND USE MAP	Checked By ELS	Sheet	3	of	11	0181000
		225					Q


	7	8	LANGAN
F	LEGEND:		
		BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY	
	SB01	SOIL SAMPLE LOCATION	
	SB02/MW02	SHALLOW GROUNDWATER/SOIL SAMPLE LOCATION	
	SB01/MW01A	DEEP GROUNDWATER/SOIL SAMPLE LOCATION WITH COUPLED SHALLOW WELLS	
~	SSV01	SUB-SLAB SOIL VAPOR SAMPLE LOCATION	
~	IA01	INDOOR AIR SAMPLE LOCATION	
	AA01 🛧	AMBIENT AIR SAMPLE LOCATION	
	SV01	SOIL VAPOR SAMPLE LOCATION	
			12301
		APPROXIMATE BUILDING FOOTPRINT	17051
			ÖZ
			PROJECT NO.
			Ē

- 1. AOC 1 = HISTORIC FILL WITH ELEVATED METALS CONCENTRATIONS 2. AOC 2 = HISTORICAL SITE USE
- 3. AOC 3 = HISTORICAL AND SUSPECT PETROLEUM STORAGE
- 4. AOC 4 = TETRACHLOROETHENE (PCE) AND TRICHLOROETHENE (TCE) IMPACTS
- TO SOIL VAPOR
- 5. AOC 5 = HISTORICAL USE OF ADJOINING PROPERTIES 6. NOTE: AOCs 1 AND 2 ENCOMPASS THE ENTIRE SITE FOOTPRINT

NOTES:

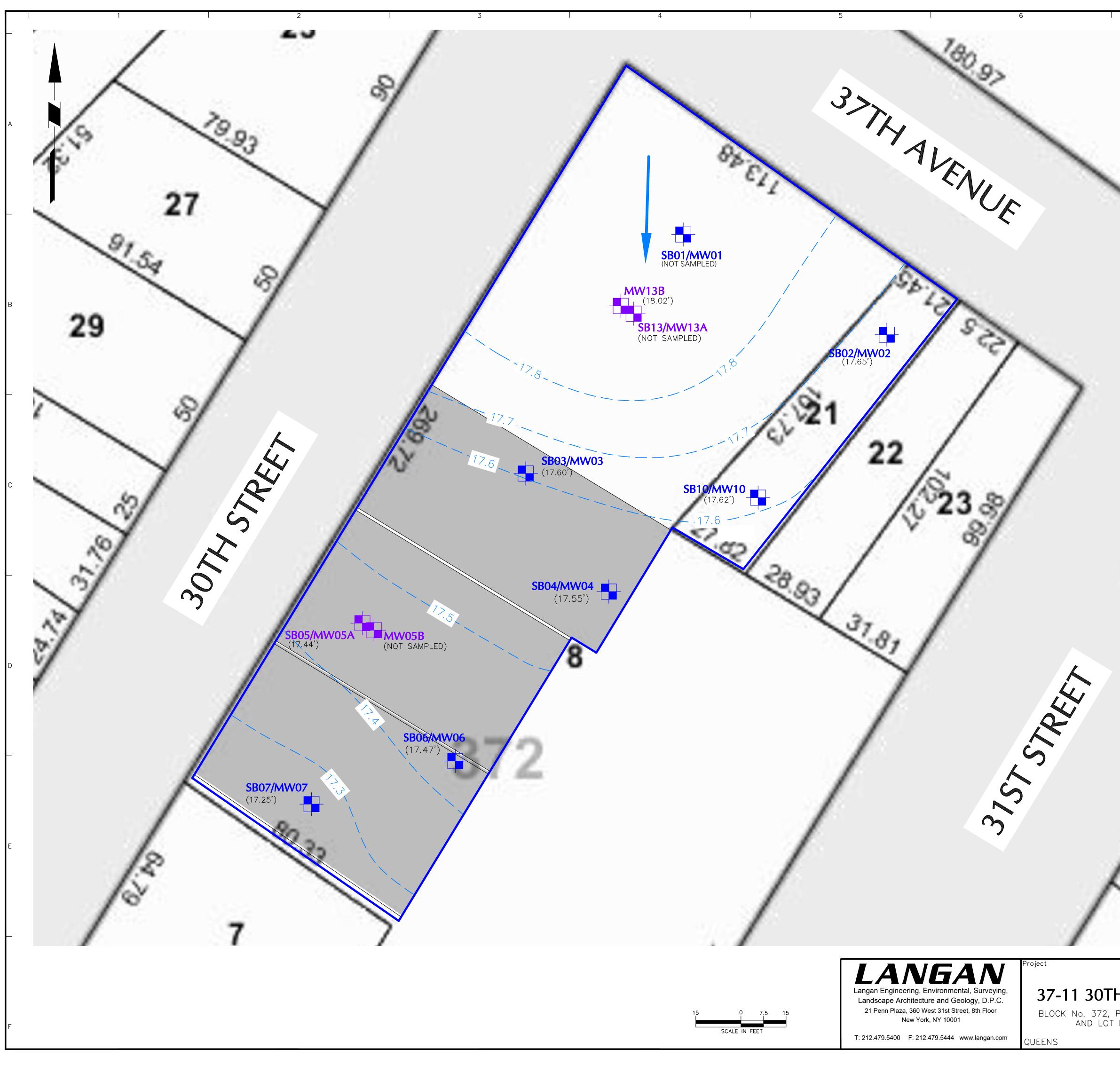
- 1. BASEMAP ACCESSED FROM GIS.NYC.GOV/TAXMAP ON JANUARY 17, 2018. 2. SAMPLE LOCATIONS ARE APPROXIMATE AND BASED ON FIELD MEASUREMENTS.
- 3. AST = ABOVEGROUND STORAGE TANK
- 4. UST = UNDERGROUND STORAGE TANK
- 5. PCE = TETRACHLOROETHENE
- 6. TCE = TRICHLOROETHENE

10/15/2018

NEK

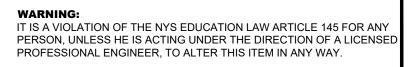
ELS

Drawn By


Checked By

igure Title

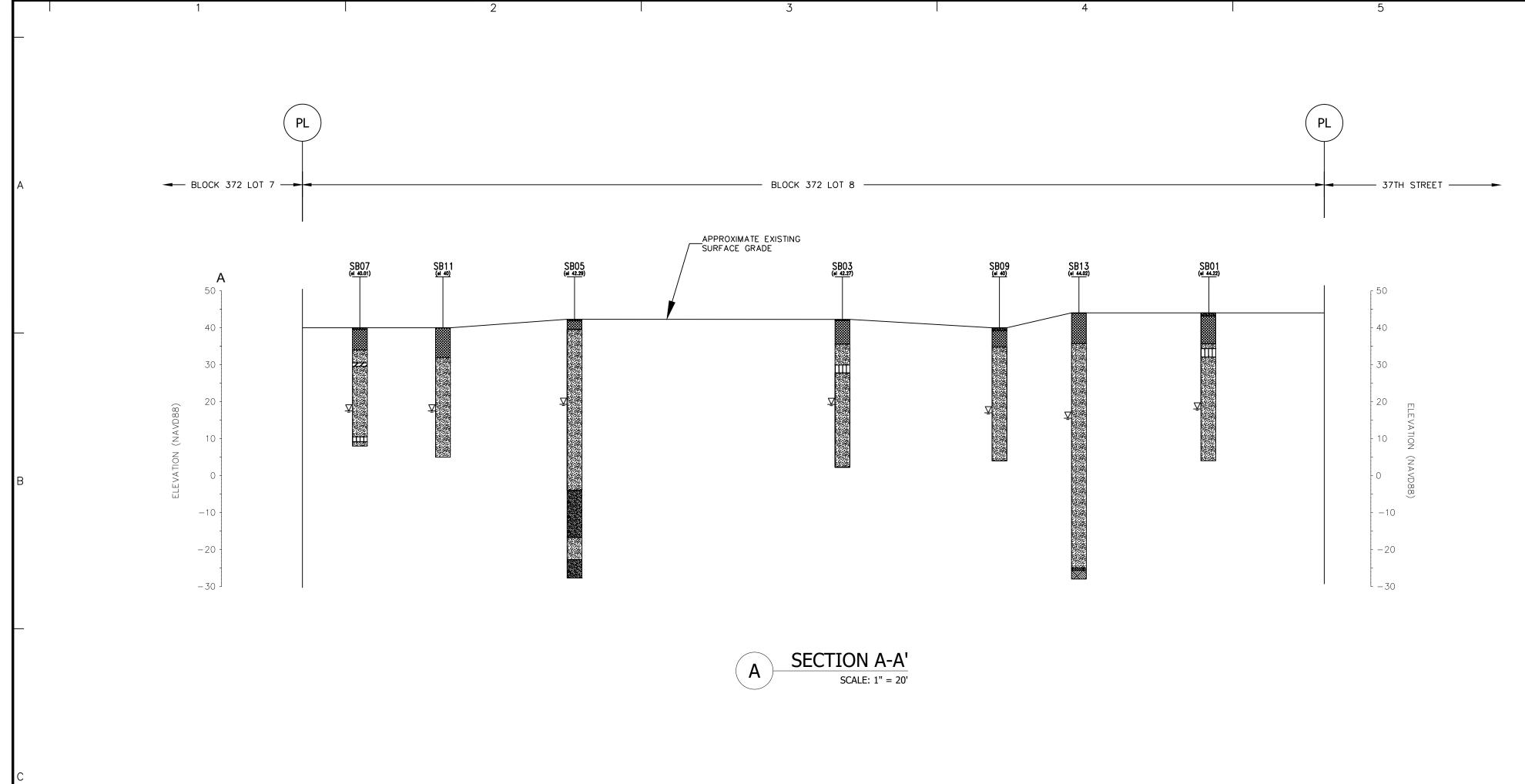
CONCERN AND SAMPLE LOCATION MAP

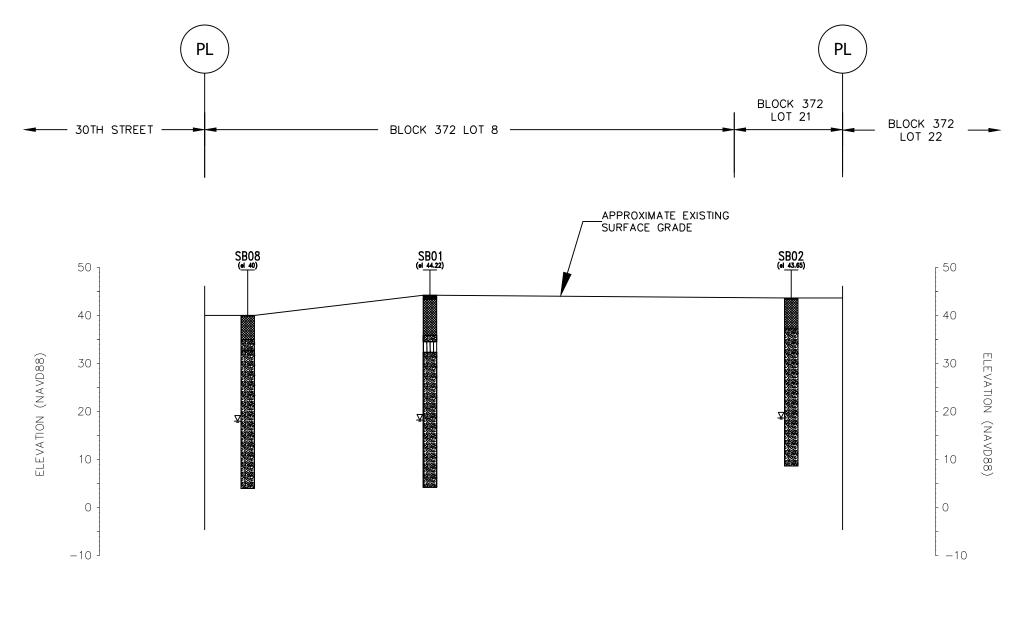

Sheet 4 of 11

4

	7	8
	LEGEND:	
		BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY
	SB02/MW02	SHALLOW GROUNDWATER/SOIL SAMPLE LOCATION
	SB01/MW01A	DEEP GROUNDWATER/SOIL SAMPLE LOCATION WITH COUPLED SHALLOW MONITORING WELLS
	— 17.5 · —	APPROXIMATE GROUNDWATER CONTOUR ELEVATION
		INFERRED GROUNDWATER FLOW DIRECTION
1		APPROXIMATE BUILDING FOOTPRINT
~	(18.02')	GROUNDWATER ELEVATION

- **NOTES:** 1. BASEMAP ACCESSED FROM GIS.NYC.GOV/TAXMAP ON JANUARY 17, 2018. 2. SAMPLE LOCATIONS ARE APPROXIMATE AND BASED ON FIELD MEASUREMENTS.
- 3. GROUNDWATER CONTOUR LINES ARE SHOWN IN 0.1 FOOT INTERVALS. GROUNDWATER ELEVATIONS ARE BASED ON MEASUREMENTS TAKEN ON OCTOBER 15, 2018 AS PART OF THE REMEDIAL INVESTIGATION.
- 4. ALL ELEVATIONS ARE PRESENTED IN THE UNITED STATES GEOLOGICAL SURVEY (USGS) NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).
- 5. MW-01 AND MW-05B GROUNDWATER ELEVATIONS ARE NOT INCLUDED IN THE CONTOUR MAP.

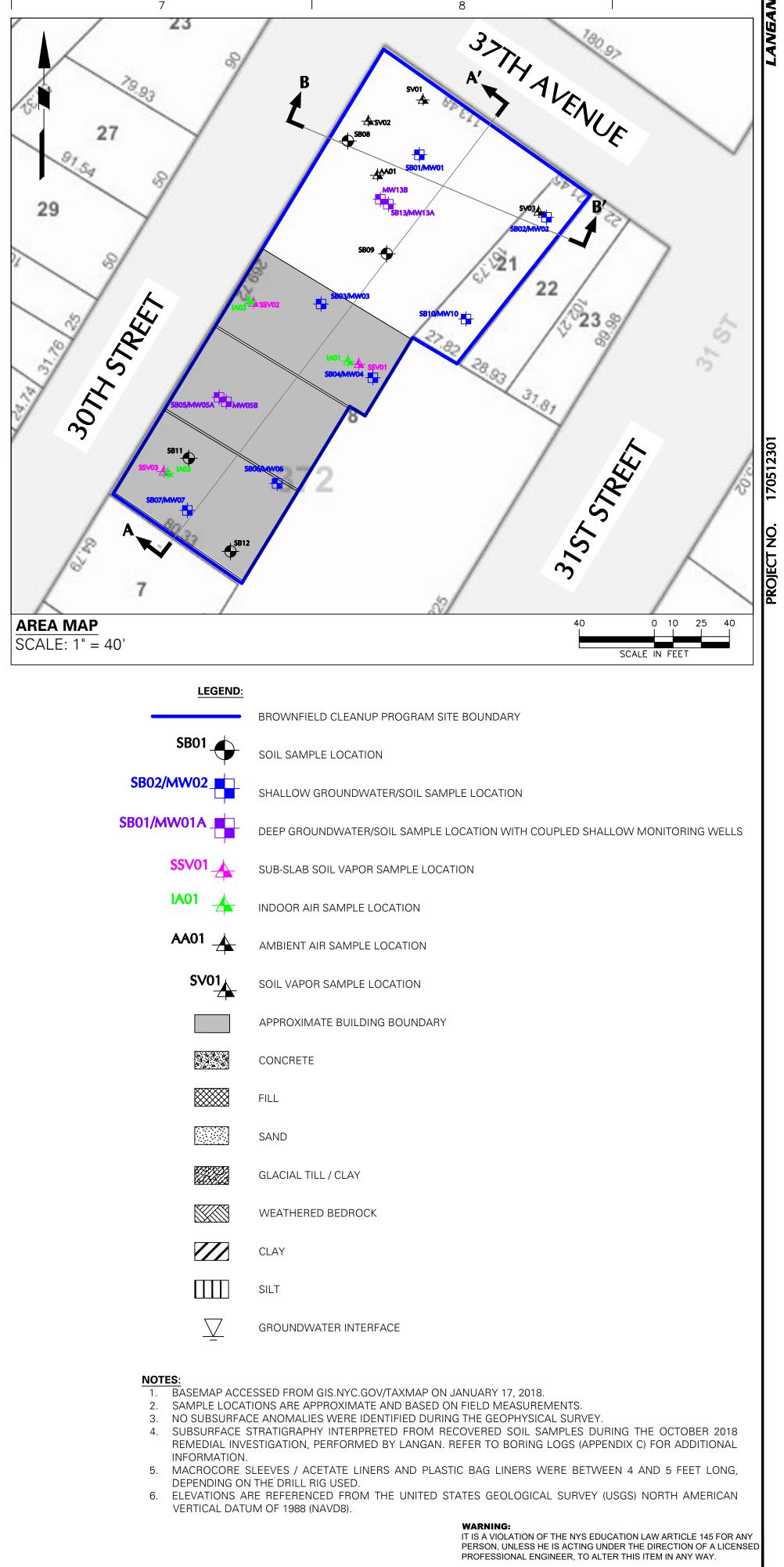



Filename: \\langan.com\data\NYC\data3\170512301\Project Data\CAD\01\SheetFiles\RIR\Figure 5 - Groundwater Contour Map.dwg Date: 1/8/2019 Time: 19:20 User: nkung Style Table: Langan.stb Layout: Figure 5

roject No.	Figure N	10.	
170512301			
ate			
10/29/2018		Ľ	
rawn By		Ĵ	
NEK			
hecked By			
ELS	Sheet	5	of

-igure Title

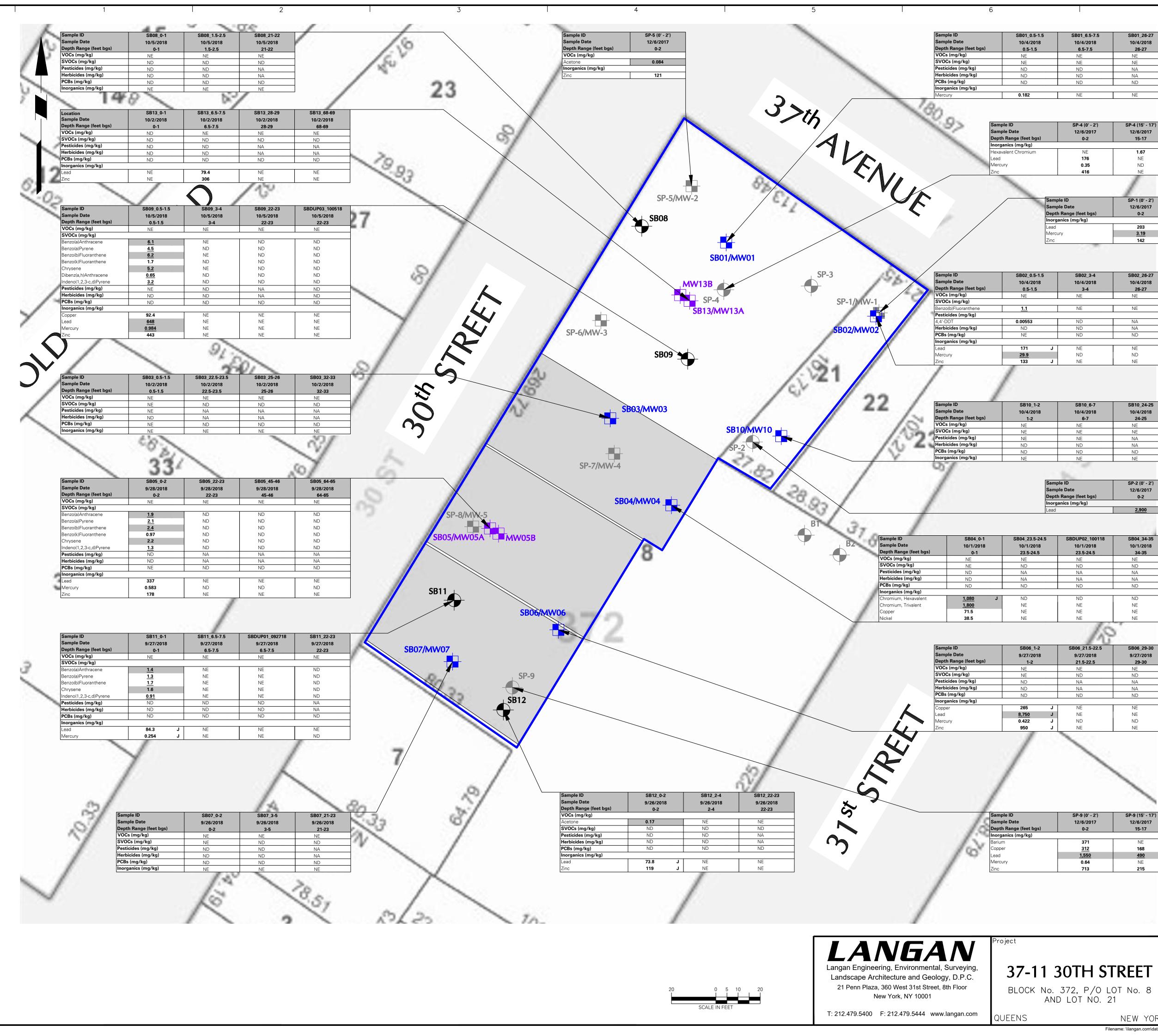
37-11 30TH STREET BLOCK No. 372, P/O LOT No. 8 AND LOT NO. 21 NEW YORK



SCALE: 1" = 20'

SECTION B-B' B

37-11 30TH STREET


NEW YORK

SUBSURFACE PROFILES

Filename: \\langan.com\data\\NYC\data3\170512301\Project Data\CAD\01\SheetFiles\RIR\Figure 6 - Subsurface Profiles.cc

Figure Title

PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.				
Project No.	Figure N	0.		
170512301				
Date		_	_	
11/14/2018		F		
Drawn By				
NEK				
Checked By				
ELS	Sheet	6	of	11
lwg Date: 4/3/2019 Time: 14:56 User: nkung	g Style Table: La	ngan.s	tb Layou	ut: ARCH

SB01_6.5-7.5	SB01_26-27
10/4/2018	10/4/2018
6.5-7.5	26-27
NE	NE
NE	NE
ND	NA
ND	NA
ND	ND
NE	NE

SP-4 (0' - 2')	SP-4 (15' - 17')
12/6/2017	12/6/2017
0-2	15-17
NE	1.67
176	NE
0.35	ND
416	NE
	/
ple ID	SP-1 (0' - 2')
ple Date	12/6/2017
th Range (feet bgs)	0-2
ganics (mg/kg)	
	203
cury	<u>3.19</u>
	142

SB02_3-4 10/4/2018 3-4	SB02_26-27 10/4/2018 26-27
NE	NE
NE	NE
ND	NA
ND	NA
ND	ND
NE	NE
ND	ND
NE	NE

SB10_6-7	SB10_24-25
10/4/2018	10/4/2018
6-7	24-25
NE	NE
NE	NE
NE	NA
ND	NA
ND	ND
NE	NE

nple ID	SP-2 (0' - 2'
nple Date	12/6/2017
oth Range (feet bgs)	0-2
rganics (mg/kg)	
d	<u>2,900</u>
	1000

SBDUP02_100118	SB04_34-35
10/1/2018	10/1/2018
23.5-24.5	34-35
NE	NE
ND	ND
NA	NA
NA	NA
ND	ND
ND	ND
NE	NE
NE	NE

NE	NE
18	, ·
SB06_21.5-22.5	SB06_29-30
9/27/2018	9/27/2018
21.5-22.5	29-30
NE	NE
ND	ND
NA	NA
NA	NA
ND	ND
NE	NE
NE	NE
ND	ND
NE	NE
SP-9 (0' - 2')	SP-9 (15' - 17')
12/6/2017	12/6/2017
0-2	15-17

312

<u>1,550</u>

0.64

713

LEGEND:

SB01 📥 SB02/MW02

SB01/MW01A

SP-8/MW-5 **B1** SP-9

SOIL SAMPLE LOCATION (OCTOBER 2018 REMEDIAL INVESTIGATION)
SHALLOW GROUNDWATER/SOIL SAMPLE LOCATION (OCTOBER 2018 REMEDIAL INVESTIGATION)
DEEP GROUNDWATER/SOIL SAMPLE LOCATION WITH COUPLED SHALLOW MONITORING WELLS (OCTOBER 2018 REMEDIAL INVESTIGATION)
APPROXIMATE BUILDING FOOTPRINT
GROUNDWATER/SOIL SAMPLE LOCATION, INSTALLED BY HYDRO TECH IN DECEMBER 2017
SOIL SAMPLE LOCATION, INSTALLED BY MERRITT IN JUNE 2014

SOIL SAMPLE LOCATION, INSTALLED BY HYDRO TECH IN DECEMBER 2017

BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY

BASEMAP ACCESSED FROM GIS.NYC.GOV/TAXMAP ON JANUARY 17, 2018. 2. SAMPLE LOCATIONS ARE APPROXIMATE AND BASED ON FIELD MEASUREMENTS.

- 3. SAMPLE LOCATIONS ARE TAKEN FROM THE DECEMBER 2017 LIMITED SUBSURFACE SITE INVESTIGATION, PREPARED BY HYDRO TECH ENVIRONMENTAL CORP. (HYDRO TECH) AND THE JUNE 2014 LIMITED SUBSURFACE INVESTIGATION REPORT, PREPARED BY MERRITT ENVIRONMENTAL CORP. (MERRITT). ALL SAMPLE LOCATIONS ARE APPROXIMATE.
- 4. SOIL SAMPLE ANALYTICAL RESULTS ARE COMPARED TO THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TITLE 6 OF THE OFFICIAL COMPILATION OF NEW YORK CODES, RULES, AND REGULATIONS (NYCRR) PART 375 UNRESTRICTED USE, RESTRICTED USE - PROTECTION OF GROUNDWATER, AND RESTRICTED USE RESTRICTED - RESIDENTAL SOIL CLEANUP OBJECTIVES (SCOs). 5. ONLY COMPOUNDS DETECTED AT CONCENTRATIONS ABOVE THEIR RESPECTIVE SCOs ARE SHOWN.
- 6. FOR SAMPLES COLLECTED BY OTHERS IN 2014 AND 2017, ONLY COMPOUNDS DETECTED AT CONCENTRATIONS ABOVE THE COMPARISON CRITERIA ARE SHOWN. 7. ANALYTES DETECTED WITH CONCENTRATIONS ABOVE UNRESTRICTED USE SCOs ARE BOLDED.
- 8. ANALYTES DETECTED WITH CONCENTRATIONS ABOVE RESTRICTED USE PROTECTION OF GROUNDWATER SCOS ARE SHADED. 9. ANALYTES DETECTED WITH CONCENTRATIONS ABOVE RESTRICTED USE RESTRICTED - RESIDENTIAL ARE UNDERLINED.
- 10. SAMPLE SBDUP02_100118 IS A DUPLICATE SAMPLE OF SB04_23.5-24.5; SAMPLE SBDUP03_100518 IS A DUPLICATE SAMPLE OF SB09_22-23; AND SAMPLE SBDUP01_092718 IS A DUPLICATE SAMPLE OF SB11_6.5-7.5. 11. VOCs = VOLATILE ORGANIC COMPOUNDS
- 12. SVOCs = SEMIVOLATILE ORGANIC COMPOUNDS 13. PCBs = POLYCHLORINATED BIPHEYNYLS
- 14. mg/kg = MILLIGRAM PER KILOGRAM
- 15. bgs = BELOW GRADE SURFACE 16. ND = NOT DETECTED
- 17. NE = NO EXCEEDANCE 18. NA = NOT ANALYZED
- 19. J =THE ANALYTE WAS POSITIVELY IDENTIFIED AND THE ASSOCIATED NUMERICAL VALUE IS THE APPROXIMATE CONCENTRATION OF THE ANALYTE IN THE SAMPLE.

Analyte	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use - Protection of Groundwater SCOs	NYSDEC Part 375 Restricted Use - Restricted Residential SCOs
VOCs (mg/kg)			
Acetone	0.05	0.05	100
SVOCs (mg/kg)			
Benzo(a)Anthracene	1	1	1
Benzo(a)Pyrene	1	22	1
Benzo(b)Fluoranthene	1	1.7	1
Benzo(k)Fluoranthene	0.8	1.7	3.9
Chrysene	1	1	3.9
Dibenz(a,h)Anthracene	0.33	1,000	0.33
Indeno(1,2,3-c,d)Pyrene	0.5	8.2	0.5
Pesticides (mg/kg)			
4,4'-DDT	0.0033	136	7.9
Inorganics (mg/kg)			
Barium	350	820	400
Chromium, Hexavalent	1	19	110
Chromium, Trivalent	30	~	180
Copper	50	1,720	270
Lead	63	450	400
Mercury	0.18	0.73	0.81
Nickel	30	130	310
Zinc	109	2,480	10,000

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

	Figure Title	Project No.	Figure No.	
LOT No. 8	SOIL ANALYTICAL RESULTS MAP	170512301 Date 04/02/2019 Drawn By NEK Checked By	7	
NEW YORK		ELS	Sheet 7 of 11	
Filename: \\langan.com\data\NY	C\data3\170512301\Project Data\CAD\01\SheetFiles\RIR\Figure 7 - Soil Analytical Results	Map.dwg Date: 4/3/2019 Time: 14:03 User: nk	kung Style Table: Langan.stb Layout: Figu	re

168

NE

215

<u>490</u>

SOIL ANALYTICAL **RESULTS MAP**

LEGEND: BROWNFIELD CLEANUP PROGRAM SITE BOUNDARY *\$*B02/MW02 SHALLOW GROUNDWATER/SOIL SAMPLE LOCATION (OCTOBER 2018 REMEDIAL INVESTIGATION) SB01/MW01A DEEP GROUNDWATER/SOIL SAMPLE LOCATION WITH COUPLED SHALLOW MONITORING WELLS (OCTOBER 2018 REMEDIAL INVESTIGATION) APPROXIMATE BUILDING FOOTPRINT

SP-8/MW-5 GROUNDWATER/SOIL SAMPLE LOCATION, INSTALLED BY HYDRO TECH IN DECEMBER 2017

B6(GW) - GROUNDWATER/SOIL SAMPLE LOCATION, INSTALLED BY MERRITT IN JUNE 2014

- 1. BASEMAP ACCESSED FROM GIS.NYC.GOV/TAXMAP ON JANUARY 17, 2018. 2. MONITORING WELL LOCATIONS ARE APPROXIMATE AND BASED ON FIELD MEASUREMENTS.
- 3. SAMPLE LOCATIONS ARE TAKEN FROM THE DECEMBER 2017 LIMITED SUBSURFACE SITE INVESTIGATION, PREPARED BY HYDRO TECH ENVIRONMENTAL CORP. (HYDRO TECH) AND THE JUNE 2014 LIMITED SUBSURFACE INVESTIGATION REPORT, PREPARED BY MERRITT ENVIRONMENTAL CORP. (MERRITT). ALL SAMPLE LOCATIONS ARE APPROXIMATE.
- 4. GROUNDWATER SAMPLE RESULTS ARE COMPARED TO THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) TITLE 6 OF THE OFFICIAL COMPILATION OF NEW YORK CODES, RULES, AND REGULATIONS (NYCRR) PART 703.5 AND THE NYSDEC TECHNICAL OPERATIONAL GUIDANCE SERIES (TOGS) 1.1.1 AMBIENT WATER QUALITY STANDARDS AND GUIDANCE VALUES FOR CLASS GA WATER (NYSDEC SGVs).
- 5. REGULATORY CRITERIA DO NOT EXIST FOR PERFLUORINATED AND POLYFLUORINATED ALKYL SUBSTANCES (PFAS) AND 1,4-DIOXANE IN NEW YORK STATE. PFAS AND 1,4-DIOXANE ARE COMPARED TO THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (USEPA) HEALTH ADVISORY LEVEL.
- 6. ONLY ANALYTICAL RESULTS DETECTED AT CONCENTRATIONS ABOVE THEIR RESPECTIVE NYSDEC SGVs ARE SHOWN. 6. FOR SAMPLES COLLECTED BY OTHERS IN 2014 AND 2017, ONLY COMPOUNDS DETECTED AT CONCENTRATIONS ABOVE THE COMPARISON CRITERIA ARE SHOWN.
- 7. ANALYTES DETECTED WITH CONCENTRATIONS ABOVE NYSDEC SGVs ARE BOLDED AND SHADED. 8. SAMPLE GWDUP01_101618 IS A DUPLICATE SAMPLE OF MW07_101618 AND SAMPLE GWDUP01_101718 IS A DUPLICATE SAMPLE OF MW07_101718.
- 9. VOCs = VOLATILE ORGANIC COMPOUNDS
- 7. SVOCs = SEMIVOLATILE ORGANIC COMPOUNDS 8. PCBs = POLYCHLORINATED BIPHENYLS
- 9. PFAS = PER AND POLYFLUOROALKYL SUBSTANCES 10. μ g/L = MICROGRAMS PER LITER
- 11. NE = NO EXCEEDANCE
- 12. ND = NOT DETECTED 13. NA = NOT ANALYZED
- 14. J = THE ANALYTE WAS POSITIVELY IDENTIFIED AND THE ASSOCIATED NUMERICAL VALUE IS THE APPROXIMATE CONCENTRATION OF THE ANALYTE IN THE SAMPLE.

Analyte	NYSDEC SGVs
VOCs (µg/L)	
Chloroform	7
SVOCs (µg/L)	
Benzo(a)Anthracene	0.002
Benzo(a)Pyrene	0
Benzo(b)Fluoranthene	0.002
Benzo(k)Fluoranthene	0.002
Chrysene	0.002
Indeno(1,2,3-c,d)Pyrene	0.002
Inorganics (µg/L)	
Antimony	3
Chromium, Hexavalent	50
Chromium, Total	50
Iron	300
Lead	25
Magnesium	35,000
Manganese	300
Sodium	20,000
Thallium	0.5

Analyte	USEPA Health Advisory Level
PFAS (μg/L)	
Perfluorooctanesulfonic acid	0.07
Perfluorooctanoic acid	0.07

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

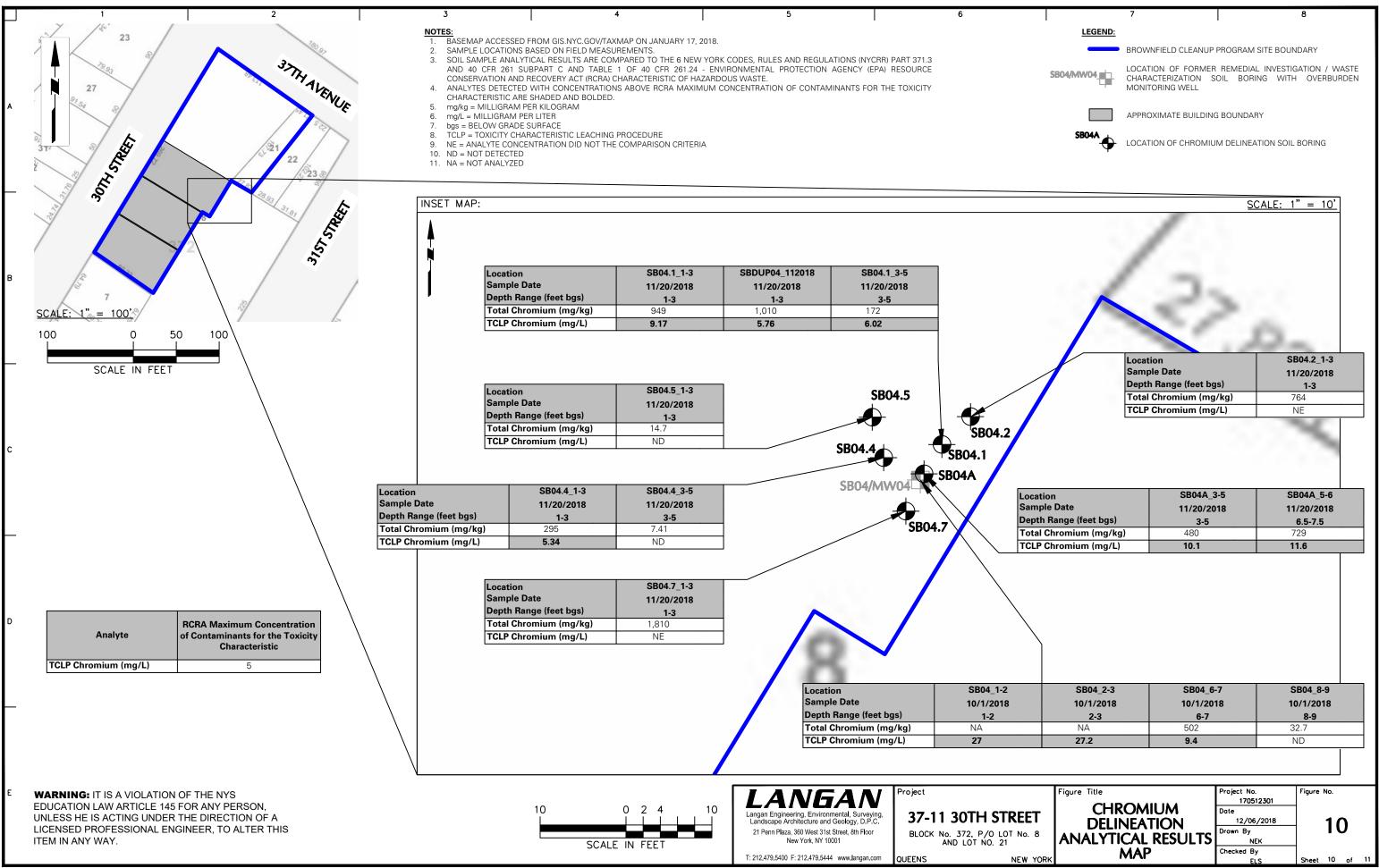
igure Title GROUNDWATER MAP NEW YORK

	Figure Title	Project No.	Figure No.
Г в	GROUNDWATER ANALYTICAL RESULTS MAP	170512301 Date 04/02/2019 Drawn By NEK Checked By	8
ÓRK		ELS	Sheet 8 of 11
Project Dat	a\CAD\01\SheetFiles\RIR\Figure 8 - Groundwater Sample Location and Analytical Results M	ap.dwg Date: 4/3/2019 Time: 14:40 User: nk	ung Style Table: Langan.stb Layout: Figure 8

8

0.	8	A

Filename: \\langan.com\data\NYC\data3\170512301



7	7		8		
OA-1 12/11/2017					
Ambient Air 0.55 4.20	LEGEND:	 BROWNFIELD CLEANUP P 	ROGRAM SITE BC	UNDARY	
0.48 0.27 1.10 2.10 0.44	SSV01	SUB-SLAB SOIL VAPOR SA	MPLE LOCATION	(OCTOBER 2018	REMEDIAL INVESTIGATION
3.70 0.35 0.32 0.42 1.80		INDOOR AIR SAMPLE LOC	ATION (OCTOBER	2018 REMEDIAL	. INVESTIGATION)
0.31 0.50 10.00 0.42	AA01	AMBIENT AIR SAMPLE LO	CATION (OCTOBE	R 2018 REMEDIA	L INVESTIGATION)
2.90 0.32 0.81	SV01	SOIL VAPOR SAMPLE LOC	ATION (OCTOBER	2018 REMEDIAL	. INVESTIGATION)
12/11/2017 Soil Vapor 11.00		APPROXIMATE BUILDING	FOOTPRINT		
18 7.20 72 340	SSB-3	SUB-SLAB SOIL VAPOR LC	CATION, INSTALL	ED BY HYDRO T	ECH IN DECEMBER 2017
SV03_100818 10/8/2018	IA-2	INDOOR AIR LOCATION, IN	ISTALLED BY HYD	RO TECH IN DEC	CEMBER 2017
10.1 793	SV-3	SOIL VAPOR LOCATION, IN	ISTALLED BY HYD	ORO TECH IN DEC	CEMBER 2017
6.88 13 67.8 6.8 5.36	OA-2	AMBIENT AIR SAMPLE, IN	STALLED BY HYDI	RO TECH IN DEC	EMBER 2017
5.00 5.04 12.5 7.39 18.7	NOTES:				
	1. BAS 2. SOII	SEMAP ACCESSED FROM GIS L VAPOR LOCATIONS AND P MPLE LOCATIONS ARE TAKE	ROPERTY BOUND	ARIES ARE APPR	OXIMATE.
OA-2 12/11/2017 Ambient Air	THE	ESTIGATION, PREPARED BY I E JUNE 2014 LIMITED SUBSU /IRONMENTAL CORP. (MERR	JRFACE INVESTIG	ATION REPORT,	PREPARED BY MERRITT
1.40 0.26 7.00 0.70	SAN	L VAPOR SAMPLE ANALYTIC MPLES. 3-SLAB SOIL VAPOR SAMPL			
0.30 0.80 0.35 2.10 0.63	MIT	MPARED TO THE MINIMU IGATION AS SET FORTH IN T TOBER 2006 GUIDANCE FOF	HE NEW YORK ST.	ATE DEPARTMEI	NT OF HEALTH (NYSDOH)
0.58 14.00 0.76 0.86	SUB	N YORK DECISION MATRI BSEQUENT UPDATES (2017). R SAMPLES COLLECTED BY (
0.53 2.20 0.47 0.39 0.32	7. DET 8. IND(CONCENTRATIONS ABOVE T FECTED SOIL VAPOR SAMPLE OOR AIR AND SUB-SLAB	ANALYTICAL RES	SULTS COMPOU SAMPLE COMP	NDS ARE SHOWN.
11.00 2.20 3.60 0.29	REC 9. INDO	COMMENDING MONITORING OOR AIR AND SUB-SLAB	SOIL VAPOR	SAMPLE COMP	
1.10	REC 10. VOC	COMMENDING MITIGATION A	IPOUND	I SOIL VAPO	OR CONCENTRATIONS
	12. ND = 13. NE =	m ³ = MICROGRAM PER METE = NOT DETECTED = NO EXCEEDANCE			
	BEL CON	THE ANALYTE WAS DETEC OW THE REPORTING LIM. NCENTRATION.	IT (RL); THEREF	ORE, THE RES	JLT IS AN ESTIMATED
	15. SAN	MPLE SSVDUP01_100818 IS A	DUPLICATE OF P.	ARENT SAMPLE	SSV03_100818.
		Analyte VOCs (µg/m³) Carbon Tetrachloride	NYSDOH Decision Matrix	NYSDOH AGVs	
		Tetrachloroethene (PCE) Trichloroethene (TCE)	A B A	~ 30 2	
6					
				ATION OF THE NYS ED	UCATION LAW ARTICLE 145 FOR AN
			· · · · · · · · · · · · · · · · · · ·	NAL ENGINEER, TO AL	NDER THE DIRECTION OF A LICENS TER THIS ITEM IN ANY WAY.

37-11 30TH STREET BLOCK No. 372, P/O LOT No. 8 AND LOT NO. 21

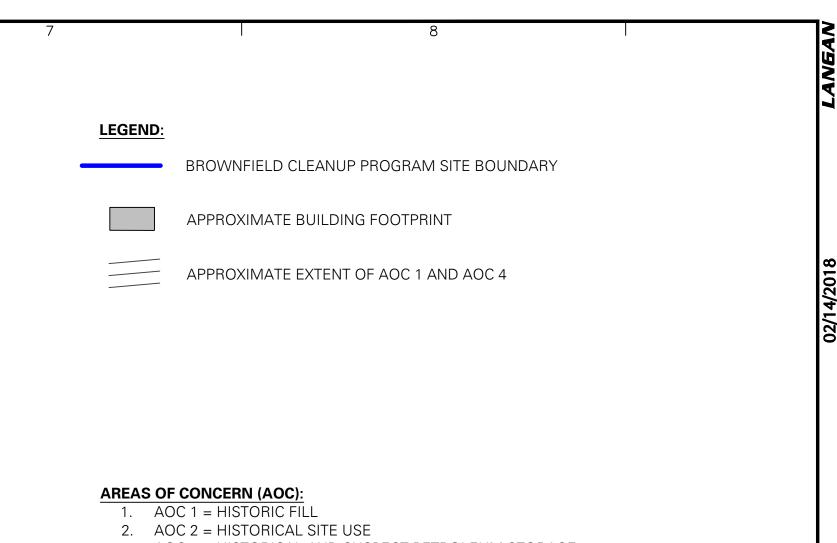

igure Title			
ANA	SOIL LYTIC N	 RESU	JLT

	Figure Title	Project No.	Figure No.
STREET O LOT No. 8 D. 21	SOIL VAPOR ANALYTICAL RESULTS MAP	170512301 Date 04/02/2019 Drawn By NEK Checked By	9
NEW YORK		ELS	Sheet 9 of 11
Filename: \\langan.com\data\NYC\da	ta3\170512301\Project Data\CAD\01\SheetFiles\RIR\Figure 9 - Soil Vapor Sample Map.dwg	g Date: 7/11/2019 Time: 15:03 User: nkung S	Style Table: Langan.stb Layout: RIR - Figure 9

Filename: \\langan.com\data\NYC\data3\170512301\Project Data\CAD\01\SheetFiles\RIR\Figure 10 - Chromium Delineation Soil Boring Location and Results Plan.dwg Date: 4/2/2019 Time: 16:38 User: nkung Style Table: Langan.stb Layout: RIR - Figure 10

- AOC 3 = HISTORICAL AND SUSPECT PETROLEUM STORAGE
 AOC 4 = TETRACHLOROETHENE (PCE) AND TRICHLOROETHENE (TCE) IMPACTED SOIL VAPOR

NOTES:

- BASEMAP ACCESSED FROM GIS.NYC.GOV/TAXMAP ON JANUARY 17, 2018.
 UST = UNDERGROUND STORAGE TANK

WARNING:
IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY
PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED
PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

-igure Title

BLOCK No. 372, P/O LOT No. 8 AND LOT NO. 21

AREAS OF CONCER	SI
MAP	

	Figure Title	Project No.	Figure No.
		170512301	
TREET	AREAS OF CONCERN	Date 01/08/2019	11
.OT No. 8 21	MAP	Drawn By NEK	••
- '		Checked By	
NEW YORK		ELS	Sheet 11 of 11
Filename: \\langan.com\data\	NYC\data3\170512301\Project Data\CAD\01\SheetFiles\RIR\Figure 11 - Areas of Concern M	lap.dwg Date: 1/8/2019 Time: 19:22 User: nk	ung Style Table: Langan.stb Layout: Figure 5

TABLES

Table 1 Remedial Investigation Report Sample Summary

					SOIL				
No.	Sample Name	Sample Type	Boring Location	Target Sample Depth	Date	Time	Sample Depth (feet bgs)	Rationale	Analysis
1	SB01_0.5-1.5			Upper 2 feet of historic fill	10/4/2018	7:45:00 AM	0.5 to 1.5		
2	SB01_6.5-7.5		SB01	Historic fill layer	10/4/2018	7:53:00 AM	6.5 to 7.5	Investigate AOC 1, AOC 2, and AOC 4	
3	SB01_26-27			Native material/ groundwater interface	10/4/2018	8:30:00 AM	26 to 27		
4	SB02_0.5-1.5			Upper 2 feet of historic fill	10/4/2018	1:00:00 PM	0.5 to 1.5		
5	SB02_3-4		SB02	Historic fill layer	10/4/2018	1:04:00 PM	3 to 4	Investigate AOC 1, AOC 2, AOC 4, and AOC 5	
6	SB02_26-27			Groundwater interface	10/4/2018	1:30:00 PM	26 to 27		
7	SB03_0.5-1.5			Upper 2 feet of historic fill	10/2/2018	9:20:00 AM	0.5 to 1.5		
8	SB03_22.5-23.5		SB03	Greatest degree of impacts or historic fill layer	10/2/2018	9:55:00 AM	22.5-23.5	Investigate AOC 1, AOC 2, and AOC 3	
9	SB03_25-26			Immediately below impacts	10/2/2018	10:00:00 AM	25 to 26	_	
10	SB03_32-33			Native material/ groundwater interface	10/2/2018	10:10:00 AM	32 to 33		
11	SB04_0-1			Upper 2 feet of historic fill	10/1/2018	12:10:00 PM	0 to 1		
12	SB04_23.5-24.5		SB04	Groundwater interface	10/1/2018	2:00:00 PM	23.5 to 24.5	Investigate AOC 1, AOC 2, AOC 3, AOC 4, and AOC 5	
13	SB04_34-35			Native material	10/1/2018	2:40:00 PM	34 to 35		
14	SB05_0-2			Upper 2 feet of historic fill	9/28/2018	8:45:00 AM	0 to 2		
15	SB05_22-23		SB05	Groundwater interface	9/28/2018	9:15:00 AM	22 to 23	Investigate AOC 1, AOC 2, AOC 4, and	
16	SB05_45-46		3609	Native material	9/28/2018	9:45:00 AM	45 to 46	AOC 5	
17	SB05_64-65			Native material	9/28/2018	12:00:00 PM	64 to 65		
18	SB06_1-2			Upper 2 feet of historic fill	9/27/2018	2:00:00 PM	1 to 2]
19	SB06_21.5-22.5		SB06	Groundwater interface	9/27/2018	2:45:00 PM	21.5 to 22.5	Investigate AOC 1, AOC 2, AOC 4, and AOC 5	
20	SB06_29-30			Native material	9/27/2018	2:30:00 PM	29 to 30		
21	SB07_0-2			Upper 2 feet of historic fill	9/26/2018	12:55:00 PM	0 to 2		
22	SB07_3-5	Grab	SB07	Historic fill layer	9/26/2018	1:00:00 PM	3 to 5	Investigate AOC 1, AOC 2, AOC 4, and	
23	 SB07_21-23			Native material/ groundwater interface	9/26/2018	1:30:00 PM	21 to 23	AOC 5	
24	 SB08_0-1			Upper 2 feet of historic fill	10/5/2018	7:45:00 AM	0 to 1		Part 375-list ² of VOCs,
25	SB08_1.5-2.5		SB08	Historic fill layer	10/5/2018	7:47:00 AM	1.5 to 2.5	Investigate AOC 1	SVOCs, PCBs, Pesticides/Herbicides*, ar
26	SB08_21-22			Groundwater interface	10/5/2018	8:15:00 AM	21 to 22	-	Metals
27	SB09_0.5-1.5			Upper 2 feet of historic fill	10/5/2018	9:15:00 AM	0.5 to 1.5		
27	SB09_3-4		SB09	Historic fill layer	10/5/2018	9:20:00 AM	3 to 4	Investigate AOC 1, AOC 2 and AOC 5	
			3003						
29	SB09_22-23			Groundwater interface	10/5/2018	9:40:00 AM	22 to 23		
30	SB10_1-2		0010	Upper 2 feet of historic fill	10/4/2018	11:04:00 AM	1 to 2		
31	SB10_6-7		SB10	Historic fill layer	10/4/2018	11:08:00 AM	6 to 7	Investigate AOC 1, and AOC 5	
32	SB10_24-25			Groundwater interface	10/4/2018	11:30:00 AM	24 to 25		
33	SB11_0-1			Upper 2 feet of historic fill	9/27/2018	9:00:00 AM	0 to 1	-	
34	SB11_6.5-7.5		SB11	Historic fill layer	9/27/2018	9:15:00 AM	6.5 to 7.5	Investigate AOC 1, AOC 2 and AOC 5	
35	SB11_22-23			Groundwater interface	9/27/2018	9:30:00 AM	22 to 23		
36	SB12_0-2			Upper 2 feet of historic fill	9/26/2018	10:00:00 AM	0 to 2		
37	SB12_2-4		SB12	Historic fill layer	9/26/2018	10:15:00 AM	2 to 4	Investigate AOC 1, AOC 2 and AOC 5	
38	SB12_22-23			Groundwater interface	9/26/2018	11:00:00 AM	22 to 23		
39	SB13_0-1			Upper 2 feet of historic fill	10/2/2018	11:58:00 AM	0 to 1		
40	SB13_6.5-7.5		SB13	Greatest degree of impacts or historic fill layer	10/2/2018	12:10:00 PM	6.5 to 7.5	Investigate AOC 1, AOC 2, and AOC 4	
41	SB13_28-29			Immediately below impacts	10/2/2018	1:00:00 PM	28 to 29		
42	SB13_68-69			Native material/ groundwater interface	10/3/2018	1:40:00 PM	68 to 69		
43	SBDUP01_092718		SB11		9/27/2018	9:15:00 AM	NA		
44	SBDUP02_100118	Duplicate	SB04		10/1/2018	2:00:00 PM	NA		
45	SBDUP03_100518		SB09	ТВD	10/5/2018	9:40:00 AM	NA	QA/QC	
	MS/MSD-SS01_092718		SB11	שטו	9/27/2018	9:15:00 AM	NA		
NA	MS/MSD-SS02_100118	MS/MSD	SB04		10/1/2018	2:40:00 PM	NA		
	MS/MSD-SS03_100518		SB08		10/5/2018	8:15:00 AM	NA		
	SBFB01_092718	_			9/27/2018	2:00:00 PM	NA		Part 375-list² of VOCs,
-	SBFB02_100118	Field Blank			10/1/2018	3:50:00 PM	NA	1	SVOCs, PCBs, Pesticides/Herbicides, and
F	SBFB03_100518				10/5/2018	2:40:00 PM	NA	1	Metals
	SBTB01_092718				9/27/2018	NA	NA	1	Part 375 VOCs
-	 SBTB02_092818				9/28/2018	NA	NA	1	Part 375 VOCs
NA	SBTB03_100118		NA	NA	10/1/2018	NA	NA	ΩΑ/ΩC	Part 375 VOCs
-	SBTB04_100218	Trip Blank			10/2/2018	NA	NA	1	Part 375 VOCs
	SBTB04_100218 SBTB05_100318				10/3/2018	NA	NA	4	Part 375 VOCs
F	SBTB05_100318 SBTB06_100418				10/3/2018	NA	NA	4	Part 375 VOCs Part 375 VOCs
F						NA	NA	4	Part 375 VOCs Part 375 VOCs
	SBTB07_100518				10/5/2018	NA	NA		Part 375 VOCs

Table 1 **Remedial Investigation Report** Sample Summary

37-11 30^{the} Street Long Island City, New York BCP Site No. C241211 Langan Project No. 170512301

				CF	IROMIUM DELINEA	TION						
1	SB04_1-2	Grab	SB04		10/1/2018	12:10:00 PM	1 to 2		TCLP Chromium			
2	SB04_2-3	Grab	SB04		10/1/2018	12:10:00 PM	2 to 3		TCLP Chromium			
3	SB04_6-7	Grab	SB04		10/1/2018	12:20:00 PM	6 to 7		TCLP Chromium			
4	SB04_8-9	Grab	SB04		10/1/2018	12:20:00 PM	8 to 9		TCLP Chromium			
5	SB04A_3-5	Grab	SB04A		11/20/2018	9:28:00 AM	3 to 5		Total and TCLP Chromium			
6 7	SB04A_5-6 SB04.1_1-3	Grab	SB04A SB04.1		11/20/2018	9:30:00 AM 12:20:00 PM	6.5 to 7.5 1 to 3		Total and TCLP Chromium Total and TCLP Chromium			
, 8	SB04.1_3-5	Grab	SB04.1	Historic fill layer	11/20/2018	12:24:00 PM	3 to 5	Investigate AOC 1	Total and TCLP Chromium			
9	SB04.2_1-3	Grab	SB04.2		11/20/2018	1:31:00 PM	1 to 3		Total and TCLP Chromium			
10	SB04.4_1-3	Grab	SB04.4		11/20/2018	1:15:00 PM	1 to 3		Total and TCLP Chromium			
11	SB04.4_3-5	Grab	SB04.4		11/20/2018	1:21:00 PM	3 to 5		Total and TCLP Chromium			
12	SB04.5_1-3	Grab	SB04.5		11/20/2018	2:11:00 PM	1 to 3		Total and TCLP Chromium			
13 14	SB04.7_1-3 SBDUB04_112018	Grab Duplicate	SB04.7 SB04.1_1-3		11/20/2018	10:31:00 AM NA	1 to 3 1 to 3		Total and TCLP Chromium Total and TCLP Chromium			
14	360004_112010	Duplicate	5004.1_1-5		GROUNDWATE		1 10 3					
No.	Sample Name	Sample Type	Boring Location	Target Sample Depth	Date	Time	Well Screen Interval (feet bgs)	Rationale	Analysis			
1	MW01_101718		MW01	Center of water column	10/17/2018	5:00:00 PM	23 to 35	Investigate AOC 2 and AOC 4				
2	MW02_101518		MW02	Center of water column	10/15/2018	1:05:00 PM	23 to 35	Investigate AOC 2, AOC 4 and AOC 5				
3	 MW03_101618		MW03	Center of water column	10/16/2018	2:45:00 PM	20 to 32	Investigate AOC 2, AOC 3, and AOC 4				
4	MW04_101718		MW03	Center of water column	10/17/2018	10:00:00 AM	20 to 32	Investigate AOC 2, AOC 3, AOC 4, and				
5	MW05A_101718			Bottom of water column	10/17/2018	3:00:00 PM	60 to 65	AOC 5				
5 6	_	Grab	MW05	Center of water column		1:10:00 PM		Investigate AOC 2, AOC 4 and AOC 5				
6	MW05B_101718 MW06_101618	משוט	MW06	Center of water column Center of water column	10/17/2018	1:10:00 PM 12:30:00 PM	20 to 32 18 to 30	Investigate AOC 2, AOC 4 and AOC 5	TCL VOCs and SVOCs, PCBs,			
-									TAL Metals (total and dissolved [field filtered]),			
8	MW07_101718		MW07	Center of water column	10/17/2018	9:45:00 AM	20 to 32	Investigate AOC 2, AOC 4 and AOC 5	Pesticides/Herbicides, hex/tri Chromium, and Cyanide			
9	MW10_101518		MW10	Center of water column	10/15/2018	11:28:00 AM	21 to 33	Investigate AOC 2, AOC 4 and AOC 5				
10	MW13A_101718		MW13	Bottom of water column	10/17/2018	3:30:00 PM	65 to 70	Investigate AOC 2 and AOC 4				
11	MW13B_101518			Center of water column	10/15/2018	3:03:00 PM	25 to 35					
12	GWDUP01_101718	Duplicate	MW07	Center of water column	10/17/2018	9:45:00 AM	NA					
	MS/MSD-GW01_101718	MS/MSD	MW07		10/17/2018	9:45:00 AM	NA					
	GWFB01_101618	Field Blank			10/16/2018	3:30:00 PM	NA	ΩΑ/ΩC				
NA	TB01_101518		NA	NA	10/15/2018	NA	NA					
	GWTB02_101618	Trip Blank			10/16/2018	NA	NA		TCL VOCs			
	GWTB03_101718				10/17/2018	NA	NA					
			Boring	GROUNDWA	TER - EMERGING C	ONTAMINANTS	Well Screen Interval					
No.	Sample Name	Sample Type	Location	Target Sample Depth	Date	Time	(feet bgs)	Rationale	Analysis			
1	MW01_101718		MW01		10/17/2018	5:00:00 PM	23 to 35	Investigate AOC 2 and AOC 4	1,4-dioxane and PFAS			
2	MW05A_101718		MW05A		10/17/2018	3:00:00 PM	60 to 65	Investigate AOC 2, AOC 4 and AOC 5	1,4-dioxane and PFAS			
3	MW07_101618	Grab										
		Grab	MW07		10/16/2018	2:50:00 PM	20 to 32	Investigate AOC 2, AOC 3, and AOC 4	PFAS			
4	MW07_101718	Grab	MW07 MW07	Center of water column	10/16/2018 10/17/2018	2:50:00 PM 9:45:00 AM	20 to 32 20 to 32	Investigate AOC 2, AOC 3, and AOC 4 Investigate AOC 2, AOC 3, and AOC 4				
4 5	MW07_101718 GWDUP01_101618			Center of water column					PFAS			
		Grab Duplicate	MW07	Center of water column	10/17/2018	9:45:00 AM	20 to 32		PFAS 1,4-dioxane			
5	GWDUP01_101618	Duplicate	MW07 MW07	Center of water column	10/17/2018 10/16/2018	9:45:00 AM 2:50:00 PM	20 to 32 NA	Investigate AOC 2, AOC 3, and AOC 4	PFAS 1,4-dioxane PFAS			
5	GWDUP01_101618 GWDUP01_101718		MW07 MW07 MW07	Center of water column	10/17/2018 10/16/2018 10/17/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM	20 to 32 NA NA		PFAS 1,4-dioxane PFAS 1,4-dioxane			
5	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618	Duplicate MS/MSD	MW07 MW07 MW07 MW07		10/17/2018 10/16/2018 10/17/2018 10/16/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM	20 to 32 NA NA NA	Investigate AOC 2, AOC 3, and AOC 4	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS			
5	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718	Duplicate	MW07 MW07 MW07 MW07 MW07	Center of water column	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM	20 to 32 NA NA NA NA	Investigate AOC 2, AOC 3, and AOC 4	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane			
5	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718 GWFB01_101618	Duplicate MS/MSD	MW07 MW07 MW07 MW07 MW07 NA		10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 10/16/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM	20 to 32 NA NA NA NA NA	Investigate AOC 2, AOC 3, and AOC 4	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS			
5	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718 GWFB01_101618 GWFB02_101718	Duplicate MS/MSD	MW07 MW07 MW07 MW07 MW07 NA		10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/16/2018 10/17/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM	20 to 32 NA NA NA NA NA	Investigate AOC 2, AOC 3, and AOC 4	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS			
5 6 NA	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718 GWFB01_101618 GWFB02_101718	Duplicate MS/MSD Field Blank	MW07 MW07 MW07 MW07 MW07 NA NA NA	NA	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 SOIL VAPOR	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM	20 to 32 NA NA NA NA NA NA Sample Depth	Investigate AOC 2, AOC 3, and AOC 4	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane			
5 6 NA	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718 GWFB01_101618 GWFB02_101718	Duplicate MS/MSD Field Blank	MW07 MW07 MW07 MW07 MW07 NA NA NA	NA	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 SOIL VAPOR Date	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM	20 to 32 NA NA NA NA NA NA Sample Depth (feet bgs)	Investigate AOC 2, AOC 3, and AOC 4	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane			
5 6 NA No. 1	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718 GWFB01_101618 GWFB02_101718 Sample Name SV01_100818	Duplicate MS/MSD Field Blank	MW07 MW07 MW07 MW07 MW07 NA NA NA SV01	NA Target Sample Depth	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 SOIL VAPOR Date 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM	20 to 32 NA NA NA NA NA NA Sample Depth (feet bgs) 5	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane			
5 6 NA No. 1	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718 GWFB01_101618 GWFB02_101718 SV01_100818 SV02_100818	Duplicate MS/MSD Field Blank	MW07 MW07 MW07 MW07 MW07 MW07 MW07 MW07 SV01 SV02	NA Target Sample Depth	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 10/17/2018 10/17/2018 10/18/2018 10/8/2018 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM 10:45:00 AM 10:45:00 AM	20 to 32 NA NA NA NA NA NA Sample Depth (feet bgs) 5 5	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane			
5 6 NA No. 1 2 3	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718 GWFB01_101618 GWFB02_101718 SV01_100818 SV01_100818 SV02_100818	Duplicate MS/MSD Field Blank	MW07 MW07 MW07 MW07 MW07 MW07 MW07 SV01 SV02 SV03	NA Target Sample Depth	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 SOIL VAPOR Date 10/8/2018 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM 10:45:00 AM 10:45:00 AM 10:54:00 AM	20 to 32 NA NA NA NA NA NA Sample Depth (feet bgs) 5 5 5 5 5	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale Investigate AOC 4 Vapor Intrusion Assessment -	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane			
5 6 NA No. 1 2 3 4	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 MS/MSD-GW01_101718 GWFB01_101618 GWFB02_101718 SV01_100818 SV01_100818 SV03_100818 SV03_100818	Duplicate MS/MSD Field Blank	MW07 MW07 MW07 MW07 MW07 MW07 MW07 SV01 SV03 SSV01	NA Target Sample Depth 5 feet below grade surface	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/16/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/18/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM 10:45:00 AM 10:48:00 AM 10:54:00 AM 9:59:00 AM	20 to 32 NA NA NA NA NA NA Sample Depth (feet bgs) 5 5 5 5 5 5 5 0.2	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale Investigate AOC 4	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane			
5 NA NA 1 2 3 4 5	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 GWFB01_101618 GWFB02_101718 SV01_100818 SV02_100818 SV03_100818 SSV01_100818	Duplicate MS/MSD Field Blank	MW07 SV01 SV02 SV03 SSV01 SSV02	NA Target Sample Depth 5 feet below grade surface	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/16/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/18/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM 10:45:00 AM 10:45:00 AM 10:54:00 AM 9:59:00 AM 10:21:00 AM	20 to 32 NA NA NA NA NA NA Sample Depth (feet bgs) 5 5 5 5 5 5 0.2 0.2	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale Investigate AOC 4 Vapor Intrusion Assessment -	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane Analysis			
5 6 NA No. 1 2 3 4 5 6	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 GWFB01_101618 GWFB02_101718 SW01_100818 SV01_100818 SV03_100818 SSV03_100818 SSV02_100818	Duplicate MS/MSD Field Blank	MW07 MW07 MW07 MW07 MW07 MW07 MW07 MW07 MW07 SV01 SV02 SV03 SSV02 SSV03	NA Target Sample Depth 5 feet below grade surface	10/17/2018 10/16/2018 10/16/2018 10/16/2018 10/17/2018 10/16/2018 10/17/2018 SOIL VAPOR Date 10/8/2018 10/8/2018 10/8/2018 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM 10:45:00 AM 10:48:00 AM 10:54:00 AM 9:59:00 AM 10:21:00 AM 9:34:00 AM	20 to 32 NA NA NA NA NA NA Sample Depth (feet bgs) 5 5 5 5 5 5 0.2 0.2 0.2	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale Investigate AOC 4 Vapor Intrusion Assessment -	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane Analysis			
5 6 NA No. 1 2 3 4 5 6 7	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 GWFB01_101618 GWFB02_101718 SW02_101718 SV01_100818 SV02_100818 SV03_100818 SSV03_100818 SSV03_100818 SSV03_100818	Duplicate MS/MSD Field Blank	MW07 MV07 SV01 SV02 SV03 SSV01 SSV03 SSV01 SSV03 SSV01	NA Target Sample Depth 5 feet below grade surface 2 inches below concrete slab	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/16/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM 10:45:00 AM 10:48:00 AM 10:45:00 AM 10:54:00 AM 9:59:00 AM 9:34:00 AM	20 to 32 NA NA NA NA NA NA NA Sample Depth (feet bgs) 5 5 5 5 5 5 5 5 0.2 0.2 0.2 0.2 0.2 0.2	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale Investigate AOC 4 Vapor Intrusion Assessment - Sub-Slab Vapor	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane Analysis			
5 6 NA No. 1 2 3 4 5 6 7 8	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 GWFB01_101618 GWFB02_101718 Sample Name SV01_100818 SV02_100818 SV03_100818 SSV03_100818 SSV03_100818 ASSV03_100818 ASSV03_100818 ASSV03_100818	Duplicate MS/MSD Field Blank	MW07 SV01 SV02 SV03 SSV01 SSV02 SSV03 SSV01 SSV01 SSV02 SSV03	NA Target Sample Depth 5 feet below grade surface 2 inches below concrete slab	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/16/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM 10:45:00 AM 10:48:00 AM 10:54:00 AM 9:59:00 AM 9:59:00 AM 9:59:00 AM 9:59:00 AM	20 to 32 NA NA NA NA NA NA NA Sample Depth (feet bgs) 5 5 5 5 5 5 5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 NA NA	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale Investigate AOC 4 Vapor Intrusion Assessment - Sub-Slab Vapor	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane Analysis			
5 6 NA No. 1 2 3 4 5 6 7 8 9	GWDUP01_101618 GWDUP01_101718 MS/MSD-GW01_101618 GWFB01_101618 GWFB02_101718 Sample Name SV01_100818 SV02_100818 SV03_100818 SSV03_100818 SSV03_100818 SSV03_100818 ASSV03_100818 IA01_100818 IA01_100818	Duplicate MS/MSD Field Blank Sample Type Grab	MW07 SV01 SV02 SV03 SSV01 SSV02 SSV03 SSV01 SSV02 SSV03 SSV02 SSV03	NA Target Sample Depth 5 feet below grade surface 2 inches below concrete slab Indoor Air	10/17/2018 10/16/2018 10/17/2018 10/16/2018 10/16/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/17/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018 10/8/2018	9:45:00 AM 2:50:00 PM 9:45:00 AM 2:50:00 PM 9:45:00 AM 3:30:00 PM 5:30:00 PM 5:30:00 PM 10:45:00 AM 10:48:00 AM 10:45:00 AM 10:54:00 AM 9:59:00 AM 9:59:00 AM 9:59:00 AM 10:21:00 AM 9:34:00 AM	20 to 32 NA NA NA NA NA NA NA Sample Depth (feet bgs) 5 5 5 5 5 5 5 5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 NA NA NA	Investigate AOC 2, AOC 3, and AOC 4 QA/QC Rationale Investigate AOC 4 Vapor Intrusion Assessment - Sub-Slab Vapor	PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane PFAS 1,4-dioxane Analysis			

AOC 2 - Historical site use

AOC 3 - Historical and suspect petroleum storage

AOC 4 - Tetrachloroethene (PCE) and trichloroethene (TCE) impacts to soil vapor

AOC 5 - Historical use of adjoining properties

<u>Notes:</u>

Sample depth intervals were determined in the field.
 Soil samples were analyzed for New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (6 NYCRR) Part 375-list compounds.

3. If field evidence of contamination was noted (e.g., PID readings above background, staining, odor), a fourth sample was collected to document the vertical extent of impacted soil.

4. VOC = Volatile organic compound
5. SVOC = Semivolatile organic compound
6. PCB = Polychlorinated biphenyl

6. PCB = Polychlorinated biphenyl
7. TCL = Target Compound List
8. TCLP = Toxicity Characteristic Leachate Procedure
8. TAL = Target Analyte List
9. QA/QC = Quality assurance/quality control
10. NA = Not applicable
11. PFAS = Perfluorinated chemicals
12. * Only complex collected from bioteria fill ware or

12. * = Only samples collected from historic fill were analyzed for pesticides and herbicides.

Table 2 Remedial Investigation Report Monitoring Well Construction Summary

37-11 30th Street Long Island City, New York BCP Site No. C241211 Langan Project No. 170512301

Well ID	Date Installed	Equipment Used	Associated Soil Boring	Inner Well Diameter	Total Well Depth	Screened Interval	Screen Length	Screen Material	Riser Interval	Riser Material	Sand Pack Interval	Bentonite Seal Interval	Top of Riser Elevation
				(inches)	(feet bgs)	(feet bgs)	(feet)		(feet bgs)		(feet bgs)	(feet bgs)	(NAVD88)
MW01	10/4/2018	Geoprobe 8140LC Sonic	SB01	2	40	23 to 35	12	0.01-inch slotted PVC	0 to 23	PVC	21 to 40	19 to 21	44.22
MW02	10/4/2018	Geoprobe 8140LC Sonic	SB02	2	35	23 to 35	12	0.01-inch slotted PVC	0 to 23	PVC	21 to 35	19 to 21	43.65
MW03	10/4/2018	Geoprobe 8140LC Sonic	SB03	2	40	20 to 32	12	0.01-inch slotted PVC	0 to 20	PVC	18 to 40	16 to 18	42.47
MW04	10/4/2018	Geoprobe 8140LC Sonic	SB04	2	35	20 to 32	12	0.01-inch slotted PVC	0 to 20	PVC	18 to 35	16 to 18	42.25
MW05A	9/28/2018	Geoprobe 8140LC Sonic	SB05	2	65	60 to 65	5	0.01-inch slotted PVC	0 to 60	PVC	58 to 65	56 to 58	42.49
MW05B	10/1/2018	Geoprobe 8140LC Sonic	NA	2	32	20 to 32	12	0.01-inch slotted PVC	0 to 20	PVC	18 to 35	16 to 18	42.48
MW06	9/27/2018	Geoprobe 8140LC Sonic	SB06	2	30	18 to 30	12	0.01-inch slotted PVC	0 to 18	PVC	16 to 30	14 to 16	40.45
MW07	9/27/2018	Geoprobe 8140LC Sonic	SB07	2	32	20 to 32	12	0.01-inch slotted PVC	0 to 20	PVC	18 to 32	16 to 18	40.01
MW10	10/4/2018	Geoprobe 8140LC Sonic	SB10	2	35	21 to 33	12	0.01-inch slotted PVC	0 to 21	PVC	19 to 35	17 to 19	43.22
MW13A	10/3/2018	Geoprobe 8140LC Sonic	SB13	2	72	65 to 70	5	0.01-inch slotted PVC	0 to 65	PVC	63 to 72	20 to 63	44.02
MW13B	10/3/2018	Geoprobe 8140LC Sonic	NA	2	35	25 to 35	10	0.01-inch slotted PVC	0 to 25	PVC	23 to 35	21 to 23	43.59

Notes:

1. PVC = Polyvinyl Chloride

2. bgs = below ground surface

3. NAVD88 = North American Vertical Datum of 1988

4. Well elevations are based on a survey performed by Langan on October 15, 16 and 17, 2018.

5. All elevations are in reference to the North American Vertical Datum of 1988 (NAVD88).

6. Well elevations and depth to water readings were measured to a marked location at the top of each well casing.

7. Depth to water readings are measured in feet below top of the well casing.

8. NA = Not Applicable

Table 3 Remedial Investigation Report Groundwater Elevation Data

37-11 30th Street Long Island City, New York BCP Site No. C241211 Langan Project No. 170512301

Well ID	Well Elevation		10/15/2018			10/16/2018			10/17/2018	
weirid	Well Elevation	Depth to Water	GW Elevation	PID reading (ppm)	Depth to Water	GW Elevation	PID reading (ppm)	Depth to Water	GW Elevation	PID reading (ppm)
MW01	44.22	~	~	~	~	~	~	26.60	17.62	0.0
MW02	43.65	26.00	17.65	0.0	~	~	~	~	~	~
MW03	42.27	24.67	17.60	~	24.68	17.59	1.8	~	~	~
MW04	42.25	24.70	17.55	~	~	~	~	24.70	17.55	0.0
MW05A	42.49	25.05	17.44	~	~	~	~	26.40	16.09	0.0
MW05B	42.48	~	~	~	~	~	~	25.06	17.42	4.9
MW06	40.45	22.98	17.47	~	23.01	17.44	2.8	~	~	~
MW07	40.01	22.76	17.25	~	~	~	0.4	22.80	17.21	~
MW10	43.22	25.60	17.62	0.0	~	~	~	~	~	~
MW13A	44.02	27.77	16.25	~	~	~	~	27.73	16.29	2.7
MW13B	43.59	25.57	18.02	0.0	~	~	~	~	~	~

Notes:

1. Well elevations are based on a survey performed by Langan on October 17, 2018.

2. All elevations are referenced to the North American Vertical Datum of 1988 (NAVD88).

3. Well elevations and depth to water readings were measured to a marked location at the top of each well casing.

4. Depth to water readings are measured in feet below top of the well casing.

5. ~ = Well was not gauged.

6. PID = Photoionization Detection

7. GW = Groundwater

Location		NYSDEC Part 375		SB01	SB01	SB01	SB02	SB02	SB02	SB03	SB03	SB03	SB03	SB04	SB04	SB04	SB04	SB05
Sample ID	NYSDEC Part 375		NYSDEC Part 375	SB01 0.5-1.5	SB01 6.5-7.5	SB01 26-27	SB02 0.5-1.5	SB02 3-4	SB02 26-27	SB03 0.5-1.5	SB03 22.5-23.5	SB03 25-26	SB03 32-33	SB04 0-1	SB04 23.5-24.5	SBDUP02 100118	SB04_34-35	SB05 0-2
Laboratory ID	Unrestricted Use	Protection of	Restricted Use -	L1840256-01	L1840256-02	L1840256-03	L1840256-04	L1840256-05	L1840256-06	L1839661-01	L1839661-02	L1839661-03	L1839661-04	L1839481-01	L1839481-02	L1839481-04	L1839481-03	L1839310-01
Sample Date	SCOs	Groundwater	Restricted	10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/2/2018	10/2/2018	10/2/2018	10/2/2018	10/1/2018	10/1/2018	10/1/2018	10/1/2018	9/28/2018
Sample Depth (feet bgs)		SCOs	Residential	0.5-1.5	6.5-7.5	26-27	0.5-1.5	3-4	26-27	0.5-1.5	22.5-23.5	25-26	32-33	0-1	23.5-24.5	23.5-24.5	34-35	0-2
Volatile Organic Compounds (mg/kg)		-	•					•	•		•			•		•		
1,1,1,2-Tetrachloroethane	~	~	~	0.00048 U	0.00045 U	0.00049 U	0.0004 U	0.00054 U	0.00052 U	0.0007 U	0.00059 U	0.00049 U	0.00061 U	0.00054 U	0.00056 U	0.00048 U	0.00056 U	0.033 U
1,2,4,5-Tetramethylbenzene	~	~	~	0.0019 U	0.0018 U	0.0019 U	0.0016 U	0.0022 U	0.0021 U	0.0028 U	0.0024 U	0.002 U	0.0024 U	0.0022 U	0.0022 U	0.0019 U	0.0022 U	0.014 J
Acetone	0.05	0.05	100	0.005 J	0.023 J	0.011 J	0.0087 J	0.036 J	0.018 J	0.032	0.012 U	0.0076 J	0.0087 J	0.016 J	0.015 J	0.005 J	0.011 UJ	<i>0.66</i> UJ
Benzene	0.06	0.06	4.8	0.00048 U	0.00045 U	0.00049 U	0.0004 U	0.00054 U	0.00052 U	0.0007 U	0.00059 U	0.00049 U	0.00061 U	0.00054 U	0.00056 U	0.00048 U	0.00056 U	0.02 J
Chloroform	0.37	0.37	49	0.00013 J	0.0013 U	0.0014 U	0.0012 U	0.0016 U	0.0016 U	0.00044 J	0.0018 U	0.0015 U	0.0018 U	0.0016 U	0.0017 U	0.00013 J	0.0036	0.099 U
Ethylbenzene	1	1	41	0.00096 U	0.00089 U	0.00097 U	0.00081 U	0.0011 U	0.001 U	0.0014 U	0.0012 U	0.00098 U	0.0012 U	0.0011 U	0.0011 U	0.00095 U	0.0011 U	0.066 U
M,P-Xylene	~	~	~	0.0019 U	0.0018 U	0.0019 U	0.0016 U	0.0022 U	0.0021 U	0.0028 U	0.0024 U	0.002 U	0.0024 U	0.0022 U	0.0022 U	0.0019 U	0.0022 U	0.13 U
Methyl Ethyl Ketone (2-Butanone)	0.12	0.12	100	0.0096 U	0.0089 U	0.0097 U	0.0081 U	0.011 U	0.01 U	0.014 UJ	0.012 UJ	0.0098 UJ	0.012 UJ	0.011 U	0.011 U	0.0095 U	0.011 U	<i>0.66</i> UJ
Methyl Isobutyl Ketone (4-Methyl-2-Pentanor	ne ~	~	~	0.0096 U	0.0089 U	0.0097 U	0.0081 U	0.011 U	0.01 U	0.014 UJ	0.012 UJ	0.0098 UJ	0.012 UJ	0.011 U	0.011 U	0.0095 U	0.011 U	0.66 U
Naphthalene	12	12	100	0.0038 U	0.0036 U	0.0039 U	0.0032 U	0.0044 U	0.0042 U	0.0056 U	0.0048 U	0.0039 U	0.0049 U	0.0043 U	0.0044 U	0.0038 U	0.0045 U	1.1
o-Xylene (1,2-Dimethylbenzene)	~	~	~	0.00096 U	0.00089 U	0.00097 U	0.00081 U	0.0011 U	0.001 U	0.0014 U	0.0012 U	0.00098 U	0.0012 U	0.0011 U	0.0011 U	0.00095 U	0.0011 U	0.066 U
Tetrachloroethene (PCE)	1.3	1.3	19	0.00048 U	0.00045 U	0.00049 U	0.0004 U	0.00054 U	0.00052 U	0.00086	0.00059 U	0.00049 U	0.00061 U	0.00054 U	0.00056 U	0.00048 U	0.00056 U	0.8
Toluene	0.7	0.7	100	0.00096 U	0.00089 U	0.00097 U	0.00081 U	0.0011 U	0.001 U	0.0014 U	0.0012 U	0.00098 U	0.0012 U	0.0011 U	0.0011 U	0.00095 U	0.0011 U	0.066 U
Total Xylenes	0.26	1.6	100	0.00096 U	0.00089 U	0.00097 U	0.00081 U	0.0011 U	0.001 U	0.0014 U	0.0012 U	0.00098 U	0.0012 U	0.0011 U	0.0011 U	0.00095 U	0.0011 U	0.066 U
Semivolatile Organic Compounds (mg/kg								•	1		1 1		1			I		
2-Methylnaphthalene	~	~	~	0.23 U	0.22 U	0.21 U	0.05 J	0.21 U	0.22 U	0.038 J	0.24 U	0.23 U	0.24 U	0.22 U	0.22 U	0.21 U	0.25 U	0.52
2-Methylphenol (o-Cresol)	0.33	0.33	100	0.19 U	0.18 U	0.18 U	0.19 U	0.17 U	0.19 U	0.19 U	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.17 U	0.21 U	0.2 U
3 & 4 Methylphenol (m&p Cresol)	0.33	~	100	0.27 U	0.26 U	0.25 U	0.27 U	0.25 U	0.27 U	0.27 U	0.29 U	0.28 U	0.29 U	0.27 U	0.27 U	0.25 U	0.3 U	0.28 U
Acenaphthene	20	98	100	0.15 U	0.14 U	0.14 U	0.15	0.14 U	0.15 U	0.15 U	0.16 U	0.16 U	0.16 U	0.15 U	0.15 U	0.14 U	0.17 U	0.18
Acenaphthylene	100	107	100	0.15 U	0.14 U	0.14 U	0.15 U	0.14 U	0.15 U	0.15 U	0.16 U	0.16 U	0.16 U	0.15 U	0.15 U	0.14 U	0.17 U	0.16
Acetophenone	~	~	~	0.19 U	0.18 U	0.18 U	0.19 U	0.17 U	0.19 U	0.053 J	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.17 U	0.21 U	0.2 U
Anthracene	100	1,000	100	0.11 U	0.11 U	0.11 U	0.33	0.1 U	0.11 U	0.11 U	0.12 U	0.12 U	0.12 U	0.11 U	0.11 U	0.1 U	0.13 U	1.1
Benzo(a)Anthracene	1	1	1	0.12	0.09 J	0.065 J	0.9	0.064 J	0.059 J	0.025 J	0.12 U	0.12 U	0.12 U	0.037 J	0.11 U	0.1 U	0.13 U	<u>1.9</u>
Benzo(a)Pyrene	1	22	1	0.12 J	0.099 J	0.078 J	0.83	0.082 J	0.076 J	0.15 U	0.16 U	0.16 U	0.16 U	0.15 U	0.15 U	0.14 U	0.17 U	2.1
Benzo(b)Fluoranthene	1	1.7	1	0.14	0.11	0.082 J	1.1	0.079 J	0.082 J	0.033 J	0.12 U	0.12 U	0.12 U	0.033 J	0.11 U	0.1 U	0.13 U	2.4
Benzo(g,h,i)Perylene	100	1,000	100	0.15 U	0.14 U	0.14 U	0.48	0.14 U	0.15 U	0.063 J	0.16 U	0.16 U	0.16 U	0.15 U	0.15 U	0.14 U	0.17 U	1.3
Benzo(k)Fluoranthene	0.8	1.7	3.9	0.05 J	0.052 J	0.032 J	0.36	0.038 J	0.035 J	0.11 U	0.12 U	0.12 U	0.12 U	0.11 U	0.11 U	0.1 U	0.13 U	0.97
Biphenyl (Diphenyl)	~	~	~	0.43 U	0.41 U	0.4 U	0.44 U	0.39 U	0.42 U	0.43 U	0.45 U	0.44 U	0.46 U	0.43 U	0.42 U	0.4 U	0.48 U	0.15 J
Bis(2-Ethylhexyl) Phthalate	~	~	~	0.19 U	0.18 U	0.18 U	0.19 U	0.17 U	0.19 U	0.27	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.17 U	0.21 U	0.2 U
Carbazole	~	~	~	0.19 U	0.18 U	0.18 U	0.23	0.17 U	0.19 U	0.19 U	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.17 U	0.21 U	0.22
Chrysene	1	1	3.9	0.11	0.092 J	0.065 J	0.93	0.061 J	0.062 J	0.065 J	0.12 U	0.12 U	0.12 U	0.034 J	0.11 U	0.1 U	0.13 U	2.2
Dibenz(a,h)Anthracene	0.33	1,000	0.33	0.11 U	0.11 U	0.11 U	0.11	0.1 U	0.11 U	0.11 U	0.12 U	0.12 U	0.12 U	0.11 U	0.11 U	0.1 U	0.13 U	0.28
Dibenzofuran	7	210	59	0.19 U	0.18 U	0.18 U	0.12 J	0.17 U	0.19 U	0.19 U	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.17 U	0.21 U	0.12 J
Fluoranthene	100	1,000	100	0.054 J	0.038 J	0.11 U	2.3	0.1 U	0.11 U	0.039 J	0.12 U	0.12 U	0.12 U	0.08 J	0.11 U	0.1 U	0.13 U	4
Fluorene	30	386	100	0.19 U	0.18 U	0.18 U	0.12 J	0.17 U	0.19 U	0.19 U	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.17 U	0.21 U	0.73
Indeno(1,2,3-c,d)Pyrene	0.5	8.2	0.5	0.15 U	0.14 U	0.14 U	0.5	0.14 U	0.15 U	0.026 J	0.16 U	0.16 U	0.16 U	0.15 U	0.15 U	0.14 U	0.17 U	<u>1.3</u>
Naphthalene	12	12	100	0.19 U	0.18 U	0.18 U	0.11 J	0.17 U	0.19 U	0.083 J	0.2 U	0.19 U	0.2 U	0.19 U	0.19 U	0.17 U	0.21 U	0.36
Phenanthrene	100	1000	100	0.03 J	0.11	0.11	2.1	0.1	0.11 U	0.049 J	0.12 U	0.12 U	0.12 U	0.074 J	0.11	0.1 U	0.13 U	5.1
Phenol	0.33	0.33	100	0.19 U	0.18 U	0.18 U	0.19 U	0.17 U	0.19 U	0.05 J	0.2 U	0.12 U	0.2 U	0.19 U	0.19	0.17 U	0.21 U	0.2 U
Pyrene	100	1,000	100	0.065 J	0.048 J	0.10 U	1.8	0.1	0.10 U	0.051 J	0.12 U	0.13 U	0.12 U	0.07 J	0.11	0.1 U	0.13 U	4.2
1 910110	100	1,000	100	0.000 0	0.0-0 0	0.11 0	1.0	0.1 0	0.11 0	0.001 0	0.12 0	0.12 0	0.12 0	0.07 0	0.11 0	0.1 0	0.10 0	7.2

Location		NYSDEC Part 375		SB05	SB05	SB05	SB06	SB06	SB06	SB07	SB07	SB07	SB08	SB08	SB08	SB09	SB09	SB09
Sample ID	NYSDEC Part 375		NYSDEC Part 375	SB05_22-23	SB05 45-46	SB05 64-65	SB06_1-2	SB06 21.5-22.5	SB06 29-30	SB07 0-2	SB07_3-5	SB07 21-23	SB08 0-1	SB08 1.5-2.5	SB08 21-22	SB09 0.5-1.5	SB09 3-4	SB09_22-23
Laboratory ID	Unrestricted Use	Protection of	Restricted Use -	L1839310-02	L1839310-03	L1839310-04	L1839010-01	L1839010-02	L1839010-03	L1839010-04	L1839010-05	L1839010-06	L1840500-01	L1840500-02	L1840500-03	L1840500-04	L1840500-05	L1840500-06
Sample Date	SCOs	Groundwater	Restricted	9/28/2018	9/28/2018	9/28/2018	9/27/2018	9/27/2018	9/27/2018	9/26/2018	9/26/2018	9/26/2018	10/5/2018	10/5/2018	10/5/2018	10/5/2018	10/5/2018	10/5/2018
Sample Depth (feet bgs)		SCOs	Residential	22-23	45-46	64-65	1-2	21.5-22.5	29-30	0-2	3-5	21-23	0-1	1.5-2.5	21-22	0.5-1.5	3-4	22-23
Volatile Organic Compounds (mg/kg)																		
1,1,1,2-Tetrachloroethane	~	~	~	0.00052 U	0.00049 U	0.0007 U	0.00042 U	0.00035 U	0.00049 U	0.00044 U	0.00051 U	0.00048 U	0.00045 U	0.00052 U	0.00054 U	0.00045 U	0.00056 U	0.00055 U
1,2,4,5-Tetramethylbenzene	~	~	~	0.0021 U	0.002 U	0.0028 U	0.0017 U	0.0014 U	0.002 U	0.0018 U	0.002 U	0.0019 U	0.0018 U	0.0021 U	0.0022 U	0.0018 U	0.0022 U	0.0022 U
Acetone	0.05	0.05	100	0.01 UJ	0.008 J	0.015 J	0.0057 J	0.008 J	0.023 J	0.023	0.018	0.0095 J	0.009 UJ	0.011 J	0.016 J	0.031 J	0.02 J	0.038 J
Benzene	0.06	0.06	4.8	0.00052 U	0.00049 U	0.0007 U	0.00042 U	0.00035 U	0.00049 U	0.00044 U	0.00051 U	0.00048 U	0.00045 U	0.00052 U	0.00054 U	0.00045 U	0.00056 U	0.00055 U
Chloroform	0.37	0.37	49	0.0015 U	0.0013 J	0.0021 U	0.0012 U	0.001 U	0.0019	0.0013 U	0.0015 U	0.0014 U	0.0013 U	0.0016 U	0.0016 U	0.0013 U	0.0017 U	0.0016 U
Ethylbenzene	1	1	41	0.001 U	0.00098 U	0.0014 U	0.00084 U	0.0007 U	0.00098 U	0.00089 U	0.001 U	0.00096 U	0.0009 U	0.001 U	0.0011 U	0.00089 U	0.0011 U	0.0011 U
M,P-Xylene	~	~	~	0.0021 U	0.002 U	0.0028 U	0.0017 U	0.0014 U	0.002 U	0.0018 U	0.002 U	0.0019 U	0.0018 U	0.0021 U	0.0022 U	0.0018 U	0.0022 U	0.0022 U
Methyl Ethyl Ketone (2-Butanone)	0.12	0.12	100	0.01 UJ	0.0098 UJ	0.014 UJ	0.0084 U	0.007 U	0.0098 U	0.0089 U	0.01 U	0.0096 U	0.009 U	0.01 U	0.011 U	0.0089 U	0.011 U	0.011 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanor		~	~	0.01 U	0.0098 U	0.014 U	0.0084 U	0.007 U	0.0098 U	0.0089 U	0.01 U	0.0096 U	0.009 U	0.01 U	0.011 U	0.0089 U	0.011 U	0.011 U
Naphthalene	12	12	100	0.0041 U	0.0039 U	0.0056 U	0.0033 U	0.0028 U	0.0039 U	0.0035 U	0.0041 U	0.0038 U	0.00097 J	0.0042 U	0.0043 U	0.0036 U	0.0045 U	0.0044 U
o-Xylene (1,2-Dimethylbenzene)	~	~	~	0.001 U	0.00098 U	0.0014 U	0.00084 U	0.0007 U	0.00098 U	0.00089 U	0.001 U	0.00096 U	0.0009 U	0.001 U	0.0011 U	0.00089 U	0.0011 U	0.0011 U
Tetrachloroethene (PCE)	1.3	1.3	19	0.00021 J	0.00049 U	0.0007 U	0.0051	0.00043	0.00049 U	0.00044 U	0.00051 U	0.0027	0.00045 U	0.00052 U	0.00054 U	0.00045 U	0.00056 U	0.00055 U
Toluene	0.7	0.7	100	0.001 U	0.00098 U	0.0014 U	0.00084 U	0.0007 U	0.00098 U	0.00048 J	0.001 U	0.00096 U	0.0009 U	0.001 U	0.0011 U	0.00089 U	0.0011 U	0.0011 U
Total Xylenes	0.26	1.6	100	0.001 U	0.00098 U	0.0014 U	0.00084 U	0.0007 U	0.00098 U	0.00089 U	0.001 U	0.00096 U	0.0009 U	0.001 U	0.0011 U	0.00089 U	0.0011 U	0.0011 UJ
Semivolatile Organic Compounds (mg/kg		-																
2-Methylnaphthalene	~	~	~	0.21 U	0.23 U	0.23 U	0.047 J	0.23 U	0.24 U	0.22 U	0.21 U	0.24 U	0.22 U	0.2 U	0.22 U	1.1	0.21 U	0.21 U
2-Methylphenol (o-Cresol)	0.33	0.33	100	0.18 U	0.19 U	0.19 U	0.18 U	0.19 U	0.2 U	0.18 U	0.17 U	0.2 U	0.18 U	0.17 U	0.19 U	0.031 J	0.17 U	0.18 U
3 & 4 Methylphenol (m&p Cresol)	0.33	~	100	0.26 U	0.28 U	0.28 U	0.26 U	0.27 U	0.28 U	0.26 U	0.25 U	0.29 U	0.26 U	0.25 U	0.27 U	0.089 J	0.25 U	0.26 U
Acenaphthene	20	98	100	0.14 U	0.15 U	0.15 U	0.14 U	0.15 U	0.16 U	0.14 U	0.14 U	0.16 U	0.15 U	0.14 U	0.15 U	0.98	0.14 U	0.14 U
Acenaphthylene	100	107	100	0.14 U	0.15 U	0.15 U	0.14 U	0.15 U	0.16 U	0.14 U	0.14 U	0.16 U	0.15 U	0.14 U	0.15 U	2.4	0.14 U	0.14 U
Acetophenone	~	~	~	0.18 U	0.19 U	0.19 U	0.18 U	0.19 U	0.2 U	0.18 U	0.17 U	0.2 U	0.18 U	0.17 U	0.19 U	0.18 U	0.17 U	0.18 U
Anthracene	100	1,000	100	0.11 U	0.12 U	0.12 U	0.11	0.11 U	0.12 U	0.11 U	0.1 U	0.12 U	0.11 U	0.1 U	0.11 U	4.2	0.1 U	0.11 U
Benzo(a)Anthracene	1	1	1	0.11 U	0.12 U	0.12 U	0.56	0.11 U	0.12 U	0.11 U	0.1 U	0.12 U	0.11 U	0.1 U	0.11 U	<u>6.1</u>	0.036 J	0.11 U
Benzo(a)Pyrene	1	22	1	0.14 U	0.15 U	0.15 U	0.5	0.15 U	0.16 U	0.14 U	0.14 U	0.16 U	0.15 U	0.14 U	0.15 U	<u>4.5</u>	0.14 U	0.14 U
Benzo(b)Fluoranthene	1	1.7	1	0.11 U	0.12 U	0.12 U	0.97	0.11 U	0.12 U	0.11 U	0.1 U	0.12 U	0.11 U	0.1 U	0.11 U	6.2	0.032 J	0.11 U
Benzo(g,h,i)Perylene	100	1,000	100	0.14 U	0.15 U	0.15 U	0.51	0.15 U	0.16 U	0.14 U	0.14 U	0.16 U	0.15 U	0.14 U	0.15 U	2.9	0.14 U	0.14 U
Benzo(k)Fluoranthene	0.8	1.7	3.9	0.11 U	0.12 U	0.12 U	0.4	0.11 U	0.12 U	0.11 U	0.1 U	0.12 U	0.11 U	0.1 U	0.11 U	1.7	0.1 U	0.11 U
Biphenyl (Diphenyl)	~	~	~	0.41 U	0.44 U	0.44 U	0.41 U	0.43 U	0.45 U	0.41 U	0.4 U	0.46 U	0.42 U	0.39 U	0.43 U	0.59	0.4 U	0.41 U
Bis(2-Ethylhexyl) Phthalate	~	~	~	0.18 U	0.19 U	0.19 U	0.18 U	0.19 U	0.2 U	0.18 U	0.17 U	0.2 U	0.18 U	0.17 U	0.19 U	0.18 U	0.17 U	0.18 U
Carbazole	~	~	~	0.18 U	0.19 U	0.19 U	0.1 J	0.19 U	0.2 U	0.18 U	0.17 U	0.2 U	0.18 U	0.17 U	0.19 U	1.7	0.17 U	0.18 U
Chrysene	1	1	3.9	0.11 U	0.12 U	0.12 U	0.75	0.11 U	0.12 U	0.11 U	0.1 U	0.12 U	0.11 U	0.1 U	0.11 U	<u>5.2</u>	0.025 J	0.11 U
Dibenz(a,h)Anthracene	0.33	1,000	0.33	0.11 U	0.12 U	0.12 U	0.12	0.11 U	0.12 U	0.11 U	0.1 U	0.12 U	0.11 U	0.1 U	0.11 U	0.65	0.1 U	0.11 U
Dibenzofuran	7	210	59	0.18 U	0.19 U	0.19 U	0.15 J	0.19 U	0.2 U	0.18 U	0.17 U	0.2 U	0.18 U	0.17 U	0.19 U	2.6	0.17 U	0.18 U
Fluoranthene	100	1,000	100	0.11 U	0.12 U	0.12 U	1.2	0.11 U	0.12 U	0.11 U	0.1 U	0.12 U	0.11 U	0.1 U	0.11 U	16	0.058 J	0.11 U
Fluorene	30	386	100	0.18 U	0.19 U	0.19 U	0.18 U	0.19 U	0.2 U	0.18 U	0.17 U	0.2 U	0.18 U	0.17 U	0.19 U	3.1	0.17 U	0.18 U
Indeno(1,2,3-c,d)Pyrene	0.5	8.2	0.5	0.14 U	0.15 U	0.15 U	0.49	0.15 U	0.16 U	0.14 U	0.14 U	0.16 U	0.15 U	0.14 U	0.15 U	<u>3.2</u>	0.14 U	0.14 U
Naphthalene	12	12	100	0.18 U	0.19 U	0.19 U	0.053 J	0.19 U	0.2 U	0.18 U	0.17 U	0.2 U	0.18 U	0.17 U	0.19 U	1.3	0.17 U	0.18 U
Phenanthrene	100	1000	100	0.11 U	0.12 U	0.12 U	1	0.11 U	0.12 U	0.11 U	0.1 U	0.12 U	0.11 U	0.1 U	0.11 U	20	0.058 J	0.11 U
Phenol	0.33	0.33	100	0.18 U	0.19 U	0.12 U	0.18 U	0.19 U	0.2 U	0.18 U	0.17 U	0.2 U	0.18 U	0.17 U	0.19 U	0.048 J	0.17 U	0.18 U
Pyrene	100	1,000	100	0.11 U	0.12 U	0.10 U	0.86	0.11 U	0.12 U	0.02 J	0.1 U	0.12 U	0.10 U	0.1 U	0.11 U	13	0.048 J	0.11 U
	100	1,000	100	0.11 0	0.12 0	0.12	0.00		0.12 0	0.02 0	0	0.12		00				0 0

Location		NYSDEC Part 375		SB09	SB10	SB10	SB10	SB11	SB11	SB11	SB11	SB12	SB12	SB12	SB13	SB13	SB13	SB13
Sample ID	NYSDEC Part 375		NYSDEC Part 375	SBDUP03 100518	SB10_1-2	SB10_6-7	SB10_24-25	SB11_0-1	SB11 6.5-7.5	SBDUP01_092718	SB11_22-23	SB12_0-2	SB12 2-4	SB12_22-23	SB13_0-1	SB13_6.5-7.5	SB13_28-29	SB13_68-69
Laboratory ID	Unrestricted Use	Protection of	Restricted Use -	L1840500-08	L1840256-07	L1840256-08	L1840256-09	L1839010-07	L1839010-08	L1839010-13	L1839010-09	L1839010-10	L1839010-11	L1839010-12	L1839661-05	L1839661-06	L1839661-07	L1839825-01
Sample Date	SCOs	Groundwater	Restricted	10/5/2018	10/4/2018	10/4/2018	10/4/2018	9/27/2018	9/27/2018	9/27/2018	9/27/2018	9/26/2018	9/26/2018	9/26/2018	10/2/2018	10/2/2018	10/2/2018	10/3/2018
Sample Depth (feet bgs)		SCOs	Residential	22-23	1-2	6-7	24-25	0-1	6.5-7.5	6.5-7.5	22-23	0-2	2-4	22-23	0-1	6.5-7.5	28-29	68-69
Volatile Organic Compounds (mg/kg)																		
1,1,1,2-Tetrachloroethane	~	~	~	0.00054 U	0.00055 U	0.00051 U	0.00055 U	0.029 U	0.00056 UJ	0.00059 U	0.00055 U	0.0005 U	0.00051 U	0.00049 U	0.00059 U	0.00056 U	0.0005 U	0.00057 U
1,2,4,5-Tetramethylbenzene	~	~	~	0.0022 U	0.0022 U	0.002 U	0.0022 U	0.11 U	0.0022 U	0.0024 U	0.0022 U	0.002 U	0.002 U	0.0019 U	0.0024 U	0.0022 U	0.002 U	0.0023 U
Acetone	0.05	0.05	100	0.031 J	0.0094 J	0.024 J	0.04 J	0.57 U	0.024 J	0.012 UJ	0.011 U	0.17	0.011	0.014 J	0.012 U	0.032	0.017	0.018
Benzene	0.06	0.06	4.8	0.00054 U	0.00055 U	0.00051 U	0.00055 U	0.029 U	0.00056 UJ	0.00059 U	0.00055 U	0.0005 U	0.00051 U	0.00049 U	0.00059 U	0.00056 U	0.0005 U	0.00057 U
Chloroform	0.37	0.37	49	0.0016 U	0.0017 U	0.0015 U	0.0016 U	0.02 J	0.0017 UJ	0.0018 U	0.0016 U	0.0015 U	0.0015 U	0.0015 U	0.0018 U	0.0017 U	0.0015 U	0.0017 U
Ethylbenzene	1	1	41	0.00054 J	0.0011 U	0.001 U	0.0011 U	0.057 U	0.0011 UJ	0.0012 U	0.0011 U	0.00099 U	0.001 U	0.00097 U	0.0012 U	0.0011 U	0.001 U	0.0011 U
M,P-Xylene	~	~	~	0.0019 J	0.0022 U	0.002 U	0.0022 U	0.11 U	0.0022 UJ	0.0024 U	0.0022 U	0.002 U	0.002 U	0.0019 U	0.0024 U	0.0022 U	0.002 U	0.0023 U
Methyl Ethyl Ketone (2-Butanone)	0.12	0.12	100	0.011 U	0.011 U	0.01 U	0.011 U	0.57 U	0.011 U	0.012 UJ	0.011 U	0.0099 U	0.01 U	0.0097 U	0.012 UJ	0.0039 J	0.01 UJ	0.011 UJ
Methyl Isobutyl Ketone (4-Methyl-2-Pentanon	ne ~	~	~	0.0032 J	0.011 U	0.01 U	0.011 U	0.57 U	0.011 UJ	0.012 U	0.011 U	0.0099 U	0.01 U	0.0097 U	0.012 UJ	0.011 UJ	0.01 UJ	0.011 U
Naphthalene	12	12	100	0.0043 U	0.0044 U	0.0041 U	0.0044 U	0.23 U	0.00088 J	0.002 J	0.0044 U	0.004 U	0.0041 U	0.0039 U	0.0047 U	0.0045 U	0.004 U	0.0046 U
o-Xylene (1,2-Dimethylbenzene)	~	~	~	0.00067 J	0.0011 U	0.001 U	0.0011 U	0.057 U	0.0011 UJ	0.0012 U	0.0011 U	0.00099 U	0.001 U	0.00097 U	0.0012 U	0.0011 U	0.001 U	0.0011 U
Tetrachloroethene (PCE)	1.3	1.3	19	0.00054 U	0.00055 U	0.00051 U	0.00055 U	0.88	0.0077 J	0.0016 J	0.0021	0.0005 U	0.00051 U	0.00046 J	0.00059 U	0.00036 J	0.0005 U	0.00057 U
Toluene	0.7	0.7	100	0.0011 U	0.0011 U	0.001 U	0.0011 U	0.056 J	0.0011 UJ	0.0012 U	0.0011 U	0.00099 U	0.001 U	0.00097 U	0.0012 U	0.0011 U	0.001 U	0.0011 U
Total Xylenes	0.26	1.6	100	0.0026 J	0.0011 U	0.001 U	0.0011 U	0.057 U	0.0011 U	0.0012 U	0.0011 U	0.00099 U	0.001 U	0.00097 U	0.0012 U	0.0011 U	0.001 U	0.0011 U
Semivolatile Organic Compounds (mg/kg)																		
2-Methylnaphthalene	~	~	~	0.22 U	0.21 U	0.2 U	0.22 U	0.1 J	0.23 U	0.23 U	0.22 U	0.2 U	0.2 U	0.24 U	0.23 U	0.23 U	0.21 U	0.24 U
2-Methylphenol (o-Cresol)	0.33	0.33	100	0.18 U	0.17 U	0.17 U	0.18 U	0.19 U	0.19 U	0.19 U	0.18 U	0.17 U	0.17 U	0.2 U	0.2 U	0.19 U	0.18 U	0.2 U
3 & 4 Methylphenol (m&p Cresol)	0.33	~	100	0.26 U	0.25 U	0.24 U	0.26 U	0.28 U	0.27 U	0.28 U	0.26 U	0.24 U	0.24 U	0.29 U	0.28 U	0.28 U	0.26 U	0.29 U
Acenaphthene	20	98	100	0.14 U	0.14 U	0.14 U	0.14 U	0.32	0.15 U	0.15 U	0.15 U	0.13 U	0.13 U	0.16 U	0.16 U	0.15 U	0.14 U	0.16 U
Acenaphthylene	100	107	100	0.14 U	0.14 U	0.14 U	0.14 U	0.042 J	0.15 U	0.15 U	0.15 U	0.13 U	0.13 U	0.16 U	0.16 U	0.15 U	0.14 U	0.16 U
Acetophenone	~	~	~	0.18 U	0.17 U	0.17 U	0.18 U	0.19 U	0.19 U	0.19 U	0.18 U	0.17 U	0.17 U	0.2 U	0.2 U	0.19 U	0.18 U	0.2 U
Anthracene	100	1,000	100	0.11 U	0.1 U	0.1 U	0.11 U	0.69	0.11 U	0.066 J	0.11 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
Benzo(a)Anthracene	1	1	1	0.11 U	0.051 J	0.042 J	0.042 J	<u>1.4</u>	0.08 J	0.11	0.11 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
Benzo(a)Pyrene	1	22	1	0.14 U	0.073 J	0.059 J	0.06 J	<u>1.3</u>	0.074 J	0.1 J	0.15 U	0.13 U	0.13 U	0.16 U	0.16 U	0.15 U	0.14 U	0.16 U
Benzo(b)Fluoranthene	1	1.7	1	0.11 U	0.079 J	0.061 J	0.065 J	1.7	0.1 J	0.13	0.11 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
Benzo(g,h,i)Perylene	100	1,000	100	0.14 U	0.14 U	0.14 U	0.14 U	0.83	0.042 J	0.056 J	0.15 U	0.13 U	0.13 U	0.16 U	0.16 U	0.15 U	0.14 U	0.16 U
Benzo(k)Fluoranthene	0.8	1.7	3.9	0.11 U	0.028 J	0.1 U	0.11 U	0.67	0.035 J	0.059 J	0.11 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
Biphenyl (Diphenyl)	~	~	~	0.42 U	0.4 U	0.39 U	0.41 U	0.44 U	0.43 U	0.44 U	0.42 U	0.38 U	0.38 U	0.46 U	0.44 U	0.44 U	0.41 U	0.45 U
Bis(2-Ethylhexyl) Phthalate	~	~	~	0.18 U	0.17 U	0.17 U	0.18 U	0.19 U	0.19 U	0.19 U	0.18 U	0.17 U	0.17 U	0.2 U	0.2 U	0.19 U	0.18 U	0.2 U
Carbazole	~	~	~	0.18 U	0.17 U	0.17 U	0.18 U	0.33	0.19 U	0.03 J	0.18 U	0.17 U	0.17 U	0.2 U	0.2 U	0.19 U	0.18 U	0.2 U
Chrysene	1	1	3.9	0.11 U	0.057 J	0.046 J	0.043 J	1.6	0.082 J	0.12	0.11 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
Dibenz(a,h)Anthracene	0.33	1,000	0.33	0.11 U	0.1 U	0.1 U	0.11 U	0.18	0.11 U	0.11 U	0.11 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
Dibenzofuran	7	210	59	0.18 U	0.17 U	0.17 U	0.18 U	0.26	0.19 U	0.19 U	0.18 U	0.17 U	0.17 U	0.2 U	0.2 U	0.19 U	0.18 U	0.2 U
Fluoranthene	100	1,000	100	0.11 U	0.1 U	0.1 U	0.11 U	3.5	0.16	0.25	0.11 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
Fluorene	30	386	100	0.18 U	0.17 U	0.17 U	0.18 U	0.25	0.19 U	0.027 J	0.18 U	0.17 U	0.17 U	0.2 U	0.2 U	0.19 U	0.18 U	0.2 U
Indeno(1,2,3-c,d)Pyrene	0.5	8.2	0.5	0.14 U	0.14 U	0.14 U	0.14 U	0.91	0.043 J	0.064 J	0.15 U	0.13 U	0.13 U	0.16 U	0.16 U	0.15 U	0.14 U	0.16 U
Naphthalene	12	12	100	0.18 U	0.17 U	0.17 U	0.18 U	0.29	0.19 U	0.026 J	0.18 U	0.17 U	0.17 U	0.2 U	0.2 U	0.19 U	0.18 U	0.2 U
Phenanthrene	100	1000	100	0.11 U	0.1 U	0.1 U	0.11 U	3.4	0.13 J	0.25 J	0.11 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
Phenol	0.33	0.33	100	0.18 U	0.17 U	0.17 U	0.18 U	0.19 U	0.19 U	0.19 U	0.18 U	0.17 U	0.17 U	0.2 U	0.2 U	0.19 U	0.18 U	0.2 U
Pyrene	100	1,000	100	0.11 U	0.1 U	0.1 U	0.11 U	2.8	0.14	0.21	0.10 U	0.1 U	0.1 U	0.12 U	0.12 U	0.12 U	0.11 U	0.12 U
		.,000		J J	.	U U	0			·					0 0	1 0		02 0

Notes:

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use, Restricted Use - Protection of Groundwater and Restricted Use Restricted - Residential Soil Cleanup Objectives (SCO).
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above Unrestricted Use SCOs are bolded.
- 4. Analytes detected with concentrations above Restricted Use Protection of Groundwater SCOs are shaded.
- 5. Analytes detected with concentrations above Restricted Use Restricted Residential SCOs are double underlined.
- 6. Analytical results with reporting limits (RL) above Unrestricted Use SCOs are italicized.
- 7. Sample SBDUP02_100118 is a duplicate sample of SB04_23.5-24.5; sample SBDUP03_100518 is a duplicate sample of SB09_22-23; and sample SBDUP01_092718 is a duplicate sample of SB11_6.5-7.5. 8. \sim = Regulatory limit for this analyte does not exist
- 9. bgs = below grade surface
- 10. mg/kg = milligrams per kilogram
- 11. NA = Not analyzed

<u>Qualifiers:</u>

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Location		NYSDEC Part 375		SB01	SB01	SB01	SB02	SB02	SB02	SB03	SB03	SB03	SB03	SB04	SB04	SB04	SB04	SB05
Sample ID	NYSDEC Part 375		NYSDEC Part 375	SB01 0.5-1.5	SB01 6.5-7.5	SB01 26-27	SB02 0.5-1.5	SB02 3-4	SB02 26-27	SB03 0.5-1.5	SB03 22.5-23.5	SB03 25-26	SB03 32-33	SB04 0-1	SB04 23.5-24.5	SBDUP02 100118	SB04_34-35	SB05 0-2
Laboratory ID	Unrestricted Use	Protection of	Restricted Use -	L1840256-01	L1840256-02	L1840256-03	L1840256-04	L1840256-05	L1840256-06	L1839661-01	L1839661-02	L1839661-03	L1839661-04	L1839481-01	L1839481-02	L1839481-04	L1839481-03	L1839310-01
Sample Date	SCOs	Groundwater	Restricted	10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/4/2018	10/2/2018	10/2/2018	10/2/2018	10/2/2018	10/1/2018	10/1/2018	10/1/2018	10/1/2018	9/28/2018
Sample Depth (feet bgs)	5005	SCOs	Residential	0.5-1.5	6.5-7.5	26-27	0.5-1.5	3-4	26-27	0.5-1.5	22.5-23.5	25-26	32-33	0-1	23.5-24.5	23.5-24.5	34-35	0-2
Pesticides (mg/kg)		5005		0.5-1.5	0.5-7.5	20-27	0.5-1.5	5-4	20-27	0.5-1.5	22.5-25.5	25-20		0-1	23.5-24.5	23.3-24.3	34-35	0-2
4,4'-DDD	0.0033	14	13	0.00179 U	0.0017 U	NA	0.00177 U	0.00165 U	NA	0.00183 U	NA	NA	NA	0.00176 U	NA	NA	NA	0.00188 U
4,4-DDD 4,4-DDE	0.0033	14	8.9	0.00179 U	0.0017 U	NA	0.00283	0.00165 U	NA	0.000493 J	NA	NA	NA	0.00176 U	NA	NA	NA	0.00188 U
4,4 -DDE 4,4 -DDT	0.0033	136	8.9 7.9	0.00336 U	0.0017 0	NA	0.00283 0.00553	0.00165 U 0.00309 U	NA	0.000493 J 0.00343 U	NA		NA	0.00178 U	NA	NA		
												NA					NA	0.00353 U
Dieldrin	0.005	0.1	0.2	0.00112 U	0.00106 U	NA	0.00111 U	0.00103 U	NA	0.00114 U	NA	NA	NA	0.0011 U	NA	NA	NA	0.00118 U
Endosulfan Sulfate	2.4	1,000	24	0.000747 U	0.000707 U	NA	0.000738 U	0.000688 U	NA	0.000763 U	NA	NA	NA	0.000734 U	NA	NA	NA	0.000784 U
Herbicides (mg/kg)	~	~	~	ND	ND	NA	ND	ND	NA	ND	NA	NA	NA	ND	NA	NA	NA	ND
Polychlorinated Biphenyls (mg/kg)				0.0070	0.0050	0.0040	0.0000	0.0005	0.000	0.0074	0.0004	0.0001	0.0004	0.0050	0.0000	0.0000 11	0.0000	0.0000
PCB-1254 (Aroclor 1254)	~	~	~	0.0379 U	0.0358 U	0.0349 U	0.0368 U	0.0335 U	0.036 U	0.0374 U	0.0384 U	0.0381 U	0.0394 U	0.0359 U	0.0369 U	0.0339 U	0.0398 U	0.0233 J
PCB-1260 (Aroclor 1260)	~	~	~	0.0379 U	0.0358 U	0.0349 U	0.0108 J	0.0335 U	0.036 U	0.0374 U	0.0384 U	0.0381 U	0.0394 U	0.0359 U	0.0369 U	0.0339 U	0.0398 U	0.0225 J
PCB-1262 (Aroclor 1262)	~	~	~	0.0379 U	0.0358 U	0.0349 U	0.0368 U	0.0335 U	0.036 U	0.0135 J	0.0384 U	0.0381 U	0.0394 U	0.0359 U	0.0369 U	0.0339 U	0.0398 U	0.0382 U
Total PCBs	0.1	3.2	1	0.0379 U	0.0358 U	0.0349 U	0.0108 J	0.0335 U	0.036 U	0.0135 J	0.0384 U	0.0381 U	0.0394 U	0.0359 U	0.0369 U	0.0339 U	0.0398 U	0.0458 J
Inorganics (mg/kg)																		1
Aluminum	~	~	~	12,600	3,970	2,920	9,260 J	3,030	1,800	5,360	7,680	3,760	2,230	6,850	6,450 J	2,730 J	3,180	10,000
Antimony	~	~	~	0.482 J	4.29 U	4.13 U	0.841 J	4.06 U	4.56 U	4.44 U	4.66 U	4.52 U	4.67 U	2.26 J	2.3 J	0.426 J	0.552 J	2.1 J
Arsenic	13	16	16	6.32	1.81	0.718 J	5.74 J	0.876	0.52 J	2.46	1.46	0.696 J	0.28 J	2.49	1.17	0.595 J	0.64 J	5.41
Barium	350	820	400	59	29.3	23.7	99.4 J	34.6	19.2	38.6	52.3	23.7	22.6	53.1	66.6 J	16.8 J	24.5	104
Beryllium	7.2	47	72	0.482	0.223 J	0.116 J	0.42 J	0.154 J	0.1 J	0.204 J	0.317 J	0.117 J	0.084 J	0.379 J	0.208 J	0.089 J	0.126 J	0.576
Cadmium	2.5	7.5	4.3	0.375 J	0.197 J	0.173 J	0.539 J	0.227 J	0.192 J	0.346 J	0.298 J	0.172 J	0.149 J	0.45 J	0.253 J	0.161 J	0.194 J	0.623 J
Calcium	~	~	~	782	1,270	22,300	2,110 J	569 J	8,710 J	72,300	1,900	21,300	24,900	4,300	19,600	15,200	14,000	15,300 J
Chromium, Hexavalent	1	19	110	0.917 U	0.298 J	0.856 U	0.933 U	0.837 U	0.92 U	0.924 U	0.971 U	0.955 U	0.995 U	<u>1,080</u> J	0.922 U	0.853 U	1.02 U	0.957 U
Chromium, Total	~	~	~	18.3	12.1	7.52	16.5 J	8.24	4.92	25	17	9.77	5.34	2920 J	15 J	6.97 J	7.34 J	14.5
Chromium, Trivalent	30	~	180	18	12 J	7.5	16	8.2	4.9	25	17	9.8	5.3	<u>1,800</u>	15 J	7 J	7.3	14
Cobalt	~	~	~	6.54	3.96	4.87	6.37 J	3.08	3.41	3.27	7.94	4.58	4.17	4.59	6.76 J	4.08 J	4.65	5.22
Copper	50	1,720	270	19.5	12.7	12.6	42.1 J	9.4 J	10.1 J	15.5	17.6	11.3	11.1	71.5	16.3 J	9.53 J	13.3	40.6
Cyanide	27	40	27	1.1 U	1 U	1 U	1.2 U	0.99 U	1.1 U	1.1 UJ	1.2 UJ	1.1 UJ	1.1 UJ	0.54 J	1.1 UJ	1 UJ	1.2 UJ	1.2 UJ
Iron	~	~	~	20,200	9,410	7,830	15,800 J	6,640	6,470	6,390	15,800	7,950	6,530	10,000	12,400 J	6,740 J	8,040	14,400
Lead	63	450	400	49.4	16.5	2.43 J	171 J	2.41 J	2.26 J	15.8	4.16 J	2.2 J	2.22 J	46.3	2.9 J	2.12 J	2.6 J	337
Magnesium	~	~	~	2,040	1,860	15,100	2,120 J	1,560	6,280	16,400	4,460	12,300	11,300	2,230	11,900	10,400	10,100	2,290
Manganese	1,600	2,000	2,000	250	260	286	287	360	342	134	366	155	148	344 J	206 J	159 J	167 J	496
Mercury	0.18	0.73	0.81	0.182	0.034 J	0.067 U	<u>29.9</u>	0.066 U	0.074 U	0.043 J	0.076 U	0.075 U	0.078 U	0.071 U	0.072 U	0.067 U	0.08 U	0.583
Nickel	30	130	310	10.7	6.97	8.78	12.2	6.15	6.76	8.17	16.2	9.18	7.83	38.5	14 .	7.58 J	8.6	10.5
Potassium	~	~	~	496	423	889	503 J	464	403	1,100	1,840	1,040	645	589 J	2,510 J	605 J	640 J	696
Selenium	3.9	4	180	0.857 J	0.257 J	1.65 U	0.804 J	0.39 J	0.63 J	1.78 U	0.252 J	1.81 U	1.87 U	0.75 J	1.81 U	0.386 J	0.465 J	1.17 J
Silver	2	8.3	180	0.892 U	0.858 U	0.826 U	0.914 U	0.812 U	0.913 U	0.888 U	0.933 U	0.903 U	0.934 U	0.882 U	0.904 U	0.805 U	0.969 U	0.929 U
Sodium	~	~	~	36.7 J	69.6 J	64.1 J	35.7 J	33.4 J	96.1 J	402	103 J	131 J	187 U	144 J	132 J	97.5 J	95.9 J	172 J
Thallium	~	~	~	1.78 U	1.72 U	1.65 U	1.83 U	1.62 U	1.82 U	1.78 U	1.86 U	1.81 U	1.87 U	0.326 J	1.81 U	1.61 U	1.94 U	1.86 U
Vanadium	~ ~	~ ~	~ ~	28	16.5	10.9	28.7	9.53	8.83	10.2	24.7	14	10.1	9.71	21.1 J	10.1 J	11.2	18.8
Zinc	~ 109	~ 2,480	~ 10,000	58.2	23.6	23.7	133 J	40.6 J	0.05 21 I	18.4	40.4	24.2	22.3	87.6	37.8	23.2	27	178
	109	2,400	10,000	JO.Z	23.0	23.7	133 J	40.0 J	ZI J	10.4	40.4	24.2	22.3	07.0	37.0	23.2	۷.	170

Table 4B Remedial Investigation Report Soil Sample Analytical Results - Pesticides, Herbicides, PCBs, and Inorganics

Location		NYSDEC Part 375		SB05	SB05	SB05	SB06	SB06	SB06	SB07	SB07	SB07	SB08	SB08	SB08	SB09	SB09	SB09
Sample ID	NYSDEC Part 375		NYSDEC Part 375	SB05 22-23	SB05 45-46	SB05 64-65	SB06 1-2	SB06 21.5-22.5	SB06 29-30	SB07 0-2	SB07_3-5	SB07 21-23	SB08 0-1	SB08 1.5-2.5	SB08 21-22	SB09 0.5-1.5	SB09 3-4	SB09 22-23
Laboratory ID	Unrestricted Use	Protection of	Restricted Use -	L1839310-02	L1839310-03	L1839310-04	L1839010-01	L1839010-02	L1839010-03	L1839010-04	L1839010-05	L1839010-06	L1840500-01	L1840500-02	L1840500-03	L1840500-04	L1840500-05	L1840500-06
Sample Date	SCOs	Groundwater	Restricted	9/28/2018	9/28/2018	9/28/2018	9/27/2018	9/27/2018	9/27/2018	9/26/2018	9/26/2018	9/26/2018	10/5/2018	10/5/2018	10/5/2018	10/5/2018	10/5/2018	10/5/2018
-	3005	SCOs	Residential	22-23				21.5-22.5		0-2			0-1	1.5-2.5	21-22	0.5-1.5	3-4	22-23
Sample Depth (feet bgs)		5005		22-23	45-46	64-65	1-2	21.3-22.5	29-30	0-2	3-5	21-23	0-1	1.5-2.5	21-22	0.5-1.5	5-4	22-23
Pesticides (mg/kg)	0.0022	1 /	10	NIA	ΝΙΔ	NIA	0.00170	NIA	NIA	0.00170	0.00167	NIA	0.00170	0.00150	NIA		0.00162	ΝΙΔ
4,4'-DDD	0.0033	14	13	NA	NA	NA	0.00173 U	NA	NA	0.00172 U	0.00167 U	NA	0.00178 U	0.00158 U	NA	0.00087 JPI	0.00162 U	NA
4,4'-DDE	0.0033	17	8.9	NA	NA	NA	0.00173 U	NA	NA	0.00172 U	0.00167 U	NA	0.00178 U	0.00158 U	NA	0.00176 U	0.00162 U	NA
4,4'-DDT	0.0033	136	7.9	NA	NA	NA	0.00324 U	NA	NA	0.00322 U	0.00314 U	NA	0.00335 U	0.00297 U	NA	0.0033 U	0.00304 U	NA
Dieldrin	0.005	0.1	0.2	NA	NA	NA	0.00108 U	NA	NA	0.00108 U	0.00104 U	NA	0.00112 U	0.000991 U	NA	0.0011 U	0.00101 U	NA
Endosulfan Sulfate	2.4	1,000	24	NA	NA	NA	0.00072 U	NA	NA	0.000717 U	0.000697 U	NA	0.000744 U	0.00066 U	NA	0.00174	0.000675 U	NA
Herbicides (mg/kg)	~	~	~	NA	NA	NA	ND	NA	NA	ND	ND	NA	ND	ND	NA	ND	ND	NA
Polychlorinated Biphenyls (mg/kg)		•	-							•		1	1		-	1		
PCB-1254 (Aroclor 1254)	~	~	~	0.0352 U	0.0395 U	0.0371 U	0.0348 U	0.0371 U	0.0384 U	0.0346 U	0.035 U	0.0402 U	0.0358 U	0.0329 U	0.0369 U	0.0361 U	0.0347 U	0.0341 U
PCB-1260 (Aroclor 1260)	~	~	~	0.0352 U	0.0395 U	0.0371 U	0.0348 U	0.0371 U	0.0384 U	0.0346 U	0.035 U	0.0402 U	0.0358 U	0.0329 U	0.0369 U	0.0361 U	0.0347 U	0.0341 U
PCB-1262 (Aroclor 1262)	~	~	~	0.0352 U	0.0395 U	0.0371 U	0.0348 U	0.0371 U	0.0384 U	0.0346 U	0.035 U	0.0402 U	0.0358 U	0.0329 U	0.0369 U	0.0361 U	0.0347 U	0.0341 U
Total PCBs	0.1	3.2	1	0.0352 U	0.0395 U	0.0371 U	0.0348 U	0.0371 U	0.0384 U	0.0346 U	0.035 U	0.0402 U	0.0358 U	0.0329 U	0.0369 U	0.0361 U	0.0347 U	0.0341 U
Inorganics (mg/kg)																		
Aluminum	~	~	~	5,380	10,200	4,080	5,460	6,460	3,950	6,720	4,530	5,120	14,600	5,780	3,530	9,010	7,760	2,610
Antimony	~	~	~	0.482 J	1.34 J	4.69 U	44.8	0.648 J	4.56 U	0.748 J	0.319 J	4.7 U	4.45 U	4.08 U	4.52 U	2.58 J	4.19 U	4.11 U
Arsenic	13	16	16	0.727 J	1.01	1.19	7.06	0.891 J	0.703 J	1.28	0.812	1.06	6.51	2.19	0.796 J	8	3.24	0.625 J
Barium	350	820	400	35.2	104	35.3	235	44.9	26.5	30.4	18.5	36.6	51.8	20.4	22.1	212	25.9	18.4
Beryllium	7.2	47	72	0.194 J	0.507	0.262 J	0.322 J	0.261 J	0.155 J	0.272 J	0.199 J	0.235 J	0.382 J	0.302 J	0.145 J	0.408 J	0.344 J	0.082 J
Cadmium	2.5	7.5	4.3	0.169 J	0.353 J	0.159 J	2.25	0.198 J	0.128 J	0.204 J	0.135 J	0.198 J	0.427 J	0.212 J	0.226 J	1.49	0.226 J	0.156 J
Calcium	~	~	~	5,330 J	19,700 J	11,300 J	9,600 J	11,800 J	19,600 J	1,080 J	961 J	16,700 J	1,930	511	1,560	2,710	597	977
Chromium, Hexavalent	1	19	110	0.217 J	0.955 U	0.948 U	0.883 U	0.925 U	0.959 U	0.338 J	0.846 U	0.965 U	0.91 U	0.838 U	0.913 U	0.891 U	0.852 U	0.869 U
Chromium, Total	~	~	~	14	25.4	8.07	16.1 J	13.7 J	8.17 J	13.4 J	11.3 J	11.6 J	20.7	11.1	8.82	19.9	11.3	7.04
Chromium, Trivalent	30	~	180	14 J	25	8.1	16	1/	8.2	13 J	11	12	21	11	8.8	20	11	7
Cobalt	00		~	5.76	11.5	4.31	5.97	6.96	4.49	6.23	4.59	6.06	8.13	5.57	5.63	5.97	5.73	, 3.77 J
Copper	50	1,720	270	13.4	22	9.01	265 J	15.6 J	10.3 J	14.2 J	10.1 J	15 J	16.1	11.2	11	92.4	9.4	5.77 5
Cyanide	27	40	270	1 11	1 1	1.2 UJ	1 1	1 1 1	1.2 U	1 1	1 1	12 11	1.1 U	0.27 J	1.1 UJ	1.1 UJ		1 11
Iron	۷.	40	21	10,600	21,900	9,200	37,700	11,600	8,060	13,200	8,580	12,000	21,100	11,000	8,710	16,100	12,400	5,930
l ead	~ 63	~ 450	~ 400	2.87 .1	5.54	3.64 J	<u>8,750</u> J	5 67 J	2.91 J	7.31 J	3.77 J	3.59 J	22.1	4.3	2.54 J	648	5.22	1.92 J
	03			2.07 0				0.07			•			1.0				
Magnesium	~	~	~	4,730	11,400	5,480	1,730 J	8,980 J	10,400 J	2,880 J	2,000 J	9,270 J	2,210 J	2,230 J	2,800 J	2,120 J	2,000 J	1,810 J
Manganese	1,600	2,000	2,000	200	330	197	300	190	166	391	188	214	278	288	239	230	244	150
Mercury	0.18	0.73	0.81	0.069 U	0.075 U	0.074 U	0.422 J	0.073 UJ	0.075 UJ	0.068 UJ	0.067 UJ	0.076 UJ	0.139	0.021 J	0.019 J	<u>0.984</u>	0.025 J	0.016 J
Nickel	30	130	310	11.2	19.1	7.72	17.3	15.1	8.69	13.8	9.17	11.7	12.4	11	10.5	15.7	11.4	7.88 J
Potassium	~	~	~	1,280	4,610	971	710 J	1,780 J	1,060 J	585 J	495 J	1,340 J	653	456	731	688	597	520 J
Selenium	3.9	4	180	0.304 J	0.852 J	0.469 J	0.813 J	0.45 J	0.675 J	0.68 J	1.59 U	0.612 J	1.1 J	0.326 J	0.543 J	1.28 J	0.461 J	0.444 J
Silver	2	8.3	180	0.845 U	0.906 U	0.937 U	1.61	0.9 U	0.912 U	0.85 U	0.796 U	0.941 U	0.889 U	0.816 U	0.904 U	0.868 U	0.838 U	0.822 U
Sodium	~	~	~	292 J	202 J	108 J	294 J	303 J	197 J	176 J	125 J	185 J	70.4 J	27.5 J	121 J	84.9 J	81.7 J	89.8 J
Thallium	~	~	~	1.69 U	1.81 U	1.87 U	1.69 U	1.8 U	1.82 U	1.7 U	1.59 U	1.88 U	1.78 U	1.63 U	1.81 U	1.74 U	1.68 U	1.64 U
Vanadium	~	~	~	20.2	36.6	13.5	16.2 J	20.7 J	14.1 J	19.3 J	14.4 J	20.4 J	32.8	19.6	14.2	25	18	9.8
Zinc	109	2,480	10,000	26.1	61.7	20.6	950 J	37.6 J	21.2 J	27.7 J	18.9 J	31.9 J	41.8	28.5	30.4	443	22.8	29

Table 4B Remedial Investigation Report Soil Sample Analytical Results - Pesticides, Herbicides, PCBs, and Inorganics

Location		NYSDEC Part 375		SB09	SB10	SB10	SB10	SB11	SB11	SB11	SB11	SB12	SB12	SB12	SB13	SB13	SB13	SB13
Sample ID	NYSDEC Part 375	Restricted Use -	NYSDEC Part 375	SBDUP03 100518	SB10_1-2	SB10_6-7	SB10_24-25	SB11 0-1	SB11 6.5-7.5	SBDUP01 092718	SB11_22-23	SB12_0-2	SB12 2-4	SB12_22-23	SB13 0-1	SB13 6.5-7.5	SB13_28-29	SB13_68-69
Laboratory ID	Unrestricted Use	Protection of	Restricted Use -	L1840500-08	L1840256-07	L1840256-08	L1840256-09	L1839010-07	L1839010-08	L1839010-13	L1839010-09	L1839010-10	L1839010-11	L1839010-12	L1839661-05	L1839661-06	L1839661-07	L1839825-01
Sample Date	SCOs	Groundwater	Restricted	10/5/2018	10/4/2018	10/4/2018	10/4/2018	9/27/2018	9/27/2018	9/27/2018	9/27/2018	9/26/2018	9/26/2018	9/26/2018	10/2/2018	10/2/2018	10/2/2018	10/3/2018
Sample Depth (feet bgs)		SCOs	Residential	22-23	1-2	6-7	24-25	0-1	6.5-7.5	6.5-7.5	22-23	0-2	2-4	22-23	0-1	6.5-7.5	28-29	68-69
Pesticides (mg/kg)						• • •			0.07.0	0.07.0			2.1			0.0 7.0		00 00
4,4'-DDD	0.0033	14	13	0.00173 U	0.00159 U	0.00165 U	NA	0.00186 U	0.00179 U	0.00177 U	NA	0.00159 U	0.00157 U	NA	0.00181 U	0.00178 U	NA	NA
4,4'-DDE	0.0033	17	8.9	0.00173 U	0.00159 U	0.00165 U	NA	0.00186 U	0.00179 U	0.00177 U	NA	0.00159 U	0.00157 U	NA	0.00181 U	0.00178 U	NA	NA
, 4,4'-DDT	0.0033	136	7.9	0.00324 U	0.00298 U	0.00309 U	NA	0.00348 U	0.00336 U	0.00331 U	NA	0.00299 U	0.00295 U	NA	0.00339 U	0.00334 U	NA	NA
, Dieldrin	0.005	0.1	0.2	0.00108 U	0.000526 J	0.00103 U	NA	0.00116 U	0.00112 U	0.0011 U	NA	0.000995 U	0.000984 U	NA	0.00113 U	0.00111 U	NA	NA
Endosulfan Sulfate	2.4	1,000	24	0.000721 U	0.000663 U	0.000687 U	NA	0.000774 U	0.000747 U	0.000736 U	NA	0.000664 U	0.000656 U	NA	0.000753 U	0.000742 U	NA	NA
Herbicides (mg/kg)	~	~	~	ND	ND	ND	NA	ND	ND	ND	NA	ND	ND	NA	ND	ND	NA	NA
Polychlorinated Biphenyls (mg/kg)										1								
PCB-1254 (Aroclor 1254)	~	~	~	0.0363 U	0.0348 U	0.0335 U	0.0361 U	0.0386 U	0.0377 U	0.0377 U	0.0363 U	0.0333 U	0.0324 U	0.0403 U	0.0378 U	0.0384 U	0.035 U	0.039 U
PCB-1260 (Aroclor 1260)	~	~	~	0.0363 U	0.0348 U	0.0335 U	0.0361 U	0.0386 U	0.0377 U	0.0377 U	0.0363 U	0.0333 U	0.0324 U	0.0403 U	0.0378 U	0.0384 U	0.035 U	0.039 U
PCB-1262 (Aroclor 1262)	~	~	~	0.0363 U	0.0348 U	0.0335 U	0.0361 U	0.0386 U	0.0377 U	0.0377 U	0.0363 U	0.0333 U	0.0324 U	0.0403 U	0.0378 U	0.0384 U	0.035 U	0.039 U
Total PCBs	0.1	3.2	1	0.0363 U	0.0348 U	0.0335 U	0.0361 U	0.0386 U	0.0377 U	0.0377 U	0.0363 U	0.0333 U	0.0324 U	0.0403 U	0.0378 U	0.0384 U	0.035 U	0.039 U
Inorganics (mg/kg)	•					•						•		•	•	•	•	
Aluminum	~	~	~	3,770	4,770	4,080	5,570	11,300	13,000	11,500	5,730	7,960	3,820	7,210	14,300	8,750	3,460	3,280
Antimony	~	~	~	4.29 U	4.2 U	4.01 U	0.351 J	0.728 J	0.562 J	0.571 J	4.48 U	0.935 J	0.563 J	0.815 J	1.04 J	0.69 J	4.21 U	0.379 J
Arsenic	13	16	16	1.15	1.03	1.23	0.913	6.5	4.3	4.12	0.986	2.49	0.523 J	0.698 J	6.54	3.64	0.556 J	1.33
Barium	350	820	400	25.6	12.8	21.6	24.9	83.4	42.2	32.3	49	52.8	15.3	61.4	53.3	48.3	32.3	32.6
Beryllium	7.2	47	72	0.129 J	0.218 J	0.232 J	0.211 J	0.681	0.509	0.482	0.269 J	0.388 J	0.182 J	0.262 J	0.433 J	0.354 J	0.084 J	0.214 J
Cadmium	2.5	7.5	4.3	0.206 J	0.134 J	0.192 J	0.228 J	0.355 J	0.298 J	0.277 J	0.215 J	0.499 J	0.135 J	0.233 J	0.415 J	0.563 J	0.16 J	0.253 J
Calcium	~	~	~	1,380	305 J	980 J	1,240 J	1,760 J	1,010 J	1,090 J	987 J	1,540 J	868 J	23,700 J	1,380	2590	24,400	5,760
Chromium, Hexavalent	1	19	110	0.885 U	0.842 U	0.231 J	0.887 U	0.956 U	0.807 J	0.871 J	0.907 U	0.82 U	0.316 J	0.988 U	0.248 J	0.236 J	0.862 U	0.985 U
Chromium, Total	~	~	~	10.6	8.94	24.5	11.4	14.2 J	21.8 J	24.5 J	11.9 J	14.5 J	9.87 J	17.8 J	21.4	29.1	8.76	10.8
Chromium, Trivalent	30	~	180	11	8.9	24 J	11	14	21 J	24 J	12	14	9.6 J	18	21 J	29 J	8.8	11
Cobalt	~	~	~	5.6 J	3.45	4.17	6.73	5.6	8.94	7.96	5.86	5.97	4.06	8.75	6.93	6.1	4.01	6.97
Copper	50	1,720	270	10.6	8.38 J	14.7 J	14.4 J	31 J	13.2 J	13.2 J	12.1 J	35.2 J	10.2 J	19.1 J	13.9	20.2	10.7	16.5
Cyanide	27	40	27	1 UJ	1 U	1 U	1 U	1.2 U	1.1 U	1.2 U	1 U	0.96 U	0.99 U	1.1 U	1.1 UJ	1.1 UJ	0.99 UJ	1.2 UJ
Iron	~	~	~	9,000	6,790	9,740	13,000	14,400	20,200	19,300	12,600	13,200	7,700	15,300	22,100	15,300	7,370	13,300
Lead	63	450	400	2.72 J	2.62 J	4.88 J	3.14 J	84.3 J	18 J	13 J	3.27 J	73.8 J	2.54 J	3.14 J	19.8	79.4	1.71 J	2.55 J
Magnesium	~	~	~	2,710 J	1,910	1,920	4,170	1,900 J	2,500 J	2,610 J	2,790 J	2,400 J	1,880 J	14,200 J	2,030	2,360	15,000	3,620
Manganese	1,600	2,000	2,000	204	198	223	208	461	381	320	351	283	218	219	246	334	150	220
Mercury	0.18	0.73	0.81	0.016 J	0.066 U	0.066 U	0.07 U	0.254 J	0.021 J	0.029 J	0.071 UJ	0.111 J	0.064 UJ	0.078 UJ	0.145	0.06 J	0.068 U	0.077 U
Nickel	30	130	310	11.1 J	8.44	9.74	12.1	9.47	11.9	13.1	12	11.7	8.36	14.4	12.3	12.6	7.95	12.5
Potassium	~	~	~	831 J	312	483	1,350	472 J	604 J	694 J	910 J	599 J	320 J	2,670 J	786	806	1,210	955
Selenium	3.9	4	180	0.292 J	0.31 J	0.232 J	0.492 J	0.868 J	0.676 J	0.286 J	0.269 J	0.642 J	0.42 J	0.417 J	0.713 J	0.563 J	1.68 U	0.253 J
Silver	2	8.3	180	0.858 U	0.839 U	0.802 U	0.878 U	0.933 U	0.878 U	0.893 U	0.896 U	0.792 U	0.792 U	0.97 U	0.903 U	0.908 U	0.842 U	0.973 U
Sodium	~	~	~	119 J	20.5 J	117 J	48.5 J	101 J	117 J	119 J	621 J	186 J	68.6 J	160 J	186	153 J	108 J	152 J
Thallium	~	~	~	1.72 U	1.68 U	1.6 U	1.76 U	1.87 U	1.76 U	1.78 U	1.79 U	1.58 U	1.58 U	1.94 U	1.8 U	1.82 U	1.68 U	1.94 U
Vanadium	~	~	~	16.3	8.95	12.9	18	19.7 J	27 J	25.1 J	20.8 J	20.8 J	12.5 J	26.7 J	31.8	21	10.9	23.2
Zinc	109	2,480	10,000	39.7	34 J	29.6 J	49.6 J	71.8 J	36.2 J	32.9 J	24.7 J	119 J	16.5 J	47.7 J	40	306	24.8	22.7

Table 4B Remedial Investigation Report Soil Sample Analytical Results - Pesticides, Herbicides, PCBs, and Inorganics

Notes:

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use, Restricted Use - Protection of Groundwater and Restricted Use Restricted - Residential Soil Cleanup Objectives (SCO).
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above Unrestricted Use SCOs are bolded.
- 4. Analytes detected with concentrations above Restricted Use Protection of Groundwater SCOs are shaded.
- 5. Analytes detected with concentrations above Restricted Use Restricted Residential SCOs are bordered.
- 6. Analytical results with reporting limits (RL) above Unrestricted Use SCOs are italicized.
- 7. Sample SBDUP02_100118 is a duplicate sample of SB04_23.5-24.5; sample SBDUP03_100518 is a duplicate sample of SB09_22-23; and sample SBDUP01_092718 is a duplicate sample of SB11_6.5-7.5. 8. \sim = Regulatory limit for this analyte does not exist
- 9. bgs = below grade surface
- 10. mg/kg = milligrams per kilogram
- 11. NA = Not analyzed
- 12. ND = Not detected

Qualifiers:

- I = The lower value for the two columns has been reported due to obvious interference.
- P = The relative percent difference (RPD) between the results for the two columns exceeds the method-specified criteria.
- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Sample Location Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	RCRA Maximum Concentration of Contaminants for the Toxicity Characteristic	SB04 SB04_1-2 L1839480-01 10/1/2018 1-2	SB04 SB04_2-3 L1839480-02 10/1/2018 2-3	SB04 SB04_6-7 L1849188-01 10/1/2018 6-7	SB04 SB04_8-9 L1849739-01 10/1/2018 8-9	SB04A SB04A_3-5 L1847730-04 11/20/2018 3-5	SB04A SB04A_5-6 L1847730-02 11/20/2018 5-6	SB04.1 SB04.1_1-3 L1847730-05 11/20/2018 1-3	SB04.1 SBDUP04_112018 L1847730-03 11/20/2018 1-3	SB04.1 SB04.1_3-5 L1847730-11 11/20/2018 3-5	SB04.2 SB04.2_1-3 L1847730-30 11/20/2018 1-3	SB04.4 SB04.4_1-3 L1847730-07 11/20/2018 1-3	SB04.4 SB04.4_3-5 L1847730-28 11/20/2018 3-5	SB04.5 SB04.5_1-3 L1847730-23 11/20/2018 1-3	
Metals (mg/kg) Chromium, Total	~	NA	NA	502	32.7	480	729	949	1010	172	764	295	7.41	14.7	<u> </u>
TCLP Chromium (mg/L)															
Chromium	5	27	27.2	9.4	0.2 U	10.1	11.6	9.17	5.76	6.02	1.11	5.34	0.2 U	0.2 U	

Notes:

1. Grab soil sample analytical results are compared to the 6 New York Codes, Rules and Regulations

(NYCRR) Part 371.3 and 40 CFR 261 Subpart C and Table 1 of 40 CFR 261.24 - Environmental 2. Analytes detected with concentrations above RCRA Maximum Concentration of Contaminants for the Toxicity Characteristic are shaded and bolded.

3. mg/kg = milligram per kilogram 4. mg/L = milligram per liter

5. bgs = below grade surface

6. TCLP = Toxicity Characteristic Leaching Procedure

7. NA = Not Analyzed

<u>Qualifiers:</u>

J = The analyte was detected above the Method Detection Limit (MDL), but below the Reporting Limit (RL); therefore, the result is an estimated concentration. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

SB04.7 SB04.7_1-3 L1847730-06 11/20/2018 1-3
1810
1.83

Table 5A Remedial Investigation Report Groundwater Sample Analytical Results

Location Sample ID Laboratory ID Sample Date	NYSDEC SGVs	MW01 MW01_101718 L1842363-04 10/17/2018	MW02 MW02_101518 L1841798-02 10/15/2018	MW03 MW03_101618 L1842082-02 10/16/2018	MW04 MW04_101718 L1842363-07 10/17/2018	MW05A MW05A_101718 L1842363-03 10/17/2018	MW05B MW05B_101718 L1842363-06 10/17/2018	MW06 MW06_101618 L1842082-01 10/16/2018
Volatile Organic Compounds (µg/L) Acetone	50	4.2 J	3.2 J	2.2 J	3.9 J	3.3 J	4.5 J	3.3 J
Benzene	50 1	4.2 J 0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.5 J	0.16 J
Bromodichloromethane	50	0.5 U	0.5 U	0.5 U	2.9	0.5 U	0.5 U	0.5 U
Carbon Tetrachloride	5	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.48 J	0.22 J
Chloroform	7	4.4	1.7 J	3.2	36	1.9 J	6.4	12
Chloromethane	5	2.5 UJ	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U
Methylene Chloride Tert-Butyl Methyl Ether	5 10	2.5 U 2.5 UJ	2.5 U 2.5 U	2.5 U 2.5 UJ	2.5 U 2.5 UJ	2.5 U 0.8 J	2.5 U 2.5 UJ	1.4 J 2.5 UJ
Tetrachloroethene (PCE)	5	0.5 U	0.27 J	0.63	0.2 J	0.5 U	3.2	0.84
Semivolatile Organic Compounds (µg/L)								
2-Methylnaphthalene	~	0.1 U	0.1 U	0.1 U				
Acenaphthene	20	0.1 U	0.02 J	0.1 U				
Acenaphthylene Anthracene	~ 50	0.1 U 0.02 J	0.1 UJ 0.1 U	0.1 U 0.01 J	0.1 U 0.1 U	0.1 U 0.1 U	0.02 J 0.02 J	0.02 J 0.02 J
Benzo(a)Anthracene	0.002	0.02 J	0.1 U	0.1 U	0.1 U	0.1 U	0.02 J	0.02 0 0.1 U
Benzo(a)Pyrene	0	0.02 J	0.1 U	0.1 U	0.1 U	0.1 U	0.02 J	0.1 U
Benzo(b)Fluoranthene	0.002	0.04 J	0.1 U	0.1 U	0.1 U	0.1 U	0.04 J	0.01 J
Benzo(g,h,i)Perylene	~	0.02 J	0.1 U	0.1 U	0.1 U	0.1 U	0.02 J	0.1 U
Benzo(k)Fluoranthene Bis(2-Ethylhexyl) Phthalate	0.002 5	0.02 J 3 U	0.1 U 3 U	0.1 U 3 U	0.1 U 3 U	0.1 U 3 U	0.02 J 3 U	0.1 U 3 U
Chrysene	0.002	0.06 J	0.1 U	0.1 U	0.1 U	0.1 U	0.03 J	0.1 U
Di-N-Butyl Phthalate	50	5 U	5 U	0.4 J	5 U	5 U	5 U	5 U
Fluoranthene	50	0.1	0.04 J	0.03 J	0.1 U	0.1 U	0.07 J	0.04 J
	50	0.02 J	0.1 U	0.02 J	0.1 U	0.1 U	0.03 J	0.04 J
Indeno(1,2,3-c,d)Pyrene Pentachlorophenol	0.002	0.02 J 0.07 J	0.1 U 0.8 U	<i>0.1</i> U 0.11 J	0.1 U 0.8 U	0.1 U 0.8 U	0.02 J 0.09 J	0.1 U 0.12 J
Phenanthrene	50	0.07 J	0.8 0 0.04 J	0.11 J 0.05 J	0.8 0 0.1 U	0.8 U 0.1 U	0.09 J	0.12 J 0.09 J
Pyrene	50	0.13	0.03 J	0.02 J	0.1 U	0.1 U	0.07 J	0.03 J
Pesticides (µg/L)								
4,4'-DDT	0.2	0.029 U	0.029 UJ	0.029 U	0.029 U	0.029 U	0.029 U	0.029 U
Alpha Chlordane	~	0.014 U	0.005 J	0.014 U	0.014 U	0.014 U	0.014 U	0.014 U
Endrin Aldehyde Herbicides (µg/L)	5~	0.029 U ND	0.013 J ND	0.029 U ND	0.029 U ND	0.029 U ND	0.029 U ND	0.029 U ND
Polychlorinated Biphenyls (µg/L)	~	ND	ND	ND	ND	ND	ND	ND
Inorganics (µg/L)								
Aluminum	~	2,000	13.4	39.7	174	17,500	6,190	1,220
Aluminum (Dissolved)	~	7.66 J	4.54 J	18.2	11.4	5.22 J	16.2	31
Antimony Antimony (Dissolved)	3 3	0.43 J 0.62 J	4 U 0.51 J	4 U 4 U	1.78 J 1.08 J	0.76 J 0.87 J	0.53 J 0.71 J	4 U 1.15 J
Arsenic	25	1.29 J	0.21 J	0.34 J	0.39 J	4.17 J	2.17 J	0.84
Arsenic (Dissolved)	25	0.46 J	0.26 J	0.38 J	0.26 J	0.61	1.12	0.85
Barium	1,000	226.7	249.8	12.71	15.38	467.1	96.25	32.5
Barium (Dissolved)	1,000	203.2	254.6	13.29	16.09	144.2	30.17	14.66
Beryllium Beryllium (Dissolved)	3 3	0.13 J 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	1.21 0.5 U	0.26 J 0.5 U	0.5 U 0.5 U
Cadmium	5	0.1 J	0.06 J	0.2 U	0.2 U	0.36	0.09 J	0.2 U
Cadmium (Dissolved)	5	0.06 J	0.06 J	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Calcium	~	133,000	168,000	37,100	26,000	184,000	59,200	26,100
Calcium (Dissolved)	~	136,000	196,000	37,200	22,600	106,000	36,800	22,800
Chromium, Hexavalent Chromium, Total	50 50	10 U 8.96	10 U 0.63 J	10 U 0.71 J	654 1,146	10 U 65.25	3 J 31.09	10 U 7.68
Chromium, Total (Dissolved)	50 50	8.90 1.64	0.66 J	0.65 J	698.6	1 U	30.61	0.28 J
Chromium, Trivalent	~	10 U	10 U	10 U	492	65	28 J	10 U
Cobalt	~	3.76	3.7	0.88	0.24 J	25.3	5.84	2.34
Cobalt (Dissolved)	~ 200	1.6	3.79	0.85	0.5 U	0.64	0.41 J	0.31 J
Copper Copper (Dissolved)	200 200	7.2 0.77 J	1.03 1.06	1.48 1.69	0.85 J 0.64 J	77.8 1 U	20.74 0.86 J	8.94 0.59 J
Copper (Dissolved) Cyanide	200	0.77 J 5 U	1.06 2 J	1.69 2 J	0.64 J 5 U	5 U	0.86 J 5 U	0.59 J 11
Iron	300	3,640	36.7 J	45.5 J	286 U	37,400	10,200	2,520
Iron (Dissolved)	300	46.4 U	28.9 J	50 U	75 U	159 U	75 U	37 J
Lead	25 25	5.47 J	1 U	1 U	1 UJ	23.45 J	5.53 J	36.97
Lead (Dissolved) Magnesium	25 35,000	1 ∪ 43,600	1 ∪ 51,500	1 U 9,790	1 U 7,700	1 ∪ 81,500	1 U 25,500	1 U 6,750
Magnesium Magnesium (Dissolved)	35,000 35,000	43,800	51,900	9,790 10,200	7,240	46,200	25,500 14,200	5,100
Manganese	300	680.8	809.8	197.6	12.54	1,554	312.5	260.9
Manganese (Dissolved)	300	615.6	817.4	189	5.28	411.4	104.3	196.2
	100	6.06	3.98	0.85 J	2 U	51.99	15	4.83
Nickel (Dissolved) Potassium	100	3.2 10,400	3.98 7,870	1.04 J 3,370	2 U 5,130	0.85 J 16,800	1.17 J 9,420	1.69 J 4,710
Potassium Potassium (Dissolved)	~ ~	10,300	9,130	3,370 3,440	5,130 4,830	10,400	9,420 7,390	4,730
Selenium	10	3.85 J	3.36 J	5 U	4,850 5 U	3.24 J	3.32 J	5 U
Selenium (Dissolved)	10	3.82 J	3.71 J	5 U	5 U	5 U	2.93 J	5 U
Sodium	20,000	322,000	298,000	10,500	6,410	41,000	34,900	48,200
Sodium (Dissolved)	20,000	337,000	335,000	11,400	5,840	42,700	35,000	48,900
Thallium Thallium (Dissolved)	0.5 0.5	0.5 UJ 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 UJ 0.5 U	0.52 J 0.5 U	0.16 J 0.5 U	0.5 U 0.5 U
Vanadium	0.5	0.5 U 5.63	0.5 U 5 U	0.5 U 5 U	0.5 0 1.77 J	0.5 0 53.55	0.5 U 15.16	0.5 U 2.9 J
Vanadium (Dissolved)	~~~~~	5.03 5 U	5 U	5 U	5 U	5 U	1.84 J	5 U
Zinc	2,000	14.24 J	10 U	10 U	10 UJ	109.1 J	39.35 J	13.22
Zinc (Dissolved)	2,000	10 U	10 U	10 U				

Table 5A Remedial Investigation Report Groundwater Sample Analytical Results

Location Sample ID Laboratory ID Sample Date	NYSDEC SGVs	MW07 MW07_101618 L1842082-03 10/16/2018	MW07 GWDUP01_101618 L1842082-04 10/16/2018	MW07 MW07_101718 L1842363-01 10/17/2018	MW07 GWDUP01_101718 L1842363-02 10/17/2018	MW10 MW10_101518 L1841798-01 10/15/2018	MW13A MW13A_101718 L1842363-05 10/17/2018	MW13B MW13B_101518 L1841798-03 10/15/2018	
Volatile Organic Compounds (µg/L)	50					0.7		4	
Acetone Benzene	50 1	NA NA	NA NA	2.8 J 0.5 U	2.6 J 0.5 U	3.7 J 0.5 U	5.4 J 0.73	4 J 0.5 U	
Bromodichloromethane	50	NA	NA	1.2	1.1	0.67	0.73 0.5 U	0.5 U	
Carbon Tetrachloride	50	NA	NA	0.5 UJ	0.5 UJ	0.5 U	0.5 UJ	0.5 U	
Chloroform	7	NA	NA	15	15	9.9	11	3.3	
Chloromethane	5	NA	NA	2.5 UJ	2.5 UJ	2.5 U	1.5 J	2.5 U	
Methylene Chloride	5	NA	NA	2.5 U	2.5 U	2.5 U	3.7	2.5 U	
Tert-Butyl Methyl Ether	10	NA	NA	2.5 UJ	2.5 UJ	2.5 U	2.5 UJ	2.5 U	
Tetrachloroethene (PCE)	5	NA	NA	1.6	1.7	0.41 J	0.5 U	0.2 J	
Semivolatile Organic Compounds (µg/L)	Ŭ					0	0.0 0	0.2 0	
2-Methylnaphthalene	~	NA	NA	0.04 J	0.1 U	0.1 U	0.02 J	0.1 U	
Acenaphthene	20	NA	NA	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
Acenaphthylene	~	NA	NA	0.1 U	0.1 U	0.1 UJ	0.01 J	0.1 UJ	
Anthracene	50	NA	NA	0.1 U	0.1 U	0.1 U	0.02 J	0.1 U	
Benzo(a)Anthracene	0.002	NA	NA	0.1 U	0.1 U	0.1 U	0.03 J	0.1 U	
Benzo(a)Pyrene	0	NA	NA	<i>0.1</i> U	0.1 U	0.1 U	0.02 J	<i>0.1</i> U	
Benzo(b)Fluoranthene	0.002	NA	NA	0.1 U	0.01 J	<i>0.1</i> U	0.04 J	<i>0.1</i> U	
Benzo(g,h,i)Perylene	~	NA	NA	0.1 U	0.1 U	0.1 U	0.01 J	0.1 U	
Benzo(k)Fluoranthene	0.002	NA	NA	<i>0.1</i> U	0.1 U	<i>0.1</i> U	0.02 J	<i>0.1</i> U	
Bis(2-Ethylhexyl) Phthalate	5	NA	NA	3 U	3 U	3	3 U	3 U	
Chrysene	0.002	NA	NA	<i>0.1</i> U	0.1 U	0.1 U	0.03 J	0.1 U	
Di-N-Butyl Phthalate	50	NA	NA	5 U	5 U	5 U	5 U	0.48 J	
Fluoranthene	50	NA	NA	0.1 U	0.1 U	0.03 J	0.13	0.04 J	
Fluorene	50	NA	NA	0.02 J	0.1 U	0.1 U	0.03 J	0.1 U	
Indeno(1,2,3-c,d)Pyrene	0.002	NA	NA	0.1 U	0.1 U	0.1 U	0.02 J	0.1 U	
Pentachlorophenol	1	NA	NA	0.08 J	0.8 U	0.8 U	0.07 J	0.8 U	
Phenanthrene	50	NA	NA	0.1 U	0.1 U	0.04 J	0.12	0.1 U	
Pyrene	50	NA	NA	0.1 U	0.1 U	0.04 J	0.1	0.04 J	
Pesticides (µg/L)									
4,4'-DDT	0.2	NA	NA	0.029 U	0.029 U	0.023 J	0.029 U	0.029 UJ	
Alpha Chlordane	~	NA	NA	0.014 U	0.014 U	0.008 J	0.014 U	0.014 U	
Endrin Aldehyde	5	NA	NA	0.029 U	0.029 U	0.029 U	0.029 U	0.029 U	
Herbicides (µg/L)	~	NA	NA	ND	ND	ND	ND	ND	
Polychlorinated Biphenyls (µg/L)	~	NA	NA	ND	ND	ND	ND	ND	
Inorganics (µg/L)		NIA	NIA	000	700		444	100	
Aluminum	~	NA NA	NA	609	738	25.8 6.28 J	411	126 J	
Aluminum (Dissolved)	~ 3	NA	NA NA	10.9 3.52 J	13.2 <i>4</i> U		21.6 0.64 J	10.4 <i>4</i> U	
Antimony Antimony (Dissolved)	3	NA	NA	3.52 J 4.09	4 U 1.75 J	4 U 4 U	0.64 J 0.93 J	4 0	
Arsenic	25	NA	NA	0.33 J	0.33 J	0.35 J	0.83 J	0.21 J	
Arsenic (Dissolved)	25	NA	NA	0.24 J	0.45 J	0.33 J	0.56	0.27 J	
Barium	1,000	NA	NA	52.13	52.3	38.21	49.07	197.1	
Barium (Dissolved)	1,000	NA	NA	47.91	47.22	37.29	40.15	216.2	
Beryllium	3	NA	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Beryllium (Dissolved)	3	NA	NA	0.5 U	0.16 J	0.5 U	0.5 U	0.5 U	
Cadmium	5	NA	NA	0.07 J	0.2 U	0.2 U	0.2 U	0.2 U	
Cadmium (Dissolved)	5	NA	NA	0.2 U	0.16 J	0.2 U	0.2 U	0.2 U	
Calcium	~	NA	NA	46,300	44,100	48,500	43,500	95,200	
Calcium (Dissolved)	~	NA	NA	42,800	43,500	52,800	38,300	108,000	
Chromium, Hexavalent	50	NA	NA	6 J	6 J	10 U	10 U	10 U	
Chromium, Total	50	NA	NA	8.26	8.35	1.32	5.02	1.88	
Chromium, Total (Dissolved)	50	NA	NA	5.9	5.93	0.68 J	64.24	0.35 J	
Chromium, Trivalent	~	NA	NA	10 U	10 U	10 U	10 U	10 U	
Cobalt	~	NA	NA	0.93	0.83	0.89	0.44 J	0.59	
Cobalt (Dissolved)	~	NA	NA	0.24 J	0.24 J	0.74 J	0.18 J	0.36 J	
Copper	200	NA	NA	2.78	2.17	0.72 J	2.04	1.4	
Copper (Dissolved)	200	NA	NA	0.57 J	1.1	0.52 J	1 U	0.74 J	
Cyanide	200	NA	NA	3 J	5 U	5 U	5 U	1 J	
Iron	300	NA	NA	1,010	1,230	60.9	903	732	
Iron (Dissolved)	300	NA	NA	32.4 U	93 U	29.7 J	81	274	
Lead	25	NA	NA	0.97 J	1.06 J	1 U	0.43 J	1 U	
Lead (Dissolved)	25	NA	NA	0.58 J	0.95 J	1 U	1 U	1 U	
Magnesium	35,000	NA	NA	14,700	14,000	17,600	15,000	34,600	
Magnesium (Dissolved)	35,000	NA	NA	13,000	13,100	19,100	12,600	36,600	
Manganese	300	NA	NA	31.96	33.59	297.5	122.7	90.94	
Manganese (Dissolved)	300	NA	NA	6.35	7.14	322.6	105.7	79.17	
Nickel	100	NA	NA	3.12	3.6	1.57 J	2.58	1.66 J	
Nickel (Dissolved)	100	NA	NA	0.73 J	0.76 J	1.88 J	2 U	0.94 J	
Potassium	~	NA	NA	7,100	6,900	6,480	12,000	8,380	
Potassium (Dissolved)	~ 10	NA	NA	6,700	6,680	6,980	10,300	8,960	
Selenium	10	NA	NA	2.25 J	2.06 J	5 U	5 U	2.89 J	
Selenium (Dissolved)	10	NA	NA	2.24 J	2.54 J	1.93 J	5 U	2.89 J	
Sodium	20,000	NA	NA	46,200	44,700	42,300	38,500	214,000	
Sodium (Dissolved)	20,000	NA	NA	45,500	45,400	40,600	35,300	248,000	
Thallium	0.5	NA	NA	0.24 J	0.5 UJ	0.5 U	0.5 UJ	0.5 U	
Thallium (Dissolved)	0.5	NA	NA	0.21 J	0.44 J	0.5 U	0.5 U	0.5 U	
Vanadium	~	NA	NA	2.99 J	2.96 J	5 U	5 U	ь U	
Vanadium (Dissolved)	~	NA	NA	5 U	5 U	5 U	5 U	5 U	
	2,000	NA	NA	4.78 J	6.13 J	10 U	10 UJ	10 U	
Zinc (Dissolved)	2,000	NA	NA	10 U	9.99 J	10 U	10 U	10 U	

Table 5A Remedial Investigation Report Groundwater Sample Analytical Results

37-11 30th Street Long Island City, New York BCP Site No.: C241211 Langan Project No.: 170512301

Notes:

1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (NYSDEC SGVs).

2. Only detected analytes are shown in the table.

3. Analytes detected with concentrations above NYSDEC SGVs are bolded and shaded.

4. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.

5. Sample GWDUP01_101618 is a duplicate sample of MW07_101618 and sample GWDUP01_101718 is a duplicate sample of MW07_101718.

6. \sim = Regulatory limit for this analyte does not exist

7. μ g/L = micrograms per liter

8. NA = Not Analyzed

<u>Qualifiers:</u>

J – The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 5B Remedial Investigation Report Groundwater Sample Analytical Results - Emerging Contaminants

Location Sample ID Laboratory ID Sample Date	USEPA Health Advisory Limit	MW01 MW01_101718 L1842363-04 10/17/2018		MW05A MW05A_101 L1842363- 10/17/201	718 03	MW07 MW07_101618 L1842082-03 10/16/2018		MW07 GWDUP01_10 L1842082-0 10/16/201	04	MW07 MW07_101718 L1842363-01 10/17/2018	MW07 GWDUP01_101718 L1842363-02 10/17/2018
1,4-Dioxane (P-Dioxane) (µg/L)	~	0.16	U	0.665		NA		NA		0.147 U	0.147 U
Per and Polyfluoroalkyl Substances (µg/L)								-			-
N-ethyl perfluorooctane- sulfonamidoacetic acid	~	0.00194	U	0.00197	U	0.00183	UJ	0.00178	UJ	NA	NA
N-methyl perfluorooctane- sulfonamidoacetic acid	~	0.00194	UJ	0.00197	UJ	0.00183	U	0.00178	U	NA	NA
Perfluorobutanesulfonic Acid	~	0.0116		0.00197	U	0.00277		0.00272		NA	NA
Perfluorobutanoic acid	~	0.0111		0.00221		0.00539		0.00527		NA	NA
Perfluorodecanesulfonic acid	~	0.00194	U	0.00197	U	0.00183	U	0.00178	U	NA	NA
Perfluorodecanoic acid	~	0.00194	U	0.00197	U	0.00183	U	0.00178	U	NA	NA
Perfluorododecanoic Acid	~	0.00194	U	0.00197	U	0.00183	U	0.00178	U	NA	NA
Perfluoroheptanesulfonic acid	~	0.00194	U	0.00197	U	0.00183	U	0.00178	U	NA	NA
Perfluoroheptanoic acid	~	0.0105		0.00197	U	0.00619		0.00564		NA	NA
Perfluorohexanesulfonic Acid	~	0.00353		0.00197	U	0.00185	J	0.00266	J	NA	NA
Perfluorohexanoic Acid	~	0.0191		0.00118	J	0.00469		0.00465		NA	NA
Perfluorononanoic Acid	~	0.000527	J	0.00197	U	0.00147	J	0.00176	J	NA	NA
Perfluorooctanesulfonamide	~	0.00194	U	0.00197	U	0.00178	U	0.00178	U	NA	NA
Perfluorooctanesulfonic acid	0.07	0.0069		0.00197	U	0.00891		0.0113		NA	NA
Perfluorooctanoic Acid	0.07	0.0241		0.000838	J	0.0348		0.0317		NA	NA
Perfluoropentanoic Acid	~	0.0261		0.002		0.00522		0.0053		NA	NA
Perfluorotetradecanoic Acid	~	0.00194	U	0.00197	U	0.00183	U	0.00178	U	NA	NA
Perfluorotridecanoic Acid	~	0.00194	U	0.00197	U	0.00183	U	0.00178	U	NA	NA
Perfluoroundecanoic Acid	~	0.00194	U	0.00197	U	0.00183	U	0.00178	U	NA	NA
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2)	~	0.00194	U	0.00197	U	0.00183	U	0.00178	U	NA	NA
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2)	~	0.0157	J	0.00908	J	0.121	U	0.0069	U	NA	NA

Table 5B Remedial Investigation Report Groundwater Sample Analytical Results - Emerging Contaminants

37-11 30th Street Long Island City, New York BCP Site No.: C241211 Langan Project No.: 170512301

Notes:

1. Regulatory criteria do not exist for per- and polyfluoroalkyl substances (PFAS) and 1,4-Dioxane in New York State. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are compared to the United States Environmental Protection Agency (USEPA) health advisory limit of 70 parts per trillion.

2. Only detected analytes are shown in the table.

3. Analytes detected with concentrations above the USEPA Health Advisory Limit are bolded and shaded.

4. Analytical results with reporting limits (RL) above USEPA Health Advisory Limit are italicized.

5. Sample GWDUP01_101618 is a duplicate sample of MW07_101618 and sample GWDUP01_101718 is a duplicate sample of MW07_101718.

6. ~ = Regulatory limit for this analyte does not exist

7. µg/L = micrograms per liter

8. NA = Not Analyzed

Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 6A Remedial Investigation Report Soil Vapor Sample Analytical Results

	-		.: 170512301						
Location	AA01		SV01		SV02		SV03		
Sample ID	AA01_100		SV01_1008		SV02_1008		SV03_100818		
Laboratory ID	L1840663		L1840663		L1840663-		L1840663		
Sample Date	10/8/201	8	10/8/201	8	10/8/201	8	10/8/20	18	
Sample Type	AA		SV		SV		SV		
Volatile Organic Compounds (µg/m³)									
1,1,1-Trichloroethane	0.109	U	5.46	U	5.46	U	5.46	U	
1,1,2,2-Tetrachloroethane	1.37	U	6.87	U	6.87	U	6.87	U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.53	U	7.66	U	7.66	U	7.66	U	
1,1,2-Trichloroethane	1.09	U	5.46	U	5.46	Ū	5.46	U	
1,1-Dichloroethane	0.809	Ŭ	4.05	U	4.05	U	4.05	U	
1,1-Dichloroethene	0.079	U	3.96	U	3.96	U	3.96	U	
1,2,4-Trichlorobenzene	1.48	U	7.42	U	7.42	U	7.42	U	
1,2,4-Trimethylbenzene	0.983	U	8.16	0	5.01	0	4.92	U	
•	0.983 1.54	U	7.69	U	7.69		4.92 7.69		
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	1.54	U			6.01	U	6.01	U	
			6.01	U		U		U	
1,2-Dichloroethane	0.809	U	4.05	U	4.05	U	4.05	U	
1,2-Dichloropropane	0.924	U	4.62	U	4.62	U	4.62	U	
1,2-Dichlorotetrafluoroethane	1.4	U	6.99	U	6.99	U	6.99	U	
1,3,5-Trimethylbenzene (Mesitylene)	0.983	U	4.92	U	4.92	U	4.92	U	
1,3-Butadiene	0.442	U	2.21	U	2.21	U	2.21	U	
1,3-Dichlorobenzene	1.2	U	6.01	U	6.01	U	6.01	U	
1,4-Dichlorobenzene	1.2	U	6.01	U	6.01	U	6.01	U	
1,4-Dioxane (P-Dioxane)	0.721	U	3.6	U	3.6	U	3.6	U	
2,2,4-Trimethylpentane	0.934	U	4.67	U	4.67	U	4.67	U	
2-Hexanone	0.82	U	7.62		13.2		10.1		
4-Ethyltoluene	0.983	UJ	4.92	UJ	4.92	UJ	4.92	UJ	
Acetone	17.1	J	687	J	865		793		
Allyl Chloride (3-Chloropropene)	0.626	U	3.13	U	3.13	U	3.13	U	
Benzene	0.655	Ũ	3.19	U	3.19	Ŭ	3.19	U	
Benzyl Chloride	1.04	U	5.18	U	5.18	Ŭ	5.18	U	
Bromodichloromethane	1.34	U	6.7	U	6.7	U	6.7	U	
Bromoethene	0.874	U	4.37	U	4.37	U	4.37	U	
Bromoform	2.07				4.37	U	4.37		
	0.777	U	10.3	U				U	
Bromomethane		U	3.88	U	3.88	U	3.88	U	
Carbon Disulfide	0.623	U	3.11	U	4.24		3.11	U	
Carbon Tetrachloride	0.497		6.29	U	6.29	U	6.29	U	
Chlorobenzene	0.921	U	4.61	U	4.61	U	4.61	U	
Chloroethane	0.528	U	2.64	U	2.64	U	2.64	U	
Chloroform	0.977	U	4.88	U	4.88	U	4.88	U	
Chloromethane	1.14		2.07	U	2.07	U	2.07	U	
Cis-1,2-Dichloroethylene	0.079	U	3.96	U	3.96	U	3.96	U	
Cis-1,3-Dichloropropene	0.908	U	4.54	U	4.54	U	4.54	U	
Cyclohexane	0.688	U	3.44	U	3.44	U	3.44	U	
Dibromochloromethane	1.7	U	8.52	U	8.52	U	8.52	U	
Dichlorodifluoromethane	2.31		4.94	U	4.94	U	4.94	U	
Ethanol	11.4		47.1	U	47.1	U	47.1	U	
Ethyl Acetate	1.8	U	9.01	U	9.01	U	9.01	U	
Ethylbenzene	0.869	U	4.34	U	4.56		4.34	U	
Hexachlorobutadiene	2.13	U	10.7	U	10.7	U	10.7	U	
Isopropanol	2.01	-	6.42	-	10.3	-	6.88	-	
M,P-Xylene	2.27		12.6		14.6		13		
Methyl Ethyl Ketone (2-Butanone)	1.47	U	48.4		86.4		67.8		
Methyl Isobutyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	2.05	U	10.2	U	10.2	U	10.2	U	
Methylene Chloride	2.05 1.74	U	8.69	U	8.69	U	8.69	U	
n-Heptane	0.82	U	5.9	U	6.88	U	6.8	0	
n-нертапе n-Hexane	0.82	0	5.9 7.26		6.8 6.8		6.8 5.36		
	0.863	U			6.8 5.91				
o-Xylene (1,2-Dimethylbenzene)			5.43				5.04		
Styrene	0.852	U	4.26	U	4.26	U	4.26	U	
Tert-Butyl Alcohol	1.52	U	13.5		17.3		12.5		
Tert-Butyl Methyl Ether	0.721	U	3.61	U	3.61	U	3.61	U	
Tetrachloroethene (PCE)	1.3		12.2		26.9		7.39		
Tetrahydrofuran	1.47	U	7.37	U	7.37	U	7.37	U	
Toluene	4.94		17.3		17.7		18.7		
Trans-1,2-Dichloroethene	0.793	U	3.96	U	3.96	U	3.96	U	
Trans-1,3-Dichloropropene	0.908	U	4.54	U	4.54	U	4.54	U	
Trichloroethene (TCE)	0.15		5.37	U	5.37	U	5.37	U	
Trichlorofluoromethane	1.2	I	5.62	U	5.62	U	5.62	U	
	1.2 0.051	U	5.62 2.56	U U	5.62 2.56	U U	5.62 2.56	U	

Table 6A Remedial Investigation Report Soil Vapor Sample Analytical Results

37-11 30th Street Long Island City, New York BCP Site No.: C241211 Langan Project No.: 170512301

Notes:

- 1. μ g/m³ = micrograms per cubic meter
- 2. SV = soil vapor
- 3. AA = ambient air
- 4. VOC = volatile organic compound

Qualifiers:

J – The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 6B Remedial Investigation Report Sub-Slab Soil Vapor and Indoor Air Sample Analytical Results

Location		IA01		SSV01		IA02	10	SSV02		IA03		SSV03		SSV03	
Sample ID	NYSDOH Decision	IA01_100818 L1840663-07		SSV01_100		IA02_1008 L1840663-		SSV02_1008		IA03_1008		SSV03_100 L1840663		SSVDUP01_	
Laboratory ID Sample Date	Matrix	10/8/2018		L1840663- 10/8/201		10/8/201		L1840663-0 10/8/2018		L1840663- 10/8/201		10/8/201		L1840663 10/8/20	
Sample Date	Watny	IA		SSV	0	IA	0	SSV	5	IA	0	SSV	0	SSV	10
Volatile Organic Compounds (µg/m ³)		174			-			001							-
1,1,1-Trichloroethane	В	0.109	U	5.46	U	0.109	U	21.9	U	0.109	U	10.9	U	5.46	U
1,1,2,2-Tetrachloroethane	~	1.37	U	6.87	U	1.37	U	27.6	U	1.37	U	13.7	U	6.87	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	~	1.53	U	7.66	U	1.53	U	30.8	U	1.53	U	15.3	U	7.66	U
1,1,2-Trichloroethane	~	1.09	U	5.46	U	1.09	U	21.9	U	1.09	U	10.9	U	5.46	U
1,1-Dichloroethane	~	0.809	U	4.05	U	0.809	U	16.3	U	0.809	U	8.09	U	4.05	U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	A ~	0.079 1.48	U U	3.96 7.42	U U	0.079 1.48	U U	15.9 29.8	U U	0.079 1.48	U U	7.93 14.8	U U	3.96 7.42	U U
1,2,4-Trimethylbenzene	~	0.983	U	4.92	U	0.983	U	19.8	U	0.983	U	9.83	U	4.92	U
1,2-Dibromoethane (Ethylene Dibromide)	~	1.54	U	7.69	Ŭ	1.54	Ŭ	30.9	Ŭ	1.54	Ŭ	15.4	Ŭ	7.69	Ŭ
1,2-Dichlorobenzene	~	1.2	U	6.01	U	1.2	U	24.2	U	1.2	U	12	U	6.01	U
1,2-Dichloroethane	~	0.809	U	4.05	U	0.809	U	16.3	U	0.809	U	8.09	U	4.05	U
1,2-Dichloropropane	~	0.924	U	4.62	U	0.924	U	18.6	U	0.924	U	9.24	U	4.62	U
1,2-Dichlorotetrafluoroethane	~	1.4	U	6.99	U	1.4	U	28.1	U	1.4	U	14	U	6.99	U
1,3,5-Trimethylbenzene (Mesitylene)	~	0.983	U	4.92	U	0.983	U	19.8	U	0.983	U	9.83	U	4.92	U
1,3-Butadiene	~	0.442	U	2.21	U	0.442	U	8.89	U	0.442	U	4.42	U U	2.21	U U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.2 1.2	U U	6.01 6.01	U U	1.2 1.2	U U	24.2 24.2	U U	1.2 1.2	U U	12 12	U	6.01 6.01	U
1,4-Dichlorobenzene 1,4-Dioxane (P-Dioxane)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.721	U	3.6	U	0.721	U	24.2 14.5	U	0.721	U	7.21	U	3.6	U
2,2,4-Trimethylpentane	~~~~	1.01	5	4.67	U	0.934	U	18.8	U	0.981	5	9.34	U	4.67	U
2-Hexanone	~	0.82	U	4.1	Ū	0.82	U	16.5	Ū	0.82	U	8.2	Ū	4.1	Ŭ
4-Ethyltoluene	~	0.983	UJ	4.92	UJ	0.983	UJ	19.8	UJ	0.983	UJ	9.83	UJ	4.92	UJ
Acetone	~	14.4	J	47.3	J	13.5	J	47.7	U	14.1	J	27.8		27.1	
Allyl Chloride (3-Chloropropene)	~	0.626	U	3.13	U	0.626	U	12.6	U	0.626	U	6.26	U	3.13	U
Benzene	~	0.674		3.19	U	0.652		12.8	U	0.639	U	6.39	U	3.19	U
Benzyl Chloride	~	1.04	U	5.18	U	1.04	U	20.8	U	1.04	U	10.4	U	5.18	U
Bromodichloromethane Bromoethene	~	1.34 0.874	U U	6.7 4.37	U U	1.34 0.874	U U	26.9 17.6	U U	1.34 0.874	U U	13.4 8.74	U U	6.7 4.37	U U
Bromoform	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.07	U	4.37	U	2.07	U	41.6	U	2.07	U	20.7	U	4.37	U
Bromomethane	~	0.777	U	3.88	U	0.777	U	15.6	U	0.777	U	7.77	U	3.88	U
Carbon Disulfide	~	0.623	Ŭ	3.11	Ŭ	0.623	Ŭ	12.5	Ŭ	0.623	Ŭ	6.23	Ŭ	3.11	Ŭ
Carbon Tetrachloride	А	0.459		6.29	U	0.459		25.3	U	0.472		12.6	U	11.3	
Chlorobenzene	~	0.921	U	4.61	U	0.921	U	18.5	U	0.921	U	9.21	U	4.61	U
Chloroform	~	0.977	U	29.4		0.977	U	19.6	U	0.977	U	9.77	U	6.35	
Chloromethane	~	1.03		2.07	U	1.05		8.3	U	1.04		4.13	U	2.07	U
Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene	A	0.079	U U	3.96	U U	0.079	U	15.9	U U	0.079	U U	7.93	U U	3.96	U U
Cis-1,3-Dichloropropene Cyclohexane	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.908 0.688	U	4.54 3.44	U	0.908 0.688	U U	18.3 13.8	U	0.908 0.688	U	9.08 6.88	U	4.54 3.44	U
Dibromochloromethane	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.7	U	8.52	U	1.7	U	34.2	U	1.7	U	17	U	8.52	U
Dichlorodifluoromethane	~	2.48	0	4.94	U	2.54	Ŭ	19.9	Ŭ	2.58	Ŭ	9.89	U	4.94	Ŭ
Ethanol	~	10.5		47.1	U	9.42	U	188	U	12.2		94.2	U	47.1	U
Ethyl Acetate	~	1.8	U	9.01	U	1.8	U	36	U	1.8	U	18	U	9.01	U
Ethyl Chloride	~	0.528	U	2.64	U	0.528	U	10.6	U	0.528	U	5.28	U	2.64	U
Ethylbenzene	~	0.869	U	4.34	U	0.869	U	17.5	U	0.869	U	8.69	U	4.34	U
Hexachlorobutadiene	~	2.13	U	10.7	U	2.13	U	42.9	U	2.13	U	21.3	U	10.7	U U
Isopropanol M,P-Xylene	~	2.01 2.6		6.15 10.4	U	3.07 2.23		24.6 34.9	U U	2.03 2.35	J	12.3 17.4	U U	6.15 9.99	U
Methyl Ethyl Ketone (2-Butanone)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.47	U	7.37	U	2.23 1.47	U	29.5	U	2.35 1.47	U	17.4	U	9.99 7.37	U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	~	2.05	U	10.2	U	2.05	Ŭ	41	Ŭ	2.05	Ŭ	20.5	Ŭ	10.2	Ŭ
Methylene Chloride	В	1.74	U	8.69	Ŭ	1.74	Ŭ	34.7	Ŭ	1.74	Ŭ	17.4	Ŭ	8.69	Ŭ
n-Heptane	~	0.992		4.1	U	0.897		16.5	U	1		8.2	U	4.1	U
n-Hexane	~	1.14		3.52	U	0.902		14.2	U	1.09		7.05	U	3.52	U
o-Xylene (1,2-Dimethylbenzene)	~	0.877		4.34	U	0.869	U	17.5	U	0.869	U	8.69	U	4.34	U
Styrene	~	0.852	U	4.26	U	0.852	U	17.1	U	0.852	U	8.52	U	4.26	U
Tert-Butyl Alcohol	~	1.52	U	7.58	U	1.52	UU	30.3 14 F	U	1.52	U U	15.2	U	7.58	UU
Tert-Butyl Methyl Ether Tetrachloroethene (PCE)	~ B	0.721 1.44	U	3.61 64.6	U	0.721 6.66	U	14.5 8,270	U	0.721	U	7.21 3,420	U	3.61 2,860	U
Tetrahydrofuran	D ~	1.44	U	04.0 7.37	U	1.47	U	29.5	U	1.47	U	3,420	U	7.37	U
Toluene	~~~~~	6.29	5	10.6	0	5.65	U	15.1	U	5.92	U	8.06	0	7.24	0
Trans-1,2-Dichloroethene	~	0.793	U	3.96	U	0.793	U	15.9	U	0.793	U	7.93	U	3.96	U
Trans-1,3-Dichloropropene	~	0.908	U	4.54	Ŭ	0.908	Ŭ	18.3	Ŭ	0.908	U	9.08	U	4.54	Ŭ
Trichloroethene (TCE)	А	0.177		5.37	U	0.296		21.6	U	0.156		21.8		22.3	
Trichlorofluoromethane	~	1.36		5.62	U	1.32		22.6	U	2.24		11.2	U	5.62	U
Vinyl Chloride	С	0.051	U	2.56	U	0.051	U	10.3	U	0.051	U	5.11	U	2.56	U
Total VOCs	~	47.4		162		39.2		8,270		47.6		3,480		2,940	

Table 6B Remedial Investigation Report Sub-Slab Soil Vapor and Indoor Air Sample Analytical Results

37-11 30th Street Long Island City, New York BCP Site No.: C241211 Langan Project No.: 170512301

Notes:

- 1. Co-located sub-slab vapor and indoor air sample analytical results are evaluated with the New York State Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017). 2. For indoor air samples, 1,1,1-Trichloroethane, 1,1-Dichloroethene, Carbon tetrachloride, cis-1,2-Dichloroethene, Tetrachloroethene, Trichloroethene, and Vinyl chloride, were analyzed for TO-15 VOCs by Selected Ion Monitoring.
- 3. Detected analytical results evaluated to recommend monitoring are bolded.
- 4. Detected analytical results evaluated to recommend mitigation are shaded.
- Sample SSVDUP01_100818 is a duplicate of parent sample SSV03_100818.
- 6. \sim = Regulatory limit for this analyte does not exist
- 7. μ g/m³ = micrograms per cubic meter
- 8. SSV = sub-slab vapor
- 9. IA = indoor air

Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

APPENDIX A PREVIOUS ENVIRONMENTAL REPORTS

SEPARATE ATTACHMENT

APPENDIX B GEOPHYSICAL SURVEY REPORTS

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Site 37-11 30th Street, Long Island City, New York 11101

NOVA PROJECT NUMBER 18-0960


DATED October 8, 2018

PREPARED FOR:

21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

PREPARED BY:

NOVA GEOPHYSICAL SERVICES

SUBSURFACE MAPPING SOLUTIONS 56-01 Marathon Parkway #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

October 8, 2018

Emily Snead, PG Project Scientist

LANGAN

21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001 Direct: 212.479.5432 Mobile: 508.918.8558

> Re: Geophysical Engineering Survey (GES) Report Commercial Site 37-11 30th Street, Long Island City, New York 11101

Dear Ms. Snead,

Nova Geophysical Services (NOVA) is pleased to provide the findings of the geophysical engineering survey (GES) at the above referenced project site: 37-11 30th Street, Long Island City, New York (the "Site").

INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

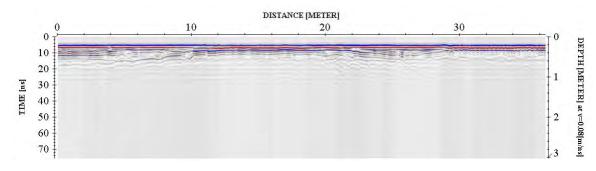
NOVA performed a geophysical engineering survey (GES) consisting of a Ground Penetrating Radar (GPR) and Electromagnetic (EM) survey at the site. The purpose of this survey is to locate and identify utilities, underground storage tanks and other substructures on September 26th, 2018.

The equipment selected for this investigation was a Sensors and Software Noggin 250 MHz ground penetrating radar (GPR) with a shielded antenna and a Radio Detection RD7100 Electromagnetic utility locator.

A GPR system consists of a radar control unit, control cable, and transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transduce via the control cable. The transmitter electronics amplify the trigger pulse into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the

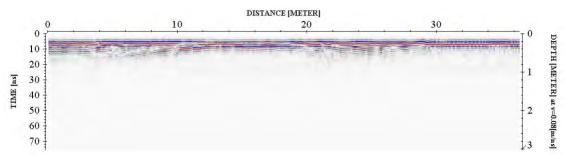
subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

A typical electromagnetic (EM) utility locating system consists of a transmitter unit and a receiver unit. The receiver unit can be used independently of the transmitter unit in order to detect utility lines with an inherent EM signature (electric utility lines, water lines, etc.). If needed a current at a specific frequency can also be placed on a utility that is being located. This can be done via the transmitter unit by either direct connection or induction via an EM field varying at specific frequency. The receiver unit is then set to the selected frequency and the electromagnetic field created by the current running through the utility can be located allowing the utility to be marked.

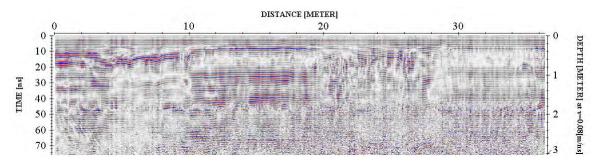

GEOPHYSICAL METHODS

The project site was screened using GPR to search the specified area and inspected for reflections, which could be indicative of substructures and utilities within the subsurface. An EM utility locator was used to help determine the locations of utilities within the survey area.

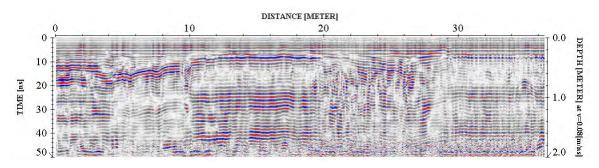

EM data was collected and interpreted on site and suspected utilities marked as needed. GPR data profiles were collected for the areas of the Site specified by the client and processed as specified below.

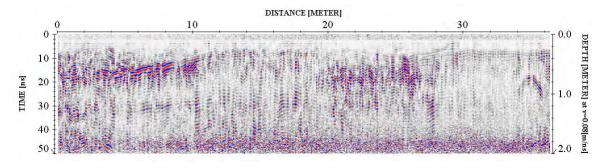

DATA PROCESSING


In order to improve the quality of the results and to better identify anomalies NOVA processed the collected data. The processing work flow is briefly described in this section.



Step 1. Import Raw RAMAC data to standard processing format





Step 4. Remove static from bottom of profile (time cut)

Step 5. Mute horizontal ringing/noise (subtracting average)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and represents the subsurface anomalies much more accurately.

PHYSICAL SETTINGS

NOVA observed the following physical conditions at the time of the survey.

Weather: Overcast, Rain

Temperature: 75° F

Surface: Concrete, Asphalt

Geophysical Noise Level: Geophysical noise at the site was high due to being in an urban environment.

RESULTS

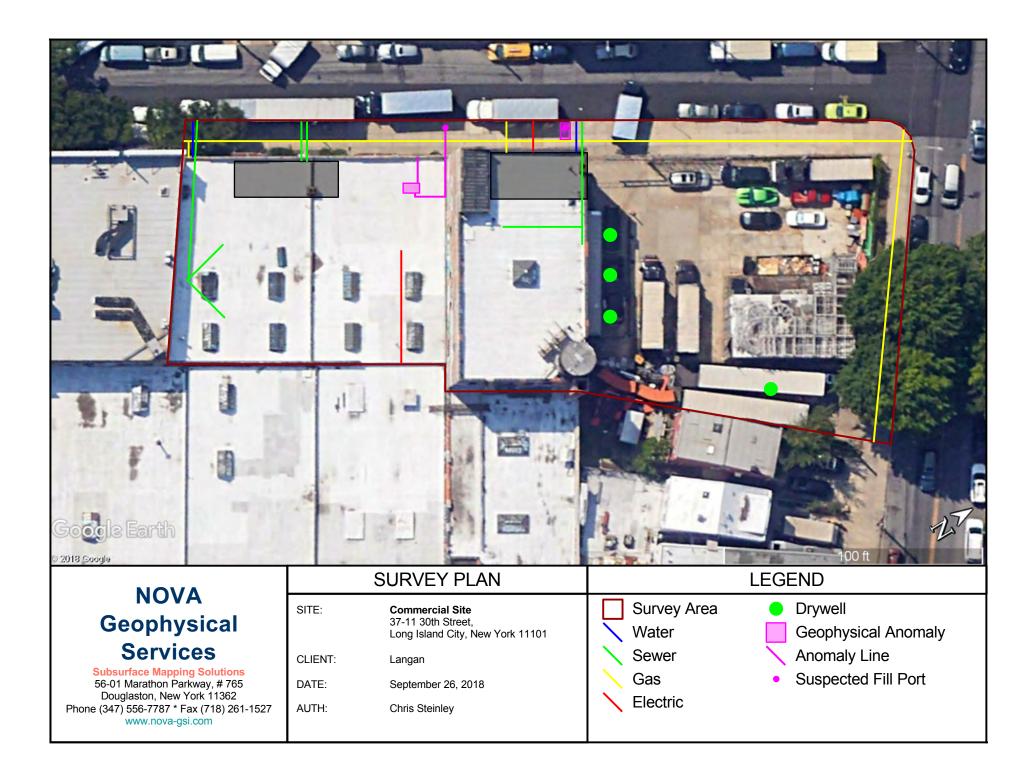
The results of the geophysical engineering survey (GES) identified the following at the project site:

- Subsurface utilities; Sewer, water, gas, and electric were identified during the GES. These anomalies are shown in the survey plan.
- The GES identified two (2) anomalies at the site. However, due to high level geophysical noise activitiy at the time of the survey, NOVA could not verify the nature of these reflections (anomalies). Further investigation of these areas with CSUL and GPR indicated that they were associated suspected fill ports. These areas are shown in the survey plan.
- Multiple drywells were identified and are shown in the survey plan.
- Two partial basements were identified and their locations are shown in the survey plan.
- All detected subsurface anomalies were marked in the onsite mark out.
- All cleared boring locations were marked in the onsite mark out.

If you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

NOVA Geophysical Services

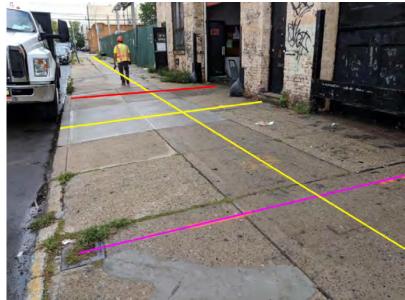

Just Bill

Levent Eskicakit, P.G., E.P. Project Engineer

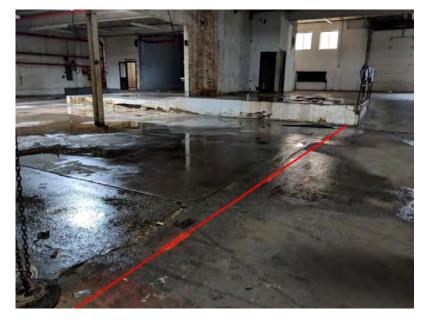
Attachments:

Geophysical Images Survey Plan 1 Survey Plan 2 Location Map

28th-St 29th St 29th St				
301 31st	n St	SITE		
		32nd-St		
Google Earth Patres Coogle		SURVEY PLAN	LEGEND	- giving
NOVA	SITE:	Commercial Site		┥
Geophysical		37-11 30th Street, Long Island City, New York 11101		
Services Subsurface Mapping Solutions	CLIENT:	Langan		
Subsurface Mapping Solutions 56-01 Marathon Parkway, # 765 Douglaston, New York 11362	DATE:	September 26, 2018		
Phone (347) 556-7787 * Fax (718) 261-1527 www.nova-gsi.com	AUTH:	Chris Steinley		

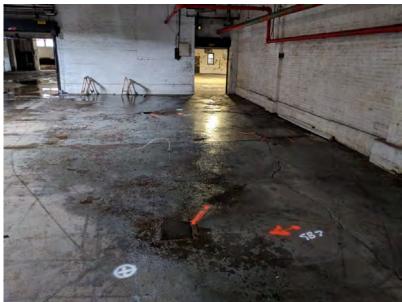


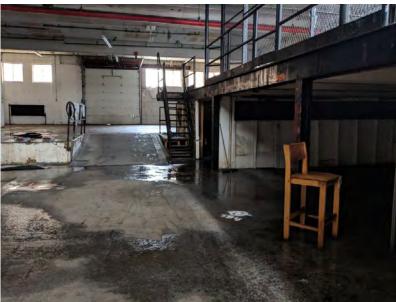
GEOPHYSICAL IMAGES Commercial Site 37-11 30th Street, Long Island City, New York 11101 September 26th, 2018

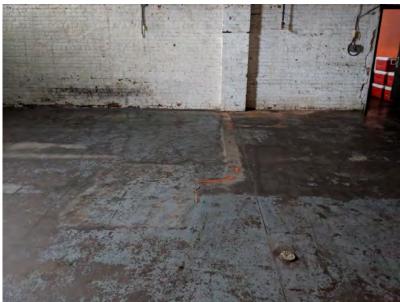


GEOPHYSICAL IMAGES

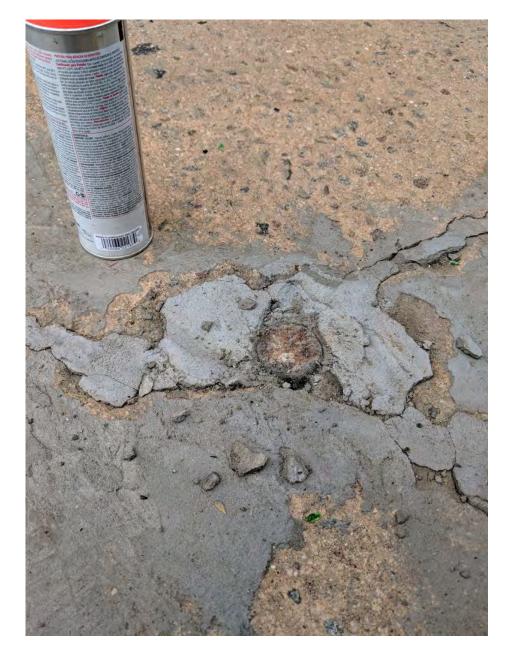
Commercial Site 37-11 30th Street, Long Island City, New York 11101 September 26th, 2018

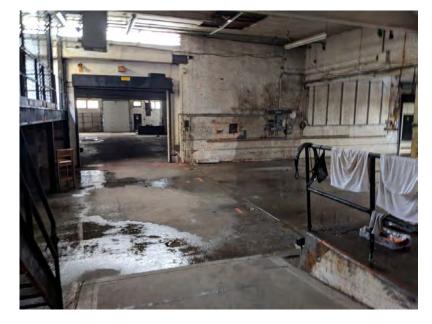




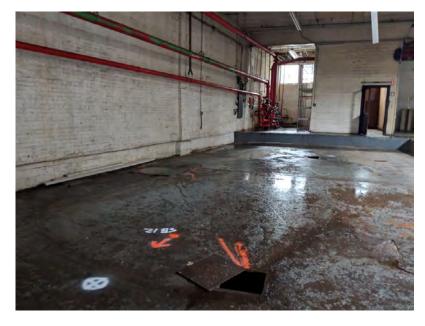


GEOPHYSICAL IMAGES


Commercial Site 37-11 30th Street, Long Island City, New York 11101 September 26th, 2018







GEOPHYSICAL IMAGES

Commercial Site 37-11 30th Street, Long Island City, New York 11101 September 26th, 2018

APPENDIX C SOIL BORING LOGS

						LOG		oring			SB				Sheet 1	of	2
Project		37 11	30th Street				Pro	ject No.			170	51230 [.]	1				
Location		51-11	Jour Sueel				Ele	vation a	ind Da	atum		51230	1				
			sland City, NY	/				<u></u>			44.2	2 NAV			f casing)		
Drilling (ntal Services, In	~		Dat	e Starte	ed		1	0/4/18	L	Jate	Finished	10/4/18	
Drilling E							Со	npletior	n Dep	th		0/4/10	F	Rock	Depth	10/4/10	
0.			obe 8140LC S	Sonic Drill Rig							Dist	40 ft			d'at de sid	N/A	
Size and			ch inside diam	eter sonic bit			Nu	mber of	Samp	oles	Disti	urbed	8	Un	disturbed N/A	Core	N/A
Casing [er (in) N/A			(Casing Depth (ft) N/A	Wa	ter Leve	el (ft.)		First		26		mpletion N/A	24 HR.	N/A
Casing H				Weight (lbs)	N/A	Drop (in) N/A	Dril	ling For	eman		<u> </u>		20			<u> </u>	
Sampler	r		ch inside diam	eter by 60-inch		l tubo	-	lal Emaila		D	albi	Pache	со				
Sampler			N/A	Weight (lbs)	N/A	Drop (in) N/A	Fie	ld Engin	leer	Δ	chlo	/ Stan	penbec	k			
		5	11/7									mple Da		K	Der	a a rika	
MATERIAL SYMBOL	Elev. (ft)	Building Code		Sample De	escriptio	n		Depth Scale	Number	Type	in) .	Penetr. resist BL/6in	PID Readi		(Drilling Fluid,	narks Depth of Ca	asing,
≥° ≥∽	+44.2	<u>ш</u> -	10" 00100					- 0 -	N N N	F.	Å.	Pe BL	(ppm		Fluid Loss, Drillir	g Resistan	ce, etc.)
	+43.4		10" CONCR				ļ	-	-						Collect SB0	1 0.5-1.	5 at 7:4
		F		red-brown to da	ırk browı	n fine SAND,		- 1 -	-				0.1				
	∮		some silt (m	ioisi) [FILL]			F	- 2 -	-	Ä			0.7		Collect SB0		
							Ē		2	MACROCORE	36	NA	0.0 0.0		Collect SB0	1_2-3 at	7:49
			R1b (21-36"	') light brown fin	e SAND	(dry) [FILL]		- 3 -]	ACR			0.0				
								-	-	2			0.0				
								- 4 -									
								- 5 -	1								
								- 6 -	-								
								-	1	Щ					Collect SB0	1_6.5-7.	5 at 7:5
				arou fine CAND	traca	aaraa aand traa		- 7 -	R2	DCOF	32	NA			Collect SB0	_	
			fine gravel (, liace c	oarse sand, trace		- 8 -	- 22	MACROCORE	e		0.0 0.0		Collect SB0	1_7.5-8.	5 at 7:5
XXXXX	435.9	F	R2b (10-12") dark brown fin coarse sand, tra	e SAND	, some medium		-	-	Σ			0.0		Collect SB0	1 8.5-9.	5 at 8:0
· · · · · · · · · · · ·			ί [FILL]		-	,	. 」	9 -	-				0.0				
<u>п</u> т	+34.6	ŀ) light brown fin coarse sand, tra			7	10	-				0.0		Collect SB0	1_9.5-10	.5 at
) soft tan SILT,			- / [- 10 -	-						8:02		
							F	: - 11 -	=								
	+22.0						F	-	-	ω							
	+32.3	F						- 12 -	- - -	COR			0.0		Collect SB0	1_12-13	at 8:05
							E	- 13 -	R3	MACROCOR	37	NA	0.0		0		
			R3a (0-12")	tan fine SAND,	trace silf	, trace clay (dry)		13	-	₩			0.0 0.0		Collect SB0	13-14	at 8:07
			D26 /40 40"	any to top for		(dn/)	E	- 14 -	-				0.0		Collect SB0	1 14-15	at 8:09
			R3c (16-37"	 gray to tan fine light brown fine 	e SAND,	trace coarse		-	1				0.0				
			sand, trace fine gravel (dry to moist)		ŀ	- 15 -	1										
							ļ	- 16 -	=								
					ļ		-										
				e SAND, trace	ļ	- 17 -	╡.	CORE			0.0						
			coarse sand R4b (10-38"		ļ		- X	MACROCOR	38	NA	0.0						
			1115(10-00		(Ę	- 18 -	-	MA			0.0				
							ļ	- - 19 -	-				0.0 0.0				
	i I.	1							-	1			0.0		1		

roject		37-11	30th Street	Project No			170	51230 ⁻	1				
ocatior	ı	57-11	Som Sheet	Elevation a	nd D	atun		51250	1				
		Long	Island City, NY				44.2	22 NAV	/D88 (top o	of casing)			
r P		D					Sa	mple Da	ata		Domo	rke	
MATERIAL SYMBOL	Elev. (ft)	Building Code	Sample Description	Depth Scale	Number	Type	л. С	Penetr. resist BL/6in	PID Reading	(Drilling	Rema Fluid, Dep	th of Casin	g,
<u>≧</u> ∽	+24.2	<u>ш</u>		20 -	Ž	-	Å,	e e E	(ppm)	Fluid Los	s, Drilling F	esistance,	etc.)
					-								
				- 21 -	-								
					-	Щ							
			R5a (0-14") tan fine SAND (dry)	- 22 -	R5	MACROCORE	36	NA	0.0				
]			- 23 -	- œ	ACRO	ŝ		0.0 0.0				
			R5b (14-36") light brown fine SAND, trace medium	-	-	Ň			0.0				
			sand, trace fine gravel, trace coarse-fine gravel (dry)	- 24 -	-				0.0				
	1			È	1				0.0				
				- 25 -	1								
				¥ 26 -	1				0.0	Matan	Tabla at	about 20	- f-
	1		R6 (0-47") brown fine SAND, trace medium sand, trace coarse sand, trace fine gravel (wet)		-				0.0	bgs			
				- 27 -	-	CORE			0.0	Collect	SB01_2	26-27 at	8:30
				Ē	R6	MACROCORE	47	NA	0.0				
				- 28 -	1	MAG			0.0				
•••••				- 29 -	-				0.0 0.0				
				-	-				0.0				
				- 30 -	1								
				Ē	1								
			R7 (0-48") brown fine SAND, trace medium sand,	- 31 -	1				0.0				
·····			trace coarse sand, trace fine gravel (wet)	- 32 -	-	ORE			0.0 0.0				
				Ē	2	MACROCORE	48	NA	0.0				
				- 33 -	-	MACI			0.0				
				Ē	=				0.0				
•				- 34 -	-				0.0 0.0				
				- 35 -	1				0.0				
			R8a (0-21") brown fine SAND, trace medium sand,	F	-				0.0				
			trace coarse sand, trace fine gravel (wet) R8b (21-29") brown to orange fine SAND, trace	- 36 -	-				0.0				
			coarse sand, trace fine gravel (wet)	- 27	-	띮			0.0				
				- 37 -	R8	oco	55	NA	0.0 0.0				
				- 38 -]	MACROCORE	4,		0.0				
			R8c (29-55") brown fine SAND, trace coarse sand, trace fine gravel, 3 1-inch clay lenses 1-foot from end	E	-	2			0.0				
			of recovery (wet)	- 39 -					0.0				
	+4.2			40 -	_				0.0				
										Monito	ring well	t 40 feet MW01	-
				- 41 -						installe	d in bor	ehole. Se I Constru	
				È							details.		JUJ
				- 42 -									
				- 43 -	-								
				Ę	-								
				- 44 -	1								
				F	1								

neer	n 43.6 10 Distu First Z	0/4/18 35 ft urbed	Rock 7	of casing) ⇒ Finished < Depth ndisturbed N/A ompletion	10/4/18 N/A	
f Samples f Samples rel (ft.) reman neer /	n 43.6 10 Distu First Z	5 NAVD8 0/4/18 35 ft urbed	Rock 7	e Finished k Depth ndisturbed N/A	N/A	
n Depth f Samples rel (ft.) reman neer 	10 Distu First ∑ Dalbi I	0/4/18 35 ft urbed	Rock 7	e Finished k Depth ndisturbed N/A	N/A	
n Depth f Samples rel (ft.) reman neer 	Distu First ∑ Dalbi I	35 ft urbed	Rock 7 0	k Depth ndisturbed N/A	N/A	
f Samples rel (ft.) reman neer 	Distu First ∑ Dalbi I	35 ft urbed	7 U 7 C	k Depth ndisturbed N/A	N/A	
rel (ft.) breman neer A	First	urbed	7 C	N/A		
rel (ft.) breman neer A	First	2	7 C	N/A	Core	
preman E neer A	│ <u>▽</u> Dalbi I	2	С			N/A
preman E neer A	Dalbi I		25 _	•	24 HR.	
neer /		Pacheco		N/A	<u> </u>	N/A
	Ashley					
	Ashley					
Number Type		/ Stapper mple Data	beck			
Numt Typ			PID		narks	
	(in (in	Penetr. resist BL/6in	Reading (ppm)	(Drilling Fluid, I Fluid Loss, Drillin		
				Collect SB02	2_0-1 at 12	2:59
-			0.0	Collect SB02 13:00	2_0.5-1.5 a	at
			0.0 0.0	13.00		
ORE -			0.0	Collect SB02	2_1-2 at 13	3:00
R1 MACROCORE	48	NA	0.0			
MAC			0.0	Collect SB02	2_3-4 at 13	3:04
-			0.0	(R1) Collect SB02	2 3-4 at 1:	3.02
-			0.0	(WC)		
-						
-						
			0.0			
2 2 COR	~		0.0	Collect SB02	2_7-8 at 13	3:06
CRO R	4	NA				
- W				Collect SB02	2_8-9 at 13	3:08
-				Collect SB02	2 9-10 at [.]	13.1(
-			0.0		u	10.10
-						
-						
DRE L L					2 12 13 1	12.
R3	44	NA	0.0	Collect 3B02	<u>-</u> 12-15 at	. 13.
NACF			0.0	Collect SB02	2 13 14 a	t
-			0.0	13:13		
			0.0	Collect SB02	2_14-15 at	: 13:
-			0.0			
-			0.0			
			0.0			
	_		0.0			
CRO CRO	46	NA	0.0			
MA						
		- I				
4			0.0			
	Interface R3 R2 MACROCORE MACROCORE MACROCORE		× MACROCORE	0.0 Ad Advectore Advectore 0.0 Au 44 44 0.0 0.0 44 44 0.0 0.0 44 44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NA 0.0 Collect SB02 0.0 0.0 13:13 0.0 0.0 Collect SB02 0.0 0.0 0.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

LA	4/	VE	īA	N	
Draiget					_

Project		27 11	20th Street	Project N	Э.		170	E1020	1			
ocation	1	37-11	30th Street	Elevation	and D	atun		51230	1			
		Long I	sland City, NY				43.6	65 NA∖	′D88 (top o	f casing)		
۲Ł		D		-		- -		mple Da	ata	De	morko	_
MATERIAL SYMBOL	Elev. (ft) +23.7	Building Code	Sample Description	Dept Scale		Type	Recov. (in)	Penetr. resist BL/6in	PID Reading (ppm)	(Drilling Fluid,	marks Depth of Casing, ng Resistance, etc	c.)
• • • • •			R5 (0-60") light brown fine SAND, some medium	20	-				0.0			
			sand (wet)	- 21	-				0.0 0.0			
				Ē	-				0.0			
				- 22	-	ORE			0.0			
				E	R5	MACROCORE	60	NA	0.0			
				- 23	-	MAC			0.0			
				- 24	_				0.0			
				- 27	-				0.0 0.0			
			R6 (0-60") light brown medium SAND, some fine	¥ 25					0.0			
			sand, trace coarse sand, trace fine gravel (wet)	Ē	-				0.0			
				- 26					0.0		e at about 25 f	fe
				F ~-	-	끹			0.0	bgs Collect SB0	2_26-27 at 13	3::
				- 27	R6	MACROCORE	60	NA	0.0 0.0			
				- 28		ACR	9		0.0			
				Ē		Σ			0.0			
				- 29	-				0.0			
				È.					0.0			
]		R7 (0-70") light brown medium SAND, some fine	- 30	-							
			sand, trace coarse sand, trace fine gravel (wet)	- 31	_				0.0 0.0			
					-				0.0			
				- 32	-	MACROCORE			0.0			
]			E	5	ROC	60	NA	0.0			
	1			- 33	-	MAC			0.0			
				- 34	1				0.0 0.0			
				Ē	-				0.0			
	+8.7	-		35	1					End of borir	ng at 35 feet b	bas
				E	-					MW02 was	installed 23-3	35
				- 36	-					Well Constr	e Monitoring uction Log for	r
				- 37	_					details.	-	
				57	-							
				- 38	-							
				E								
				- 39	-							
				- 40	_							
				E 40								
				- 41	-							
				E								
				42	-							
				- 43	_							
				43								
				- 44	_							
	1			F	1	1	1			1		

Project						Log o		ject No.									
		37-11	30th Street					,			170	51230 ⁻	1				
ocation	1						Ele	vation a	nd Da	atum							
			Island City, NY				Det	- 01	-		42.2	27 NAV			casing)		
Drilling C	Jompa			al Sanviana In	<u> </u>		Dat	e Starte	a		1	0/2/10		Date F	Finished	10/2/18	0
Drilling E	Equipr		O Environment	al Services, in	С.		Cor	npletion	Dept	th	1	0/2/18		Rock [Depth	10/2/10	5
0	• •		robe 8140LC Sc	onic Drill Rig								40 ft				N/A	4
Size and	і Туре						Nur	nber of	Sam	oles	Dist	urbed	0	Unc	disturbed	Core	N1/A
Casing [Diamet		ch inside diame	ter sonic dit	C	asing Depth (ft)					Firs	t	8	Cor	N/A npletion	24 HR	N/A
-		N/A				NI/A		ter Leve	. ,		\Box	-	23	Ţ		$\bar{\mathbf{\Lambda}}$	N/A
Casing H		^e Ń∕A		Weight (lbs)	N/A	Drop (in) N/A	Dril	ling For	eman		- Ih :	Deebe					
Sampler	•	4.5-in	ch inside diame	ter by 60-inch	long dual	tube	Fiel	d Engin	eer	D	aidi	Pache	co				
Sampler	Hamr	ner	N/A	Weight (lbs)	N/A	Drop (in) N/A		J		A	shle	y Stap	penbeo	ck			
L'AL		D									Sa	mple Da			Pa	marks	
MATERIAL SYMBOL	Elev. (ft)	Building Code		Sample De	escriptior	ı		Depth Scale	Number	Type	о С	Penetr. resist BL/6in	PII Read) lina	(Drilling Fluid	Depth of	Casing,
≩ώ	+42.3	۵ -						- 0 -	ⁿ z	ΓĒ.	Re E	Pa a la	(ppr		Fluid Loss, Drill	ng Resista	ince, etc.)
	+41.9	ŀ	4-inch CONC R1a (0-3") gra	RETE slab ay fine GRAVE	EL (drv) [F	ILL1	‡		1				0.2	2	Collect SB0	3 0 5 1	5 at 0.1
			R1b (3-12") g	ray to black m	edium SA	ND, some fine	F	- 1 -	1				0.4		CONFECT OR	J_U.S-1	.5 at 9.2
>>>>				coarse sand (coorse sand (coorse sand)			F		-				0.0				
			(dry) [FILL]	orange promi		2,00000	Ē	- 2 -	-	MACROCORE			0.0	b			
							Ē		ĿΣ	CROC	26	NA	0.0)			
								- 3 -		MAC					Collect SBC	3_3-4 a	t 9:25
							F	- 4 -	-								
							Ē	- 5 -									
							E		-						Collect SB0	3_5-6 a	t 9:42
							F	- 6 -	-								
	+35.6			C C			F	-					0.0	b			
			R2a (0-2") ora	ange-brown fir	ie SAND,	some silt (dry)	/ E	- 7 -	-	MACROCORE			8.2	2	Collect SB0	37-8a	t 9:43
				ght brown fine		ace coarse	iE		2	CROC	42	NA	7.2	2		_	
• • • •	1			ne gravel (dry) tan fine SAND		arse sand, trace		- 8 -		MAC			0.0	כ	Collect SBC	3_8-9 a	t 9:44
			fine gravel (di			,	F						0.0				
							Ē	- 9 -	-				0.0		Collect SBC	3_9-10	at 9:45
							Ē	- 10 -	-				0.0 0.0			0 10 1	
							Ē		1				0.0	5	Collect SB0	3_10-1	i at 9:50
••••				ght brown fine	SAND, tr	ace coarse	F	- 11 -	1				0.0		Collect SB0	3 11-13	2 at 9.5
				ne gravel (dry)			F		1				0.0			~14	
· · · · · · ·	+29.9							- 12 -	-	MACROCORE	_		0.0	כ			
		Ī		brown SILT, s ses at 44-50-i					8	CROC	50	NA	0.0	ן כ			
			sanu, day lef	1303 al 44-30-1	101162 (IU	usity	Ē	- 13 -	1	MAC			0.0		Collect SB0	3_13-14	4 at 9:52
							F	_ 1/					0.0				
<u>LIT</u>	+27.8						F	- 14 -	-				0.0 0.0				
				brown fine SA	ND, some	e silt, trace clay	Ē	- 15 -	1				0.0	·			
			(moist)				Ē		1				0.0	5			
				ght brown fine			E	- 16 -	1				0.0				
			sand, trace co	barse sand, tra	ice fine gr	ravel (dry)	F			ш			0.0)			
							F	- 17 -		COR			0.0	כ			
			B.() (5 / 5 - 5			,	Ē		2	MACROCORE	50	NA	0.0				
]		R4b (24-32")	light brown fin	e SAND,	trace silt (dry)	E	- 18 -	1	MAC			0.0				
]			fine SAND, so	me silt, 0.	5-1-cm clay	F	_ 10					0.0				
			lenses (moist)			F	- 19 -	-				0.0				
	.						E	- 20 -	1				0.0	, I			

	37-11	30th Street				170)51230 ⁻	1				
			Elevatio	n and I	Datu	m						
	Long	Island City, NY						/D88 (top o	f casing)			
Elev.	ilding ode	Sample Description		th b				PID	(Drilling			a
	BO				Ĥ	Rec i	Pen BL/6	(ppm)	Fluid Loss	s, Drilling R	esistance,	etc.)
			Ē	-								
		R5a (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry)	- 2'					0.0 0.1				
		R5b (14-50") brown fine SAND, trace coarse sand, trace silt (moist)	- 22		OCORE	20	NA	2.1 0.0 0.0	Wator	Table at	about 2'	3 for
			¥ 23	-	MACR			0.0 0.0	bas			
			- 24	-				0.0	9:55	0000_2	2.0-20.0	, at
			- 24					0.0				
		De (0.52%) brown find CAND January 2.4 inch	Ē	-					Collect	SB03_2	25-26 at	10:0
		medium sand lenses at 42-inches, 39-inches and	- 26 -	;		ſ		22 6.3				
			27		CORE	~		0.0				
			- 28	-	ACRO	52	NA	0.0 0.0				
			-		2	I		0.1				
						I		0.0 1.2				
			- 30 			┢		0.0				
		R7 (0-54") brown fine SAND, trace medium sand, trace silt, trace fine gravel (wet)	- 31					0.0				
			- 32	2	ORE	I		0.0 0.0	Collect	SB03 3	32-33 at	10.1
			-	-	CROC	54	NA	0.0				
			-	-	MA	I		0.0				
			- 34 -			I		0.0 0.0				
			- 3	;		┠						
			- 36	;								
		R8 (0-44") brown fine SAND, trace medium sand (wet)	- 3	,	RE	ſ		0.0				
			_	B8	ROCC	44	NA	0.0				
			- 38 -		MAC	I		0.0 0.0				
			- 39			I		0.0				
+2.3				, ‡				0.0	End of	boring a	it 40 feet	bgs
			4						MW03 bgs. Se	was inst ee Monit	alled 32 oring We	feet ell
									Constr	uction Lo	og for de	tails
			⊨ 42 -									
			43									
			- 44									
	(ft) +22.3	Elev. Dipina +22.3	+22.3 R5a (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry) R5b (14-50") brown fine SAND, trace coarse sand, trace silt (moist) R6 (0-52") brown fine SAND lenses, 3 1-inch medium sand lenses at 42-inches, 39-inches and 52-inches (wet) R7 (0-54") brown fine SAND, trace medium sand, trace silt, trace fine gravel (wet) R7 (0-54") brown fine SAND, trace medium sand, trace silt, trace fine gravel (wet) R8 (0-44") brown fine SAND, trace medium sand (wet)	+*223 20 R5a (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry) 21 R5b (14-50") brown fine SAND, trace coarse sand, trace silt (moist) 22 R6 (0-52") brown fine SAND lenses, 3 1-inch medium sand lenses at 42-inches, 39-inches and 52-inches (wet) 26 R7 (0-54") brown fine SAND, trace medium sand, trace silt, trace fine gravel (wet) 21 R7 (0-54") brown fine SAND, trace medium sand, trace silt, trace fine gravel (wet) 31 R8 (0-44") brown fine SAND, trace medium sand 36 36 36 88 (0-44") brown fine SAND, trace medium sand 36 40 32 41 42 42.3 42	 +22.3 R5a (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry) R5b (14-50") brown fine SAND, trace coarse sand, trace silt (moist) R6 (0-52") brown fine SAND lenses, 3 1-inch medium sand lenses at 42-inches, 39-inches and 52-inches (wet) R7 (0-54") brown fine SAND, trace medium sand, trace silt, trace fine gravel (wet) R8 (0-44") brown fine SAND, trace medium sand (wet) R8 (0-44") brown fine SAND, trace medium sand 	+223 20 2 R5a (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry) 23 23 R5b (14-50") brown fine SAND, trace coarse sand, trace silt (moist) 23 24 R6 (0-52") brown fine SAND lenses, 3 1-inch medium sand lenses at 42-inches, 39-inches and 52-inches (wet) 26 26 R7 (0-54") brown fine SAND, trace medium sand, trace silt, trace fine gravel (wet) 31 22 24 R8 (0-44") brown fine SAND, trace medium sand, (wet) 33 34 34 35 R8 (0-44") brown fine SAND, trace medium sand 34 34 34 34 42.3 43 43 43 44 43	Elev +22.3 and solution Deptine scale and solution and solution </td <td>Liew, base of trace ine gravel (dry) Sample Description Description Teach ine gravel (dry) R56 (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry) R56 (0-52") brown fine SAND, trace coarse sand, trace silt (moist) 22 1 22 23 1 22 23 1</td> <td>+223 20 2 2 2 4 4 4 R5a (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry) R5b (14-50") brown fine SAND, trace coarse sand, trace silt (moist) 22 23 22 23 24 22 24 22 24 25 24 22 24 25 24 25 24 26 22 25 24 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 26 27 20 26 22 26 22 26 22 27 20 27 20 27 20 27 20 26 10 10 10 10 12 R7 (0-54") brown fine SAND, trace medium sand, trace fine gravel (wet) 31 33 34 31 34 35 10 00 00 00 00 00 00 00 00 00 00 <</td> <td>Lev. -223 Sample Description Seet No. No. No</td> <td>Env. of any set of a construction Description Description for a construction for any for any</td> <td>Election Sample Description Description Description Remarks Description Remarks Description <thdescription< th=""> <thdescription< th=""> <th< td=""></th<></thdescription<></thdescription<></td>	Liew, base of trace ine gravel (dry) Sample Description Description Teach ine gravel (dry) R56 (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry) R56 (0-52") brown fine SAND, trace coarse sand, trace silt (moist) 22 1 22 23 1 22 23 1	+223 20 2 2 2 4 4 4 R5a (0-14") brown fine SAND, trace coarse sand, trace fine gravel (dry) R5b (14-50") brown fine SAND, trace coarse sand, trace silt (moist) 22 23 22 23 24 22 24 22 24 25 24 22 24 25 24 25 24 26 22 25 24 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 22 26 26 27 20 26 22 26 22 26 22 27 20 27 20 27 20 27 20 26 10 10 10 10 12 R7 (0-54") brown fine SAND, trace medium sand, trace fine gravel (wet) 31 33 34 31 34 35 10 00 00 00 00 00 00 00 00 00 00 <	Lev. -223 Sample Description Seet No. No. No	Env. of any set of a construction Description Description for a construction for any	Election Sample Description Description Description Remarks Description Remarks Description Description <thdescription< th=""> <thdescription< th=""> <th< td=""></th<></thdescription<></thdescription<>

Project	_	_	IG /			LUGI		oring				804			Sheet 1	of	2
TOJECT		37-11	30th Street				1	ject NO.			170	512301	1				
ocation		0/ 11					Ele	vation a	nd D	atum		01200	•				
			Island City, NY								44.2	25 NAV	′D88 (f casing)		
rilling Co	•						Dat	te Starte	d					Date I	Finished		
rilling Equ			CO Environmer	ntal Services, Inc.			6.0	mpletion	Dan	th	1	0/1/18		Rock	Donth	10/1/18	
inning Equ	•		robe 8140LC S					Inpletion	Бер	uı		35 ft		RUCK	Deptil	N/A	
ize and T									0		Dist	urbed		Un	disturbed	Core	
		4.5-in	ch inside diam	eter sonic bit			Nui	mber of	Sam	ples			7		N/A		N/A
asing Dia		er (in) N/A			C	asing Depth (ft) N/A	Wa	ter Leve	el (ft.)		First		24		mpletion N/A	24 HR.	N/A
asing Ha				Weight (lbs)	N/A	Drop (in) N/A	Dril	lling For	emar	۱		•	- ·			<u> </u>	
ampler										D	albi	Pacheo	0				
ampler H				eter by 60-inch lo Weight (lbs)	Ŭ	Drop (in) N/A	Fie	ld Engin	eer								
			N/A	110.g.n (120)	N/A	N/A	L		_	A		y Stapp mple Da		ck	1		
EI BOL	lev.	de						Depth	e	0			PI			narks	
SYM ((ft)	Building Code		Sample Des	scription	ו		Scale	Number	Type	(in)	Penetr. resist BL/6in	Rea	ding	(Drilling Fluid, Fluid Loss, Drillir	Depth of C ng Resistar	asing, nce, etc.)
+4 6.4.p.	42.3		6-inch CON	CRETE slab				_ 0 _	z		ш. 		(pp)	Collect SB0	0	. ,
4 ₹ 1 + 4	41.8	-		dark brown fine S		race silt trace		_ :					0.	0			
			medium san	nd, trace fine grav	el, trace	e coarse sand,	F	- 1 -	1				0.	0	Collect SB0	4_1-2 at	12:10
			brick, coal (o	dry) [FILL] ') brown/reddish-t			Ē		-	щ			0.	0			
			coarse sand	, trace fine grave	l, trace :	silt (dry) [FILL]	Ē	- 2 -	_	MACROCORE	~		0.		Collect SB0	4_2-3 at	12:10
			R1c (21-33") light brown quic	k SAND	, trace medium			۲	CRO	33	NA	5.				
			sand, trace o	coarse sand, trac	e fine gi	ravel (dry) [FILL]		- 3 -	-	MA			0.	0			
									-								
							ŀ		1								
							F	- 5 -	1								
								_	-								
							ŀ	- 6 -	4						Collect SB0	4 6-7 at	12.20
									-							+_0=/ at	12.20
+	35.1							- 7 -	-	ORE							
			R2a (0-24") fine gravel (tan fine SAND, tr	ace coa	irse sand, trace	ŀ		2	MACROCORE	34	NA	0.	0			
			ine graver (ary)			F	- 8 -	-	MAC			0.	0	Collect SB0	4_8-9 at	12:20
							Ē		1				0.	0		-	
			P2h (24-34"	') brown fine SAN	D some	a silt trace	ŀ	_ 9 _	1				0.	0			
				I, trace fine grave					-				0.	0			
							Ē	- 10 -	-								
									1								
								- 11 -									
								- 12 -	-	붠						4 40 40	-+ 40.4
			R3a (0-8") b	brown fine SAND, e sand, trace fine	some s	ilt, trace clay,			-	000	33	NA	0.	0	Collect SB0	4_12-13	at 12.3
				tan fine SAND, tr			F	- 13 -	4	MACROCORE			0.				
			. ,	,			F	_	-	Σ			0.				
							ł	- 14 -	1		Í		0.	0	Collect SB0	4 14-15	at 12:3
							ŀ						0.	0			
							F	- 15 -	+	+		$\left - \right $					
							ł		1								
			R4a (0-32")	tan fine SAND (d	rv)		ŀ	- 16 -	1		Í						
			117a (U-52)		· y/		F		1	Ř			0.				
····							Ē	- 17 -	1	MACROCORE	с С		0.				
							ŀ	10	-	CRC	46	NA	0.				
							F	- 18 -	1	MA			0.				
	23.4	-) tan to gray-tan				- 19 -	1				0.				
	23.1	-	trace clav (d	lrv)		ome line sand,	,7		1		Í		0.				
			R4c (36-46") tan fine SAND (moist)		- '		1				0.	0			

Project		27 14	30th Street	Project No	•		170	51230 [.]	1	
ocatior	1	37-11	Soth Street	Elevation a	and Da		170	51230	I	
		Long	Island City, NY				44.2	25 NAV	′D88 (top o	f casing)
- <u>-</u>		_		<u> </u>			Sa	mple Da	ata	
MATERIAL SYMBOL	Elev. (ft)	Building Code	Sample Description	Depth Scale	Number	be		Penetr. resist BL/6in	PID Reading	(Drilling Fluid, Depth of Casing)
SY SY	+22.3	BO	F F		Nun	È	Ξ.	Per BL/ BL/	(ppm)	Fluid Loss, Drilling Resistance, et
• • • • • •				20 -	11					
	1			- 21 -	-					
	·			-						
				- 22 -		CORE				
			R5a (0-20") brown fine SAND, trace silt, trace clay (moist)	-		MACROCORE	34	NA	0.0	
				- 23 -	-	MAG			0.0	Collect SB04_23.5-24.5
			R5b (29-34") brown fine SAND, trace silt (moist)	<u>⊻</u> 24 -	-				0.0 0.0	SBDUP02_100118 at 14 Water Table at about 24
									0.0	bgs
				_ 25 -						
]		R6a (0-8") dark brown fine SAND (wet)							
	·		R6b (8-53") dark brown fine SAND, trace silt (wet)	- 26 -					0.0	
			Too (0-00) dan biowit line SAND, lidee Sil (Wel)	- 27 -		ЯR			0.0 0.0	
	1			/		MACROCORE	53	NA	0.0	
	.]			- 28 -		AACF			0.0	
				-		<			0.0	
	1			_ 29 -					0.0	
				- 30 -	-				0.0	
	1									
				- 31 -						
				Ē		ш				
			R7 (0-40") fine SAND (wet)	- 32 -		COR			0.0	
						MACROCORE	40	NA	0.0	
····				- 33 -	-	MA			0.0 0.0	Collect SB04_34-35, MS_SS02_100118 and
]			- 34 -					0.0	MSD SS02 100118 at
	·			-	-				0.0	14:40 –
	+7.3			35 -						End of boring at 35 feet I
										MW04 was installed in borehole. See Monitoring
				- 36 -						Well Construction Log for
				- 37 -						details.
				- 0,						
				- 38 -						
				- 39 -						
				40 -						
				- 40						
				- 41 -						
				- 42 -						
				- 40						
				- 43 -						
				_ 44 -						
	1			F	1			I		1

Project						Log	Pr	oject No.									
		<u>37-</u> 11	30th Street					•				51230	1				
ocation	1	Len		,			Ele	evation ar	nd D	atum		0	(D00 /				
Drilling C	Compa		Island City, NY				Da	ate Starte	d		44.2	29 INA\			f casing) Finished		
			O Environmer	tal Services, Ind) .						9	/28/18				9/28/18	
Drilling E	Equipm		robe 8140LC S				Co	ompletion	Dep	th		70 ft		Rock	Depth	N/A	
Size and	і Туре	of Bit					NI	umber of s	Sam	nles	Dist	urbed		Un	disturbed	Core	
casing D	Diamet		ch inside diam	eter sonic bit	C	Casing Depth (ft)					Firs	t	14	Со	N/A mpletion	24 HR.	N/A
	1	N/A		Weight (lbs)		N/A		ater Leve illing Fore	• •		\square	-	23	ļ	N/A	Ā	N/A
Casing F Sampler		^e Ń/A			N/A	Drop (in) N/A		ining i ore	fillai		hom	as Sei	ckel				
Sampler				eter by 60-inch Weight (lbs)		I tube Drop (in) N/A	Fie	eld Engin	eer								
	nami		N/A	Weight (103)	N/A	N/A		1	1	L		McCar mple D			1		
MATERIAL SYMBOL	Elev.	Building Code		Sample De	scrintio	n		Depth	ber	e			PII		(Drilling Fluid,	narks	asing
SYI	(ft) +42.3	Bu		•		· ·		Scale	Number	Type	(in	Penetr. resist BL/6in	Read (ppi		Fluid Loss, Drillir	ng Resistar	ice, etc.)
	+41.9		5-inch CON R1a (0-16")		o brown	fine SAND, trace	2		-						Collect SB0	5_0-2 at	8:45
			silt, trace cla	y, trace fine gra	vel, brick	k, metal (moist)	-	- 1 -	1				0.0				
			[FILL] R1b (16-28") stiff reddish-br	own CLA	Y, trace fine		- 2 -	1	ORE			0.0 0.0				
\times	+39.5		gravel (mois	ť) [FILL]		-			۲	MACROCORE	46	NA	0.0				
) reddish-brown d, trace coarse				- 3 -		MAC			0.0				
				gravel (moist)		0 /		- 4 -					0.0 0.0				
									-				0.0	C			
								- 5 -									
								- 6 -	-								
								- 7 -		RE							
								- ' -	R2	MACROCORE	16	NA					
								- 8 -		MACF							
			R2 (0-16'') ta	an fine SAND (n	noist)			- 9 -	1				0.0	h			
									-				0.0 0.0	C			
								- 10 -									
								- 11 -	-				0.0	C			
			R3 (0-44") ta	an fine SAND, tr	ace med	lium sand, trace			-	띮			0.0	C			
			coarse sand	, trace fine grav	ei, irace	coarse graver		- 12 -	R3	MACROCORI	44	NA	0.0 0.0				
								- 13 -		AACR			0.0				
								- 14 -	1	<			0.0				
									-				0.0 0.0				
								- 15 -	-	+							
								- 16 -	1								
									-	щ							
				light brown fine				- 17 -	24 24	MACROCORE	36		0.0				
			sand, trace of	coarse sand, tra	ce fine g	ravel (moist)		- 18 -	Ŕ	ACRC	ñ	NA	0.0 0.0				
										Σ			0.0)			
			R4b (24-36") tan fine SAND	, some s	ilt, trace coarse		- 19 -	1				0.0 0.0				
			sanu, trace t	fine gravel (dry)				- 20 -		щ	_		0.0				
									2	MACROCORE	9						
								- 21 -	R5	ACRC	36						
	1							⊥ ₂₂ _	1	Σ							

Project		37_11	30th Street	Project No			170	51230 ⁻	1				
ocation	1	37-11	Soth Street	Elevation a	and D	atum		51230	I				
		Long	Island City, NY				44.2	29 NAV	'D88 (top o	of casing)			
		_					Sa	mple Da	ata		_		
MATERIAL SYMBOL	Elev.	Building Code	Sample Description	Depth	ber	e			PID	Drilling	Rema	rks oth of Casing	~
SYN	(ft) +20.3	Bui	Sample Description	Scale	Number	Type	(in Rec	Penetr. resist BL/6in	Reading (ppm)	Fluid Loss	s, Drilling R	lesistance, e	j, etc.)
	+20.3		R5a (0-27") tan fine SAND, some silt, trace coarse		+-				0.0	Collect	SB05_2	22-23 at 9	9:18
			sand (dry to moist)	<u>⊈</u> _23 ·	1	R		NA	0.0				
				23	R5	000	36		0.0 0.0	Water bgs	Table at	about 23	3 fe
	1			- 24	- "	MACROCORE			0.0	, Sgo			
			R5b (27-36") fine SAND, brown silt, trace clay (wet)	-	-	≥			0.0				
	1			- 25	+								
				- 26]								
]			- 20	-				0.0				
	1		R6 (0-39") brown fine SAND (wet)	- 27 -	-	CORE			0.0				
	1				- R6	MACROCORE	39	NA	0.0				
	1			- 28	1	MAC	Í		0.0				
				- 29	4		Í		0.0 0.0				
				-	-				0.0				
	1			- 30 -	-								
				- 31 -									
	1			- 31	_				0.0 0.0				
			R7a (0-24") brown fine SAND (wet)	- 32 -	-	MACROCORE			0.0				
				-	5	ROC	42	NA	0.0				
	1			- 33 -	1	MAC			0.0				
			R7b (24-42") olive-brown silty fine SAND, trace clay	- 34]				0.0 0.0				
	1		(wet)	-	-				0.0				
				- 35	+								
				-	1				0.0				
			R8 (0-50") reddish-brown fine SAND, some medium sand, trace coarse sand, trace fine gravel (moist)	- 36]				0.0 0.0				
				- 37	-	ORE			0.0				
• • • • •				-	- 85	CROCORE	50	NA	0.0				
	1			- 38		MAC			0.0				
				- 39]				0.0 0.0				
				- 00	-				0.0				
				- 40	+	+-	<u> </u>		-				
				-	1		Í		0.0				
	1		R9a (0-25") reddish-brown fine SAND, some medium sand, trace coarse sand, trace fine gravel (moist)	- 41]				0.0 0.0				
•••••				- 42	_	ORE			0.0				
•	1			-	- စူ	MACROCORE	50	NA	0.0				
	1		R9b (25-50") olive-brown silty fine SAND, trace clay	- 43	1	MAC			0.0				
			(wet)	- 44	1				0.0				
	}				-		Í		0.0 0.0				
				- 45	-	+	<u> </u>		-	Collect	SB05 4	45-46 at 9	9:45
	1		R10a (0-10") olive silty fine SAND, trace clay (wet)		1		Í		0.0				
YXX XXX	-4.0		R10b (10-55") very stiff olive CLAY, trace coarse	46 ·	1	щ			0.0				
47/J			sand, trace fine gravel, trace medium sand, trace	- 47	-0	MACROCORE			0.0 0.0				
PH)			coarse gravel, rounded to sub-rounded clasts (moist) [TILL]	+	- R	CRO	55	NA	0.0				
HH HH			[]	- 48	-	MA			0.0				
XH)					1		Í		0.0				
YA	}			- 49 -					0.0				

roject		27 11		Project No.			170	E1020-	1				
ocatior	1	37-11	30th Street	Elevation a	nd Da	atum		51230	1				
		Long	Island City, NY				44.2	29 NAV	′D88 (top o	f casing)			
L A		D					Sa	mple Da	ata		Remar	iko	
MATERIAL SYMBOL	Elev. (ft)	Building Code	Sample Description	Depth Scale	Number	Type	in) čo	Penetr. resist BL/6in	PID Reading	(Drilling Fl	luid, Dep	th of Casing	
≥°° Z¥XZZZ	-7.2	ш		49.5	Ž	-		9 <u>e 9</u>	(ppm) 0.0	Fluid Loss, [esistance, e	:tc.)
HH H			R11 (0-60") very stiff olive CLAY, trace coarse sand,	- 50 -	-		55		0.0				
			trace fine gravel, trace medium sand, trace coarse gravel, rounded to sub-rounded clasts (moist) [TILL]	- 51 -					0.0 0.0				
H.				- 52 -	1	RE			0.0 0.0				
					R1	MACROCO	60	NA	0.0				
MH,				- 53 -	1	MACF			0.0				
				- 54 -	1				0.0 0.0				
II.					-				0.0				
J.			R12a (0-48") stiff to very stiff olive-gray CLAY, some	- 55 -	-				0.0				
11 H			fine sand, trace coarse sand, trace fine gravel, trace coarse gravel, rounded to sub-rounded clasts (moist)	- 56 -	1				0.0 0.0				
XX)			[TILL]		-	ш			0.0				
111				- 57 -	2	COR			0.0				
JH)				- 58 -	R12	MACROCOR	60	NA	0.0 0.0				
11					-	M			0.0				
<u>,</u>	-16.7	-	R12b (48-60") brown to reddish-brown medium		1				0.0				
			SAND, trace fine sand (wet)	- 60 -	1				0.0				
			R13a (0-18") reddish-brown medium SAND (wet)		-				0.0 0.0				
				- 61 -	1				0.0 0.0				
			R13b (18-23") reddish-brown fine SAND, some silt, trace clay (wet)	- 62 -	-	ORE			0.0				
			R13c (23-60") reddish-brown fine SAND (wet)		R13	MACROCORE	60	NA	0.0				
				- 63 -	1	MAG			0.0 0.0				
				- 64 -	+				0.0				
	-22.7				1				0.0				
<u>M</u>			R14 (0-60") very stiff brown to grayish-brown CLAY, trace coarse sand, trace fine gravel, trace coarse	65 -					0.0 0.0	Collect S	B05_6	5-66 at 1	12:
)}}			gravel, rounded to sub-rounded clasts (dry) [TILL]	- 66 -	+				0.0				
				- 67 -	4	CORE			0.0 0.0				
NH H				- 68 -	R14	MACROCOR	60	NA	0.0 0.0				
H J				- 69 -	1	2			0.0 0.0				
H.	-27.7			- 70 -	1				0.0	End of bo	orina a	t 70 feet	þa
				- 71 -	1					Monitorin installed	ig well in bore	MW05A hole. Se	e
				- 72 -						Monitorin Log for d	ig Well etails.	Constru	ctio
				- 73 -									
				- 74 -									
				- 75 -									
					-								
				- 76 -	1		1						

			G			Log		oring			SE	806			Sheet	1 (of	2
Project		07.14	20th 0tm 1				Pro	oject No.			470	F4000						
ocatior	<u>ו</u>	37-11	30th Street				Ele	evation ar	nd Da			51230	1					
			Island City, NY									15 NAV	/D88 (t	op of	casing)			
Drilling (Compa	ny					Da	te Starte	d						Finished			
Drilling E	auinm		O Environmen	tal Services, In	с.			mpletion	Dent	h	9	/27/18		Rock I	Depth	9/27/1	8	
	_quipii		robe 8140LC S	onic Drill Ria				mpietion	Depi			30 ft			Deptil	N/	Ά	
Size and	d Type	of Bit					Nu	mber of \$	Samn	les	Dist	urbed		Un	disturbed	Core		
Casing I	Diamet		ch inside diame	eter sonic bit	C	Casing Depth (ft)					First	t	6	Со	N/A mpletion	24 HI	N/ R.	A
		N/A		Mainht (lba)		N/Á		ater Leve	. ,		$\overline{\Delta}$		22				N/	Ά
Casing I		^e Ń/A		Weight (lbs)	N/A	Drop (in) N/A		lling Fore	eman	т	hom	as Sei	rkol					
Sampler	r	4.5-in	ch inside diame	eter by 60-inch	long dual	l tube	Fie	ld Engin	eer	- 11	10111							
Sampler	r Hamn	ner	N/A	Weight (lbs)	N/A	Drop (in) N/A				Lι		McCar						
I SIAL	Elev.	e e						Depth	<u>ہ</u>			mple Da			R	emarks		
MATERIAL SYMBOL	(ft)	Building Code		Sample De	escription	n		Scale	Number	Type	(in)	Penetr. resist BL/6in	PIE Read	ing	(Drilling Flui Fluid Loss, Dri	d, Depth of	Casing,	, tc.)
- 2 4 4 R	+40.5		4-inch CON	CRETE slab				_ 0 _	z		ш	<u>ш - ш</u>	(ppn)		5	, 50	
		f	R1a (0-12")	stiff reddish-bro	wn CLAY	Y, trace fine	_						0.0)				
			•	(moist) [FILL]				- 1 -					0.0		Collect SB	06_1-2	at 14:0)0
	₹) dark brown to d, trace fine gra		e SAND, some <, concrete, coal,	,	- 2 -		R			0.0 0.0					
	+38.1	⊦	slag, glass (i	moist) [FILL]		trace fine gravel	/ -	4	ž	MACROCORE	38	NA	0.0					
			(moist)	Ingrit Drown in	e GAND,	uace inte gravel	1	- 3 -	1	1ACF			0.0					
•										2								
								- 4 -										
	.																	
						lium sand, trace		- 5 -										
				, trace fine grav				- 6 -										
	.																	
•								- 7 -		MACROCORE								
									22	CROC	34	NA	0.0)				
								- 8 -		MAC			0.0					
								- 9 -					0.0 0.0					
													0.0					
· · · · · · · · · · · ·								- 10 -		_			0.0					
								- 11 -										
			R3 (0-39") ta	an fine SAND t	race med	lium sand, trace		- 12 -		붠			0.0					
			coarse sand	, trace fine grav				12 -	R3	MACROCORE	39	NA	0.0 0.0					
	.		(moist to dry)				- 13 -	"	ACR			0.0					
										2			0.0)				
								14					0.0)				
													0.0)				
•								- 15 -										
			R12 (0 26")	tan fina SAND	some me	adium cand		- 16 -										
			trace coarse	tan fine SAND, sand, trace fin	e gravel ((moist)							0.0)				
								- 17 -		CORE			0.0					
	.								8	MACROCORE	49	NA	0.0)				
								- 18 -		MAC			0.0					
			B <i>u</i> = = = =	、 .				10					0.0					
			R4b (36-49") clay lenses () olive-brown si moist)	Ity fine SA	AND, 1-2-inch		- 19 -					0.0 0.0					
	1							_ 20 _	1				0.0	,				_

LA	G/	4/	
Draigat			

Project		07.44		Projec	t No.			470	= 1 0 0 0					
ocation	1	37-11	30th Street	Elevati	ion a	nd Da	atun		51230	1				
		Long	Island City, NY					40.4	15 NA\	/D88 (top c	of casing)			
۲A		<u>م</u>							mple Da	ata		Rema	rke	
MATERIAL SYMBOL	Elev. (ft) +20.5	Building Code	Sample Description	S	epth cale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PID Reading (ppm)	(Drilling) Fluid Loss	Fluid, Dep	th of Casin esistance, e	g, etc.)
			R5a (0-7") olive brown silty fine SAND, trace clay		20 —	-				0.0				
•••••	1		(moist) R5b (7-31") olive brown fine SAND, some silt (moist	Ē,	: 21 -					0.0				
	-		to wet)	Ē	21 -					0.0	Collect	SB06 2	21.5-22.5	AT
	1			¥:	22 -	1	R			0.0 0.0	14:30			
	1			E		R5	MACROCORE	09	NA	0.0	bgs	i able at	about 22	2 100
			R5c (31-60") olive-brown fine SAND, trace clay (wet)	= 2	23 -	1	IACR	-		0.0				
]			E			2			0.0				
				Ē 2	24 -	1				0.0				
	1			E						0.0				
	1			- 2	25 -	+								
	1			Ę,		1				0.0				
				F	26 -	1				0.0				
			R6 (0-42") olive-brown to brown fine SAND, trace silt, trace clay (wet)	E	27 -	1	JRE			0.0 0.0				
· · · · · · · · ·	1		liace clay (wel)	Ē	- '	R6	MACROCORE	42	NA	0.0				
	1			- 2	28 -	1	ACR			0.0				
				E		1	Z			0.0				
	}			Ē 2	29 -	1				0.0	Collect	SB06 2	29-30 at	14:4
• • • • • •	-			E						0.0		_		
	+10.5			+:	30 -	-					End of	boring a	t 30 feet	bgs
					31 -						installe Monito	ring well d in bore ring Wel details.	MW06 ehole. Se I Constru	ee uctio
				÷:	32 -						Logio	actuno.		
				F		1								
				E:	33 -	-								
				Ē		1								
				Ē	34 –	1								
				Ē,	35 -	1								
				÷ `		1								
				E:	36 -	-								
				Ē		1								
				E:	37 –	1								
				E		1								
				÷	38 -									
				F.		-								
				Ē	39 -	1								
				Ē	40 -	1								
					35 - 36 - 37 - 37 - 338 - 339 - 40 - 411 - 412 - 413 - 414 - 414 -	1								
				<u> </u>	41 -	1								
				F		1								
				F 4	42 -	1								
				E		1								
				E 4	43 -	1								
				E.	14									
				Ē	44 -]								
				L	45 -	1	1				1			

						Log		oring			SB	07			Sheet 1	01	f 2
Project	3	37-11	30th Street				Pro	ject No.			170	51230	1				
ocation		, , , , ,					Ele	vation a	nd Da	atum		01200	•				
Drilling C			sland City, NY				Da	te Starte	d		40.0)1 NA\			f casing) Finished		
	• •		O Environmen	tal Services, Inc.			Da		u		9	/26/18		Dale	Fillistieu	9/26/18	3
Drilling E	quipme						Co	mpletion	Dep	th				Rock	Depth	0.20.10	<u> </u>
Size and			bbe 6610DT D	rill Rig							Diet	32 ft urbed		Lin	ndisturbed	N/A Core	۱
	4	l.5-inc	h inside diame	eter sonic bit			Nu	mber of	Sam	ples			8		N/A		N/A
Casing E		r (in) N/A			C	asing Depth (ft) N/A	Wa	iter Leve	l (ft.)		First		22.5		mpletion N/A	24 HR.	N/A
Casing H	lammer	۱/A		Weight (lbs)	N/A	Drop (in) N/A	Dri	lling For	emar								
Sampler	4	I.5-inc	h inside diame	ter by 60-inch lo	ong dua	ltubo	Fie	ld Engin	eer	Т	hom	as Sei	ckel				
Sampler	Hamme		N/A	Weight (lbs)	N/A	Drop (in) N/A		·g		L	uke l	McCar	tney				
OL	Floy	e						Donth	-		1	mple D			Rer	narks	
MATERIAL SYMBOL	Elev. (ft)	Building Code		Sample Des	scriptio	n		Depth Scale	Number	Type	(in)	Penetr. resist BL/6in	PII Read	ling	(Drilling Fluid, Fluid Loss, Drillir		
- 6.4. <i>P</i> .	+40.0		6-inch CONC	RETE slab				_ 0 _	z		<u>ш</u>	ш Ш	(ppr	11)	Collect SB0	- 7_0-1 at	12:15
	+39.5				orown fi	ne SAND (moist))			z			0.0		Collect SB0	7_0-2 at	t 12:55
			[FILL]			. ,		- 1 -		- OPEN			0.0 0.0				
								- 2 -	Ε	MACROCORE-	31	NA	0.0				
										CROC			0.0	D			
								- 3 -		MA					Collect SB0 SB07_3-5 a		nd
								- 4 -	1						3607_3-3 a	13.00	
									1								
						fine SAND, trace	,	- 5 -	1	OPEN			0.0	D	Collect SB0	7_5-6 at	t 13:03
	+34.0			concrete (moist		-			R2	RE- (36		0.0				
			R2b (12-36") medium sand		trace co	parse sand, trace	;	- 6 -	۲ ۲	MACROCORE-	õ	NA	0.0 0.0				
			medium sand					- 7 -		MACF			0.0				
										–			0.0	D			
								- 8 -	-						Collect SB0	7_8-10 a	at 13:00
								- 9 -	1	EN N							
///	+30.5	-	R3a (0-11") f	ine brown CLAY	some	silt_trace_fine			1	E- OPEI			0.0	D			
	+29.6		sand (moist t	o wet)				- 10 -	R3	MACROCORE-	30	NA	0.0	D	Collect SB0	7_10-11	at 13:1
	120.0		R3b (11-30") fine gravel (d		trace co	parse sand, trace	;	- 11 -		ACRO			0.0				
			nne graver (u	'y)						W/			0.0 0.0				
								- 12 -	1								
								10	1	z							
			R4a (0-13") t	an fine SAND. tr	ace me	dium sand, trace	,	- 13 -		- OPEN							
			coarse sand					- 14 -	2	ORE-	33	NA	0.0	D	Collect SB0	7 14-15	iat 13·1
			R4b (13-33")	tan fine SAND ((dry)					MACROCORE-			0.0			-1-10	
								- 15 -		MAC			0.0				
								- 16 -	_				0.0	D			
								- 17 -	1	DPEN							
			R5 (0-29'') ta	n fine SAND (dr	y)			40	5	RE- C	6	NIA	0.0 0.0				
			. ,	· · ·				- 18 -	R5	MACROCORE- OPEN	29	NA	0.0				
								- 19 -		ACR			0.0 0.0				
									1	2			0.0				

Project		37 11	30th Street	Project N	lo.		17	051230	11				
ocatior	l	37-11		Elevatior	and	Dati		051230	71				
		Long	Island City, NY				40	.01 NA	VD88 (top c	of casing)			
۲Å		5					S	ample D	ata	_	Dome	rko	
MATERIAL SYMBOL	Elev. (ft)	Building Code	Sample Description	Dep Sca	h and	Inder	Type Recov.	Penetr. resist BL/6in	PID Reading	(Drilling	Rema Fluid, Dep	oth of Casin	j ,
<u>₹</u> ø	+20.0	<u>ш</u>					r &	Ban	(ppm)	Fluid Loss	s, Drilling R	esistance, e	etc.)
			Reg (0.22") light brown fing SAND (moint)	-	=	_	_		0.0				
			R6a (0-23") light brown fine SAND (moist)	- 21	-	DEN			0.0	Collect	SB07_2	21-13 at	13:3
				- 22		0,12	41 (ME-	NA	0.0				
			Deb (22.22") brown eilty fins CAND, trass aloy (maint	⊈ ″		MACROCORF-OPEN	7 4		0.0	Water ⁻	Tahle at	about 22	25
			R6b (23-33") brown silty fine SAND, trace clay (moist to wet)	- 23	-	MACE			0.0	feet bg		about 22	
			R6c (33-36") brown fine SAND, trace coarse sand (wet)	Ē	-				0.0				
			R6d (36-41") brown silty fine SAND, trace clay (wet)	- 24	-								
				- 25	-	NHC							
	:			Ē	-	Ğ	5						
				- 26			12	NA					
				- 27	_	MACROCORF- OPEN			0.0				
]		R7 (0-12") brown fine SAND, trace fine gravel (wet)		=	Ň	2		0.0				
			R8a (0-18") pinkish-gray fine SAND, 3 1-inch clay	- 28	+				0.0				
			lenses at 18-19-inches, 23-24-inches and 28-29-inches, sand in silt lenses (wet)	E ao	-	z	2		0.0				
	+10.5			29 	-	OPEN			0.0				
			R8b (18-34") stiff to very stiff brown clayey SILT, some sand (wet)	- 30	Ä		48	NA	0.0				
	+9.2			Ē	3	MACROCORE-			0.0				
			R8c (34-48") fine SAND (wet)	- 31		MAG			0.0				
	+8.0				1				0.0	End of		4 00 64	h
					-					Monito	ring well	t 32 feet MW07	
				- 33	-					installe Monito	d in bore rina Wel	ehole. Se I Constru	e e
				Ē	-					Log for	details.		
				- 34	3								
				- 35	-								
				F	-								
				- 36									
				- 37	-								
				F	-								
				- 38									
				- 39	_								
				Ę	=								
				- 40	-								
				Ē									
				- 41									
				- 42									
				F	-								
				- 43									
				- 44	1								
				Ē	-								
				<u> </u>	1								

Project				4 <i>N</i>		LOY		Boring			SB				Sheet ?		of	2
Tojeci	37	7_11 3	0th Street				PI	oject No.			170	512301	1					
ocation		-110					Ele	evation a	nd Da	atum		51250						
		ong Is	land City, N	Y							40 N	AVD8	8 (top c					
rilling Cor				ntal Camiana Ind	_		Da	ate Starte	d		4			ate F	inished	10/5/	10	
rilling Equ			Environmei	ntal Services, Inc).		Co	mpletion	Dep	th	1	0/5/18	R	lock E	Depth	10/5/1	18	
	G	eopro	be 7822DT I	Drill Rig				•				36 ft			·	N	/A	
ize and T			insido diam	neter sonic bit			Nu	umber of	Sam	oles	Dist	urbed	9	Und	listurbed N/A	Core		I/A
asing Dia					(Casing Depth (ft)	14/	otor Lovo	1/#1		First			Con	npletion	24 H		
	N/			Weight (lbs)		N/A		ater Leve	. ,		\square		22	Ī	N/A	<u> </u>	N	I/A
Casing Hai Sampler	mme _N /	A		Weight (103)	N/A	Drop (in) N/A		ining i ore	mai		albi	Pacheo	20					
			n inside diam	neter by 60-inch I	ong dua	Il tube	Fie	eld Engin	eer									-
ampler H	ammer		N/A	Weight (lbs)	N/A	Drop (in) N/A			-	Α			penbeck	< _				
	lev.	۹						Depth	5			mple Da	ata PID		Re	marks		
SYME ((ft) ping	Code		Sample De	scriptio	n		Scale	Number	Type	(in)	Penetr. resist BL/6in	Readir	ng	(Drilling Fluid Fluid Loss, Drill	, Depth of	f Casing tance. e	j, etc.)
- +4	40.0		10-inch CO	NCRETE slab				- 0 -	z				(ppm	,	Collect SB			
A A A +(39.2															_		
			R1a (0-15") [FILL]	brown SAND, s	ome silt,	trace clay (dry)		1 -		ЧE			0.0		Collect SB			
			[, ILL]					- 2 -	ž	MACROCORE	28	NA	0.0		Collect SB	08_1.5-	2.5 at	7:4
				") brown fine SAI	ND, trac	e coarse sand,				ACRO	2		0.0 0.0					
			trace fine gr	ravel (dry) [FILL]				- 3 -		Ň			0.0					
								E :					0.0					
								- 4 -										
. 1998	35.0			prown fine SAND ravel (dry) [FILL]	, trace o	coarse sand,			1				0.0					
*****	35.0	\vdash		brown medium	SAND. s	some fine sand.	- ~	5 -		股			0.0		Collect SB	08_5-6	at 7:5	0
				ravel, trace coars				6 -	22	DCOI	44	NA	0.0					
										MACROCORE	4		0.0 0.0					
	33.0		D10 (22 26)	') brown SILT, tra		(day)		- 7 -		Ň			0.0		Collect SB	18 7-8	at 7·5	2
 +`	32.7	\vdash) brown fine SAI									0.0		CONCCLODE	0_1-0	at 7.0	2
			trace coarse		-			- 8 -	-				0.0					
								E . :	1									
				brown fine SAN				- 9 -		股			0.0					
			trace coarse	e sand, trace fine	e gravel	(dry)		- 10 -	R3	DCOI	36	NA	0.0					
										MACROCORE	c)		0.0 0.0		Collect SB	10-1_8	11 at 8	3:00
			``	") gray medium S	,	,		- 11 -		Ň,			0.0		Collect SB)8 11-1	12 at 9	ፈ·በን
				e sand, trace fine ') light brown fine				Ē					0.0				- ui (<i>.</i> Z
			sand, trace	coarse sand, tra	ce fine g	gravel (dry)		- 12 -	-	$\left - \right $			0.0					
				brown medium e sand, trace fine									0.0					
			R4b (10-19'	") gray fine SANI	D, some	medium sand,		- 13 -		RE			0.0					
				e sand, trace fine ') brown fine SAI				- 14 -	2	MACROCORE	46	NA	0.0 0.0					
			medium sar	nd, trace coarse				È :		ACR	4		0.0					
			(dry)					- 15 -		Σ			0.0					
								È :					0.0					
			R5 (0-48") t	an fine SAND, tr	ace coa	rse sand		- 16 -	-	+			0.0					
			. ,-	, -														
								- 17 -		띪			~ ~					
								- 18 -	R5	000	48	NA	0.0 0.0					
								È		MACROCORE	4		0.0					
								- 19 -		Σ			0.0					
								F :	4		1		0.0					

roject		07.44	20th Chroat	Project N	0.		47	054000	4	
ocation	1	37-11	30th Street	Elevation	and [Datu		051230	1	
		Long	Island City, NY				40	NAVD8	38 (top of ca	asing)
PL		D S				_		ample D		Remarks
MATERIAL SYMBOL	Elev. (ft)	Building Code	Sample Description	Dept Scale	Number	- Carrier	Recov.	Penetr. resist BL/6in	PID Reading (ppm)	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
	+20.0		R6a (0-18") brown fine SAND, trace medium sand,	20						
			trace coarse sand, trace fine gravel (dry)	- 21	_				0.0 0.0	
	1		R6b (18-48") brown fine SAND, some medium sand,	F		ORE			0.0	Collect SB08_21-22 at 8:15
	1		trace fine gravel, trace coarse sand (moist to wet)	¥ 22		MACROCORI	48	NA	0.0	Water Table at about 22 fee
	1			- 23	_	MA			0.0 0.0	bgs
	1			Ē					0.0	
				- 24	-					
	•			- 25	_					
			R7a (0-11") light brown fine SAND (wet)			CORE			0.0	
			R7b (11-35") brown fine SAND, some medium sand,	- 26	12	MACROCORE	35	NA	0.0	
	1		trace coarse sand, trace fine gravel (wet)	- 27	_	M			0.0 0.0	
				-	-				0.0 0.0	
	1			- 28	-				0.0	
]		R8a (0-4") brown fine SAND (wet)	- 29	-					
	1		R8b (4-35") brown fine SAND, some medium sand,	- 20	R8	MACROCORE	35		0.0	
			trace coarse sand, trace fine gravel (wet)	- 30	_ ~	ACRO	ň	NA	0.0 0.0	
				- 31	-	Σ			0.0	
]			- 32	-				0.0	
	1		R9 (0-48") brown fine SAND, some medium sand, trace coarse sand, trace fine gravel, trace silt (wet)	- 52					0.0	
	-			- 33	-	щ			0.0	
	•			- 34	- 68	CROCOR	48	NA	0.0 0.0	
]			Ē		MACR			0.0	
	1			- 35					0.0	
	+4.0	-			-				0.0	End of boring at 36 feet bgs
				Ē						Borehole backfilled with soi cuttings to surface grade.
				- 37						cullings to surface grade.
				- 38	-					
				- 20	-					
				- 39						
				- 40	-					
				- 41						
				Ē						
				- 42						
				- 43	-					
				Ē						
				- 44	-					

						LUG		oring			36	309			Sheet	1	0	I	2
Project		07.44					Pro	ject No.			470	54000							
ocation		37-11	30th Street				Ele	vation a	nd D	atum		51230	1						
		l ona	Island City, NY										8 (top	of ca	sina)				
Drilling C	Compa						Dat	e Starte	d						Finished				
			O Environmen	tal Services, Inc	C.						1	0/5/18					10/5/18	3	
Drilling E	Equipm						Cor	mpletion	Dep	th				Rock I	Depth				
Size and		Geop	robe 7822DT D	rill Rig							Diet	36 ft urbed		Un	disturbed		N/A Core	۱	
	riype		ch inside diame	eter sonic bit			Nur	mber of	Sam	ples	Dist	uibeu	9			N/A	COIC	N/A	
Casing D	Diamet				C	asing Depth (ft)	Wa	ter Leve	l (ft.)		Firs		23	Co	mpletion	NI/A	24 HR	N/A	
Casing H	lamm			Weight (lbs)		N/A Drop (in) N/A	Dril	ling Fore	emar	1	<u> </u>	-	23			N/A	<u> </u>	IN/A	<u> </u>
Sampler					N/A					D	albi	Pache	со						
			ch inside diame	eter by 60-inch Weight (Ibs)	long dual	tube	Fie	ld Engin	eer										
Sampler	Hamr	ner	N/A		N/A	Drop (in) N/A				A			penbec	:k	1				
80L	Elev.	ing te						Depth	2		1	mple Da	ata PIC		1	Ren	narks		
MATERIAL SYMBOL	(ft)	Building Code		Sample De	escriptior	ו		Scale	Number	Type	(in)	Penetr. resist BL/6in	Read	ing			Depth of (g Resista)
	+40.0		10-inch CON	ICRETE slab				- 0 -	z		œ	<u>е - п</u>	(ppn	ר)			0-0.5		
4 4 4	+39.2			511 I L 3100			F		1)_0.5-1		
		ľ		brown-to-black		ID, some silt,	Ē	- 1 -	-	щ			0.0						
			-	avel, brick (dry)) orange-brown		ome silt (dn/)	Ē		1_	MACROCORE			1.2 0.0						
			[FILL]	orange-brown	SAND, S	one sit (dry)		- 2 -	ĿΣ	CRO	39	NA	0.0		Collec	t SB09	9_2-3 a	t 9:18	
									1	MAG			0.0						
				brown fine SA			F	- 3 -	-				0.0		Collec	t SB09)_3-4 a	t 9:20	
			trace coarse	sand, trace fine	e gravel (dry) [FILL]		- 4 -					0.0						
															Colleg			at 0.2	_
	+34.8			range-brown fin	e SAND,	some silt (dry)	E	- 5 -					0.0)			9_4.5-5 9_5-6 a		С
			_ [FILL] 	ray fine SAND,	trace fine	gravel (drv)			1	ORE			0.0		Collec		_0-0 a	19.27	
			R2c (7-40") k	brown medium	SAND, so	ome fine sand,		- 6 -	22	MACROCORE	40	NA	0.0)					
			trace coarse	sand, trace fine	e gravel (dry)	ŀ		1	MACF			0.0)					
								- 7 -	-	_			0.0)					
									1				0.0)					
							ŀ	- 8 -	-										
				rown medium S									0.0		Collec	t SB09	9_8.5-9	.5 at 9:	2
				sand, trace fine brown fine SAN				- 9 -	1	띮			0.0						
				ce coarse sand				- 10 -	R3	MACROCORE	42	NA	0.0 0.0		0.11.			-+ 0.0	
										ACR	7		0.0		Collec	t SB09	9_10-11	at 9:3	0
							ļ	- 11 -	1	Σ			0.0		Collec		9_11-12) at 0.3	22
							F		-				0.0			. 0008	2	. at 3.3	~
							Ē	- 12 -	1										
				brown fine SAN			Ē		1				0.0)					
				sand, trace fine			F	- 13 -	1	Ш			0.0		Collec	t SB09	9_13-14	at 9:3	5
) brown fine SA	ND, trace	medium sand	F		4	MACROCOR	\sim		0.0						
			(dry)				Ē	- 14 -	8	\CRC	42	NA	0.0						
							Ē	- 15 -	1	Μ¢			0.0 0.0						
													0.0						
							F	- 16 -	1	\parallel			0.0						
							Ē		1										
				rown fine SANE brown fine SAN		medium cond	Ē	- 17 -	1				0.0)					
				sand, trace fine			F			ORE			0.0)					
					- (F	- 18 -	R5	MACROCORE	40	NA	0.0)					
			D50 (24 40")	brown fine CA			Ē		1	MAC			0.0)					
			RUC (24-40 ^{°°})	brown fine SA	ער (ury)		F	- 19 -	1				0.0)					
							F			1		1 I	0.0)	1				

Project		07.44	2016 01	Proje	ect No.			470	54000	4	
ocation	1	37-11	30th Street	Elev	ation ar	nd Da	atun		51230	1	
		Long	Island City, NY					40 I	NAVD8	8 (top of ca	asing)
<u>.</u>								Sa	mple Da	ata	
MATERIAL SYMBOL	Elev. (ft)	G	Sample Description		Depth Scale	Number	Type	(in)	Penetr. resist BL/6in	PID Reading	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
-	+20.0				20 —	z				(ppm)	
			R6a (0-14") brown fine SAND, trace medium sand, trace coarse sand, trace fine gravel (moist)	-	21 —					0.0 0.0	
	·]		R6b (14-42") brown fine SAND (moist to wet)	E	_	6	CORE			0.0	
				Ē	22 —	R6	MACROCORE	42	NA	0.0 0.0	Collect SB09_22-23 at 9:40
				<u> </u>	23 –		Σ			0.0	Water Table at about 23 fee
				Ē	24 —					0.0	bgs
••••			R7a (0-12") brown fine SAND (wet)	F						0.0	
			R7b (12-24") brown fine SAND, trace medium sand,	Ē	25 –		RE			0.0	
			trace coarse sand, trace fine gravel (wet) R7c (24-32") brown medium SAND, trace fine sand,	F	26 –	R7	MACROCORE	48	NA	0.0 0.0	
]		trace coarse sand, trace fine gravel (wet)	Ē	-		MACF			0.0	
			R7d (32-48") brown fine SAND, trace coarse sand, trace fine gravel (wet)	Ē	27					0.0 0.0	
	-		R8 (0-48") brown fine SAND, some medium trace	F	28 –						
			coarse sand, trace fine gravel (wet)	E	29 —					0.0 0.0	
				Ē			CORE			0.0	
				Ē	30 —	R8	MACROCORE	48	NA	0.0 0.0	
				Ē	31 –		Ŵ			0.0	
				Ē	32 —					0.0	
			R9 (0-48") brown fine SAND, trace medium sand, trace silt (wet)	E	52 -					0.0	
				Ē	33 -		RE			0.0	
				E	34 –	Rg	CROCOR	48	NA	0.0 0.0	
				E			MACI			0.0	
	·			Ē	35 —					0.0 0.0	
<u></u>	+4.0			Ē	36 -						End of boring at 36 feet bgs
				-	37 —						Borehole backfilled with soi cuttings to surface grade.
					-						
				-	38 -						
					39 —						
					40 -						
					41 —						
					-						
				-	42						
					43 –						
				Ē	44 –						
				E	-						

Project						209		oring				810			Sheet	1	of	2
-,		37-11	30th Street									51230	1					
ocation		1		,			Ele	vation	and D	atur					f in)			
orilling C	ompa		Island City, NY				Da	te Star	ted		43.2	22 NA			f casing) Finished			
			O Environmen	tal Services, In	с.						1	0/4/18				10/4	/18	
Drilling E	quipm		robe 8140LC S				Co	mpletic	on Dep	oth		35 ft		Rock	Depth	Ν	J/A	
ize and	Туре	of Bit		0			Nu	mber o	f Sam	nles	Dist	urbed		Ur	ndisturbed	Cor	е	
asing D	iamet		ch inside diam	eter sonic bit	(Casing Depth (ft)	-			·	Firs		8	Co	N/A ompletion	24 ł		N/A
		N/A		Weight (lbs)		N/A		Iter Lev	•		$ $ ∇	-	23.5		N/A	$\overline{\Lambda}$	-	N/A
asing H ampler	amme	°Ñ/A			N/A	Drop (in) N/A		iing FC	lena		Dalbi	Pache	co					
			ch inside diam	eter by 60-inch Weight (lbs)	long dua	al tube	Fie	ld Engi	ineer		- 4							
ampler	Hamn	ner	N/A	Weight (103)	N/A	Drop (in) N/A				A		y Stap mple D	penbe	ck	1			
MATERIAL SYMBOL	Elev.	Building Code		Sample De	ecrintic	n		Depth	ı j	φ					(Drilling Fluid	mark		ina
SYN	(ft) +43.2	ΰBΩ		Sample De	scriptic	лт 		Scale	Number	Type	(jn Rec	Penetr. resist BL/6in	Read (ppi		Fluid Loss, Dril			
						medium SAND,		- 0	-				0.0	n	Collect SB	10_0-1	at 1	1:00
			some fine sa (moist) [FILL		e sand,	trace fine gravel		- 1	-				0.4		Collect SB	10 1-2	at 1	1.04
				-				-		ш			0.0				acı	
								- 2		MACROCORE			0.0		Collect SB	10_2-3	at 1	1:04
								- 3	- E	ACRO	42	NA	0.0					
			R1b (36-42") brown fine SA	ND (moi	ist) [FILL]		_	-	Ň			0.0					
								_ 4	-				0.0	D				
								_	-									
			D2a (0.12")	brown find CAN	D trace	modium cond		- 5	-				0.0	n				
				brown fine SAN sand, trace fine				6	-				0.0		Collect SB	10 6-7	' at 1	1:08
			R2b (13-39") brown fine SA	ND, trac	e medium sand,		-		щ			0.0	D				
			trace coarse	sand, trace fin	e gravel	(moist) [FILL]		- 7	R2	DCOF	55	NA	0.0		Collect SB	10_7-8	at 1	1:07
								- 8		MACROCORE	2 2		0.0					
	+34.6							-	-	Σ			0.0		Collect SB	10 8.5	-9.5	at
	+33.9) brown SILT (n				- 9	-				0.0	D	11:10	_		
			R2d (47-55" trace fine gra) brown fine SA avel (dry)	ND, trac	e coarse sand,		- 10	-				0.0	D				
			0					_ 10										
								- 11	-									
			R3a (0-8'') b	rown fine SANE), trace r	medium sand,		-		Ř				_				
			trace coarse	sand (moist) tan to gray fine				- 12	R3	MACROCORE	41	NA	0.0		Collect SB	10_12-	-13 at	t 11:1
					0,			- 13		ACR			0.0					
								_		2			0.0					
								- 14	-				0.0		Collect SB	10_14-	-15 at	t 11:1
) tan fine SAND	, some s	silt, trace medium		- 15	-				0.0	U				
			sand (dry)															
								- 16										
				brown fine SAN	ID, trace	coarse sand,		 17		RE			0.0					
			trace fine gra	avei (moist)				- 17	- 42	soco	42	NA	0.0					
			R4b (14-42") tan fine SAND	(dry)			- 18	- <u> </u>	MACROCORE			0.0					
								_	-	2			0.0					
								- 19				1	0.0	n	1			

roject		37-11	30th Street	Project No			170	51230 [.]	1			
ocation	1	57-11		Elevation	and D	atun		51250				
		Long	Island City, NY				43.2	22 NAV	D88 (top o	f casing)		
<u> </u>		_					Sa	mple Da	ita	_		
MATERIAL SYMBOL	Elev.	Building Code	Sample Description	Depth	ber	Эe			PID	(Drilling Fluid, D	narks	a
SYI	(ft) +23.2	B		Scale	Number	Type	(j. Rec	Penetr. resist BL/6in	Reading (ppm)	Fluid Loss, Drilling	g Resistance,	etc.)
				20 -	-							
				- 21	-							
			R5a (0-33") fine SAND (dry)	- 21	-				0.0 0.0			
]			- 22	-	RE			0.0			
	}			E	R5	SOC	49	NA	0.0			
				23	1	MACROCOR	-		0.0			
				¥	-	2			0.0	Water Table	at about 2	3.5
			R5b (33-49") brown fine SAND, trace medium sand, trace coarse sand, trace fine gravel (wet)	- 24	-				0.0	feet bgs		
				E	-				0.0	Collect SB10	_24-25 at	11:3
				- 25	-							
				F ac	-							
			R6a (0-30") brown medium SAND, trace fine sand, trace coarse sand, trace fine gravel (wet)	- 26	-				0.0			
	-			- 27	-	RE			0.0 0.0			
	1			E _ '	R6	MACROCORE	50	NA	0.0			
	1			- 28	4	ACR	~,		0.0			
			R6b (30-50") brown fine SAND, trace medium sand	E	-	Σ			0.0			
	-		(wet)	- 29	-				0.0			
• • •••				E	-				0.0			
	1			- 30	-							
	1			Ē	-							
			R7a (0-8") brown fine SAND (wet)	- 31	-				0.0			
	-		R7b (8-50") brown fine SAND, trace medium sand, trace coarse sand, trace fine gravel (wet)	- 32	_	붠			0.0 0.0			
			trace coarse sand, trace line graver (wet)	E	R1	000	50	NA	0.0			
	1			- 33	4	MACROCOR	~,		0.0			
••••				E	-	Z			0.0			
				- 34	-				0.0			
	1			E	-				0.0			
	+8.2			35	-							
				Ē	-							
				- 36	-					End of boring	at 35 feet	bgs
				- 37	-					Monitoring w installed in b		ee
				- 37	-					Monitoring W	ell Constru	
				- 38	=					Log for detail	5.	
				Ē	-							
				- 39	-							
				E	-							
				- 40	-							
				Ē.,	-							
				- 41	1							
				- 42	1							
				2	-							
				- 43	-							
				Ē	-							
				- 44	-							
				F	4							

roject								Boring oject No.			SB				Sheet 1	of	2
-		<u>37-</u> 11	30th Street					·				51230	1				
ocation	1						El	evation ar	nd Da								
rilling (Compa		Island City, NY				Da	ate Starte	d		40 M	NAVD8			sing) Finished		
Ū	•		CO Environmen	ital Services, Inc).						9	/27/18				9/27/18	
rilling E	Equipm						Co	ompletion	Dep	th		<u> </u>		Rock	Depth		
ize and	d Type		robe 8140LC S	Sonic Drill Rig							Dist	35 ft urbed		Un	disturbed	N/A Core	
asing [4.5-in	ch inside diame	eter sonic bit		Casing Depth (ft)	Nu	umber of \$	Sam	oles	Fired		7	6.0	N/A mpletion	24 HR.	N/A
0		N/A				N/A		ater Leve	. ,		First ∏_		22.5			<u> </u>	N/A
asing H		^e N/A		Weight (Ibs)	N/A	Drop (in) N/A	Dr	illing Fore	emar			0	-11				
ampler	•	4.5-in	ch inside diame	eter by 60-inch I	ong dua	al tube	Fie	eld Engin	eer		nom	as Sei	скеі				
ampler	Hamn	ner	N/A	Weight (lbs)	N/A	Drop (in) N/A				Lu		McCar					
RIAL 30L	Elev.	ling de						Depth	5			mple Da	ata Pil			arks	
MATERIAL SYMBOL	(ft)	Building Code		Sample De	scriptic	on		Scale	Number	Type	(in)	Penetr. resist BL/6in	Read (ppr	ling	(Drilling Fluid, I Fluid Loss, Drillin	epth of C Resistan	asing, ice, etc.)
****	+40.0		1-inch CON					<u> </u>			-		(66)	.,	Collect SB11	_0-1 at	9:00
				firm dark brown ne gravel. ceram		CLAY, some ss (moist) [FILL]	_						0.0				
			R1b (12-40")) stiff reddish-bro	own CL	AY (moist) [FILL]							0.0 0.0				
								2 -		ORE			0.0				
									ĸ	MACROCORE	57	NA	0.0	0			
								- 3 -		MAC			0.0				
			R1c (40-57") trace clay (m) reddish-brown poist) [FILL]	fine SA	ND, trace silt,		4 -					0.0 0.0				
				.0.0() [==]									0.0				
								- 5 -	-								
								- 6 -						•			
			R2a (0-15")	stiff reddish-brov	wn to bl	ack CLAY, trace		- 7 -		뽒			0.0 0.0		Collect SB11 SBDUP01_0		5,
			fine gravel (r						R2	MACROCORE	38	NA	1.1		MS_SS01_0 MSD_SS01_	92718 a	and
	+32.0	-	R2b (15-38")) reddish-brown	fine SA	ND. trace fine		- 8 -		MACI			0.0	D	MOD_0001_	092710	o al 9.1
			gravel (dry)	,		,							0.0				
								- 9 -					0.0 0.0				
								- 10 -	-				0.0	0			
								E									
								- 11 -									
								- 12 -		RE							
									R3	MACROCORE	27	NA	0.0	0			
			R3a (0-19")	tan fine SAND, f	trace co	arse sand (dry)		- 13 -		AACF			0.0				
										<			0.0	D			
) us stal!-!- !	alarr			- 14 -					0.0				
			R3b (19-27") silt (moist)) readish-brown	clayey 1	fine SAND, some		- 15 -					0.0	U			
			. ,														
								- 16 -					0.0	n			
			R4a (0-6'') re silt (moist)	eddish-brown cla	ayey fine	e SAND, some				ĥ			0.0	D			
			R4b (6-14")	reddish-brown fi		· /		- 17 -	Ъ	MACROCORE	44	NA	0.0				
•••••			R4c (14-18") coarse grave		clayey f	fine SAND, trace		- 18 -		ACR	4		0.0 0.0				
) tan fine SAND	(moist)					Σ			0.0				
								- 19 -	1				0.0	D			
	1		R4e (37-41")) reddish-brown	silty fine	e SAND (moist)		F 3	1				0.0	0			

roject		37-11	30th Street	Project N	0.		170	51230 [.]	1			
catior	1	57-11		Elevation	and D	Datur		51250	1			
		Long	Island City, NY				40 I	NAVD8	8 (top of ca	asing)		
۲F		D,						mple Da	ata	Remarks		
MATERIAL SYMBOL	Elev. (ft)	Building Code	Sample Description	Dept Scale	Number	Type	(in)	Penetr. resist BL/6in	PID Reading	(Drilling Fluid, Depth of Casing,		
≥ <i>"</i>	+20.0		R4f (41-44") tan fine SAND, 1-2-inch clay lenses	20	ź		æ	<u> </u>	(ppm)	Fluid Loss, Drilling Resistance, etc.)		
			(moist)									
				- 21	-				0.0			
	-		R5a (0-22") tan fine SAND, trace coarse sand, trace fine gravel (moist to wet)	- 22	_	ORE			0.0 0.0			
· · · · · · · ·				¥	R5	MACROCOR	4	NA	0.0	Collect SB11_22-23 at 9:35 Water Table at about 22.5		
			R5b (22-44") olive-brown silty SAND, trace clay (wet)	23	-	MAC			0.0	feet bgs		
				- 24	_				0.0 0.0			
				=	-				0.0			
				- 25	+				0.0			
				- 26								
	•											
			R6a (0-22") olive-brown silty fine SAND (wet)	- 27		CORE			0.0			
				Ē	- BR	MACROCORI	36	NA	0.0			
				- 28	-	MA			0.0 0.0 0.0 0.0			
·]		R6b (22-36") pinkish-gray fine SAND, trace clay (wet)	- 29	-							
				-								
			R7a (0-35") pinkish-gray fine SAND (wet)	- 30	-				0.0			
				- 31	_				0.0 0.0			
					-	щ			0.0			
				- 32	R7	COR	60	NA	0.0			
			R7b (35-47") olive-brown silty fine SAND, trace clay	- 33	- 2	MACROCORI	9		0.0 0.0			
			(wet)	_	-	Σ			0.0			
			R7c (47-60") olive-brown fine SAND, trace silt (wet)	- 34	-				0.0			
	+5.0				1				0.0	End of boring at 25 fact bo		
				-	-					End of boring at 35 feet bg Borehole backfilled with so		
				- 36	-					cuttings and capped with concrete to surface grade.		
				- 37								
				- 38	-							
				- 20	E							
				- 39	-							
				40	-							
				- 41 E	-							
				42	_							
				F								
				- 43	-							
				- 44	_							
				E	1							

Project						-	of E	-										
lojool	37	37-11 30th Street						Project No. 170512301										
ocation							Ele	evation ar	nd Da									
Drilling C	Lc ompany	ng Island City	v, NY				Da	te Starte	d		40 N	IAVD8			asing) Finished			
		ARCO Enviror	mental S	ervices, Ind	C.						9/	26/18					9/26/18	
Drilling E	quipment						Co	mpletion	Dep	h				Rock	Depth			
Size and	Ge Type of I	eoprobe 6610 Bit	DT Drill F	Rig			_				Distu	32 ft urbed		Un	disturbed		N/A Core	
	4.	5-inch inside o	liameter s	sonic bit			Nu	mber of S	Samp	oles			8			N/A	24 HR.	N/A
	iameter (N/	A				Casing Depth (ft) N/A		ater Leve			First		22		mpletion	N/A	24 HR. <u> </u>	N/A
Casing H	ammerN/	A	Wei	ight (lbs)	N/A	Drop (in) N/A	Dri	Iling Fore	eman			<u> </u>						
Sampler	4.	5-inch inside (liameter l	by 60-inch	long dua	ltubo	Fie	eld Engine	eer	Ir	noma	as Seid	ckel					
Sampler	Hammer	N/A	Wei	ight (lbs)	N/A	Drop (in) N/A		0		Lu		AcCart						
OL	Elev. ip	ø			Dopth				mple Da	ata Pil			Ren	narks				
SYM	(ft) in	20 C	S	Sample De	escriptio	n		Depth Scale	Number	Type	(in)	Kecov. (in) Penetr. resist BL/6in		ling	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)			
	+40.0		-inch CONCRETE slab					_ 0 _	z		Ľ.	<u> </u>	(ррі	n)	Collect SB12_0-2 at 10:00			
	+39.5	R1 (0-3	6") light b	rown fine S	SAND, tra	ace medium												
	+38.5	sand, tr	ace fine g	gravel (mois	st) [FIĹL]			- 1 -		RE								
								- 2 -	ž	MACROCORE	36	NA			Coller	~t \$813	2_2-4 at	10.05
									-	NACF							at	10.00
								- 3 -		~								
								- 4 -										
	+34.8							- 5 -										
		R2 (0-3 moist)	3") tan fin	e SAND, tr	ace coar	rse sand (dry to				MACROCORE								
		moisty						- 6 -	R2	CRO	33	NA						
· · · · · · ·								- 7 -		MA					Colley) 7 9 ot	10.10
															Collec		2_7-8 at	10.10
								- 8 -	-									
			B") brown	fine SAND), trace c	oarse sand		- 9 -		붠								
		(moist) R3b (8-	14") brow	n fine SAN	D, some	silt (moist)		- 10 -	R3	MACROCORE	35	NA						
	120.1				ND, som	e medium sand,	,			MACF								
	+29.1 +29.0	R3d (22	arse san -23") soff	t brown clay	yey SILT	(moist)	-7	- 11 -										
		R3e (23	-35") bro	wn fine SA	ND (mois	st)		- 12 -										
								- '	1									
		R4 (0-3	9") tan fin	ie SAND (n	noist)			- 13 -	1	ш					Collec	ct SB12	2_13-14	at 10:2
									4	MACROCORE							-	
								- 14 -	8	ACRC	39	NA						
								- 15 -	1	M/								
								- 16 -										
		R5 (0-3	9") hrown	i fine SAND) (moist)			- 17 -										
			5 / 5/ 5/ 5/ 1		(110/31)					ORE								
								- 18 -	R5	MACROCORE	39	NA						
										MACI								
								- 19 -										

roject		07 44	20th Charact	Proj	ect No.			470	F4000	4				
ocation	1	37-11	30th Street	Elev	ation ar	nd Da	atun		51230	1				
		Long	Island City, NY					40 I	NAVD8	8 (top of ca	ising)			
<u>ب</u> .		_		<u> </u>				Sa	mple Da	ata]			
MATERIAL SYMBOL	Elev. (ft)	Building Code	Sample Description		Depth Scale	Number	be	20,00	Penetr. resist BL/6in	PID Reading	(Drilling	Rema Fluid, Dep	r KS th of Casing	a.
SY	+20.0	BO				Nun	Ţ	(ji Bed	Pen BL/	(ppm)	Fluid Los	s, Drilling R	esistance, e	etc.)
				F	- 20 -									
				E	- 21 -						Collect	SB12 2	21-23 at ⁻	11.(
			R6a (0-8") brown fine SAND (moist)	÷	-		CORE							
			R6b (8-16") brown fine SAND, some silt (wet)	Ŧ	- 22 -	Rg	MACROCORE	32	NA			Table at	about 22	2 fee
			R6c (16-32") brown fine SAND, trace silt (wet)	E	- 23		MA				bgs			
				E	20									
				E	- 24 -	-								
				E	-									
			R7a (0-14") brown fine SAND, trace silt, trace fine	Ē	- 25 -	1	R							
			gravel (wet)	È	- 26	R7	000	35	NA					
T	+13.8		R7b (24-29") very stiff brown clayey SILT (moist)	ŧ		ľ	MACROCORE							
			R7c (24-29") very stiff brown clayey SILT (moist)	Ē	- 27 -		2							
	+12.5		R7d (29-35") brown fine SAND (wet)											
				Ē	- 28 -									
				F	- 29 -									
			R8a (0-10") brown fine SAND, some silt (wet)	F	-		ORE							
			R8b (10-14") brown silty fine SAND, trace clay (wet)	F	- 30 -	R8	MACROCORE	33	NA					
			R8c (14-27") brown fine SAND (wet)	Ē	21		MAC							
				E	- 31 -									
	+8.0		R8d (27-29") stiff brown fine SAND, some silt, trace \neg clay (wet)	Æ	- 32 -						End of	boring a	t 32 feet	bas
			R8e (29-33") brown fine SAND (wet)	_/ E	-						Boreho	ole backf	illed with	soi
				E	- 33 -						cutting	s to sum	ace grad	e.
				E	- 34 -									
				Ē	-									
				Ē	- 35 -									
				Ę	36 37 37 38 39 40 41 41 41 42 43 44									
				F										
				Ē	- 37 -									
				F	=									
				F	- 38 -									
				Ē	- 39 -									
				Ē	39 -									
				Ē	- 40 -									
				E	-									
				E	- 41 -									
				E	- 42 -									
				Ē										
				F	- 43 -	1								
				Ē										
				H	- 44 -	1	1	1	1 I		1			

			VG/			Log		Boring			58	813			Sheet	1 0	T	3
roject		37-1	1 30th Street				Pn	oject No.			170	512301	1					
ocation		57-1					Ele	evation ar	nd Da	atum		512501	1					
			Island City, N	Y							44.0	2 NAV			casing)			
rilling C	•			ntal Sanviaga Ind			Da	ate Starte	d		1	0/2/10	L	Date F	Finished	10/3/18)	
rilling E			CO Environme	ntal Services, Inc).		Co	mpletion	Dep	th	1	0/2/18	F	Rock I	Depth	10/3/18	5	
Ū			probe 8140LC	Sonic Drill Rig								72 ft			·	N/A	\	
ize and	Туре		nch inside diam	actor conic hit			Nu	Imber of S	Sam	oles	Dist	urbed	15	Und	disturbed N/A	Core	N/	
asing D	iamet				(Casing Depth (ft)	\A/	ater Leve	(/ f+)		First		15	Cor	mpletion	24 HR		^
	10mm	N/A		Weight (lbs)		N/A Drop (in) N/A		illing Fore	• •		$ $ $\underline{\vee}$		28.5		N/A	Ţ	N/	A
asing H ampler		^e N/A			N/A	N/A		ining i ore	inai		albi	Pacheo	0					
			nch inside diam	neter by 60-inch I	ong dua	I tube	Fie	eld Engine	eer									
mpler	Hamn	ner	N/A	Weight (lbs)	N/A	Drop (in) N/A		1		Α		y Stapp		k				
80L 30L	Elev.	ling de						Depth	5			mple Da	ata PID			marks		
SYM SYM	(ft)	Building Code		Sample De	scriptio	n		Scale	Number	Type	(in)	Penetr. resist BL/6in	Readi (ppm	ng	(Drilling Fluid) Fluid Loss, Dril			
	+44.0		\ 1-inch CON	ICRETE slab				- 0 -	2		-	-	0.0		Collect SB	13_0-1 a	t 11:5	58
\otimes			R1a (0-20")) brown to reddis					1				0.0					_
\otimes				ace clay, DIICK (f	noist) [F	ובר]					Í		0.0 0.0		Collect SB	13_1-2 a	t 12:0)0
\otimes				") brown fine SAI				- 2 -		MACROCORE			0.0		Collect SB	13 2-3 a	t 12:0)2
				e sand, trace fine ") light brown to g	•				ĸ	CROC	39	NA	0.0			-		
			medium sai	nd, trace coarse				- 3 -	1	MAG			0.0 0.0					
			(dry) [FILL]					- 4 -	-									
									-									
								- 5 -							Collect SB	13_5-6 a	t 12:1	0
								6 -	1									
				brown fing SAN		ailt trace fine			-				0.0		Collect SB	13 6 5-7	5 at	
			gravel (dry)) brown fine SAN [FILL]				- 7 -		CORE			0.0		12:10	10_0.0-7	.0 at	
			R2b (18-21	") gray to black fi ace coarse sand,	ne SAN	D, trace clay,			R2	MACROCORE	42	NA	1.2					
*****	+35.8		└∖ [FILL]			,		- 8 -]	MA			0.3 0.0		Collect SB	13_8-9 a	t 12:1	3
				") tan to gray fine e sand (dry)	e SAND,	trace fine gravel,		- 9 -	-				0.0		Collect SB	13 9-10	at 12	:1
			R2d (32-42	") tan fine SAND	, trace c	oarse sand (dry)			-				0.0 0.0		00.000.02			
								- 10 -					0.0					
								- 11 -										
									-	щ								
···· ;]								- 12 -	<u>س</u>	COR	~				Collect SB	13_12-13	Bat 1	2:
			R3a (0-8") fine gravel (tan fine SAND, tr (drv)	ace coa	rse sand, trace			R3	MACROCOR	32	NA	0.0					
) tan fine SAND (dry)				-	MA	Í		0.0 0.0					
								- 14 -	-				0.0		Collect SB	13_14-15	at 1	2:
									1				0.0			_		
								- 15 -										
								- 16 -	-									
										Ш	Í							
) light brown fine	SAND, t	race coarse		- 17 -	22	jo oc	35	NA						
			sand, trace	fine gravel (dry)				- 18 -	L CC	MACROCOR	ŝ		0.0 0.0					
			R4b (15-35	") dark gray fine	SAND (d	dry)				Ý			0.0					
· · · · · · ·								- 19 -	1		Í		0.0					
								- 20 -	1				0.0					
										ORE								
								- 21 -	R5	MACROCORE	45							
) brown fine SAN e coarse sand (m	D, trace	silt, trace fine			1	4C			0.0					

LANGAN

Project		37_11	30th Street	Project No.			170	51230 [.]	1			
ocatior	า	57-11		Elevation a	nd Da			01200	•			
		Long	Island City, NY				44.0)2 NA\	/D88 (top o	f casing)		
SL		D D						mple Da		Remarks		
MATERIAL SYMBOL	Elev. (ft)	Building Code	Sample Description	Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PID Reading	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)		
≥‴	+22.0			22 -	ž		æ	<u>а</u> - а	(ppm) 0.0			
			R5b (10-13") brown fine gravel (moist) R5c (13-25") brown fine SAND, trace coarse sand,		1	끮		NA	0.0			
			trace fine gravel (dry) R5d (25-45'') tan fine SAND (dry)	- 23 -	R5	000	45		0.0 0.0			
				- 24 -	-	MACROCORE			0.0			
				- 25 -					0.0			
					-							
				- 26 -								
				- 27 -	-	ORE						
			R6a (0-15") fine SAND (dry)		R6	MACROCORE	34	NA	0.0 0.0 0.0			
			R6b (15-34") brown fine SAND, trace medium sand,	2 − 28 −	1	MAG				Collect SB13_28-29 at 13: Water Table at about 28.5		
			trace coarse sand (wet)	- 29 -	+				0.0	feet bgs		
				- 30 -	1				0.0			
			R7 (0-52") brown fine SAND, trace medium sand		1				0.0			
			(wet)	- 31 -					0.0 0.0			
				- 32 -		MACROCORE	0		0.0			
				- 33 -	R	ACRO	52	NA	0.0 0.0			
					-	Ň			0.0			
				- 34 -	1				0.0 0.0			
··· ···				- 35 -	-				0.0			
				- 36 -	1				0.2			
			R8 (0-48") brown fine SAND, some medium sand, trace coarse sand, trace fine gravel (wet)		-	щ			0.2			
				- 37 -	R8	CROCORE	48	NA	0.0			
				- 38 -			4		0.0 0.0			
					1	ΜA			0.0			
				- 39 -]				0.0 0.0			
	1		R9 (0-60") brown fine SAND, trace coarse sand,	- 40 -	-	+-			0.0			
			trace medium sand, trace fine gravel (wet)	- 41 -	1				0.0 0.0			
					-	Ä			0.0			
				- 42 -	62 62	ocol	60	NA	0.0 0.0			
				- 43 -	1	MACROCORE			0.0			
				- 44 -	1				0.0 0.0			
					-				0.0			
	1			- 45 -		+						
				- 46 -	-							
						ORE						
			R10 (0-34") brown fine SAND (wet)	- 47 -	R10	MACROCORE	34	NA	0.0			
				- 48 -	1	MA			0.0			
					1	[0.0			

				f Boring			SE	813		Sheet	3	of	3
roject		27 11		Project No.			170	E1020/	1				
ocation	1	37-11	30th Street	Elevation a	nd Da	atun		512301	I				
		Long	Island City, NY				44.0	02 NAV	'D88 (top c	of casing)			
L AL		D.			<u> </u>	Sample			ata	Remarks			
MATERIAL SYMBOL	Elev. (ft) -5.5	Building Code	Sample Description	Depth Scale	Number	Type	Recov.	Penetr. resist BL/6in	PID Reading (ppm)	(Drilling	Fluid, Dep	th of Casing esistance, e	∣, tc.)
				- 49.5 - 50 -			34		0.0				
					-								
			R11 (0-47") brown fine SAND (wet)	- 51 -	1				0.0				
				- 52 -	1	ORE			0.0 0.0				
· · · · ·					R11	MACROCOR	47	NA	0.0				
				- 53 -	1	MAC			0.0				
				- 54 -					0.0 0.0				
			R12a (0-10") brown fine SAND (wet)	- 55 -	1				0.0				
			R12b (10-45") gray to olive fine SAND, trace fine to	- 56 -	1				0.0 0.0				
			medium gravel, trace clay, trace silt (wet)		-	Щ			0.0				
				- 57 -	R12	MACROCORI	60	NA	0.0 0.0				
				- 58 -		IACR	Ű		0.0				
			R12c (45-60") gray to olive fine SAND, trace fine to		1	2			0.0				
•••••			medium gravel, trace clay, trace silt (wet)	- 59 -]				0.0 0.0				
				- 60 -									
			R13a (0-10") gray to olive fine SAND, some medium	- 61 -					0.0				
			sand, trace silt (wet) R13b (10-28") gray to olive fine SAND, some	- 62 -	-	ORE			0.0 0.0				
• • • • •			medium sand, trace fine to medium gravel, trace silt, trace clay (wet)		R13	MACROCORE	48	NA	0.0				
			R13c (28-48") gray to olive fine SAND, some medium	- 63 -]	MAG			0.0 0.0				
· · · · · ·			to coarse sand, some fine to medium gravel, trace	- 64 -	+				0.0				
			silt (wet)	- 65 -					0.0				
					-				0.0				
			R14a (0-20") brown fine SAND, trace fine gravel, trace medium to coarse sand (wet)	- 66 -	1				0.0				
				- 67 -]	ORE			0.0 0.0				
			R14b (20-40") gray to olive fine SAND, trace fine		R14	MACROCOR	52	NA	0.0				
			gravel, trace medium to coarse sand, trace clay, trace silt (wet)	- 68 -	1	MAC			0.0 0.0	Collect	SB13_6	68-69 at 1	3:4
	-25.0 -25.3	-	_ R14c (40-44") rock fragments	- 69 -	+				0.0				
	-25.6	-	R14d (44-48") brown fine SAND, trace silt, trace	/- 70 -					0.0				
			Coarse sand, trace fine gravel (wet) R14e (48-52") rock fragments			ORE							
				- 71 -	R15	MACROCORE	2	NA	0.0	Possible	e weath	ered rock	¢
	-28.0		\neg R15 (0-2") rock fragments	- 	1	MAG			0.0	End of t	orina a	t 72 feet	hai
					-					Monitor	ing well	MW13A	
				- 73 -]					Monitor	ing Well	ehole. Se I Constru	
				- 74 -	+					Log for	aetails.		
				- 75 -	1								
					-								
				- 76 -	1								

APPENDIX D WELL CONSTRUCTION LOGS

Well No.

MW01

PROJECT		PROJECT NO.						
37-11 30th Street		170512301						
LOCATION		ELEVATION AND DATUM						
Long Island City, New York		el. 44.22 NAVD88						
DRILLING AGENCY		DATE STARTED	DATE FINISHED					
AARCO Environmental Services, Co	rp.	10/4/2018	10/4/2018					
DRILLING EQUIPMENT		DRILLER						
Geoprobe® 8140 LC Sonic		Dalbi Pacheco						
SIZE AND TYPE OF BIT		INSPECTOR						
4-inch Direct Push		Ashley Stappenbeck						
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)					
4-inch		Overburden						
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL						
PVC	2-inch	Soil Cuttings						
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL					
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite						

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 40 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 35 to 23 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 21 feet bgs with No. 1 Sand and a hydrated bentonite seal from 19 to 21 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DATA								
SURGE BLOCK DIAMETER		NA	TYPE PUMP			Submersible	DEVELOPMENT CONFIRMATION	
DRILLER OR LANGAN		Driller	MAX PUMP RAT	E		1 L/min		
NUMBER OF SURGE CYCLES		NA	TOTAL VOLUME			15 gallons	AS	
TOP OF CASING	ELEVATION		DEPTH (ft)					
					WELL	DETAILS	SUMMARY SOIL	DEPTH (FT)
	44.22		0				CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)					0
	25.22		19					
TOP OF FILTER	ELEVATION		DEPTH (ft)					
	23.22		21	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)					
	21		23					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)	1				
	4.22		40					
SCREEN LENGTH							See SB01 Boring Log	
			12				for Details	19
SLOT SIZE				1		Seal		21
		No. 10 Slot; C	0.010 Inches					23
GROU	JNDWATER EL							
ELEVATION	DATE	DEPTH TO WATER	3	1		Filter		
17.62	10/17/2018	26.6	ft					
ELEVATION	DATE	DEPTH TO WATER	3	PVC				
				Screen	Å			
ELEVATION	DATE	DEPTH TO WATER	3	1				
ELEVATION	DATE	DEPTH TO WATER	3					
ELEVATION	DATE	DEPTH TO WATER	3	1				35
								40
ELEVATION	DATE	DEPTH TO WATER	3	1 '				
LANG				-			, and Geology D.P.C.	
	21	Penn Plaza, 3	60 West 31s	st Stree	et, 8th	Floor, New Yo	ork	

Well No.

MW02

PROJECT		PROJECT NO.						
37-11 30th Street		170512301						
LOCATION		ELEVATION AND DATUM						
Long Island City, New York		el. 43.65 NAVD88						
DRILLING AGENCY		DATE STARTED	DATE FINISHED					
AARCO Environmental Services, Co	rp.	10/4/2018	10/4/2018					
DRILLING EQUIPMENT		DRILLER						
Geoprobe® 8140 LC Sonic		Dalbi Pacheco						
SIZE AND TYPE OF BIT		INSPECTOR						
4-inch Direct Push		Ashley Stappenbeck						
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDI	ROCK)					
4-inch		Overburden						
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL						
PVC	2-inch	Soil Cuttings						
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL					
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite						

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 35 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 35 to 23 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 21 feet bgs with No. 1 Sand and a hydrated bentonite seal from 19 to 21 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DAT	ТА								
SURGE BLOCK DIAMETER	l	NA	TYPE PUMP			Subi	mersible	DEVELOPMENT CONFIRMATIO	N
<u>DRILLER</u> OR LANGAN		Driller	MAX PUMP RAT	E		1 L/m	nin		
NUMBER OF SURGE CYCL	.ES	NA	TOTAL VOLUME	1		25 ga	illons	AS	
TOP OF CASING	ELEVATION		DEPTH (ft)		WELL	DETAI	LS	SUMMARY SOIL	DEPTH (FT)
	43.65		0		I.			CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)						0
	24.65		19	4					
TOP OF FILTER	ELEVATION		DEPTH (ft)						
	22.65		21	Riser					
TOP OF SCREEN	ELEVATION		DEPTH (ft)						
	21		23						
BOTTOM OF BORING	ELEVATION		DEPTH (ft)						
	8.65		35						
SCREEN LENGTH								See SB02 Boring Log	
			12					for Details	19
SLOT SIZE							Seal		21
		No. 10 Slot;	0.010 Inches						23
GRO	DUNDWATER EI	EVATIONS							
ELEVATION	DATE	DEPTH TO WATE	R				Filter		
17.65	10/15/2018	26	ft						
ELEVATION	DATE	DEPTH TO WATE	R	PVC					
				Screen					
ELEVATION	DATE	DEPTH TO WATE	R	1					
ELEVATION	DATE	DEPTH TO WATE	R	1					
ELEVATION	DATE	DEPTH TO WATE	R						
				4					35
ELEVATION	DATE	DEPTH TO WATE	R						
LA	-	-	-	-	-			, and Geology D.P.C.	
	21	Penn Plaza, 3	360 West 31:	st Stre	et, 8th	Floo	r, New Yo	ork	

Well No.

MW03

PROJECT		PROJECT NO.						
37-11 30th Street		170512301						
LOCATION		ELEVATION AND DATUM						
Long Island City, New York		el. 42.27	NAVD88					
DRILLING AGENCY		DATE STARTED	DATE FINISHED					
AARCO Environmental Services, Co	rp.	10/4/2018	10/4/2018					
DRILLING EQUIPMENT		DRILLER						
Geoprobe® 8140 LC Sonic		Dalbi Pacheco						
SIZE AND TYPE OF BIT		INSPECTOR						
4-inch Direct Push		Ashley Stappenbeck						
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)					
4-inch		Overburden						
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL						
PVC	2-inch	Soil Cuttings						
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL					
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite						

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 40 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 20 to 32 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 18 feet bgs with No. 1 Sand and a hydrated bentonite seal from 16 to 18 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DAT	A							
SURGE BLOCK DIAMETER		NA	TYPE PUMP			Submersible	DEVELOPMENT CONFIRMATIO	N
<u>DRILLER</u> OR LANGAN		Langan	MAX PUMP RAT	E		2.25 gal/min		
NUMBER OF SURGE CYCLE	ES	NA	TOTAL VOLUME			30 gallons	LM	
TOP OF CASING	ELEVATION		DEPTH (ft)					
					WELL	. DETAILS	SUMMARY SOIL	DEPTH (FT)
	42.27		0		-		CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)					0
	26.27		16					
TOP OF FILTER	ELEVATION		DEPTH (ft)					
	24.27		18	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)					
	22		20					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)					
	2.27		40					
SCREEN LENGTH							See SB03 Boring Log	
			12				for Details	16
SLOT SIZE						Seal		18
		No. 10 Slot; (0.010 Inches					20
GRO	UNDWATER EL	EVATIONS						
ELEVATION	DATE	DEPTH TO WATE	R			Filt	ter	
17.6	10/15/2018	24.67	ft					
ELEVATION	DATE	DEPTH TO WATE	R	PVC				
17.59	10/16/2018	24.68	ft	Screen				
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					32
								40
ELEVATION	DATE	DEPTH TO WATE	R					
LAN	IGAN Engineerin	g, Environme	ntal, Survevi	ng, Lar	ndscap	e Architectur	e, and Geology D.P.C.	<u>.</u>
	-	Penn Plaza, 3	-	-	-		•••	
L		7 -		-		•		

Well No.

MW04

PROJECT		PROJECT NO.						
37-11 30th Street		170512301						
LOCATION		ELEVATION AND DATUM						
Long Island City, New York		el. 42.25 NAVD88						
DRILLING AGENCY		DATE STARTED	DATE FINISHED					
AARCO Environmental Services, Co	rp.	10/4/2018	10/4/2018					
DRILLING EQUIPMENT		DRILLER						
Geoprobe® 8140 LC Sonic		Dalbi Pacheco						
SIZE AND TYPE OF BIT		INSPECTOR						
4-inch Direct Push		Ashley Stappenbeck						
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)					
4-inch		Overburden						
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL						
PVC	2-inch	Soil Cuttings						
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL					
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite						

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 35 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 20 to 32 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 18 feet bgs with No. 1 Sand and a hydrated bentonite seal from 16 to 18 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DAT	A							
SURGE BLOCK DIAMETER		NA	TYPE PUMP			Submersible	DEVELOPMENT CONFIRMATION	ı
<u>DRILLER</u> OR LANGAN		Langan	MAX PUMP RAT	E		2.25 gal/min		
NUMBER OF SURGE CYCLE	ES	NA	TOTAL VOLUME			20 gallons	AS	
TOP OF CASING	ELEVATION		DEPTH (ft)					
					WELL	DETAILS	SUMMARY SOIL	DEPTH (FT)
	42.25		0				CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)					0
	26.25		16					
TOP OF FILTER	ELEVATION		DEPTH (ft)					
	24.25		18	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)	1				
	22		20					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)	1				
	7.25		35					
SCREEN LENGTH				1			See SB04 Boring Log	
			12				for Details	16
SLOT SIZE				1 1		Seal		18
		No. 10 Slot; (0.010 Inches					20
GRO	UNDWATER EL	EVATIONS						
ELEVATION	DATE	DEPTH TO WATE	R			Filte	r	
17.55	10/15/2018	24.7	ft					
ELEVATION	DATE	DEPTH TO WATE	R	PVC				
17.55	10/17/2018	24.7	ft	Screen	Ţ			
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					32
								35
ELEVATION	DATE	DEPTH TO WATE	R					
LAN							, and Geology D.P.C.	
	21	Penn Plaza, 3	360 West 31s	st Stree	t, 8th	Floor, New Y	ork	

Well No. MW05A

PROJECT		PROJECT NO.					
37-11 30th Street		170512301					
LOCATION		ELEVATION AND DATUM					
Long Island City, New York		el. 42.49	NAVD88				
DRILLING AGENCY		DATE STARTED	DATE FINISHED				
AARCO Environmental Services, Co	rp.	9/28/2018	9/28/2018				
DRILLING EQUIPMENT		DRILLER					
Geoprobe® 8140 LC Sonic		Thomas Seickel					
SIZE AND TYPE OF BIT		INSPECTOR					
4-inch Direct Push		Luke McCartney					
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)				
4-inch		Overburden					
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL					
PVC	2-inch	Soil Cuttings					
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK	TYPE OF SEAL MATERIAL				
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite					

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 65 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 60 to 65 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 58 feet bgs with No. 1 Sand and a hydrated bentonite seal from 56 to 58 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DAT	ТА							
SURGE BLOCK DIAMETER	l	NA	TYPE PUMP			Submersible	DEVELOPMENT CONFIRMATION	N
DRILLER OR LANGAN		Langan	MAX PUMP RAT	E		2 gal/min		
NUMBER OF SURGE CYCL	.ES	NA	TOTAL VOLUME	1		30 gallons	LM	
TOP OF CASING	ELEVATION		DEPTH (ft)	WELL DETAILS		DETAILS	SUMMARY SOIL	DEPTH (FT)
	42.49		0				CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)					0
	-13.51		56					
TOP OF FILTER	ELEVATION		DEPTH (ft)	1				
	-15.51		58	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)					
	-18		60					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)	1				
	-22.51		65					
SCREEN LENGTH							See SB05 Boring Log	
			5				for Details	56
SLOT SIZE						Seal		58
		No. 10 Slot;	0.010 Inches					60
GRO	OUNDWATER EL	EVATIONS						
ELEVATION	DATE	DEPTH TO WATE	R			Filte	r	
17.44	10/15/2018	25.05	ft					
ELEVATION	DATE	DEPTH TO WATE	R	PVC				
16.09	10/17/2018	26.4	ft	Screen				
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					05
ELEVATION	DATE	DEPTH TO WATE	R					65
LA							, and Geology D.P.C.	1
	21	Penn Plaza, 3	360 West 31	st Stree	et, 8th	Floor, New Y	ork	

Well No. MW05B

PROJECT		PROJECT NO.					
37-11 30th Street		170512301					
LOCATION		ELEVATION AND DATUM					
Long Island City, New York		el. 42.48	NAVD88				
DRILLING AGENCY		DATE STARTED	DATE FINISHED				
AARCO Environmental Services, Co	rp.	10/1/2018	10/1/2018				
DRILLING EQUIPMENT		DRILLER					
Geoprobe® 8140 LC Sonic		Dalbi Pacheco					
SIZE AND TYPE OF BIT		INSPECTOR					
4-inch Direct Push		Luke McCartney					
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDROCK)					
4-inch		Overburden					
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL					
PVC	2-inch	Soil Cuttings					
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK TYPE OF SEAL MATERIAL					
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite					

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 32 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 20 to 32 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 18 feet bgs with No. 1 Sand and a hydrated bentonite seal from 16 to 18 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DAT	ТА							
SURGE BLOCK DIAMETER	ł	NA	TYPE PUMP			Submersible	DEVELOPMENT CONFIRMATION	N
DRILLER OR LANGAN		Langan	MAX PUMP RAT	E		2 gal/min		
NUMBER OF SURGE CYCL	.ES	NA	TOTAL VOLUME			15 gallons	LM	
TOP OF CASING	ELEVATION		DEPTH (ft)	WELL DETAILS		DETAILS	SUMMARY SOIL	DEPTH (FT)
	42.48		0				CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)					0
	26.48		16					
TOP OF FILTER	ELEVATION		DEPTH (ft)					
	24.48		18	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)					
	22		20					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)					
	10.48		32					
SCREEN LENGTH							See SB05 Boring Log	
			12				for Details	16
SLOT SIZE						Seal		18
		No. 10 Slot;	0.010 Inches					20
GRO	OUNDWATER EL	EVATIONS						
ELEVATION	DATE	DEPTH TO WATE	R			Filte	r	
17.42	10/17/2018	25.06	ft					
ELEVATION	DATE	DEPTH TO WATE	R	PVC				
				Screen				
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					
								32
ELEVATION	DATE	DEPTH TO WATE	R					
LA	-	-	-	-	-		, and Geology D.P.C.	1
	21	Penn Plaza, 3	360 West 31s	st Stree	et, 8th	Floor, New Y	ork	

Well No.

MW06

PROJECT		PROJECT NO.				
37-11 30th Street		170512301				
LOCATION		ELEVATION AND DATUM				
Long Island City, New York		el. 40.45	NAVD88			
DRILLING AGENCY		DATE STARTED	DATE FINISHED			
AARCO Environmental Services, Co	rp.	9/27/2018	9/27/2018			
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 8140 LC Sonic		Thomas Seickel				
SIZE AND TYPE OF BIT		INSPECTOR				
4-inch Direct Push		Luke McCartney				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDROCK)				
4-inch		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-inch	Soil Cuttings				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK TYPE OF SEAL MATERIAL				
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite				

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 30 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 18 to 30 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 16 feet bgs with No. 1 Sand and a hydrated bentonite seal from 14 to 16 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DAT	ТА							
SURGE BLOCK DIAMETER	l	NA	TYPE PUMP			Submersible	DEVELOPMENT CONFIRMATION	N
DRILLER OR LANGAN		Langan	MAX PUMP RAT	E		2 gal/min		
NUMBER OF SURGE CYCL	.ES	NA	TOTAL VOLUME	1		10 gallons	LM	
TOP OF CASING	ELEVATION		DEPTH (ft)					
			0		WELL	DETAILS	SUMMARY SOIL	DEPTH (FT)
	40.45		0		1		CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)					0
	26.45		14	4				
TOP OF FILTER	ELEVATION		DEPTH (ft)	I _				
	24.45		16	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)					
	22		18					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)					
	10.45		30					
SCREEN LENGTH				1			See SB06 Boring Log	
			12				for Details	14
SLOT SIZE				1		Seal		16
		No. 10 Slot;	0.010 Inches					18
GRO	OUNDWATER EL	EVATIONS						
ELEVATION	DATE	DEPTH TO WATE	R	1		Filter	r	
17.47	10/15/2018	22.98	ft					
ELEVATION	DATE	DEPTH TO WATE	R	PVC				
17.44	10/16/2018	23.01	ft	Screen				
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R	1				
ELEVATION	DATE	DEPTH TO WATE	R	1				
								30
ELEVATION	DATE	DEPTH TO WATE	R					
LA	NGAN Engineering	g, Environme	ntal, Surveyi	l ng, Lar	ndscap	e Architecture	, and Geology D.P.C.	
						Floor, New Y		
		•						

Well No.

MW07

PROJECT		PROJECT NO.					
37-11 30th Street		170512301					
LOCATION		ELEVATION AND DATUM					
Long Island City, New York		el. 40.01	NAVD88				
DRILLING AGENCY		DATE STARTED	DATE FINISHED				
AARCO Environmental Services, Co	rp.	9/27/2018	9/27/2018				
DRILLING EQUIPMENT		DRILLER					
Geoprobe® 8140 LC Sonic		Thomas Seickel					
SIZE AND TYPE OF BIT		INSPECTOR					
4-inch Direct Push		Luke McCartney					
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDROCK)					
4-inch		Overburden					
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL					
PVC	2-inch	Soil Cuttings					
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK TYPE OF SEAL MATERIAL					
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite					

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 32 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 20 to 32 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 18 feet bgs with No. 1 Sand and a hydrated bentonite seal from 16 to 18 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DA	ТА							
SURGE BLOCK DIAMETER	l	NA	TYPE PUMP			Submersible	DEVELOPMENT CONFIRMATION	N
DRILLER OR LANGAN		Langan	MAX PUMP RAT	E		2 gal/min		
NUMBER OF SURGE CYCL	.ES	NA	TOTAL VOLUME			30 gallons	LM	
TOP OF CASING	ELEVATION		DEPTH (ft)	l (ft) WELL DETAILS		DETAILS	SUMMARY SOIL	DEPTH (FT)
	40.01		0				CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)					0
	24.01		16					
TOP OF FILTER	ELEVATION		DEPTH (ft)					
	22.01		18	Riser				
TOP OF SCREEN	ELEVATION		DEPTH (ft)					
	20		20					
BOTTOM OF BORING	ELEVATION		DEPTH (ft)					
	8.01		32					
SCREEN LENGTH							See SB06 Boring Log	
			12				for Details	16
SLOT SIZE						Seal		18
		No. 10 Slot;	0.010 Inches					20
GRO	DUNDWATER EL	EVATIONS						
ELEVATION	DATE	DEPTH TO WATE	R			Filter	r	
17.25	10/15/2018	22.76	ft					
ELEVATION	DATE	DEPTH TO WATE	R	PVC				
17.21	10/17/2018	22.8	ft	Screen				
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE	DEPTH TO WATE	R					
ELEVATION	DATE							
ELEVATION	DATE	DEPTH TO WATE	ĸ					32
ELEVATION	DATE	DEPTH TO WATE	R	1				
LA	NGAN Engineering	g, Environme	ntal, Surveyi	l ng, Lar	ndscap	e Architecture	, and Geology D.P.C.	
						Floor, New Y		

Well No.

MW10

PROJECT		PROJECT NO.					
37-11 30th Street		170512301					
LOCATION		ELEVATION AND DATUM					
Long Island City, New York		el. 43.22	NAVD88				
DRILLING AGENCY		DATE STARTED	DATE FINISHED				
AARCO Environmental Services, Co	rp.	10/4/2018	10/4/2018				
DRILLING EQUIPMENT		DRILLER					
Geoprobe® 8140 LC Sonic		Dalbi Pacheco					
SIZE AND TYPE OF BIT		INSPECTOR					
4-inch Direct Push		Ashley Stappenbeck					
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDROCK)					
4-inch		Overburden					
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL					
PVC 2-inch		Soil Cuttings					
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK TYPE OF SEAL MATERIAL					
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite					

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 35 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 21 to 33 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 35 feet bgs with No. 1 Sand and a hydrated bentonite seal from 17 to 35 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DATA							
SURGE BLOCK DIAMETER		NA	TYPE PUMP		Submersible	DEVELOPMENT CONFIRMATION	I
DRILLER OR LANGAN		Langan	MAX PUMP RAT	E	1 L/min		
NUMBER OF SURGE CYCLES	6	NA	TOTAL VOLUME		30 gallons	AS	
TOP OF CASING	ELEVATION		DEPTH (ft)	WELL DETAILS			
						SUMMARY SOIL	DEPTH (FT)
	43.22		0			CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)				0
	26.22		17				
TOP OF FILTER	ELEVATION		DEPTH (ft)				
	24.22		19	Riser			
TOP OF SCREEN	ELEVATION		DEPTH (ft)				
	22		21				
BOTTOM OF BORING	ELEVATION		DEPTH (ft)				
	8.22		35				
SCREEN LENGTH						See SB10 Boring Log	
			12			for Details	17
SLOT SIZE					Seal		19
		No. 10 Slot; C	.010 Inches				21
GROU	JNDWATER EL	EVATIONS					
ELEVATION	DATE	DEPTH TO WATER	3		Filter		
17.62	10/15/2018	25.6	ft				
ELEVATION	DATE	DEPTH TO WATER	3	PVC			
				Screen			
ELEVATION	DATE	DEPTH TO WATER	3				
ELEVATION	DATE	DEPTH TO WATER	3				
ELEVATION	DATE	DEPTH TO WATER	2				33
							35
ELEVATION	DATE	DEPTH TO WATER	3				
LAN				-		, and Geology D.P.C.	
	21	Penn Plaza, 3	60 West 31s	st Street, 8th	n Floor, New Yo	ork	

Well No. MW13A

PROJECT		PROJECT NO.				
37-11 30th Street		170512301				
LOCATION		ELEVATION AND DATUM				
Long Island City, New York		el. 44.02	NAVD88			
DRILLING AGENCY		DATE STARTED	DATE FINISHED			
AARCO Environmental Services, Co	rp.	10/3/2018	10/3/2018			
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 8140 LC Sonic		Dalbi Pacheco				
SIZE AND TYPE OF BIT		INSPECTOR				
4-inch Direct Push		Ashley Stappenbeck				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDROCK)				
4-inch		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-inch	Soil Cuttings				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK TYPE OF SEAL MATERIAL				
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite				

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 72 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 65 to 70 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 63 feet bgs with No. 1 Sand and a hydrated bentonite seal from 20 to 63 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DAT	A								
SURGE BLOCK DIAMETER		NA	TYPE PUMP			Sub	omersible	DEVELOPMENT CONFIRMATION	I
<u>DRILLER</u> OR LANGAN		Driller	MAX PUMP RAT	E		1 L/	min		
NUMBER OF SURGE CYCLI	ES	NA	TOTAL VOLUME			20 g	gallons	AS	
TOP OF CASING	ELEVATION		DEPTH (ft)						
					WELL DETAILS		AILS	SUMMARY SOIL	DEPTH (FT)
	44.02		0		-			CLASSIFICATION	
TOP OF SEAL	ELEVATION		DEPTH (ft)			_			0
	24.02		20						
TOP OF FILTER	ELEVATION		DEPTH (ft)						
	-18.98		63	Riser					
TOP OF SCREEN	ELEVATION		DEPTH (ft)						
	-21		65						
BOTTOM OF BORING	ELEVATION		DEPTH (ft)						
	-27.98		72						
SCREEN LENGTH								See SB13 Boring Log	
			5					for Details	20
SLOT SIZE							Seal		63
		No. 10 Slot; 0	0.010 Inches						65
GRO	UNDWATER EL	EVATIONS		1					
ELEVATION	DATE	DEPTH TO WATER	3			-	Filter		
16.25	10/15/2018	27.77	ft						
ELEVATION	DATE	DEPTH TO WATER	3	PVC					
16.29	10/17/2018	27.73	ft	Screen					
ELEVATION	DATE	DEPTH TO WATER	3						
ELEVATION	DATE	DEPTH TO WATER	3						
ELEVATION	DATE	DEPTH TO WATER	3						70
									72
ELEVATION	DATE	DEPTH TO WATER	3						
		-	-	-	-			, and Geology D.P.C.	
	21	Penn Plaza, 3	60 West 31s	st Stre	et, 8th	Flo	or, New Yo	ork	

Well No. MW13B

PROJECT		PROJECT NO.				
37-11 30th Street		170512301				
LOCATION		ELEVATION AND DATUM				
Long Island City, New York		el. 43.59	NAVD88			
DRILLING AGENCY		DATE STARTED	DATE FINISHED			
AARCO Environmental Services, Co	rp.	10/3/2018	10/3/2018			
DRILLING EQUIPMENT		DRILLER				
Geoprobe® 8140 LC Sonic		Dalbi Pacheco				
SIZE AND TYPE OF BIT		INSPECTOR				
4-inch Direct Push		Ashley Stappenbeck				
BOREHOLE DIAMETER		TYPE OF WELL (OVERBURDEN / BEDF	ROCK)			
4-inch		Overburden				
RISER MATERIAL	DIAMETER	TYPE OF BACKFILL MATERIAL				
PVC	2-inch	Soil Cuttings				
TYPE OF SCREEN	DIAMETER	TYPE OF WELL PACK TYPE OF SEAL MATERIAL				
PVC No. 10 Slot	2-inch	No. 1 Sand Bentonite				

METHOD OF INSTALLATION

AARCO Environmental Services installed a 4.25-inch steel casing to 35 feet below grade surface (bgs). AARCO installed a 10-slot Schedule 40 PVC screen from 25 to 35 feet bgs and Schedule 40 PVC riser to the surface. The annulus of the borehole was backfilled to 23 feet bgs with No. 1 Sand and a hydrated bentonite seal from 21 to 23 feet bgs. Soil cuttings were backfilled above the hydrated bentonite seal to surface grade. A manhole was installed and encased in concrete at grade.

WELL DEVELOPMENT DA	ТА									
SURGE BLOCK DIAMETER	1	NA	TYPE PUMP			Subm	nersible	DEVELOP	MENT CONFIRMATIO	N
DRILLER OR LANGAN		Driller	MAX PUMP RA	TE		1 L/mir	n			
NUMBER OF SURGE CYCI	LES	NA	TOTAL VOLUM	E		15 gall	ons	AS		
TOP OF CASING	elevation 43.59		DEPTH (ft)		WELL	. DETAILS	6		JMMARY SOIL	DEPTH (FT)
TOP OF SEAL	elevation 22.59		DEPTH (ft) 21							0
TOP OF FILTER	elevation 20.59		DEPTH (ft) 23	Riser	┢					
TOP OF SCREEN	elevation 19		DEPTH (ft) 25							
BOTTOM OF BORING	elevation 8.59		DEPTH (ft) 35							
SCREEN LENGTH			1(D				See	SB13 Boring Log for Details	21
SLOT SIZE						-	_Seal			23
		No. 10 Slot;	0.010 Inches	S						25
GRO	OUNDWATER E	LEVATIONS								
elevation 18.02	дате 10/15/2018	DEPTH TO WATE 25.57	∈R ft				Filter			
ELEVATION	DATE	DEPTH TO WATE	ER	PVC Screen						
ELEVATION	DATE	DEPTH TO WATE	ER							
ELEVATION	DATE	DEPTH TO WATE	ER							
ELEVATION	DATE	DEPTH TO WATE	ER							35
ELEVATION	DATE	DEPTH TO WATE	ER							
LA	NGAN Engineeri 2 ⁻	ng, Environme 1 Penn Plaza, 3							eology D.P.C.	
L		,			•	,				

APPENDIX E GROUNDWATER SAMPLING LOGS

Project In	formation	Well Info	rmation	Ec	uipment Informati	on	9	Sampling Condition	IS	Sampling I	nformation
	37-11 30th Street	Well No:	MW01		lity Device Model:			Weather:	Sunny, 60s		MW01_101718
Project Number:	170512301	Well Depth:	35.28		Pine Number:	21208	Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon	PID Beneat	h Inner Cap (ppm):	0		
Sampling	K. Racanelli	Well Screen	35		Pine Number:	13300	Pu	ump Intake Depth:	33.00	Sample Date:	10/17/2018
Personnel:		Interval:	23		Tubing Diameter:	3/8	Depth to W	ater Before Purge:	N/A	Sample Time:	17:00
•				STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	рН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	A 1 <i>i</i> :	NOTES	
	°Celsius		mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		0, 1, 11, 12
					(+/- 10%) above		Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN PL	-					
16:28	17.28	7.57	93	2.54	167	3.71	N/A		0.5	Clear	N/A
16:33	16.53	7.59	70	2.23	127	2.18	N/A	0.05	0.75	Yellow	N/A
16:38	16.35	7.63	61	2.38	183	1.67	N/A	0.1	1.25	Yellow	Ν
16:43	16.23	7.65	57	2.32	254	1.61	N/A	0.1	1.75	Yellow	N
16:48	16.25	7.67	58	2.29	290	1.92	N/A	0.1	2.25	Yellow	Ν
16:53	16.55	7.66	62	2.29	302	2.07	N/A	0.05	2.5	Yellow	N
16:58	16.54	7.67	63	2.28	295	2.04	N/A	0.1	3	Yellow	Y
┝─────											

1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter 11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

Project Ir	nformation	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	S	Sampling In	formation
	37-11 30th Street	Well No:	MW02		lity Device Model:			Weather:	Rain, 70s		MW02_101518
Project Number:	170512301	Well Depth:	36.91		Pine Number:	21208	Back	round PID (ppm):	0	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon	PID Beneath	Inner Cap (ppm):	0		
Sampling		Well Screen	35	•	Pine Number:	13300		Imp Intake Depth:	34.00	Sample Date:	10/15/2018
Personnel:		Interval:	23		Tubing Diameter:			ater Before Purge:	26.00	Sample Time:	13:05
				STABILIZATION =				_			
	TEMP	рН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius	•	mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		
	Colorad		v	ino/ciii		(+/- 10%) above	Drawdown <	(gpiii)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(+/- 3 %)	(+/- 0.1)	(+/- 10mv)	(+/- 3 %)		-	0.33 IL	(<0.15 gpiii)		color, ouor etc.	
12,10	15.08	7.37	25	2.62	BEGIN PU 117	9.35	26.01		0.5	1	N/A
12:10	16.07	7.37	35		48.3	9.35		0.1	0.5		N/A N/A
12:15			21	2.66			26.01	0.1	1.05		
12:20	16.18	7.36	20	2.66	27.5	0.15	26.02	0.05	1.25		N
12:25	16.21	7.36	19	2.66	20.8	0.12	26.03	0.05	1.5		N
12:30	16.37	7.36	20	2.66	18.4	0.15	26.03	0.1	2		N
12:35	16.56	7.37	23	2.66	16.2	0.16	26.03	0.05	2.25		N
12:40	16.67	7.37	24	2.66	14.4	0.18	26.00	0.05	2.5		N
12:45	16.79	7.37	25	2.65	13.7	0.21	26.01	0.05	2.75		N
12:50	16.75	7.41	43	2.62	13.9	0.55	26.01	0.1	3.25		N
12:55	16.52	7.37	29	2.61	13.6	0.49	26.01	0.1	3.75		N
13:00	16.63	7.36	34	2.59	13.3	0.54	26.03	0.1	4.25		N
13:05	16.65	7.36	39	2.59	13.1	0.50	26.03	0.15	5		Y
										1	
				1						1	
				1							
				I			1			1 1	

1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

Project In	nformation	Well Info	rmation	Ec	uipment Informati	ion	S	Sampling Condition	S	Sampling I	nformation
Project Name:	37-11 30th Street	Well No:	MW03	Water Qua	lity Device Model:	Horiba U52		Weather:	Indoors		MW03 101618
Project Number:	170512301	Well Depth:	31.98		Pine Number:	21208	Back	ground PID (ppm):	0.1	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon	PID Beneat	h Inner Cap (ppm):	1.8		
Sampling	K. Racanelli	Well Screen	32	•	Pine Number:	13300		ump Intake Depth:	29.00	Sample Date:	10/16/2018
Personnel:		Interval:	20		Tubing Diameter:	0.5	Depth to W	ater Before Purge:	24.68	Sample Time:	14:45
		•		STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	pН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0 1 <i>1</i>	NOTES	
	°Celsius		mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		0, 1, 11, 12
						(+/- 10%) above	Drawdown <	(3)/	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(1. 0,0)	(1) •,	(17 10111)		5:3		0.0011	(terre gpin)			
13:45	15.79	8.16	-52	0.23	16.5	0.51	24.96		1	Clear	N/A
13:50	15.86	8.18	-19	0.23	10.2	0.96	24.87	0.05	1.25		N/A
13:55	16.06	8.18	-7	0.23	8.7	1.31	24.93	0.05	1.5		N
14:00	16.09	8.19	5	0.23	7.7	1.64	24.97	0.1	2		N
14:05	16.06	8.18	16	0.23	8.1	1.79	24.82	0.05	2.25		Ν
14:10	16.20	8.18	20	0.24	8.6	2.22	24.98	0.05	2.5		Ν
14:15	16.09	8.17	24	0.24	9.1	2.52	25.13	0.1	3		Ν
14:20	15.76	8.15	51	0.24	6.6	3.89	25.04	0.1	3.5		Ν
14:25	15.84	8.11	61	0.25	4.6	4.62	25.09	0.1	4		N
14:30	15.78	8.09	62	0.25	14	4.34	24.89	0.05	4.25		N
14:35	16.02	8.09	61	0.26	2.7	4.78	24.97	0.05	4.5		N
14:40	15.98	8.09	64	0.26	1.4	4.96	24.97	0.1	5		N
14:45	15.96	8.08	68	0.26	1	5.07	24.95	0.1	5.5		Y
				ļ							

1. Well depths and groundwater depths were measured in feet below the top of well casing. 2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

GROUND WATER SAMPLE FIELD INFORMATION FORM

Project In	formation	Well Infor	mation	Eq	uipment Informati	on	S	Sampling Condition	S	Sampling In	formation
	37-11 30th Street	Well No:	MW04		lity Device Model:			Weather:	Indoors		MW04_101718
Project Number:	170512301	Well Depth:	32.4		Pine Number:	25328	Back	ground PID (ppm):	0.1	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon		h Inner Cap (ppm):	0.0		
Sampling	K. Racanelli	Well Screen	32	•	Pine Number:	30034	Pu	ump Intake Depth:	30.00	Sample Date:	10/17/2018
Personnel:	Jade Ferrara	Interval:	20		Tubing Diameter:	0.5	Depth to W	ater Before Purge:	24.70	Sample Time:	10:00
				STABILIZATION =	3 successive readi						
	TEMP	рН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Communitations	NOTES	
	°Celsius		mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		
	••••••					(+/- 10%) above	Drawdown <	(3)/	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(+/- 3/0)	(+/- 0.1)	(+/- 101110)	(+/- 3/0)	BEGIN PL		0.55 11	(<0.15 gpiii)		color, ouor etc.	
9:00	12.25	7.05	-18	0.23	176	0.93	25.40		0.5	Yellow	N/A
9:05	12.01	7.75	7	0.20	157	4.98	25.60	0.15	1.25	Yellow	N/A
9:10	12.21	7.36	182	0.00	344	8.46	25.10	0.1	1.75	Yellow	N
9:15	12.27	7.95	18	0.20	151	6.30	25.40	0.15	2.5	Yellow	N
9:20	12.27	8.13	47	0.19	47.3	7.51	25.00	0.05	2.75	Yellow to clear	N
9:25	12.64	8.21	68	0.18	3.1	7.91	24.95	0.05	3	Yellow to clear	Ν
9:30	12.83	8.25	65	0.18	5.8	7.74	24.90	0.1	3.5	Clear	N
9:35	12.89	8.28	64	0.18	20.7	7.76	25.05	0.05	3.75		Ν
9:40	12.86	8.29	61	0.18	18.6	7.92	25.05	0.1	4.25		N
9:45	12.82	8.32	64	0.18	23.9	8.02	25.10	0.05	4.5		Ν
9:50	12.40	8.31	41	0.19	100	7.81	25.75	0.125	5.125		Ν
9:55	12.54	8.32	43	0.18	51.9	7.52	25.00	0.075	5.5		N
10:00	12.67	8.36	73	0.18	56.7	8.04	25.00	0.075	5.875		N
											-
											-

Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

Project In	nformation	Well Info	rmation	Eq	uipment Informat	ion	S	ampling Condition	s	Sampling Ir	nformation
Project Name:	37-11 30th Street	Well No:	MW05A	Water Qua	lity Device Model:	Horiba U52		Weather:	Sunny, 60s		MW05A_101718
Project Number:	170512301	Well Depth:	65.9		Pine Number:	25328	Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	Waterra	PID Beneath	Inner Cap (ppm):	0		
Sampling	K. Racanelli	Well Screen	65	•	Pine Number:	12420	Pu	mp Intake Depth:	63.00	Sample Date:	10/17/2018
Personnel:		Interval:	60		Tubing Diameter:		Depth to W	ater Before Purge:	25.05	Sample Time:	15:00
		•		STABILIZATION =			•				
	TEMP	рН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius	•	mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		
	0015105		iii v	mo/cm		(+/- 10%) above	Drawdown <	(gpin)	Discharge		Stabilized?
719.45	((00()	1 (0 0)	1 1 40 10	((00/)				(.0.12	Volume (Gal)		
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)		color, odor etc.	
10.05	10.00	0.05		0.70	BEGIN PU						
13:35	16.03	8.35	-221	0.76	0	0.00	N/A		1.5	Brown turbid	N/A
13:40	16.16	8.32	-200	0.76	0	0.00	N/A	0.1	2	Brown turbid	N/A
13:45	16.37	8.32	-188	0.76	0	0.00	N/A	0.1	2.5	Brown turbid	N
13:50	16.24	8.34	-190	0.76	0	0.00	N/A	0.1	3	Brown turbid	N
13:55	16.11	8.33	-186	0.76	0	0.00	N/A	0.1	3.5	Brown turbid	Y
14:00	16.14	8.36	-184	0.77	0	0.00	N/A	0.1	4	Brown turbid	Y
14:05											Ν
14:10		Purgod water	appoare vorv turb	id docon Horiba and	d rocalibrato. Grov s	ilt observed at bott	om of Horiba, Purge	without Horiba for 2	25 minutos		Ν
14:15		i uigeu watei	appears very turb		riecalibrate. Crey s		in or nonba. r urge		20 111110105		N
14:20											Ν
14:25	15.96	8.17	-63	0.81	208	0.82	N/A	1.4	7	Brown turbid	N
14:30	15.81	8.30	-158	0.80	0	0.00	N/A	0.1	7.5	Brown turbid	Ν
14:35	15.90	8.31	-164	0.79	0	0.00	N/A	0.1	8	Brown turbid	Ν
14:40	16.28	8.30	-160	0.79	0	0.00	N/A	0.1	8.5	Brown turbid	Y
14:45	16.41	8.30	-158	0.80	0	0.00	N/A	0.1	9	Brown turbid	N
14:50	16.39	8.31	-165	0.79	0	0.00	N/A	0.1	9.5	Brown turbid	Y
14:55	16.39	8.30	-169	0.79	0	0.00	N/A	0.1	10	Brown turbid	N
								1		1	
								1		1	
				1						<u> </u>	
				1						<u> </u>	
I				1	1	1	1			I	
Notoo											
Notes:	are undurator do	wara management in f		of wall apping							
	groundwater depths		eet below the top	ot well casing.							
2. VVell and tubing (diameters are measur	eu in inches.									

3. PID = Photoionization Detector 4. ppm = Parts per million

5. pH = Hars ber minion
6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

GROUND WATER SAMPLE FIELD INFORMATION FORM

Project In	formation	Well Info	rmation	Ec	uipment Informati	ion	9	Sampling Condition	S	Sampling Ir	formation
	37-11 30th Street	Well No:	MW05B		lity Device Model:			Weather:	Indoors		MW05_101718
Project Number:	170512301	Well Depth:	32.25		Pine Number:		Back	ground PID (ppm):	0.5	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon		h Inner Cap (ppm):	4.9		
Sampling	K. Racanelli	Well Screen	32		Pine Number:	30034	Pu	ump Intake Depth:	31.00	Sample Date:	10/17/2018
Personnel:	Jade Ferrara	Interval:	20		Tubing Diameter:		Depth to W	ater Before Purge:	25.06	Sample Time:	13:10
*		•		STABILIZATION =	3 successive readi		•	<u> </u>			
	TEMP	pН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0 1 <i>i</i>	NOTES	
	°Celsius		mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		0. 1. 11. 12
						(+/- 10%) above	Drawdown <	(3)/	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(17 070)	(17 0.17	(17 101117)	(17 070)	BEGIN PL		0.00 11	(serie gpin)			
11:30	16.58	7.84	106	0.39	631	0.62	27.95		0.75	Gray, turbid	N/A
11:35	16.81	7.85	82	0.39	612	1.34	28.45	0.05	1	Gray, turbid	N/A
11:40	17.20	7.88	57	0.39	389	2.17	29.40	0.075	1.375	Gray, turbid	N
11:45	17.23	7.93	5	0.39	554	1.95	30.10	0.1	1.875	Gray, turbid	N
11:50	17.29	7.98	-34	0.40	769	1.85	30.75	0.005	1.9	Gray, turbid	N
11:55	17.27	8.01	-50	0.40	957	1.51	30.88	0.02	2	Gray, turbid, ran	N
										dry at 11:57	
				Allow to re	charge for 65 minut	es, sample collecte	d at 13:10				
				ļ							
				ļ							

Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

Project Ir	nformation	Well Info	rmation	Ec	uipment Informati	ion	S	ampling Condition	IS	Sampling I	nformation
Project Name:	37-11 30th Street	Well No:	MW06	Water Qua	lity Device Model:	Horiba U52		Weather:	Sunny, 60s		MW06_101618
Project Number:	170512301	Well Depth:	30.93		Pine Number:	21208	Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon	PID Beneath	Inner Cap (ppm):	2.8		
Sampling	K. Racanelli	Well Screen	30		Pine Number:	13300	Pu	Imp Intake Depth:	28.00	Sample Date:	10/16/2018
Personnel:		Interval:	18		Tubing Diameter:	.5	Depth to W	ater Before Purge:	23.01	Sample Time:	12:30
•				STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	pН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0	NOTES	
	°Celsius	-	mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		0. 1
						(+/- 10%) above	Drawdown <	(3)/	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(11 0 /0)	(17 011)	(17 10111)	(11 070)	BEGIN PL		0.00 11	(serie gpiii)		00101, 0001 0101	
10:03	15.52	6.66	-348	0.33	486	0.46	25.05		0.1	Clear	N/A
10:08	16.32	7.22	-293	0.32	420	0.52	25.67	0.08	0.5	Clear	N/A
10:13	16.77	7.46	-287	0.31	872	0.43	25.94	0.05	0.75	Beige turbidity	N
10:18	17.04	7.66	-292	0.31	0	0.34	26.23	0.05	1	Beige turbidity	N
10:23	17.20	7.83	-294	0.31	0	0.31	26.23	0.05	1.25	Beige turbidity	N
10:28	16.84	7.92	-296	0.31	0	0.31	26.03	0.03	1.4	Beige turbidity	Ν
10:33	16.84	8.06	-302	0.31	0	0.21	26.10	0.02	1.5	Brown turbidity	N
10:38	17.12	8.22	-322	0.32	0	0.11	26.64	0.05	1.75	Brown turbidity	N
10:43	17.10	8.27	-327	0.32	0	0.07	26.45	0.05	2	Brown turbidity	Ν
10:48	17.10	8.32	-335	0.31	0	0.00	26.58	0.05	2.25	Brown turbid	N
10:53	17.28	8.35	-345	0.32	0	0.00	26.66	0.05	2.5	Lowered pump	N
10:58	17.16	8.34	-338	0.33	0	0.00	26.73	0.05	2.75	speed to 28.5	Ν
11:03	17.27	8.49	-388	0.34	1000	4.14	27.37	0.05	3	speed to 26.5	N
				·	Allow to recharge	for 1.5 hours, colle	ct sample at 12:30				

Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

GROUND WATER SAMPLE FIELD INFORMATION FORM

	formation	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	S	Sampling	Information
Project Name:	37-11 30th Street	Well No:	MW07	Water Qua	lity Device Model:	Horiba U52		Weather:	Indoors		MW07_101618
Project Number:	170512301	Well Depth:	33.55		Pine Number:	25328	Back	ground PID (ppm):	0.3	Sample(s):	GWDUP01_101618
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	Waterra	PID Beneath	n Inner Cap (ppm):	0.4		MW07_MS/MSD
Sampling	Luke McCartney	Well Screen	30		Pine Number:	34415/12420	Ρι	Imp Intake Depth:	30.00	Sample Date:	10/16/2018
Personnel:	K. Racanelli	Interval:	18		Tubing Diameter:	3/8	Depth to W	ater Before Purge:	N/A	Sample Time:	14:50
				STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	рН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius	-	mV	mS/cm	NTU	mg/L	ft	(gpm)			0.1.11.12
					(+/- 10%) above	(+/- 10%) above	Drawdown <	(3)/	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(11 2.10)	(((URGING		(1010 3111)			
14:15	17.57	8.20	125	0.38	283	8.80	N/A		0		N/A
14:20	16.96	8.08	137	0.39	111	8.68	N/A	0.132	0.66		N/A
14:25	16.83	8.06	139	0.40	65.6	8.44	N/A	0.106	1.19		N
14:30	16.81	8.05	136	0.41	59	8.20	N/A	0.122	1.8		N
14:35	16.80	8.05	134	0.41	57.6	8.11	N/A	0.116	2.38		N
14:40	16.78	8.05	129	0.41	57.7	7.97	N/A	0.158	3.17		Y
14:45	16.75	8.05	128	0.41	56.4	7.97	N/A	0.092	3.63		Y
14:50	16.76	8.05	128	0.41	47.9	7.92	N/A	0.106	4.16		N
14:55	16.76	8.05	127	0.41	45.1	7.91	N/A	0.132	4.82		N
15:00	16.76	8.05	126	0.41	38.6	7.85	N/A	0.146	5.55		N
15:05	16.76	8.06	125	0.41	36.2	7.83	N/A	0.132	6.21		N
15:10	16.77	8.06	125	0.41	32.5	7.81	N/A	0.132	6.87		Ν
15:15	16.77	8.06	126	0.41	31	7.76	N/A	0.132	7.53		Ν
		PFAS Sampling o	on 10/16/2018 onl	y, well pumped dry.	All other parameter	s collected on 10/17	/2018 after ground	water recovery			

Notes:

1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

Project I	nformation	Well Info	rmation	Ea	uipment Informati	on	S	ampling Condition	IS	Sampling	Information
	37-11 30th Street	Well No:	MW07		lity Device Model:		-	Weather:	Indoors		MW07_101718
Project Number:		Well Depth:	33.55	Trater dat	Pine Number:	25328	Back	ground PID (ppm):	0.3	Sample(s):	
Site Location:		Well Diameter:	2	Pump	Make and Model:			n Inner Cap (ppm):	0.4	eampio(o).	MW07_MS/MSD
	Luke McCartney	Well Screen	30	p	Pine Number:			Imp Intake Depth:		Sample Date:	10/17/2018
Personnel:		Interval:	18		Tubing Diameter:	3/8		ater Before Purge:		Sample Time:	9:45
				STABILIZATION =				g.			
	TEMP	рН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		
					(+/- 10%) above		Drawdown <	(3)/	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN	PURGING					
											N/A
			See notes fr	om 10/16/2018, san	nple collected at 9:4	5 after well recover	y overnight				N/A
-											
	I			1				I		II	
1											

1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP – Oxidation-reduction potential, measured in millivolts (mV)
 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

Project Ir	nformation	Well Info	rmation	Eq	uipment Informati	on	S	ampling Condition	S	Sampling I	nformation
	37-11 30th Street	Well No:	MW10		lity Device Model:			. Weather:	Rain, 70s		MW10_101518
Project Number:	170512301	Well Depth:	34.14		Pine Number:	21208	Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon	PID Beneath	n Inner Cap (ppm):	0	• • • •	
Sampling	K. Racanelli	Well Screen	29	•	Pine Number:	13300	Pu	Imp Intake Depth:	32.00	Sample Date:	10/15/2018
Personnel:		Interval:	17		Tubing Diameter:	0.5	Depth to W	ater Before Purge:	25.6	Sample Time:	11:28
		•		STABILIZATION =						•	
	TEMP	pН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		
				ine, on		(+/- 10%) above		(9511)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
TIME	(+/- 3 /0)	(+/- 0.1)	(#/- 101110)	(+/- 3 /0)	BEGIN PL	-	0.55 ft	(<0.15 gpiii)			
10:28	13.28	7.05	-21	0.53	125	0.96	25.64		0.75	1	N/A
10:33	13.65	7.45	-21	0.53	125	1.12	25.63	0.05	0.75		N/A N/A
10:33	13.89	7.56	-20	0.52	115	1.12	25.63	0.05	1.25		N/A
10:38	13.95	7.62	-26 -32	0.52	60.5	6.11	25.64	0.05	1.25		N
10:48	13.39	7.70	-32 -24	0.50	60.1	5.48	25.65	0.03	2		N
10:53	13.39	7.72	-12	0.50	55.8	4.97	25.63	0.05	2.25	-	N
10:58	13.38	7.74	-12	0.49	55.4	4.59	25.63	0.05	2.25		N
11:03	13.44	7.74	-3	0.49	55.4	4.33	25.63	0.05	3		N
11:08	13.44	7.78	11	0.49	53.7	4.33	25.63	0.05	3.25		N
11:13	13.42	7.80	15	0.50	22.2	4.12	25.63	0.05	3.25		N
11:13	13.56	7.80	15	0.50	15.3	3.98	25.63	0.05	3.75		N
11:23	13.56	7.83	22	0.49	13.4	3.96	25.63	0.05	4	-	N
11:28	13.71	7.83	22	0.49	13.4	3.96	25.62	0.05	4.25		N
11.20	13.71	7.03	24	0.49	13.4	3.83	20.02	0.05	4.20		IN
										-	
										-	
				+							
				+							
				+							
				+							
				+							
				+							
				+							
				1			1				

1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV) 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter 11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

Project Ir	nformation	Well Info	rmation	Eq	uipment Informati	ion	S	ampling Condition	IS	Sampling I	nformation
	37-11 30th Street	Well No:	MW13A		lity Device Model:			Weather:	60s, Sunny		MW13A 101718
Project Number:	170512301	Well Depth:	70.8		Pine Number:	25328	Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon		Inner Cap (ppm):	2.7	• • • •	
Sampling	K. Racanelli	Well Screen	70	•	Pine Number:	30034		Imp Intake Depth:	68.00	Sample Date:	10/17/2018
Personnel:	Jade Ferrara	Interval:	65		Tubing Diameter:	0.5		ater Before Purge:	27.73	Sample Time:	15:30
				STABILIZATION =	3 successive readi	ngs within limits					
	TEMP	pН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	NTU	mg/L	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above	(+/- 10%) above	Drawdown <				Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN PU						
14:30	16.16	8.25	-423	0.35	0	8.37	29.70		0.25	Turbid	N/A
14:35	16.40	8.30	-438	0.35	0	7.04	30.09	0.05	0.5	Turbid	N/A
14:40	16.25	8.34	-461	0.34	974	5.15	30.59	0.075	0.875	Turbid	Ν
14:45	16.39	8.35	-475	0.34	997	3.67	30.60	0.025	1	Turbid	Ν
14:50	16.54	8.36	-484	0.34	875	2.99	30.68	0.05	1.25	Turbid	N
14:55	16.42	8.38	-479	0.35	680	2.27	31.00	0.05	1.5	Turbid	N
15:00	16.37	8.39	-485	0.35	587	1.94	31.10	0.05	1.75		N
15:05	16.39	8.39	-493	0.36	741	1.62	31.21	0.05	2		N
15:10	16.56	8.38	-506	0.37	547	1.38	31.08	0.05	2.25		N
15:15	16.54	8.38	-515	0.38	284	1.22	31.15	0.025	2.375		N
15:20	16.27	8.39	-524	0.39	752	1.07	31.40	0.05	2.625		N
15:25	16.35	8.38	-533	0.40	188	0.93	31.47	0.05	2.875		N
15:30	16.39	8.38	-544	0.41	233	0.84	31.42	0.05	3.125		N

Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

Project In	formation	Well Infor	mation	Ec	uipment Informati	on	S	ampling Condition	IS	Sampling Information	
	37-11 30th Street	Well No:	MW13B		lity Device Model:			Weather:	Rain, 70s		MW13B_101518
Project Number:	170512301	Well Depth:	35.62		Pine Number:	21208	Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Queens, NY	Well Diameter:	2	Pump	Make and Model:	SS Monsoon	PID Beneath Inner Cap (ppm):		0		
Sampling	K. Racanelli	Well Screen	35		Pine Number:	13300		ump Intake Depth:	33.00	Sample Date:	10/15/2018
Personnel:		Interval:	25		Tubing Diameter:	0.5	Depth to W	ater Before Purge:	25.96	Sample Time:	15:03
STABILIZATION = 3 successive readings within limits											
	TEMP	рН	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0 1 //	NOTES	
	°Celsius		mV	mS/cm	NTU	mg/L	ft	(gpm)	Cumulative		0. 1
						(+/- 10%) above	Drawdown <	(3)/	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	5 NTU	0.5 mg/L	0.33 ft	(<0.13 gpm)	Volume (Gal)	color, odor etc.	
		((1) 101111		BEGIN PL		0.00 10	(torre gpiii)			
14:03	16.72	7.92	-248	1.56	266	0.70	27.35		1.25		N/A
14:08	16.49	7.79	-233	1.59	252	0.89	27.00	0.15	2		N/A
14:13	16.82	7.72	-213	1.73	248	1.33	26.63	0.05	2.25		N
14:18	16.80	7.65	-197	1.85	67	1.68	26.59	0.07	2.6		N
14:23	16.76	7.68	-211	1.76	68.6	1.31	26.56	0.08	3		Ν
14:28	16.99	7.69	-209	1.75	64.4	1.35	26.41	0.04	3.2		Ν
14:33	17.01	7.66	-201	1.79	56.8	1.76	26.60	0.06	3.5		Ν
14:38	16.76	7.70	-216	1.69	64.1	1.43	26.68	0.1	4		Ν
14:43	16.71	7.68	-202	1.73	54.2	1.50	26.66	0.1	4.5		Ν
14:48	16.73	7.67	-195	1.76	47	1.51	26.60	0.05	4.75		Ν
14:53	16.85	7.65	-186	1.78	37.7	1.58	26.58	0.1	5.25		N
14:58	16.86	7.64	-186	1.77	34.5	1.55	26.58	0.05	5.5		Ν
15:03	16.81	7.64	-186	1.76	33.6	1.52	26.57	0.05	5.75		Ν
				ļ							
				ļ							
				ļ							

Notes: 1. Well depths and groundwater depths were measured in feet below the top of well casing.

2. Well and tubing diameters are measured in inches.

3. PID = Photoionization Detector

4. ppm = Parts per million

5. pH = Hydrogen ion concentration

6. ORP = Oxidation-reduction potential, measured in millivolts (mV)

7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)

8. DTW = Depth to water

9. mV = Millivolts

10. mS/cm = Milli-Siemans per centimeter

11. NTU = Nephelometric Turbidity Unit

12. gpm = Gallons per minute

APPENDIX F

SOIL VAPOR CONSTRUCTION AND SAMPLING LOGS

Sample Number: SSVDUP01_1001818

PROJECT:	PROJECT NO.:					
37-11 30th Street	170512301					
LOCATION:	SURFACE ELEVATION AND DATUM:					
Long Island City, New York	NA					
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:					
AARCO Environmental Services, Corp.	10/5/2018 10/5/2018					
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:					
Daybi Pacheco	10/8/2018 10/8/2018					
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:					
Geoprobe® 7822 DT	2.7-Liter Summa Canister					
INSPECTOR:	SAMPLER:					
Ashley Stappenbeck	Ashley Stappenbeck					
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):					
None Observed	Temp: 64-66°F					
	Wind: 0-10 mph N					
	Precipitation: 0'' rainfall					
	Pressure: 30.31" pressure					

METHOD OF INSTALLATION AND PURGING:

			TYPE OF MATERIAL ABOVE SEAL:					
1/4-Inch Teflon-lined Polyethylene Tubing			Seal to grade					
IMPLANT SCREEN TYPE/LENGTH/DIAM	ETER:			AL (B	entonite, Beeswax, N	lodeling Clay, etc.):		
2-Inch Polyethylene Probe			Bentonite					
				ИАТЕ	RIAL (Sand or Glass	Beads):		
2-inch	0.00		Sand					
PURGE VOLUME (L):	0.60	,			OBE DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	200 (3-minute	purge)		L, FIL'	FER, ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	5.4		SURFACE		SURFACE	SURFACE)		
HELIUM TESTS		st-sampling			Top of Seal	0.00		
HELIUM TEST IN BUCKET(%):	48.8%	49.0%			Top of Pack	0.08		
HELIUM TEST IN TUBE (PPM):	1625	2.70%						
SAMPLE START TIME:	9:34							
SAMPLE STOP TIME:	17:34							
TOTAL SAMPLE TIME (MIN):	480							
REGULATOR FLOW RATE (L/MIN):	0.0045							
VOLUME OF SAMPLE (LITERS):	2.7							
PID AFTER SAMPLE (PPM):	4		1					
SAMPLE MOISTURE CONTENT:	NA		1					
CAN SERIAL NUMBER:	2371							
REGULATOR SERIAL NUMBER:	0201							
CAN START VACUUM PRESS. (" HG):	-29.09							
CAN STOP VACUUM PRESS. (" HG):	-4.12							
SAMPLE LOCA	TION SKETCH		1					
				∦	Tube Depth	0.25		
			NOTES					
See Sample L	ocation Plan							
	neering, Environm Plaza, 360 West 3							

Sample Number: SSV01_1001818

PROJECT:	PROJECT NO.:					
37-11 30th Street	170512301					
LOCATION:	SURFACE ELEVATION AND DATUM:					
Long Island City, New York	NA					
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:					
AARCO Environmental Services, Corp.	10/5/2018 10/5/2018					
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:					
Daybi Pacheco	10/8/2018 10/8/2018					
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:					
Geoprobe® 7822 DT	2.7-Liter Summa Canister					
INSPECTOR:	SAMPLER:					
Ashley Stappenbeck	Ashley Stappenbeck					
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):					
None Observed	Temp: 64-66°F					
	Wind: 0-10 mph N					
	Precipitation: 0" rainfall					
	Pressure: 30.31" pressure					

METHOD OF INSTALLATION AND PURGING:

TUBING TYPE/DIAMETER:		TYPE OF MA	ATERI	AL ABOVE SEAL:				
			Seal to grade					
IMPLANT SCREEN TYPE/LENGTH/DIAM	ETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):					
2-Inch Polyethylene Probe		Bentonite						
				FERIAL (Sand or Glass	Beads):			
2-inch	0.00	Sand						
PURGE VOLUME (L):	0.60			ROBE DETAILS	DEPTH	NOTES		
PURGE FLOW RATE (ML/MIN):	200 (3-minute purge)		EAL, FI	LTER, ETC.)	(FEET FROM			
PID AFTER PURGE (PPM):	2.6	SURFACE		SURFACE	SURFACE)			
HELIUM TESTS	Pre-sampling Post-samplin	-	— -	Top of Seal	0.00			
HELIUM TEST IN BUCKET(%):	42.1% 36.4	1%		Top of Pack	0.08			
HELIUM TEST IN TUBE (PPM):	-							
SAMPLE START TIME:	9:59							
SAMPLE STOP TIME:	17:59							
TOTAL SAMPLE TIME (MIN):	480							
REGULATOR FLOW RATE (L/MIN):	0.0045							
VOLUME OF SAMPLE (LITERS):	2.7							
PID AFTER SAMPLE (PPM):	0							
SAMPLE MOISTURE CONTENT:	NA							
CAN SERIAL NUMBER:	2006							
REGULATOR SERIAL NUMBER:	576							
CAN START VACUUM PRESS. (" HG):	-30.42							
CAN STOP VACUUM PRESS. (" HG):	-6.16							
SAMPLE LOCA	TION SKETCH							
			+	Tube Depth	0.25			
			NOTES					
	(1 D)							
See Sample I	ocation Plan							
Longor Frank	and Environmental C			Anabit+		DBC		
	eering, Environmental, S							
21 Penn	Plaza, 360 West 31st Str	eet, oth FIO	JUI, I	NEWV TOLK, INEW	101K 10001-272	./		

Sample Number: SSV02_1001818

PROJECT:	PROJECT NO.:					
37-11 30th Street	170512301					
LOCATION:	SURFACE ELEVATION AND DATUM:					
Long Island City, New York	NA					
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:					
AARCO Environmental Services, Corp.	10/5/2018 10/5/2018					
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:					
Daybi Pacheco	10/8/2018 10/8/2018					
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:					
Geoprobe® 7822 DT	2.7-Liter Summa Canister					
INSPECTOR:	SAMPLER:					
Ashley Stappenbeck	Ashley Stappenbeck					
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):					
None Observed	Temp: 64-66°F					
	Wind: 0-10 mph N					
	Precipitation: 0" rainfall					
	Pressure: 30.31" pressure					

METHOD OF INSTALLATION AND PURGING:

			TYPE OF MATERIAL ABOVE SEAL:						
			Seal to grade						
IMPLANT SCREEN TYPE/LENGTH/DIAM	IETER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):						
2-Inch Polyethylene Probe		Bentonite							
			K MA.	TERIAL (S	and or Glass	Beads):			
2-inch	0.00	Sand				I			
PURGE VOLUME (L):	0.60			ROBE DET		DEPTH	NOTES		
PURGE FLOW RATE (ML/MIN):	200 (3-minute purge)	-	(SEAL, FILTER, ETC.)			(FEET FROM			
PID AFTER PURGE (PPM):	2.0	SURFACE		SURFAC		SURFACE)			
HELIUM TESTS	Pre-sampling Post-sampling 42.1% 41.2%	-	_		o of Seal	0.00			
HELIUM TEST IN BUCKET(%):	42.176 41.276	0		Тор	of Pack	0.08			
HELIUM TEST IN TUBE (PPM):		_							
SAMPLE START TIME:	10:21								
SAMPLE STOP TIME:	18:21								
TOTAL SAMPLE TIME (MIN):	480								
REGULATOR FLOW RATE (L/MIN):	0.0045								
VOLUME OF SAMPLE (LITERS):	2.7								
PID AFTER SAMPLE (PPM):	0								
SAMPLE MOISTURE CONTENT:	NA								
CAN SERIAL NUMBER:	122								
REGULATOR SERIAL NUMBER:	1101								
CAN START VACUUM PRESS. (" HG):	-30.45								
CAN STOP VACUUM PRESS. (" HG):	-6.91								
SAMPLE LOCA	TION SKETCH								
			<u> </u>	Tub	e Depth	0.25			
						NOTES			
_									
See Sample I	ocation Plan								
		<u> </u>							
	neering, Environmental, Sur								
21 Penn	Plaza, 360 West 31st Stree	et, 8th Flo	or, l	New Yo	ork, New	York 10001-27	27		

Sample Number: SSV03_1001818

PROJECT:	PROJECT NO.:					
37-11 30th Street	170512301					
LOCATION:	SURFACE ELEVATION AND DATUM:					
Long Island City, New York	NA					
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:					
AARCO Environmental Services, Corp.	10/5/2018 10/5/2018					
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:					
Daybi Pacheco	10/8/2018 10/8/2018					
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:					
Geoprobe® 7822 DT	2.7-Liter Summa Canister					
INSPECTOR:	SAMPLER:					
Ashley Stappenbeck	Ashley Stappenbeck					
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):					
None Observed	Temp: 64-66°F					
	Wind: 0-10 mph N					
	Precipitation: 0" rainfall					
	Pressure: 30.31" pressure					

METHOD OF INSTALLATION AND PURGING:

			TYPE OF MATERIAL ABOVE SEAL:					
1/4-Inch Teflon-lined Polyethylene Tubing			Seal to grade					
IMPLANT SCREEN TYPE/LENGTH/DIAM	ETER:			L (Bentonite, Bees	swax, Modeling Clay, etc.):			
2-Inch Polyethylene Probe BOREHOLE DIAMETER:			Bentonite	IATERIAL (Sand or	Class Banda):			
			Sand	IATERIAL (Sand or	Glass Beads):			
PURGE VOLUME (L):	0.6	0		PROBE DETAILS	DEPTH	NOTES		
PURGE FLOW RATE (ML/MIN):	200 (3-mini			, FILTER, ETC.)	(FEET FROM	NOTES		
PORGE FLOW RATE (MIL/MIN): PID AFTER PURGE (PPM):	200 (3-11111)	·	SURFACE	SURFACE	(FEET FROM SURFACE)			
HELIUM TESTS	Pre-sampling	Post-sampling	SURFACE	Top of Se				
HELIUM TEST IN BUCKET(%):	49.2%	52.1%		Top of Pa				
HELIUM TEST IN TUBE (PPM):	0	17500)					
SAMPLE START TIME:	9:3	4	1					
SAMPLE STOP TIME:	17:	34	1					
TOTAL SAMPLE TIME (MIN):	48	0	1					
REGULATOR FLOW RATE (L/MIN):	0.00	45						
VOLUME OF SAMPLE (LITERS):	2.	7						
PID AFTER SAMPLE (PPM):	4							
SAMPLE MOISTURE CONTENT:	N	4						
CAN SERIAL NUMBER:	12	6						
REGULATOR SERIAL NUMBER:	49	2						
CAN START VACUUM PRESS. (" HG):	-30.	31						
CAN STOP VACUUM PRESS. (" HG):	-7.6	35						
SAMPLE LOCA	TION SKETC	н						
				Tube Dep	oth 0.25			
			NOTES					
See Sample L	ocation Plan							
Langan Engir	eering, Enviro	nmental, Sur	veving, Lan	dscape Archi	itecture, and Geology	v D.P.C.		
					New York 10001-27			

Sample Number: SV01_100818

PROJECT:	PROJECT NO.:
37-11 30th Street	170512301
LOCATION:	SURFACE ELEVATION AND DATUM:
Long Island City, New York	NA
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:
AARCO Environmental Services, Corp.	10/5/2018 10/5/2018
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:
Daybi Pacheco	10/8/2018 10/8/2018
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:
Geoprobe® 7822 DT	2.7-Liter Summa Canister
INSPECTOR:	SAMPLER:
Ashley Stappenbeck	Ashley Stappenbeck
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):
None Observed	Temp: 64-66°F
	Wind: 0-10 mph N
	Precipitation: 0" rainfall
	Pressure: 30.31" pressure

METHOD OF INSTALLATION AND PURGING:

AARCO advanced SV01 to 5 feet below grade surface (ft bgs). #1 sand was backfilled around and above the implant and the remainder of the borehole was sealed with hydrated bentonite powder to grade. A MultiRAE PID set to low flow was used to purge the soil vapor point.

			TYPE OF MATERIAL ABOVE SEAL:					
			Seal to grade					
IMPLANT SCREEN TYPE/LENGTH/DIA	METER:		SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):					
BOREHOLE DIAMETER:			Bentonite					
				IATERIA	L (Sand or Glass	Beads):		
2-inch			Sand		I			
PURGE VOLUME (L):	0.60		IMPLANT	/PROBE	DETAILS	DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	200 (3-min	, e	(SEAL	, FILTER,	ETC.)	(FEET FROM		
PID AFTER PURGE (PPM):	N		SURFACE		URFACE	SURFACE)		
HELIUM TESTS	Pre-sampling	Post-sampling			Top of Seal	0.00		
HELIUM TEST IN BUCKET(%):	NA	35.2%			Top of Pack	0.08		
HELIUM TEST IN TUBE (PPM):	NA	L						
SAMPLE START TIME:	10:							
SAMPLE STOP TIME:	18:	50						
TOTAL SAMPLE TIME (MIN):	48	32						
REGULATOR FLOW RATE (L/MIN):	0.0	045						
VOLUME OF SAMPLE (LITERS):	2.	7						
PID AFTER SAMPLE (PPM):	()						
SAMPLE MOISTURE CONTENT:	N	A						
CAN SERIAL NUMBER:	24	21						
REGULATOR SERIAL NUMBER:	34	10						
CAN START VACUUM PRESS. (" HG):	-30).3						
CAN STOP VACUUM PRESS. (" HG):	-6.							
SAMPLE LOC	ATION SKETC	H						
				₽ ı	Probe Depth	5.00		
				**1				
			NOTES					
See Sample	Location Plan							
<u> </u>			L					
						ure, and Geology		
21 Penr	n Maza, 360 We	est 31st Stree	et, 8th Floor	, New	V YORK, NEW	York 10001-272	27	

Sample Number: SV02_100818

PROJECT:	PROJECT NO.:
37-11 30th Street	170512301
LOCATION:	SURFACE ELEVATION AND DATUM:
Long Island City, New York	NA
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:
AARCO Environmental Services, Corp.	10/5/2018 10/5/2018
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:
Daybi Pacheco	10/8/2018 10/8/2018
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:
Geoprobe® 7822 DT	2.7-Liter Summa Canister
INSPECTOR:	SAMPLER:
Ashley Stappenbeck	Ashley Stappenbeck
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):
None Observed	Temp: 64-66°F
	Wind: 0-10 mph N
	Precipitation: 0" rainfall
	Pressure: 30.31" pressure

METHOD OF INSTALLATION AND PURGING:

AARCO advanced SV02 to 5 feet below grade surface (ft bgs). #1 sand was backfilled around and above the implant and the remainder of the borehole was sealed with hydrated bentonite powder to grade. A MultiRAE PID set to low flow was used to purge the soil vapor point.

TUBING TYPE/DIAMETER:			TYPE OF MATERIAL ABOVE SEAL:						
1/4-Inch Teflon-lined Polyethylene Tubing			Seal to grade						
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):						
2-Inch Polyethylene Probe			Bentonite						
BOREHOLE DIAMETER:			FILTER PACK MATERIAL (Sand or Glass Beads):						
2-inch			Sand						
PURGE VOLUME (L):	0.0	IMPLANT/PROBE DETAILS			DEPTH	NOTES			
PURGE FLOW RATE (ML/MIN):	200 (3-minute purge)		(SEAL, FILTER, ETC.)				(FEET FROM		
PID AFTER PURGE (PPM):	NA		SURFACE			SURFACE)			
HELIUM TESTS	Pre-sampling	Post-sampling	-		Top of Seal	0.00			
HELIUM TEST IN BUCKET(%):	NA	36.0%			Top of Pack	0.08			
HELIUM TEST IN TUBE (PPM):	NA	0	D						
SAMPLE START TIME:	10:								
SAMPLE STOP TIME:	18:	18:47							
TOTAL SAMPLE TIME (MIN):	48	32							
REGULATOR FLOW RATE (L/MIN):	0.0	0.0045							
VOLUME OF SAMPLE (LITERS):	2.7								
PID AFTER SAMPLE (PPM):	0.	0.9							
SAMPLE MOISTURE CONTENT:	NA								
CAN SERIAL NUMBER:	2209								
REGULATOR SERIAL NUMBER:	67	75							
CAN START VACUUM PRESS. (" HG):	-30	.38							
CAN STOP VACUUM PRESS. (" HG):	-7.								
SAMPLE LOC	ATION SKETC	H							
				*	Probe Depth	5.00			
			NOTES						
See Sample	Location Plan								
						ire, and Geology			
21 Penr	n Plaza, 360 We	est 31st Stree	et, 8th Floc	or, N	ew York, New	York 10001-272	27		

Sample Number: SV03_100818

PROJECT:	PROJECT NO.:							
37-11 30th Street	170512301							
LOCATION:	SURFACE ELEVATION AND DATUM:							
Long Island City, New York	NA							
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:							
AARCO Environmental Services, Corp.	10/5/2018 10/5/2018							
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:							
Daybi Pacheco	10/8/2018 10/8/2018							
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:							
Geoprobe® 7822 DT	2.7-Liter Summa Canister							
INSPECTOR:	SAMPLER:							
Ashley Stappenbeck	Ashley Stappenbeck							
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):							
None Observed	Temp: 64-66°F							
	Wind: 0-10 mph N							
	Precipitation: 0" rainfall							
	Pressure: 30.31" pressure							

METHOD OF INSTALLATION AND PURGING:

AARCO advanced SV03 to 5 feet below grade surface (ft bgs). #1 sand was backfilled around and above the implant and the remainder of the borehole was sealed with hydrated bentonite powder to grade. A MultiRAE PID set to low flow was used to purge the soil vapor point.

TUBING TYPE/DIAMETER:			TYPE OF MATERIAL ABOVE SEAL:					
1/4-Inch Teflon-lined Polyethylene Tubing			Seal to grade					
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:			SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):					
2-Inch Polyethylene Probe			Bentonite					
BOREHOLE DIAMETER:			FILTER PACK MATERIAL (Sand or Glass Beads):					
2-inch			Sand					
PURGE VOLUME (L):	0.60		IMPLANT/PROBE DETAILS			DEPTH	NOTES	
PURGE FLOW RATE (ML/MIN):	200 (3-minute purge)		(SEAL, FILTER, ETC.)			(FEET FROM		
PID AFTER PURGE (PPM):	5.8		SURFACE	SURFACE		SURFACE)		
HELIUM TESTS	Pre-sampling	Post-sampling	┨ ┝─	Тор	of Seal	0.00		
HELIUM TEST IN BUCKET(%):	NA	40.6%	-	Торо	of Pack	0.08		
HELIUM TEST IN TUBE (PPM):	NA	L						
SAMPLE START TIME:	10:	54						
SAMPLE STOP TIME:	19:03							
TOTAL SAMPLE TIME (MIN):	48	489						
REGULATOR FLOW RATE (L/MIN):	0.0	045						
VOLUME OF SAMPLE (LITERS):	2.7							
PID AFTER SAMPLE (PPM):	0.6							
SAMPLE MOISTURE CONTENT:	NA							
CAN SERIAL NUMBER:	2180							
REGULATOR SERIAL NUMBER:	43	37						
CAN START VACUUM PRESS. (" HG):	-30	.54						
CAN STOP VACUUM PRESS. (" HG):	-5.	92						
SAMPLE LOC	ATION SKETC	H						
				- Probe	Depth	5.00		
			NOTES					
See Sample	Location Plan							
			L					
						ure, and Geology		
21 Penr	1 Maza, 360 VVe	est 31st Stree	ei, ath Floor	, INEW YO	IK, NEW	/ York 10001-272	<u> </u>	

Sample Number: IA01_100818

PROJECT:	PROJECT NO.:			
37-11 30th Street	170512301			
LOCATION:	SURFACE ELEVATION AND DATUM:			
Long Island City, New York	NA			
SAMPLER:	SAMPLE DATE STARTED: DATE FINISHED:			
AARCO Environmental Services, Corp.	10/8/2018 10/8/2018			
INSPECTOR:	TYPE OF SAMPLING DEVICE:			
Ashley Stappenbeck	2.7-Liter Summa Canister			
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):			
None Observed	Temp: 64-66°F			
	Wind: 0-10 mph N			
	Precipitation: 0" rainfall			
	Pressure: 30.31" pressure			

METHOD OF INSTALLATION AND SAMPLING:

A 2.7L Summa canister fitted with a 8-hour flow control valve was set up in the eastern part of the site at about 3 to 4 feet above grade surface. The flow controller was zeroed and valve opened to initiate collection of the ambient air sample. The sample and flow controller were checked during the sampling period to ensure proper operation until completion.

SAMPLE DETAILS		SAMPLE LOCATION SKETCH		
HEIGHT ABOVE GROUND (FT):	3.96			
PID BEFORE SAMPLE (PPM):	0.0			
SAMPLE START TIME:	9:59			
SAMPLE STOP TIME:	17:59			
FOTAL SAMPLE TIME (MIN):	480	See Sample Location Plan		
REGULATOR FLOW RATE (L/MIN):	0.0045			
/OLUME OF SAMPLE (LITERS):	2.7			
PID AFTER SAMPLE (PPM):	0.0			
SAMPLE MOISTURE CONTENT:	NA			
- CAN SERIAL NUMBER:	2188			
REGULATOR SERIAL NUMBER:	0331			
CAN START VACUUM PRESS. (" HG):	-30.58			
CAN STOP VACUUM PRESS. (" HG):	-6.08			
		NOTES		
QA/QC ambient air sample. Ar	A01 intake set at a height o	of about 3-4 feet above grade level in eastern part of site.		

Sample Number: IA02_100818

PROJECT:	PROJECT NO.:			
37-11 30th Street	170512301			
LOCATION:	SURFACE ELEVATION AND DATUM:			
Long Island City, New York	NA			
SAMPLER:	SAMPLE DATE STARTED: DATE FINISHED:			
AARCO Environmental Services, Corp.	10/8/2018 10/8/2018			
INSPECTOR:	TYPE OF SAMPLING DEVICE:			
Ashley Stappenbeck	2.7-Liter Summa Canister			
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):			
None Observed	Temp: 64-66°F			
	Wind: 0-10 mph N			
	Precipitation: 0" rainfall			
	Pressure: 30.31" pressure			

METHOD OF INSTALLATION AND SAMPLING:

A 2.7L Summa canister fitted with a 8-hour flow control valve was set up in the eastern part of the site at about 3 to 4 feet above grade surface. The flow controller was zeroed and valve opened to initiate collection of the ambient air sample. The sample and flow controller were checked during the sampling period to ensure proper operation until completion.

SAMPLE DETAILS		SAMPLE LOCATION SKETCH		
HEIGHT ABOVE GROUND (FT):	4.25			
PID BEFORE SAMPLE (PPM):	0.0			
SAMPLE START TIME:	10:21			
SAMPLE STOP TIME:	18:21			
FOTAL SAMPLE TIME (MIN):	480	See Sample Location Plan		
REGULATOR FLOW RATE (L/MIN):	0.0045			
VOLUME OF SAMPLE (LITERS):	2.7			
PID AFTER SAMPLE (PPM):	0.0			
SAMPLE MOISTURE CONTENT:	NA			
CAN SERIAL NUMBER:	238			
REGULATOR SERIAL NUMBER:	0771			
CAN START VACUUM PRESS. (" HG):	-30.08			
CAN STOP VACUUM PRESS. (" HG):	-5.35			
		NOTES		
uavut ampient air sampie. Aau i	intake set at a neight (of about 3-4 feet above grade level in eastern part of site.		

Sample Number: IA03_100818

PROJECT:	PROJECT NO.:			
37-11 30th Street	170512301			
LOCATION:	SURFACE ELEVATION AND DATUM:			
Long Island City, New York	NA			
SAMPLER:	SAMPLE DATE STARTED: DATE FINISHED:			
AARCO Environmental Services, Corp.	10/8/2018 10/8/2018			
INSPECTOR:	TYPE OF SAMPLING DEVICE:			
Ashley Stappenbeck	2.7-Liter Summa Canister			
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):			
None Observed	Temp: 64-66°F			
	Wind: 0-10 mph N			
	Precipitation: 0" rainfall			
	Pressure: 30.31" pressure			

METHOD OF INSTALLATION AND SAMPLING:

A 2.7L Summa canister fitted with a 8-hour flow control valve was set up in the eastern part of the site at about 3 to 4 feet above grade surface. The flow controller was zeroed and valve opened to initiate collection of the ambient air sample. The sample and flow controller were checked during the sampling period to ensure proper operation until completion.

SAMPLE D	ETAILS	SAMPLE LOCATION SKETCH
HEIGHT ABOVE GROUND (FT):	4.13	
PID BEFORE SAMPLE (PPM):	0.0	
SAMPLE START TIME:	9:34	
SAMPLE STOP TIME:	17:34	
TOTAL SAMPLE TIME (MIN):	480	See Sample Location Plan
REGULATOR FLOW RATE (L/MIN):	0.0045	
VOLUME OF SAMPLE (LITERS):	2.7	
PID AFTER SAMPLE (PPM):	0.0	
SAMPLE MOISTURE CONTENT:	NA	
CAN SERIAL NUMBER:	2597	
REGULATOR SERIAL NUMBER:	1061	
CAN START VACUUM PRESS. (" HG):	-30.37	
CAN STOP VACUUM PRESS. (" HG):	-3.86	
		NOTES
UAVUC ambient air sample. AA	u i intake set at a neight	of about 3-4 feet above grade level in eastern part of site.

Sample Number: AA01_100818

PROJECT:	PROJECT NO.:			
37-11 30th Street	170512301			
LOCATION:	SURFACE ELEVATION AND DATUM:			
Long Island City, New York	NA			
SAMPLER:	SAMPLE DATE STARTED: DATE FINISHED:			
AARCO Environmental Services, Corp.	10/8/2018 10/8/2018			
INSPECTOR:	TYPE OF SAMPLING DEVICE:			
Ashley Stappenbeck	2.7-Liter Summa Canister			
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):			
None Observed	Temp: 64-66°F			
	Wind: 0-10 mph N			
	Precipitation: 0" rainfall			
	Pressure: 30.31" pressure			

METHOD OF INSTALLATION AND SAMPLING:

A 2.7L Summa canister fitted with a 8-hour flow control valve was set up in the eastern part of the site at about 3 to 4 feet above grade surface. The flow controller was zeroed and valve opened to initiate collection of the ambient air sample. The sample and flow controller were checked during the sampling period to ensure proper operation until completion.

SAMPLE DETAILS		SAMPLE LOCATION SKETCH		
HEIGHT ABOVE GROUND (FT):	4.29			
PID BEFORE SAMPLE (PPM):	0.0			
SAMPLE START TIME:	10:43			
SAMPLE STOP TIME:	18:46			
FOTAL SAMPLE TIME (MIN):	483	See Sample Location Plan		
REGULATOR FLOW RATE (L/MIN):	0.0045			
/OLUME OF SAMPLE (LITERS):	2.7			
PID AFTER SAMPLE (PPM):	0.0			
SAMPLE MOISTURE CONTENT:	NA			
CAN SERIAL NUMBER:	182			
REGULATOR SERIAL NUMBER:	0044			
CAN START VACUUM PRESS. (" HG):	-30.36			
CAN STOP VACUUM PRESS. (" HG):	-7.39			
		NOTES		
JA/UC ambient air sample. AAU	I Intake set at a height (of about 3-4 feet above grade level in eastern part of site.		

APPENDIX G DATA USABILITY SUMMARY REPORTS

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Nicole Kung, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: October 30, 2018

Re: Data Usability Summary Report For 37-11 30th Street Samples Collected on October 8, 2018 Langan Project No.: 170512301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of canister air samples collected on October 8, 2018 by Langan Engineering and Environmental Services ("Langan") at the 37-11 30th Street site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAC registration # 11148) for volatile organic compounds (VOCs) by the methods specified below.

• VOCs by USEPA Method TO-15 and TO-15 SIM

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1840663	L1840663-01	SSV01_100818	10/8/2018	VOCs
L1840663	L1840663-02	SSV02_100818	10/8/2018	VOCs
L1840663	L1840663-03	SSV03_100818	10/8/2018	VOCs
L1840663	L1840663-04	SV01_100818	10/8/2018	VOCs
L1840663	L1840663-05	SV02_100818	10/8/2018	VOCs
L1840663	L1840663-06	SV03_100818	10/8/2018	VOCs
L1840663	L1840663-07	IA01_100818	10/8/2018	VOCs
L1840663	L1840663-08	IA02_100818	10/8/2018	VOCs
L1840663	L1840663-09	IA03_100818	10/8/2018	VOCs
L1840663	L1840663-10	SSVDUP01_100818	10/8/2018	VOCs
L1840663	L1840663-11	AA01_100818	10/8/2018	VOCs

TABLE	1:	SAMP	LE S	SUMN	IARY
-------	----	------	------	------	------

Validation Overview

This data validation was performed in accordance with USEPA Region II SOP #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-I5" (September 2016, Revision 6) and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, target compound identification and quantification, chromatograms, overall system performance, and field duplicate.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
AA01_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
AA01_100818	TO-15	67-64-1	ACETONE	J
IA01_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
IA01_100818	TO-15	67-64-1	ACETONE	J
IA02_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
IA02_100818	TO-15	67-64-1	ACETONE	J
IA03_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
IA03_100818	TO-15	67-64-1	ACETONE	J
IA03_100818	TO-15	67-63-0	ISO-PROPYL ALCOHOL	J
SSV01_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
SSV01_100818	TO-15	67-64-1	ACETONE	J
SSV02_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
SSV03_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
SSVDUP01_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
SV01_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
SV01_100818	TO-15	67-64-1	ACETONE	J
SV02_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ
SV03_100818	TO-15	622-96-8	4-ETHYLTOLUENE	UJ

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by USEPA Method TO-15:

The initial calibration verification (ICV) for batch WG1167836 on instrument AIRPIANO3 exhibited a percent difference (%D) above the control limit for 4-ethyltoluene (-37.9%). The associated results in samples SSV01_100818, SSV02_100818, SSV03_100818, SV01_100818,

SV02_100818, SV03_100818, IA01_100818, IA02_100818, IA03_100818, SSVDUP01_100818, and AA01_100818 are qualified as "UJ" based on potential indeterminate bias.

Sample IA03_100818 results for iso-propyl alcohol should be considered estimated due to coelution with a non-target peak.

Samples AA01_100818, IA01_100818, IA02_100818, IA03_100818, SSV01_100818, and SV01_100818 results for acetone should be considered estimated due to coelution with a non-target peak.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by USEPA Method TO-15:

The method blank (MB) for batch WG1167836 exhibited a detection of acetone (0.278 μ g/m³). The associated results in samples SSV01_100818, SSV02_100818, SSV03_100818, SV01_100818, SV02_100818, SV03_100818, IA01_100818, IA02_100818, IA03_100818, SSVDUP01_100818, and AA01_100818 are non-detect or greater than 10X the blank concentration. No qualification is necessary.

COMMENTS:

Field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 2X the RL, analytes meet the precision criteria if the absolute difference is less than $\pm 2X$ the RL. For results greater than 2X the RL, analytes meet the precision criteria if the RPD is less than or equal to 50% for soil vapor. All analytes met the precision criteria.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Data Usability Summary Report For 37-11 30- Street Street 2018 Samples Langan Project No.: 170515401 October 30, 2018 Page 5 of 5

trate

Emily Strake, CEP Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Nicole Kung, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: October 30, 2018

Re: Data Usability Summary Report For 37-11 30th Street Samples Collected in September and October 2018 Langan Project No.: 170512301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in September and October 2018 by Langan Engineering and Environmental Services ("Langan") at the 37-11 30th Street site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAC registration # 11148) for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals, mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), trivalent chromium (CrIII), and total solids by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6010D
- Mercury by SW-846 Method 7471B
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)
- Total Solids by Standard Method 2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1839010	L1839010-01	SB06_1-2	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-02	SB06_21.5-22.5	9/27/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-03	SB06_29-30	9/27/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-04	SB07_0-2	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-05	SB07_3-5	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-06	SB07_21-23	9/27/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-07	SB11_0-1	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-08	SB11_6.5-7.5	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-09	SB11_22-23	9/27/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-10	SB12_0-2	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-11	SB12_2-4	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-12	SB12_22-23	9/27/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-13	SBDUP01_092718	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-14	SBFB01_092718	9/27/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839010	L1839010-15	SBTB01_092718	9/27/2018	VOCs

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1839310	L1839310-01	SB05_0-2	9/28/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839310	L1839310-02	SB05_22-23	9/28/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839310	L1839310-03	SB05_45-46	9/28/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839310	L1839310-04	SB05_64-65	9/28/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839310	L1839310-05	SBTB02_092818	9/28/2018	VOCs
L1839481	L1839481-01	SB04_0-1	10/1/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839481	L1839481-02	SB04_23.5-24.5	10/1/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839481	L1839481-03	SB04_34-35	10/1/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839481	L1839481-04	SBDUP02_100118	10/1/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839481	L1839481-05	SBTB03_100118	10/1/2018	VOCs
L1839481	L1839481-06	SBFB02_100118	10/1/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839661	L1839661-01	SB03_0.5-1.5	10/2/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839661	L1839661-02	SB03_22.5-23.5	10/2/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839661	L1839661-03	SB03_25-26	10/2/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839661	L1839661-04	SB03_32-33	10/2/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839661	L1839661-05	SB13_0-1	10/2/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839661	L1839661-06	SB13_6.5-7.5	10/2/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839661	L1839661-07	SB13_28-29	10/2/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839661	L1839661-08	SBTB04_100218	10/2/2018	VOCs

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1839825	L1839825-01	SB13_68-69	10/3/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1839825	L1839825-02	SBTB05_100318	10/3/2018	VOCs
L1840256	L1840256-01	SB01_0.5-1.5	10/4/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-02	SB01_6.5-7.5	10/4/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-03	SB01_26-27	10/4/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-04	SB02_0.5-1.5	10/4/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-05	SB02_3-4	10/4/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-06	SB02_26-27	10/4/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-07	SB10_1-2	10/4/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-08	SB10_6-7	10/4/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-09	SB10_24-25	10/4/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840256	L1840256-10	SBTB06_100418	10/4/2018	VOCs
L1840500	L1840500-01	SB08_0-1	10/5/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840500	L1840500-02	SB08_1.5-2.5	10/5/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840500	L1840500-03	SB08_21-22	10/5/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840500	L1840500-04	SB09_0.5-1.5	10/5/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1840500	L1840500-05	SB09_3-4	10/5/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840500	L1840500-06	SB09_22-23	10/5/2018	VOCs, SVOCs, PCBs, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840500	L1840500-07	SBFB03_100518	10/5/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840500	L1840500-08	SBDUP03_100518	10/5/2018	VOCs, SVOCs, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, Total Solids
L1840500	L1840500-09	SBTB07_100518	10/5/2018	VOCs

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region 1), USEPA Region II SOP #HW-36A, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), USEPA "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and

quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB06_1-2	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB06_1-2	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB06_1-2	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB06_1-2	8260C	67-64-1	ACETONE	J
SB06_1-2	6010D	7440-70-2	CALCIUM, TOTAL	J
SB06_1-2	8260C	74-87-3	CHLOROMETHANE	UJ
SB06_1-2	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB06_1-2	6010D	7440-50-8	COPPER, TOTAL	J

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB06_1-2	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SB06_1-2	6010D	7439-92-1	LEAD, TOTAL	J
SB06_1-2	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB06_1-2	7471B	7439-97-6	MERCURY, TOTAL	J
SB06_1-2	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB06_1-2	6010D	7440-23-5	SODIUM, TOTAL	J
SB06_1-2	8081B	8001-35-2	TOXAPHENE	UJ
SB06_1-2	6010D	7440-62-2	VANADIUM, TOTAL	J
SB06_1-2	8260C	75-01-4	VINYL CHLORIDE	UJ
SB06_1-2	6010D	7440-66-6	ZINC, TOTAL	J
SB06_21.5-22.5	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB06_21.5-22.5	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB06_21.5-22.5	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB06_21.5-22.5	8260C	67-64-1	ACETONE	J
SB06_21.5-22.5	6010D	7440-70-2	CALCIUM, TOTAL	J
SB06_21.5-22.5	8260C	74-87-3	CHLOROMETHANE	UJ
SB06_21.5-22.5	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB06_21.5-22.5	6010D	7440-50-8	COPPER, TOTAL	J
SB06_21.5-22.5	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SB06_21.5-22.5	6010D	7439-92-1	LEAD, TOTAL	J
SB06_21.5-22.5	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB06_21.5-22.5	7471B	7439-97-6	MERCURY, TOTAL	UJ
SB06_21.5-22.5	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB06_21.5-22.5	6010D	7440-23-5	SODIUM, TOTAL	J
SB06_21.5-22.5	6010D	7440-62-2	VANADIUM, TOTAL	J
SB06_21.5-22.5	8260C	75-01-4	VINYL CHLORIDE	UJ
SB06_21.5-22.5	6010D	7440-66-6	ZINC, TOTAL	J
SB06_29-30	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB06_29-30	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB06_29-30	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB06_29-30	8260C	67-64-1	ACETONE	J
SB06_29-30	6010D	7440-70-2	CALCIUM, TOTAL	J
SB06_29-30	8260C	74-87-3	CHLOROMETHANE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB06_29-30	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB06_29-30	6010D	7440-50-8	COPPER, TOTAL	J
SB06_29-30	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SB06_29-30	6010D	7439-92-1	LEAD, TOTAL	J
SB06_29-30	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB06_29-30	7471B	7439-97-6	MERCURY, TOTAL	UJ
SB06_29-30	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB06_29-30	6010D	7440-23-5	SODIUM, TOTAL	J
SB06_29-30	6010D	7440-62-2	VANADIUM, TOTAL	J
SB06_29-30	8260C	75-01-4	VINYL CHLORIDE	UJ
SB06_29-30	6010D	7440-66-6	ZINC, TOTAL	J
SB07_0-2	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB07_0-2	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB07_0-2	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB07_0-2	6010D	7440-70-2	CALCIUM, TOTAL	J
SB07_0-2	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB07_0-2	6010D	7440-50-8	COPPER, TOTAL	J
SB07_0-2	6010D	7439-92-1	LEAD, TOTAL	J
SB07_0-2	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB07_0-2	7471B	7439-97-6	MERCURY, TOTAL	UJ
SB07_0-2	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB07_0-2	6010D	7440-23-5	SODIUM, TOTAL	J
SB07_0-2	8081B	8001-35-2	TOXAPHENE	UJ
SB07_0-2	6010D	7440-62-2	VANADIUM, TOTAL	J
SB07_0-2	6010D	7440-66-6	ZINC, TOTAL	J
SB07_21-23	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB07_21-23	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB07_21-23	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB07_21-23	6010D	7440-70-2	CALCIUM, TOTAL	J
SB07_21-23	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB07_21-23	6010D	7440-50-8	COPPER, TOTAL	J
SB07_21-23	6010D	7439-92-1	LEAD, TOTAL	J
SB07_21-23	6010D	7439-95-4	MAGNESIUM, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB07_21-23	7471B	7439-97-6	MERCURY, TOTAL	UJ
SB07_21-23	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB07_21-23	6010D	7440-23-5	SODIUM, TOTAL	J
SB07_21-23	6010D	7440-62-2	VANADIUM, TOTAL	J
SB07_21-23	6010D	7440-66-6	ZINC, TOTAL	J
SB07_3-5	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB07_3-5	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB07_3-5	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB07_3-5	6010D	7440-70-2	CALCIUM, TOTAL	J
SB07_3-5	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB07_3-5	6010D	7440-50-8	COPPER, TOTAL	J
SB07_3-5	6010D	7439-92-1	LEAD, TOTAL	J
SB07_3-5	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB07_3-5	7471B	7439-97-6	MERCURY, TOTAL	UJ
SB07_3-5	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB07_3-5	6010D	7440-23-5	SODIUM, TOTAL	J
SB07_3-5	8081B	8001-35-2	TOXAPHENE	UJ
SB07_3-5	6010D	7440-62-2	VANADIUM, TOTAL	J
SB07_3-5	6010D	7440-66-6	ZINC, TOTAL	J
SB11_0-1	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB11_0-1	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB11_0-1	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB11_0-1	6010D	7440-70-2	CALCIUM, TOTAL	J
SB11_0-1	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB11_0-1	6010D	7440-50-8	COPPER, TOTAL	J
SB11_0-1	6010D	7439-92-1	LEAD, TOTAL	J
SB11_0-1	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB11_0-1	7471B	7439-97-6	MERCURY, TOTAL	J
SB11_0-1	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB11_0-1	6010D	7440-23-5	SODIUM, TOTAL	J
SB11_0-1	8081B	8001-35-2	TOXAPHENE	UJ
SB11_0-1	6010D	7440-62-2	VANADIUM, TOTAL	J
SB11_0-1	6010D	7440-66-6	ZINC, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB11_22-23	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB11_22-23	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB11_22-23	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB11_22-23	6010D	7440-70-2	CALCIUM, TOTAL	J
SB11_22-23	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB11_22-23	6010D	7440-50-8	COPPER, TOTAL	J
SB11_22-23	6010D	7439-92-1	LEAD, TOTAL	J
SB11_22-23	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB11_22-23	7471B	7439-97-6	MERCURY, TOTAL	UJ
SB11_22-23	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB11_22-23	6010D	7440-23-5	SODIUM, TOTAL	J
SB11_22-23	6010D	7440-62-2	VANADIUM, TOTAL	J
SB11_22-23	6010D	7440-66-6	ZINC, TOTAL	J
SB11_6.5-7.5	8260C	630-20-6	1,1,1,2-TETRACHLOROETHANE	UJ
SB11_6.5-7.5	8260C	71-55-6	1,1,1-TRICHLOROETHANE	UJ
SB11_6.5-7.5	8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
SB11_6.5-7.5	8260C	79-00-5	1,1,2-TRICHLOROETHANE	UJ
SB11_6.5-7.5	8260C	75-34-3	1,1-DICHLOROETHANE	UJ
SB11_6.5-7.5	8260C	75-35-4	1,1-DICHLOROETHENE	UJ
SB11_6.5-7.5	8260C	563-58-6	1,1-DICHLOROPROPENE	UJ
SB11_6.5-7.5	8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
SB11_6.5-7.5	8260C	96-18-4	1,2,3-TRICHLOROPROPANE	UJ
SB11_6.5-7.5	8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SB11_6.5-7.5	8260C	95-63-6	1,2,4-TRIMETHYLBENZENE	UJ
SB11_6.5-7.5	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
SB11_6.5-7.5	8260C	106-93-4	1,2-DIBROMOETHANE	UJ
SB11_6.5-7.5	8260C	95-50-1	1,2-DICHLOROBENZENE	UJ
SB11_6.5-7.5	8260C	107-06-2	1,2-DICHLOROETHANE	UJ
SB11_6.5-7.5	8260C	78-87-5	1,2-DICHLOROPROPANE	UJ
SB11_6.5-7.5	8260C	108-67-8	1,3,5-TRIMETHYLBENZENE	UJ
SB11_6.5-7.5	8260C	541-73-1	1,3-DICHLOROBENZENE	UJ
SB11_6.5-7.5	8260C	142-28-9	1,3-DICHLOROPROPANE	UJ
SB11_6.5-7.5	8260C	106-46-7	1,4-DICHLOROBENZENE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB11_6.5-7.5	8260C	123-91-1	1,4-DIOXANE	UJ
SB11_6.5-7.5	8260C	594-20-7	2,2-DICHLOROPROPANE	UJ
SB11_6.5-7.5	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB11_6.5-7.5	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB11_6.5-7.5	8260C	591-78-6	2-HEXANONE	UJ
SB11_6.5-7.5	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB11_6.5-7.5	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SB11_6.5-7.5	8260C	67-64-1	ACETONE	J
SB11_6.5-7.5	8260C	107-13-1	ACRYLONITRILE	UJ
SB11_6.5-7.5	8260C	71-43-2	BENZENE	UJ
SB11_6.5-7.5	8260C	108-86-1	BROMOBENZENE	UJ
SB11_6.5-7.5	8260C	74-97-5	BROMOCHLOROMETHANE	UJ
SB11_6.5-7.5	8260C	75-27-4	BROMODICHLOROMETHANE	UJ
SB11_6.5-7.5	8260C	75-25-2	BROMOFORM	UJ
SB11_6.5-7.5	8260C	74-83-9	BROMOMETHANE	UJ
SB11_6.5-7.5	6010D	7440-70-2	CALCIUM, TOTAL	J
SB11_6.5-7.5	8260C	75-15-0	CARBON DISULFIDE	UJ
SB11_6.5-7.5	8260C	56-23-5	CARBON TETRACHLORIDE	UJ
SB11_6.5-7.5	8260C	108-90-7	CHLOROBENZENE	UJ
SB11_6.5-7.5	8260C	75-00-3	CHLOROETHANE	UJ
SB11_6.5-7.5	8260C	67-66-3	CHLOROFORM	UJ
SB11_6.5-7.5	8260C	74-87-3	CHLOROMETHANE	UJ
SB11_6.5-7.5	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB11_6.5-7.5	8260C	156-59-2	CIS-1,2-DICHLOROETHENE	UJ
SB11_6.5-7.5	8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
SB11_6.5-7.5	6010D	7440-50-8	COPPER, TOTAL	J
SB11_6.5-7.5	8260C	124-48-1	DIBROMOCHLOROMETHANE	UJ
SB11_6.5-7.5	8260C	74-95-3	DIBROMOMETHANE	UJ
SB11_6.5-7.5	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SB11_6.5-7.5	8260C	60-29-7	ETHYL ETHER	UJ
SB11_6.5-7.5	8260C	100-41-4	ETHYLBENZENE	UJ
SB11_6.5-7.5	8260C	98-82-8	ISOPROPYLBENZENE	UJ
SB11_6.5-7.5	6010D	7439-92-1	LEAD, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB11_6.5-7.5	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB11_6.5-7.5	7471B	7439-97-6	MERCURY, TOTAL	J
SB11_6.5-7.5	8260C	1634-04-4	METHYL TERT BUTYL ETHER	UJ
SB11_6.5-7.5	8260C	75-09-2	METHYLENE CHLORIDE	UJ
SB11_6.5-7.5	8260C	91-20-3	NAPHTHALENE	J
SB11_6.5-7.5	8260C	103-65-1	N-PROPYLBENZENE	UJ
SB11_6.5-7.5	8260C	95-49-8	O-CHLOROTOLUENE	UJ
SB11_6.5-7.5	8260C	95-47-6	O-XYLENE	UJ
SB11_6.5-7.5	8260C	179601-23-1	P/M-XYLENE	UJ
SB11_6.5-7.5	8260C	106-43-4	P-CHLOROTOLUENE	UJ
SB11_6.5-7.5	8270D	85-01-8	PHENANTHRENE	J
SB11_6.5-7.5	8260C	99-87-6	P-ISOPROPYLTOLUENE	UJ
SB11_6.5-7.5	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB11_6.5-7.5	8260C	135-98-8	SEC-BUTYLBENZENE	UJ
SB11_6.5-7.5	6010D	7440-23-5	SODIUM, TOTAL	J
SB11_6.5-7.5	8260C	100-42-5	STYRENE	UJ
SB11_6.5-7.5	8260C	98-06-6	TERT-BUTYLBENZENE	UJ
SB11_6.5-7.5	8260C	127-18-4	TETRACHLOROETHENE	J
SB11_6.5-7.5	8260C	108-88-3	TOLUENE	UJ
SB11_6.5-7.5	8081B	8001-35-2	TOXAPHENE	UJ
SB11_6.5-7.5	8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	UJ
SB11_6.5-7.5	8260C	10061-02-6	TRANS-1,3-DICHLOROPROPENE	UJ
SB11_6.5-7.5	8260C	79-01-6	TRICHLOROETHENE	UJ
SB11_6.5-7.5	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
SB11_6.5-7.5	6010D	7440-62-2	VANADIUM, TOTAL	J
SB11_6.5-7.5	8260C	108-05-4	VINYL ACETATE	UJ
SB11_6.5-7.5	8260C	75-01-4	VINYL CHLORIDE	UJ
SB11_6.5-7.5	6010D	7440-66-6	ZINC, TOTAL	J
SB12_0-2	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB12_0-2	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB12_0-2	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB12_0-2	6010D	7440-70-2	CALCIUM, TOTAL	J
SB12_0-2	6010D	7440-47-3	CHROMIUM, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB12_0-2	6010D	7440-50-8	COPPER, TOTAL	J
SB12_0-2	6010D	7439-92-1	LEAD, TOTAL	J
SB12_0-2	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB12_0-2	7471B	7439-97-6	MERCURY, TOTAL	J
SB12_0-2	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB12_0-2	6010D	7440-23-5	SODIUM, TOTAL	J
SB12_0-2	8081B	8001-35-2	TOXAPHENE	UJ
SB12_0-2	6010D	7440-62-2	VANADIUM, TOTAL	J
SB12_0-2	6010D	7440-66-6	ZINC, TOTAL	J
SB12_22-23	8260C	563-58-6	1,1-DICHLOROPROPENE	UJ
SB12_22-23	8260C	123-91-1	1,4-DIOXANE	UJ
SB12_22-23	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB12_22-23	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB12_22-23	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB12_22-23	8260C	67-64-1	ACETONE	J
SB12_22-23	6010D	7440-70-2	CALCIUM, TOTAL	J
SB12_22-23	8260C	75-15-0	CARBON DISULFIDE	UJ
SB12_22-23	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB12_22-23	8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
SB12_22-23	6010D	7440-50-8	COPPER, TOTAL	J
SB12_22-23	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SB12_22-23	8260C	60-29-7	ETHYL ETHER	UJ
SB12_22-23	6010D	7439-92-1	LEAD, TOTAL	J
SB12_22-23	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB12_22-23	7471B	7439-97-6	MERCURY, TOTAL	UJ
SB12_22-23	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB12_22-23	6010D	7440-23-5	SODIUM, TOTAL	J
SB12_22-23	6010D	7440-62-2	VANADIUM, TOTAL	J
SB12_22-23	8260C	75-01-4	VINYL CHLORIDE	UJ
SB12_22-23	6010D	7440-66-6	ZINC, TOTAL	J
SB12_2-4	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SB12_2-4	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB12_2-4	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB12_2-4	6010D	7440-70-2	CALCIUM, TOTAL	J
SB12_2-4	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB12_2-4	6010D	7440-50-8	COPPER, TOTAL	J
SB12_2-4	6010D	7439-92-1	LEAD, TOTAL	J
SB12_2-4	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB12_2-4	7471B	7439-97-6	MERCURY, TOTAL	UJ
SB12_2-4	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB12_2-4	6010D	7440-23-5	SODIUM, TOTAL	J
SB12_2-4	8081B	8001-35-2	TOXAPHENE	UJ
SB12_2-4	6010D	7440-62-2	VANADIUM, TOTAL	J
SB12_2-4	6010D	7440-66-6	ZINC, TOTAL	J
SBDUP01_092718	8260C	75-35-4	1,1-DICHLOROETHENE	UJ
SBDUP01_092718	8260C	563-58-6	1,1-DICHLOROPROPENE	UJ
SBDUP01_092718	8260C	123-91-1	1,4-DIOXANE	UJ
SBDUP01_092718	8260C	594-20-7	2,2-DICHLOROPROPANE	UJ
SBDUP01_092718	8270D	88-06-2	2,4,6-TRICHLOROPHENOL	UJ
SBDUP01_092718	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SBDUP01_092718	8260C	78-93-3	2-BUTANONE	UJ
SBDUP01_092718	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SBDUP01_092718	8260C	67-64-1	ACETONE	UJ
SBDUP01_092718	6010D	7440-70-2	CALCIUM, TOTAL	J
SBDUP01_092718	8260C	75-15-0	CARBON DISULFIDE	UJ
SBDUP01_092718	8260C	56-23-5	CARBON TETRACHLORIDE	UJ
SBDUP01_092718	6010D	7440-47-3	CHROMIUM, TOTAL	J
SBDUP01_092718	8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
SBDUP01_092718	6010D	7440-50-8	COPPER, TOTAL	J
SBDUP01_092718	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBDUP01_092718	6010D	7439-92-1	LEAD, TOTAL	J
SBDUP01_092718	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SBDUP01_092718	7471B	7439-97-6	MERCURY, TOTAL	J
SBDUP01_092718	8270D	85-01-8	PHENANTHRENE	J
SBDUP01_092718	6010D	7440-09-7	POTASSIUM, TOTAL	J
SBDUP01_092718	6010D	7440-23-5	SODIUM, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SBDUP01_092718	8260C	127-18-4	TETRACHLOROETHENE	J
SBDUP01_092718	8081B	8001-35-2	TOXAPHENE	UJ
SBDUP01_092718	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
SBDUP01_092718	6010D	7440-62-2	VANADIUM, TOTAL	J
SBDUP01_092718	8260C	108-05-4	VINYL ACETATE	UJ
SBDUP01_092718	8260C	75-01-4	VINYL CHLORIDE	UJ
SBDUP01_092718	6010D	7440-66-6	ZINC, TOTAL	J
SBFB01_092718	8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
SBFB01_092718	8260C	79-00-5	1,1,2-TRICHLOROETHANE	UJ
SBFB01_092718	8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
SBFB01_092718	8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SBFB01_092718	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
SBFB01_092718	8260C	123-91-1	1,4-DIOXANE	UJ
SBFB01_092718	8260C	78-93-3	2-BUTANONE	UJ
SBFB01_092718	8260C	591-78-6	2-HEXANONE	UJ
SBFB01_092718	8270D	88-74-4	2-NITROANILINE	UJ
SBFB01_092718	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBFB01_092718	8270D	100-01-6	4-NITROANILINE	UJ
SBFB01_092718	8260C	67-64-1	ACETONE	U (5.0)
SBFB01_092718	8260C	107-13-1	ACRYLONITRILE	UJ
SBFB01_092718	8270D	65-85-0	BENZOIC ACID	UJ
SBFB01_092718	8260C	75-25-2	BROMOFORM	UJ
SBFB01_092718	8260C	74-83-9	BROMOMETHANE	UJ
SBFB01_092718	8270D	86-74-8	CARBAZOLE	UJ
SBFB01_092718	8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
SBFB01_092718	8081B	5103-71-9	CIS-CHLORDANE	UJ
SBFB01_092718	8260C	74-95-3	DIBROMOMETHANE	UJ
SBFB01_092718	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBFB01_092718	8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
SBFB01_092718	8260C	91-20-3	NAPHTHALENE	UJ
SBFB01_092718	6010D	7440-23-5	SODIUM, TOTAL	U (2.00)
SBFB01_092718	8081B	8001-35-2	TOXAPHENE	UJ
SBFB01_092718	8260C	10061-02-6	TRANS-1,3-DICHLOROPROPENE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SBTB01_092718	8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
SBTB01_092718	8260C	79-00-5	1,1,2-TRICHLOROETHANE	UJ
SBTB01_092718	8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
SBTB01_092718	8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
SBTB01_092718	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
SBTB01_092718	8260C	123-91-1	1,4-DIOXANE	UJ
SBTB01_092718	8260C	78-93-3	2-BUTANONE	UJ
SBTB01_092718	8260C	591-78-6	2-HEXANONE	UJ
SBTB01_092718	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBTB01_092718	8260C	107-13-1	ACRYLONITRILE	UJ
SBTB01_092718	8260C	75-25-2	BROMOFORM	UJ
SBTB01_092718	8260C	74-83-9	BROMOMETHANE	UJ
SBTB01_092718	8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
SBTB01_092718	8260C	74-95-3	DIBROMOMETHANE	UJ
SBTB01_092718	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBTB01_092718	8260C	91-20-3	NAPHTHALENE	UJ
SBTB01_092718	8260C	10061-02-6	TRANS-1,3-DICHLOROPROPENE	UJ
SB05_0-2	8260C	123-91-1	1,4-DIOXANE	UJ
SB05_0-2	8151A	94-75-7	2,4-D	UJ
SB05_0-2	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB05_0-2	8260C	78-93-3	2-BUTANONE	UJ
SB05_0-2	8260C	67-64-1	ACETONE	UJ
SB05_0-2	8260C	107-13-1	ACRYLONITRILE	UJ
SB05_0-2	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SB05_0-2	8260C	74-83-9	BROMOMETHANE	UJ
SB05_0-2	6010D	7440-70-2	CALCIUM, TOTAL	J
SB05_0-2	8260C	74-87-3	CHLOROMETHANE	UJ
SB05_0-2	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB05_0-2	6010D	7440-23-5	SODIUM, TOTAL	J
SB05_0-2	8081B	8001-35-2	TOXAPHENE	UJ
SB05_22-23	8260C	123-91-1	1,4-DIOXANE	UJ
SB05_22-23	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB05_22-23	8260C	78-93-3	2-BUTANONE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB05_22-23	8260C	67-64-1	ACETONE	UJ
SB05_22-23	8260C	107-13-1	ACRYLONITRILE	UJ
SB05_22-23	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SB05_22-23	8260C	74-83-9	BROMOMETHANE	UJ
SB05_22-23	6010D	7440-70-2	CALCIUM, TOTAL	J
SB05_22-23	8260C	74-87-3	CHLOROMETHANE	UJ
SB05_22-23	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB05_22-23	6010D	7440-23-5	SODIUM, TOTAL	J
SB05_45-46	8260C	123-91-1	1,4-DIOXANE	UJ
SB05_45-46	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB05_45-46	8260C	78-93-3	2-BUTANONE	UJ
SB05_45-46	8260C	67-64-1	ACETONE	J
SB05_45-46	8260C	107-13-1	ACRYLONITRILE	UJ
SB05_45-46	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SB05_45-46	8260C	74-83-9	BROMOMETHANE	UJ
SB05_45-46	6010D	7440-70-2	CALCIUM, TOTAL	J
SB05_45-46	8260C	74-87-3	CHLOROMETHANE	UJ
SB05_45-46	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB05_45-46	6010D	7440-23-5	SODIUM, TOTAL	J
SB05_64-65	8260C	123-91-1	1,4-DIOXANE	UJ
SB05_64-65	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SB05_64-65	8260C	78-93-3	2-BUTANONE	UJ
SB05_64-65	8260C	67-64-1	ACETONE	J
SB05_64-65	8260C	107-13-1	ACRYLONITRILE	UJ
SB05_64-65	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SB05_64-65	8260C	74-83-9	BROMOMETHANE	UJ
SB05_64-65	6010D	7440-70-2	CALCIUM, TOTAL	J
SB05_64-65	8260C	74-87-3	CHLOROMETHANE	UJ
SB05_64-65	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB05_64-65	6010D	7440-23-5	SODIUM, TOTAL	J
SBTB02_092818	8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
SBTB02_092818	8260C	96-18-4	1,2,3-TRICHLOROPROPANE	UJ
SBTB02_092818	8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SBTB02_092818	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
SBTB02_092818	8260C	123-91-1	1,4-DIOXANE	UJ
SBTB02_092818	8260C	591-78-6	2-HEXANONE	UJ
SBTB02_092818	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBTB02_092818	8260C	107-13-1	ACRYLONITRILE	UJ
SBTB02_092818	8260C	75-25-2	BROMOFORM	UJ
SBTB02_092818	8260C	74-83-9	BROMOMETHANE	UJ
SBTB02_092818	8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
SBTB02_092818	8260C	74-95-3	DIBROMOMETHANE	UJ
SBTB02_092818	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBTB02_092818	8260C	91-20-3	NAPHTHALENE	UJ
SB04_0-1	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB04_0-1	8270D	100-02-7	4-NITROPHENOL	UJ
SB04_0-1	8260C	67-64-1	ACETONE	J
SB04_0-1	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SB04_0-1	7196A	18540-29-9	CHROMIUM, HEXAVALENT	J
SB04_0-1	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB04_0-1	9012B	57-12-5	CYANIDE, TOTAL	J
SB04_0-1	6010D	7439-96-5	MANGANESE, TOTAL	J
SB04_0-1	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB04_0-1	8081B	8001-35-2	TOXAPHENE	UJ
SB04_23.5-24.5	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB04_23.5-24.5	8270D	100-02-7	4-NITROPHENOL	UJ
SB04_23.5-24.5	8260C	67-64-1	ACETONE	J
SB04_23.5-24.5	6010D	7429-90-5	ALUMINUM, TOTAL	J
SB04_23.5-24.5	6010D	7440-39-3	BARIUM, TOTAL	J
SB04_23.5-24.5	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SB04_23.5-24.5	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB04_23.5-24.5	CALC	16065-83-1	CHROMIUM, TRIVALENT	J
SB04_23.5-24.5	6010D	7440-48-4	COBALT, TOTAL	J
SB04_23.5-24.5	6010D	7440-50-8	COPPER, TOTAL	J
SB04_23.5-24.5	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB04_23.5-24.5	6010D	7439-89-6	IRON, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB04_23.5-24.5	6010D	7439-96-5	MANGANESE, TOTAL	J
SB04_23.5-24.5	6010D	7440-02-0	NICKEL, TOTAL	J
SB04_23.5-24.5	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB04_23.5-24.5	6010D	7440-62-2	VANADIUM, TOTAL	J
SB04_34-35	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SB04_34-35	8270D	100-02-7	4-NITROPHENOL	UJ
SB04_34-35	8260C	67-64-1	ACETONE	UJ
SB04_34-35	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SB04_34-35	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB04_34-35	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB04_34-35	6010D	7439-96-5	MANGANESE, TOTAL	J
SB04_34-35	6010D	7440-09-7	POTASSIUM, TOTAL	J
SBDUP02_100118	8270D	534-52-1	4,6-DINITRO-O-CRESOL	UJ
SBDUP02_100118	8270D	100-02-7	4-NITROPHENOL	UJ
SBDUP02_100118	8260C	67-64-1	ACETONE	J
SBDUP02_100118	6010D	7429-90-5	ALUMINUM, TOTAL	J
SBDUP02_100118	6010D	7440-39-3	BARIUM, TOTAL	J
SBDUP02_100118	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SBDUP02_100118	6010D	7440-47-3	CHROMIUM, TOTAL	J
SBDUP02_100118	CALC	16065-83-1	CHROMIUM, TRIVALENT	J
SBDUP02_100118	6010D	7440-48-4	COBALT, TOTAL	J
SBDUP02_100118	6010D	7440-50-8	COPPER, TOTAL	J
SBDUP02_100118	9012B	57-12-5	CYANIDE, TOTAL	UJ
SBDUP02_100118	6010D	7439-89-6	IRON, TOTAL	J
SBDUP02_100118	6010D	7439-96-5	MANGANESE, TOTAL	J
SBDUP02_100118	6010D	7440-02-0	NICKEL, TOTAL	J
SBDUP02_100118	6010D	7440-09-7	POTASSIUM, TOTAL	J
SBDUP02_100118	6010D	7440-62-2	VANADIUM, TOTAL	J
SBFB02_100118	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
SBFB02_100118	8260C	123-91-1	1,4-DIOXANE	UJ
SBFB02_100118	8260C	78-93-3	2-BUTANONE	UJ
SBFB02_100118	8260C	591-78-6	2-HEXANONE	UJ
SBFB02_100118	8081B	72-54-8	4,4'-DDD	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SBFB02_100118	8081B	72-55-9	4,4'-DDE	UJ
SBFB02_100118	8081B	50-29-3	4,4'-DDT	UJ
SBFB02_100118	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBFB02_100118	8260C	67-64-1	ACETONE	U (5.0)
SBFB02_100118	8081B	309-00-2	ALDRIN	UJ
SBFB02_100118	8081B	319-84-6	ALPHA-BHC	UJ
SBFB02_100118	8081B	319-85-7	BETA-BHC	UJ
SBFB02_100118	8260C	75-25-2	BROMOFORM	UJ
SBFB02_100118	8260C	74-83-9	BROMOMETHANE	UJ
SBFB02_100118	8260C	74-87-3	CHLOROMETHANE	UJ
SBFB02_100118	8081B	319-86-8	DELTA-BHC	UJ
SBFB02_100118	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBFB02_100118	8081B	60-57-1	DIELDRIN	UJ
SBFB02_100118	8081B	959-98-8	ENDOSULFAN I	UJ
SBFB02_100118	8081B	33213-65-9	ENDOSULFAN II	UJ
SBFB02_100118	8081B	1031-07-8	ENDOSULFAN SULFATE	UJ
SBFB02_100118	8081B	72-20-8	ENDRIN	UJ
SBFB02_100118	8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
SBFB02_100118	8081B	53494-70-5	ENDRIN KETONE	UJ
SBFB02_100118	8081B	76-44-8	HEPTACHLOR	UJ
SBFB02_100118	8081B	1024-57-3	HEPTACHLOR EPOXIDE	UJ
SBFB02_100118	8081B	58-89-9	LINDANE	UJ
SBFB02_100118	8081B	8001-35-2	TOXAPHENE	UJ
SBFB02_100118	8081B	5103-74-2	TRANS-CHLORDANE	UJ
SBFB02_100118	8260C	108-05-4	VINYL ACETATE	UJ
SBFB02_100118	8260C	75-01-4	VINYL CHLORIDE	UJ
SBTB03_100118	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
SBTB03_100118	8260C	123-91-1	1,4-DIOXANE	UJ
SBTB03_100118	8260C	78-93-3	2-BUTANONE	UJ
SBTB03_100118	8260C	591-78-6	2-HEXANONE	UJ
SBTB03_100118	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBTB03_100118	8260C	67-64-1	ACETONE	J
SBTB03_100118	8260C	75-25-2	BROMOFORM	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SBTB03_100118	8260C	74-83-9	BROMOMETHANE	UJ
SBTB03_100118	8260C	74-87-3	CHLOROMETHANE	UJ
SBTB03_100118	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBTB03_100118	8260C	108-05-4	VINYL ACETATE	UJ
SBTB03_100118	8260C	75-01-4	VINYL CHLORIDE	UJ
SB03_0.5-1.5	8260C	123-91-1	1,4-DIOXANE	UJ
SB03_0.5-1.5	8260C	78-93-3	2-BUTANONE	UJ
SB03_0.5-1.5	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SB03_0.5-1.5	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB03_0.5-1.5	8270D	87-86-5	PENTACHLOROPHENOL	UJ
SB03_0.5-1.5	8081B	8001-35-2	TOXAPHENE	UJ
SB03_0.5-1.5	8260C	108-05-4	VINYL ACETATE	UJ
SB03_22.5-23.5	8260C	123-91-1	1,4-DIOXANE	UJ
SB03_22.5-23.5	8260C	78-93-3	2-BUTANONE	UJ
SB03_22.5-23.5	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SB03_22.5-23.5	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB03_22.5-23.5	8270D	87-86-5	PENTACHLOROPHENOL	UJ
SB03_22.5-23.5	8260C	108-05-4	VINYL ACETATE	UJ
SB03_25-26	8260C	123-91-1	1,4-DIOXANE	UJ
SB03_25-26	8260C	78-93-3	2-BUTANONE	UJ
SB03_25-26	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SB03_25-26	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB03_25-26	8270D	87-86-5	PENTACHLOROPHENOL	UJ
SB03_25-26	8260C	108-05-4	VINYL ACETATE	UJ
SB03_32-33	8260C	123-91-1	1,4-DIOXANE	UJ
SB03_32-33	8260C	78-93-3	2-BUTANONE	UJ
SB03_32-33	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SB03_32-33	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB03_32-33	8270D	87-86-5	PENTACHLOROPHENOL	UJ
SB03_32-33	6010D	7440-23-5	SODIUM, TOTAL	U (187)
SB03_32-33	8260C	108-05-4	VINYL ACETATE	UJ
SB13_0-1	8260C	123-91-1	1,4-DIOXANE	UJ
SB13_0-1	8260C	78-93-3	2-BUTANONE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB13_0-1	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SB13_0-1	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB13_0-1	8270D	87-86-5	PENTACHLOROPHENOL	UJ
SB13_0-1	8260C	108-05-4	VINYL ACETATE	UJ
SB13_28-29	8260C	123-91-1	1,4-DIOXANE	UJ
SB13_28-29	8260C	78-93-3	2-BUTANONE	UJ
SB13_28-29	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SB13_28-29	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB13_28-29	8270D	87-86-5	PENTACHLOROPHENOL	UJ
SB13_28-29	8260C	108-05-4	VINYL ACETATE	UJ
SB13_6.5-7.5	8260C	123-91-1	1,4-DIOXANE	UJ
SB13_6.5-7.5	8260C	78-93-3	2-BUTANONE	J
SB13_6.5-7.5	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SB13_6.5-7.5	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB13_6.5-7.5	8270D	87-86-5	PENTACHLOROPHENOL	UJ
SB13_6.5-7.5	8260C	108-05-4	VINYL ACETATE	UJ
SBTB04_100218	8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
SBTB04_100218	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
SBTB04_100218	8260C	123-91-1	1,4-DIOXANE	UJ
SBTB04_100218	8260C	78-93-3	2-BUTANONE	UJ
SBTB04_100218	8260C	591-78-6	2-HEXANONE	UJ
SBTB04_100218	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBTB04_100218	8260C	67-64-1	ACETONE	J
SBTB04_100218	8260C	75-25-2	BROMOFORM	UJ
SBTB04_100218	8260C	74-83-9	BROMOMETHANE	UJ
SBTB04_100218	8260C	74-87-3	CHLOROMETHANE	UJ
SBTB04_100218	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBTB04_100218	8260C	91-20-3	NAPHTHALENE	UJ
SBTB04_100218	8260C	108-05-4	VINYL ACETATE	UJ
SBTB04_100218	8260C	75-01-4	VINYL CHLORIDE	UJ
SB13_68-69	8260C	107-06-2	1,2-DICHLOROETHANE	UJ
SB13_68-69	8260C	78-93-3	2-BUTANONE	UJ
SB13_68-69	8260C	75-27-4	BROMODICHLOROMETHANE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB13_68-69	8260C	74-83-9	BROMOMETHANE	UJ
SB13_68-69	8260C	75-00-3	CHLOROETHANE	UJ
SB13_68-69	9012B	57-12-5	CYANIDE, TOTAL	UJ
SBTB05_100318	8260C	630-20-6	1,1,1,2-TETRACHLOROETHANE	UJ
SBTB05_100318	8260C	71-55-6	1,1,1-TRICHLOROETHANE	UJ
SBTB05_100318	8260C	95-63-6	1,2,4-TRIMETHYLBENZENE	UJ
SBTB05_100318	8260C	123-91-1	1,4-DIOXANE	UJ
SBTB05_100318	8260C	594-20-7	2,2-DICHLOROPROPANE	UJ
SBTB05_100318	8260C	591-78-6	2-HEXANONE	UJ
SBTB05_100318	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBTB05_100318	8260C	67-64-1	ACETONE	J
SBTB05_100318	8260C	107-13-1	ACRYLONITRILE	UJ
SBTB05_100318	8260C	71-43-2	BENZENE	UJ
SBTB05_100318	8260C	74-97-5	BROMOCHLOROMETHANE	UJ
SBTB05_100318	8260C	74-83-9	BROMOMETHANE	UJ
SBTB05_100318	8260C	56-23-5	CARBON TETRACHLORIDE	UJ
SBTB05_100318	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBTB05_100318	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
SBTB05_100318	8260C	108-05-4	VINYL ACETATE	UJ
SBTB05_100318	8260C	75-01-4	VINYL CHLORIDE	UJ
SB01_0.5-1.5	8260C	67-64-1	ACETONE	J
SB01_0.5-1.5	8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
SB01_26-27	8260C	67-64-1	ACETONE	J
SB01_6.5-7.5	8260C	67-64-1	ACETONE	J
SB01_6.5-7.5	8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
SB02_0.5-1.5	8260C	67-64-1	ACETONE	J
SB02_0.5-1.5	6010D	7429-90-5	ALUMINUM, TOTAL	J
SB02_0.5-1.5	6010D	7440-38-2	ARSENIC, TOTAL	J
SB02_0.5-1.5	6010D	7440-39-3	BARIUM, TOTAL	J
SB02_0.5-1.5	6010D	7440-70-2	CALCIUM, TOTAL	J
SB02_0.5-1.5	6010D	7440-47-3	CHROMIUM, TOTAL	J
SB02_0.5-1.5	6010D	7440-48-4	COBALT, TOTAL	J
SB02_0.5-1.5	6010D	7440-50-8	COPPER, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB02_0.5-1.5	8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
SB02_0.5-1.5	6010D	7439-89-6	IRON, TOTAL	J
SB02_0.5-1.5	6010D	7439-92-1	LEAD, TOTAL	J
SB02_0.5-1.5	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB02_0.5-1.5	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB02_0.5-1.5	6010D	7440-66-6	ZINC, TOTAL	J
SB02_26-27	8260C	67-64-1	ACETONE	J
SB02_26-27	6010D	7440-70-2	CALCIUM, TOTAL	J
SB02_26-27	6010D	7440-50-8	COPPER, TOTAL	J
SB02_26-27	6010D	7439-92-1	LEAD, TOTAL	J
SB02_26-27	6010D	7440-66-6	ZINC, TOTAL	J
SB02_3-4	8260C	67-64-1	ACETONE	J
SB02_3-4	6010D	7440-70-2	CALCIUM, TOTAL	J
SB02_3-4	6010D	7440-50-8	COPPER, TOTAL	J
SB02_3-4	8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
SB02_3-4	6010D	7439-92-1	LEAD, TOTAL	J
SB02_3-4	6010D	7440-66-6	ZINC, TOTAL	J
SB10_1-2	8260C	67-64-1	ACETONE	J
SB10_1-2	6010D	7440-70-2	CALCIUM, TOTAL	J
SB10_1-2	6010D	7440-50-8	COPPER, TOTAL	J
SB10_1-2	8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
SB10_1-2	6010D	7439-92-1	LEAD, TOTAL	J
SB10_1-2	6010D	7440-66-6	ZINC, TOTAL	J
SB10_24-25	8260C	67-64-1	ACETONE	J
SB10_24-25	6010D	7440-70-2	CALCIUM, TOTAL	J
SB10_24-25	6010D	7440-50-8	COPPER, TOTAL	J
SB10_24-25	6010D	7439-92-1	LEAD, TOTAL	J
SB10_24-25	6010D	7440-66-6	ZINC, TOTAL	J
SB10_6-7	8260C	67-64-1	ACETONE	J
SB10_6-7	6010D	7440-70-2	CALCIUM, TOTAL	J
SB10_6-7	6010D	7440-50-8	COPPER, TOTAL	J
SB10_6-7	8081B	7421-93-4	ENDRIN ALDEHYDE	UJ
SB10_6-7	6010D	7439-92-1	LEAD, TOTAL	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB10_6-7	6010D	7440-66-6	ZINC, TOTAL	J
SBTB06_100418	8260C	630-20-6	1,1,1,2-TETRACHLOROETHANE	UJ
SBTB06_100418	8260C	71-55-6	1,1,1-TRICHLOROETHANE	UJ
SBTB06_100418	8260C	95-63-6	1,2,4-TRIMETHYLBENZENE	UJ
SBTB06_100418	8260C	78-87-5	1,2-DICHLOROPROPANE	UJ
SBTB06_100418	8260C	123-91-1	1,4-DIOXANE	UJ
SBTB06_100418	8260C	594-20-7	2,2-DICHLOROPROPANE	UJ
SBTB06_100418	8260C	78-93-3	2-BUTANONE	UJ
SBTB06_100418	8260C	591-78-6	2-HEXANONE	UJ
SBTB06_100418	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBTB06_100418	8260C	67-64-1	ACETONE	J
SBTB06_100418	8260C	107-13-1	ACRYLONITRILE	UJ
SBTB06_100418	8260C	71-43-2	BENZENE	UJ
SBTB06_100418	8260C	74-97-5	BROMOCHLOROMETHANE	UJ
SBTB06_100418	8260C	74-83-9	BROMOMETHANE	UJ
SBTB06_100418	8260C	56-23-5	CARBON TETRACHLORIDE	UJ
SBTB06_100418	8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
SBTB06_100418	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBTB06_100418	8260C	60-29-7	ETHYL ETHER	UJ
SBTB06_100418	8260C	1634-04-4	METHYL TERT BUTYL ETHER	UJ
SBTB06_100418	8260C	75-09-2	METHYLENE CHLORIDE	UJ
SBTB06_100418	8260C	110-57-6	TRANS-1,4-DICHLORO-2-BUTENE	UJ
SBTB06_100418	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
SBTB06_100418	8260C	108-05-4	VINYL ACETATE	UJ
SBTB06_100418	8260C	75-01-4	VINYL CHLORIDE	UJ
SB08_0-1	8260C	67-64-1	ACETONE	UJ
SB08_0-1	6010D	7440-36-0	ANTIMONY, TOTAL	U (4.45)
SB08_0-1	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB08_0-1	8081B	8001-35-2	TOXAPHENE	UJ
SB08_1.5-2.5	8260C	67-64-1	ACETONE	J
SB08_1.5-2.5	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB08_1.5-2.5	8081B	8001-35-2	TOXAPHENE	UJ
SB08_21-22	8260C	79-00-5	1,1,2-TRICHLOROETHANE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SB08_21-22	8260C	67-64-1	ACETONE	J
SB08_21-22	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB08_21-22	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB09_0.5-1.5	8260C	67-64-1	ACETONE	J
SB09_0.5-1.5	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB09_0.5-1.5	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB09_0.5-1.5	8081B	8001-35-2	TOXAPHENE	UJ
SB09_22-23	8260C	67-64-1	ACETONE	J
SB09_22-23	6010D	7440-48-4	COBALT, TOTAL	J
SB09_22-23	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB09_22-23	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB09_22-23	6010D	7440-02-0	NICKEL, TOTAL	J
SB09_22-23	6010D	7440-09-7	POTASSIUM, TOTAL	J
SB09_22-23	8260C	1330-20-7	XYLENE (TOTAL)	UJ
SB09_3-4	8260C	67-64-1	ACETONE	J
SB09_3-4	9012B	57-12-5	CYANIDE, TOTAL	UJ
SB09_3-4	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SB09_3-4	8081B	8001-35-2	TOXAPHENE	UJ
SBDUP03_100518	8260C	67-64-1	ACETONE	J
SBDUP03_100518	6010D	7440-48-4	COBALT, TOTAL	J
SBDUP03_100518	9012B	57-12-5	CYANIDE, TOTAL	UJ
SBDUP03_100518	6010D	7439-95-4	MAGNESIUM, TOTAL	J
SBDUP03_100518	6010D	7440-02-0	NICKEL, TOTAL	J
SBDUP03_100518	6010D	7440-09-7	POTASSIUM, TOTAL	J
SBDUP03_100518	8081B	8001-35-2	TOXAPHENE	UJ
SBDUP03_100518	8260C	1330-20-7	XYLENE (TOTAL)	J
SBFB03_100518	8260C	123-91-1	1,4-DIOXANE	UJ
SBFB03_100518	8260C	78-93-3	2-BUTANONE	UJ
SBFB03_100518	8260C	591-78-6	2-HEXANONE	UJ
SBFB03_100518	8270D	95-48-7	2-METHYLPHENOL	UJ
SBFB03_100518	8270D	88-75-5	2-NITROPHENOL	UJ
SBFB03_100518	8270D	91-94-1	3,3'-DICHLOROBENZIDINE	UJ
SBFB03_100518	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
SBFB03_100518	8270D	100-02-7	4-NITROPHENOL	UJ
SBFB03_100518	8260C	67-64-1	ACETONE	U (6.0)
SBFB03_100518	8270D	207-08-9	BENZO(K)FLUORANTHENE	J
SBFB03_100518	8270D	65-85-0	BENZOIC ACID	UJ
SBFB03_100518	8270D	108-60-1	BIS(2-CHLOROISOPROPYL)ETHER	UJ
SBFB03_100518	8270D	117-81-7	BIS(2-ETHYLHEXYL)PHTHALATE	UJ
SBFB03_100518	8260C	74-87-3	CHLOROMETHANE	UJ
SBFB03_100518	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBFB03_100518	8270D	78-59-1	ISOPHORONE	UJ
SBFB03_100518	8081B	72-43-5	METHOXYCHLOR	UJ
SBFB03_100518	8270D	98-95-3	NITROBENZENE	UJ
SBFB03_100518	8270D	621-64-7	N-NITROSODI-N-PROPYLAMINE	UJ
SBFB03_100518	8081B	8001-35-2	TOXAPHENE	UJ
SBFB03_100518	8260C	108-05-4	VINYL ACETATE	UJ
SBFB03_100518	8260C	75-01-4	VINYL CHLORIDE	UJ
SBTB07_100518	8260C	123-91-1	1,4-DIOXANE	UJ
SBTB07_100518	8260C	78-93-3	2-BUTANONE	UJ
SBTB07_100518	8260C	591-78-6	2-HEXANONE	UJ
SBTB07_100518	8260C	108-10-1	4-METHYL-2-PENTANONE	UJ
SBTB07_100518	8260C	67-64-1	ACETONE	J
SBTB07_100518	8260C	74-87-3	CHLOROMETHANE	UJ
SBTB07_100518	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBTB07_100518	8260C	108-05-4	VINYL ACETATE	UJ
SBTB07_100518	8260C	75-01-4	VINYL CHLORIDE	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

L1839010:

VOCs by SW-846 Method 8260C:

The laboratory control sample (LCS) for batch WG1163368 exhibited a percent recovery below the lower control limit (LCL) for naphthalene (56%, 59%), 1,2,3-trichlorobenzene (56%, 59%), and 1,2,4-trichlorobenzene (68%). The associated results in samples SBFB01_092718 and SBTB01_092718 are qualified as "UJ" based on potential low bias.

The laboratory control sample and duplicate (LCS/LCSD) for batch WG1163719 exhibited a relative percent difference (RPD) above the control limit for acetone (35%). The associated results in samples SB11_6.5-7.5 and SB12_22-23 are qualified as "J" based on potential indeterminate bias.

The LCS for batch WG1164263 exhibited a percent recovery below the LCL for 1,1dichloropropene (66%) and 2-butanone (64%). The associated results in sample SBDUP01_092718 are qualified as "UJ" based on potential low bias.

The matrix spike and duplicate (MS/MSD) for batch WG1163719 exhibited a RPD above the control limit for methylene chloride (44%), 1,1-dichloroethane (45%), chloroform (44%), carbon tetrachloride (48%), 1,2-dichloropropane (43%), dibromochloromethane (39%), 1,1,2trichloroethane (41%), tetrachloroethene (40%), chlorobenzene (41%), trichlorofluoromethane (48%), 1,2-dichloroethane (41%), 1,1,1-trichloroethane (47%), bromodichloromethane (41%), trans-1,3-dichloropropene (42%), cis-1,3-dichloropropene (41%), 1,1-dichloropropene (46%), bromoform (41%), 1,1,2,2-tetrachloroethane (38%), benzene (45%), toluene (45%), ethylbenzene (41%), chloromethane (46%), bromomethane (38%), vinyl chloride (46%), chloroethane (48%), 1.1-dichloroethene (48%), trans-1.2-dichloroethene (45%), trichloroethene (45%), 1,2-dichlorobenzene (37%), 1,3-dichlorobenzene (37%), 1,4-dichlorobenzene (38%), methyl tert butyl ether (38%), p/m-xylene (40%), o-xylene (41%), cis-1,2-dichloroethene (44%), dibromomethane (40%), styrene (41%), dichlorodifluoromethane (47%), carbon disulfide (46%), vinyl acetate (48%), 4-methyl-2-pentanone (35%), 1,2,3-trichloropropane (37%), 2-hexanone (33%), bromochloromethane (44%), 2,2-dichloropropane (46%), 1,2-dibromoethane (39%), 1,3dichloropropane (39%), 1,1,1,2-tetrachloroethane (41%), bromobenzene (41%), secbutylbenzene (34%), tert-butylbenzene (37%), o-chlorotoluene (39%), p-chlorotoluene (38%), 1,2-dibromo-3-chloropropane (32%), isopropylbenzene (40%), p-isopropyltoluene (32%), naphthalene (38%), acrylonitrile (35%), n-propylbenzene (37%), 1,2,3-trichlorobenzene (31%), 1,2,4-trichlorobenzene (31%), 1,3,5-trimethylbenzene (37%), 1,2,4-trimethylbenzene (36%), and 1,4-dioxane (33%). The associated results in sample SB11_6.5-7.5 are qualified as "J" or "UJ" based on potential indeterminate bias.

I ANGAN

The field duplicate SBDUP01_092718 and parent sample SB11_6.5-7.5 exhibited an absolute difference above the reporting limit for acetone (24 μ g/kg) and tetrachloroethene (6.1 μ g/kg). The associated results in samples SBDUP01_092718 and SB11_6.5-7.5 are qualified as "J" and "UJ" based on potential indeterminate bias.

The initial calibration (ICAL) for batch WG1163368 on instrument VOA101 exhibited a response factor (RF) below the control limit for 1,4-dioxane (0.0010), 4-methyl-2-pentanone (0.0610), and acrylonitrile (0.0410). The associated results in samples SBFB01_092718 and SBTB01_092718 are qualified as "UJ" based on potential indeterminate bias.

The initial calibration verification (ICV) for batch WG1163368 on instrument VOA101 exhibited a percent difference (%D) above the control limit for bromomethane (-47%) and dichlorodifluoromethane (-39.1%). The associated results in samples SBFB01_092718 and SBTB01_092718 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1163368 on instrument VOA101 exhibited a RF below the control limit for 2-hexanone (0.0980). The associated results in samples SBFB01_092718 and SBTB01_092718 are qualified as "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) for batch WG1163368 on instrument VOA101 exhibited a %D above the control limit for 1,1,2,2-tetrachloroethane (27.6%), 1,1,2-trichloroethane (21%), 1,2-dibromo-3-chloropropane (32.2%), 2-butanone (29.5%), bromoform (24.6%), cis-1,3-dichloropropene (22.2%), dibromomethane (20.3%), and trans-1,3-dichloropropene (22.8%). The associated results in samples SBFB01_092718 and SBTB01_092718 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1163856 on instrument VOA104 exhibited a RF below the control limit for acetone (0.0620). The associated results in samples SB06_1-2, SB06_21.5-22.5, and SB06_29-30 are qualified as "J" based on potential indeterminate bias.

The CCV for batch WG1163856 on instrument VOA104 exhibited a %D above the control limit for chloromethane (28.2%), dichlorodifluoromethane (51.1%), and vinyl chloride (23.7%). The associated results in samples SB06_1-2, SB06_21.5-22.5, and SB06_29-30 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1163719 on instrument VOA110 exhibited a RF below the control limit for 1,4-dioxane (0.0020). The associated results in samples SB11_6.5-7.5 and SB12_22-23 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1163719 on instrument VOA110 exhibited a %D above the control limit for 1,1-dichloropropene (25.2%), carbon disulfide (22.2%), cis-1,3-dichloropropene (25%), dichlorodifluoromethane (28.9%), ethyl ether (21.9%), and vinyl chloride (20.7%). The associated results in samples SB11_6.5-7.5 and SB12_22-23 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1164263 on instrument VOA110 exhibited a RF below the control limit for 1,4-dioxane (0.0020). The associated results in sample SBDUP01_092718 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1164263 on instrument VOA110 exhibited a %D above the control limit for 1,1-dichloroethene (20.6%), 2,2-dichloropropane (26.2%), carbon disulfide (25.8%), carbon tetrachloride (22%), cis-1,3-dichloropropene (22.8%), dichlorodifluoromethane (38.3%), trichlorofluoromethane (23%), vinyl acetate (-21.9%), and vinyl chloride (24.5%). The associated results in sample SBDUP01_092718 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

The LCS for batch WG1162406 exhibited a percent recovery below the LCL for benzoic acid (0%). The associated results in samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1162406 exhibited a RPD above the control limit for 2,4dinitrophenol (55%). The associated results in samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are qualified as "UJ" based on potential indeterminate bias.

The LCS/LCSD for batch WG1162636 exhibited a RPD above the control limit for 2-nitroaniline (50%), 4-nitroaniline (44%), benzoic acid (0, 0%), and carbazole (52%). The associated results in sample SBFB01_092718 are qualified as "UJ" based on potential indeterminate bias.

The field duplicate SBDUP01_092718 and parent sample SB11_6.5-7.5 exhibited an absolute difference above the reporting limit for phenanthrene (120 μ g/kg). The associated results in samples SBDUP01_092718 and SB11_6.5-7.5 are qualified as "J" based on potential indeterminate bias.

The CCV for batch WG1162406 on instrument SV103 exhibited a %D above the control limit for 2,4,6-trichlorophenol (21.5%) and 4,6-dinitro-o-cresol (25.7%). The associated results in

samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8082A:

The LCS/LCSD for batch WG1162454 exhibited a RPD above the control limit for endrin aldehyde (28%) and cis-chlordane (24%). The associated results in sample SBFB01_092718 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1162413 on instrument PEST10 exhibited a %D above the control limit for toxaphene (-25%). The associated results in samples SB06_1-2, SB07_0-2, SB07_3-5, SB11_0-1, SB11_6.5-7.5, SB12_0-2, SB12_2-4, and SBDUP01_092718 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1162454 on instrument PEST10 exhibited a %D above the control limit for toxaphene (-25%). The associated results in sample SBFB01_092718 are qualified as "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6010D:

The method blank (MB) for batch WG1163157 exhibited a detection of sodium, total (0.156 mg/L). The associated results in sample SBFB01_092718 are qualified as "U" based on potential blank contamination.

The MS/MSD for batch WG1163857 exhibited a RPD above the control limit for chromium, total (22%), lead, total (22%), magnesium, total (24%), potassium, total (24%), and vanadium, total (22%). The associated results in samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are qualified as "J" based on potential indeterminate bias.

The MS for batch WG1163857 exhibited a percent recovery above the upper control limit (UCL) for calcium, total (140%, 150%), copper, total (129%, 150%), sodium, total (130%), and zinc, total (126%). The associated results in samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are qualified as "J" based on potential high bias.

The field duplicate SBDUP01_092718 and parent sample SB11_6.5-7.5 exhibited an absolute difference above the reporting limit for lead, total (5 mg/kg). The associated results in samples SBDUP01_092718 and SB11_6.5-7.5 are qualified as "J" based on potential indeterminate bias.

Mercury by SW-846 Method 7471B:

The MS/MSD for batch WG1163468 exhibited a RPD above the control limit for mercury, total (55%). The associated results in samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are qualified as "J" or "UJ" based on potential indeterminate bias.

L1839310:

VOCs by SW-846 Method 8260C:

The trip blank (TB) SBTB01_092718 exhibited a detection of acetone (5.6 μ g/L). The associated results in sample SBFB01_092718 are qualified as "U" based on potential blank contamination.

The LCS for batch WG1164392 exhibited a percent recovery above the UCL for acetone (141%). The associated results in samples SB05_45-46 and SB05_64-65 are qualified as "J" based on potential high bias.

The LCS for batch WG1164707 exhibited a percent recovery below the LCL for naphthalene (59%, 66%) and 1,2,3-trichlorobenzene (61%, 67%). The associated results in sample SBTB02_092818 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1164707 exhibited a RPD above the control limit for bromomethane (24%). The associated results in sample SBTB02_092818 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1164396 on instrument VOA123 exhibited a RF below the control limit for 1,4-dioxane (0.0040). The associated results in sample SB05_0-2 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1164396 on instrument VOA123 exhibited a %D above the control limit for bromomethane (-28.9%). The associated results in sample SB05_0-2 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1164396 on instrument VOA123 exhibited a %D above the control limit for 2-butanone (-31.3%), acetone (-40.8%), acrylonitrile (-35.9%), and chloromethane (-38.5%). The associated results in sample SB05_0-2 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1164392 on instrument VOA123 exhibited a RF below the control limit for 1,4-dioxane (0.0040). The associated results in samples SB05_22-23, SB05_45-46, and SB05_64-65 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1164392 on instrument VOA123 exhibited a %D above the control limit for bromomethane (-28.9%). The associated results in samples SB05_22-23, SB05_45-46, and SB05_64-65 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1164392 on instrument VOA123 exhibited a %D above the control limit for 2-butanone (-31.3%), acetone (-40.8%), acrylonitrile (-35.9%), and chloromethane (-38.5%). The associated results in samples SB05_22-23, SB05_45-46, and SB05_64-65 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1164707 on instrument VOA101 exhibited a RF below the control limit for 1,4-dioxane (0.0010), 4-methyl-2-pentanone (0.0610), and acrylonitrile (0.0410). The associated results in sample SBTB02_092818 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1164707 on instrument VOA101 exhibited a %D above the control limit for dichlorodifluoromethane (-39.1%). The associated results in sample SBTB02_092818 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1164707 on instrument VOA101 exhibited a RF below the control limit for 2-hexanone (0.0980). The associated results in sample SBTB02_092818 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1164707 on instrument VOA101 exhibited a %D above the control limit for 1,2,3-trichloropropane (20.7%), 1,2,4-trichlorobenzene (25.9%), 1,2-dibromo-3-chloropropane (30.5%), bromoform (23.6%), cis-1,3-dichloropropene (21.5%), and dibromomethane (20.3%). The associated results in sample SBTB02_092818 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

The CCV for batch WG1162987 on instrument SV103 exhibited a %D above the control limit for 2,4-dinitrophenol (26%) and bis(2-chloroisopropyl)ether (-25.5%). The associated results in samples SB05_0-2, SB05_22-23, SB05_45-46, and SB05_64-65 are qualified as "UJ" based on potential indeterminate bias.

Herbicides by SW-846 Method 8151A:

The CCV for batch WG1162464 on instrument PEST8 exhibited a %D above the control limit for 2,4-D (-15.4%). The associated results in sample SB05_0-2 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The CCV for batch WG1162959 on instrument PEST11 exhibited a %D above the control limit for toxaphene (-29.1%). The associated results in sample SB05_0-2 are qualified as "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6010D:

The MB for batch WG1163857 exhibited a detection of calcium, total (1.98 mg/kg) and sodium, total (1.36 mg/kg). The associated results in samples SB05_0-2, SB05_22-23, SB05_45-46, and SB05_64-65 are qualified as "J" based on potential blank contamination.

Cyanide by SW-846 Method 9012B:

The LCS for batch WG1162467 exhibited a percent recovery below the LCL for cyanide, total (69%). The associated results in samples SB05_0-2, SB05_22-23, SB05_45-46, and SB05_64-65 are qualified as "UJ" based on potential low bias.

<u>L1839481:</u>

VOCs by SW-846 Method 8260C:

The TB SBTB03_100118 exhibited a detection of acetone (3.8 µg/L). The associated results in sample SBFB02_100118 are qualified as "U" based on potential blank contamination.

The LCS for batch WG1164762 exhibited a percent recovery below the LCL for bromomethane (35%). The associated results in samples SBTB03_100118 and SBFB02_100118 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch WG1164762 exhibited a RPD above the control limit for 1,4-dioxane (69%). The associated results in samples SBTB03_100118 and SBFB02_100118 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1164754 on instrument VOA104 exhibited a RF below the control limit for acetone (0.0620). The associated results in samples SB04_0-1, SB04_23.5-24.5, SB04_34-35, and SBDUP02_100118 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICAL for batch WG1164762 on instrument ELAINE exhibited a RF below the control limit for 2-butanone (0.0830) and 4-methyl-2-pentanone (0.0870). The associated results in samples SBTB03_100118 and SBFB02_100118 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1164762 on instrument ELAINE exhibited a %D above the control limit for 2-hexanone (23.5%), chloromethane (-35.6%), dichlorodifluoromethane (-73.5%), vinyl

acetate (27%), and vinyl chloride (-29.7%). The associated results in samples SBTB03_100118 and SBFB02_100118 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1164762 on instrument ELAINE exhibited a %D above the control limit for acetone (25.3%). The associated results in sample SBTB03_100118 are qualified as "J" based on potential indeterminate bias.

The CCV for batch WG1164762 on instrument ELAINE exhibited a %D above the control limit for 1,2-dibromo-3-chloropropane (24.1%) and bromoform (28.4%). The associated results in samples SBTB03_100118 and SBFB02_100118 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

The CCV for batch WG1163707 on instrument SV112 exhibited a %D above the control limit for 4,6-dinitro-o-cresol (-20.6%), 4-nitrophenol (-25.6%), and bis(2-chloroisopropyl)ether (-25.9%). The associated results in samples SB04_0-1, SB04_23.5-24.5, SB04_34-35, and SBDUP02_100118 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The LCS/LCSD for batch WG1164174 exhibited a RPD above the control limit for delta-BHC (30%), lindane (28%), alpha-BHC (29%), beta-BHC (24%), heptachlor (25%), aldrin (26%), heptachlor epoxide (25%), endrin (24%), endrin aldehyde (21%), endrin ketone (22%), dieldrin (23%), 4,4'-DDE (21%), 4,4'-DDD (21%), 4,4'-DDT (24%), endosulfan I (24%), endosulfan II (23%), endosulfan sulfate (25%), and trans-chlordane (21%). The associated results in sample SBFB02_100118 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1163382 on instrument PEST11 exhibited a %D above the control limit for toxaphene (-58.1%). The associated results in sample SB04_0-1 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1164174 on instrument PEST10 exhibited a %D above the control limit for toxaphene (-31.8%). The associated results in sample SBFB02_100118 are qualified as "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6010D:

The MS for batch WG1164838 exhibited a percent recovery above the UCL for chromium, total (132%, 134%), manganese, total (206%, 172%), and potassium, total (284%, 288%). The associated results in samples SB04_0-1, SB04_23.5-24.5, SB04_34-35, and SBDUP02_100118 are qualified as "J" based on potential high bias.

The field duplicate SBDUP02_100118 and parent sample SB04_23.5-24.5 exhibited a relative percent difference (RPD) above the control limit for aluminum, total (81%), barium, total (119.4%), chromium, total (73.1%), copper, total (52.4%), iron, total (59.1%), and vanadium, total (70.5%). The associated results in samples SBDUP02_100118 and SB04_23.5-24.5 are qualified as "J" based on potential indeterminate bias.

The field duplicate SBDUP02_100118 and parent sample SB04_23.5-24.5 exhibited an absolute difference above the reporting limit for cobalt, total (2.68 mg/kg), nickel, total (6.42 mg/kg) and potassium, total (1905 mg/kg). The associated results in samples SBDUP02_100118 and SB04_23.5-24.5 are qualified as "J" based on potential indeterminate bias.

Cyanide by SW-846 Method 9012B:

The LCS for batch WG1163184 exhibited a percent recovery below the LCL for cyanide, total (63%). The associated results in samples SB04_0-1, SB04_23.5-24.5, SB04_34-35, and SBDUP02_100118 are gualified as "J" or "UJ" based on potential low bias.

Hexavalent Chromium by SW-846 Method 7196A:

The MS/MSD for batch WG1163367 exhibited a RPD above the control limit for chromium, hexavalent (29%). The associated results in sample SB04_0-1 are qualified as "J" based on potential indeterminate bias.

Trivalent Chromium (Calculated):

The field duplicate SBDUP02_100118 and parent sample SB04_23.5-24.5 exhibited a relative percent difference (RPD) above the control limit for chromium, trivalent (72.7%). The associated results in samples SBDUP02_100118 and SB04_23.5-24.5 are qualified as "J" based on potential indeterminate bias.

L1839661:

VOCs by SW-846 Method 8260C:

The ICAL for batch WG1165316 on instrument VOA100 exhibited a RF below the control limit for 1,4-dioxane (0.0020), 2-butanone (0.0770), and 4-methyl-2-pentanone (0.0940). The associated results in samples SB03_0.5-1.5, SB03_22.5-23.5, SB03_25-26, SB03_32-33, SB13_0-1, SB13_6.5-7.5, and SB13_28-29 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch WG1165316 on instrument VOA100 exhibited a %D above the control limit for vinyl acetate (22.6%). The associated results in samples SB03_0.5-1.5, SB03_22.5-23.5,

SB03_25-26, SB03_32-33, SB13_0-1, SB13_6.5-7.5, and SB13_28-29 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1165571 on instrument ELAINE exhibited a RF below the control limit for 1,4-dioxane (0.0020), 2-butanone (0.0830), and 4-methyl-2-pentanone (0.0870). The associated results in sample SBTB04_100218 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1165571 on instrument ELAINE exhibited a %D above the control limit for 2-hexanone (23.5%), acetone (25.3%), chloromethane (-35.6%), dichlorodifluoromethane (-73.5%), vinyl acetate (27%), and vinyl chloride (-29.7%). The associated results in sample SBTB04_100218 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch WG1165571 on instrument ELAINE exhibited a %D above the control limit for 1,2,3-trichlorobenzene (27.1%), 1,2-dibromo-3-chloropropane (33.6%), bromoform (29%), bromomethane (31.4%), and naphthalene (30.3%). The associated results in sample SBTB04_100218 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

The CCV for batch WG1164229 on instrument SV112 exhibited a %D above the control limit for pentachlorophenol (25.1%). The associated results in samples SB03_0.5-1.5, SB03_22.5-23.5, SB03_25-26, SB03_32-33, SB13_0-1, SB13_6.5-7.5, and SB13_28-29 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The CCV for batch WG1164278 on instrument PEST10 exhibited a %D above the control limit for toxaphene (-31.8%). The associated results in samples SB03_0.5-1.5, SB13_0-1, and SB13_6.5-7.5 are qualified as "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6010D:

The MB for batch WG1165519 exhibited a detection of sodium, total (9.33 mg/kg). The associated results in sample SB03_32-33 are qualified as "U" based on potential blank contamination.

Cyanide by SW-846 Method 9012B:

The LCS for batch WG1163541 exhibited a percent recovery below the LCL for cyanide, total (63%). The associated results in samples SB03_0.5-1.5, SB03_22.5-23.5, SB03_25-26, SB03_32-33, SB13_0-1, SB13_6.5-7.5, and SB13_28-29 are qualified as "UJ" based on potential low bias.

L1839825:

VOCs by SW-846 Method 8260C:

The LCS/LCSD for batch WG1165958 exhibited a RPD above the control limit for 1,4-dioxane (29%). The associated results in sample SBTB05_100318 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1165805 on instrument VOA111 exhibited a %D above the control limit for 1,2-dichloroethane (-21.6%), 2-butanone (-25.2%), bromodichloromethane (-20.3%), bromomethane (-23.9%), and chloroethane (-26.7%). The associated results in sample SB13_68-69 are qualified as "UJ" based on potential indeterminate bias.

The ICAL for batch WG1165958 on instrument VOA122 exhibited a RF below the control limit for 4-methyl-2-pentanone (0.0750). The associated results in sample SBTB05_100318 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1165958 on instrument VOA122 exhibited a %D above the control limit for 2-hexanone (24.6%), acetone (22.7%), bromomethane (-35.7%), dichlorodifluoromethane (-24.7%), and vinyl acetate (28.7%). The associated results in sample SBTB05_100318 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICV for batch WG1165958 on instrument VOA122 exhibited a RF below the control limit for acrylonitrile (0.0480). The associated results in sample SBTB05_100318 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1165958 on instrument VOA122 exhibited a %D above the control limit for 1,1,1,2-tetrachloroethane (-20.3%), 1,1,1-trichloroethane (-25.1%), 1,2,4-trimethylbenzene (-61.2%), 2,2-dichloropropane (-24.9%), benzene (21.5%), bromochloromethane (-22.1%), carbon tetrachloride (-40.4%), trichlorofluoromethane (-38.7%), and vinyl chloride (-24.7%). The associated results in sample SBTB05_100318 are qualified as "UJ" based on potential indeterminate bias.

Cyanide by SW-846 Method 9012B:

The LCS for batch WG1164602 exhibited a percent recovery below the LCL for cyanide, total (70%). The associated results in sample SB13_68-69 are qualified as "UJ" based on potential low bias.

<u>L1840256:</u>

VOCs by SW-846 Method 8260C:

The LCS/LCSD for batch WG1165958 exhibited a RPD above the control limit for 1,4-dioxane (29%). The associated results in sample SBTB06_100418 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1166260 on instrument VOA104 exhibited a %D above the control limit for acetone (0.062%). The associated results in samples SB01_0.5-1.5, SB01_6.5-7.5, SB01_26-27, SB02_0.5-1.5, SB02_3-4, SB02_26-27, SB10_1-2, SB10_6-7, and SB10_24-25 are qualified as "J" based on potential indeterminate bias.

The ICAL for batch WG1165958 on instrument VOA122 exhibited a RF below the control limit for 4-methyl-2-pentanone (0.0750). The associated results in sample SBTB06_100418 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1165958 on instrument VOA122 exhibited a %D above the control limit for acetone (22.7%), bromomethane (-35.7%), dichlorodifluoromethane (-24.7%), vinyl acetate (28.7%), and 2-hexanone (24.6%). The associated results in sample SBTB06_100418 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICV for batch WG1165958 on instrument VOA122 exhibited a RF below the control limit for acrylonitrile (0.0480). The associated results in sample SBTB06_100418 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch WG1165958 on instrument VOA122 exhibited a %D above the control limit for 1,1,1,2-tetrachloroethane (-20.3%), 1,1,1-trichloroethane (-25.1%), 1,2,4-trimethylbenzene (-61.2%), 2,2-dichloropropane (-24.9%), benzene (21.5%), bromochloromethane (-22.1%), carbon tetrachloride (-40.4%), trichlorofluoromethane (-38.7%), and vinyl chloride (-24.7%). The associated results in sample SBTB06_100418 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1165958 on instrument VOA122 exhibited an area percent below the control limit for 1,2-dichloropropane (48%), 2-butanone (45%), cis-1,3-dichloropropene (48%), ethyl ether (46%), methyl tert butyl ether (47%), methylene chloride (49%), and trans-1,4-dichloro-2-butene (48%). The associated results in sample SBTB06_100418 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The CCV for batch WG1165182 on instrument PEST11 exhibited a %D above the control limit for endrin aldehyde (20.3%). The associated results in samples SB01_0.5-1.5, SB01_6.5-7.5,

SB02_0.5-1.5, SB02_3-4, SB10_1-2, and SB10_6-7 are qualified as "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6010D:

The lab duplicate and parent sample SB02_0.5-1.5 exhibited a RPD above the control limit for aluminum, total (31%), arsenic, total (25%), barium, total (23%), chromium, total (30%), cobalt, total (28%), copper, total (49%), iron, total (28%), lead, total (58%), magnesium, total (27%), potassium, total (23%), and zinc, total (23%). The associated results in sample SB02_0.5-1.5 are qualified as "J" based on potential indeterminate bias.

The MS for batch WG1166095 exhibited a percent recovery below the LCL for calcium, total (65%). The associated results in samples SB02_0.5-1.5, SB02_3-4, SB02_26-27, SB10_1-2, SB10_6-7, and SB10_24-25 are qualified as "J" based on potential low bias.

The MS for batch WG1166095 exhibited a percent recovery above the UCL for copper, total (181%), lead, total (501%), and zinc, total (198%). The associated results in samples SB02_0.5-1.5, SB02_3-4, SB02_26-27, SB10_1-2, SB10_6-7, and SB10_24-25 are qualified as "J" based on potential high bias.

L1840500:

VOCs by SW-846 Method 8260C:

The TB SBTB07_100518 exhibited a detection of acetone (4.9 μ g/L). The associated results in sample SBFB03_100518 are qualified as "U" based on potential blank contamination.

The LCS/LCSD for batch WG1166658 exhibited a RPD above the control limit for 1,4-dioxane (34%). The associated results in samples SBFB03_100518 and SBTB07_100518 are qualified as "UJ" based on potential indeterminate bias.

The field duplicate SBDUP03_100518 and parent sample SB09_22-23 exhibited an absolute difference above the reporting limit for xylene, total (2.6 μ g/kg). The associated results in samples SBDUP03_100518 and SB09_22-23 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICAL for batch WG1166796 on instrument VOA104 exhibited a RF below the control limit for acetone (0.0620). The associated results in samples SB08_0-1, SB08_1.5-2.5, SB08_21-22, SB09_0.5-1.5, SB09_3-4, SB09_22-23, and SBDUP03_100518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICAL for batch WG1166658 on instrument ELAINE exhibited a RF below the control limit for 2-butanone (0.0830) and 4-methyl-2-pentanone (0.0870). The associated results in samples SBFB03_100518 and SBTB07_100518 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1166658 on instrument ELAINE exhibited a %D above the control limit for 2-hexanone (23.5%), chloromethane (-35.6%), dichlorodifluoromethane (-73.5%), vinyl acetate (27%), and vinyl chloride (-29.7%). The associated results in samples SBFB03_100518 and SBTB07_100518 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1166658 on instrument ELAINE exhibited a %D above the control limit for acetone (25.3%). The associated results in sample SBTB07_100518 are qualified as "J" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

The CCV for batch WG1166568 on instrument SV107 exhibited a %D above the control limit for 2-methylphenol (-20.1%), 2-nitrophenol (-36.3%), 3,3'-dichlorobenzidine (-36.7%), 4-nitrophenol (-24.5%), benzo(k)fluoranthene (20.8%), benzoic acid (-35.5%), bis(2-chloroisopropyl)ether (-22.3%), bis(2-ethylhexyl)phthalate (-22%), isophorone (-23.7%), nitrobenzene (-23%), and n-nitrosodi-n-propylamine (-24.6%). The associated results in sample SBFB03_100518 are qualified as "J" and "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The CCV for batch WG1165775 on instrument PEST10 exhibited a %D above the control limit for toxaphene (-37.4%). The associated results in samples SB08_0-1, SB08_1.5-2.5, SB09_0.5-1.5, SB09_3-4, and SBDUP03_100518 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1166627 on instrument PEST20 exhibited a %D above the control limit for methoxychlor (-21.3%) and toxaphene (-56%). The associated results in sample SBFB03_100518 are qualified as "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6010D:

The MB for batch WG1166613 exhibited a detection of antimony, total (0.160 mg/kg). The associated results in sample SB08_0-1 are qualified as "U" based on potential blank contamination.

The MS for batch WG1166613 exhibited a percent recovery below the LCL for magnesium, total (71%). The associated results in samples SB08_0-1, SB08_1.5-2.5, SB08_21-22,

LANGAN

SB09_0.5-1.5, SB09_3-4, SB09_22-23, and SBDUP03_100518 are qualified as "J" based on potential low bias.

The field duplicate SBDUP03_100518 and parent sample SB09_22-23 exhibited an absolute difference above the reporting limit for cobalt, total (1.83 mg/kg), nickel, total (3.22 mg/kg), and potassium, total (311 mg/kg). The associated results in samples SBDUP03_100518 and SB09_22-23 are qualified as "J" based on potential indeterminate bias.

Cyanide by SW-846 Method 9012B:

The LCS for batch WG1165117 exhibited a percent recovery below the LCL for cyanide, total (78%). The associated results in samples SB08_21-22, SB09_0.5-1.5, SB09_3-4, SB09_22-23, and SBDUP03_100518 are qualified as "UJ" based on potential low bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

L1839010:

VOCs by SW-846 Method 8260C:

The MB for batch WG1163368 exhibited a detection of carbon disulfide (0.072 μ g/L), methylene chloride (0.177 μ g/L), and hexachlorobutadiene (0.117 μ g/L). The associated results in samples SBFB01_092718 and SBTB01_092718 are non-detect. No qualification is necessary.

The matrix spike (MS) for batch WG1163719 exhibited a percent recovery below the LCL for 2butanone (66%), n-butylbenzene (45%, 57%), hexachlorobutadiene (37%, 52%), and 1,2,4,5tetramethylbenzene (52%, 64%). Organic data are not qualified on the basis of MS/SD recoveries or RPDs alone.

SVOCs by SW-846 Method 8270D:

The surrogates in sample SB06_21.5-22.5 exhibited a percent recovery above the UCL for 2-fluorophenol (124%) and phenol-d6 (123%). The associated results in sample SB06_21.5-22.5 are non-detect. No qualification is necessary.

The surrogates in sample SB11_6.5-7.5 exhibited a percent recovery above the UCL for 2-fluorophenol (121%). The other two acid extractable surrogates were recovered within the acceptance limits. No qualification is necessary.

The LCS for batch WG1162406 exhibited a percent recovery above the UCL for 4-nitrophenol (118%) and phenol (91%). The associated results in samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are non-detect. No qualification is necessary.

The MS for batch WG1162406 exhibited a percent recovery below the LCL for benzoic acid (0%). Benzoic acid is a poor performer and organic data are not qualified on the basis of MS recoveries alone.

The MS for batch WG1162406 exhibited a percent recovery above the UCL for phenol (93%). The associated results in samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are non-detect. No qualification is necessary.

PCBs by SW-846 Method 8082A:

The MS/MSD for batch WG1162411 exhibited a RPD above the control limit for Aroclor 1260 (52%). Organic data are not qualified on the basis of MS/SD recoveries or RPDs alone.

Pesticides by SW-846 Method 8082A:

The MS/MSD for batch WG1162413 exhibited a RPD above the control limit for endosulfan sulfate (70%). Organic data are not qualified on the basis of MS/SD recoveries or RPDs alone.

Metals by SW-846 Method 6010D:

The MB for batch WG1163857 exhibited a detection of calcium, total (1.98 mg/kg) and sodium, total (1.36 mg/kg). The associated results in samples SB06_1-2, SB06_21.5-22.5, SB06_29-30, SB07_0-2, SB07_3-5, SB07_21-23, SB11_0-1, SB11_6.5-7.5, SB11_22-23, SB12_0-2, SB12_2-4, SB12_22-23, and SBDUP01_092718 are greater than 10X the blank concentration. No qualification is necessary.

The MS/MSD for batch WG1163857 exhibited a RPD above the control limit for iron, total (30%). The associated results in sample SB11_6.5-7.5 are greater than 4X the spiked amount. No qualification is necessary.

The MS for batch WG1163857 exhibited a percent recovery above the UCL for aluminum, total (2020, 461%) and manganese, total (228%). The associated results in sample SB11_6.5-7.5 are greater than 4X the spiked amount. No qualification is necessary.

<u>L1839310:</u>

VOCs by SW-846 Method 8260C:

The LCS for batch WG1164392 exhibited a percent recovery above the UCL for acetone (141%). The associated results in sample SB05_22-23 are non-detect. No qualification is necessary.

The LCS for batch WG1164392 exhibited a percent recovery above the UCL for chloromethane (138, 138%), 2-butanone (131%), and acrylonitrile (136, 135%). The associated results in samples SB05_22-23, SB05_45-46, and SB05_64-65 are non-detect. No qualification is necessary.

The LCS for batch WG1164396 exhibited a percent recovery above the UCL for chloromethane (138%, 138%), acetone (141%), 2-butanone (131%), and acrylonitrile (136%, 135%). The associated results in sample SB05_0-2 are non-detect. No qualification is necessary.

<u>L1839481:</u>

VOCs by SW-846 Method 8260C:

The MB for batch WG1164762 exhibited a detection of methylene chloride (0.075 μ g/L) and hexachlorobutadiene (0.242 μ g/L). The associated results in samples SBTB03_100118 and SBFB02_100118 are non-detect. No qualification is necessary.

The MS/MSD for batch WG1164754 exhibited a RPD above the control limit for ethylbenzene (33%), 1,2-dichlorobenzene (32%), 1,3-dichlorobenzene (36%), 1,4-dichlorobenzene (36%), p/m-xylene (34%), o-xylene (33%), styrene (32%), bromobenzene (31%), n-butylbenzene (47%), sec-butylbenzene (43%), tert-butylbenzene (40%), o-chlorotoluene (37%), p-chlorotoluene (37%), hexachlorobutadiene (48%), isopropylbenzene (37%), p-isopropyltoluene (45%), n-propylbenzene (40%), 1,2,3-trichlorobenzene (33%), 1,2,4-trichlorobenzene (35%), 1,3,5-trimethylbenzene (39%), 1,2,4-trimethylbenzene (40%), and 1,2,4,5-tetramethylbenzene (42%). Organic data are not qualified on the basis of MS/SD recoveries or RPDs alone.

The MS for batch WG1164754 exhibited a percent recovery below the LCL for chlorobenzene (68%) and vinyl acetate (64%, 65%). Organic data are not qualified on the basis of MS/SD recoveries or RPDs alone.

SVOCs by SW-846 Method 8270D:

The LCS for batch WG1163707 exhibited a percent recovery above the UCL for biphenyl (107%, 106%), p-chloro-m-cresol (113%, 113%), 2-chlorophenol (104%, 109%), 4-nitrophenol (132%, 132%), pentachlorophenol (123%, 125%), and phenol (101%, 107%). The associated

results in samples SB04_0-1, SB04_23.5-24.5, SB04_34-35, and SBDUP02_100118 are non-detect. No qualification is necessary.

The MS for batch WG1163707 exhibited a percent recovery above the UCL for biphenyl (110%, 110%), p-chloro-m-cresol (110%, 110%), 2-chlorophenol (110%), 4-nitrophenol (120%, 120%), pentachlorophenol (110%), and phenol (100%, 110%). The associated results in sample SB04_34-35 are non-detect. No qualification is necessary.

The MS for batch WG1163707 exhibited a percent recovery below the LCL for benzoic acid (0%). Benzoic acid is a poor performer and organic data are not qualified on the basis of MS recoveries alone.

Metals by SW-846 Method 6010D:

The MB for batch WG1164763 exhibited a detection of selenium, total (0.004 mg/L). The associated results in sample SBFB02_100118 are non-detect. No qualification is necessary.

The MS for batch WG1164838 exhibited a percent recovery above the UCL for aluminum, total (1730%, 1790%), calcium, total (828%, 682%), iron, total (4470%, 4700%), and magnesium, total (325%, 286%). The associated results in sample SB04_34-35 are greater than 4X the spiked amount. No qualification is necessary.

Hexavalent Chromium by SW-846 Method 7196A:

The MS/MSD for batch WG1163367 exhibited a RPD above the control limit for chromium, hexavalent (29%). The associated results in samples SB04_23.5-24.5, SB04_34-35, and SBDUP02_100118 are non-detect. No qualification is necessary.

L1839661:

VOCs by SW-846 Method 8260C:

The MB for batch WG1165571 exhibited a detection of bromomethane (0.927 μ g/L), carbon disulfide (0.163 μ g/L), hexachlorobutadiene (0.572 μ g/L), and naphthalene (0.077 μ g/L). The associated results in sample SBTB04_100218 are non-detect. No qualification is necessary.

Metals by SW-846 Method 6010D:

The MB for batch WG1165519 exhibited a detection of chromium, total (0.044 mg/kg) and manganese, total (0.08 mg/kg). The associated results in samples SB03_0.5-1.5, SB03_22.5-23.5, SB03_25-26, SB03_32-33, SB13_0-1, SB13_6.5-7.5, and SB13_28-29 are greater than 10X the blank concentration. No qualification is necessary.

The MB for batch WG1165519 exhibited a detection of sodium, total (9.33 mg/kg). The associated results in samples SB03_0.5-1.5, SB03_22.5-23.5, SB03_25-26, SB13_0-1, SB13_6.5-7.5, and SB13_28-29 are greater than 10X the blank concentration. No qualification is necessary.

L1839825:

VOCs by SW-846 Method 8260C:

The LCS for batch WG1165958 exhibited a percent recovery above the UCL for carbon tetrachloride (140, 140%), dichlorodifluoromethane (180, 170%), and 1,2,4-trimethylbenzene (160, 160%). The associated results in sample SBTB05_100318 are non-detect. No qualification is necessary.

Metals by SW-846 Method 6010D:

The MB for batch WG1166083 exhibited a detection of sodium, total (11.8 mg/kg). The associated results in sample SB13_68-69 are greater than 10X the blank concentration. No qualification is necessary.

L1840256:

VOCs by SW-846 Method 8260C:

The LCS for batch WG1165958 exhibited a percent recovery above the UCL for carbon tetrachloride (140%, 140%), dichlorodifluoromethane (180%, 170%), and 1,2,4-trimethylbenzene (160%, 160%). The associated results in sample SBTB06_100418 are non-detect. No qualification is necessary.

The LCS for batch WG1165223 exhibited a percent recovery above the UCL for phenol (93, 98%). The associated results in samples SB01_0.5-1.5, SB01_6.5-7.5, SB01_26-27, SB02_0.5-1.5, SB02_3-4, SB02_26-27, SB10_1-2, SB10_6-7, and SB10_24-25 are non-detect. No qualification is necessary.

Metals by SW-846 Method 6010D:

The MB for batch WG1165954 exhibited a detection of iron, total (0.107 mg/kg). The associated results in samples SB01_0.5-1.5, SB01_6.5-7.5, and SB01_26-27 are greater than 10X the blank concentration. No qualification is necessary.

The MS for batch WG1166095 exhibited a percent recovery below the LCL for iron, total (0%). The associated results in sample SB02_0.5-1.5 are greater than 4X the spiked amount. No qualification is necessary.

The MS for batch WG1166095 exhibited a percent recovery above the UCL for aluminum, total (369%) and manganese, total (156%). The associated results in sample SB02_0.5-1.5 are greater than 4X the spiked amount. No qualification is necessary.

<u>L1840500:</u>

VOCs by SW-846 Method 8260C:

The MB for batch WG1166658 exhibited a detection of chloromethane (0.142 μ g/L) and hexachlorobutadiene (0.189 μ g/L). The associated results in samples SBFB03_100518 and SBTB07_100518 are non-detect. No qualification is necessary.

The MS/MSD for batch WG1166796 exhibited a RPD above the control limit for 1,1,2trichloroethane (94%), bromodichloromethane (33%), 1,1-dichloroethene (31%), trichloroethene (48%), vinyl acetate (149%), n-butylbenzene (37%), sec-butylbenzene (32%), 1,2-dibromo-3chloropropane (99%), hexachlorobutadiene (50%), p-isopropyltoluene (32%), and pdiethylbenzene (35%). Organic data are not qualified on the basis of MS/SD recoveries or RPDs alone.

The MS for batch WG1166796 exhibited a percent recovery below the LCL for 1,1,2,2-tetrachloroethane (0%), 1,2,4-trichlorobenzene (67%), and 1,2,4,5-tetramethylbenzene (68%). Organic data are not qualified on the basis of MS/SD recoveries or RPDs alone.

SVOCs by SW-846 Method 8270D:

The MS for batch WG1165794 exhibited a percent recovery below the LCL for hexachlorocyclopentadiene (0, 0%), 2,4,6-trichlorophenol (16, 13%), 2-nitrophenol (26%), 4-nitrophenol (0, 0%), 2,4-dinitrophenol (0, 0%), 4,6-dinitro-o-cresol (0, 0%), pentachlorophenol (9, 8%), and benzoic acid (0, 0%). Organic data are not qualified on the basis of MS/SD recoveries or RPDs alone.

Pesticides by SW-846 Method 8081B:

The MB for batch WG1166627 exhibited a detection of 4,4'-DDT (0.703 μ g/L). The associated results in sample SBFB03_100518 are non-detect. No qualification is necessary.

Metals by SW-846 Method 6010D:

The MB for batch WG1166613 exhibited a detection of antimony, total (0.160 mg/kg). The associated results in samples SB08_1.5-2.5, SB08_21-22, SB09_0.5-1.5, SB09_3-4, SB09_22-23, and SBDUP03_100518 are non-detect or greater than 10X the blank concentration. No qualification is necessary.

The MS for batch WG1166613 exhibited a percent recovery below the LCL for manganese, total (47%, 31%). The associated results in sample SB08_21-22 are greater than 4X the spiked amount. No qualification is necessary.

The MS for batch WG1166613 exhibited a percent recovery above the UCL for aluminum, total (244%, 240%) and iron, total (288%, 179%). The associated results in sample SB08_21-22 are greater than 4X the spiked amount. No qualification is necessary.

Mercury by SW-846 Method 7471B:

The MB for batch WG1166854 exhibited a detection of mercury, total (0.028 mg/kg). The associated results in sample SBFB03_100518 are non-detect. No qualification is necessary.

The MS for batch WG1166854 exhibited a percent recovery above the UCL for mercury, total (145, 145%). The associated results in sample SBFB03_100518 are non-detect. No qualification is necessary.

COMMENTS:

Field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than \pm RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 50% for soil. The following analytes did not meet the precision criteria:

- SBDUP01_092718 and SB11_6.5-7.5: acetone, total lead, phenanthrene, and tetrachloroethene
- SBDUP02_100118 and SB04_23.5-24.5: total aluminum, total barium, total cobalt, total copper, total iron, total nickel, total vanadium, trivalent chromium, total chromium, and total potassium
- SBDUP03_100518 and SB09_22-23: total cobalt, total nickel, total potassium, and total xylene

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Data Usability Summary Report For 37-11 30⁻ Street 2018 Samples Langan Project No.: 170515401 October 30, 2018 Page 49 of 49

rele

Emily Strake, CEP Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Nicole Kung, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: November 9, 2018

Re: Data Usability Summary Report For 37-11 30th Street Samples Collected in October 2018 Langan Project No.: 170512301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of samples collected in October 2018 by Langan Engineering and Environmental Services ("Langan") at the 37-11 30th Street site ("the site"). The samples were analyzed by Alpha Analytical Laboratories, Inc. (NYSDOH NELAC registration # 11148) for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), per- and polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals, mercury (Hg), cyanide (CN), and hexavalent chromium (CrVI), and trivalent chromium (CrIII) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270C-SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6020B
- Mercury by SW-846 Method 7470A
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1841798	L1841798-01	MW10_101518	10/15/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1841798	L1841798-02	MW02_101518	10/15/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1841798	L1841798-03	MW13B_101518	10/15/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1841798	L1841798-04	TB01_101518	10/15/2018	VOCs
L1842082	L1842082-01	MW06_101618	10/16/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1842082	L1842082-02	MW03_101618	10/16/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1842082	L1842082-03	MW07_101618	10/16/2018	PFAS
L1842082	L1842082-04	GWDUP01_101618	10/16/2018	PFAS
L1842082	L1842082-05	GWFB01_101618	10/16/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, PFAS, CN
L1842082	L1842082-06	TB02_101618	10/16/2018	VOCs
L1842363	L1842363-01	MW07_101718	10/17/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1842363	L1842363-02	GWDUP01_101718	10/17/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1842363	L1842363-03	MW05A_101718	10/17/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, PFAS, CN
L1842363	L1842363-04	MW01_101718	10/17/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, PFAS, CN
L1842363	L1842363-05	MW13A_101718	10/17/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1842363	L1842363-06	MW05B_101718	10/17/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1842363	L1842363-07	MW04_101718	10/17/2018	VOCs, SVOCs, PCBs, Metals, Hg, Pesticides, Herbicides, CrIII, CrVI, CN
L1842363	L1842363-08	GWFB02_101718	10/17/2018	SVOCs
L1842363	L1842363-09	TB03_101718	10/17/2018	VOCs

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36A, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), USEPA "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW02_101518	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW02_101518	8260C	96-18-4	1,2,3-Trichloropropane	UJ
MW02_101518	8260C	123-91-1	1,4-Dioxane	UJ
MW02_101518	8270D	105-67-9	2,4-Dimethylphenol	UJ
MW02_101518	8270DSIM	208-96-8	Acenaphthylene	UJ
MW02_101518	8260C	75-00-3	Chloroethane	UJ
MW02_101518	8260C	60-29-7	Ethyl Ether	UJ
MW02_101518	8081B	72-20-8	Endrin	UJ
MW02_101518	8260C	87-68-3	Hexachlorobutadiene	UJ
MW02_101518	7470A	7439-97-6	Mercury	UJ

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Data Usability Summary Report For 37-11 30th Street Samples Collected in October 2018 Langan Project No.: 170512301 November 9, 2018 Page 5 of 21

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW02_101518	8081B	72-43-5	Methoxychlor	UJ
MW02_101518	8081B	50-29-3	P,P'-DDT	UJ
MW02_101518	8260C	135-98-8	Sec-Butylbenzene	UJ
MW10_101518	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW10_101518	8260C	96-18-4	1,2,3-Trichloropropane	UJ
MW10_101518	8260C	123-91-1	1,4-Dioxane	UJ
MW10_101518	8270D	105-67-9	2,4-Dimethylphenol	UJ
MW10_101518	8270DSIM	208-96-8	Acenaphthylene	UJ
MW10_101518	8260C	75-00-3	Chloroethane	UJ
MW10_101518	8081B	5103-71-9	cis-Chlordane	J
MW10_101518	6020B	7440-48-4	Cobalt, Dissolved	J
MW10_101518	8260C	60-29-7	Ethyl Ether	UJ
MW10_101518	8081B	72-20-8	Endrin	UJ
MW10_101518	8260C	87-68-3	Hexachlorobutadiene	UJ
MW10_101518	7470A	7439-97-6	Mercury	UJ
MW10_101518	8081B	72-43-5	Methoxychlor	UJ
MW10_101518	8081B	50-29-3	P,P'-DDT	J
MW10_101518	8260C	135-98-8	Sec-Butylbenzene	UJ
MW13B_101518	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW13B_101518	8260C	96-18-4	1,2,3-Trichloropropane	UJ
MW13B_101518	8260C	123-91-1	1,4-Dioxane	UJ
MW13B_101518	8270D	105-67-9	2,4-Dimethylphenol	UJ
MW13B_101518	8270DSIM	208-96-8	Acenaphthylene	UJ
MW13B_101518	6020B	7429-90-5	Aluminum, Total	J
MW13B_101518	8260C	75-00-3	Chloroethane	UJ
MW13B_101518	8260C	60-29-7	Ethyl Ether	UJ
MW13B_101518	8081B	72-20-8	Endrin	UJ
MW13B_101518	8260C	87-68-3	Hexachlorobutadiene	UJ
MW13B_101518	7470A	7439-97-6	Mercury	UJ
MW13B_101518	8081B	72-43-5	Methoxychlor	UJ
MW13B_101518	8081B	50-29-3	P,P'-DDT	UJ
MW13B_101518	8260C	135-98-8	Sec-Butylbenzene	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TB01_101518	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
TB01_101518	8260C	96-18-4	1,2,3-Trichloropropane	UJ
TB01_101518	8260C	123-91-1	1,4-Dioxane	UJ
TB01_101518	8260C	75-00-3	Chloroethane	UJ
TB01_101518	8260C	60-29-7	Ethyl Ether	UJ
TB01_101518	8260C	87-68-3	Hexachlorobutadiene	UJ
TB01_101518	8260C	135-98-8	Sec-Butylbenzene	UJ
GWDUP01_101618	537	2991-50-6	N-Ethyl-N- ((heptadecafluorooctyl)sulphonyl) glycine	UJ
GWDUP01_101618	537	355-46-4	Perfluorohexanesulfonic acid (PFHxS)	J
GWDUP01_101618	537	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	U (6.90)
GWDUP01_101618	537	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	U (1.86)
GWFB01_101618	8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
GWFB01_101618	8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
GWFB01_101618	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
GWFB01_101618	8260C	123-91-1	1,4-Dioxane	UJ
GWFB01_101618	8260C	591-78-6	2-Hexanone	UJ
GWFB01_101618	8260C	107-13-1	Acrylonitrile	UJ
GWFB01_101618	8260C	75-25-2	Bromoform	UJ
GWFB01_101618	8260C	74-83-9	Bromomethane	UJ
GWFB01_101618	8260C	74-95-3	Dibromomethane	UJ
GWFB01_101618	8260C	75-71-8	Dichlorodifluoromethane	UJ
GWFB01_101618	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
GWFB01_101618	8260C	91-20-3	Naphthalene	UJ
GWFB01_101618	537	2991-50-6	N-Ethyl-N- ((heptadecafluorooctyl)sulphonyl) glycine	UJ
GWFB01_101618	537	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	U (9.19)
GWFB01_101618	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
GWFB01_101618	8260C	108-05-4	Vinyl Acetate	UJ

Data Usability Summary Report For 37-11 30th Street Samples Collected in October 2018 Langan Project No.: 170512301 November 9, 2018 Page 7 of 21

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW03_101618	8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
MW03_101618	8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
MW03_101618	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW03_101618	8260C	123-91-1	1,4-Dioxane	UJ
MW03_101618	8260C	591-78-6	2-Hexanone	UJ
MW03_101618	8260C	107-13-1	Acrylonitrile	UJ
MW03_101618	8260C	75-25-2	Bromoform	UJ
MW03_101618	8260C	74-83-9	Bromomethane	UJ
MW03_101618	8260C	74-95-3	Dibromomethane	UJ
MW03_101618	8260C	75-71-8	Dichlorodifluoromethane	UJ
MW03_101618	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
MW03_101618	8260C	91-20-3	Naphthalene	UJ
MW03_101618	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
MW03_101618	8260C	108-05-4	Vinyl Acetate	UJ
MW06_101618	8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
MW06_101618	8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
MW06_101618	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW06_101618	8260C	123-91-1	1,4-Dioxane	UJ
MW06_101618	8260C	591-78-6	2-Hexanone	UJ
MW06_101618	8260C	107-13-1	Acrylonitrile	UJ
MW06_101618	8260C	75-25-2	Bromoform	UJ
MW06_101618	8260C	74-83-9	Bromomethane	UJ
MW06_101618	8260C	74-95-3	Dibromomethane	UJ
MW06_101618	8260C	75-71-8	Dichlorodifluoromethane	UJ
MW06_101618	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
MW06_101618	8260C	91-20-3	Naphthalene	UJ
MW06_101618	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
MW06_101618	8260C	108-05-4	Vinyl Acetate	UJ
MW07_101618	537	2991-50-6	N-Ethyl-N- ((heptadecafluorooctyl)sulphonyl) glycine	UJ
MW07_101618	537	355-46-4	Perfluorohexanesulfonic acid (PFHxS)	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW07_101618	537	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	U (121)
MW07_101618	537	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	U (1.78)
TB02_101618	8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
TB02_101618	8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
TB02_101618	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
TB02_101618	8260C	123-91-1	1,4-Dioxane	UJ
TB02_101618	8260C	591-78-6	2-Hexanone	UJ
TB02_101618	8260C	107-13-1	Acrylonitrile	UJ
TB02_101618	8260C	75-25-2	Bromoform	UJ
TB02_101618	8260C	74-83-9	Bromomethane	UJ
TB02_101618	8260C	74-95-3	Dibromomethane	UJ
TB02_101618	8260C	75-71-8	Dichlorodifluoromethane	UJ
TB02_101618	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
TB02_101618	8260C	91-20-3	Naphthalene	UJ
TB02_101618	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
TB02_101618	8260C	108-05-4	Vinyl Acetate	UJ
GWDUP01_101718	8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
GWDUP01_101718	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
GWDUP01_101718	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
GWDUP01_101718	8260C	123-91-1	1,4-Dioxane	UJ
GWDUP01_101718	8260C	594-20-7	2,2-Dichloropropane	UJ
GWDUP01_101718	8260C	591-78-6	2-Hexanone	UJ
GWDUP01_101718	8260C	67-64-1	Acetone	J
GWDUP01_101718	8260C	107-13-1	Acrylonitrile	UJ
GWDUP01_101718	6020B	7440-38-2	Arsenic, Total	J
GWDUP01_101718	8260C	74-97-5	Bromochloromethane	UJ
GWDUP01_101718	8260C	74-83-9	Bromomethane	UJ
GWDUP01_101718	8260C	56-23-5	Carbon Tetrachloride	UJ
GWDUP01_101718	8260C	75-00-3	Chloroethane	UJ
GWDUP01_101718	8260C	74-87-3	Chloromethane	UJ
GWDUP01_101718	8260C	60-29-7	Ethyl Ether	UJ

Data Usability Summary Report For 37-11 30th Street Samples Collected in October 2018 Langan Project No.: 170512301 November 9, 2018 Page 9 of 21

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
GWDUP01_101718	6020B	7439-89-6	Iron, Dissolved	U (0.0930)
GWDUP01_101718	6020B	7439-92-1	Lead, Total	J
GWDUP01_101718	8260C	78-93-3	2-Butanone	UJ
GWDUP01_101718	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
GWDUP01_101718	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
GWDUP01_101718	6020B	7440-28-0	Thallium, Total	UJ
GWDUP01_101718	8260C	75-69-4	Trichlorofluoromethane	UJ
GWDUP01_101718	6020B	7440-66-6	Zinc, Total	J
MW01_101718	8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
MW01_101718	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW01_101718	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW01_101718	8260C	123-91-1	1,4-Dioxane	UJ
MW01_101718	537	2355-31-9	2-(N-methyl perfluorooctanesulfonamido) acetic acid	UJ
MW01_101718	8260C	594-20-7	2,2-Dichloropropane	UJ
MW01_101718	8260C	591-78-6	2-Hexanone	UJ
MW01_101718	8260C	67-64-1	Acetone	J
MW01_101718	8260C	107-13-1	Acrylonitrile	UJ
MW01_101718	6020B	7440-38-2	Arsenic, Total	J
MW01_101718	8260C	74-97-5	Bromochloromethane	UJ
MW01_101718	8260C	74-83-9	Bromomethane	UJ
MW01_101718	8260C	56-23-5	Carbon Tetrachloride	UJ
MW01_101718	8260C	75-00-3	Chloroethane	UJ
MW01_101718	8260C	74-87-3	Chloromethane	UJ
MW01_101718	8260C	60-29-7	Ethyl Ether	UJ
MW01_101718	6020B	7439-89-6	Iron, Dissolved	U (0.0750)
MW01_101718	6020B	7439-92-1	Lead, Total	J
MW01_101718	8260C	78-93-3	2-Butanone	UJ
MW01_101718	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
MW01_101718	537	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	J
MW01_101718	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ

Data Usability Summary Report For 37-11 30th Street Samples Collected in October 2018 Langan Project No.: 170512301 November 9, 2018 Page 10 of 21

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW01_101718	6020B	7440-28-0	Thallium, Total	UJ
MW01_101718	8260C	75-69-4	Trichlorofluoromethane	UJ
MW01_101718	6020B	7440-66-6	Zinc, Total	J
MW04_101718	8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
MW04_101718	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW04_101718	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW04_101718	8260C	123-91-1	1,4-Dioxane	UJ
MW04_101718	8260C	594-20-7	2,2-Dichloropropane	UJ
MW04_101718	8260C	591-78-6	2-Hexanone	UJ
MW04_101718	8260C	67-64-1	Acetone	J
MW04_101718	8260C	107-13-1	Acrylonitrile	UJ
MW04_101718	6020B	7440-38-2	Arsenic, Total	J
MW04_101718	8260C	74-97-5	Bromochloromethane	UJ
MW04_101718	8260C	74-83-9	Bromomethane	UJ
MW04_101718	8260C	56-23-5	Carbon Tetrachloride	UJ
MW04_101718	8260C	75-00-3	Chloroethane	UJ
MW04_101718	8260C	74-87-3	Chloromethane	UJ
MW04_101718	8260C	60-29-7	Ethyl Ether	UJ
MW04_101718	6020B	7439-89-6	Iron, Total	U (0.286)
MW04_101718	6020B	7439-92-1	Lead, Total	UJ
MW04_101718	8260C	78-93-3	2-Butanone	UJ
MW04_101718	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
MW04_101718	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
MW04_101718	6020B	7440-28-0	Thallium, Total	UJ
MW04_101718	8260C	75-69-4	Trichlorofluoromethane	UJ
MW04_101718	6020B	7440-66-6	Zinc, Total	UJ
MW05A_101718	8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
MW05A_101718	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW05A_101718	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW05A_101718	8260C	123-91-1	1,4-Dioxane	UJ
MW05A_101718	537	2355-31-9	2-(N-methyl perfluorooctanesulfonamido) acetic acid	UJ

Data Usability Summary Report For 37-11 30th Street Samples Collected in October 2018 Langan Project No.: 170512301 November 9, 2018 Page 11 of 21

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW05A_101718	8260C	594-20-7	2,2-Dichloropropane	UJ
MW05A_101718	8260C	591-78-6	2-Hexanone	UJ
MW05A_101718	8260C	67-64-1	Acetone	J
MW05A_101718	8260C	107-13-1	Acrylonitrile	UJ
MW05A_101718	6020B	7440-38-2	Arsenic, Total	J
MW05A_101718	8260C	74-97-5	Bromochloromethane	UJ
MW05A_101718	8260C	74-83-9	Bromomethane	UJ
MW05A_101718	8260C	56-23-5	Carbon Tetrachloride	UJ
MW05A_101718	8260C	75-00-3	Chloroethane	UJ
MW05A_101718	8260C	74-87-3	Chloromethane	UJ
MW05A_101718	8260C	60-29-7	Ethyl Ether	UJ
MW05A_101718	6020B	7439-89-6	Iron, Dissolved	U (0.159)
MW05A_101718	6020B	7439-92-1	Lead, Total	J
MW05A_101718	8260C	78-93-3	2-Butanone	UJ
MW05A_101718	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
MW05A_101718	537	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	J
MW05A_101718	8260C	1634-04-4	Tert-Butyl Methyl Ether	J
MW05A_101718	6020B	7440-28-0	Thallium, Total	J
MW05A_101718	8260C	75-69-4	Trichlorofluoromethane	UJ
MW05A_101718	6020B	7440-66-6	Zinc, Total	J
MW05B_101718	8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
MW05B_101718	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW05B_101718	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW05B_101718	8260C	123-91-1	1,4-Dioxane	UJ
MW05B_101718	8260C	594-20-7	2,2-Dichloropropane	UJ
MW05B_101718	8260C	591-78-6	2-Hexanone	UJ
MW05B_101718	8260C	67-64-1	Acetone	J
MW05B_101718	8260C	107-13-1	Acrylonitrile	UJ
MW05B_101718	6020B	7440-38-2	Arsenic, Total	J
MW05B_101718	8260C	74-97-5	Bromochloromethane	UJ
MW05B_101718	8260C	74-83-9	Bromomethane	UJ
MW05B_101718	8260C	56-23-5	Carbon Tetrachloride	J

Data Usability Summary Report For 37-11 30th Street Samples Collected in October 2018 Langan Project No.: 170512301 November 9, 2018 Page 12 of 21

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW05B_101718	8260C	75-00-3	Chloroethane	UJ
MW05B_101718	8260C	74-87-3	Chloromethane	UJ
MW05B_101718	8260C	60-29-7	Ethyl Ether	UJ
MW05B_101718	6020B	7439-92-1	Lead, Total	J
MW05B_101718	8260C	78-93-3	2-Butanone	UJ
MW05B_101718	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
MW05B_101718	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
MW05B_101718	6020B	7440-28-0	Thallium, Total	J
MW05B_101718	8260C	75-69-4	Trichlorofluoromethane	UJ
MW05B_101718	6020B	7440-66-6	Zinc, Total	J
MW07_101718	8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
MW07_101718	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW07_101718	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW07_101718	8260C	123-91-1	1,4-Dioxane	UJ
MW07_101718	8260C	594-20-7	2,2-Dichloropropane	UJ
MW07_101718	8260C	591-78-6	2-Hexanone	UJ
MW07_101718	8260C	67-64-1	Acetone	J
MW07_101718	8260C	107-13-1	Acrylonitrile	UJ
MW07_101718	6020B	7440-38-2	Arsenic, Total	J
MW07_101718	8270D	65-85-0	Benzoic Acid	UJ
MW07_101718	8260C	74-97-5	Bromochloromethane	UJ
MW07_101718	8260C	74-83-9	Bromomethane	UJ
MW07_101718	8260C	56-23-5	Carbon Tetrachloride	UJ
MW07_101718	8260C	75-00-3	Chloroethane	UJ
MW07_101718	8260C	74-87-3	Chloromethane	UJ
MW07_101718	8260C	60-29-7	Ethyl Ether	UJ
MW07_101718	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
MW07_101718	6020B	7439-89-6	Iron, Dissolved	U (0.0750)
MW07_101718	6020B	7439-92-1	Lead, Total	J
MW07_101718	8260C	78-93-3	2-Butanone	UJ
MW07_101718	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
MW07_101718	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ

Data Usability Summary Report For 37-11 30th Street Samples Collected in October 2018 Langan Project No.: 170512301 November 9, 2018 Page 13 of 21

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
MW07_101718	6020B	7440-28-0	Thallium, Total	J
MW07_101718	8260C	75-69-4	Trichlorofluoromethane	UJ
MW07_101718	6020B	7440-66-6	Zinc, Total	J
MW13A_101718	8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
MW13A_101718	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
MW13A_101718	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
MW13A_101718	8260C	123-91-1	1,4-Dioxane	UJ
MW13A_101718	8260C	594-20-7	2,2-Dichloropropane	UJ
MW13A_101718	8260C	591-78-6	2-Hexanone	UJ
MW13A_101718	8260C	67-64-1	Acetone	J
MW13A_101718	8260C	107-13-1	Acrylonitrile	UJ
MW13A_101718	6020B	7440-38-2	Arsenic, Total	J
MW13A_101718	8260C	74-97-5	Bromochloromethane	UJ
MW13A_101718	8260C	74-83-9	Bromomethane	UJ
MW13A_101718	8260C	56-23-5	Carbon Tetrachloride	UJ
MW13A_101718	8260C	75-00-3	Chloroethane	UJ
MW13A_101718	8260C	74-87-3	Chloromethane	J
MW13A_101718	8260C	60-29-7	Ethyl Ether	UJ
MW13A_101718	6020B	7439-92-1	Lead, Total	J
MW13A_101718	8260C	78-93-3	2-Butanone	UJ
MW13A_101718	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
MW13A_101718	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
MW13A_101718	6020B	7440-28-0	Thallium, Total	UJ
MW13A_101718	8260C	75-69-4	Trichlorofluoromethane	UJ
MW13A_101718	6020B	7440-66-6	Zinc, Total	UJ
TB03_101718	8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
TB03_101718	8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
TB03_101718	8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
TB03_101718	8260C	123-91-1	1,4-Dioxane	UJ
TB03_101718	8260C	594-20-7	2,2-Dichloropropane	UJ
TB03_101718	8260C	591-78-6	2-Hexanone	UJ
TB03_101718	8260C	67-64-1	Acetone	J

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
TB03_101718	8260C	107-13-1	Acrylonitrile	UJ
TB03_101718	8260C	74-97-5	Bromochloromethane	UJ
TB03_101718	8260C	74-83-9	Bromomethane	UJ
TB03_101718	8260C	56-23-5	Carbon Tetrachloride	UJ
TB03_101718	8260C	75-00-3	Chloroethane	UJ
TB03_101718	8260C	74-87-3	Chloromethane	UJ
TB03_101718	8260C	60-29-7	Ethyl Ether	UJ
TB03_101718	8260C	78-93-3	2-Butanone	UJ
TB03_101718	8260C	108-10-1	4-Methyl-2-Pentanone	UJ
TB03_101718	8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
TB03_101718	8260C	75-69-4	Trichlorofluoromethane	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

L1841798:

VOCs by SW-846 Method 8260C:

The laboratory control sample and duplicate (LCS/LCSD) for batch WG1169741 exhibited a relative percent difference (RPD) above the control limit for 1,4-dioxane (21%). The associated results in samples MW10_101518, MW02_101518, MW13B_101518, and TB01_101518 are qualified as "UJ" based on potential indeterminate bias.

The initial calibration verification (ICV) for batch WG1169741 on instrument VOA108 exhibited a percent difference (%D) above the control limit for 1,1,2,2-tetrachloroethane (-27.9%), 1,2,3-trichloropropane (-21.6%), Ethyl Ether (-20.7%), and sec-butylbenzene (-26.7%). The associated results in samples MW10_101518, MW02_101518, MW13B_101518, and TB01_101518 are qualified as "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) for batch WG1169741 on instrument VOA108 exhibited a percent difference (%D) above the control limit for chloroethane (-22.7%) and hexachlorobutadiene (-22.2%). The associated results in samples MW10_101518, MW02_101518, MW13B_101518, and TB01_101518 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

The LCS/LCSD for batch WG1170296 exhibited a RPD above the control limit for 2,4dimethylphenol (46%). The associated results in samples MW10_101518, MW02_101518, and MW13B_101518 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270C-SIM:

The CCV for batch WG1170297 on instrument SV118 exhibited a %D above the control limit for acenaphthylene (-25.7%). The associated results in samples MW10_101518, MW02_101518, and MW13B_101518 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The LCS/LCSD for batch WG1169664 exhibited a RPD above the control limit for endrin (21%), 4,4'-DDT (27%), and methoxychlor (24%). The associated results in samples MW10_101518, MW02_101518, and MW13B_101518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The results for sample MW10_101518 exhibited dual column imprecision for cis-Chlordane. The result is qualified as "J" based on potential indeterminate bias.

Metals by SW-846 Method 6020B:

The matrix spike (MS) for batch WG1169277 exhibited a percent recovery below the lower control limit (LCL) for mercury, dissolved (71%). The associated results in samples MW10_101518, MW02_101518, and MW13B_101518 are qualified as "UJ" based on potential low bias.

The lab duplicate and parent sample MW13B_101518 exhibited a RPD above the control limit for aluminum, total (27%). The associated results in sample MW13B_101518 are qualified as "J" based on potential indeterminate bias.

The lab duplicate and parent sample MW10_101518 exhibited a RPD above the control limit for cobalt, dissolved (22%). The associated results in sample MW10_101518 are qualified as "J" based on potential indeterminate bias.

L1842082:

VOCs by SW-846 Method 8260C:

The LCS for batch WG1170946 exhibited a percent recovery below the lower control limit (LCL) for naphthalene (67%, 63%) and 1,2,3-trichlorobenzene (64%, 62%). The associated results in samples MW06_101618, MW03_101618, GWFB01_101618, and TB02_101618 are qualified as "UJ" based on potential low bias.

The initial calibration (ICAL) for batch WG1170946 on instrument VOA101 exhibited a response factor (RF) below the control limit for 1,4-dioxane (0.0010), acrylonitrile (0.0410), and 4-methyl-2-pentanone (0.0610). The associated results in samples MW06_101618, MW03_101618, GWFB01_101618, and TB02_101618 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1170946 on instrument VOA101 exhibited a %D above the control limit for bromomethane (-47%) and dichlorodifluoromethane (-39.1%). The associated results in samples MW06_101618, MW03_101618, GWFB01_101618, and TB02_101618 are qualified as "UJ" based on potential indeterminate bias.

The ICV for batch WG1170946 on instrument VOA101 exhibited a response factor (RF) below the control limit for 2-hexanone (0.0980). The associated results in samples MW06_101618, MW03_101618, GWFB01_101618, and TB02_101618 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1170946 on instrument VOA101 exhibited a %D above the control limit for 1,2,4-trichlorobenzene (23.4%), 1,2-dibromo-3-chloropropane (30.5%), bromoform (24.9%), dibromomethane (21.1%), tert-butyl methyl ether (21.5%), and vinyl acetate (21.6%). The associated results in samples MW06_101618, MW03_101618, GWFB01_101618, and TB02_101618 are qualified as "UJ" based on potential indeterminate bias.

PFAS by USEPA Method 537M:

The method blank (MB) for batch WG1170058 exhibited a detection of sodium 1h,1h,2h,2hperfluorooctane sulfonate (6:2) (120 ng/L). The associated results in samples MW07_101618, GWDUP01_101618, and GWFB01_101618 are qualified as "U" based on potential blank contamination.

The field blank (FB) GWFB01_101618 exhibited a detection of sodium 1h,1h,2h,2hperfluorooctane sulfonate (6:2) (5.3 ng/L). The associated results in samples MW07_101618 and GWDUP01_101618 are qualified as "U" based on potential blank contamination.

The LCS/LCSD for batch WG1170058 exhibited a RPD above the control limit for n-ethyl-n-((heptadecafluorooctyl)sulphonyl) glycine (34%). The associated results in samples MW07_101618, GWDUP01_101618, and GWFB01_101618 are qualified as "UJ" based on potential indeterminate bias.

The field duplicate GWDUP01_101618 and parent sample MW07_101618 exhibited a RPD above the control limit for perfluorohexanesulfonic acid (PFHxS) (35.9%). The associated results in samples MW07_101618 and GWDUP01_101618 are qualified as "J" based on potential indeterminate bias.

L1842363:

VOCs by SW-846 Method 8260C:

The ICAL for batch WG1170923 on instrument VOA105 exhibited a response factor (RF) below the control limit for 1,2-dibromo-3-chloropropane (0.0390), 1,4-Dioxane (0.0010), acetone (0.0340), acrylonitrile (0.0340), bromomethane (0.0830), and 2-Butanone (0.030). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, MW04_101718, and TB03_101718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICV for batch WG1170923 on instrument VOA105 exhibited a response factor (RF) below the control limit for chloroethane (0.0990). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, MW04_101718, and TB03_101718 are qualified as "UJ" based on potential indeterminate bias.

The CV for batch WG1170923 on instrument VOA105 exhibited a %D above the control limit for 2-hexanone (20.6%). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, MW04_101718, and TB03_101718 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1170923 on instrument VOA105 exhibited a RF below the control limit for 1,1,2,2-tetrachloroethane (0.2970). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, MW04_101718, and TB03_101718 are qualified as "UJ" based on potential indeterminate bias.

The CCV for batch WG1170923 on instrument VOA105 exhibited a %D above the control limit for 1,1,1-trichloroethane (TCA) (-24.1%), 2,2-dichloropropane (-33.8%), bromochloromethane (-23.6%), carbon tetrachloride (-33.2%), chloromethane (20.9%), Ethyl Ether (-46.8%), 4-Methyl-2-Pentanone (27.8%), tert-butyl methyl ether (-24.6%), and trichlorofluoromethane (-

47.7%). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, MW04_101718, and TB03_101718 are qualified as "J" and "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

The CCV for batch WG1171220 on instrument SV107 exhibited a %D above the control limit for benzoic acid (-30.8%) and hexachlorocyclopentadiene (26.2%). The associated results in sample MW07_101718 are qualified as "UJ" based on potential indeterminate bias.

PFAS by USEPA Method 537M:

The CCV for batch WG1172308 on instrument LCMS1 exhibited a %D above the control limit for 2-(n-methyl perfluorooctanesulfonamido) acetic acid (41%) and sodium 1h,1h,2h,2h-perfluorooctane sulfonate (6:2) (153.6%). The associated results in samples MW05A_101718 and MW01_101718 are qualified as "J" and "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6020B:

The MS for batch WG1171330 exhibited a percent recovery below the lower control limit (LCL) for arsenic, total (71%), lead, total (73%), and thallium, total (70%). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, and MW04_101718 are qualified as "J" and "UJ" based on potential low bias.

The matrix spike and duplicate (MS/MSD) for batch WG1171330 exhibited a relative percent difference (RPD) above the control limit for zinc, total (24%). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, and MW04_101718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The MB for batch WG1171356 exhibited a detection of iron, dissolved (67 ug/L). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, and MW01_101718 are qualified as "U" based on potential blank contamination.

The MB for batch WG1171330 exhibited a detection of iron, total (50.3 ug/L). The associated results in sample MW04_101718 are qualified as "U" based on potential blank contamination.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

L1841798:

SVOCs by SW-846 Method 8270D:

The LCS for batch WG1170296 exhibited a percent recovery above the upper control limit (UCL) for 4-nitrophenol (85%). The associated results in samples MW10_101518, MW02_101518, and MW13B_101518 are non-detect. No qualification is necessary.

L1842082:

PFAS by USEPA Method 537M:

The MS for batch WG1170058 exhibited a percent recovery below the lower control limit (LCL) for sodium 1h,1h,2h,2h-perfluorooctane sulfonate (6:2) (0% 0%). Organic data are not qualified on the basis of MS/MSD recoveries alone.

The MS/MSD for batch WG1170058 exhibited a RPD above the control limit for n-ethyl-n-((heptadecafluorooctyl)sulphonyl) glycine (45%). Organic data are not qualified on the basis of MS/MSD RPD alone.

Metals by SW-846 Method 6020B:

The FB GWFB01_101618 exhibited a detection of barium, total (0.00089 mg/L) and sodium, dissolved (0.1 mg/L). The associated results in samples MW06_101618 and MW03_101618 are greater than 10X the blank concentration. No qualification is necessary.

L1842363:

VOCs by SW-846 Method 8260C:

The LCS for batch WG1170923 exhibited a percent recovery above the UCL for chloroethane (140%, 140%) and ethyl ether (150%, 150%). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, MW04_101718, and TB03_101718 are non-detect. No qualification is necessary.

The MS for batch WG1170923 exhibited a percent recovery above the UCL for carbon tetrachloride (160%, 150%), trichlorofluoromethane (190%, 180%), 1,2-dichloroethane (140%,

140%), 1,1,1-trichloroethane (140%, 140%), bromomethane (140%, 140%), chloroethane (160%, 160%), bromochloromethane (140%), and ethyl ether (160%, 160%). Organic data are not qualified on the basis of MS recoveries alone.

The MS for batch WG1170923 exhibited a percent recovery below the LCL for 2-hexanone (53%) and trans-1,4-dichloro-2-butene (63%, 69%). Organic data are not qualified on the basis of MS recoveries alone.

The MS/MSD for batch WG1170923 exhibited a RPD above the control limit for naphthalene (21%) and 1,4-dioxane (29%). Organic data are not qualified on the basis of MS/MSD RPDs alone.

SVOCs by SW-846 Method 8270D:

The LCS for batch WG1170566 exhibited a percent recovery above the upper control limit (UCL) for 4-nitrophenol (82%, 85%). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, MW05B_101718, and MW04_101718 are non-detect. No qualification is necessary.

The matrix spike (MS) for batch WG1170566 exhibited a percent recovery above the upper control limit (UCL) for 4-nitrophenol (94%, 88%). Organic data are not qualified on the basis of MS recoveries alone.

Pesticides by SW-846 Method 8081B:

The MS/MSD for batch WG1170543 exhibited a RPD above the control limit for delta-bhc (38%). Organic data are not qualified on the basis of MS/MSD RPDs alone.

Metals by SW-846 Method 6020B:

The MS for batch WG1171356 exhibited a percent recovery above the upper control limit (UCL) for calcium, dissolved (129%). The associated results in sample MW07_101718 are greater than 4X the spiked amount. No qualification is necessary.

The MB for batch WG1171330 exhibited a detection of iron, total (50.3 ug/L). The associated results in samples MW07_101718, GWDUP01_101718, MW05A_101718, MW01_101718, MW13A_101718, and MW05B_101718 are greater than 10X the blank concentration. No qualifier is necessary.

COMMENTS:

Field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less

than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30% for groundwater. The following analytes did not meet the precision criteria:

• GWDUP01_101618 and MW07_101618: Perfluorohexanesulfonic acid (PFHxS)

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist

Nicole Kung

From:	dec.sm.NYENVDATA <nyenvdata@dec.ny.gov></nyenvdata@dec.ny.gov>		
Sent:	Monday, December 31, 2018 11:01 AM		
То:	Dana Monz		
Cc:	Emily Snead; Nicole Kung; Ahmed, Hasan R (DEC)		
Subject:	RE: Data Submittal for Facility C241211		

Dana,

Thank you for your EDD submission. NYSDEC has successfully uploaded the data from the EDDs "20181116 1426.C241211.NYSDEC_MERGE" and "20181116 1429.C241211.NYSDEC_MERGE" to 37-11 30th Street in the NYSDEC database and the data is available for use within the system.

From: Dana Monz [mailto:dmonz@langan.com]
Sent: Friday, November 16, 2018 2:35 PM
To: dec.sm.NYENVDATA <NYENVDATA@dec.ny.gov>
Cc: Emily Snead <esnead@langan.com>; Nicole Kung <nkung@langan.com>
Subject: Data Submittal for Facility C241211

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Good afternoon,

Please find attached the data submittal for Facility C241211. There are two submittals, the first one contains both soil and groundwater data, and the second contains air data. Please upload the soil and groundwater one first (20181116 1426.C241211.NYSDEC_MERGE). Let me know if you have any questions or trouble accessing the attachments.

Best, Dana

Dana Monz Data Analyst Direct: 215.491.6579 File Sharing Link

LANGAN

Phone: 215.491.6500 Fax: 215.491.6501 P.O. Box 1569 Doylestown, PA 18901-0219 Shipping Address: 2700 Kelly Road, Suite 200 Warrington, PA 18976-3653

www.langan.com

PENNSYLVANIA NEW JERSEY NEW YORK CONNECTICUT WASHINGTON, DC VIRGINIA WEST VIRGINIA OHIO FLORIDA TEXAS ARIZONA CALIFORNIA ABU DHABI ATHENS DOHA DUBAI ISTANBUL LONDON PANAMA

Langan's goal is to be SAFE (Stay Accident Free Everyday)

This message may contain confidential, proprietary, or privileged information. Confidentiality or privilege is not intended to be waived or lost by erroneous transmission of this message. If you receive this message in error, please notify the sender immediately by return email and delete this message from your system. Disclosure, use, distribution, or copying of a message or any of its attachments by anyone other than the intended recipient is strictly prohibited.

APPENDIX H LABORATORY ANALYTICAL REPORTS

SEPARATE ATTACHMENT