J.R. Holzmacher P.E., LLC

3555 Veterans Memorial Highway, Suite A, Ronkonkoma, New York 11779-7636 Tel: (631) 234-2220 Fax: (631) 234-2221 e-mail: info@holzmacher.com

April 13, 2017

Environmental Solution C/O GE & P Recycling 36-08 Review Avenue Long Island City, New York

> Re: Phase II ESA Report The Property Located at 36-08 Review Avenue Long Island City, New York

To whom it may concern:

J.R. Holzmacher P.E. LLC (JRH) was retained by the current owner to prepare a Phase II Environmental Site Assessment (ESA) Report for the above referenced property. The scope of work presented in this report was completed in accordance with the Phase II ESA Investigation Work Plan dated December 21, 2010. The Phase II ESA Work Plan was prepared by Techtonic Engineering & Surveying Consultants P.C. (Techtonic) located at 70 Pleasant Hill Road, Mountainville, NY 10953. The Phase II ESA Work Plan proposed twenty-five (25) soil borings and four (4) permanent monitoring wells. Twenty-three (23) soil borings were completed and four (4) permanent monitoring wells were installed. Two (2) boring locations initially proposed were inaccessible during the investigation. The details of the Phase II ESA Investigation completed by JRH is provided within this report. There have been no previous investigations completed on this site, to the knowledge of J.R. Holzmacher at the time of this report.

1.0 BACKGROUND

The subject parcel is located at 36-04, 36-08, and 37-10 Review Avenue in Long Island City, Queens, NY. The subject property consists of three adjacent tax parcels identified as Tax Map Section 2, Block 312, Lots 19, 34, and 39). The site location map is provided in Figure 1.

The Phase II ESA Work Plan referenced a Phase I ESA report also prepared by Tectonic, indicated that there was limited information regarding the history of the site prior to 1980. Since the late 1980s the site was occupied by Allied Extruders who manufactured sheet plastic from polyethylene beads which were delivered to the site by railcar. Previous site occupants included Eastern Distillery Company (an alcoholic beverage distillery), Andrews Lead Company (a lead pipe and sheet metal manufacturer), Carbona Products Company (a manufacturer of carbon tetrachloride dry cleaning chemical), Foundry Chemicals Company (an unknown chemical company), and Paragon Smelting Company (a metal manufacturer). The dates of tenancy or description of site operations for these businesses were not available to Techtonic at the time they generated their report. Additional information obtained by records sought by Techtonic

indicated that the building was used as a lead smelting and manufacturing operation, coal was utilized as the primary fuel used in the building, and the northern portion of the building was used for bottling Carbona Cleaning Fluid (carbon Tectrachloride) which is a dry cleaning fluid. The Phase I ESA indicated that a representative of the current owner during the time of inspection, advised that several underground storage tanks (USTs) were either abandoned in place or removed.

There were five (5) off-site recognized environmental condition (RECs) identified in the Phase I and Phase II ESA prepared by Techtonic.

- 1. A petroleum spill at Getty Oil Terminal, located approximately 264 feet west of the Site at 30-23 Greenport Avenue, has the potential to impact the soil and groundwater of the property with MTBE, BTEX and semi-volatile organic compounds.
- 2. A petroleum spill at Buckeye Pipeline, located approximately 267 feet west of the Site at 30-25 Greenport Avenue, has the potential to impact the soil and groundwater of the property with MTBE, BTEX and semi-volatile organic compounds.
- 3. A New York State Superfund site, Quanta Resources Corporation/Review Avenue Development II, located approximately 381 feet from the property at 37-80 Review Avenue, has significant potential to impact the soils and groundwater on the subject property with PCBs, chlorinated solvents, LNAPLs, heavy metals and petroleum hydrocarbons from waste oil contamination located on the site.
- 4. A Brownfields site, Nanco Construction Corporation, located on an adjacent parcel at 37-30 Review Avenue has the potential to impact the soil and groundwater on the subject property with volatile organic compounds, metals, PCBs and petroleum hydrocarbons.
- 5. A New York State Inactive Class 3 Waste site at Roehr Chemicals Inc. consisting of a xylene spill located upgradient of the site at 52-20 37th Street has the significant potential to impact the soil and groundwater on the property with xylene and acetone contamination.

2.0 SUBSURFACE INVESTIGATION

On-Point Locating was retained to complete a ground penetrating radar (GPR) for the interior and exterior premises of the entire building and site on January 23, 2017. JRH was on site with On-Point to identify the boring locations and potential former UST locations. Four (4) USTs were identified.

The Phase II investigation was implemented by the drilling contractor, Cascade Drilling and Technical Services with JRH oversight by Arthur Scheff, Senior Environmental Scientist. Alpha Analytical Laboratories of Mahwah, NJ a New York State Department of Health (NYSDOH) certified lab numbers 11627 and 11148 analyzed all the soil and water samples collected for this Phase II ESA Investigation.

Boring locations were provided on a site plan provided in the Phase II ESA Work Plan. The twenty-three (23) soil borings and four (4) installed monitoring wells are shown in the attached Figure 2. The Geological Boring Logs are located in Attachment A.

Soil samples were collected utilizing a GeoprobeTM with five (5) foot macrocore sampling tubes. Two (2) samples were collected from each boring. One sample was collected from 2 to 10 feet below ground surface at the zone with the highest PID reading or where staining appeared to be evident and one sample just above the groundwater table. The soil samples were visually characterized by a JRH environmental scientist and screened for the presence of volatile organic compound (VOCs) using a Mini Rae model 2000 portable photoionization detector (PID).

There were no odors nor evidence of product identified at boring locations B-1 through B-6, B-10, B-13, B-14, B-15, B-17, B-20, B-21, and B-23. A petroleum odor, PID readings, and visual staining were identified at boring locations B-2, B-11 and B-22. Product was encountered at boring locations B-8, B-9, B-16, B-18, B-19, B-24, and B-25. JRH contacted the New York State Department of Environmental Conservation (NYSDEC) to report a spill. It is our opinion that the product identified at boring locations B-2 and B-3 may have been caused by the formerly abandoned tanks in those locations, however, we believe the product encountered at the other locations along the site are likely due to off-site spills that impacted the subject property.

The soil and water samples were picked up by Alpha Analytical Laboratories. Soil samples were analyzed for Target Compound List Volatile Organic Compounds (TCL VOCs) EPA Method 8260C, rev. 2006, Target Compound List Volatile Semi-Organic Compounds (TCL SVOCs) EPA Method 8270D, rev. 2007, Pesticides (EPA Method 8081B, rev. 2000), Polychlorinated Biphenyl (PCBs) EPA Method 8082A, rev. 2000, and Target Analyte List (TAL Metals) EPA Method 6010C, rev. 2007. Groundwater samples were analyzed for TCL VOCs (EPA 8260), TCL SVOCs (EPA 8270), PCBs/Pesticides (EPA 8081/8082), and TAL Metals (filtered and unfiltered).

Four (4) permanent monitoring wells, B-6 (W), B-8 (W), B-9 (W) and B-10 (W), were installed as per the attached Figure 2. Monitoring well B-6 (W) is up gradient of the property. Monitoring wells B-9 (W) and B-10 (W) are downgradient of the property. All four wells were constructed of two-inch diameter PVC casing and .020 slot PVC screen. Each screen extended

approximately five feet below the water table. B-10 (W) was completed to a depth of 15 feet below grade. B-9 (W) and B-8 was completed to a depth of 25 feet below grade. B-6 (W) was completed to a depth of 28 feet below grade. The annular space around the screen and five feet above the screen was filled with a clean sand pack. A hydrated bentonite seal was placed directly above the sand pack and the remainder of the annular space grouted with a cement/bentonite mixture. The wells were protected in a metal curb box set in concrete at basement grade. A designated measuring point on the top of each well casing was surveyed vertically by JRH to a common datum.

Groundwater levels were measured using a Heron Instruments oil/water Interface Meter for the twenty three (23) boring locations prior to purging and sampling from January 24, 2017 to January 31, 2017. On February 21, 2017 JRH surveyed the monitoring wells, and obtained groundwater level measurements for the four monitoring wells. Using these measurements along with a groundwater contour map for this location, the groundwater was determined to flow westerly.

The four wells were purged and sampled by an experienced JRH environmental scientist from January 24 through January 31, 2017. JRH measured water levels and collected groundwater samples in accordance with current EPA analytical methods set forth in SW-846. Prior to sampling, each well was purged a minimum of three casing volumes with per-well dedicated tubing set in the middle of the well screen.

The remaining nineteen (19) ground water samples were recovered through temporary well points on January 24 through January 31, 2017. The temporary well points extended through the Geoprobe rods so that the well point straddles the estimated groundwater surface. The temporary well points were abandoned when the Geoprobe rods were removed.

3.0 SOIL ANALYTICAL RESULTS

The analytical results for soil samples are summarized on Tables 1 through 5 and the laboratory analysis is included in Attachment B.

Soil analytical results were compared to 6 NYCRR Part 375-6.8 Unrestricted, Residential, Restricted Residential, Restricted Commercial, and Restricted Industrial Soil Cleanup Levels (SCOs).

The following VOCs were detected with exceeding concentrations above the Restricted Industrial SCOs:

An exceedance for 1,1,1-Trichloroethane was detected at boring location B-11 from 13-feet to 15-feet with a concentration of 1500 mg/kg. Exceedances for Carbon tetrachloride was detected at boring locations B-11 from 3-feet to 5-feet below grade and from 13-feet to 15-feet below grade with concentrations of 180 mg/kg and 4500 mg/kg respectfully. An exceedance for Trichloroethane was detected at boring location B-11 from 13-feet to 15-feet below grade with a concentration of 700 mg/kg.

The following SVOCs were detected with exceeding concentrations above the Restricted Industrial SCOs:

Exceedances for Benzo(a)anthracene was detected at boring locations B-5 and B-6 from 8-feet to 10-feet below grade; and at boring location B-18 from 5-feet to 7-feet below grade with concentrations of 5.8 mg/kg, 9.4 mg/kg, and 32E mg/kg respectfully. An exceedance for Benzo(a)pyrene was detected at boring locations B-5 and B-6 from 8-feet to 10-feet below grade, at boring locations B-18 and B-19 from 5-feet to 7-feet below grade and 13-feet to 15-feet below grade, and at boring location B-24 from 5-feet to 7-feet below grade with concentrations of 5.8 mg/kg, 9.4 mg/kg, 29 E mg/kg, 2.5 mg/kg, 1.7 mg/kg, 1.1 J mg/kg, and 1.4 mg/kg respectively. Exceedances for Benzo(b)fluoranthene was detected at boring location B-5 from 8-feet to 10-feet below grade and at boring location B-18 from 5-feet to 7-feet below grade with concentrations of 7 mg/kg and 39 E mg/kg respectively. Exceedances for Dibenzo(a,h)anthracene was detected at boring location B-18 from 5-feet to 7-feet below grade with concentrations of 1.3 mg/kg and 4.2 mg/kg respectively. Exceedances for Indeno (1,2,3-cd) pyrene was detected at boring location B-18 from 5-feet to 7-feet below grade with concentrations of 16 E.

The following metals were detected with exceeding concentrations above the Restricted Industrial SCOs:

Exceedances for Zinc was detected at boring location B-24 from 5-feet to 7-feet below grade with concentrations of 60,000 mg/kg. A concentration of 3900 was detected for Lead at boring location B-24 from 5-feet to 7-feet below grade. The Restricted Industrial SCO is also 3900. TCLP analysis was completed for Lead and Zinc. This was completed to provide to a disposal facility should soils be removed from this area in the future. The TCLP results are included in Appendix C. Copper and Iron were detected at several of the boring locations with exceeding concentrations above the Restricted Residential SCOs for metals, however, there are no limits set for Restricted Residential Use:

There were no Pesticide or PCB detections detected above the Restricted Industrial SCOs.

4.0 GROUNDWATER ANALYTICAL RESULTS

Tables 6 through 10 summarize the laboratory data for the twenty three groundwater samples collected. The laboratory report is included in Attachment C. Groundwater analytical results were compared to the New York State Groundwater Standards specified in the NYSDEC June 1998 Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1 (Addendum June 2004). VOCs, SVOCs, Metals, Pesticides and PCBs were detected with exceeding concentrations:

5.0 RECOMMENDATIONS

Based upon the sampling and analysis completed at the above referenced site, it is recommended that Tank A and Tank C be removed by a qualified environmental contractor. An exceedance for 1,1,1-Trichloroethane was detected at boring location B-11 from 13-feet to 15-feet with a concentration of 1500 mg/kg which may have been an impact from prior use on this site. Select soils should be removed from this area upon removal of the tank. Since B-11 is located in close proximity to Tank A, these select soils can be removed when the tank is removed. Any soils that are removed from the site should be properly disposed of and manifested by a qualified environmental professional.

It is our opinion that the product identified at boring locations B-2 and B-11 may have been an impacted from the previous tank use, however, we believe the product encountered at the other locations along the site are likely due to spills from adjacent parcels or parcels in close proximity to the subject property, therefore, we do not recommend any further investigations.

Please call if you have any questions or would like to discuss the project further.

Very Truly Yours, J.R. Holzmacher P.E. LLC

Reather V. Sersenberg

Heather V. Sonnenberg, Project Engineer

Cc: Paul Marazzo JRH/hvs

 $P:\2017\MaraP\17-01$ 36-04, 36-08 and 37-10 Review Avenue. LIC\Task II - Phase II Report\Phase II Report\2017-04-10 Review Avenue Phase II ESA Report.doc

FIGURES

TABLES

LABORATORY TABULATION

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

SAMPLING DATE1/25/20171/25/20171/25/2017SAMPLE DEPTH (ft.)NY- RESC8-10'18-20'8-10'1,1,1,2-Tetrachloroethanemg/kgNDNDNE1,1,1-Trichloroethane5001000mg/kg0.00012 J0.00007 JNE1,1,2-Tetrachloroethanemg/kgNDNDNENE1,1,2-Tetrachloroethanemg/kgNDNDNE1,1,2-Tetrachloroethanemg/kgNDNDNE1,1,2-Trichloroethanemg/kgNDNDNE1,1,2-Trichloroethanemg/kgNDNDNE1,1-Dichloroethane240480mg/kgNDNDNE1,1-Dichloroethane5001000mg/kgNDNDNE1,1-Dichloroethanemg/kgNDNDNENE1,2,3-Trichloroptopenemg/kgNDNDNE1,2,3-Trichlorobenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trichlorobenzene190380mg/kgNDNDNE1,2-Dibromo-3-chloropropanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE <th>I/26/2017 I/26/2017 0' I4-16' Results ND D A.8 D 35 D ND</th> <th>I/26/2017 8-10' Results ND 0.00008 J ND ND</th> <th>1/26/2017 18-20' Results ND 0.00009 J ND ND 0.00017 J ND ND ND ND ND ND</th>	I/26/2017 I/26/2017 0' I4-16' Results ND D A.8 D 35 D ND	I/26/2017 8-10' Results ND 0.00008 J ND ND	1/26/2017 18-20' Results ND 0.00009 J ND ND 0.00017 J ND ND ND ND ND ND
SAMPLE DEPTH (ft.) NY- RESC NY-RESI Units Results Results Results 1,1,1,2-Tetrachloroethane mg/kg ND ND NE 1,1,1-Trichloroethane 500 1000 mg/kg 0.00012 J 0.00007 J NE 1,1,2-Tetrachloroethane mg/kg ND ND NE 1,1,2-Trichloroethane mg/kg ND ND NE 1,1,2-Trichloroethane mg/kg ND ND NE 1,1,2-Trichloroethane mg/kg ND ND NE 1,1-Dichloroethane mg/kg ND ND NE 1,1-Dichloroethane 240 480 mg/kg ND ND NE 1,1-Dichloroethane mg/kg ND ND NE NE ND NE 1,1-Dichloroptopene mg/kg ND ND NE ND NE 1,2,3-Trichlorobenzene mg/kg ND ND NE ND NE 1,2,4,5-Tetramethylbenzene mg/kg ND ND NE NE ND NE	O' 14-16' Ilts Results D ND D 35 D ND	8-10' Results ND 0.00008 J ND	I8-20' Results ND 0.00009 J ND 0.00017 J ND ND
NY- RESCNY- RESCViitsResultsResultsResults1,1,1,2-Tetrachloroethane5001000mg/kgNDNDNE1,1,1-Trichloroethane5001000mg/kg0.00012 J0.00007 JNE1,1,2,2-Tetrachloroethanemg/kgNDNDNE1,1,2-Trichloroethanemg/kgNDNDNE1,1,2-Trichloroethanemg/kgNDNDNE1,1-Dichloroethane240480mg/kgNDND1,1-Dichloroethane5001000mg/kgNDND1,1-Dichloroethane5001000mg/kgNDND1,1-Dichloroethane5001000mg/kgNDND1,1-Dichloroptopenemg/kgNDNDNE1,2,3-Trichlorobenzenemg/kgNDNDNE1,2,4,5-Tetramethylbenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trinethylbenzene190380mg/kgNDND1,2-Dibromo-3-chloropropanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE	Its Results D ND D A.8 D ND D 35 D ND	ResultsND0.00008 JNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND	Results ND 0.00009 J ND 0.00017 J ND
RESCNY-RESIUnitsResultsResultsResults $1,1,1,2$ -Tetrachloroethane5001000mg/kgNDNDNE $1,1,1$ -Trichloroethane5001000mg/kg0.00012 J0.00007 JNE $1,1,2,2$ -Tetrachloroethanemg/kgNDNDNE $1,1,2,2$ -Tetrachloroethanemg/kgNDNDNE $1,1,2$ -Trichloroethanemg/kgNDNDNE $1,1,2$ -Trichloroethane240480mg/kgNDND $1,1$ -Dichloroethane5001000mg/kgNDND $1,1$ -Dichloroethane5001000mg/kgNDND $1,1$ -Dichloroptopenemg/kgNDNDNE $1,2,3$ -Trichlorobenzenemg/kgNDNDNE $1,2,4,5$ -Tetramethylbenzenemg/kgNDNDNE $1,2,4$ -Trichlorobenzenemg/kgNDNDNE $1,2,4$ -Trimethylbenzene190380mg/kgNDNDNE $1,2$ -Dibromo-3-chloropropanemg/kgNDNDNE $1,2$ -Dibromoethanemg/kgNDNDNE $1,2$ -Dibromoethanemg/kgNDNDNE $1,2$ -Dibromoethanemg/kgNDNDNE $1,2$ -Dibromoethanemg/kgNDNDNE $1,2$ -Dibromoethanemg/kgNDNDNE $1,2$ -Dibromoethanemg/kgNDNDNE $1,2$ -Dibromoethanemg/kgND </th <th>Results D ND D A.8 D 35 D ND</th> <th>Results ND 0.00008 J ND ND</th> <th>Results ND 0.00009 J ND 0.00017 J ND ND</th>	Results D ND D A.8 D 35 D ND	Results ND 0.00008 J ND	Results ND 0.00009 J ND 0.00017 J ND
1,1,1,2-Tetrachloroethanemg/kgNDNDNI $1,1,1$ -Trichloroethane5001000mg/kg0.00012 J0.00007 JNI $1,1,2,2$ -Tetrachloroethanemg/kgNDNDNDNI $1,1,2,2$ -Tetrachloroethanemg/kgNDNDNI $1,1,2$ -Trichloroethanemg/kgNDNDNI $1,1,2$ -Trichloroethane240480mg/kgNDND $1,1$ -Dichloroethane5001000mg/kgNDNDNI $1,1$ -Dichloroethane5001000mg/kgNDNDNI $1,1$ -Dichloroethane5001000mg/kgNDNDNI $1,2,3$ -Trichlorobenzenemg/kgNDNDNI $1,2,3$ -Trichloropropanemg/kgNDNDNI $1,2,4,5$ -Tetramethylbenzenemg/kgNDNDNI $1,2,4$ -Trichlorobenzenemg/kgNDNDNI $1,2,4$ -Trimethylbenzene190380mg/kgNDND $1,2$ -Dibromo-3-chloropropanemg/kgNDNDNI $1,2$ -Dibromoethanemg/kgNDNDNI	D ND D A.8 D ND D 35 D ND	ND0.00008 JNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND	ND 0.00009 J ND 0.00017 J ND
1,1-Trichloroethane 500 1000 mg/kg 0.00012 J 0.00007 J NI 1,1,2,2-Tetrachloroethane mg/kg ND ND ND NI 1,1,2-Trichloroethane mg/kg ND ND ND NI 1,1-2-Trichloroethane mg/kg ND ND ND NI 1,1-Dichloroethane 240 480 mg/kg ND ND NI 1,1-Dichloroethane 500 1000 mg/kg ND ND NI 1,1-Dichloroethane 500 1000 mg/kg ND ND NI 1,1-Dichloroptopene mg/kg ND ND NI 1,2,3-Trichlorobenzene mg/kg ND ND NI 1,2,3-Trichloropropane mg/kg ND ND NI 1,2,4.5-Tetramethylbenzene mg/kg ND ND NI 1,2,4-Trichlorobenzene mg/kg ND ND NI 1,2-A-Trimethylbenzene 190 380 mg/kg	D ND D 4.8 D ND D 35 D ND	0.00008 J ND ND ND ND ND ND ND ND ND ND	0.00009 J ND 0.00017 J ND ND ND ND ND ND
1,1,2,2-Tetrachloroethanemg/kgNDNDNI1,1,2-Trichloroethanemg/kgNDNDNDNI1,1-Dichloroethane240480mg/kgNDNDNI1,1-Dichloroethane5001000mg/kgNDNDNI1,1-Dichloroethane5001000mg/kgNDNDNI1,1-Dichloroethene5001000mg/kgNDNDNI1,2,3-Trichlorobenzenemg/kgNDNDNI1,2,3-Trichloropropanemg/kgNDNDNI1,2,4.5-Tetramethylbenzenemg/kgNDNDNI1,2,4-Trichlorobenzenemg/kgNDNDNI1,2,4-Trimethylbenzene190380mg/kgNDND1,2-Dibromo-3-chloropropanemg/kgNDNDNI1,2-Dibromoethanemg/kgNDNDNI	D ND D A.8 D ND D 35 D ND	ND ND ND ND ND ND ND ND ND ND	ND ND 0.00017 J ND ND ND ND ND
1,1,2-Trichloroethanemg/kgNDNDNI1,1-Dichloroethane240480mg/kgNDNDNI1,1-Dichloroethane5001000mg/kgNDNDNI1,1-Dichloroethene5001000mg/kgNDNDNI1,1-Dichloropropenemg/kgNDNDNI1,2,3-Trichlorobenzenemg/kgNDNDNI1,2,3-Trichloropropanemg/kgNDNDNI1,2,4.5-Tetramethylbenzenemg/kgNDNDNI1,2,4-Trichlorobenzenemg/kgNDNDNI1,2,4-Trimethylbenzene190380mg/kgNDND1,2-Dibromo-3-chloropropanemg/kgNDNDNI1,2-Dibromoethanemg/kgNDNDNI	D ND D ND D ND D ND D ND D ND D A.8 D ND D 35 D ND	ND ND ND ND ND ND ND ND ND	ND 0.00017 J ND ND ND ND ND ND
1,1-Dichloroethane240480mg/kgNDNDNI1,1-Dichloroethane5001000mg/kgNDNDNI1,1-Dichloroptopenemg/kgNDNDNI1,2,3-Trichlorobenzenemg/kgNDNDNI1,2,3-Trichloroptopanemg/kgNDNDNI1,2,4,5-Tetramethylbenzenemg/kgNDNDNI1,2,4-Trichlorobenzenemg/kgNDNDNI1,2,4-Trichlorobenzenemg/kgNDNDNI1,2,4-Trimethylbenzene190380mg/kgNDND1,2-Dibromo-3-chloropropanemg/kgNDNDNI1,2-Dibromoethanemg/kgNDNDNI	D ND D ND D ND D ND D ND D 4.8 D ND D 35 D ND	ND ND ND ND ND ND ND ND	0.00017 J ND ND ND ND ND ND
1,1-Dichloroethene5001000mg/kgNDNDNI1,1-Dichloropropenemg/kgNDNDNDNI1,2,3-Trichlorobenzenemg/kgNDNDNI1,2,3-Trichloropropanemg/kgNDNDNI1,2,4,5-Tetramethylbenzenemg/kgNDNDNI1,2,4-Trichlorobenzenemg/kgNDNDNI1,2,4-Trichlorobenzenemg/kgNDNDNI1,2,4-Trimethylbenzene190380mg/kgNDND1,2-Dibromo-3-chloropropanemg/kgNDNDNI1,2-Dibromoethanemg/kgNDNDNI	D ND D ND D ND D ND D 4.8 D ND D 35 D ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND
1,1-Dichloropropenemg/kgNDNDNI1,2,3-Trichlorobenzenemg/kgNDNDND1,2,3-Trichloropropanemg/kgNDNDNE1,2,4-5-Tetramethylbenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trimethylbenzene190380mg/kgNDND1,2-Dibromo-3-chloropropanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE	D ND D ND D ND D 4.8 D ND D 35 D ND	ND ND ND ND ND ND	ND ND ND ND ND
1,2,3-Trichlorobenzenemg/kgNDNDNI1,2,3-Trichloropropanemg/kgNDNDNE1,2,4,5-Tetramethylbenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trimethylbenzene190380mg/kgNDND1,2,2-Trimethylbenzenemg/kgNDNDNE1,2,2-Trimethylbenzene190380mg/kgNDND1,2-Dibromo-3-chloropropanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE	D ND D ND D 4.8 D ND D 35 D ND	ND ND ND ND ND	ND ND ND ND
1,2,3-Trichloropropanemg/kgNDNDNE1,2,4,5-Tetramethylbenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trimethylbenzene190380mg/kgNDND1,2-Dibromo-3-chloropropanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE	D ND D 4.8 D ND D 35 D ND	ND ND ND ND	ND ND ND
1,2,4,5-Tetramethylbenzenemg/kgNDNDNE1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trimethylbenzene190380mg/kgNDNDNE1,2-Dibromo-3-chloropropanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE	D 4.8 D ND D 35 D ND	ND ND ND	ND ND
1,2,4-Trichlorobenzenemg/kgNDNDNE1,2,4-Trimethylbenzene190380mg/kgNDNDNE1,2-Dibromo-3-chloropropanemg/kgNDNDNE1,2-Dibromoethanemg/kgNDNDNE	D ND D 35 D ND	ND ND	ND
1,2,4-Trimethylbenzene190380mg/kgNDNDNE1,2-Dibromo-3-chloropropanemg/kgNDNDND1,2-Dibromoethanemg/kgNDNDNE	D 35 D ND	ND	
1,2-Dibromo-3-chloropropanemg/kgNDND1,2-Dibromoethanemg/kgNDND	D ND		ND
1,2-Dibromoethane mg/kg ND ND NE		ND	ND
,	D ND	ND	ND
1.2-Dichlorobenzene 500 1000 mg/kg ND ND ND	D 0.089 J	ND	ND
1.2-Dichloroethane 30 60 mg/kg ND ND ND	D ND	ND	ND
1.2-Dichloroethene. Total	08.1 ND	0.00094	0.001
1.2-Dichloropropane mg/kg ND ND NF	D ND	ND	ND
1 3 5-Trimethylbenzene 190 380 mg/kg ND ND ND	$D \qquad 0.4 I$	ND	ND
$\frac{1}{3} - \text{Dichlorobenzene} = \frac{280}{560} = \frac{560}{560} = \frac{1}{10} = \frac{1}{$	D ND	ND	ND
1 3-Dichloropropage mg/kg ND ND NF	D ND	ND	ND
1 3-Dichloropropene. Total	D ND	ND	ND
1 4-Dichlorobenzene 130 250 mg/kg ND ND ND	D ND	ND	ND
$\frac{130}{14-\text{Dioxane}} = \frac{130}{250} = \frac{250}{\text{mg/kg}} = \frac{100}{\text{ND}} = \frac{100}{\text{ND}}$	D ND	ND	ND
2 2-Dichloropropage mg/kg ND ND ND	D ND	ND	ND
2-Butanone 500 1000 mg/kg ND ND ND	D ND	ND	ND
2-Hexanone mg/kg ND ND NF	D ND	ND	ND
4-Methyl-2-nentanone mg/kg ND ND NF	D ND	ND	ND
Acetone $500 1000 mtext{ mg/kg} ND 0.0018 $	D ND	ND	0.0056 J
Acrylonitrile mg/kg ND ND ND	D ND	ND	ND
Benzene 44 89 mg/kg ND ND ND	D ND	0.0002 J	ND
Bromobenzene mg/kg ND ND NE	D ND	ND	ND
Bromochloromethane mg/kg ND ND NI	D ND	ND	ND
Bromodichloromethane mg/kg ND ND NE	D ND	ND	ND
Bromoform mg/kg ND ND ND	D ND	ND	ND
Bromomethane mg/kg ND ND NE	D ND	ND	ND
Carbon disulfide mg/kg ND ND ND	D ND	ND	ND
Carbon tetrachloride 22 44 mg/kg ND ND ND	D ND	ND	ND
Chlorobenzene 500 1000 mg/kg ND ND ND	D ND	ND	ND
Chloroethane mg/kg ND ND NE	D ND	ND	ND
Chloroform 350 700 mg/kg 0.0011 0.0012 0.0)1 ND	0.00084	0.00066 I
Chloromethane mg/kg ND ND NF	D ND	ND	ND
cis-1.2-Dichloroethene 500 1000 mg/kg 0.00039 I 0.00041 I 0.000	08.1 ND	0.00094	0.001
cis-1 3-Dichloropropene mo/kg ND ND NF		ND	ND
Dibromochloromethane mg/kg ND ND NF		ND	ND
Dibromomethane ma/ka ND ND NF		ND	ND
Dichlorodifluoromethane ma/kg ND ND NT		ND	ND

Volatile Organic Compounds for Soils EPA Method 8260 Table 1

LOCATION				B-1	B-1	B-2	B-2	B-3	B-3
SAMPLING DATE				1/25/2017	1/25/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	14-16'	8-10'	18-20'
	NY-								
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
Ethyl ether			mg/kg	ND	ND	ND	ND	ND	ND
Ethylbenzene	390	780	mg/kg	ND	ND	ND	0.092 J	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Isopropylbenzene			mg/kg	ND	ND	ND	0.82	ND	ND
Methyl tert butyl ether	500	1000	mg/kg	ND	ND	ND	ND	ND	0.0001 J
Methylene chloride	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
n-Butylbenzene	500	1000	mg/kg	ND	ND	ND	2.4	ND	ND
n-Propylbenzene	500	1000	mg/kg	ND	ND	ND	1.5	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	ND	1.5 J	ND	ND
o-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
o-Xylene			mg/kg	ND	ND	ND	0.84	ND	ND
p-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Diethylbenzene			mg/kg	ND	ND	ND	2	ND	ND
p-Ethyltoluene			mg/kg	ND	ND	ND	2.9	0.00007 J	ND
p-Isopropyltoluene			mg/kg	ND	ND	ND	3.4	ND	ND
p/m-Xylene			mg/kg	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	500	1000	mg/kg	ND	ND	ND	1.9	ND	ND
Styrene			mg/kg	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	500	1000	mg/kg	ND	ND	ND	0.39 J	ND	ND
Tetrachloroethene	150	300	mg/kg	0.0007	0.00057	0.0071	ND	0.0031	0.00041 J
Toluene	500	1000	mg/kg	ND	ND	ND	ND	0.00008 J	ND
trans-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			mg/kg	ND	ND	ND	ND	ND	ND
Trichloroethene	200	400	mg/kg	0.0088	0.0076	0.0021	ND	0.0032	0.0067
Trichlorofluoromethane			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl acetate			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl chloride	13	27	mg/kg	ND	ND	ND	ND	ND	ND
Xylenes, Total	500	1000	mg/kg	ND	ND	ND	0.84	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD) between the results for the two columns exceeds the method-specific criteria.

I - The lower value for the two columns has been reported due to obvious interface.

LOCATION				B- 4	B- 4	B-5	B-5	B-6	B-6
SAMPLING DATE				1/25/2017	1/25/2017	B- 5 1/25/2017	1/25/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft)				8.10'	1/25/2017	8-10'	1/25/2017	8-10'	20-22
	NY-			0 10	10 20	010	10 20	010	
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
1.1.1.2-Tetrachloroethane	ILLOC		mg/kg	ND	ND	ND	ND	ND	ND
1.1.1-Trichloroethane	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1.1.2.2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1.1.2-Trichloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	240	480	mg/kg	ND	ND	ND	ND	ND	ND
1.1-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1.1-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
1.2.3-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1.2.3-Trichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1.2.4.5-Tetramethylbenzene			mg/kg	ND	ND	ND	ND	0.00057 J	ND
1.2.4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1.2.4-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND	0.00072 J	ND
1.2-Dibromo-3-chloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dibromoethane			mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane	30	60	mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dichloroethene. Total			mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1.3.5-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND	0.00068 J	ND
1.3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1.3-Dichloropropane	200	200	mg/kg	ND	ND	ND	ND	ND	ND
1.3-Dichloropropene. Total			mg/kg	ND	ND	ND	ND	ND	ND
1 4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
1.4-Dioxane	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2.2-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
2-Butanone	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Hexanone			mg/kg	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone			mg/kg	ND	ND	ND	ND	ND	ND
Acetone	500	1000	mg/kg	0.01	ND	ND	ND	ND	ND
Acrylonitrile			mg/kg	ND	ND	ND	ND	ND	ND
Benzene	44	89	mg/kg	ND	ND	ND	ND	0.00015 J	0.00008 J
Bromobenzene			mg/kg	ND	ND	ND	ND	ND	ND
Bromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromodichloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromoform			mg/kg	ND	ND	ND	ND	ND	ND
Bromomethane			mg/kg	ND	ND	ND	ND	ND	ND
Carbon disulfide			mg/kg	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	22	44	mg/kg	ND	ND	ND	ND	ND	ND
Chlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Chloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Chloroform	350	700	mg/kg	ND	ND	0.00047 J	ND	ND	0.00027 J
Chloromethane			mg/kg	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
cis-1.3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
Dibromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Dibromomethane			mg/kg	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane			mg/kg	ND	ND	ND	ND	ND	ND

Volatile Organic Compounds for Soils EPA Method 8260 Table 1

LOCATION				B _4	B _/	B-5	B-5	B-6	B -6
SAMPLING DATE				D-4 1/25/2017	D-4 1/25/2017	D-3	D-3	D-0 1/27/2017	D-0 1/27/2017
SAMPLE DEPTH (ft)				1/25/2017 8-10'	1/23/2017	1/25/2017 8-10'	1/23/2017	8-10'	20-22
SAMELE DEI III (IL.)	NV-			0-10	10-20	0-10	10-20	0-10	20-22
	RESC	NV-RESI	Units	Results	Results	Results	Results	Results	Results
Ethyl ether	REDC		mg/kg	ND	ND	ND	ND	ND	ND
Ethylbenzene	390	780	mg/kg	ND	ND	ND	ND	0.00024 I	ND
Hexachlorobutadiene	570	700	mg/kg	ND	ND	ND	ND	ND	ND
Isopropylbenzene			mg/kg	ND	ND	ND	ND	0.00022.1	ND
Methyl tert hutyl ether	500	1000	mø/kø	ND	ND	ND	ND	ND	ND
Methylene chloride	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
n-Butylbenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
n-Propylbenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	ND	ND	0.22	0.00094 J
o-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
o-Xylene			mg/kg	ND	ND	ND	ND	ND	ND
p-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Diethylbenzene			mg/kg	ND	ND	ND	ND	0.002 J	ND
p-Ethyltoluene			mg/kg	ND	ND	ND	ND	0.00063 J	ND
p-Isopropyltoluene			mg/kg	ND	ND	ND	ND	0.00069 J	ND
p/m-Xylene			mg/kg	ND	ND	ND	ND	0.00032 J	ND
sec-Butylbenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Styrene			mg/kg	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Tetrachloroethene	150	300	mg/kg	0.00008 J	ND	0.00027 J	ND	ND	ND
Toluene	500	1000	mg/kg	ND	ND	ND	ND	0.00028 J	ND
trans-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			mg/kg	ND	ND	ND	ND	ND	ND
Trichloroethene	200	400	mg/kg	0.0002 J	ND	0.0046	0.0003 J	ND	ND
Trichlorofluoromethane			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl acetate			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl chloride	13	27	mg/kg	ND	ND	ND	ND	ND	ND
Xylenes, Total	500	1000	mg/kg	ND	ND	ND	ND	0.00032 J	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration cur

P - The Relative Percent Difference (RPD) between the results for th

I - The lower value for the two columns has been reported due to obv

LOCATION	Т			B-8	B-8	B-9	B-9	B-10	B-10
SAMPLING DATE				1/31/2017	1/31/2017	1/31/2017	1/31/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	18-20'	8-10'	18-20'
	NY-								
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
1,1,1,2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	500	1000	mg/kg	ND	ND	ND	ND	0.072	0.00013 J
1.1.2.2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	240	480	mg/kg	ND	ND	ND	ND	0.0034	0.68 E
1.1-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	0.00048	0.00045 J
1.1-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
1 2 3-Trichlorobenzene	-		mg/kg	ND	ND	ND	ND	ND	ND
1.2.3-Trichloropropage			mg/kg	ND	ND	ND	ND	ND	ND
1.2.4.5-Tetramethylbenzene			mg/kg	ND	0.96	0.0002 I	49	ND	0.0001 I
1 2 4-Trichlorobenzene	-		mg/kg	ND	ND	ND	ND	ND	ND
1.2.4-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND	ND	0.00017 I
1.2-Dibromo-3-chloropropane	170	500	mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dibromoethane			mg/kg	ND	ND	ND	ND	ND	ND
1.2 Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1.2 Dichloroethane	30	60	mg/kg	ND	ND	ND	ND	ND	ND
1.2 Dichloroethane Total	50	00	mg/kg	ND	ND	ND	ND	0.00014 I	0.0021
1.2 Dichloropropaga			mg/kg	ND	ND	ND	ND	0.00014 J	0.0021 ND
1,2-Dichloropropale	100	280	mg/kg	ND	ND	ND	ND	ND	ND
1,3,5-11iiietiiyidenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichloropropaga	200	300	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane Total			mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total	120	250	mg/kg	ND 0.00012 I	ND	ND		ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	0.00012 J	ND	ND	0.93 J	ND	
1,4-Dioxane	150	250	mg/kg	ND	ND	ND	ND	ND	0.016 J
2,2-Dichloropropane	500	1000	mg/kg	ND	ND	ND	ND	ND	ND 0.000
2-Butanone	500	1000	mg/kg	ND	ND	ND	ND	ND	0.009
2-Hexanone			mg/kg	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	500	1000	mg/kg	ND	ND		ND		ND 0.02
Acetone	500	1000	mg/kg	ND	ND	0.0043 J	ND	0.004 J	0.02 ND
Acrylonitrile Democra	4.4	80	mg/kg	ND	ND	ND	ND	ND	ND
Benzene	44	89	mg/kg	ND	ND	ND	ND	ND	0.0034
Bromobenzene			mg/kg	ND	ND	ND	ND	ND	ND
Bromocnioromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromodichloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromotorm			mg/kg	ND	ND	ND	ND	ND	ND
Bromomethane			mg/kg	ND	ND	ND	ND	ND	ND
Carbon disulfide			mg/kg	ND	ND	ND	ND	ND	0.0053 J
Carbon tetrachloride	22	44	mg/kg	ND	ND	ND	ND	0.15 E	ND
Chlorobenzene	500	1000	mg/kg	ND	ND	0.00044 J	3.5	ND	ND
Chloroethane	250	700	mg/kg	ND	ND	ND	ND	ND	0.011
Chlorotorm	350	/00	mg/kg	ND	ND	ND	ND	0.044	ND
Chloromethane		1600	mg/kg	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	0.00014 J	0.0021
cis-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
Dibromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Dibromomethane			mg/kg	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane			mg/kg	ND	ND	ND	ND	ND	ND

Volatile Organic Compounds for Soils EPA Method 8260 Table 1

LOCATION				B-8	B-8	B.9	B.9	B-10	B-10
SAMPLING DATE				1/31/2017	1/31/2017	1/31/2017	1/31/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	18-20'	8-10'	18-20'
	NY-			0 10	10 10	010	10 20	0 10	10 10
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
Ethyl ether			mg/kg	ND	ND	ND	ND	ND	ND
Ethylbenzene	390	780	mg/kg	ND	ND	ND	ND	ND	0.0001 J
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Isopropylbenzene			mg/kg	ND	0.16	0.00011 J	30	ND	ND
Methyl tert butyl ether	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Methylene chloride	500	1000	mg/kg	ND	0.12 J	ND	4.3 J	ND	0.11
n-Butylbenzene	500	1000	mg/kg	ND	0.2	ND	39	ND	ND
n-Propylbenzene	500	1000	mg/kg	ND	0.28	ND	57	ND	ND
Naphthalene	500	1000	mg/kg	ND	0.074 J	ND	ND	ND	0.00021 J
o-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
o-Xylene			mg/kg	ND	ND	0.00021 J	ND	ND	ND
p-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Diethylbenzene			mg/kg	ND	0.38	0.00027 J	21	ND	0.00015 J
p-Ethyltoluene			mg/kg	ND	ND	ND	ND	ND	0.00012 J
p-Isopropyltoluene			mg/kg	ND	ND	ND	ND	ND	ND
p/m-Xylene			mg/kg	ND	ND	ND	ND	ND	0.00053 J
sec-Butylbenzene	500	1000	mg/kg	ND	0.88	0.00049	45	ND	ND
Styrene			mg/kg	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	500	1000	mg/kg	ND	0.13 J	0.00067 J	6.9	ND	ND
Tetrachloroethene	150	300	mg/kg	ND	ND	ND	ND	0.0016	ND
Toluene	500	1000	mg/kg	ND	ND	ND	ND	ND	0.00094 J
trans-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			mg/kg	ND	ND	ND	ND	ND	ND
Trichloroethene	200	400	mg/kg	ND	ND	ND	ND	0.01	ND
Trichlorofluoromethane			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl acetate			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl chloride	13	27	mg/kg	ND	ND	ND	ND	ND	0.00058 J
Xylenes, Total	500	1000	mg/kg	ND	ND	0.00021 J	ND	ND	0.00053 J

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration cur

P - The Relative Percent Difference (RPD) between the results for th

I - The lower value for the two columns has been reported due to obv

LOCATION				B-11	B-11	B-13	B-13	B-14	B-14
SAMPLING DATE				1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				3-5'	13-15'	8-10'	18-20'	0-2'	13-15'
	NY-								
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
1,1,1,2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	500	1000	mg/kg	42	1500 E	0.00018 J	0.00039 J	0.097	0.54
1,1,2,2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	240	480	mg/kg	ND	0.61 J	0.00006 J	0.00018 J	ND	ND
1,1-Dichloroethene	500	1000	mg/kg	ND	2.7 J	ND	ND	ND	ND
1,1-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene			mg/kg	ND	3 J	ND	ND	ND	0.2 J
1,2,4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	190	380	mg/kg	ND	6.3 J	ND	ND	ND	0.13 J
1,2-Dibromo-3-chloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	30	60	mg/kg	0.15 J	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total			mg/kg	ND	0.55 J	0.00067	0.0021	ND	0.08 J
1,2-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	190	380	mg/kg	ND	2.1 J	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total			mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dioxane	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
2-Butanone	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Hexanone			mg/kg	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone			mg/kg	ND	ND	ND	ND	ND	ND
Acetone	500	1000	mg/kg	0.7 J	ND	ND	ND	ND	ND
Acrylonitrile			mg/kg	ND	ND	ND	ND	ND	ND
Benzene	44	89	mg/kg	ND	0.51 J	ND	ND	ND	0.034 J
Bromobenzene			mg/kg	ND	ND	ND	ND	ND	ND
Bromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromodichloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromoform			mg/kg	ND	ND	ND	ND	ND	ND
Bromomethane			mg/kg	ND	ND	0.00021 J	ND	0.017 J	0.067 J
Carbon disulfide			mg/kg	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	22	44	mg/kg	180 E	4500 E	0.00047	ND	0.12	1.3
Chlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Chloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Chloroform	350	700	mg/kg	13	120	0.00081 J	0.0028	0.028 J	0.34
Chloromethane			mg/kg	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	500	1000	mg/kg	ND	0.55 J	0.00067	0.0021	ND	0.08 J
cis-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
Dibromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Dibromomethane			mg/kg	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane			mg/kg	ND	ND	ND	ND	ND	ND

Volatile Organic Compounds for Soils EPA Method 8260 Table 1

LOCATION				B-11	R-11	R-13	R-13	B -1/	B _1/
SAMPLING DATE				D-11 1/24/2017	D-11 1/24/2017	D-13	D-13	D-14 1/24/2017	D-14 1/24/2017
SAMPLE DEPTH (ft)				3-5'	1/24/2017	1/25/2017 8-10'	1/23/2017	0-2'	1/24/2017
SAMELE DEI TH (IL.)	NV-			5-5	15-15	0-10	10-20	0-2	13-13
	RESC	NV-RESI	Unite	Results	Results	Results	Results	Results	Results
Ethyl ether	REDC		mg/kg	ND	ND	ND	ND	ND	ND
Ethylbenzene	390	780	mg/kg	ND	171	ND	ND	ND	ND
Hexachlorobutadiene	570	700	mg/kg	0.47 I	ND	ND	ND	ND	ND
Isopropylbenzene			mg/kg	ND	0.61 J	ND	ND	ND	0.11 J
Methyl tert butyl ether	500	1000	mø/kø	ND	ND	ND	ND	ND	ND
Methylene chloride	500	1000	mg/kg	1.9 J	15 J	ND	ND	ND	0.28 J
n-Butylbenzene	500	1000	mg/kg	ND	0.88 J	ND	ND	ND	ND
n-Propylbenzene	500	1000	mg/kg	ND	0.84 J	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	ND	25	ND	ND	ND	0.32 J
o-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
o-Xylene			mg/kg	ND	3.5 J	ND	ND	ND	0.25 J
p-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Diethylbenzene			mg/kg	ND	4.8 J	ND	ND	ND	ND
p-Ethyltoluene			mg/kg	ND	2.7 J	ND	ND	ND	ND
p-Isopropyltoluene			mg/kg	ND	1.3 J	ND	ND	ND	ND
p/m-Xylene			mg/kg	ND	7.2	ND	ND	ND	ND
sec-Butylbenzene	500	1000	mg/kg	ND	0.41 J	ND	ND	ND	ND
Styrene			mg/kg	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Tetrachloroethene	150	300	mg/kg	2.1	4.2	0.0024	0.0034	0.92	3.5
Toluene	500	1000	mg/kg	ND	140	ND	ND	ND	0.1 J
trans-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			mg/kg	ND	ND	ND	ND	ND	ND
Trichloroethene	200	400	mg/kg	71	700	0.016	0.027	2.2	31
Trichlorofluoromethane			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl acetate			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl chloride	13	27	mg/kg	ND	ND	ND	ND	ND	ND
Xylenes, Total	500	1000	mg/kg	ND	11 J	ND	ND	ND	0.25 J

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration cur

P - The Relative Percent Difference (RPD) between the results for th

I - The lower value for the two columns has been reported due to obv

LOCATION				R-15	R-15	B-16	B-16	B-17	B-17
SAMPLING DATE				1/31/2017	1/25/2017	1/31/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				8-10'	13.15'	8-10'	13.15'	8-10'	13-15'
	NV-			0-10	10-10	0-10	15-15	0-10	15-15
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
1.1.1.2-Tetrachloroethane	ILLS C		mg/kg	ND	ND	ND	ND	ND	ND
1.1.1-Trichloroethane	500	1000	mg/kg	ND	ND	0.00073	ND	0.00032 J	ND
1,1,2,2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1.1.2-Trichloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1 1-Dichloroethane	240	480	mg/kg	ND	ND	0.00016 J	ND	ND	0.0001 J
1.1-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1 1-Dichloropropene	200	1000	mø/kø	ND	ND	ND	ND	ND	ND
1.2.3-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1.2.3-Trichloropropage			mg/kg	ND	ND	ND	ND	ND	ND
1.2.4.5-Tetramethylbenzene			mg/kg	ND	ND	ND	23	ND	ND
1.2.4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1 2 4-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dibromo-3-chloropropage	170	500	mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dibromoethane			mg/kg	ND	ND	ND	ND	ND	ND
1.2 Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	0.87 I	ND	ND
1.2 Dichloroethane	30	60	mg/kg	ND	ND	ND	ND	ND	ND
1.2 Dichloroothana Total	50	00	mg/kg	ND	ND	ND	ND	ND	0.00031 I
1,2-Dichloropropopo			mg/kg	ND		ND	ND	ND	0.00031 J
1,2-Dichloropropane	100	280	mg/kg	ND	ND	ND	ND	ND	ND
1,3,5-Thildenybenzene	280	560	mg/kg			ND	ND	ND	ND
1,3-Dichloropropena	200	500	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane			mg/kg		ND	ND	ND	ND	ND
1,3-Dichloropopene, Total	120	250	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dioxale	150	230	mg/kg	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	500	1000	mg/kg		ND	ND	ND	ND	ND
2 Hevenene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
4 Methyl 2 pentenona			mg/kg	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	500	1000	mg/kg	ND	ND	ND	ND	ND 0.0012 I	0.0022 I
Acetolie	500	1000	mg/kg		ND	ND	ND	0.0015 J	0.0025 J
Renzene	4.4	80	mg/kg	ND	ND	ND	ND	ND	ND
Benzene	44	07	mg/kg	ND	ND	ND	ND	ND	ND
Bromochloromathana			mg/kg	ND	ND	ND	ND	ND	ND
Bromodichloromethone			mg/kg		ND	ND	ND	ND	
Bromoform			mg/kg	ND	ND	ND	ND	ND	ND
Bromomothene			mg/kg			ND	ND	ND	
Corbon digulfido			mg/kg	ND	ND	ND	ND	ND	ND
Carbon disunde	22	4.4	mg/kg	ND	ND	ND 0.00062	ND	ND	ND
Carbon tetrachionde	500	44	mg/kg	ND	ND	0.00062	ND	0.00064	ND
Chlorodenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Chloroform	250	700	mg/kg			0.0022			ND
Chloromothono	550	700	mg/kg			0.0032 ND		0.00046 J	
cinoromethane	500	1000	mg/kg	ND				ND ND	ND 0.00021 T
cis-1,2-Dichlerer states	500	1000	ing/kg	ND	ND	ND ND	ND ND	ND ND	0.00031 J
CIS-1,3-DICHIOPOPOPOP			mg/kg	ND	ND	ND ND	ND ND	ND	ND
Dibromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Dibromomethane			mg/kg	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane			mg/kg	ND	ND	ND	ND	ND	ND

Volatile Organic Compounds for Soils EPA Method 8260 Table 1

LOCATION				B-15	B-15	B-16	B-16	B-17	B-17
SAMPLING DATE				1/31/2017	1/25/2017	1/31/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	8-10'	13-15'	8-10'	13-15'
	NY-			010	10 10	010	10 10	0 10	10 10
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
Ethyl ether	nillo c		mg/kg	ND	ND	ND	ND	ND	ND
Ethylbenzene	390	780	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Isopropylbenzene			mg/kg	ND	ND	ND	ND	ND	ND
Methyl tert butyl ether	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Methylene chloride	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
n-Butylbenzene	500	1000	mg/kg	ND	ND	ND	16	ND	ND
n-Propylbenzene	500	1000	mg/kg	ND	ND	ND	18	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
o-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
o-Xylene			mg/kg	ND	ND	ND	ND	ND	ND
p-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Diethylbenzene			mg/kg	ND	ND	ND	8.9 J	ND	ND
p-Ethyltoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene			mg/kg	ND	ND	ND	ND	ND	ND
p/m-Xylene			mg/kg	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	500	1000	mg/kg	ND	ND	ND	18	ND	ND
Styrene			mg/kg	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	500	1000	mg/kg	ND	ND	ND	2.6 J	ND	ND
Tetrachloroethene	150	300	mg/kg	0.0003 J	0.00024 J	0.00009 J	ND	ND	ND
Toluene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			mg/kg	ND	ND	ND	ND	ND	ND
Trichloroethene	200	400	mg/kg	0.00099	0.00088	0.0012	ND	0.0013	0.0002 J
Trichlorofluoromethane			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl acetate			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl chloride	13	27	mg/kg	ND	ND	ND	ND	ND	ND
Xylenes, Total	500	1000	mg/kg	ND	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration cur

P - The Relative Percent Difference (RPD) between the results for th

I - The lower value for the two columns has been reported due to obv

LOCATION				B-18	B-18	B-19	B-19	B-20	B-20
SAMPLING DATE				1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				5-7'	13-15'	5-7'	13-15'	5-7'	13-15'
	NY-				10 10				
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
1.1.1.2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1.1.1-Trichloroethane	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1.1.2.2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1.1.2-Trichloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	240	480	mg/kg	ND	ND	ND	ND	ND	ND
1.1-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1 1-Dichloropropene	200	1000	mø/kø	ND	ND	ND	ND	ND	ND
1.2.3-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1 2 3-Trichloropropane			mø/kø	ND	ND	ND	ND	ND	ND
1.2.4.5-Tetramethylbenzene			mg/kg	ND	110 E	ND	7.8	ND	ND
1 2 4-Trichlorobenzene			mø/kø	ND	ND	ND	ND	ND	ND
1.2.4-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND	ND	ND
1 2-Dibromo-3-chloropropane	170	200	mø/kø	ND	ND	ND	ND	ND	ND
1.2-Dibromoethane			mg/kg	ND	ND	ND	ND	ND	ND
1 2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane	30	60	mg/kg	ND	ND	ND	ND	ND	ND
1 2-Dichloroethene, Total	50	00	mg/kg	ND	ND	ND	ND	ND	ND
1 2-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1 3 5-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND	ND	ND
1 3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1 3-Dichloropropane	200	500	mg/kg	ND	ND	ND	ND	ND	ND
1 3-Dichloropropene Total			mg/kg	ND	ND	ND	ND	ND	ND
1 4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
1 4-Dioxane	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2 2-Dichloropropage	150	230	mg/kg	ND	ND	ND	ND	ND	ND
2-Butanone	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Hexanone	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone			mg/kg	ND	ND	ND	ND	ND	ND
A cetone	500	1000	mg/kg	ND	ND	0.0051 I	ND	ND	ND
Acrylonitrile	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Benzene	44	89	mg/kg	ND	ND	ND	ND	ND	ND
Bromobenzene		0,	mg/kg	ND	ND	ND	ND	ND	ND
Bromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromodichloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromoform			mg/kg	ND	ND	ND	ND	ND	ND
Bromomethane			mg/kg	ND	ND	ND	ND	0.00015 I	ND
Carbon disulfide			mg/kg	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	22	44	mg/kg	ND	ND	ND	ND	ND	ND
Chlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Chloroethane	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Chloroform	350	700	mg/kg	ND	ND	ND	ND	ND	ND
Chloromethane	350	700	mg/kg	ND	ND	ND	ND	ND	ND
cis-1 2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
cis-1 3-Dichloropropaga	500	1000	mg/kg		ND	ND	ND	ND	
Dibromochloromethane			mg/kg				ND		
Dibromomethene			mg/kg						
Diolonomemane			mg/kg					ND ND	
Dicniorodifluoromethane			mg/kg	ND	ND	ND	ND	ND	ND

Volatile Organic Compounds for Soils EPA Method 8260 Table 1

LOCATION				B-18	B-18	B-19	B-19	B-20	B-20
SAMPLING DATE				1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				5-7'	13-15'	5-7'	13-15'	5-7'	13-15'
	NY-								
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
Ethyl ether			mg/kg	ND	ND	ND	ND	ND	ND
Ethylbenzene	390	780	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Isopropylbenzene			mg/kg	ND	55	ND	2	ND	ND
Methyl tert butyl ether	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Methylene chloride	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
n-Butylbenzene	500	1000	mg/kg	ND	92	ND	4.9	ND	ND
n-Propylbenzene	500	1000	mg/kg	ND	100 E	ND	4.4	ND	ND
Naphthalene	500	1000	mg/kg	ND	0.58 J	ND	ND	ND	ND
o-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
o-Xylene			mg/kg	ND	ND	ND	ND	ND	ND
p-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Diethylbenzene			mg/kg	ND	44	ND	2.6	ND	ND
p-Ethyltoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene			mg/kg	ND	ND	ND	ND	ND	ND
p/m-Xylene			mg/kg	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	500	1000	mg/kg	ND	84	ND	4.3	ND	ND
Styrene			mg/kg	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	500	1000	mg/kg	ND	13	ND	0.62 J	ND	ND
Tetrachloroethene	150	300	mg/kg	ND	ND	ND	ND	ND	ND
Toluene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			mg/kg	ND	ND	ND	ND	ND	ND
Trichloroethene	200	400	mg/kg	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl acetate			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl chloride	13	27	mg/kg	ND	ND	ND	ND	ND	ND
Xylenes, Total	500	1000	mg/kg	ND	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration cur

P - The Relative Percent Difference (RPD) between the results for th

I - The lower value for the two columns has been reported due to obv

LOCATION				B-21	B-21	B-22	B-22	B-23	B-23
SAMPLING DATE				1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	8-10'	13-15'	8-10'	13-15'
	NY-								
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
1,1,1,2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane			mg/kg	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	240	480	mg/kg	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene			mg/kg	ND	ND	ND	14	ND	ND
1,2,4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	0.3 J	ND	ND
1,2-Dichloroethane	30	60	mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1.3.5-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1.3-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
1.3-Dichloropropene, Total			mg/kg	ND	ND	ND	ND	ND	ND
1.4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	0.00007 J	0.00011 J
1.4-Dioxane	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2.2-Dichloropropane			mg/kg	ND	ND	ND	ND	ND	ND
2-Butanone	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Hexanone			mg/kg	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone			mg/kg	ND	ND	ND	ND	ND	ND
Acetone	500	1000	mg/kg	ND	ND	0.002 J	ND	0.0022 J	0.002 J
Acrylonitrile			mg/kg	ND	ND	ND	ND	ND	ND
Benzene	44	89	mg/kg	ND	ND	ND	ND	ND	ND
Bromobenzene			mg/kg	ND	ND	ND	ND	ND	ND
Bromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromodichloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Bromoform			mg/kg	ND	ND	ND	ND	ND	ND
Bromomethane			mg/kg	ND	ND	ND	ND	ND	ND
Carbon disulfide			mg/kg	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	22	44	mg/kg	ND	ND	ND	ND	ND	ND
Chlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Chloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Chloroform	350	700	mg/kg	ND	0.00052 J	ND	ND	ND	ND
Chloromethane			mg/kg	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
Dibromochloromethane			mg/kg	ND	ND	ND	ND	ND	ND
Dibromomethane			mg/kg	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane			mg/kg	ND	ND	ND	ND	ND	ND
			0/0						

Volatile Organic Compounds for Soils EPA Method 8260 Table 1

LOCATION				B-21	B-21	B-22	B-22	B-23	B-23
SAMPLING DATE				1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	8-10'	13-15'	8-10'	13-15'
	NY-								
	RESC	NY-RESI	Units	Results	Results	Results	Results	Results	Results
Ethyl ether			mg/kg	ND	ND	ND	ND	ND	ND
Ethylbenzene	390	780	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Isopropylbenzene			mg/kg	ND	ND	ND	5.1	ND	ND
Methyl tert butyl ether	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Methylene chloride	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
n-Butylbenzene	500	1000	mg/kg	ND	ND	ND	12	ND	ND
n-Propylbenzene	500	1000	mg/kg	ND	ND	ND	11	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	ND	0.82 J	ND	ND
o-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
o-Xylene			mg/kg	ND	ND	ND	ND	ND	ND
p-Chlorotoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Diethylbenzene			mg/kg	ND	ND	ND	5.8	ND	ND
p-Ethyltoluene			mg/kg	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene			mg/kg	ND	ND	ND	ND	ND	ND
p/m-Xylene			mg/kg	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	500	1000	mg/kg	ND	ND	ND	11	ND	ND
Styrene			mg/kg	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	500	1000	mg/kg	ND	ND	ND	1.6 J	ND	ND
Tetrachloroethene	150	300	mg/kg	ND	ND	ND	ND	ND	ND
Toluene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			mg/kg	ND	ND	ND	ND	ND	ND
Trichloroethene	200	400	mg/kg	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl acetate			mg/kg	ND	ND	ND	ND	ND	ND
Vinyl chloride	13	27	mg/kg	ND	ND	ND	ND	ND	ND
Xylenes, Total	500	1000	mg/kg	ND	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration cur

P - The Relative Percent Difference (RPD) between the results for th

I - The lower value for the two columns has been reported due to obv

LOCATION				B-74	B-74	B-25	B-25
SAMPLING DATE				1/27/2017	D-24 1/27/2017	1/27/2017	D-23
SAMPLE DEPTH (ft)				5-7'	13-15'	8-10'	1/2//2017
SAMELE DEI III (IL.)	NV-			5-1	15-15	0-10	10-20
	RESC	NY-RESI	Units	Results	Results	Results	Results
1 1 1 2-Tetrachloroethane	RESC	ITI KLOI	mø/kø	ND	ND	ND	ND
1,1,1-Trichloroethane	500	1000	mg/kg	ND	ND	ND	ND
1.1.2.2-Tetrachloroethane	200	1000	mg/kg	ND	ND	ND	ND
1.1.2-Trichloroethane			mg/kg	ND	ND	ND	ND
1.1-Dichloroethane	240	480	mø/kø	ND	ND	ND	ND
1.1-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND
1.1-Dichloropropene	200	1000	mg/kg	ND	ND	ND	ND
1.2.3-Trichlorobenzene			mg/kg	ND	ND	ND	ND
1 2 3-Trichloropropane			mø/kø	ND	ND	ND	ND
1 2 4 5-Tetramethylbenzene			mø/kø	ND	11	ND	17
1 2 4-Trichlorobenzene			mø/kø	ND	ND	ND	ND
1.2.4-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	ND
1.2-Dibromo-3-chloropropane		230	mø/kø	ND	ND	ND	ND
1.2-Dibromoethane			mø/kø	ND	ND	ND	ND
1 2-Dichlorobenzene	500	1000	mø/kø	ND	0.095 I	ND	ND
1.2-Dichloroethane	30	60	mø/kø	ND	ND	ND	ND
1.2-Dichloroethene Total	50	00	mg/kg	ND	ND	ND	ND
1.2-Dichloropropage			mg/kg	ND	ND	ND	ND
1 3 5-Trimethylbenzene	190	380	mg/kg	ND	ND	ND	181
1 3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND
1 3-Dichloropropage	200	500	mg/kg	ND	ND	ND	ND
1 3-Dichloropropene Total			mø/kg	ND	ND	ND	ND
1 4-Dichlorobenzene	130	250	mg/kg	ND	0.36 I	ND	ND
1 4-Dioxane	130	250	mø/kø	ND	ND	ND	ND
2 2-Dichloropropane	150	230	mø/kø	ND	ND	ND	ND
2-Butanone	500	1000	mg/kg	ND	ND	ND	ND
2-Hexanone	200	1000	mø/kø	ND	ND	ND	ND
4-Methyl-2-pentanone			mø/kø	ND	ND	ND	ND
Acetone	500	1000	mg/kg	ND	ND	0.0082	ND
Acrylonitrile	200	1000	mg/kg	ND	ND	ND	ND
Benzene	44	89	mg/kg	ND	ND	ND	ND
Bromobenzene			mø/kø	ND	ND	ND	ND
Bromochloromethane			mg/kg	ND	ND	ND	ND
Bromodichloromethane			mg/kg	ND	ND	ND	ND
Bromoform			mg/kg	ND	ND	ND	ND
Bromomethane			mg/kg	ND	ND	ND	ND
Carbon disulfide			mg/kg	ND	ND	ND	ND
Carbon tetrachloride	22	44	mg/kg	ND	ND	ND	ND
Chlorobenzene	500	1000	mg/kg	ND	1.6	ND	ND
Chloroethane			mg/kg	ND	ND	ND	ND
Chloroform	350	700	mg/kg	ND	ND	ND	ND
Chloromethane			mg/kg	ND	ND	ND	ND
cis-1.2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND
cis-1.3-Dichloropropene	200		mg/kg	ND	ND	ND	ND
Dibromochloromethane			mg/kg	ND	ND	ND	ND
Dibromomethane			mg/kg	ND	ND	ND	ND
Dichlorodifluoromethane			mg/kg	ND	ND	ND	ND

Volatile Organic Compounds for Soils EPA Method 8260 Table 1

LOCATION				B-24	B-24	B-25	B-25
SAMPLING DATE				1/27/2017	1/27/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				5-7'	13-15'	8-10'	18-20'
	NY-						
	RESC	NY-RESI	Units	Results	Results	Results	Results
Ethyl ether			mg/kg	ND	ND	ND	ND
Ethylbenzene	390	780	mg/kg	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND
Isopropylbenzene			mg/kg	ND	9.8	ND	1.9
Methyl tert butyl ether	500	1000	mg/kg	ND	ND	ND	ND
Methylene chloride	500	1000	mg/kg	ND	ND	ND	ND
n-Butylbenzene	500	1000	mg/kg	ND	9.9	ND	7.2
n-Propylbenzene	500	1000	mg/kg	ND	17	ND	4.1
Naphthalene	500	1000	mg/kg	0.00014 J	ND	ND	8
o-Chlorotoluene			mg/kg	ND	ND	ND	ND
o-Xylene			mg/kg	ND	ND	ND	ND
p-Chlorotoluene			mg/kg	ND	ND	ND	4.3
p-Diethylbenzene			mg/kg	ND	4.9	ND	21
p-Ethyltoluene			mg/kg	ND	ND	ND	2.7 J
p-Isopropyltoluene			mg/kg	ND	ND	ND	6.7
p/m-Xylene			mg/kg	ND	ND	ND	ND
sec-Butylbenzene	500	1000	mg/kg	ND	11	ND	5.8
Styrene			mg/kg	ND	ND	ND	ND
tert-Butylbenzene	500	1000	mg/kg	ND	1.8 J	ND	1.2 J
Tetrachloroethene	150	300	mg/kg	0.00038 J	ND	ND	ND
Toluene	500	1000	mg/kg	ND	ND	ND	ND
trans-1,2-Dichloroethene	500	1000	mg/kg	ND	ND	ND	ND
trans-1,3-Dichloropropene			mg/kg	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene			mg/kg	ND	ND	ND	ND
Trichloroethene	200	400	mg/kg	0.002	ND	ND	ND
Trichlorofluoromethane			mg/kg	ND	ND	ND	ND
Vinyl acetate			mg/kg	ND	ND	ND	ND
Vinyl chloride	13	27	mg/kg	ND	ND	ND	ND
Xylenes, Total	500	1000	mg/kg	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration cui

P - *The Relative Percent Difference (RPD) between the results for th*

I - The lower value for the two columns has been reported due to obt

	1		r	D 1	D 1	D A	D A	D 2	D 2
LOCATION				B-1	B-1	B-2	B-2	B-3	B-3
SAMPLING DATE				1/25/2017	1/25/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)	NTN7	N 1 X 7		8-10	18-20	8-10	14-16	8-10	18-20
	NY-	NY-	.	D 14	D	D	D 14	D	D
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		4000	mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene			mg/kg	ND	ND	ND	ND	ND	ND
2-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
2-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			mg/kg	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
3-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol			mg/kg	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Chloroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
Acenaphthene	500	1000	mg/kg	ND	ND	ND	0.21	ND	ND
Acenaphthylene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Acetophenone			mg/kg	ND	ND	ND	ND	ND	ND
Anthracene	500	1000	mg/kg	ND	ND	ND	0.3	ND	ND
Benzo(a)anthracene	5.6	11	mg/kg	ND	ND	ND	0.42	ND	ND
Benzo(a)pyrene	1	1.1	mg/kg	ND	ND	ND	0.12 J	ND	ND
Benzo(b)fluoranthene	5.6	11	mg/kg	ND	ND	ND	0.085 J	ND	ND
Benzo(ghi)pervlene	500	1000	mg/kg	ND	ND	ND	0.053 J	ND	ND
Benzo(k)fluoranthene	56	110	mg/kg	ND	ND	ND	ND	ND	ND
Benzoic Acid			mg/kg	ND	ND	ND	ND	ND	ND
Benzyl Alcohol			mg/kg	ND	ND	ND	ND	ND	ND
Binhenvl			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-ethylbeyyl)phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Carbazola			mg/kg	ND	ND	ND	ND	ND	ND
Chrysone	56	110	mg/kg		ND		0.44		
Ciii yseite Di-n-butylphthalate	30	110	mg/kg	ND	ND	ND	0.44 ND	ND	ND
Di-ii-outyipiiniaiaic			mg/ng	110	110	110		110	

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				B-1	B-1	B-2	B-2	B-3	B-3
SAMPLING DATE				1/25/2017	1/25/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	14-16'	8-10'	18-20'
	NY-	NY-							
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
Di-n-octylphthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	1.1	mg/kg	ND	ND	ND	0.028 J	ND	ND
Dibenzofuran	350	1000	mg/kg	ND	ND	ND	ND	ND	ND
Diethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dimethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Fluoranthene	500	1000	mg/kg	ND	ND	ND	0.16	ND	ND
Fluorene	500	1000	mg/kg	ND	ND	ND	0.35	ND	ND
Hexachlorobenzene	6	12	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	5.6	11	mg/kg	ND	ND	ND	ND	ND	ND
Isophorone			mg/kg	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine			mg/kg	ND	ND	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
NDPA/DPA			mg/kg	ND	ND	ND	ND	ND	ND
Nitrobenzene	69	140	mg/kg	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol			mg/kg	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	55	mg/kg	ND	ND	ND	ND	ND	ND
Phenanthrene	500	1000	mg/kg	ND	ND	ND	0.86	ND	ND
Phenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Pyrene	500	1000	mg/kg	ND	ND	ND	0.84	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of the instrument.

P - The RPD between the results for the two columns exceeds the method-specific criteria.

I - The lower value for the two columns has been reported due to obvious interface.

LOCATION				B-4	B-4	B-5	B-5	B-6	B-6
SAMPLING DATE				1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	18-20'	8-10'	20-22'
	NY-	NY-					_		
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene			mg/kg	ND	ND	0.76	ND	0.61	ND
2-Methylphenol	500	1000	mg/kg	ND	ND	0.049 J	ND	ND	ND
2-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
2-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			mg/kg	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	500	1000	mg/kg	ND	ND	0.14 J	ND	0.072 J	ND
3-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol			mg/kg	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Chloroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
Acenaphthene	500	1000	mg/kg	ND	ND	2.1	ND	2.5	ND
Acenaphthylene	500	1000	mg/kg	ND	ND	0.44	ND	0.5	ND
Acetophenone			mg/kg	ND	ND	ND	ND	ND	ND
Anthracene	500	1000	mg/kg	ND	ND	2.5	ND	5.5	ND
Benzo(a)anthracene	5.6	11	mg/kg	ND	ND	5.7	ND	9.7	0.048 J
Benzo(a)pyrene	1	1.1	mg/kg	ND	ND	5.8	ND	9.4	ND
Benzo(b)fluoranthene	5.6	11	mg/kg	ND	ND	7	ND	10	0.05 J
Benzo(ghi)perylene	500	1000	mg/kg	ND	ND	3.5	ND	5.6	0.024 J
Benzo(k)fluoranthene	56	110	mg/kg	ND	ND	2	ND	3.7	ND
Benzoic Acid			mg/kg	ND	ND	ND	ND	ND	ND
Benzyl Alcohol			mg/kg	ND	ND	ND	ND	ND	ND
Biphenyl			mg/kg	ND	ND	0.23 J	ND	0.22 J	ND
Bis(2-chloroethoxy)methane			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Carbazole			mg/kg	ND	ND	1.1	ND	2.5	ND
Chrysene	56	110	mg/kg	ND	ND	5.4	ND	8.6	0.039 J
Di-n-butylphthalate			mg/kg	ND	ND	ND	ND	ND	ND

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				B-4	B-4	B-5	B-5	B-6	B-6
SAMPLING DATE				1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	18-20'	8-10'	20-22'
	NY-	NY-							
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
Di-n-octylphthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	1.1	mg/kg	ND	ND	0.94	ND	1.3	ND
Dibenzofuran	350	1000	mg/kg	ND	ND	1.1	ND	1.4	ND
Diethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dimethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Fluoranthene	500	1000	mg/kg	ND	ND	12 E	ND	24	0.11
Fluorene	500	1000	mg/kg	ND	ND	1.3	ND	2.2	ND
Hexachlorobenzene	6	12	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	5.6	11	mg/kg	ND	ND	3.6	ND	6.5	0.026 J
Isophorone			mg/kg	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine			mg/kg	ND	ND	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	1.9	ND	1.2	ND
NDPA/DPA			mg/kg	ND	ND	ND	ND	ND	ND
Nitrobenzene	69	140	mg/kg	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol			mg/kg	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	55	mg/kg	ND	ND	ND	ND	ND	ND
Phenanthrene	500	1000	mg/kg	ND	ND	12 E	ND	22	0.096 J
Phenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Pyrene	500	1000	mg/kg	ND	ND	11 E	ND	20	0.093 J

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of th

P - The RPD between the results for the two columns exceeds the method-spe

I - The lower value for the two columns has been reported due to obvious int

LOCATION				B-8	B-8	B-9	B-9	B-10	B-10
SAMPLING DATE				1/31/2017	1/31/2017	1/31/2017	1/31/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	18-20'	8-10'	18-20'
	NY-	NY-							
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene			mg/kg	ND	ND	ND	ND	0.036 J	ND
2-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
2-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			mg/kg	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
3-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol			mg/kg	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Chloroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
Acenaphthene	500	1000	mg/kg	ND	0.054 J	ND	0.41	0.082 J	ND
Acenaphthylene	500	1000	mg/kg	ND	ND	ND	ND	0.091 J	ND
Acetophenone			mg/kg	ND	ND	ND	ND	0.041 J	ND
Anthracene	500	1000	mg/kg	ND	0.21	ND	1	0.22	ND
Benzo(a)anthracene	5.6	11	mg/kg	ND	0.56	0.039 J	3.2	0.66	ND
Benzo(a)pyrene	1	1.1	mg/kg	ND	0.13 J	ND	0.83	0.69	ND
Benzo(b)fluoranthene	5.6	11	mg/kg	ND	0.11	0.046 J	0.74	0.84	ND
Benzo(gh1)perylene	500	1000	mg/kg	ND	0.048 J	0.025 J	0.39	0.49	ND
Benzo(k)fluoranthene	56	110	mg/kg	ND	ND	ND	0.099 J	0.3	ND
Benzoic Acid			mg/kg	ND	ND	ND	ND	ND	ND
Benzyl Alcohol			mg/kg	ND	ND	ND	ND	ND	ND
Biphenyl			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate			mg/kg	ND	ND	ND	ND	1	ND
Butyl benzyl phthalate			mg/kg	ND	ND	ND	ND	0.69	ND
Carbazole		110	mg/kg	ND	ND	ND	ND	0.073 J	ND
Chrysene	56	110	mg/kg	ND	0.71	0.04 J	3.2	0.65	ND
D1-n-butylphthalate			mg/kg	ND	ND	ND	ND	0.071 J	ND

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				B-8	B-8	B-9	B-9	B-10	B-10
SAMPLING DATE				1/31/2017	1/31/2017	1/31/2017	1/31/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	18-20'	8-10'	18-20'
	NY-	NY-							
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
Di-n-octylphthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	1.1	mg/kg	ND	ND	ND	0.3	0.13	ND
Dibenzofuran	350	1000	mg/kg	ND	ND	ND	0.11 J	0.046 J	ND
Diethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dimethyl phthalate			mg/kg	ND	ND	ND	ND	0.048 J	ND
Fluoranthene	500	1000	mg/kg	ND	0.13	0.089 J	0.69	1.4	ND
Fluorene	500	1000	mg/kg	ND	0.07 J	ND	0.44	0.083 J	ND
Hexachlorobenzene	6	12	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	5.6	11	mg/kg	ND	ND	0.025 J	0.24	0.49	ND
Isophorone			mg/kg	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine			mg/kg	ND	ND	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	ND	ND	0.056 J	ND
NDPA/DPA			mg/kg	ND	ND	ND	ND	ND	ND
Nitrobenzene	69	140	mg/kg	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol			mg/kg	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	55	mg/kg	ND	ND	ND	ND	ND	ND
Phenanthrene	500	1000	mg/kg	ND	ND	0.071 J	2.1	0.86	ND
Phenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Pyrene	500	1000	mg/kg	ND	0.56	0.083 J	2.3	1.2	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of th

P - The RPD between the results for the two columns exceeds the method-spe

I - The lower value for the two columns has been reported due to obvious int

LOCATION				B-11	B-11	B-13	B-13	B-14	B-14
SAMPLING DATE				1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)	NTX 7	NTX7		3-5'	13-15	8-10'	18-20	0-2'	13-15'
	NY-	NY-	** •	D		D		D	D
104577	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene		1000	mg/kg	ND	9.9	ND	ND	ND	ND
2-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
2-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			mg/kg	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
3-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol			mg/kg	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Chloroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
Acenaphthene	500	1000	mg/kg	ND	0.18 J	ND	ND	ND	ND
Acenaphthylene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Acetophenone			mg/kg	ND	ND	ND	ND	ND	ND
Anthracene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	5.6	11	mg/kg	ND	ND	ND	ND	ND	0.05 J
Benzo(a)pyrene	1	1.1	mg/kg	ND	ND	ND	ND	ND	0.043 J
Benzo(b)fluoranthene	5.6	11	mg/kg	ND	ND	ND	ND	ND	0.059 J
Benzo(ghi)perylene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	56	110	mg/kg	ND	ND	ND	ND	ND	ND
Benzoic Acid			mg/kg	ND	ND	ND	ND	ND	ND
Benzyl Alcohol			mg/kg	ND	ND	ND	ND	ND	ND
Biphenyl			mg/kg	ND	0.56 J	ND	ND	ND	ND
Bis(2-chloroethoxy)methane			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate			mg/kg	ND	ND	ND	ND	ND	0.25
Butyl benzyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Carbazole			mg/kg	ND	ND	ND	ND	ND	ND
Chrysene	56	110	mg/kg	ND	ND	ND	ND	ND	0.047 J
Di-n-butylphthalate			mg/kg	ND	ND	ND	ND	ND	ND

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

r									
LOCATION				B-11	B-11	B-13	B-13	B-14	B-14
SAMPLING DATE				1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				3-5'	13-15	8-10'	18-20	0-2'	13-15'
	NY-	NY-							
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
Di-n-octylphthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	1.1	mg/kg	ND	ND	ND	ND	ND	ND
Dibenzofuran	350	1000	mg/kg	ND	0.37 J	ND	ND	ND	ND
Diethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dimethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Fluoranthene	500	1000	mg/kg	ND	ND	ND	ND	ND	0.11
Fluorene	500	1000	mg/kg	ND	0.59 J	ND	ND	ND	ND
Hexachlorobenzene	6	12	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	5.6	11	mg/kg	ND	ND	ND	ND	ND	ND
Isophorone			mg/kg	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine			mg/kg	ND	ND	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	ND	2	ND	ND	ND	ND
NDPA/DPA			mg/kg	ND	ND	ND	ND	ND	ND
Nitrobenzene	69	140	mg/kg	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol			mg/kg	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	55	mg/kg	ND	ND	ND	ND	ND	ND
Phenanthrene	500	1000	mg/kg	ND	1.4	ND	ND	ND	0.06 J
Phenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Pyrene	500	1000	mg/kg	ND	ND	ND	ND	ND	0.097 J

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of th

P - The RPD between the results for the two columns exceeds the method-spe $% \mathcal{P}$

I - The lower value for the two columns has been reported due to obvious int

LOCATION				B-15	B-15	B-16	B-16	B-17	B-17
SAMPLING DATE				1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	6-8'	13-15'	8-10'	13-15'
	NY-	NY-						-	
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene			mg/kg	ND	ND	ND	0.23 J	ND	ND
2-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
2-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			mg/kg	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
3-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol			mg/kg	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Chloroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
Acenaphthene	500	1000	mg/kg	ND	ND	ND	0.5 J	ND	ND
Acenaphthylene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Acetophenone			mg/kg	ND	ND	ND	ND	ND	ND
Anthracene	500	1000	mg/kg	ND	ND	ND	0.84 J	ND	ND
Benzo(a)anthracene	5.6	11	mg/kg	ND	ND	ND	2	ND	ND
Benzo(a)pyrene	1	1.1	mg/kg	ND	ND	ND	0.56 J	ND	ND
Benzo(b)fluoranthene	5.6	11	mg/kg	ND	ND	ND	0.38 J	ND	ND
Benzo(ghi)perylene	500	1000	mg/kg	ND	ND	ND	0.22 J	ND	ND
Benzo(k)fluoranthene	56	110	mg/kg	ND	ND	ND	ND	ND	ND
Benzoic Acid			mg/kg	ND	ND	ND	ND	ND	ND
Benzyl Alcohol			mg/kg	ND	ND	ND	ND	ND	ND
Biphenyl			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Carbazole			mg/kg	ND	ND	ND	ND	ND	ND
Chrysene	56	110	mg/kg	ND	ND	ND	2.2	ND	ND
Di-n-butylphthalate			mg/kg	ND	ND	ND	ND	ND	ND

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

			1	1		1			
LOCATION				B-15	B-15	B-16	B-16	B-17	B-17
SAMPLING DATE				1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	6-8'	13-15'	8-10'	13-15'
	NY-	NY-							
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
Di-n-octylphthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	1.1	mg/kg	ND	ND	ND	ND	ND	ND
Dibenzofuran	350	1000	mg/kg	ND	ND	ND	0.21 J	ND	ND
Diethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dimethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Fluoranthene	500	1000	mg/kg	ND	ND	ND	0.56 J	ND	ND
Fluorene	500	1000	mg/kg	ND	ND	ND	0.66 J	ND	ND
Hexachlorobenzene	6	12	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	5.6	11	mg/kg	ND	ND	ND	ND	ND	ND
Isophorone			mg/kg	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine			mg/kg	ND	ND	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
NDPA/DPA			mg/kg	ND	ND	ND	ND	ND	ND
Nitrobenzene	69	140	mg/kg	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol			mg/kg	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	55	mg/kg	ND	ND	ND	ND	ND	ND
Phenanthrene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Phenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Pyrene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of th

P - The RPD between the results for the two columns exceeds the method-spe $% \mathcal{P}$

I - The lower value for the two columns has been reported due to obvious int
Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				B-18	B-18	B-19	B-19	B-20	B-20
SAMPLING DATE				1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				5-7'	13-15	5-7'	13-15'	5-7'	13-15'
	NY-	NY-						-	
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene			mg/kg	1.4	0.42 J	0.16 J	ND	ND	ND
2-Methylphenol	500	1000	mg/kg	0.13 J	ND	ND	ND	ND	ND
2-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
2-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			mg/kg	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	500	1000	mg/kg	0.39	ND	ND	ND	ND	ND
3-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol			mg/kg	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Chloroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
Acenaphthene	500	1000	mg/kg	5.2	J	0.66	0.5 J	ND	ND
Acenaphthylene	500	1000	mg/kg	4.1	ND	0.1 J	ND	ND	ND
Acetophenone			mg/kg	ND	ND	ND	ND	ND	ND
Anthracene	500	1000	mg/kg	14 E	2.7	0.98	1	ND	ND
Benzo(a)anthracene	5.6	11	mg/kg	32 E	8.9	1.8	2.7	0.039 J	ND
Benzo(a)pyrene	1	1.1	mg/kg	29 E	2.5	1.7	1.1 J	ND	ND
Benzo(b)fluoranthene	5.6	11	mg/kg	39 E	1.9	2	0.94 J	0.04 J	ND
Benzo(ghi)perylene	500	1000	mg/kg	15 E	0.93 J	1.2	0.66 J	ND	ND
Benzo(k)fluoranthene	56	110	mg/kg	4.6	ND	0.61	ND	ND	ND
Benzoic Acid			mg/kg	ND	ND	ND	ND	ND	ND
Benzyl Alcohol			mg/kg	ND	ND	ND	ND	ND	ND
Biphenyl			mg/kg	0.53	ND	0.063 J	ND	ND	ND
Bis(2-chloroethoxy)methane			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Carbazole			mg/kg	4.1	ND	0.44	ND	ND	ND
Chrysene	56	110	mg/kg	22 E	9.5	1.8	2.7	0.031 J	ND
Di-n-butylphthalate			mg/kg	ND	ND	ND	ND	ND	ND

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				D 10	D 10	D 10	D 10	D 2 0	D 20
				B-18	B-18	B-19	B-19	B-20	B-20
SAMPLING DATE				1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				5-7'	13-15	5-7'	13-15'	5-7'	13-15'
	NY-	NY-							
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
Di-n-octylphthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	1.1	mg/kg	4.2	0.84 J	0.26	0.29 J	ND	ND
Dibenzofuran	350	1000	mg/kg	3.2	0.28 J	0.34	ND	ND	ND
Diethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dimethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Fluoranthene	500	1000	mg/kg	36 E	2.2	4.8	1.7	0.099 J	ND
Fluorene	500	1000	mg/kg	5.6	1.3 J	0.52	0.53 J	ND	ND
Hexachlorobenzene	6	12	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	5.6	11	mg/kg	16 E	0.48 J	1.2	0.5 J	ND	ND
Isophorone			mg/kg	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine			mg/kg	ND	ND	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	3.2	ND	0.26	ND	ND	ND
NDPA/DPA			mg/kg	ND	ND	ND	ND	ND	ND
Nitrobenzene	69	140	mg/kg	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol			mg/kg	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	55	mg/kg	ND	ND	ND	ND	ND	ND
Phenanthrene	500	1000	mg/kg	31 E	5.9	4.4	2.6	0.074 J	ND
Phenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Pyrene	500	1000	mg/kg	35 E	8.4	4.2	3.2	0.087 J	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of th

P - The RPD between the results for the two columns exceeds the method-spe

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				B-21	B-21	B-22	B-22	B-23	B-23
SAMPLING DATE				1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	8-10'	13-15'	8-10'	13-15'
	NY-	NY-		_	_	_		_	_
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene			mg/kg	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene			mg/kg	ND	ND	ND	ND	ND	ND
2-Chlorophenol			mg/kg	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene			mg/kg	ND	ND	ND	1.4	ND	ND
2-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
2-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
2-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine			mg/kg	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
3-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4.6-Dinitro-o-cresol			mg/kg	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Chloroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitroaniline			mg/kg	ND	ND	ND	ND	ND	ND
4-Nitrophenol			mg/kg	ND	ND	ND	ND	ND	ND
Acenaphthene	500	1000	mg/kg	ND	ND	ND	0.28 I	ND	ND
Acenaphthylene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Acetophenone	200	1000	mg/kg	ND	ND	ND	ND	ND	ND
Anthracene	500	1000	mg/kg	ND	ND	ND	0.72	ND	ND
Benzo(a)anthracene	5.6	11	mg/kg	ND	ND	ND	2.4	ND	ND
Benzo(a)pyrene	1	11	mg/kg	ND	ND	ND	0.61	ND	ND
Benzo(b)fluoranthene	56	11	mg/kg	ND	ND	ND	0.5	ND	ND
Benzo(ghi)pervlene	500	1000	mg/kg	ND	ND	ND	0.23 I	ND	ND
Benzo(k)fluoranthene	56	110	mg/kg	ND	ND	ND	0.081 J	ND	ND
Benzoic Acid	50	110	mg/kg	ND	ND	ND	ND	ND	ND
Benzyl Alcohol			mg/kg	ND	ND	ND	ND	ND	ND
Binhonyl			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2 chloroothoxy)mathana			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2 chloroothyl)other			mg/kg	ND	ND	ND	ND	ND	ND
Bis(2 chloroisopropul) athar			mg/kg				ND	ND	ND
Dis(2-chiororsopropyr)ether			mg/kg	ND	ND	ND	ND	ND	ND
Dis(2-ethymexy)/phinalate			mg/kg		ND		ND ND	ND	ND
Carbanala			mg/kg	ND	ND	ND	ND	ND	ND
Chrusse	57	110	mg/kg	ND	ND	ND	2.0	ND	ND
Unrysene	56	110	mg/kg	ND	ND	ND	2.9 ND	ND	ND
Di-n-butylphthalate			mg/kg	ND	ND	ND	ND	ND	ND

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				B-21	B-21	B-22	B-22	B-23	B-23
SAMPLING DATE				1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	8-10'	13-15'	8-10'	13-15'
	NY-	NY-							
	RESC	RESI	Units	Results	Results	Results	Results	Results	Results
Di-n-octylphthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	1.1	mg/kg	ND	ND	ND	0.18 J	ND	ND
Dibenzofuran	350	1000	mg/kg	ND	ND	ND	ND	ND	ND
Diethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Dimethyl phthalate			mg/kg	ND	ND	ND	ND	ND	ND
Fluoranthene	500	1000	mg/kg	ND	ND	ND	0.6	ND	ND
Fluorene	500	1000	mg/kg	ND	ND	ND	0.26 J	ND	ND
Hexachlorobenzene	6	12	mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene			mg/kg	ND	ND	ND	ND	ND	ND
Hexachloroethane			mg/kg	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	5.6	11	mg/kg	ND	ND	ND	0.087 J	ND	ND
Isophorone			mg/kg	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine			mg/kg	ND	ND	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
NDPA/DPA			mg/kg	ND	ND	ND	ND	ND	ND
Nitrobenzene	69	140	mg/kg	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol			mg/kg	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	55	mg/kg	ND	ND	ND	ND	ND	ND
Phenanthrene	500	1000	mg/kg	ND	ND	ND	1.5	ND	ND
Phenol	500	1000	mg/kg	ND	ND	ND	ND	ND	ND
Pyrene	500	1000	mg/kg	ND	ND	ND	2.3	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of th

P - The RPD between the results for the two columns exceeds the method-spe

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				B-24	B-24	B-25	B-25
SAMPLING DATE				1/27/2017	1/27/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				5-7'	13-15'	8-10'	18-20'
	NY-	NY-					
	RESC	RESI	Units	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene			mg/kg	ND	ND	ND	ND
1,2,4-Trichlorobenzene			mg/kg	ND	ND	ND	ND
1,2-Dichlorobenzene	500	1000	mg/kg	ND	ND	ND	ND
1,3-Dichlorobenzene	280	560	mg/kg	ND	ND	ND	ND
1,4-Dichlorobenzene	130	250	mg/kg	ND	ND	ND	ND
2,4,5-Trichlorophenol			mg/kg	ND	ND	ND	ND
2,4,6-Trichlorophenol			mg/kg	ND	ND	ND	ND
2,4-Dichlorophenol			mg/kg	ND	ND	ND	ND
2,4-Dimethylphenol			mg/kg	ND	ND	ND	ND
2,4-Dinitrophenol			mg/kg	ND	ND	ND	ND
2,4-Dinitrotoluene			mg/kg	ND	ND	ND	ND
2,6-Dinitrotoluene			mg/kg	ND	ND	ND	ND
2-Chloronaphthalene			mg/kg	ND	ND	ND	ND
2-Chlorophenol			mg/kg	ND	ND	ND	ND
2-Methylnaphthalene			mg/kg	0.14 J	ND	ND	1.1
2-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND
2-Nitroaniline			mg/kg	ND	ND	ND	ND
2-Nitrophenol			mg/kg	ND	ND	ND	ND
3,3'-Dichlorobenzidine			mg/kg	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol	500	1000	mg/kg	ND	ND	ND	ND
3-Nitroaniline			mg/kg	ND	ND	ND	ND
4,6-Dinitro-o-cresol			mg/kg	ND	ND	ND	ND
4-Bromophenyl phenyl ether			mg/kg	ND	ND	ND	ND
4-Chloroaniline			mg/kg	ND	ND	ND	ND
4-Chlorophenyl phenyl ether			mg/kg	ND	ND	ND	ND
4-Nitroaniline			mg/kg	ND	ND	ND	ND
4-Nitrophenol			mg/kg	ND	ND	ND	ND
Acenaphthene	500	1000	mg/kg	0.23	0.24	ND	0.23
Acenaphthylene	500	1000	mg/kg	0.11 J	ND	ND	ND
Acetophenone			mg/kg	ND	ND	ND	ND
Anthracene	500	1000	mg/kg	0.57	0.66	ND	0.44
Benzo(a)anthracene	5.6	11	mg/kg	1.3	1.9	ND	1.7
Benzo(a)pyrene	1	1.1	mg/kg	1.4	0.64	ND	0.83
Benzo(b)fluoranthene	5.6	11	mg/kg	1.8	0.076 J	ND	0.071 J
Benzo(ghi)perylene	500	1000	mg/kg	1.1	0.18	ND	0.18
Benzo(k)fluoranthene	56	110	mg/kg	0.39	0.46	ND	0.56
Benzoic Acid			mg/kg	ND	ND	ND	ND
Benzyl Alcohol			mg/kg	ND	ND	ND	ND
Biphenyl			mg/kg	ND	ND	ND	ND
Bis(2-chloroethoxy)methane			mg/kg	ND	ND	ND	ND
Bis(2-chloroethyl)ether			mg/kg	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether			mg/kg	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate			mg/kg	ND	ND	ND	ND
Butyl benzyl phthalate			mg/kg	ND	ND	ND	ND
Carbazole			mg/kg	0.28	ND	ND	ND
Chrysene	56	110	mg/kg	1.4	1.7	ND	1.9
Di-n-butylphthalate			mg/kg	ND	ND	ND	ND

Semi Volitile Organic Compounds for Soils EPA Method 8270 Table 2

LOCATION				B-24	B-24	B-25	B-25
SAMPLING DATE				1/27/2017	1/27/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				5-7'	13-15'	8-10'	18-20'
	NY-	NY-					
	RESC	RESI	Units	Results	Results	Results	Results
Di-n-octylphthalate			mg/kg	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	1.1	mg/kg	0.32	0.14	ND	0.15
Dibenzofuran	350	1000	mg/kg	0.19 J	0.058 J	ND	ND
Diethyl phthalate			mg/kg	ND	ND	ND	ND
Dimethyl phthalate			mg/kg	ND	ND	ND	ND
Fluoranthene	500	1000	mg/kg	3.1	0.38	ND	0.25
Fluorene	500	1000	mg/kg	0.25	0.26	ND	0.19
Hexachlorobenzene	6	12	mg/kg	ND	ND	ND	ND
Hexachlorobutadiene			mg/kg	ND	ND	ND	ND
Hexachlorocyclopentadiene			mg/kg	ND	ND	ND	ND
Hexachloroethane			mg/kg	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	5.6	11	mg/kg	0.91	0.081 J	ND	0.083 J
Isophorone			mg/kg	ND	ND	ND	ND
n-Nitrosodi-n-propylamine			mg/kg	ND	ND	ND	ND
Naphthalene	500	1000	mg/kg	0.28	ND	ND	3
NDPA/DPA			mg/kg	ND	ND	ND	ND
Nitrobenzene	69	140	mg/kg	ND	ND	ND	ND
p-Chloro-m-cresol			mg/kg	ND	ND	ND	ND
Pentachlorophenol	6.7	55	mg/kg	ND	ND	ND	ND
Phenanthrene	500	1000	mg/kg	2.6	1.3	ND	0.74
Phenol	500	1000	mg/kg	ND	ND	ND	ND
Pyrene	500	1000	mg/kg	2.8	1.5	ND	1.4

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of th

P - The RPD between the results for the two columns exceeds the method-spe

Pesticides for Soils Epa Method 8221 Table 3

LOCATION				B-1	B-1	B-2	B-2	B-3	B-3	B-4	B-4
SAMPLING DATE				1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	18-20'	8-10'	18-20'	8-10'	18-20'
	NY-UNRES	NY-RESR	Units	Results							
4,4'-DDD	0.0033	2.6	mg/kg	ND							
4,4'-DDE	0.0033	1.8	mg/kg	ND							
4,4'-DDT	0.0033	1.7	mg/kg	ND							
Aldrin	0.005	0.019	mg/kg	ND							
Alpha-BHC	0.02	0.097	mg/kg	ND							
Beta-BHC	0.036	0.072	mg/kg	ND							
Chlordane			mg/kg	ND							
cis-Chlordane	0.094	0.91	mg/kg	ND							
Delta-BHC	0.04	100	mg/kg	ND							
Dieldrin	0.005	0.039	mg/kg	ND							
Endosulfan I	2.4	4.8	mg/kg	ND							
Endosulfan II	2.4	4.8	mg/kg	ND							
Endosulfan sulfate	2.4	4.8	mg/kg	ND							
Endrin	0.014	2.2	mg/kg	ND							
Endrin aldehyde			mg/kg	ND							
Endrin ketone			mg/kg	ND							
Heptachlor	0.042	0.42	mg/kg	ND							
Heptachlor epoxide		0.077	mg/kg	ND							
Lindane	0.1	0.28	mg/kg	ND							
Methoxychlor		100	mg/kg	ND							
Toxaphene			mg/kg	ND							
trans-Chlordane		0.54	mg/kg	ND							

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

Pesticides for Soils Epa Method 8221 Table 3

LOCATION				B-5	B-5	B-6	B-6	B-8	B-8	B-9	B-9	B-10	B-10
SAMPLING DATE				1/25/2017	1/25/2017	1/27/2017	1/27/2017	1/31/2017	1/31/2017	1/31/2017	1/31/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	20-22'	8-10'	18-20'	8-10'	18-20'	8-10'	18-20'
	NY-UNRES	NY-RESR	Units	Results									
4,4'-DDD	0.0033	2.6	mg/kg	0.00152 J	ND								
4,4'-DDE	0.0033	1.8	mg/kg	ND									
4,4'-DDT	0.0033	1.7	mg/kg	ND	ND	0.0132	ND	ND	ND	ND	ND	0.00208 J	ND
Aldrin	0.005	0.019	mg/kg	ND									
Alpha-BHC	0.02	0.097	mg/kg	ND									
Beta-BHC	0.036	0.072	mg/kg	ND									
Chlordane			mg/kg	ND									
cis-Chlordane	0.094	0.91	mg/kg	ND	0.00189 J	ND							
Delta-BHC	0.04	100	mg/kg	ND									
Dieldrin	0.005	0.039	mg/kg	ND	ND	0.0131 P	ND	ND	ND	ND	ND	0.00139	ND
Endosulfan I	2.4	4.8	mg/kg	ND									
Endosulfan II	2.4	4.8	mg/kg	-	ND								
Endosulfan sulfate	2.4	4.8	mg/kg	ND									
Endrin	0.014	2.2	mg/kg	0.0016 PI	ND								
Endrin aldehyde			mg/kg	ND									
Endrin ketone			mg/kg	ND									
Heptachlor	0.042	0.42	mg/kg	ND									
Heptachlor epoxide		0.077	mg/kg	ND									
Lindane	0.1	0.28	mg/kg	ND									
Methoxychlor		100	mg/kg	ND									
Toxaphene			mg/kg	ND	0.035 J	ND							
trans-Chlordane		0.54	mg/kg	ND	0.00123 J	ND							

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

Pesticides for Soils Epa Method 8221 Table 3

LOCATION				B-11	B-11	B-13	B-13	B-14	B-14	B-15	B-15	B-16	B-16
SAMPLING DATE				1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				3-5'	13-15'	8-10'	18-20'	0-2'	13-15	8-10'	13-15'	6-8'	13-15
	NY-UNRES	NY-RESR	Units	Results									
4,4'-DDD	0.0033	2.6	mg/kg	ND									
4,4'-DDE	0.0033	1.8	mg/kg	0.00571	ND	ND	ND	ND	0.00242	ND	ND	ND	0.00263 P
4,4'-DDT	0.0033	1.7	mg/kg	ND	ND	ND	ND	ND	0.0096	ND	ND	ND	ND
Aldrin	0.005	0.019	mg/kg	ND									
Alpha-BHC	0.02	0.097	mg/kg	ND									
Beta-BHC	0.036	0.072	mg/kg	ND									
Chlordane			mg/kg	ND	ND	ND	ND	ND	0.012 J	ND	ND	ND	ND
cis-Chlordane	0.094	0.91	mg/kg	ND	ND	ND	ND	ND	0.00174 J	ND	ND	ND	ND
Delta-BHC	0.04	100	mg/kg	ND									
Dieldrin	0.005	0.039	mg/kg	0.00356 P	ND								
Endosulfan I	2.4	4.8	mg/kg	ND									
Endosulfan II	2.4	4.8	mg/kg	ND									
Endosulfan sulfate	2.4	4.8	mg/kg	ND									
Endrin	0.014	2.2	mg/kg	ND									
Endrin aldehyde			mg/kg	ND									
Endrin ketone			mg/kg	ND									
Heptachlor	0.042	0.42	mg/kg	ND									
Heptachlor epoxide		0.077	mg/kg	0.004 PI	ND								
Lindane	0.1	0.28	mg/kg	ND									
Methoxychlor		100	mg/kg	ND									
Toxaphene			mg/kg	ND									
trans-Chlordane		0.54	mg/kg	ND	ND	ND	ND	ND	0.00156 J	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

Pesticides for Soils Epa Method 8221 Table 3

LOCATION				B-17	B-17	B-18	B-18	B-19	B-19	B-20	B-20	B-21	B-21
SAMPLING DATE				1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	5-7'	13-15'	5-7'	13-15'	5-7'	13-15	8-10'	13-15'
	NY-UNRES	NY-RESR	Units	Results									
4,4'-DDD	0.0033	2.6	mg/kg	ND									
4,4'-DDE	0.0033	1.8	mg/kg	ND									
4,4'-DDT	0.0033	1.7	mg/kg	ND									
Aldrin	0.005	0.019	mg/kg	ND									
Alpha-BHC	0.02	0.097	mg/kg	ND									
Beta-BHC	0.036	0.072	mg/kg	ND									
Chlordane			mg/kg	ND									
cis-Chlordane	0.094	0.91	mg/kg	ND									
Delta-BHC	0.04	100	mg/kg	ND									
Dieldrin	0.005	0.039	mg/kg	ND									
Endosulfan I	2.4	4.8	mg/kg	ND									
Endosulfan II	2.4	4.8	mg/kg	ND	ND	0.0048 PI	ND						
Endosulfan sulfate	2.4	4.8	mg/kg	ND	ND	ND	0.0119 PI	ND	ND	ND	ND	ND	ND
Endrin	0.014	2.2	mg/kg	ND									
Endrin aldehyde			mg/kg	ND									
Endrin ketone			mg/kg	ND									
Heptachlor	0.042	0.42	mg/kg	ND									
Heptachlor epoxide		0.077	mg/kg	ND									
Lindane	0.1	0.28	mg/kg	ND									
Methoxychlor		100	mg/kg	ND									
Toxaphene			mg/kg	ND									
trans-Chlordane		0.54	mg/kg	ND									

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

Pesticides for Soils Epa Method 8221 Table 3

LOCATION				B-22	B-22	B-23	B-23	B-24	B-24	B-25	B-25
SAMPLING DATE				1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	8-10'	13-15'	5-7'	13-15'	8-10'	18-20'
	NY-UNRES	NY-RESR	Units	Results							
4,4'-DDD	0.0033	2.6	mg/kg	ND							
4,4'-DDE	0.0033	1.8	mg/kg	ND							
4,4'-DDT	0.0033	1.7	mg/kg	ND							
Aldrin	0.005	0.019	mg/kg	ND							
Alpha-BHC	0.02	0.097	mg/kg	ND							
Beta-BHC	0.036	0.072	mg/kg	ND							
Chlordane			mg/kg	ND							
cis-Chlordane	0.094	0.91	mg/kg	ND							
Delta-BHC	0.04	100	mg/kg	ND							
Dieldrin	0.005	0.039	mg/kg	ND							
Endosulfan I	2.4	4.8	mg/kg	ND							
Endosulfan II	2.4	4.8	mg/kg	ND							
Endosulfan sulfate	2.4	4.8	mg/kg	ND							
Endrin	0.014	2.2	mg/kg	ND							
Endrin aldehyde			mg/kg	ND							
Endrin ketone			mg/kg	ND							
Heptachlor	0.042	0.42	mg/kg	ND							
Heptachlor epoxide		0.077	mg/kg	ND							
Lindane	0.1	0.28	mg/kg	ND							
Methoxychlor		100	mg/kg	ND							
Toxaphene			mg/kg	ND							
trans-Chlordane		0.54	mg/kg	ND							

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of the instrument. *P* - The Relative Percent Difference (RPD)

between the results for the two columns exceeds the method-specific criteria.

Metals for Soils Epa Method 8280 Table 4

LOCATION				B-1	B-1	B-2	B-2	B-3	B-3
SAMPLING DATE				1/25/2017	1/25/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	14-16'	8-10'	18-20'
	NY-	NY-							
	RESC	RESI		Results	Results	Results	Results	Results	Results
Aluminum, Total			mg/kg	2200	2400	3200	3300	4000	2700
Antimony, Total			mg/kg	ND	ND	ND	ND	ND	ND
Arsenic, Total	16	16	mg/kg	0.56 J	0.72 J	1.3	0.74 J	1.5	1.5
Barium, Total	400	10000	mg/kg	10	17	22	34	20	24
Beryllium, Total	590	2700	mg/kg	0.05 J	0.06 J	0.17 J	0.17 J	0.22 J	0.15 J
Cadmium, Total	9.3	60	mg/kg	ND	ND	ND	ND	ND	ND
Calcium, Total			mg/kg	11000	630	4000	670	1300	9500
Chromium, Total			mg/kg	4.6	4.4	5.9	5.9	8.1	5.1
Cobalt, Total			mg/kg	2.4	2.7	3.3	3.2	4.1	2.8
Copper, Total	270	10000	mg/kg	5.4	5.7	9.6	6.4	7.7	7
Iron, Total			mg/kg	5000	5900	7200	6800	9200	7200
Lead, Total	1000	3900	mg/kg	3.3 J	2.3 J	6.2	1.9 J	2.6 J	2.2 J
Magnesium, Total			mg/kg	6800	1500	3800	2200	2400	5400
Manganese, Total	10000	10000	mg/kg	240	150	230	62	230	200
Mercury, Total	2.8	5.7	mg/kg	ND	ND	ND	ND	ND	ND
Nickel, Total	310	10000	mg/kg	5.7	5.8	7	5.9	8.2	6
Potassium, Total			mg/kg	410	320	630	860	940	440
Selenium, Total	1500	6800	mg/kg	ND	ND	ND	ND	ND	ND
Silver, Total	1500	6800	mg/kg	ND	ND	ND	ND	ND	ND
Sodium, Total			mg/kg	50 J	51 J	70 J	52 J	77 J	100 J
Thallium, Total			mg/kg	ND	ND	ND	ND	ND	ND
Vanadium, Total			mg/kg	6.9	7.2	10	8.5	11	9.7
Zinc, Total	10000	10000	mg/kg	39	14	18	18	20	14

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration curve of the instrument.

P - The RPD between the results for the two columns exceeds the method-specific criteria.

Metals for Soils Epa Method 8280 Table 4

LOCATION				B-4	B-4	B-5	B-5	B-6	B-6
SAMPLING DATE				1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	8-10'	18-20'	8-10'	20-22'
	NY-	NY-							
	RESC	RESI		Results	Results	Results	Results	Results	Results
Aluminum, Total			mg/kg	2600	4300	3700	2000	5300	3800
Antimony, Total			mg/kg	ND	ND	ND	ND	ND	ND
Arsenic, Total	16	16	mg/kg	1.3	1	2.9	1	2.2	1.3
Barium, Total	400	10000	mg/kg	14	46	17	15	43	30
Beryllium, Total	590	2700	mg/kg	0.08 J	0.18 J	0.14 J	0.04 J	0.17 J	0.18 J
Cadmium, Total	9.3	60	mg/kg	ND	ND	0.29 J	ND	ND	ND
Calcium, Total			mg/kg	880	9500	910	720	39000	1800
Chromium, Total			mg/kg	5.3	9.6	8.2	4.6	6.2	14
Cobalt, Total			mg/kg	2.9	5	3.1	2.4	3	4.8
Copper, Total	270	10000	mg/kg	6.3	9.6	17	6.1	16	14
Iron, Total			mg/kg	6300	9100	7800	5600	8700	16000
Lead, Total	1000	3900	mg/kg	12	5.5	140	3 J	110	12
Magnesium, Total			mg/kg	1800	6000	1900	1100	11000	1700
Manganese, Total	10000	10000	mg/kg	160	200	120	100	560	330
Mercury, Total	2.8	5.7	mg/kg	ND	ND	0.05 J	ND	0.03 J	ND
Nickel, Total	310	10000	mg/kg	6.4	10	7.1	4.9	6.7	8.6
Potassium, Total			mg/kg	490	1100	580	210 J	890	710
Selenium, Total	1500	6800	mg/kg	ND	ND	ND	ND	ND	ND
Silver, Total	1500	6800	mg/kg	ND	ND	ND	ND	ND	ND
Sodium, Total			mg/kg	56 J	180 J	45 J	82 J	250	76 J
Thallium, Total			mg/kg	ND	ND	ND	ND	ND	ND
Vanadium, Total			mg/kg	10	15	11	11	13	23
Zinc, Total	10000	10000	mg/kg	15	26	140	12	24	20

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration

P - The RPD between the results for the two columns exceeds the

Metals for Soils Epa Method 8280 Table 4

LOCATION				B-8	B-8	B-9	B-9	B-10	B-10
SAMPLING DATE				1/31/2017	1/31/2017	1/31/2017	1/31/2017	1/26/2017	1/26/2017
SAMPLE DEPTH (ft.)				8-10'	18-20'	L1703081-03	18-20'	8-10'	18-20'
	NY-	NY-							
	RESC	RESI		Results	Results	8-10'	Results	Results	Results
Aluminum, Total			mg/kg	2000	2500	1800	1800	6500	13000
Antimony, Total			mg/kg	ND	ND	ND	ND	ND	ND
Arsenic, Total	16	16	mg/kg	0.7 J	0.64 J	0.99	0.47 J	6.5	9.6
Barium, Total	400	10000	mg/kg	15	12	9	6.7	88	23
Beryllium, Total	590	2700	mg/kg	0.09 J	0.11 J	0.05 J	0.08 J	0.34 J	0.68
Cadmium, Total	9.3	60	mg/kg	ND	ND	ND	ND	ND	ND
Calcium, Total			mg/kg	12000	680	7200	3100	2100	2800
Chromium, Total			mg/kg	4.1	5.8	4	4.6	13	26
Cobalt, Total			mg/kg	2	4.4	3	2.2	5.6	9.2
Copper, Total	270	10000	mg/kg	6.2	6	11	7.6	25	11
Iron, Total			mg/kg	6200	5900	5700	4900	13000	29000
Lead, Total	1000	3900	mg/kg	1.9 J	2.1 J	2.8 J	1.2 J	96	9.8
Magnesium, Total			mg/kg	6200	1300	4900	2700	1800	6400
Manganese, Total	10000	10000	mg/kg	110	52	430	68	320	440
Mercury, Total	2.8	5.7	mg/kg	ND	ND	0.05 J	ND	0.58	0.03 J
Nickel, Total	310	10000	mg/kg	4.3	6.4	5	5.6	10	20
Potassium, Total			mg/kg	280	390	300	170 J	610	2600
Selenium, Total	1500	6800	mg/kg	ND	ND	ND	ND	1.9	ND
Silver, Total	1500	6800	mg/kg	ND	ND	ND	ND	0.96	ND
Sodium, Total			mg/kg	71 J	46 J	75 J	61 J	540	1500
Thallium, Total			mg/kg	ND	ND	ND	ND	1.9	ND
Vanadium, Total			mg/kg	7.9	11	11	7.1	17	30
Zinc, Total	10000	10000	mg/kg	10	13	10	7.8	70	63

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration

P - The RPD between the results for the two columns exceeds the

Metals for Soils Epa Method 8280 Table 4

LOCATION				B-11	B-11	B-13	B-13	B-14	B-14
SAMPLING DATE				1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				3-5'	13-15'	8-10'	18-20'	0-2'	13-15'
	NY-	NY-							
	RESC	RESI		Results	Results	Results	Results	Results	Results
Aluminum, Total			mg/kg	4700	5300	1600	1900	6100	4800
Antimony, Total			mg/kg	ND	1.9 J	ND	ND	ND	ND
Arsenic, Total	16	16	mg/kg	3.8	6.2	0.55 J	0.8 J	1.7	1.1
Barium, Total	400	10000	mg/kg	35	30	7.8	10	38	30
Beryllium, Total	590	2700	mg/kg	0.14 J	0.13 J	ND	0.03 J	0.24 J	0.18 J
Cadmium, Total	9.3	60	mg/kg	ND	ND	ND	ND	ND	ND
Calcium, Total			mg/kg	650	5100	370	400	760	1800
Chromium, Total			mg/kg	8.2	9	4.7	4.5	8.6	15
Cobalt, Total			mg/kg	3.8	2.9	2	1.9	3.8	5.2
Copper, Total	270	10000	mg/kg	14	11	5.1	4	10	20
Iron, Total			mg/kg	10000	10000	4100	4000	9500	12000
Lead, Total	1000	3900	mg/kg	25	100	1.8 J	1.8 J	16	4.1
Magnesium, Total			mg/kg	1400	2100	820	1200	1300	2300
Manganese, Total	10000	10000	mg/kg	110	75	37	30	290	290
Mercury, Total	2.8	5.7	mg/kg	0.05 J	0.04 J	ND	ND	0.05 J	ND
Nickel, Total	310	10000	mg/kg	7.9	7.9	3.8	4.1	6.6	9.8
Potassium, Total			mg/kg	370	370	190 J	350	260	1700
Selenium, Total	1500	6800	mg/kg	ND	0.38 J	ND	ND	ND	ND
Silver, Total	1500	6800	mg/kg	ND	ND	ND	ND	0.31 J	ND
Sodium, Total			mg/kg	75 J	100 J	54 J	77 J	55 J	140 J
Thallium, Total			mg/kg	ND	ND	ND	ND	ND	ND
Vanadium, Total			mg/kg	12	12	6	5.4	12	21
Zinc, Total	10000	10000	mg/kg	34	39	14	11	18	47

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration

P - The RPD between the results for the two columns exceeds the

Metals for Soils Epa Method 8280 Table 4

LOCATION				B-15	B-15	B-16	B-16	B-17	B-17
SAMPLING DATE				1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	6-8'	13-15'	8-10'	13-15'
	NY-	NY-							
	RESC	RESI		Results	Results	Results	Results	Results	Results
Aluminum, Total			mg/kg	2200	2500	7300	3800	4700	5600
Antimony, Total			mg/kg	ND	4.6	ND	ND	ND	ND
Arsenic, Total	16	16	mg/kg	0.88	0.95	3.8	0.83	2.6	3.5
Barium, Total	400	10000	mg/kg	16	140	29	30	26	24
Beryllium, Total	590	2700	mg/kg	0.05 J	0.08	0.28 J	0.08 J	0.16 J	0.17 J
Cadmium, Total	9.3	60	mg/kg	ND	0.93	ND	ND	ND	ND
Calcium, Total			mg/kg	11000	7800	740	930	740	980
Chromium, Total			mg/kg	5.1	4.6	11	11	8.8	9.7
Cobalt, Total			mg/kg	3	3.5	7.3	4.2	4.2	4.7
Copper, Total	270	10000	mg/kg	6.3	8.7	9.4	10	9.4	9.9
Iron, Total			mg/kg	6500	7000	15000	8900	11000	12000
Lead, Total	1000	3900	mg/kg	2.3 J	3.2	6	2.7 J	9.1	13
Magnesium, Total			mg/kg	5900	5800	2200	1700	1600	1700
Manganese, Total	10000	10000	mg/kg	160	2000	260	330	210	220
Mercury, Total	2.8	5.7	mg/kg	ND	0.07	ND	ND	0.03 J	0.03 J
Nickel, Total	310	10000	mg/kg	6	9	10	8.6	7.9	8.4
Potassium, Total			mg/kg	320	350	600	510	490	520
Selenium, Total	1500	6800	mg/kg	ND	1.8	ND	ND	ND	ND
Silver, Total	1500	6800	mg/kg	ND	0.93	ND	ND	ND	ND
Sodium, Total			mg/kg	140 J	120	110 J	79 J	33 J	100 J
Thallium, Total			mg/kg	ND	1.8	ND	ND	ND	ND
Vanadium, Total			mg/kg	11	9.1	18	12	13	14
Zinc, Total	10000	10000	mg/kg	13	17	33	21	24	22

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration

P - The RPD between the results for the two columns exceeds the

Metals for Soils Epa Method 8280 Table 4

LOCATION				B-19	B-19	B-18	B-18	B-20	B-20
SAMPLING DATE				1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017
SAMPLE DEPTH (ft.)				5-7'	13-15'	5-7'	13-15'	5-7'	13-15'
	NY-	NY-							
	RESC	RESI		Results	Results	Results	Results	Results	Results
Aluminum, Total			mg/kg	3500	2700	11000	3000	2300	5100
Antimony, Total			mg/kg	ND	ND	ND	ND	ND	ND
Arsenic, Total	16	16	mg/kg	12	1.9	2.7	0.96	0.8	1.3
Barium, Total	400	10000	mg/kg	120	25	76	20	14	23
Beryllium, Total	590	2700	mg/kg	0.23 J	0.09 J	0.37 J	0.06 J	0.06 J	0.21 J
Cadmium, Total	9.3	60	mg/kg	0.17 J	ND	ND	ND	ND	ND
Calcium, Total			mg/kg	6700	10000	2300	830	570	1200
Chromium, Total			mg/kg	7.2	6.3	21	12	5.2	11
Cobalt, Total			mg/kg	4.4	3.6	8.5	3.8	2.7	4.6
Copper, Total	270	10000	mg/kg	73	18	24	12	5.6	9.2
Iron, Total			mg/kg	8100	7100	18000	6900	6000	11000
Lead, Total	1000	3900	mg/kg	150	19	9	2.8 J	2.4 J	3.7 J
Magnesium, Total			mg/kg	1100	5400	4900	2400	1400	3400
Manganese, Total	10000	10000	mg/kg	130	160	520	170	210	120
Mercury, Total	2.8	5.7	mg/kg	0.47	0.16	ND	ND	ND	ND
Nickel, Total	310	10000	mg/kg	10	7.8	20	8.6	5.5	11
Potassium, Total			mg/kg	580	530	2500	680	460	1000
Selenium, Total	1500	6800	mg/kg	5	ND	ND	ND	ND	ND
Silver, Total	1500	6800	mg/kg	ND	ND	ND	ND	ND	ND
Sodium, Total			mg/kg	160 J	82 J	88 J	72 J	42 J	68 J
Thallium, Total			mg/kg	ND	ND	ND	ND	1.6	ND
Vanadium, Total			mg/kg	13	15	28	12	7.7	17
Zinc, Total	10000	10000	mg/kg	150	24	48	16	13	26

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration

P - The RPD between the results for the two columns exceeds the

Metals for Soils Epa Method 8280 Table 4

LOCATION				B-21	B-21	B-22	B-22	B-23	B-23
SAMPLING DATE				1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				8-10'	13-15'	8-10'	13-15'	8-10'	13-15'
	NY-	NY-							
	RESC	RESI		Results	Results	Results	Results	Results	Results
Aluminum, Total			mg/kg	2800	3200	4700	2600	4200	5000
Antimony, Total			mg/kg	ND	ND	ND	ND	ND	ND
Arsenic, Total	16	16	mg/kg	4.4	1.5	1.7	1.1	0.66 J	0.74 J
Barium, Total	400	10000	mg/kg	32	19	98	16	22	24
Beryllium, Total	590	2700	mg/kg	0.19 J	0.18 J	0.26 J	0.18 J	0.14 J	0.19 J
Cadmium, Total	9.3	60	mg/kg	ND	ND	ND	ND	ND	ND
Calcium, Total			mg/kg	9100	900	950	940	830	1400
Chromium, Total			mg/kg	5.3	8.6	9.4	7.2	8.9	11
Cobalt, Total			mg/kg	3.7	3.6	4.2	2.8	3.8	5.3
Copper, Total	270	10000	mg/kg	6.8	8.2	7.3	6.6	8.8	10
Iron, Total			mg/kg	8000	10000	9900	9700	8900	11000
Lead, Total	1000	3900	mg/kg	2.6 J	2.1 J	2.4 J	2 J	3.1 J	3.7 J
Magnesium, Total			mg/kg	4400	1800	2700	1300	2000	2200
Manganese, Total	10000	10000	mg/kg	240	210	230	360	240	90
Mercury, Total	2.8	5.7	mg/kg	ND	ND	ND	ND	ND	ND
Nickel, Total	310	10000	mg/kg	6.1	7.2	8.8	5.5	8.5	12
Potassium, Total			mg/kg	500	610	870	310	680	1000
Selenium, Total	1500	6800	mg/kg	ND	ND	ND	ND	ND	ND
Silver, Total	1500	6800	mg/kg	ND	ND	ND	ND	ND	ND
Sodium, Total			mg/kg	58 J	72 J	59 J	46 J	63 J	91 J
Thallium, Total			mg/kg	ND	ND	ND	ND	ND	ND
Vanadium, Total			mg/kg	8.8	15	14	14	13	18
Zinc, Total	10000	10000	mg/kg	17	17	21	15	20	23

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration

P - The RPD between the results for the two columns exceeds the

Metals for Soils Epa Method 8280 Table 4

LOCATION				B-24	B-24	B-25	B-25
SAMPLING DATE				1/27/2017	1/27/2017	1/27/2017	1/27/2017
SAMPLE DEPTH (ft.)				5-7'	13-15'	8-10'	18-20'
	NY-	NY-					
	RESC	RESI		Results	Results	Results	Results
Aluminum, Total			mg/kg	2700	4100	6900	2500
Antimony, Total			mg/kg	11	ND	ND	ND
Arsenic, Total	16	16	mg/kg	15	1.3	10	0.78 J
Barium, Total	400	10000	mg/kg	42	35	25	13
Beryllium, Total	590	2700	mg/kg	0.37 J	0.1 J	0.64	0.08 J
Cadmium, Total	9.3	60	mg/kg	39	ND	ND	ND
Calcium, Total			mg/kg	2800	1600	630	580
Chromium, Total			mg/kg	4.5	11	21	5.1
Cobalt, Total			mg/kg	6.1	4.5	12	4.6
Copper, Total	270	10000	mg/kg	550	22	17	6.9
Iron, Total			mg/kg	22000	14000	21000	5400
Lead, Total	1000	3900	mg/kg	3900	2.4 J	13	4.6
Magnesium, Total			mg/kg	240	1800	2800	1000
Manganese, Total	10000	10000	mg/kg	54	88	170	36
Mercury, Total	2.8	5.7	mg/kg	0.63	0.01 J	0.03 J	ND
Nickel, Total	310	10000	mg/kg	59	8.4	21	5.9
Potassium, Total			mg/kg	150 J	600	1100	280
Selenium, Total	1500	6800	mg/kg	0.73 J	ND	ND	ND
Silver, Total	1500	6800	mg/kg	2.1	ND	ND	ND
Sodium, Total			mg/kg	400	290	68 J	47 J
Thallium, Total			mg/kg	ND	ND	ND	ND
Vanadium, Total			mg/kg	9.4	31	30	7.4
Zinc, Total	10000	10000	mg/kg	60000	19	70	19

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the range of the calibration

P - The RPD between the results for the two columns exceeds the

PCBs for Soils Epa Method 8082 Table 5

LOCATION				B-1	B-1	B-2	B-2	B-3	B-3	B-4	B-4
SAMPLING DAT	E			1/25/2017	1/25/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/25/2017	1/25/2017
SAMPLE DEPTH	[(ft.)			8-10'	18-20'	8-10'	14-16'	8-10'	18-20'	8-10'	18-20'
	NY-UNRE	NY-RESR	Units	Results							
Aroclor 1016	0.1	1	mg/kg	ND							
Aroclor 1221	0.1	1	mg/kg	ND							
Aroclor 1232	0.1	1	mg/kg	ND							
Aroclor 1242	0.1	1	mg/kg	ND							
Aroclor 1248	0.1	1	mg/kg	ND							
Aroclor 1254	0.1	1	mg/kg	ND							
Aroclor 1260	0.1	1	mg/kg	ND							
Aroclor 1262	0.1	1	mg/kg	ND							
Aroclor 1268	0.1	1	mg/kg	ND							
PCBs, Total			mg/kg	ND							

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

PCBs for Soils Epa Method 8082 Table 5

LOCATION				B-5	B-5	B-6	B-6	B-8	B-8	B-9	B-9	B-10	B-10	B-11	B-11	B-13
SAMPLING DA	TE			1/25/2017	1/25/2017	1/27/2017	1/27/2017	1/31/2017	1/31/2017	1/31/2017	1/31/2017	1/26/2017	1/26/2017	1/24/2017	1/24/2017	1/25/2017
SAMPLE DEPT	H (ft.)			8-10'	18-20'	8-10'	20-22'	8-10'	18-20'	8-10'	18-20'	8-10'	18-20'	3-5'	13-15'	8-10'
	NY-UNRE	NY-RESR	Units	Results												
Aroclor 1016	0.1	1	mg/kg	ND												
Aroclor 1221	0.1	1	mg/kg	ND												
Aroclor 1232	0.1	1	mg/kg	ND												
Aroclor 1242	0.1	1	mg/kg	ND												
Aroclor 1248	0.1	1	mg/kg	ND												
Aroclor 1254	0.1	1	mg/kg	ND												
Aroclor 1260	0.1	1	mg/kg	ND												
Aroclor 1262	0.1	1	mg/kg	ND												
Aroclor 1268	0.1	1	mg/kg	ND												
PCBs, Total			mg/kg	ND	0.0173	ND	ND	ND	ND							

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

PCBs for Soils Epa Method 8082 Table 5

LOCATION				B-13	B-14	B-14	B-15	B-15 13-15	B-16	B-16	B-17	B-17	B-18	B-18	B-19	B-19	B-20
SAMPLING DAT	ГЕ			1/25/2017	1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017	1/25/2017	1/25/2017	1/24/2017	1/24/2017	1/24/2017
SAMPLE DEPTI	H (ft.)			18-20'	0-2'	13-15'	8-10'	13-15'	6-8'	13-15'	8-10'	13-15'	5-7'	13-15'	5-7'	13-15'	5-7'
	NY-UNRE	NY-RESR	Units	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results	Results
Aroclor 1016	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	0.0533	ND	ND	ND	ND	ND	0.101	ND
Aroclor 1262	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1268	0.1	1	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs, Total			mg/kg	ND	ND	ND	ND	ND	ND	0.0533	ND	ND	ND	ND	ND	0.101	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

PCBs for Soils Epa Method 8082 Table 5

LOCATION				B-20	B-21	B-21	B-22	B-22	B-23	B-23	B-24	B-24	B-25	B-25
SAMPLING DAT	ΓE			1/24/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017
SAMPLE DEPTI	H (ft.)			13-15'	8-10'	13-15'	8-10'	13-15'	8-10'	13-15'	5-7'	13-15'	8-10'	18-20'
	NY-UNRE	NY-RESR	Units	Results										
Aroclor 1016	0.1	1	mg/kg	ND										
Aroclor 1221	0.1	1	mg/kg	ND										
Aroclor 1232	0.1	1	mg/kg	ND										
Aroclor 1242	0.1	1	mg/kg	ND										
Aroclor 1248	0.1	1	mg/kg	ND										
Aroclor 1254	0.1	1	mg/kg	ND										
Aroclor 1260	0.1	1	mg/kg	ND	0.00557 J	ND	ND	ND						
Aroclor 1262	0.1	1	mg/kg	ND										
Aroclor 1268	0.1	1	mg/kg	ND										
PCBs, Total			mg/kg	ND	0.00557 J	ND	ND	ND						

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

Volitile Organic Compounds for Groundwater EPA Method 8260 Table 6

LOCATION			B-1	B-2	B-3	B-4	B-5	B-6
SAMPLING DATE			1/25/2017	1/26/2017	1/26/2017	1/25/2017	1/25/2017	1/27/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
1,1,1,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ug/l	ND	ND	2.5	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ug/l	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ug/l	ND	ND	0.96 J	ND	ND	ND
1,1-Dichloroethene	5	ug/l	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.04	ug/l	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	5	ug/l	ND	15 J	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ug/l	ND	400	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.04	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.0006	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total		ug/l	33	ND	8.8	ND	ND	ND
1,2-Dichloropropane	1	ug/l	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total		ug/l	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,4-Dioxane		ug/l	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	5	ug/l	ND	ND	ND	ND	ND	ND
2-Butanone	50	ug/l	ND	ND	ND	ND	ND	ND
2-Hexanone	50	ug/l	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone		ug/l	ND	ND	ND	ND	ND	ND
Acetone	50	ug/l	ND	ND	ND	ND	ND	3.8 J
Acrylonitrile	5	ug/l	ND	ND	ND	ND	ND	ND
Benzene	1	ug/l	ND	ND	ND	ND	ND	ND
Bromobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ug/l	ND	ND	ND	ND	ND	ND
Bromodichloromethane	50	ug/l	ND	ND	ND	ND	ND	1.4
Bromoform	50	ug/l	ND	ND	ND	ND	ND	3.4
Bromomethane	5	ug/l	ND	ND	ND	ND	ND	ND
Carbon disulfide	60	ug/l	ND	21 J	ND	ND	ND	ND
Carbon tetrachloride	5	ug/l	11	ND	7.2	ND	ND	ND
Chlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
Chloroethane	5	ug/l	ND	ND	ND	ND	ND	ND
Chloroform	7	ug/l	150	ND	20	1.6 J	2.4 J	ND
Chloromethane	-	ug/l	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ug/l	33	ND	8.8	ND	ND	ND
CIS-1,3-DICNIOropropene	0.4	ug/I	ND	ND	ND	ND	ND	ND 2.1
Dibromocniorometnane	50	ug/I	ND	ND	ND	ND	ND	3.1
Dibromomethane	5	ug/I	ND	ND	ND	ND	ND	ND
	5	ug/l	ND	ND	ND	ND	ND	ND
Ethyl ether	5	ug/l	ND	ND 0.7 I	ND	ND	ND	ND
Ethylbenzene	5	ug/l	ND	9.7 J	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ug/l	ND ND	ND 12 J	ND	ND	ND	ND
Nothyl tort hytri oth	5	ug/I	ND ND	12 J	ND ND	ND ND	ND ND	ND ND
Methylene ehleride	10	ug/I	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	5	ug/l	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	ug/l	ND ND	ND 22 J	ND	ND	ND	ND
II-riopyibenzene	5	ug/I	ND ND	22 J	ND ND	ND ND	ND ND	
- Chlorotolyana	10	ug/I	ND ND	10 J	ND ND	ND ND	ND ND	1.5 J
o-Chiorotoluene	5	ug/I	ND ND	ND 12 J	ND ND	ND	ND	ND ND
O-Ayiene	5	ug/I	ND	12 J	ND	ND	ND	ND
p-Chiorotoluene	5	ug/l	ND	ND	ND	ND	ND	ND

Volitile Organic Compounds for Groundwater EPA Method 8260 Table 6

LOCATION			B-1	B-2	B-3	B-4	B-5	B-6
SAMPLING DATE			1/25/2017	1/26/2017	1/26/2017	1/25/2017	1/25/2017	1/27/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
p-Diethylbenzene		ug/l	ND	ND	ND	ND	ND	ND
p-Ethyltoluene		ug/l	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ug/l	ND	8.1 J	ND	ND	ND	ND
p/m-Xylene	5	ug/l	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ug/l	ND	7 J	ND	ND	ND	ND
Styrene	930	ug/l	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ug/l	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ug/l	16	ND	17	0.44 J	0.28 J	ND
Toluene	5	ug/l	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ug/l	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ug/l	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	5	ug/l	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ug/l	350	3.6 J	110	2.5	1.4	ND
Trichlorofluoromethane	5	ug/l	ND	ND	ND	ND	ND	ND
Vinyl acetate		ug/l	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ug/l	ND	4.6 J	ND	ND	ND	ND
Xylenes, Total		ug/l	ND	12 J	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

Volitile Organic Compounds for Groundwater EPA Method 8260 Table 6

LOCATION			B-8	B-9	B-10	B-11	B-13	B-14
SAMPLING DATE			1/31/2017	1/31/2017	1/26/2017	1/24/2017	1/25/2017	1/24/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
1,1,1,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ug/l	ND	ND	37	6300 E	3.3 J	4.1
1,1,2,2-Tetrachloroethane	5	ug/l	ND	ND	ND	25	ND	ND
1,1,2-Trichloroethane	1	ug/l	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ug/l	ND	ND	5.6	750	2.2 J	3.6
1,1-Dichloroethene	5	ug/l	ND	ND	0.3 J	250	ND	ND
1,1-Dichloropropene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.04	ug/l	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	5	ug/l	8 J	14 J	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ug/l	ND	ND	ND	32	ND	ND
1,2-Dibromo-3-chloropropane	0.04	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.0006	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total		ug/l	ND	ND	0.97 J	92	24	23 J
1,2-Dichloropropane	1	ug/l	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ug/l	ND	ND	ND	11 J	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ug/l	ND	ND	ND	14	ND	ND
1,3-Dichloropropene, Total		ug/l	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,4-Dioxane		ug/l	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	5	ug/l	ND	ND	ND	ND	ND	ND
2-Butanone	50	ug/l	ND	ND	ND	ND	ND	ND
2-Hexanone	50	ug/l	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone		ug/l	ND	ND	ND	ND	ND	ND
Acetone	50	ug/l	ND	ND	8.9	14	ND	ND
Acrylonitrile	5	ug/l	ND	ND	ND	ND	ND	ND
Benzene	1	ug/l	ND	ND	ND	5.5	ND	ND
Bromobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ug/l	ND	ND	ND	4.8 J	ND	ND
Bromodichloromethane	50	ug/l	ND	ND	0.69	5	ND	ND
Bromoform	50	ug/l	ND	ND	2.1	ND	ND	ND
Bromomethane	5	ug/l	ND	ND	ND	ND	ND	ND
Carbon disulfide	60	ug/l	ND	ND	ND	180	ND	ND
Carbon tetrachloride	5	ug/l	ND	ND	58	15000 E	2.7	1
Chlorobenzene	5	ug/l	ND	24 J	ND	ND	ND	ND
Chloroethane	5	ug/l	ND	ND	ND	ND	ND	ND
Chloroform	/	ug/I	ND	ND	42	8900 E	16	4.1
cinorometnane	5	ug/I	ND ND	ND ND	ND 0.07 I	42	ND 24	ND 22
cis-1,2-Dichloropropaga	3	ug/I	ND ND	ND ND	0.97 J	80 ND	24 ND	22
CIS-1,5-DICHIOFOPTOPENE	0.4	ug/I	ND 15 T		ND 2	ND	ND ND	ND
Dibromomethane	50	ug/1	1.3 J ND	1.0 J ND	2 ND	ND	ND	ND
Dichlorodifluoromethene	5	ug/I	ND	ND	ND	ND	ND	ND
Ethyl ether	5	ug/I	ND	ND	ND	ND	ND	ND
Ethylhonzono	5	ug/I	ND	ND	ND	ND 46	ND	ND
Hevechlorobutediene	0.5	ug/I	ND	ND	ND	40 ND	ND	ND
Isopropylbenzene	5	ug/1	24 1	Q/	ND	651	ND	ND
Methyl tert butyl ether	10	ug/1	Z4 J ND	74 ND	ND	ND	ND	ND
Methylene chloride	5	ug/1	ND	ND	ND	1400 E	ND	ND
n-Butylbenzene	5	ug/1	11.1	10 1	ND	ND	ND	ND
n-Daryibenzene	5	ug/1	36	110	ND	621	ND	ND
Naphthalene	10	ug/1	ND	ND	ND	55	ND	ND
o-Chlorotoluene	5	ug/1	ND	ND	ND	ND	ND	ND
o-Xylene	5	ug/1	ND	ND	0.85 1	110	ND	ND
n Chlorotoluono	5	ug/1	ND	ND	0.05 J	ND	ND	ND
p-Cinorototuene	3	ug/I	ND	ND	ND	ND	ND	ND

Volitile Organic Compounds for Groundwater EPA Method 8260 Table 6

LOCATION			B-8	B-9	B-10	B-11	B-13	B-14
SAMPLING DATE			1/31/2017	1/31/2017	1/26/2017	1/24/2017	1/25/2017	1/24/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
p-Diethylbenzene		ug/l	21	47	ND	6.6 J	ND	ND
p-Ethyltoluene		ug/l	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ug/l	ND	ND	ND	ND	ND	ND
p/m-Xylene	5	ug/l	ND	ND	2.3 J	290	ND	ND
sec-Butylbenzene	5	ug/l	22 J	34	ND	ND	ND	ND
Styrene	930	ug/l	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ug/l	ND	7.9 J	ND	ND	ND	ND
Tetrachloroethene	5	ug/l	ND	ND	10	140	16	22
Toluene	5	ug/l	ND	ND	8.1	3200 E	ND	ND
trans-1,2-Dichloroethene	5	ug/l	ND	ND	ND	12	ND	0.96 J
trans-1,3-Dichloropropene	0.4	ug/l	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	5	ug/l	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ug/l	ND	ND	19	3300 E	180	220 E
Trichlorofluoromethane	5	ug/l	ND	ND	ND	ND	ND	ND
Vinyl acetate		ug/l	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ug/l	ND	ND	0.36 J	7.1	0.38 J	0.13
Xylenes, Total		ug/l	ND	ND	3.2 J	400	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

Volitile Organic Compounds for Groundwater EPA Method 8260 Table 6

LOCATION			B-15	B-16	B-17	B-18	B-19	B-20
SAMPLING DATE			1/25/2017	1/24/2017	1/24/2017	1/25/2017	1/24/2017	1/24/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
1,1,1,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ug/l	ND	ND	67	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ug/l	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ug/l	ND	ND	3.7	ND	ND	ND
1,1-Dichloroethene	5	ug/l	ND	ND	0.22 J	ND	ND	ND
1,1-Dichloropropene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.04	ug/l	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	5	ug/l	ND	48 J	ND	77 J	62	0.64 J
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ug/l	ND	ND	1.4 J	ND	ND	ND
1,2-Dibromo-3-chloropropane	0.04	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.0006	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total		ug/l	ND	ND	7.6	ND	ND	ND
1,2-Dichloropropane	1	ug/l	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total		ug/l	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,4-Dioxane		ug/l	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	5	ug/l	ND	ND	ND	ND	ND	ND
2-Butanone	50	ug/l	ND	ND	ND	ND	ND	ND
2-Hexanone	50	ug/l	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone		ug/l	ND	ND	ND	ND	ND	ND
Acetone	50	ug/l	ND	ND	ND	ND	ND	ND
Acrylonitrile	5	ug/l	ND	ND	ND	ND	ND	ND
Benzene	1	ug/l	ND	ND	ND	ND	ND	ND
Bromobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
Bromochloromethane	5	ug/l	ND	ND	ND	ND	ND	ND
Bromodichloromethane	50	ug/l	ND	ND	ND	ND	ND	ND
Bromoform	50	ug/l	ND	ND	ND	ND	ND	ND
Bromomethane	5	ug/l	ND	ND	ND	ND	ND	ND
Carbon disulfide	60	ug/l	ND	ND	2.9 J	ND	ND	ND
Carbon tetrachloride	5	ug/l	0.78	36	450 E	ND	ND	ND
Chlorobenzene	5	ug/l	ND	ND	ND	ND	30 J	ND
Chloroethane	5	ug/l	ND	ND	ND	ND	ND	ND
Chloroform	7	ug/l	6.2	ND	28	ND	ND	2.7
Chloromethane	-	ug/l	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ug/l	ND	ND	/.0	ND	ND	ND
cis-1,3-Dichloropropene	0.4	ug/l	ND	ND	ND	ND	ND	ND
Dibromochioromethane	50	ug/l	ND	ND	ND	ND	ND	ND
Dibromomethane	5	ug/I	ND	ND	ND	ND	ND	ND
	5	ug/I	ND	ND	ND	ND	ND	ND
Etnyl etner	5	ug/l	ND	ND	ND 1.2.1	ND	ND	ND
Ethylbenzene	5	ug/1	ND	ND	1.5 J	ND	ND	ND
Inexactioroputadiene	0.5	ug/I	ND ND	ND	ND	ND 64 I	ND 05	ND
Isopropyidenzene Mathyl tart hytri ath	5	ug/I	ND ND	OU J	ND	04 J	95 ND	ND ND
Mathylana ablarida	10	ug/I	ND ND	ND ND		ND ND	ND ND	ND
n Dutylhongono	5	ug/I	ND ND	ND ND	0.88 J	ND 41 T	ND 24 J	ND
n-Dutylbenzene	5	ug/I	ND ND		ND	41 J	24 J	ND
Nonhthalana	10	ug/I	ND	04 J	2.0	70 J	140 ND	ND
Chlorotoluono	10	ug/I	ND	ND	3.9 ND	ND	ND	ND
o-Cinorototuene	5	ug/I	ND	ND	2.1	ND	ND	ND
	5	ug/I	ND	ND	3.1 ND	ND	ND	ND
p-Cniorotoluene	5	ug/l	ND	ND	ND	ND	ND	ND

Volitile Organic Compounds for Groundwater EPA Method 8260 Table 6

LOCATION			B-15	B-16	B-17	B-18	B-19	B-20
SAMPLING DATE			1/25/2017	1/24/2017	1/24/2017	1/25/2017	1/24/2017	1/24/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
p-Diethylbenzene		ug/l	ND	ND	ND	ND	16 J	ND
p-Ethyltoluene		ug/l	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ug/l	ND	ND	ND	ND	ND	ND
p/m-Xylene	5	ug/l	ND	ND	8.9	ND	ND	ND
sec-Butylbenzene	5	ug/l	ND	ND	ND	45 J	35 J	ND
Styrene	930	ug/l	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ug/l	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ug/l	1.1	ND	1.8	ND	ND	ND
Toluene	5	ug/l	ND	ND	64	ND	ND	ND
trans-1,2-Dichloroethene	5	ug/l	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ug/l	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	5	ug/l	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ug/l	12	ND	78	ND	ND	ND
Trichlorofluoromethane	5	ug/l	ND	ND	ND	ND	ND	ND
Vinyl acetate		ug/l	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ug/l	ND	ND	ND	ND	ND	ND
Xylenes, Total		ug/l	ND	ND	12	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - *The lower value for the two columns has* been reported due to obvious interface.

J.R. Holzmacher P.E., LLC. Consulting Engineers

Volitile Organic Compounds for Groundwater EPA Method 8260 Table 6

LOCATION			B-21	B-22	B-23	B-24	B-25
SAMPLING DATE			1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/27/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results
1,1,1,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ug/l	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ug/l	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1	ug/l	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ug/l	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ug/l	ND	ND	ND	ND	ND
1,1-Dichloropropene	5	ug/l	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0.04	ug/l	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	5	ug/l	ND	78	ND	55	43
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ug/l	ND	ND	ND	ND	620
1,2-Dibromo-3-chloropropane	0.04	ug/l	ND	ND	ND	ND	ND
1,2-Dibromoethane	0.0006	ug/l	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.6	ug/l	ND	ND	ND	ND	ND
1,2-Dichloroethene, Total		ug/l	ND	ND	ND	ND	ND
1,2-Dichloropropane	1	ug/l	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ug/l	ND	ND	ND	ND	400
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ug/l	ND	ND	ND	ND	ND
1,3-Dichloropropene, Total		ug/l	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND	4.2 J	ND
1,4-Dioxane		ug/l	ND	ND	ND	ND	ND
2,2-Dichloropropane	5	ug/l	ND	ND	ND	ND	ND
2-Butanone	50	ug/l	ND	ND	ND	ND	ND
2-Hexanone	50	ug/l	ND	ND	ND	ND	ND
4-Methyl-2-pentanone		ug/l	ND	ND	ND	ND	ND
Acetone	50	ug/l	ND	ND	ND	ND	ND
Acrylonitrile	5	ug/l	ND	ND	ND	ND	ND
Benzene	1	ug/l	ND	ND	ND	10	ND
Bromobenzene	5	ug/l	ND	ND	ND	ND	ND
Bromochloromethane	5	ug/l	ND	ND	ND	ND	ND
Bromodichloromethane	50	ug/l	0.35 J	ND	ND	ND	ND
Bromoform	50	ug/l	ND	ND	ND	ND	ND
Bromomethane	5	ug/l	ND	ND	ND	ND	ND
Carbon disulfide	60	ug/l	ND	ND	ND	ND	ND
Carbon tetrachloride	5	ug/l	ND	ND	ND	ND	ND
Chlorobenzene	5	ug/l	ND	ND	ND	66	ND
Chloroethane	5	ug/l	ND	ND	ND	ND	ND
Chloroform	7	ug/l	3.4	ND	ND	ND	ND
Chloromethane		ug/l	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ug/l	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.4	ug/l	ND	ND	ND	ND	ND
Dibromochloromethane	50	ug/l	ND	ND	ND	ND	ND
Dibromomethane	5	ug/l	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ug/l	ND	ND	ND	ND	ND
Ethyl ether		ug/l	ND	ND	ND	ND	ND
Ethylbenzene	5	ug/l	ND	ND	ND	ND	38 J
Hexachlorobutadiene	0.5	ug/l	ND	ND	ND	ND	ND
Isopropylbenzene	5	ug/l	ND	72	ND	96	30 J
Methyl tert butyl ether	10	ug/l	ND	ND	ND	1.5 J	ND
Methylene chloride	5	ug/l	ND	ND	ND	ND	ND
n-Butylbenzene	5	ug/l	ND	37	ND	26	ND
n-Propylbenzene	5	ug/l	ND	120	ND	120	63
Naphthalene	10	ug/l	ND	ND	ND	ND	92
o-Chlorotoluene	5	ug/l	ND	ND	ND	ND	ND
o-Xylene	5	ug/l	ND	ND	ND	1.5 J	ND
p-Chlorotoluene	5	ug/l	ND	ND	ND	ND	ND

Volitile Organic Compounds for Groundwater EPA Method 8260 Table 6

LOCATION			B-21	B-22	B-23	B-24	B-25
SAMPLING DATE			1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/27/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results
p-Diethylbenzene		ug/l	ND	22	ND	16	ND
p-Ethyltoluene		ug/l	ND	ND	ND	ND	330
p-Isopropyltoluene	5	ug/l	ND	ND	ND	ND	29 J
p/m-Xylene	5	ug/l	ND	ND	ND	ND	47 J
sec-Butylbenzene	5	ug/l	ND	41	ND	33	20 J
Styrene	930	ug/l	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ug/l	ND	7 J	ND	6	ND
Tetrachloroethene	5	ug/l	ND	ND	ND	ND	ND
Toluene	5	ug/l	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ug/l	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.4	ug/l	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	5	ug/l	ND	ND	ND	ND	ND
Trichloroethene	5	ug/l	ND	ND	0.29 J	ND	ND
Trichlorofluoromethane	5	ug/l	ND	ND	ND	ND	ND
Vinyl acetate		ug/l	ND	ND	ND	ND	ND
Vinyl chloride	2	ug/l	ND	ND	ND	ND	ND
Xylenes, Total		ug/l	ND	ND	ND	1.5 J	47 J

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

Semi Volatile Organic Compounds for Groundwater EPA Method 8270 Table 7

LOCATION			B-1	B-2	B-3	B-4	B-5	B-6
SAMPLING DATE			1/25/2017	1/26/2017	1/26/2017	1/25/2017	1/25/2017	1/27/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ug/l	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	ug/l	ND	ND	ND	ND	ND	ND
2-Chlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2-Methylphenol		ug/l	ND	ND	ND	ND	ND	ND
2-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
2-Nitrophenol		ug/l	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ug/l	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol		ug/l	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol		ug/l	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether		ug/l	ND	ND	ND	ND	ND	ND
4-Chloroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		ug/l	ND	ND	ND	ND	ND	ND
4-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4-Nitrophenol		ug/l	ND	ND	ND	ND	ND	ND
Acetophenone		ug/l	ND	ND	ND	ND	ND	ND
Benzoic Acid		ug/l	ND	ND	ND	ND	ND	ND
Benzyl Alcohol		ug/l	ND	ND	ND	ND	ND	ND
Biphenyl		ug/l	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	5	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ug/l	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Carbazole		ug/l	ND	ND	ND	ND	ND	2.4
Di-n-butylphthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Dibenzofuran		ug/l	ND	ND	ND	ND	ND	1.5 J
Diethyl phthalate	50	ug/l	ND	ND	ND	ND	ND	0.74 J
Dimethyl phthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ug/l	ND	ND	ND	ND	ND	ND
Isophorone	50	ug/l	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine		ug/l	ND	ND	ND	ND	ND	ND
NDPA/DPA	50	ug/l	ND	ND	ND	ND	ND	ND
Nitrobenzene	0.4	ug/l	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol		ug/l	ND	ND	ND	ND	ND	ND
Phenol	2	ug/l	ND	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

Semi Volatile Organic Compounds for Groundwater EPA Method 8270 Table 7

LOCATION			B-8	B-9	B-10	B-11	B-13	B-14
SAMPLING DATE			1/31/2017	1/31/2017	1/26/2017	1/24/2017	1/25/2017	1/24/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	1.8 J	ND	ND	ND	ND
2,4,5-Trichlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ug/l	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	ug/l	ND	ND	ND	ND	ND	ND
2-Chlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2-Methylphenol		ug/l	ND	ND	ND	1.3 J	ND	ND
2-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
2-Nitrophenol		ug/l	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ug/l	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol		ug/l	ND	ND	ND	45	ND	ND
3-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol		ug/l	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether		ug/l	ND	ND	ND	ND	ND	ND
4-Chloroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		ug/l	ND	ND	ND	ND	ND	ND
4-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4-Nitrophenol		ug/l	ND	ND	ND	ND	ND	ND
Acetophenone		ug/l	ND	ND	ND	4 J	ND	ND
Benzoic Acid		ug/l	ND	ND	ND	16 J	ND	ND
Benzyl Alcohol		ug/l	ND	ND	ND	2.5	ND	ND
Biphenyl		ug/l	ND	ND	ND	2.1 J	ND	ND
Bis(2-chloroethoxy)methane	5	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	5	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ug/l	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Carbazole		ug/l	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Dibenzofuran		ug/l	ND	ND	ND	1.1 J	ND	ND
Diethyl phthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ug/l	ND	ND	ND	ND	ND	ND
Isophorone	50	ug/l	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine		ug/l	ND	ND	ND	ND	ND	ND
NDPA/DPA	50	ug/l	ND	ND	ND	ND	ND	ND
Nitrobenzene	0.4	ug/l	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol		ug/l	ND	ND	ND	ND	ND	ND
Phenol	2	ug/l	ND	ND	ND	2.2 J	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

Semi Volatile Organic Compounds for Groundwater EPA Method 8270 Table 7

CATION			B-15	B-16	B-17	B-18	B-19	B-20
SAMPLING DATE			1/25/2017	1/24/2017	1/24/2017	1/25/2017	1/24/2017	1/24/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	0.9 J	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	0.98 J	ND	ND	ND	ND
2,4,5-Trichlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	2	ug/l	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ug/l	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	ug/l	ND	ND	ND	ND	ND	ND
2-Chlorophenol		ug/l	ND	ND	ND	ND	ND	ND
2-Methylphenol		ug/l	ND	ND	ND	ND	ND	ND
2-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
2-Nitrophenol		ug/l	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ug/l	ND	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol		ug/l	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol		ug/l	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether		ug/l	ND	ND	ND	ND	ND	ND
4-Chloroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		ug/l	ND	ND	ND	ND	ND	ND
4-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND	ND
4-Nitrophenol		ug/l	ND	ND	ND	ND	ND	ND
Acetophenone		ug/l	ND	ND	ND	ND	ND	ND
Benzoic Acid		ug/l	ND	ND	ND	ND	ND	ND
Benzyl Alcohol		ug/l	ND	ND	ND	ND	ND	ND
Biphenyl		ug/l	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	5	ug/l	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ug/l	1.6 J	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Carbazole		ug/l	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Dibenzofuran		ug/l	ND	ND	ND	ND	ND	ND
Diethyl phthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	50	ug/l	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ug/l	ND	ND	ND	ND	ND	ND
Isophorone	50	ug/l	ND	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine		ug/l	ND	ND	ND	ND	ND	ND
NDPA/DPA	50	ug/l	ND	ND	ND	ND	ND	ND
Nitrobenzene	0.4	ug/l	ND	ND	ND	ND	ND	ND
p-Chloro-m-cresol		ug/l	ND	ND	ND	ND	ND	ND
Phenol	2	ug/l	ND	ND	ND	ND	400	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

Semi Volatile Organic Compounds for Groundwater EPA Method 8270 Table 7

LOCATION			B-21	B-22	B-23	B-24	B-25
SAMPLING DATE			1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/27/2017
Analyte	NY-TOGS	Units	Results	Results	Results	Results	Results
1,2,4,5-Tetrachlorobenzene	5	ug/l	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ug/l	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ug/l	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol		ug/l	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol		ug/l	ND	ND	ND	ND	ND
2,4-Dichlorophenol	2	ug/l	ND	ND	ND	ND	ND
2,4-Dimethylphenol	2	ug/l	ND	ND	ND	ND	ND
2,4-Dinitrophenol	2	ug/l	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	5	ug/l	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	ug/l	ND	ND	ND	ND	ND
2-Chlorophenol		ug/l	ND	ND	ND	ND	ND
2-Methylphenol		ug/l	ND	ND	ND	ND	ND
2-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND
2-Nitrophenol		ug/l	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	5	ug/l	ND	ND	ND	ND	ND
3-Methylphenol/4-Methylphenol		ug/l	ND	ND	ND	ND	ND
3-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND
4,6-Dinitro-o-cresol		ug/l	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether		ug/l	ND	ND	ND	ND	ND
4-Chloroaniline	5	ug/l	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether		ug/l	ND	ND	ND	ND	ND
4-Nitroaniline	5	ug/l	ND	ND	ND	ND	ND
4-Nitrophenol		ug/l	ND	ND	ND	ND	ND
Acetophenone		ug/l	ND	ND	ND	ND	ND
Benzoic Acid		ug/l	ND	ND	ND	ND	ND
Benzyl Alcohol		ug/l	ND	ND	ND	ND	ND
Biphenyl		ug/l	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ug/l	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ug/l	ND	ND	ND	ND	ND
Bis(2-chloroisopropyl)ether	5	ug/l	ND	ND	ND	ND	ND
Bis(2-ethylhexyl)phthalate	5	ug/l	ND	ND	ND	ND	ND
Butyl benzyl phthalate	50	ug/l	ND	ND	ND	ND	ND
Carbazole		ug/l	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ug/l	ND	ND	ND	ND	ND
Di-n-octylphthalate	50	ug/l	ND	ND	ND	ND	ND
Dibenzofuran		ug/l	ND	ND	ND	ND	ND
Diethyl phthalate	50	ug/l	ND	ND	ND	ND	ND
Dimethyl phthalate	50	ug/l	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ug/l	ND	ND	ND	ND	ND
Isophorone	50	ug/l	ND	ND	ND	ND	ND
n-Nitrosodi-n-propylamine		ug/l	ND	ND	ND	ND	ND
NDPA/DPA	50	ug/l	ND	ND	ND	ND	ND
Nitrobenzene	0.4	ug/l	ND	ND	ND	ND	ND
p-Chloro-m-cresol		ug/l	ND	ND	ND	ND	ND
Phenol	2	ug/l	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

 ${\it I}$ - The lower value for the two columns has

Pesticides for Groundwater Epa Method 8221 Table 8

LOCATION			B-1	B-2	B-3	B-4	B-5	B-6	B-8	B-9	B-10	B-11	B-13
SAMPLING DATE			1/25/2017	1/26/2017	1/26/2017	1/25/2017	1/25/2017	1/27/2017	1/31/2017	1/31/2017	1/26/2017	1/24/2017	1/25/2017
Analyte	NY-TOGS	Units	Results										
4,4'-DDD	0.3	ug/l	ND	0.347	ND								
4,4'-DDE	0.2	ug/l	ND										
4,4'-DDT	0.2	ug/l	ND	0.276 PI	ND								
Aldrin	0	ug/l	ND										
Alpha-BHC	0.01	ug/l	ND										
Beta-BHC	0.04	ug/l	ND										
Chlordane	0.05	ug/l	ND										
cis-Chlordane		ug/l	ND										
Delta-BHC	0.04	ug/l	ND	0.833 P	ND								
Dieldrin	0.004	ug/l	ND										
Endosulfan I		ug/l	ND										
Endosulfan II		ug/l	ND										
Endosulfan sulfate		ug/l	ND	0.376	ND								
Endrin	0	ug/l	ND										
Endrin aldehyde	5	ug/l	ND										
Endrin ketone	5	ug/l	ND										
Heptachlor	0.04	ug/l	ND										
Heptachlor epoxide	0.03	ug/l	ND										
Lindane	0.05	ug/l	ND										
Methoxychlor	35	ug/l	ND										
Toxaphene	0.06	ug/l	ND										
trans-Chlordane		ug/l	ND	0.458 PI	ND								

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - *The Relative Percent Difference (RPD)* between the results for the two columns exceeds

the method-specific criteria.
Pesticides for Groundwater Epa Method 8221 Table 8

LOCATION			B-14	B-15	B-16	B-17	B-18	B-19	B-20	B-21	B-22	B-23	B-24	B-25
SAMPLING DATE			1/24/2017	1/25/2017	1/24/2017	1/24/2017	1/25/2017	1/24/2017	1/24/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/27/2017
Analyte	NY-TOGS	Units	Results											
4,4'-DDD	0.3	ug/l	ND											
4,4'-DDE	0.2	ug/l	ND	ND	0.021 J	0.036 J	ND							
4,4'-DDT	0.2	ug/l	ND											
Aldrin	0	ug/l	ND	0.138 P										
Alpha-BHC	0.01	ug/l	ND											
Beta-BHC	0.04	ug/l	ND											
Chlordane	0.05	ug/l	ND											
cis-Chlordane		ug/l	ND											
Delta-BHC	0.04	ug/l	ND											
Dieldrin	0.004	ug/l	ND	0.083	ND	ND	ND							
Endosulfan I		ug/l	ND											
Endosulfan II		ug/l	ND	0.033 J	ND	ND	ND							
Endosulfan sulfate		ug/l	ND											
Endrin	0	ug/l	ND											
Endrin aldehyde	5	ug/l	ND											
Endrin ketone	5	ug/l	ND											
Heptachlor	0.04	ug/l	ND	ND	ND	0.033	ND							
Heptachlor epoxide	0.03	ug/l	ND	ND	ND	0.013 J	ND							
Lindane	0.05	ug/l	ND											
Methoxychlor	35	ug/l	ND											
Toxaphene	0.06	ug/l	ND											
trans-Chlordane		ug/l	ND	ND	ND	ND	ND	ND	0.02	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds the method-specific criteria.

I - *The lower value for the two columns has* been reported due to obvious interface.

Metals for Groundwater Epa Method 8280 Table 9

LOCATION			B-1	B-2	B-3	B-4	B-5	B-6	B-8	B-9	B-10	B-11	B-13
SAMPLING DATE			1/25/2017	1/26/2017	1/26/2017	1/25/2017	1/25/2017	1/27/2017	1/31/2017	1/31/2017	1/26/2017	1/24/2017	1/25/2017
Analyte	NY-TOGS	Units	Results										
Aluminum, Total	2000	ug/l	5880	605	1710	2030	2360	37600	19000	16900	53700	5670	6460
Antimony, Total	6	ug/l	1.2 J	0.6 J	23	0.5 J	0.7 J	0.9 J	1.85 J	2.3 J	3.7 J	2.2 J	1.3 J
Arsenic, Total	50	ug/l	4.5	2.5	1	2.1	1.7	14.9	15.74	15.86	21.7	15.4	5.3
Barium, Total	2000	ug/l	570	463.9	360.1	257.4	251	830.4	335.4	360.3	1005	91.5	452.9
Beryllium, Total	3	ug/l	0.6	ND	0.1 J	0.2 J	0.2 J	2.7	1.21	1.22	5.3	0.4 J	0.6
Cadmium, Total	10	ug/l	0.1 J	ND	ND	0.1 J	0.1 J	1	0.78	3.91	5.1	0.16 J	0.3
Calcium, Total		ug/l	163000	213000	150000	126000	73400	165000	139000	58000	56700	38500	131000
Chromium, Total	100	ug/l	38.2	4.2	6.4	7	12.8	197	224.3	137.4	124.5	9.8	55.1
Cobalt, Total		ug/l	16.2	0.9	3.3	7.9	4.7	50.2	25.4	22.21	84.7	10.1	12.9
Copper, Total	1000	ug/l	32.5	7.9	6.6	17	17	323.5	167.6	271.1	425.7	10.7	43.9
Iron, Total	600	ug/l	15300	9620	3320	6380	5620	87100	74900	52000	76700	25600	17200
Lead, Total	50	ug/l	218.7	7.8	5.7	142	169.9	2222	216.4	202	1474	133.8	1017
Magnesium, Total	35000	ug/l	22200	22900	19100	22700	13900	38200	36500	29900	25700	15300	20100
Manganese, Total	600	ug/l	933.1	1619	454.8	1373	871.7	4259	3664	998.3	6243	1636	1500
Mercury, Total	1.4	ug/l	ND	0.1 J	0.1 J	ND	ND	1.12	1.87	1.33	1.79	ND	ND
Nickel, Total	200	ug/l	21	2.4	5.9	8.7	10.3	99.1	70.56	62.89	105.9	12	23
Potassium, Total		ug/l	17700	26000	10900	7100	6230	11400	9520	10500	7950	6480	10400
Selenium, Total	20	ug/l	33	ND	7	7	7	21	16.4	15.2	25	4 J	11
Silver, Total	100	ug/l	ND	ND	ND	ND	ND	0.5	0.27 J	0.32 J	0.7	ND	ND
Sodium, Total		ug/l	207000	47600	147000	130000	134000	42500	44000	55500	240000	25000	184000
Thallium, Total	0.5	ug/l	ND	ND	ND	ND	ND	0.7	0.3 J	0.38 J	0.47 J	ND	ND
Vanadium, Total		ug/l	17.5	7.9	4.5 J	6.1	6	112.3	58.22	55.98	109.9	12.5	20
Zinc, Total	5000	ug/l	48.9	4.7 J	9.4 J	17.6	24.3	393.7	271.8	804.7	1771	37.7	75.3

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds the method-specific criteria.

I - *The lower value for the two columns has* been reported due to obvious interface.

Metals for Groundwater Epa Method 8280 Table 9

LOCATION			B-14	B-15	B-16	B-17	B-18	B-19	B-20	B-21	B-22	B-23	B-24	B-25
SAMPLING DATE			1/24/2017	1/25/2017	1/24/2017	1/24/2017	1/25/2017	1/24/2017	1/24/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/27/2017
Analyte	NY-TOGS	Units	Results											
Aluminum, Total	2000	ug/l	71900	3740	62600	4530	2140	2340	5020	5430	2430	9520	12300	1620
Antimony, Total	6	ug/l	1.6 J	ND	0.9 J	0.6 J	0.5 J	0.9 J	0.4 J	0.6 J	0.5 J	0.9 J	0.9 J	0.5 J
Arsenic, Total	50	ug/l	27.1	2.2	51.3	5.5	9.2	8.9	1.4	1.9	11.6	4.9	22.8	14.8
Barium, Total	2000	ug/l	1955	247.4	1761	97.6	211.6	744.4	64.4	163.6	457.7	258.5	1074	329.4
Beryllium, Total	3	ug/l	9.5	0.3 J	6.4	0.3 J	0.3 J	0.2 J	0.3 J	0.4 J	0.3 J	0.7	1.1	0.2 J
Cadmium, Total	10	ug/l	2.7	ND	3.5	0.1 J	0.1 J	0.18 J	0.1 J	0.1 J	0.2	0.3	0.9	0.3
Calcium, Total		ug/l	148000	97700	116000	44700	74200	128000	51800	156000	141000	213000	131000	128000
Chromium, Total	100	ug/l	289.1	10.9	202.3	8.3	9	7.2	13.8	19.6	11.6	42.8	38.4	7.4
Cobalt, Total		ug/l	159	5.7	79.7	5.8	5.2	3.5	7	9.7	7.6	19.6	15.5	2.4
Copper, Total	1000	ug/l	467.5	15.3	916.8	25.9	34.9	33.3	10.7	17.4	35.2	46.7	208.8	43.6
Iron, Total	600	ug/l	158000	7860	134000	30300	30800	20600	8290	13000	50300	26100	59500	64100
Lead, Total	50	ug/l	2727	9	425.6	20	14.5	22.2	4.5	17.1	25.2	49.2	122.6	14.9
Magnesium, Total	35000	ug/l	44500	21900	43600	8140	22100	45800	19500	67300	27700	47800	53700	25600
Manganese, Total	600	ug/l	28090	1155	4649	2277	893.2	1580	588.7	1005	2079	1782	703.9	2690
Mercury, Total	1.4	ug/l	0.31	ND	0.16 J	ND	ND	ND	ND	0.1 J	0.1 J	ND	ND	ND
Nickel, Total	200	ug/l	243	10.5	211.7	7.2	8.6	7.1	14.9	15.4	11.8	31.6	38.1	9.4
Potassium, Total		ug/l	25800	13700	19500	6670	5380	10500	9340	24700	7490	10300	19300	5930
Selenium, Total	20	ug/l	74	13	82	ND	8	4 J	6	3 J	ND	15	14	3 J
Silver, Total	100	ug/l	1.2	ND	0.5	ND	0.3 J	ND						
Sodium, Total		ug/l	338000	127000	77400	16200	14300	21600	17400	103000	27200	37300	126000	91000
Thallium, Total	0.5	ug/l	1.4	ND	1.9	ND	0.3 J	ND						
Vanadium, Total		ug/l	142.7	8.8	249.9	10.1	14.9	7.3	12.1	15.9	9.2	30.7	36.4	8.9
Zinc, Total	5000	ug/l	902.5	17.1	500	32	25.2	25.1	28.2	25.9	24	75.7	621.9	22.6

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - *The Relative Percent Difference (RPD)* between the results for the two columns exceeds

the method-specific criteria.

I - *The lower value for the two columns has* been reported due to obvious interface.

PCBs for Soils Epa Method 8082 Table 10

LOCATION			B-1	B-2	B-3	B-4	B-5	B-6	B-8	B-9
SAMPLING DATE			1/25/2017	1/26/2017	1/26/2017	1/25/2017	1/25/2017	1/27/2017	1/31/2017	1/31/2017
Analyte	NY-TOGS	Units	Results							
Aroclor 1016	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
Aroclor 1221	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
Aroclor 1232	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
Aroclor 1242	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
Aroclor 1248	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
Aroclor 1254	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
Aroclor 1260	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
Aroclor 1262	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
Aroclor 1268	0.09	ug/l	ND	ND	ND	ND	ND	-	ND	ND
PCBs, Total		ug/l	ND	ND	ND	ND	ND	-	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

been reported due to obvious interface.

PCBs for Soils Epa Method 8082 Table 10

LOCATION			B-10	B-11	B-13	B-14	B-15	B-16	B-17	B-18
SAMPLING DATE			1/26/2017	1/24/2017	1/25/2017	1/24/2017	1/25/2017	1/24/2017	1/24/2017	1/25/2017
Analyte	NY-TOGS	Units	Results							
Aroclor 1016	0.09	ug/l	ND							
Aroclor 1221	0.09	ug/l	ND							
Aroclor 1232	0.09	ug/l	ND							
Aroclor 1242	0.09	ug/l	ND							
Aroclor 1248	0.09	ug/l	ND							
Aroclor 1254	0.09	ug/l	ND							
Aroclor 1260	0.09	ug/l	ND	ND	ND	ND	ND	0.462	ND	ND
Aroclor 1262	0.09	ug/l	ND							
Aroclor 1268	0.09	ug/l	ND							
PCBs, Total		ug/l	ND							

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - The Relative Percent Difference (RPD)

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

been reported due to obvious interface.

PCBs for Soils Epa Method 8082 Table 10

LOCATION			B-19	B-20	B-21	B-22	B-23	B-24	B-25
SAMPLING DATE			1/24/2017	1/24/2017	1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/27/2017
Analyte	NY-TOGS	Units	Results						
Aroclor 1016	0.09	ug/l	ND						
Aroclor 1221	0.09	ug/l	ND						
Aroclor 1232	0.09	ug/l	ND						
Aroclor 1242	0.09	ug/l	ND						
Aroclor 1248	0.09	ug/l	ND						
Aroclor 1254	0.09	ug/l	ND						
Aroclor 1260	0.09	ug/l	0.06 J	ND	ND	ND	ND	ND	ND
Aroclor 1262	0.09	ug/l	ND						
Aroclor 1268	0.09	ug/l	ND						
PCBs, Total		ug/l	0.06 J	ND	ND	ND	ND	ND	ND

Notes:

ND - Not Detected

J - Laboratory Estimated Concentration

E - Concentration of analyte exceeds the

range of the calibration curve of the instrument.

P - *The Relative Percent Difference (RPD)*

between the results for the two columns exceeds

the method-specific criteria.

I - The lower value for the two columns has

been reported due to obvious interface.

PHOTOS

Photo 1 – Area where B-20 is located facing Southeast.

Photo 2 – Monitoring well at B-9 facing northwest.

J. R. Holzmacher P.E., LLC Consulting Engineers

Photo 3 – Room with tank C facing from B-14 and in the southeast direction.

Photo 4 – Yard containing Tank D facing southwest.

Photo 5 – Area containing B-6 facing west.

Photo 6 – Site from B-16 facing southeast.

J. R. Holzmacher P.E., LLC Consulting Engineers

Photo 7 – Southern yard of site facing northwest.

Photo 8-55 gallon oil drum found in the southern yard of site facing south.

J. R. Holzmacher P.E., LLC Consulting Engineers

ATTACHMENT A

GEOLOGICAL BORING LOGS

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-1 <u>DATE:</u> January 25, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 20 ft. <u>DEPTH TO WATER:</u> 20 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1 ft.	0	Concrete, coarse light brown sand (SW)
5'-10'	4 ft.	0	Dark brown coarse to medium sand with trace fine sand (SW)
10'-15'	4 ft.	0	Brown medium to fine sand (SW)
15'-20'	4 ft.	0	Dark brown fine sand with some gravel (SM)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-10 <u>DATE:</u> January 26, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 20 ft. <u>DEPTH TO WATER:</u> 5.23 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	2 ft.	0	Organics black top soil to brown fine silty sand (SM)
5'-10'	4 ft.	0	Dark brown fine clayey sand (SM)
10'-15'	4 ft.	0	Dark brown fine silty sand (SM)
15'-20'	4 ft.	0	Grey clay (CL)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-11 <u>DATE:</u> January 24, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 10.5 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	4 ft.	85.4	Concrete, black to dark brown fine silty sand to medium sand (SW-SM)
5'-10'	4 ft.	81.1	Dark brown fine silty sand (SW-SM)
10'-15'	4 ft.	152.5	Brown to dark grey silty sand (stained) (SW-SM)
<u>NOTES:</u>			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-13 <u>DATE:</u> January 25, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 20 ft. <u>DEPTH TO WATER:</u> 20 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1 ft.	0.5	Concrete, dark brown coarse sand with trace gravel (SW)
5'-10'	4 ft.	0.5	Grey to light brown coarse to medium sand with trace gravel (SW)
10'-15'	4 ft.	2.1	Light brown coarse sand with gravel (SP)
15'-20'	4 ft.	0	Brown coarse to medium sand, last 1 ft. brown fine sand (SW)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-14 <u>DATE:</u> January 24, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 15 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	4ft.	0.5	Concrete, black brown silty sand to medium to fine sand (SW-SM)
5'-10'	4 ft.	0.3	Brown coarse to medium brown sand (SW)
10'-15'	4 ft.	0.2	Brown to dark brown coarse sand (SW)
<u>NOTES:</u>			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-15 <u>DATE:</u> January 25, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 15 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1ft.	0	Concrete, light brown fine to medium sand (SM)
5'-10'	4 ft.	0	Light brown fine to medium sand (SM)
10'-15'	4 ft.	0	Light brown to dark brown coarse to medium sand (SW)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-16 <u>DATE:</u> January 24, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 14.72 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1 ft.	0	Concrete, asphalt, brown medium to fine sand (SW)
5'-10'	4 ft.	0	Brown medium to fine sand, silty sand and trace clayey sand (SW-SM-SC)
10'-15'	4 ft.	149	Brown medium to fine clayey sand to grey coarse sand (stained) (SC-SW)
NOTES:			
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-17 <u>DATE:</u> January 24, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 12.11 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1ft.	0.7	Concrete and asphalt
5'-10'	4 ft.	0.8	Dark brown fine sand mixed with silty sand (SP-SM)
10'-15'	4 ft.	0	Fine sand with clayey sand (SC)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-18 <u>DATE:</u> January 25, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 16.81 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1ft.	0	Concrete, asphalt and gravel fill
5'-10'	4 ft.	0.6	Brown to grey silty sand (stained) (SM)
10'-15'	4 ft.	212.5	Brown to dark grey fine to medium sand (stained) (SW)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-19 <u>DATE:</u> January 24, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 16.50 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1ft.	0	Concrete, asphalt, brown fine clayey sand (SW-SC)
5'-10'	4 ft.	0	Brown clayey sand with trace gravel (SW-SC)
10'-15'	4 ft.	160.1	Brown to grey silty sand to course sand (stained) (SW-SM)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-2 <u>DATE:</u> January 26, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 20 ft. <u>DEPTH TO WATER:</u> 14.41 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	3 ft.	0	Concrete, coarse to medium sand and trace gravel(SW)
5'-10'	4 ft.	0	Dark brown medium sand (SW)
10'-15'	4 ft.	25.7	Light brown medium to fine sand (SW to SM)
15'-20'	4 ft.	171.2	Dark grey medium to fine sand (stained) (SW)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-20 <u>DATE:</u> January 24, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 14.72 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1ft.	0	Concrete, asphalt, brown fine to medium sand (SW)
5'-10'	4 ft.	0	Brown medium to fine sand, silty sand, with trace clayey sand (SW-SM-SC)
10'-15'	4 ft.	149	Brown to grey fine to medium clayey sand to coarse sand (stained) (SC-SW)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-21 <u>DATE:</u> January 26, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 16.51 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1ft.	2	Concrete, dark brown coarse sand (SW)
5'-10'	4 ft.	0	Brown coarse to medium sand (SW)
10'-15'	4 ft.	0	Brown fine to clayey fine sand (SW-SM)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-22 <u>DATE:</u> January 26, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 15.51 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1ft.	0	Concrete, brown medium sand (SP)
5'-10'	4 ft.	0	Brown to light brown medium to coarse sand (SW)
10'-15'	4 ft.	133.4	Brown medium sand to grey coarse sand (stained) (SW)
<u>NOTES:</u>			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-23 <u>DATE:</u> January 27, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 18.11 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	3ft.	0	Asphalt, brown medium sand (SW)
5'-10'	4 ft.	0	Brown to light brown medium to fine sand (SW-SM)
10'-15'	4 ft.	0	Brown to light brown fine to silty sand (SM)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-24 <u>DATE:</u> January 27, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 15 ft. <u>DEPTH TO WATER:</u> 18.60 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	2ft.	0	Concrete, dark brown medium sand with layer if brick (SW)
5'-10'	4 ft.	0	Dark brown coarse sand with gravel (SW)
10'-15'	4 ft.	248.7	Light brown medium to coarse sand to grey coarse sand (stained) (SW)
NOTES:			
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

CLIENT: Paul Marazzo

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-25 <u>DATE:</u> January 27, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 20 ft. <u>DEPTH TO WATER:</u> 5.23 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler

New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1ft.	0	Asphalt, red clayey fine sand (SM)
5'-10'	4 ft.	0	Grey fine clay (CL)
10'-15'	4 ft.	0	Grey to brown clay (CL)
15'-20'	4 ft.	180.7	Brown to grey clay (CL)
NOTES			
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-3 <u>DATE:</u> January 26, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 20 ft. <u>DEPTH TO WATER:</u> 14.41 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	2 ft.	0	Concrete, light brown medium to fine sand (SW)
5'-10'	4 ft.	0	Light brown coarse to fine sands with trace gravel (SM to SW)
10'-15'	4 ft.	0	Light brown fine sands (SM)
15'-20'	4 ft.	0	Dark brown coarse sand with gravel (SW)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-4 <u>DATE:</u> January 25, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 20 ft. <u>DEPTH TO WATER:</u> 19.12 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1 ft.	0	Concrete
5'-10'	4 ft.	0	Gravel fill to light brown coarse sand (SW)
10'-15'	4 ft.	0	Dark brown to light brown coarse to fine sand and trace gravel (SW to SM)
15'-20'	4 ft.	0	Brown coarse to fine silty sand (SW to SM)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-5 <u>DATE:</u> January 25, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 20 ft. <u>DEPTH TO WATER:</u> 19.73 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	2 ft.	0	Concrete, gravel fill to black coarse sand (SW)
5'-10'	4 ft.	0	Dark brown coarse sand with trace gravel (SW)
10'-15'	4 ft.	0	Light brown fine sand (SM)
15'-20'	4 ft.	0	Light brown fine sand to Dark brown coarse sand (SM-SW)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-6 <u>DATE:</u> January 27, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 30 ft. <u>DEPTH TO WATER:</u> 19.32 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1 ft.	0	Concrete, soil fill to black asphalt (SW)
5'-10'	4 ft.	0	Black asphalt, red brick, coarse sand with gravel (SW)
10'-15'	4 ft.	0	Brown coarse sand with gravel (SW)
15'-20'	4 ft.	0	Light brown fine to clayey sand (SM)
20'-25'	4 ft.	0	Dark brown clay to coarse sands (CL to SW)
25'-30'	4 ft.	0	Dark brown coarse sand with gravel (SW)
NOTES:			

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-8 <u>DATE:</u> January 31, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 25 ft. <u>DEPTH TO WATER:</u> 15.11 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1 ft.	0	Concrete, brown coarse sand (SW)
5'-10'	4 ft.	0	Red brick, light brown coarse sand (SW)
10'-15'	4 ft.	1	Light brown medium to fine sand (SM)
15'-20'	4 ft.	237	Light brown medium to fine sand to grey coarse sand (stained) (SM to SW)
20'-25'	4 ft.	227	Grey coarse sand (stained) (SW)

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering

3555 VETERANS MEMORIAL HIGHWAY SUITE A RONKONKOMA, NEW YORK 11779 PHONE # (631) 234-2220 FAX # (631) 234-2221 E-MAIL: info@holzmacher.com

GEOLOGICAL LOG

BORING #: B-9 <u>DATE:</u> January 31, 2017 <u>SITE:</u> 36-04, 36-08, and 37-10 Review Avenue, long Island City, NY <u>CONTRACTOR:</u> Cascade Drilling Technical Services <u>DEPTH DRILLED:</u> 25 ft. <u>DEPTH TO WATER:</u> 17.21 ft. <u>DRILLING METHOD:</u> Geoprobe <u>SOIL SAMPLING DEVICE:</u> 5' Macrocore Sampler CLIENT: Paul Marazzo New York Land Develor

New York Land Development II Corp. 360 North Long Beach Road Rockville Center, NY 11570

DEPTH (FT)	RECOVERY (IN)	PID READING (ppb)	SAMPLE DESCRIPTION
0'-5'	1 ft.	0	Concrete, black to brown coarse sand (SW)
5'-10'	4 ft.	0	Crush red brick, brown coarse sand (SW)
10'-15'	4 ft.	0.1	Brown coarse sand mixed with gravel (SW)
15'-20'	4 ft.	197.1	Dark grey coarse sand (stained) (SW)
20'-25'	4 ft.	220.1	Grey coarse sand (stained) (SW)
NOTES:			

ATTACHMENT B

LABORATORY ANALYSIS

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering
ATTACHMENT C

TCLP ANALYSIS

The Third Generation of Excellence In Water Supply, Water Resources, Civil and Environmental Engineering