27-03, 27-09, 27-11 40TH AVENUE AND 39-44 28TH STREET

QUEENS, NEW YORK

Remedial Investigation Report

NYC VCP Site Number: 18TMP0732Q

Prepared for:

40th Ave Dutch Kills Realty LLC

c/o HCN Architects, 36-03 Ditmars Boulevard, Long Island City, NY 11105

HNikakis@hcnarchitects.com

Prepared by:

Athenica Environmental Services, Inc.
45-09 Greenpoint Avenue, Queens, NY 11104
Sdongaris@athenica.com
(718) 784-7490

REMEDIAL INVESTIGATION REPORT

TABLE OF CONTENTS

FIGU	RES	3
LIST	OF ACRONYMS	6
CERT	TIFICATION	7
EXEC	CUTIVE SUMMARY	8
REMI	EDIAL INVESTIGATION REPORT	13
1.0	SITE BACKGROUND	13
1.1	Site Location and Current Usage	13
1.2	Proposed Redevelopment Plan	13
1.3	Description of Surrounding Property	13
2.0	SITE HISTORY	15
2.1	Past Uses and Ownership.	15
2.2	Previous Investigations	15
2.3	Site Inspection	16
2.4	Areas of Concern	16
3.0	PROJECT MANAGEMENT	17
3.1	Project Organization	17
3.2	Health and Safety	17
3.3	Materials Management	17
4.0	REMEDIAL INVESTIGATION ACTIVITIES	
4.1	Geophysical Investigation	18
4.2	Borings and Monitoring Wells	18
4.3	Sample Collection and Chemical Analysis	20
5.0	ENVIRONMENTAL EVALUATION	24
5.1	Geological and Hydrogeological Conditions	24
5.2	Soil Chemistry	24
5.3	Groundwater Chemistry	25
5.4	Soil Vapor Chemistry	26
5.5	Prior Activity	26
5.6	Impediments to Remedial Action	26

FIGURES

- Figure 1 Site Layout and Historic Sample Locations
- Figure 2 Sample Location Map
- Figure 3 Exceedances in Soil Samples
- Figure 4 Exceedances in Groundwater Samples
- Figure 5 Detected Concentrations in Soil Vapor Samples

TABLES

- Table 1 Soil Samples Analytical Results
- Table 2 Groundwater Samples Analytical Results
- Table 3 Soil Vapor Samples Analytical Results

APPENDICES

- Appendix A Prior Reports
- Appendix B Layout of Proposed Redevelopment
- Appendix C Photographs of Remedial Investigation
- Appendix D Pre-Sampling Indoor Air Questionnaire
- Appendix E Health and Safety Plan
- Appendix F Geotechnical Report Boring Logs
- Appendix G Soil Vapor Sampling Log
- Appendix H Laboratory Analytical Results for Soil Samples
- Appendix I Laboratory Analytical Results for Groundwater Samples
- Appendix J Laboratory Analytical Results for Soil Vapor Samples

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
CAMP	Community Air Monitoring Plan
COC	Contaminant of Concern
СРР	Citizen Participation Plan
CSM	Conceptual Site Model
DER-10	New York State Department of Environmental Conservation Technical Guide 10
FID	Flame Ionization Detector
GPS	Global Positioning System
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations and Emergency Response
IRM	Interim Remedial Measure
NAPL	Non-aqueous Phase Liquid
NYC VCP	New York City Voluntary Cleanup Program
NYC DOHMH	New York City Department of Health and Mental Hygiene
NYC OER	New York City Office of Environmental Remediation
NYS DOH ELAP	New York State Department of Health Environmental Laboratory Accreditation Program
OSHA	Occupational Safety and Health Administration
PID	Photoionization Detector
QEP	Qualified Environmental Professional
RI	Remedial Investigation
RIR	Remedial Investigation Report
SCO	Soil Cleanup Objective
SPEED	Searchable Property Environmental Electronic Database

CERTIFICATION

I, Kenneth P. Wenz Jr., PG, LEP, a	ım a Qualifie	ed Environmental Professional, as defined in RCNY § 43
1402(ar). I have primary direct responsib	ility for impl	lementation of the Remedial Investigation for the 27-03, 27
09, and 27-11 40^{th} Avenue, and 39-44 28^{th}	Street Site, ((NYC VCP Site No. 18TMP0732Q). I am responsible for the
content of this Remedial Investigation Rep	oort (RIR), ha	ave reviewed its contents and certify that this RIR is accurate
to the best of my knowledge and contains a	all available e	environmental information and data regarding the property.
Qualified Environmental Professional	Date	Signature

EXECUTIVE SUMMARY

The Remedial Investigation Report (RIR) provides sufficient information for establishment of remedial action objectives, evaluation of remedial action alternatives, and selection of a remedy pursuant to RCNY§ 43-1407(f). The remedial investigation (RI) described in this document is consistent with applicable guidance.

Site Location and Current Usage

The Site is located at 27-03, 27-09, and 27-11 40th Avenue, and 39-44 28th Street in the Long Island City section of Queens, New York and is identified as Block 397 and Lots 33, 35, and 39 on the New York City Tax Map. As part of redevelopment, the lots are planned to be combined into a single parcel. Figure 1 shows the Site location, boundary, and layout. The total area of the Site is 17,500-square feet and the Site is bounded by 40th Avenue to the south; a 3-story public facility associated with a house of worship, to the east; a 3-story residential building with garage, and a 2-story residential building, to the north; and a 3-story residential building to the west. Currently, the Site is occupied by three, vacant 1-story commercial buildings (one building per parcel); only the building at 39-44 28th Street has a (partial) basement. According to the January 2019 Phase I ESA report for the Site, the buildings were constructed by 1970 (27-03 40th Avenue), 1950 (27-09/27-11 40th Avenue), and 1947 (39-44 28th Street).

Summary of Proposed Redevelopment Plan

The proposed future use of the Site will consist of a single, new 5-story mixed-use building, which will include commercial uses on the ground floor, market-rate apartments on the second through fifth floors, and two sub-grade, ventilated parking levels. The footprint of the new building, including the basement, will cover the entire Site area. The redevelopment plan includes demolition of all existing buildings at the Site and excavation to a depth of approximately 25 feet below ground surface (bgs). As part of development, the referenced lots are expected to be merged into a single lot. Layout of the proposed redevelopment is included in Appendix B. The current zoning designation is M1-2/R5D, allowing for mixed residential, community facility, commercial, and light industrial uses. The proposed use is consistent with existing zoning for the property.

Summary of Past Uses of Site and Areas of Concern

The historical research conducted for the Phase I ESA dated January 28, 2019 by Athenica indicates that the Site was developed with the current structures by 1970 (27-03 40th Avenue), 1950 (27-09/27-11 40th Avenue), and 1947 (39-44 28th Street). According to the Phase I ESA, the Site appeared to have been used for industrial and commercial purposes since its development. Historic uses at the Site included an auto repair facility at 27-03 40th Avenue; a dry cleaning facility, a woodshop, and a scientific glass factory at 27-09 40th Avenue; and a photoengraving shop, a machine shop, and an auto repair facility at 29-44 28th Street.

The AOCs identified for this site include:

- 1. Past activities involving dry cleaning, automotive repair, and glass works, indicate the usage, storage, and potential release of petroleum products, hazardous materials and/or hazardous wastes that could have impacted the Site;
- 2. Potential VOC impacts to groundwater and/or soil vapor from historic dry cleaner and/or wire and die manufacturer located upgradient of the Site; and
- 3. The "E" Designation (E-218) associated with the Site parcels.

Summary of the Work Performed under the Remedial Investigation

Athenica Environmental Services, Inc. (Athenica) performed the following scope of work in June and July 2019:

- 1. Conducted a Site inspection to identify AOCs and physical obstructions (i.e., structures, buildings, etc.), to supplement the initial Site inspection in January 2019, the prior August 2008 Phase II ESA, and November 2016 Phase II ESA.
- 2. Installed five (5) temporary groundwater monitoring wells throughout the Site to establish groundwater flow direction, and collected two (2) groundwater samples, plus one blind duplicate sample, for chemical analysis from the wells to evaluate groundwater quality. Groundwater samples could not be collected from the three (3) remaining wells, due to sediment within the well casings, so these wells were not sampled, with NYCOER approval.
- 3. Advanced nine (9) soil borings across the entire project Site, and collected eighteen (18) soil samples, plus an additional two (2) samples from one of the monitoring well

- bore holes, plus one blind duplicate sample, for chemical analysis from the soil borings and temporary groundwater monitoring well borings to evaluate soil quality;
- 4. Installed seven (7) temporary soil vapor probes at the Site and collected seven (7) soil vapor samples for chemical analysis.

Summary of Environmental Findings

- 1. Elevation of the property is approximately 40 feet above sea level.
- 2. Depth to groundwater at the Site ranges from approximately 36 to 38 feet below ground surface.
- 3. Based on work at nearby properties, groundwater flow beneath the Site is generally from east to west.
- 4. Depth to bedrock is unknown, as bedrock was not encountered at the Site during this investigation.
- 5. The stratigraphy of the site, from the surface down, consists approximately 1.5 to 4 feet of historic fill material, underlain by approximately 60 feet of sand with silt and gravel. Layers of clay were encountered between 35 and 60 feet bgs. Bedrock was reportedly encountered in one geotechnical boring at 50 feet bgs. Boring logs from the geotechnical report are provided in Appendix F.
- 6. Soil/fill samples collected during the RI were compared to the New York State Department of Environmental Conservation (NYSDEC) 6NYCRR Part 375 Section 6.8 Unrestricted Use and Restricted Residential Soil Cleanup Objectives (SCOs).
 - One volatile organic compound (VOC), tetrachloroethene (PCE, max. of 11 milligrams per kilogram (mg/kg)), was detected at a concentration exceeding its Unrestricted Use SCOs in four of the samples.
 - Semi-volatile organic compounds (SVOCs) including benzo(a)anthracene (max. 2.48 mg/kg), benzo(a)pyrene (max. 2.22 mg/kg), benzo(b)fluoranthene (max. 1.78 mg/kg), benzo(k)fluoranthene (max. 1.64 mg/kg), chrysene (max. 2.27 mg/kg), dibenzo(a,h)anthracene (max. 0.522 mg/kg), and indeno(1,2,3-cd)pyrene (max. 1.78 mg/kg) were detected at concentrations exceeding their Unrestricted Use SCOs in four of the soil samples. Of these SVOCs, benzo(a)anthracene,

benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were also detected at concentrations exceeding their Restricted Residential SCOs.

- Metals including barium (at 388 mg/kg), copper (max. 160 mg/kg), lead (max. 787 mg/kg), mercury (max. 0.684 mg/kg), selenium (at 5.36 mg/kg, in the blind duplicate sample) and zinc (max. 444 mg/kg) were detected at concentrations exceeding their respective Unrestricted Use SCOs, in eight of the 21 samples. Of these metals, only lead was also detected at concentrations exceeding its Restricted Residential SCO.
- o One pesticide, 4,4'-DDT (at .0527 mg/kg), was detected at a concentration exceeding its Unrestricted Use SCO in one of the samples.
- o Polychlorinated biphenyls (PCBs) were not detected in any of the soil samples at concentrations exceeding their respective Unrestricted Use SCOs.
- 7. Groundwater samples collected during the RI were compared to the NYSDEC Technical & Operational Guidance Series (TOGS) Class GA Standards.
 - OVCs, including 2-butanone (at 67 μg/L), acetone (max. 96 μg/L), chloroethane (max. 5.8 μg/L), chloroform (max. 880 μg/L), chloromethane (max. 25 μg/L), ethyl benzene (at 8.6 μg/L), o-xylene (at 8.2 μg/L), PCE (max. 65 μg/L), toluene (at 5.2 μg/L), and total xylenes (at 15 μg/L), were detected at concentrations exceeding Class GA groundwater standards.
 - O Total metals, including arsenic (at 35.3 μg/L), barium (at 2,530 μg/L), chromium (at 578 μg/L), copper (at 715 μg/L), lead (at 238 μg/L), magnesium (max. 333,000 μg/L), manganese (max. 15,700 μg/L), nickel (at 680 μg/L), selenium (max. 14.6 μg/L), and sodium (max. 621,000 μg/L), were detected at concentrations exceeding Class GA groundwater standards.
 - O Dissolved metals, including magnesium (max. 40,400 μg/L), manganese (at 737 μg/L), selenium (max. 14.6 μg/L), and sodium (max. 676,000 μg/L), were detected at concentrations exceeding Class GA groundwater standards.

- No SVOCs, pesticides or PCBs were detected in either of the groundwater samples at concentrations exceeding their respective Class GA groundwater standards.
- Several additional compounds, including Perfluoroheptanoic acid (PFHpA), Perfluorohexanoic acid (PFHxA), Perfluoro-n-butanoic acid (PFBA), Perfluorooctanoic acid (PFOA), Perfluoropentanoic acid (PFPeA), and 1,4-dioxane, were detected in the groundwater sample. There are currently no NYSDEC regulatory criteria for these compounds in groundwater.
- 8. Soil vapor samples collected during the RI were compared to the New York State Department of Health (NYSDOH) Final Guidance for Evaluating Soil Vapor Intrusion matrices dated October 2006. Soil vapor results indicated elevated concentrations of chlorinated solvents. PCE was detected in five of the seven samples ranging from 140 μg/m³ to 1,600,000 μg/m³. Trichloroethene was detected in all seven samples, ranging from 0.27 μg/m³ to 4,800 μg/m³. Several other VOCs were detected in the seven samples.

REMEDIAL INVESTIGATION REPORT

1.0 SITE BACKGROUND

40th Avenue Dutch Kills Realty LLC has enrolled in the New York City Voluntary Cleanup Program (NYC VCP) to investigate and remediate a 17,500-square foot site located at 27-03, 27-09, and 27-11 40th Avenue, and 39-44 28th Street, in the Long Island City section of Queens, New York. Mixed (residential and commercial) use is proposed for the property. The RI work was performed between June 13, 2019 and July 2, 2019. This RIR summarizes the nature and extent of contamination and provides sufficient information for establishment of remedial action objectives, evaluation of remedial action alternatives, and selection of a remedy that is protective of human health and the environment consistent with the use of the property pursuant to RCNY§ 43-1407(f).

1.1 Site Location and Current Usage

The Site is located at 27-03, 27-09, and 27-11 40th Avenue, and 39-44 28th Street in the Long Island City section of Queens, New York and is identified as Block 397 and Lots 33, 35, and 39 on the New York City Tax Map. As part of redevelopment, the lots are planned to be combined into a single parcel. Figure 1 shows the Site location, boundary and layout. The total area of the Site is 17,500-square feet and the Site is bounded by 40th Avenue to the south; a 3-story public facility associated with a house of worship, to the east; a 3-story residential building with garage, and a 2-story residential building, to the north; and a 3-story residential building to the west. Currently, the Site is occupied by three, 1-story commercial buildings (one building per parcel); only the building at 39-44 28th Street has a (partial) basement. The buildings at 27-03 and 27-09/27-11 40th Avenue, and 39-33 28th Street are currently vacant. According to the January 2019 Phase I ESA report for the Site, the buildings were constructed by 1970 (27-03 40th Avenue), 1950 (27-09/27-11 40th Avenue), and 1947 (39-44 28th Street).

1.2 Proposed Redevelopment Plan

The proposed future use of the Site will consist of a single, new 5-story mixed-use building, which will include commercial uses on the ground floor, market-rate apartments on the second through fifth floors, and two sub-grade, ventilated parking levels. The footprint of the new building, including the basement, will cover the entire Site area. The redevelopment plan includes demolition of all existing buildings at the Site and excavation to a depth of

approximately 25 feet below ground surface (bgs). As part of development, the referenced lots are expected to be merged into a single lot. Layout of the proposed redevelopment is included in Appendix B. The current zoning designation is M1-2/R5D, allowing for mixed residential, community facility, commercial, and light industrial uses. The proposed use is consistent with existing zoning for the property.

1.3 Description of Surrounding Property

The north-adjacent properties at 29-36 28th Street, and 39-39 27th Street are occupied by a 3-story residential building, and a 2-story residential building. The south-adjacent properties at 27-20 40th Avenue and 27-08 40th Avenue are occupied by a 2-story industrial building and a 3-story office building. The east-adjacent property at 39-42 40th Avenue, is occupied by Public School 166 Annex (according to New York City OASIS, this parcel is owned by a religious organization). The west-adjacent property at 27-01 40th Avenue, is occupied by a 3-story residential building. St. Patrick's School, a sensitive receptor identified as a day care center by the OER's SPEED application, is located approximately 100 feet to the east of the Site.

2.0 SITE HISTORY

2.1 Past Uses and Ownership

The historical research conducted for the Phase I ESA dated January 28, 2019 by Athenica indicates that the Site was developed with the current structures by 1970 (27-03 40th Avenue), 1950 (27-09/27-11 40th Avenue), and 1947 (39-44 28th Street). According to the Phase I ESA, the Site appeared to have been used for industrial and commercial purposes since its development. Historic uses at the Site included an auto repair facility at 27-03 40th Avenue; a dry cleaning facility, a woodshop, and a scientific glass factory at 27-09 40th Avenue; and a photoengraving shop, a machine shop, and an auto repair facility at 29-44 28th Street.

2.2 Previous Investigations

Athenica performed a Phase I ESA in January 2019. This report identified three Recognized Environmental Conditions (RECs) in association with the Site:

- The presence of an "E" Designation (E-218) at the Site for "Hazardous Materials with a Phase I and Phase II Testing Protocol", along with the Site's historic operations (dry cleaning, automotive repair, machine shop and glassworks) is considered to be a REC.
- Several upgradient facilities, including a former drycleaner and a former industrial
 wire and die manufacturing facility, are reportedly sources of PCE impacts to
 groundwater and soil vapor in the Site vicinity. Groundwater and soil vapor beneath
 the Site may be impacted by releases from these facilities.
- Potential Vapor Intrusion Conditions (pVECs) may be present, as a result of historic activities at the Site and from off-Site industrial facilities.

Prior to Athenica's Phase I ESA, a Phase I was conducted at the portion of the Site at 27-09 and 27-11 40th Avenue. This Phase I ESA, prepared by Merritt Environmental Consulting Corp. (Merritt), dated November 2016 did not identify any RECs associated with the Site, other than the Site's "E" Designation, based on the results from an August 11, 2008 Phase II Subsurface Investigation Report prepared by AEI Environmental and Engineering Services (AEI). AEI collected five soil samples from beneath the Site building at 27-09 and 27-11 40th Avenue. The Phase I ESA prepared by Merritt concluded that no further action was recommended, but soil

sampling may be recommended if the Site building were to be redeveloped or converted into residential use. They noted that the dry cleaning operation was active at the time of report.

Merritt conducted a follow-up Phase II Focused Subsurface Site Investigation in January 2017. Two temporary groundwater wells were installed in the alley between 27-03 and 27-09/27-11 40th Avenue, and two groundwater samples were collected and analyzed for VOCs. The concentrations of PCE (max detected 54.1μg/L) exceeded the regulatory limit of 5.0 μg/L. In comparison to the absence of PCE detections in the soil samples collected during AEI's 2008 Phase II investigation, Merritt concluded that PCE in groundwater was the result of off-Site sources and the Site's operations were not the source of the observed groundwater impact. No further investigation was recommended.

2.3 Site Inspection

Kenneth P. Wenz, Jr., P.G., L.E.P. and Evan Greenberg E.I.T., of Athenica conducted a Site inspection on May 9, 2019. The Site reconnaissance consisted of observing conditions throughout the accessible areas of the Site and around the perimeter of the Site. At the date of the inspection, the Site consisted of the current configuration of three buildings. However, at the time of inspection, the Site building at 39-44 28th Street was occupied by an active machine shop that has since vacated the premises. No additional areas of concern beyond those identified in the Phase I ESA Report by Athenica dated January 28, 2019, were observed during the Site inspection.

2.4 Areas of Concern

The AOCs identified for this site include:

- 1. Past activities involving dry cleaning automotive repair, and glass works, indicate the usage, storage, and potential release of petroleum products, hazardous materials and/or hazardous wastes that could have impacted the Site;
- 2. Potential VOC impacts to groundwater and/or soil vapor from historic dry cleaner and/or wire and die manufacturer located upgradient of the Site; and
- 3. The "E" Designation (E-218) associated with the Site parcels.

The prior reports are presented in Appendix A.

3.0 PROJECT MANAGEMENT

3.1 Project Organization

The Qualified Environmental Profession (QEP) responsible for preparation of this RIR is Kenneth P. Wenz, Jr., P.G., L.E.P.

3.2 Health and Safety

All work described in this RIR was performed in full compliance with applicable laws and regulations, including Site and OSHA worker safety requirements and HAZWOPER requirements. The health and safety plan is included in Appendix E.

3.3 Materials Management

All material encountered during the RI was managed in accordance with applicable laws and regulations.

4.0 REMEDIAL INVESTIGATION ACTIVITIES

Athenica Environmental Services, Inc. (Athenica) performed the following scope of work between June 13, 2019 and July 2, 2019:

- 1. Conducted a Site inspection to identify AOCs and physical obstructions (i.e., structures, buildings, etc.), to supplement the initial Site inspection in January 2019, the prior August 2008 Phase II ESA, and November 2016 Phase II ESA.
- 2. Installed five (5) temporary groundwater monitoring wells throughout the Site to establish groundwater flow, and collected two (2) groundwater samples, plus one blind duplicate sample, for chemical analysis, to evaluate groundwater quality. Groundwater samples could not be collected from the three (3) remaining wells, due to sediment within the well casings, so these wells were not sampled, with NYCOER approval.
- 3. Advanced nine (9) soil borings across the entire project Site, and collected eighteen (16) soil samples, plus an additional two (2) soil samples from one monitoring well boring, plus one blind duplicate sample, for chemical analysis, to evaluate soil quality;
- 4. Installed seven (7) temporary soil vapor probes at the Site and collected seven (7) soil vapor samples for chemical analysis.

4.1 Geophysical Investigation

A geophysical survey was not conducted, as none of the previous Phase I ESA reports indicated the potential presence of underground storage tanks at the Site.

4.2 Borings and Monitoring Wells

Drilling and Soil Logging

During the remedial investigation DK Drilling of New York (DK), advanced a total of nine soil borings across the Site from June 13, 2019 to June 26, 2019. The borings were designated B-1, B-2, B-3, B-4, B-5, B-7, B-8, B-A, and B-B. B-1, B-2, B-3, B-4, B-5, B-7, and B-8 were advanced as environmental and geotechnical borings, to an approximate depth of 60 feet bgs. Borings B-A and B-B were advanced for environmental sampling only. All soil borings were

advanced continuously, using either a track-mounted or truck-mounted drill rig. Soil samples were collected using a decontaminated split spoon sampler.

During advancement of the soil borings, the samples collected for environmental purposes were screened for evidence of contamination utilizing field observations (odor and/or staining) and a photoionization detector (PID). A PID makes use of the principle of photoionization for the detection and qualitative measurement of organic vapors. A PID does not respond to all compounds similarly, rather, each compound has its own response factor relative to its calibration. For this investigation, the PID was calibrated to the compound isobutylene, as published by the manufacturer. No staining, odors, or elevated PID readings were observed in any of the samples collected for laboratory analysis.

At each of the nine soil borings, soil samples were collected for laboratory analysis from depths of the 0 to 2 feet bgs and 25 to 27 feet bgs. In addition, soil samples were collected from the boring for monitoring well TW-3, also from a depths of 0 to 2 feet bgs and 25 to 27 feet bgs. A blind duplicate soil sample was also collected for chemical analysis from SB-1, 25-27'.

Boring logs prepared for the concurrent geotechnical investigation are attached in Appendix F. A map showing the location of soil borings is shown in Figure 2.

Groundwater Monitoring Well Construction

A total of five (5) temporary groundwater monitoring wells were installed during the Remedial Investigation, to establish the Site-specific groundwater flow direction and in an attempt to determine the groundwater quality beneath the Site. Four of the groundwater monitoring wells, TW-1, TW-2, TW-3, and TW-4, were installed to a depth of 40 feet bgs. TW-5 was installed to a depth of 60 feet bgs. Groundwater samples were collected from TW-4 and TW-5, along with a duplicate sample collected from TW-5. Groundwater samples could not be retrieved from the three (3) remaining wells, TW-1, TW-2, and TW-3, due to sediment within the well casings, so these wells were not sampled, with NYCOER approval. Monitoring well locations are shown in Figure 2.

Survey

The locations of soil borings, groundwater monitoring wells, and soil vapor borings were field measured to a minimum of two permanent site features. Since only two temporary wells contained sufficient water for sampling, the temporary monitoring wells were not surveyed.

Water Level Measurement

Depth to groundwater measurements were collected utilizing a Solinst® 122 Oil/Water Interface Probe (Interface Probe). The Interface Probe can measure depths to 0.01 feet.

Groundwater was encountered at depths ranging from approximately 36 to 38 feet bgs. Historic measurements taken during the 2017 Merrit Phase II indicate that groundwater was encountered at a depth of approximately 41 feet bgs. Based on previous activities are a nearby property, the groundwater flow direction at the Site is expected to be generally from east to west.

4.3 Sample Collection and Chemical Analysis

Sampling performed as part of the field investigation was conducted for all Areas of Concern and also considered other means for bias of sampling based on professional judgment, area history, field instrument measurements, odor, or other field indicators. Soil and soil vapor have been sampled and evaluated in the RIR. Discrete (grab) samples have been used for determination of the nature and extent of contamination and to determine the impact of contaminants on public health and the environment. The sampling performed and presented in this RIR provides sufficient basis for evaluation of remedial action alternatives, establishment of a qualitative human health exposure assessment, and selection of a final remedy.

Soil Sampling

A total of twenty-one (21) soil samples were collected for chemical analysis during this RI, including one blind duplicate sample. Data on soil sample collection for chemical analyses, including dates of collection and sample depths, are provided in Table 1. Figure 2 shows the location of samples collected in this investigation. The laboratory and analytical methods utilized during this investigation are shown below.

Soil samples were collected into pre-cleaned, laboratory-supplied glassware, stored in a chilled cooler (4° C), and submitted for analysis. All soil samples were analyzed for the presence

of TCL VOCs by EPA Method 8260, TCL SVOCs by EPA Method 8270, TCL pesticides/PCBs by EPA Methods 8081/8082, and TAL metals. All samples were transported under proper chain of custody procedures to York Analytical Laboratories, a New York State Department of Health ELAP-certified laboratory. Each soil sample collected from the borings was acquired using a decontaminated split-spoon sampler.

Following completion of sampling, each of the soil borings was properly abandoned.

Groundwater Sampling

A total of three (3) groundwater samples were collected for chemical analysis during this RI, including one blind duplicate sample. Groundwater was not collected from TW-1, TW-2, and TW-3, due to sediment within the well casings, so these wells were not sampled, with NYCOER approval. Data on groundwater sample collection for chemical analyses, including dates of collection, are provided in Table 2. Figure 2 shows the location of samples collected in this investigation. The laboratory and analytical methods utilized during this investigation are shown below.

Prior to sample collection, each well to be sampled was purged of a minimum of three casing volumes, using a new, dedicated polyethylene bailer. Groundwater samples were collected using the same bailer used for purging, into pre-cleaned, laboratory-supplied glassware, stored in a chilled cooler (4° C), and submitted for analysis. All groundwater samples were analyzed for the presence of TCL VOCs by EPA Method 8260, TCL SVOCs by EPA Method 8270, TCL pesticides/PCBs by EPA Methods 8081/8082, and TAL metals (both total and dissolved metals were analyzed). All samples were transported under proper chain of custody procedures to York Analytical Laboratories. Each soil sample collected using a dedicated bailer and rope. The samples were also submitted with a trip blank, analyzed for VOCs only, as an additional quality control measure.

Additionally, the sample collected from TW-5 was also analyzed for chemical analysis of emerging contaminants PFOAs/PFAS and 1,4-dioxane. This sample was collected following NYSDEC, laboratory, and industry-standard sampling protocols.

Soil Vapor Sampling

A total of seven (7) temporary soil vapor probes were installed during the RI, to approximately 25 feet bgs. Seven (7) soil vapor samples were collected for chemical analysis

during this RI. Soil vapor sampling locations are shown in Figure 2. Soil vapor sample collection data are reported in Table 3. Soil vapor sampling logs are included in Appendix G. Methodologies used for soil vapor assessment conformed to the approved RI Work Plan and NYSDOH Final Guidance on Soil Vapor Intrusion, October 2006, as amended. Since the existing Site buildings are planned to be demolished, indoor and outdoor ambient air samples were not collected during this investigation. As part of the soil vapor sampling program, potential VOC sources within the Site buildings were identified and evaluated, using NYSDOH Indoor Air Questionnaire forms; the completed forms are included in Appendix D.

The soil vapor samples were collected at a depth of approximately 25 feet bgs from temporary implants which were installed throughout the buildings utilizing a drill rig. Sample probes were backfilled using environmental grade silica sand and topped with a bentonite layer to seal the tubing in the boring.

The soil vapor probes were connected to ½-inch outer diameter inert Teflon-lined polyethylene tubing which extended above ground surface to allow for purging and sampling. Approximately three tubing volumes of air were purged from each vapor probe at a flow rate less than 200 milliliters per minute, and a representative vapor sample was collected for laboratory analysis over an approximately two-hour period, utilizing a 6-liter pre-cleaned SUMMA canister. After vapor sampling, each SUMMA canister was labeled and transported to York Analytical Laboratories under proper chain of custody procedures, for analysis of VOCs via EPA Method TO-15.

As part of the soil vapor sampling program, helium gas was used as a quality assurance/quality control (QA/QC) device to verify the integrity of the soil vapor probe seals, in accordance with NYSDOH protocols. A shroud served to keep the tracer gas in contact with the probes during testing. A portable helium detector was used to screen for soil vapor from each soil vapor sample probe for the tracer gas prior to any sampling. The sampling points were confirmed to be sealed prior to sampling and after sampling.

Chemical Analysis

Chemical analytical work presented in this RIR has been performed in the following manner:

Factor	Description
Quality Assurance Officer	The chemical analytical quality assurance is Sarah Widomski, of York Analytical Laboratories, Inc.
Chemical Analytical Laboratory	The chemical analytical laboratory used in the RI is York Analytical Laboratories, Inc., which is NYSDOH ELAP certified.
Chemical Analytical	Soil analytical methods:
Methods	TAL Metals by EPA Method 6010D;
	 VOCs by EPA Method 8260C/5035;
	SVOCs by EPA Method 8270D;
	 Pesticides by EPA Method 8081B; and
	PCBs by EPA Method 8082A
	Groundwater analytical methods:
	TAL Metals by EPA Method 6010D;
	o Total and Dissolved (lab filtered)
	• VOCs by EPA Method 8260C;
	SVOCs by EPA Method 8270D;
	 Pesticides by EPA Method 8081B;
	PCBs by EPA Method 8082A;
	 PFOAs/PFAS by EPA Method 537.1M; and
	• 1,4-Dioxane by EPA Method 8270-SIM.
	Soil vapor analytical methods:
	• VOCs by TO-15.

Results of Chemical Analyses

Laboratory data for soil, groundwater and soil vapor samples are summarized in Tables 1, 2, and 3. Laboratory data deliverables for all samples evaluated in this RIR are provided in digital form in Appendix H (soil), Appendix I (groundwater), and Appendix J (soil vapor).

5.0 ENVIRONMENTAL EVALUATION

5.1 Geological and Hydrogeological Conditions

Stratigraphy

The stratigraphy of the site, from the surface down, consists approximately 1.5 to 4 feet of historic fill material, underlain by approximately 60 feet of sand with silt and gravel. Layers of clay were encountered between 35 and 60 feet bgs. Bedrock was reportedly encountered in one geotechnical boring at 50 feet bgs. Boring logs from the geotechnical report are provided in Appendix F.

Hydrogeology

The depth to groundwater at the Site during this investigation was measured at approximately 36 to 38 feet bgs. During the 2017 groundwater sampling, the depth to water was reported to be approximately 41 feet bgs. Based on previous activities at a nearby property, groundwater flow at the Site is generally from east to west.

5.2 Soil Chemistry

Soil/fill samples collected during this RI were compared to 6NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs) and Restricted Residential SCOs.

One VOC, PCE (max. 11 milligrams per kilogram (mg/kg)), was detected at a concentration exceeding its Unrestricted Use SCOs in four of the samples. No VOCs were detected at concentrations exceeding Restricted Residential SCOs.

SVOCs including benzo(a)anthracene (max. 2.48 mg/kg), benzo(a)pyrene (max. 2.22 mg/kg), benzo(b)fluoranthene (max. 1.78 mg/kg), benzo(k)fluoranthene (max. 1.64 mg/kg), chrysene (max. 2.27 mg/kg), dibenzo(a,h)anthracene (max. 0.522 mg/kg), and indeno(1,2,3-cd)pyrene (max. 1.78 mg/kg) were detected at concentrations exceeding their Unrestricted Use SCOs in four of the samples. Of these SVOCs, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were also detected at concentrations exceeding their Restricted Residential SCOs.

Metals including barium (at 388 mg/kg), copper (max. 160 mg/kg), lead (max. 787 mg/kg), mercury (max. 0.684 mg/kg), selenium (at 5.36 mg/kg, in the blind duplicate sample) and zinc (max. 444 mg/kg) were detected at concentrations exceeding their respective Unrestricted Use

SCOs, in eight of the 21 samples. Of these metals, only lead was also detected at concentrations exceeding its Restricted Residential SCO.

One pesticide, 4,4'-DDT (at 0.0527 mg/kg), was detected at a concentration exceeding its Unrestricted Use SCO in one of the samples.

Polychlorinated biphenyls (PCBs) were not detected at concentrations exceeding the Unrestricted Use SCO in any of the soil samples.

The PCE detected at a concentration above its Unrestricted Use SCO was in the deeper (25 to 27 foot) sample collected from boring B-A; all other exceedances of SCOs were in the soil sample collected from the shallower (0 to 2 foot) interval of the respective borings.

Data collected during the RI are sufficient to assess the vertical and horizontal distribution of contaminants in soil/fill at the Site. Summary tables of data for chemical analyses performed on soil samples are included in Table 1. Figure 3 shows the location and posts the values for soil/fill that exceed the 6NYCRR Part 375 Track 1 and Track 2 Soil Cleanup Objectives.

5.3 Groundwater Chemistry

Groundwater samples collected during the RI were compared to the NYSDEC Technical & Operational Guidance Series (TOGS) Class GA Standards.

VOCs, including 2-butanone (at 67 μ g/L), acetone (max. 96 μ g/L), chloroethane (max. 5.8 μ g/L), chloroform (max. 880 μ g/L), chloromethane (max. 25 micrograms per liter (μ g/L)), ethyl benzene (at 8.6 μ g/L), o-xylene (at 8.2 μ g/L), PCE (max. 65 μ g/L), toluene (at 5.2 μ g/L), and total xylenes (at 15 μ g/L), were detected at concentrations exceeding Class GA groundwater standards.

Total metals, including arsenic (at 35.3 μ g/L), barium (at 2,530 μ g/L), chromium (at 578 μ g/L), copper (at 715 μ g/L), lead (at 238 μ g/L), magnesium (max. 333,000 μ g/L), manganese (max. 15,700 μ g/L), nickel (at 680 μ g/L), selenium (max. 14.6 μ g/L), and sodium (max. 621,000 μ g/L), were detected at concentrations exceeding Class GA groundwater standards.

Dissolved metals, including magnesium (max. 40,400 μ g/L), manganese (at 737 μ g/L), selenium (max. 14.6 μ g/L), and sodium (max. 676,000 μ g/L), were detected at concentrations exceeding Class GA groundwater standards.

No SVOCs, pesticides, or PCBs were detected at concentrations exceeding Class GA groundwater standards.

Several PFOA/PFAS compounds, including perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoro-n-butanoic acid (PFBA), perfluorooctanoic acid (PFOA), and perfluoropentanoic acid (PFPeA), as well as 1,4-dioxane, were detected in the groundwater sample collected from TW-5. There are currently no NYSDEC regulatory criteria for these compounds in groundwater.

Summary tables of data for chemical analyses performed on groundwater samples are included in Table 2. Figure 4 shows the location and posts the values for groundwater that exceed TOGS Class GA standards.

5.4 Soil Vapor Chemistry

Soil vapor samples collected during the RI were compared to the compounds listed in the *NYSDOH Final Guidance on Soil Vapor Intrusion, October 2006*, as amended. Soil vapor results indicated detectable concentrations of several chlorinated VOCs (CVOCs). PCE was detected in five of the seven samples, at concentrations ranging from 140 micrograms per cubic meter (μg/m³) to 1,600,000 μg/m³. TCE was detected in all seven samples, at concentrations ranging from 0.27 μg/m³ to 4,800 μg/m³. Several other VOCs, including 1,1-dichloroethylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1,4-dichlorobenzene, 2-butanone, 2-hexanone, acetone, benzene, carbon disulfide, carbon tetrachloride, chloroethane, chloroform, chloromethane, cis-1,2-dichloroethylene, cyclohexane, dichlorodifluoromethane, ethyl acetate, ethyl benzene, isopropanol, methyl methacrylate, methylene chloride, n-heptane, n-hexane, o-xylene, p- & m- xylenes, p-ethyltoluene, propylene, toluene, trans-1,2-dichloroethylene, and trichlorofluoromethane (Freon 11), were detected in the air samples.

Data collected during the RI is sufficient to assess the distribution of contaminants in soil vapor at the Site. A summary table of data for chemical analyses performed on soil vapor samples is included in Table 3. Figure 5 shows the location and posts the values for soil vapor samples.

5.5 Prior Activity

Based on an evaluation of the data and historic Site uses, disposal of some amounts of hazardous waste cannot be ruled out at this site.

5.6 Impediments to Remedial Action

Concentrations of compounds above applicable SCOs in soil samples were, with the exception of PCE, detected only in the shallow sample collected at the respective borings. Since the planned redevelopment includes excavation to approximately 25 feet bgs for sub-grade parking, it is anticipated that any contaminated soils identified during this investigation will be removed during redevelopment.

28th Street

with Geotechnical Borings

7 Soil Vapor Probes

1 Temporary Groundwater Well concurrent with Geotechnical Boring

★ Two soil samples were collected for laboratory analysis during installation of TW-3

★★ Two soil samples were collected for laboratory analysis during installation of B-7/TW-5

Assumed Groundwater Flow Direction

40th Avenue Scale =10 Feet -= 50 Feet-

_		
_		
ſ	LEGEND:	
	2008 AEI Soil Borings	Building Boundary
	2017 Merritt Soil Borings	Lot Boundary

SIte Boundary

A	
	ATHENICA ENVIRONMENTAL
	SERVICES, INC.
	Environmental Engineering Consultants
	45-09 GREENPOINT AVENUE
	LONG ISLAND CITY, NY 11104
	TEL: (718) 784 - 7490
	FAX: (718) 784 - 4085

Date:	July 18, 2019	Site:
Drawn by:	EVAN GREENBERG	Jile.
Checked by:	KEN WENZ	
Drawing Scale:	AS DRAWN	Figu
Project No.:	19-133-0016	Title

27-03, 27-09, 27-11 40th Avenue, and 39-44 28th Street, Long Island City, NY 11101

ure: 2

e: SAMPLE LOCATION MAP

Assumed Groundwater Flow Direction

No exceedances detected in samples not shown or compounds not shown

= 50 Feet-

ATHENICA ENVIRONMENTAL SERVICES, INC.
Environmental Engi 45-09 GREENPOINT AVENUE LONG ISLAND CITY, NY 11104 TEL: (718) 784 - 7490

Notes:

Exceeds RR-SCOs

UU-SCOs: 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives RR-SCOs: 6 NYCRR Part 375 Restricted Residential Use Soil Cleanup Objectives **Exceeds UU-SCOs**

Date: July 18, 2019 EVAN GREENBERG Drawn by: KEN WENZ Checked by: Drawing Scale: AS DRAWN 19-133-0016 Project No .:

27-03, 27-09, 27-11 40th Avenue, and 39-44 28th Street, Long Island City, NY 11101

EXCEEDANCES IN SOIL SAMPLES

ATHENICA ENVIRONMENTAL SERVICES, INC.
Environmental Engineering Consultants

45-09 GREENPOINT AVENUE LONG ISLAND CITY, NY 11104 TEL: (718) 784 - 7490 FAX: (718) 784 - 4085

4 Temporary Groundwater Wells

1 Temporary Groundwater Well concurrent with Geotechnical Boring

Date:	July 18, 2019	Site:
Drawn by:	EVAN GREENBERG	Jane.
Checked by:	KEN WENZ	
Drawing Scale:	AS DRAWN	Figu
Project No :	19-133-0016	Title

27-03, 27-09, 27-11 40th Avenue, and 39-44 28th Street, Long Island City, NY 11101

28th Street

EXCEEDANCES IN GROUNDWATER

SAMPLES

Table 1 Soil Sampling Summary Table for Volatile Organic Compounds 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street

The part											21	1-03, 27-09, and 27-11 Long Is	40th Avenue and 39 land City, New York	-44 28th Street											
Second				B-1			B-2		B-3		B-4		B-5		B-7		B-8		B-A		B-B		TW-3		
Septimone septim	Sample ID Vesti ID			B-1 (25'-27')			B-2 (25'-27')		B-3 (25'-27')		B-4 (25'-27')	B-5 (0°-2°)	B-5 (25'-27')	B-7 (0'-2')									TW-3 (25'-27')	NAMES OF THE PARTY AND	NYSDEC Part 375
Sept.																									
Sept.	Client Matrix		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Seil	Soil	Seil	Soil	Soil		Soil	Soil	Soil	Soil	Soil		Cleanup Objectives	Restricted Residential
The property of the property o	Namole Death Compound	CAS Number)	
1. 1. 1. 1. 1. 1. 1. 1.			mg/Kg	mg/Kg				mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg			mg/Kg	mg/Kg					mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
1		620 20 6	100	-0.0029	11 -0.0029	11 -0.0025	11 -0.0022 1	1 -0.0022 11	-0.0027	-0.002	-0.0021	-0.0022	-0.0022	-0.002	1 -0.0022	1 -0.0000	1 -0.002	200			1 -0.0029	-0.0017	-0.0019		
Control Cont	1,1,1-Trichloroethane	71-55-6	<0.0029 U	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018	0.68	100
State Stat																								-	-
Separate Property of the prope		79-00-5		< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	<0.0027 U	J <0.0029 I	U <0.003	U <0.58 I	J <0.003 L	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018		
STATE WAS ALTHOUGH STATE WAS ALT																									26
**************************************																								J 0.33	100
September 1964 1965 1965 1965 1965 1965 1965 1965 1965	1,2,3-Trichloropropune	96-18-4	<0.0029 U	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U		<0.0027 U	<0.003 U		<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U		U <0.58 I	J <0.003 L	U <0.300 I			<0.0018	-	-
Separate No. 1. A.																								3.6	52
See	1,2-Dibromo-3-chloropeopane																							-	-
Change Mart																								i ii	100
1. A.	1,2-Dichloroethune	107-06-2	<0.0029 U	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018		
State Stat	1,2-Dichloropropane 1,3 S.Trimofodhenovae																							1 84	52
Same 1914 1 1914	1,3-Dichlorobenzene	541-73-1	<0.0029 U	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018	J 2.4	49
Same																									
Machine Machin	2-Butanone	78-93-3	<0.0029 U	<0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018		
Seminary Control of the control of t																									-
Accompanion 1973-14 1980 0 0 0 0000 1 0	Acetone	67-64-1	0.0400	0.0180	0.0290	0.0220	<0.0063 U	J 0.0300	0.0110	<0.006 U	<0.0061 U	0.0320	0.0320	0.0270	0.0280	0.0370	< 0.006		0.0210	<0.590 I	0.0110	<0.0035 U	<0.0036	0.05	100
Part																								-	~
Secondaries	Benzene																							0.06	4.8
	Bromochloromethan																							-	-
Campa and analysis Campa analysis Ca		75-25-2			U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L		<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018		
Case anamodaris																		U <0.58 I						-	~
Chameshame 75.05 Chamesh																								0.76	2.4
Change C	Chlorobenzene																							1.1	100
15-5-2-2																								0.37	49
	Chloromethane																								
December																								J 0.25	100
Commentation Comm																								J ~	~
Description of the control of the	Dibromochloromethane Dibromomethane																								-
Figure F	Dichlorodifluoromethans			< 0.0028	U <0.0028		U <0.0032 U		<0.0027 U						J <0.0027 U	J <0.0029 U		U <0.58 I		U <0.300 U				1 1	5.
Part																								1	41
Margin and policy an	Isopropylbenzene	98-82-8	<0.0029 U	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018	-	-
Mapping parties Mapping pa	Methyl acetate Methyl test-butyl other (MTBE																							0.93	100
hasp-beams 194-54 -40025 U - 40025	Methylcyclohexans	108-87-2	<0.0029 U	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U		U <0.58 I	J <0.003 €	U <0.300 U			<0.0018	1 -	
- Registration 193 de 1 194 d																									
n for Name 1986 24 -0.0005 U - 0.0005	n-Propy Benzens	103-65-1	<0.0029 U	<0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018		
- Responsibilities																								1 1	i i
Some More Marked (TMA)	p-Isopeopyltoluene	99-87-6	<0.0029 U	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018	1	-
	sec-Butylbenzene																							11	100
Transhares/place 197.14-4 $\frac{5.600}{5.00}$ D $\frac{1}{1.00}$ D $\frac{1}{0.000}$ D $\frac{1}{0.0000}$ D $\frac{1}{0.0000}$ D $\frac{1}{0.0000}$ D $\frac{1}{0.0000}$ D $\frac{1}{0.0000}$		75-65-0	<0.0029 U	<0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J 0.00340 J	J <0.300 U	U <0.0028 U	<0.0017 U	<0.0018	i I	Ĩ.
Tanase 1.55cklamodylese 156-65																									
ma-1_2bid-membres 156-05 U - days U -	Tetrachloroethylene Tolsene																								
18-74		156-60-5	<0.0029 U	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 €	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018		100
Tableschiptom: 5-64 d. 20080 U - 40025 U - 40027 U - 4002 U - 40027 U - 4002	trans-1,3-Dichloropropylene trans-1,4-dichloro-2-batere																							1 1	1 1
West Chinak 75014 annua U annua	Trichloroethylene	79-01-6	0.00800	< 0.0028	U <0.0028	U <0.0025	U <0.0032 U	J <0.0027 U	<0.0027 U	<0.003 U	<0.0031 U	<0.0027 L	<0.0022	<0.002	J <0.0027 U	J <0.0029 U	U <0.003	U <0.58 I	J <0.003 L	U <0.300 U	U <0.0028 U	<0.0017 U	<0.0018	0.47	21
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														<0.002				U <0.58 I		U <0.300 U				0.02	0.9
ASSERIANCE 1 1300-05 U 2000-05 U 2000-	Xylenes, Total	1330-20-7	<0.0088 U	<0.0085	U <0.0085	U <0.0075	U <0.0095 L	J <0.0081 U	<0.0081 U	<0.0091 U	<0.0092 U	<0.008 L	<0.0067	<0.006	0.0082 U	.0.0086 I	U <0.009	U <1.8	J <0.0091 L	U <0.890 U	U <0.0085 U	<0.0052 U	<0.0054	0.26	100

NOTES.

Chemical Summarial Lu CCD.

Charles (Marine Calline Ca

Table 1 Soll Sampling Summary Table for Sumi-Velatile Organic Compounds 27-49, and 27-41 40th Avenue and 39-44 28th Street Long Island City, New York

Boring Location	-		8.1	- 61		14		82		Rd.		M		8.7		N.		RA.	1	LA.		TWO	_	
Sample ID Sock ID		261 (0°-2") 1959627-06	1999628-00	SCEL DEP 1979624-04	B-2 (F-2') 2999424-62	29F9624-03	2-3 (0°-2') 199085-01	19F088F-02	B-1 (0°-2°) 1991627-02	B-4 (29°-27°) 2999427-43	2-5 (0°-2°) 216'0555-0.3	1950855-04	8-7 (01-21) 1950855-05	B-7 (2F-27) 1979855-06	B-R (Y-Z') 2199355-47	8-8(2F-2T) 1999/27-01	B-A (81-21) 1999/62-01	B-A (2F-2F) 19F0N2-02	B-B (0°-2') 1979627-04	B-R (2F-27) 2996427-65	TW-3 (F-2') 29F1884-01	TW-3 (25°-27') 19F1884-82	NYSDEC Part 275	NYSBEC Part 375 Respined for Soll
Sampling Date (Next Matrix		6/14/2009 Suit	615000	617/2019	6/27/2829 Suit	6/27/2009	6/26/2609	628/2009	6132019	4/16/2029 Guil	6/39/3009	600009	628289	6282839	6/28/2829 Suit	6/13/2009	618/2009	615/2009	6162819	6/16/2029 Scal	6/36/2009	6/06/0009	Constituted Use Soil Consum Objectives	Cleanup Objections -
Sanade Death	Casilinatur	W-2*	28-27	29°-27* Result	0 Feed	28-27°	0 - 3 mai 0	2F-27	8/3"	29-27 Realt 1	9-2 North	28-27 Novemb	6-2* O Panis	25°-27	6.5	28-27* O Reads 1	9-2 2 mm	28-27 Seed 4	8/2"	29-27 Front 6	6-2 Real	O Reali		Restricted Residential
Send-Yolatiles, 9270 - Comprehensive	CASNumber	mg/Kg	O Real O	Reak mg Kg	O Realt mg Kg	O Book 1	O Result C	Broak 0	mg Kg	Profit 1	Post 1	ng Xg	O Rook mg Xg	O Real	O Erolt mg Kg	O Body 1	ng Xg	Real 1	mg Kg	mg Kg	ngXg	O Result mg/Xg	mg Kg	mg/Kg
Dilution Factor 1.2 Simbouri	10.52-4	-0.049	U -0.0527 U	-0.0907	U -0.6688	U -08581	U -00079 U	2 -0.009 U	10	2 -0.0509	2 200509	2 -0.0452	U -0.0074	U -0.088	U -0.0503	U -00391	2 -0.000 1	-0.0022	10 -0.0902 E	-0.6633	-0389	U -0.000		
12.65 Tetrachlorobenzeur	95-94-3	-0.0979	U -0165 U	-0.101	U -0.0025	U -0.308	U -0.0953 U	2 -0.0900 U	-9.1	1 -0.302	7 -0.200	7 -0.0902	U -0.0945	U -0.0075	U -01	U -02999 1	2 -0.1 5	-0.0943	7 -9.1 5	-0.094	-0.0997	U -0.164	0 -	
1.2.0 Trichlombourses 1.2 Oublinebranes	129-82-1 95-50-1	-0.029	U -0.0527 U	-0.0907	U -0.6688 U -0.6688	U -00561	U -00279 U	2 -0.0253 U	-0.0902 F	1 -0.099	-003509	2 -0.0452 2 -0.0452	U -0.0074 U -0.0074	U -0.0088	U -0.6523 U -0.6523	U -00501	2 -0.0900 E	-0.0022 E	1 -0.0902 E	1 (1930)	-0386 -0386	U -0.0509 U -0.0509	8 3	100
1,2 Diphesyllophazine (as Archesane)	122-66-7	-0.029	U -0.0527 U	-0.0507	U -0.6688	U <003541 I	U -00479 U	2 -0.0253 U	-0.0902 I	3 -0.0509	100509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -:03501 I	J 49,0900 E	-0.0022 E	J -0.0902 E	-0.6633	<0.0285	U -0.0909	U -	
1,3 Dickloschenzene 1,0 Dickloschenzene	541-73-1 701-01-7	-0.029	U -0.0622 U	-0.0607	U -0.6688	U -00501 1	U -0029 U	2 -0.0253 U	-0.0902 E	1 -0.0509	-00509	2 -0.0452 2 -0.0452	U -0.0074	U -0.0000	U -0.0523	U -00501	7 -0.0900 E	-0.0022	7 -0.0902 E	-0.6633	-0386	U -0.0000	U 2.4	- 20
	58-90-2	-0.0979	U -0.105 U	-0.101	U -0.0025	E 10.308	U -0995) U	2 -0.0900 U	-81 I	1 -0.302	10.304	-89902	U -0.0945	U -0.0975	U 181	U -02999	2 -0.1 6	-0.0843		10.0864 0	-0.0997	U -0.164	U -	
2.4.5 Trichborobood 2.4.6 Trichborobood	95-95-4	-0.029	U -0.0622 U	-0.0907	U -0.6688	U -00541 U	U -0029 U	2 -0.0253 U	-0.0902 E	1 -0.0509	-00509	2 -0.0452 2 -0.0452	U -0.0074	U -0.0000	U -0.6523	U -00501 I	7 -0.0900 E	-0.0022	1 -0.0900 E	-0.6633	-0386	U -0.0509 U -0.0509	U -	-
2.4 Dishlomehead	120-83-2	-0.049	U -0.0527 U	-0.0907	U -0.6688	U -00561	U -00479 U	-0.0050 U	-0.0902 I	1 -0.0509	1 -00509	2 -0.0452	U -0.0074	U -0.0000	U -0.0503	U -00393	-0.000 0	-0.0422	-0.0902	-0.0633	100495	U -passe	U -	
2,0 Dissethylphrend 2,0 Disstrophrend	205-47-9 51-79-5	-0.029	U -0.0627 U	-0.0907	U -0.6688	U -00501 1	U -0029 U	2 -0.0253 U	-0.0902	1 -0.0509	-0.0509	2 -0.0452 2 -0.0000	U -0.0074	U -0.0000	U -0.0503	U -03501 I	2 -0.000 E	-0.0022	3 -0.0902 E	-0.6613	-0.0295	U -0.000 U -0.001	0	1
2,4 Charlestollarea	121-14-2	-0.029	U -0.0627 U	-0.0907	U -0.6688	U <00541	U -marre t	-0.0253 U	-0.0902 I	-0.0509	-00509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U <03501	2 -0.0900 E	-0.0022 E	J -0.0902 E	-0.6633	-0346	U -0.0909	U -	-
1.6 Districtions 2 Chicagonithshop	606-20-2 10-59-7	-0.029	U -0.0627 U	-0.0907 -0.0907	U -0.6688 U -0.6688	U -00541 U -00541	U -00479 U	U -0.0253 U	-0.0902 I	J -0.6509 J -0.6509	-00509 -00509	7 -0.0452 7 -0.0452	U -0.0074 U -0.0074	U -0.0000 U -0.0000	U -0.0503 U -0.0503	U -00501	7 -0.0900 E	-0.0022 E	3 -0.0902 E	1 100001	-00285 -00285	U -62509 U -62509	0 -	
2-Chlorophonol	95-57-8	-0.029	U -0.0527 U	-0.0507	U -0.6688	U -08581	U -marm t	-0.0053 U	-0.0902	-0.0599	-03509	-0.0452	U -0.0074	U -0.0088	U -0.0503	U -03501	2 -0.0900 E	-0.0022 E	3 -0.0502 E	-0.6633	-0386	U -0.0909	U -	-
2 Methylauphthalous 2 Methylatousi	90-57-6 95-08-7	0.155	D -0.0527 U U -0.0527 U	-0.0907	U -0.6688 U -0.6688	U -00541 U	U 0.0754 H	D -0.0253 U	0.0841 J	D -0.6599	3 -003509	2 -0.0452 2 -0.0452	U -0.0074 U -0.0074	U -0.0088 U -0.0088	U -0.6503 U -0.6503	U -00501 I	7 -0.0900 E	0.6623 J	D 0.0992 E	10.0003	-00295 -00295	U -0.0909 U -0.0909	U 633	100
2-Nationalism	99-74-4 99-75-5	-0.0079	U -0.165 U	-0.101 -0.0000	U -0.0075	U -0.308 I	U -00953 U	2 -0.0000 U	-0.1	1 -0.302	10.304	2 -0.0902 2 -0.0452	U -0.0945	U -0.0075	U -0.0523	U -02999 I	2 10.1 1	-0.0843	3 -0.0900 E	-0.0864	-0.0987	U -0.101	0	-
2 Nitrophend Ir-& & Marky bilenois	98-79-5 95794-99-9	-0.029	U -0.0627 U	-0.0007	U -0.6688	U -00561	U -00279 U	2 -0.0253 U	-0.0902	3 -0.009	000509	7 10/0452	U -0.0074 U -0.0074	U -0.0000 U -0.0000	U -0.0503	U -00391	2 -0.0900 E	-0.0022	7 -0.0900 E	-0.0013	-0326	U -0.0509 U -0.0509	0	1 :
1.) Dichlorobenzidine 1-Nitromiline	90-94-1	-0.029	U -0.0527 U -0.165 U	-0.0907 -0.191	U -0.6688	U -03501 F	U -00279 U	2 -0.0253 U	-0.0902 I	3 -0.8599 3 -0.302	0.000	2 -0.0452 2 -0.0902	U -0.0074	U -0.0088	U -0.6523 U -0.1	U -03501 I	2 -88900 E	-0.0022	3 -0.0902 E	10.0003	-03295 -03997	U -0.000 U -0.001	U -	-
4,6 Dinitro-2-methylphoni	594-52-1	-0.0979	U -0.105 U	<0.101	U -0.0925	E -10.308 1	U -0.095) U	2 -0.0900 U	-0.1	J -0.302	1 -0.304	J 49,0902	U -0.0945	U -0.0075	U -0.1	El -02999 I	2 40.1 0	-0.0840	J -01.1 E	-0.08a4 U	100997	U <0.104	0 -	1
6 Bromophory) phony) other 6 Chloro-3 mediciological	200-55-3 58-50-7	-0.029	U -0.0527 U	-0.0907	U -0.6688	U -08581 F	U -0029 U	2 -0.0253 U -0.0253 U	-0.0902 E	1 -0.8509 I	-03509	2 -0.0452 2 -0.0452	U -0.0274 U -0.0274	U -0.0088	U -0.6523 U -0.6523	U -00501	2 -0.0900 E	-0.0022 E	3 -0.0902 E	-0.6633	-0285 -0285	U -0.0509 U -0.0509	U -	-
6-Odomanilina	209-47-8	-0.029	U -0.0527 U	-0.0907	U -0.6688	U -00501	U -00479 U	2 -0.0453 U	-0.0902 T	1 -0.0509	1 -00509	2 -0.0452	U -0.0074	U -0.0088	U -0.0523	U -00501	7 -0.000 5	-0.0022	7 -0.0900 E	-0.6633	-0386	U -passe	0	1
6-Chlomphosyl phosyl ether	3005-72-8 300-01-6	-0.029 -0.0979	U -0.0529 U U -0.165 U	-0.0907 -0.101	U -0.6688	U -0.0541 U	U -002N U	2 -0.003 U	-0.0902 I	J -0.8599 J -0.302	3 -003509 1	2 -0.0452 2 -0.0902	U -0.0074 U -0.0045	U -0.0000	U -0.6503 U -0.1	U -00501 I	2 -0.0900 E	-0.0022 E	3 -0.0902 E	-0.0011	-03295 -03997	U -0.000 U -0.001	0 -	-
6 Nitropeline 6 Nitroplered	200-02-7	-0.0979	U -0165 U	-0.101	U -0.0925	U -0.308	U -0.0953 U	2 -0.0900 U	-81	1 -0.302	7 -0.200	7 -0.0902	U -0.0945	U -0.0075	U -01	U -02999 1	2 -0.1 5	-0.0943	7 -9.1 5	-0.094	-0.0997	U -0.164	0	1
Acceptitions Acceptitions	83-32-9 208-96-8	0.258	D -0.0527 U D -0.0527 U	-0.0907	U -0.6688 U -0.6688	U -00561	U 0.174 E	U (2002) U	0.200 1	0.0009	-003509	2 -0.0452 2 -0.0452	U -0.0074 U -0.0074	U -0.0288 U -0.0288	U -0.6523 U -0.6523	U -00501	2 -0.0900 E	-0.0022 E	0.275 E	10.0003	0.0927	ID -0.0508 ID -0.0508	U 20	100
Austrobewone	99-84-2	-0.029	U <0.0527 U	-0.0507	U -0.6688	U <003541 I	U -00479 U	2 -0.0253 U	-0.0902 I	1 -0.0509	100509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -:03501 I	J 49,0500 E	-0.0022 E	J -0.0902 E	-0.6633	<0.0285	U -0.0909	U -	-
Autim	42-53-3	-0.164	U -021 U	-0.202 -0.0000	U -0.295	U -0.216	U -0.191 U	-0.181 U	-0.201	0.203	-0.207	0.191	U -0.199	U -0.195	U -0.201	U -0.2 I	7 -0.2 E	-0.149	3 -02 E	-0.173 0	-0.298	U -0.200	U -	100
Abraine	2912-28-9	-0.029	U -0.0527 U	-0.0907	U -0.6688	U <003541	U -0.0479 U	2 -0.025) U	-0.0502 I	-0.0599	1 -003509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -00391	J -0.0900 E	-0.0022 E	7 -0.0900 E	-0.6633	<0.02495	U -0.0309	U -	-
Bracislaty de Bracislate	909-52-7 92-87-5	-0:029 -0:259	U -0.0529 U U -0.021 U	-0.0907 -0.292	U -0.6688 U -0.295	U -00541 U	U -00479 U	U -0.0253 U	-0.0902 E	3 -0.8509 I	-000509 E	2 -0.0452 2 -0.191	U -0.0274 U -0.199	U -0.008	U -0.6503 U -0.201	U -03501 I	2 -0.0900 E	-0.0022	7 -0.0902 E	-0.6633 U	-0.295	U -0.0909 U -0.209	0	1
Bench (a) militarione	59-55-3	1,700	D <0.0527 U	-0.0507	U 0.221	D <003541 I	1,130	-0.0253 U	2.020	-0.0509	0.141	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -:03501 I	J 49,0900 E	-0.0422	2.450	-0.6633 0	0.685	D -0.0909	U I	1
Braco(a)pyrose	59-32-8	1.400	D -0.0527 U	-0.0907	U 0234	D <003541	1,050	-0.0053 U	1.660	9 -0.0509	0.197	-69452	U -0.0074	U -0.0000	U -0.0503	U -03501	J -0.0900 E	-0.0422 E	2.220	-0.6633	0.682	D -0.0909	U I	1
Branch (Bernathese Branch A.) perylese	205-99-2	1,370	D -0.0527 U	-0.0907	U 0225	D -0350 I	U 0.955 E	0 -0.0253 U	0.990	0.0000	0.334 1	0 -00452	U -0.0074	U -0.0088	U -0.6523	U -00501 I	2 -0.0900 E	-0.0022	1.790 E	-0.6633	0.529	D -0.0000	U 1	1 100
Brank Geneties	207-08-9	1,200	D -0.0527 U	-0.0907	U 0219	D -0350	U 9.790 E	-0.000 U	1,350	-0.099	0.129	-0.0452	U -0.0074	U -0.000	U -0.0923	U -0391	7 -0.000 5	-0.0422	1,640	-0.0633	0.551	D -0399	U 9.8	3.9
Breaking acid	65-85-0	-0.029	U -0.0527 U	-0.0507	U -0.6688	U <00541	U -marn t	2 -0.0453 U	-0.0902 I	J -0.0509	1 100509	10.0452	U <0.0074	U -0.0000	U -0.0503	U <00501	2 -0.0900 E	-0.0422 E	J -0.0902 E	10.0033	<0.0286	U -0.0909	U -	-
Brack but inthines	200-51-6 25-49-7	-0.029	U -0.0622 U	-0.0907	U -0.6688	U -00501 I	U -00279 U	2 -0.0253 U	-0.0902	1 -0.0509	0.0054	7 -00452 D -00452	U -0.0074	U -0.0000	U -0.6523	U -00501	7 -0.0900 E	-0.0022	1 -0.0900 E	-0.6633	-0386	U -0.0000	0	1
Bis(2-shloroethoxy)sorthone	111-91-1	-0.029	U -0.0527 U	-0.0907	U -0.6688	U -00541	U -marm t	-0.003 U	-0.0902	10.0509	100509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -03501	2 -0.0900 E	-0.0022	3 -0.0902 E	-0.6633	-00005	U -0.0909	0 -	-
Bis (2-shloroutly Enthur Bis (2-shlorous errors Settler	111-44-4 208-69-1	-0.029	U -0.0527 U U -0.0527 U	-0.0907	U -0.6688 U -0.6688	U -00541 U	U -searn t	2 -0.0253 U	-0.0902 E	J -0.8509	3 -003509	2 -0.0452 2 -0.0452	U -0.0074 U -0.0074	U -0.0088 U -0.0088	U -0.6503 U -0.6503	U -00501	7 -0.0900 E	-0.0022 E	7 -0.0900 E	-0.6633	-03295 -03295	U -0.0909 U -0.0909	ŭ .	
Bis(2-stlythes)Ephthalas	117-41-7	-0.029	U -0.0529 U	-0.0607	U 0244	D -08581 1	U -00479 U	-0.0253 U	00785 #	0.0509 d	0.115	5 -0.0452 0 -0.0002	U -0.0074	U -0.0088	U -0.6503	U -03501 I	2 -0.000 E	-0.0022	-0.0902	-0.0613	-0.0295	U -0.000	U -	-
Caprolactan Carbando	86-74-8	0.307	D <0.0527 U	-0.101 -0.0007	U -0.6688	U -003541	U 0.216 E	-0.025) U	0.235	-0.0509	3 -0.300 H	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -03999	2 -0.0900 E	-0.0422	J 0.322 E	-0.6633	6.190	D -0.0909	0 -	1
Chrysma	218-01-9	1.560	D -0.0527 U	-0.0907	U 0245	D -08581	1.040	-0.0053 U	1.540	-0.0599	0.142	-0.0452	U -0.0074	U -0.0088	U -0.0503	U -03501	2 -0.0900 E	-0.0022 E	2.270	-0.6633	0.667	D -0.0909	U I	3.9
Diberonia identina ene Diberoniaran	53-70-3 132-61-9	6.248 6.293	D -0.0527 U	-0.0907	U -0.6688 U -0.6688	U -00501 1	U 6239 E	0 -0.0253 U	0.372	0.0509	-00509	2 -0.0452 2 -0.0452	U -0.0274 U -0.0274	U -0.0088 U -0.0088	U -0.6523 U -0.6523	U -00501	2 -0.0900 E	-0.0022 E	0.522	-0.6633	0.127	D -0.0000 D -0.0000	U 633	6.33
Diethyl phthalate	80-66-2	-0.029	U <0.0527 U	-0.0507	U -0.6688	U <003541 I	U -00479 U	2 -0.0253 U	-0.0902 I	1 -0.0509	100509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -:03501 I	J 49,0500 E	-0.0022 E	J -0.0902 E	10.0633	<0.0285	U -0.0909	0	- "
Dissertiel phthalate Disserbated obthalate	130-11-3	-0.029	U -0.0622 U	-0.0607	U -0.6688	U -00501 1	U -0029 U	2 -0.0253 U	-0.0902	1 -0.0509	-00509	2 -0.0452 2 -0.0452	U -0.0074	U -0.0000	U -0.0523	U -00501	7 -0.0900 E	-0.0022	1 -0.0902 E	-0.6633	-0386	U -0.0000		-
Di-w-outy Ephthodate	117-84-0	-0.029	U -0.0527 U	-0.0907	U -0.6688	U -003541	U -00479 U	2 -0.025) U	-0.0902 I	1 -0.0509	1 -003509	2 100452	U -0.0074	U -0.0000	U -0.0503	U -03501	J -0.0900 E	-0.0022	J -0.0902 E	-0.6633 0	<0.02465	U -0.0909	ū :	1 :
Parentee	306-44-0 36-73-7	4.220 0.285	D -0.0527 U	-0.0907	U 0.425 U -0.6688	D <00501 0	U 2.500 D U 0.177 E	6 -0.0153 U	6.429 II 0.799 II	0.0509	0.234	0 -00452 2 -00452	U -0.0074 U -0.0074	U -0.0088 U -0.0088	U -0.6503 U -0.6503	U -00501	7 -0.0900 E	0.6822 3	D 5.450 E 2 0.200 E	-0.6633	1.690	D -0.0909 ID -0.0909	U 100	100
Necadorolesias	118-74-1	-0.029	U <0.0527 U	-0.0507	U -0.6688	U <003541 I	U -00479 U	2 -0.0253 U	-0.0902 I	1 -0.0509	1 -005509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -:03501 I	J 49,0500 E	-0.0022 E	J -0.0902 E	10.0633	<0.0285	U -0.0909	U 633	1.2
Heraddonibitations Heraddoncyclopestations	97-49-3 77-47-4	-0.029	U -0.0627 U	-0.0907 -0.0907	U -0.6688 U -0.6688	U -00541 U -00541	U -00479 U	U -0.0253 U	-0.0902 I	J -0.6509 J -0.6509	-003509 -003509	7 -0.0452 7 -0.0452	U -0.0074 U -0.0074	U -0.0000 U -0.0000	U -0.0503 U -0.0503	U -00501	7 -0.0900 E	-0.0022 E	3 -0.0902 E	1 100001	-00285 -00285	U -62509 U -62509	0 -	1 :
Heradoroshaw	65-72-1	-0.029	U -0.0527 U	-0.0507	U -0.6688	U -00541	U -marry t	-0.0453 U	-0.0902	3 -0.0509	100509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -00391	J -0.0900 E	-0.0422	J -0.0902 E	-0.6633	-00495	U -0.0909	0	1
Sedeno(1,2,8 odlygone	293-39-5	0.838	D -0.0529 U	-0.0907	U 0.1%	D <00501 1	U -0.595 E	-0.0053 U	1.110	0.0000	0.146	0.0452	U -0.0074	U -0.0098	U -0.6503	U -00501 I	7 -0.0900 E	-0.0022	1.750	-0.6633	6.344	D -0.0909	U 65	0.5
Registration Naphthaline	90-20-3	0.400	D -0.0527 U	-0.0507	U -0.6688	U -00541	U 0.119 E	-0.045) U	0.279	-0.0509	100509	-0.0452	U -0.0074	U -0.0000	U -0.0503	U -003901	J -0.0900 E	-0.0422	J 607% E	-0.6633	-00495	U -0.0909	U 12	100
Strategiese Strategiese	98-95-3	-0.029	U -0.0529 U	-0.0907	U -0.6688	U -00501	U -mark t	-0.0253 U	-0.0902	0.0599	-02509	2 -0.0452 -0.0452	U -0.0074	U -0.0000	U -0.6523	U -00501	7 -0.0500 E	-0.0022	1 -0.0902 E	10.0003	-0326	U -0.0909	U -	-
N-nitroso-di-n-propylamina	623-64-7	-0.029	U -0.0527 U	-0.0507	U -0.6688	U -00541	U -00479 U	-0.0453 U	-0.0902	3 -0.0509	100509	7 10/0452	U -0.0074	U -0.0000	U -0.0503	U -003901	J -0.0900 E	-0.0422	-0.0902	-0.6633	-00495	U -0.0909	0 -	1
Si Nationadophoro Lamine	39-30-6 93-96-5	-0.029	U -0.0527 U	-0.0607	U -0.6688	U -00541 I	U -marn U	-0.009 U	-0.0502 E	0.059	-03509	7 -0.0452 7 -0.0452	U -0.0074	U -0.0088	U -0.6503	U -00501	2 -0.000 E	-0.0022 E	J -0.0902 E	-0.6633	-0.0295	U -0.0009	0 -	62
Pentachiarophenol Phonostherno	85-01-8	4.350	D -0.0527 U	-0.0907	U 0.143	D -00561	U 2.190 D	6 -0.0053 U	3.280	-0.0599	0.0992 2	D -0.0452	U -0.0074	U -0.0088	U -0.0503	U -00391	7 -0.0900 5	1 -0.0022 E	3 -0.0902 E	-0.6633	1.300	D -0.0309	U 100	6.7 100
Pleased	908-95-2	-0.029	U -0.0627 U	-0.0907	U -0.6688	U -00501	U -marre t	2 -0.0253 U	-0.0902	1 -0.0509	-003509	J -69852	U -0.0074	U -0.0088	U -0.0503	U -03501	J -0.0900 E	-0.0022	J -0.0902 E	-0.6633	-0346	U -0.0509	U 633	100
Pyrone		3.140	D -0.0527 U	-11.0500	U 0.385																			

The second secon

Table 1 Soil Sampling Summary Table for Metals 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

Pasine I continu	ring Location B-1 B-1 B-2							P 1		9.4		D2 D4 D0						RA RB				rw s		
Samule ID		B-1 (0'-2')	B-1 (25'-27')		B-2 (0'-2')	B-2 (25'-27')	B-3 (0°-2°)	B-3 (251-271)	B-4 (0'-2')	B-4 (25°-27°)	B-5 (0°-2°)	B-5 (25'-27')	B-7 (0°-2')	B-7 (25'-27')	B-8 (0'-2')	B-8 (25'-27')	B-A (0'-2')	B-A (25'-27')	B-B (0'-2')	B-B (25°-27°)	TW-3 (0'-2')	TW-3 (25'-27')		1
Sample ID York ID		19F0627-06	19F0624-01		1950624-02		19E(855.01	19F0855-02	19F0627-02	19F0627-03	1900855.03	19F0855-04	1951855.05	1970855-06	19E0855-07	19F0627-01	19F0762-01	19F0762-02	19F0627-04	19F0627-05	19F1084-01	19F1084-02	NYSDEC Part 375	NYSDEC Part 375
Complian Data		6/14/2019	6/15/2019	6/17/2019	6/17/2019	6/17/2019	6/20/2019	6/20/2019	6/13/2019	6/14/2019	6/20/2019	6/20/2019	6/20/2019	6/20/2019	6/20/2019	6/13/2019	6/18/2019	6/18/2019	6/14/2019	6/14/2019	6/26/2019	6/26/2019	Unrestricted Use Soil	Restricted Use Soil
Sampling Date Client Matrix		63	C+31	Seil	C2	Sall	C-23	Soil	Sail	Seil	Coll	S-II	C-2	Soil	C-21	Soil	Soil	S-43	Suil	Sail	S-43	Soil	Cleanup Objectives	Cleanup Objectives -
Sample Depth		0'-2"	25'-23'		6.2	25',23'	0'-2'	251,221	0'-2'	25'-27'	6'-2'	25',27'	0'-2"	251,231	0'-2'	25'-27'	6.2	25'-27'	6.2	25'-27'	0'-2'	25',22'	Catalap Objectives	Restricted Residentia
Commond	CAS Number					O Result			Result 0			O Result (Result O			Result C) ·	
Metals, Tarret Analyte	CAAAAaaaaaa	mg/Kg	me/Ke	me/Ke	me/Ke	mr/Kr	meKe	mg/Kg	me/Ke	meKe	me/Ke	me/Ke	me/Ke	mg/Kg	me/Ke	me/Ke	me/Ke	me/Ke	me/Ke	mg/Kg	meKe	ma Ke	mg/Kg	mg/Kg
Dilution Factor			110,148			mg/Acg		mg wg	mg/Acg	ping	mg ng	110,146		mg ng	110,146	110,146	mg acg	-6/46	mg-wg	mg/Acg		110,448	mg/Acg	mg ng
Aluminum	7429-90-5	11,100	5110	3,730	16,900	6,330	10.800	4.050	13.500	5.560	12,900	4.040	16,200	3.890	13.500	5.090	20,600	7 580	12.200	5.280	9.200	4.180	_	_
Antimony	7440-36-0	< 2.96	U <3.18	U <3.04	U <2.95	U <3.27	U <2.89	U <2.72 U	<3.02 U	<3.07 U	<3.13	U <2.71 1	U <2.85	U <2.96 U	<3.03 U	<3.01 U	/ <3.02 E	2.59 U	<3.03 U	<2.63 U	<2.99 U	<3.07		
Arsenic	7440-38-2	7.610	<1.91	U 2.400	3,360	<1.96	U 6,960	<1.63 U	2.780	<1.84 U	2.110	<1.63	U 2.350	<1.78 U	3.150	<1.81 U	3.700	<1.56 U	12.300	<1.58 U	<1.79 U	<1.84	1 13	16
Barium	7440.39.3	265	65.700	42.400	124	35.600	178	23.200	89 500	31.200	252	23.800	75,300	19.600	80.400	28,900	43,500	44.700	388	22	81.500	20.700	350	400
Berylium	7440-41-7	<0.059	U <0.064	U <0.061	U <0.059	U <0.065	U <0.058	U <0.054 U	<0.06 U	<0.061 U	<0.063	U <0.054	U <0.057	U <0.059 U	<0.061 U	<0.06 U	√0.06 L	J <0.052 U	<0.061 U	<0.053 U	<0.06 U	<0.061	7.2	72
Beryllium Cadmism	7440-41-7	-0.059	U <0.064 <0.382	U <0.061 U <0.365	U <0.059 U <0.354	U <0.065 U <0.392	U <0.058 U <0.346	U <0.084 U	<0.06 U	<0.061 U	0.965	<0.054	U <0.057 U <0.342	U <0.059 U	<0.061 U	<0.362 U	<0.06 L	<0.082 U	<0.061 U	<0.083 U	<0.06 U	<0.061	1 25	4.3
Calcium	7440-43-9	3,380	12.200	17,700	1.740	3.040	13.500	1.750	<0.363 U 4.920	<0.368 U 2.380	2.960	<0.326 11.600	U <0.342 2.250	2.590	<0.363 U	<0.362 U	1.160	1.170	1.200 3.280	<0.315 U 2.380	<0.359 U 9.860	3,990	2.5	
Calcium	7440-70-2	3,380 18,700	9.510	6.810	21,900	13,200	15,500	9,380	17.400	2,380 11.800	2,960	8,600	2,250	2,590 8.520	17.200	10.200	1,160 27,600	21,900	3,280 24,500	13.100	9,860	3,990	-	-
Cobult	7440-48-4	6.970	4.450	4.430	9.950	7,640	6.860	4.810	7.240	6.180	8.610	4.920	13.200	4.830	7.610	5.360	9.260	6.510	7.640	5.820	6.580	5.080	-	
	7440-48-4		12.800	13.500	9.990	7.640 17.300	41.800	4.810 9.970	7.240 24.700	6.180 14.300		4.920 11.500	13.200	4.830 10.500	20.100	5.360 12.400	9.260 16.800	21,400		14.300	28.600	11,600	50	270
Copper		76.700									70,500		23						160				50	
lron	7439-89-6	16,700	9,190	7,580	21,700	12,800	17,200	7,510	17,400	10,600	20,600	7,610	23,500	7,190	16,500	9,700	29,600	14,800	18,400	9,940	14,000	7,780	-	~
Lead	7439-92-1	710	16.800	2.900	26.300	3.930	419	2.710	60.400	2.920	355	2.310	20.100	1.950	38.400	2.850	39.800	5.740	787	2.920	149	3.250	63	400
Magnesium	7439-95-4	2,120	4,320	7,340	2,800	4,220	2,270	2,660	3,010	3,240	2,680	8,120	4,140	2,990	3,300	2,650	3,320	3,750	2,370	3,230	2,820	3,380	-	-
Manganese	7439-96-5	626	399	212	415	277	512	227	410	287	674	200	740	193	450	260	197	300	268	262	346	215	1600	2000
Nickel	7440-02-0	16.800	10.500	9.770	16.300	15.800	12.900	10.300	13.300	14.200	24.100	10.600	24.800	10.300	13.900	12.500	18.900	15.500	20.500	13.400	15.500	10.500	30	310
Potassium	7440-09-7	594	798	1,020	904	1,890	620	582	720	931	488	798	1,100	613	701	864	1,130	1,500	814	876	764	692	-	~
Selenium	7782-49-2	< 2.96	U <3.18	U 5,360	< 2.95	U <3.27	U <2.89	U <2.72 U	<3.02 U	<3.07 U	<3.13	U 3.680	<2.85	U <2.96 U	<3.03 U	<3.01 U	J <3.02 L	J <2.59 U	<3.03 U	<2.63 U	<2.99 U	<3.07	3.9	180
Silver	7440-22-4	< 0.593	U <0.636	U <0.608	U <0.59	U <0.653	U <0.577	U <0.543 U	<0.605 U	<0.613 U	< 0.625	U <0.543	U <0.57	U <0.592 U	<0.605 U	<0.603 U	. <0.603 E	J <0.519 U	<0.606 U	<0.525 U	<0.598 U	< 0.615	J 2	180
Sodium	7440-23-5	130	540	194	205	354	123	226	194	212	142	178	275	197	87.900	192	423	140	417	181	230	212	_	_
Thallium	7440-28-0	< 2.96	U <3.18	U <3.04	U <2.95	U <3.27	U <2.89	U <2.72 U	<3.02 U	<3.07 U	<3.13	U <2.71 I	U <2.85	U <2.96 U	<3.03 U	<3.01 U	J <3.02 E	J <2.59 U	<3.03 U	<2.63 U	<2.99 U	<3.07		-
Variadium	7440-62-2	24.100	10.800	9,190	31.500	18.200	21	10.600	23.600	15.500	32.400	11.200	33.500	10.600	23.500	13,600	43,600	23	30.300	14.900	20.600	11.700	_	~
Time:	7440-66-6	415	29.900	20.200	60.200	36.400	344	18.200	67 500	26.900	266	19.700	44,300	18.300	64.400	21.500	222	44	444	28.400	109	21	109	10000
Mercury by 7473		mg/Kg	me/Ke	mr/Kr	mg/Kg	mr/Kr	me Ke	mg/Kg	mg/Kg	meKe	mg/Kg	mg/Kg	me/Ke	mg/Kg	mr/Kr	me/Ke	mg/Kg	me/Ke	me/Ke	mg/Kg	mg/Kg	ma/Ke	mg/Kg	mg/Kg
Dilution Factor			110,148	10/10	110,40	mg/Ag	mg/kg	110,40	mg/Ag	-6/48	mg Ag	mg/Ag		110,148	110,146	110,40	110 45	100,000	mg-mg	mg/Ag	-9/48	110,448	mg/mg	mg/ Ag
Mercury	7439-97-6	0.375	<0.0382	II <0.0365	11 0.0973	<0.0392	0.257	<0.0326	0.403	<0.0368 II	0.200	<0.0326	0.0633	<0.0355 II	0.0796	<0.0362 T	1 <0.0362 I	T 20.0311 II	0.004	<0.0315 II	0.466	-0.0260 1	0.18	0.81
	7437-77-0	0.373	1,030784	0 00000	0.0773	10,0772	0.337	- CO.CO.20 C	0.472	- CO.CO.GO	0.278	1000,000	0.0000	18,8555	0.0790	-0.000a C	(0.0002	000011	0.034	33333	0.400	50.0009	0.10	0.01
NOTES: Exceeds Unrestricted Use SCOs																								
Exveeds Restricted Residential SCOs																								
O is the Ouglifier Column with definitions as foll	_																							
Deresult is from an analysis that required a dilution																								
J:analyte detected at or above the MDL (method de	oction limit) but below	w the RI (Reporting Li	hotomites et etch . (tim																					
Unanalyte not detected at or above the level indicate		car carpaning to	,																					
Branalyte found in the analysis batch blank	-																							
E-result is estimated and cannot be accurately repor	ad don to basely man																							
				ions that exceed method dis-	sted limits between the	two GC columns much for any	bois																	
was used for procision all legal consists and the state of the process of the state																								
	The state of the s																							

Table 1 Soil Sampling Summary Table for Pesticides and PCBs 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

Boring Location			B-1	B-1		B-2		B-3		84		B-5		B-7		B-8		B-A		B-B		TW-3		
Sample ID		B-1 (0'-2')	B-1 (25'-27')	SOIL DUP	B-2 (0'-2')	B-2 (25'-27')	B-3 (0'-2')	B-3 (25'-27')	B-4 (0'-2')	B-4 (25°-27°)	B-5 (0°-2°)	B-5 (25'-27')	B-7 (0°-2')	B-7 (25'-27')	B-8 (0'-2')	B-8 (25'-27')	B-A (0'-2')	B-A (25'-27')	B-B (0'-2')	B-B (25°-27")	TW-3 (0'-2')	TW-3 (25°-27°)		NYSDEC Part 375
York ID		19F0627-06	19F0624-01	19F0624-04	19F0624-02	19F0624-03	19F0855-01	19F0855-02	19F0627-02	19F0627-03	19F0855-03	19F0855-04	19F0855-05	19F0855-06	19F0855-07	19F0627-01	19F0762-01	19F0762-02	19F0627-04	19F0627-05	19F1084-01	19F1084-02	NYSDEC Part 375	Restricted Use Soil
Sampling Date		6/14/2019	6/15/2019	6/17/2019	6/17/2019	6/17/2019	6/20/2019	6/20/2019	6/13/2019	6/14/2019	6/20/2019	6/20/2019	6/20/2019	6/20/2019	6/20/2019	6/13/2019	6/18/2019	6/18/2019	6/14/2019	6/14/2019	6/26/2019	6/26/2019	Unrestricted Use Soil	
Client Matrix		Soil	Seil	Sed	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Seil	Sed	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Cleanup Objectives	Cleanup Objectives - Restricted Residential
Sample Depth		0'-2'	25'-27'	25'-27'	0.2	25°-27°	0'-2'	25'-27'	6'-2'	25'-27'	6-2	25°-27°	0'-2'	25'-27'	0'-2'	25'-27'	0'-2'	251-27	0.2	25'-27'	0'-2'	25'-27'		Restricted Residential
Compound	CAS Number	Result (Result ()	Revult (Q Result	Q Result Q	Revalt (Result ()	Result Q	Revalt Q	Result Q	Result (Result (Result ()	Result ()	Result (Result Q	Revalt ()	Result Q	Result Q	Revalt Q	Result Q		
Pesticides, 8081 target list		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mgKg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg								
Dilution Factor		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5		
4,4-DDD	72-54-8	< 0.00194 1	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	<0.00199 U	<0.00201 U	<0.00204 U	<0.00177 L	<0.00188	<0.00193 U	<0.00197 U	<0.00198 U	<0.00198 U	<0.0017 U	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	0.0033	13
4,4-DDE	72-55-9	< 0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	<0.00199 U	<0.00201 U	<0.00204 U	<0.00177 L	<0.00188	<0.00193 U	<0.00197 U	<0.00198 U	<0.00198 U	<0.0017 U	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	0.0033	8.9
4.4-DDT	50-29-3	< 0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	0.0527 D	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 U	<0.00198 U	<0.0017 U	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	0.0033	7.9
Aldrin	309-00-2	< 0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	<0.00199 U	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 U	<0.00198 U	<0.0017 U	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	0.005	0.097
alpha-BHC	319-84-6	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	<0.00199 U	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 U	<0.00198 U	<0.0017 U	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	0.02	0.48
alpha-Chlordane	5103-71-9	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	<0.00199 U	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 U	<0.00198 U	<0.0017 U	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	0.094	4.2
beta-BHC	319-85-7	< 0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00128	<0.00199 U	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017 U	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	0.036	0.36
Chlordane, total	57,74.9	<0.0388	3 <0.0419 U	<0.0397	U <0.0388	U <0.0427 U	<0.038 L	<0.0356	<0.0398 II	<0.0402 U	<0.0409	<0.0353 I	<0.0375	<0.0386 U	<0.0394 II	<0.0397 I	<0.0396 U	<0.034	<0.0399 U	<0.0344 II	<0.0392 II	<0.0402 U		
delta-BHC	319-86-8	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00128	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017	<0.00199 U	<0.00172 II	<0.00196 U	<0.00201 II	0.04	100
Dieldrin	60-57-1	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 II	0.005	0.2
Endossition I	959.98.8	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 II	2.4	24
Endosultan II	33213-65-9	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017	<0.00199 U	<0.00172 II	<0.00196 U	<0.00201 II	2.4	24
Endosplian splitate	1031-07-8	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 L	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	2.4	24
Endrin	72-20-8	<0.00194	<0.00209 II	<0.00199	U <0.00194	U <0.00214 U	<0.0019 I	<0.00178	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 II	<0.00197 II	<0.00198 T	<0.00198 U	<0.0017	<0.00199 II	<0.00172 II	<0.00196 U	<0.00201 II	0.014	ii .
Endrin aldebyde	7421-93-4	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 II		
Endrin ketone	53494-70-5	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U		_
ramma-BHC (Lindane)	58,89.9	<0.00194	J <0.00209 U	<0.00199	II <0.00194	U <0.00214 U	<0.0019 I	<0.00178	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 II	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017	<0.00199 II	<0.00172 II	<0.00196 U	<0.00201 II	0.1	1.3
ramma-Chlordane	5566-34-7	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 I	<0.00178	<0.00199 II	<0.00201 U	<0.00204 U	<0.00177 U	<0.00188	<0.00193 II	<0.00197 II	<0.00198 T	<0.00198 U	<0.0017	<0.00199 II	<0.00172 II	<0.00196 U	<0.00201 II		-
Hertachlor	76-44-8	<0.00194	J <0.00209 U	<0.00199	U <0.00194	U <0.00214 U	<0.0019 U	<0.00178 U	<0.00199 U	<0.00201 U	<0.00204 U	<0.00177 L	<0.00188	<0.00193 U	<0.00197 U	<0.00198 T	<0.00198 U	<0.0017 U	<0.00199 U	<0.00172 U	<0.00196 U	<0.00201 U	0.042	2.1
Hertachlor eroxide	1024-57-3	<0.00194	1 <0.00209	<0.00199	U <0.00194	U <0.00214 U	<0.0019 I	<0.00178	<0.00199 U	<0.00201 U	<0.00204 U	<0.00177 L	<0.00188	<0.00193 U	<0.00197 E	<0.00198 T	<0.00198 U	<0.0017 U	<0.00199	<0.00172 U	<0.00196	<0.00201 U		
Methoxychlor	72-43-5	<0.00174	1 <0.0105 II	<0.00199	U <0.00971	U <0.0007 U	<0.00049	<0.00074	<0.00294 U	<0.01 U	<0.0102 U	<0.00883 I	<0.00938	<0.00964 U	<0.00985 U	<0.00991 T	<0.00989 U	<0.0085 II	<0.00197	<0.00861 II	<0.00170 U	<0.01 II		_
Townshope	8001-35-2	<0.0983	1 d0.106 II	<0.101	U <0.0982	U <0.108 U	<0.0961 I	<0.0902	<0.101	<0.102 U	<0.103 U	<0.0894 I	<0.0949	<0.0976 II	<0.0997 II	(0.1 E	(0.1	(0.086) U	<0.101	<0.0871 II	<0.0991 II	<0.102 II		_
Polychlorizated Biphenyls (PCB)		me/Ke	mg/Kg	mr/Kr	mg/Kg	mg/Kg	mg/Kg	me/Ke	me/Ke	meKe	me/Ke	mr/Kr	me/Ke	me/Ke	mr/Kr	me/Ke	mr/Kr	mr/Kr	me/Kr	me/Ke	meKe	me/Ke	mr/Kr	mg/Kg
Dilution Factor		-9/48	110 110		110,410	mg/Acg		mg/kg	mg/Ag		110 140	110,148		mg/Ag	110 146		110,448	-6/48		mg/Ag		110,448	mg/Acg	mg/ Ag
Arocker 1016	12674-11-2	<0.0196 1	0.0211 U	<0.0201	U <0.0196	U <0.0216 U	<0.0192 U	<0.018	<0.0201 U	<0.0203 U	<0.0206 U	<0.0178 U	<0.0189	<0.0195 II	<0.0199 U	<0.02 U	<0.02 U	<0.0122 II	<0.0201 U	<0.0174 II	<0.0198 II	<0.0203 U		_
Aroclor 1221	11104-28-2	<0.0196	0.0211 U	<0.0201	U <0.0196	U <0.0216 U	<0.0192 U	<0.018 U	<0.0201 U	<0.0203 U	<0.0206 U	<0.0178 U	<0.0189	<0.0195 U	<0.0199 U	<0.02 U	<0.02 U	<0.0172 U	<0.0201 U	<0.0174 U	<0.0198 U	<0.0203 U		_
Aroclor 1232	11141-16-5	<0.0196	0.0211 U	<0.0201	U <0.0196	U <0.0216 U	<0.0192 I	<0.018	<0.0201 U	<0.0203 U	<0.0206 U	<0.0178 U	<0.0189	<0.0195 U	<0.0199	<0.02 U	<0.02 U	<0.0172 U	<0.0201 U	<0.0174 U	<0.0198 U	<0.0203 U		_
Aroclor 1242	53469-21-9	<0.0196	0.0211 U	<0.0201	U <0.0196	U <0.0216 U	<0.0192 U	<0.018	<0.0201 U	<0.0203 U	<0.0206 U	<0.0178 U	<0.0189	<0.0195 U	<0.0199 U	<0.02 U	<0.02 U	<0.0172 U	<0.0201 U	<0.0174 U	<0.0198 U	<0.0203 U		_
Aroclor 1248	12672-29-6	<0.0196	0.0211 U	<0.0201	U <0.0196	U <0.0216 U	<0.0192 U	<0.018	<0.0201 U	<0.0203 U	<0.0206 U	<0.0178 U	<0.0189	<0.0195 U	<0.0199	<0.02 U	<0.02 U	<0.0172 U	<0.0201 U	<0.0174 U	<0.0198 U	<0.0203 U		
Aroclor 1246 Aroclor 1254	11097-69-1	<0.0196	<0.0211 U	<0.0201	U <0.0196	U <0.0216 U	<0.0192 U	<0.018 U	<0.0201 U	<0.0203 U	<0.0206 U	<0.0178 U	<0.0189	<0.0195 U	<0.0199	<0.02 U	<0.02 U	<0.0172 U	<0.0201 U	<0.0174 U	<0.0198 U	<0.0203 U	1 7	
Aroclor 1260	11097-09-1	-0.0196	-0.0211 U	-0.0201	U <0.0196	U <0.0216 U	-0.0192	-0.018	<0.0201 U	<0.0203 U	-0.0206 U	<0.0178 U	-0.0189	<0.0195 U	<0.0199	-0.02 U	-0.02	-0.0172	<0.0201 U	-0.0174 U	-0.0108	<0.0203 U	1 7	
Total PCRs	1226.26.2	-0.0196	-0.0211	-0.0201	-0.0196	U -0.0216 U	-0.0192	-0.018	-0.0201 U	-0.0203 U	-0.0206 U	-0.0178 E	-0.0189	-0.0195	-0.0199	-0.02 U	-0.02	-0.0172	-0.0201	-0.0174 U	-0.0108 U	-0.0203 U	0.1	1

STEEN CONTROL 1970-1970 1 1970-1970-1970 1 1970-1970 1

Table 2 Groundwater Sampling Summary Table for Volatile Organic Compounds 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

Sample ID		TW-4		TW-5		GW-DU	P	Trip Bla	nk		
York ID Sampling Date		19G0248-	01	19G0248		19G0248-		19G0248		NYSDEC TOGS Standards and Guidance	
		7/1/2019		7/1/201		7/1/2019		7/1/201			
Client Matrix		Groundwa	-	Groundwa		Groundwa		Groundwa		Values - GA	
Compound	CAS Number	Result	Q	Result	Q	Result	Q	Result	Q	па/І	
Volatile Organics, 8260 - Comprehensive Dilution Factor		ug/L 20		ug/L 20		ug/L 20		ug/L 1		ug/L	
1,1,1,2-Tetrachloroethane	630-20-6	<4	U	<4	U	<4	U	< 0.2	U	5	
1,1,1-Trichloroethane	71-55-6	<4	U	<4	U	<4	U	< 0.2	U	5	
1,1,2,2-Tetrachloroethane	79-34-5	<4	U	<4	U	<4	U	< 0.2	U	5	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1	<4	U	<4	U	<4	U	<0.2	U	5	
1,1,2-Trichloroethane 1,1-Dichloroethane	79-00-5 75-34-3	<4 <4	U U	<4 <4	U U	<4 <4	U U	<0.2 <0.2	U U	1 5	
1,1-Dichloroethylene	75-35-4	<4	U	<4	U	<4	U	<0.2	U	5	
1,2,3-Trichlorobenzene	87-61-6	<4	Ü	<4	Ü	<4	Ü	< 0.2	Ü	5	
1,2,3-Trichloropropane	96-18-4	<4	U	<4	U	<4	U	< 0.2	U	0.04	
1,2,4-Trichlorobenzene	120-82-1	<4	U	<4	U	<4	U	<0.2	U	5	
1,2,4-Trimethylbenzene	95-63-6	<4	U	<4	U	<4	U	<0.2	U	5	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	96-12-8 106-93-4	<4 <4	U U	<4 <4	U U	<4 <4	U U	<0.2 <0.2	U U	0.04 0.0006	
1,2-Dichlorobenzene	95-50-1	<4	U	<4	U	<4	U	<0.2	U	3	
1,2-Dichloroethane	107-06-2	<4	Ü	<4	Ü	<4	Ü	<0.2	Ü	0.6	
1,2-Dichloropropane	78-87-5	<4	U	<4	U	<4	U	< 0.2	U	1	
1,3,5-Trimethylbenzene	108-67-8	<4	U	<4	U	<4	U	< 0.2	U	5	
1,3-Dichlorobenzene	541-73-1	<4	U	<4	U	<4	U	<0.2	U	3	
1,4-Dichlorobenzene	106-46-7	<4	U	<4	U	<4	U	<0.2	U U	3	
1,4-Dioxane 2-Butanone	123-91-1 78-93-3	<800	U D	<800 <4	U	<800 <4	U U	<40 <0.2	U	50	
	78-93-3 591-78-6	67	U		U		U	<0.2	U	50	
2-Hexanone 4-Methyl-2-pentanone	108-10-1	<4 <4	U	<4 <4	U	<4 <4	U	<0.2	U	30 ~	
Acetone	67-64-1	96	D	55	D	43	D	<1	U	50	
Acrolein	107-02-8	<4	U	<4	U	<4	U	<0.2	U	~	
Acrylonitrile	107-13-1	<4	Ü	<4	Ü	<4	Ü	<0.2	U	~	
Benzene	71-43-2	<4	Ü	<4	Ü	<4	Ü	< 0.2	Ü	1	
Bromochloromethane	74-97-5	<4	U	<4	U	<4	U	< 0.2	U	5	
Bromodichloromethane	75-27-4	5.200	JD	10	D	9.800	JD	< 0.2	U	50	
Bromoform	75-25-2	<4	U	<4	U	<4	U	<0.2	U	50	
Bromomethane Carbon disulfide	74-83-9 75-15-0	<4 <4	U U	<4 <4	U	<4 <4	U U	<0.2 <0.2	U U	5 ~	
Carbon distinde Carbon tetrachloride	56-23-5	<4	U	4	JD	4.400	JD	<0.2	U	5	
Chlorobenzene	108-90-7	<4	Ü	<4	U	<4	U	<0.2	Ü	5	
Chloroethane	75-00-3	<4	U	5.200	JD	5.800	JD	< 0.2	U	5	
Chloroform	67-66-3	880	D	670	D	660	D	< 0.2	U	7	
Chloromethane	74-87-3	6	JD	24	D	25	D	< 0.2	U	5	
cis-1,2-Dichloroethylene	156-59-2	<4	U	<4	U	<4	U	<0.2	U	5	
cis-1,3-Dichloropropylene	10061-01-5	<4	Ü	<4	Ü	<4	Ü	< 0.2	Ü	0.4	
Cyclohexane	110-82-7	<4	U	<4	U	<4	U	< 0.2	U	~	
Dibromochloromethane	124-48-1	<4	U	4	JD	4.200	JD	< 0.2	U	50	
Dibromomethane	74-95-3	<4	U	<4	U	<4	U	<0.2	U	~	
Dichlorodifluoromethane	75-71-8	<4	U	<4	U	<4	U	<0.2	U	5	
Ethyl Benzene	100-41-4	<4	U	8.600	JD	<4	U	<0.2	U	5	
Hexachlorobutadiene Isopropylbenzene	87-68-3 98-82-8	<4 <4	U U	<4 <4	U	<4 <4	U U	<0.2 <0.2	U U	0.5 5	
Methyl acetate	79-20-9	<4	U	<4	U	<4	Ü	<0.2	U	~	
Methyl tert-butyl ether (MTBE)	1634-04-4	<4	Ü	<4	Ü	<4	Ü	< 0.2	Ü	10	
Methylcyclohexane	108-87-2	<4	U	<4	U	<4	U	< 0.2	U	~	
Methylene chloride	75-09-2	<20	U	<20	U	<20	U	<1	U	5	
n-Butylbenzene	104-51-8	<4	U	<4	U	<4	U	<0.2	U	5	
n-Propylbenzene	103-65-1	<4	U	<4	U	<4	U	<0.2	U	5	
o-Xylene	95-47-6	<4	U	8.200	JD	<4	U	<0.2	U	5	
p- & m- Xylenes p-Isopropyltoluene	179601-23-1 99-87-6	<10 <4	U U	<10 <4	U	<10 <4	U U	<0.5 <0.2	U U	5 5	
p-isopropyitoiuene sec-Butylbenzene	135-98-8	<4 <4	U	<4 <4	U	<4 <4	U	<0.2	U	5	
Styrene	100-42-5	<4	Ü	<4	Ü	<4	Ü	<0.2	Ü	5	
tert-Butyl alcohol (TBA)	75-65-0	<10	Ü	<10	Ü	<10	Ü	<0.5	U	~	
tert-Butylbenzene	98-06-6	<4	U	<4	U	<4	U	< 0.2	U	5	
Tetrachloroethylene	127-18-4	<4	U	64	D	65	D	< 0.2	U	5	
Toluene	108-88-3	<4	U	5.200	JD	<4	U	0.340	J	5	
trans-1,2-Dichloroethylene	156-60-5	<4	U	<4	U	<4	U	< 0.2	U	5	
trans-1,3-Dichloropropylene	10061-02-6	<4	U	<4	U	<4	U	< 0.2	U	0.4	
trans-1,4-dichloro-2-butene	110-57-6	<4	U	<4	U	<4	U	<0.2	U	~	
Trichloroethylene	79-01-6	<4	U	<4	U	<4	U	<0.2	U	5	
Trichlorofluoromethane Vinyl Chloride	75-69-4 75-01-4	<4 <4	U U	<4 <4	U	<4 <4	U U	<0.2 <0.2	U U	5 2	
Xylenes, Total	1330-20-7	<12	U	15	JD	<12	U	<0.2	U	5	
ryiones, rotai	1330-20-7	\1Z	U	13	ענ	√1 ∠	U	\0.0	U	,	

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:
D=result is from an analysis that required a dilution
J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated
B=analyte found in the analysis batch blank
E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample ~=this indicates that no regulatory limit has been established for this analyte

Table 2

Groundwater Sampling Summary Table for Semi-Volatile Organic Compounds 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

Sampling Date	-								
Sampling Date Clear Marrix Genumbert Groundwitz	Sample ID Vork ID	TW-5	02	GW-DU		NVSDEC TOCS			
Clear Maries									
Seal-Valuaties, S270 - Comprehensive mg1.									
District Reface		CAS Number	Result	Q	Result	Q			
11-Biphepsy							ug/L		
12.4.5 1.2.4 1.2.4 1.2.5 1.2.5 1.2.5 1.2.5 1.2.5 1.2.4 1.2.4 1.2.4 1.2.4 1.2.4 1.2.4 1.2.4 1.2.5 1.2.4 1.2.4 1.2.4 1.2.4 1.2.4 1.2.4 1.2.4 1.2.5 1.2.4 1.2		02.52.4		.,		.,			
12.4-First Discharge							~		
12-Definely optimizate (as Arobentecene) 12-266									
1.3.Definition/between	1,2-Dichlorobenzene			-		-			
J.4-Dichlorobemene									
2.3.4.6 Tentachlorophemol									
24.5 Trichforophenol 959.594 2.56 U 2.56 U 1 2.45 U 2.56 U 2.56 U 2.56 U 2.56 U 5 2.45 U 2.56 U 2.5									
24.6-Tichlorophenol 28.8 Ge 2.256				_		_			
24-Dimetrylphenol	2,4,6-Trichlorophenol								
24-Dinitrophenol 151-28-5	2,4-Dichlorophenol		<2.56	U	<2.56	U			
24-Dinitrotoluene									
2.6.Dnitrotocheme									
2-Chlorophenol				-		-			
2-Chlorophened									
23-Methylphenol									
2-Nitronaline		91-57-6							
2-Shirophenol 38-75-5 22-56 U 2.56 U - 2.56	2-Methylphenol								
3-8.4-Methylphenols									
33-Dichlorobenzidine									
3-Nitroaniline				_		_			
4-Bromophemyl phenyl ether 101-55-3 2-2-56 U 2-2-56 U 1									
4-Chloros-methylphenol 59-50-7 2-256 U 2-256 U 5	4,6-Dinitro-2-methylphenol			-					
4-Chloropaniline									
4-Chlorophenyl phenyl ether 7005-72-3 2.56 U 2.56 U 5									
Astronominical 100-01-6 2-56 U 2-56 U 5				-					
Ashirophenol									
Acetaphthylen	4-Nitrophenol	100-02-7	< 2.56	U		U	1		
Acetophenoe									
Aniline Anthracene 120-12-7 12				_		_			
Anthracene Anthracene 120-12-7									
Arrazine									
Benzidine				_		_			
Benzo(a)anthracene 56-55-3	Benzaldehyde	100-52-7	9.430		<2.56		~		
Benzo(a)pyrene				-		-	~		
Benzo(ph)fluoranthene 205.99-2 2.56 U 2.56 U 0.002									
Benzo(g,h.i)perylene 191-24-2 <2.56 U <2.56 U <2.56 U 0.002									
Benzoi acid 65.85-0 29.800 J 30 J ~									
Benzyl alcohol 100-51-6 <2.56 U <2.56 U <2.56 U 50	Benzo(k)fluoranthene	207-08-9	< 2.56	U	< 2.56	U	0.002		
Benzyl butyl phthalate									
Bis(2-chloroethoxy)methane 111-91-1 <2.56									
Bis(2-chloroethyl)ether 111-44-4 <2.56				_		_			
Bis(2-ethylhexyl)phihalate	Bis(2-chloroethyl)ether								
Caprolactam 105-60-2 <2.56 U <2.56 U ~ Carbazole 86-74-8 <2.56	Bis(2-chloroisopropyl)ether	108-60-1	< 2.56	U	< 2.56	U	5		
Carbazole 86-74-8 <2.56 U <2.56 U < 2.56 U ~ Carbysene 218-01-9 <2.56 U < 2.56 U ~ U ~ U ~ U ~ U ~ U < 2.56									
Chrysene									
Dibenzo(a,h)anthracene 53-70-3 <2.56 U <2.56 U ~ Dibenzofuran 132-64-9 <2.56				-					
Dibenzofuran 132-64-9 <2.56 U <2.56 U < < Diethyl phthalate 84-66-2 <2.56									
Dimethyl phthalate 131-11-3 <2.56	Dibenzofuran						~		
Di-n-butyl phthalate 84-74-2 <2.56 U <2.56 U <2.56 U 50									
Di-n-octyl phthalate 117-84-0 <2.56									
Fluoranthene 206-44-0 <2.56 U <2.56 U <50									
Fluorene									
Hexachlorobenzene 118-74-1 <2.56	Fluorene								
Hexachlorocyclopentadiene	Hexachlorobenzene	118-74-1	< 2.56	U	<2.56	U	0.04		
Hexachloroethane									
Indeno(1,2,3-cd)pyrene 193-39-5 <2.56 U <2.56 U 0.002 Isophorone 78-59-1 <2.56 U <2.56 U 50 Naphthalene 91-20-3 <2.56 U <2.56 U 10 Nitrobenzene 98-95-3 <2.56 U <2.56 U 0.4 N-Nitrosodimethylamine 62-75-9 <2.56 U <2.56 U <2.56 U 0.4 N-Nitrosodiphenylamine 621-64-7 <2.56 U <2.56 U <2.56 U <- N-Nitrosodiphenylamine 86-30-6 <2.56 U <2.56 U <50 Pentachlorophenol 87-86-5 <2.56 U <2.56 U 1 Phenanthrene 85-01-8 <2.56 U <2.56 U <2.56 U 1 Phenol 108-95-2 <2.56 U <2.56 U <2.56 U 50 Pyrene 129-00-0 <2.56 U <2.56 U 50 U 50 50 Sophital									
Isophorone 78-59-1 <2.56 U <2.56 U 50 Naphthalene 91-20-3 <2.56 U <2.56 U 10 Nitrobenzene 98-95-3 <2.56 U <2.56 U 0.4 N-Nitrosodimethylamine 62-75-9 <2.56 U <2.56 U <2.56 U <- N-nitroso-di-n-propylamine 621-64-7 <2.56 U <2.56 U <- N-nitroso-di-n-propylamine 86-30-6 <2.56 U <2.56 U <50 U <- N-nitroso-di-n-propylamine 87-86-5 <2.56 U <2.56 U <2.56 U <- N-nitroso-di-n-propylamine 87-86-5 <2.56 U <2.56 U <1 U <- N-nitroso-di-n-propylamine 87-86-5 <2.56 U <2.56 U U 1 Phenanthrene 85-01-8 <2.56 U <2.56 U <2.56 U <1 Phenol 108-95-2 <2.56 U <2.56 U <2.56 U 1 Pyrene 129-00-0 <2.56 U <2.56 U <50 U <50 Topic Topic U U U U U U U U U									
Naphthalene 91-20-3 <2.56 U <2.56 U 10 Nitrobenzene 98-95-3 <2.56									
Nitrobenzene 98-95-3 <2.56 U <2.56 U 0.4 N-Nitrosodimethylamine 62-75-9 <2.56									
N-nitroso-di-n-propylamine 621-64-7 <2.56 U <2.56 U ~ N-Nitrosodiphenylamine 86-30-6 <2.56		98-95-3	<2.56	U	<2.56				
N-Nitrosodiphenylamine 86-30-6 <2.56 U <2.56 U 50 Pentachlorophenol 87-86-5 <2.56 U <2.56 U 1 Phenanthrene 85-01-8 <2.56 U <2.56 U 50 Phenol 108-95-2 <2.56 U <2.56 U 1 Pyrene 129-00-0 <2.56 U <2.56 U 50 Phenol 129-00-0 <2.56 U <2.56 U 50 Pyrene 129-00-0 Pyrene 12									
Pentachlorophenol 87-86-5 <2.56 U <2.56 U 1 Phenanthrene 85-01-8 <2.56									
Phenanthrene 85-01-8 <2.56 U <2.56 U 50 Phenol 108-95-2 <2.56									
Phenol 108-95-2 <2.56 U <2.56 U 1 Pyrene 129-00-0 <2.56	Phenanthrene								
	Phenol						1		
	Pyrene NOTES:	129-00-0	<2.56	U	<2.56	U	50		

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:
D=result is from an analysis that required a dilution
J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated U=analyte not detected at or above the level indicated

U=analyte not detected at or above the level indicated
B=analyte found in the analysis batch blank
E=result is estimated and cannot be accurately reported due to levels encountered or interferences
NT=this indicates the analyte was not a target for this sample
~=this indicates that no regulatory limit has been established for this analyte

Table 2 **Groundwater Sampling Summary Table for Metals** 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

Sample ID		TW-4	1	TW-5		GW-DU	I D	 	
York ID	19G0248		19G0248		19G0248		NYSDEC TOGS		
Sampling Date		7/2/201		7/1/201		7/1/201		Standards and Guidance Values - GA	
Client Matrix		Groundw	ater	Groundwa	ater	Groundwa	ater		
Compound	CAS Number	Result	Q	Result	Q	Result	Q		
Metals, Target Analyte, ICP		ug/L		ug/L		ug/L		ug/L	
Dilution Factor		10		1		1			
Aluminum	7429-90-5	262,000		4,560		3,630		~	
Barium	7440-39-3	2,530		104		103		1000	
Calcium	7440-70-2	838,000		112,000		115,000		~	
Chromium	7440-47-3	578		43		41.400		50	
Cobalt	7440-48-4	288		5.810		5.080		~	
Copper	7440-50-8	715		22.200	U	22.200	U	200	
Iron	7439-89-6	532,000	D	5,590		4,730		~	
Lead	7439-92-1	238		5.560	U	5.560	U	25	
Magnesium	7439-95-4	333,000		37,700		38,300		35000	
Manganese	7439-96-5	15,700		344		330		300	
Nickel	7440-02-0	680		11.100	U	11.100	U	100	
Potassium	7440-09-7	79,800	_	14,300	-	14,100		~	
Silver	7440-22-4	5.560	U	5.560	U	5.560	U	50	
Sodium	7440-23-5	129,000		621,000		594,000		20000	
Vanadium	7440-62-2	567	_	11.100	U	11.100	U	~	
Zinc	7440-66-6	1,190		74.200	-	69.400		2000	
Metals, Target Analyte, ICP Dissolved		ug/L		ug/L		ug/L		ug/L	
Dilution Factor		1		1		1			
Aluminum	7429-90-5	<55.6	U	<55.6	U	<55.6	U	~	
Barium	7440-39-3	87.900		71.300		61.900		1000	
Calcium Chromium	7440-70-2	200,000		120,000		119,000		~	
Cobalt	7440-47-3 7440-48-4	5.750 16.100		41.200 <4.44	U	40.100 <4.44	U	50 ~	
Copper	7440-48-4	75.100		<22.2	U	<22.2	U	200	
Iron	7439-89-6	<278	U	<278	U	<278	U	~	
Lead	7439-92-1	<5.56	Ü	<5.56	Ü	<5.56	Ü	25	
Magnesium	7439-95-4	39,800		39,100		40,400		35000	
Manganese	7439-96-5	737			96.200			300	
Nickel	7440-02-0	13.700		<11.1	U	86.400 <11.1	U	100	
Potassium	7440-09-7	18,900		14,300	Ü	14,100		~	
Silver	7440-22-4	< 5.56	U	< 5.56	U	< 5.56	U	50	
Sodium	7440-23-5	128,000		676,000		625,000		20000	
Vanadium	7440-62-2	<11.1	U	<11.1	U	<11.1 U		~	
Zinc	7440-66-6	<27.8	U	104		<27.8	U	2000	
Metals, Target Analyte, ICPMS		ug/L		ug/L		ug/L		ug/L	
Dilution Factor		1		1		1			
Antimony	7440-36-0	1.640		<1.11	U	<1.11	U	3	
Arsenic	7440-38-2	35.300		2.740		2.600		25	
Beryllium	7440-41-7	0.535		< 0.333	U	< 0.333	U	3	
Cadmium	7440-43-9	3.010		< 0.556	U	< 0.556	U	5	
Selenium	7782-49-2	164		13.100		17.100		10	
Thallium	7440-28-0	2.710		<1.11	U	<1.11	U	~	
Metals, Target Analyte, ICPMS Dissolved		ug/L		ug/L		ug/L		ug/L	
Dilution Factor	7440-36-0	1 200		1 <1.11	U	l <1.11	U	,	
Antimony Arsenic	7440-36-0 7440-38-2	1.200 1.310		<1.11 2.080	U	<1.11 1.750	U	3 25	
Beryllium	7440-38-2	< 0.333	U	< 0.333	U	< 0.333	U	3	
Cadmium	7440-43-9	< 0.556	U	< 0.556			U	5	
Selenium	7782-49-2	8.020		12.900		<0.556 14.600	<u> </u>	10	
Thallium	7440-28-0	<1.11	U	<1.11	U	<1.11	U	~	
Mercury by 7473	20 0	ug/L	T	ug/L	Ĭ	ug/L	T	ug/L	
Dilution Factor	1	1		1		1			
Mercury	7439-97-6	< 0.2	U	< 0.2	U	< 0.2	U	0.7	
Mercury by 7473, Dissolved		ug/L		ug/L		ug/L		ug/L	
Dilution Factor	1	1		1		1			
Mercury	7439-97-6	< 0.2	U	< 0.2	U	< 0.2	U	0.7	
NOTES:									

Any Regulatory Exceedences are color coded by Regulation

\boldsymbol{Q} is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution
J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

Table 2 Groundwater Sampling Summary Table for Pesticides and PCBs 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

Sample ID		TW-5		GW-DU	P	
York ID	19G0248-	02	19G0248-	03	NYSDEC TOGS	
Sampling Date		7/1/2019	9	7/1/2019	9	Standards and Guidance
Client Matrix		Groundwa	iter	Groundwa	iter	Values - GA
Compound	CAS Number	Result	Q	Result	Q	
Pesticides, 8081 target list		ug/L		ug/L		ug/L
Dilution Factor		1		1		
4,4'-DDD	72-54-8	< 0.004	U	< 0.004	U	0.3
4,4'-DDE	72-55-9	0.00446		< 0.004	U	0.2
4,4'-DDT	50-29-3	< 0.004	U	< 0.004	U	0.2
Aldrin	309-00-2	< 0.004	U	< 0.004	U	~
alpha-BHC	319-84-6	< 0.004	U	< 0.004	U	0.01
alpha-Chlordane	5103-71-9	< 0.004	U	< 0.004	U	~
beta-BHC	319-85-7	< 0.004	U	< 0.004	U	0.04
Chlordane, total	57-74-9	< 0.02	U	< 0.02	U	0.05
delta-BHC	319-86-8	< 0.004	U	< 0.004	U	0.04
Dieldrin	60-57-1	< 0.002	U	< 0.002	U	0.004
Endosulfan I	959-98-8	< 0.004	U	< 0.004	U	~
Endosulfan II	33213-65-9	< 0.004	U	< 0.004	U	~
Endosulfan sulfate	1031-07-8	< 0.004	U	< 0.004	U	~
Endrin	72-20-8	< 0.004	U	< 0.004	U	~
Endrin aldehyde	7421-93-4	< 0.01	U	< 0.01	U	5
Endrin ketone	53494-70-5	< 0.01	U	< 0.01	U	5
gamma-BHC (Lindane)	58-89-9	< 0.004	U	< 0.004	U	0.05
gamma-Chlordane	5566-34-7	< 0.01	U	< 0.01	U	~
Heptachlor	76-44-8	< 0.004	U	< 0.004	U	0.04
Heptachlor epoxide	1024-57-3	< 0.004	U	< 0.004	U	0.03
Methoxychlor	72-43-5	< 0.004	U	< 0.004	U	35
Toxaphene	8001-35-2	< 0.1	U	< 0.1	U	0.06
Polychlorinated Biphenyls (PCB)		ug/L		ug/L		ug/L
Dilution Factor		1		1		•
Aroclor 1016	12674-11-2	< 0.05	U	< 0.05	U	~
Aroclor 1221	11104-28-2	< 0.05	U	< 0.05	U	~
Aroclor 1232	11141-16-5	< 0.05	U	< 0.05	U	~
Aroclor 1242	53469-21-9	< 0.05	U	< 0.05	U	~
Aroclor 1248	12672-29-6	< 0.05	U	< 0.05	U	~
Aroclor 1254	11097-69-1	< 0.05	U	< 0.05	U	~
Aroclor 1260	11096-82-5	< 0.05	U	< 0.05	U	~
Total PCBs	1336-36-3	< 0.05	U	< 0.05	U	0.09

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

P=this flag is used for pesticide and PCB (Aroclor) target compounds when there is a % difference for detected concentrations that exceed method dictated limits between the two GC columns used for analysis

NT=this indicates the analyte was not a target for this sample

 \sim =this indicates that no regulatory limit has been established for this analyte

Table 2 Groundwater Sampling Summary Table for PFOAs/PFOS and 1,4-dioxane 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

Sample ID	TW-5		TW-5			
York ID		19G0248-	04	19G0248-07		
Sampling Date		7/1/2019	9	7/1/2019		
Client Matrix	Groundwa	nter	Groundwater			
Compound	Result	Q	Result	Q		
Semi-Volatiles, 1,4-Dioxane by 8270-SIM						
Dilution Factor		1				
1,4-Dioxane	123-91-1	3.120		NT		
PFAS, NYSDEC Target List		ug/L		ug/L		
Dilution Factor				1		
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	39108-34-4	NT		< 0.002	U	
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	27619-97-2	NT		< 0.005	U	
N-EtFOSAA	2991-50-6	NT		< 0.002	U	
N-MeFOSAA	2355-31-9	NT		< 0.002	U	
Perfluoro-1-decanesulfonic acid (PFDS)	335-77-3	NT		< 0.002	U	
Perfluoro-1-heptanesulfonic acid (PFHpS)	375-92-8	NT		< 0.002	U	
Perfluoro-1-octanesulfonamide (FOSA)	754-91-6	NT		< 0.002	U	
Perfluorobutanesulfonic acid (PFBS)	375-73-5	NT		< 0.002	U	
Perfluorodecanoic acid (PFDA)	335-76-2	NT		< 0.002	U	
Perfluorododecanoic acid (PFDoA)	307-55-1	NT		< 0.002	U	
Perfluoroheptanoic acid (PFHpA)	375-85-9	NT		0.00225		
Perfluorohexanesulfonic acid (PFHxS)	3871-99-6	NT		< 0.002	U	
Perfluorohexanoic acid (PFHxA)	307-24-4	NT		0.00855		
Perfluoro-n-butanoic acid (PFBA)	375-22-4	NT		0.00621		
Perfluorononanoic acid (PFNA)	375-95-1	NT		< 0.002	U	
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	NT		< 0.002	U	
Perfluorooctanoic acid (PFOA)	335-67-1	NT		0.00328		
Perfluoropentanoic acid (PFPeA)	2706-90-3	NT		0.0161		
Perfluorotetradecanoic acid (PFTA)	376-06-7	NT		< 0.002	U	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	NT		< 0.002	U	
Perfluoroundecanoic acid (PFUnA)	2058-94-8	NT		< 0.002	U	

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

Table 3 Soil Vapor Sampling Summary Table for Volatile Organic Compounds 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

							.ity, 144								
Sample ID		SV-1		SV-2		SV-3		SV-4		SV-5		SV-6		SV-7	
York ID		19G0219-01 7/1/2019		19G0219-02 7/1/2019		19G0219-03 7/1/2019		19G0219-04 7/1/2019		19G0219-05 7/1/2019		19G0219-06 7/1/2019		19G0219-07 7/1/2019	
Sampling Date Client Matrix		Soil Vapor		Soil Vapor		Soil Vapor		Soil Vapor		Soil Vapor		Soil Vapor		Soil Vapor	
Compound	CAS Number	Result	0	Result	Q	Result	Q	Result	0	Result	Q	Result	0	Result	Q
Volatile Organics, EPA TO15 Full List	CAD Munici	ug/m ³	·	ug/m ³	·	ug/m ³	·	ug/m ³	·	ug/m ³	·	ug/m ³	·	ug/m ³	~
Dilution Factor		146.64		1.664		7.3		10339		89.25		8.45		1.572	
1,1,1,2-Tetrachloroethane	630-20-6	<13	U	<1.1	U	⊲5	U	<12	U	<12	U	<5.8	U	<1.1	U
1,1,1-Trichloroethane	71-55-6	<10	U	< 0.91	U	<4	U	< 9.8	U	< 9.7	U	<4.6	U	< 0.86	U
1,1,2,2-Tetrachloroethane	79-34-5	<13	U	<1.1	U	⊲	U	<12	U	<12	U	<5.8	U	<1.1	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1	<14	U	<1.3	U	<5.6	U	<14	U	<14	U	<6.5	U	<1.2	U
1,1,2-Trichloroethane	79-00-5	<10	U	< 0.91	U	<4	U	<9.8	U	<9.7	U	<4.6	U	< 0.86	U
1,1-Dichloroethane	75-34-3	<7.4	U	< 0.67	U	<3	U	<7.3	U	<7.2	U	<3.4	U	< 0.64	U
1,1-Dichloroethylene	75-35-4	<1.8	U	< 0.16	U	< 0.72	U	3.600	D	<1.8	U	< 0.84	U	0.500	D
1,2,4-Trichlorobenzene	120-82-1	<14	U	<1.2	U	<5.4	U	<13	U	<13	U	<6.3	U	<1.2	U
1,2,4-Trimethylbenzene	95-63-6	<9	U	1.600	D	<3.6	U	<8.8	U	<8.8	U	4.200	D	2.900	D
1,2-Dibromoethane 1,2-Dichlorobenzene	106-93-4 95-50-1	<14 <11	U	<1.3 <1	U	<5.6 <4.4	U	<14 <11	U	<14 <11	U	<6.5 <5.1	U	<1.2 <0.95	U
1,2-Dichloroethane	107-06-2	<7.4	U	<0.67	U	<3	U	<7.3	U	<7.2	U	<3.4	U	< 0.93	U
1,2-Dichloropropane	78-87-5	<8.5	U	<0.77	U	<3.4	U	<8.3	U	<8.2	U	<3.9	II.	< 0.73	U
1,2-Dichlorotetrafluoroethane	76-14-2	<13	Ü	<1.2	Ü	<5.1	Ü	<13	Ü	<12	Ü	<5.9	Ü	<1.1	Ü
1,3,5-Trimethylbenzene	108-67-8	<9	U	< 0.82	U	<3.6	U	<8.8	U	<8.8	U	<4.2	U	0.930	D
1,3-Butadiene	106-99-0	<12	U	<1.1	U	<4.8	U	<12	U	<12	U	<5.6	U	<1	U
1,3-Dichlorobenzene	541-73-1	<11	U	<1	U	<4.4	U	<11	U	<11	U	<5.1	U	< 0.95	U
1,3-Dichloropropane	142-28-9	<8.5	U	< 0.77	U	<3.4	U	<8.3	U	<8.2	U	<3.9	U	< 0.73	U
1,4-Dichlorobenzene	106-46-7	<11	U	2.600	D	<4.4	U	<11	U	<11	U	<5.1	U	2.300	D
1,4-Dioxane 2-Butanone	123-91-1 78-93-3	<13 130	U D	<1.2 90	U D	<5.3 93	U D	<13 220	U D	<13 54	U D	<6.1 17	U D	<1.1 18	U D
2-Butanone 2-Hexanone	78-93-3 591-78-6	130 26	D	16	D	12	D	220 35	D	54 <15	II.	<69	II.	3.500	D
3-Chloropropene	107-05-1	<29	U	<2.6	II	<11	U	<28	U	<28	U	<13	U	<2.5	U
4-Methyl-2-pentanone	108-10-1	<7.5	II	<0.68	II	<3	Ü	<7.4	Ü	<7.3	U	<3.5	U	< 0.64	Ü
Acetone	67-64-1	350	Ď	NT	-	NT	-	720	D	270	D	170	D	96	D
Acrylonitrile	107-13-1	<4	U	< 0.36	U	<1.6	U	<3.9	U	<3.9	U	<1.8	U	< 0.34	U
Benzene	71-43-2	<5.9	U	< 0.53	U	<2.3	U	<5.7	U	<5.7	U	<2.7	U	0.800	D
Benzyl chloride	100-44-7	<9.5	U	< 0.86	U	<3.8	U	<9.3	U	< 9.2	U	<4.4	U	< 0.81	U
Bromodichloromethane	75-27-4	<12	U	<1.1	U	<4.9	U	<12	U	<12	U	<5.7	U	<1.1	U
Bromoform Bromomethane	75-25-2	<19	U	<1.7	U	<7.5	U	<19	U	<18	U	<8.7	U	<1.6	U
Carbon disulfide	74-83-9 75-15-0	<7.1 <5.7	U	<0.65 <0.52	U	<2.8 <2.3	U	<7 <5.6	U	<6.9 <5.6	U	<3.3 <2.6	U	<0.61 0.640	U D
Carbon tetrachloride	56-23-5	<2.9	U	0.420	D	<1.1	U	<2.8	U	<2.8	II	2.100	D	1.700	D
Chlorobenzene	108-90-7	<8.4	U	< 0.77	U	<3.4	U	<8.3	U	<8.2	U	<3.9	U	< 0.72	U
Chloroethane	75-00-3	<4.8	U	<0.44	U	<1.9	U	<8.3 <4.7	U	< 4.7	II	<2.2	U	0.580	D
Chloroform	67-66-3	52	D	< 0.81	U	<3.6	U	36	D	44	D	31	D	NT	D
Chloromethane	74-87-3	<3.8	U	1.100	D	<1.5	Ü	<3.7	Ü	<3.7	Ü	<1.7	U	2.900	D
cis-1,2-Dichloroethylene	156-59-2	12	D	< 0.16	U	< 0.72	U	23	D	14	D	1.700	D	< 0.16	U
cis-1,3-Dichloropropylene	10061-01-5	<8.3	II	< 0.76	U	<3.3	II	< 8.1	U	<8.1	H	<3.8	U	<0.71	U
Cyclohexane	110-82-7	<6.3	U	< 0.57	U	<2.5	Ü	<6.2	U	<6.1	U	2.900	D	1.600	D
Dibromochloromethane	124-48-1	<16	U	<1.4	U	<6.2	U	<15	U	<15	U	<7.2	U	<1.3	U
Dichlorodifluoromethane	75-71-8	<9.1	U	1.700	D	<3.6	U	< 8.9	U	<8.8	U	4.200	D	1.900	D
Ethyl acetate	141-78-6	<13	U	<1.2	U	13	D	<13	U	<13	U	12	D	5.500	D
Ethyl Benzene	100-41-4	<8	U	< 0.72	U	<3.2	U	<7.8	U	<7.8	U	<3.7	U	1.300	D
Hexachlorobutadiene Iconomonal	87-68-3 67-63-0	<20 <9	U	<1.8 1.700	U D	<7.8 13	U D	<19 <8.8	U	<19 <8.8	U	<9	U	<1.7 3.600	U D
Isopropanol Methyl Methacrylate	80-62-6	<7.5	U	< 0.68	II.	<3	U	<8.8 <7.3	U	<8.8 <7.3	U	<4.2 <3.5	U	0.770	D
Methyl tert-butyl ether (MTBE)	1634-04-4	<6.6	II	<0.6	U	<2.6	U	<6.5	II.	<6.4	II	-3	U	<0.57	U
Methylene chloride	75-09-2	18	D	1.200	D	5.800	D	<12	II.	<12	II	<5.9	U	4.900	D
n-Heptane	142-82-5	<7.5	U	1.500	D	3	U	<7.4	Ü	<7.3	U	<3.5	U	1.600	D
n-Hexane	110-54-3	<6.5	Ü	1.100	D	<2.6	Ü	<6.3	Ü	<6.3	Ü	<3	Ü	1.300	D
o-Xylene	95-47-6	9.600	D	0.790	D	<3.2	U	<7.8	U	<7.8	U	3.700	D	2	D
p- & m- Xylenes	179601-23-1	18	D	1.700	D	<6.3	U	<16	U	<16	U	<7.3	U	4.600	D
p-Ethyltoluene	622-96-8	<9	U	1.100	D	<3.6	U	< 8.8	U	<8.8	U	<4.2	U	2	D
Propylene	115-07-1	15	D	2.600	D	27	D	25	D	<3.1	U	<1.5	U	< 0.27	U
Styrene	100-42-5	<7.8	U	<0.71	U	<3.1	U	<7.6	U	<7.6	U	<3.6	U	< 0.67	U
Tetrachloroethylene	127-18-4	39,000	D	< 0.28	U	NT		1,600,000	D	15,000	D	1,600	D	140	D
Tetrahydrofuran	109-99-9	<11	U	<0.98	U	<4.3	U	<11	U	<11	U	<5	U	< 0.93	U
Toluene	108-88-3	16	D	4.800	D	8.500	D	53	D	17	D	9.200	D	8.800	D
trans-1,2-Dichloroethylene	156-60-5 10061-02-6	<7.3 <8.3	U	<0.66 <0.76	U	<2.9 <3.3	U	7.100 <8.1	D	<7.1 <8.1	U	<3.4 <3.8	U	<0.62 <0.71	U
trans-1,3-Dichloropropylene		<8.5 130	D			<3.3 15			D		D				D
Trichloroethylene Trichlorofluoromethane (Freon 11)	79-01-6 75-69-4	130 19	D	0.270 1.100	D D	15 5.700	D D	4,800 32	D	130 18	D	19 8.100	D D	2.900 2.800	D
Trichlorofluoromethane (Freon 11) Vinyl acetate	75-69-4 108-05-4	19 <6.5	II.	1.100 <0.59	II.	5.700 <2.6	II.	32 <6.3	II.	18 <6.3	D II	8.100 <3	U	2.800 <0.55	U
Vinyl acetate Vinyl bromide	593-60-2	<8	U	<0.73	U	<3.2	U	<7.9	II.	<7.8	II	3.7	U	< 0.69	U
Vinyl Chloride	75-01-4	<1.2	U	<0.11	U	<0.47	U	<1.1	U	<1.1	U	<0.54	U	<0.1	U
rmyr cmottue	/3*01**	N1.2	Ü	5.0.11	٥	5,0,47	٥	N1.1	٥	\$1.1	U	NO.34	٥	5.0.1	U

Q is the Qualifier Column with definitions as follows:

Persult is from an analysis that required a dilution

Janalyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

Janalyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

Banalyte found in the analysis batch blank

Fersult is estimated and cannot be accurriely reported due to levels encountered or interferences

Puths flag is used for pesticled and PCB (Aroctor) Target compounds when there is a % difference for detected concentrations that exceed method dictated limits between the two GC columns used for analysis

NT-this indicates that no regulatory limit has been established for this analyte

Table 4 Groundwater Gauging Log 27-03, 27-09, and 27-11 40th Avenue and 39-44 28th Street Long Island City, New York

Well I.D.	Depth To Product (ft.)	Depth To Water (ft.)	Head Space (PPM)
MW-1 (40' deep)	N/A	Mud at 36.77' top of casing (TOC)	
MW-2 (40' deep)	N/A	Mud at 36.72' (TOC)	
MW-3 (40' deep)	N/A	Mud at 33.31' (TOC)	
MW-4 (40'deep)	N/A	38.13' TOC	
MW-5 (40' deep)	N/A	38.22' TOC	